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Abstract

This thesis presents research concerning level set methods discretised using discon-

tinuous Galerkin (DG) methods. Whilst the context of this work is level set based

topology optimisation, the main outcomes of the research concern advancements

which are agnostic of application. The first of these outcomes are the development

of two novel DG discretised PDE based level set reinitialisation techniques, the so

called Elliptic and Parabolic reinitialisation methods, which are shown through ex-

periment to be robust and satisfy theoretical optimal rates of convergence. A novel

Runge-Kutta DG discretisation of a simplified level set evolution equation is pre-

sented which is shown through experiment to be high-order accurate for smooth

problems (optimal error estimates do not yet exist in the literature based on the

knowledge of the author). Narrow band level set methods are investigated, and a

novel method for extending the level set function outside of the narrow band, based

on the proposed Elliptic Reinitialisation method, is presented. Finally, a novel hp-

adaptive scheme is developed for the DG discretised level set method driven by the

degree with which the level set function can locally satisfy the Eikonal equation

defining the level set reinitialisation problem. These component parts are thus com-

bined to form a proposed DG discretised level set methodology, the efficacy of which

is evaluated through the solution of numerous example problems. The thesis is con-

cluded with a brief exploration of the proposed method for a minimum compliance

design problem.
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Nomenclature

Greek

{αi}Nsi=0 Runge-Kutta weights i.e. Butcher Tableau Coefficients, see Table 5.1.

{β′}NIi=0 Divergence free basis functions used to generate a new quadrature rule for integrating
over immersed implicit boundaries, see Appendix A.

Γ(φ) Level set interface, that is the zero-isocontour of the level set function, φ, see Equa-
tion (3.1).

γA Penalty parameter associated with enforcing a constraint on the allowed amount of
volume in a structure undergoing a minimum compliance optimisation, see Equation
(7.27).

γD Penalty parameter associated with enforcing a Dirichlet boundary condition, see
Equation (4.28).

γS Penalty parameter associated with enforcing a constraint to ensure signed distance-
ness of a level set function after evolution, see Equation (4.5).

∆te Time step associated with level set evolution.

∆tr Time step associated with level set reinitialisation.

ε 2D engineering strain vector, that is ε = {εxx, εyy, 2εxy}, see Equation (7.15).

ζ Basis functions associated with the Lagrange multiplier space, L.

θ(u) Heaviside function, θ(u) = 1 if u > 0 and θ(u) = 0 otherwise.

Θτ Analyticity (smoothness) estimate of solution variable on the element, τ , see Section
6.3.2.

ϑ Generic variable used to describe an angle.

κ Level set curvature.

Λ Lagrange multiplier matrix, see Equation (4.51).

λA Lagrange multiplier associated with enforcing a constraint on the allowed amount of
volume in a structure undergoing a minimum compliance optimisation, see Equation
(7.27).

λD Lagrange multiplier associated with enforcing a Dirichlet boundary condition, see
Equation (4.29).

λp Lagrange multiplier associated with enforcing the linear elasticity solution on a struc-
ture undergoing a minimum compliance optimisation, see Equation (7.21).

µ Discontinuity penalisation parameter, see Equation (2.18).

ν Poisson’s ratio.

{ξi}
Nξ

i=0 Position of the integration points used in Müller’s method, see Equation (4.27).

φ(x, te) Level set function, solution variable to the level set evolution equation.

φD Prescribed value of the level set function on a Dirichlet boundary.

– 17 –



φnh The discrete solution of the level set evolution equation at the nth time step (a
distinction is made here in that the superscript n will always be used to refer to
evolution as opposed to m which will refer to a solution at the mth time step to a
reinitialisation equation).

φ̃(x, tr) Level set function, solution variable to a level set reinitialisation equation.

φ̃mh The discrete solution of a level set reinitialisation equation at the mth time step (a
distinction is made here in that the superscript m will always be used to refer to
reinitialisation as opposed to n which will refer to a solution at the nth time step to
the evolution equation).

φ̃m,kh The discrete solution of a level set reinitialisation equation at the kth iteration of a
quasi-Newton scheme, during the mth time step.

∇φτ The average value of the gradient of the level set function at the integration points
in the elements which neighbour the given element, τ . This value can be used to
generate the value of the level set function on an element which is outside the narrow
band, see Section 5.2.1.

σ 2D stress vector with constituents, σ = {σxx, σyy, σxy}, see Equations (7.10) and
(7.14).

τ̂ Reference element.

∂τ Boundary of an element, τ .

τ Element.

{χi}
Nχ
i=0 Set of constraints for an associated generic optimisation problem.

Ω Computational domain.

ω Direction of directional derivative, see Equation (7.6).

Ωφ+
The part of the computational domain, Ω, over which the value of the level set
function is positive (and therefore is full of material), this can be written equivalently
as Ωφ+

= Ω\D.

∂Ω Boundary of computational domain, Ω.

∂Ω− Inflow portion of boundary of computational domain, ∂Ω.

∂Ωsym Portion of boundary of computational domain, ∂Ω, over which a symmetry boundary
condition is to be enforced.

∂ΩD Portion of boundary of computational domain, ∂Ω, over which a Dirichlet boundary
condition is to be enforced.

∂ΩN Portion of boundary of computational domain, ∂Ω, over which a Neumann boundary
condition is to be enforced.

Roman

A Area (or volume for corresponding 3D problem) of material in a structure undergoing
minimum compliance optimisation.

Areq Required area (or volume for corresponding 3D problem) of material in a structure
undergoing minimum compliance optimisation, such that the solution is admissible.

ANB Area (or volume for corresponding 3D problem) of the problem domain which is
inside the level set narrow band.

b Advection velocity vector which drives the level set evolution equation. This can be
decomposed into magnitude and direction as follows, b = bnφ.

b Magnitude of the advection velocity vector, b.

Badv Bilinear form associated with a generic advection problem discretised using the dis-
continuous Galerkin method, see Equation (2.38).
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Bdif Bilinear form associated with a generic diffusion problem discretised using the sym-
metric interior penalty discontinuous Galerkin method, see Equation (2.26).

BER Bilinear form associated with the Elliptic Reinitialisation equations discretised using
the symmetric interior penalty discontinuous Galerkin method, see Equation (4.21).

BLE Bilinear form associated with the linear elasticity equations discretised using the
symmetric interior penalty discontinuous Galerkin method, see Equation (7.12).

BPR Bilinear form associated with the Parabolic Reinitialisation equations discretised
using the symmetric interior penalty discontinuous Galerkin method, see Equation
(4.67).

C Compliance functional, used to define the minimum compliance optimisation prob-
lem, see Equation (7.18).

{ci}Nsi=0 Runge-Kutta nodes i.e. Butcher Tableau Coefficients, see Table 5.1.

C0 The space of continuous functions.

C1 The space of differentiable functions whose derivative is continuous.

C∞ The space of infinitely differentiable functions.

D The part of the computational domain, Ω, over which the value of the level set
function is negative.

dn(·) Diffusion functional associated with the corresponding potential functional Pn, where
the subscript n = 1, 2, 3 correspond to different proposed diffusion functionals defined
in equations (4.15), (4.41) and (4.43) respectively.

DF Jacobian matrix associated with the quasi-Newton method.

Eext Set of all exterior edges, Eext =
⋃
eext.

ED Set of Dirichlet edges.

EN Set of Neumann edges.

eext Exterior edge, that is an element edge which has non-empty intersection with the
domain boundary, ∂Ω.

eint Interior edge, that is an element edge which has non-empty intersection with the
edge of an adjacent element in a given partition.

EInt Interface error measure, which is the L2 error in the solution along the level set
interface, see Equation (4.57).

EDG Error in the Discontinuous Galerkin (DG) norm, see Equation (4.55).

EL2 Error in the L2 norm, see Equation (4.53).

EL∞ Error in the L∞ norm, see Equation (4.54).

ESD Signed distance error measure, which measures the deviation in the between the
norm of gradient of the level set function and unity, see Equation (4.56).

fτ Affine mapping from reference element to mesh element.

FER Force vector associated with the Elliptic Reinitialisation method, see Equation (4.52).

FE Force vector associated with the level set evolution equation, see Equation (5.10).

FNR Residual vector associated with the Parabolic Reinitialisation equation solved using
a quasi-Newton method, see Equation (4.82).

gN Tractions prescribed on the Neumann edges of a linear elasticity problem, see Equa-
tion (7.10).

GNR Residual vector associated with the Parabolic Reinitialisation equation solved using
a quasi-Newton method, see Equation (4.83).

h The edge length associated with an element.

H1 The Sobolev space containing the subset of functions, ψ, in L2, by which both the
functions, ψ, and their corresponding weak derivatives, ψ′, are square integrable.
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H2 The Sobolev space containing the subset of functions, ψ, in L2, by which the func-
tions, ψ, and their corresponding first two weak derivatives, ψ′ and ψ′′, are square
integrable.

hτ The edge length associated with the given element, τ .

Jadv Linear form associated with the with a generic advection problem discretised using
the discontinuous Galerkin method, see Equation (2.39).

Jdif Linear form associated with the with a generic diffusion problem discretised using
the symmetric interior penalty discontinuous Galerkin method, see Equation (2.27).

JLE Linear form associated with the with the linear elasticity equations discretised using
the symmetric interior penalty discontinuous Galerkin method, see Equation (7.13).

JER,n Linear form associated with the Elliptic Reinitialisation discretised using the sym-
metric interior penalty discontinuous Galerkin method, see Equation (4.22). The
subscript n = 1, 2, 3 correspond to different proposed diffusion functionals defined in
equations (4.15), (4.41) and (4.43) respectively.

KER Stiffness matrix associated with Elliptic Reinitialisation equations, see Equation
(4.50).

KPR Stiffness matrix associated with Parabolic Reinitialisation equations, see Equation
(4.71).

KP Penalty matrix associated with the level set evolution equations, see Equation (5.9).

L Lagrangian of an optimisation problem, see Equation (7.3).

L Lagrange multiplier space, see Equation (4.34).

{`i}∞i=0 Legendre polynomials.

L1 The space of absolutely integrable functions.

L2 The space of square integrable functions.

l2 The space of square summable sequences.

L∞ The space of all essentially bounded functions.

l∞ The space of bounded sequences.

M Mass matrix, see Equation (4.70).

n̂ Unit outward normal to the edge of an element.

nΓ Unit outward normal to the level set interface, equivalent to nφ = ∇φ(x)
|∇φ(x)| for x ∈

Γ(φ).

nφ Unit outward normal to the level set function, equivalent to nφ = ∇φ
|∇φ| .

Nh Number of solution variables (degrees of freedom) per element.

NI Number of basis functions per element (specific to moment fitting equations and
Müller’s method, see section 4.3.2).

Ns Number of Runge-Kutta stages, see Section 5.1.2.

Nξ Number of integration points per element (specific to Müller’s method, see Section
4.3.2).

NLM Number of Lagrange multipliers per element.

p Vector containing order of interpolation space associated with each element in the
partition.

p The order of an interpolation space.

pτ The order of the interpolation space associated with the given element, τ .

pRK The order of the Runge-Kutta discretisation.

Pn Potential Functional driving the minimisation based reinitialisation methods, where
the subscript n = 1, 2, 3 correspond to different proposed potential functionals de-
fined in equations (4.11), (4.40) and (4.42) respectively.
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[qij ] Runge-Kutta matrix i.e. Butcher Tableau Coefficients, see Table 5.1.

Qpτ The space of polynomials of degree no more than pτ in each coordinate direction.

R
d d-dimensional space of real numbers.

r Radius.

Rn Residual Functional driving the minimisation based reinitialisation methods, where
the subscript n = 1, 2, 3 correspond to a residual based on different potential func-
tionals, pn, defined in equations (4.11), (4.40) and (4.42) respectively.

S The set of elements being currently operated on, see Algorithm 3.

S(T) The set of internal edges on the partition, T, also referred to as the skeleton of the
mesh.

T Partition of a domain (mesh).

TΓ Subset of the mesh, containing only the elements which are cut by the level set
interface, see Equation (4.32).

TNB Subset of the mesh, containing only the elements which form a narrow band around
the level set interface, see Equation (5.12).

ToNB Subset of the mesh, containing elements which are outside of the narrow band subset,
but which have a neighbouring element which is inside the narrow band subset, see
Equation (5.13). This subset therefore consists of one layer of elements surrounding
the narrow band.

TT Subset of the mesh, containing elements which at the previous updating of the narrow
band subset were not inside TNB, but now are after the current update, see Section
5.2.1.

T Final time.

t Temporal variable, pseudotime.

te Pseudotime relating to the level set evolution problem.

tr Pseudotime relating to the level set reinitialisation problem.

u Displacement, solution variable to the linear elasticity equations, (7.10), the bold
print denotes that this value is vector valued consisting in this case of a horizontal
and vertical component, i.e. {ux, uy}.

uh Discrete displacement, solution variable to the discretised linear elasticity equations,
(7.11), the bold print denotes that this value is vector valued, discreteness is denoted
by the subscript h.

U Set of admissible solutions to a generic shape optimisation problem, see Equation
(7.1).

u Generic continuous solution variable to a partial differential equation.

u+ Value of solution variable u on an outflow boundary.

u− Value of solution variable u on an inflow boundary.

uD Prescribed value of solution variable u on the Dirichlet boundary.

uh Discrete representation of the generic continuous variable u, discreteness is denoted
by the subscript h.

V Generic variable denoting an infinite dimensional functional space.

v Generic variable denoting a basis function associated with the generic functional
space, V .

Vh Generic variable denoting an finite dimensional approximation of the functional
space, V .

vh Generic variable denoting a basis function associated with the finite dimensional
functional space, Vh.
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Vp The hp-version of the discontinuous Galerkin finite element space, see Equation (2.2),
This is a scalar-valued space.

V 2
p The hp-version of the discontinuous Galerkin finite element space, the exponent

denotes that the space is vector-valued with dimensionality 2, the space is defined
in Equation (7.17).

w Weights associated with the quadrature rule computed using Müller’s method, see
Equation (4.27).

x Spatial variable, x = {x, y}.
Y Young’s modulus

Ymaterial Young’s modulus of the part of the domain filled with material when using an ersatz
material approach to model empty regions of the domain, see Section 7.2.

Yvoid Young’s modulus of the part of the domain filled with ‘emptiness’ when using an
ersatz material approach to model empty regions of the domain, see Section 7.2.

z Decay rate of the penalty parameter used in the augmented Lagrangian approach to
enforce a constraint on the volume of material in an admissible design in a structural
optimisation problem, see Equation (7.28).

Mathematical

(a, b)A Denotes
∫
A a · b dx.

〈a, b〉A Denotes
∫
A a · b ds.

[[·]] Jump operator, see Equation (2.11).

{{·}} Average operator, see Equation (2.11).

dist(a,A) Distance function, returns the minimum distance between the point a and the set of
points A.

sign(a) Signum function, returns the sign (±) of the argument a.

span(A) Span; if A ⊂ B, span(A) is the smallest subspace of B which contains A.

∅ Empty set.

1A(a) Indicator function, returns 1 if a ∈ A and zero otherwise.

A\B The exclusion operator, can be read as ‘A but not B’.
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Chapter 1

Introduction

1.1 Context and overview

Topology optimisation is the most general form of structural optimisation and is concerned with

finding the boundary of a given problem domain which can be considered optimal, meaning that

it minimises a chosen objective functional whilst satisfying a set of constraints. Such an idea

is, for obvious reasons, of great interest to scientists and engineers, but especially nowadays as

the prevailing sentiment of our times demand structures and components to be designed with

great care taken to increase efficiency and reduce waste. In such a scenario, the ability to work

backwards, to start with goals such as these in mind, and then by means independent of a

designer compute a design which optimally satisfies those chosen goals, not only can expedite

the design process, but may be necessary to lead to the possibly unintuitive designs required

to adequately solve such difficult problems. This has led to a growing wealth of research in the

area of topology optimisation, particularly over the past 30 years, and with it the development

of a family of methods which can be used to solve problems of this type.

One of the first major groups of topology optimisation methods to be developed are known

as hard-kill methods [1]. Hard-kill methods are called as such because, after partitioning the

problem domain, each element in the mesh, can either be considered as being full of material

or empty. The distribution of material over the domain then, can evolve iteratively through

the mesh based on various heuristics which define each of the specific methods in the group.

In this way the computed boundary, that is the solution to the topology optimisation problem,

necessarily must align with the given partition. A similar but more sophisticated group of

methods are known as density based topology optimisation methods [2]. Density based methods

work by associating a density with each element in the mesh, which becomes the design variable

to be solved for. In this way each element is either full of material, empty or contains a material

of intermediate density. One of the most popular topology optimisation methods, which found

significant use in industry, belongs to the group of density based methods, and is known as the

Solid Isotropic Microstructure with Penalisation (SIMP) method [3]. One of the main issues with

methods such as these is that they do not allow for accurate or geometrically complex solutions

to be found, beyond the density of the mesh. Such criticisms led researchers to develop a group

of methods known as boundary variation methods, initial attempts at which represented the
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boundary explicitly using polynomial and spline representations [4–6]. These explicit methods

however never really found a footing as the optimisation process means moving boundaries and

thus remeshing, which is problematic both in terms of computational expense and stability due

to mesh distortion.

More recently, a numerical technique known as the level set method, [7], has began to be

employed more widely as a constituent part of various boundary variation topology optimisation

methods, see [8, 9] for initial attempts in this regard. The level set method is a numerical

technique for representing and tracking evolving interfaces, and can be used as such to track the

evolving boundaries of a structure undergoing optimisation. The level set method, however, is

an implicit method, which means that the position of the boundaries which are represented by

the method are not known explicitly, but instead are implied by the intersection of a hyperplane

with a function known as a level set function (and the boundary is thus a level set of the

level set function). By virtue of being an implicit method, the level set method is much more

computationally efficient than explicit methods, and has advantages over hard-kill and density

based methods also, as complex geometries can be captured by simple Cartesian meshes and

complex topological changes can be handled with ease. This has led to the growing interest in

the level set method for use in this context. Level set methods however, outside the context

of topology optimisation, have some known issues. For example, the methods can be prone to

numerical instability and the level of accuracy for a given mesh density can often be low; this

can be seen in the recent review by Gibou [10] which shows that active areas of research include

level set regularisation techniques, to improve stability, as well as methods for reducing mass

loss (a phenomenon by which the mass or volume contained by a given level set interface is not

maintained over time). Thus whilst such a methodology shows promise, it seems to be that

there is room for improvements to be made particularly with respect to the evolution of the

optimising boundaries, where level set methods are used for topology optimisation.

A similar but less popular method which has also more recently been applied to boundary

variation topology optimisation problems are phase field methods, initial attempts at which can

be found in [11]. As with the level set method, the distribution of material in a domain using

the phase field method is implied by a function, in this case a phase field function. In the phase

field paradigm however, this function is a smoothed Heaviside function and thus the boundary

between the two phases has finite thickness. Optimal shapes can be computed using a phase

field approach by evolving the phase field function (and thus the implied interface) through

the solution of a fourth order Cahn-Hilliard equation which is often simplified into a coupled

pair of second order Partial Differential Equations (PDEs). It has been suggested that one

reason for the lack of popularity of phase field methods in this context include the inability to

precisely determine the position of the interface in the transition region between regions filled

with material and which are empty [12], and similarly despite the implicit nature of the method

a common criticism of the methods are the high computational costs associated with solving the

equations driving the optimisation using such an approach [12–14].

As topology optimisation is a computational technique specific to engineers, it is no surprise

that the Finite Element (FE) Method, is a major constituent of many of the proposed method-
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ologies for solving topology optimisation problems. Here the FE method finds use not only

in discretising the physical equations defining the behaviour of the structures to be optimised

but often also, as is implied above, as an integral part of the optimisation process itself. It

is, of course, advantageous that a single discretisation method be used for all of the equations

in a given methodology. Traditionally however, level set methods have been discretised using

Finite Difference (FD) and Finite Volume (FV) type methods as the equations underlying the

evolution of the level set function are hyperbolic, a class of problem with which a standard FE

discretisation is understood to perform poorly [15].

Given the issues with the level set method described above recent research activity in the

area of level set based topology optimisation has been directed towards the investigation of

other discretisation techniques such as the eXtended Finite Element Method (XFEM) [16–18]

and the Boundary Element Method (BEM) [19, 20], as well as other means for evolving the

boundaries defined by a level set function such as using mathematical programming techniques

[21]. One interesting family of methods which seems particularly well suited for this role are

Discontinuous Galerkin (DG) methods. DG methods are a class of non-conforming FE method,

which allow for discontinuous discretisations by formulating problems locally on each element

in a mesh, and facilitating interelement communication with the use of flux terms across each

element face, much like FV methods. In this way, by combining parts of the traditional FE

and FV methods, DG methods can be considered to have advantages over both. With specific

regards to level set methods these advantages include; their ability to deal with directional

phenomena, their nonlinear stability, their formal high-order accuracy, and more generally due

to their compactness the methods’ are advantageous due to their high level of parallelisability

and the ease with which one can include hp-adaptivity.

This presents the context for the original goal for the work to be presented in this thesis.

That goal was to exploit some of the known advantages of the discontinuous Galerkin method

in the discretisation of the partial differential equations which drive a level set based topology

optimisation methodology. In particular, the high levels of parallelisability of DG methods,

as well as, the ease with which the methods can deal with hp-adaptive meshes, to develop a

methodology which would be able to be applied to some interesting set of example problems.

As is often the case with research, however, the aims of the research change with time limits

and with the knowledge gained by engaging in the research.

The first stage of the research was to apply a DG discretisation, to the relevant level set

equations and demonstrate that the resultant method satisfied the formally arbitrary high-order

accuracy expected. One consideration which needed to be taken into account at this stage

was that there is a known numerical issue with the level set method known as the tentpole

phenomenon [22], by which during the evolution of a level set function, the level sets would

drift resulting in steep and flat regions. This is problematic as it can be shown that large

variations in the gradient of the level set function will lead eventually to numerical instability

and a breakdown in the solution. It is also understood that even if this problem doesn’t cause a

breakdown of the solution, avoiding this issue is beneficial in terms of accuracy of the computed

solution [23]. In order to deal with issues generated by the variation in the gradient of level
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set function, researchers have developed numerous regularisation techniques, often referred to

as reinitialisation methods, in order to either ensure that the gradient remains constant (usually

equal to unity) after each level set evolution step, or which can regenerate (or generate a new)

level set function, with constant gradient, should the variation in the gradient become too large.

Whilst investigating these techniques for regularising the level set function it became appar-

ent that simply translating an existing method into the DG paradigm would not be trivial given

the desire that the developed method demonstrate high-order accuracy. For example, with reini-

tialisation the aim is to compute a level set function with more favourable numerical qualities,

i.e. with less variation in the gradient of the level set function over the domain. However as an

auxiliary method which occurs between iterations of the evolution of the level set interface, it is

important that the position of the interface does not change during reinitialisation. This means

that a Dirichlet boundary condition needs to be enforced on the level set interface, which is an

implicit surface. The question of how to enforce such a boundary condition to an adequate level

of accuracy was one which had not been answered in the literature. Other issues concerning

singularities in the computed solution, one can imagine the level set function with constant

gradient defining a circular interface taking the form of a cone for example, had likewise gone

unaddressed. As such the development of level set reinitialisation techniques became a much

more important part of the work than was first anticipated and a significant proportion of the

research is directed towards endeavours to adequately solve the level set regularisation problem

in the chosen DG paradigm. To this end, in this thesis two novel DG discretised PDE based

level set reinitialisation methods are presented both of which demonstrate the desired high-order

accuracy, as well as a number of other improvements over existing reinitialisation techniques.

Once the reinitialisation problem had a satisfactory solution, the next stage was to discretise

a full level set evolution problem using DG, again with the aims of demonstrating high-order

accuracy, utilising as necessary the developed reinitialisation techniques to ensure stability. In

order to ensure accuracy, experimentation with various time stepping methods was required,

eventually settling on a high-order Runge-Kutta (RK) temporal discretisation. Further, one

contribution in this regard is the presentation of a simplified DG discretisation of the level set

evolution equations with a novel flux, which can be afforded by the confidence one can have

that at any given point the level set function will be a good approximation of a signed distance

function due to the developed level set reinitialisation methods. This increases the efficiency

of the evolution process, at the expense of reinitialisation. This is a good trade-off however,

as the reinitialisation is a requirement anyway if one desires high-order accuracy and numerical

stability.

Also explored at this stage are ideas concerning narrow band level set methods. Narrow

banding is a technique by which the problem size for both the evolution and reinitialisation

problems can be reduced from the entire mesh to a smaller set of elements in the region imme-

diately surrounding the level set interface. This is allowed as the area of interest is the level set

interface and any information in the far-field should not have a significant effect on the evolution

of the interface. Narrow banding had already been useful when it comes to reinitialisation as one

of its benefits is that it can remove singularities which develop in the far-field from the domain
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which helps to improve stability. Thus, also explored at this stage of the research was a more

critical approach concerning the effective use of narrow band level set methods. In the context

of evolution problems, once the interface evolves far enough from its initial position the set of

elements comprising the narrow band will change, however the solution on those elements will

either have not been appropriately updated whilst those elements were outside or will not exist

at all. This led to the development of another novelty presented in this thesis, a technique for

extrapolating the level set function outwards from the narrow band to those elements outside

the narrow band.

Once this had been achieved, the next stage of the research was an investigation into adap-

tive mesh refinement for the developed DG level set methodology. Several works have made

use of adaptive mesh refinement when solving level set problems in order to improve accuracy

and reduce costs, however, where adaptivity has been used it is often employed in a simplistic

fashion based on geometric criteria [24–32], and almost never are both h and p adaptivity used

in combination [33]. Given the adeptness of DG in this domain, it seemed natural to incorpo-

rate an hp-adaptive refinement strategy into the proposed DG based level set method. To this

end, presented in this thesis is a novel hp-adaptive mesh refinement strategy, including a novel

refinement criterion based once again on the work completed on level set reinitialisation. One

potential issue which did arise at this stage, was that when the shape described by the level

set interface was more complex, significantly greater computational resources were required to

achieve a given level of accuracy. The reasons for this were investigated and it seems that firstly

modelling interfaces of any shape to high levels of accuracy on the chosen finite element space

using the level set method is inherently difficult and thus resource intensive in terms of memory.

As the shape of the interface becomes more complex, however, this problem exaggerates and

therefore becomes much more apparent. And secondly the chosen iterative method for the reini-

tialisation problem has a particularly poor convergence rate which means greater levels of real

time are required to achieve a desired level of accuracy, which also increases with the increased

complexity of the interface. Whilst some experimentation with other iterative solvers was per-

formed during the research period, unfortunately no alternative stable method was found. As

such it might be the case that a potential way of alleviating this issue could be the incorporation

of high performance computing techniques as the increased efficiency given by the parallelisation

for example may allow the iterative solver to achieve greater levels of accuracy for a given time

period and also one may be able to to more adequately deal with the memory requirements

associated with the desired high levels of resolution.

The technical part of the thesis is concluded with a preliminary exploration of the proposed

hp-adaptive DG discretised level set methodology in the context of which it was originally

intended, topology optimisation. To this end, presented are details concerning a shape sensitivity

analysis approach to optimisation, which can be effectively paired with the level set method [9],

in that it can be used to compute an advection velocity field to drive the evolution of a level

set interface to a position which minimises a given objective functional. This is combined

with an augmented Lagrangian approach [34] for enforcing the constraints on the optimisation

problem. The proposed methodology is then applied to a standard benchmark problem, that
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is computing the the minimum compliance design of a linear elastic cantilever beam, under a

volume constraint.

1.2 Thesis outline

The main body of this thesis consists of 6 chapters. Each of the chapters will consist of a similar

form; the chapter will begin with a review of the relevant literature which will contextualise

and explain the motivations for each of the chapters, this will be followed by a theory section,

and then where applicable numerical examples. A more specific breakdown of the information

contained within each chapter is detailed below.

Chapter 2: Discontinuous Galerkin methods

Chapter 2 begins with an overview of numerical methods for the spatial discretisation of PDEs,

in particular presenting the history and development of DG and Interior Penalty (IP) methods

since their inception in the 1970’s. Next the preliminary mathematical nomenclature for DG

methods is presented, which is requisite for the discussions which will follow for the remainder

of the thesis. After this the literature related to DG methods as applied to the specific classes

of equations found in this thesis, first-order advection and second-order quasilinear diffusion,

are reviewed with attention paid to error analysis where it has been performed. Furthermore, a

generic problem belonging to each of these classes is discretised using the relevant DG variant

and the discretisation explained.

Chapter 3: Level set method

Chapter 3 introduces and presents the preliminary mathematical nomenclature for the level set

method. In particular three aspects of the level set method are outlined; the formulation of

a generic level set evolution problem; level set initialisation and reinitialisation; and narrow

banded level set methods. Also presented in this chapter is a literature review concerning ex-

isting high-order discretisations of the level set evolution equation with a focus on DG methods

where they have been applied.

Chapter 4: Level set reinitialisation

Chapter 4 presents the research completed in the area of level set reinitialisation. This begins

with a literature review of the existing methods of level set reinitialisation, again focussing on DG

discretisations wherever they occur. This is followed by the proposal of a novel reinitialisation

method referred to as the Elliptic Reinitialisation method, the development of which is explained

in detail and which is shown through experimentation to be of significantly higher accuracy than

is capable with competitive methods. A second novelty is presented whereby through reformula-

tion of the Elliptic Reinitialisation method, a Parabolic Reinitialisation method is also proposed.

The two developed reinitialisation methods are compared and whilst both methods display sim-

ilar levels of accuracy, the stability of the parabolic formulation is dependent on a problem

dependent time step and as such the Elliptic Reinitialisation is decided to be the preferable

method. Also presented in this chapter are discussions concerning the enforcement of boundary
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conditions on immersed implicit level set interfaces, and the necessity of narrow banding for

certain applications of the level set method.

Chapter 5: Level set evolution

Chapter 5 proposes a DG methodology for solving level set evolution problems. In particular the

level set equation is simplified, which is made possible by frequent and accurate level set reinitial-

isation, and then discretised using a DG method using a novel flux. Narrow banding is discussed

and with it a novel technique is presented for extrapolating the level set function to elements

outside of the narrow band, which is required as the narrow band itself evolves to follow the

evolving interface. Anderson acceleration is discussed as a method for improving the convergence

of the fixed point iterative method used to solve the reinitialisation and extrapolation problems.

The constituents of the methodology; the evolution, reinitialisation, and extrapolation equations

and their associated technology are combined and used to solve a number of numerical examples.

Chapter 6: Level set method: adaptive mesh refinement

Chapter 6 proposes a novel strategy and criterion for hp-adaptive mesh refinement in the con-

text of the DG discretised narrow banded level set methodology presented in Chapter 5. The

chapter begins with a review of the literature concerning existing refinement strategies for level

set methods. Then after presenting the proposed refinement strategy, a number of level set reini-

tialisation, and level set evolution example problems are solved this time on hp-adaptive meshes.

Chapter 7: Topology Optimisation

Chapter 7 presents a brief foray into topology optimisation using the DG discretised, hp-

adaptive, narrow banded level set methodology formulated in the preceding chapters. A lit-

erature review is presented discussing a history of the methods used for topology optimisation,

and thus where the level set methodology presented thus far would fit in such a context. The

requisite theory for using a shape sensitivity approach to solving a minimum compliance problem

for linear elastic structures with a constraint on the maximum allowed amount of material is

presented which is combined with the proposed level set methodology before solving an example

problem involving the design of a cantilever beam under an applied traction.

Chapter 8: Conclusions

Chapter 8 presents a summary of the ideas presented in the thesis, and highlights in particular

the novel developments made during the research period. The chapter then proceeds to discuss

issues encountered which are yet to be overcome, as well as other areas of interest which were

ultimately beyond the scope of the research presented in this thesis given the time constraints

of the research period, as parts of a larger discussion on suggested areas of future work.

Whilst mathematical notation will be introduced as and when necessary throughout the

thesis, stated here are a number of conventions which will be consistent throughout the presented

nomenclature. Vector valued functions and variables always use bold-face notation, for example,
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the spatial variable can be denoted x = {x, y}. Subscripts are used extensively as identifiers

between variables and functions which denote the same general meaning but differ in specifics,

for example, EL2 and EDG both denote errors with the subscript identifying the specific norm

in which the error is computed. In the case that a variable needs both an identifier and an index

as a subscript, these are separated by a comma in the order, identifier then index. It is noted

that the comma subscript is not used in this thesis, as is sometimes found in the literature, to

denote a partial derivative. Indices denoting time step or iteration are always superscripts, and

use the symbol m, n or k. In the case of nested iterative methods, multiple superscripts will be

used, again separated by a comma. Where algorithms are presented, functions and variables are

often given descriptive names as opposed to symbols, in such a case these names are written in

camel case and use the Latin Modern Typewriter font, for example, errorHandle is a variable

containing a handle which points to the appropriate error to be computed. Furthermore, where

names are used instead of symbols, operations such as multiplication will always be stated

explicitly to avoid confusion.
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Chapter 2

Discontinuous Galerkin Methods

2.1 Overview

Finite Element (FE) analysis is an almost ubiquitous numerical tool for approximating the

solution to problems in engineering. The standard (i.e. most popular) FE method is known as

the Continuous Galerkin (CG) FE method. For a problem with a solution which belongs to a

function space, V , the key component of a Galerkin FE method is to look for a solution in a

finite dimensional subspace of that space, Vh (where the subscript h refers to a discretisation

parameter, often and in this case related to the size of the elements used to discretise the

domain on which the problem is to be solved). The classical conforming CGFE method then,

takes its name from the restrictions imposed on this approximation space, Vh, which are; that it

is conforming i.e. Vh ⊂ V , and in particular that the functions which form a basis of the space

are continuous throughout the problem domain (and therefore are continuous across element

boundaries).

In 1973, Reed and Hill [35], designed an explicit non-conforming numerical method for solving

the neutron transport problem in which there was no requirement on interelement continuity

on the approximation space, Vh, for the first time in a finite element context. In their paper,

Reed and Hill presented a piecewise continuous method where the problem is formulated locally

on each element in the problem domain, and a flux term is used to pass information between

adjacent elements. This was compared against a strictly continuous formulation, where it was

demonstrated by experiment that the discontinuous method was superior both in terms of ac-

curacy and stability. This was a significant result as traditionally FE methods had performed

poorly when attempting to solve first-order hyperbolic Partial Differential Equations (PDEs),

compared with other numerical methods of the time, and therefore had typically been ignored

by the wider community for use in this context. In 1974, LeSaint and Raviart noted this sig-

nificance, and produced an analysis of Reed and Hill’s method [36] in which they showed that

Reed and Hill’s method was a generalisation of the CGFE method, and subsequently named

Reed and Hill’s method, the Discontinuous Galerkin (DG) method.

The original DG scheme of Reed and Hill, for solving a transport problem, was influenced

by earlier works on solving transport problems, whereby, as it is known that advection is a

directional phenomenon, the appropriate method of passing information between elements is
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to make use of an upwind type flux. Diffusion however is a non-directional phenomenon, and

as such non-conforming FE methods for diffusion type problems might therefore be built in a

similar way to Reed and Hill’s method, except in this case by passing information across element

faces using a central/average type flux. Around the same time that Reed and Hill published

their article the methods of Nitsche [37] and Babuška [38] which allowed one to weakly impose

Dirichlet boundary conditions, were being extended, much in this vein, to allow for analogous

methods to be used to enforce interelement continuity. These methods are known as the Interior

Penalty (IP) methods. Whilst it is slightly more difficult to pinpoint an original IP method,

one early example was presented in the 1973 paper by Babus̆ka and Zlámal [39], in which a

penalty type method was used to weakly impose C1 continuity for the fourth-order biharmonic

equation. Other methods which used an approach more analogous to Nitsche’s method includes

the 1977 article by Baker [40], which again imposed C1 continuity on C0 elements for fourth-

order problems, the 1976 work by Douglas and Dupont [41] which penalised the jump in the

normal derivative to enforce continuity for second-order elliptic and parabolic PDEs, the 1978

work by Wheeler [42] which included generalisations of the consistency, symmetry and penalty

terms of Nitsche’s method across element edges to solve elliptic PDEs, and the 1979 PhD Thesis

of Arnold [43] which presented and analysed a similar method to that of Wheeler for nonlinear

elliptic and parabolic PDEs. The idea however, that IP methods were DG methods using

a different type of flux wasn’t noticed until the 1990’s and as such the development of DG

methods and IP methods continued independently in the interim.

After the initial attempts at using DG and IP methods in the 1970’s, further developments

were relatively sparse in the following decade. One active area of research at the time however,

was methods for solving nonlinear hyperbolic conservation laws. In 1982, Chavent and Solzano

[44] published an article which attempted to extend the works of of Reed and Hill and LeSaint

and Raviart to solve problems of this type, however, one of the main issues with DG methods

during this period, was the time discretisation. An implicit solver would require an expensive

global nonlinear solve, whereas the first-order explicit Euler method which was used by Chavent

and Solzano [44] suffers from a severe time step restriction. In the case of IP methods, Arnold

[45] suggests that the reason for the lack of progress may have been to do with the difficulty in

finding optimal penalty parameters, as well as the methods never being proven to have significant

advantages over a classical CGFE approach.

In the same two decades however, largely driven by the desire to compute accurate solutions

to nonlinear hyperbolic systems, there was a vast amount of research completed in the area of

high resolution Finite Difference (FD) and Finite Volume (FV) schemes. An important starting

point in this context was Godunov’s method [46], which was a first-order finite volume scheme,

upon which many of the high resolution schemes were based. The main novel idea in Godunov’s

method was to update the solution at each time step by solving exactly a Riemann problem at

each cell interface and averaging the solution to these Riemann problems over the domain. In

this way Godunov had extended the first-order upwind scheme of Courant, Isaacson and Rees

[47] to nonlinear systems of hyperbolic conservation equations. One of the main issues with first-

order methods such as Godunov’s method is that they tend to be very diffusive, and therefore
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cause discontinuities, which might be physical, to smooth out over time. Higher-order methods

such as the Lax-Wendroff scheme [48], however, whilst providing higher resolution in smooth

parts of the solution introduce spurious oscillations near to local extrema and particularly in

the regions where a solution is discontinuous. In fact Godunov in his article, [46], had proven

that higher-order methods, could not both preserve monotonicity (i.e. not introduce oscillations)

and also be higher than first-order accurate. The main issue to overcome then was the question

of how to resolve discontinuities in a solution over relatively few cells, whilst providing high-

order accuracy in smooth regions without introducing erroneous oscillations. Methods presented

which aimed to overcome this issue began to be published in the 1970’s, with the series of

articles by Van Leer [49–53]. In these articles Van Leer introduced the Monotone Upstream-

Centered Scheme for Conservation Laws (MUSCL) and with it the idea of flux/slope limiting,

by which Godunov’s scheme was extended to include adaptive higher-order (in this case linear)

approximations to the solution at cell interfaces. The idea was that the higher-order fluxes

would provide a higher resolution where the solution was smooth, and the flux could then be

limited to prevent oscillations in areas where the solution was sharp. In this way the method,

and later higher-order variants for example [54–56], were able to ensure that the total variation

(a measure of the oscillation in a solution) was non-increasing (also known as Total Variation

Diminishing (TVD)). A related advancement in this respect was introduced in 1981 by Roe [57],

who noticed that much of the information gained by solving the set of exact Riemann problems

was lost after the solution at cell interfaces was then averaged over the domain. Given that these

Riemann problems, especially in the case of nonlinear systems of equations, could be expensive

to solve, Roe considered that it may be possible to obtain good results by replacing the Riemann

problem with a cheaper to compute approximation. In that initial paper by Roe and similar

papers which followed, for example [58, 59], this was achieved by either approximating the

Riemann states and then computing the physical flux, or by approximating directly a numerical

flux. In 1987, it was shown [60] that schemes which were total variation non-increasing were at

most first-order accurate due to the degenerated accuracy in the regions of local extrema (which

may be smooth). The solution to this issue was the development of a suitable relaxation of the

the TVD property. One approach in this vein, presented in a series of articles by Harten et

al. [60, 61], replaced the TVD property by the more lenient Uniformly Non-Oscillatory (UNO)

property which allowed the total variation to increase, but maintained that the number of local

extrema must be non-increasing, and then eventually by the even more lenient Essentially Non-

Oscillatory (ENO) property which allowed for the number of local extrema to increase as well

as the total variation, however the increase in the total variation was bounded to be on the

order of the cell size, h. A different approach developed by Shu [62], was to replace the TVD

property with the Total Variation Bounded (TVB) property by which the total variation is

bounded by a positive constant for all time. The schemes developed under the UNO, ENO and

TVB frameworks were designed to use arbitrarily high-order interpolation spaces and therefore

be able to maintain higher-order accuracy in smooth regions. However, as is noted in [63], high

resolution finite volume schemes are not in general formally high-order accurate, in that even

on smooth parts of a solution there can be a degradation of accuracy as a result of the coupling
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between characteristic components for all but the simplest linear advection problems.

Despite the lack of research directly into DG schemes, by virtue of the discontinuous finite

element spaces which can be used in the DG paradigm, information is passed between cells by

defining a numerical flux, in much the same way as finite volume methods, and therefore the

research on high resolution schemes was able to be naturally incorporated into the finite element

framework through DG methods. Thus in the late 1980’s the works of Van Leer on slope limiters

[52] and Harten on TVD schemes [60] was able to be utilised in the context of DG allowing for

the series of articles by Cockburn and Shu [64–68] which presented the Runge-Kutta (RK)

DG method for multidimensional systems of nonlinear hyperbolic problems. Furthermore, by

the 1990’s with the developments in the area of DG methods for problems with non-negligible

diffusive parts by authors such as Baumann and Oden [69] and Bassi and Rebay [70], the

similarity between IP and DG methods was finally noticed, which then prompted a resurgence of

research into IP methods for diffusive PDEs with aims to exploit what was becoming an apparent

abundance of advantages of discretising problems using DG methods. Some of the advantages of

DG discretisations over both traditional FE schemes and also the aforementioned high resolution

FV schemes include; the methods’ formal high-order accuracy, their high level of parallelisability,

their ability to easily incorporate hp-adaptivity, their ability to deal with complex geometries,

their nonlinear stability and their ability to deal with discontinuous solutions. For these reasons,

this thesis proceeds in a similar fashion by attempting to extend the domain of DG discretisations

further, into the context of level set based topology optimisation methods.

2.2 Mathematical preliminaries

In this section the nomenclature and mathematical preliminaries required for the discussion of a

methodology discretised spatially using DG methods will be introduced. In this thesis, a family

of partitions, T, are considered of a domain, Ω ⊂ R
2, into disjoint quadrilateral elements, τ .

Whilst the problems presented here are restricted to 2 dimensions, it should be noted that the

method extends naturally to higher dimensions. Only considered in this work are families of

partitions which are shape regular, that is, there exists a constant, Creg, such that

diam(τ)

2rτ
≤ Creg, ∀τ ∈ T, (2.1)

where diam(τ) denotes the size associated with an element, τ , which in this case is that of its

minimum edge length, hτ , and rτ denotes the radius of the largest circle inscribed in the element,

τ . Each element, τ , is the image of the reference square, τ̂ = (−1, 1)2, under an affine elemental

mapping, fτ : τ̂ → τ . The non-empty intersection, of positive measure, of two neighbouring

elements, τ+, τ− ∈ T, that is, eint = ∂τ+∩∂τ− 6= ∅, is known as an interior edge. The skeleton of

the mesh is denoted, S(T), and is defined as the set of all interior edges. Similarly, the non-empty

intersection, of positive measure, of the boundary of an element, τ ∈ T, with the boundary of the

domain, ∂Ω, that is, eext = ∂τ∩∂Ω 6= ∅, is called a boundary edge. The set of all boundary edges

is denoted, Eext(T). The set of all element edges is denoted by, ∂T =
⋃
τ∈T ∂τ = S(T)∪ Eext(T).

Throughout this thesis, 1-irregularly h-refined meshes are allowed for, by which each element
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can contain at most one hanging node per edge.

Each element τ ∈ T has an associated polynomial degree, pτ ≥ 1, which is stored in the

vector, p = {pτ : τ ∈ T}. Hence, for a given partition, T, of Ω, with degree vector, p, the

hp-version of the DG finite element space is defined as

Vp(T) :=
{
vh ∈ L2(Ω) : ∀τ ∈ T, vh|τ ◦ fτ ∈ Qpτ (τ̂)

}
, (2.2)

where Qpτ (τ̂) denotes the space of tensor product polynomials on the reference square, τ̂ , of

degree no more than, pτ , in each coordinate direction. One advantage of working in a DG

paradigm is that there is a lot of flexibility in which set of functions are chosen to form a basis

of the space. According to Di Pietro [71], two considerations which one might wish to take

when deciding upon this set of basis functions are, orthogonality (choosing an orthogonal basis

can help limit the growth of matrix conditioning with polynomial order) and hierarchism (the

idea that a basis for a polynomial order p contains the bases for all polynomial degrees less

than p, and which therefore allows for a very simple implementation of p-adaptivity). In this

case, a further consideration was that the implementation was originally designed to deal with

both CG and DG meshes (although for the purposes of this thesis only the DG parts are of

concern), and thus it was preferable to choose a basis which could be used in either case. As

such, the exact choice of basis functions used in this work are the hierarchical modal bases

for a H1 conforming approximation space on quadrilateral elements as defined in Chapter 2 of

[72]. Other choices which form a basis of the space, such as Legendre functions, would likely

introduce slight optimisations to the DG implementation in terms of matrix conditioning (due

to their orthogonality) and simplicity of implementation, however, as it was deemed unlikely

to have a significant effect upon the results of the numerical examples to be presented in this

thesis, it was decided that it would unnecessary to make such a change after having already

implemented the Lobatto shape functions. It should be noted that defining the interpolation

space in such a way does allow one to define a separate order of interpolation in each coordinate

direction on a given element, in this work however it will always be the case that the order will

be chosen to be equal in each coordinate direction. Furthermore, it will be assumed that p is of

bounded local variation, that is for neighbouring elements τ+, τ− ∈ T, there exists a constant,

ρp ≥ 1, independent of the mesh, T, such that

1

ρp
≤
pτ+
pτ−
≤ ρp. (2.3)

2.3 Literature review

In this thesis, DG spatial discretisations will be applied to two classes of problem; first-order

advective PDEs which describe the evolution of the level set function, and second-order linear and

quasilinear diffusion equations, which are used in the equations driving the topology optimisation

problems (i.e. linear elasticity) and for the regularisation problems associated with the level set

method. As such this section will present a review of the relevant literature, as well as an

example discretisation, in both of these cases. For a much more complete (and relatively recent)
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overview of DG methods the reader is referred to the text [73].

2.3.1 DG methods for diffusive PDEs

Where diffusive terms arise in this thesis, whether they form part of an elliptic or parabolic

PDE, in general the diffusion will be non-monotone and nonlinear. That is the diffusive term

will be of the form

∇ · (d(u)∇u), (2.4)

for the solution variable, u, where d(u) is a function defining the behaviour of the diffusion and

will therefore be referred to as the diffusion function. As a significant portion of the literature

concerns diffusion which is monotonic, here it is stated that monotonicity in this respect can be

defined by a diffusion function which satisfies the following condition; for d ∈ C(Ω),

qd(u1 − u2) ≤ d(u1)u1 − d(u2)u2 ≤ Qd(u1 − u2), for u1 ≥ u2 ≥ 0, (2.5)

for some positive constants qd and Qd, which, again, is a condition which in general will not

be satisfied by the diffusive terms in the equations to be studied in this thesis. The reader is

referred to [74] for further details concerning monotonicity.

There are many flavours of DG method which can be employed to deal with equations with

non-negligible diffusion, with the difference between each of these methods coming down to

how the fluxes, which allows information to pass between neighbouring elements, are chosen.

