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Abstract

This thesis uses gravitational lensing to map the distribution of dark matter around

galaxy clusters, and to infer their formation history. Galaxy clusters are the oldest

and most massive gravitationally-bound objects in the Universe, exploited in the

most discriminating tests of cosmology. It is therefore essential to understand the

astrophysics of their formation. Indeed, clusters grow through filamentary connec-

tions with surrounding large-scale structures – and to chart their history is to trace

the evolution and trajectory of the Universe itself.

Gravitational lensing is the apparent distortion in the shapes of distant galaxies

due to foreground mass, such as a galaxy cluster. Many software algorithms have

been developed to measure gravitational lensing and to reconstruct the distribution

of foreground mass. In this thesis, we assess the performance of two mass-mapping

techniques, using mock images of the BAHAMAS simulation, where the true distri-

bution of mass is known. We find the methods suitable for different applications:

MRLens suppresses noise without bias, while Lenstool suppresses noise further,

but at a cost of over-estimating the mass in cluster outskirts (R > 1 Mpc) by up to

a factor 2. We also develop a filter to search for large-scale filaments connected to

galaxy clusters. We then use these calibrated techniques, and the largest ever mosaic

of Hubble Space Telescope imaging, to study galaxy cluster MS 0451-03 (z = 0.54).

We map the distribution of its dark matter, and discover six group-scale substruc-

tures, linked to the cluster halo by three possible filaments. By comparing lensing

results with analyses of X-ray emission and optical spectroscopy, we conclude that

the cluster collided with another 2–7 Gyr ago. Its star formation was quenched and

its gas was heated; its gas has still not yet relaxed, and the dark matter halos are

approaching second apocentre.



iv

In the next decade, space-based telescopes will reveal this richness of detail about

tens of thousands of galaxy clusters. If these observations are properly calibrated,

via studies like this thesis, they will bring a new era of precision cosmology. As a final

step towards this future, we present preliminary results from two ongoing projects:

using deep learning to further suppress noise in lensing mass reconstruction, and the

first successful measurement of gravitational lensing from a balloon-borne telescope

at the edge of space.
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Chapter 1

Introduction

Human beings have always been fascinated and thus curious of our Universe. Who

has never watched the night sky and not been attracted by the starlights surround-

ing this darkness? From this primitive curiosity, they gradually began to investigate

the underlying mechanisms of the Universe, trying to understand its evolution and

composition. With the advance of science, we now realise that this luminous mat-

ter, including dust clouds, stars and galaxies, constitutes merely 5% of the Universe.

The other 95% are unfortunately not directly observable from telescopes, but never-

theless exist and are subsequently called “Dark Matter” and “Dark Energy”. Since

this discovery, cosmologists have paid increasing attention to the dark side of the

Universe.

With the invention of telescopes of always higher resolutions, every decade has

brought new findings. However, the nature of dark energy and dark matter remains

one of the biggest mysteries in our Universe which scientists endeavour to unlock.

Current cosmological probes suggest that our Universe is expanding at an acceler-

ating rate, and dark energy being responsible for this expansion. The other dark

component, dark matter, plays a crucial role in the origin and the evolution of struc-

tures. Their distinctive natures determine the ultimate fate of our Universe. If there

is lots of mass, the expansion of the Universe will eventually reverse and recollapse,

causing a “Big Crunch”. On the other hand, if dark energy eventually overcomes

gravity, it will tear everything apart, and the Universe will end in a “Big Rip”.

In this thesis, we are particularly interested in the properties of dark mat-
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Chapter 1. Introduction 2

ter. Studying the dark matter distribution of the whole Universe is difficult be-

cause the observable universe is limited. Nevertheless, galaxy clusters, the largest

gravitationally-bound structures in the universe, can trace the “matter skeleton” of

our Universe on the largest scales.

Based on the hierarchical structure formation scenario of the standard cosmo-

logical model, the ΛCDM (Λ for cosmological constant and CDM for cold dark

matter) paradigm, small structures arose through the growth of density perturba-

tions of dark matter which originated from the early universe. These structures then

grew into more massive objects through matter accretion along their surrounding

filamentary structures. In this scenario, galaxy clusters are the most massive ob-

jects in the observable Universe, consisting of 85% dark matter, 10% hot gas (called

intra-cluster medium, ICM), and 5% stars. The vast amount of dark matter makes

galaxy clusters fascinating cosmological laboratories for studying the “Dark Uni-

verse”. Furthermore, the shape of the distribution of mass inside a cluster reflects

the nature of dark matter (whether it is collisionless; for example as in Robertson

et al., 2019). On larger scales, a cluster’s orientation is governed by accretion of

matter from the surroundings. Most substructures are accreted into clusters along

filaments (Angulo et al., 2012; Aragón-Calvo et al., 2007; Bond et al., 1996; Yess &

Shandarin, 1996). Consequently, clusters tend to align with these directions (e.g.

Jing & Suto, 2002; Warren et al., 1992). In addition, since their growth spans the

entire age of the Universe, and depends upon the density of infalling material and its

gravity collapse, as opposed to its disruption by supernovae, active galactic nuclei,

and dark energy, measurements of the precise number and properties of clusters

represents highly sensitive tests of the standard cosmological model (e.g. Bahcall &

Bode, 2003; Fluri et al., 2019; Ho et al., 2006; Jauzac et al., 2016; Mao et al., 2018;

Rozo et al., 2010; Schwinn et al., 2017; Weinberg et al., 2015).

Accurate measurements of the mass and internal structure of clusters are key to

unlock the mystery of dark matter. Although the majority of matter in clusters is not

directly observable, the total mass along the line of sight can be mapped, regardless

of its physical or dynamical state, via measurements of the gravitational lensing

of the light emitted by background objects (behind clusters). The strong lensing
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effect causes a large distortion of background sources, producing multiple images or

giant arcs. It probes the mass distribution in the inner core of clusters, while weak

lensing provides constraints on the larger-scale environment. The phenomenon of

gravitational lensing is predicted by General Relativity. The dense concentration of

mass in a foreground galaxy cluster deflects light rays emitted by unrelated galaxies

far in the background. Since adjacent light rays are almost coherently deflected, the

shapes of those distant galaxies appear distorted, and typically stretched tangentially

around the cluster. Crucially, the deflection of light rays depends only upon the total

projected mass distribution. Measurements of gravitational lensing are therefore

uniquely sensitive to the distribution of invisible-but-dominant dark matter, and

unbiased by the nature and dynamical state of ordinary matter (e.g. Bartelmann &

Maturi, 2017; Hoekstra, 2013; Kilbinger, 2015; Kneib & Natarajan, 2011b; Massey

et al., 2010; Treu & Ellis, 2015).

This thesis is centered on the study of the weak gravitational lensing in galaxy

clusters, aiming to constrain the physical properties of galaxy clusters by studying

the total matter content of galaxy clusters and its surrounding environments. With

the capabilities of the next-generation of telescopes, more clusters with wide-field

and space-resolution observations will be made available. With regard to cluster

mass distribution specifically, it is conducive to future research to look for an opti-

mum method to convert weak lensing shear into precise mass distribution of lenses.

Therefore, we first quantified two mass mapping techniques using data from the

BAHAMAS simulation, and find the one suitable to the real galaxy clusters. Af-

terwards, we conducted a combined strong and weak lensing analysis of a massive

galaxy cluster, MS 0451-03. Its wide-field mosaic of imaging data with the HST

allowed us to detect possible large-scale filament directions extending from cluster

centre, and funneling matter into its core. Significant properties of this cluster and

its dynamical state were then inferred.

This thesis is structured as follows. In Chapter 2 I present a brief review of some

aspects of cosmology which are relevant to our later discussions. Chapter 3 presents

the theoretical basis of gravitational lensing and describes in detail the weak lensing

shape measurement pipeline pyRRG used in this study. The details of the two
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weak lensing mass mapping techniques are also described. In Chapter 4, we quan-

tify the performance of these two techniques using the BAHAMAS simulation data,

and apply halo shape measurements and filament searches on the final mass recon-

structions. Chapter 5 presents the combined strong and weak lensing analysis of the

massive galaxy cluster, MS 0451-03. I also present the constrained X-ray and lensing

analyses to infer its dynamic state. In Chapter 6, I present some preliminary results

from a new mass reconstruction method with machine learning and the wide-field

balloon-borne imaging telescope, SuperBIT (Super-pressure Balloon-born Imag-

ing Telescope). Finally, I summarize the discoveries and the results of this thesis in

Chapter 7.
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Chapter 2

Cosmological background

2.1 The Standard Model of Cosmology

2.1.1 ΛCDM model

Based on the current observational evidence from multiple cosmological probes, our

Universe is well described by the ΛCDM model, where Λ stands for dark energy

with constant energy density, and CDM for Cold Dark Matter. These two “dark”

components determine the evolutionary fate of our Universe.

The ΛCDM Universe begins with a hot big bang and has been expanding since

then, a prediction which was confirmed by the observations of distant type Ia super-

novae (Perlmutter et al., 1998; Riess et al., 1998). The acceleration of the expansion

rate nowadays is due to dark energy, which constitutes the majority (∼ 70%) of

the total energy density. This mysterious component causes a constant push of

emptiness between masses, resulting in accelerating cosmic expansion over time.

The second important component is dark matter, which makes up ∼ 25% of the

Universe, while only ∼ 5% of the energy density consists of normal baryonic matter.

Dark matter seems to only interact via gravity, and has a very small electroweak

interaction and self-interaction cross section, hence it does not emit light at any

wavelength. This invisible matter plays an essential role in structure formation since

its gravity holds matter together to collapse and form structure. Zwicky (1933) first

proposed the existence of dark matter by studying the dynamics of galaxies in the

5
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Coma cluster and other clusters. He found a high peculiar velocity which required

a cluster to be about 100 times more massive than expected from its luminous

contents to keep the galaxies bound. Another famous observational evidence of dark

matter is given by the study of the merging Bullet cluster (Clowe et al., 2004), who

discovered non-identical distributions of total mass and X-ray emitting gas. This

finding supported the collisioness nature of dark matter: the two main cluster halos

passed through each other and decelerated because of being affected by gravitational

force only, whereas the collisional gas experienced hydrodynamical friction, causing

large disturbances and shocks. Bullet clusters are useful to constrain the properties

of dark matter. Robertson et al. (2017) performed numerical simulations of the

merging galaxy cluster, including the effects of elastic dark matter scattering. They

found that self-interacting dark matter transfers momentum between two merging

halos, leading them, similar to the gas distribution, to lag behind the collisionless

galaxies. Therefore, the offsets between the dark matter peaks and those of the

baryonic matter (ICM and galaxies) offer a possibility to measure the self-interacting

cross section of dark matter (e.g. Markevitch et al., 2004; Massey et al., 2015). In

particular, Harvey et al. (2015) combined the measurements of 72 colliding systems

and constrained the dark matter’s momentum transfer cross-section to be σDM/m <

0.47cm2/g.

While many studies confirm the existence of missing mass in our Universe, the

nature of dark matter remains unsettled. Traditionally, there are three kinds of dark

matter: hot, warm and cold. Their temperature denotes how fast they can move

in the very early Universe. Cold dark matter is non-relativistic and is favoured by

modern observations. Hot dark matter particles travel with relativistic velocity, so

that they can escape from small mass density fluctuations, resulting in a relatively

slow structure formation. Warm dark matter has intermediate properties.

Instead of introducing an unknown matter, the missing mass problem can also

be solved by a modification of the law of gravity at large distances, such as Modified

Newtonian Dynamics (MOND; Milgrom, 1983). Nevertheless, ΛCDM is currently

the standard model that successfully describes and recovers most of the current

observations. Therefore, in this thesis, our cosmology assumptions are based on
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ΛCDM.

2.1.2 Friedmann-Robertson-Walker matrix

In the standard cosmological model, our Universe is assumed to be homogenous and

isotropic on large scales, meaning that at any time the Universe looks the same from

any positions and along any directions in space. This Space-Time can be described

by Friedmann-Robertson-Walker matrix which can be written as

ds2 = −c2dt2 + a2(t)[dχ2 + f 2
K (χ) (dθ2 + sin2θdφ2)], (2.1.1)

dχ =
dR√

(1−KR2)
(2.1.2)

where c is the speed of light, and a(t) is called the scale factor, which represents the

expansion of the universe. This factor is defined as the change in physical distance

between observers at the present and at time t; normally we choose a(t0) = a0 = 1

at the present epoch, t0. (χ, θ, φ) are the spherical polar coordinates in comoving

space where the observer with this coordinate moves along with the Hubble flow.

fK (χ) is called the comoving angular diameter distance which depends on χ and

the curvature K. It is either a trigonometric, linear or hyperbolic function of χ for

a closed Universe (K > 0), a flat Universe (K = 0) or an open Universe (K < 0),

respectively.

fK (χ) =


1√
K

sin(
√
Kχ)) for K > 0

χ for K = 0

1√
|K|

sinh(
√
|K|χ)) for K < 0

(2.1.3)

2.1.3 Friedmann’s Equations

To describe this Space-Time in a more comprehensive way, we need to know its

dynamics, namely how the expansion rate changes with time and how the curvature,

K, depends on matter. Einstein’s field equation links the curvature distortion with

the content of the Universe,

Gαβ =
8πG

c2
Tαβ + Λgαβ (2.1.4)
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where Gαβ is the metric tensor which describes the geometry of Space-Time, G is

the gravitational constant, and Tαβ is the stress-energy tensor of the matter. The

second term of Λ proportional to a metric gαβ was introduced by Einstein to keep

our Universe static. The field equation can be simplified to two cosmological field

equations: (
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(2.1.5)

and (
ä

a

)
= −4

3
πG

(
ρ+

3p

c2

)
+

Λ

3
(2.1.6)

Dots here indicate time derivatives. Equation 2.1.5 is called Friedmann’s equation.

These two equations govern the expansion of the Universe, describing the time evo-

lution of the scale factor a(t). We introduce the Hubble parameter , H ≡ ȧ/a, as

the relative expansion rate. At the present epoch t0, H(t0) = H0 is the Hubble

constant and its value is still uncertain. Recently, tension over the Hubble con-

stant has increased. Studying the time delays of six distant quasars, Wong et al.

(2019) found that H0 = 73.3+1.7
−1.8, km s−1 Mpc−1. Riess et al. (2019) obtained a sim-

ilar result H0 = 74.03 ± 1.42, km s−1 Mpc−1 by measuring cosmic expansion via

“cosmic distance ladders”. In contrast, the“cosmic microwave background” mea-

surement conducted by Planck Collaboration et al. (2018) predicted a much lower

H0 = (67.4±0.5) km s−1 Mpc−1. This inconsistency between “distant” and “local”

measurements may be indication of new physics behind ΛCDM. For convenience, we

define h = H0/100 km s−1 Mpc−1 to ignore the uncertainty in H0. The Friedmann’s

equation can therefore be expressed in terms of the Hubble parameter,

H2 +
Kc2

a2
=

8πG

3
(ρ) +

Λ

3
(2.1.7)

2.1.4 Cosmic Components

During the evolution of Space-Time, our Universe is dominated by different cosmic

components. In Eq 2.1.7, we decompose the energy density ρ into its matter content,

ρm, and its radiation content, ρr, and therefore obtain

H2 +
Kc2

a2
=

8πG

3
(ρm + ρr) +

Λ

3
. (2.1.8)
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We further define the relationship between pressure, p, and energy density, ρ, of the

fluids using an equation of state,

p = ωρc2 (2.1.9)

where ω is the equation of state parameter. Combing Equation 2.1.5 and Equa-

tion 2.1.6, we find ρ ∝ a−3(1+ω). For non-relativistic components, such as baryonic

and dark matter, ω = 0 and ρm ∝ a−3. For radiation, such as photons and neutrinos,

their equation of state is ω = 1/3, and therefore their density evolves as ρr ∝ a−4.

For dark energy (or cosmological constant), ω = −1, corresponding to the case of

vacuum. This quantity, ρλ, remains a constant and does not change with time.

This time dependence of different density components enables us to draw a big

picture of the history of our Universe. In the early Universe, when a was small,

radiation dominated but quickly decayed due to the scaling factor a−4. At present,

it has a negligible contribution to the total energy density. After that, the Universe

entered a matter-dominated era. When matter started to decay, with a scaling factor

a−3, dark energy began to dominate and caused an accelerated expansion.

It is useful to define the dimensionless density component at present time as

Ωm ≡
ρm
ρcr

, Ωr ≡
ρr
ρcr

, ΩΛ ≡
Λ

3H2
0

, (2.1.10)

where ρcr is critical density of the Universe, defined as

ρcr ≡
3H2

0

8πG
. (2.1.11)

Using Equation 2.1.8 and Equation 2.1.10, we can express the Hubble parameter in

terms of the density parameters and scale factor:

H(a)2 = H2
0 (ΩΛ −Kc2a−2 + Ωma

−3 + Ωra
−4). (2.1.12)

This equation implies that the time evolution of the Hubble function depends on

the fractional density of different components.

At present time, H(t0) = H0, and Ωr 6 Ωm, therefore

K =

(
H0

c

)2

(Ωm + ΩΛ − 1). (2.1.13)

The curvature K is determined by the energy density of matter and dark energy. If

(Ωm + ΩΛ) = 1, the Universe is flat. For (Ωm + ΩΛ) < 1, the Universe is spatially

open (hyperbolic). For (Ωm + ΩΛ) > 1, the Universe is spatially closed.
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2.1.5 Redshift and Cosmological Distances

In this subsection, we introduce some concepts that will be used in our later discus-

sions.

Redshift

Redshift is a phenomenon where the electromagnetic spectrum of a source is shifted

toward longer wavelength due to the Doppler effect, or the expansion of the Universe.

In an expanding Universe, a photon wavelength is stretched from λemit to λobs and

the redshift, z, is defined as

1 + z ≡ λobs

λemit

, (2.1.14)

which is also related to the scale factor as: a(t) = 1
1+z

. Cosmologists often use

redshift to parametrize the measure of the distance (or time) of an object. At the

present time t0, z = 0.

Cosmological Distance

Since our Universe could be a curved Space-Time, the definition of ”distance” may

not be unique, which is different from Euclidean space case. In the following, we

define four different distances which are related to different observable properties.

Proper Distance The Proper Distance (also called Physical Distance), Dprop,

is measured by the travel time of a light ray emitted from a source at redshift ze

and received by an observer at redshift zo. In Equation 2.1.1, Space-Time can be

expressed as ds2 ≡ −c2dt2 +dD2
prop. Considering the trajectory of light ray, ds2 = 0,

we obtain dD2
prop = c2dt2.

Comoving Distance As mentioned in Section 2.1.2, the comoving distance Dcom

is measured by the observer moving along with the Hubble flow, which means that

this distance is unaffected by the expansion of the Universe. In order to get rid of the

space expansion, the proper distance is rescaled by a−1, thus: dDcom = dDprop/a(t).

For a light path, we have cdt = a(t)dDcom from the metric, and the comoving

August 16, 2020



2.1. The Standard Model of Cosmology 11

distance can be calculated as

Dcom(zo, ze) =

∫ a(zo)

a(ze)

cdt

a
= c

∫ a(zo)

a(ze)

da

H(a)a2
(2.1.15)

where the Hubble parameter, H(a), depends on the cosmology, and a(ze) and a(zo)

are the scale factors at emission and observed times, respectively.

Angular-Diameter Distance The angular-diameter distance DA is defined in

terms of the object’s actual size and its angular size viewed from an observer. Con-

sider the physical cross section of an object ∆A at redshift ze subtending to the

solid angle ∆θ for an observer at zo. Hence,

DA(zo, ze) ≡
(

∆A

∆θ

)1/2

= a(ze)fK(χ(zo, ze)) = a(ze)fK(Dcom(zo, ze)) (2.1.16)

where fK(χ(zo, ze)) is the comoving angular diameter defined in Equation 2.1.3. The

scale factor, a(ze), in this equation is meant to rescale the comoving quantity back

to the physical quantity at emission time.

Luminosity Distance The luminosity distance DL is defined by the relation

between an object’s luminosity L at redshift ze, and the flux received by an observer

at redshift zo. The observed flux can be written as

f =
L

4πD2
A(zo, ze)

(
a(ze)

a(zo)

)4

(2.1.17)

The factor of (a(ze)/a(zo))
2 arises from the fact that photons are redshifted, their

energy is thus decreased by a factor a(ze)/a(zo), and their arrival time is also delayed

by the same factor. We can then define the luminosity distance DL as

DL(zo, ze) =

(
a(zo)

a(ze)

)2

DA(zo, ze), (2.1.18)

and obtain

f =
L

4πD2
L(zo, ze)

. (2.1.19)
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2.2 Structure formation

2.2.1 Density Fluctuations

In the previous section, we mentioned that the standard cosmological model is built

upon the Cosmological Principle: the Universe is homogeneous and isotropic, which

is valid on large scales. In fact, on smaller scales, there were inhomogeneities,

i.e. small fluctuations at very early times. These density fluctuations originated

from quantum fluctuations at the time of the Big Bang, and then by gravitational

instability growing to form structures, such as clusters, galaxies, and stars we see

today. These tiny density fluctuations can be described by the density contrast

δ(x) =
ρ(x)− ρ̄

ρ̄
, (2.2.20)

where ρ(x) is the local density, and ρ̄ is the mean density in the Universe. The

amplitudes of these fluctuations will gradually grow due to their own gravity. When

density contrasts, δ(x), are much smaller than unity at early time, they evolve

linearly with time, and therefore can be described by linear perturbation theory.

The evolution of density fluctuations in the early stage is given by (e.g. Peacock,

1999; Peebles, 1993)

δ̈ + 2
ȧ

a
δ̇ = 4πGρδ. (2.2.21)

This shows that the time evolution of density fluctuations depends on the underlying

cosmology, namely the background expansion and the fraction of different energy

density components, both of which also change with cosmic time. It is convenient

to decompose the density contrast, δ, into discrete Fourier modes with different

wavelengths, λ, so that these individual modes evolve independently.

Before getting into the details of structure evolutionary history, we introduce

a concept of “horizon”. The horizon size is the maximum distance that a photon

can travel in a time, t, since the Big Bang, DH = c
aH(a)

. As no information (or

any physical interaction) can travel faster than a photon, particles are not able to

communicate outside the horizon. However, the Universe is discovered to be very

homogeneous on large scales (Smoot et al., 1992) where the widely separated patches

of sky are causally disconnected regions. These patterns of structure similarity are
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known as the horizon problem, which can be explained by cosmological inflation.

After the big bang, our Universe experienced a period of accelerated expansion.

This rapid expansion enlarged the connected regions out of the horizon regions,

resulting in the homogeneous nature of our Universe. Since then, matter density

starts to evolve. If density fluctuations of wavelength λ < DH(a) in the radiation

domination era, the growth rate of these modes is ∝ a2. When the fluctuations of

wavelength are smaller than the horizon during the radiation-dominated era, which

means that these modes enter the horizon, the gravitational collapse of these density

contrast is suppressed by the outward pressure of radiation. After entering the

matter-dominated era, they continue to grow as ∝ a. Finally, density fluctuations

grow to the point where they cannot be linearly described (δ ∼ 1), with different

modes interacting with each other. It is therefore difficult to describe this complex

non-linear evolution, numerical calculation is thus needed.

2.2.2 The Comic Web

With the initial conditions of the Universe, large-scale N-body simulations (e.g.

Springel et al., 2005) trace the movement of dark matter particles, helping us to

model how dark matter is distributed and how structures have grown from early

times to the present. Cosmologists find that our Universe evolves into an ensemble

of large-scale structures (LSS) by self-gravitation. These highly non-linear structures

form a complicated network of matter, called “cosmic web”. The network contains

the under-dense regions called voids (Cautun et al., 2013), and the over-density

regions centering in galaxy clusters and interconnected through filaments and sheets.

Over-dense perturbations continue to grow by attracting nearby dark matter, and

voids also grow in size with time to become emptier. These extended filamentary

structures play an important role in driving the growth of structures since materials

infall into dark matter halos along these preferred directions. Figure 2.1 shows a

snapshot from the Millennium Simulation (Springel et al., 2005) where there is a

massive galaxy cluster in the center with extended large-scale filaments connected

to it.

When we zoom into the smaller scales of the dark matter halo, it is found that
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Figure 2.1: The snapshot of a simulated Universe in the N-body Millennium Simu-

lations (Springel et al., 2005) at redshift z = 0.0. The white bar marks the length

scale of 31.25 Mpc/h. The colour scale represents the mass density of dark mat-

ter, where the massive cluster halo in the center is shown in bright yellow, and the

surrounding extended filaments are shown in purple. (Figure credit: Millennium

Simulation Project 1, Springel et al., 2005)

1https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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Figure 2.2: Galaxy distribution in the 2dF Galaxy Redshift Survey. Redshift is

shown in the radial direction, and the polar angle is the right ascension. (Figure

credit: M. Colless and the 2dF Galaxy Redshift Survey team).

smaller local peaks collapse and form subhalos, where infalling matter becomes

hot enough for star formation to begin, eventually leading to galaxies. Therefore,

galaxies are believed to exist at the centres of dark matter halos. Even though the

majority of matter is invisible, the luminous part, the galaxies, can approximately

trace the underlying mass distribution. Observational evidences of this web-like

network were first provided by large-scale galaxy redshift surveys (e.g. Colless et al.,

2001; Geller & Huchra, 1989; York et al., 2000); (figure 2.2) which map the spatial

distributions of galaxies in redshift space with spectroscopic surveys. However, the

spatial distribution of baryons may differ from that of underlying dark matter due

to the varied physics of galaxy formation. (e.g. Norberg et al., 2002; Saunders et al.,

1992). Galaxy bias, the ratio of mean overdensity of galaxies to mean overdensity

of mass, b = δg/δ, provides a description of how well galaxies trace the total mass

distribution (e.g. Kaiser, 1984).