An analysis unifying many of the varieties of DG methods, in this way, used for discretising

elliptic problems is presented in [45]. The remainder of this section will outline roughly the

development of a number of these methods (with a focus on IP type methods) with reference to

error analyses where they have been performed, and will thus conclude on the preferred method

of discretisation of diffusive terms in this thesis. This will be followed by an appropriate example

discretisation of a diffusion problem in the following section.

In 1982, Arnold [75], first analysed, what would now be known as a Symmetric Interior

Penalty Discontinuous Galerkin (SIPG) semi-discretisation of nonlinear parabolic boundary

value problems and demonstrated optimal order error estimates in the L2 and energy norms,

assuming a sufficiently large penalty. One issue with IP type DG methods of the time, such

as those presented by Arnold [75], Baker [40] and Wheeler [42], was that convergence, stability

and matrix conditioning were all dependent on the correct choice of the penalty parameter and

furthermore, none of these methods were locally conservative. One attempt at solving these

issues was presented by Rivière, Wheeler and Girault, [76], who developed the Nonsymmetric

Interior Penalty Discontinuous Galerkin (NIPG) method. This is a nonsymmetric formulation

of an IP method, based on the Baumann-Oden (BO) method, [69], and in particular in this work

Rivière et al. presented a method to determine an appropriate choice for the penalty parameter

in the general case. Rivière and Wheeler, [77], then applied NIPG, along with an implicit time

scheme, to nonlinear parabolic problems and derived an optimal error estimate in the L2(H1)

norm and a suboptimal error estimate in the L∞(L2) norm.

For non-monotone quasilinear diffusion of the form, (2.4), SIPG and NIPG methods were

analysed by Gudi and Pani in [78], who derive a priori error estimates in the broken H1 norm
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for both SIPG and NIPG, which are shown to be equivalent to NIPG as applied to the linear

problem. Furthermore, optimal estimates are derived in the L2 norm for both SIPG and super-

penalised NIPG on uniform regular grids. This was extended to nonlinear parabolic equations

with diffusion of the more general form, as stated in (2.6), by Song [79], who investigated the

use of SIPG and NIPG spatial discretisations with an explicit Euler temporal discretisation for

the full discretisation of nonlinear parabolic equations, and derived suboptimal error estimates

in the l∞(L2) and l2(H1) norms (where the lower case ln denotes that the temporal norm is

discrete, as the analysis is performed after the discretisation of the time derivative). Song then

went on to perform the same analysis for nonlinear parabolic problems discretised with IPDG

methods in space and implicit schemes in time [80], in this case deriving optimal a priori error

estimates in the l∞(L2) and l2(H1) norms.

One issue with the standard NIPG and SIPG schemes, is that they cannot be applied directly

to the general quasilinear diffusion problem, i.e. diffusion of the form

∇ ·D(u,∇u). (2.6)

The reason for this is that the choice of flux which results in an SIPG or NIPG scheme contains

a stabilisation term which can become impossible to linearise in both the trial and the test

functions, see [81] for details. In such a case, an Incomplete Interior Penalty Discontinuous

Galerkin (IIPG) discretisation can be useful as was analysed by Doleǰśı [81]. Another solution

to this issue, in the case of monotone quasilinear diffusion, i.e. where the diffusion coefficient

satisfies the condition (2.5), was presented by Houston et al. [74], where an IPDG scheme was

developed with a new stabilisation term which is linear in both the test and trial functions.

In this thesis it is the authors preference to use an SIPG spatial discretisation, [45]. There

are a number of reasons why SIPG can be considered preferable to other DG discretisations of

diffusion equations, which are outlined in the Conclusion of [82]. Highlights include the well

established optimal rates of convergence in the L2 norm for SIPG, which are not found for

the nonsymmetric DG methods (which includes NIPG, IIPG and BO), as well as the increased

efficiency in terms of the linear solve (compared with the nonsymmetric methods) and memory

requirements (compared with the Local Discontinuous Galerkin (LDG) method, [83]).

2.3.1.1 DG discretisations for diffusive PDEs

The method of lines is used for all time varying PDEs to be considered in this thesis, which

means that the spatial derivatives will be replaced by a discrete approximation, whilst leaving

the time variable continuous. In this way, the given PDE, which is variable in space and time,

can be approximated by a system of Ordinary Differential Equations (ODEs) to be solved only

in the time dimension. Once the approximating system of ODEs has been formulated, this can

be solved using any given integration routine for initial value ODEs, to find an approximate

solution to the underlying PDE.

In all such cases a DG variant will be used for the spatial discretisation of any given PDE;

for the reasons explained in Section 2.1. For all PDEs considered with a non-negligible diffusive

term this DG variant will be the SIPG method. In order to demonstrate an SIPG discretisation,
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one can consider a Laplace problem of the form

∇ ·∇u(x) = 0, x ∈ Ω,

u(x) = uD, x ∈ ∂ΩD,

∇u(x) · n̂ = 0, x ∈ ∂ΩN ,

(2.7)

where the solution variable is denoted u(x), which is a function of the spatial variable x = {x, y}
(where it is unambiguous this dependency is dropped), and n̂ denotes the unit outward normal.

Equation (2.7) has a heterogeneous Dirichlet boundary condition and a homogeneous Neumann

boundary condition.

To discretise (2.7) using the SIPG method, one begins in the usual finite element way by

multiplying through by a test function, v ∈ V , where V denotes the solution space, and then

integrating by parts elementwise which gives∑
τ∈T

(∇u,∇v)τ −
∑
∂τ∈∂T

〈∇u · n̂, v〉∂τ = 0, ∀v ∈ V. (2.8)

The notation (a, b)Ω denotes
∫

Ω ab dx, and 〈a, b〉∂Ω denotes
∫
∂Ω ab ds. If one were to use a

CG discretisation, then v ∈ H1(Ω), that is the test function is from the space of functions

which are weakly differentiable once. This implies the solution is continuous across internal

edges, and therefore the integrals computed on the trace of each element sharing these edges

would necessarily be equal and opposite. Thus at this stage in a corresponding CG derivation

all of the surface integrals on internal edges would cancel out. In the DG paradigm, however,

v ∈ V = H1(Ω) + Vp(Ω), see [84], which is a larger space which admits discontinuous solutions

across internal element edges. It is unlikely in such a case that any of these surface integrals

will be equivalent approaching a given edge from inside each element sharing that edge and

thus all of these integrals must remain. One can decompose the set of surface integrals into

the set of integrals over the internal edges, the set of Dirichlet edges which will be denoted,

ED(T) ⊂ Eext(T), and the set of Neumann edges denoted, EN (T) ⊂ Eext(T), as follows

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

[〈
∇uτ+ · n̂τ+ , vτ+

〉
eint

+
〈
∇uτ− · n̂τ− , vτ−

〉
eint

]
−

∑
eext∈ED(T)

〈∇u · n̂, v〉eext
−

∑
eext∈EN (T)

〈∇u · n̂, v〉eext
= 0, ∀v ∈ V, (2.9)

where n̂τ denotes the unit normal of the edge pointing outwards from the element τ . By noting

that n̂τ+ = −n̂τ− , and by the analogue that ac− bd = 1
2(a+ b)(c−d)+ 1

2(a− b)(c+d), Equation

(2.9) can be rewritten

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

〈{{∇u}}, [[v]]〉eint
−

∑
eint∈S(T)

〈[[∇u]], {{v}}〉eint

−
∑

eext∈ED(T)

〈∇u · n̂, v〉eext
−

∑
eext∈EN (T)

〈∇u · n̂, v〉eext
= 0, ∀v ∈ V, (2.10)
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where [[·]] and {{·}} denotes the jump and average operators respectively. For two neighbouring

elements, τ+, τ− ∈ T, which share an internal edge, the jump and average operators are as

defined in [45] and are reproduced here as follows: for an arbitrary scalar valued function, ψ,

and vector valued function, Ψ,

[[ψ]]= (ψτ+ − ψτ−)n̂τ+ , (2.11)

[[Ψ]]= (Ψτ+ + Ψτ−) · n̂τ+ , (2.12)

{{ψ}}= 1

2
(ψτ+ − ψτ−), (2.13)

{{Ψ}}= 1

2
(Ψτ+ + Ψτ−). (2.14)

For u ∈ H2(Ω), [[∇u]] = 0, as it is continuous and therefore one can write

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

〈{{∇u}}, [[v]]〉eint
−

∑
eext∈ED(T)

〈∇u · n̂, v〉eext

−
∑

eext∈EN (T)

〈∇u · n̂, v〉eext
= 0, ∀v ∈ V. (2.15)

The Dirichlet boundary condition in this case is not built into the solution space, V , and

therefore needs to be imposed weakly. In this case this will be achieved using Nitsche’s method

[37]. Ignoring for a moment the internal and Neumann edges, Equation (2.15) consists of the

sum of the volume integrals of the gradient term over each element in the partition and the

sum of the surface integrals which describes the behaviour of the diffusion at the Dirichlet edges

which arises from the Integration By Parts (IBP). These surface integrals on the Dirichlet edges

must remain to ensure consistency with the weak solution by virtue of the solution space, V . If

the bilinear form were to just consist of these two terms however, then it would not be coercive

and there would not exist a unique solution to the problem (2.7). Nitsche’s method rectifies

this by the inclusion of a penalty term, which penalises the difference between the prescribed

solution at the boundary with the computed solution, (u−uD). It is shown in Nitsche’s original

paper [37] that for a sufficiently large penalty parameter, µ, the bilinear form over the finite

dimensional subspace, Vp(T) is in fact coercive. Whilst it is possible to stop at this stage, Nitsche

also includes another surface integral over the Dirichlet edges which is consistent with the weak

solution, but which symmetrises the bilinear parts of (2.15) by reversing the arguments of the

nonsymmetric IBP surface integral. Whilst the symmetry of the bilinear form is not required it

is often desirable as a symmetric bilinear form will result in a symmetric linear system, which is

usually cheaper to solve than otherwise. With the inclusion of the two extra terms from Nitsche’s

method, the weak formulation with appropriate boundary conditions takes the following form

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

〈{{∇u · n̂}}, [[v]]〉eint
−

∑
eext∈ED(T)

〈∇u · n̂, v〉eext

−
∑

eext∈ED(T)

〈u− uD,∇v · n̂〉eext
+

∑
eext∈ED(T)

µ 〈u− uD, v〉eext
= 0, ∀v ∈ V, (2.16)
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where µ is a penalty parameter which will be discussed in more detail presently, and where

the terms on the Neumann boundary have been cancelled out, due to the homogeneity of the

Neumann condition.

The SIPG method enforces interelement continuity in a direct analogue to how Nitsche’s

method enforces a Dirichlet boundary condition. In this case, of course, rather than attempting

to minimise the difference between the prescribed value at the Dirichlet boundary and the

computed solution, here the problem is to minimise the difference between the value of the

solution on the boundary of an element and the unknown solution on the boundary of the

adjacent element, or in other words minimise the jump in the solution across the element edge.

This can be written as follows

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

〈{{∇u · n̂}}, [[v]]〉eint
−

∑
eint∈S(T)

〈{{∇v · n̂}}, [[u]]〉eint

+
∑

eint∈S(T)

µ 〈[[u]], [[v]]〉eint
−

∑
eext∈ED(T)

〈∇u · n̂, v〉eext
−

∑
eext∈ED(T)

〈u,∇v · n̂〉eext

+
∑

eext∈ED(T)

µ 〈u, v〉eext
=

∑
eext∈ED(T)

〈uD,∇v · n̂〉eext
+

∑
eext∈ED(T)

µ 〈uD, v〉eext
,

∀v ∈ V, (2.17)

where the comparison with Nitsche’s method for enforcing the Dirichlet boundary condition

becomes obvious; there is a term reversing the arguments of the IBP surface integral and which

therefore renders the bilinear form symmetric and a penalty term which for sufficiently large

penalty parameter, µ, ensures the resultant bilinear form is coercive. The parameter µ is a

penalty parameter sometimes known as the discontinuity penalisation parameter (although it is

noted here that the parameter is chosen equivalently for both enforcing continuity and enforcing

the Dirichlet boundary condition). The value of the discontinuity penalisation parameter is

generally chosen as follows

µ = d(u)
ρµp

2

h
, (2.18)

where d(u) is a diffusion coefficient (equal to unity for the above linear diffusion problem) and

where the constant ρµ is a user chosen parameter which is required to be sufficiently large to

ensure the Left Hand Side (LHS) of (2.17) is coercive. An optimal choice of penalty parameter

is the smallest choice which is large enough to guarantee the coercivity of the associated bilinear

form. This is because larger values will negatively effect the conditioning of the resulting linear

system particularly for larger polynomial orders. A number of works have attempted to derive

optimal penalty parameters using trace inverse inequalities. During the coercivity analysis of

IP methods a trace inequality is used which can be stated∫
∂τ
u2 ds ≤ C(p, h)

∫
τ
u2 dx, (2.19)

which bounds the energy of a function u integrated on an element edge with that same function

integrated over the element. The lower bound of C(p, h) is the smallest value which ensures
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coercivity and therefore implies the optimal choice of the discontinuity penalty parameter. War-

burton and Hesthaven in [85] derive a sharp estimate for this constant C(p, h) for simplicial

elements of arbitrary polynomial order and dimension, which was then used by Shahbazi [86]

and later Epshteyn [87] to derive optimal penalty parameters for the SIPG method applied to

diffusion problems. Similarly the constant in the trace inequality is derived for meshes of quadri-

lateral elements by Burman [88], which is then used to derive penalty parameters by Hillewaert

[89], again for diffusion problems. The penalty parameters derived as a result of all of the above

analyses are tabulated in Chapter 3 of [89]. Further attempts to derive optimal penalty pa-

rameters are relatively sparse beyond this in the literature however. One reason for this could

be that where these penalty parameters have been derived they are specific to certain types of

elements, basis functions and problems, as is the case in for example [86, 87, 90–92]. Another

reason is that where these lower bounds have been derived it is often shown that these values

are significantly larger than the critical values determined by experiment for these constants to

produce stable results [93], and therefore are not usually optimal in practice. Furthermore, is

often simpler to resort to numerical experience for the general case. Based on the experience of

researchers such as Houston, [74], it has been suggested that choosing ρµ = 10 has consistently

shown across a range of problems an appropriate balance between being sufficiently large to

weakly enforce continuity accurately but not so large as to significantly affect matrix condition-

ing. For these reasons and because the value, ρµ = 10, is so persistent throughout the literature

the same choice is made here and will be used throughout the thesis.

As an aside if one were to rewrite Equation (2.17) introducing the parameter ς as follows

∑
τ∈T

(∇u,∇v)τ −
∑

eint∈S(T)

〈{{∇u · n̂}}, [[v]]〉eint
− ς

∑
eint∈S(T)

〈{{∇v · n̂}}, [[u]]〉eint

+
∑

eint∈S(T)

µ 〈[[u]], [[v]]〉eint
−

∑
eext∈ED(T)

〈∇u · n̂, v〉eext
− ς

∑
eext∈ED(T)

〈u,∇v · n̂〉eext

+
∑

eext∈ED(T)

µ 〈u, v〉eext
= ς

∑
eext∈ED(T)

〈uD,∇v · n̂〉eext
−

∑
eext∈ED(T)

µ 〈uD, v〉eext
,

∀v ∈ V, (2.20)

then it is possible to return an NIPG discretisation of the problem (2.7) by choosing ς = −1,

and an IIPG discretisation by choosing ς = 0.

A number of the diffusion equations which will be encountered in this work are quasilinear,

that is they take the form

∇ · (d(u(x))∇u(x)) = 0, x ∈ Ω,

u(x) = uD, x ∈ ∂ΩD,

d(u(x))∇u(x) · n̂ = 0, x ∈ ∂ΩN ,

(2.21)

where the diffusion coefficient d(u) is a nonlinear function. Where these quasilinear diffusion

equations occur they will have a heterogeneous Dirichlet boundary condition (identical to the

linear case in Equation (2.7)), and a nonlinear Neumann boundary condition (which by virtue
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of the Neumann condition having a zero Right Hand Side (RHS) can also be treated identically

to the linear homogeneous Neumann condition in Equation (2.7)). An SIPG discretisation of

(2.21) can thus be stated as follows by direct analogue with the linear case above

∑
τ∈T

(d(u)∇u,∇v)τ −
∑

eint∈S(T)∩ED

〈{{d (u)∇u · n̂}}, [[v]]〉eint

−
∑

eint∈S(T)∩ED

〈{{d (u)∇v · n̂}}, [[u]]〉eint
+

∑
eint∈S(T)∩ED

µ 〈[[u]], [[v]]〉eint

=
∑

eext∈ED(T)

〈uD, d (u)∇v · n̂〉eext
+

∑
eext∈ED(T)

µ 〈uD, v〉eext
, ∀v ∈ V, (2.22)

where for a given element, τ+ ∈ T, which shares an edge with the domain boundary, ∂Ω, the

jump and average operators are defined as,

[[ψ]]= ψτ+n̂τ+ , (2.23)

{{Ψ}}= Ψτ+ . (2.24)

Replacing the infinite dimensional solution space, V , with the finite dimensional approximation,

Vp(T), defined in (2.2), the variational formulation of the quasilinear diffusion equation, (2.21),

discretised using a SIPG discretisation can be stated: find uh ∈ Vp(T) such that

Bdif(uh;uh, vh) = Jdif(vh), ∀vh ∈ Vp(T), (2.25)

where the form Bdif(wh;uh, vh) which is bilinear in uh and vh can be stated

Bdif(wh;uh, vh) = (d(wh)∇uh,∇vh)T − 〈{{d (wh)∇uh}}, [[vh]]〉S(T)∩ED

−〈{{d (wh)∇vh}}, [[uh]]〉S(T)∩ED + µ(wh) 〈[[uh]], [[vh]]〉S(T)∩ED , (2.26)

and the form Jdif(vh) which is linear in vh can be stated

Jdif(vh) = 〈uD, d(uh)∇vh · n̂〉ED + µ 〈uD, vh〉ED , (2.27)

where for brevity, the following notation has be used

(·, ·)T :=
∑
τ∈T

(·, ·)τ , and 〈·, ·〉E :=
∑
e∈E
〈·, ·〉e , (2.28)

a convention which will continue for the remainder of the thesis. It should be noted that this

variational formulation stated here also generalises to the linear case (2.7) by appropriate choice

of the diffusion coefficient.

2.3.2 DG methods for advective PDEs

As mentioned previously, DG methods were first conceived in the context of linear hyperbolic

conservation laws, in particular the neutron transport equation with the seminal paper by Reed
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and Hill [35]. The following year an analysis of Reed and Hill’s method, was presented by

LeSaint and Raviart [36] who proved a convergence rate in the L2 norm of hp on general trian-

gulations and for a basis of tensor product polynomials of order, p, on Cartesian meshes, a rate

of convergence of hp+1. Later, it was proven by Johnson and Pitkäranta [94] that on general

triangulations the rate of convergence for the method was hp+
1
2 in the L2 norm, an estimate that

was demonstrated numerically to be sharp by Peterson [95]. On “semiuniform” triangulations

Richter [96] proved that the optimal rate of convergence for the method was of the order hp+1.

Cockburn et al. [97] later showed that the assumptions on the uniformity and conformity of

meshes chosen by Richter could be extended and that the optimal order of convergence hp+1,

could be achieved on any mesh made of simplices each of which has a unique outflow face.

One of the first extensions of the DG method to nonlinear conservation laws was presented

in 1982 by Chavent and Solzano [44]. Rather than solving a global implicit system, the ability

to solve element by element as in Reed and Hill’s original DG method can be preserved through

the use of explicit time stepping methods. As such, in their work a DG discretisation in space

is combined with an explicit Euler method in time, for studying one dimensional water flooding

problems. Like all explicit methods, in order to ensure numerical stability (bounded growth of

truncation errors over time), the explicit Euler discretisation must satisfy a Courant-Friedrichs-

Lewy (CFL) condition. A physical interpretation of this CFL condition is that in order to ensure

numerical stability, a wave emanating from the boundary of an element is not allowed evolve

further than one element width in any given time step, and thus for a given maximum wave

speed and minimum element size one can determine an appropriate time step to ensure stability.

When applied to nonlinear hyperbolic conservation laws, however, one issue with the explicit

Euler method in particular is that it can be shown via a Von Neumann stability analysis that

there is a nonlinear relationship between the required time step size and the given mesh size,

h, for a constant Courant number, on the order of h
√
h, [98]. The result of this is that such a

discretisation suffers from a severe time step restriction which can be prohibitively expensive for

hyperbolic problems. This was also shown in a follow up work by Chavent and Cockburn [99]

(in which the method presented in [44] is expanded to include a slope limiter) which presents a

similar stability analysis showing a nonlinear relationship between the time step size and grid

spacing for a constant Courant number.

These issues were overcome in a series of papers by Cockburn and Shu [64–68], which pre-

sented the RKDG method. The first of these articles, [64], expanded on the method of Chavent

and Cockburn by modifying the slope limiter which allowed for the recovery of accuracy in the

regions surrounding local extrema, and by replacing the time discretisation by a second-order

TVD RK scheme. The resulting scheme was proven linearly stable for fixed Courant number,

and was shown to be formally second-order accurate in space and time. Through the series of

articles that followed the method was then extended to arbitrary-order by using RK schemes of

order p + 1 for DG discretisations of order p [65], to one dimensional systems [66], to multiple

dimensions, with appropriate generalisations of the proposed slope limiter [67] and finally to

multiple dimensional systems [68]. Analysis of DG methods for nonlinear conservation laws is

still an active area of research. One important result is the local entropy inequality presented

– 45 –



by Jiang and Shu [100], which implies for problems discretised using DG in space, that the L2

norm of the solution does not increase over time, even without limiters. More recently an RKDG

discretisation of nonlinear conservation laws using a second-order TVD RK method in time was

analysed and quasi-optimal a priori error estimates were obtained [101]. Similarly, analysis of

a DG scheme in space with a third order TVD RK scheme in time for solving nonlinear conser-

vation laws with possibly discontinuous solutions was presented [102] and sub-optimal a priori

error estimates were proven for general monotone fluxes, whilst optimal convergence was shown

for upwind schemes on problems which were sufficiently smooth.

2.3.2.1 DG discretisations for advective PDEs

A general first-order hyperbolic advection equation can be stated

∂u(x, t)

∂t
+ b ·∇u(x, t) = 0, x ∈ Ω,

u(x, t) = u−, x ∈ ∂Ω−,

u(x, 0) = u0, x ∈ Ω,

(2.29)

where b denotes the advection velocity vector, u− denotes the solution along the boundary, ∂Ω−

denotes the inflow part of the boundary, and u0 denotes the initial condition. The inflow part

of the boundary is defined as

∂Ω− = {x ∈ ∂Ω : b · n̂ < 0}. (2.30)

On the natural boundary u− will be prescribed, whereas for an internal inflow edge on element,

τ+, u− denotes the trace of u on the edge of element τ+, from inside the element τ−. To discretise

(2.29) one once again begins in the standard finite element way; multiplying by a test function,

v ∈ V , and integrating by parts which gives

∑
τ∈T

(
∂u(x, t)

∂t
, v

)
τ

−
∑
τ∈T

(u(x, t),∇ · (bv))τ +
∑
∂τ∈∂T

+ 〈b · n̂ u(x, t), v〉∂τ = 0, ∀v ∈ V. (2.31)

As for the diffusion problem one can then decompose the surface integrals over the element edges

into integrals over the internal edges, S(T), and integrals over the inflow edges, ∂Ω−, as follows

∑
τ∈T

(
∂u(x, t)

∂t
, v

)
τ

−
∑
τ∈T

(u(x, t),∇ · (bv))τ +
∑

eint∈S(T)

〈{{bu(x, t)}}, [[v]]〉eint

+
∑

eext∈∂Ω−

〈b · n̂ (u(x, t)− u−), v〉eext
= 0, ∀v ∈ V. (2.32)

The flux term which naturally arises on the internal edges, {{bu}}, is known to be too dissipative,

and therefore can lead to non-physical oscillations in the solution. For this reason, the flux across

internal edges is usually approximated by a numerical flux, b̂ ' {{bu}}, which is chosen such that

stability can be ensured (this is equivalent to choosing an appropriate approximate Riemann

solver). One common approach to solve this issue is to replace the average value of the solution

– 46 –



over the edge with a numerical flux which takes the following form

{{bu}} ' b̂ = {{bu}}+ c∂τ [[u]]. (2.33)

In this way, as shown in [103], the standard upwind flux formulation can be returned by simply

choosing the parameter c∂τ as follows

c∂τ =
1

2
|b · n̂|. (2.34)

Another common numerical flux, the Lax-Friedrichs (LF) flux can similarly be defined by choos-

ing the parameter c∂τ as

c∂τ =
1

2
||b · n̂||2, (2.35)

where || · ||2 denotes the Euclidean norm. It should be noted that for linear advection problems

the LF flux will reduce to the equivalent upwind formulation [104]. Upwind fluxes are generally

preferred for dealing with pure advection problems as it is a directional phenomenon, and upwind

fluxes ensure that the information can only flow in the upwind direction. Lax-Friedrichs type

fluxes include an additional central flux type term which is a form of artificial viscosity and as

such the LF flux is typically preferred for the discretisation of advection-diffusion type problems.

Whilst an appropriately chosen flux for a given problem is requisite to ensure stability, evidence

is presented by Cockburn and Shu [105] which suggests that for high-order DG discretisations

the effect on accuracy of various fluxes is less significant. This is confirmed by Wheatley et al.

[106], in the context of smooth problems however it is also shown in their article that in the

context of highly discontinuous solutions, careful consideration of the chosen flux can result in

cheaper to compute and more accurate simulations.

The variational formulation of equations of the type (2.29) can therefore be stated: find

u ∈ V for each t = (0, T ) such that

(
∂u(x, t)

∂t
, v

)
T

− (u(x, t),∇ · (bv))T +
〈
b̂, [[v]]

〉
S(T)

+ 〈b · n̂ (u(x, t)− u−), v〉∂Ω−
= 0,

∀v ∈ V. (2.36)

Thus the DG approximation of the variational formulation can be stated: find uh ∈ Vp(T) for

each t = (0, T ) such that(
∂uh
∂t

, vh

)
T

+Badv(uh, vh) = Jadv(vh), ∀vh ∈ Vp(T), (2.37)

where

Badv(uh, vh) =
〈
b̂, [[vh]]

〉
S(T)

+ 〈b · n̂ uh, vh〉∂Ω−
− (uh,∇ · (bhvh))T , (2.38)

and

Jadv(vh) = −〈b · n̂ u−, vh〉∂Ω−
. (2.39)
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2.4 Summary

This chapter has provided an introduction to DG methods, including a review of the wider liter-

ature concerning numerical methods for PDEs, a review of the literature specific to DG discreti-

sations of the problems to be encountered in the remainder of this thesis, and the presentation

of the nomenclature necessary for discussions which follow, including example discretisations.

This is the first of two introductory chapters which aim to equip the reader with the context

necessary for the research to follow. The next chapter is the second of these introductory chap-

ters, which presents an introduction to and presentation of the preliminaries concerning the level

set method, such that beyond these introductory chapters, Chapter 2 and Chapter 3, the thesis

can proceed to use appropriate DG discretisations for the relevant equations comprising a level

set methodology, which will then form part of a level set based topology optimisation method.

– 48 –



Chapter 3

The Level Set Method

3.1 Overview

Broadly speaking one could divide methods for structural topology optimisation into two classes

which could be defined as; one where the position of the internal free boundaries (interfaces)

are treated as the design variable, and a second where the density of the material inside each

of a set of discrete control volumes is the design variable. Methods belonging to either of these

classes have their advantages and disadvantages, however, assuming one is to choose a method

belonging to the first of these two classes, a technique will be required for representing and

tracking the evolving interfaces. In this context the most used tool is the level set method

which was originally developed by Osher and Sethian, [7], in 1988. Level set methods are an

implicit method of interface capturing, meaning that the position of the internal boundaries are

implied by a function which can be tracked or evolved in an Eulerian manner. By virtue of

the implicit nature of the method topological changes can be handled naturally by the method,

as opposed to explicit methods whereby the merging of multiple interfaces or the splitting of

an interface would require complicated algorithms to detect and deal with such events. This is

also advantageous as it means that the method is efficient, as there is no need to discretise the

interface (or otherwise make explicit its position), or to compute any kind of remeshing which

might be necessary with other interface fitting type methods. For these reasons the level set

method has become a popular tool for solving topology optimisation problems. The seminal

works on level set based topology optimisation were presented in the 2000’s. The first of these

was an article by Sethian and Weigmann, [107], which presented a method for the optimal

design of elastic structures where a level set method is used to represent the internal boundaries

which were evolved by an ad hoc measure based on the Von Mises stress. In 2001, Osher and

Santosa [8] presented a similar method, however with a more mathematically rigorous method

for computing the advection velocity field used to drive the evolution of the interface towards

its optimal position, based on functional derivatives of the underlying optimisation problem.

Then in 2004, Allaire et al. [9] generalised further this approach of using shape sensitivity

analysis to compute an appropriate interface advection velocity. A more detailed literature

review concerning contemporary methods for solving topology optimisation problems will be

presented in Chapter 7.
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D

(a) The problem domain with interface, Γ. (b) The level set function, φ, intersecting the prob-
lem domain, Ω.

Figure 3.1: A circular interface on a square domain, defined using the level set method.

3.2 Mathematical preliminaries

The idea behind the level set method, is to implicitly represent an interface, Γ, by the intersection

between a real scalar valued function known as a level set function, φ, and the hyperplane which

is the problem domain, Ω. By choosing the problem domain to be the zero-plane, the interface

will then be defined as the zero level set, of the level set function, i.e. the position of the interface

is along the set of points at which the level set function equals zero. This can be stated as

φ(x, t) > 0, if x ∈ Ω\D,

φ(x, t) = 0, if x ∈ Γ,

φ(x, t) < 0, if x ∈ D,

(3.1)

where the level set interface, Γ, divides the problem domain, Ω, into two subdomains, Ω\D
and D. An example of this is presented in Figure 3.1 which demonstrates graphically how the

level set method can be used to represent a circular interface on a square domain. The level set

function itself, φ = φ(x, t), is a function of space, x = {x, y}, and pseudotime, t.

The level set interface, Γ, can then be tracked or evolved by appropriately computing an

advection velocity field, b, over the problem domain, and using this to drive a scalar transport

problem, which evolves the level set function and thus implicitly the interface. This transport

problem takes the form of a pure advection equation which in this context is sometimes called

the level set equation, and can be stated as

∂φ(x, te)

∂te
+ b ·∇φ(x, te) = 0, (3.2)

where te is pseudotime as related to the evolution equation.
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3.2.1 Level set initialisation and reinitialisation

The initial condition for the level set evolution problem, φ(x, 0), is a user decided quantity. Two

considerations need to be taken into account when making this choice: the initial position of the

interface, and the desired numerical qualities of the level set function. The initial position of the

level set interface is problem dependent and will likely be obvious or at least strongly informed

by the problem to be solved. Using an example from structural optimisation, when computing

the minimum compliance of a structure it is known that one should consider a large number and

regular distribution of holes (internal boundaries) in the initial condition. This is because the

more holes there are, the greater the complexity of the internal structures, and furthermore, for

a sufficiently stable method no new holes can be generated during level set evolution. Therefore

the more holes implied by the initial level set function, the closer the converged solution can be

to the global minimum. With regards to the desired numerical qualities of the level set function

however, it can be noted that at each point along the level set interface, the interface can only be

transported along the normal pointing away from the interface at that point. A natural choice

then, is to initialise the level set function as a signed distance function to the desired position

of the initial interface. A level set function, φ(x, te), which is a signed distance function can be

defined as,

φ(x, te) = ±dist(x,Γ), (3.3)

where dist(x,Γ) is the minimum distance from the point x to the interface, Γ. Using the notation

from (3.1), the sign of the level set function, (±), could then be defined as positive for x ∈ Ω\D
and negative for x ∈ D. For reference, the example level set function shown in Figure 3.1(b), is

a signed distance function to the interface. One property of a signed distance function, which

will be referred to as the signed distance property, is that a signed distance function will satisfy

an Eikonal equation, which can be stated as

|∇φ(x, te)| − 1 = 0. (3.4)

Satisfaction of this signed distance property is desirable for the evaluation of level set problems

as it has been shown that large variations in the gradient of the level set function, can both

cause and facilitate the propagation of numerical instabilities during the solution of the level set

evolution problem, [108]. Furthermore, it is known that strongly satisfying the signed distance

property is required when one desires high levels of accuracy [23]. For these reasons, the signed

distance function is usually considered the best choice for the initialisation of a level set problem

in terms of desirable numerical qualities and will in all cases be the choice made for the problems

considered in this thesis.

Whilst the initial level set function is a choice made by the user, it is also beneficial to ensure

that the level set function maintains satisfaction of the signed distance property throughout its

evolution. In the general case however, after any given iteration in the solution of the evolution

problem, the level set function is likely to have evolved such that it no longer satisfies the signed

distance property. For this reason, researchers have developed numerous techniques which allow

one, at any point during level set evolution, i.e. for a known (implicitly) fixed interface position,
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to reinitialise the level set function as a signed distance function. This topic is an important

one in the context of the research to be presented in this thesis and as such the details will be

deferred to Chapter 4 which will present a literature review concerning level set reinitialisation

as well as novel reinitialisation techniques for DG based level set methods.

3.2.2 Narrow banded level set methods

Whether for purposes of accuracy, stability or both, the maximum distance that the level set

interface can evolve during a given iteration will be limited. When discretising the problem

temporally using explicit methods, the maximum amount of interface movement will be limited

by the CFL condition, which will be such that the interface can move from the element within

which it currently resides to one of its neighbours (where a neighbour of element, τ , is defined

as any element with which τ shares a mesh node). Since the interface cannot at any given

iteration evolve beyond this, and furthermore as information pertaining to the level set function

beyond these elements also has no effect on the evolution of the interface, the PDEs to be solved

concerning the level set function, need only be solved on elements ‘near’ to the interface. This is

known as a narrow band approach, [109], and is a common part of level set methodologies (and

one which will be adopted in this work) as it allows one to reduce the computational expense of

level set problems.

Computational efficiency, however, isn’t the only benefit of using a narrow band approach.

One of the issues with choosing the level set function to be a signed distance function, as

stated above, is that if the zero isocontour of the level set function, Γ(φ), has at least one loop

surrounding a simply-connected subdomain, D for example, there will always be a singularity

which occurs in the level set function. This can be observed at the peak of the conic level set

function describing the circular interface in Figure 3.1. An added benefit of the adoption of a

narrow band approach in such an instance is that for a ‘sufficiently refined’ mesh almost all of

these areas would be far enough away from the level set interface so as to fall outside of the

narrow band. It is known that high-order accuracy is a function of the smoothness of the solution

when discretising a problem using DG methods, [110], and since these singularities will always

occur, the use of a narrow band approach is therefore necessary to allow one to demonstrate

optimal orders of convergence when solving level set problems using DG methods. (Although it

should be stated that in the case that the interface itself is non-smooth this of course would not

be possible.)

3.3 Literature review: discontinuous Galerkin level set methods

Research in the area of level set methods, discretised using discontinuous Galerkin methods is

one still in its relative infancy and thus the literature is relatively sparse. One notable area of

interest to researchers in this regard involves the application of level set methods to multiple

phase immiscible incompressible flows. Over the last few decades, the most popular method

for discretising level set problems of this type spatially have been finite difference ENO or

Weighted Essentially Non-Oscillatory (WENO) type schemes. One of the known issues with such

discretisations however, is that there can be a significant amount of numerical dissipation which

leads to a phenomenon known as mass loss. This type of issue has been shown to be particularly
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significant in regions where the interface is a sharp corner or is otherwise discontinuous. A

number of works have suggested that the use of DG methods might be a potential solution to

this issue, as DG methods are able to resolve sharp corners more effectively [111], and similarly

due to the fact that DG methods have been shown to be both more accurate and more efficient in

time than comparable ENO/WENO schemes, [112]. This idea led to early works on DG based

level set methods for two phase flow, for example by Osher and Yan, [24] and Marchandise

[113]. Both of these works take advantage of an incompressibility assumption which allows one

to rewrite the advective form of the level set equation as presented in Equation (3.2) in the form

of a hyperbolic conservation law, as follows

∂φ(x, te)

∂te
+ ∇ · (b φ(x, te)) = 0. (3.5)

When the evolution equation is written in this form the level set method is usually referred

to as the conservative level set method. As is demonstrated in [114], the conservative form of

the level set equation can introduce erroneous offset in the location of the level set interface,

and as such is not a formulation which would be appropriate for the purposes of the work to

be presented in this thesis. However, as a significant amount of the work done on DG level

set methods concerns interface problems between incompressible fluids, much of the research in

this area is on the discretisation of the conservative level set equation. In [24], Osher applies

two DG spatial discretisations to the conservative level set equation, (3.5); the standard upwind

DG scheme for hyperbolic problems, as well as a DG method using a Lax-Friedrichs flux. It is

found in [24], that both types of flux considered are stable and both demonstrate similar levels

of accuracy when solving the conservative level set equation. The temporal discretisation used

in [24] is an explicit Strong Stability Preserving (SSP) RK method. Thus the full discretisation

used is the same RKDG scheme that is presented in [68], by Cockburn and Shu. Similarly, in

[113], a quadrature-free upwind DG formulation is used to discretise (3.5) spatially, with an

explicit RK method of order, p + 1, applied in time on meshes of maximum polynomial order,

p. In this work it was again found that DG methods outperformed ENO methods in terms of

accuracy and efficiency.

The combination of an explicit RK method in time, with a DG method in space using either

an upwind or Lax-Friedrichs flux is a theme that persists throughout the literature in the context

of discretising the equations which form the level set methodology. For example, similar schemes

are presented in [115–121]. In [115], it was shown that such a method was accurate on the order

of hp+1 on meshes using order p Legendre polynomials as a basis. Furthermore, a LF flux was

compared with the upwind flux in [119], where it was found that the LF flux was preferable

in the case where it is known that the solution to the level set evolution equation is smooth.

Some examples of variations on this theme include methodologies adopting implicit backward

differencing time schemes, in works such as [25, 122–125]. Similarly, a number of works use a

DG discretisation for the temporal variables, which is known as a Space-Time Discontinuous

Galerkin (STDG) method, which is another implicit time scheme, for example in [33, 126]. In

almost all cases, the motivation for using implicit temporal schemes is to avoid (or at least reduce)
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time stepping restrictions usually as a result of the stiffness of the underlying problem which is

driving the evolution of the level set interface; this is beneficial as none of the aforementioned

works take advantage of the high levels of parallelisation which is possible using an explicit in

time formulation.

Despite a wealth of literature concerning analysis of DG methods discretising advection-

diffusion type problems, of which the relevant are outlined in the introduction to [124], the

literature concerning error analysis for DG level set methods is also relatively sparse. The 2006

article by Osher, [24], presents a bound on the L2 error of the order hp+
1
2 , for meshes of elements

of maximum order p, for the method contained within. In [124], an upwind DG in space, Crank-

Nicolson in time, discretisation of the advective level set equation is analysed. For the full

discretisation an error estimate is derived of the order, hp+
1
2 + ∆t2e, on meshes of elements with

maximum polynomial order p. In [33], an analysis is performed on the STDG discretisation of

the level set equation, and an error estimate is derived bounding the error, for problems where

the spatial solution exists in the Sobolev space, Hs, on the order of h2 min{p+1,s}−2 + ∆t2
q

e , for a

spatial DG scheme of maximum order p and a temporal DG scheme of maximum order q.

3.4 Summary

After the presentation of the DG preliminaries in Chapter 2, Chapter 3 has followed in a similar

vein presenting context concerning the level set method as a technique for topology optimisation,

as well as a review of the literature concerning level set methods which take advantage of DG

discretisations. Also presented in this chapter are the mathematical preliminaries regarding the

level set method which includes details concerning level set initialisation/reinitialisation, level

set evolution, and narrow banded level set methods. As level set evolution, for the purposes

presented in this thesis, requires reinitialisation, the next chapter proceeds by presenting research

concerning level set reinitialisation in the DG paradigm.
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Chapter 4

Level Set Reinitialisation

In Section 3.2.1 it was established that it is beneficial to ensure that the initial level set function

is chosen such that it is a signed distance function to the desired initial position of the interface.

For the same reasons, it is generally considered desirable to ensure that the level set function is a

signed distance function for all time during level set evolution. It is unlikely, however, that after

the level set function is advected subject to a given velocity field, b, for any non-zero amount

of pseudotime, that the level set function will continue to maintain satisfaction of the signed

distance property. In order to rectify this, after any given iteration of the evolution equation,

one can consider a separate problem by which there is a known (implicitly) interface position,

Γ(φ(x, te)), but a level set function which no longer sufficiently satisfies the Eikonal equation,

(3.4), and therefore which needs to be reinitialised as a signed distance function.

The level set reinitialisation problem can therefore be stated: at any time during the solution

of the evolution equation, te, given the level set function at that point in time, φ̃0
h = φ(x, te),

find a new level set function, φ(x, te), which is a signed distance function to the original position

of the level set interface, Γ(φ̃0
h). This can be stated mathematically as finding a solution to the

Eikonal equation, stated in Equation (3.4), relative to the following Dirichlet boundary condition

φ̃h(x, tr) = 0, x ∈ Γ(φ̃0
h), (4.1)

where tr denotes pseudotime related to reinitialisation problem. Throughout this thesis, the

notation, φ̃, denotes the solution variable to the reinitialisation problem, which can be contrasted

to, φ, which denotes the solution variable to the level set evolution equation. In this way, the

initial condition to the reinitialisation problem, φ̃0
h will be equal to the pre-reinitialisation level

set function at the time that the reinitialisation routine is called, φ(x, te), and the converged

solution to the reinitialisation routine, φ̃∞h = φ̃h(x,∞), will then replace the inputted level set

function in the evolution problem at that time step, φ(x, te).

Whilst the desire (and sometimes requirement) for level set reinitialisation exists to ensure

stability and accuracy when solving interface problems using the level set method, level set reini-

tialisation is oftentimes considered a necessary evil. The reason for this is that the requirement

to solve a second problem, on top of the level set evolution problem, both reduces computational

efficiency, and also adds a potential additional source of errors into the method. This has lead
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to an abundance of research in the area of level set reinitialisation in order to minimise these

potential issues. DG based level set methodologies, however, are still in their relative infancy,

as was discussed in the literature review in Section 3.3, and as such the translation of existing

reinitialisation methods, or the development of new reinitialisation methods in the context of

DG discretisations of the level set method is relatively sparse. As such in order to satisfy the

stated aims of this thesis, that is in order to develop a robust, efficient, high-order accurate

DG based level set methodology for solving topology optimisation problems, it was necessary to

develop a robust, efficient, and high-order accurate DG based level set reinitialisation method.

To this end, during this PhD two journal articles were published presenting DG based level set

reinitialisation methods, [127] and [128]. The contribution of this chapter of the thesis will be the

presentation of the work published in those two articles in one unified framework. As such the

remainder of this chapter will comprise the following subsections. First of all, in Section 4.1, the

literature surrounding level set reinitialisation will be reviewed with a particular focus on where

DG discretisations have been adopted and the shortfalls of those proposed solutions. Section

4.2 presents the derivation of the strong form of a particular type of reinitialisation method

based on the minimisation of the least squares residual of the Eikonal equation, (3.4), which can

then be discretised in a number of ways. Section 4.3, and its subsections formulate the Eikonal

minimising reinitialisation method as an Elliptic PDE, before discussing some of the intricacies

which need to be considered in order to ensure the resulting Elliptic Reinitialisation method

is robust and high-order accurate. Section 4.4, uses the discussion presented in Section 4.3 to

make the necessary modifications to the Eikonal Minimising Elliptic Reinitialisation method

to present the author’s preferred discretisation of the Elliptic Reinitialisation method. Also

presented in Section 4.4 are a number of numerical examples demonstrating the efficacy of

the proposed formulation of the Elliptic Reinitialisation method. Section 4.5, presents the

Parabolic Reinitialisation method, which again uses the discussion presented in Section 4.3 to

modify the Eikonal Minimising Reinitialisation method, however this time the resulting method

takes the form of a Parabolic PDE. A number of possible discretisations of the Parabolic

Reinitialisation method are presented which are compared both with each other and with the

Elliptic Reinitialisation method through a number of numerical experiments, which can also be

found in Section 4.5. The chapter is then concluded in Section 4.6 with the author’s reasons for

deciding that the Elliptic Reinitialisation method, as presented in Section 4.4, is the preferred

Reinitialisation method moving forward.

4.1 Literature review: level set reinitialisation

There is a relatively large literature surrounding level set reinitialisation and thus there already

exist many methods which are capable of reinitialising a level set function as a signed distance

function. In this section, this literature will be reviewed, with a focus on where DG discretisa-

tions have been applied to such methods. It should be noted first and foremost that all of the

reinitialisation techniques discussed below are equivalent in what they aim to do, generating a

signed distance function to the level set interface at any given point during level set evolution.

However, the methods to be discussed vary in terms of their computational efficiency, stability
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and accuracy, especially when using a DG discretisation.

In general, reinitialisation methods fall into one of two categories: geometric methods, and

PDE based methods. Geometric methods as their name suggests, attempt to reinitialise the

level set function at a set of discrete points by measuring the distance from these points to the

level set interface, whilst preserving the polarity of the level set function pre-reinitialisation to

generate a signed distance function. PDE based methods, also aptly named, involve generating

a signed distance function, by solving a PDE. PDE based methods can be further divided

into two subcategories. One type of PDE based reinitialisation method, referred to henceforth

as pure reinitialisation methods, require a separate PDE (a pure reinitialisation problem) to

be solved, the solution of which will be a signed distance function to the interface. This is

in contrast to the second type of PDE based reinitialisation method which will be referred to

as all-in-one methods, which modify the level set evolution equation, (3.2), itself to include a

constraint enforcing that the level set function always satisfies the Eikonal equation, (3.4), such

that both the evolution of the interface and reinitialisation of the level set function are computed

simultaneously.

The original idea of reinitialising the level set function as a signed distance function to

overcome stability issues was first considered in 1993 by Chopp [22], who developed a geometric,

brute force approach to reinitialisation. This approach works by first explicitly discretising the

interface, Γh(φ̃0
h) ∼ Γ(φ̃0

h), and then at a set of discrete points in the problem domain (in this

case, mesh nodes) defining the new value of the level set function, φ̃h, as equal to the minimum

distance from that point, to the discrete interface multiplied by the sign of the original level set

function at that point, which can be stated as

φ̃h(x) = sign
(
φ̃0
h(x)

)
dist

(
x,Γh

(
φ̃0
h(x)

))
, (4.2)

where sign(·) denotes the signum function.

Whilst Chopp’s geometric reinitialisation approach is attractive in its simplicity, there are a

number of issues with such geometric reinitialisation methods. One of the major advantages of

using the level set method for solving interface problems, in terms of computational efficiency,

is the implicit nature of the evolving interface. Not only is this advantage surrendered by

discretising the interface, but the expense required to both discretise the interface and compute

the minimum distance at each node in the mesh, to the discrete interface, increases with mesh

density, with the number of points used to discretise the interface and with the length of the

interface itself. This is evidenced in the original article, [22], where it is noted that the complexity

of this reinitialisation method is O(n6). Furthermore, adaptation of such an approach to meshes

of non-conforming elements also poses some additional difficulties. As there is no longer a

requirement of continuity across element edges, the level set interface can be discontinuous and

thus the distance from a given point to the interface can become ill-defined. Similarly, the

sign of the level set function at each degree of freedom for a given node will not necessarily

be well-defined, particularly if that given node is near to the interface. Both of these potential

issues will either cause strong discontinuities to develop in the level set function, ultimately

leading to regions where the signed distance property is not satisfied, or lead to a smoothing
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of the level set function, which will cause erroneous movement in the position of the interface

post-reinitialisation. Lastly, when using a geometric reinitialisation method, the approximation

of the interface on each element will be at most linear, and any benefits arising from the high-

order approximations possible through the use of DG methods will be surrendered each time

the reinitialisation routine is called.