Gravitational lensing provides a direct way to study the dark matter distribution,

which contains rich information on structure formation history, and therefore can
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Figure 2.3: The “bullet cluster”, 1E0657-56, reconstructed from multi-wavelength

data. The optical image shows the location of galaxies. The overlaid pink cloud

shows the X-ray emission from the hot ICM. Both of these are associated with bary-

onic material. The overlaid blue color shows the total mass reconstruction obtained

with gravitational lensing. (Figure credit: X-ray: NASA/CXC/CfA/ M.Markevitch

et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al.

Optical image: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.)

be used to test different cosmological models. In particular, based on the ΛCDM

model, LSS evolves through an upward hierarchical process of accretion and merging

of small halos, eventually building the largest structures, clusters of galaxies. This is

consistent with observations. On the other hand, hot dark matter model predicts the

reverse process, in which the largest structures form first and then develop smaller

systems. This model has been ruled out by observations.

2.2.3 Galaxy Clusters

According to hierarchical structure formation, galaxy clusters are the largest grav-

itationally bound objects, which formed via a series of mergers with smaller halos
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2.2. Structure formation 17

and continuous accretion of surrounding matter. They can contain several tens and

up to thousand of galaxies, with total masses up to a few 1015M�. For example,

the Virgo cluster with M200 = (1.05 ± 0.02) × 1014M� (Simionescu et al., 2017)

has approximately 2,000 member galaxies and a size of ∼ 3 Mpc in diameter. The

Coma cluster with M200 = (1.88+0.65
−0.56)× 1015M� (Kubo et al., 2007) has more than

10,000 member galaxies and spans a physical scale of 6-8 Mpc. There are smaller

objects, called Galaxy Groups, which contain fewer galaxies and have typical masses

of about a few 1013M�. The composition of galaxy clusters is roughly 85% of dark

matter, 10% of X-ray luminous and hot intracluster gas, and 5% of stars. This

vast amount of dark matter makes galaxy clusters one of the most important cos-

mological probes in modern Astrophysics. They are the largest observable objects

in the Universe, representing the high-mass end of collapsed structures originating

from the highest peaks in the underlying density field. Their individual physical

properties, mass functions and evolution histories are thus dependent on the initial

density fluctuations and can be used to test the underlying cosmology.

Accurate measurement of their mass is one of the most important topics in

galaxy cluster study. Traditionally we have three approaches to determine their

mass. The first of them is the study of the dynamics of cluster members, using the

virial theorem,

2T + U = 0, (2.2.22)

where

T =
Mtotσ

2
v

2
,

U =
GM2

tot

Rtot

,

(2.2.23)

and σv is velocity dispersion. It links the kinetic energy (T ) of the total system with

its gravitational potential energy (U) to yield the cluster mass. In order to use the

virial theorem, we need to assume that the system is stable/in equilibrium. Second,

since the hot gas in clusters emits the X-rays due to the Bremsstrahlung effect, the

cluster mass can be estimated by using the X-ray temperature and flux, given the

assumption of hydrostatic equilibrium (HSE) and the spherical symmetry of the

gravitational potential. These two methods are based on assumptions regarding the

August 16, 2020



2.2. Structure formation 18

dynamical state of the system. However, for an unrelaxed or merging cluster, the

virial theorem and the HSE are not valid. Gravitational lensing though, enables us

to directly probe the total cluster mass, including its dark matter content, indepen-

dently of any equilibrium or symmetry assumptions. The theory of gravitational

lensing is presented in detail in the next chapter.

2.2.4 Press-Schechter Mass Function

According to hierarchical structure formation, smaller objects formed first and then

merged into bigger systems. Mergers between halos of similar masses are referred

to major mergers. Those between halos at different mass ranges are called minor

mergers. Supported by observations and N-body simulations, a parent halo con-

tains smaller halos (called subhalos) orbiting around it, and the amount of subhalos

depends on its merging history.

Since structure formation is a dynamic process, current observation cannot cap-

ture its whole evolution history. Nevertheless, its product, such as galaxy clusters

and subhalos at a given redshift, can be seen. Therefore, the statistical distribution

of halos as a function of mass is sensitive to cosmology, where the overall density

controls the rate of structure growth. We introduce the concept of the mass func-

tion, n(M), the number density of halos at a given redshift within a mass in the

range M and M + dM . In principle, this quantity can be measured by counting

structures of a given mass contained within a selected volume in space. Press &

Schechter (1974) derived an analytical expression for the mass function and related

it to the initial density field,

n(M) =

√
2

π

dσM
dM

ρ0δc
Mσ2

M

exp

(
− δ2

c

2σ2
M

)
, (2.2.24)

where ρ0 is the background density, δc is the threshold of smoothed initial density

field and it is common to use δc ≈ 1.686 as this is the linear density contrast at

which a spherical top-hat perturbation would collapse and form virialized structures

(Spherical Collapse Model; Gunn & Gott, 1972). σM is the variance of the smoothed

density field,

σ2
M =

1

2π2

∫
dkk2Pm(k, z)Ŵ 2

R(k), (2.2.25)

August 16, 2020
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where Pm(k, z) is the matter power spectrum, and Ŵ 2
R(k) is the Fourier transform

of the real-space spherical tophat window function which can filter the density field

on a length scale R,

ŴR(k) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] . (2.2.26)

Thus, the mass function depends on the primordial power spectrum (or the two-point

correlation function of the initial density contrast), extrapolated to the present using

linear theory.

2.2.5 Halo Density Profile

To investigate the dependence of the mass distribution with radial distance from the

cluster centre, it is usual to measure the radial density profile of galaxy clusters. The

density profile is often described by a parametric model with radial symmetry (e.g.

elliptical model). Thus, for irregular mass distributions such as most unrelaxed

clusters, the stacked density profile of a sample of clusters is needed to compare

theoretical predictions with the real observed Universe. Moreover, there are some

azimuthally averaged features of galaxy clusters which can be measured from radial

density profiles. The splashback radius (Diemer & Kravtsov, 2014) is one of them,

i.e. the physical boundary of dark matter halos that characterises the region of

accreting materials at the outskirts.

There are several different halo models describing the radial mass dependence of

a real galaxy cluster. In the following, we present the details of the mathematical

definition and description of each halo model used in this thesis. Some of these

models only have an analytical form for the 3D density; from this we can compute

the projected surface density by integrating along the line of sight,

Σ(R) = 2

∫ ∞
R

rρ(r)√
r2−R2

dr. (2.2.27)

tPIEMD profile

Massive elliptical galaxies are empirically observed to have an approximately isother-

mal density distribution (ρ ∝ r−2), and a total mass proportional to the velocity
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2.2. Structure formation 20

distribution of their stars, σ. The truncated Pseudo-Isothermal Elliptical Mass Dis-

tribution (tPIEMD; Eĺıasdóttir et al., 2007; Kassiola & Kovner, 1993a; Limousin

et al., 2005)

ρtPIEMD =
ρ0

(1 + r2/r2
c)(1 + r2/r2

t )
(2.2.28)

removes the inconvenient mathematical singularity from the centre by softening the

density inside a core radius rc, and makes the integrated mass finite by truncating

the profile at radius rt. The central density is

ρ0 =
σ2

2πG

rc + rt

r2
c rt

. (2.2.29)

The projected two-dimensional mass distribution is

ΣtPIEMD(R) =
σ2

2G

rt

rt − rc

(
1√

R2 + r2
c

− 1√
R2 + r2

t

)
. (2.2.30)

Within rc, the surface density is approximately constant. For the region between

rc and rt, its surface density is isothermal, whilst beyond rt it sharply decreases as

R−3. It is a physically motivated model since it provides a finite total mass and

central density to describe the flat region in the cluster centre.

NFW profile

The Navarro-Frenk-White (NFW) model is the universal density profile of dark

matter halos suggested by numerical simulations (Navarro et al., 1996, 1997). The

NFW 3D radial density profile has a two-parameter functional form of

ρNFW =
ρs

(r/rs)(1 + (r/rs))2
(2.2.31)

where ρs and rs are the characteristic density and radius respectively. At r = rs,

the logarithmic density slope equals to the isothermal value, dlnρ(r)/dlnr = 2. For

any given cosmology and cluster redshift, this model can also be parametrized in

terms of the concentration parameter, c200 = R200/rs, where R200 is the radius at

which the mean enclosed density is equal to 200 times the critical density, ρc, of the

Universe, and halo mass M200 = (4π/3)200ρcR
3
200.

The projected two-dimensional mass distribution is given by (Bartelmann, 1996)

ΣNFW(R) = 2ΣsF (x), (2.2.32)
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where Σs = ρsrs, x = R/rs, and

F (x) =


1

x2−1

(
1− 2√

x2−1
arctan

√
x−1
x+1

)
if x > 1

1
3

if x = 1

1
x2−1

(
1− 2√

1−x2 arctan
√

1−x
1+x

)
if x < 1 .

(2.2.33)

Generalized NFW (gNFW) profile

A generalized version of the NFW model has the form (Zhao, 1996)

ρgNFW =
ρs

(r/rs)α(1 + (r/rs))(3−α)
. (2.2.34)

It has a power-law shaped central cusp, ρ ∝ r−α, which reduces to a NFW model

when α = 1. Similar to NFW, we describe the gNFW profile with a central slope α, a

halo mass, M200, and a concentration, c200 = r200/(2−α) rs. The radial dependence

of the gNFW lensing signal was calculated by Keeton (2001a).

Einasto profile

Several N-body simulations (e.g. Dutton & Macciò, 2014; Graham et al., 2006; Har-

vey et al., 2015; Klypin et al., 2016) have shown that CDM halos can best be

described by the Einasto density profile (Einasto, 1965), which is written as

ρEinasto = ρs exp

{
− 2

αE

[(
r

rs

)αE

− 1

]}
, (2.2.35)

where αE is the shape parameter describing the steepness of the logarithmic slope.

Alternatively, we can express the density profile as

d log ρ

d log r
= −2

(
r

rs

)αE

. (2.2.36)

An Einasto profile with αE ∼0.18 has a similar shape as an NFW at a given con-

centration (Ludlow et al., 2013).

Burkert profile

In contrast to the other profiles presented, the Burkert (1995) dark matter halo has

a core structure in the inner region, with a density profile described as

ρBurkert =
ρcore

(1 + r/rcore)(1 + r2/r2
core)

, (2.2.37)
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where ρcore and rcore parameterise the density and size of a (constant density) core.

Diemer & Kravtsov profile

The density profile proposed in Diemer & Kravtsov (2014) (hereafter referred to as

DK14) is a more flexible function, which was calibrated with regard to a suite of

ΛCDM simulations. This model is described by two components: (1) the collapsed

matter which is modelled by a truncated Einasto profile (Einasto, 1965), and (2) the

infalling material which is modelled by a power law function. The complete model

is given by

ρ(r) = ρEinasto(r)× ftrans(r) + ρinfall(r) (2.2.38)

ftrans(r) =

[
1 +

(
r

rt

)β]−γ/β
(2.2.39)

ρinfall(r) =
ρmbe

∆−1
max +

(
r

5r200m

)se (2.2.40)

where ∆max = 103, and the transition term, ftrans, captures the steepening of the

profile around a truncation radius, rt. The shape parameters, γ and β, define

the steepness of the profile and how quickly the slope changes, respectively. For

the infalling material, the power law profile which decreases with radius (se > 0)

approaches the mean density of the Universe, ρm, at large radii. ∆max = 103 is

introduced to avoid the spurious contribution toward the center of the cluster. We

adapted the publicly available code COLOSSUS (Diemer, 2018) for the calculation

of the DK14 density profile.
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Chapter 3

Gravitational Lensing Formalism

and Shear Measurement

3.1 Introduction

The phenomenon of gravitational lensing was initially predicted by General Rela-

tivity (Einstein, 1915). It states that a massive object locally distorts Space-Time.

Photons traveling from a source to an observer along geodesics in a curved 3D space

cause interesting features. The observed images of the background source can be

distorted and magnified. Moreover, a compact and very massive object can suf-

ficiently bend the light rays emitted from a single source such that multiple light

rays eventually converge to the observer. This results in multiple images of the

source at different angular positions. Since these geometrical effects are purely due

to the over-density of mass, it is free of assumptions on the physical state of the lens

(the massive object placed between the source(s) and the observer), which makes

gravitational lensing an extremely powerful probe of underlying mass distribution

in modern Astronomy and Cosmology.

Gravitational lensing was first confirmed in 1919 by Sir Frank Watson Dyson and

Sir Arthur Eddington (Dyson et al., 1920). They measured the offset of positions of

stars in the Hyades cluster when these stars passed along the line of sight to the Sun

during the total solar eclipse in May 1919. The offset measured was consistent with

the predictions from General Relativity, twice larger than the deflection predicted by

23
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Newton’s gravitation theory. Since then, the theory of General Relativity has been

accepted and became the standard theory of gravity. In 1979, the first multiple-

image system was observed (Walsh et al., 1979). Two images of the distant quasar

Q0957+561 at redshift z = 1.4. These discoveries paved the way for further studies

and observations of gravitational lensing. Nowadays, gravitational lensing is used in

various areas, such as high-redshift galaxy studies, the detection of exoplanets, the

investigation of dark matter’s nature, and the constraint of Cosmology.

Depending on the configuration of the background sources, the lens object, the

observer, and the mass of the lens, gravitational lensing can be classified into three

regimes: strong lensing, weak lensing, and microlensing. Strong gravitational lens-

ing refers to the lensing of a background galaxy which is strong enough to produce

a noticeable distortion such as giant arcs, Einstein rings, or multiple-image systems.

For weakly distorted images which correspond to weak gravitational lensing, the

distortion in shape of each individual image is too weak to be directly observed.

However, using statistical measurements, the net distortion averaged over a sample

of background images can be calculated. Therefore, measurements of weak gravi-

tational lensing are statistical in nature. The signal-to-noise ratio (S/N) of these

measurements is limited by the density of galaxies behind the lens. To enhance sta-

tistical significance, in the near future, a large dataset will be available from Euclid

(Laureijs et al., 2011), the Large Synoptic Survey Telescope (LSST) 1 and the Nancy

Grace Roman Space Telescope (Spergel et al., 2013). Astrophysics and cosmology

are entering a new era!

The last regime is microlensing, for which distortions are too small to be de-

tectable, but changes of apparent magnitude can be observed. When a low mass

lens object passes between a bright background source and an observer, the apparent

brightness of the source is boosted and then diminished due to the changing config-

uration of the lens system. Through monitoring the source for a certain period of

time, this transient effect can be characterised by the light curve. Microlensing has

been used extensively for exoplanets searches/detections.

1https://www.lsst.org/lsst/
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3.2. Gravitational Lensing Theory 25

In this chapter, I present the gravitational lensing formalism which will be used

in the following chapters. The presentation will start with the derivation of the basic

lensing equations. Then I will introduce the lensing observables in Section 3.2. The

procedure of weak lensing shear measurements of this study will be presented in

Section 3.3. Finally, Section 3.4 describes the weak lensing mass mapping methods

that are used in this work. For more in-depth discussion on gravitational lensing, I

refer the reader to reviews by Bartelmann & Schneider (2001), Massey et al. (2010)

and Kneib & Natarajan (2011b).

3.2 Gravitational Lensing Theory

3.2.1 Lens Equation

First of all, we introduce the assumption used in most of the lensing studies, the

thin lens approximation: all deflection of the light rays occur in the lens plane.

Neglecting the contributions from the cosmic large-scale structures, this assumption

is valid for most of the lens systems since the scale of the lens object is usually

much smaller than the angular diameter distances involved. As shown in figure 3.1,

we consider a typical gravitational lensing system. A light ray propagates from the

source with redshift zS at the position η on the source plane, to the observer at

redshift zL, passing the position ξ on the lens plane where it is deflected by an

angle α̂. The angle between the optical axis and the source position is β, and the

angle between the optical axis and the image is θ. The angular diameter distances

between the source and lens, between the lens and observer, and between the source

and observer, are DLS, DL and DS, respectively. We can easily find the geometrical

relation in this system:

η = (DS/DL)ξ −DLSα̂(ξ) (3.2.1)

Introducing angular coordinates β = η/Ds and θ = ξ/DL, we can transform the

geometric relation into

β = θ − DLS

DS

α̂(Ddθ) ≡ θ −α(θ), (3.2.2)
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where we define the reduced deflection angle α(θ) ≡ DLS

DS
α̂. Equation 3.2.2 is called

the lens equation. In general, the lens equation is non-linear with respect to θ.

It may have more than one solution for a fixed β. In this case, a source at β has

images at several positions on the sky, producing multiple images of a single source.

Consider a lens with point mass M , General Relativity predicts the deflection angle

α̂ =
4GM

c2ξ
. (3.2.3)

For a source aligned with the lens center, β=0, one defines the Einstein radius:

θE =

√
4GM

c2

DLS

DSDL

. (3.2.4)

which is directly related to the lens mass. Hence, the Einstein radius is usually used

to describe the strength of a lens.

For an extended lens, its mass distribution can be seen as an ensemble of point

deflectors. Furthermore, since the cosmological distance to a typical background

galaxy is vastly larger than the size of an intervening mass, the 3D distribution of

that mass can be approximated as a projected surface density Σ(ξ),

Σ(ξ) ≡
∫
ρ(ξ, z)dz, (3.2.5)

where ρ is the 3D mass density (Equation 2.2.20), and z is the distance along the

line of sight. Then, using ξ = DLθ, the deflection angle can be written as

α(θ) =
4G

c2

DLSDL

DS

∫
Σ(θ′)

θ − θ′
|θ − θ′|2d

2θ′. (3.2.6)

Convergence

Here, we introduce a useful quantity in lensing, the dimensionless critical surface

density, commonly called convergence,

κ =
Σ(DLθ)

Σcrit

, (3.2.7)

where Σcrit is the critical surface mass density which depends on the redshifts (zL, zs)

and the geometry of the Universe (H0,Ωm,Ωλ):

Σcrit ≡
c2

4πG

DS

DLDLS

=
c2

4πGDL

β−1(zL, zs). (3.2.8)
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The lensing sensitivity function β(zL, zS) = DLS/DS describes the lensing strength

as a function of lens and source redshifts (zL, zS). For a foreground galaxy with

zS < zL, β(zL, zS) = 0. Convergence can be used to determine the lensing regime.

When κ > 1, multiple images are produced and we refer to it as strong lensing. For

weak lensing, κ < 1 and galaxies are weakly distorted.

Lensing potential

Combinning equations 3.2.6 and 3.2.7, the deflection angle can be written as

α(θ) =
1

π

∫
κ(θ′)

θ − θ′
|θ − θ′|2d

2θ′. (3.2.9)

We define the two-dimensional projected gravitational potential, called deflection

potential

ψ(θ) =
1

π

∫
κ(θ′)ln|θ − θ′|d2θ′, (3.2.10)

which satisfies the Poisson equation

∇2ψ = 2κ. (3.2.11)

The deflection angle can therefore be written as a gradient of the deflection potential:

α =∇θψ, and the lens equation can be expressed in terms of ψ(θ) as

β = θ −∇θψ(θ). (3.2.12)

3.2.2 Weak Lensing Distortion

The lens equation gives the relation of source plane points β, and image plane points

θ. The local properties of the lens equation, the mapping between small elements in

the source plane, dβ, and those in the image plane, dθ, are described by the lensing

Jacobian matrix.

A(θ) =

(
∂β

∂θ

)
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
=

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 (3.2.13)

where i and j denotes the axes of the angular coordinate on the sky plane θ = (θ1, θ2).
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Lensing Covergence and Shear

In the Jacobian matrix, the quantities of shape distortion are introduced, γ1 and γ2.

They are the components of the complex shear field, γ = γ1 + iγ2 = |γ|ei2ϕ, where

ϕ is the phase angle. The factor of 2ϕ shows that the shear is a spin-2 vector which

maps to itself under a rotation of 180◦. They can also be written as functions of the

deflection potential,

γ1 =
1

2
(ψ,11 − ψ,22), γ2 =

1

2
(ψ,12 + ψ,21) = γ,12, (3.2.14)

where ψ,ij = ∂2ψ/∂θi∂θj (i, j = 1, 2). κ is related to ψ through Poisson’s equation.

The Jacobian matrix can be decomposed into two terms:

A(θ) =

1− κ 0

0 1− κ

+

−γ1 −γ2

−γ2 γ1

 , (3.2.15)

where the first term describes isotropic size magnification caused by the convergence

κ, and the second term is a trace-free matrix dependent on the shear. This term cor-

responds to the tidal gravitational field contributed by the shape distortion, deforms

the circular source to an ellipse, and rotates based on the phase angle ϕ. Figure 3.2

gives examples of the deformation of a circular source under different types of dis-

tortions. Since the tidal gravitational field induces the coherent tangential pattern

of the shear, we decompose the shear into two terms, the tangential shear γ+, and

the cross shear γ×,

γ1 = −γ+ cos(2φ) + γ× sin(2φ)

γ2 = −γ+ sin(2φ)− γ× cos(2φ)
(3.2.16)

where φ is the angle of the position vector of the source pointed from the lens. The

tangential component, γ+, measures the tangential coherence of the shape distortions

due to weak lensing. The cross term, γ×, corresponds to 45 degree rotated distortion

patterns of background images which is not the contribution from weak lensing.

Therefore, γ× is usually used to check systematics in weak lensing analyses.

Finally we introduce a quantity, the reduced shear g, defined as

g(θ) ≡ γ(θ)

1− κ(θ)
. (3.2.17)

As we shall see in Section 3.3.1, in general, the observable quantity for weak shear

lensing is not the shear γ, but the reduced shear, g.
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Figure 3.2: Illustration of different types of lensing distortion. The black circle

represents a circular source whose shape and size deform into the grey shapes under

lensing effect.

Magnification

Since the gravitational light deflection does not involve emission or absorption of

photons, the surface brightness density is conserved with gravitational lensing.

Hence the flux magnification is caused by the area distortion: δΩI = µδΩS only.

We can define the magnification as the ratio between the lensed and the unlensed

image solid angles:

µ =
1

detA
=

1

(1− κ)2 − |γ|2 (3.2.18)

3.2.3 Strong Lensing

Critical and Caustic Lines

The magnification, µ, is a function of covergence, κ, and shear, γ, which can also

be expressed as µ−1 = (1 − κ)2 − γ2. The infinite magnification will happen when

µ−1 = 0. The corresponding locus in the image plane of infinite magnification
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Figure 3.3: Critical lines (dashed) and caustics (solid) for different mass models:

(a) for a singular isothermal circular mass distribution, the radial critical line is

the central point, and the corresponding caustic is at infinity; (b) for a singular

isothermal elliptical mass distribution, the tangential caustic line is an astroid; (c)

for a circular mass distribution with an inner slope shallower than isothermal mass

distribution, a radial critical curve appears, and both caustics are circles; (d) is the

same as (c), but for an elliptical mass distribution, the relative size of both caustic

lines will depend on the mass profile and the ellipticity of the mass disribution; (e)

for a bimodal mass distribution with two clumps of equal mass, similar to (d); and

(f) for a bimodal distribution with different unequal masses. (Figure credit: Kneib

& Natarajan, 2011a)
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defines two closed lines, called critical lines. The critical lines define the limits

that can produce multiple images in the image plane, where outside the closed lines

multiple images merge and disappear. If an image lies exactly on the critical line,

then the flux of the source is infinitely amplified. The location of critical lines can

be mapped back to the source plane, and the corresponding limits, called caustic

lines, are defined. We defined the Jacobian matrix, A, in the Cartesian frame in

Equation 3.2.13, which can be rewitten in polar coordinates (r, θ) as (Kneib &

Natarajan, 2011a)

A =

 1− ∂2ψ
∂r∂r

− 1
∂r

(
∂ψ
r∂θ

)
− 1
∂r

(
∂ψ
r∂θ

)
1− ∂ψ

r∂r
− 1

r2
∂ψ
r∂θ
.

 (3.2.19)

For a circularly symmetric mass distribution, the Jacobian Matrix can be simplified

to:

A =

1− ∂2ψ
∂r∂r

0

0 1− ∂ψ
r∂r
.

 (3.2.20)

Therefore, the two critical lines can also be defined as (1 − ∂2ψ
∂r∂r

) = 0 and (1 −
∂ψ
r∂r

) = 0, called the radial and tangential critical curves respectively. They refer to

the deformations in radial and tangential directions. For a mass distribution with

circular symmetry, critical and caustic lines are circles and the tangential caustic

line always reduces to a single point. Some significant properties can be derived by

studying the critical curve. First, a projected mass with circular symmetry enclosed

within the radius r is

M(r) =
c2

4G

DLDs

DLS

r
∂ψ(r)

∂r
. (3.2.21)

Using the definition of the tangential critical curve, r = ∂ψ(r)/∂r, the mass enclosed

within the tangential critical radius (also called Einstein radius θE) can thus be

written as

M(θE) = πΣcritθ
2
E, (3.2.22)

which is the same as Equation 3.2.4. Therefore, given the known redshifts of the

lens and the source and the underlying cosmology, the position of the tangential

critical curve can be used to precisely determine the enclosed mass within a circular

aperture. Secondly, according to the definition of the radial critical curve,

∂2ψ(r)

∂r∂r
=

∂

∂r

(
M(r)

πΣcritr

)
= 1, (3.2.23)
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its location depends on the gradient of the mass profile, meaning that given the

location of the radial critical curve and the information in Σcrit, the slope of the

mass profile close to the cluster center can be constrained. Information about the

critical lines are therefore valuable in probing the lens objects, galaxy clusters, in this

thesis. In the case of general non-circular mass distributions, critical lines cannot be

expressed analytically except for certain simple elliptical mass profiles. Figure 3.3

shows critical and caustic curves for different mass distributions. For a singular

isothermal circular mass distribution, the tangential critical line is a circle while the

radial one is a central point. In the case of a singular isothermal elliptical mass

distribution, the tangential critical line is an ellipse and its caustic line an astroid.

If a mass distribution has an inner slope shallower than the isothermal mass profile,

the radial critical curve will appear. For a more complex mass distribution, such as

bimodal distribution, two sets of tangential and radial critical lines are produced.

Multiple images

As we have shown, critical curves are useful for the determination of the mass of

the lens. While they cannot be directly mapped, multiple images can be used to

constrain the location of the critical curves. For example, images distorted in the

tangential (radial) direction are located close to the tangential (radial) critical lines.

The number of multiple images equals the number of solutions to the lens equation

(Equation 3.2.2), which depends on the complexity of the mass distribution of the

lens. It is predicted by theory that an odd number of sources is produced for one

source. However, some images can be less magnified, or de-magnified, so that they

cannot be observed. For a cluster dominated by a single halo, fold, cusp and radial

arcs can be observed depending on the configuration of the lens system, as shown

in figure 3.4. Outside the critical curves, only one image can be observed. When

the source moves across the radial caustic line, two additional lensed images are

produced which are stretched radially and appear near the radial critical curve.

The positions of the radial multiple images can be used to probe the shape of the

density profile in the central regions. When the source moves close to the astroid

spike of the tangential caustic line, cusp arcs are formed with three images located
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Figure 3.4: Multiple-image configurations produced by a simple elliptical mass dis-

tribution. The panel (S) shows the caustic lines in the source plane and the source

positions numbered 1 to 10. The panel (I) is the image of the source without any

lensing effect. The panels (1) to (10) show the lensed images for the various source

positions in panel (S). Certain configurations are very typical and are denoted as

follows: (3) radial arc, (6) cusp arc, (8) Einstein cross, (10) fold arc. (Figure credit:

Kneib & Natarajan, 2011a)
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at the epicentres of the tangential critical line. For a fold configuration, the source is

close to the astroid side of the tangential caustic line, with the two images produced

on both sides of the tangential critical line, and the third image produced in the

opposite side. The well-predicted configuration of multiple images are valid only

for simple elliptical mass model. A bimodal cluster or other complex structures can

produce more complicated configurations. For more details in multiple images and

the study of strong lensing, we refer the reader to the review of Kneib & Natarajan

(2011a). In the following chapters of this thesis, we will mainly focus on the weak

lensing analysis.

3.3 Weak Gravitational Lensing in Galaxy Clus-

ters

The study of gravitational lensing in galaxy clusters can be seperated into two as-

pects: strong and weak lensing. In the central region of clusters where the mass

density is high with κ ∼ 1, multiple images can be clearly observed and used to con-

strain mass distribution of the cluster core. Outside the strong lensing region, κ < 1,

lensing distortions get smaller. The shapes of background galaxies are dominated

by their intrinsic shape, which is assumed to have random orientations. Therefore,

weak lensing needs to be measured statistically, such as the mean distortion of a

sample of background sources. After that, the underlying mass distribution of the

lens cluster on larger scales can be reconstructed from the weak lensing shear sig-

nal. Weak lensing is normally observed in the optical and near-infrared bands. The

images are then processed to detect individual galaxies and to extract the lensing

signal from the background galaxy shapes. In this section, we will first present the

galaxy shape measurement and the weak lensing shear estimation for Hubble Space

Telescope (HST ) imaging data. The second part is devoted to the reconstruction of

the surface mass density distribution, κ. There are two mass reconstruction methods

used to analyze the cluster targets in this thesis. The details of them are presented

in Section 3.4.
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3.3.1 Galaxy Shape Measurements for HST Data

Measuring galaxy shapes to a very high precision is essential in weak lensing because

galaxy ellipticities are typically distorted by only a few per cent. It is challenging

to detect this weak signal because the image shapes are also affected by convolution

with the point spread function (PSF) of the telescope, detector and atmosphere,

resulting in a blurred image in observations. These instrumental effects must be

modelled and corrected before estimating the lensing signal. In this thesis, we focus

on the weak lensing shear calibration on the HST Advanced Camera for Survey

(ACS) images, using the publicly available HST weak lensing shape measurement

code pyRRG (Harvey et al., 2019). This python3.7 code is based on Rhodes

et al. (2000) method (hereafter called RRG), designed for correcting the small,

diffraction-limited PSF obtained from space, and has been calibrated on simulated

data containing a known shear (Leauthaud et al., 2007). The algorithm of pyRRG

is graphically illustrated in Fig 3.5. It consists of six key steps:

1) Source finding

Galaxies are identified in the HST /ACS image using the SExtractor photom-

etry package (Bertin & Arnouts, 1996). To maximise sensitivity to distant (small

and faint) galaxies that contain most of the lensing signal, pyRRG adopts the

‘Hot–Cold’ technique originally developed by Rix et al. (2004). This technique

first runs with a ‘hot’ scan, using a smaller minimum number of pixels to count as

a source to the faint objects which contain most of the lensing signal. However,

these low detection thresholds may deblend the outer features of bright galaxies.

To avoid spurious deblending of the largest galaxies, we then run a ‘cold’ scan

optimised to only detect the brightest objects. The final source catalogue con-

sists of all cold and hot detections not overlapping with a cold object. We record

the detection signal-to-noise ratio of each object from SExtractor parameters,

S/N ≡ FLUX AUTO/FLUXERR AUTO.
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Figure 3.5: The flowchart of the pyRRG algorithm. Science image and all the

associated exposures are input to the pipeline. Galaxy catalogues are generated.

pyRRG measures the PSF from the TinyTim models for each exposure and com-

bines them to produce a stacked PSF. The shape of galaxies are corrected according

to the PSF model, and the lensing signal is estimated from that. Finally, several

cleaning procedures are carried out to produce a clean shear catalogue. (Figure

credit: Harvey et al., 2019)
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2) Moment measurement

Following the source detection, pyRRG measures the weighted multipole moments

of each object in order to characterise its shape. We define the second and fourth

order normalized moments of surface brightness distribution of each galaxy,

Iij =

∑
ω(θ)θiθjI(θ)∑
ω(θ)I(θ)

,

Iijkl =

∑
ω(θ)θiθjθkθlI(θ)∑

ω(θ)I(θ)
,

(3.3.24)

where I is the pixel intensity, ω is a Gaussian weight function included to suppress

noise, and the sum is over all pixels. There are multiple ways to quantify the shape

of an image, and in pyRRG we follow Rhodes et al. (2000) to define the size as the

combination of the quadrupole moments,

d =

√
(Ixx + Iyy)

2
(3.3.25)

and ellipticity ε ≡
√
ε21 + ε22 with orientation ϕ = 1

2
arctan (ε1/ε2), where

ε1 =
Ixx − Iyy
Ixx + Iyy

,

ε2 =
2Ixy

Ixx + Iyy
.

(3.3.26)

The relation between the ellipticity defined here, and the semi-major axis a and the

semi-minor axis b of an ellipse, is given by

ε =
a2 − b2

a2 + b2
. (3.3.27)

3) Star - Galaxy Classification

Following the measurements of the normalised image moments, we perform the star-

galaxy classification by examining the distribution of objects in the overall brightness

(MAG AUTO) and peak surface brightness (MU MAX) plane. This diagram allows

us to separate three distinct categories: galaxies, stars, and noises (i.e., artifacts

and residual cosmic rays). In this thesis, we classify different objects manually. But

pyRRG recently implements a new automatic classification using Random Forest

approach.
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4) PSF Measurement

The shape of galaxies is set by lensing but blurred by the PSF. It is necessary to

model the PSF and correct the observed galaxy shapes since lensing measurements

are particularly sensitive to it. Compared with all other telescopes, the HST PSF is

very stable. However, according to Rhodes et al. (2007), the ACS PSF varies over

time, as thermal expansion and contraction change the distance between the primary

and secondary mirrors due to the heating of the Sun. Even a few microns away from

nominal focus, the PSF becomes larger and more elliptical, and there is no atmo-

sphere to average away variations. The PSF can be measured from non-saturated

stars within an image, and can be split into two components. The isotropic part of

the PSF circularizes an image, enlarging shapes and reducing their ellipticity. The

anisotropic component elongates all objects within the image, increasing their ellip-

ticity. Both components affect the observed shear and need to be corrected. First we

measure the high order moments of the stars in each of the individual exposures, and

then we compare ellipticities of observed stars with models created by the tinytim

ray-tracing software (tinytim; Rhodes et al., 2007) which creates simulated PSF

images at varying focus offsets. This comparison allows us to determine the effective

focus of the images. Once their effective focus positions have been determined, the

shape moments of the net PSF are interpolated by a polynomial fit to the known

positions of the galaxies. Finally, the PSFs from each individual exposure at the

position of the galaxy are stacked and combined to mimic the drizzling of multiple

exposures to acquire the final PSF. The moments of galaxies measured in 4) are

then corrected from the PSFs linearly, size and ellipticity are re-calculated. For a

full description of the PSF correction, please see Rhodes et al. (2000).

5) Shear estimation

Having corrected galaxy shapes from the impact of instrumentation, we then cal-

culate the gravitational shear. In theory, the transformation between the image

complex ellipticity, ε = ε1 + iε2, defined in Eq. 3.3.26 and the intrinsic ellipticity of
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source, ε(s), is given by (Schneider & Seitz, 1995)

ε(s) =
ε− 2g + g2ε∗

1 + |g|2 − 2Re(gε∗)
, (3.3.28)

where the asterisk denotes complex conjugation, Re(x) defines the real part of the

complex number x, and g is the reduced shear (Equation 3.2.17). Equation 3.3.28

shows that the transformation of ellipticity between the source and the image de-

pends only on the reduced shear. Thus, the reduced shear is the only observable

quantity which can be calibrated from the measurements of image ellipticities. In

the weak lensing limit (|κ|, |γ| � 1), the transformation between the image ellip-

ticity and its intrinsic source ellipticity can be simplified as ε ' ε(s) + 2γ. This

relation requires information about the intrinsic shape of each galaxy. However,

galaxies display a very wide range of shapes which makes it difficult to measure the

low shear signal for an individual object. Consequently, weak lensing shear can only

be measured statistically. Assuming the random orientation of sources, the ensemble

average of intrinsic ellipticity of background sources vanishes: < ε(s) >= 0, thus the

local distortion can be inferred from a local ensemble of image ellipticities

< ε >' 2 < γ > . (3.3.29)

In the case of RRG, the shear estimator is more sophisticated and has been success-

fully calibrated and tested in Leauthaud et al. (2007),

γ = C
ε

G
(3.3.30)

It incorporates the calibration factor, C = (0.86+0.07
−0.05)−1, which is empirically mea-

sured from mock HST images in the same band and to the same depth (Leauthaud

et al., 2007) and the ”shear susceptibility factor” G is measured from the global

distribution of ε and fourth-order moments (Rhodes et al., 2000),

G = 2− < ε2 > −1

2
< λ > −1

2
< ε · µ >, (3.3.31)

where

λ = (I1111 + 2I1122 + I2222)/(2d2ω2),

µ1 = (−I1111 + I2222)/(2d2ω2),

µ2 = −2(I1112 + I1222)/(2d2ω2),

(3.3.32)
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and ω is the size of the Gaussian weight function in Eq. 3.3.24. From these, we have

the final estimator of the shear γ.

6) Catalogue cleaning and masking

Finally we apply cleaning operations and lensing cuts to the weak lensing shear

catalogue to remove spurious and duplicated detections. We first generate polygons

using the known positions of stars and saturated stars, and mask any object that

lies within these polygons. Secondly, for double detections, we remove objects that

lie within the isophote of a larger object. In the last step in constructing a “clean”

shear catalogue, we eliminate sources with uncertain shapes. Shapes of very small or

faint galaxies are difficult to measure and may be biased, since they are dominated

by that of the PSF. We therefore exclude galaxies with size d < 0.11 ′′, detection

S/N< 4.5, or unphysical values of ε > 1 (which can arise after PSF correction in

the presence of noise; for a discussion of this effect, see Jauzac et al., 2012).

3.4 Weak Lensing Mass Mapping Techniques

Traditionally, the modelling of the cluster mass distribution in lensing can be done

by using “parametric models” or “non-parametric approach”. The major distinction

between these two mehtods is whether the calculation is “model-based” (parametric)

or “model-free” (non-parametric). In the parametric method, the mass distribution

is described by a finite number of physical halo models. In practice, this can be done

by fitting the observed data, such as shear or magnification, to different mass models

(see Section 2.2.5) with relatively few defined parameters. A catalogue of mass

models for lensing is summarized in Keeton (2001b). Although a parametric model

provides a simple description of the cluster mass, the cluster’s spatial distribution

may not be well-described by any of the common parametric models, especially for

merging clusters. Moreover, the flexibility of a parametric model is limited to only

a few free parameters and the restricted shapes. On the other hand, the free-form

or non-parametric models, provide a more flexible and accurate description of the

mass distribution. For most of the ”non-parametric” methods, the mass distribution
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is typically pixelated into a regular grid of small mass elements. However, these

large number of parameters can lead to over-fitting issues. Further detail of non-

parametric methods are presented later on.

In this section, I will focus on two frequently used methods to reconstruct the

mass: the one frequentist, the other Bayesian. These two methods will be used in

the following chapters.

3.4.1 Direct inversion with KS93+MRlens

The first method we used to reconstruct the mass is the simple inversion method.

According to Eqs. 3.2.11 and 3.2.14, the convergence and shear can be written as

κ(θ) =
1

2
∂∗∂ψ(θ), (3.4.33)

γ(θ) =
1

2
∂∂ψ(θ) ≡ D̂θψ(θ), (3.4.34)

where ∂ ≡ ∂1 + i∂2 is a complex gradient operator, and D̂θ = ∂∂/2 = (∂2
1 − ∂2

2)/2 +

i∂1∂2 is a spin-2 operator. Since both κ and γ fields are linear combinations of the

second derivatives of ψ(θ), they are related to each other (Kaiser, 1995) and this

non-local relation between κ and γ is given as (Kaiser & Squires, 1993),

κ(θ) =
1

π

∫
d2θ′D∗(θ − θ′)γ(θ′) (3.4.35)

γ(θ) =
1

π

∫
d2θ′D(θ − θ′)κ(θ′) (3.4.36)

where D(θ) is the complex kernel defined as

D(θ) ≡ 2πD̂θ 4−1 (θ) =
θ2

2 − θ2
1 − 2iθ1θ2

|θ|4 , (3.4.37)

where the ∗ denotes the complex conjugate and 4−1(θ) = ln|θ|/2π is the Green’s

function. Equation 3.4.35 shows that the lens’ convergence field is a convolution of

the shear γ with the complex kernel, D∗, meaning that κ can be directly calculated

if the shear field, γ, induced by the deflector can be measured locally as a function of

the angular position, θ. In practical application, these relations are usually inverted

in Fourier space to obtain linear functions between the Fourier transformation of κ

and γ (denoted as κ̂ and γ̂),

κ̂(k) =
k2

1 − k2
2 − 2ik1k2

k2
1 + k2

2

γ̂(k), (3.4.38)
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γ̂1(k) =
k2

1 − k2
2

k2
1 + k2

2

κ̂(k) ,

γ̂2(k) =
2k1k2

k2
1 + k2

2

κ̂(k) ,

(3.4.39)

where k = (k1, k2) is the wave vector conjugate to θ. These transformations (called

“KS93” hereafter) will be used to reconstruct the surface mass density from the

measured shear. However, in observational analyses, the intrinsic shape noise of

background galaxies induces lots of artifacts in the reconstructed mass maps which

can bias the inferred mass distributions of the clusters. In the original incarnation

of KS93, it was usual to suppress noise by convolving the reconstructed mass distri-

bution with a smoothing kernel whilst in Fourier space. In this study, we omit this

step in order to initially preserve as much spatial resolution as possible. To suppress

the high frequency noise, we then filter the noisy convergence map by the Multi-

Resolution method for gravitational lensing (MRLens2; Starck et al. 2006). Note

that a 3D extension of the method, GLIMPSE, has also been developed (Leonard

et al., 2015).

MRLens is a non-linear filtering method that decomposes an image into wavelets

and applies non-linear regularisation on each wavelet scale. It aims to retain statis-

tically significant signals but minimise noise through an approach that, under the

assumption of a multiscale entropy prior, optimises the False Discovery Ratio (FDR)

of false detections to true detections. The multiscale entropy method considers the

entropy of an input image as the sum of the information at each scale of its wavelet

transformation which is related to the probability of being caused by noise. For the

non-significant wavelet coefficients selected by FDR, a regularization (i.e. filtering)

is applied on its entropy to suppress noise. Starck et al. (2006) describe the method

fully, and demonstrate that MRLens outperforms Gaussian or Wiener filtering in

this context. In particular, Pires et al. (2010) show that MRLens improves the

reconstruction of non-Gaussian structures, like the distribution of mass in galaxy

clusters.

2We implement MRLens using the June 26, 2017 version of software available from https:

//www.cosmostat.org/software/mrlens.
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3.4.2 Multi-scale grid technique

The second method is based on the adaptive grid technique developed by Jullo &

Kneib (2009), using the Lenstool3 software. This non-parametric technique was

originally designed for strong lensing mass modelling, and then adapted for weak

lensing. In the following, I will give a brief introduction to this technique. For a full

description, we refer the reader to Jauzac et al. (2012).

The fundamental idea is to follow the physical assumption of light-traces-mass.

We first create a multi-scale grid of Radial Basis Functions (RBFs) based on the light

distribution of the cluster. We initialise a grid of points by drawing a large hexagon

over the field of interest, split into six equilateral triangles (see Figure. 1 in Jullo &

Kneib, 2009). It is then recursively refined by applying a splitting criterion which

is based on the surface density of the light map. More precisely, if a single pixel

inside any of these triangles exceeds a predefined light-surface-density threshold,

we split that triangle into four smaller triangles. This refinement continues for

several levels of recursion, until the brightest parts of the cluster are covered by

the highest resolution grid. The resulting grid of RBFs of different sizes provides

a higher resolution grid with more flexibility to describe the higher density region,

making this method ideal for describing the irregular mass distribution. Following

the creation of multi-scale grid, at each grid node we place a physically motivated

halo model, circular (q = 1) tPIEMD (Eq. 2.2.30), with core radius rc set to the side

length of the triangle, the truncation radius rt is set to three times the core radius,

and the velocity dispersion is free to vary.

We optimise free parameters in this model using the MassInf Markov Chain

Monte Carlo algorithm implemented in Lenstool. The parameter space is highly

dimensional. So to optimise the multiscale grid, we use the Bayesian MassInf

algorithm and the Gibbs approach to maximise the likelihood

Lγ =
1

ZL
exp

(
−χ

2

2

)
, (3.4.40)

3We implement Lenstool using version 7.1 of the software available from https://projets.

lam.fr/projects/Lenstool/wiki.
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where χ2 is the goodness-of-fit statistic

χ2 =
M∑
i=1

2∑
j=1

(γj,i − 2γmodel
j,i (Ri))

2

σ2
γ

(3.4.41)

(following Schneider et al. 2000)4, and M is the number of background sources.

These expressions are normalised by the statistical uncertainty in the shear measured

from each galaxy

σ2
γ = σ2

γ,intrinsic + σ2
γ,measurement , (3.4.42)

which is a combination of intrinsic shape noise and shape measurement error. The

normalization factor is given as

ZL =
M∏
i=1

√
2πσγi. (3.4.43)

At each step of the iteration, the 2% most discrepant masses are adjusted. One

should note that Lenstool assumes that mass densities are positive by definition.

This is not necessarily true since we are really fitting departures from the mean

density of the Universe. For example, the convergence of the large-scale structures

is consistent with fluctuations around zero. However, it is frequently used, and

reasonable near the extreme mass of a galaxy cluster. From the resulting MCMC

sample of the mass map, we finally compute the marginalised mean convergence and

its 68% confidence limits.

4Note that we include a factor of 2 because Lenstool takes inputs in the form of ellipticity

e = (a2 − b2)/(a2 + b2) instead of shear (Jullo et al., 2014a).
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Chapter 4

Mapping dark matter and finding

filaments:

calibration of lensing analysis

techniques on simulated data

4.1 Abstract

We quantify the performance of mass mapping techniques on mock imaging and

gravitational lensing data of galaxy clusters. The optimum method depends upon

the scientific goal. We assess measurements of clusters’ radial density profiles, de-

partures from sphericity, and their filamentary attachment to the cosmic web. We

find that mass maps produced by direct inversion (KS93) of shear measurements

are unbiased, and that their noise can be suppressed via filtering with MRLens.

Forward-fitting techniques, such as Lenstool, suppress noise further, but at a cost

of biased ellipticity in the cluster core and over-estimation of mass at large radii.

Interestingly, current searches for filaments are noise-limited by the intrinsic shapes

of weakly lensed galaxies, rather than by the projection of line-of-sight structures.

Therefore, space-based or balloon-based imaging surveys that resolve a high density

of lensed galaxies, could soon detect one or two filaments around most clusters.

The following has been published in MNRAS as Tam et al. (2020a)
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4.2 Introduction

The CDM standard model of cosmology suggests that structures in the Universe

formed hierarchically, via mergers of small over-densities in the early Universe into

larger and larger objects (Springel et al., 2005; White & Rees, 1978). Thirteen

billion years after the Big Bang, the largest objects are currently clusters of hun-

dreds or thousands of galaxies. Their properties depend on the growth of structure,

which emerges from primordial density fluctuations, collapses under gravity, and is

funnelled into the cluster along filaments. They can therefore be used to test cos-

mological models (e.g. Bahcall & Cen, 1993; Jauzac et al., 2016; Meneghetti et al.,

2005; Rozo et al., 2010; Schwinn et al., 2017; de Haan et al., 2016).

Gravitational lensing is particularly efficient at investigating clusters. When a

light ray emitted by a distant source passes though a massive structure, the path of

this light ray is deflected by the gravitational field, resulting in distorted images of

the distant source. To study this image distortion, we can probe the distribution of

total mass content, including dark matter, in our Universe.

Ground-based observations of gravitational lensing by galaxy clusters have been

successfully used to measure clusters’ average or bulk properties, such as mass (e.g.

Herbonnet et al., 2019; McClintock et al., 2019; Medezinski et al., 2017; Miyatake

et al., 2019; Okabe & Smith, 2016; Rehmann et al., 2019; Schrabback et al., 2018;

Sereno et al., 2017; Umetsu et al., 2014b; Umetsu et al., 2019; von der Linden

et al., 2014), and ellipticity (e.g. Chiu et al., 2018; Clampitt & Jain, 2016; Evans &

Bridle, 2009; Oguri et al., 2010; Shin et al., 2018; Umetsu et al., 2018; van Uitert

et al., 2017). The CLASH survey (Cluster Lensing and Supernova Survey with

Hubble; Postman et al., 2012) measured the mass and concentration of 25 clusters,

by combining wide-field Subaru imaging with Hubble Space Telescope (HST ) imaging

of the cluster cores (Merten et al., 2015). However, ground-based observations have

yielded only marginally significant detections of filaments (e.g. Clowe et al., 2006;

Dietrich et al., 2012; Gavazzi et al., 2004; Gray et al., 2002; Kaiser et al., 1998;

Martinet et al., 2016), whose dark matter density is too low (and the filaments too

narrow to resolve).