One of the most popular methods of reinitialisation is a PDE based, pure reinitialisation

method, introduced by Sussman et al. in 1994, [129], most often referred to as the Hyperbolic

Reinitialisation method. This method involves solving the following hyperbolic PDE

∂φ̃(x, tr)

∂tr
− sign

(
φ̃0
)(

1− |∇φ̃(x, tr)|
)

= 0, (4.3)

where tr denotes pseudotime as related to the reinitialisation problem, the steady state solution

to which will be achieved once the level set function provides a sufficient approximate solution

to the Eikonal equation, (3.4). The multiplication by the sign of the pre-reinitialisation level

set function, φ̃0, acts as a weak Dirichlet boundary condition on the interface of the level set

function, and thus the solution will be a signed distance function to the interface, Γ(φ̃0).

The main issue with the Hyperbolic Reinitialisation method is that the (potentially poor)

characteristics of the original level set function, φ̃0, can be propagated during the reinitialisation

process. This most often presents as a ‘smearing’ of the level set interface [130], or in other words

erroneous movement of the level set interface during reinitialisation. Mousavi [131], presented

a solution to (4.3), discretised spatially using a DG method and temporally using a third-order

Runge-Kutta scheme. In that work, Mousavi outlines clearly the difficulties encountered in

trying to produce a stable solution using these methods of discretisation; the results presented

show that at some point in pseudotime the solution will always gradually begin to diverge.

Independent work done by the author of this thesis, instead using an explicit Euler discretisation

in time, found a similar issue when trying to solve the Hyperbolic Reinitialisation problem using

a DG discretisation in space. Mousavi [131] found that it was possible to create a method which

was practically viable by including an artificial viscosity term, sufficiently smoothing the signum

function and using a severe time step restriction. Such a solution to the reinitialisation problem

isn’t ideal however, as a large number of iterations are required to return a signed distance

function everywhere in the domain, which could be considered prohibitively expensive. Karakus

et al. [132], found similar issues with the Hyperbolic Reinitialisation method and attempted to

overcome these potential shortcomings by taking advantage of the high level of parallelisation

possible with DG methods to speed up the computation of the resulting reinitialisation method.

Gomes and Faugeras [133], demonstrated that the solution to a Hamilton-Jacobi equation,

such as the level set evolution equation, would not in general be a signed distance function. As

such, they proposed modifying the evolution equation as follows

∂φ(x, te)

∂te
= b (x− φ(x, te)∇φ(x, te)) , (4.4)

such that it was no longer a Hamilton-Jacobi equation, and thus developed an evolution equation
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the solution of which would be a signed distance function. This became the first all-in-one type

method. Whilst theoretically such a formulation should force the level set function to maintain

its signed distance properties, in practice it was observed that once discretised there could still be

a drift in the level sets leading to a loss of the signed distance property over time [134]. This idea

however, prompted other all-in-one type methods whereby the evolution equation is modified to

include a signed distance constraint, such that the evolution problem and the Eikonal equation

are solved simultaneously. For example, Weber et al. [134], set up the level set evolution problem

as an optimisation problem driven by an error functional which both minimises deviations in

the desired interface movement and also deviations from the signed distance property. A similar

solution was presented by Li et al. [135] whereby the level set evolution problem was reframed

as an optimisation problem with an energy driving the evolution and a penalty term restricting

deviation from a signed distance function. This lead to a formulation of the evolution equation,

which Li et al. later named, Distance Regularised Level Set Evolution (DRLSE), [136], which

can be stated as

∂φ(x, te)

∂te
= b|∇φ(x, te)|︸ ︷︷ ︸

advection term

+ γS∇ ·
(
∇φ(x, te)−

∇φ(x, te)

|∇φ(x, te)|

)
︸ ︷︷ ︸

signed distance constraint

, (4.5)

where γS is a penalty parameter.

Basting and Kuzmin [137], took the distance regularisation part of the DRLSE, and consid-

ered it as a pure reinitialisation problem; which can be stated as

∂φ̃(x, tr)

∂tr
= ∇ ·

(
∇φ̃(x, tr)−

∇φ̃(x, tr)

|∇φ̃(x, tr)|

)
, (4.6)

which is a parabolic PDE. Basting [137] then reformulated the problem as a quasilinear elliptic

PDE to be solved iteratively by simplifying out the time derivative, and also including an

appropriate boundary condition, which can be stated as

∇ ·
(
∇φ̃(x)− ∇φ̃(x)

|∇φ̃(x)|

)
+ γDφ̃(x) = 0, (4.7)

where γD is a penalty parameter, used to enforce the Dirichlet boundary condition on the level

set interface.

A novel yet similar approach was developed by Parolini [138], whereby the level set function

on elements intersected by level set interface could be computed exactly given that the elements

were both discontinuous and linear. This would be achieved by solving on each intersected

element

∇φ̃h(x) =
∇φ̃0

h(x)

|∇φ̃0
h(x)|

. (4.8)

A continuous approximation of the level set function along those elements intersected by the

interface could then be generated by L2 projecting the solution onto a continuous linear finite

element space. This approach is called the local interface projection method. The solution to the
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local interface projection on the band of elements cut by the interface is then used as a boundary

condition to solve one of the other reinitialisation methods to generate a signed distance function

in the far-field region (i.e in the set of elements which aren’t intersected by the level set interface).

For example, Parolini uses the Hyperbolic Reinitialisation method to reinitialise the level set

function in the far-field. The utility of the work done by Parolini in the context of this thesis is

limited, as their work required continuous and linear finite elements. The idea of local interface

projection however, has been recently extended to high-order DG discretisations by Zhang and

Yue, [121]. By using a DG discretisation Zhang and Yue solve directly for the gradient of the

level set function, and recover the solution using the known position of level set interface pre-

reinitialisation, thus accurately preserving the position of the interface. In the far-field region,

Zhang and Yue use a DG spatial discretisation of the Hyperbolic Reinitialisation problem, (4.3),

to recover the signed distance function. From their results it can be seen that some of the issues

described earlier seem to persist even when enforcing the boundary condition on the interface

using the local interface projection method. For example it was necessary to develop a novel

numerical flux to ensure stability, a limiter was required in the case that the interface was

singular, a sufficiently smooth signum function was required, and a severe time step restriction

was also necessary to ensure stability. Furthermore, the error data (and thus the accuracy of

the whole method) presented was dependent on a number of parameters, where little guidance

is presented in appropriate choices for these parameters in the general case.

The works of Li [136], and Basting and Kuzmin [137], which begin by attempting to solve a

minimisation problem driven by the residual to the Eikonal equation, constrained by an appro-

priate boundary condition is the starting point for the work to be presented in the remainder of

this chapter. In fact, Equation (4.6) which is originally presented in [137], is one possible for-

mulation of the strong form of what will be referred to as the Parabolic Reinitialisation method,

to be considered henceforth. Whilst Basting and Kuzmin [137] never solve the Parabolic Reini-

tialisation problem directly, instead simplifying the problem to the quasilinear elliptic equation,

(4.7), in the sections to follow a number of discretisations of both parabolic and elliptic formula-

tions of this underlying approach to reinitialisation will be considered using a DG discretisation

of the spatial operators in all cases. As well as adopting a DG approach, and presenting a num-

ber of new formulations of this approach to reinitialisation, a number of other questions needed

to be addressed in order to meet the aim of developing an efficient, robust, and high-order DG

based level set reinitialisation method. Specifically these questions included: how to optimally

enforce boundary conditions on an implicit surface given these aims; what modifications needed

to be included to ensure that experimental orders of convergence align with the theoretically

optimal rates of convergence in the relevant norms; and how to reformulate the minimisation

problem such that the method is stable for any initial condition (which is an issue in the works

[136, 137, 139] particularly where the gradient of the initial condition is small, |∇φ̃0
h| < 0.5).

It should be noted that during the completion of this work, another paper was published by

Utz et al. [139], which presented a DG discretisation of Equation (4.7), and thus a similar level

set reinitialisation method to be presented below, however, in that work none of these potential

issues were considered.
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4.2 Eikonal minimisation based reinitialisation: strong form

As first presented by Basting and Kuzmin in [137], the derivation of this type of reinitialisation

equation begins by aiming to minimise the least squares residual of the Eikonal equation, (3.4),

that is

min
φ̃∈H1(Ω)

(
R1(|∇φ̃(x)|)

)
, (4.9)

where

R1(|∇φ̃(x)|) =

∫
Ω
P1(|∇φ̃(x)|) dx, (4.10)

and where

P1(|∇φ̃(x)|) =
1

2

(
|∇φ̃(x)| − 1

)2
. (4.11)

With the inclusion of the Dirichlet boundary condition (4.1), it can be seen that the signed

distance function to the interface minimises (4.9), as in such a case the value of the functional

would be equal to zero, which is clearly a global minimum; therefore at least one minimiser to

the problem exists. A well known method for minimising an objective functional is to find the

steady-state solution to the gradient flow equation, see [140], that is for functional, R1(|∇φ̃(x)|),

∂φ̃(x, tr)

∂tr
+
∂R1(φ̃(x, tr))

∂φ̃(x, tr)
= 0. (4.12)

The notation ∂R1

∂φ̃
denotes the functional derivative of R1(φ̃) with respect to the solution variable,

φ̃. This derivative can be computed by its relation to the first variation of the functional R1(φ̃),

in the direction of the arbitrary function, v, that is (dropping the dependency on x and tr for

clarity)

∫
Ω

∂R1(φ̃)

∂φ̃
v dx =

dR1(φ̃+ εv)

dε

∣∣∣∣∣
ε=0

=
d

dε

∫
Ω

1

2

(
|∇(φ̃+ εv)| − 1

)2
dx

∣∣∣∣
ε=0

,

=
d

dε

∫
Ω

1

2

(
|∇φ̃+ ε∇v| − 1

)2
dx

∣∣∣∣
ε=0

,

=
d

dε

∫
Ω

1

2

(
|∇φ̃+ ε∇v|2 − 2|∇φ̃+ ε∇v|+ 1

)
dx

∣∣∣∣
ε=0

,

=

∫
Ω

(
∇φ̃ ·∇v + ε∇v ·∇v − ∇φ̃ ·∇v + ε∇v ·∇v

|∇φ̃+ ε∇v|

)
dx

∣∣∣∣∣
ε=0

,

=

∫
Ω

(
∇φ̃ ·∇v − ∇φ̃ ·∇v

|∇φ̃|

)
dx.

(4.13)

Using the more standard notation, this is equivalent to the Gateaux derivative of the functional,

R1(φ̃), and can therefore be stated

δR1(φ̃, v) =

∫
Ω
d1(|∇φ̃|)∇φ̃ ·∇v dx, (4.14)
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where, d1(|∇φ̃|), denotes a nonlinear diffusion functional, which can be stated in this case as

d1(|∇φ̃|) = 1− 1

|∇φ̃|
. (4.15)

Combining the above gradient flow with the homogeneous Dirichlet boundary condition on

the level set interface, (4.1), and an appropriate Neumann boundary condition on the natural

boundary leads to a strong formulation of the reinitialisation problem which can be expressed

as
∂φ̃(x, tr)

∂tr
+ ∇ ·

(
d1(|∇φ̃(x, tr)|)∇φ̃(x, tr)

)
= 0, x ∈ Ω,

φ̃(x, tr) = 0, x ∈ Γ(φ̃0),

d1(|∇φ̃(x, tr)|)∇φ̃(x, tr) · n̂ = 0, x ∈ ∂Ω.

(4.16)

The first equation forming (4.16) is a parabolic equation, with quasilinear diffusion. As such

the formulation, (4.16), that is where the diffusion is defined by Equation (4.15), i.e. d1(|∇φ̃|),
will henceforth be referred to as the Eikonal Minimising Parabolic Reinitialisation method. As

the diffusion will be positive where |∇φ̃| > 1 and negative where |∇φ̃| < 1, the unique viscosity

solution is a signed distance function satisfying the equilibrium point |∇φ̃| = 1, [137]. The

signed distance function which is the solution to (4.16) is uniquely defined by the homogeneous

Dirichlet boundary condition along the pre-reinitialisation level set interface, Γ(φ̃0). The third

equation forming, (4.16), comprises a nonlinear Neumann boundary condition on the domain

boundary by which the gradient of the solution at the domain boundary must also satisfy the

Eikonal equation.

To get the elliptic formulation of this problem as in [127, 137, 139], one simply makes the

assumption that the steady-state solution will be found when the transient term is zero, that is

∂φ̃(x,∞)

∂tr
= 0. (4.17)

This leads to the generic strong formulation of the Eikonal Minimising Elliptic Reinitialisation

method which can be stated

∇ ·
(
d1(|∇φ̃(x)|)∇φ̃(x)

)
= 0, x ∈ Ω,

φ̃(x) = 0, x ∈ Γ(φ̃0(x)),

d1(|∇φ̃(x)|)∇φ̃(x) · n̂ = 0, x ∈ ∂Ω.

(4.18)

4.3 Eikonal Minimising Elliptic Reinitialisation method

It is simpler to begin by discussing the elliptic formulation of the reinitialisation method as it

does not include the requirement for temporal discretisation. Also, it is more chronologically

accurate as the work on the Elliptic Reinitialisation method was completed first, before con-

sidering the parabolic formulation. For the remainder of this section, the solution variable to

the reinitialisation problem does not evolve in time, and thus is only a function of space i.e.

φ̃ = φ̃(x). Furthermore where appropriate, when discussing the level set function φ̃(x), the
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dependence on x is dropped for conciseness.

4.3.1 Picard linearisation and spatial discretisation

Equation (4.18) is a quasilinear diffusion equation, with a homogeneous Dirichlet boundary con-

dition on the level set interface, and a ‘homogeneous’ quasilinear Neumann boundary condition,

and therefore in order to return a non-zero solution it is necessary to apply an appropriate lin-

earisation. In this work, a Picard linearisation is applied to the terms which are nonlinear with

respect to, ∇φ̃, which allows one to rewrite the diffusion part of the strong formulation (4.18)

as

∇ ·∇φ̃m = ∇ · ∇φ̃m−1

|∇φ̃m−1|
in Ω, (4.19)

where the superscript denotes the mth iteration. The linearised strong form, can then be dis-

cretised spatially using the SIPG method which leads to a variational formulation which can

be stated as; find φ̃mh ∈ Vp(T), as m → ∞, such that the following weak form statement of

equilibrium is satisfied

BER(φ̃mh , vh) = JER,1(|φ̃m−1
h |; φ̃m−1

h , vh), ∀vh ∈ Vp(T), (4.20)

where the bilinear form, BER(φ̃, v), is defined as

BER(φ̃, v) =
(
∇φ̃,∇v

)
T
−
〈
{{∇φ̃}}, [[v]]

〉
S(T)
−
〈

[[φ̃]], {{∇v}}
〉
S(T)

+ µ
〈

[[φ̃]], [[v]]
〉
S(T)

, (4.21)

the form JER,n(|∇φ̃|; φ̃, v) is defined as

JER,n(|∇φ̃|; φ̃, v) =
(

(1− dn(|∇φ̃|))∇φ̃,∇v
)
T
−
〈{{

(1− dn(|∇φ̃|))∇φ̃
}}

, [[v]]
〉
S(T)

. (4.22)

The subscript n associated with the form JER,n is used to differentiate between various diffusion

functions which can be used to define the Elliptic Reinitialisation problem; in this case, n = 1,

corresponding to the diffusion function, d1, as defined in Equation (4.15), however, a discussion

into other possible diffusion functions will be presented in Section 4.3.4. The penalty parameter,

µ, in Equation (4.21) is chosen as, µ = 10p2/h, see Section 2.3.1.1 for details. One further note at

this stage, is that the term on the RHS is integrated by parts which is why there is a volume and

surface integral in Equation (4.22), however, the additive zero terms which enforce continuity,

again see Section 2.3.1.1, need only be applied to the solution variable and therefore only appear

on the LHS.

4.3.2 Integration on an immersed implicit interface

Before one can discuss the methods for imposing a boundary condition on an immersed implicit

interface, one requires a method for computing the line integral of a function over that interface.

There are three general approaches found in the literature: explicit reconstruction of the interface

through mesh refinement [141]; implicit reconstruction of the interface using an approximate

Dirac delta function such as in the original immersed boundary method, [142]; and methods

which generate a new quadrature rule over the area of an element (for 2D problems), which is
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A

← Γ(φ)

∂A\Γ(φ)→
τ

← ∂τ

Figure 4.1: A quadrilateral element, τ , intersected by a level set interface, Γ(φ), which divides
the element into two subdomains A and τ\A.

equivalent to integrating an arbitrary function over the implicit interface [143, 144].

Methods involving r-adaptivity (that is methods which allow for the movement of element

nodes) to explicitly reconstruct the interface are not appropriate in the context of this work, as

the Eulerian nature of the level set method allows one to take advantage of the use of simple

Cartesian meshes. Methods of this type also suffer from extreme computational expense, espe-

cially when the desired level of accuracy is high. Methods involving the use of an approximate

Dirac delta function, allow one to replace the line integral over the interface with an equivalent

surface integral weighted by the Dirac delta function (again for the 2D problems to be considered

in this work). Whilst this method is simple to implement, and has found use in other works,

even prompting research into high-order approximations of the delta function [145], the method

depends on the global cancellation of errors over the domain, which will have limited accuracy

when working with level set functions which are only piecewise continuous. The final group of

methods, however, are able to demonstrably provide arbitrarily high-order elementwise approx-

imations of integrals on implicit interfaces. The preferred method of the author is one such

method which was presented by Müller et al. in [144], and is henceforth referred to throughout

the text as Müller’s method.

Perhaps the easiest way to explain Müller’s method is by analogue with the method by which

one implicitly reconstructs a level set interface using a Dirac delta function which is mentioned

previously and with which the reader might be more familiar. In this way, one can approximate

the integral of an arbitrary function u over an interface, Γ(φ), implied by a level set function as

follows ∫
Γ(φ)

u ds ≈
∫
τ
uδs(φ) dx (4.23)

where δs(·) denotes an appropriate smooth approximation of the Dirac delta function, and the

domains of integration are as presented in Figure 4.1. That is one can transform the surface

integral over the interface, to a volume integral over the domain (τ in this case) where the

function u has a weighting at each integration point, the value of which will be large near to

the interface (where φ = 0) and which quickly decays to zero elsewhere. Müller’s method acts

much in this vein, allowing one to transform a surface integral such as that stated in the LHS of
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(4.23) to an integral over the volume of an element by computing an appropriate set of weights

at each of a set of quadrature points over the volume of that element. How this is achieved,

however, is quite different.

The first piece of technology needed to compute these new weights in Müller’s method is a

technique for computing quadrature rules (i.e. a set of points and weights). In [144], Müller et

al. do this by computing the solution of a system of moment fitting equations, [146]. That is for

a set of NI integrals of the set of functions {u}NIi=1 over a domain, τ , one can solve the following
u1(ξ1) · · · u1(ξNξ

)
...

. . .
...

uNI (ξ1) · · · uNI (ξNξ
)




w1

...

wNξ

 =


∫
τ u1 ds

...∫
τ uNI ds

 , (4.24)

where ξ are the abscissae of the new quadrature rule, Nξ is the number of quadrature points (a

number which can be chosen by the user), and w are the weights of the new quadrature rule. It

is assumed that the set of functions {u}NIi=1 comprises a polynomial basis of R2 of degree p. The

maximum order of the basis functions, determines the number of equations, NI , to be solved

and it is noted by Müller et al. [144] that care should be taken to ensure that the number of

quadrature points, Nξ, is chosen such that the resulting linear system is underdetermined, i.e.

Nξ > NI . The quadrature rule generated by (4.24) for the set of functions {u}NIi=1 over the given

domain, can then be used to compute the integral of any function over the domain provided that

function can be sampled at the quadrature points. In general moment fitting equations such as

those stated in (4.24) are nonlinear, in that both the weights and the abscissae of the quadrature

rule are to solved for, however, Müller et al. instead choose to fix the set of points such that

they align with the standard 2D Gauss quadrature abscissae of appropriate order. By fixing the

position of the points, ξ, the system becomes linear and only the weights, w, need to be solved

for on each element which allows for the efficiency of which Müller’s method is capable.

In order to generate this set of weights then by which one can compute the integral of any

function over a given implicit interface using the standard Gauss quadrature abscissae over the

volume of a domain, one needs to compute a set of integrands over the interface, to form the

RHS of a set of moment fitting equations. This is difficult as the position of the interface is

unknown by virtue of the implicit nature of the level set method. As such in [144], Müller et

al. consider a set of divergence free basis functions, {β′i}
NI
i=1, by which one can transform the

integral over the unknown position of the interface, to an equivalent integral over the known

boundary of the domain using the divergence theorem. This can be demonstrated as follows∫
Γ(φ)

β′i · nφ ds =

∫
∂A
β′i · n̂ ds−

∫
∂A\Γ(φ)

β′i · n̂ ds,

=

∫
A
∇ · β′i dx−

∫
∂A\Γ(φ)

β′i · n̂ ds,

= 0−
∫
∂A\Γ(φ)

β′i · n̂ ds,

= −
∫
∂τ
θ(φ)β′i · n̂ ds,

(4.25)
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where θ(·) denotes the Heaviside function, and nφ denotes the normal of the level set function

which can be computed as follows

nφ =
∇φ

|∇φ|
. (4.26)

It should be noted again that the notation in (4.25) for the domains of integration are in reference

to Figure 4.1.

In order to generate the desired set of weights then, one simply needs to compute the solution

to the following set of moment fitting equations
β′1(ξ1) · nφ(ξ1) · · · β′1(ξNξ

) · nφ(ξNξ
)

...
. . .

...

β′NI (ξ1) · nφ(ξ1) · · · β′NI (ξNξ
) · nφ(ξNξ

)




w1

...

wNξ

 =


−
∫
∂τ θ(φ̃

0
h)β′1 · n̂ ds
...

−
∫
∂τ θ(φ̃

0
h)β′NI · n̂ ds

 . (4.27)

The basis functions, β, are chosen as the monomial basis functions, where the derivatives, β′,

are orthonormalised using a Gram-Schmidt procedure. A method for generating the values of

these bases can be found in Appendix A. For the remainder of this thesis unless explicitly stated

otherwise, for a mesh of maximum order, pmax, the order of the bases, β′, will thus be chosen as

pmax + 1 for all elements, in order to ensure the interface is maximally resolved given its current

representation by the mesh. This means that the number of degrees of freedom on each element

can be computed as follows, NI = (pmax + 2)(pmax + 5)/2. Then, as the abscissae are chosen

to align the standard 2D Gauss quadrature points, to ensure that Nξ > NI , Nξ = (pmax + 3)2

quadrature points are used to compute the integrals in (4.27).

Müller’s method as presented in [144], is as stated above the preferred integration method

of the author, however, there are two modifications to the method as stated in the article [144]

which were found to be required to ensure accuracy and stability. Firstly, it was found that the

accuracy of this method depends heavily on the accuracy with which one is able to compute the

integral terms on the RHS of (4.27). The Heaviside function, θ(φ̃), in each of the integrals is

present such that the integral is computed only along the part of the edge where the level set

function is positive, φ̃ > 0. When using a standard 1D Gauss quadrature along element edges,

the discontinuity present in the Heaviside function is smoothed to such an extent that it becomes

difficult to predict whether a given quadrature rule will be sufficient to ensure that the method

is sufficiently accurate, without using a (potentially prohibitively) high-order quadrature rule.

As such for edges intersected by the interface, a Newton/bisection method is used to find the

intersection point(s) and a standard quadrature rule is used to integrate over this newly defined

interval, with stopping criterion, |φ̃| < 1e − 15, i.e. when the root is smaller than the stated

tolerance. Secondly, as the number of quadrature points is chosen to ensure that the system is

underdetermined, the linear system will likely be rank deficient and ill-conditioned. Whilst it is

noted by Muller et al. that any appropriate least squares solver will suffice, here the numerically
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stable singular value decomposition approach is used (whereby any singular values, S, deemed

too small, that is S < max(S)/1012, are removed to further improve stability) which is a slight

difference to the method as stated in [144]. As a final note, whilst generally robust, Müller’s

method is problem dependent and small perturbations in the relative position between the mesh

and the immersed surface will have an influence on the accuracy for a given problem.

4.3.3 Boundary conditions on implicit interfaces

To enforce a Dirichlet boundary condition on an implicit surface is not trivial. The literature

highlights four main approaches for the imposition of Dirichlet boundary conditions on implicit

surfaces; the penalty method [38], Nitsche’s method [37], the method of Lagrange multipliers

[147], and methods involving enrichment or modification of shape functions, for example [148].

In the works by Basting and Kuzmin [137] and Utz et al. [139], on a similar PDE based

reinitialisation method, the Dirichlet boundary condition on the level set interface is enforced

using a penalty method. As such the weak formulation would be stated as, find φ̃mh ∈ Vp(T), as

m→∞ such that

BER(φ̃mh , vh) + γD

〈
φ̃mh , vh

〉
Γ(φ̃0)︸ ︷︷ ︸

penalty term

= JER,1(|∇φ̃m−1
h |;∇φ̃m−1

h , vh), ∀vh ∈ Vp(T), (4.28)

where γD is a penalty parameter, henceforth referred to as the interface penalisation parameter.

The main advantage of penalty methods is their simplicity, in this work however, difficulty

was encountered in deciding how to choose an appropriate value of the interface penalisation

parameter, γD. Babuška et al. [149], note that when using a penalty method, that if the value

of the penalty parameter is chosen to be too large or too small, it can significantly decrease

the accuracy of the underlying method. For the Eikonal Minimising Reinitialisation methods,

choosing the interface penalty parameter outside the range of admissible values can lead to two

possible issues, which can be demonstrated through a simple numerical example. An initial

level set function, φ̃0 = 1.5|x| + 1, is L2 projected onto a mesh of 40 square elements on

Ω = (−2, 2)×(0, 0.4), such that h = 0.2. This function is then reinitialised using the formulation

of the Eikonal Minimising Elliptic Reinitialisation method (4.28). The solution is considered

to have converged when |φ̃m − φ̃m−1| < 10−8; that is when the relative change in the level set

function between the two most recent iterations is smaller than a tolerance. It should be noted

here that throughout this section, as the interface of the original level set function, Γ(φ̃0), is

in general immersed within an element, all integrals computed over a level set interface will

be computed using Müller’s method, the details of which were discussed in Section 4.3.2. The

results of this experiment for two values of the penalty parameter are displayed in Figure 4.2. If

the penalty parameter is too small then there is no longer a unique solution and Equation (4.28)

holds such that the solution found satisfies the Eikonal equation, but the level set function is

no longer sufficiently constrained as a rigid body in space, which appears as a movement of the

interface as can be seen in Figure 4.2(a). If the value of the interface penalisation parameter is

too large, there will be boundary locking, [150], in elements intersected by the interface, as is

demonstrated in Figure 4.2(b).
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(a) Converged solution with γD = 0. (b) Converged solution with γD = 106.

Figure 4.2: Effect of the value of the penalty parameter, γD, on the solution of a reinitialisation
problem at the level set interface. The solid line shows the level set function, the dashed line
shows the analytical solution, and the horizontal line shows the φ = 0 plane.

(a) Pre-reinitialisation level set function. (b) Converged solution using linear elements
with γD = 50.

(c) Converged solution using quintic elements
with γD = 1250.

(d) Converged solution using quintic ele-
ments with γD = 50.

Figure 4.3: Examples showing problem dependency of the penalty parameter, γD. The solid line
shows the level set function, the dashed line shows the analytical solution, and the horizontal
line shows the φ = 0 plane.
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In [139], evidence is presented which lends support to the idea that an appropriate choice for

the value of the interface penalisation parameter for a given mesh, is equal to the discontinuity

penalisation parameter, µ, that is, γD = µ (see Section 2.3.1.1 for information concerning the

choice of µ). It can be observed that the interface penalisation parameter is problem dependent,

however, it is not necessarily apparent that it is related to the mesh size in the same way as the

discontinuity penalisation parameter. For example, repeating the numerical experiment from

the previous paragraph, with a mesh of linear elements, the interface penalisation parameter

would therefore be computed, γD = 10p2/h = 50. As evidenced at a glance by the solution in

Figure 4.3(b), choosing the penalty parameter in this way is appropriate in this case. Repeating

the experiment once again but this time increasing the order of the elements to p = 5 causes

an increase in this value to γD = 1250; Figure 4.3(c) shows that such a value is too large and

causes locking/spurious oscillations in the elements intersected by the level set interface and

therefore is not an appropriate choice. However, repeating the experiment a third time, again

using quintic elements, but choosing the interface penalty parameter as, γD = 50, allows one to

return a solution which no longer displays locking at the boundary as shown in Figure 4.3(d).

Without presenting the evidence, the same is true when changing the number of elements used

to discretise the problem. This implies that the problem itself has a significant (and difficult to

quantify) influence on the range of admissible values for the interface penalisation parameter.

The difficulty in identifying a priori the admissible range of values for the interface penalisation

parameter for a given problem led to the exploration of other possible methods for the imposition

of a Dirichlet boundary condition on an implicit surface.

Nitsche’s method is similar to the penalty method in that there is a penalty term which

imposes the prescribed value on the boundary. Without re-presenting the evidence, the same

arguments against using the penalty method described above were found to also be true of

Nitsche’s method when applied to the implicit interface. The methods involving the modification

of the shape functions require a priori knowledge of the position of the interface, whereas the

methodology here deals with evolving and implied interfaces only, and therefore methods such

as these are also not appropriate in the context of this work.

The method of Lagrange multipliers involves the reformulation of the weak form (4.20) such

that a new unknown, the Lagrange multiplier, λD, is to be solved for, in addition to the level

set function, φ̃, which constrains the level set function along the level set interface. The weak

form of the Eikonal Minimising Elliptic Reinitialisation problem can thus be reformulated: find

φ̃mh ∈ Vp(T) and λD ∈ L, as m→∞ such that

BER(φ̃mh , vh) + 〈λD, vh〉Γ(φ̃0)︸ ︷︷ ︸
LM term

= JER,1(|∇φ̃m−1
h |;∇φ̃m−1

h , vh), ∀vh ∈ Vp(T), (4.29)

and 〈
φ̃mh , ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L. (4.30)

One of the difficulties of using the method of Lagrange multipliers, is choosing the correct

interpolation space, L, for the Lagrange multipliers. One natural choice is choosing the space,
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(a) Pre-reinitialisation level set function. (b) Converged Solution.

Figure 4.4: Effect of using too large of an interpolation space for the Lagrange multipliers to
enforce a Dirichlet boundary condition. The solid line shows the level set function, the dashed
line shows the analytical solution, and the horizontal line shows the φ = 0 plane.

L, as follows

L(TΓ) = span
τ∈TΓ

{Qpτ (τ)}, (4.31)

where

TΓ = {τ ∈ T : τ ∩ Γ(φ̃0) 6= 0}, (4.32)

that is, TΓ denotes the subset of elements in T which are intersected by the level set interface,

Γ. Choosing the Lagrange multiplier space in this way i.e. consisting of the same basis functions

as the finite element space (see Equation 2.2), means that one needs to solve for one Lagrange

multiplier per degree of freedom on any element intersected by the interface.

When choosing the Lagrange multiplier interpolation space, an appropriate choice is a space

which is rich enough such that it contains the approximate solution, but not so large as to

overconstrain the problem. It is a known phenomenon, [151], that boundary locking or spurious

oscillations can occur when the Lagrange multiplier space is too large, as may be the case when,

Vp(T) and L(TΓ) are chosen to be of equal order. Once again, the same numerical experiment

defined earlier in this section is computed, this time using a Lagrange multiplier approach to

enforce the boundary condition, with the Lagrange multiplier space defined as in (4.31). The

results of this experiment can be seen in Figure 4.4, which shows that choosing the spaces Vp(T)

and L(TΓ) to be of equal order does in fact lead to boundary locking.

In order to avoid this issue the order of the space L(TΓ) needs to be reduced. It was observed

that using a rule such as

L(TΓ) = span
τ∈TΓ

{Qpτ−1(τ)}, (4.33)

i.e. for a finite element space of order p, choosing the Lagrange Multiplier space, to be the space

of polynomials of order p − 1, led to similar issues with locking and spurious oscillations. The

only case where this wasn’t true was choosing L(TΓ) as the space of piecewise constant functions;

which was observed to be true regardless of the order of the finite element space.
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A more appropriate choice then, for any order of approximation space Vp(T), is to reduce

the order of the Lagrange multiplier space to the space of piecewise constant functions with one

degree of freedom per element intersected by the interface. This can be stated as

L(TΓ) = span
τ∈TΓ

{1τ}, (4.34)

where 1τ is the indicator function defined as follows

1τ (x) :=

1 if x ∈ τ,

0 if x /∈ τ.
(4.35)

This choice of space means that for each element, τ ∈ TΓ, the integral of the level set function over

the portion of the interface contained within that element, averages to be zero over the element.

In other words, this reduction in the order of the constraint space allows some movement to

occur at the interface (limited by the size of the element), which is a sufficient relaxation to

remove the boundary locking observed above and allows the boundary condition to be satisfied

without affecting the signed distance property.

The preferred method of the author therefore for enforcing a Dirichlet boundary condition on

an implicit interface, is to use a Lagrange multiplier approach, where the Lagrange multiplier

space is chosen to be the space of piecewise constant functions.

4.3.4 Modified objective functionals for the minimisation based reinitialisa-

tion problem

In order to avoid further derivations, it is noted that in general for an objective functional which

could be stated

min
φ̃∈H1(Ω)

(
Rn(|∇φ̃|)

)
, (4.36)

where

Rn(|∇φ̃|) =

∫
Ω
Pn(|∇φ̃|) dx, (4.37)

the Gateaux derivative can be stated

δRn(φ̃, v) =

∫
Ω
dn(|∇φ̃|)∇φ̃ ·∇v dx, (4.38)

with diffusion functional

dn(|∇φ̃|) =
1

|∇φ̃|
∂Pn(|∇φ̃|)
∂(|∇φ̃|)

. (4.39)

One potential problem which can be seen immediately with the Eikonal minimisation based

formulations (4.16) and (4.18) is that the resulting nonlinear diffusion functional, d1(|∇φ̃|),
becomes singular as |∇φ̃| → 0. This issue was also noted by authors Li [136] and Basting

[137], who completed work on level set reinitialisation using a similar approach. To combat

this issue these authors suggest modifying the objective functional driving the minimisation

problem, (4.36), such that what is optimised is the least squares residual to the Eikonal equation
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(b) Diffusion functionals.

Figure 4.5: Three different objective functionals and their corresponding diffusion rates.

everywhere except in the region where |∇φ̃| is small. For example, [137] presents the potential

functional

P2(|∇φ̃|) =

1
2(|∇φ̃| − 1)2 if |∇φ̃| > 1,

1
2 |∇φ̃|2(|∇φ̃| − 1)2 if |∇φ̃| ≤ 1,

(4.40)

which leads to a diffusion term

d2(|∇φ̃|) =

1− 1
|∇φ̃| if |∇φ̃| > 1,

1− (3|∇φ̃| − 2|∇φ̃|2) if |∇φ̃| ≤ 1.
(4.41)

Figure 4.5(a) shows a plot of the objective functional, P2 and Figure 4.5(b) shows a plot of the

associated diffusion functional, d2. It can be observed in Figure 4.5(a) that for the objective

functional, P2, there are two solutions to the minimisation problem, one corresponding to the

Eikonal equation, and a second at |∇φ̃| = 0. Furthermore, it can be seen in Figure 4.5(b), that

for the corresponding diffusion functional, d2, that where the gradient is small, i.e. |∇φ̃| < 0.5,

the diffusion is positive, which corresponds to forcing the level set function towards the solution

at |∇φ̃| = 0. This is referred to as a double well potential, in that there are two equivalent

global minima. In the work done by Basting and Kuzmin, where such a modification is made, the

choice makes sense as it is their desire to use a truncated level set function, where the gradient

of the level set function in the far-field region should be equal to zero. In the work to be

presented in this thesis such an approach is not applicable as it wouldn’t satisfy the requirement

for robustness in the method. For example, it is conceivable that a level set function with a

shallow gradient near to the interface might need to be reinitialised, and using a double well

potential could lead to the signed distance property not being satisfied in this region, as will be

shown numerically presently. Li et al. in [136], present a similar double well potential, however

the criticisms to Basting and Kuzmin’s double well potential apply also in that case.

In order to overcome these issues, here a new objective functional is proposed which both

avoids the singularity at |∇φ̃| = 0 and always has negative diffusion for |∇φ̃| < 1. One such
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functional could be stated as

P3(|∇φ̃|) =

1
2(|∇φ̃| − 1)2 if |∇φ̃| > 1,

(|∇φ̃|)3

3 − (|∇φ̃|)2

2 + 1
6 if |∇φ̃| ≤ 1,

(4.42)

which leads to a diffusion term

d3(|∇φ̃|) =

1− 1
|∇φ̃| if |∇φ̃| > 1,

1− (2− |∇φ̃|) if |∇φ̃| ≤ 1.
(4.43)

It should be stated that any function which satisfies these conditions, conceptually should suffice.

Figure 4.5 shows that the objective functional, P3, does indeed satisfy both of these conditions.

Figure 4.6 demonstrates by example the relative performance of these different objective

functionals. For this numerical experiment, an initial level set function, φ̃0 = −(|x|/2) + 0.5,

is projected onto a mesh of 38 square elements on the domain Ω = (−2, 2) × (0, 8/19) with

h = 4/19, such that a singularity falls at the centre of the 2 central elements. Using a mesh of

linear elements, both components of the gradient throughout these elements will therefore be

close to zero, and everywhere else in the mesh the gradient can also be considered small, i.e.

|∇φ̃| ≤ 0.5. The initial projection of the level set function can be seen in Figure 4.6(a). For

these examples, the initial level set function is reinitialised using the discretisation presented in

Equations (4.29) and (4.30), that is the elliptic formulation, linearised using Picard’s method,

using the Lagrange multiplier method to enforce the Dirichlet boundary condition. The only

modification required to include any of these new diffusion functionals is to modify the RHS of

the weak form as follows

BER(φ̃mh , vh) + 〈λD, vh〉Γ(φ̃0) = JER,n(|∇φ̃m−1
h |;∇φ̃m−1

h , vh), ∀vh ∈ Vp(T), (4.44)

where, n = 1, 2, 3, corresponds to the diffusion in Equations (4.15), (4.41) and (4.43) respectively.

Again the criterion defining convergence for these numerical experiments can be stated, |φ̃m −
φ̃m−1| < 10−8.

When using the Eikonal minimising objective functional, P1, it can be observed that the

solution immediately begins to oscillate and does not converge. Figure 4.6(b) shows the level

set function after 50 iterations when using P1. It can be seen that the attempt to correct the

almost zero gradients in the centre element, leads to an overcorrection causing the level set

function to twist as it tries to force the gradient back to unity, after which the solution breaks

down and continues to diverge over time. Figure 4.6(c) shows the converged solution when

using Basting and Kuzmin’s proposed objective functional, P2. It can be seen that there are no

longer overshoots as a result of the initial ‘zero’ gradients, however, some parts of the level set

function converge to the solution at |∇φ̃| = 0. Figure 4.6(d) shows the converged solution using

the objective functional, P3. The limited diffusion for small gradients does slow convergence

in regions where the gradient is small, however, it also removes any overshoots or oscillations,

and thus the level set function at steady-state is congruent with the analytical solution as far as
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(a) Pre-reinitialisation level set function. (b) Diverging solution after 50 iterations us-
ing objective function, P1.

(c) Converged solution using objective func-
tional, P2.

(d) Converged solution using objective func-
tional, P3.

Figure 4.6: Converged solutions to a simple problem demonstrating how each of the different
objective functionals behave in the presence of small gradients. The solid line shows the level
set function, the dashed line shows the analytical solution, and the horizontal line shows the
φ = 0 plane.
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possible given the coarseness of the mesh. Therefore the preferred objective functional in this

work is that defined as P3.

4.4 Elliptic Reinitialisation method

The discussion presented in Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4, yields a number of preferable

modifications to the Eikonal Minimising Elliptic Reinitialisation method. For the remainder of

this thesis the reinitialisation method referred to as the Elliptic Reinitialisation method (which

can be contrasted to that referred to as the Eikonal Minimising Elliptic reinitialisation method),

will refer to the method to be described in this section. Specifically, the objective functional

defining the Elliptic Reinitialisation problem is that defined in Equation (4.42), i.e. P3. The

resulting quasilinear diffusion equation is linearised using Picard’s method, which can be stated

∇ ·∇φ̃m = ∇ ·
(

(1− d3(|∇φ̃m−1|))∇φ̃m−1
)
, x ∈ Ω,

φ̃m = 0, x ∈ Γ(φ̃0),

d3(|∇φ̃m|)∇φ̃m · n̂ = 0, x ∈ ∂Ω.

(4.45)

The homogeneous Dirichlet boundary condition is enforced using the Lagrange multiplier ap-

proach, with an interpolation space consisting of piecewise constant functions. Discretising

(4.45) using SIPG, the resulting variational formulation of the Elliptic Reinitialisation method

can be stated as: find φ̃mh ∈ Vp(T) and λD ∈ L(TΓ), as m→∞ such that

BER(φ̃mh , vh) + 〈λD, vh〉Γ(φ̃0) = JER,3(|∇φ̃m−1
h |;∇φ̃m−1

h , vh), ∀vh ∈ Vp(T), (4.46)

and 〈
φ̃mh , ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L(TΓ). (4.47)

Thus choosing {vj}Nhj=1 to form a basis of Vp, and {ζj}NLMj=1 to form a basis of L one can write

φ̃h =
∑Nh

j=1 φ̃jvj , λD =
∑NLM

j=1 λD,jζj , (4.48)

where Nh denotes the number of solution variables per element, and NLM denotes the number

of Lagrange multipliers per element. The linear system for the Elliptic Reinitialisation method

can thus be stated as: find φ̃mh ∈ Vp(T), and λD ∈ L(TΓ) as m→∞, such that[
KER Λ>

Λ 0

]{
φ̃m

λD

}
=

{
FER

0

}
, (4.49)

where φ̃ = {φ̃1, φ̃2, . . . , φ̃Nh}> and λD = {λD,1, λD,2, . . . , λD,NLM }> are unknown coefficient

vectors to be solved for which correspond to the solution variables φ̃h and λD respectively via

Equation (4.48). Furthermore, KER = (kER,ij) is the stiffness matrix, Λ = (aij) is the Lagrange

Multiplier matrix, and FER = (fER,i) is the force vector with entries defined as

kER,ij = BER(vj , vi), (4.50)
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aij = 〈vj , ζi〉Γ(φ̃0) , (4.51)

and

fER,i = JER,3(|∇φ̃m−1|;∇φ̃m−1, vi). (4.52)

4.4.1 Elliptic Reinitialisation method: numerical examples

In order to demonstrate the efficacy of the proposed Elliptic Reinitialisation method a number

of numerical examples will be presented. Each of these example problems begins with a level

set function with a given interface position but with a gradient which varies over the domain (in

each case chosen specifically to include areas where the norm of the gradient is both less than and

greater than unity), being projected onto a mesh of square elements of uniform size and uniform

polynomial order. The level set function can then be reinitialised and error data collected using

the error measures to be presented in the following section, Section 4.4.1.1. Each example will

then be repeated for a series of meshes of different h, for each p allowing for convergence data

to be presented for the proposed method.

4.4.1.1 Error measures

Where a known solution, φ, exists, the error between that and the computed solution, φh, is

given in the L2 norm which can be stated as

E2
L2(φh, φ,T) =

∑
τ∈T

∫
τ
(φh − φ)2 dx, (4.53)

the L∞ norm which can be stated as

EL∞(φh, φ,T) = max
x∈T
|φh − φ|, (4.54)

and the DG norm which can be stated as

E2
DG(φh, φ,T) =

∑
τ∈T

∫
τ
(∇(φh − φ))2 dx+

∑
eint∈S(T)

µ

∫
eint

[[φh − φ]]2 dx. (4.55)

When the analytical solution is not known, there are two additional error measures which can

demonstrate the efficacy of the reinitialisation method. The first is an error measure which

measures globally, the degree to which the computed solution satisfies the Eikonal equation,

that is

E2
SD(φh,T) =

∑
τ∈T

∫
τ
(|∇φh| − 1)2 dx, (4.56)

which will be referred to as the signed distance error measure. The second of these, is a measure

of the movement of the interface in the L2 norm, which is evaluated by integrating the differ-

ence between the computed and desired value of the solution along the original position of the

interface, that is

E2
Int(φh,Γ(φ0)) = E2

L2(φh, 0,Γ(φ0)) =

∫
Γ(φ0)

φ2
h dx, (4.57)
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which will be referred to as the interface error measure.

It should be noted that for all of the numerical experiments presented in this section Müller’s

method [144] is used to compute the integral along the interface, with the maximum order of the

divergence free basis functions, β′, equal to 10. This is higher than would be required in practice

for the problems to be presented, however, it allows as much as possible one to remove the

error associated with the mesh/problem dependency of the integration method and thus better

evaluate the reinitialisation method. Furthermore, for the numerical examples to be presented,

the Picard iteration is considered to have converged when
∣∣∣ESD(φ̃m)− ESD(φ̃m−1)

∣∣∣ < 10−8.

4.4.1.2 h-convergence study: circular interface

The first experiment presented is the reinitialisation of a level set function, φ̃0, which can be

described analytically by the quadric

φ̃0 = x2 + y2 − 1, (4.58)

in the domain Ω = (−2, 2)2. This corresponds to a circular interface centred at the origin. The

signed distance function with the same interface, and therefore the analytical solution to the

reinitialisation of (4.58) can thus be stated

φ̃ =
√
x2 + y2 − 1. (4.59)

For this problem, the position of the level set interface can also be described analytically as

follows, for 0 ≤ ϑ ≤ 2π,

x = cos(ϑ),

y = sin(ϑ).
(4.60)

This allows the interface error measure to be computed using the trapezium rule, to remove any

error associated with the methods for integrating over an implicit surface. An h-convergence

study is performed by computing the reinitialisation of the level set function, initialised as

the L2 projection of (4.58), on a sequence of Cartesian meshes with square elements of size,

h = 0.8, 0.4, 0.2, 0.1, 0.05, of uniform polynomial order, p = 1, 2, 3, 4, 5. Error data will be

presented using each of the norms defined in Section 4.4.1.1.

For elliptic problems discretised using SIPG, theoretically optimal convergence rates in the L2

norm are known to be hp+1, and in the DG norm, hp, [45], assuming the problem is sufficiently

smooth. It has also been shown that the theoretically optimal rate of convergence in L∞ norm

is proportional to ln(h−1)s̄hp+1, where s̄ = 1 for p = 1, and s̄ = 0 otherwise, [152]. In [110], it is

shown that for a problem which lacks sufficient smoothness, the rate of convergence will be equal

to the linear case for all p. The signed distance error measure acts similarly to the H1 seminorm,

computing the difference between measures of the gradient of the solution and such, it would be

reasonable to expect optimal convergence rates to be equivalent to optimal convergence in the

H1 seminorm, which is known to be hp, once again assuming sufficient smoothness.