Space-based imaging reveals the shapes of more background galaxies, and in-

August 16, 2020



4.2. Introduction 48

creases the S/N of lensing measurements in multiple resolution elements across an

individual cluster. Thus the shape and morphology of individual mass distributions

can be precisely mapped, without the need to average out features over a popu-

lation of clusters. Space-based lensing reconstructions have resolved substructure

near cluster cores (e.g. Merten et al., 2011; Natarajan et al., 2017); bimodality even

in relatively distant clusters like the ‘Bullet Cluster’ (Bradac et al., 2006) or ‘El

Gordo’ (Jee et al., 2014); and filaments in Abell 901/902 (Heymans et al., 2008) and

MACSJ 0717+3745 (Jauzac et al., 2012). Nonetheless, these analyses remain rare

because the ∼ 3′ × 3′ field of view of HST ’s Advanced Camera for Surveys (ACS)

is smaller than a typical cluster’s angular size. Furthermore, both of HST ’s con-

tiguous surveys (GOODS and COSMOS) unluckily sampled regions of the Universe

that are underdense at the z = 0.2–0.4 redshifts where lensing is most sensitive

(Heymans et al., 2005; Krolewski et al., 2018; Massey et al., 2007a), so happen to

contain few lensing clusters (Guzzo et al., 2007). Until recently, only around one

cluster, MS 0451-03, had a dedicated wide-field mosaic of contiguous HST imaging

been obtained (Moran et al., 2007b).

With the capabilities of the next-generation of telescopes, there will soon be more

wide-field, space-resolution imagings taken through the HST /BUFFALO survey

(Steinhardt et al., 2020), SuperBIT (Redmond et al., 2018; Romualdez et al., 2016),

Euclid (Laureijs et al., 2011) and Nancy Grace Roman Space Telescope (Spergel

et al., 2013).

The intent of this work is to prepare for future observations, much as Van Waer-

beke et al. (2013) calibrated mass mapping methods for the current generation of

wide-field ground-based lensing surveys. We use mock space-based weak-lensing

data to develop and quantify the performance of two different methods to map dark

matter around galaxy clusters, to measure deviations from sphericity, and to search

for filaments connecting it with the cosmic web. Where we must make decisions

about general properties (e.g. distance, mass) of clusters that we simulate, we shall

use MS 0451-03 as a template, so our predictions can be immediately tested on real

observations (see Chapter 5).

This chapter is organised as follows. We introduce the simulated data in Section
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4.3. We describe weak-lensing mass mapping and show the results of mass recon-

struction in Section 4.4. The halo shape measurements are presented in Section 4.5.

We finally search for filamentary structures from the reconstructed mass maps in

Section 4.6 and conclude in Section 4.7. Throughout the chapter, we define angular

diameter distances assuming a background cosmology with Ωm = 0.287, ΩΛ = 0.713,

and h = H0/100kms−1Mpc−1 = 0.693 (WMAP 9-year cosmology; Hinshaw et al.,

2013). All magnitudes are quoted in the AB system.

4.3 Simulation Data

We use N -body particle data from the BAHAMAS suite of cosmological simulations

(McCarthy et al., 2017, 2018). These were run with different background cosmolo-

gies and implementations of sub-grid galaxy formation physics, designed to test the

impact of baryonic physics on large-scale structure tests of cosmology. For this

chapter, we use the version with a WMAP 9-year (Hinshaw et al., 2013) cosmology,

and sub-grid feedback model that is calibrated to produce a good match to the

observed stellar mass function, X-ray luminosities and gas fractions of galaxy clus-

ters. This simulation occupies a periodic cubic volume, 400h−1 Mpc on a side, with

dark matter and (initial) baryon particle masses of 5.5× 109 M� and 1.1× 109 M�,

respectively.

4.3.1 Distribution of mass in clusters

We extract the ten most massive clusters from the z = 0.5 simulation snapshot.

We first use the friends-of-friends algorithm (FOF; More et al. 2011) to identify all

matter overdensities. For each FOF group, we calculate r200 and M200, the total

mass enclosed within this sphere. For the ten most massive clusters, which have

4× 1014M� < M200 < 2× 1015M�, we store the 3D distribution of dark matter,

stars and gas.

To generate a 2D, pixellated convergence map, we follow the method of Robert-

son et al. (2019). In summary, we project the location of all simulation particles

within 5 r200 of the centre of a cluster along a line of sight (here, the simulation z-
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MFOF(1014M�) M200(1014M�)

Group 1 27.7 17.3

Group 2 17.9 15.0

Group 3 17.8 17.7

Group 4 16.6 14.6

Group 5 14.3 9.7

Group 6 13.3 11.0

Group 7 12.9 8.9

Group 8 11.1 4.0

Group 9 9.4 8.2

Group 10 9.3 5.7

Table 4.1: Masses of the 10 most massive BAHAMAS clusters used in this analysis.

We here give their FOF mass, MFOF, and M200.

axis). In a 25×25 Mpc (2048×2048 pixel) map centred on the most bound particle,

we use an adaptive triangular shaped cloud scheme to smooth each particle’s mass

over a kernel whose size depends on the 3D distance to that particle’s 32nd nearest

neighbour. Resulting convergence maps are shown in figure 4.1, adopting the lens

redshift zl = 0.55 of galaxy cluster MS0451-03 as a concrete example, and source

redshift zs = 0.97 typical of HST observations to single-orbit depth (Leauthaud

et al., 2007). The masses of the clusters are listed in Table 4.1.

Before proceeding further, we identify 40 filaments in the ten projected mass

maps, defined as radially extended regions with convergence 0.005 < κ < 0.01,

which is equivalent to a surface density of 1.7 × 107 < Σ (M�/kpc2) < 3.4 × 107.

These are indicated by white dashed lines in the bottom panel of figure 4.1.
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Group 1 Group 2 Group 3 Group 4 Group 5

Group 6 Group 7 Group 8 Group 9 Group10 

5 arcmin

Group 1 Group 2 Group 3 Group 4 Group 5

Group 6 Group 7 Group 8 Group 9 Group10 

5 arcmin

Figure 4.1: Noise-free maps of the total mass distribution in the ten most massive

clusters of the BAHAMAS simulations, projected along a randomly-oriented line

of sight. Clusters have masses M200 from 2× 1015M� (cluster 1) to 4× 1014M�

(cluster 10), and are sorted in descending order of MFOF, as in Table 4.1. Colours

show the lensing convergence κ (Top panel: linear scale; Bottom panel: logarithmic

scale). Dotted white lines show filaments identified from the noise-free, projected

mass distribution, above density thresholds defined in section 4.3.1. For reference,

red lines indicate the field of view in which HST observations exist for real cluster

MS 0451-03.
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4.3.2 Distribution of all other mass along a line of sight

In addition to the mass of the galaxy cluster itself, we also account for large-scale

structure (LSS) projected by chance along the same line of sight. This is a source

of noise in the projected mass of the cluster.

To quantify the expected level of noise, we generate realisations of LSS along 1000

random lines of sight through the BAHAMAS simulation box. We then integrate

the 3D mass along the line of sight, weighted by the lensing sensitivity function

β(z) with 〈zs〉 = 0.97, interpreting it as a mass distribution in a single lens plane at

zl = 0.55. For each realisation of LSS, we calculate an effective radial density profile,

κ(R). The mean of these realisations is (unsurprisingly) consistent with zero; we

also calculate the rms scatter σLSS. In concentric annuli of width ∆R = 25′′, these

are well-fit by

σLSS =
A√

R(arcsec) +B
, (4.3.1)

with best-fit values for free parameters

A = 0.197± 0.008, B = 6.441± 0.502 . (4.3.2)

We add this in quadrature to the statistical uncertainty on the reconstructed density

profiles in Sect. 4.4.3. Note that it would also be possible to compute the full

covariance matrix between LSS at different radii or in adjacent pixels of a mass

map. Here we use only the diagonal elements, but in Chapter 5, we fit to real

observations using the full covariance matrix.

4.3.3 Mock near-IR imaging

To generate a mock catalogue of the cluster galaxies’ K-band magnitudes, we run

subfind algorithm (Springel et al., 2001) on the particle distribution from the sim-

ulations, to identify individual galaxies. We sum their stellar masses, and convert

these to K-band luminosity based on the relation presented by Arnouts et al. (2007)

for the evolution of stellar mass to light ratio, (M/LK), with redshift for a sample

of quiescent galaxies, and based on the Salpeter (1955) initial mass function. The

power-law fitting function is defined as

log10 (M/LK) = a z + b, (4.3.3)
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where the mass M and luminosity LK are in units of M and L, respectively. The

best-fit value for parameters a and b from Arnouts et al. (2007) are

a = −0.18± 0.04, b = +0.07± 0.04. (4.3.4)

4.3.4 Mock weak-lensing shears

To generate mock weak-lensing observations, we convert the pixellated mass dis-

tributions into pixellated shear fields. Since both κ(R) and γ(R) fields are linear

combinations of second derivatives of ϕ(R), it is possible to directly convert between

their Fourier transforms κ̂(k) and γ̂(k)

γ̂1(k) =
k2

1 − k2
2

k2
1 + k2

2

κ̂(k) (4.3.5)

γ̂2(k) =
2k1k2

k2
1 + k2

2

κ̂(k) , (4.3.6)

where k = (k1, k2) is the wave vector conjugate to R (Kaiser & Squires, 1993,

hereafter KS93). To implement this in practice, we pixellate the fields within a

34′× 34′ (2048× 2048 pixel) grid, add zero padding 1 to twice that linear size, then

use discrete Fourier transforms. When adding projected LSS to the cluster mass

maps (see Sect. 4.3.2), we first sum the two convergence fields then generate γ(R).

Finally, we use Eq. 3.2.17 to calculate g(R).

We generate a mock shear catalogue by randomly placing source galaxies through-

out the high-resolution pixellated shear field. Mimicking typical single-orbit depth

HST observations, we sample 50 source galaxies arcmin−2. Note that we achieve a

uniform density of background galaxies; in real observations, the number density of

background galaxies is both clustered, and dips near the centre of a cluster because

of obscuration by, and confusion with, its member galaxies. To each shear value, we

1In this work, we follow the suggestions in literature (e.g. Merten et al., 2009; Umetsu et al.,

2015) and use the zero-padding technique to mitigate boundary effects. However, this technique

is not sufficient to perfectly reduce the boundary effects due to discontinuity. A more ideal way

would be to adapt the ‘inpainting’ (Pires et al., 2009) method which extrapolates the input data

to the boundary regions.
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add Gaussian random noise with width σγ = 0.36, representing each galaxy’s un-

known intrinsic shape, plus uncertainty in shape measurement. This value matches

that measured in HST measurements near MS 0451-03 (see Chapter 5), and is con-

sistent with that measured for faint galaxies in the HST COSMOS field (see figure

17 in Leauthaud et al., 2007).

4.4 Weak Lensing Mass Reconstruction

In this section, we first describe the methods that are used (or suggested) to analyse

the distribution of mass in clusters in this work. A common theme will be the sup-

pression of noise — the two main sources of which are projected LSS, and galaxies’

intrinsic shapes. In particular, sophisticated nonlinear noise-suppression techniques

have been developed to map the 2D distribution of mass. Even for measurements

that could be obtained directly from the shear field, it may therefore be efficient to

first infer (and suppress noise in) a mass map, then to measure equivalent quanti-

ties from that. We will then show the reconstructed mass maps and the recovered

density profiles.

4.4.1 Methods

Direct inversion with KS93+MRlens

As mentioned in Section 3.4.1, convergence κ can be directly converted from weak

lensing shear γ, using equation 3.4.38. This is a non-local mapping. In observations

of the real Universe, any missing shear values (e.g. outside the survey boundary or

behind bright stars) must be replaced via ‘inpainting’ (Pires et al., 2009; Raghu-

nathan et al., 2019) to avoid suppressing the convergence signal inferred nearby.

We avoid this effect by using mock shear catalogue that is contiguous and covers a

larger area (34′ × 34′) than the mosaicked HST imaging of MS 0451-03. We bin the

shear field γ(R) into 0.4′ pixels, add zero padding out to 105′×105′, and implement

equation (3.4.38) using discrete Fourier transforms.

Noise was suppressed in early incarnations of KS93 by convolving the mass dis-

tribution with a larger smoothing kernel, such as Gaussian filter. We instead filter
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the final convergence map using the software, MRLens (see Section 3.4.1). The

software implementation has various free parameters: we use ten iterations dur-

ing the filtering process, and decompose the noisy 2D convergence map into six

wavelet scales, starting at j = 3 (highest resolution). The starlet wavelets (eq (11)

of Leonard et al., 2012) have size ϑ = 2j pixels. For comparison to older analyses,

we also repeat the analysis after smoothing and rebinning the shear field into larger,

1′ pixels.

Forward fitting with Lenstool

We also use Lenstool2 (Jullo & Kneib, 2009) to fit the reduced shear catalogues

g(R) with a sum of analytic mass distributions. The field of view considered is the

same size as the mosaicked HST imaging around MS 0451-03. Jullo & Kneib (2009)

advocate a mass model built of three components.

• Cluster-scale halo: For clusters that produce strong gravitational lensing,

the observed positions of multiple images are typically used to pre-fit the

smooth, large-scale distribution of mass (Jauzac et al., 2015b; Kneib et al.,

1996; Richard et al., 2011; Smith et al., 2005). Like many clusters, our mock

data do not include strong-lensing, so we omit this component. Note that our

performance forecasts will therefore be conservative, because this information

efficiently captures the broad features of a mass distribution in only a few

parameters, and removes degeneracies between the remaining parameters that

we shall fit (Jauzac et al., 2015a).

• Cluster member galaxies: We model the total mass of each galaxy in

the cluster as a tPIEMD (Eq. 2.2.30). Following Jauzac et al. (2012), their

core radii, truncation radii and velocity dispersions are scaled using empirical

relations

rc = r∗c

(
L

L∗

) 1
2

, rt = r∗t

(
L

L∗

) 1
2

, σ = σ∗
(
L

L∗

) 1
4

, (4.4.7)

2We implement Lenstool using version 7.1 of the software available from https://projets.

lam.fr/projects/Lenstool/wiki.
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where rc = 0.15kpc, rt = 58kpc and σ∗ = 163.10kms−1 for a typical galaxy

with K-band magnitude m∗ = 18.699 at z = 0.55. These scaling relations

describe early-type cluster galaxies (Wuyts et al., 2004), and assume a constant

mass-to-light ratio for all cluster members.

• Multi-scale, free-form grid: We add a free-form (pixellated) mass distri-

bution with spatially-varying resolution that is adapted to the cluster’s light

distribution. This method is described in Section 3.4.2 in details. After six

levels of recursion, the brightest parts of the cluster are covered by the highest

resolution grid with rc = 18′′. We extend this grid into the cluster centre,

which is inevitably modelled at the highest resolution. At the centre of ev-

ery triangle, we place a circular (q = 1) tPIEMD (Eq. 2.2.30) to represent

its potentials. This process represents a prior of light-traces-mass. Therefore,

multi-scale grid is well suited to describe irregular mass distributions, such as

large-scale structures.

4.4.2 Results of 2D mass maps

We quantify the precision and accuracy of mass maps produced by KS93+MRLens

(figure 4.2) and Lenstool (figure 4.3) by comparing them to the noise-free distri-

butions of mass, κtrue (which includes only the mass of the cluster, not projected

LSS). We first measure deviations from this truth, κres ≡ κ − κtrue, to obtain the

residual maps. For each map, we compute the noise level σκ, defined as the root

mean square (rms) deviation from the mean of κres, over all pixels in a field of view

equivalent in size to the HST observations of MS 0451-03. We then average the

performance of each method over all 10 clusters (table 4.2).

In observations of the real Universe, σκ cannot be calculated because there is no

privileged knowledge of κtrue. For comparison with observations, we therefore also

measure σobs
κ , the rms deviation from the mean of κ. We find values of σobs

κ roughly

consistent with σκ being added in quadrature to an irreducible component that is

the rms deviation from the mean of κtrue, 0.022 ± 0.0007 on average (0.027 for the

five highest mass clusters, or 0.017 for the five lowest).
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Direct inversion mass reconstruction

MRLens suppresses galaxy shape noise by a factor 3.8 (a factor 1.5 better than

smoothing with 1′ pixels, and retaining higher spatial resolution). However, galaxy

shapes still contribute more noise to the mass maps than (physically real) LSS

noise. Spurious noise peaks are found in all regions of the field of view. Massive

substructures with κ > 0.096 can be detected with S/N> 3.

Mass reconstructions using KS93+MRLens are statistically consistent with

being unbiased. Both positive and negative noise fluctuations are produced, at

all radii. The mean residual of maps with both sources of noise is 〈κ − κtrue〉 =

−0.0005±0.0018, where the averaging is over 10 clusters, and the uncertainty is the

standard deviation between them. The marginally negative mean may be because

density is underestimated in a small region near cluster cores (see Sect. 4.4.3).

Forward-fitting mass reconstruction

Lenstool suppresses noise even further. Galaxy shape noise is an additional factor

2 lower than KS93+MRLens (averaged across the field of view) — and LSS noise

becomes the dominant component.

The spatial distribution of noise is nonuniform. A Lenstool reconstruction

has more freedom in regions with a high resolution free-form grid (section 3.4.2),

such as the cluster core and associated substructures. Spurious κ peaks appear

preferentially in those regions, even when we replace the shear catalogue with one

that contains only (spatially uniform) galaxy shape noise. To further investigate

this effect, we split the ten clusters into two subsamples: higher mass (clusters 1 to

5), and lower mass (clusters 6 to 10). Multi-scale grids of the high mass sample have

larger high-resolution regions, resulting in noisier maps on average. Assessing the

S/N of any identified peak must therefore involve bootstrap analysis at the specific

region of interest. This confirms Jullo et al. (2014b)’s similar assessment of the

performance of Lenstool. For many scientific purposes, spatially varying noise

is a useful feature: the lower resolution and positive definite constraints help to

suppress positive LSS noise and remove negative noise at large radii. Even filaments

contain a statistically significant overdensity of galaxies (Galárraga-Espinosa et al.,
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Reconstructions From Pure Cluster Shear Field 10 arcmin

Reconstructions with Galaxy Shape Noise

Reconstructions with LSS Noise

Reconstructions with Galaxy Shape Noise and LSS Noise

Figure 4.2: (see next page)
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Figure 4.2: Projected mass maps of the 10 simulated clusters reconstructed using the

KS93+MRLens direct inversion method, including different components of noise.

Top panels: reconstruction with no noise. Second panels: including only shape

noise from 50 background galaxies per square arcminute. Third panels: including

only projected large-scale structure. Bottom panels: including both sources of noise

simultaneously. Colour scales are identical for all panels. For reference, red lines

indicate the field of view of the largest HST mosaic obtained around a massive

galaxy cluster, MS 0451-03.

2020), so the reconstruction can be given sufficient flexibility to include (rather than

suppress) them.

Mass reconstructions using Lenstool slightly overestimate the total mass, be-

cause of its positive-definite constraint. Averaged over the field of view, the mean

residual of maps with both sources of noise is 〈κres〉 = 0.0088±0.0064 (we quote the

mean and standard deviation of κres for 10 clusters).

4.4.3 Radial density profiles

Most analyses of galaxy clusters involve fitting models of an azimuthally-averaged

density profile. Measuring density profiles is a key test of e.g. cosmological structure

formation (the ‘splashback’ feature reveals a characteristic build-up of accreted mass,

pausing at first apocentre after first core passage Diemer & Kravtsov, 2014) and the

nature of dark matter (Newman et al., 2013, 2015; Robertson et al., 2019). Because

almost all clusters have irregular features, and approximately half are significantly

unrelaxed (Smith et al., 2010), it is necessary to statistically combine the profiles of

many clusters. This can be achieved by rescaling and averaging their density profiles

in radial bins, or by fitting parametric models with radial (or elliptical) symmetry,

then averaging the best-fit parameters.

We calculate the radial density profiles of each simulated cluster by azimuthally

averaging the reconstructed density maps within linearly spaced annuli of fixed width

∆R = 25′′. For Lenstool reconstructions, we quote the statistical uncertainty in
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Reconstructions From Pure Cluster Shear Field 10 arcmin

Reconstructions with Galaxy Shape Noise

Reconstructions with LSS Noise

Reconstructions with Galaxy Shape Noise and LSS Noise

Figure 4.3: Same as figure 4.2, but reconstructed using Lenstool.
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each annulus, σstat, determined during the MCMC sampling. When the signal from

projected LSS is included, we add σLSS, as detailed in Sect. 4.3.2, such that the

total uncertainty error on the density profile, σ2
tot = σ2

stat + σ2
LSS. Figure 4.4 shows

the clusters’ density profiles recovered by azimuthally averaging the convergence

maps. The smoothing inherent to KS93+MRLens results in an underestimation

of density in the cluster core, and an overestimate just outside. This biases the inner

profile slope that is often used to distinguish between cusps and cores. Lenstool

is accurate in the cluster core, because its basis functions have a density profile

that matches those of the simulated clusters. This is not affected by Lenstool’s

positive-definite constraint, because the true mass distribution is very positive near

the core. In the cluster outskirts, Lenstool strongly suppresses galaxy shape noise,

and the reconstruction is dominated by LSS noise. Because of the positive-definite

constraint, this is also potentially biased. The amplitude of LSS noise varies a great

deal depending on environments along the line-of-sight LSS, but we typically find

artificial boosts in inferred density of up to σLSS = 4× 107 M� / kpc2, at large pro-

jected radii, R > 1000 kpc. This effect must be taken into account when measuring

properties at large radius (e.g. M200, c200, splashback radius). To militate against

this, measurements of galaxy redshifts will be invaluable to disentangle structures

connected to the cluster from those lying in the foreground or background.

4.5 Halo Shape Measurement

On large scales, the accretion of matter from the surrounding large-scale environment

plays a key role in determining the shape and orientation of cluster dark matter halos

(Shaw et al., 2006). Halos are not necessarily self-similar (concentric ellipsoids with

the same orientation and ellipticity; Suto et al., 2016), but align with the infall

direction of subhalos and surrounding filaments at large radii. Thus, the shape of

galaxy clusters is a fundamental probe of the history of its mass accretion. Numerical

simulations with collisionless dark matter predict cluster halos to be triaxial (Jing &

Suto, 2002; Warren et al., 1992). Allowing DM particles to self-interact isotropizes

the orbits of dark matter particles, and makes the inner mass distribution more
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Figure 4.4: (see next page)
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Figure 4.4: Surface mass density profiles for 10 simulated clusters. Blue solid lines

show the the density profile calculated from the true mass distribution in Fig 4.1.

Green solid lines are the density profiles of KS93+MRLens reconstructed maps after

adding shapes noise and LSS. Cyan, orange, and red lines show the results recovered

by Lenstool including shape noise, projected LSS, and both shape noise and LSS,

respectively. Error bars with line caps are statistical errors from the MCMC sample.

Error bars with triangle caps are total errors which is the combination of statistical

errors with the estimated noise from the projected LSS.

spherical. For a cross-section of 1 cm2/g, the median minor-to-major axis ratio 100

kpc from the halo centre is ∼0.8, compared with ∼0.5 with CDM (Robertson et al.,

2019).

4.5.1 Ellipcial NFW mass modelling

We first modify the spherical NFW model to be elliptical by a coordinate transfor-

mation

|R′|2 = q(x2 cos2 φ+ y2 sin2 φ) + (y2 cos2 φ− x2 sin2 φ)/q , (4.5.8)

(Kassiola & Kovner, 1993a; Oguri et al., 2010) that maps a circle to an ellipse

with axis ratio 0 < q ≤ 1 and orientation φ. We apply this transformation to the

projected mass distribution. Applying it instead to the gravitational potential yields

different results, and no simple mapping exists between them.

We then fit the elliptical NFW mass distribution to the 2D convergence maps

reconstructed from shear catalogues with no noise, with shape noise, with LSS noise

or both. The fit3 minimizes the sum of the squared difference between the recon-

structed surface mass density of each BAHAMAS simulated cluster and an elliptical

NFW model, within a circular aperture of radius Rap. We then vary Rap, to in-

vestigate changes between the cluster’s inner and outer halos. During the fits, we

3We use the scipy.minimize implementation of the L-BFGS-B algorithm (Byrd et al., 1995),

available from https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

minimize.html.
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fix the centre of the NFW (to the location of the most bound particle) because

it is degenerate with axis ratio. We adopt flat priors on other free parameters:

0.1 ≤ M200 (1015M�) ≤ 5, 0.1 ≤ c200 ≤ 8, 0 ≤ φ ≤ 180 and 0.1 ≤ q ≤ 0.9, and

neglect covariance between adjacent pixels. So that the uncertainties in this test

match those in observational data, we add only one, fixed realisation of LSS along

the line-of-sight associated with each cluster.

4.5.2 Results

Both mass reconstruction methods produce distributions that are rounder than the

truth (figure 4.5). eNFW models fitted to the reconstructed mass maps (figure 4.2)

have a higher mean axis ratio 〈q〉 than models fitted to the true mass maps (fig-

ure 4.1). However, they successfully capture the decrease in 〈q〉(R) at large radii

that is seen in the true mass maps (reflecting a transition from dominant baryonic ef-

fects to the infall of structures along filaments; Suto et al., 2017). The orientation of

most inner (R = 650 kpc) and outer (R = 3 Mpc) halos also remain aligned within

∆φ ≤ 10◦, matching the true distributions (and also the simulations by Despali

et al., 2017). Two exceptions to this are clusters 5 and 9, which have complex cores

and ∆φ = 17◦ and ∆φ = 15◦. This likely indicates a transitory state during a major

merger.

Using KS93+MRLens leads to inferred values of 〈q〉 that are too high by about

6%. The level of bias is not significantly influenced by either source of noise in the

shear catalogue (although adding noise increases scatter in individual measurements

of q as expected). It is likely due to the isotropic blurring associated with pixellisa-

tion and MRLens filtering.

Using Lenstool leads to inferred values of 〈q〉 that are too high by 10% in the

cluster core and 15% in the outskirts. The bias appears to be caused by two effects:

• The mass distribution is built from components that are all individually spher-

ical. If the dominant halo in the cluster core is anomalously spherical (see

clusters 4, 5, 8 or 10 in figure 4.6), it can bias the apparent axis ratio of the

mass inside an aperture by up to 10%, almost regardless of the size Rout of

that aperture.
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Figure 4.5: Best-fit axis ratios of the mass distribution in galaxy clusters, as a

function of projected, clustercentric radius R. Grey lines show the BAHAMAS

simulated clusters, whose axis ratio profiles are measured from the true mass distri-

bution. Blue lines show the mean and standard deviations from this set of clusters.

Black (green) lines show the mean axis-ratio and its scatter measured from noise-

free KS93+MRLens reconstruction (with LSS and shape noise). Red (yellow) lines

show the mean results measured from noise-free Lenstool reconstruction (with

LSS and shape noise). Cyan (magenta) lines show the axis-ratio measured from the

masked R < 35′′ (228 kpc) Lenstool reconstruction (with LSS and shape noise).
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Figure 4.6: Elliptical NFW models fitted to the Lenstool mass maps are ∼ 6%

too round, on average (see figure 4.5). Black ellipses have the same axis ratio of the

true mass distribution (see figure 4.1) inside annulus R < Rap, where different values

of Rap are indicated by the length of the major axis. White dashed ellipses show

the axis ratio measured from masked Lenstool reconstructions, inside the largest

35′′ < R < Rap. The background image shows the mass distribution reconstructed

by Lenstool, as in figure 4.3 but with a logarithmic scale to highlight one problem

with the Lenstool method: overly circular central halos.
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• The mass distribution is constrained to be positive definite. In the absence of

noise, this has no effect. If we add galaxy shape noise, it is also relevant that the

reconstructed mass distribution is higher resolution (has more freedom) along

its major axis. The positive-definite bias in noise artefacts then exaggerates

the major axis, reducing 〈q〉 by ∼5%. If we add LSS noise, 〈q〉 increases by

8% because there is a larger area at close to zero convergence along the minor

axis.

It is possible to mitigate the first effect by masking the cluster core. We successfully

recover the true axis ratio when fitting an eNFW using to noise-free data inside an

annulus 35′′ < R < Rap (instead of a circle of radius Rap). Fitting inside annuli

also decorrelates measurements of 〈q〉 at different radii, and steepens the apparent

gradient in 〈q〉(R). Note that the second effect still increases 〈q〉 by ∼6% in the

presence of both sources of noise.

A different strategy to mitigate sphericity bias could be to pre-fit the axis ratio

of central halos, then hold them fixed while the rest of the grid is constrained. A

similar two-step process happens naturally in most combined analyses of strong plus

weak lensing, where strong lensing information constrains a cluster core. This bias

should therefore not affect Lenstool strong lensing analyses. However, it would be

difficult to characterise statistical uncertainty in such analysis, because shear data

would be used twice.

4.5.3 Comparison with previous studies

Previous work by simulators to measure the shape of cluster-scale halos split into two

distinct conclusions. Hopkins et al. (2005) found that 2D cluster ellipticity increases

with clustercentric radius, in agreement with our results. However, they also found

that the ellipticity is ε ≈ 0.05z+0.33 for the redshift range 0 < z < 3, which implies

q = 0.64 at the z = 0.55 redshift of our simulated clusters. Similarly, Ho et al.

(2006) found q ∼ 0.616 for halos with masses M > 1014M� at z = 0.55 assuming

Ωm = 0.3, and σ8 = 0.7, and little dependence upon cosmological model. Both of

these results are slightly rounder than our measurement of 〈q〉true ∼ 0.55± 0.03.
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More recently, Despali et al. (2017) found that M ∼ 1015M�/h halos in the

SBARBINE N-body simulations had more elliptical shapes, with q ∼ 0.55. Suto

et al. (2016) studied the probability distribution function (PDF) of q from projected

density distributions without assumptions of self-similarity. Using their PDF fit

formula for Mvir at z = 0.4, we obtain q = 0.57 ± 0.17. These results match ours

closely, and more recent independent analyses appear to be converging. Note that

the other simulations were DM-only, but Suto et al. (2017) found that non-sphericity

is unaffected by baryonic physics beyond half of the virial radius, so it is reasonable

to compare to our measurements.

Several observational studies of weak-lensing have attempted to measure cluster

halo ellipticity. In the Sloan Digital Sky Survey (SDSS), Evans & Bridle (2009)

found a mean projected axis ratio 〈q〉 = 0.48+0.14
−0.09 in the redshift range 0.1 < z <

0.3. By directly fitting 2D shear-maps with eNFW models, Oguri et al. (2010)

measured a mean projected axis ratio 〈q〉 = 0.54 ± 0.04 for a sample of 18 X-

ray luminous clusters in the redshift range 0.15 < z < 0.3. Shin et al. (2018)

measured 〈q〉 = 0.56 ± 0.09 for 10,428 SDSS clusters. These results are consistent

with our measurement. Intriguingly, Umetsu et al. (2018) measured the median

projected axis-ratio of 20 high-mass galaxy clusters in the HST-CLASH survey to

be 〈q〉 = 0.67 ± 0.07, within a scale of 2 Mpch−1. However, their measurement

from the CLASH high-magnification subsample was 〈q〉 = 0.55 ± 0.11, consistent

with our results. This suggests a lensing selection bias towards halos that are more

elliptical (in the plane of the sky as well as along a line of sight). In contrast,

X-ray selected clusters tend to be relaxed clusters with rounder dark matter halo

shapes. For clusters selected by the red sequence technique, it is more likely that

they are elongated along the line of sight, causing an over-density of red galaxies

in the projected sky-plane. Since our simulated cluster sample is selected by their

high mass, with each halo projected along a random line-of-sight, we can only give

the mass-selected mean halo shape. For direct comparison with observational data,

future theoretical predictions will need to take the selection function of the observed

sample into effect.

Other shape measurement techniques are possible. Studies using quadrupole
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estimators to quantify halo shape include Adhikari et al. (2015); Clampitt & Jain

(2016); Shin et al. (2018); van Uitert et al. (2017). In particular, Clampitt & Jain

(2016) developed a new estimator to measure the quadrupole weak-lensing signal

from 70,000 SDSS Luminous Red Galaxies halos, and found a best-fit axis-ratio

〈q〉 ∼ 0.78. Their analysis assumes that dark matter perfectly aligns with light, so

one potential systematic in their study is the possibility of light and dark matter

misalignment. The determination of the orientation of each lens-source pair could

become inaccurate due to this misalignment, and result in the dilution of the final

stacked signal of the halo ellipticity. Indeed, applying the misalignment distribution

of Okumura et al. (2009) to their measurement, they obtain q ∼ 0.6, consistent with

our results.

4.6 Searches for filaments

Dark matter and gas are accreted onto a cluster mainly through filaments that con-

nect it to the ‘cosmic web’. Filaments are key transition regions in the evolution

of galaxy morphology (Einasto et al., 2007; Kuutma et al., 2017; Liu et al., 2019;

Martizzi et al., 2019; Nuza et al., 2014; Pandey & Bharadwaj, 2006) and star forma-

tion (Alpaslan et al., 2015, 2016; Crain et al., 2009; White et al., 2010; Yuan et al.,

2019).

Filaments are much lower density environments than a cluster, so appear in

gravitational lensing observations with correspondingly lower signal-to-noise. While

it is possible to search for filaments directly in shear data (Dietrich et al., 2005;

Dietrich et al., 2012; Jauzac et al., 2012), we explore whether it is efficient to leverage

the de-noising techniques developed for mass mapping, then to analyse the inferred

convergence field. In this section, we present a new method that is optimal for

filament search in the reconstructed field.

4.6.1 Removing the smooth mass component

First, we subtract the smooth distribution of mass in the clusters, which would

otherwise dominate the lower density contrast in the filaments.

August 16, 2020



4.6. Searches for filaments 71

We fit mock reduced shear data (with or without LSS and galaxy shape noise),

using an elliptical NFW potential. This model has 6 free parameters: the coordinates

of the centre of mass, (xc, yc), the ellipticity, e = (1−q2)/(1+q2) where q is the axis

ratio, the position angle, φ, the scale radius, rs, and the concentration, c. We set

flat priors on xc and yc within a 15′′ × 15′′ box centred on the most bound particle,

and flat priors on e ∈ [0.05, 0.7], φ ∈ [0, 180], rs ∈ [50, 1000] kpc, and c ∈ [0.5, 10].

Note that we introduce ellipticity to this model via a coordinate transformation to

the gravitational potential (rather than the mass, as in Sect. 4.5.1) because code to

achieve this already exists within Lenstool4. The smooth distribution of mass in

most simulated clusters is well approximated by a single potential. However, we use

two to fit bimodal clusters 1, 2 and 9, and three for cluster 3.

We then subtract the best-fit smooth halos from the convergence maps. Since

the mass distribution of simulated clusters cannot be perfectly described by elliptical

NFW potentials, small residuals are left near the cluster centre. Such residuals do

not impact searches for filaments at much larger radii.

4.6.2 Aperture multipole moments

Schneider & Bartelmann (1997) first suggested looking for substructures or filaments

using multipole moments of a convergence field within circular apertures. These are

Qn(R) =

∫ ∞
0

|R′ −R|n eniφ Un(|R′ −R|) κ(R′) d2R′ , (4.6.9)

where n is the order of the multipole, (R, φ) are polar coordinates, and Un(R) is a

radially symmetric weight function, for which Dietrich et al. (2005) suggested

Un(R) =

1−
(

R
Rmax,n

)2

for R 6 Rmax,n

0 otherwise.

(4.6.10)

Eq. (4.6.9) can also be expressed in terms of shear measurements, which Dietrich

et al. (2005) used to detect filament candidates in close pairs of clusters. Since

4An elliptical gravitational potential produces a ‘boxy’ mass distribution if e > 0.6. However,

for the low values of ellipticity that we obtain, the maximum distance δR between a projected

density contour and a true ellipse is δR/R < 10% (see figure 6 in Golse & Kneib, 2002).
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modern mass reconstruction methods successfully suppress noise, we attempt instead

to measure multiple moments directly from the pixellated convergence field

Qn(R) = Apix

Npix∑
i=1

Rn
i eniφi Un(Ri) κ(Ri) , (4.6.11)

where Npix is the total number of pixels inside the aperture and Apix is an area per

pixel. For n > 0, Qn is complex; we shall generally take its modulus, |Qn|.
Multipoles of different orders highlight different features in a mass distribution

(see figure 4.7). Monopole moments (n = 0) are the aperture mass or normalisation.

Dipole moments (n = 1) are the local gradient of a convergence field. They form

ring-like structures around mass clumps. Quadrupole moments (n = 2) are the

locally-weighted curvature or Hessian of the convergence field. As Dietrich et al.

(2005) explain using a toy model, linear overdensities with a lower mass on either

side (i.e. filaments) have large quadrupole moments. However, regions between two

substructures also have large quadrupole moments. To identify the former and

suppress the latter, Mead et al. (2010) suggested combining multipole moments

Q ≡ α0Q0 + α1Q+1 + α2Q2 + ... (4.6.12)

where the constants, αi, can be adjusted to boost a signal of interest. We have tried

different combinations and aperture sizes, and find that a choice of

α0 = −α1 = 0.7 and α2 = 1 , (4.6.13)

Rmax,0 = 1′ and Rmax,1 = Rmax,2 = 2′ . (4.6.14)

typically highlights narrow filaments (see figure 4.8). The quadrupole term is sen-

sitive to linearly extended mass distributions, and the rings that it adds around

substructures are removed by the negative dipole term. The monopole term fills in

the subtracted mass, and suppresses regions between two substructures but without

mass.

4.6.3 Filament identification

To identify individual filaments, we search for spatially extended regions with Q

above a threshold Qthreshold. The normalisation of coefficients in eq. (4.6.13) con-

veniently ensures that regions inside a contour Qthreshold have mean convergence
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5 arcmin

Group 5Group 5Group 5Group 5Group 5Group 5

Group 5

Figure 4.7: An example of aperture multipole moments of various orders, which

pick out different features of the noise-free mass distribution of one simulated cluster

(Cluster 5, which happens to have several features in the plane of the sky). Moments

are calculated after subtracting the large-scale smooth mass distribution. From left

to right, panels show: (a) monopole, (b) dipole, (c) quadrupole moments and (d)

the radial component of the quadrupole moment. For reference, black contours show

the true mass distribution.

〈κ〉 ≈ Qthreshold (figure 4.9). We identify as possible filaments any region with

Q > Qthreshold in a contiguous area or multiple peaks with total area > 1.13 arcmin2,

that is aligned within ∼ 45◦ of the radial direction to the cluster centre. Applied

to noise-free data and using Qthreshold = 0.005, this recipe identifies 22 of the 40

filaments, all of which are real, i.e. 55% completeness (the number identified divided

by the true number) and 100% purity (the number identified that are true divided

by the number identified). The identified filaments are highlighted in magenta in

figure 4.8.

4.6.4 Additional noise suppression strategies

Measurements of multipole moments will be more difficult in noisy data — especially

for high n moments, where the diverging |R′ −R|n term is particularly sensitive to

noise in κ near the aperture boundary. We shall explore three strategies to reduce

noise. First, noise can be averaged away by enlarging the aperture. However, signal

is also averaged away for a filter that is not matched to the size of the feature –

and filaments are relatively narrow, even around clusters at low redshift. Second,

negative noise peaks can be eliminated by forcing κ = max{κ, 0}. Negative con-
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Figure 4.8: A combination of aperture multipole moments, Q (equations 4.6.12–

4.6.14), can be used to identify filamentary features in a mass map. Colours (Top

panel: linear scale, Bottom panel: logarithmic scale) show Q calculated from the

true convergence map (without shape noise or LSS noise; black contours), after sub-

tracting its best-fitting smooth component. Dotted lines reproduce the 40 filaments

from figure 4.1. The 22 filaments successfully identified using Q and the procedure

described in section 4.6.3 are highlighted in magenta.
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Figure 4.9: A combination of aperture multipole moments, Q (equations 4.6.12–

4.6.14), can be used to identify features in a mass distribution with filamentary

topology (see figure 4.8) and higher density than the background. Solid lines show

the mean projected density 〈κ〉 inside a contour defined by Qthreshold, for all 10

simulated clusters. The dotted line and shaded region show their mean and standard

deviation. The normalisation of coefficients (4.6.13) is chosen so that 〈κ〉 = Qthreshold.

The lower dashed line shows the mean convergence, weighted by the number of pixels

that contain Q > Qthreshold.
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vergence is physically possible, because convergence represents deviation from the

mean cosmic density; but it is unlikely along the line-of-sight to even a low density

structure, and probably noise rather than signal. Third, we could assume that all

filaments extend radially away from the cluster, while noise is isotropic, and suppress

quadrupole and dipole moments whose phases are tangential. We calculate

Qn,projected = |Qn| cos (φ− θ), with n = 1, 2 (4.6.15)

where θ is an phase angle of Qn. Figure 4.7(d) shows the projected quadrupole

moments in the noise-free case, as an example.

4.6.5 Results

In the presence of galaxy shape noise and LSS noise, maps of our combination of

aperture multipole momentsQ have lower signal-to-noise than maps of convergence κ

(figure 4.10; given the noise level, we show them only in linear scale, not logarithmic).

We quantify the noise level by defining σQ as the standard deviation of all pixels

in the final Q map. Despite our attempt to eliminate isolated substructures from

the Q maps by combining different multipole moments, clusters 1, 2 and 5 contain

sufficiently massive substructures to induce higher Q than lower-density filaments.

Following the methodology in section 4.6.3, we then search for filaments as extended

regions with Q > 3σQ (illustrated in figure 4.10) or Q > 4σQ. Results for both are

listed in table 4.3.

In the default Lenstool mass reconstructions, we find 〈σQ〉 = 0.011 and, with

Qthreshold = 3σQ we identify 17 of the 40 filaments (42.5% completeness), plus 5

false positive detections (77.3% purity). Increasing the detection threshold to 4σQ

removes all but one false detection, but finds only 12 real filaments.

Identifying filaments in the noisier KS93+MRLens mass reconstructions is much

more difficult. To obtain useful results, we need to apply all three denoising strate-

gies presented in Sect. 4.6.4.

We enlarge the apertures to Rmax,0=2′, Rmax,1=Rmax,2=2.5′; we replace negative

convergence by zeros; and we project all quadrupole and dipole moments in the

radial direction. In combination, these strategies reduce 〈σQ〉 from 0.11 to 0.06.
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Galaxy number

density[arcmin−2]

Purity Completeness

3σQ 4σQ 3σQ 4σQ

20 35.0% 40.0% 50.0% 35.0%

KS93+MRLens 50 41.7% 44.4% 37.5% 30.0%

100 50.0% 57.9% 42.5% 27.5%

20 76.0% 78.0% 40.0% 27.5%

Lenstool 50 77.3% 92.3% 42.5% 30.0%

100 81.8% 93.3% 45.0% 35.0%

Table 4.3: Filament identification efficiency at 3σ or 4σ detection significance,

from multipole aperture moments in mass maps created by KS93+MRLens or

Lenstool, assuming different densities of weakly lensed galaxies. Completeness

indicates the fraction of the 40 real filaments (see section 4.3.1) that are successfully

identified. Purity indicates the fraction of the identified filaments that are real.
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Filament identification statistics after this noise suppression are listed in table 4.3.

At 3σQ detection threshold, we identify 15 of the 40 filaments (37.5% completeness),

but also 21 false positive detections (41.7% purity).

Most of the false-positive filament detections are caused by galaxy shape noise.

Repeating the KS93+MRLens analysis with only shape noise yields a Q map with

σQ = 0.058; with only LSS noise, it is σQ = 0.033. Because shape noise is ap-

parently so dominant, we also investigate the effect of different survey strategies

on the success of filament identification. We simulate ground-based observations,

which typically resolve the shapes of only 20 galaxies arcmin−2, and extremely deep

space-based observations that resolve ∼ 100 galaxies arcmin−2 (we assume all faint

galaxies have constant intrinsic shape noise, as suggested by figure 17 of Leauthaud

et al. 2007). With these catalogues, we repeat the whole analysis: including the

mass reconstruction and filament search (table 4.3).

The low purity and high completeness of KS93+MRLens with 20 arcmin−2

source galaxy is because the Q maps are filled with random noise peaks that mimic

the filament signals. Some radial directions defined by the alignment of noise peaks

match the true filament direction by chance and thus boost the completeness in

spite of low purity. Since these maps are not informative, we show only those Q

measurements using 100 arcmin−2 source galaxies in figure 4.10. The performance of

Lenstool reconstructions with deep space-based data is impressive: thanks to the

prior assumption of looking harder where there are galaxies, it finds 18 filaments

around 10 clusters (45% completeness) with 82% purity. Recall that, even with

noise-free data (section 4.6.3), the maximum completeness with the multipole mo-

ment technique was 55%. In general, we find that Lenstool is most appropriate

for filament searches. Applied to future deep space-based surveys, the multipole

moment technique should detect one or two filaments around most clusters.

4.7 Conclusions

High-precision calibration of weak-lensing mass reconstruction techniques will be

essential for the next generation of space-based surveys. Understanding methods’
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 Q on the LENSTOOL Reconstructions (50 gal/arcmin2)

 Q on the LENSTOOL Reconstructions (100 gal/arcmin2)

Projected Q on the Positive-only KS93+MRLENS Reconstructions (50 gal/arcmin2)

Projected Q on the Positive-only KS93+MRLENS Reconstructions (100 gal/arcmin2)

Figure 4.10: (see next page)
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Figure 4.10: Results for the filament search around 10 simulated clusters. Colours

show a linear combination of aperture multipole moments Q, calculated from

the mass maps after subtracting their best-fit smooth component. Dotted lines

show true filaments, reproduced from figure 4.1; those identified successfully (with

Qthreshold = 3σQ, see section 4.6.3) are highlighted in magenta. Solid lines show false

positive detections. The top and second panel use mass maps created by Lenstool

(including shape noise and LSS), with 50 arcmin−2 and 100 arcmin−2 source galax-

ies, respectively. The third and bottom panel show the phase-projected version of

the filter applied to the positive-only KS93+MRLens mass map (with a different

colour scale to the top two panels). In all panels, red contours show Q = 3σQ and

4σQ, and black contours show the true mass distribution.

performance in different systems (such as non-linear structures or stacked clusters),

and quantifying any biases they introduce, will help identify the optimal method for

each scientific analysis.

In this chapter, we simulate mock observations of ten galaxy clusters from the

BAHAMAS cosmological simulation. We use their known distribution of mass 4×
1014 < M200/M� < 2 × 1015 to test two mass mapping methods: (1) direct KS93

inversion from lensing shear observations to the projected mass distribution, which

is then denoised using MRLens; (2) the forward-fitting Lenstool technique that

uses a Bayesian MCMC sampler to fit the distribution of mass in a multi-scale grid.

Any mass reconstruction method must interpolate the finite resolution in a shear

catalogue that samples the shear field only along the lines of sight to galaxies.

We find that MRLens is particularly efficient at suppressing noise owing to the

diverse intrinsic shapes of background galaxies, whilst retaining signal from statis-

tically significant structures on all scales. In a typical cluster field, it reduces total

noise σκ from 0.088±0.001 to 0.026±0.001. However, it has no knowledge of cluster

physics, and its noise suppression via smoothing softens the inferred central density

profile. At large projected radii, R > 1 Mpc, noise in the map of an individual

cluster becomes dominated by unrelated structures at different redshifts, projected

along adjacent lines of sight.
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Lenstool incorporates physical knowledge of galaxy clusters by imposing strong

priors on the distribution of mass. For example, it preserves central cusps. The

method is more aggressive in denoising the reconstructed convergence field, achiev-

ing σκ = 0.015±0.004. By adjusting the grid’s adaptive resolution, it is also possible

to suppress the spurious signal from unrelated, isolated structures at different red-

shifts, once they have been identified via multiband photometry or spectroscopy.

We find that this method is well-suited to reconstructions of individual clusters, or

measurements of low signal-to-noise quantities, such as filaments. However, if the

cluster members are misidentified in the first place, then it can cause bias in the

Lenstool mass reconstruction due to the incorrect mass-trace-light prior.

In its standard configuration however, we find that Lenstool biases a mass

reconstruction at large distances from the centre of a cluster, by imposing a prior

that the projected density everywhere in a field of view must be positive (relative to

the mean density in the Universe). This bias will need to be managed carefully when

statistical errors are reduced by averaging over a population of clusters: perhaps

by reconfiguring the Bayesian optimisation engine. The standard configuration of

Lenstool also forces the mass distribution in every grid point to be spherically

symmetric. In a purely weak-lensing analysis, this leads to spuriously spherical

cluster cores, even when the global mass distribution is well modelled. This issue

is automatically solved and irrelevant if strong gravitational lensing information is

available, and used to pre-fit the axis ratio of the core. In this weak lensing-only

study, we adopt a simple solution by masking the central R < 35′′ regions of a

weak-lensing-only reconstruction.

Based on the performance of these two methods, for an individual cluster, or mea-

surements of highly nonlinear quantities such as filament detection, Lenstool is

well-suited to applications that require as precise a reconstruction as possible. How-

ever, for high-precision analyses that stack many clusters, it would be necessary to

drop Lenstool’s positive definite constraint to reduce bias of mass over-estimation.