The analytical solution for this problem, as defined in (4.59), is singular at the origin, and
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Figure 4.7: Error data and convergence rates for the circular interface problem in the domain
Ω = (−2, 2)2, solved using the Elliptic Reinitialisation method.
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← ∂Ω

Figure 4.8: Domain configuration for the circular interface reinitialisation problem where the
singular part has been removed from the domain, i.e. Ω = (−2, 2)2\(−0.4, 0.4)2.

therefore it should be expected, given the contents of the previous paragraph, that for this

problem the experimental order of convergence in the L2 norm is h2, in the DG norm and signed

distance error norms is h1, and in the L∞ norm is around ln(h−1)h2, for all p. The results of the

h-convergence study are presented in Figure 4.7 and demonstrate that beyond the initial pre-

asymptotic datum the experimental orders of convergence, using the four aforementioned error

measures, are congruent with those expected for a non-smooth problem. It should be noted that

the quoted orders of convergence for all measures and polynomial orders are computed using

the difference between the results for h = 0.4 and h = 0.05.

It is unknown, to the knowledge of the author, how the interface error measure should behave

with mesh refinement. For this experiment, it can be observed that there is an increase in the

experimental order of convergence between the meshes where p = 1 and p = 2, however, this

remains constant for any p > 2. For the purposes of the following discussion, it is useful to

observe that the presence of a singularity in the mesh, constrains the rate at which the L2 error

in the solution along the interface decreases when using high-order elements.

4.4.1.3 h-convergence study: circular interface with narrow band

For the previous example problem, the analytical solution is singular, and thus the experimental

orders of convergence as expected were limited when using meshes of higher-order elements. In

order to return rates of convergence which align with the theoretically optimal then, one needs to

change the domain over which the reinitialisation is computed such that it contains the interface

but not the singular regions of the solution. As discussed in Section 3.2.2, this can be achieved by

adopting the use of a narrow band approach. For this somewhat trivial example, the singularity

is known to occur at the origin and thus a naive implementation of a narrow band approach, is

to simply repeat the previous experiment in the domain, Ω = (−2, 2)2\(−0.4, 0.4)2, such that

the singularity is removed. The relative position of the interface and the domain boundaries can

be seen in Figure 4.8.
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Figure 4.9: Error data and convergence rates for the circular interface reinitialisation problem
on the domain Ω = (−2, 2)2\(−0.4, 0.4)2, solved using the Elliptic Reinitialisation method.
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Here then, the h-convergence study from Section 4.4.1.2 is repeated on the new domain

leading to the results shown in Figure 4.9. As expected, by removing the origin from the

problem domain, the solution everywhere inside the domain is now smooth enough to display

experimental convergence rates which align with the theoretically optimal rates in all of the

relevant norms. The convergence rates using the interface error measure for this experiment

seem to decrease on the order of hp+1, which suggests that one might expect this to be the

optimal rate of convergence for this error measure. It should be noted that the quoted orders of

convergence for all measures and polynomial orders are computed using the difference between

the results for h = 0.4 and h = 0.05. It can also be noted here that for this example the number

of iterations taken to reach the convergence criterion is often few; for this simple example, for

the mesh with h = 0.05 and p = 5, just 6 iterations are required, although there is considerable

variance in the required number of iterations to converge across the range of h and p tested.

4.4.1.4 h-convergence study: smooth star interface

Two more example problems will be presented of a more arbitrary nature than the simple circle

example, thus the rule used to define the width of the narrow band for these examples is as

follows: remove from the mesh any element which has a minimum absolute nodal value greater

than four times the size of the smallest element, hmin. For these example problems, the error

data presented will be using the signed distance and interface error measures only, and in both

cases the presented errors will be normalised by the area of the domain inside the narrow band.

Also, for these examples the interface error will be computed using Müller’s method (as opposed

to the trapezium rule for the previous examples), and as such the error computed will be a

measure of the movement of the interface from its initial projection as opposed to the distance

from the analytical solution (although in practice, calculating the error in these two ways gives

similar results except for the coarsest meshes tested).

The first of the arbitrary interfaces has an initial level set function which can be defined

everywhere by

φ̃0 = x2 + y2 −
(

1 + 0.2 sin
(

6 arctan
(y
x

)))
, (4.61)

on a domain of maximum size Ω = (−2, 2)2. The function (4.61) describes an interface centred

at the origin which takes the shape of a smooth six pointed star, as shown in Figure 4.10(a), and

which is therefore referred to henceforth as the smooth star interface reinitialisation problem. It

should be noted that for each possible mesh in the convergence study defined by element size, h

and element order p, the initial projection of (4.61) onto Ω will be different and thus the portion

of the domain which remains inside the narrow band (that is the size of the narrow band) will

therefore also be different. For this experiment, the h-convergence study will be computed on

a sequence of Cartesian meshes with square elements of size h = 0.4, 0.2, 0.1, 0.05, 0.025, for

meshes of uniform polynomial order, p = 1, 2, 3.

Figure 4.11(a) shows the error and convergence data for the smooth star interface reini-

tialisation problem using the signed distance error measure. The first two data points for all

polynomial orders show linear convergence; this is because the criterion used to define the nar-

row band for those meshes, is yet to be sufficient to remove the more complicated singular region
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(a) The level set function’s zero isocontour. (b) Contour plot of the gradient, the thin
black lines show where in the domain the
level set function is singular. The zero iso-
contour is denoted by the thick black line.

Figure 4.10: Domain configuration for the smooth star interface reinitialisation problem, ini-
tialised as stated in Equation (4.61), where Ω = (−2, 2)2.
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Figure 4.11: Error data normalised by narrow band area, ANB, and associated convergence rates
for the smooth star interface reinitialisation problem, initialised as stated in Equation (4.61), in
the domain Ω = (−2, 2)2, with narrow band, solved using the Elliptic Reinitialisation method.
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of the solution from the domain, see Figure 4.10(b). As h becomes smaller, the narrow band

becomes narrower and the singular part is removed, beyond which the experimental order of

convergence aligns with that which is expected to be optimal. The quoted experimental or-

ders of convergence for both error measures in this example, and for all polynomial orders, are

computed using the difference between the results for h = 0.1 and h = 0.025.

The rate of convergence for the interface error increases slightly between the meshes of linear

and quadratic elements, however increasing the polynomial order of the elements beyond that,

no longer results in an increase in the accuracy of the solution at the interface, despite the

improving solution in the signed distance error measure. This reiterates that which was found

for the non-smooth circular interface problem in Section 4.4.1.2.

4.4.1.5 h-convergence study: multiple interfaces

The final example to be presented consists of multiple nested interfaces of various curvatures,

which more closely resembles a level set function which one might encounter in practice. This

will be referred to henceforth as the multiple interface reinitialisation problem. The initial level

set function at a point is defined as the maximum value of one of three analytical functions, i.e.

φ̃0 = max(φ̃0
k), k = 1, 2, 3, (4.62)

where

φ̃0
1 = 1.5

(√
x2 + y2 −

(
1 + 0.8 sin

(
arctan

(y
x

))2
))

,

φ̃0
2 = −2

(√
x2 + y2 −

(
0.3− 0.075 sin

(
4 arctan

(
y − 0.8

x

))))
,

φ̃0
3 = −2

(√
x2 + y2 −

(
0.48− 0.08 sin

(
4 arctan

(
y − 0.65

x

))2
))

.

(4.63)

The level set interface defined by (4.62), can be seen in Figure 4.12(a). For this example problem,

an h-convergence study is computed on a sequence of Cartesian meshes with square elements

of size h = 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, for meshes of uniform polynomial order p = 1, 2, 3.

As for the previous example, the convergence results are given using only the signed distance

and interface error measures, once again normalised by the area of the domain comprising the

narrow band at the point when the error is computed.

Looking at the error and convergence data computed using the signed distance error measure

in Figure 4.13(a), it can once again be seen that until the mesh is sufficiently refined and

therefore the narrow band sufficiently narrow, there are singularities present in the solution and

the experimental order of convergence for all polynomial orders, p, is equivalent to the linear

case. That is the case for all meshes with element size, h ≥ 10−1. Beyond this point, the

experimental orders of convergence align with the theoretically optimal for the signed distance

error measure. The quoted orders of convergence for both error measures, and for all polynomial

orders are computed for this example using the difference between the results for h = 0.05 and

h = 0.0125.

The error and convergence data computed using the interface error measure is displayed
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noted by the thick black line.

Figure 4.12: Domain configuration for the multiple interface problem where, Ω = (−2, 2)2.
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Figure 4.13: Error data normalised by narrow band area, ANB, and associated convergence rates
for the multiple interfaces interface reinitialisation problem, initialised as stated in Equation
(4.61), in the domain Ω = (−2, 2)2, with narrow band, solved using the Elliptic Reinitialisation
method.
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in Figure 4.13(b). It shows that for a given element size, h, the error is almost equivalent,

regardless of polynomial order, p, with a small increase in accuracy between the meshes where

p = 1 and p = 2, as was also the case for the previous example. As has been the case for

all of the presented examples, it is difficult to explain the behaviour of this error measure for

this problem. It could be the case that this behaviour is a result of using Müller’s method to

compute the integral over the interface which enforces the Dirichlet boundary condition. In

their original paper [144], Müller et al. are able to demonstrate high-order accuracy, however,

the error measure stated is an average of errors for the same problem computed multiple times

after small perturbations to the position of the domain (which would change the relative position

of the mesh and the implicit interface). This is done presumably because in the general case

they were not able to demonstrate high-order accuracy for a given interface on a given domain,

which might be what is happening here. Despite this, of the methods tested for computing

such an integral, it was the only one which was able to demonstrate robustly that its accuracy

improved with mesh refinement. Thus ultimately beyond this comments are restricted to the

following; for all examples the demonstrated movement of the level set function at the interface

is small (especially in comparison to other reinitialisation methods, see [137] for example), and

furthermore can be decreased predictably by controlling the element size with order ∼ h2.

Another point of note for this particular example is that for the denser higher-order meshes,

the number of iterations required to satisfy the convergence criterion grows large, for this problem

when p = 3 it takes an average of 920 iterations. However, it can also be noted that, for the mesh

where h = 0.0125 and p = 3 tested, it takes just 5 iterations to improve the gradient solution

by 3 orders of magnitude, and 34 iterations for an improvement of 4 orders of magnitude. This

suggests that in practical situations, it would be up to the user to decide where to strike the

balance between expense and accuracy.

4.5 Parabolic Reinitialisation method

The knowledge gained from the investigations into boundary conditions and modified objective

functionals using the elliptic method can be applied directly to the diffusion part of the Parabolic

Reinitialisation formulation. In this section then, all that is left to investigate is the influence

of various discretisations of the time derivative.

4.5.1 Parabolic reinitialisation method: spatial semi-discretisation

Using the modified Eikonal formulation, i.e. the potential function, P3, from Equation (4.42),

the strong form of the Parabolic Reinitialisation method can be stated as

∂φ̃(x, tr)

∂tr
+ ∇ ·

(
d3(|∇φ̃(x, tr)|)∇φ̃(x, tr)

)
= 0, x ∈ Ω,

φ̃(x, tr) = 0, x ∈ Γ(φ̃0),

d3(|∇φ̃(x, tr)|)∇φ̃(x, tr) · n̂ = 0, x ∈ ∂Ω.

(4.64)

Using the method of Lagrange multipliers to enforce the Dirichlet boundary condition, and

applying an SIPG discretisation in space leads to a variational formulation of the problem
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(4.64) to be stated as follows; find φ̃h(x, tr) ∈ Vp(T) and λD(x, tr) ∈ L(TΓ) from tr = (0,∞),

such that(
∂φ̃h(x, tr)

∂tr
, vh

)
T

+BPR(|φ̃h(x, tr)|; φ̃h(x, tr), vh) + 〈λD, vh〉Γ(φ̃0) = 0, ∀vh ∈ Vp(T), (4.65)

and 〈
φ̃h(x, tr), ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L(TΓ), (4.66)

where the notation BPR(|∇φ̃|; φ̃, v) is introduced for conciseness to denote the form

BPR(|∇φ̃|; φ̃, v) =
(
d3(|∇φ̃|)∇φ̃,∇v

)
T
−
〈
{{d3

(
|∇φ̃|

)
∇φ̃}}, [[v]]

〉
S(T)

−
〈
{{d3

(
|∇φ̃|

)
∇v}}, [[φ̃]]

〉
S(T)

+ µ
〈

[[φ̃]], [[v]]
〉
S(T)

, (4.67)

which is bilinear in φ̃ and v. Discretising (4.64) spatially in this way (and also dropping the

dependency on x) leads to a linear system of nonlinear ODEs which can be stated as

M
∂φ̃(tr)

∂tr
+KPR(|φ̃(tr)|)φ̃(tr) + Λ>λD(tr) = 0, (4.68)

Λφ̃(tr) = 0, (4.69)

where M = (mij) is the mass matrix, with entries defined as

mij = (vj , vi)T , (4.70)

and KPR(|φ̃(tr)|) = (kPR,ij(|φ̃(tr)|) is the nonlinear stiffness matrix with entries defined as

kPR,ij(|φ̃(tr)|) = BPR(|φ̃(tr)|, vj , vi), (4.71)

and Λ = (aij) is the Lagrange Multiplier matrix with entries defined in Equation (4.51).

4.5.2 Parabolic reinitialisation method: full discretisations

Explicit [79], semi-implicit [153] and fully implicit [77, 80] time discretisations have all found use

when solving parabolic problems with nonlinear diffusive terms discretised spatially using IPDG

methods, see Section 2.3.1. Explicit methods, despite their simplicity, often demonstrate severe

time step restrictions when combined with IPDG spatial discretisations and have thus found

limited use in the literature. However, as is noted in [79], explicit discretisations could become

competitive due to their ability to be parallelised. Implicit methods, on the other hand have

found preference in the literature due to their superior stability, however, the requirement to

solve a nonlinear system at each time step could similarly be considered prohibitively expensive.

Semi-implicit methods, which use a suitable combination of explicit and implicit linearisations

for a given problem, can demonstrate improved stability in comparison with explicit methods,

whilst only requiring a linear system to be solved at each time step, however, the efficacy of such
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an approach is of course problem dependent, and therefore difficult to analyse a priori. As it is

not immediately obvious which is most suitable for the given problem all three types of temporal

discretisation will be investigated below. More specifically, three different full discretisations will

be explored: an SIPG in space, Explicit Euler (EE) in time discretisation (SIPG-EE); an SIPG

in space, Semi-Implicit (SI) method in time (SIPG-SI); and an SIPG in space, Implicit Euler (IE)

in time discretisation (SIPG-IE).

4.5.2.1 Fully explicit

For both forward and backward Euler methods, the same notation will be used for the discreti-

sation of the time derivative, that is

∂φ̃h(tr)

∂tr
≈
φ̃mh − φ̃

m−1
h

∆tr
, (4.72)

where ∆tr denotes the time step, and φ̃m = φ̃(tmr ) denotes the value of φ̃ at the mth time step,

i.e. tmr = m∆tr. Linearising the diffusive terms explicitly, the SIPG-EE full discretisation can

thus be stated as follows: find φ̃mh ∈ Vp(T), and λmD ∈ L(TΓ), as tmr →∞ such that

(
φ̃mh , vh

)
T

+ ∆tr 〈λmD , vh〉Γ(φ̃0) =
(
φ̃m−1
h , vh

)
T
−∆trBPR(|φ̃m−1

h |; φ̃m−1
h , vh),

∀vh ∈ Vp(T), (4.73)

and

∆tr

〈
φ̃mh , ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L(TΓ). (4.74)

Using the matrix notation introduced in Sections 4.4 and 4.5.1, the linear system to be solved

at each time step can thus be stated as[
M ∆trΛ

>

∆trΛ 0

]{
φ̃m

λmD

}
=

{
(M −∆trKPR(|φ̃m−1|))φ̃m−1

0

}
. (4.75)

4.5.2.2 Semi-implicit

The idea behind semi-implicit methods is to deal with the nonlinear parts of the problem explic-

itly, whilst dealing with the linear parts implicitly. As such various semi-implicit formulations

of (4.65)-(4.66) are possible. Here we choose to apply an explicit linearisation to the nonlinear

diffusion coefficient, d(|∇φ̃|), such that it is a function of the solution at the previous time step,

tm−1
r . A backwards Euler method can then be used to discretise the time derivative present in

the resulting system of linear ODEs. The SIPG-SI full discretisation, can thus be stated: find

φ̃mh ∈ Vp(T), and λmD ∈ L(TΓ), as tmr →∞ such that(
φ̃mh , vh

)
T

+∆trBPR(|φ̃m−1
h |; φ̃mh , vh)+∆tr 〈λmD , vh〉Γ(φ̃0) =

(
φ̃m−1
h , vh

)
T
, ∀vh ∈ Vp(T), (4.76)

and

∆tr

〈
φ̃mh , ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L(TΓ). (4.77)
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Once again using the matrix notation introduced in Section Sections 4.4 and 4.5.1, the linear

system to be solved at each time step can be stated as[
M +KPR(|φ̃m−1|)∆tr ∆trΛ

>

∆trΛ 0

]{
φ̃m

λmD

}
=

{
M φ̃m−1

0

}
. (4.78)

4.5.2.3 Fully implicit

Using the backwards Euler method to discretise the time derivative present in the system of

nonlinear ODEs (4.65)-(4.66) allows one to state the corresponding variational formulation,

SIPG-IE, as: find φ̃mh ∈ Vp(T), and λmD ∈ L(TΓ), as tmr →∞ such that

1

∆tr

(
φ̃mh − φ̃m−1

h , vh

)
T

+BPR(|φ̃mh |; φ̃mh , vh) + 〈λmD , vh〉Γ(φ̃0) = 0, ∀vh ∈ Vp(T), (4.79)

and 〈
φ̃mh , ζ

〉
Γ(φ̃0)

= 0, ∀ζ ∈ L(TΓ). (4.80)

The resulting system (4.79)-(4.80) is still nonlinear and therefore needs to be solved at each time

step using an appropriate iterative solver. For simplicity, it is chosen here to use a quasi-Newton

scheme which can be stated as follows{
φ̃m,k+1

λm,k+1
D

}
=

{
φ̃m,k

λm,kD

}

−


[
∂FNR(φ̃m,kh ,λm,kD )

∂φ̃

] [
∂FNR(φ̃m,kh ,λm,kD )

∂λD

]
[
∂GNR(φ̃m,kh ,λm,kD )

∂φ̃

]
0


−1{

FNR(φ̃m,kh , λm,kD )

GNR(φ̃m,kh , λm,kD )

}
, (4.81)

where FNR = (fNR,i) and GNR = (gNR,i) are the residual vectors associated with (4.79) and

(4.80) respectively, with elements given by

fNR,i(φ̃
m,k
h , λm,kD ) =

1

∆tr

(
φ̃m,kh − φ̃m,0, vi

)
T

+BPR(|φ̃m,kh |; φ̃
m,k
h , vi) +

〈
λm,kD , vi

〉
Γ(φ̃0,0)

, (4.82)

and

gNR,i(φ̃
m,k
h , λm,kD ) =

〈
φ̃m,kh , ζi

〉
Γ(φ̃0,0)

. (4.83)

The notation φ̃m,kh denotes the kth Newton iteration, at the mth time step, and thus φ̃m,0 =

φ̃m−1,∞. The constituents of the Jacobian matrix, DF , that is ∂FNR

∂φ̃
, ∂GNR

∂φ̃
and ∂FNR

∂λD
, are

computed using a first order finite difference method, i.e.[
∂fNR,i(φ̃

m,k
h , λm,kD )

∂φ̃j

]
ij

=
fNR,i(φ̃

m,k
h,j + δφ̃, λm,kD )− fNR,i(φ̃

m,k
h,j , λ

m,k
D )

δφ̃
, (4.84)
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and [
∂fNR,i(φ̃

m,k
h , λm,kD )

∂λD,j

]
ij

=

[
∂gNR,i(φ̃

m,k
h , λm,kD )

∂φ̃j

]>
ij

,

=
fNR,i(φ̃

m,k
h,j , λ

m,k
D + δλD)− fNR,i(φ̃

m,k
h,j , λ

m,k
D )

δλD
,

(4.85)

where δφ̃ and δλD are two small constants, chosen for all examples in this thesis as δφ̃ = δλD =

10−12. Furthermore, again for all examples presented in this thesis, the quasi-Newton loop is

considered to have converged when ||{DF−1[FNR GNR]>}||2 < 10−10, that is the Euclidean norm

of the relative change between Newton iterations is less than the specified tolerance.

4.5.3 Parabolic Reinitialisation: numerical examples

For all of the numerical experiments presented in this section again Müller’s method, [144], is

used to compute the integral along the interface, with the maximum order of the divergence free

basis functions, β′, equal to 10, so to, as much as possible allow one to remove the error associated

with the mesh/problem dependency of the integration method and thus better evaluate the

reinitialisation method. The stopping criterion defining convergence is for all examples in this

section defined as |ESD(φ̃m) − ESD(φ̃m−1)| < 10−8, that is the relative change in the signed

distance error is smaller than a tolerance.

4.5.3.1 Investigation into critical time step

One of the first considerations to be made in regards to the three possible discretisations is

the appropriate choice for the time step, ∆tr, in each case. This first experiment then, will

form an investigation into the critical time step, ∆tcrit, for the three time discretisations for

a simple problem. To that end, the circular interface reinitialisation problem from Section

4.4.1.3 will be repeated here, by which the function (4.58), is L2 projected onto the domain

Ω = (−2, 2)2\(−0.4, 0.4)2, which is then reinitialised using each of the three discretisations.

The circular interface reinitialisation problem will be computed on a sequence of Cartesian

meshes of bilinear, that is p = 1, square elements of size, h = 0.8, 0.4, 0.2, 0.1. For each mesh,

the three methods will attempt to reinitialise the level set function as a signed distance function

to the interface, for a sequence of time steps of magnitude, ∆tjr = 2−(j−1), for j ∈ N. For

each considered time step, ∆tjr, the solver will run until either: the solution diverges, defined

by the condition ESD(φ̃m) > 100, the solution stagnates, defined by the condition, ESD(φ̃m) <

ESD(φ̃m−1) AND ESD(φ̃m−1) > ESD(φ̃m−2), or the solution converges. The first time step with

which the method converges will be considered the critical time step, ∆tcrit.

The discussion begins by looking at the results for a fixed mesh. In this case the chosen mesh

is that where h = 0.2; the results of which are shown in Figure 4.14 with details given in Table

4.1. The results presented in Figure 4.14 are exactly what one might expect from the three

time discretisations. For the fully implicit discretisation, it can be seen in Figure 4.14 that the

method is stable across the all of the time steps tested. For this experiment, when using the

implicit discretisation the maximum time step considered ∆t1r = 1 was satisfactory and as such

for the implicit discretisation larger values were also considered i.e. ∆tr = 10, 100, 1000. It was

found that in all cases the implicit method converged to the same error values up to the number
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Figure 4.14: Variation of error in the L2 norm of the converged solution to the circular in-
terface reinitialisation problem with time step, for the three discretisations of the Parabolic
Reinitialisation method on a fixed mesh with h = 0.2 and p = 1.

Method ∆tcrit Number of Time per Iteration Total Time (s), EL2 ESD
Iterations (s), (Relative Time) (Relative Time)

SIPG-EE 2.44e-4 40475 1.17e-1, (1.28e-2) 4713.40, (130.05) 8.05e-3 6.51e-2
SIPG-SI 3.91e-3 3101 2.60e-1, (2.87e-2) 806.45, (22.25) 7.25e-3 6.51e-2
SIPG-IE - 4 9.06, (1) 36.24, (1) 7.10e-3 6.51e-2
Elliptic - 295 1.21e-1, (1.34e-2) 35.55, (0.98) 7.40e-3 6.51e-2

Table 4.1: Critical time steps with associated errors and computational expense for the three
discretisations of the Parabolic Reinitialisation method, as well as the Elliptic Reinitialisation
method, when solving the circular interface reinitialisation problem. For the SIPG-IE formula-
tion of the Parabolic method, ∆tr was set to 1000.

of significant figures given in Table 4.1, with the number of iterations required reducing from 25

at ∆tr = 1 to just 4 at ∆tr = 1000. As such the critical time step for the implicit discretisation

was never reached in this experiment, and thus the results presented here assume ∆tcrit = 1000

for the implicit discretisation. Figure 4.14 shows that when using the fully explicit discretisation,

the method always diverges for values of the time step which do not strictly satisfy the CFL

condition, and is stable for any value smaller. For the semi-implicit discretisation, it can be

seen in Figure 4.14 that for time steps greater than some threshold value the method diverges,

however there is also a region, in this case, 10−2 < ∆tr < 0.5, whereby the solution stagnates

and oscillates between multiple poor approximations. Once the critical time step is reached, the

semi-implicit method is stable. Finally, it can be seen in Figure 4.14 that the critical time step

for the semi-implicit discretisation is larger than for the explicit discretisation.

Table 4.1 gives more specific information pertaining to the critical time step for the problem

on the fixed mesh, where p = 1 and h = 0.2. It can be seen in Table 4.1 that all three of the

proposed discretisations converge to the same value of ESD with slight variations in the EL2 ;
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Figure 4.15: Variation of critical time step and number of iterations for the three discretisations
of the Parabolic Reinitialisation method, for the circular interface reinitialisation problem.

this is because the convergence (and divergence) criteria are functions of the signed distance

error (as this is what is being enforced), and as such all solutions which do converge, converge

to the same value of ESD. Table 4.1 also includes a result using the Elliptic Reinitialisation

method. As will be seen throughout the numerical examples section, the computed error to

which the proposed Parabolic and Elliptic Reinitialisation methods converge is approximately

equal in all cases.

Also included in Table 4.1 is a comparison of the relative computational expense of the

various discretisations and methods. It can be seen that the critical time step for both the

fully explicit and semi-implicit time schemes results in extreme numbers of iterations required

to achieve convergence. Such large numbers of iterations mean that in terms of computational

time a semi-implicit discretisation for this problem was around 22 times more expensive than

the implicit discretisation, and the explicit discretisation around 130 times more expensive. A

result using the Elliptic Reinitialisation method is also presented and where it can be seen that

the time taken in that case is roughly equivalent to the SIPG-IE parabolic formulation. It should

be noted that all of the timing data presented in Table 4.1 was obtained using the tic function

in MATLAB R2016b. All of the data was collected from a machine with an Intel i7-7700HQ

CPU at 2.80GHz. It should also be noted that the relative time per iteration was calculated

as the time taken to compute the time stepping loop to convergence divided by the number of

iterations, normalised by the average time taken to compute one iteration of the SIPG-IE loop.

It should also be noted that the resolution of the experiment is fairly coarse in terms of the

time steps considered, however, this coarseness does little to affect the conclusion which can be

drawn.

Figure 4.15 shows how the critical time step is related to h and also the effect of this on the

number of iterations required to converge using the critical time step. As mentioned above, the

critical time step was never reached in the case of the SIPG-IE discretisation and as such the
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number of iterations presented in Figure 4.15(b) using SIPG-IE is for all h set to ∆tr = 1000.

The ability to choose this value as a large constant as h varies, allows the number of iterations

required to converge to also remain constant as h varies, for this problem. This fact further

compounds the noted issues with expense of both the SIPG-EE and SIPG-SI discretisations

stated earlier, whereby at least for the Explicit Euler discretisation the critical time step is

known to be proportional to h2, [79].

The results presented in this section make it clear that the comparative expense of the

fully implicit discretisation is orders of magnitude less than either the explicit or semi-implicit

discretisations. This is true despite the nonlinear solve required, due to severe restrictions on

the time step required for stability and thus the large number of iterations required to reach a

steady-state for both the semi-implicit and fully explicit discretisations. As there is no benefit

accuracy-wise, as evidenced by Figure 4.14, it is thus recommended by the author that for

problems of this kind, one should adopt an implicit time discretisation. For the remaining

example problems to be presented in this section therefore, the focus shall be only on the SIPG-

IE formulation of the Parabolic Reinitialisation method.

4.5.3.2 h-convergence study: circular interface

For the first numerical experiment testing the accuracy of the SIPG-IE formulation of the

Parabolic Reinitialisation method, the same initial conditions as in Section 4.4.1.3 will be re-

peated i.e. a level set function with a circular interface defined by (4.58) is L2 projected onto the

domain Ω = (−2, 2)2\(−0.4, 0.4)2. The initial level set function is then reinitialised such that

the explicit function describing the solution everywhere in the domain is that stated in Equation

(4.59). An h-convergence study will be computed on a sequence of Cartesian meshes with square

elements of size, h = 0.8, 0.4, 0.2, 0.1, 0.05, for meshes of uniform polynomial order, p = 1, 2, 3. It

should be noted for all of the partitions considered the time step is chosen as ∆tr = 100. Given

that this is a relatively simple problem, which is smooth everywhere, it should again be expected

that the proposed method will be capable of demonstrating experimental orders of convergence

which align with the theoretically optimal for diffusion problems in all of the relevant norms as

discussed in Section 4.4.1.2. The error and convergence data collected, is presented in Figure

4.16.

Figure 4.16 demonstrates that the method has experimental orders of convergence congruent

with the expected optimal convergence rates in all of the relevant norms including a convergence

rate of hp+1 in the L2 norm and interface error norm, a convergence rate of hp in the DG norm

and signed distance error norm, and a convergence rate of ln(h−1)s̄hp+1 in the L∞ norm. It

can be noted that the quoted experimental order of convergence is computed in all cases using

the difference between the error values for the meshes where h = 0.4 and h = 0.05. It can

also be seen that the reported errors and quoted rates of convergence are essentially equivalent

for both the Elliptic reinitialisation method, see Section 4.4.1.3, and the proposed Parabolic

Reinitialisation method.

It can be noted that for fixed time step ∆tr = 100, the number of iterations required for

almost all of the tested partitions is equal to 5. The exceptions to this was for the meshes

of cubic elements where h = 0.4 and h = 0.05, where 4 and 6 iterations respectively were
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Figure 4.16: Error data and convergence rates for the circular interface reinitialisation problem
in the domain Ω = (−2, 2)2\(−0.4, 0.4)2, solved using the Parabolic Reinitialisation method.
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required to satisfy the convergence criterion. As shown in Table 4.1, 295 iterations are required

to satisfy the convergence criterion using the Elliptic Reinitialisation method where p = 1 and

h = 0.2, which lead to comparable run times for that given mesh, however, for the mesh where

p = 3 and h = 0.05, the Elliptic method requires just 5 iterations to converge. It is difficult

to approximate a priori the required number of iterations to satisfy the convergence criterion

for either the Parabolic or Elliptic reinitialisation methods which makes it difficult to choose in

which situation one would be preferable over the other in terms of computational expense.

4.5.3.3 h-convergence study: smooth star interface

A second h-convergence study is presented for the smooth star interface reinitialisation problem,

solved using the SIPG-IE discretisation of the Parabolic Reinitialisation method. The initial

condition defined in Section 4.4.1.4, Equation (4.61), is L2 projected onto the domain Ω =

(−2, 2)2, where again a narrow band determines the actual domain size (which can vary for

any given partition tested in the study). In this case, the narrow band is defined automatically

for each mesh through the following condition; remove from the mesh any element which has

a minimum absolute nodal value greater than two times the size of the smallest element, hmin.

This initial level set function is then reinitialised on a series of Cartesian meshes of uniform

polynomial order, p = 1, 2, 3, with square elements of sizes h = 0.4, 0.2, 0.1, 0.05. The error

and convergence data to be presented is only given using the signed distance and interface error

measures, and again, as the size of the domain over which these errors are calculated varies these

error measures are normalised by the area of the domain comprising the narrow band. It should

be noted for all meshes considered the time step is chosen as ∆tr = 1.

It is possible, especially for the coarser meshes, that a signed distance function to the smooth

star interface may contain a singular region within the narrow band defined as it is. Given that

this is the case, it should be expected that for any set of partitions which contain a solution which

is singular, the rate of convergence will be limited to the equivalent linear rate of convergence in

the relevant norms. For the set of partitions which are sufficiently fine such that the criterion for

the narrow band becomes sufficiently narrow to remove all singular parts of the solution from

the domain, then one should expect the method to once again demonstrate optimal convergence.

The computed error and convergence data is presented in Figure 4.17.

Figure 4.17(a) shows that beyond the first two data for each polynomial order, an experimen-

tal order of convergence of hp can be observed using the signed distance error measure which

is equivalent to the previous example. It can be noted that the quoted experimental order of

convergence is computed in all cases using the difference between the error values where h = 0.2

and h = 0.05. Figure 4.17(b) shows error and convergence data computed using the interface

error measure. The behaviour of this error measure is again difficult to explain but does at

least act consistently across the range of example problems beyond the circular interface. As

such comments are limited to the following; it seems that one can expect the L2 error along the

interface to decrease proportionally to at least h2 for all p, for any problem more complicated

than the circular interface reinitialisation problem.

The same example problem was computed using the Elliptic Reinitialisation method in Sec-

tion 4.4.1.4. The reported errors using the signed distance error measure are essentially equiv-
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Figure 4.17: Error data normalised by narrow band area, ANB, and associated convergence rates
for the smooth star interface reinitialisation problem in the domain Ω = (−2, 2)2, using a narrow
band approach, solved using the Parabolic Reinitialisation method.

alent for both methods. This is less true for the interface error measure, however, it can be

noted that the general trend is the same and for the reasons stated above otherwise difficult to

analyse.

For this example problem, there is more variation in the number of iterations required to

satisfy the convergence criterion. This number does not seem to scale with h although this is

likely due to the variations in the domain size due to the narrow banding rule. Furthermore,

it can be noted that the average number of iterations for all of the partitions tested is 14 with

a maximum number of required iterations equal to 52, for the mesh where p = 3 and h = 0.2.

The same problem computed using the Elliptic Reinitialisation method also has a somewhat

random distribution of number of iterations required to converge for each partition tested, with

an average of 563 iterations. As there is no pattern in the required number of iterations for a

given level set function on a given mesh, it is again difficult a priori to determine whether or

not it would be advantageous in terms of computational expense to choose one formulation over

the other. This echoes the comparison made for the previous numerical experiment in Section

4.5.3.2.

4.5.3.4 h-convergence study: multiple interfaces

The final h-convergence study involves solving the multiple interface reinitialisation prob-

lem using the SIPG-IE formulation of the Parabolic Reinitialisation method. In this case,

the initial level set function is defined at each point in the domain as in Section 4.4.1.5,

Equations (4.62) and (4.63), which is sampled at the Gauss points and then L2 projected

onto the domain Ω = (−2, 2)2. This initial level set function is then reinitialised on a se-

ries of Cartesian meshes of uniform polynomial order, p = 1, 2, 3, with square elements of size

h = 0.2, 0.1, 0.05, 0.025, 0.0125. Again, only the signed distance and interface errors, normalised
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Figure 4.18: Error data normalised by the narrow band area, ANB, and associated convergence
rates for the multiple interfaces reinitialisation problem in the domain Ω = (−2, 2)2, using a
narrow band approach, solved using the Parabolic Reinitialisation method.

by the narrow band area, will be reported for this problem. Furthermore, the narrow band will

be applied to the problem restricting the domain size by the following rule: remove from the

mesh any element which has a minimum absolute nodal value greater than four times the size

of the smallest element, hmin.

In computing the solution to the multiple interface reinitialisation problem, using the SIPG-

IE discretisation, it was found that in some cases for stability reasons there was a restriction

required on the time step, ∆tr. In particular, it was the coarsest meshes tested which were the

least stable, with the required time step decreasing with increasing polynomial order. The likely

reason for this is therefore that the singularities present in the solution (which are quite severe

for this example as can be seen in Figure 4.12(b)) are poorly resolved by the mesh leading to

overshoots and oscillations for larger time steps. This does provide evidence suggesting that

the SIPG-IE discretisation, is only conditionally stable. As such for this numerical example,

the time step is chosen such that ∆tr = 0.01, for all meshes. It should be noted however, that

for the denser meshes, particularly those in the region where optimal rates of convergence are

demonstrated, larger time steps do once again become viable.

The error and convergence data shown in Figure 4.18 echoes the previous example problem

shown in Section 4.5.3.3. That is, for meshes where the narrow band is not sufficiently narrow

to remove the singular parts of the solution the signed distance error measure converges with a

rate equal to linear convergence for all polynomial orders. Beyond this point, the experimental

order of convergence using the signed distance error measure aligns with what is expected to

be optimal. Similarly, the interface error measure gives approximately equal values for all

polynomial orders for a given element size and converges with a rate of at least h2 for all

polynomial orders. It should be noted that the quoted experimental order of convergence in all

– 96 –



cases is computed using the values for the meshes where h = 0.05 and h = 0.0125.

4.6 Summary

This chapter has presented research concerning level set reinitialisation in the DG paradigm.

This research is concluded with the proposal of two novel reinitialisation methods, the Elliptic

and Parabolic Reinitialisation methods, both of which have been shown to have significant ad-

vantages over those presented elsewhere in the literature, particularly with regards to accuracy

both globally and along the level set interface. The proposed Elliptic and Parabolic Reinitiali-

sation methods (Parabolic here refers to the SIPG-IE discretisation) are shown to be practically

equivalent in terms of the solution computed, and to differ mainly in terms of (real-)time taken

and stability. The stability of the Parabolic method, however, is parametrised by a time step,

the choice of which is not obvious, and furthermore, which method will converge faster is diffi-

cult to predict. As the Elliptic Reinitialisation method is both unconditionally stable, and also

parameter free in this respect, it is the preferred reinitialisation method of the author, and that

which will be used elsewhere in this thesis where there is a requirement to reinitialise a level

set function. With the development of the proposed level set reinitialisation method, one can

maintain confidence that throughout an evolution the level set function will maintain its satis-

faction of the signed distance property, ensuring stability and promoting accuracy, and further

that inaccuracies introduced by the reinitialisation in the position of the level set interface have

been minimised. The next chapter can thus proceed by presenting research concerning level set

evolution in the DG paradigm.
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Chapter 5

Level Set Evolution

With the development of a high-order accurate level set reinitialisation method, this chapter

presents a DG approach applied to the level set equation to thus form a fully DG high-order

accurate level set methodology. As such this chapter comprises the following sections. Section

5.1 and its subsections present a simplification which can be made to the level set equation and

subsequently information pertaining to the DG spatial discretisation of the simplified level set

equation including a novel flux term, and the proposed temporal discretisation of the level set

equation using a high-order explicit Runge-Kutta method. Section 5.2 presents a more robust

approach to narrow banding the level set function, including a novel approach to extending

the value of the level set function beyond the narrow band as the level set interface evolves.

Section 5.3 presents the formulation of an Anderson acceleration algorithm used in this thesis

to increase the rate of convergence of the Picard iterative method used to linearise some of the

equations present in the proposed level set methodology. Finally, Section 5.4, combines all of

the information pertaining to the level set methodology presented up to this point in the thesis,

including evolution, narrow banding, and reinitialisation, in the form of an algorithm. Section

5.4 is then concluded with a number of numerical examples demonstrating the efficacy of the

proposed methodology.

5.1 The level set evolution equation

As the level set function will always be initialised as a signed distance function at the beginning

of a simulation, see Section 3.2.1, and reinitialised as a signed distance function throughout the

evolution, see Chapter 4, the following simplification can be made to the evolution equation.

Given that the advection velocity can be written, b = bnφ where, b, is the scalar magnitude of

the advection velocity normal to the interface, and, nφ = ∇φ(x,te)
|∇φ(x,te)| , is the normal of the level

set function, then, the evolution equation (3.2) can be rewritten as

∂φ(x, te)

∂te
= −b ∇φ(x, te)

|∇φ(x, te)|
·∇φ(x, te) = −b|∇φ(x, te)| = −b. (5.1)

This leaves a pure source equation, however, in general the magnitude of the advection veloc-

ity vector is likely to be a function of the level set function and as such it can be useful to
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conceptualise the simplified advection equation as a Hamilton-Jacobi equation as follows

∂φ(x, te)

∂te
+ b(φ(x, te)) = 0. (5.2)

In this case, it is known, [154], that discretising (5.1) using a member of the class of monotone

schemes results in a solution which will converge to the unique viscosity solution. The viscosity

solution of (5.1) will be uniquely defined by the initial condition

φ(x, 0) = φ, ∀x ∈ Ω. (5.3)

5.1.1 Level set evolution equation: spatial semi-discretisation

In order to discretise (5.1) spatially on a DG mesh, one can begin in the standard way by

multiplying through by a test function, vh, and integrating over the domain.(
∂φh(x, te)

∂te
, vh

)
T

= (−b, vh)T , ∀v ∈ Vp(T). (5.4)

As there is no longer a spatial derivative, there is no integration by parts through which a flux

term would naturally occur. In the DG paradigm, with no flux term describing the relationship

between sets of adjacent elements, each element will evolve separately from one another causing

the development of sharp discontinuities throughout the computational domain. As is pointed

out in [155], the numerical difference across an edge can be used to couple cells, which amounts to

adding artificial dissipation to the flux. In this work, taking inspiration from interior penalty DG

approaches, a simple method is used to couple adjacent cells by which the jump in the solution

across each internal element edge, ∂τ ∈ S(T), is penalised, which weakly enforces continuity.

This can be stated(
∂φh(x, te)

∂te
, vh

)
T

+ µ 〈[[φh(x, te)]], [[vh]]〉S(T) = (−b, vh)T , ∀vh ∈ Vp(T), (5.5)

where the penalty parameter, µ, is chosen as, µ = 10p2/h. Whilst this is an interior penalty

method, and the resulting matrix on the LHS is symmetric, a distinction is made here that

this discretisation is not equivalent to the standard SIPG discretisation as in [45], which one

could apply to an elliptic problem. It is noted that enforcing continuity in this way adds an

artificial viscosity to the system which could contribute to mass loss or the dissipation of physical

discontinuities, however this will be mitigated by the high-order accuracy of the method, and the

high resolution of such features when discretised with the full hp-adaptive method. Furthermore,

the efficacy of this flux term will be demonstrated in the numerical results presented in Section

5.4.2.

5.1.2 Level set evolution equation: full discretisation

In general, the magnitude of the advection velocity vector, b, will be a function of the level set

function, b = b(φh(x, te)). In such a case, the RHS of (5.5) will be dealt with explicitly. In order

to maintain the high-order accuracy of which the spatial discretisation is capable, a FE space
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0
c2 q21

c3 q31 q32
...

...
. . .

cNs qNs1 qNs2 . . . qNs,Ns−1

α1 α2 . . . αNs−1 αNs

Table 5.1: General form of the Butcher tableau

with maximum polynomial order, pmax, is paired with an explicit Runge-Kutta discretisation of

order, pRK = pmax+1, as discussed in [105]. The chosen penalty term on the LHS of (5.5) is linear

and is thus dealt with implicitly, and as such we refer to the resulting temporal discretisation as

semi-implicit. The full discretisation of (5.1) using a DG method in space, and a semi-implicit

RK method in time can thus be stated as follows: find φnh ∈ Vp(T), for te = (0, T ) such that

(φnh, vh)T + ∆teµ 〈[[φnh]], [[vh]]〉S(T) =
(
φn−1
h , vh

)
T

−∆te

[
Ns∑
i=1

αi

(
b(φ

(i)
h ), vh

)
T

]
, ∀vh ∈ Vp(T), (5.6)

where ∆te denotes the time step, and φn(·) = φ(·, tne ) denotes the value of φ at the nth time

step, i.e. tne = n∆te. The terms φ(i) for i > 1 denotes the solution at the intermediate RK stages

which can be computed as follows

(
φ

(i)
h , vh

)
T

+ ci∆teµ
〈

[[φ
(i)
h ]], [[vh]]

〉
S(T)

=
(
φn−1
h , vh

)
T

−ci∆te

 i∑
j=0

qij

(
b(φ

(j)
h ), vh

)
T

 , ∀vh ∈ Vp(T), (5.7)

and thus φ(1) = φn−1. The constant Ns denotes the number of stages associated with the Runge-

Kutta method of order, pRK, and the constants qij , αi and ci, come from the corresponding

Butcher tableau of the form presented in Table 5.1. The specific coefficients for Runge-Kutta

schemes of various orders used to compute the example problems in this thesis can be found in

Appendix B. In this thesis, spatial discretisations up to a maximum order, p = 8, are considered,

and as such Runge-Kutta schemes up to and including order pRK = 10 are presented (a 10th

order RK scheme is used for meshes where pmax = 8, with the usual pRK = pmax + 1, for

p < 8). It should however be noted that most RK discretisations of a given order, pRK > 1,

have demonstrated stability on meshes of elements with polynomial order, p, in the case where,

p > pRK, but in such a case the maximum allowable time step which satisfies the CFL condition

would have to be reduced, which explains why this choice is made.

Using the matrix notation introduced in Sections 4.4 and 4.5.1, the linear system to be solved

at each time step of the evolution equation, can be stated as follows

(M + ∆teKP)φn = Mφn−1 −∆teFE , (5.8)
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where M = (mij) denotes the mass matrix, KP = (kP,ij) denotes what will be referred to as the

penalty matrix, with elements given by

kP,ij = 〈[[vj ]], [[vi]]〉S(T) , (5.9)

and FE = (fE,i) is the force vector for the level set evolution problem, with elements given by

fE,i =

Ns∑
j=1

αj

(
b(φ

(j)
h ), vi

)
T
. (5.10)

For a DG spatial discretisation with polynomial order vector, p, and a Runge-Kutta temporal

discretisation of order pRK = pmax + 1, a well known, [105], appropriate time step can be stated

∆te = min
τ∈T

(
hτ

||bτ ||∞(2pτ + 1)

)
, (5.11)

where ||bτ ||∞ is the infinity norm (see Equation (4.54)) of the advection velocity on the element

τ , sampled at the integration points.

5.2 Narrow band level set method

The idea of a narrow banded level set method was introduced in Section 3.2.2. The numerical

experiments in Sections 4.4.1 and 4.5.3, then provided evidence for the necessity of a narrow

band approach. This is because it can be seen that in the case that the level set function is always

a signed distance function, and if that signed distance function describes an interface which is a

closed loop on a simply connected subdomain, that the level set function is necessarily singular

somewhere inside that loop. Problems posed on Cartesian meshes of uniform polynomial order,

which have a solution which is known to be singular are unable to demonstrate high-order

accuracy. These singular regions in the solution however, will often be far enough away from the

level set interface, which is the only important part of the domain, and therefore can ultimately

be removed from the domain by only solving the reinitialisation and evolution problems on a

narrow band of elements near to the interface. This was demonstrated in the numerical examples

presented in Sections 4.4.1 and 4.5.3. This is true unless the interface itself is singular, in which

case accuracy will be limited anyway, or the shape described by the level set interface is about to

collapse and therefore remove itself from the domain in the near future. In the previous section

where a narrow band was required, simple ad hoc rules for the narrow band were adopted based

on the problem to be solved; this section then describes a more robust approach for the general

case.

The best case scenario for a narrow banded level set method, is that the narrow band contain

the set of elements intersected by the interface, TΓ, as defined in Section 4.3.3, Equation (4.32),

and one layer of elements either side of TΓ within which the interface could evolve into. For the

methodology specific to this thesis, it is useful to extend this definition to include two layers

of elements either side of TΓ, this will be discussed further in Section 5.2.1. That is the set of

elements forming the narrow band, TNB, is defined as the union of the set of elements cut by
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the interface, TΓ, the set of elements which aren’t cut by the interface but share a node with

any element cut by the interface, and the set of elements which share a node with any element

which shares a node with any element which is cut by the interface, that is

TNB = TΓ ∪ {τ ∈ T : ∂τ ∈ Eext(TΓ)} ∪ {τ ∈ T : ∂τ ∈ Eext({τ ∈ T : ∂τ ∈ Eext(TΓ)})}. (5.12)

It is also useful to define a set of elements constituting the layer of elements just outside of

the narrow band, ToNB. This set of elements is defined as the set of elements which aren’t inside

the narrow band but which share at least one node with an element inside the narrow band,

that is

ToNB = {τ ∈ T : (τ /∈ TNB) ∪ (∂τ ∈ Eext(TNB)}. (5.13)

For both the level set reinitialisation and the level set evolution problem, the only boundary

condition on the domain boundary is a homogeneous Neumann boundary condition. When

solving either of these problems on just the narrow band, the Neumann condition extends

naturally to the boundary of the narrow band and thus no change needs to be made. The

homogeneous Dirichlet boundary condition for the reinitialisation problem is enforced over the

set of elements intersected by the level set interface which will always be inside both the full

partition and the narrow band, and therefore no change needs to be made to the methods

detailed in Sections 4.3.2 and 4.3.3, when solving the reinitialisation problem on the narrow

band. The level set evolution equation does not have a Dirichlet boundary condition. In all

other cases in this thesis, the boundary conditions where the narrow band is concerned will be

stated explicitly.