By contrast, KS93+MRlens retains a higher level of noise, but the positive and

negative fluctuations are preserved in a manner which can reduce bias in stacked

measurements.
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We also develop a filter to search for filaments and measure their orientation. The

low density of filaments leads to low signal-to-noise in reconstructed maps, and they

can rarely be stacked usefully. To retain their individual signal whilst suppressing

noise, we construct a linear combination of multipole moments. We explore two

further strategies: (1) filtering on the orientations (complex phases) of higher-order

moments, exploiting the prior knowledge that filaments typically extend radially

out from cluster halos, and (2) replacing with the mean density of the Universe

those regions inferred to have (negative) less density, which are more likely to be

noise than regions inferred to have (positive) higher density. We find that it will be

impossible to detect individual filaments using data from ground-based telescopes,

and remains challenging with current space-based (HST) data. However, we find

that the dominant source of noise relevant to filament detection comes from lensed

galaxies’ intrinsic shapes. Deeper observations with the next generation of space-

based telescopes will resolve more background galaxies, and efficiently beat down

this noise. Our filtering method successfully finds 45% of filaments with projected

density Σ > 1.7× 107 M�/kpc2 (with a false detection rate <20%), when applied to

mock observations at the depth of possible future surveys.
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Chapter 5

Space-based Lensing Analysis of

Galaxy Cluster MS 0451

5.1 Abstract

Using the largest mosaic of Hubble Space Telescope images around a galaxy cluster,

we map the distribution of dark matter throughout a ∼6 × 6 Mpc2 area centred

on the cluster MS 0451−03 (z = 0.54, M200 = 1.65 × 1015 M�). Our joint strong-

and weak-lensing analysis shows three possible filaments extending from the cluster,

encompassing six group-scale substructures. The dark-matter distribution in the

cluster core is elongated, consists of two distinct components, and is characterized

by a concentration parameter of c200 = 3.79 ± 0.36. By contrast, XMM-Newton

observations show the gas distribution to be more spherical, with excess entropy

near the core, and a lower concentration of c200 = 2.35+0.89
−0.70 (assuming hydrostatic

equilibrium). Such a configuration is predicted in simulations of major mergers 2–

7 Gyr after the first core passage, when the two dark-matter halos approach second

turnaround, and before their gas has relaxed. This post-merger scenario finds further

support in optical spectroscopy of the cluster’s member galaxies, which shows that

star formation was abruptly quenched 5 Gyr ago. MS 0451−03 will be an ideal target

for future studies of the growth of structure along filaments, star-formation processes

after a major merger, and the late-stage evolution of cluster collisions.

The following has been published in MNRAS as Tam et al. (2020b)
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5.2 Introduction

In Chapter 4, we have shown the performance of two mass mapping techniques for

halo shape measurement, and derived a optimal filter to search for filaments. In

this Chapter, we apply these methods on observational data to constrain physical

properties of a real galaxy cluster.

Higher resolution space-based imaging increases the signal-to-noise ratio (S/N)

of lensing measurements. We use a wide-field HST /ACS imaging mosaic to con-

duct a combined strong+weak lensing analysis of the redshift z=0.54 galaxy cluster

MS 0451-03 (hereafter MS 0451), also known as MACS J0454.1-0300 (Ebeling et al.,

2001, 2007). It is the most X-ray luminous cluster in the Extended Medium Sen-

sitivity Survey (EMSS; Gioia et al., 1990). Previous studies of MS 0451 have been

conducted at optical wavelengths (Jørgensen & Chiboucas, 2013; Luppino et al.,

1999; Martinet et al., 2016; Moran et al., 2007a,b; Soucail et al., 2015), in X-rays

(Donahue et al., 2003; Jeltema et al., 2005; Jørgensen et al., 2018; Molnar et al.,

2002) and via the Sunyaev-Zel’dovich (SZ) effect (De Filippis et al., 2005; Sayers

et al., 2019). Strong gravitational lensing analyses have built a model of the cluster

core (Berciano Alba et al., 2010; Borys et al., 2004; MacKenzie et al., 2014; Zitrin

et al., 2011, Jauzac et al. sub.), and a ground-based weak lensing analysis detected

a possible filamentary structure (Martinet et al., 2016). In 2014, MS 0451 was ex-

tensively observed with HST over a large area, providing the community with the

largest HST mosaic centered on a galaxy cluster. In this Chapter, we exploit these

wide HST observations, combining strong and weak gravitational lensing to map

the mass distribution out to a projected radius of ∼3 Mpc.

Multi-wavelength data, such as X-ray imaging that traces the intra-cluster medium

(ICM), is crucial to a better understanding of the dynamics in clusters. Since dark

matter and baryons interact differently during a merger, a combined study of the

distributions of dark matter and ICM provides an insight into clusters’ evolutionary

history (e.g. Bradač et al., 2006; Jauzac et al., 2015a; Merten et al., 2011; Molnar

& Broadhurst, 2018; Ogrean et al., 2015). Furthermore, X-ray analyses usually as-

sume that the ICM is in hydrostatic equilibrium (HSE) and spherically symmetric.

Therefore, a comparison between the X-ray hydrostatic and lensing mass measure-
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ments can also be used as a check for deviations from HSE. Our collaborator used

XMM-Newton observations to conduct X-ray analysis of MS 0451, which allows us

to probe the dynamical state of this massive cluster.

This chapter is organised as follows. Existing multiwavelength observations of

MS 0451 are summarised in Section 5.3. Our methods for measuring gravitational

lensing and reconstructing the distribution of mass are described in Section 5.4.

Our methods for X-ray data analysis are presented in Section 5.5. We present our

measurements of the main cluster halo and surrounding large-scale structures in

Section 5.6. We infer the cluster’s dynamical state in Section 5.7, and conclude in

Section 5.8. Throughout this chapter, we adopt a ΛCDM cosmology with Ωm = 0.27,

ΩΛ = 0.73, and H0 = 70 kms−1Mpc−1, hence 1’ corresponds to 6.49 kpc at the

redshift of the cluster.

5.3 Observations

5.3.1 Hubble Space Telescope observations

HST/ACS

A ∼ 20′×20′ mosaic of 41 high-resolution images around MS 0451 was obtained with

the Advanced Camera for Survey onboard HST (ACS; Ford et al., 1996) between

January 19 and February 3, 2014 (GO-9836, PI: R. Ellis), in the F814W pass-band,

with an exposure time of 2 ks per pointing (single orbit depth). We reduced the

data using the pyHST software1 which corrects Charge Transfer Inefficiency using

arctic (Massey et al., 2014), removes bias and flat fields using calacs (Miles et al.,

2018), then stacks dithered images using astrodrizzle (Hoffman & Avila, 2018).

These high-resolution images are used to measure the effect of weak gravitational

lensing on the shapes of background galaxies.

1https://github.com/davidharvey1986/pyHST
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HST/WFC3

The cluster core (2′ × 2′) was imaged with the Wide Field Camera 3 onboard HST

(WFC3; Kimble et al., 2008) on January 13, 2010 (GO-11591, PI: J.-P. Kneib).

We use observations in the F110W and F160W pass-bands, with exposure times of

17 912,s and 17 863 s respectively, for the strong-lensing analysis.

5.3.2 Ground-based Observations

Imaging Data

Multicolour imaging in the B,V ,Rc,Ic and z′ passbands was obtained with the 8.3 m

Subaru telescope’s wide-field Suprime-Cam camera for 1440 s, 2160 s, 3240 s, 1800 s,

and 1620 s, respectively. Dates of these observations are December 21, 2006 (z′),

December 11, 2001 (Rc,Ic) and January 23, 2009 (B,V ). Near-UV imaging in

the u∗ passband was obtained by the 3.6 m CFHT’s MegaPrime camera for 6162 s

on November 27, 2006 (ID: 06BH34, PI: H. Ebeling). Near-infrared imaging in

the J and KS pass-bands was obtained with CFHT’s Wide-field InfraRed Camera

(WIRCam) on November 8, 2008 and October 25, 2007, respectively (ID: 08BH63,

07BH98, PI: C.-J. Ma). All observations were dithered to facilitate the removal of

cosmic rays, minimising the impact of pixel defects and chip gaps; all data were re-

duced using standard procedures (Donovan, 2007). These data are used to measure

photometric redshifts and thereby identify galaxies within, in front of, or behind the

cluster.

Photometric redshifts were computed using the ground-based imaging. In order

to allow a robust estimate of the spectral energy distribution (SED) to be obtained

for all objects within the field of view, data from different pass-bands are seeing-

matched using the technique described in Kartaltepe et al. (2008). The object

catalogue is then created with the SExtractor photometry package (Bertin &

Arnouts, 1996) in ‘dual-image mode’, with the R-band image being the reference

detection image. Photometric redshifts for galaxies with magnitude RC < 24 were

subsequently computed using the adaptive SED-fitting code Le Phare (Arnouts

et al., 1999; Ilbert et al., 2009). By comparing the spectroscopic and photometric
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redshifts, the typical statistical error of the photometric redshifts is found to be

∆z = 0.024. For more details of this calibration, see Ma et al. (2008).

Spectroscopic observations

MS 0451 was also observed with the Multi-Unit Spectroscopic Explorer (MUSE;

Bacon et al., 2010) at the VLT on January 10-11, 2016 (ID: 096.A-0105(A), PI: J.-

P. Kneib) using its WFM-NOAO-N mode in good seeing conditions with full width

at half maximum (FWHM) of approximately 0.8 arcsec. The MUSE observations

consist of 2 pointings of 3 exposures, slightly shifted to account for systematics on

the detector, covering a field of view of ∼ 2.2 arcmin2. These data are used for

the strong-lensing analysis. They were reduced using version 1.6.4 of the MUSE

standard pipeline (Weilbacher et al., 2012; Weilbacher et al., 2014), which corrects

for bias and illumination; performs geometrical, astrometric and flux calibrations;

then combines the 3 individual exposures of each pointing into a single data cube.

The sky residuals within each data cube were finally subtracted using the Zurich

Atmosphere Purge algorithm (Soto et al., 2016), which masks sources identified by

sextractor (Bertin & Arnouts, 1996), then uses principal component analysis to

model the sky background.

The spectroscopic redshifts of galaxies used in this work were compiled from

the literature and complemented by redshift measurements obtained by us, based

on spectroscopic data obtained in September 2004 with Gemini-North/GMOS on

Mauna Kea. The latter used a 1 arcsec slit, the 800 l/mm grating, and a spectral

range typically from 4200 to 7000 Å. The resulting data were reduced using standard

IRAF procedures.

5.3.3 XMM-Newton X-ray Observations

MS 0451 was observed by XMM-Newton (observation ID: 0205670101, PI: D. Wor-

rall) on September 16-17, 2004 for a total of 44 ks. We reduced the XMM-Newton/EPIC

data using the XMMSAS v16.1 software package and a pipeline developed in the

framework of the XMM-Newton Cluster Outskirts Project (X-COP, Eckert et al.,

2017). After performing the standard data reduction steps to extract calibrated
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event files, we used the XMMSAS tools mos-filter and pn-filter to automati-

cally define good-time intervals (unaffected by soft proton flares) of 24 ks (MOS1),

24 ks (MOS2), and 19 ks (PN). For more details of this procedure, see Ghirardini

et al. (2019, Sect. 2 and Fig. 1). These data are used to measure the properties of

the baryonic ICM.

An independent, ∼ 50ks Chandra observation provides a high-resolution X-ray

view of the cluster core but is not used by us here, since the covered area does not

match the extended HST mosaic that is the focus of this study.

5.4 Method: Gravitational Lensing Analysis

5.4.1 Weak Lensing Shear Catalogue

To detect sources and measure the shapes of galaxies in the HST /ACS imaging, we

use the pyRRG (Harvey et al., 2019) implementation of the (Rhodes et al., 2000,

hereafter RRG) shear measurement method. For the full details of this process, we

refer the reader to Section 3.3.1.

Background galaxy selection

The HST /ACS galaxy catalogue output from pyRRG is contaminated by fore-

ground and cluster member galaxies. These are not gravitationally lensed by the

cluster, and dilute the shear signal. To eliminate these galaxies from our analysis,

we use multicolour ground-based imaging.

For the 13% of galaxies in the HST /ACS catalogue that are brighter than RC <

24, we can assign photometric redshifts (see section 5.3.2). We thus identify and

remove all cluster member galaxies with photometric redshift 0.48 < zphot < 0.61,

or spectroscopic redshift 0.522 < zspec < 0.566.

For an additional 16% of galaxies, we obtain multicolour information in at least

the B, RC , and IC bands. We have experimented with several criteria adopted else-

where in the literature to identify foreground and cluster member galaxies (e.g. cuts

in B − RC and RC − IC , or B − V and u − B; see Jauzac et al. 2012; Medezinski

et al. 2010, 2018). We obtain the cleanest catalogue by retaining only those galaxies
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Figure 5.1: Colour-colour diagram (B − RC vs RC − IC) for objects within the

HST /ACS mosaic of MS 0451. Blue dots represent all objects; magenta and yellow

dots are galaxies classified as foreground and cluster galaxies thanks to photometric

redshifts respectively. The red solid lines delineate the B, RC and IC colour cuts

that minimize contamination in the catalogue.

with (B − RC)<0.79, (RC − IC)>1.03, or (B − RC)<2.72(RC − IC) − 0.216 (fig-

ure 5.1). After these colour cuts, the photometric redshift distribution of RC < 24

galaxies suggests that the contamination from foreground and cluster members is

∼4% (figure 5.2 top panel). This is smaller than our statistical error budget, so we

ignore this bias. We shall refer to the combined 30% of galaxies with photometric

information as the ‘bright sample’.

For the remaining 70% of galaxies without any ground-based photometric in-

formation, we first discard the 6% of galaxies brighter than F814W < 24 (which

are mainly foreground or cluster member galaxies; in the bright sample, 80% of

foreground galaxies and 89% of cluster members have F814W < 24, and their
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Figure 5.2: The successful identification of background galaxies. Top: Redshift

distribution of all galaxies that have a spectroscopic and/or photometric redshift (red

histogram). The blue histogram shows the redshift distribution of galaxies classified

as background sources based on B, RC , IC colour-colour selection. Bottom: Number

density of all background galaxies in the final weak-lensing catalogue (including

fainter galaxies without observed colours), as a function of their projected distance

from the cluster center.
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combined magnitude distribution peaks at F814W ∼ 23). For this ‘faint sam-

ple’ of galaxies, we assign nominal redshifts drawn at random from a distribution

N(z > 0.54) ∝ (e−z/z0)β, with β = 1.8 and median redshift z0 = 0.71 (Gilmore &

Natarajan, 2009; Natarajan & Kneib, 1997).

Our final weak lensing catalogue (combining the ‘bright’ and ‘faint’ samples)

contains 21, 232 background galaxies, corresponding to 44 galaxies arcmin−2. Before

cuts, an excess of ∼ 35 galaxies arcmin−2 is present within 1 Mpc of the cluster cen-

tre; our selection process removes these galaxies, leaving an approximately constant

density throughout the field (figure 5.2 bottom panel), as expected for an uncorre-

lated population of background galaxies. Of these background sources, 10%, 11%

and 79% are selected via cuts in redshift, colour and magnitude, respectively.

5.4.2 Strong lensing constraints

For this analysis, we adopt the best-fit strong-lensing mass model from Jauzac et al.

(sub.). We here only give a summary of the strong-lensing mass model, and refer

the reader to Jauzac et al. (sub.) for more details. The cluster core is modeled using

two cluster-scale halos and 144 galaxy-scale halos associated with cluster galaxies.

All potentials are modeled using Pseudo-Isothermal Elliptical Mass Distributions

(PIEMDs; Eĺıasdóttir et al., 2007; Kassiola & Kovner, 1993b; Limousin et al., 2005)

which are described by seven parameters: position (x,y), ellipticity e, position an-

gle θ, core radius rcore, truncation radius rcut, and velocity dispersion σ. Best-fit

parameters for the two cluster-scale components are listed in Table 5.1.

Seven cluster galaxies acting as small-scale perturbers of some of the multiple

images are independently modeled as individual PIEMDs. The rest of the cluster

galaxy population is modeled using scaling relations; to limit the number of free

parameters, positions, ellipticities, and position angles of all galaxies are fixed to

the respective values of the observed stellar component. The galaxies’ velocity dis-

persions are scaled from the observed stellar luminosity according to the Faber &

Jackson (1976) relation, which describes well the mass in early-type cluster galaxies

(Jullo et al., 2007; Wuyts et al., 2004).

The strong-lensing mass model is constrained by 16 systems of multiple im-
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ages (47 images in total). These include well known lensed objects such as a sub-

millimeter arc at z ∼ 2.9 (Borys et al., 2004), five other sub-millimeter systems

(MacKenzie et al., 2014), a triply imaged galaxy (Takata et al., 2003), and six new

systems identified with VLT/MUSE, including a quintuple image at z = 6.7 in the

poorly constrained northern region. The latter has a redshift from VLT/XShooter

observations and was previously studied by Knudsen et al. (2016). Five of these

systems are spectroscopically confirmed, two of them newly identified by Jauzac et

al. (sub.) using MUSE observations. The quintuple-image system in combination

with the two new systems identified through MUSE observations in the northern re-

gion motivated the addition of a second cluster-scale halo in the strong-lensing mass

model. Without this second large-scale halo, the geometry of the z = 6.7 system

cannot be recovered and the root-mean-square (rms) distance between the observed

and predicted locations of the multiple images of other systems is unacceptably high

at > 1.5′′. Two close groups of cluster galaxies were identified in this region. Adding

a third cluster-scale mass halo did not significantly improve the model.

The resulting best-fit strong-lensing mass model has an rms separation of 0.6′′.

The best-fit parameters of the two main cluster halos are given in Table 5.1. Note

that the coordinates of the halos are given in arcseconds relative to the cluster center,

here the BCG (α =73.545202, δ = −3.014386).

5.4.3 Lensing 2D mass map

Forward fitting with Lenstool

We reconstruct the 2D distribution of mass using version 7.1 of Lenstool, whose

performance has been quantified on mock HST data in Chapter 4. This returns

1700 Markov Chain Monte Carlo (MCMC) samples of the posterior likelihood, from

which we compute the mean mass map.

The mass modeling here is different from Chapter 4 which only considered weak

lensing signal. In this work, we conduct a combined strong+weak lensing analysis.

In the cluster core, we fix the mass distribution to the best-fit of the strong-lensing

model (see Sect 5.4.2). This includes 2 cluster-scale halos separated by 237 kpc,
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Parameter Main halo Second halo

R. A. −7.5+0.9
−1.2 22.3+3.1

−0.1

Dec. −2.6+0.6
−0.7 19.5+4.8

−0.1

σ (km/s) 1001+30
−25 810+210

−670

e 0.63+0.04
−0.03 0.18+0.12

−0.06

θ (deg) 32.2± 0.5 147+9
−16

rcore (kpc) 120+10
−6 332+60

−30

rcut (kpc) [1000] 680+200
−570

Table 5.1: Best-fit parameters for the two cluster-scale PIEMD components of the

strong lensing model of MS 0451. The coordinates are expressed in arcseconds rel-

ative to the location of the BCG (α =73.545202, δ =-3.014386). The truncation

radius of the larger halo is outside the strong lensing information. It was thus fixed

to 1 Mpc.

plus the 7 individually optimised galaxy-scale components. To extend our analysis

from the cluster center to ∼3 Mpc, we add a total of 1277 galaxy-scale halos at the

locations of cluster member galaxies identified via spectroscopic and photometric

redshifts over the entire field of view covered by the HST mosaic. Each of the 1277

cluster galaxies is modelled as a PIEMD potential with fixed rcore = 0.15 kpc and

rcut = 58 kpc, and velocity dispersion σ that is scaled relative to an m∗K = 18.7

galaxy with σ∗ = 163.10 km s−1 using the Faber & Jackson (1976) relation.

Throughout the rest of the mosaic area outside the strong lensing region, we

add a free-form grid of mass, whose resolution is adapted to the local K-band

luminosity. The details of this technique are described in Section 3.4.2. The final

grid model (Figure 5.3) includes a total of 5570 individual Pseudo-Isothermal Mass

Distributions. To avoid superceding the strong lens model, we prevent the mass grid

from extending inside the multiple image region, defined as an ellipse aligned with

the cluster core (a = 44′′, b = 34′′, θ = 30◦ counter-clockwise with respect to the

East-West axis, centered on α=73.545202◦, δ=−3.0143863◦). We also exclude shear
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measurements from this region.

Uncertainty

We estimate the noise in each pixel of the Lenstool mass map via bootstrap re-

sampling. To this end, we first select the two 2 Mpc × 2 Mpc patches of the sky2

outside the cluster core that contain the smallest grid cells (and hence the highest

K-band luminosity peaks) where substructures and filaments are most likely to

be located. We choose a random orientation for each shear measurement in these

two patches of sky, then reconstruct a new mass map using Lenstool. Inside an

aperture of r < 480 kpc, the mean noise level of 100 random realisations is found to

be 〈M〉 = 2.08×1013 M�, which is non-zero because of Lenstool’s positive-definite

mass prior, and its rms uncertainty is σM = 1.64 × 1013 M�. We use the latter to

normalise the signal-to-noise ratios of substructures detected in Sect. 5.6.5.

Mass mapping with KS93+MRLens

As an alternative to the Lenstool multiscale grid method for lensing mass map-

ping, we use the Kaiser & Squires (1993) direct inversion method. This converts an

observed, binned shear map, γ(R) into a convergence κ(R) map, via their Fourier

transforms. We then denoise the convergence field using MRLens. The details of

this mass mapping method are described in Section 3.4.1 and the setting of MRLens

parameters are the same as in Section 4.4.1.

5.4.4 Lensing 1D density profile

We calculate the cluster’s 1D radial density, Σ(r), by (azimuthally) averaging the

2D mass distribution in logarithmically spaced annuli between 80 kpc and 4 Mpc.

To enable a statistically rigorous analysis of this key characteristic, we calculate the

full covariance matrix Ci,j between measurements in each bin (see Sect. 5.4.4).

2The two patches of sky used to estimate the level of noise in the weak lensing map are centered

at (α = 73.644053, δ = −3.012986) and (α = 73.426295, δ = −3.089766).
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Figure 5.3: The multi-scale grid that determines the maximum spatial resolution

of the Lenstool mass reconstruction. One RBF is placed at the centre of each

circle, with core radius rc equal to the radius of the circle, and a free mass nor-

malisation. The grid is determined from (and shown overlaid upon) the cluster’s

K-band emission. The blue hexagon covers an area slightly larger than the HST

field of view.
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Model comparison

We compare the mean density profile to five models obtained from cosmological sim-

ulations: NFW (Navarro et al., 1996, 1997), generalised NFW (gNFW; Zhao, 1996),

Einasto (Einasto, 1965), Burkert (Burkert, 1995) and DK14 (Diemer & Kravtsov,

2014). A mathematical definition and description of each halo model is given in Sec-

tion 2.2.5. We optimise the free parameters of each model using emcee (Foreman-

Mackey et al., 2013) with a likelihood function

logL = −1

2

Nbin∑
i,j=1

(Σi − Σ̂i)C
−1
i,j (Σj − Σ̂j)−

1

2
Nbin log (2π|C|), (5.4.1)

where Σ̂ is the model, Nbin = 20 is the total number of radial bins, and |C| is

the determinant of the covariance matrix. When fitting the NFW, gNFW, Einasto,

and Burkert models, we adopt flat uniform priors for M200 ∈ [5, 30] × 1014 M�,

and c200 ∈ [1, 10]. We also adopt a flat prior for the gNFW and Einasto shape

parameters, α ∈ [0, 3] and αE ∈ [0.02, 0.5], respectively. For the Burkert model,

we use a flat prior for the core radius, rcore ∈ [100, 800] kpc. For the DK14 model,

following More et al. (2016) and Baxter et al. (2017), we use the priors for ρs, rs,

rt, log(α), log(β), log(γ), and se that are listed in Table 2 of Chang et al. (2018).

Because the location of MS 0451 is so well known from strong-lensing constraints,

we omit their miscentering term.

To compare the goodness of fit for models with different numbers of free param-

eters, we calculate the Bayesian Information Criterion

BIC = −2 logL+ k logNbin, (5.4.2)

the Akaike Information Criterion

AIC = −2 logL+ 2k, (5.4.3)

and the corrected Akaike Information Criterion

AICc = AIC +
2 k (k + 1)

(Nbin − k − 1)
, (5.4.4)

where k is the number of free parameters. These three information criteria include

penalty terms for adding free parameters that make a model more complex. The
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BIC has a larger penalty term than the AIC; the AICc approaches AIC as Nbin

increases, but is more robust for small Nbin. The individual information criteria are

not interpretable because they contain arbitrary constants. Therefore, it is useful to

define the differences in information criteria between different models. For example,

∆AICi = AICi−AICmin, where AICmin is the minimum AIC value (the best model)

among various halo models. For all three criteria, lower values indicate the preferred

model. We can assess the relative merits of models based on these rules (Burnham

& Anderson 2002): models having ∆i < 2 have substantial evidence; models with

4 < ∆i < 7 have considerably less evidence; while models with ∆i > 10 have no

evidence. In this work, we use the information criteria of the best-fit NFW model

to define ∆AIC (see Table 5.2).

Covariance matrix

When fitting a parametric density profile to the azimuthally averaged mass maps, a

first estimate of the uncertainty on the density at a given radius can be obtained by

looking at the spread of densities at that radius in the MCMC samples generated by

Lenstool (or bootstrap sampling, as described in Section 5.4.3). However, the non-

local mapping between observable shear and reconstructed mass, leads to covariance

between adjacent pixels. To fully account for this, we calculate the covariance matrix

between radial bins i and j

CSL+WL (i,j) =
1

N

N∑
l=1

(
Σl,i − 〈Σi〉

)(
Σl,j − 〈Σj〉

)
, (5.4.5)

where N is the number of MCMC samples generated by Lenstool, Σl,i is the

surface mass density of the lth sample in the ith spatial bin, and 〈Σi〉 is the mean

surface mass density of MCMC samples in the ith spatial bin.