On an implementation level, to determine if an element is intersected by the level set interface,

the value of the level set function is sampled along element edges at the nodes and Gauss points

and the sign computed. If any two of the signs are not equal, then the element is determined

to be intersected by the interface. Vectors containing element neighbours are generated during

the initialisation of the mesh and updated after a given refinement of the mesh, and therefore

it is trivial to subsequently decide which elements form the narrow band.

5.2.1 Narrow band extrapolation

The cost of using a narrow band, is that at each iteration of the evolution of the level set

function, one has to forfeit the information pertaining to the level set function outside of the

narrow band. Thus when necessary, that is when an element which was outside of the narrow

band before an iteration of the evolution equation, has now moved inside the narrow band; after

that iteration, new information pertaining to the value of the level set function on those elements

must be generated. For ease of communication the set of elements which move from outside

to inside the narrow band will be denoted as TT . As the level set function should always be a

signed distance function to the level set interface at any given time, the value of the level set

function on the elements in TT can be generated by solving the elliptic reinitialisation problem,

(4.45), on those elements with the following modifications.

First of all, the level set function on TNB is already approximately a signed distance function,

and as such, so as to avoid the relatively expensive techniques for imposing a Dirichlet boundary
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condition on the interface, one can simply use the known value of the level set function on the

edge of the narrow band,

φD = φ(x), ∀x ∈ Eext(TNB), (5.14)

as a Dirichlet boundary condition using Nitsche’s method. Thus the strong form of what will

be referred to henceforth as the level set extrapolation problem can be stated

∇ ·
(
d3(|∇φ̃(x)|)∇φ̃(x)

)
= 0, x ∈ TT ,

φ̃(x) = φD, x ∈ Eext(TNB),

d3(|∇φ̃(x)|)∇φ̃(x) · n̂ = 0, x ∈ ∂TT .

(5.15)

Equation (5.15) can, similar to the Elliptic Reinitialisation method (see Section 4.4), be linearised

using Picard’s method, and then discretised spatially using the SIPG method leading to a

variational formulation which can be stated: find φ̃mh ∈ Vp(TT ) as m → ∞ such that the

following weak form statement of equilibrium is satisfied

(
∇φ̃mh ,∇v

)
TT
−
〈
{{∇φ̃mh }}, [[v]]

〉
S(TT )∪Eext(TNB)

−
〈
{{∇v}}, [[φ̃mh ]]

〉
S(TT )∪Eext(TNB)

+µ
〈

[[φ̃mh ]], [[v]]
〉
S(TT )∪Eext(TNB)

=
(

(1− d3(|∇φ̃m−1
h |))∇φ̃m−1

h ,∇v
)
TT

−
〈
{{(1− d3(|∇φ̃m−1

h |))∇φ̃m−1
h }}, [[v]]

〉
S(TT )∪Eext(TNB)

−
〈
∇v · n̂, φ̃D

〉
Eext(TNB)

+µ
〈
φ̃D, v

〉
Eext(TNB)

, ∀v ∈ Vp(TT). (5.16)

The second modification concerns the fact that the extrapolation equation, (5.16), requires

an initial condition which at the time the extrapolation routine is called would not exist. The

unique viscosity solution to the reinitialisation problem, (5.15), requires only that the sign of the

gradient of the initial level set function at each point is correct, i.e. that the level set function is

correctly oriented. For a given element τ+ ∈ TT , it can be assumed that an approximation of the

correct orientation of the level set function on τ+ is equal to the average of the gradient of the

level set function on its neighbour(s) inside the narrow band. An initial condition then, which

will allow (5.16) to converge to the desired signed distance function can be generated by solving

the following: find φ̃0
h ∈ Vp(TT) such that the following weak form statement of equilibrium is

satisfied

(
∇φ̃0

h,∇v
)
TT
−
〈
{{∇φ̃0

h}}, [[v]]
〉
Eext(TNB)

−
〈
{{∇v}}, [[φ̃0

h]]
〉
Eext(TNB)

+ µ
〈

[[φ̃0
h]], [[v]]

〉
Eext(TNB)

=
(
(1− d3(|∇φτ |))∇φτ ,∇v

)
TT
− 〈(1− d3(|∇φD|))∇φD · n̂, v〉Eext(TNB)

− 〈∇v · n̂, φD〉Eext(TNB) + µ 〈φD, v〉Eext(TNB) , ∀v ∈ Vp(TT ), (5.17)

where ∇φτ is the average of the gradient of the level set function at all of the Gauss points

inside all of the elements which are both currently inside the narrow band and share a node with

a given element τ ∈ TT ; which has been substituted for the gradient at the m− 1th iteration on
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the RHS.

One possible issue with generating the initial condition in this way is that near to a singular

region, the initial level set function might not be correctly oriented (which might be the case

where an interface is about to collapse for example). If the narrow band is defined (as mentioned

in Section 5.2) to be just one element wide either side of TΓ, then the solution on the element

which isn’t correctly oriented could now potentially cross the zero-plane (especially on a hp-

adaptive mesh where the elements in TT could be physically larger than those inside the narrow

band). In such a case there would therefore be a new interface erroneously generated during the

extrapolation. This is the reason for defining the narrow band as in (5.12), that is, two layers

of elements wide either side of TΓ as opposed to just one, as such a choice ensures any element

to be extrapolated on will always be far enough away from the level set interface such that even

if the level set function is incorrectly oriented it will not interfere with the level set interface,

given the local bound on variation in element size.

As has hopefully been made apparent, for the proposed level set methodology in this thesis, it

is imperative that the level set function satisfies the signed distance property. The extrapolation

problem is in general a much cheaper problem to solve than the full reinitialisation problem, as

the number of elements in TT is often significantly fewer than in the narrow band, TNB, as well as

the fact that it is coupled with the simpler method for enforcing the Dirichlet boundary condition.

It is generally cheaper therefore to ensure that the level set function on these new elements can,

as strictly as the spatial discretisation allows, satisfies the Eikonal equation, (3.4), rather than

attempting to save time here by limiting the number of iterations on the extrapolation and

then trying to correct the signed distance-ness of the level set function later by reinitialising

everywhere in the narrow band. As such the stopping criteria for the extrapolation problem

are chosen to be strict in order to ensure that the level set function generated through the

extrapolation is a strict signed distance function. Specifically, there are two stopping criteria

used for the extrapolation problem: the Euclidean norm of the residual between the two most

recent consecutive solutions over the computational domain to the extrapolation problem is

smaller than a tolerance, ||φ̃mh − φ̃
m−1
h ||2 < 10−13; or a maximum number of iterations have been

computed, where that maximum is set to 10000. It should be noted that despite the relatively

slow convergence of the Picard scheme, it is unlikely that the required number of iterations

would approach such a maximum and thus this limit is in place as a fail-safe.

5.3 Anderson acceleration

One bottleneck in the simulations computed using the level set methodology presented herein is

the slow convergence rate of the Picard iterative method used to linearise both the reinitialisation

and extrapolation equations. This is especially true given the requirement to return a solution

with the desired high level of accuracy. To help combat this issue, an Anderson acceleration

algorithm has been applied wherever a fixed point iterative method is required. The idea of

Anderson acceleration is that after solving the appropriate linear system at each iteration of the

fixed point method, the computed solution is modified to include information from a number of

the most recent iterations of the computed solution by performing a line search to find a linear
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combination of these solutions which minimises the residual between them. By decreasing this

residual, which ultimately defines the convergence criterion, convergence can be achieved more

quickly. Such an approach which can be used in the solution of the Elliptic Reinitialisation

equations (4.20) or level set extrapolation equations, (5.16), is presented in Algorithm 1. The

form of the Anderson acceleration algorithm used in this thesis is equivalent to that presented

in [156, 157], and the information specific to this thesis is shown in Algorithm 1 and explained

in the remainder of this section.

The first step of Algorithm 1 is to initialise some parameters; solutionOld which is a vector

containing the solution at the previous iteration; solChangeHistory which is a matrix, each

column of which contains a vector of residuals between previous solutions and is thus initialised

as an empty matrix; resChangeHistory which is a matrix each column of which contains a

residual vector between previous residual vectors to be explained presently; and stepLength

which denotes the solution to the least squares problem forming the line search, and which

therefore will be a vector containing ‘weights’ associated with each of the previous residuals

contained within solChangeHistory. After this, the appropriate LHS system matrix can be

computed; this depends on the problem being solved, reinitialisation or extrapolation, which is

defined using the problemHandle input parameter.

After this the Anderson loop can begin. The first step of the loop at each iteration is to

compute a new solution to the problem being solved, solutionNew. Again this requires the

problemHandle input parameter to point towards the correct construction of a RHS vector and

the linear system to be solved. Once the solution at the current iteration has been computed,

solutionNew, the residual, residualNew, between the current and previous solutions can be

computed. In this way there will always be one fewer previous residuals than previous solutions

at a given iteration. As is explained in [157], a more efficient implementation of the least

squares problem forming the line search can be achieved if the minimisation is in the change

in the residual, as opposed to the direct minimisation of the residuals themselves. For this

reason at least two residuals are required to perform the line search, and thus during the first

iteration of the Anderson loop, that is when m = 0, no line search is computed. As such the

remainder of the first iteration consists of checking the stopping criteria, and should they not be

satisfied updating the variable solutionOld and initialising the variable residualOld for the

next iteration.

Beyond the first iteration, when m > 0, the loop begins again by computing a new so-

lution and the residual between it and the previous solution and checking the convergence

criterion. Should the convergence criterion not be satisfied on this and any future iterations,

then the line search will be computed. The number of previous iterated solutions to be in-

cluded in the line search is defined by the parameter, lineSearchSize. Initially the value of

the lineSearchSize parameter will be determined by the current number of iterations, and

this can, with future iterations, grow up to a user decided maximum, defined by the input

parameter maxLineSearchSize. In deciding the value of the parameter maxLineSearchSize

one needs to consider that increasing this value should reduce the number of required iter-

ations, but will also increase the computational expense of each iteration (as there will a
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Input: φ̃0, maxLineSearchSize, maxIt, problemHandle, errorHandle, resTol, maxErr
Output: φ̃∞, recomputeFlag

solutionOld = φ̃0;
solChangeHistory = [ ];
resChangeHistory = [ ];
stepLength = 0;
Compute LHS matrix, K;

for m← 0 to maxIt-1 do
Compute RHS force vector, F ;
solutionNew= K−1F ;

residualNew = solutionNew −φ̃m;
if ||residualNew||2 <resTol then

return solutionNew, 0;
end
if m > 0 then

lineSearchSize= min{maxLineSearchSize,m};
residualChange=residualNew-residualOld;
resChangeHistory = [resChangeHistory,residualChange];
while condest(resChangeHistory(:,m−lineSearchSize−1 : m)) > 1010 do

lineSearchSize=lineSearchSize−1;
end

Find stepLength = (stepLength[0],. . . ,stepLength[lineSearchSize-1])>

which solves min ||residualNew −
resChangeHistory(:,m−lineSearchSize−1 : m)∗stepLength||2;

solutionChange=solutionNew-solutionOld;
solChangeHistory= [solChangeHistory,solutionChange];

end

φ̃m+1 =solutionNew −
solChangeHistory(:,m−lineSearchSize−1 : m)∗stepLength;

Compute the signed distance error, ESD;
if ESD >maxErr then

return φ̃0, 1;
end
solutionOld = solutionNew;
residualOld = residualNew;

end

return φ̃maxIt−1, 0 ;

Algorithm 1: Anderson acceleration algorithm for level set reinitialisation or extrapolation.
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larger system to solve) and as such an appropriate balance may need to be sought between

the two. In this work, the parameter is chosen such that lineSearchSize=maxIt, i.e. at

each iteration lineSearchSize = m, as it has been found that the problem generally sat-

isfies a stopping criterion before the size of the linear system becomes problematic in terms

of computational efficiency. After this the change in the residuals, residualChange, can be

computed, and appended to the resChangeHistory matrix. At this point a check is made

that the matrix, resChangeHistory(:,m−lineSearchSize−1 : m), that is the matrix con-

taining only the ‘lineSearchSize’ most recent residualChange’s, is not ill-conditioned, which

can happen as lineSearchSize grows with the number of iterations. This check is done us-

ing the MATLAB built-in function condest, and should the conditioning be poor, that is,

condest(resChangeHistory(:,m−lineSearchSize−1 : m)) > 1010, then lineSearchSize

can be reduced until that condition can be satisfied. This is another reason why choosing the

parameter maxLineSearchSize to be arbitrarily large is unlikely to cause problems. At this

point the line search can be performed which will return the vector stepLength, which is a set

of weights which correspond to each entry in the solChangeHistory(:,m−lineSearchSize−1 :

m) matrix. Here the least squares problem is solved using a QR decomposition approach de-

scribed in [157], which is efficient as the factors of the decomposition can be updated at each

iteration to take into account the new residual vector computed at each iteration. It is noted

here that in Algorithm 1, the symbol, ∗, denotes matrix-vector multiplication. The computed

solution can then be updated to take into account the residual between previous consecutive

iterations weighted appropriately to minimise those residuals. The loop then continues until a

stopping criterion is satisfied.

There are two stopping criteria used in Algorithm 1. Firstly, a convergence criterion is used,

defined by the Euclidean norm of the residual between two iterations satisfying a given tolerance,

residualNew<resTol, which if satisfied triggers the return of the the solution at the current

iteration as the converged solution to the problem. Secondly a stopping criterion is provided to

prevent excessive computation in the event that the solver stagnates, in such a case computa-

tion can be ceased once a user defined maximum number of iterations having been computed,

m >maxIt, which triggers the return of most recent solution as the converged solution. The

values resTol, and maxIt will in this thesis be chosen differently for the reinitialisation and ex-

trapolation problems, and thus will be chosen as explained in Sections 4.4 and 5.2.1 respectively,

unless otherwise stated explicitly for a given example problem.

Whilst Anderson acceleration seems to be effective in reducing the number of iterations for

problems with smooth solutions, by attempting to increase the rate of convergence of the Picard

iteration, the Anderson acceleration algorithm can introduce overshoots and therefore instability

into the underlying method. This is particularly problematic when the level set function contains

a singularity. As such if the error is deemed to have grown to an unacceptable level, defined as

ESD >maxErr, the loop will break and return the initial input level set function φ̃0 as well as

a flag, recomputeFlag = 1, indicating that the reinitialisation should be recomputed using a

standard Picard iteration, a method which has demonstrated nothing but stability throughout

this work.
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5.4 A narrow banded discontinuous Galerkin level set method

This section will present how these components of the level set methodology detailed in Sections

4.4, 5.1.2 and 5.2 work together to form a high-order accurate methodology for solving level set

problems, as well as a number of numerical examples to demonstrate the efficacy of the proposed

methodology.

5.4.1 Algorithm

A problem to be solved using the level set methodology proposed, on a Cartesian mesh of

elements of size h, with uniform polynomial order, p, will take the form presented in Algorithm

2. The first step of the algorithm is to partition the domain, Ω, into a mesh, T. The initial level

set function, φ0(x), can then be L2 projected onto T, to get a computational initial condition,

φ0
h. After this, the narrow band can then be generated using the procedure described in Section

5.2. If at this stage it is known that the initial level set function, φ0(x), was not a signed distance

function, then the computed level set function, φ0
h(x), can be reinitialised.

Input: h, p, Ω, φ0, advectionType, T
Output: φh(x, te)

Initialise problem parameters: φ0
h, T;

Compute initial Narrow Band, TNB;
if φ0

h is not a signed distance function then
Reinitialise Level set function

end

while tme < T do
Compute Advection Velocity Vector, b;
Compute time step, ∆te;
Evolve Level Set Interface by solving (5.6), φmh (x);
Reinitialise level set function, φmh (x);
Update narrow band, TNB;
if elements move from outside to inside narrow band then

Initialise the level set function on those elements, φmh (x);
end
tm+1
e = tme + ∆te;

end

Algorithm 2: Narrow band level set evolution algorithm for problems on Cartesian meshes
of elements of uniform polynomial order.

The first step in the evolution loop is to compute the advection velocity for the current

iteration. If this was to be a problem driven by physics, then the physical problem would be

computed at this stage. Similarly, this could be a prescribed value, or be a function of the level

set function itself. This information would need to be decided by the user prior to computation

and passed into the algorithm, through the advectionType parameter. The time step for the

current iteration, ∆te, can then be computed using (5.11). The evolution equation (5.6) can

then be solved to determine the position of the level set interface at time, tme . The next step is to

reinitialise the level set function, by solving the Elliptic Reinitialisation problem (4.46). Whilst it

should be the case that the level set interface is fixed beyond the evolution step, it is conceivable
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that there are small erroneous movements of the level set interface during reinitialisation, which

could have an affect on which elements comprise the narrow band. Furthermore, it is beneficial

that the gradient as much as possible satisfies the signed distance constraint prior to computing

the extrapolation of the level set function, as both the initial condition, and also the terms

forming the RHS of the extrapolation equation require ‘correct’ information concerning the

value of the level set function and its gradient on the boundary elements inside the narrow

band. Therefore, whilst it might seem more logical to update the narrow band immediately

after the evolution such that reinitialisation is only computed on those elements, it is beneficial

in terms of both accuracy and efficiency to order the reinitialisation immediately after the

evolution step. After the reinitialisation, the narrow band can then be updated using the same

procedure described in Section 5.2. If elements move from outside to inside the narrow band

as a result of the evolution, then the extrapolation procedure described in Section 5.2.1 can be

used to initialise the level set function on these elements. The loop then continues until tme = T ,

at which point the level set function at each time step is outputted to the user.

5.4.2 Narrow banded discontinuous Galerkin level set method: numerical

examples

In order to demonstrate the efficacy of the proposed method a number of numerical examples

have been computed. In all cases the examples will be computed using a mesh of square elements

of uniform size and uniform polynomial order. The examples will be repeated for a series of

meshes of different h, for each p until a given point in pseudotime, te = T , at which various

error measures will be presented, see Section 4.4.1.1.

The first example is that of a circle growing at a constant rate until a given time, shrinking

with the same constant rate until a second given time, and then growing again until it reaches

its original position. Images demonstrating the velocity fields for this example can be seen in

Figure 5.1. This is a very simple example, by which the constant velocity field should allow the

level set function to evolve as a rigid body in space maintaining its shape. As such any variation

in the shape of the interface between the initial and final iteration can only be as a result of

reinitialisation. Nevertheless, given the simplicity of the example, it is a good starting point for

the demonstration of optimal orders of convergence using the method.

A second example problem consists of a circle undergoing a translation across the domain

from left to right. In this example, the advection velocity is equal to the magnitude of the

x-component of the gradient of the level set function, as can be seen in Figure 5.2. This means

that the advection velocity vector is to be dealt with explicitly in this example, and furthermore

that it is imperative that the level set interface maintain its shape and its satisfaction of the

signed distance property during the evolution such that the advection velocity can be accurately

computed at each step. However, such a velocity field will cause the gradient of the level

set function to change during each evolution step, particularly in the area where the interface

velocity is close to zero, see Figure 5.2, and thus the combined efficacy of the evolution and the

reinitialisation is tested in this example.

A third example, taken from [158], is computed by which a circular interface is evolved subject

to a flow field produced by homogeneous strain. More specifically the advection velocity vector
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(a) Advection field driving growth at a constant
rate.

(b) Advection field driving shrinking at a constant
rate.

Figure 5.1: Advection velocity field for the growing and shrinking circle on a square domain.

Figure 5.2: Advection velocity field for the translating circle problem.
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Figure 5.3: Advection velocity field for the circle under homogeneous strain.

(a) Advection field driving growth at a constant
rate.

(b) Advection field driving shrinking at a constant
rate.

Figure 5.4: Advection velocity field for the growing and shrinking of the two merging circles
problem.

takes the following form

b =

{
(x− y)∇xφ

(2x− y)∇yφ

}
, (5.18)

which can be conceptualised as a circle undergoing a shear, a stretch and a rotation. The

corresponding advection field can be seen in Figure 5.3. This example contains the added

difficulty that the curvature of the level set function changes over time as the circle shears and

becomes more elliptical. Similarly as the interface begins to approach itself as the minor axis

shrinks over time, the singular part of the level set function inside the shape, is likely to move

inside the narrow band further increasing the difficulty of the problem. Another point of note

here is that the velocity field in this case is divergence free and as such the area of the shape

should be constant, which is useful as a measure of error.

The final example begins with two circles of equal size which grow at a constant rate until a

given time, t1. At some point prior to t1, the two circles will meet and then will merge becoming
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one shape. At time t1, the shape will then begin to shrink. The corresponding advection fields

can be seen in Figure 5.4. As the shape shrinks one should expect the diffusion of the method

to smooth out the singularity at the intersection of the original two circles creating a dumbbell

shape that should maintain until te = T . Any splitting of this shape during that time between

t1 and T would therefore be merely a numerical artefact.

5.4.2.1 h-convergence study: growing-shrinking-growing circular interface

A level set function which is the signed distance function describing a circular interface with

radius, r = 1, that is

φ0 =
√
x2 + y2 − r, (5.19)

is L2 projected onto the domain, Ω = (−2, 2)2. The level set function is evolved, from time

te = (0, 0.6), subject to a prescribed advection velocity vector the magnitude of which is defined

as follows

b =


−1, te < 0.15,

1, 0.15 ≤ te < 0.45,

−1, te ≥ 0.45.

(5.20)

That is, a circular interface which grows at a constant rate from time, te = (0, 0.15], then shrinks

at the same constant rate from time, te = (0.15, 0.45], before growing again at the same constant

rate from time te = (0.45, 0.6]. At te = T = 0.6, the interface should be back to the position of

the initial level set interface projected on the mesh at time, te = 0. The analytical solution for

all time te during the evolution can thus be computed as

φ(x, te) =


√
x2 + y2 − (r + te), te < 0.15,√
x2 + y2 − (r + 0.3− te), 0.15 ≤ te < 0.45,√
x2 + y2 − (r − 0.6 + te), te ≥ 0.45.

(5.21)

This problem will be computed on a series of uniform Cartesian meshes with square elements

of size, h = 0.4, 0.2, 0.1, 0.05, and of uniform polynomial order, p = 1, 2, 3, 4, 5, and the error

at te = 0.6 will be reported. For the purposes of accurately computing errors, at the time step

where te + ∆t > 0.15, 0.45, 0.6, the time step is reduced such that the level set function at these

instances (i.e. te = 0.15, 0.45, 0.6 (to machine precision)) are captured.

Figure 5.5 shows error values for the growing-shrinking-growing (GSG) problem on all of the

meshes considered at time, te = T = 0.6 and convergence rates for each of the polynomial orders,

using the L2, DG and signed distance and interface error measures, defined in Section 4.4.1.1.

As the size of the computational domain will be different for each partition in the convergence

study by virtue of the narrow band, all of the reported errors will be normalised by the area of

the narrow band. The convergence rates for all polynomial orders and all error measures are

computed using the difference in the error between the meshes where h = 0.2 and h = 0.05. As

this example problem is so simple it is a good benchmark to see what the best case scenario

might be when it comes to convergence rates in the various norms. From Figure 5.5 it can

be observed that the error in the L2 norm over the domain, decreases roughly on the order of
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(a) Convergence in the L2 norm.
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(b) Convergence in the DG norm.
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(c) Convergence using the signed distance error
measure.
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(d) Convergence using the interface error measure.

Figure 5.5: Error data normalised by narrow band area, ANB, and associated convergence rates
for the GSG circular interface evolution problem on narrow banded Cartesian meshes at time,
te = 0.6.
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(b) Area ratio against pseudotime.

Figure 5.6: Error and area ratio over time for the GSG circular interface evolution problem at
time, te = 0.6, on a narrow banded Cartesian mesh where h = 0.05 and p = 3. The area ratio
compares the area of the shape enclosed by the interface, A, with the area contained inside the
initial interface, A0.

hp+1, for p = 1, 2, 3. For higher order polynomial bases, the accuracy of the solution approaches

machine precision which ultimately limits the rate of convergence beyond this point. For both

the DG norm and the signed distance error measure the rate of convergence is approximately on

the order of h
3p
2
−1; as both are measures related to the H1 seminorm, it is unsurprising that the

error in both of these decays at a similar rate. Again this is true in the region before machine

precision is reached. The L2 error at the interface converges at a slightly slower rate than the

error in the entire domain, and can be stated as approximately of the order, hp.

Figure 5.6(a) shows the variation in the L2, DG and signed distance and interface error

measures, over time for the GSG problem computed on the mesh where p = 3, and h = 0.05.

The L2 error over the domain, and the L2 error at the interface are both similar in magnitude

and grow with time in a similar manner. The relative position of the interface to the grid has

an effect on the computation of the error at the interface, and this can be seen in the slight

oscillations in this error measure over time. Specifically this is to do with points where the

interface passes close to mesh nodes or aligns with element edges and thus the portion of the

interface inside some elements can be much smaller than the size of the element itself (these

elements are sometimes referred to in the literature as small cut elements). This can also have

an effect on the degree to which the Dirichlet boundary condition is enforced, although this

effect does not seem to be significant in this example problem. One interesting note is that as

the circle grows over time, the curvature of the level set function inside the narrow band shrinks,

(as κ ∝ r−2 for a circular interface, where κ denotes curvature), this is reflected in the signed

distance error measure which improves as the circle grows and worsens as the circle shrinks and

thus the curvature increases. This is due to the fact that the solution to which the level set

reinitialisation method converges, upon which the signed distance error depends, will be better

resolved for a fixed mesh size when the curvature of the interface is smaller. This is also reflected
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(a) Relative position of domain and interface
at te = 0.00.

t=0.15

Computed Solution
Analytical Solution

(b) Relative position of domain and interface
at te = 0.15.

t=0.30

Computed Solution
Analytical Solution

(c) Relative position of domain and interface
at te = 0.30.

t=0.45

Computed Solution
Analytical Solution

(d) Relative position of domain and interface
at te = 0.45.

t=0.60

Computed Solution
Analytical Solution

(e) Relative position of domain and interface
at te = 0.60.

Figure 5.7: Computed and analytical interface position over time for the GSG circular interface
evolution problem, on the narrow banded Cartesian mesh where h = 0.05 and p = 3.
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somewhat in the DG norm, although to a lesser degree.

Finally, in Figure 5.7, the computed and analytical interface for the GSG problem is plotted

on the domain, at multiple instants in time from te = 0 to te = 0.6, for the mesh where p = 3 and

h = 0.05. It can be seen that there is no noticeable deviation between the computed solution

and analytical solution, as would be expected for such small reported errors.

5.4.2.2 h-convergence study: translating circular interface

A level set function which is the signed distance function describing a circular interface with

radius, r = 0.15, that is

φ0 =
√

(x+ 0.25)2 + y2 − r, (5.22)

is L2 projected onto the domain, Ω = (−0.5, 0.5)× (−0.2, 0.2). The level set function is evolved,

from time te = (0, 0.5), subject to an advection velocity vector the magnitude of which is defined

as follows

b = −∇xφh
|∇φh|

. (5.23)

That is, a circular interface centred at x = (−0.25, 0) which translates in the positive x-direction

to x = (0.25, 0), at te = 0.5, whilst maintaining its shape. The analytical solution for all time

te during the evolution can thus be computed as

φ(x, te) =
√

(x− 0.25 + te)2 + y2 − r. (5.24)

This example problem will be computed on a series of uniform Cartesian meshes with square

elements of size, h = 0.0667, 0.04, 0.02, 0.01, and of uniform polynomial order, p = 1, 2, 3, 4, 5,

and the error at te = 0.5 will be reported. For the purposes of accurately computing errors, at

the time step where te + ∆t > 0.5, the time step is reduced such that the level set function at

this instance (i.e. te = 0.5 (to machine precision)) is captured.

Figure 5.8 shows normalised errors for the translating circle problem on all of the meshes

at time, te = T = 0.5 and convergence rates for each of the polynomial orders, using the L2,

DG and signed distance and interface error measures, defined in Section 4.4.1.1. One immediate

note of difference between the error data for this example in comparison to the previous example

presented in Section 5.4.2.1, is that for all polynomial orders, the rate of convergence between

the two coarsest meshes (that is the meshes where h = 0.0667 and h = 0.04), for all of the

error measures tested is constant, and equal to the rate of convergence in the linear case. The

reason for this is that for the criterion defining the narrow band, (5.12), on a mesh where

h = 0.0667 describing a circular interface of radius, r = 0.15 isn’t sufficiently narrow to remove

from the domain the singularity present in the signed distance function describing the interface.

As such, the solution does not satisfy the smoothness condition discussed in Section 4.4.1.2

required to demonstrate high-order convergence between these two meshes. Beyond this point

it can once again be seen that the order of convergence increases with p for all of the error

measures until machine precision is reached which limits further increases. For this example

problem, the experimental orders of convergence are generally slightly better than those quoted

from the previous example. Again for all polynomial orders and for all error measures, the
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(b) Convergence in the DG norm.
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(c) Convergence using the signed distance error
measure.
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(d) Convergence using the interface error measure.

Figure 5.8: Error data normalised by narrow band area, ANB, and associated convergence
rates for the translating circular interface problem on narrow banded Cartesian meshes at time,
te = 0.5.
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Figure 5.9: Error and area ratio over time for the translating circular interface problem on the
narrow banded Cartesian mesh where h = 0.01 and p = 3. The area ratio compares the area of
the shape enclosed by the interface, A, with the area contained inside the initial interface, A0.

quoted experimental order of convergence is computed between the meshes where h = 0.04 and

h = 0.01. The error in the L2 norm decreases approximately proportional to h
3p
2

+1. The error in

the DG and signed distance norms decreases approximately proportional to h
3p
2 . The interface

error decreases approximately proportional to h
3p+1

2 .

Figure 5.9(a) shows the error over time for the translating circle problem on the mesh where

p = 3 and h = 0.01. Many of the patterns noted for the previous example are echoed here. The

error in the L2 norm over the domain, has the smallest magnitude throughout the simulation,

increasing over time at the same rate as the L2 error at the interface. The circle in this prob-

lem has constant size, and since the signed distance error is that which is enforced using the

reinitialisation and extrapolation methods, the error in this measure remains roughly constant

throughout the simulation. The relative position between the interface and the background

grid is again responsible for the oscillations here. As can be seen in Figure 5.9(b), there is a

pattern in the how the area varies over time, this is because there is a repeating pattern in the

relative position between the interface and the grid due to the constant time step present in this

example. Again, the variation in the area (and thus the radius and curvature of the circular

interface) is reflected in the signed distance error. The magnitude of the error computed using

the DG norm is again the largest. The signed distance error tends to bound the error in the L2

norm from above and the error in the DG norm from below.

In Figure 5.10, the computed and analytical interface for the translating circle problem is

plotted on the domain, at multiple instants in time from te = 0 to te = 0.5, for the mesh where

p = 3 and h = 0.01. Again for such small errors the computed and analytical solutions align

almost exactly.
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(a) Relative position of domain and interface at te = 0.00.
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(b) Relative position of domain and interface at te = 0.25.
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(c) Relative position of domain and interface at te = 0.50.

Figure 5.10: Computed and analytical interface position over time for the translating circle
problem, on the narrow banded Cartesian mesh where h = 0.01 and p = 3.
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5.4.2.3 h-convergence study: shearing circular interface

A level set function which is the signed distance function describing a circular interface with

radius, r = 0.5, that is

φ0 =
√
x2 + y2 − r, (5.25)

is L2 projected onto the domain, Ω = (−1, 1)2. The level set function is evolved, from time

te = (0, 0.5), subject to an advection velocity vector, (5.18), the magnitude of which is defined

as follows

b = −
(

(x− y)
∇xφh
|∇φh|

+ (2x− y)
∇xφh
|∇φh|

)
, (5.26)

such that the circle undergoes a shear, a stretch and a rotation. An analytical solution for the

position of the level set interface evolved in such a manner is derived in [158]. A set of points

on the interface can be computed as follows, for ϑ = (0, 2π),

x =

[
A B

−2B C

]{
r cos(ϑ)

r sin(ϑ)

}
. (5.27)

where A = cos(−te) − sin(−te), B = sin(−te) and C = cos(−te) + sin(−te). The distance

function to the interface (5.27) can then be computed by

φ(x, te) = min(
√

(x−Ar cos(ϑx)−Br sin(ϑx))2 + (y + 2Br cos(ϑx)− Cr sin(ϑx))2), (5.28)

where ϑx are the roots to the equation,

(4BCr2 − 2ABr2) sin2(ϑx) + (2ABr2 − 4BCr2) cos2(ϑx)

+ (2C2r2 − 2A2r2 − 6B2r2) sin(ϑx) cos(ϑx) + (2Arx− 4Bry) sin(ϑx)

+ (−2Brx− 2Cry) cos(ϑx) = 0, (5.29)

which for the purposes of this thesis are computed numerically using a bisection method, to a

tolerance of 10−15. Similarly the known value of the gradient is computed numerically using

a linear finite difference method where the solution at a point is computed from (5.28) with

(spatial) step size, ∆x = 10−12.

This problem will be computed on a series of uniform Cartesian meshes with square elements

of size, h = 0.2, 0.1, 0.05, 0.025, and of uniform polynomial order, p = 1, 2, 3, 4, 5, and the error

at te = 0.3 will be reported. For the purposes of accurately computing errors, at the time step

where te + ∆t > 0.5, the time step is reduced such that the level set function at this instance

(i.e. te = 0.5 (to machine precision)) is captured.

Figure 5.11 shows normalised errors for the shearing circle problem on all of the meshes at

time, te = T = 0.5 and convergence rates for each of the polynomial orders, using the L2, DG

and signed distance and interface error measures, defined in Section 4.4.1.1. For this example

problem, at the moment the error is computed, te = 0.5, for the all of the meshes tested, a

singularity is contained within the narrow band. As an example of this, Figure 5.12 shows

the distribution of the error over the mesh where p = 3, and h = 0.025, where it can be seen
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(d) Convergence using the interface error measure.

Figure 5.11: Error data normalised by narrow band area, ANB, and associated convergence rates
for shearing circular interface problem on narrow banded Cartesian meshes at time, te = 0.5.
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Figure 5.12: Distribution of the signed distance error over the narrow banded Cartesian mesh
where p = 3 and h = 0.025, at time te = 0.5, for the shearing circle problem. The thick black
line denotes implied position of the interface.

that almost all of the error is contained within two elements where the curvature of the level

set function is greatest. For the coarser meshes more of the singular region will be included

further affecting the accuracy of the solution. The experimental orders of convergence therefore

should be expected to be equivalent to the linear case for all p in each of the error norms.

This is exactly what is found in the experiment, with the error in the L2 norm decreasing at

a rate approximately proportional to h2 for all p. This aligns with the convergence rate found

in the first example problem. The error in the L2 norm at the interface also aligns with that

presented in the first example, decreasing at a rate approximately proportional to h1 for all

p. The error in the DG norm, does seem to show a significant improvement in the rate of

convergence between meshes of linear and quadratic elements, however the rate is then limited

for partitions of elements of higher polynomial order, to approximately h3. Likewise, the signed

distance error appears to show improvement in the rates of convergence between meshes of linear

and quadratic elements, and meshes of quadratic and cubic elements, before being limited to

an order of approximation of around h4. It is difficult to explain the behaviour of both of the

gradient based error measures. Also it should be noted that the quoted experimental orders of

convergence have been computed between the meshes where h = 0.1 and h = 0.025.

The shearing circle problem ends up being much more difficult to solve than either of the

preceding example problems, due to the larger singular region first and foremost, but also

because the curvature of the level set function is no longer constant as it would be in the case of

a circular interface. In the regions of increasing curvature the problem becomes more difficult

to solve. In the previous examples this was evidenced by cases where the circular interface

shrank. In this example however, as can be seen in Figure 5.13, almost immediately as the

circle begins to shear, the ability of the mesh to resolve the shape diminishes by orders of

magnitude in all error measures, and this occurs prior to the inclusion of any singularity the

domain. For similar reasons, the solution to which the reinitialisation and extrapolation methods
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(b) Area ratio against pseudotime.

Figure 5.13: Error and area ratio over time for the shearing circular interface problem, on the
narrow banded Cartesian mesh where h = 0.025 and p = 3. The area ratio compares the area of
the shape enclosed by the interface, A, with the area contained inside the initial interface, A0.

can converge worsens significantly over time. As the velocity field driving the advection for the

shearing circle problem is divergence free, once again the area should remain constant throughout

the evolution. Similar oscillations, as a result of the relative position of the interface to the grid,

as in the previous examples can be seen, which is again reflected in the signed distance error.

However, there is also a slight growth in the area contained within the shape, for this example of

around 0.15%, which also coincides with the diminishing accuracy of the reinitialisation method

as the curvature increases. Despite that which is stated above, there is still no visible difference

between the computed and analytical solutions over the duration of the simulation, as can be

evidenced by Figure 5.14.

5.4.2.4 h-convergence study: two merging circular interfaces

A level set function which is the signed distance function describing two circular interfaces with

radii, r = 0.5, that is

φ0 = min
(√

(x− 0.55)2 + y2 − r,
√

(x+ 0.55)2 + y2 − r
)

(5.30)

is L2 projected onto the domain, Ω = (−2, 2)2. The level set function is evolved, from time

te = (0, 0.3), subject to a prescribed advection velocity vector the magnitude of which is defined

as follows

b =

−1, te < 0.15,

1, te ≥ 0.15.
(5.31)

That is, two circular interfaces centred at x = (−0.55, 0) and x = (−0.55, 0) which both grow

at an equal constant rate. At te = 0.05 the two circles will meet at the origin, and then merge

whilst continuing to grow at a constant rate. At te = 0.15, the shape of the merged circles

begins to shrink, until te = 0.3. An analytical solution to this problem does not exist and as
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Computed Solution
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(a) Relative position of domain and interface
at te = 0.00.

t=0.0993

Computed Solution
Analytical Solution

(b) Relative position of domain and interface
at te = 0.10.

t=0.1999

Computed Solution
Analytical Solution

(c) Relative position of domain and interface
at te = 0.20.

t=0.2984

Computed Solution
Analytical Solution

(d) Relative position of domain and interface
at te = 0.30.

t=0.4019

Computed Solution
Analytical Solution

(e) Relative position of domain and interface
at te = 0.40.

t=0.5000

Computed Solution
Analytical Solution

(f) Relative position of domain and interface
at te = 0.50.

Figure 5.14: Computed and analytical interface position over time for the shearing circle prob-
lem, on the narrow banded Cartesian mesh where h = 0.025 and p = 3.
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Figure 5.15: Error data normalised by narrow band area, ANB, and associated convergence
rates for the signed distance error measure, for the merging circles problem on narrow banded
Cartesian meshes at time, te = 0.5.

such errors can only be reported in the signed distance error measure.

This problem will be computed on a series of uniform Cartesian meshes with square elements

of size, h = 0.3, 0.15, 0.075, 0.0375, and of uniform polynomial order, p = 1, 2, 3, 4, 5, and the

error at te = 0.3 will be reported. For the purposes of accurately computing errors, at the time

step where te+∆t > 0.3, the time step is reduced such that the level set function at this instance

(i.e. te = 0.3 (to machine precision)) is captured.

Figure 5.15 shows normalised errors for the merging circles problem on all of the meshes

at time, te = T = 0.3 and convergence rates for each of the polynomial orders, using the

signed distance error measure presented in Section 4.4.1.1. The quoted experimental orders of

convergence have been computed between the meshes where h = 0.15 and h = 0.0375. Again it is

known that at some point during the simulation a singularity will develop inside the narrow band

as the two circles approach each other, which will be maintained throughout the remainder of the

simulation. Therefore again it should be expected that the experimental orders of convergence

presented will be limited by the lack of smoothness of the solution. As was seen in the previous

example, in spite of the presence of a singularity there is a significant improvement in the rate of

convergence between meshes of linear and quadratic elements, as well as a slight improvement

in the rate of convergence between meshes of quadratic and cubic elements, at which point a

limit is reached.

For the merging circles problem, the intersection and thus the singular region aligns exactly

with the element edges for the first half of the simulation, this can be seen in Figure 5.17(a).

As such the curvature of the level set function inside all of the elements in the narrow band

decreases for the first half of the simulation, and the error over time in Figure 5.16 can be seen

to appropriately decrease during this time. As soon as the merged circle begins to shrink the

extrapolation inside the narrow band, introduces the singularity into the mesh as the average

gradient forming the initial guess to the extrapolation takes gradients from either side of the

singularity. This explains the spike in error seen between te = 0.15 and te = 0.1554 and is
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Figure 5.16: Signed distance error against pseudotime for the merging circles problem on the
narrow banded Cartesian mesh where p = 3 and h = 0.0375.

demonstrated in Figure 5.17(b) where almost all of the error is focussed on those elements near

to the singular region upon which the level set function is extrapolated. Figure 5.18 shows the

position of the computed interface over time. Beyond te = 0.15, a singularity is present inside

these elements, and the sharp interface begins to dissipate over time which is reflected in the

signed distance error and as can be seen in Figure 5.18.

5.5 Summary

With the inclusion of the Elliptic Reinitialisation method presented in Chapter 4, Chapter 5

proposes a narrow banded RKDG level set evolution methodology based on a simplified level

set evolution equation discretised using a novel flux. The presented methodology also includes a

novel extrapolation technique to extend the solution outside of the narrow band when necessary,

and an Anderson acceleration algorithm which can be used to increase the convergence rate of

the fixed point iterative method which is used when solving the reinitialisation and extrapolation

problems. Through numerical experiments the proposed methodology is shown to be high-order

accurate for sufficiently smooth problems. The example problems also demonstrate however,

that the shape described by the level set interface does not have to become very complex before

singular regions can move inside the narrow band and the desired high-order accuracy is surren-

dered. As the width of the narrow band is a function of the size of the elements comprising the

narrow band, a potential solution to this is to adaptively refine the mesh near to these singular

regions in order to narrow the narrow band where necessary to remove these singularities from

the computational domain. If these singular regions are always too close to the interface, or in

the worst case, where the interface itself is singular, likewise, adaptive mesh refinement will be

necessary to minimise the error associated with capturing these regions. Furthermore, adaptive

mesh refinement is likely to have other benefits including efficiency with regards to the number

of degrees of freedom required to satisfy a given level of accuracy. For these reasons the next

chapter proceeds by presenting research concerning adaptive mesh refinement for the proposed

DG discretised level set methodology.
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(a) Mesh configuration at t=0.1500

(b) Mesh configuration at t=0.1554

Figure 5.17: Distribution of the signed distance error over the narrow band Cartesian mesh
where h = 0.0375 and p = 3, for two consecutive time steps of the merging circles problem,
across which the solution becomes singular. The thick black line denotes the implied position
of the interface.
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Figure 5.18: Computed interface position over time for the merging circle problem, on the narrow
banded Cartesian mesh where h = 0.0375 and p = 3.
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Chapter 6

Level Set Method: Adaptive Mesh

Refinement

With the development of a high-order accurate level set method based on a DG discretisation,

the next step is to exploit one of the main advantages afforded by the use of discontinuous finite

element spaces; that is the ease with which the method can incorporate hp-adaptivity. This is

advantageous as it allows one to concentrate computational effort in areas where more compu-

tational effort is required and vice versa, and therefore to make efficient use of the number of

degrees of freedom in the system. In this respect there are two key components to be developed.

First of all, appropriate criteria for driving the mesh refinement, that is criteria which can be

used to decide where refinement and derefinement are necessary and thus promote an efficient

distribution of the degrees of freedom within the domain. And secondly an algorithm which can

distribute these degrees of freedom based on the chosen criteria. Given these aims this chap-

ter proceeds in the following manner: in Section 6.1, the literature concerning adaptive mesh

refinement in the context of level set methods will be reviewed, in Section 6.2 a criterion for

mesh refinement will be proposed, in Section 6.3 an algorithm will be proposed and explained

which adaptively refines the mesh based on the proposed refinement criterion, in Section 6.4 the

proposed refinement criterion/algorithm will be evaluated by computing a number of level set

reinitialisation examples problems on hp-adaptive meshes, in Section 6.5 the full hp-adaptive

level set methodology will be presented, and finally Section 6.6 concludes the chapter with a

number of numerical examples of the full level set evolution on hp-adaptive meshes.

6.1 Literature review: adaptive mesh refinement for level set

methods

When it comes to interface problems, it is generally considered that both the area of interest, and

the area which would require the highest resolution, is the area surrounding and including the

interface itself. This idea has motivated the almost ubiquitous criterion driving mesh adaptivity

in the context of level set methods which was stated succinctly in [26] as follows, “split any cell

whose edge length exceeds its minimum distance to [the interface]”. In other words, starting

from a fixed grid h-refine any element defined by some measure as being near to the level set
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interface. A list of references which approach mesh adaptivity in this fashion includes, but is

not limited to, [26–32, 118, 126]. A similar but slightly less popular approach is to p-refine

elements which are near to the interface; this type of approach can be found in works such as

[24, 25]. In general, a refinement criterion such as this has a number of benefits. First of all,

only geometric information is required which is easy to compute with level set methods, and

therefore the expense associated with error estimation is removed from each refinement step.

Similarly, such an approach is likely to focus computation in the area where typically the level

set function itself and any underlying physical quantity would require a high resolution. Such

an approach is unlikely, however, to be optimal in terms of the number and distribution of the

degrees of freedom. For example, one could consider an interface (or a portion of an interface)

which is a straight line, aligned with the grid; in such a case it is conceivable that few, low order

elements could accurately capture the information relating to the interface in such a region, and

high levels of either h or p adaptivity in this region would be wasteful.

Some researchers have attempted to use other criteria for deciding where a mesh should be

refined when solving interface problems using the level set method. For example, a refinement

criterion is presented by Wei at al. in [159], where an estimate of the curvature of the level set

function, on elements intersected by the interface, is used to choose where and how to h-refine

the mesh. In their article Wei et al. use this approach to generate a body-fitted mesh and

therefore would be of limited utility in the work to be presented here. This idea does have some

merit, however. First of all, the curvature of the level set function is again a geometric quantity

and therefore simple and cheap to compute, and secondly it is the areas of the problem where

the curvature is highest which require the highest resolution to be accurately captured and vice

versa. One drawback of such an approach however is that it doesn’t provide an estimate of

the quality of the mesh, which a standard error estimator would, and as such the mesh will

simply have upper and lower limits on the size and/or polynomial order of the elements used

and refinement will occur until these limits are satisfied, which could be suboptimal. A number

of other methodologies have been presented which simply ignore the level set method when it

comes to mesh refinement, and use error estimators for the underlying physical problem to drive

mesh refinement, examples of which include [160, 161]. This is an approach which is useful as

by using the same mesh for both the physical and the level set problems, the advection velocity

will de facto be well resolved where it needs to be using such an approach. However, this does

of course mean limited generality, and is of little use for problems not driven by a underlying

physical problem. Another methodology is presented in [162], where an error estimate, based

on a multi-resolution analysis [163], is used to drive h-refinement.

Almost none of the literature takes advantage of the combination of h and p refinement. It

is known that for regions of a problem where the solution is sufficiently smooth, that it is more

efficient to increase the polynomial order, p, and in regions where the solution is singular it is

more efficient to split a cell, [164]. It is likely therefore that a more efficient refinement strategy

would utilise both h and p adaptivity. One example of a DG level set method which does take

advantage of an hp-adaptive mesh, is presented for one of the example problems in [33], however,

almost all of the details concerning the adaptivity have been obfuscated.
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6.2 Refinement criterion

To construct an appropriate criterion for driving mesh refinement, whether this be an error

estimate or some other ad hoc approach, the first port of call is to examine the equation over

which one is trying to control the error by adaptively refining the mesh. In this case, that is the

simplified evolution equation, (5.1), which consists of just two quantities, the time derivative

of the level set function, ∂φ
∂te

, and the magnitude of the advection velocity vector, b. Of these

two, only the advection velocity contains information pertaining to the spatial discretisation of

the mesh. In looking to construct an error estimate by which one can determine the quality

of the mesh, in terms of how accurately a given mesh could be expected to compute a given

iteration of the evolution equation, it would therefore be appropriate to determine the error in

the computation of the advection velocity vector. As mentioned earlier it is the intention of

the author to apply this level set methodology to the topological optimisation of linear elastic

structures, and as such it may be appropriate eventually to use an error estimate developed

for linear elasticity such as [165], to drive the mesh refinement, as for this given application

such a strategy would likely mean that the advection velocity field would be appropriately

resolved. In the general case however, it is not necessarily the case that a refinement criterion

based on the underlying physical problem would generate a mesh which is optimal for solving

the level set equations and of course any such refinement strategy would be problem specific.

Thus in this section the focus will be the development of a refinement criterion for the level set

methodology which is agnostic of application, and which could then if need be, be combined

with an appropriate refinement strategy for the physical problem.

The spatial term in this case being equal to the magnitude of the advection velocity vector

results from the fact that level set reinitialisation ensures that the Euclidean norm of the gradient

is always equal to unity. It seems to be appropriate in constructing an error estimator then,

that one should construct the mesh such that as far as possible the norm of the gradient does

in fact approximate unity. For this purpose an error measure has already been defined earlier;

the signed distance error measure,

E2
SD(φh,T) =

∑
τ∈T

∫
τ
(|∇φh| − 1)2 dx, (4.56)

which is simply the L2 norm of the difference between the Euclidean norm of the gradient

and unity, over the domain. If one were to simply adopt this as the refinement criterion, one

immediate issue would be that, if the level set function is not currently a good approximation of

a signed distance function, as defined by the signed distance error, that mesh refinement alone

will not improve the situation. However, by computing a solution reinitialisation problem until

convergence, and then refining the mesh where the reinitialisation has performed poorly, the

reinitialisation routine can simply be called again, and as was demonstrated in Section 4.4.1,

will converge to a solution with a smaller signed distance error. Therefore reinitialisation and

mesh refinement can be combined in a loop to ensure that an appropriate mesh exists to allow

a signed distance function to be computed to the current position of the level set interface, with
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the quality of this mesh/signed distance function defined by the signed distance error measure.

In this way then, the question of mesh refinement for the evolution problem, has been recast

as the question of how to appropriately refine a mesh for the level set reinitialisation problem.

Level set reinitialisation is a process which ensures that the unit outward normal of the level

set interface, n̂Γ, is equal to the unit outward normal of the level set function, n̂φ, all along

the interface normal. In other words reinitialisation ensures that the level set function in the

direction of transport is well defined and of uniform magnitude along the level set interface. As

the level set interface can only evolve along its own unit outward normal at that point, it is

therefore likely appropriate to use a measure of signed distance-ness to determine the quality

of the mesh for the level set evolution problem. The efficacy of this refinement criterion, when

combined with the refinement strategy to be proposed in Section 6.3 is demonstrated through

experiment in Section 6.4.

6.3 Refinement strategy

A strategy for mesh refinement is proposed algorithmically in Algorithm 3. The aim of the

refinement strategy presented here, is take a level set function, φ, on a subset, S, of the mesh,

T, and perform a series of mesh refinement steps combined with a method for updating the

value of the level set function such that after each step the level set function is a more strict

approximation of a signed distance function. This refine then update strategy will continue until

a combination of φ and TNB are computed which either satisfies a tolerance, errorTol, on some

error measure, pointed to by the variable errorHandle; or until upper limits on the allowed

amount of refinement are met, upperhRefLim and upperpRefLim. The errorHandle variable

will in all cases point towards either the L2 error in the solution as defined in Equation (4.53),

or the signed distance error estimate defined in Equation (4.56). The algorithm operates on a

set of elements, S, which may be any subset of T, for example in the case that the algorithm

should be executed over the narrow band then, i.e. S = TNB.

There are four possible cases which Algorithm 3 can be presented with when updating

the level set function, defined by the user inputted problemHandle variable. These cases

are; problemHandle = ‘initialise’, whereby after each refinement step an analytical func-

tion describing a signed distance function is projected onto the new mesh; problemHandle =

‘initialiseNonSDF’, that is the initialisation of a level set function which is not a signed dis-

tance function, whereby a function will be projected onto the new mesh at each refinement step,

which will be reinitialised prior to the next mesh refinement to ensure that the returned function

is an approximate signed distance function; problemHandle = ‘reinitialise’, whereby the

solution to the previous reinitialisation will be projected onto the new mesh at each refinement

step, which can then be reinitialised on the new mesh to a greater degree of accuracy; and

problemHandle = ‘extrapolate’, whereby the solution to the previous extrapolation problem

(5.16) is projected on a subset of elements on the new mesh, before the extrapolation is recom-

puted to a greater degree of accuracy. More detail about each of the various steps of Algorithm

3 will be discussed in the proceeding subsections.
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function [φ,TNB] = refineUpdate (φ0, S, TNB, errorTol, refineThresholds,
upperhRefLim, upperpRefLim, errorHandle, analyticityThreshold,
problemHandle, maxIt)

[errorGlo,errorLoc] = computeError(φ0, errorHandle, S);
area = computeDomainArea(S);
while errorGlo/area>errorTol do

// GET REFINEMENT FLAGS
flags = computeRefineFlags(errorLoc, refineThresholds, S);
[pFlags,hFlags] = computeAnalyticityTest(flags, S,
analyticityThreshold);

[pFlags,hFlags] = enforceRefinementLimits(pFlags, hFlags,
upperhRefLim, upperpRefLim, S);

[pFlags,hFlags] = refineSmoothing(pFlags, hFlags, S);
if all(pFlags==0) AND all(hFlags==0) then

break;
end

// REFINE MESH AND PROJECT
S = pRefine(pFlags, S);
φ = L2Project(φ, pFlags, S, problemHandle);
S = hRefine(hFlags, S);
φ = L2Project(φ, hFlags, S, problemHandle);

// UPDATE NARROW BAND
TNB1= updateNB(φ,TNB);
if TNB1\TNB 6= ∅ then

TT = TNB1\TNB;
extrapolate(TT);
// Refine only on (TT).
[φ,TNB]=refineUpdate(φ, TT , TNB1, errorTol, refineThresholds,
upperhRefLim, upperpRefLim, errorHandle, analyticityThreshold,
‘extrapolate’, maxIt);

else
TNB = TNB1;

end

S = updateCurrentSet(S) ;
if S = ∅ then

break;
end

// UPDATE LEVEL SET FUNCTION ON SET, S
switch problemHandle do

case ‘initialise’
do nothing;

case ‘reinitialise’ OR ‘initialiseNonSDF’
φ = reinitialise(φ, S, maxIt);

case ‘extrapolate’
φ = extrapolate(φ, S, maxIt);

end
[errorGlo,errorLoc] = computeError(errorHandle, S);
area = computeDomainArea(S);

end
Algorithm 3: Mesh refinement algorithm
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6.3.1 Initial flagging strategy

After computing the error, where the error measure is defined by the user inputted errorHandle,

should the global error (the error over the chosen subset of the domain, S), errorGlo, divided

by the area of S, area, be greater than the user defined error tolerance, errorTol, then the

algorithm will attempt to refine the subset of the mesh, S, based on the error computed locally

on each element, errorLoc. The computeRefineFlags function does this by first determining

the maximum elementwise error, and then any element with a local error greater than some

user defined percentage of this error is flagged for refinement, flags[τ]= +1. Similarly, any

element with an error less than some percentage of this maximum error is flagged for derefine-

ment, flags[τ]= −1. Any element inside the narrow band with an error between these two

values is given a do not refine flag, i.e. these elements are actively not flagged for refinement or

derefinement, flags[τ]= 0. These percentages of the maximum error are input to the algorithm

using the refineThresholds variable, in all cases here the refine if greater than value is chosen

to be 0.75 of this maximum error, and the derefine if less than value is chosen to be 0.08 of the

maximum error, that is refineThresholds= [0.08, 0.75].

As no computation occurs outside of the narrow band, in order to ensure the minimum

amount of resources are used, the following addendum to the flagging strategy is employed:

the set of elements which are outside of the narrow band but share at least one node with

any element inside the narrow band, τ ∈ ToNB, are always given a do not refine flag, and all

other elements outside of the narrow band but currently active in the domain are flagged for

derefinement. The reason for this band of no refinement for the layer of elements just outside

the narrow band, is to ensure that no infinite refine/derefine loops occur by which an element

just outside the narrow band can get stuck between being refined out of the narrow band and

then derefined back inside the narrow band as a result of the rules outlined so far with regards

to flagging.

6.3.2 hp-steering criterion

Once this initial set of flags has been determined the next step of the algorithm is to decide

whether an element flagged for either refinement or derefinement should be refined in h or p.

As mentioned previously, it is known that if the solution on an element is smooth it is more

efficient, in terms of number of degrees of freedom, to refine in p than in h, and vice versa [164].

For this reason, there have been a number of attempts in the literature to develop algorithms

by which one can estimate the local smoothness of the solution over a domain, so that one

can identify the regions of the domain which are smooth enough for it to be most efficient to

refine in p and likewise the regions where the solution is non-smooth and it is most efficient to

refine in h. It should be noted of course, that not all hp-adaptive strategies presented in the

literature use a smoothness estimate to determine whether an h or p refinement strategy should

be employed. For example, the three fold strategy presented in [166], simply uses the magnitude

of the error estimator driving the refinement as an hp-steering criterion i.e. the elements with

the largest errors should be refined in h, the elements with an intermediate level of error in p

and no refinement should occur on elements with small levels of error. However, as the aim here
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is to maximise efficiency, the focus will be on methods based on smoothness estimates.

The simplest strategy in this regard is to use a priori information concerning the location of

singularities, which has found use for example in [167]. This unfortunately is not appropriate

for the purposes intended here as computing optimal topologies necessarily implies a lack of

knowledge a priori about the converged solution. A second strategy proposed by Gui and

Babuška [168] evaluates the smoothness of a solution on an element by computing the ratio of

two local error estimates for numerical solutions of order pτ and pτ −1. By comparing this ratio

with what is referred to as the type-parameter, one can then determine whether the refinement

should be of p-type indicating sufficient smoothness or vice versa. Houston et al. present two

methods of smoothness estimation in their paper, [164]. The first of these is a technique which

involves computing the decay rate of the coefficients of a Legendre expansion of the solution.

It is known that the value of these Legendre coefficients will decay to zero exponentially if the

solution is analytic (i.e. smooth), thus a sufficiently fast decay rate indicates a preference for

refinement in p over h, and vice versa. The second method presented in [164] is a technique

by which one directly approximates the local Sobolev regularity of the solution using the root

test on those same Legendre expansion coefficients. More recently Wihler [169], developed a

smoothness indicator based on continuous Sobolev embeddings. In [169], it is shown that the

continuity coefficients in the relevant Sobolev inequalities will be seen to tend towards a positive

constant as the mesh is refined if the solution is smooth on a given element, and tend towards

zero otherwise, which can be used to indicate that one should refine in p or h respectively. A

comparison of a number of hp-adaptive strategies including the majority of those described above

is performed in [170]. What is found is that whilst different strategies perform best (evaluated

in terms of efficiency) for different kinds of problems, the method of Houston involving the

computation of the decay rate of the coefficients of a Legendre expansion appears to be the best

choice as a general strategy across the range of tested problems.

In this work then, the analyticity test presented in [164] which involves on the estimation of

the decay rate of the Legendre expansion coefficients will be the chosen method for estimating

the smoothness of a function, and will thus form the first step in the decision of whether an

element should be refined in p or h. This will comprise the computeAnalyticityTest function

in Algorithm 3, and can be computed as explained below. Firstly, the Legendre expansion of a

function, φh(x), can be written

φh(x) =

∞∑
i=0

ai`i, (6.1)

where ai are the Legendre coefficients and `i the Legendre polynomials. As this is a compu-

tational technique, however, an approximation of (6.1) must be made which can be done by

computing a finite Legendre expansion, the maximum order of which will align with the inter-

polation order of the finite element space on the given element i.e. for i = (0, pτ ). In order to

estimate the decay rate of the finite Legendre expansion one can then fit a straight line through

a graph of the log of the coefficients, ai, and i, i.e. log |ai| = mi + c. The analyticity, Θτ , then

is a function of the gradient of that line, Θτ = exp(−m). If the function is locally analytic the

decay rate of the coefficients is exponential and the gradient, m, will be large and thus Θτ → 0,
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whereas if the function is non-analytic the gradient, m, will be small and Θτ → 1. A parame-

ter, analyticityThreshold, can then be introduced by which if, Θτ ≤analyticityThreshold,

the solution is considered smooth enough locally for the element to be refined in p, and for,

Θτ >analyticityThreshold, the element should be refined in h. As smooth functions will tend

to have values close to zero and nonsmooth functions a wider range of values that nevertheless

tend towards one, caution is exercised in favour of non-smooth values (and thus h-refinement)

and as such, in this work the value of the parameter is set as analyticityThreshold= 0.25.

Experimental evidence can be found in works such as [172, 173], which show that such a choice

leads to the desired exponential convergence and is therefore a reasonable choice.

There are some special cases such as where a function is odd or even by which the symmetry or

antisymmetry of the function will cause patterns of repeating zeros in the Legendre coefficients

which can affect the data fitting procedure through the coefficients. To avoid this, a check

is made by which if the even numbered coefficients i.e. i = 2, 4, 6... are all less than machine

precision, the function can be determined to be odd and if the odd numbered coefficients i.e.

i = 1, 3, 5... are all less than machine precision, the function can be determined to be even. If

either one of these conditions is satisfied a smoothing is applied to the Legendre coefficients by

which the repeated zero coefficients are set as equal to the average of their adjacent coefficients,

or in the extreme cases (i.e. the 0th or pth coefficient) set as equal to their adjacent coefficient

(i.e. the 1st or p − 1th coefficients respectively). Similarly, in the case that the order of the

function is less than the local order of approximation on the element, there could be repeated

zero coefficients at the end of the series by which the coefficients have already decayed to zero.

As such, a condition is enforced by which if the highest order Legendre coefficient is less than

machine precision, and the function is not odd or even (based on the criteria defined above),

the function is assumed to be analytic.

Furthermore, it should be noted that a Legendre expansion is computed about the centre of

the element and in one coordinate direction only. This does mean that one can use this technique

to determine separately the analyticity of the function in each coordinate direction and use this

information to refine the mesh anisotropically, however, in this case the analyticity is simply

estimated in both coordinate directions on a given element and the worst case scenario is used,

i.e. the function must be analytic in both coordinate directions to be considered analytic and

thus the decision be made to refine in p over h.

6.3.3 Enforcement of refinement limits

The aim of this mesh refinement strategy is to focus degrees of freedom in the most problematic

areas in terms of some error to most efficiently resolve the level set function until a tolerance

on that error is met. In practice, it is often also necessary to set an upper limit on the possible

polynomial order an element can be refined to, upperpRefLim, and a lower limit on element size,

upperhRefLim. Whereas the tolerance, errorTol, sets the desired level of accuracy with which

the mesh is attempting to resolve the level set function, the limits on refinement determine the

minimum level of resolution at which the computation will continue if it is unable to reach this

desired level of accuracy. The main reason for this is that there will ultimately be limits on

memory, which is likely to be the main bottleneck in such computations. However, there may
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be other practical real world reasons for these limits, such as tolerances on instrumentation or

design tolerances by which smaller elements would be wasteful.

As such, at this stage of the refinement algorithm, the current polynomial order on an element

is summed to the p-refinement flag on that element, and if this number is greater than the

maximum allowed polynomial order, pmax, then the p-refinement flag is set to do not refine.

There is of course also a natural lower limit (or it is possible to choose one, pmin = 2 is often

used as a lower limit in this work as it can be difficult to accurately compute the analyticity on

linear elements) on the minimum allowed polynomial order of the space on the element which

is also enforced here, should the sum be less than that number. At this stage, if it is found

that an element is flagged for p-refinement or derefinement but is unable to refine/derefine as

a result of these limits, the flag is switched to the equivalent h-refinement flag. The same

condition is then checked for the h-refinement flag by which the current number of levels of h-

refinement is summed to the h-refinement flag and compared with a maximum number of levels

of allowed h-refinement (which is equivalent to specifying a minimum element size), and once

again a natural minimum (that being 0 levels of h-refinement which is equivalent to the original

Cartesian mesh on which the level set function is originally projected). The same procedure also

occurs for elements initially flagged for h-refinement and derefinement, by which the upper and

lower limits are enforced and in the case that a lower or upper limit is reached, the h-flag is set

to do not refine, and if possible the flag can be switched to a p-refinement flag should that not

also breach the lower or upper limit on p-refinement.

6.3.4 Flag smoothing

As stated in Section 2.2, in this work a bound on the local variation in h and p is enforced which

requires that at most any given element will have one hanging node per edge, and adjacent

elements will have a difference of at most one polynomial degree in their bases, and thus will

satisfy Equation (2.3). In order to ensure that this is always the case a smoothing algorithm is

applied to the h and p refinement flags at this stage which ensures that post-reinitialisation these

bounds will be satisfied. In a situation where this would not be satisfied, the flags will be altered

following the rule that refinement is always preferable to no refinement, and no refinement is

preferable to derefinement.

For the p-flagging strategy, a loop through all of the elements currently in the mesh is per-

formed, whereby for each element, τ+, and all of the elements with which the τ+ shares a face,

the current polynomial order of each element, p, is summed to its p-refinement flag, that is,

ρτ = p+pFlags[τ]. The value ρτ− for each of the neighbouring elements is then subtracted

from the ρτ+ . If the absolute value of the difference |ρτ+ − ρτ− | < 2, then this means that

post-reinitialisation the local bound will not be satisfied. As per the preference for refine over

do not refine, and do not refine over derefine, the element with the smaller |ρτ |, will have its

p-flag increased by one. As each smoothing can necessitate further smoothing, this procedure is

performed iteratively until no more smoothing is required. The same loop is then computed for

h-refinement flags, with an additional step, that being, for an h-derefinement to occur, in the

quadtree paradigm, all four of the children elements are required to have a derefinement flag.

In the case that any of the four children have an h-derefinement flag, and any of the other three
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children have an h-flag that is not a derefinement flag, then all of the children with derefinement

flags are replaced with do not refine flags.

6.3.5 Mesh refinement

Once the flags have been computed on the current mesh, should, as a result of the limits on

refinement, and or, the smoothing algorithm, all of the flags on the mesh be set to do not refine,

then the loop is broken as the best possible resolution of the level set function given the limits

on refinement, has already been achieved. Otherwise the next step is to refine the mesh. Given

the Eulerian nature of the level set method, one can begin with a Cartesian mesh, and then use

a simple and efficient quadtree structure for h-refinement. An element flagged for h-refinement

can be split into 4 equally sized square elements, and similarly if all 4 children elements, are

flagged for h-derefinement then they can be replaced by their original parent element. Then, as

modal hierarchical basis functions are used on each element, p-refinement/derefinement is also

simple and amounts to including/removing (respectively) the higher order degrees of freedom

to the given element.

6.3.6 Project the solution onto the new mesh

For any element flagged for h-refinement/derefinement, the level set function is determined on

the new element, φnew
h (x, te), by interpolating on the old mesh (which for derefinement would

mean interpolating on all four children elements) the value of the old level set function at the

Gauss point positions on the new mesh, φold
h (x, te), and computing an L2 projection, that is(

φnew
h (x, te)− φold

h (x, te), vh

)
τ

= 0, ∀vh ∈ Vp. (6.2)

Executing a p-refinement on a given element, τ , simply amounts to initialising degrees of

freedom associated with the new high-order polynomials, and setting the value of the level

set function at these degrees of freedom to zero. Whereas p-derefinement, simply requires the

removal of the degrees of freedom associated with the old higher-order polynomial bases.

If the refinement algorithm is being called as part of the initialisation routine, defined by,

problemHandle =‘initialise’ or problemHandle =‘initialiseNonSDF’, then at this stage

φold
h (x, te) = φ0, that is the analytical function defining the initial condition will simply be

projected onto the refined mesh at each refinement step.

6.3.7 Update the narrow band

Once the level set function has been projected onto the new mesh, the set of elements comprising

the narrow band, TNB, needs to be updated. The same procedure as explained in Section 5.2

for determining the set of elements currently in the narrow band is used here, initially the new

narrow band set will be labelled TNB1. If the set of elements comprising the narrow band changes

such that elements which were not in the old narrow band set TNB, are in the new narrow band

set TNB1, which might happen after a derefinement, then the level set function on these elements

can be generated using the extrapolation technique presented in Section 5.2.1. It is then possible,

if need be, to recursively call the refineUpdate function, on the set TT = TNB1\TNB, to ensure

that this extrapolation also satisfies the desired tolerance on the error, errorTol. On the
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recursive calls of the refineUpdate function, it is the new narrow band, TNB1, which is passed

in and therefore is updated as such. The two other possibilities are that the set comprising the

new narrow band, TNB1, is equal to the previous narrow band, TNB, or contains only elements

which also belong to the previous narrow band, TNB. In both of these cases, no further action

needs to be taken and the narrow band can be updated TNB = TNB1.

The set of elements being operated on, S, then needs to be updated based on the rules by

which it exists. The most common case will be that the set of elements currently being operated

on is the entire narrow band; in this case S can simply be updated by setting S = TNB. Another

common case will be that where the set of elements to be operated on is defined, S = TT , that

is the set of elements which were previously outside of the narrow band, but are now members

of the narrow band. In this case, the set of elements comprising S is updated as the children of

the elements originally in S which are also still inside the narrow band after it is updated, TNB1.

As by definition these elements are on the edge of the narrow band, it is possible that by the

combination of mesh refinement and updating the narrow band, the set of elements comprising,

S, can become equal to the empty set, ∅, at which point the refinement loop will break.

6.3.8 Update the level set function

Once the mesh has been refined, should the problemHandle indicate that this is either a reini-

tialisation or an extrapolation, it should now be possible to compute either of these problems and

have them converge such that the error is reduced. If the problemHandle variable indicates that

a reinitialisation is to occur at this stage the Elliptic Reinitialisation method presented in Section

4.4 will be computed until it satisfies a stopping criterion. If instead the problemHandle variable

indicates that an extrapolation is to occur the extrapolation method presented in Section 5.2.1

will instead be solved until a stopping criterion is satisfied. For either of these problems, one

of the stopping criteria will be defined by the maxIt input variable, which defines a maximum

number of iterations for which the problem can be computed. After the level set function has

been updated (should this be required), the global error estimate is again computed, and should

the converged solution of the reinitialisation problem still not satisfy the tolerance on the error,

the refinement loop continues, else the refinement loop breaks.

6.4 Level set reinitialisation with adaptive mesh refinement: nu-

merical examples

In order to investigate the efficacy of the proposed refinement strategy a number of numerical

examples will be presented including the repetition of the example reinitialisation problems pre-

sented in Section 4.4.1, using hp-adaptive meshes. In these example problems, a function which

is not a signed distance function will be projected onto an initial mesh, which is then narrow

banded, and the initially projected level set function will then be reinitialised on the narrow

band. At this point the refinement algorithm will be called with the following inputs, [φ̃,TNB] =

refineUpdate( φ̃0, TNB, TNB, 1e-6, [0.08 0.75], 8, 8, ‘signedDistanceError’, 0.25,

‘initialiseNonSDF’,100). Each example problem will be defined by the initial level set func-

tion, φ̃0, which is passed into the function, these will be defined separately for each example
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below. All of the other parameters will be constant for each of the reinitialisation examples to

be presented in this section. The set of elements to be operated on in each case is all of the

elements in the initial narrow band, that is S = TNB. The error measure to be used to drive

the refinement in this case is defined as the signed distance error measure. An element will be

flagged for refinement if the local error on that element is greater than 75% of the element with

the maximum error, and flagged for derefinement if the local error on that element is less than

8% of the element with the maximum error. Whether the solution on an element is sufficiently

smooth, Θτ , to be refined in p over h is defined by the parameter analyticityThreshold,

which is chosen as Θτ <analyticityThreshold= 0.25. Once the refinement has occurred, the

problem handle, ‘initialiseNonSDF’, indicates that the initial function should be reprojected

onto the new mesh, and then the reinitialisation problem solved once again on the new mesh.

The reinitialisation problem is computed until one of its stopping criteria is satisfied, which is

either the criterion defining convergence, that is ||φ̃m−1− φ̃m||2 < 10−10 or a maximum number

of iterations of the reinitialisation problem have been computed, which for all examples here is

chosen as 100 iterations. It is noted here that the examples in this section do not use the Ander-

son acceleration algorithm presented in Section 5.3, instead using the standard Picard iterative

method, so that the results can be compared with those in Chapter 4. The refinement loop will

be broken once either, a threshold on the error estimate is satisfied, that is ESD < 10−6×area,

where area is the area of the narrow band, or where all of the elements flagged for further

refinement are maximally refined given the upper bounds on refinement, which in this case will

be 8 levels of h-refinement, and p-refinement up to and including 8th order polynomials. After

each refinement step error data will be collected in the DG, and L2 norms, as well of course

as the value of the signed distance error which is used to drive the refinement, all of which are

defined in Section 4.4.1.1.

6.4.1 hp-convergence study: circular interface

The first experiment presented here is the reinitialisation of a level set function which can be

described analytically by the quadric (4.58) in the domain Ω = (−2, 2)2, which corresponds to

a circular interface centred at the origin. The signed distance function with the same interface,

and therefore the analytical solution to the reinitialisation of (4.58) is stated in Equation (4.59).

An hp-convergence study is performed, as described above, whereby the level set function is

initialised on a Cartesian mesh with square elements of size, h = 0.4, of uniform polynomial

order, p = 2, which is then, after each reinitialisation, adaptively refined and the initial level

set function reprojected onto the new mesh, which continues in a loop until one of the stopping

criteria is satisfied.

Figure 6.1 presents the error at which the Elliptic Reinitialisation method converges, for the

circular interface problem on a sequence of adaptively refined meshes. The x-axis denotes a

measure of the density of each of the meshes by taking the square root of the total number

of degrees of freedom inside the narrow band. The reported number of degrees of freedom is

chosen as the number of degrees of freedom inside the narrow band, as this is the computational

domain over which both the problem is solved and the error is computed, and whilst there are

more degrees of freedom in the domain (outside the narrow band) no solution exists on those
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Figure 6.1: Error against the square root of the number of degrees of freedom (ndof), for the
solution of the circular interface reinitialisation problem, on an hp-adaptively refined mesh. The
red line denotes the error tolerance defining one of the stopping criteria, which can change as
the area of narrow band changes.

elements. Should the curve plotted on a semi-log plot of error against the square root of the

number of degrees of freedom be a straight line with a negative gradient, one can say that the

error decreases exponentially with mesh refinement. It is the aim of an hp-adaptive refinement

strategy, that the error should decrease exponentially with increased mesh refinement.

In Figure 6.1 it can be seen that there is a region of roughly exponential convergence. Initially

there is a region of slower convergence which corresponds to the set of meshes within which the

singularity at the centre of the conic signed distance function describing the circular interface,

still exists within the computational domain, as the mesh isn’t sufficiently fine such that the

criterion defining the narrow band (see Section 5.2) is sufficient to remove this part of the mesh

from the narrow band. In this region the convergence is relatively slow. As soon as the mesh

is sufficiently refined to remove the singularity the error decays much more quickly. During the

initial region of slower convergence it can be noted that even though the largest errors are near

to the singularity at the centre of the circular interface on the reinitialised level set function

and thus the refinement flags appropriately positioned, the computeAnalyticityTest function

computes that the solution on these elements is smooth enough for p-refinement. The reason

for this is that the analyticity estimate is based on a finite Legendre expansion, which for low

order p will only have p + 1 points which could be too few to compute an accurate estimate.

This is compounded with the fact that when there are few Legendre coefficients, the coefficient

associated with the constant Legendre function has greater weight on the apparent decay rate

of the remaining coefficients and thus the same singular function with greater magnitude will

appear to decay faster. For these reasons the poor accuracy in the singular region is maintained

until the upper limit on p-refinement is reached, that being p = 8 for this example problem, at

which point the enforceRefinementLimits function, will switch the refinement flags from p to
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Figure 6.2: Final computed mesh configuration for the circular interface reinitialisation problem
on an hp-adaptively refined mesh where the colour of the element denotes the polynomial order
of that element. The thick black line denotes the computed interface position.

h-refinement flags, which finally allows the mesh to become fine enough to remove the singularity

from the narrow band. This is reflected in the final mesh shown in Figure 6.2. Beyond this point

the problem is smooth and the rate of convergence increases.

It can also be seen in Figure 6.1, that the signed distance error roughly bounds the L2 error

from above and the DG error from below. In the earlier numerical examples in this thesis where

a level set function is reinitialised on a series of fixed Cartesian meshes, generally speaking this

same pattern could be noticed. This was less true during evolution, as reinitialisation during

evolution can allow one to maintain a constant signed distance error, especially in the case that

the curvature of the interface remains roughly constant throughout the evolution, whereas the

DG and L2 error norms are defined relative to an analytical solution and therefore additional

error at each step which accumulates over time using these measures is not reflected in the signed

distance error estimate. However, there still seems to be a relationship between these quantities

as of course an interface evolving such that it becomes more complicated means that it is more

difficult to capture on a mesh and therefore both reinitialise and evolve.

The mesh shown in Figure 6.2, is the first mesh upon which the converged solution to the

circular interface reinitialisation problem satisfies a stopping criterion of the mesh refinement

loop, in this case the tolerance on the signed distance error. It can be seen in this figure, first

of all, that the area of greatest refinement is near to the singularity at the vertex of the conic

level set function which describes the signed distance function to the circular interface. The

effect of the smoothing algorithm enforcing the bounds on local variation in both h and p is

also obvious from the figure from the radial staircase pattern in the polynomial order spreading

outwards from the singularity. Another point of note is that due to the regular distribution of

square elements in the initial mesh, which is vastly maintained due to the smoothness of the

solution away from the singularity, the level set interface in elements near to the x = 0 and

y = 0 planes aligns more congruently with the background grid, whereas this is not the case

elsewhere which is reflected in the position of the lowest order elements. As will be the case
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for all of the remaining examples in this chapter, the thick black line denoting the position of

the level set interface is drawn using the built-in MATLAB function contour, interpolating on

each element at a set of (pτ + 1)2 equidistant interpolation points on each element. Further, it

should also be noted that the white space inside the domain indicates the positions of the set of

elements which are not inside the narrow band, and thus that white is never used as a colour to

denote polynomial order.

6.4.2 hp-convergence study: square interface

A second example problem to be presented here is the reinitialisation of a square interface, which

is not aligned with the grid, and which is offset from the origin slightly such that the singular

regions will not align with mesh nodes. The initial level set function to be projected to the level

set interface can be described by the analytical function,

φ̃0(x) = max

(∣∣∣∣∣x2 −
√

3y

2
− 0.02

∣∣∣∣∣ ,
∣∣∣∣∣x2 +

√
3y

2

∣∣∣∣∣
)
− 1.06666, (6.3)

on the domain, Ω = (−2, 2)2. The initial interface associated with Equation (6.3) and its relative

position in the domain can be seen in Figure 6.3. This initial level set function is a signed distance

function everywhere except at the edges of the pyramidic level set function which coincides with

the vertices of the square interface. Thus Equation (6.3) is the analytical solution to the problem.

By virtue of the singular regions in the problem, however, the signed distance error is large over

the domain, and based on this criterion reinitialisation is required. Reinitialisation is dissipative

and will therefore tend to round these corners, however, the boundary condition will aim to keep

the position of the interface unchanged, and thus the shape should largely remain unchanged.

An hp-convergence study is performed, as described above, whereby the level set function is

initialised on a Cartesian mesh with square elements of size, h = 0.4, of uniform polynomial

order, p = 2, which is then, after each reinitialisation, adaptively refined and the initial level

set function reprojected onto the new mesh, which continues in a loop until one of the stopping

criteria is satisfied.

The variation in error with mesh density for the reinitialisation of the square interface on an

hp-adaptively refined mesh is shown in Figure 6.4. What can be observed is that the magnitude

of the negative gradient is increasing with refinement indicating exponential convergence, the

rate of which is increasing. This is because h-refinement is focussed in the singular regions

which causes a narrowing of the narrow band and thus the size of the singular regions to shrink.

The interface itself is singular in this case which of course cannot be narrow banded out of

the domain, however, given the maximum possible levels of refinement, the size of the singular

regions in the domain will be appropriately minimised, as can be seen in Figure 6.5. One point

of note however, is that in this instance, due to the singular regions always remaining inside the

narrow band, the stopping criterion based on the error over the area of the narrow band, denoted

in Figure 6.4 by the red line, cannot be satisfied given the allowed level of refinement. Also it

can be noted, even in the case of a singular interface, that the proposed error estimate maintains

the apparent relationship with the L2 norm, bounding it roughly from above, and with the DG
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Figure 6.3: Relative position of the initial interface and the domain boundaries for the square
interface reinitialisation problem on the domain Ω = (−2, 2)2.

norm, following roughly the pattern in this error norm and bounding it from below.

Figure 6.5(a) shows the first mesh upon which the converged solution to the square interface

reinitialisation problem satisfies a stopping criterion of the mesh refinement loop, which in this

case is as a result of the level set function being maximally refined given the allowed upper

limits on refinement. It can be seen in Figure 6.5 that almost all of the refinement is along the

singular regions; Figure 6.5(b) shows that the elements are maximally refined in both h and p

where the solution is singular and most of the remaining refinement in the rest of the domain is

just to enforce the local bounds on variation in h and p. The position of the computed level set

interface is largely maintained by virtue of the boundary condition, although as can be seen in

Figure 6.5(b), the element which is cut by the singular part of the interface is unable to sharply

capture this feature, although this loss in accuracy is minimised by the adaptive refinement.

This aligns with what would be expected for the given problem.

6.4.3 hp-convergence study: smooth star interface

The next example is another more difficult problem, referred to in Section 4.4.1.4 as a smooth

star interface reinitialisation problem. That is the level set function is initialised as the L2

projection of

φ̃0(x) = x2 + y2 −
(

1− 0.4 sin
(

6 arctan
(y
x

)))
, (6.4)

in the domain Ω = (−2, 2)2. This is similar to the smooth star interface problem from Section

4.4.1.4, however, this time chosen such that the level set interface has a slightly larger curvature.

The shape of such an interface and its position relative to the domain boundaries can be seen

in Figure 6.6. The signed distance function to this smooth star interface can be computed
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Figure 6.4: Error against the square root of the number of degrees of freedom (ndof), for the
solution of the square interface reinitialisation problem, on an hp-adaptively refined mesh. The
red line denotes the error tolerance defining one of the stopping criteria, which can change as
the area of narrow band changes.

numerically by solving the minimisation problem

φ̃(x, ϑ) = min
ϑ
ψ

= min
ϑ

(√
(x−

√
1− 0.4 sin(6ϑ) cos(ϑ))2 + (y −

√
1− 0.4 sin(6ϑ) sin(ϑ))2

)
.

(6.5)

That is finding the roots to the equation,

dψ

dϑ
= 2

(
sin (ϑ)

√
1− 0.4 sin (6ϑ) +

(1.2 cos (ϑ) cos (6ϑ))√
1− 0.4 sin (6ϑ)

)(
x−

√
1− 0.4 sin (6ϑ) cos (ϑ)

)
+ 2

(
y − sin (ϑ)

√
1− 0.4 sin (6ϑ)

)(
−
√

1− 0.4 sin (6ϑ) cos (ϑ) +
(1.2 sin (ϑ) cos (6ϑ))√

1− 0.4 sin (6ϑ)

)
= 0, (6.6)

using a bisection method with a tolerance of |ϑ| < 10−15. Using the numerical solution above

to find the value of the solution at a point x, the gradient of the signed distance function to the

smooth star interface can be computed using a first-order finite difference method as follows
∂φ̃(x, y)

∂x
∂φ̃(x, y)

∂y

 =


φ̃(x, y)− φ̃(x+ ∆x, y)

∆x
φ̃(x, y)− φ̃(x, y + ∆x)

∆x

 , (6.7)

with spatial step size, ∆x = 10−12.

Again an hp-convergence study is performed, as described above, whereby the level set func-
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(a) Entire narrow banded adaptive mesh over the domain.

(b) Mesh near to one of the singular regions.

Figure 6.5: Final computed mesh configuration for the square interface reinitialisation problem
on an hp-adaptively refined mesh where the colour of the element denotes the polynomial order
of that element. The thick black line denotes the computed interface position.
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Figure 6.6: Relative position of the initial interface and the domain boundaries for the smooth
star interface reinitialisation problem, defined by Equation (6.4), on the domain Ω = (−2, 2)2.

tion is initialised on a Cartesian mesh with square elements of size, h = 0.4, of uniform polyno-

mial order, p = 2, which is then, after each reinitialisation, adaptively refined and the initial level

set function reprojected onto the new mesh, which continues in a loop until one of the stopping

criteria is satisfied. The variation in error with mesh density during this study for the smooth

star interface is presented in Figure 6.7. As with the previous two examples it can be seen

that there is roughly exponential convergence, with initially a slower rate of convergence where

the singularities remain inside the narrow band and then a faster rate of convergence once the

singularities are narrow banded out. Also it can again be seen that the error estimate roughly

follows the pattern of the DG norm, bounding it from below, and providing an upper bound

on the L2 norm. Towards the end of the hp-convergence study, however, it can be seen that

the rate of convergence slows again and almost begins to stagnate. One reason for this is that

the error tolerance is not satisfied by the time those elements requiring refinement have reached

the maximum allowed polynomial order of p = 8. As these elements are still flagged for refine-

ment, the enforceRefinementLimits function switches the flag from p to h, and h-refinement

is known to be less efficient than p for smooth problems, and therefore this ultimately limits

the rate of convergence. This can be seen to be the case by noticing where the error tolerance

shrinks as a result of shrinking narrow band (see the red line on Figure 6.7), which occurs when

the elements near to the interface become small as a result of h-refinement which coincides with

the stagnating error.

This issue, however, is perhaps more insidious than simply enforcing an upper limit on the

amount of allowed p-refinement. For example, an important question one could ask at this

point, is ‘why is the method unable to satisfy the error tolerance?’; especially given that the

problem is smooth, the problem is discretised using what would be considered by many in the

finite element community as very high-order polynomial bases, and the Elliptic Reinitialisation

method solving this type of problem on Cartesian meshes of fixed polynomial order were shown
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Figure 6.7: Error against the square root of the number of degrees of freedom (ndof), for the
solution of the smooth star interface reinitialisation problem, initialised as in Equation (6.4),
on an hp-adaptively refined mesh. The red line denotes the error tolerance defining one of the
stopping criteria, which can change as the area of narrow band changes.

in Section 4.4.1.4 to converge optimally. One reason for this is that at each refinement step, when

the reinitialisation routine is called, the required number of iterations for the reinitialisation to

be stopped as a result of satisfying the convergence criterion, would, if allowed to continue

until that point, dwarf the chosen maximum number of iterations. In other words the errors

presented in Figure 6.7 are always after 100 iterations, as this is the maximum allowed number

of iterations, which on the increasingly well refined meshes seems to not be large enough for the

new mesh to outperform the previous mesh. This was not observed in similar earlier examples,

as there was no limit on the maximum number of iterations.

Investigating the relative change in the solution, as well as the error in the solution, for this

(or any) example problem, using the Elliptic Reinitialisation method (using Picard’s method

as the iterative solver), one can see that both of these quantities decrease monotonically when

plotted against the number of computed iterations. Furthermore, the numerical examples in

Section 4.4.1, present evidence suggesting that when the Elliptic Reinitialisation method is

allowed to reach this convergence criterion, the method will converge optimally in h for fixed

p. In other words, without consulting practical limitations on time and memory, the Elliptic

Reinitialisation method is capable of returning a suitable signed distance function. For this

specific example however, the convergence rate of the Picard iterative method is so slow that it

almost stagnant, and thus placing a limit on the number of iterations, for reasons of practicality,

seems to necessarily mean that the convergence of the refinement will similarly be limited.

It was attempting to overcome this issue which lead investigations into methods such as

Anderson acceleration (see Section 5.3) and even Newton schemes (results not presented) for the

Elliptic Reinitialisation method, as well as the various temporal discretisations of the Parabolic

Reinitialisation method. What was found was that attempts at increasing the rate of convergence
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Figure 6.8: Final computed mesh configuration for the smooth star interface reinitialisation
problem, initialised as in Equation (6.4), on an hp-adaptively refined mesh where the colour
of the element denotes the polynomial order of that element. The thick black line denotes the
computed interface position.

would invariably lead to instability. One of the advantages of Anderson acceleration in this

respect, and why it is used here, is that when instabilities become apparent it can simply revert

to Picard, which has demonstrated stability when solving these problems. It seems ultimately

then, that in order to overcome this issue one must either; allow more time for reinitialisation,

that is choosing a larger maximum allowed number of iterations, and/or use more powerful

hardware and therefore allow for higher levels of refinement and attempt to save lost time using

by parallelising the computation. Discussions relating to this issue follow in Sections 6.4.4 and

6.6.4, however, beyond that stated here a suitable solution was unfortunately not found during

this research period.

The final mesh configuration for the adaptively refined smooth star reinitialisation problem

is shown in Figure 6.8. As a result of the stagnation in the error, the solution never reaches

the desired tolerance on the signed distance error. Instead the mesh is configured such that it

reaches the upper limit on first p and then eventually h, and is therefore deemed to be optimally

refined given these limits. This explains why the mesh looks how it does with the majority of the

elements being of order, p = 8, and forming a much narrower narrow band near to the interface

than either of the previous examples.

6.4.4 hp-convergence study: elliptic interface

As the behaviour presented in the case of smooth star interface problem, is not reflected in

the circular interface reinitialisation example, the complexity of the circular interface problem

can be increased slightly to investigate this change in behaviour. To increase the difficulty of

the circular interface problem one can generalise the quadric defining the circular interface by

simply introducing a major and minor axis and thus the circular interface becomes an ellipse.

More specifically one can project an initial level set function defined as

φ̃0 =
(x
a

)2
+
(x
b

)2
− 1, (6.8)
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Figure 6.9: Relative position of the initial interface and the domain boundaries for the elliptical
interface reinitialisation problem on the domain Ω = (−2, 2)2.

choosing a = 1.4 and b = 1, onto the domain Ω = (−2, 2)2. The relative position of the interface

to the domain boundaries as a result of this projection can be seen in Figure 6.9. The signed

distance function with the same interface, and therefore the solution to the reinitialisation of

(6.8) can be found at a point x by computing the real roots, ϑx = <(ϑx), to the equation

(
a2 − b2

)
ϑ4
x −

(
2a2x

(
a2 − b2

))
ϑ3
x +

(
a2
(
a2x2 + b2y2 −

(
a2 − b2

)2))
ϑ2
x

+
(
2a4x

(
a2 − b2

))
ϑx −

(
a6x2

)
= 0. (6.9)

Then one can compute

ϑy = sign(y)

√
1− ϑ

2
x

a2
, (6.10)

to get the analytical solution at a point x, which be stated

φ̃ = min

{√
(x− ϑx)2 + (y − ϑy)2

}
. (6.11)

Equation (6.9) is solved in this work using the MATLAB built-in function roots, which computes

the eigenvalues of the companion matrix to the polynomial (6.9). Where a known gradient of the

solution is required for the computation of the DG norm, this can be computed numerically by

first finding the known solution at points in the domain, and using a first-order finite difference

method, as in Equation (6.7), again with spatial step size, ∆x = 10−12.

Again an hp-convergence study is performed, as described previously, whereby the level set

function is initialised on a Cartesian mesh with square elements of size, h = 0.4, of uniform

polynomial order, p = 2, which is then, after each reinitialisation, adaptively refined and the

initial level set function reprojected onto the new mesh, which continues in a loop until one of

the stopping criteria is satisfied. Figure 6.10 shows the results of the hp-convergence study for
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Figure 6.10: Error against the square root of the number of degrees of freedom (ndof), for the
solution of the elliptical interface reinitialisation problem, on an hp-adaptively refined mesh.
The red line denotes the error tolerance defining one of the stopping criteria, which can change
as the area of narrow band changes.

the elliptical interface reinitialisation problem. For this problem, there is once again a period

of slow convergence to begin with, whereby the singular region at the centre of the ellipse

remains inside the narrow band. Once the mesh is sufficiently refined for the narrow band to be

narrow enough that these regions no longer exist within the computational domain the rate of

exponential convergence increases. Once again for this problem the mesh becomes maximally

refined based on the upper limits placed on h and p before it can satisfy the error tolerance.

Whilst the stagnation which was seen for the smooth star example does not appear to be present

in this example, the issue with the smooth star problem remains present here in that the required

number of Picard iterations is much larger than the imposed limit, which seems to limit the rate

of convergence of this refinement study.

That this is not an issue for the circular interface reinitialisation problem but is for the

elliptical interface reinitialisation problem implies that there is something about the increased

curvature of the problem which is causing the reinitialisation method to struggle to solve the

problem in an efficient manner. To see the effect that this increased curvature has, one can

compute the reinitialisation of the elliptical interface problem for 100 iterations using a fixed

mesh with h = 0.1 and p = 5. Figure 6.11 shows the variation in the L2 and signed distance

error measures as well as the curvature, over the domain for the solution of this reinitialisation

problem. It can be seen in Figure 6.11 that the region with the largest curvature, that being

the area near the vertices of the ellipse, is not the area of greatest error in either of the norms.

This implies that it is either the variation in curvature, and/or the orientation of the interface

relative to the grid which seems to be the cause of this issue.

Recomputing the circular interface reinitialisation problem defined by the initial level set
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Figure 6.11: Error and curvature distributions for the elliptic interface reinitialisation problem
on a narrow banded Cartesian mesh after 100 iterations.
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Figure 6.12: Error and curvature distributions for the circular interface reinitialisation problem
on a narrow banded Cartesian mesh after 100 iterations.
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Figure 6.13: Final computed mesh configuration for the elliptical interface reinitialisation prob-
lem on an hp-adaptively refined mesh where the colour of the element denotes the polynomial
order of that element. The thick black line denotes the computed interface position.

function (4.58) on the same fixed mesh produces the results shown in Figure 6.12. Despite being

well resolved almost everywhere, the area of greatest error for the circular interface problem,

aligns with a similar region as in the ellipse problem; that being where the orientation of the

interface begins to diverge from the grid in one axis. A possible solution to this issue might be to

use r-adaptivity to reorient the elements along the interface such that there is greater congruence

in the alignment of the interface with the element edges, however, this is beyond the remit of

the work to be presented here. As such we instead move forward with the knowledge that in

looking to the appropriate balance between accuracy and computational expense the stopping

criteria for the reinitialisation problem are of paramount importance. A similar example in this

respect will be explored in Section 6.6.4, where an evolution problem is presented by which an

initially circular interface evolves into an ellipse.