Inside the cluster, statistical noise is dominated by the finite number and intrinsic

(unlensed) shapes of background galaxies used for the weak lensing analysis. Very

near the cluster core, our default strong+weak lensing analysis underestimates the

noise, because we fixed the strong lensing potentials. To account for that in the

covariance matrix, we reconstruct a separate mass map using only weak lensing

information, reinstating the mass grid and shear measurements in the core region.
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This yields a covariance matrix CWL that is significant up to R∼1 Mpc. We therefore

define a combined covariance matrix

Cshape (i,j) =

CSL+WL (i,j) + CWL (i,j) for Ri and Rj < 1 Mpc

CSL+WL (i,j) otherwise.

(5.4.6)

Note that this procedure overestimates Ci,j in bins close to the R ∼ 1 Mpc

transition region. However, this effect is small and therefore negligible in our mea-

surement.

In the outskirts of a cluster, statistical uncertainty is dominated by large-scale

structure (LSS) projected by chance along the line-of-sight. The specific realisation

of LSS along the line-of-sight to any real cluster is static, but we account for its

contribution to the covariance matrix CLSS (i,j) by analysing mock observations of

clusters from the BAHAMAS simulation (McCarthy et al., 2017) along many dif-

ferent lines of sight (see Section 4.3.2). We combine the two components across the

full range of scales,

C(i,j) = Cshape (i,j) + CLSS (i,j) . (5.4.7)

5.4.5 Lensing-derived halo shape

We measure the shape of MS 0451 by fitting our reconstructed 2D mass map with

elliptical NFW models (eNFW; Oguri et al., 2010) (see Section 4.5.1). We fix the

centre of the eNFW halo to the location of BCG (α = 73.545202, δ = −3.014386),

then optimise3 its four free parameters (with the allowed range for the parameters

within the optimisation: M200 ∈ [0.5, 3] × 1015 M�, c200 ∈ [1, 10], position angle

φ ∈ [0, 180]◦, and axis ratio q = a/b ∈ [0.1, 0.9]) to minimise the absolute difference

between the observed and modelled mass maps, integrated inside a circular aperture.

To measure the cluster’s change of shape as a function of radius, we repeat this fit

inside circular apertures of varying radii. We perform this fit on every mass model

3Using the L-BFGS-B algorithm (Byrd et al., 1995) from Python’s scipy.minimize package

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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output in Lenstool’s MCMC chains, and measure the mean and rms values for

each free parameter, marginalising over all others.

5.5 Method: X-ray Analysis

5.5.1 X-ray imaging analysis

We extract XMM-Newton images and exposure maps in the [0.7–1.2] keV band

from the cleaned event files. To predict the spatial and spectral distribution of

the particle-induced background, we use a collection of filter-wheel-closed observa-

tions. We compute model particle background images by applying a scaling factor

to the filter-wheel-closed data to match the count rates observed in the unexposed

corners of the three EPIC cameras. The images, exposure maps and background

maps for the three detectors are then summed to maximize the signal-to-noise ratio.

To determine the thermodynamic properties of the source, we extract spectra

for the three EPIC detectors in 7 annular regions from the center of the source to

its outskirts (radial range 0′–4′). We also extract the spectra of a region located

well outside the cluster to estimate the properties of the local X-ray background.

The redistribution matrices and effective area files are computed locally to model

the telescope transmission and detector response. For each region, the spectra of

the three detectors are fitted jointly in XSPEC (Arnaud et al., 1999) with a model

including the source (described as a single-temperature thin-plasma APEC model

(Smith et al., 2001) absorbed by the Galactic NH), the local three-component X-

ray background as fitted in the background region, and a phenomenological model

tuned to reproduce the spectral shape and intensity of the particle background. The

best-fitting parameters (temperature, emission measure, and metal abundance) as

a function of radius are obtained by minimizing the C-statistic.

5.5.2 X-ray 1D surface brightness profile

To measure the 1D surface brightness profile of the cluster, we use the azimuthal

median technique (Eckert et al., 2015), which allows us to excise the contribution
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of infalling substructures and asymmetries. To this aim, we use Voronoi tessellation

to construct an adaptively-binned surface brightness map of the cluster. For each

annulus, we then draw the distribution of surface brightness values and estimate the

median value. Uncertainties are estimated by performing 104 bootstrap resamplings

of the distribution and computing the root-mean-square deviation of the measured

medians. We measure the local background outside the cluster, where the brightness

profile is flat, then subtract it from the source profile. Gas density profiles are

finally determined by deprojecting the surface brightness profile, assuming spherical

symmetry.

We estimate the mass profile of the cluster from the gas density and temperature

profiles, assuming HSE (see Pratt et al., 2019, for a review). This asserts that, if

the gas is at rest within the gravitational potential of the halo, the pressure gradient

balances the gravitational force,

dPgas

dr
= −ρgas

GM(< r)

r2
. (5.5.8)

The gravitating mass profile can thus be inferred from the gas pressure and den-

sity profiles. To solve equation (5.5.8), we use the backwards approach introduced

by Ettori et al. (2019). Namely, we use a parametric model for the mass profile

(here, NFW) and combine it with the density profile computed through the multi-

scale decomposition technique to predict the pressure (and hence, temperature) as

a function of radius. The model temperature profile is projected along the line of

sight and corrected for multi-temperature structure along the line of sight using the

Mazzotta et al. (2004) scaling. The projected temperature profile is then compared

to the data and the parameters of the mass model (i.e. mass and concentration) are

optimized using MCMC. The integration constant, Pout, which describes the overall

pressure level at the edge, is left free while fitting and determined on-the-fly. For

more details on the mass reconstruction technique and a careful assessment of the

level of systematic involved, see Ettori et al. (2019).

The cumulative gas mass profile is computed by integrating the gas density profile

over the volume, assuming the source is spherically symmetric,

Mgas(< r) =

∫ r

0

4πr′ 2ρgas(r
′) dr′, (5.5.9)
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where ρgas = µmp(ne + nH), with ne and nH = ne/1.17 the number density of

electrons and protons, respectively, µ = 0.61 the mean molecular weight, and

mp the proton mass. Our procedure directly outputs the hydrostatic gas fraction

fgas,HSE(r) = Mgas(r)/MHSE(r), which traces the virialization state of the gas (Eckert

et al., 2019).

5.6 Results

5.6.1 2D mass distribution

The distribution of mass around MS 0451 (mapped in figure 5.4) has a core that is

elongated along an axis from South-East to North-West, and surrounded by lower-

mass substructures. Our primary Lenstool method achieves higher spatial reso-

lution in regions containing cluster member galaxies, and suppresses more noise in

regions without them. From the strong-lensing constraints, two distinct mass peaks

separated by 237 kpc in the elongated core are detected. This is consistent with

the analysis of CFHT/Megacam ground-based weak lensing measurements which

also detected two dark matter halos in the core region (Martinet et al., 2016, and

shown in figure 5.6 with magenta contours provided via private communication by

N. Martinet). We confirm the existence of several nearby substructures, but our

higher S/N data do not show them joined up into a filament running South-West to

North-East, as hypothesised by Martinet et al. (2016). X-ray emission is detected

out to R = 1.7 Mpc (figure 5.6).

An alternative weak-lensing-only reconstruction using Kaiser & Squires (1993)

direct inversion obtains a noisier mass map (figure 5.5) but finds consistent features.

The elongated cluster core reconstructed from KS93+MRLens is still detected with

more than 4σκ statistical significance, where σκ is the standard deviation of κ over

all the pixels within the HST field of view. It also shows elongation along the

South-East to North-West direction, consistent with other weak lensing-only anal-

yses (Martinet et al., 2016; Soucail et al., 2015). Several weak lensing peaks are

detected at lower (1–3σκ) statistical significance than with Lenstool while these

include all the confirmed substructures from our Lenstool analysis. Overall, this

August 16, 2020



5.6. Results 102

N
E

3 arcmin
1152 kpc

Figure 5.4: The projected distribution of mass around MS 0451, inferred from

our Lenstool strong+weak lensing reconstruction and centred on (α=73.545202,

δ=−3.0143863). Colours indicate the projected convergence, κ. Black contours

show signal-to-noise in steps of 1σΣ, measured from bootstrap re-sampling (see

Sect. 5.4.3). The red polygon indicates the field of view of the HST /ACS imag-

ing mosaic.
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convergence map shows a similar level of noise and spurious (often line-of-sight)

peaks as the maps reconstructed from mock observations of simulated clusters (see

figure 4.2).

In the following, we will focus our analyses on the reconstructed mass map from

Lenstool.

5.6.2 Total mass and density profile

Our combined weak- and strong-lensing reconstruction smoothly extends the surface

mass density profile outside the multiple-image region (figure 5.7). We measure a

projected mass M(R < 195 kpc) = (1.85±0.87)×1014 M�, consistent with previous

strong-lensing measurements of 1.73 × 1014 M� (Berciano Alba et al., 2010) and

1.8 × 1014 M� (Zitrin et al., 2011). At larger radii, our analysis is sensitive for the

first time to additional infalling or projected substructures; compared to previous

models, based solely on strong-lensing features, we detect excess mass at R > 3 Mpc.

Theoretically motivated models to fit the 1D lensing signal (figure 5.7) are de-

scribed in Section 2.2.5, and their best-fit parameters are listed in Table 5.2. For

the best-fit NFW model we measure a mass M200c = (1.65± 0.24)× 1015 M� inside

R200c = 1.99 ± 0.06 Mpc, or M500 = (1.13 ± 0.16) × 1015 M�, and concentration

c200 = 3.79 ± 0.36. Within the statistical uncertainty, this result is consistent with

the ground-based weak-lensing measurement of M200 = (1.84± 0.35)× 1015 M� for

fixed c200 = 4 (Soucail et al., 2015). The Burkert profile is disfavoured by the BIC

and AIC. For the best-fit gNFW and Einasto models we find masses and concentra-

tions slightly lower than for NFW. However, their BIC and AIC differ by less than 2

from the NFW ones. Thus, we conclude that our data are unable to distinguish be-

tween these three models with statistical significance (as quantified by Burnham &

Anderson 2002). We therefore adopt the NFW model as our default in the following

analysis.

We note that the additional complexity of the DK14 model captures a splashback-

like feature at R ∼2 Mpc (see Appendix A.1). However, the BIC and AIC both

disfavour the DK14 model, and the mentioned feature might be caused by noise or

the projection of unrelated large-scale structure along the line of sight.
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Figure 5.5: Convergence map of MS 0451 obtained with alternative method

KS93+MRLens. The field is centred on (α =73.545202, δ =-3.0143863), with

a red polygon indicating the extent of the HST imaging mosaic. Black contours

show statistical significance thresholds, starting at 1σκ and spaced linearly in units

of 1σκ above that. It is consistent with results of our Lenstool method (figure 5.4),

but noisier and lower resolution.
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Figure 5.6: Alternative probes of the mass distribution around MS 0451, overlaid for

ease of reference on the colour image from figure 5.4. Magenta contours show weak

lensing measurements from ground-based observations (private communication N.

Martinet), starting at 3σκ and in steps of 1σκ, the rms uncertainty on convergence.

Green contours show the X-ray surface brightness from XMM-Newton. Black ellipses

show the shape of the eNFW model that best fits our Lenstool reconstruction

within circular apertures of different radii (defined by the semimajor axis).
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Figure 5.7: Azimuthally averaged 1D profile of mass in MS 0451 (black data points),

from our combined strong+weak lensing analysis (figure 5.4). Error bars show the

statistical uncertainty owing to galaxies’ intrinsic shapes (inner) and also line-of-

sight substructures (outer). The green curve shows the best-fit model using only

strong lensing information (Jauzac et al. sub.), extrapolated beyond the multiple-

image region (grey shaded area). Solid lines in other colours and their respective

shaded areas show the mean and 68% confidence intervals from fits to various models.
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Table 5.2: Marginalized posterior constraints on cluster model parameters, and the

differences between their information criteria and those of the best-fit NFW model.

The information criteria of an NFW are BICNFW=13934.50, AICNFW=13932.51 and

AICcNFW=13933.22. Lower values indicate preferred models.

Models M200c[1014 M�] c200 Shape parameter ∆BIC ∆AIC ∆AICc

NFW 16.51± 2.44 3.79± 0.36 – 0 0 0

gNFW 16.10± 1.94 4.47± 0.47 α = 0.57± 0.20 0.51 -0.48 0.02

Einasto 14.32± 2.67 4.26± 0.50 αE = 0.42± 0.11 0.02 -1.00 -0.51

Burkert 13.62± 1.62 rcore = (230± 20) kpc 7.60 6.60 7.10

DK14a 9.60 4.60 12.90

X-ray 17.47± 7.61 2.35+0.89
−0.70 –

Parameters of the DK14 model are excluded from this table for clarity. These are listed

in Table A.1.

5.6.3 Halo shape

We measure the projected shape of MS 0451 by fitting the 2D mass distribution

inside a circular aperture with an eNFW model. This approach yields results that are

consistent with the previous 1D fit (Sect. 5.6.2): for the region inside R < 3.24 Mpc,

we obtain M200c = (1.57 ± 0.14) × 1015 M� and c200 = 3.7 ± 0.4. The best-fit axis

ratio q = b/a varies as a function of radius, from q = 0.48±0.01 within R < 649 kpc

to q = 0.57 ± 0.03 within R < 3.24 Mpc. The cited statistical uncertainty may be

an underestimate because we have neglected correlations between adjacent pixels

in our error model of the mass map and, in the cluster core, because of our use of

fixed strong-lensing potentials during MCMC parameter search. The axis ratio is

consistent with simulations of general clusters (Jing & Suto, 2002; Suto et al., 2016,

Tam et al. sub.), but smaller than the value of q = 0.72 (649 kpc<R< 974 kpc)

measured from ground-based lensing observations by Soucail et al. (2015). This

discrepancy might be explained by the large smoothing kernel used by Soucail and

coworkers to reconstruct the mass distribution, which artificially circularises the

data. Indeed, our results more closely resemble those from lensing analyses of large

cluster samples, including Oguri et al. (2010), who found 〈q〉 = 0.54 ± 0.04 for 18
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X-ray luminous clusters at 0.15 < z < 0.3, and Umetsu et al. (2018), who found

〈q〉 = 0.67± 0.07 for the CLASH sample of 20 massive clusters.

At all radii, we find that MS 0451 is elongated roughly along a North-West to

South-East axis (Figure 5.6), with a mean orientation ∼31.9◦ counter-clockwise from

East. The ∼10% variation in this angle between the inner (R < 640 kpc) and outer

halo (R < 3.24 Mpc) agrees well with typical clusters in both simulations (Despali

et al., 2017) and observations (Harvey et al., 2019).

5.6.4 Baryonic components

Distribution of baryons

To measure the cluster’s electron density profile, we apply the non-parametric “onion

peeling” algorithm (Kriss et al., 1983) and the multiscale decomposition technique

(Eckert et al., 2016) to the X-ray data (figure 5.8). Both methods assume spherical

symmetry, and both yield consistent results. We find that the distribution of baryons

is different to that found by our lensing analysis. It shows a constant-density core,

flatter than both our lensing results and the distribution of gas in a typical massive

cluster from the X-COP low redshift sample (Ghirardini et al., 2019).

To measure the cluster’s temperature profile, we fit a single temperature plasma

emission model to the X-ray spectra extracted in 6 concentric annuli spanning the

radial range 0–1.5 Mpc. We find that the temperature of the X-ray emitting gas

decreases from ∼9 keV in the core to ∼6 keV in the outskirts, consistent with the

‘universal’ thermodynamic profile of X-COP clusters.

In a separate analysis of the X-ray data assuming hydrostatic equilibrium and

spherical symmetry, we measure a hydrostatic mass M500,HSE = (1.06 ± 0.35) ×
1015 M�, and concentration c200,HSE = 2.35+0.89

−0.70. The concentration is again lower

than the one we obtain with the lensing analysis. Extrapolating the best-fit model to

large radii yields a total mass M200c,HSE = (1.75± 0.75)× 1015 M�, which inevitably

has large uncertainties because the X-ray emission at these radii is faint. The as-

sumption of hydrostatic equilibrium may not be appropriate for this cluster. Deeper

X-ray imaging and/or constraints on the Sunyaev-Zel’dovich signal are required to
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quantify the level of non-thermal pressure support.

The radial entropy profile of the intra-cluster gas (figure 5.9), obtained by com-

bining the measured spectroscopic temperature with the gas density, is consistent

with the 3D entropy model recovered from the backwards NFW fit under the as-

sumption of HSE. We find a strong entropy excess in the cluster core, compared

with the entropy of the fully relaxed gas calculated from the gravitational-collapse

model (Voit, 2005). This large entropy excess confirms that MS 0451 does not con-

tain a cool core.

Baryonic mass fraction

To measure the gas mass fraction fgas, we first integrate the non-parametric gas

profiles (which do not assume hydrostatic equilibrium) and obtain a total gas mass

Mgas,500 = (1.29±0.15)×1014 M� inside a sphere of radiusR500,HSE = 1.28±0.14 Mpc.

Dividing this by the total massM500 of the NFW model that best fits the lensing data

inside a sphere of radius R500 = 1.30 ± 0.06 Mpc indicates fgas,500 = (11.6 ± 2.1)%.

Our separate analysis assuming hydrostatic equilibrium yields fgas,500,HSE = (12.2±
4.3)%.

To measure the stellar mass fraction, we use the stellar mass to light ratio of

quiescent galaxies

log10 (M∗/LK) = a z + b, (5.6.10)

where a = −0.18 ± 0.04 and b = +0.07 ± 0.04 (Arnouts et al., 2007), assuming

a Salpeter (1955) initial mass function (IMF)4. Applying this to all 1277 cluster

member galaxies in the HST /ACS mosaic yields a mean value of 〈M∗/LK〉 = 0.94±
0.003, or total stellar mass M∗,500 = (3.37± 0.03)× 1013M�, where the uncertainty

is the error on the mean. This is integrated inside a cylinder of radius R500, rather

than a sphere – but the stellar mass is so centrally concentrated that it should make

little difference, to an already small number. Hence we adopt a stellar mass fraction

4To convert from Salpeter to a Chabrier (2003) IMF, we adjust stellar masses by 0.25 dex and

find f∗,500 = (1.6± 0.24)%, similar to f∗∼1.5% measured in the wide-field HST COSMOS survey

(Leauthaud et al., 2012).
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Figure 5.8: Thermodynamic profiles of MS 0451’s Intra-Cluster Medium (ICM),

scaled according to the self-similar model (Kaiser, 1986). Top: Deprojected electron

density profile of the cluster computed using onion peeling (red), and multiscale

decomposition (blue) methods. Bottom: Spectroscopic temperature profile of the

cluster (blue). In both panels, the black curve and gray shaded areas show the

mean profile and 1σ scatter of the X-COP sample of low redshift massive clusters

(Ghirardini et al., 2019), for comparison.
August 16, 2020



5.6. Results 111

Figure 5.9: Radial profile of gas entropy. The red data points are obtained from

the measured spectroscopic temperature and the gas density. The blue curve is the

model optimised from the backwards approach. For comparison, the black curve

shows the gas entropy predicted from the gravitational collapse model (Voit, 2005).
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Substructure R.A. Dec. 〈z〉 Mtot[1013 M�] Mstellar [1011 M�] Detection S/N

Sub1 4:54:26.917 -2:59:39.894 0.62 6.17±2.70 6.59±1.79 3.76

Sub2 4:54:39.389 -3:00:32.808 0.58 8.34±3.30 12.70±2.26 5.09

Sub3 4:54:15.278 -3:03:11.620 0.61 13.50±2.90 31.25±3.04 8.23

Sub4 4:54:26.088 -3:05:37.949 0.63 7.17±3.23 5.83±1.56 4.37

Sub5 4:54:11.745 -3:07:30.042 0.55 6.12±2.96 10.55±2.13 3.73

Sub6 4:54:37.972 -3:07:33.134 0.56 8.42±3.37 8.05±2.28 5.13

Table 5.3: Confirmed substructure detections in MS 0451 containing cluster member

galaxies and with detection S/N>3. Columns show the location of each mass peak,

the mean redshift of member galaxies within a 480 kpc aperture, the lensing and

stellar masses integrated within the same aperture, and the signal-to-noise ratio of

its detection, using the mean noise level of the mass map (Sect 5.4.3).

f∗,500 = (3.0± 0.4)%.

Combining these measurements, we obtain a total baryonic fraction, fb,500 ≡
f∗,500 + fgas,500 = (14.6 ± 1.4)%. This value is consistent with the mean cosmic

baryonic fraction, measured as fb = (14 ± 2)% from the outskirts of z < 0.16

clusters (Mantz et al., 2014), or fb = (15.6 ± 0.3)% from the Cosmic Microwave

Background (Planck Collaboration et al., 2016).

5.6.5 Group-scale substructures

To study the low density environment of large-scale structures surrounding MS 0451,

we subtract the strong-lensing potentials from the Lenstool convergence map (fig-

ure 5.10). Outside the main halo, we detect 14 weak lensing peaks with S/N> 3

integrated within circular apertures of radius R = 480 kpc. To determine whether

these 14 overdensities are at the redshift of the cluster, we assess the redshift distri-

bution of galaxies inside those apertures with spectroscopic or (mainly) photometric

redshifts (Appendix A.2). Galaxies along the line of sight to substructures 1, 2, 3,

4, 5 and 6 have a redshift distribution that peaks between 0.48 < z < 0.61. We infer

that these are part of the extended cluster, while others are projections of structures

at other redshifts along a similar line of sight. Their total masses and stellar masses
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are listed in Table 5.3.

Previous ground-based weak lensing analyses identified only substructures 1 and

2 (Martinet et al., 2016), or substructure 2 at sub-threshold 2σ significance (Soucail

et al., 2015). Our identification of 12 significant new structures, none of which have

a counterpart in previous analyses, demonstrates the unique ability of space-based

imaging to detect weak lensing in low-density environments.

The mismatch between our lensing and X-ray analyses is puzzling. The current

depth of the XMM-Newton imaging should be sensitive to∼ 1014M� halos. However,

we detect only faint X-ray emission for substructure 6. We detect brighter – but

misaligned – emission near substructures 2 and 5, and between substructures 3 and 4.

A first hypothesis that could explain this discrepancy, is that selection biases affect

one or both of our lensing and X-ray analyses. Substructure 3 is the most massive

(Mtot = (1.3± 0.3)× 1014 M� inside a 480 kpc aperture), but also the closest to the

cluster core. If the main cluster is imperfectly modelled and subtracted, its residual

projected mass could artificially boost the lensing signal of substructure 3. Indeed,

all the substructures are closer to the cluster’s major axis than to its minor axis, and

the lensing signal from all of them could be biased high. Conversely, proximity to the

cluster core provides a high X-ray background, which potentially lowers the signal-

to-noise of the X-ray emission below our detection threshold. A second hypothesis

is that substructures within R200m = (2.51± 0.14) Mpc are probably also inside the

3D splashback radius of MS 0451 (More et al., 2015a). Therefore, they might have

already passed through the pericentre. Ram-pressure stripping during their motion

through the main halo could have removed much of their hot gas, and thus reduced

their X-ray luminosity.

5.6.6 Filaments

Alignments of substructures

Based on the distribution of substructures around MS 0451, we propose that three

filaments are connected to the cluster core (shown as green lines in figure 5.10). The

first of these possible filaments extends East of the cluster, encompassing Substruc-
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Figure 5.10: The low density environment surrounding MS 0451. The colour image

shows lensing convergence with SL potentials subtracted: all the remaining signal

was constrained by the potential grid and cluster member galaxies. The dashed

orange circle has radius R200c = 1.99 Mpc. Smaller circles (with radius 480 kpc)

mark substructures with a projected mass > 3σM inside that aperture; red circles

have optical counterparts at the cluster redshift. Green lines suggest the extent and

direction of possible large-scale filaments.
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tures 1 and 2 and containing mean convergence 〈κ〉 = 0.022 ± 0.006. The second

points South-East, encompassing Substructures 3, 4, and 6, with 〈κ〉 = 0.033±0.007.

The third, finally, turns South, from Substructure 3 to Substructure 5 and also has

mean convergence 〈κ〉 = 0.033± 0.007. For each of these three candidate filaments

the density contrast exceeds the threshold value of κ = 0.005 defined in Section 4.3.1

to identify filaments, and each has a mean excess convergence greater than 0.02, even

after subtracting the smooth, cluster-scale mass distribution.

All three possible filaments point in a similar direction, close to the main cluster’s

South-East/North-West major axis. We detect no substructures in the opposite

direction along the same axis (with the possible exception of an unconvincing feature

just outside the HST mosaic to the North-West). This is strikingly different from

the typical distribution of mass in cosmological simulations, which usually show

a symmetry of infalling material along both directions of a cluster’s major axis,

as the system grows and becomes increasingly elongated as the result of gradual,

continuous accretion along filaments.