Figure 6.13 shows the first mesh upon which the converged solution to the elliptical interface

reinitialisation problem satisfies a stopping criterion of the mesh refinement loop, which in this

case is as a result of the level set function being maximally refined given the allowed upper

limits on refinement. For the reasons discussed above the computed mesh, is highly refined in

both h and p and as such, is reminiscent of the mesh computed during the smooth star interface

reinitialisation problem.

6.4.5 hp-convergence study: multiple interfaces

The final reinitialisation example will be a repeat of the multiple interface problem presented in

Section 4.4.1.5. For this example, the function defined by Equations (4.62) and (4.63) will be

L2 projected onto the domain, Ω = (−2, 2)2. The interface will form three closed interfaces of

varying curvature, two of which are nested within the third; the domain/interface configuration

can be seen in Figure 4.12. The signed distance function to the multiple interfaces can be

computed at a point x, by solving the following problem numerically,

φ̃(x) = max(φ̃k(x)), k = 1, 2, 3, (6.12)
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where

φ̃1(x) = min
ϑ1

ψ1,

= min
ϑ1

([(
x− (1 + 0.8 sin2(ϑ1)) cos(ϑ1)

)2
+
(
y − (1 + 0.8 sin2(ϑ1)) sin(ϑ1)

)2] 1
2

)
,

(6.13)

φ̃2(x) = min
ϑ2

ψ2,

= min
ϑ2

([
(x− (0.3− 0.075 sin (4ϑ2)) cos(ϑ2))2+

((y − 0.8)− (0.3− 0.075 sin (4ϑ2)) sin(ϑ2))2
] 1

2

)
,

(6.14)

φ̃3(x) = min
ϑ3

ψ3,

= min
ϑ3

([
(x−

(
0.48− 0.08 sin2 (4ϑ3)

)
cos(ϑ3))2+

((y + 0.65)−
(
0.48− 0.08 sin2 (4ϑ3)

)
sin(ϑ3))2

] 1
2

)
.

(6.15)

That is by finding the roots to the following

∂ψ1

∂ϑ1
= x sin (ϑ1)

(
1.6 sin2 (ϑ1) + 2

)
− 3.2x sin (ϑ1) cos2 (ϑ1) + cos (ϑ1)

(
2.56 sin5 (ϑ1) +

3.2 sin3 (ϑ1)− 4.8y sin2 (ϑ1)− 2y
)

+ cos3 (ϑ1)
(
2.56 sin3 (ϑ1) + 3.2 sin (ϑ1)

)
= 0, (6.16)

∂ψ2

∂ϑ2
= 2 (0.75 sin (ϑ2) (0.4− 0.1 sin (4ϑ2)) + 0.3 cos (ϑ2) cos (4ϑ2)) (x− 0.75 cos (ϑ2) (0.4−

0.1 sin (4ϑ2))) + 2 ((y − 0.8)− 0.75 sin (ϑ2) (0.4− 0.1 sin (4ϑ2)))

(0.3 sin (ϑ2) cos (4ϑ2)− 0.75 cos (ϑ2) (0.4− 0.1 sin (4ϑ2))) = 0, (6.17)

∂ψ3

∂ϑ3
= 2

(
0.8 sin (ϑ3)

(
0.6− 0.1 sin2 (4ϑ3)

)
+ 0.64 sin (4ϑ3) cos (ϑ3) cos (4ϑ3)

)
(x−

0.8 cos (ϑ3)
(
0.6− 0.1 sin2 (4ϑ3)

))
+ 2 ((y + 0.65)− 0.8 sin (ϑ3) (0.6−

0.1 sin2 (4ϑ3)
)) (

0.64 sin (ϑ3) sin (4ϑ3) cos (4ϑ3)− 0.8 cos (ϑ3)
(
0.6− 0.1 sin2 (4ϑ3)

))
= 0, (6.18)

using a bisection method with a tolerance of |ϑ| < 10−15. Where a known gradient of the

solution is required for the computation of the DG norm, this can be computed numerically by

first finding the known solution at points in the domain, and using a first-order finite difference

method, as in Equation (6.7), again with spatial step size, ∆x = 10−12.

An hp-convergence study will be computed as described previously on an initially Cartesian

mesh, with square elements of size, h = 0.4, and of uniform polynomial order, p = 2. The

results of the hp-convergence study for the multiple interfaces reinitialisation problem are shown

in Figure 6.14. The signed distance error mirrors the previous examples by demonstrating
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Figure 6.14: Error against the square root of the number of degrees of freedom (ndof), for the
solution of the multiple interfaces reinitialisation problem, on an hp-adaptively refined mesh.
The red line denotes the error tolerance defining one of the stopping criteria, which can change
as the area of narrow band changes.

Figure 6.15: Distribution of L2 error over the mesh for the multiple interfaces reinitialisation
problem on a mesh where the analytical solution does not align with the unique viscosity solution.
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Figure 6.16: Final computed mesh configuration for the multiple interfaces reinitialisation prob-
lem on an hp-adaptively refined mesh where the colour of the element denotes the polynomial
order of that element. The thick black line denotes the computed interface position.

exponential convergence, the rate of which increases as the problem becomes smoother by the

removal of singular regions with h-refinement. The error in the L2 and DG norms stagnates

for many iterations. This is a function of the fact that the unique viscosity solution to the

reinitialisation problem is defined by the initial condition, (4.62). If one considers the narrow

band in this case to be three separate narrow bands each associated with one of the three

interfaces, then some elements can belong to one narrow band, but have interpolation points

which are physically closer to one of the other interfaces. Therefore the analytical solution,

which simply computes the minimum distance from a given point to the interface doesn’t align

with the unique signed distance function which solves the reinitialisation problem. This can be

seen in Figure 6.15 which shows the distribution of the L2 error for one of the meshes during this

period. This should be noted when evaluating the results of this experiment. Eventually these

elements get narrow banded out of the domain and for the final few iterations of the refinement

loop the error returns to what would be the expected value based on the previous results, that

is, the error estimate is greater than the L2 error and smaller than the DG error.

Figure 6.16 shows the first mesh upon which the converged solution to the multiple interfaces

reinitialisation problem satisfies a stopping criterion of the mesh refinement loop. Again as a

result of the more complex interface, the criterion which causes the refinement loop to break

is that all of the refinement flags are set to do not refine due to the upper limits on h and p

refinement being reached. As before this manifests in high levels of both h and p refinement,

and thus a narrow, narrow band. As there are multiple interfaces in this problem, these high

levels of refinement occur mostly around the two most curvaceous interfaces with lower levels

of refinement surrounding the third interface. Although as was the case even with the elliptical

interface problem from earlier, where the least complex interface is oriented such that it does

not align with the mesh, high levels of refinement are still required to accurately compute the

reinitialisation problem.
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6.5 hp-adaptive level set method

This section will extend the level set methodology presented in Section 5.4, which comprised an

algorithm for evolving interfaces on narrow banded Cartesian meshes of uniform arbitrary order

to now include hp-adaptive meshes using the refineUpdate function (Algorithm 3) explained

earlier in this chapter.

6.5.1 Evolution algorithm

A problem to be solved using the proposed level set methodology, on an hp-adaptive mesh,

with an initial Cartesian mesh of elements of size h, with uniform polynomial order, p, will take

the form presented in Algorithm 4. The first step of the algorithm is to partition the mesh

and to initialise the level set function. Here this involves calling the refineUpdate function, to

repeatedly L2 project and adaptively refine the mesh, until the mesh is able to sufficiently resolve

the level set function, where ‘sufficiently resolved’ is defined by satisfying a tolerance on the L2

error in the projection. Once a sufficiently refined and narrow, narrow banded mesh, has been

generated for representing the initial condition, the evolution loop can begin. The only change

here from the evolution algorithm on Cartesian meshes of fixed polynomial order, Algorithm 2,

is that after the evolution, the reinitialisation and the updating of the narrow band at each time

step, the refineUpdate function is called, which checks whether the level set function on the

mesh satisfies a tolerance on the signed distance error and in the case that it doesn’t computes

the refine-reinitialise loop. Once the refine-reinitialise loop is broken, by satisfaction of one of

its stopping criteria, the evolution loop then continues until tme = T , at which point the level set

function at each time step is output to the user.

It should be noted that the various input parameters to the refineUpdate function, are

subject to change, however, those stated in Algorithm 4 will be those used for the remainder of

the example problems in this chapter.

6.6 Level set evolution with adaptive mesh refinement: numer-

ical examples

The full level set evolution algorithm with hp-adaptive mesh refinement, that is as defined in

Algorithm 4, will now be evaluated using a number of example problems which are described in

Section 5.4.2.

6.6.1 hp-convergence study: growing-shrinking-growing circle

6.6.1.1 Initialisation

The first example problem is the growing-shrinking-growing (GSG) circular interface problem,

introduced in Section 5.4.2 and which was solved on a series of fixed Cartesian meshes in Section

5.4.2.1. For this problem, an initial level set function which is the signed distance function to

a circular interface of radius r = 1, that is as defined in Equation (5.19), is L2 projected onto

the domain Ω = (−2, 2)2. The initial mesh consists of square elements of size h = 0.4 and of

polynomial order p = 2, which after the initial projection is narrow banded and passed into the
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Input: Ω, φ0, advectionType, T
Output: φh(x, te)

Initialise problem parameters: φ0
h, T;

Compute initial Narrow Band, TNB;
if φ0

h is not a signed distance function then

Reinitialise Level set function;
[φ,TNB] = refineUpdate(φ0

h, TNB, TNB, 1e-9, [0.08 0.75], 4, 8,
‘L2Error’, 0.25, ‘initialiseNonSDF’, 100);

else
[φ,TNB] = refineUpdate(φ0

h, TNB, TNB, 1e-6, [0.08 0.75], 4, 8,
‘SignedDistanceError’, 0.25, ‘initialise’, 100);

end

while tme < T do
Compute Advection Velocity Vector, b;
Compute time step, ∆te;
Evolve Level Set Interface by solving (5.6), φmh (x);
Reinitialise level set function, φmh (x);
Update narrow band, TNB;
if elements move from outside to inside narrow band then

Extrapolate the level set function onto those elements, φmh (x);
end
[φ,TNB] = refineUpdate(φmh , TNB, TNB, 1e-6, [0.08 0.75], 4, 8,
‘signedDistanceError’, 0.25, ‘reinitialise’, 100);
tm+1
e = tme + ∆te;

end

Algorithm 4: hp-adaptive narrow banded level set evolution algorithm
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Figure 6.17: Error against the square root of the number of degrees of freedom (ndof), for the
initialisation of the growing-shrinking-growing circular interface problem, on an hp-adaptively
refined mesh.

refinement loop, Algorithm 3, to generate a new mesh upon which the projection error is less

than a tolerance chosen in this case as errorTol=10−9×area.

The variation in error with mesh density for the initialisation of the circular interface on the

adaptively refined mesh is shown in Figure 6.17. In this case, the singular region at the vertex

of the conic level set function is removed from the mesh almost immediately, which allows

the initialisation algorithm to converge quickly upon an appropriate initial mesh. Why this is

the case here but wasn’t during the circular interface reinitialisation problem for example (see

Section 6.4.1), is that in this case the computeAnalyticityTest function immediately recognises

where the solution is not smooth, (presumably as projection is less diffusive than reinitialisation

when the singularity is aligned with a mesh node) which leads to the desired h-refinement and

a narrowing of the narrow band which removes the singularity.

The error tolerance defining one of the stopping criteria is chosen stricter during the initiali-

sation, as compared with during the evolution, for two reasons. First of all, the initial function

will be chosen as a signed distance function, defined by an analytical function. This means

it is simple and cheap to compute the initialisation and therefore it is useful to get as good

a mesh as possible during this stage as this will promote accuracy during at least the initial

iterations of the evolution. The second reason is that results from previous examples in this

thesis suggest that the signed distance error estimate which will be used for refinement during

the evolution tends to bound the L2 error from above by at least an order of magnitude, and

therefore a smaller tolerance is used to ensure that the tolerance on the signed distance error is

also satisfied by the initialisation which is based on the L2 error.

Figure 6.18 shows the first mesh upon which the converged solution to the initialisation of the

GSG circular interface problem satisfies a stopping criterion of the mesh refinement loop, in this

case satisfying the error tolerance. The mesh computed is reminiscent of the mesh computed

earlier for the circular reinitialisation problem (see Section 6.4.1), in that h-refinement is focussed
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Figure 6.18: Final computed mesh configuration for the initialisation of the GSG circular in-
terface problem on an hp-adaptively refined mesh where the colour of the element denotes the
polynomial order of that element. The thick black line denotes the computed interface position.

at the origin where the solution is singular, and p-refinement is focussed elsewhere where the error

is large but the solution is smooth. One point of note is that even for this simple initialisation

problem, i.e. a circular interface defined by an analytical function which is known to be a signed

distance function, relatively large polynomial bases are required to capture parts of the solution

to the desired degree of accuracy. This shows the necessity of hp-adaptivity for problems of this

type, and goes some way to explain some of the difficulties encountered earlier, for example, with

the reinitialisation of the ellipse (see Section 6.4.4) and the smooth star interfaces (see Section

6.4.3), where an upper limit on the polynomial order, p = 8, was enforced.

6.6.1.2 Evolution

Once the initialisation has been completed the evolution can begin. The evolution for the GSG

circular interface problem will proceed, driven by an advection velocity defined in Equation

(5.20), which can be described as growth at a constant rate in the period te = (0, 0.15], shrinking

at the same constant rate in the period, te = (0.15, 0.45], followed by a period of constant growth

again in the period, te = (0.45, 0.6), such that the interface should arrive finally at its initial

position at time, te = T = 0.6. The function describing the analytical solution over the domain

for all time is defined in Equation (5.21). If at any point during the evolution the signed

distance error grows such that ESD > 10−6×area, this will trigger the refine-reinitialisation

loop (Algorithm 3), which will continue in a while loop until either the tolerance on the error is

satisfied, or the mesh becomes maximally refined.

Figure 6.19 shows how the error varies over pseudotime, during the evolution for the GSG

circular interface problem on an hp-adaptively refined mesh. As there is no h-refinement away

from the origin, the mesh is fairly coarse throughout the evolution. This means that the area of

the narrow band remains constant for the majority of the evolution. The two instances where

this is not true are when the interface expands to its largest around te = 0.15, and when the

interface shrinks to its smallest around te = 0.45, whereby the narrow band tracks the evolving

interface and changes shape (this can be seen in Figure 6.20). During the first of these two
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Figure 6.19: Error over pseudotime for the GSG circular interface problem on an hp-adaptively
refined mesh. The red line denotes the error tolerance defining one of the stopping criteria,
which can change as the area of narrow band changes.

periods, the size of the narrow band grows and with it the error; this is most notably apparent

in the signed distance error, but can also be seen in the L2 and DG norms too. Once the

interface begins to shrink again, the area of the interface returns to its original size, and those

elements which moved from outside to inside the narrow band once again leave the narrow band

and with it the additional error associated with them. During the second change in the shape

of the narrow band the area of the narrow band decreases but the elements which move from

outside to inside the narrow band in the same instant, are closer to the singularity and have a

much higher curvature to capture and thus the error increases once again. Once the interface

grows again, these elements eventually leave the narrow band and the additional error associated

with them also leaves. As would be expected the cumulative error at each time step increases

over time which is reflected in the increasing error in the L2 and DG norms over time, with the

oscillations explained by the changing shape of the narrow band as noted above.

The red line in Figure 6.19, demonstrates the criterion defining whether refinement is nec-

essary. In this example the signed distance error never approaches this line and as such for

all time, no further refinement needs to occur. This is to be expected as this is such a simple

problem; the level set function evolves as a rigid body in space, and thus the signed distance

error is constant over time varying only due to the change in the size of the narrow band.

Comparing the results for the hp-adaptive mesh with the fixed mesh for the same problem

in Section 5.4.2.1, it can be observed that the results are similar both in terms of how the error

varies over time and the absolute value of the errors. The main difference is that as a coarser

mesh of higher-order elements are used here, the evolution in the shape of the narrow band

is much less severe, which results in less variation in the error over time. Also using the hp-

adaptive mesh for the problem is more efficient both in terms of the number of degrees of freedom

required, that is during the evolution, an average of 12769 degrees of freedom are required for

the fixed mesh (where the average is computed as the total number of degrees of freedom in
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(a) Mesh and interface position at te = 0.00.
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(b) Mesh and interface position at te = 0.15.
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(c) Mesh and interface position at te = 0.30.
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(d) Mesh and interface position at te = 0.45.
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(e) Mesh and interface position at te = 0.60.

Figure 6.20: Configuration of mesh and interface position over time for the GSG circular interface
evolution problem, on an hp-adaptively refined mesh. The thick black line denotes the computed
interface position.
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the narrow band at each time step divided by the total number of time steps), whereas just an

average of 5511 are required for the adaptive mesh, as well as the number of time steps required,

which is 219 for the fixed mesh versus just 89 for the adaptive mesh. The results for the fixed

mesh mentioned here is that mesh where h = 0.05 and p = 3.

Figure 6.20 shows some snapshots of the evolving interface, as well as the evolving adaptive

mesh over time for the GSG circular interface problem. As mentioned earlier no additional

refinements are required for this example problem after the initialisation of the mesh and as

such all that is required during the evolution is for some of the elements outside of the narrow

band move inside, and vice versa, to maintain the correct narrow band width based on the

position of the evolving interface. Although not plotted, the errors are sufficiently small such

that there would be no observable difference between the computed and analytical position of

the level set interface.

6.6.2 Growing-shrinking-growing problem with pure h-refinement

It is interesting to see how the proposed hp-adaptive version of the level set method compares

to a similar method which is only h-adaptive. To do this the growing-shrinking-growing (GSG)

circular interface example problem will be repeated, however this time, the hp-adaptivity routine

of Algorithm 3 will be modified such that only h-flags are considered which means that no

criterion is required to decide whether it is preferable to refine in h or p, and likewise flags can

no longer change from h to p once maximum h-refinement had been achieved for a given element.

6.6.2.1 Initialisation

Once again, an initial level set function which is the signed distance function to a circular

interface of radius r = 1, that is as defined in Equation (5.19), is L2 projected onto the domain

Ω = (−2, 2)2. The initial mesh consists of square elements of size h = 0.4 and of polynomial

order p = 2, which after the initial projection is narrow banded and passed into the modified

refinement loop, to generate a new mesh upon which the projection error is less than a tolerance

chosen in this case as errorTol=10−8×area. There are two reasons for the slight change in

error tolerance here as compared with the previous example which uses the hp-adaptive method.

Firstly, when initialising the mesh for the h-adaptive problem, in order to satisfy the stricter error

tolerance the method required larger upper limits on h-refinement, i.e. the tolerance couldn’t be

satisfied, which felt unfair for comparative purposes. And secondly, choosing the error tolerance

as stated above leads to comparable absolute errors in L2 norm for both problems, allowing for

an easier comparison in the efficiency of each of the methods.

The variation in error with mesh density for the initialisation of the circular interface on

the h-adaptively refined mesh is shown in Figure 6.21, along with the same error data from the

previous example using the hp-adaptivity routine as presented in Figure 6.17. It can be seen once

again, that immediately the singularity at the peak of the cone describing the circular interface

is removed from the domain by refining in h and updating the narrow band. This happens in

the same way for both the h and hp methods, which can be seen as the error curves for both

methods in Figure 6.21 initially overlap. The error curves for the hp-adaptive method then

continue to descend with approximately the same gradient owing to the fact that the problem is
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Figure 6.21: Comparison of errors against the square root of the number of degrees of freedom
(ndof), for the initialisation of the growing-shrinking-growing circular interface problem, on an
h-adaptively and hp-adaptively refined mesh.

then smooth enough to take advantage of the increased efficiency of p-refinement, whereas the

error curves for the purely h-adaptive case then slow to a gentler gradient which is nevertheless

maintained until the error threshold is satisfied. In order to satisfy the tolerance on error for

the L2 projection of the explicit function (5.19) onto the narrow banded domain, requires 27900

degrees of freedom, which can be compared with the 5532 for the hp-adaptively refined mesh.

The difference between h and hp adaptivity becomes obvious when comparing the initial

meshes produced in each case for this problem as can be seen in Figure 6.22. Many more

elements of significantly smaller size are required to satisfy the error threshold, resulting in a

much narrower narrow band. Examination of Figure 6.22 also provides evidence for some of

the comments made in Sections 6.4.3 and 6.4.4. That is, firstly, along the x = 0 and y = 0

planes where the relative position of the interface and the grid is well aligned, less refinement is

required to achieve the desired degree of accuracy. And also again one can notice the inherent

difficulty in modelling even simple shapes to high levels of accuracy using the level set method

on the chosen set of finite element spaces as evidenced by the high levels of refinement required

just to project the initial function onto the domain.

6.6.2.2 Evolution

Figure 6.23 presents the error over pseudotime for the GSG problem on the h-adaptively refined

mesh, as well as the same error data from the previous example problem on the hp-adaptively

refined mesh as presented in Figure 6.20. It can be seen immediately that one of the main

differences between the two methods is that due to the much smaller elements required to satisfy

the error tolerance, the time step required as stated in (5.11) leads to many more iterations for

the same time period, 1597 iterations for the h-adaptive method versus 89 for the hp-adaptive.

This also leads to an increased requirement for refinement and reinitialisation throughout the

evolution, which can be seen where the value of the error estimate approaches the refinement
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(a) Mesh and interface position at te = 0.00.
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(b) Mesh and interface position at te = 0.15.

Figure 6.22: Configuration of mesh and interface position over time for the GSG circular interface
evolution problem, on an h-adaptively and hp-adaptively refined mesh. The thick black line, in
both cases, denotes the computed interface position.
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Figure 6.23: Comparison of errors over pseudotime for the GSG circular interface problem on an
h-adaptively and hp-adaptively refined mesh. The red line denotes the error tolerance defining
one of the stopping criteria, which can change as the area of narrow band changes.
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(a) Mesh and interface position at te = 0.00. (b) Mesh and interface position at te = 0.15.

(c) Mesh and interface position at te = 0.30. (d) Mesh and interface position at te = 0.45.

(e) Mesh and interface position at te = 0.60.

Figure 6.24: Configuration of mesh and interface position over time for the GSG circular interface
evolution problem, on an h-adaptively refined mesh. The thick black line denotes the computed
interface position. Due to the rotational symmetry of the problem only displayed is the region
(0, 1.5)2, to improve visibility for such small h.
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criterion denoted by the red line in Figure 6.23. Furthermore, it can be noted that the average

number of degrees of freedom throughout the evolution is 29692 for the h-adaptive method which

can be compared to the 5511 for the hp-adaptive method. Thus, the comparison performed here

ultimately shows what would be expected in that pure h-refinement is less efficient both in terms

of number of degrees of freedom and real time taken than the hp-adaptive method. Another

point of note is that it can be seen in Figure 6.23 that the L2 error in the solution is similar

for the duration of the evolution for both of the adaptive strategies, whereas the error in the

gradient measured using both the error estimate and DG norm is approximately an order of

magnitude smaller for the hp-adaptive strategy over the h-adaptive strategy.

The mesh and interface configuration at each of a number of time steps during the h-adaptive

study is shown in Figure 6.24 (which shows the mesh and interface only in the region (0, 1.5)2

so as to improve the visibility of the smaller elements; the other 3 quadrants are implied by

symmetry). It can be seen that the general shape of the mesh remains similar to the initialisation

throughout the evolution. When the circular interface expands the mesh can become slightly

coarser as the curvature decreases and as the interface shrinks vice versa. Again although not

plotted there would be no observable difference between the computed and analytical position

of the level set interface owing to the small error levels maintained throughout the evolution.

6.6.3 hp-convergence study: translating circle

6.6.3.1 Initialisation

The next example problem is a repeat of the translating circle problem introduced in Section

5.4.2.2. In this case, an initial level set function which is a signed distance function to a circular

interface of radius, r = 0.15, centred at x = (−0.25, 0), that is as defined in Equation (5.22), is

L2 projected onto the domain Ω = (−0.5, 0.5)× (−0.2, 0.2). The initial mesh consists of square

elements of size, h = 0.04, and of polynomial order, p = 2, which after the initial projection is

narrow banded and passed into the refinement loop, Algorithm 3, to generate a new mesh upon

which the projection error is less than a tolerance chosen in this case as errorTol=10−9×area.

The variation in error with mesh density for the initialisation of the translating circular

interface problem is shown in Figure 6.25. On the initial Cartesian mesh, the singularity falls

inside an element. The L2 projection of the singularity onto an element with a polynomial

basis, generates a smooth, yet poor approximation of the chosen signed distance function, which

by virtue of its smoothness is adaptively refined in p initially. Once the upper limit on p is

reached the flags switch to h and the singularity appropriately removed. As mentioned prior

this is not an uncommon mode of behaviour for this piece of the proposed method, see Section

6.4.1. This explains the initially limited convergence in Figure 6.25. The mesh generated by

this initialisation routine, see Figure 6.26, is similar to the previous example problems where a

circular interface is represented by an adaptive mesh.

6.6.3.2 Evolution

The evolution for the translating circular interface problem will be driven by an advection

velocity defined in Equation (5.23), which can be described as a translation of the circular

interface in the positive x-direction at a constant rate. This evolution will occur over the
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Figure 6.25: Error against the square root of the number of degrees of freedom (ndof), for the
initialisation of the translating circular interface problem, on an hp-adaptively refined mesh.
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Figure 6.26: Final computed mesh configuration for the initialisation of the translating circular
interface problem on an hp-adaptively refined mesh where the colour of the element denotes the
polynomial order of that element. The thick black line denotes the computed interface position.

– 169 –



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

or

L2 Error
DG Error
Error Estimate

Figure 6.27: Error over pseudotime for the translating circular interface problem on an hp-
adaptively refined mesh. The red line denotes the error tolerance defining one of the stopping
criteria, which can change as the area of narrow band changes.

interval te = (0, 0.5). The explicit function describing the analytical solution to the translat-

ing circular interface problem is that stated in Equation (5.24). If at any point during the

evolution the signed distance error grows such that ESD > 10−6×area, this will trigger the

refine-reinitialisation loop (Algorithm 3), which will continue in a while loop until either the

tolerance on the error is satisfied, or the mesh becomes maximally refined.

Figure 6.27 shows how the error varies over pseudotime for the duration of the translating

circle problem on an hp-adaptively refined mesh. The error in the L2 and DG norms, grows over

time as would be expected, due to the error at each previous iteration compounding at each time

step. There are oscillations in these error norms, which again reflect the evolving nature of the

domain, as the narrow band tracks the evolving interface. This was also noticed when the same

problem was computed on a fixed narrow banded mesh. There is a pattern in these oscillations

as the time step is constant throughout the evolution (as a result of the size of the most refined

element remaining constant) which means there is a repeated pattern in the relative position of

the interface and the grid. As the narrow band evolves, elements which were outside the narrow

band move inside the narrow band. Those elements entering from the right hand side of the

mesh tend to be under-refined for the desired level of error, as the refinement strategy ensures

elements outside of the narrow band have minimal refinement (whilst still satisfying the bounds

on local variation) to reduce wasted memory. When these elements enter the narrow band,

the signed distance error measure spikes which triggers the refine-reinitialisation routine which

ensures these elements are sufficiently refined to capture the level set function to the desired

tolerance on error. This happens in a patterned fashion too for the same reason. Comparing the

results for the translating circle problem on an adaptive mesh, with the results for a fixed mesh

(see Section 5.4.2.2), it can once again be seen that fewer degrees of freedom are required for

the adaptive mesh, where an average of 7285 across the iterations are required for the desired

level of accuracy, versus an average of 9432 degrees of freedom for the fixed mesh, which is true
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(a) Mesh and interface position at te = 0.00.
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(b) Mesh and interface position at te = 0.25.
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(c) Mesh and interface position at te = 0.50.

Figure 6.28: Configuration of mesh and interface position over time for the translating circular
interface evolution problem, on an hp-adaptively refined mesh. The thick black line denotes the
computed interface position.
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Figure 6.29: Error against the square root of the number of degrees of freedom (ndof), for the
initialisation of the shearing circular interface problem, on an hp-adaptively refined mesh.

despite the errors on the adaptive mesh being almost an order of magnitude smaller. Similarly as

coarser elements can be used, the time step can be larger, and the number of iterations likewise

smaller for the adaptive mesh where 426 iterations of the evolution loop are required, compared

to the 901 on the fixed mesh where h = 0.01 and p = 3.

Figure 6.28, shows a number of snapshots of the mesh and the interface during the evolu-

tion for the translating circular interface problem. Again although not plotted, the errors are

sufficiently small such that there would be no observable difference between the computed and

analytical position of the level set interface.

6.6.4 hp-convergence study: shearing circle

6.6.4.1 Initialisation

The next example is the shearing circular interface problem introduced in Section 5.4.2.3. An

initial level set function which is the signed distance function to a circular interface of radius,

r = 0.5, centred at the origin, that is as described in Equation (5.25), is L2 projected onto

the domain Ω = (−1, 1)2. The initial mesh consists of square elements of size h = 0.2 and

p = 2, which after the initial projection is narrow banded and passed into the refinement

loop, to generate a mesh upon which the L2 error in the projection satisfies the tolerance,

errorTol=10−9×area.

The variation in error with mesh density associated with the initialisation of the circular

interface for the shearing circle problem can be seen in Figure 6.29. Once again this is the

initialisation of a circular interface, driven by the L2 error in the solution. In this case the

analyticity estimate indicates that the solution in the elements near where the singularity falls

is sufficiently smooth to be refined in p. Once the upper limit on p refinement is reached, the

flags switch to h-flags should further refinement be required in the region, at which point the

singularities are removed and the refinement loop can converge quickly upon a mesh which can

represent the level set function with the desired level of accuracy. The stagnation in the DG
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Figure 6.30: Final computed mesh configuration for the initialisation of the shearing circular
interface problem on an hp-adaptively refined mesh where the colour of the element denotes the
polynomial order of that element. The thick black line denotes the computed interface position.

norm is a numerical artefact from the truncation error when computing the analytical gradient

using a finite difference method.

Figure 6.30 shows the first mesh upon which the converged solution to the initialisation of the

shearing circular interface problem satisfies a stopping criterion of the mesh refinement loop.

The computed mesh is similar to all of the meshes upon which circular interfaces have been

projected in the example problems on adaptive meshes thus far.

6.6.4.2 Evolution

The evolution can then proceed, driven by the advection velocity defined in Equation (5.26),

which will, in the interval te = (0, 0.5), cause the initially circular interface to shear, stretch

and rotate. The function describing the analytical solution to the shearing circle problem over

time, is given in Equation (5.28). If at any point during the evolution the signed distance error

grows such that ESD > 10−6×area, this will trigger the refine-reinitialisation loop (Algorithm

3), which will continue in a while loop until either the tolerance on the error is satisfied, or the

mesh becomes maximally refined.

Figure 6.31 presents the variation in error over pseudotime for the shearing circle problem

on an hp-adaptively refined mesh. For this problem the mesh is initialised so as to accurately

represent a circular interface, which is a problem with which the proposed method has been

successful throughout this chapter. As the evolution begins the circle begins to shear and

become more elliptic. As seen in the reinitialisation example problems in Section 6.4, there is

some relationship between the either the curvature or the orientation of the interface relative to

the grid, and the ability to solve the reinitialisation in a timely fashion without using greater

levels of refinement than are to be used here. This example illuminates just how slight this

additional complexity needs to be before p = 8 elements and a maximum of 100 Picard iterations

of the reinitialisation, are no longer sufficient to represent the level set function with the desired
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(a) Error against pseudotime
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Figure 6.31: Error and area ratio over pseudotime for the shearing circular interface problem
on an hp-adaptively refined mesh. The red line denotes the error tolerance defining one of the
stopping criteria, as this varies with the area of narrow band.
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level of accuracy. Figure 6.32 shows the interface and mesh configurations at a number of points

in the interval te = (0, 0.01) and the mesh required to satisfy the error tolerance. It can be seen

that after very few time steps, almost the entire mesh consists of p = 8 elements.

One point of note with this example, however, is that during the period te = (0, 0.025), the

shape of the interface is more complex than the initial circle but not so complex that the limits

on refinement and number of Picard iterations are insufficient to satisfy the tolerance on the

signed distance error. During this period the refinement strategy also has a positive effect on

the error in the L2 and DG norms. These results can be seen in Figure 6.33. This is promising

as it implies that the proposed method is capable of generating a solution with any desired level

of accuracy for any problem given enough computing power.

Also shown in Figure 6.31, is that beyond te = 0.025 the error grows as the upper limits

on refinement are reached and the error reflects the best possible solution given these limits as

opposed to satisfying the tolerance on the error. In the interval te = (0.025, 0.3) the change in

the shape and the orientation of the shape manifests as an error which is in general growing

but oscillates considerably, as reinitialisation continues at each step to attempt to decrease the

error and the shape becomes increasingly difficult to capture on a given mesh. Beyond around

te = 0.3, the signed distance error decreases but continues to oscillate, the error in the L2 and

DG norms remains constant, which is something not seen in previous examples. The decrease

in error at this stage does seem to align with an observation in Section 6.4.4, that being that

certain orientations of the interface relative to the background grid are more difficult to capture

than others, even if the curvature is larger.

Compared with the solution of the same problem on a fixed mesh (again see Section 5.4.2.3),

the error is reduced in both the L2 and signed distance error measures. The error seems to

have increased in the DG norm, however, again this is likely to do with truncation errors in

computing the known gradient using a finite difference method, which are larger due to the

much large number of interpolation points at which the error is computed. This increase in

accuracy does appear to have come at cost however, as the number of degrees of freedom in

the system for the fixed mesh grows from 12800-15680, as the shape grows for the fixed mesh,

compared to 29431-147231 for the adaptive mesh. Also, the smaller elements and much higher

polynomial orders used in the simulation on the adaptive mesh causes a significant reduction in

the time step increasing the number of iterations required for the simulation from 110 for the

fixed mesh, to 2806 for the adaptive mesh. Given what has been observed across the numerical

examples in this chapter, increasing the limit of allowed p-refinement would likely result in

a more economical use of degrees of freedom as well as reducing the required time step, and

improving the accuracy, especially given that other than the singularity near to the origin this

problem is smooth everywhere.

Also shown in Figure 6.31 is the area ratio over time. Area ratio denotes the relative change

in the area of the shape, which given that the advection velocity is divergence free should

remain constant throughout the evolution. Despite a larger variance in the area ratio over time,

compared with the same problem computed on a fixed mesh (see Section 5.4.2.3), the area ratio

here tends to oscillate around unity which is an improvement over the fixed mesh where the area
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(a) Mesh and interface position at te = 0.0000.
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(b) Mesh and interface position at te = 0.0026.

(c) Mesh and interface position at te = 0.0051. (d) Mesh and interface position at te = 0.0064.

(e) Mesh and interface position at te = 0.0077. (f) Mesh and interface position at te = 0.0100.

Figure 6.32: Configuration of mesh and interface position over time for the shearing circular
interface evolution problem, on an hp-adaptively refined mesh, in the interval te = (0, 0.01). The
thick black line denotes the position of the discrete interface.
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Figure 6.33: Error over time, for the shearing circular interface problem, on an hp-adaptively
refined mesh in the time period te = (0, 0.025). The red line denotes the error tolerance defining
one of the stopping criteria, which can change as the area of narrow band changes.

ratio began to grow over time with no indication that this would decrease if the simulation was

to continue.

Figure 6.34 shows snapshots of the interface and the mesh over time, for the shearing circle

interface problem. What can be seen is that the initial circular interface is captured well using

very few, high order elements. Higher levels of refinement can be seen as the shape of the

interface becomes more and more difficult to resolve well given the limits on the refinement,

reflecting what was seen earlier for the elliptical interface reinitialisation problem (see Section

6.4.4).

6.6.5 hp-convergence study: merging circles

6.6.5.1 Initialisation

The final example to be presented in this chapter is similar to the merging circular interface

example from Section 5.4.2.4. The same initial signed distance function from that problem,

which takes the form of two circles of radius, r1 = r2 = 0.5, centred at x = (0.55, 0) and

x = (−0.55, 0), as stated in Equation (5.30), is L2 projected onto the domain, Ω = (−1.5, 1.5)2.

The initial mesh consists of square elements of size, h = 0.3, and of polynomial order, p = 2,

which after the initial projection is narrow banded and passed into the refinement-projection

loop, to generate a mesh upon which the L2 error in the projection satisfies the tolerance,

errorTol=10−9×area.

The variation in error with mesh density for the initialisation of the merging circles example

problem is shown in Figure 6.35. The problem converges exponentially towards the desired mesh

by immediately h-refining near the singularities at the centre of each of the two circles, after

which the problem is considered smooth enough everywhere to refine everywhere in p until the

error tolerance on the initial projection is satisfied. Interestingly, there is another singular region

– 177 –



t=0.00

5

6

7

8

P
ol

yn
om

ia
l O

rd
er

(a) Mesh and interface position at te = 0.00. (b) Mesh and interface position at te = 0.10.

(c) Mesh and interface position at te = 0.20. (d) Mesh and interface position at te = 0.30.

(e) Mesh and interface position at te = 0.40. (f) Mesh and interface position at te = 0.50.

Figure 6.34: Configuration of mesh and interface position over time for the shearing circular
interface evolution problem, on an hp-adaptively refined mesh. The thick black line denotes the
position of the discrete interface.
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Figure 6.35: Error against the square root of the number of degrees of freedom (ndof), for the
initialisation of the merging circular interfaces problem, on an hp-adaptively refined mesh.

in this example along the x = 0 plane, however this falls exactly along the edges of elements

and thus the curvature of the solution in the elements either side of this singularity is relatively

slight and thus is captured well by the initial mesh. The resultant mesh can be seen in Figure

6.36.

6.6.5.2 Evolution

The advection velocity for the merging circles example in this case can be stated as follows

b =

−1, te < 0.35,

1, te ≥ 0.35,
(6.19)

which will drive evolution in the interval te = (0, 0.7). This advection velocity will cause the

initial two circular interfaces to grow at a constant equal rate, before meeting at the origin at

te = 0.05. The difference between this example and the example in Section 5.4.2.4, is that

the two merging circles will then continue to grow until te = 0.35. This decision was made

to ensure that the elements at the origin get narrow banded out of the domain, so as to test

the effect of the extrapolation at this singular region once the interface begins to shrink again.

Beyond te = 0.35 the advection velocity will cause the new shape created by the merging of

the circles to shrink. Again as no new holes can be created when evolving a function using the

level set method (this is not strictly true as interfaces can split as a result of the finite nature

of the proposed methodology) one should expect that the new shape should take the form of

a dumbbell, the exact shape of which is a function of the discretisation. For this reason there

is not an explicit function which can be used to compute the error against, and thus only the

signed distance error will be presented for this example. During the evolution of the level set

function the threshold on the signed distance error which will trigger the refine-reinitialise loop

can be stated ESD > 10−6×area.
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Figure 6.36: Final computed mesh configuration for the initialisation of the merging circular
interfaces problem on an hp-adaptively refined mesh where the colour of the element denotes the
polynomial order of that element. The thick black line denotes the computed interface position.
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Figure 6.37: Error over pseudotime for the merging circular interfaces problem on an hp-
adaptively refined mesh. The red line denotes the error tolerance defining one of the stopping
criteria, which can change as the area of narrow band changes.
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(a) Mesh and interface position at te = 0.0000
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(b) Mesh and interface position at te = 0.1765.
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(c) Mesh and interface position at te = 0.3500.
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(d) Mesh and interface position at te = 0.5265.

(e) Mesh and interface position at te = 0.7000.

Figure 6.38: Configuration of mesh and interface position over time for the merging circular
interfaces evolution problem, on an hp-adaptively refined mesh. The thick black line denotes
the computed position of the interface.
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Figure 6.37 shows how the error varies over time for the merging circles example problem on

an hp-adaptively refined mesh. After the initialisation, with the stricter error tolerance to be

satisfied, the error remains constant in the interval te = (0, 0.48). This is because the advection

field is constant over the domain for this example, and thus the level set function moves as a

rigid body in space. The step in error at around te = 0.1 is a result of the evolving narrow band

tracking the growing interface and thus the lesser refined elements from outside the narrow band

moving into the narrow band and with it additional error. This causes the error to increase but

not so much that the refinement error threshold is crossed, and thus the simulation continues.

After te = 0.35 the interface begins to shrink. It can be seen in Figure 6.38 that beyond this

point, as the interface begins to shrink an extrapolation will have to occur on the elements near

to the centre of the domain. As these extrapolations begin the error in the solution begins to

grow. As with the analogous problem on the fixed mesh, the extrapolation on the elements close

to the x = 0 plane, uses information about the gradient from neighbouring elements either side

of a singularity, which introduces additional errors into the system. Until around te = 0.61, the

refine-reinitialise routine is able to control these errors. Beyond this point the mesh is maximally

refined in this area of largest error and the simulation continues in spite of this. Beyond this

point the oscillations in the error which were observed in the shearing circle problem in Section

6.6.4 can be observed once again here, and likely therefore for the same reasons.

Figure 6.38 shows snapshots of the interface and the narrow banded mesh over time, for the

merging circular interfaces problem. Whilst not a direct analogue, compared with the fixed

mesh, it can be seen that there is much less distortion in the original circles as a result of the

increased levels of accuracy afforded by the adaptive mesh.

6.7 Summary

In this chapter an hp-adaptive mesh refinement strategy is proposed for use with the DG discre-

tised narrow banded level set methodology presented in Chapters 4 and 5, driven by a measure of

the local signed distance error. Whilst for simple reinitialisation problems the proposed strategy

allows for exponential convergence and thus the use of significantly less resources to achieve a

given level of accuracy for both reinitialisation and evolution problems, as the complexity of the

example problems grows the required amount of resources can quickly grow beyond the capabil-

ity of a given machine. One reason for this issue is that the convergence rate of the fixed point

iterative method used to linearise the reinitialisation and extrapolation problems is shown to

decrease with the complexity of the shape implied by the level set interface. As the refinement

strategy depends upon repeated series of refinements and reinitialisations until a tolerance is

satisfied, slow convergence of the iterative method can mean that the reinitialisation does not

achieve the maximum level of accuracy possible for the given mesh before hitting the maximum

allowed number of iterations. As the fixed point iteration is shown to be stable and to converge

monotonically (when no Anderson acceleration is applied), this implies that given enough time

it should be possible to solve the more complex smooth problems using meshes of lower reso-

lution. The trade-off between compute time and memory requirements however, does seem in

the current state to swing wildly in favour of one or the other. After further investigation it
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can be seen that where the desired level of accuracy is small, even for very simple problems, the

repeated L2 projection of the signed distance function to a circle on an adaptively refining mesh

for example, that the required resolution of the discretisation must be high. The implication

of this is that capturing interfaces of any complexity on finite element meshes with piecewise

polynomial approximation spaces is always going to be a resource intense process. Ultimately

then the solutions to these issues likely lies in the investigation of alternative solvers for the

reinitialisation/extrapolation methods which have improved convergence properties, and/or the

use of high performance computing techniques to find increases in efficiency, however, this is

unfortunately beyond of the scope of the research to be presented here. The next chapter pro-

ceeds by taking the proposed hp-adaptive DG discretised narrow banded level set methodology

and using it in the context which it was originally intended, that is as part of a level set based

topology optimisation method.
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Chapter 7

Topology Optimisation

Topology optimisation is the most general form of structural optimisation and is concerned with

finding the position of the boundary of a given problem domain which minimises an objective

functional whilst satisfying a set of constraints. In the last 30 years, topology optimisation has

become an increasingly popular tool used by engineers, especially in the early stages of the design

of a structure, because it is a methodology which is capable by means independent of a designer

to compute designs which can be considered optimal in terms of a given set of criteria, which

could include for example structural response, manufacturability or cost [174]. A growing desire

for the use of topology optimisation in industry can be seen by the number of companies who now

offer topology optimisation modules as part of their commercial CAD/CAE software packages. A

notable initial example of this is Altair Engineering’s OptiStruct which was first made available

in the mid 1990’s, however, since then many of the more popular CAE companies have followed

suit. To name just a few, Ansys’ Ansys Mechanical, Autodesk’s Inventor Nastran, and Dassault

Systémes’ Abaqus for example, all now offer proprietary topology optimisation modules, and this

is a trend which is likely to continue as the academic literature concerning topology optimisation

continues to be developed. Furthermore, as the availability of topology optimisation software

continues to grow, so does the number of examples of industrial components whose design has

benefited from the use of topology optimisation techniques. For example, a list of just a few

structures designed in this way includes: the rib structure of the Airbus A380’s leading edge

droop nose [175]; the front wing of Force India’s 2008 F1 car [176]; and improved hip prostheses

[177] which are beginning to be used in real patients undergoing total hip arthroplasty.

The aim of this chapter then, is to apply the proposed DG discretised hp-adaptive, narrow

banded, level set methodology developed in the preceding chapters to topology optimisation.

The chapter proceeds as follows: Section 7.1 presents a review of the literature concerning

existing approaches to topology optimisation, Section 7.2 and its subsections present the theory

necessary to take the proposed level set methodology and apply it to the solution of a generic

topology optimisation problem, Section 7.3 and its subsections present the theory necessary to

compute the minimum compliance design of a linear elastic structure with a volume constraint

using a level set methodology, and Section 7.4 concludes the chapter with a relevant numerical

example.
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7.1 Literature review: numerical methods for topology optimi-

sation

Much of the early work on structural optimisation focuses on the development of analytical

solutions for the optimal design of structures comprised of discrete elements. A notable first in

this respect, especially considering the date of the work, is the 1904 article of Michell [178]. In

this work Michell presents analytical optimality criteria for the layout of truss structures so as

to minimise the amount of material used in the construction of a given structure. In the 1970’s,

Prager and Rozvany [179–181], expanded upon the work of Michell by presenting practical

analytical solutions for problems involving the optimal design of elastic and perfectly plastic

grillages (structures comprised of beams). And more recently, Rozvany and Lewinski [182–184],

again expanded upon the work of Michell by extending the range of analytical solutions for least

weight structures to a variety of domain shapes, loading configurations and boundary conditions.

These initial works on structural optimisation do have limited utility for those interested in the

optimal design of continuum structures, however, they can still provide some value to the reader

as the analytical solutions to benchmark problems can be a useful verification tool for analogue

benchmark topology optimisation problems for continuum structures.

The first attempts at the optimisation of continuum structures, using FE discretisations, were

mostly focussed on size optimisation, i.e. optimisation problems in which the design variable

is the thickness or cross sectional area of the structure. A seminal work in this regard was

presented by Rossow and Taylor in their 1973 paper on the variable thickness sheet model

[185]. The underlying idea of the variable thickness sheet model was to divide the problem

domain into a number of subdomains each of which would have an associated thickness to be

optimised. The thickness of a given subdomain becoming close to or equal to zero then implies

a change in the shape of a structure towards one which requires less material, and therefore

is closer to optimal. In the 1990’s, the idea of optimising a shape by removing finite amounts

of material from the problem domain was extended leading to the development of a group of

methods for computing the optimal design of continuum structures known as hard-kill methods

(where the phrase ‘hard-kill’ refers to the fact that a given subdomain either contains material

or doesn’t, with no intermediate). The most well known of the hard-kill methods is known

as Evolutionary Structural Optimisation (ESO) which was introduced by Xie and Steven [1] in

1993. In ESO each evolutionary step consists of a finite element analysis followed by the removal

of any element which meets an elimination criterion, until a steady state solution is reached.

Later, Querin [186] developed an Additive Evolutionary Structural Optimisation (AESO), which

did the opposite of ESO, it started with a simple structure and used appropriate decision making

to add new elements. The combination of ESO and AESO then led to the development of a

Bidirectional Evolutionary Structural Optimisation (BESO) [187], in which elements could be

added or removed allowing the solutions of ESO and AESO to become closer to optimal. One

of the main advantages, and one of the main reasons for the popularity of hard-kill methods is

their simplicity and the ease with which they can be integrated into existing FE solvers, often

only requiring the implementation of a simple post-processing algorithm. The heuristic nature
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of hard-kill methods however makes it difficult to determine whether a computed solution is in

fact optimal, and furthermore, it has been shown that for some problems (even quite simple

ones), the method converges towards a solution which is highly non-optimal [188].

Another popular group of topology optimisation methods are known as density-based meth-

ods. The first of these methods to be developed is known as the homogenisation method which

was developed in 1988 by Bendsøe and Kikuchi [2]. The homogenisation method considers a

domain filled with a composite material, the constituents of which are a material part and a

periodic distribution of small rectangular voids. Using homogenisation theory there is a rela-

tionship between the effective material properties in the composite and the size and orientation

of the rectangular holes. The optimisation problem then is a size optimisation problem, with

the size and orientation of the holes (and therefore the density of the composite), as the design

variable. Whilst being popular in commercial software for a while, more recently the popularity

of homogenisation approaches has waned with increasing interest in a similar method known as

the Solid Isotropic Microstructure with Penalisation (SIMP) method [3]. This shift has been

attributed to homogenisation methods being uneconomical and without significant advantages

relative to the SIMP method [189]. The SIMP method, instead of introducing a porous medium

with a variable density, introduces an artificial density directly, and allows in each element in

the mesh this artificial density to vary continuously between 0 and ρmax. In order to avoid

elements of intermediate density, the density in each element is penalised by a power law dur-

ing optimisation which forces the density towards either extremum. In this sense, the SIMP

method is similar to the method of variable sheet thickness, and in fact if the power law is linear

these methods are equivalent. One of the main issues with the SIMP method is that the com-

puted solutions seem to be highly dependent on both the background mesh and the exponent

of the penalty term [189]. Another issue with density-based methods generally, is their lack of

generality, only finding use for problems involving specific material models (linear elasticity),

and specific objective functionals (compliance, eigenfrequency) [9]. And furthermore, an issue

with both hard-kill and density based methods, is that the optimal structures computed using

these methods are unable to develop a smooth boundary as the (oftentimes square) elements

comprising the domain are either full or empty, which can lead to the aptly named issues of

checkerboarding and staircasing, see for example [190].

These are problems which do not occur with a group of topology optimisation methods

referred to as boundary variation methods, which are a group of methods concerned with ma-

nipulation of the problem boundaries themselves. A number of explicit boundary variation

methods were developed in the 1980’s, whereby the boundary was defined using either polyno-

mial or spline representations, see for example [4–6]. These explicit methods were found to be

plagued with their own set of issues, however, including: extreme computational expense due

to remeshing; stability issues caused by element distortion after remeshing; and a requirement

for the initial guess to be ‘good enough’ in order to converge to an optimal solution. After

the development of the level set method in 1988, it was suggested that one possible applica-

tion of level sets may be topology optimisation, as a technique for implicit boundary variation.

A first attempt at a level set based topology optimisation method was presented in the year
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2000 with a paper by Sethian and Weigmann, [107] who combined the level set method with

an ESO methodology. What later developed as a more favourable approach to level set based

topology optimisation was the shape sensitivity approach as discussed in [8, 9, 191, 192]. The

shape sensitivity approach to level set based topology optimisation involves evolving the level

set function at each iteration along the descent gradient of the Lagrangian of the given objective

functional to be minimised, and thus closer to an optimal configuration. This is achieved by

computing an advection velocity field at each iteration based on the variation in the Lagrangian

with respect to a change in the current topology of the structure to be optimised. The use of

the level set method in this context has grown in popularity since the early 2000’s as by defin-

ing the boundary of a structure by an implicit function, one alleviates a number of issues with

the aforementioned hard-kill and density based topology optimisation methods. In particular,

as the boundary of the structure no longer has to conform to the boundaries of the elements,

there is no need for elements of intermediate density, phenomena such as checkerboarding and

staircasing do not exist, and the mechanical model can be represented much more accurately.

Other advantages include: the alleviation of mesh-dependent phenomena (the optimal solution

also does not depend on the background mesh); the ease with which one can deal with complex

geometries; and the admissibility of complex topological changes (such as the merging of holes).

Phase field methods have also found use as a technique for implicit boundary variation, initial

attempts at which can be found in [11]. The distribution of material in a domain using the

phase field method is implied by a smoothed Heaviside function, referred to as the phase field

function, where the extremal values of the function imply two phases (material and void for

example). Optimal shapes can be computed using a phase field approach in a manner similar

to the level set approach by appropriate evolution of the the phase field function and thus the

implied interface. The evolution equations for the phase field method however, take the form

of a fourth order Cahn-Hilliard equation, although this is often simplified into a coupled pair

of second order PDEs [13]. The phase field function taking the form of a smoothed Heaviside

function means that the boundary between the two phases has finite thickness. For this rea-

son, phase field based topology optimisation methods are sometimes considered to be related

to density-based methods, in that the phase field variable can be considered as a density, and

as such similar techniques are employed using both strategies to deal with elements of inter-

mediate density in the transition region. Whilst there is a growing literature concerning phase

field approaches to topology optimisation, the level set method is the generally preferred of the

two methods in this context. It has been suggested that the main reasons for this include: the

inability to precisely determine the position of the interface in the transition region [12]; and the

computational expense associated with solving the equations driving the evolution of the phase

field function [12–14].

Level set based topology methods, however, are of course not without flaw. One of the

main issues with level set based topology optimisation methods is that when combined with a

sufficiently stable time stepping method, topological changes such as the formulation of new holes

cannot be introduced during optimisation. This means that the obtained optimal topology will

be dependent on the initial distribution of holes and material in the domain, and furthermore,
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having an initial guess with many holes is not necessarily sufficient to overcome this. It is for

this reason that the development of mechanisms which allow hole nucleation are an active area

of research, see for example [193] for a discussion surrounding and proposed solutions to this

issue. Other noted issues with such a methodology are criticisms of the classical level set method

itself; for example, numerical instabilities can be prevalent unless regularisation methods such

as reinitialisation are introduced at which point the accuracy and rate of convergence become

dependent on the efficacy of these techniques [190]. This has led to research into improved

approaches for computing the evolution of level set boundaries, such as adopting the use of

standard mathematical programming techniques such as the method of moving asymptotes [21],

or by exploiting the advantages of other discretisation methods such as the eXtended Finite

Element Method (XFEM) [16–18] and the Boundary Element Method (BEM) [19, 20].

The main area of novelty in this chapter continues in the vein of those approaches previously

stated, in that by alleviating some of the issues with the classical level set method, the infor-

mation pertaining to which has formed the bulk of this thesis so far, one may then be able to

more effectively solve topology optimisation problems using the level set method. As this was

the final part of the research to be completed here, however, time restrictions have limited the

scope of this part of the research. Therefore, as topology optimisation is such a wide and varied

topic, the main focus of the work to be presented will be on the specific example of minimally

compliant linear elastic structures with a volume constraint.

7.2 Topology optimisation

A generic topology optimisation problem could be be stated as follows

min
Ωφ+∈U

R(Ωφ+
), (7.1)

subject to

χi(Ωφ+
) = 0, for i = 1, 2, ..., Ne,

χj(Ω
φ+

) ≥ 0, for j = Ne + 1, Ne + 2, ..., Nχ.
(7.2)

The solution to (7.1), is a shape (a subdomain or distribution of material over a problem domain),

denoted in this case, Ωφ+
, in a set of admissible shapes, U, which minimises a function of that

shape, R(Ωφ+
). The generic optimisation problem (7.1) has an associated set of constraints

which form (7.2) and which can be denoted, {χi}
Nχ
i=1, where the total number of constraints is

denoted, Nχ, and the total number of equality constraints is denoted Ne. The admissibility of a

given shape Ωφ+
, which minimises R(Ωφ+

), is defined by the set of constraints {χi}
Nχ
i=1, in that

an inadmissible shape is one which fails to satisfy at least one of these constraints.

7.2.1 Level set based topology optimisation

In order to use the level set method to define the topology of a structure to be optimised, Ωφ+
,

one can simply use the interface of a level set function to define the boundaries of a structure,

which will be denoted Γ. The value of the level set function at any point in a problem domain

can then be used to determine whether that point is inside the material part of the structure

or an empty part of the domain. In this case, the portion of the domain where, φ > 0, will
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Figure 7.1: Flow chart demonstrating the computational procedure for level set based topology
optimisation based on a shape sensitivity analysis.

be defined as the material part of the domain, (i.e. Ωφ+
= Ω\D using the previously defined

notation), and the portion of the domain where, φ < 0, will be defined as the empty part of

the domain, (i.e. Ω\Ωφ+
= D). The real crux of using the level set method as part of the

technology for solving a topology optimisation problem, such as that stated in (7.1) and (7.2),

is the question of how to then evolve the level set interface, and thus the problem topology,

from an initial guess, or any given iteration thereafter, towards an optimum. The approach

used here will follow the procedure presented by Allaire et al. in [9]. In [9], Allaire uses shape

sensitivity analysis to compute the variation in an objective functional with respect to a change

in shape of the current topology of a structure undergoing optimisation, at a given time step.

The information gained by computing this variation can then be used to compute an advection

velocity field over the domain, evolution by which will lead to a new topology at the next time

step which diminishes the value of the objective functional. How exactly this is achieved will be

detailed in Sections 7.2.2 and 7.2.3.

Figure 7.1 then, shows how the relevant level set technology fits together to form a generic

methodology for solving topology optimisation problems using shape sensitivity analysis. It can

be seen that in comparison with examples of level set evolution from earlier in the thesis there

are only two main differences. First of all, at the beginning of each evolution loop a number of

auxiliary problems will need to be solved in order to compute the advection velocity field. This

will depend on the specific problem to be solved but will likely include solving the equations
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defining the physics of the underlying problem, as well as any other equations arising from the

shape sensitivity analysis regarding the chosen set of constraints. And secondly, computing the

evolution of the level set function over a specific period of pseudotime is no longer of concern, and

instead the evolution is computed until a set of convergence criteria are satisfied, again which

will be informed by the objective functional to be minimised and the chosen set of constraints.

7.2.2 Shape sensitivity analysis

Shape sensitivity analysis is a method of computing the variation in system response caused

by a change in the shape of the system. To do this the idea of the shape derivative, [196], is

introduced which is a measure of how the response function, in this case, the functional to be

minimised, R, varies as the domain, Ωφ+
, changes shape. The shape derivative of the objective

functional can be obtained by computing the derivative of its Lagrangian with respect to the

domain, Ωφ+
, in the direction ω. For the generic problem (7.1) and its constraints (7.2), the

Lagrangian can be stated,

L(Ωφ+
, λ) = R(Ωφ+

)−
∑
i

λiχi(Ω
φ+

), (7.3)

where {λi}
Nχ
i=1 are Lagrange multipliers associated with each of the constraints in (7.2), and thus

the shape derivative takes the form

R′(Ωφ+
)(ω) =

∂L(Ωφ+
, λ)

∂Ωφ+ (ω). (7.4)

Furthermore, for an objective functional or Lagrangian which could be stated

R(Ωφ+
) = L(Ωφ+

) =

∫
Ωφ+

j(x) dx+

∫
Γ
l(x) ds, (7.5)

where j(x) and l(x) are two arbitrary functions, it can be noted that the directional derivative

only depends on the normal trace, ω · nΓ, of the boundary Ωφ+
[9], denoted Γ (where again

Γ equivalently refers to the zero isocontour of the level set function) and therefore the shape

derivative of a Lagrangian of the form (7.5) can be stated as follows

R′(Ωφ+
)(ω) =

∫
Ωφ+

∇ · (ωj(x)) dx+

∫
Γ
ω · nΓ (∇l(x) · nΓ + (∇ · nΓ)l(x)) ds,

=

∫
Γ
ω · nΓ (j(x) + ∇l(x) · nΓ + (∇ · nΓ)l(x)) ds,

(7.6)

where (∇ ·nΓ) is the curvature of the domain boundary (or equivalently the level set interface).

7.2.3 Computing the advection velocity field for a generic level set based

topology optimisation

To evolve the level set interface along the descent gradient then amounts to appropriately choos-

ing an advection velocity vector. Again for the generic objective functional to be minimised as
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stated above, the shape derivative stated in Equation (7.6) can be rewritten

R′(Ω)(ω) =

∫
Γ
fω · nφ ds, (7.7)

where for conciseness the variable f is used to denote f = (j(x) + ∇l(x) · nΓ + (∇ · nΓ)l(x)).

Thus, the descent direction is given by the vector field

ω = −fnφ. (7.8)

It is shown in [9] that evolving the shape in this direction ensures a decrease in the value of the

Lagrangian. An appropriate choice for the advection velocity vector, evolution driven by which

will minimise the Lagrangian is therefore, the component of the descent direction vector normal

to the level set interface and which therefore can be stated

b = ω · nφ = −f. (7.9)

It should be noted that the advection velocity as stated in (7.9) would only exist on the domain

boundary, Γ, and therefore it is generally a requirement that one extend this velocity field from

the boundary over the entire domain. A simple way of doing this is to extend the velocity at

each point along the boundary, such that it is constant along its normal. In the case that the

shape derivative contain quantities which exist throughout the domain, another approach is to

compute the shape derivative everywhere in the domain, which then implies the value of the

advection velocity field everywhere in the domain. As there exists a number of methods by which

one can compute these extension velocities, the reader is referred to the review paper [190] for

a discussion of a number of these approaches, specific to level set based topology optimisation

methods.

7.3 Minimum compliance of a linear elastic structure subject to

a volume constraint

In order to demonstrate how the information presented in Section 7.2 can be used in practice,

one can consider the common topology optimisation example of the computation of a maximally

stiff (or equivalently, minimally compliant) linear elastic structure subject to a constraint on the

volume of the material used in the design.

7.3.1 Linear elasticity equations

In order to use the proposed level set methodology to solve a minimum compliance problem, a

DG solution to a linear elasticity problem will firstly be introduced. The variation in stress for

a linear elastic structure under an applied traction can be stated as follows

∇ · σ(u) = 0, u ∈ Ω,

u = 0, u ∈ ∂ΩD and

u · n̂ = gN , u ∈ ∂ΩN ,

(7.10)
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where u = (ux, uy), denotes the displacement field, and thus the variable, σ(u) = {σxx, σyy, σxy}
denotes the stress recovered from the displacement solution. There is a homogeneous Dirichlet

boundary condition over the part of the boundary of the computational domain denoted, ∂ΩD,

and gN denotes the surface tractions applied on the Neumann boundary, ∂ΩN . Discretising

the problem (7.10) using SIPG leads to the well known variational formulation, see for example

[165], which can be stated, find uh ∈ V 2
p (T) such that

BLE(uh,vh) = JLE(vh), ∀vh ∈ V 2
p , (7.11)

where

BLE(u,v) = (σ(u), ε(v))T − 〈{{σ(u)}}, [[v]]〉S(T)∪∂ΩD
− 〈[[u]], {{σ(v)}}〉S(T)∪∂ΩD

+ 〈µ[[u]], [[v]]〉S(T)∪∂ΩD
, (7.12)

and

JLE(v) = 〈gN ,v〉∂ΩN
, (7.13)

and where ε(u) = {εxx, εyy, εxy} denotes the recovered strain. For the example problem to be

presented here, an assumption of plane stress is made and thus the constitutive law relating the

stress and strain can be stated
σxx

σyy

σxy

 =
Y

1− ν2

 1 ν 0

ν 1 0

0 0 1−ν
2




εxx

εyy

2εxy

 , (7.14)

where 
εxx

εyy

2εxy

 =


∂vx
∂x 0

0
∂vy
∂y

∂vx
∂y

∂vy
∂x

{ ux

uy

}
, (7.15)

and where Y and ν denote Young’s modulus and Poisson’s ratio respectively. Also based on

this plane stress assumption, the discontinuity penalisation parameter, µ can be computed as

follows when solving the linear elasticity equations

µ =
Y

1− ν2

10p2

h
. (7.16)

Finally, as the solution variable is vector valued in this the case, the DG finite element space

over which the solution is sought can be stated

V 2
p (T) :=

{
vh ∈

[
L2(Ω)

]2
: ∀τ ∈ T,vh|τ ◦ fτ ∈ [Qpτ (τ̂)]2

}
, (7.17)

where the superscript reflects the dimensionality of the solution variable.
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7.3.2 Minimum Compliance

To minimise the compliance of a linear elastic structure then, is equivalent to minimising the

strain energy in the structure and thus, using the notation introduced above, the minimum

compliance problem with a volume constraint can be stated

min
Ωφ+∈U

C(Ωφ+
) = (σ(u) · ε(u))

Ωφ+ = 〈gN , u〉ΓN , (7.18)

subject to


(7.10),

|Ωφ+ |
|Ω|

−Areq = 0,
(7.19)

where ΓN is the part of the boundary of the shape, Ωφ+
, upon which the tractions are applied

(which will be equivalent to ∂ΩN in practice), where Areq denotes the required volume ratio and

where
|Ωφ+ |
|Ω|

=

∫
Ω θ(φ) dx∫

Ω dx
. (7.20)

The constraints in (7.19) consist of the linear elasticity equations which define the strain energy

and a constraint on the ratio of the domain which can be filled with material, which defines

the set of feasible solutions. Ignoring for the time being the volume constraint, as this requires

special consideration, the Lagrangian associated with the minimisation of the compliance, i.e.

(7.18), can be stated

L(Ωφ+
,u,λp) =

∫
ΓN

gN · u ds+

∫
Ωφ+

σ(u) · ε(λp) dx−
∫

ΓN

gN · λp ds

−
∫

ΓD

(λp · σ(u)nΓ + u · σ(λp)nΓ) ds, (7.21)

where λp is a Lagrange multiplier associated with the linear elasticity equations, (7.10). The

shape derivative of this functional is a classical result, a derivation of which can be found [9],

which can be stated

∂L(Ωφ+
,u,λp)

∂Ωφ+ (ω) =

∫
Γ
ω · nΓ (σ(u) · ε(λp)) ds =

∫
Γ
(−σ(u) · ε(u))ω · nΓ ds, (7.22)

which follows as the problem can be shown to be self adjoint and thus λp = −u. As such in

order to compute a minimally compliant topology using a level set based topology optimisation

method, one can compute the evolution of a level set function driven at each step by an advection

velocity vector which can be stated as follows

b = 〈σ(u) · ε(u)〉Γ . (7.23)

As mentioned in Section 7.2.3, a technique is required to extend the velocity field from the

domain boundary across the entire domain. In this case, again drawing inspiration from the

work of Allaire [9], this can be done by extending the quantities forming (7.22) and (7.23),
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that is the elasticity equations, across the entire computational domain through the use of an

ersatz material approach. What this means is that the empty/void regions of the computational

domain, rather than actually being modelled as empty, are instead modelled as being full, but

of a material which is much more compliant than the material filling the material part of the

computational domain, that is Yvoid = 10−3 × Ymaterial. In this way one can extend the shape

derivative from the boundary, Γ, to the entire computational domain, Ω, as follows

C′(Ω,u)(ω) =

∫
Ω

(−σ(u) · ε(u))ω · nφ ds. (7.24)

Thus the level set function describing the current domain configuration can be evolved towards

a less compliant configuration by choosing the advection velocity as follows

b = (σ(u) · ε(u))Ω. (7.25)

It should also be noted that the variation in the material properties across the interface using

this ersatz material approach are defined using a smooth step function as follows,

Y (x) = Yvoid +

 φ(x)√
φ(x)2 + 0.1h2

min

+ 1

(Ymaterial − Yvoid

2

)
, (7.26)

where hmin denotes the edge length of the smallest element in the partition.

7.3.3 Volume constraint

In a number of papers subsequent to Allaire’s paper [9] on level set based topology optimisation,

for example [34, 195], the volume constraint, as stated in (7.19), is incorporated into the solution

using the augmented Lagrangian method. That is, the objective functional for the minimum

compliance problem (7.18) with its constraints (7.19) can be converted to an unconstrained

optimisation problem of the following objective functional

R(Ωφ+
;λmA , γ

m
A ) = C(Ωφ+

) + λmA

[
|Ωφ+ |
|Ω|

−Areq

]
+

1

2γmA

[
|Ωφ+ |
|Ω|

−Areq

]2

, (7.27)

where λmA denotes a Lagrange multiplier and γmA denotes a penalty parameter, with the super-

script referring in both cases to the mth iteration of the solution to the minimisation problem.

The augmented Lagrangian approach begins by attempting to enforce the volume constraint

using a penalty method. This can be seen by the quadratic penalty term in (7.27). The issue

with using a penalty method in this context is that a given solution, Ωφ+
, to the minimisation

problem, (7.27), is only guaranteed to be feasible, (i.e. to satisfy the volume constraint), as the

penalty parameter, γmA → 0. As the penalty parameter grows small, however, the problem will

become poorly conditioned. The purpose of the augmented Lagrangian method is an attempt to

alleviate this issue by making the minimisers of R(Ωφ+
) more feasible for more moderate penalty

parameters, which is achieved by including an explicit estimate of the multiplier associated with

the standard Lagrangian, λmA . For these reasons then, both the penalty parameter γmA and
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the estimated Lagrange multiplier λmA are given initial guesses, γ0
A and λ0

A, chosen by the user,

which are then updated during the optimisation to more appropriately enforce the constraint.

To ensure that upon convergence the penalty parameter is sufficiently large to ensure that the

solution is feasible, it is updated as follows at each time step

γmA = zγm−1
A , (7.28)

where the parameter z is a positive constant to be chosen by the user such that z ∈ (0, 1). The

estimated Lagrange multiplier, can then be updated such that it reduces the infeasibility in each

subsequent minimiser, as follows

λmA = λm−1
A +

1

γm−1
A

[
|Ωφ+ |
|Ω|

−Areq

]
. (7.29)

The shape derivative associated with the objective functional (7.27), has also been derived

in numerous articles, see for example [34, 194, 195], and can be stated as

R′(Ωφ+
;λA, γA)(ω) =

∫
Γ

(
λA +

1

γA

[
|Ωφ+ |
|Ω|

−Areq

]
− σ(u) · ε(u)

)
ω · n̂ dx, (7.30)

The terms in the shape derivative associated with the augmented Lagrangian method are con-

stants and thus extend naturally over the domain, and with the elasticity terms already dealt

with via the inclusion of an ersatz material approach, the advection velocity field over a problem

domain which will minimise the compliance of a linear elastic structure subject to a volume

constraint can be stated as follows

b = −

(
λA +

1

γA

[
|Ωφ+ |
|Ω|

−Areq

]
− σ(u) · ε(u)

)
Ω

. (7.31)

7.4 Discontinuous Galerkin based level set topology optimisa-

tion: numerical example

7.4.1 Algorithm

As a number of changes have been made to Algorithm 4 with regards to using the proposed

hp-adaptive level set methodology when it comes to solving a minimum compliance problem

subject to a volume constraint, the specific algorithm to be used for solving the example problem

in this chapter is presented in Algorithm 5. Algorithm 5 begins as previously by setting up

the problem domain, and initial level set function, which in this case will always be chosen

such that the analytical function describing the level set function is a signed distance function,

and then computing an initial narrow banded mesh. This information is then passed into the

refineUpdate function, where the initial mesh is adaptively refined until a threshold on the error

is satisfied (or upper limits on refinement are reached). In this case, as the initial level set function
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Input: Ω, φ0

Output: φh(x, te)

Initialise problem parameters: φ0
h, T;

Compute initial Narrow Band, TNB;
[φ,TNB] = refineUpdate(φ0

h, TNB, TNB, 1e-2, [0.08 0.75], 4, 3, ‘L2Error’,
0.25, ‘initialise’, 100);

while |A−Areq| > 10−5 AND all(|Rm −Rm−5:m−1| > 10−3|Rm|) do
Compute stress and strain solutions to elasticity problem, σ(u), ε(u);
Update augmented Lagrangian parameters, λmA , γ

m
A ;

Compute advection velocity vector, b;
Compute time step, ∆te;
Evolve level set interface by solving (5.6), φmh (x);
Reinitialise level set function, φmh (x);
Update narrow band, TNB;
if elements move from outside to inside narrow band then

Extrapolate the level set function onto those elements, φmh (x);
end
[φ,TNB] = refineUpdate(φmh , TNB, TNB, 1e-2, [0.08 0.75], 4, 3,
‘signedDistanceError’, 0.25, ‘reinitialise’, 25);
m = m+ 1;

end

Algorithm 5: hp-adaptive narrow banded level set evolution algorithm for minimum com-
pliance problems.

will always be chosen as a signed distance function, the refinement algorithm can be driven by

the L2 error in the projection until a suitable mesh is computed. Another change made here is

that the upper limits on p-refinement have been decreased from a maximum polynomial order

of 8 to a maximum polynomial order of 3. The reason for this change is that the computation

required to solve the linear elasticity equations (i.e. the construction and factorisation of the

stiffness matrix) can rapidly approach upper limits on memory for such high order polynomials,

especially given that the linear elasticity equations are of higher dimension, and do not benefit

from the narrow band. Similarly the threshold value itself is chosen to be smaller in this case

as the problems are expected to rapidly become singular.

Once the initial mesh is generated it can be passed into the evolution loop. The first change

to the evolution loop is the stopping criterion. As the aim now is to look for a feasible steady

state solution to the minimisation problem, inspired by [194], two criteria must be satisfied to

end the simulation; firstly the relative change in the value of the objective functional for all of

the previous 5 iterations must be less than a threshold value dependent on the absolute value of

the current value of the objective functional, all(|Rm−Rm−5:m−1| < 10−3|Rm|), which ensures

a steady state solution has been reached; and secondly the volume constraint must be satisfied

to a given threshold, |A−Areq| < 10−5, which ensures that the solution is feasible.

Next, in order to compute the advection velocity vector, one needs to compute stress and

strain solutions to the current configuration of the linear elasticity equations and then similarly

update the estimate for the current Lagrange multiplier, as well as the penalty parameter re-
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sponsible for enforcing the volume constraint. The advection velocity can then be computed as

stated in Equation (7.31). One issue which was noted in the course of experimenting was that for

certain parametrisations, the penalty terms associated with the volume constraint can quickly

outgrow the stress solution or vice versa which can lead to large variations in the velocity field

across the domain. This can then lead to slow convergence in some regions, as the computed

time step (and thus the maximum distance the level set interface can move during a given step)

is inversely proportional to the maximum computed velocity in the mesh. The solution to this

issue is a careful consideration of the initial choices for these parameters. The evolution loop

then continues in much the same way as previously, the level set function is evolved and then

reinitialised, after which the narrow band is updated, and if need be the refinement algorithm

can be called to generate a mesh which more precisely describes the current position of the level

set function.

7.4.2 Numerical example: minimum compliance design of a cantilever beam

subject to a volume constraint

This example problem comprises the minimum compliance design of a cantilever beam. For this

specific example the domain will be configured as shown in Figure 7.2, that is a 2D cantilever

beam which is twice as long as it is tall, and in this case L = 1m. The entire left edge will

have a homogeneous Dirichlet boundary condition, and there will be a traction, gN = 0.01N,

applied uniformly to 0.05L either side of the the centre of the right edge. All other edges have

a homogeneous Neumann boundary condition.

The part of the domain that is full of material will consist of a material with Young’s modulus,

Ymaterial = 1Pa and Poisson’s ratio, ν = 0.3, and the empty part of the domain will be filled with

a material with Young’s modulus Yvoid = 10−3Pa and Poisson’s ration ν = 0.3. In the vicinity

of the level set interface these material parameters will vary smoothly according to the relation

described by (7.26). The initial level set function is defined on the domain, Ω = (0, 2) × (0, 1),

and can be stated as follows

φ̃0 = min(φ̃0
k − r), k = 1, . . . , 10, (7.32)

where r = 0.1 and

φ̃0
1 =

√
x2 + (y − 0.25)2, φ̃0

10 =
√

(x− 1)2 + (y − 1)2,

φ̃0
2 =

√
x2 + (y − 0.75)2, φ̃0

11 =
√

(x− 1.33)2 + (y − 0.25)2,

φ̃0
3 =

√
(x− 0.33)2 + y2, φ̃0

12 =
√

(x− 1.33)2 + (y − 0.75)2,

φ̃0
4 =

√
(x− 0.33)2 + (y − 0.5)2, φ̃0

13 =
√

(x− 1.66)2 + y2,

φ̃0
5 =

√
(x− 0.33)2 + (y − 1)2, φ̃0

14 =
√

(x− 1.66)2 + (y − 0.5)2,

φ̃0
6 =

√
(x− 0.66)2 + (y − 0.25)2, φ̃0

15 =
√

(x− 1.66)2 + (y − 1)2,

φ̃0
7 =

√
(x− 0.66)2 + (y − 0.75)2, φ̃0

16 =
√

(x− 2)2 + (y − 0.25)2,

φ̃0
8 =

√
(x− 1)2 + y2, φ̃0

17 =
√

(x− 2)2 + (y − 0.75)2.

φ̃0
9 =

√
(x− 1)2 + (y − 0.5)2,

(7.33)
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Figure 7.2: Domain configuration for the cantilever beam topology optimisation problem, show-
ing boundary and loading conditions.

Figure 7.3: Initial topology for the minimum compliance design of a cantilever beam.

This initial distribution of holes can be seen in Figure 7.3.

The required proportion of the domain permitted to be filled with material upon convergence

is defined as Areq = 0.3. As little guidance is provided in the literature explaining how to

appropriately choose the parameters associated with augmented Lagrangian method, for the

purposes of this numerical example an appropriate strategy was determined by experimentation.

It was found that an appropriate choice for the initial estimate for the Lagrange Multiplier, λ1
A,

is that it should be small in comparison with the maximum elementwise strain energy of the

initial configuration, and also therefore it is appropriate to the choose the penalty parameter,

γ1
A, to be large. Similarly it is useful to ensure that the decay of the penalty parameter, and

thus by virtue of (7.29), the growth of the estimated Lagrange multiplier happens slowly to

ensure stability which implies that the parameter z should be chosen such that it is only slightly

smaller than unity. However, care should also be taken to ensure that the combination of these

values does not cause the estimated Lagrange multiplier to be too small for many iterations, as
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this can cause the compliance terms to dominate the evolution for too long which could lead

to premature closure of holes, which without a hole nucleation mechanism would not be able

to be recreated. An appropriate balance was found through the following choices, λ1
A = 0.001,

γ1
A = 10000 and the decay rate z = 0.99.

The variation in the compliance and volume constraint during the optimisation process are

shown in Figures 7.4(a) and 7.4(b). The first point of note is that there is a large growth in the

strain energy across the first ∼ 750 iterations. This coincides with moving towards the region

of feasibility. It could be noted for example, that the minimum possible compliance solution

is the trivial solution where the entire beam is filled with the stiffer material, however, such a

solution does not belong to the space of admissible solutions. Thus, whilst there are regions

prior to the 750th iteration where the objective functional appears to level off, for example

during the first 100 iterations, this doesn’t constitute convergence as the solution is yet to be

feasible. The first solutions computed which approach the admissible region occur when the

Lagrange multiplier hits its peak value, see Figure 7.4(c). Choosing the augmented Lagrange

parameters, λ1
A, γ1

A and z, as they have been chosen, allows for the slow growth of the Lagrange

multiplier up to this peak value, and also helps to minimise the overshoot at the point where

this peak is reached. By ensuring appropriate values of these parameters it can be seen that

during this initial period of optimisation there is a good balance between the shrinking of the

material part of the domain as it tends towards the feasible region, and the redistribution of

material away from areas of low stress and towards areas of high stress. This can be seen in

Figure 7.5, whereby there is much greater variation in the computed shape prior to the Lagrange

multiplier reaching its peak value. Once the solution has first approached the feasible region,

the remaining iterations consists of smoothing out the Lagrange multiplier estimate, followed by

a sharpening of the internal structures which ensures the most efficient distribution of material

for the given objective functional.

Another point of note are the non smooth regions in the strain energy and volume constraint

which occur throughout the optimisation. These changes occur as a result of the evolving

narrow band. As the level set interface evolves, elements which are inside the narrow band,

move outside the narrow band and the value of the level set function on these elements is set

to a large constant, which causes a sharp change in the material parameters at these locations

across a single iteration. This is most significant in areas of high stress. For example, the spikes

at iterations 589 and 593 occurs as a result of the elements upon which the tractions are applied

moving outside the narrow band.

The design upon which the optimisation converges can be seen in Figure 7.6, and the narrow

banded mesh configuration describing this solution is shown in Figure 7.8. The solution presented

shows good agreement with that found in the literature [198], including the analytical solution

for the same problem (which exists for structures consisting of discrete elements) [182]. It can

also be noted, as seen in Figures 7.7 and 7.9 which show the topology and mesh at iteration 310,

that one of the benefits of using the hp-adaptive mesh in this example problem, is that such a

mesh allows for sharp resolution of the thin branches of the internal structure, and similarly the

precise capture of the sharp corners which develop between these branches.

– 199 –



0 200 400 600 800 1000 1200

Number of Iterations

0

0.5

1

1.5

2

2.5

S
tr

ai
n 

E
ne

rg
y 

(P
a)

104

(a) Strain energy (compliance)

0 200 400 600 800 1000 1200

Number of Iterations

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
-A

re
q

(b) Volume constraint

0 200 400 600 800 1000 1200

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

A

(c) Lagrange multiplier estimate

Figure 7.4: Compliance, volume ratio and Lagrange multiplier estimates during the optimisation
for the minimum compliance design of a cantilever beam subject to a volume constraint.
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(a) Shape at iteration 100 (b) Shape at iteration 200 (c) Shape at iteration 300

(d) Shape at iteration 400 (e) Shape at iteration 500 (f) Shape at iteration 600

(g) Shape at iteration 700 (h) Shape at iteration 800 (i) Shape at iteration 900

(j) Shape at iteration 1000

Figure 7.5: Varying topology over pseudotime for the optimising cantilever beam.
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Figure 7.6: Converged solution to the minimum compliance design of a cantilever beam subject
a volume constraint.

Figure 7.7: Solution to the minimum compliance design of a cantilever beam subject to a volume
constraint after 310 iterations.
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7.5 Summary

This chapter takes the proposed hp-adaptive DG discretised narrow banded level set method-

ology and uses it in combination with shape sensitivity analysis and an augmented Lagrangian

method to form a level set based topology optimisation method. The proposed topology optimi-

sation method is then used to solve the standard benchmark problem of the minimum compliance

design of a linear elastic cantilever beam with a volume constraint. Whilst the results presented

are only preliminary, it is found that the solution aligns well with that presented elsewhere in

the literature, however, in comparison with the results found in the literature, the proposed

method is capable of resolving well both very thin branches of the internal structure within the

beam, as well as sharp corners between these branches of the internal structure.
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Chapter 8

Conclusions

8.1 Key developments

This thesis has presented research into level set methods discretised using DG methods in the

context of topology optimisation. To this end a methodology is proposed for solving evolving

interface problems using an hp-adaptive, narrow banded, level set evolution method, which de-

pends on a high-order accurate level set reinitialisation and extrapolation technique, where all

of the underlying PDEs are discretised using an appropriate discretisation technique from the

family of DG methods. A number of novelties have been developed in order to achieve this end.

The first of these novelties was the development of two PDE based level set reinitialisation meth-

ods. Specifically an elliptic and parabolic formulation of the Eikonal minimising reinitialisation

problem were developed, which when discretised using an SIPG method demonstrated not only

high-order accuracy but a significant improvement over other reinitialisation methods in regards

to the amount of movement at the level set interface during reinitialisation. This was achieved

by modifying the underlying objective functional to more adeptly deal with small gradients, by

employing an appropriate narrow banding strategy, and by employing appropriate means for

dealing with a Dirichlet boundary condition over an immersed implicit surface. Secondly, with

the importance of frequent reinitialisation when the desired level of accuracy is high, it becomes

possible to simplify the evolution equation. This allowed for a novel DG spatial discretisation of

the simplified evolution equation, which when combined with a high-order RK temporal discreti-

sation was also capable of demonstrating the desired high-order accuracy for smooth problems.

Next, given that narrow banding is an important part of the proposed methodology, some at-

tention was paid to how to do this effectively given the proposed paradigm, which led to the

development of a novel technique for extrapolating the value of the level set function to elements

outside of the narrow band. After this, a novel refinement strategy is proposed which is driven by

a criterion based on a measure of the degree to which the level set function satisfies the Eikonal

equation locally. The proposed refinement strategy allowed for the demonstration of exponential

convergence for a number of ‘static’ reinitialisation problems, as well as allowing one to maintain

control over the gradient of the level set function (the norm of which is to remain equal to unity

for all time) throughout an evolution, given sufficient memory, which contributes positively to

accuracy in the L2 norm of the solution. Finally, these constituent parts, as discussed above,
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have been combined to form a full level set methodology which has been applied preliminarily

to the application of topology optimisation.

8.2 Suggestions for future work

The first areas of future work which should be completed, should one wish to continue the

research presented in this thesis, would be finding appropriate or improved solutions to a num-

ber of key issues encountered with the work presented so far. Firstly, whilst there are definite

advantages to using the proposed reinitialisation methods presented in Chapter 4, it became

apparent towards the end of the research period that the linearisation of the Elliptic reinitialisa-

tion method (and thus the related extrapolation method) by Picard’s method is unsatisfactory,

especially as the shapes described by the level set interface become more complex and therefore

difficult to solve. Whilst the reinitialisation method as presented utilising the Picard iterative

method does converge monotonically towards the solution, the convergence rate of the method

can and does become prohibitively slow which means one has to decide between a less accurate

solution computed in a reasonable number of iterations or a more accurate solution which may

take much longer to compute. Furthermore, this is an issue which can compound with the pro-

posed adaptive mesh refinement strategy as failure to satisfy a tolerance on the error, which may

be due to stagnation of the method as opposed to an insufficiently resolved mesh, will trigger

further mesh refinement, leading to possible over-refinement and thus a further decrease in effi-

ciency. The solution to this issue is to linearise the reinitialisation problem using a method other

than Picard. Attempts were made at this during the research period. For example, some brief

experimentation was conducted with Newton type schemes (Newton, quasi-Newton and secant

methods) for solving the nonlinear elliptic reinitialisation problem. The expense per iteration did

obviously increase, particularly when computing the Jacobian numerically, however, the New-

ton type schemes were able to demonstrate an increased convergence rate which was promising.

The conclusion of this brief experimentation however was that the improved convergence rate

would invariably lead to overshoots and therefore instability. Furthermore, it was found around

this time that slight improvements could be made for sufficiently smooth problems with the

incorporation of an Anderson acceleration algorithm, as discussed in Chapter 5, and as such

given the time constraints of the project it was decided to move on with a method that if not

fast was at least stable, and given enough time accurate too. There is, however, an abundance

of research into nonlinear solvers, even for nonlinear problems discretised using DG methods,

and thus there are improvements to be made here. For example, it is likely that there exists a

suitable relaxation technique which would allow a Newton type scheme to become a real viable

alternative. Similarly, there might be improvements which could be made to the parabolic form

of the reinitialisation problem, for example, the convergence of the proposed parabolic method

could likely be improved using adaptive pseudo time stepping which may render the method

preferable as a constituent of the proposed level set methodology. Ultimately, leveraging the ad-

vantageous accuracy of the proposed reinitialisation method by improving the convergence rate

would be the premier recommendation for someone looking to continue the research presented

in this thesis.
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The strange behaviour of the chosen hp-steering criterion is another area which it would have

been interesting to investigate. It was shown in a number of example problems that the chosen

method would struggle to identify a singularity particularly in the case that the singularity

existed at a vertex or between two elements, which would then lead to additional refinement

in p which may not have been necessary. This was a particularly difficult issue to diagnose,

as for other almost equivalent examples no such problem would occur. As this was the case,

again the method was deemed to be sufficient in its current form for the purposes of this thesis.

However, as mentioned in Section 6.3.2, there does exist in the literature a number of alternative

hp-steering criteria which were not experimented with during the research period, and as such

it could be the case that simply adopting a different approach might suffice to solve this issue.

In any case, where comparative studies have been conducted into the efficiency of various hp-

steering criteria, [170] for example, which method performs best seems to be problem specific and

thus it would likely be advantageous to conduct such an investigation to ensure an appropriate

choice is being made.

Beyond these issues moving from MATLAB to a compiled language and incorporating high

performance computing techniques would not only be a massive quality of life improvement for

the types of smaller problems presented in this thesis but would absolutely be necessary for

moving beyond benchmark type topology optimisation problems, to real applications. In its

current form, the proposed level set methodology is not as efficient as is often implied by the

generic statement that implicit methods are more efficient than explicit methods. In fact, given

that the required resolution for a given level of accuracy is often so high, and that for stability

reasons modifications have to be made, as was done here with the inclusion of reinitialisation, to

ensure stability and accuracy, it would be interesting to see how the efficiency of the method truly

compares with competitive methods for interface tracking generally, but topology optimisation

methods specifically, after the inclusion of any such auxiliary methods. In any case, one of the

primary motivations of using DG methods in the first place was the high levels of parallelisation

of which the method is capable, which, to some degree regardless of application, would be a

time saver, but perhaps specifically here as it is known that topology optimisation is always

going to be a time expensive problem to solve accurately. It was unfortunately the case that the

work completed during the research period had to guide the direction of the research. Since it

is somewhat a given that parallelisation would decrease the time taken to solve any of the given

problems, and as there was work which needed to be done on the method itself, parallelisation

had to be lowered as a priority. Once the issues mentioned above are ironed out however,

the next recommended step would be to update the codebase using an appropriate compiled

language and to parallelise that which can be parallelised, in particular first ports of call should

be the physics solver and the reinitialisation methods which are the two most expensive parts

of the methodology.

Another area of work omitted from the thesis would be the extension of the methodology

to the solution of 3D problems. Extending the method to 3D was never an explicit goal of

the research to be presented here, as of course the development of a 2D version of the method

was considered a sufficiently difficult problem to tackle for the time being. However, with the
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eventual aim of tackling bigger, more interesting, real optimal design problems, the extension

to 3D would likewise eventually become a necessity. Whilst all of the underlying techniques

are demonstrably capable of dealing with 3D problems, it is often the case that translating any

given method from 2D to 3D is not as straightforward as one might imagine. For example, for

the 2D examples in this thesis Müller’s method is used to perform the integral over the level

set interface which is requisite when enforcing the Dirichlet boundary condition during level set

reinitialisation. Whilst Muller’s method is shown to extend to 3D problems in [144], as discussed

in Section 4.3.2, in order to ensure accuracy it was found to be imperative that a set of integrals

over the parts of the domain where the value of level set function is positive, are computed

to a high degree of accuracy. Whilst not a particularly difficult task in 2D (requiring finding

intersection points between the level set interface and the skeleton of the mesh), the proposed

solution doesn’t necessarily trivially translate to 3D. How difficult such an issue would be to

overcome is debatable, however, it suffices to show by a simple example that the details can

quickly become difficult to deal with when attempting the task of moving from 2D to 3D, and

this would therefore likely be a sizeable area of potential future work.

Another omission which should form an area of future work would be the incorporation of

a hole nucleation mechanism into the methodology. Hole nucleation methods allow for the

generation of new holes during level set evolution which is not possible with the methodology as

it currently stands. This is important because a method which cannot generate new holes has

the maximum number of holes defined by the initial topology chosen by the user, which could

be insufficient to satisfy the global minimum of the optimisation problem. Whilst this was never

an aim of this specific research, in order to avoid the development of methodology trapped by

local minima, an investigation into hole nucleation mechanisms is another recommended area of

future work.

Beyond that stated above to take the developed methodology and use it to not only solve

benchmark topology optimisation problems in 2D and 3D (which of course should be computed

for verification purposes), but to extend the use of the level set based topology optimisation

method for a set of interesting optimal design problems would be a final recommendation from

the author for possible areas of future work. Given the DG nature of the methodology, the

method could be particularly well suited to model fluid problems and therefore the optimal

design of structures undergoing fluid-structure interactions may be one such application, where

such a methodology might prove advantageous.
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Appendix A

Divergence Free Basis Functions for

Müller’s Method

The pth order orthonormalised divergence free bases, β′, in equation (4.27) can be generated as

follows

β′p,0 =

{
yp

0

}
, β′p,k =

{
0

xp

}
,

where k = p+ 1. If p > 0 then

β′p,i =

{
xiyp−i

− i
1+p−ix

i−1yp+1−i

}
, for i = 1, 2, . . . , p.

The total number of basis functions for a given order, p, thus is given by

NI =
(p+ 1)(p+ 4)

2
. (A.1)

For example, for a second order discretisation, there would be 9 basis functions which would be

ordered as follows
β′1 = β0,0, β′2 = β0,1,

β′3 = β1,0, β′4 = β1,1, β′5 = β1,2,

β′6 = β2,0, β′7 = β2,1, β′8 = β2,2, β′9 = β2,3,

and which could therefore be stated as

β′1 =

{
1

0

}
, β′2 =

{
0

1

}
,

β′3 =

{
y

0

}
, β′4 =

{
x

−y

}
, β′5 =

{
0

x

}
,

β′6 =

{
y2

0

}
, β′7 =

{
xy

−1
2y

2

}
, β′8 =

{
x2

2xy

}
, β′9 =

{
0

x2

}
.
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Appendix B

Butcher Tableaus

As it is possible to construct a variety of Runge-Kutta methods for a given order, and there

is often not a standard choice as these varieties can differ in terms of stability and accuracy

in a given context, this appendix specifies the exact set of coefficients used for each order of

Runge-Kutta method used in this thesis. As is explained in the main body of this document

(see Section 5.1.2), as a general rule, for a spatial discretisation of maximum polynomial order

pmax, a Runge-Kutta temporal discretisation of order pmax + 1 is adopted. Over the range

of example problems presented in this thesis, the maximum polynomial order is in the range

1 ≤ pmax ≤ 8, and as such presented below are the coefficients for Runge-Kutta methods of

order 2 ≤ pRK ≤ 8. For discretisations of order pmax = 8, a 10th Runge-Kutta method is used

with coefficients which have been computed numerically and which therefore cannot be stated as

succinctly, as such the reader is referred to the paper from which these coefficients come, [199],

for details. How to use these tables is described Equations (5.7) and (5.6), in Section 5.1.2.

0

1 1
1
2

1
2

Table B.1: Butcher Tableau for Heun’s Method (RK2)

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

Table B.2: Butcher Tableau for Heun’s 3rd Order Method (RK3)
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0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Table B.3: Butcher Tableau for the classical 4th Order Method (RK4)

0
1
4

1
4

1
4

1
8

1
8

1
2 0 0 1

2
3
4

3
16

−3
8

3
8

9
16

1 −3
7

8
7

6
7

−12
7

8
7

7
90 0 16

45
2
15

16
45

7
90

Table B.4: Butcher Tableau for a 5th order RK method (RK5) [200]

0
1
3

1
3

2
3 0 2

3
1
3

1
12

1
3

−1
12

5
6

25
48

−55
24

35
48

15
8

1
6

3
20

−11
24

−1
8

1
2

1
10

1 −261
260

33
13

43
156

−118
39

32
195

80
39

13
200 0 11

40
11
40

4
25

4
25

13
200

Table B.5: Butcher Tableau for a 7 stage 6th Order Runge-Kutta Method (RK6) [200]

0
1
6

1
6

1
3 0 1

3
1
2

1
8 0 3

8
2
11

148
1331 0 8

71
−4
95

2
3

−133
80 0 −170

27
317
134

795
127

6
7

38
37 0 449

124
−170
149

−349
113

81
157

0 5
154 0 0 13

73
−13
146

−12
73

3
70

1 −113
32 0 −195

22
32
7

1247
152

−215
151

19
26

21
16

0 0 0 32
105

198
703

43
453

123
548

77
1440

11
270

Table B.6: Butcher Tableau for a 9 stage 7th Order Runge-Kutta Method (RK7) [200]
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