Aperture multipole moments

Extended structures can also be identified with the measurement of aperture mul-

tipole moments (AMMs) of the 2D mass distribution (Schneider & Bartelmann,

1997). We applied the optimal filter developed in Section 4.6.2 on the strong lensing

subtracted convergence map of MS 0451 (figure 5.10). The resulting Q map is shown

in figure 5.11. We estimate the noise level by defining σQ as the standard deviation

of all pixels in the Q map.

Although the signal-to-noise ratios for Q are low, the three possible filaments

proposed in Sect. 5.6.6 are also highlighted by the AMM filter, with signal-to-noise

ratios of ∼ 2 − 3. Additional extended structures may exist at other redshifts. In

particular, Substructures 8, 9, and 11 might form a linked system at z ∼ 0.7 behind

the cluster (Appendix A.2).

While the results presented in figure 5.11 are promising, the limiting, single-orbit

depth of the available HST observations prevents us from drawing firm conclusions

from this measurement. Deeper space-based observations obtained by future surveys

August 16, 2020



5.6. Results 116

N

E
N

E

3 arcmin
1152 kpc

Figure 5.11: The low density environment around MS 0451 (figure 5.10), filtered

using aperture multipole moments to search for extended, filamentary structures.

Red lines show contours of signal-to-noise, starting at 2 and increasing in steps of

1. Grey lines are contours of the unfiltered mass distribution.
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will increase the density of detected background galaxies and reduce the noise level

of this technique.

5.7 Discussion: inferred dynamical state

According to N -body and hydrodynamical simulations (e.g. Nelson et al., 2011;

Poole et al., 2006; Ritchie & Thomas, 2002), mergers between two clusters (classified

by their masses as the primary and secondary component) proceed in five distinct

stages: pre-interaction, first core-core interaction, apocentric passage, secondary

core accretion, and relaxation. After the first core-core interaction, the gas of the

two merging halos (including the remaining part of the secondary component’s cool

core) moves outward. After the two cores reach maximum separation, the secondary

core falls back toward the primary core and is accreted. Finally the system evolves

into a single merger remnant.

Three lines of evidence suggest that MS 0451 is in a post-collision state, ap-

proximately 2–7 Gyr after the first core passage of two progenitors that are now

approaching second apocentre:

• While we observe a bimodal (Sect. 5.4.2) and elongated (Sect. 5.6.3) distribu-

tion of dark matter, we find a spherical distribution of gas with almost constant

central density (Sect. 5.6.4). Such a contrasting configuration is seen in simula-

tions of major mergers 2–7 Gyr after first core-core interaction when,“following

the merger, the resultant system settles into virial equilibrium sooner than into

hydrostatic equilibrium” (Poole et al., 2006). This period, in which the gas

has not yet had time to fully relax and settle into the gravitational potential of

the combined halo, represents the second infall phase before the system’s final

relaxation. These findings apply to a wide range of initial conditions regard-

ing the progenitor mass ratio (Mprimary : Msecondary =1:1, 3:1, 10:1) and the

ratio between the secondary’s transverse velocity and the primary’s circular

velocity, a quantity that affects impact parameters (vt/vc = 0.0, 0.15, 0.45).

• In simulations, merging increases the entropy of gas in the cluster core, leading

to a large core radius and low concentration (Ritchie & Thomas, 2002), exactly
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as seen in MS 0451 (figure 5.9).

• The cluster is connected to its large-scale environment through a number of

substructures (Sect. 5.6.5) and possible filaments (Sect. 5.6.6). The distinctly

asymmetric distribution of these features differs starkly from that of simulated

clusters which grow through smooth, continuous accretion without strong di-

rectional preferences, and whose major axes are aligned with filaments in op-

posite directions.

The dynamical history inferred from our analysis of MS 0451 provides a possible

explanation for the star-formation history observed in this system. In a comparative

study of massive clusters, Moran et al. (2007a,b) used optical and near-UV spec-

troscopy of passive spirals within 1.5 Mpc of the cluster core to conclude that the

star formation in MS 0451 was abruptly quenched at a redshift of z = 2, i.e., ∼5 Gyr

before the redshift of observation, consistent with our estimate of the temporal evo-

lution of the merger event. Moran et al. (2007b) ascribe the sudden cessation of

star formation to ram-pressure stripping by a particularly dense ICM, as evidenced

by MS 0451’s bright, extended X-ray emission observed today. The merger scenario

proposed by us lends strong support to this explanation, by adding a contemporane-

ous second component of intra-cluster gas, moving at high relative velocity through

the cluster core and thus dramatically increasing the ram pressure (c.f. Fujita et al.,

1999; Kronberger et al., 2008; Vijayaraghavan & Ricker, 2013). Beyond 1.5 Mpc,

the passive spirals in MS 0451 show a “starvation-like” gradual cessation of star

formation, consistent with secular pre-processing in infalling groups. From their

classification of galaxy morphologies in the HST imaging data, Moran et al. (2007b)

also concluded that passive spirals are all but absent inside the central 600 kpc,

having evolved into S0 galaxies. This finding too could be the result of ongoing,

enhanced ram-pressure stripping by the current ICM as galaxies fall towards the

cluster core. Alternatively, the lack of passive spirals within the inner regions of

MS 0451 could be a residual indication of the merging subhalo’s trajectory, as it

takes ∼ 400 Myr for a galaxy to travel ∼600 kpc across MS 0451. Our inferences

about MS 0451’s merger dynamics thus complement and support the conclusions of

previous studies of its star-formation history.
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5.8 Conclusions

We present the first combined strong- and weak-gravitational lensing analysis of

the massive galaxy cluster MS 0451, exploiting the largest mosaic of HST imaging

around any massive cluster: 41 ACS pointings covering an area of ∼20×20 arcmin2

(∼6×6 Mpc2). The strong-lensing model exploits 16 multiple-image systems, and

our weak-lensing analysis uses a catalogue of 20,138 background galaxies (∼44

arcmin−2). We combine these constraints using the Lenstool multi-scale grid

technique.

The reconstructed mass distribution of MS 0451 reveals a bimodal cluster core,

elongated along the South-East to North-West axis and surrounded by six substruc-

tures, as well as eight weak-lensing peaks created by mass concentrations at other

redshifts projected along our line of sight. We find a total mass of the system of

M200 = (1.65 ± 0.24) × 1015 M� with an NFW concentration of c200 = 3.79 ± 0.36

(the gNFW and Einasto models yield similar results, while a Burkert model is dis-

favoured). Our mass map is consistent with that of the most recent ground-based

weak-lensing analysis (Soucail et al., 2015) but resolves three times more substruc-

tures at equivalent significance of detection. The mass distribution of MS 0451 be-

comes more circular at large radii, parameterized by an axis ratio that decreases from

q = b/a = 0.48 ± 0.01 within a projected radius of R = 640 kpc to q = 0.57 ± 0.03

inside R = 3.2 Mpc. A flattening of MS 0451’s density profile at R ≈ 2 Mpc is well

fit by the splashback feature in the DK14 model. However, this model’s additional

complexity negates the improved fit according to Bayesian Information Criteria; the

aforementioned flattening may thus just be noise or due to large-scale structure

projected from other redshifts.

In our X-ray analysis, we measure a baryonic-mass fraction of fb,500 = (14.6 ±
1.4)% for MS 0451, consistent with the cosmic baryon fraction (Planck Collaboration

et al., 2016), and a total mass of M200 = (1.75± 0.75)× 1015 M�, in good agreement

with the lensing estimate. We note though that the assumption of hydrostatic

equilibrium underlying the X-ray mass measurement is unlikely to be valid, given

that the cluster’s gas is distributed very differently than the dark matter. The

distribution of gas is circularly symmetric, with a constant-density core and low
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concentration, c200,HSE = 2.35+0.89
−0.70. We also find a strong excess of gas entropy in

the cluster’s central 300 kpc.

Similarly contrasting distributions of gas and dark matter are seen in simula-

tions of post-merger clusters (Poole et al., 2006). The matter distribution observed

in MS 0451 suggests that the cluster underwent a major merger ∼2–7 Gyr ago, and

that the two dark-matter halos in the centre are now approaching second apocentre.

This merger would have quenched star formation, as ram-pressure from the dense

ICM stripped cold gas from cluster member galaxies. Thus the evidence from grav-

itational lensing, X-ray emission, optical photometry, and spectroscopy all point to

a consistent dynamical history.

We find tentative evidence of three filaments extending from the cluster. The

distribution of substructures and a noisy measurement of aperture multipole mo-

ments indicate that all three point in similar directions, between East and South.

Interestingly, their distribution is asymmetric, with no counterparts to the North

or West. Aperture multipole moments appear to be a promising method to detect

extended filaments. However, our measurements based on single-orbit HST data are

dominated by shape noise, and deeper space-based observations will be necessary to

robustly test this method.

In the next decade, wide-field, space-based surveys at high resolution are planned

as part of the Euclid and the Nancy Grace Roman Space Telescope missions, as

the Vera C. Rubin Observatory becomes operational on the ground. MS 0451 will

be an ideal target for future studies to characterise infalling substructures along

filaments, the timing of star-formation processes after a major merger, and the late-

time evolution of cluster collisions.
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Chapter 6

Ongoing and Future Work

6.1 Introduction

This chapter presents two ongoing projects that will be useful for future studies. In

the near future, MS 0451 will not be the unique cluster having wide field space-based

imaging because there will soon be similar imaging taken around 6 more clusters

through the HST /BUFFALO survey (Steinhardt et al., 2020), 200 more from the

balloon-borne telescope SuperBIT (Super-pressure Balloon-borne Imaging Tele-

scope; Romualdez et al., 2019), and 10,000 from Euclid (Laureijs et al., 2011). In

the next decade, 40,000 clusters will be observed to even greater depth by the Nancy

Grace Roman Space Telescope (Spergel et al., 2013). Such a large amount of data

can enhance the statistical significance of cluster studies and lead to significant

contribution to the cluster community.

Astronomy is therefore entering the big data era. To properly deal with this large

amount of information, fast and sophisticated methods will be needed. Machine

learning offers us an automated approach to perform pattern recognition. The first

part of this chapter will present a new technique of denoising weak lensing maps

using Convolution Neural Networks (CNN) that can be applied to future sky surveys.

The second part of this chapter is devoted to one of the potential future sur-

veys that will be provided by SuperBIT. Traditional space-based telescopes are

extremely expensive. Alternatively, balloon-borne telescopes operating above 99.7%

of the Earth’s atmosphere provide space-like resolution, at a fraction of the economic
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cost typical of space-based instrumentation. The low cost and effective observational

capabilities of these balloon-borne platforms will benefit the astronomy community.

After introducing SuperBIT, we also show its preliminary observational results.

6.2 Denoising Lensing Mass Maps with Deep Learn-

ing Approach

As shown in Chapter 2, the reconstruction of precise mass distributions from real

observations is still a challenging task. The main obstacle is the random noisy weak

lensing peaks induced by the intrinsic shape noise of background galaxies dominant

in weak lensing analyses. These spurious peaks could bias the inference of the

properties of galaxy clusters (e.g. Hamana et al., 2012), the identification of subhalos

and diffuse structures of filaments, and weak lensing peak statistics (Bard et al.,

2013). There are many mass mapping techniques which attempt to suppress these

noises, with different degrees of success, but falling short of producing a thoroughly

noiseless mass map. Today, machine learning algorithms are widely used for a

variety of tasks in astronomy (Baron, 2019), especially in the lensing community.

For strong lensing, machine learning algorithm are widely adopted to search for

strong-lens systems (Metcalf et al., 2019) and detect subhalos (Brehmer et al., 2019).

For weak lensing, deep learning approach is used in galaxy shape measurements

(Tewes et al., 2019) and in automatically denoising weak lensing mass maps for

cosmological constraints (Jeffrey et al., 2020; Shirasaki et al., 2019). The latter is

first proposed by Shirasaki et al. (2019), who developed the Conditional Adversarial

Networks (CANs) to reduce shape noise. Their reconstructed one-point probability

density function of the convergence and power spectra are in good agreement with

the true counterparts, which means that the cosmological information imprinted in

the convergence maps can partially be extracted by their networks. However, their

networks are not able to disentangle galaxy clusters from noisy peaks, which could

cause bias(es) on the estimation of local convergence. This thesis concentrates on

cluster lensing, where local properties of the cluster field are important. We have

therefore started to develop a denoising method for weak lensing mass maps with
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a deep learning approach. In particular, the underlying gaussian noise peaks can

be recognised and removed by a convolution neural network (CNN) that has been

trained on a number of noisy mass maps beforehand. The deep learning networks on

which I am working now mainly focus on denoising cluster field lensing maps, which

provide us with an unbiased estimation of cluster properties including radial density

profiles and the morphology of dark matter distributions. In this section, I present

how we create the training and testing samples, and describe the architecture of the

network. We will then show some preliminary results.

6.2.1 Data: Elliptical NFW Halos

To show the feasibility of this project, we first create a data set using a simple analyt-

ical halo model. The data set consists of 8,000 mock eNFW halos (see Section 4.5.1)

with mass range M200 ∈ [0.1, 10] × 1015 M�, and concentration c200 ∈ [2, 8]. Their

axis-ratio and orientation are randomly selected from flat distributions: q ∈ [0.3, 1]

and φ ∈ [0, 2π]. The shear fields of eNFW halos require additional numerical in-

tegrals corresponding to the 2D Poisson equation (Keeton, 2001b), which is time-

consuming for 8000 samples. We therefore directly convert the analytical conver-

gence field into a shear field using equation 3.4.35 with zero-padding. We then sep-

arately apply two sets of random shape noises, σγ=0.26 and 0.36, on the shear fields

assuming space-based resolution, 50 galaxies arcmin−2. Shape noise with σγ = 0.36

is similar to the HST measurements near MS 0451-03 (see Section 4.3.4). We also

apply a smaller level of shape noise, σγ = 0.26, to investigate its impact on the

performances of the neural network. To convert the noisy mock lensing shear into

convergence, we perform a simple KS93 inversion without applying any filters to

suppress the noises. Two set of resulting pixelated convergence maps, dominated

by random noise peaks, are then entered into the convolutional neural network.

We split the whole halo sample into a training set with 80% of the whole sample

(6,400 clusters), and a testing set with 20% of the whole sample(1,600 clusters).

The training set is first input to the network to build the pre-trained model while

the testing set is used to evaluate the performance of this model.
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6.2.2 Convolutional Neural Networks

Convolutional neural network (CNN) is a class of deep neural networks, which is par-

ticularly suitable for image recognition and image classification. CNN can capture

the spatial dependencies in an image, without losing the local properties. Tradi-

tionally, a fully connected network would flatten a two-dimensional image to a long

one-dimensional array, which destroys the spatial arrangement of the image. A fully

connected network therefore needs more parameters to extract features from 2D/ 3D

images. On the other hand, CNN can deal with images, retaining their spatial ar-

rangement without flattening them. It defines a weight matrix (also called a filter),

and the input image is convolved with this 2D matrix to extract specific features

without losing the spatial information. In the meantime, CNN dramatically reduces

the number of parameters we need to train for the network, and downsamples the

input image.

CNN typically consists of a series of convolutional layers with filters performing

linear operations; pooling layers to reduce the dimensionality of each map; and

activation functions for non-linear operations. The convolutional layer is the first

layer to extract features from an input image. It performs the convolution of the

image matrix and a filter, resulting in a feature map. The pattern (parameters of the

filter) is optimised by the network. A non-linear activation function is then applied

to the feature map to introduce non-linearity in the network. Several activation

functions are widely used, and we adopt the Leaky Rectified Linear Unit in our CNN.

Rectified Linear Unit (ReLU), f(x) = max(0, x), is computationally efficient but

could cause the Dying ReLU problem. When inputs approach zero, or are negative,

the gradient of ReLU becomes zero, and the weight is therefore not updated. This

ReLU neuron becomes inactive and only yields zero for any input. This situation

is unlikely to recover. An alternative function that can solve this problem is Leaky

ReLU, f(x) = αx for x < 0, where α is the parameter to be decided. It has a small

slope for negative values instead of zero, precluding the possibility of zero gradients.

There are two other parameters for optimising a network: the batch size and

the epoch. In machine learning, it is common to randomly divide a dataset into a

number of batches, rather than pass the entire dataset into the network at once.
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Batch size is the total number of training samples present in a single batch. One

epoch means the passing of an entire training set (divided into smaller batches)

through the neural network once. Updating the weight with a single pass/epoch

is not enough because it would cause the underfitting problem, where a solution is

too simple and the network has not been trained long enough to learn the relevant

patterns in the training data. We therefore optimise the model with limited data

sources by increasing the number of epochs. This can solve the underfitting problem,

but training with too many epochs could also cause an overfitting, meaning that the

network learns a complex solution from the training data which does not generalize

to the testing data.

The Architecture of CNN

We use the U-Net encoder-decoder structure network. The noisy convergence map

calculated from KS93 is entered to the encoder part which is composed of eight

convolution layers. Each convolution layer consists of a convolution with a specific

kernel size (32×32 for the first two layers, 16×16 for the 3rd and 4th ones, 8×8 for

the 5th and 6th, and 4×4 for the final two layers), followed by an activation function

of Leaky ReLU with α = 0.2. We also include max pooling operation which takes

the largest element from the feature map in order to downsample the images and

dropout layers to prevent overfitting. When an input image passes through these

layers, the encoder learns and extracts the important features at different scales and

removes the underlying gaussian noise peaks from it. In the final layer of the encoder,

the input image is compressed into a 16×16 matrix with 128 channels, which is then

passed to the decoder. The decoder is the inverse operation of the convolution layer,

expanding the compressed feature to the original dimension. With the process of

size decreasing in encoder, some small-scale information would be lost. Therefore

the skip connection of U-Net, which links the mirrored layers in the encoder with

those in the decoder, is needed for transferring the small-scale information to the

reconstruction of an output image. The network iteratively learns the parameters

by minimising a mean-square-error (MSE) loss function, calculated as the average of

the squared differences between the predicted and ground truth (noise-free) maps.
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The optimization is performed with a batch size of 40 and 100 epochs.

6.2.3 Preliminary Results

In this section, we present the results of denoising weak lensing mass maps using our

U-Net CNN. Figure 6.1 shows the convergence of an example of a cluster selected

from the testing set. The prediction from our network can effectively remove the

underlying noise fields (for both σγ = 0.26 and σγ = 0.36) and reconstruct the cluster

in the corrected shape and orientation. Their corresponding radial density profiles

are also shown in figure 6.1. The density profile calculated from the prediction is in

good agreement with the true counterparts while the observed fields underestimate

the mass due to the presence of random noise. To quantify the performance of the

whole training and testing samples, we define two quantities: σκ and MSE. For σκ,

as we defined in Chapter 2, we first calculate the residual maps κres = κ − κtrue.

For each κres, we then compute the noise level σκ, defined as the root mean square

(rms) deviation from the mean of κres, over all pixels (128 × 128) in the field. The

distribution of σκ of the training sample and testing sample are shown in figure 6.2.

The noise level in the reconstructed convergence map of cluster fields with σγ = 0.36

are higher than those obtained with σγ = 0.26. We also compute the MSE between

the predicted mass map and the ground-truth,

MSE =
1

Npix

Σ
Npix

i=1 (κtrue,i − κpred,i)
2, (6.2.1)

where Npix = 128 × 128. The distribution of MSE for different samples are shown

in figure 6.3. They have similar trends as σκ, where the networks pre-trained with

training data added by higher shape noise σγ = 0.36 obtain higher MSE values. On

this basis, we can predict that the network applied on lower resolution imaging data

(such as ground-based images) which resolve fewer background galaxies will result

in a less accurate reconstruction.

To quantify these comparison between different samples, we separately fit the

distribution of σκ and MSE with a Gaussian function to obtain the mean value and

the spread of the noise level for different cluster samples. The mean and standard

deviation of the best-fit Gaussian are listed in Table 6.1. We find that, for a given
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shape noise, the noise level and MSE measured from the predictions of the testing

set have a higher mean value and a wider distribution compared to those obtained

from the training set. This result is expected as the parameters in the networks are

optimized using the training sample. In addition, a larger shape noise does impact

the performance of the reconstruction, resulting in a less accurate prediction.

6.2.4 Future plans

The network trained by simple eNFW halos shows the feasibility of this deep learning

approach. However, to apply this method to real observational data, a more realistic

dataset is needed. In the near future, we will use real projected cluster fields from N-

body simulations (C-EAGLE) as a training set, with projected large-scale structures

along the line of sight. Other weak lensing systematics, such as biases in galaxy

shape measurements caused by instrumental effects (Massey et al., 2013; Tewes

et al., 2019), and selection bias from real observations could also be taken into

account in the application to real observations.

Generative Adversarial Networks (GAN) will be tested on the same subject. In

GAN, the structure of the CNN will be improved by adding a discriminator which

classifies the input image (an output image from the encoder-decoder network) as

a ground-true or an output image generated from the encoder-decoder network.

At each iteration, the generator (referring to encoder-decoder network) learns to

make the discriminator classify its output as real, while the discriminator learns to

distinguish the ground-true and the new output from the generator. Both networks

try to beat each other. Eventually, the final output image becomes better and more

realistic as the ground-true. The matured deep-learning network can be tested and

applied to large datasets from current and future sky surveys (e.g. HSC, LSST,

Euclid), constituting a new approach to precisely map lensing mass distributions

and identify subhalos.
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Figure 6.1: Convergence maps of a cluster from the testing set. Top left : the

true (noise-free) convergence map. Middle: the observed (with shape noise σγ =

0.26) convergence map on left panel is entered into the CNN which outputs the

prediction shown on the right panel. Bottom: the observed (with shape noise σγ =

0.36) convergence map on the left panel is input into the CNN which outputs the

prediction on the right panel. Top right : the corresponding radial density profiles.
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Figure 6.2: The normalized PDF distribution of noise level σκ. Solid (dashed) lines

are the cases with shape noise σγ = 0.26 (σγ = 0.36). Blue represents the training

set, and red represents the testing set.
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Figure 6.3: The normalized PDF distribution of MSE. Solid (dashed) lines are the

cases with shape noise σγ = 0.26 (σγ = 0.36). Blue represents the training set, and

red represents the testing set.

August 16, 2020



6.3. Future Wide-field Survey: SuperBIT 131

6.3 Future Wide-field Survey: SuperBIT

SuperBIT (Super-pressure Balloon-borne Imaging Telescope) is a diffraction-limited,

wide-field (0.4 deg2), 0.5m telescope operating in the visible-to-near-UV bands (300-

900 um). Its main goal is to image up to 200 clusters over a single super-pressure

balloon flight for strong and weak lensing studies. SuperBIT at 36 km altitude is

above 99.7% of the Earth’s atmosphere, offering a diffraction-limited observations

and delivering space-like imaging at a cost which is economically efficient. Within

the wavelength range, the high resolution and depth of SuperBIT imaging are

sufficient to measure the weak lensing signal of distant (z ∼ 1) galaxies behind fore-

ground (z ∼ 0.3) galaxy clusters. It also provides wide-field imaging data (25’×17’),

∼ 36 times larger than each HST /ACS pointing, allowing us to observe an entire

cluster, including its connection to surrounding large-scale structure, in a single

pointing.

On September 17, 2019, the 2019 SuperBIT science telescope commissioning

launch took place with the Centre National d’Etudes Spatiales (CNES) through the

Canadian Space Agency (CSA) from the launch at the Timmins (Ontario) site. The

performance of this test flight shows that SuperBIT has a pointing stability at 48

milliarcseconds over multiple 1 hour observations at float (Romualdez et al., 2019).

During this test flight, we observed the galaxy cluster Abell 2218 (z = 0.175) in Lum

band with a total (stacked) of 1950s exposure time, in U, B and G, and IR bands

with 300s for each. These are shorter than exposures anticipated for the science

flight, but useful for SuperBIT’s PSF analysis, and the calibration of its weak

lensing analysis pipeline.

A long duration science flight is scheduled in 2021. At that time, 200 galaxy

clusters are expected to be observed. To prepare for automated analyses of these

wide field images, a weak lensing shear measurement pipeline for SuperBIT has

to be developed. In the following section, I present the process of designing a

suitable weak lensing shape measurement code and the preliminary shear profile of

Abell 2218.
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6.3.1 Weak Lensing Shear From SuperBIT

We adapt the HST shear measurement code pyRRG to SuperBIT. Images of

Abell 2218 are first passed through pre-processing, including bias, dark, flat cor-

rection and co-adding images. Then we run SExtractor to detect sources. As

we mentioned in Section 3.3.1, pyRRG can classify objects automatically using

Random Forest approach. However, since the training sets for star-galaxy classifi-

cation in pyRRG are based on HST images, which is not suitable for SuperBIT,

we therefore manually conduct the classification by examining the distribution of

magnitude and peak surface brightness. We then measure the moments of stars and

galaxies to calibrate their shapes. The PSF modelling here is slightly different from

the process for HST data. First of all, the focus of SuperBIT is stable; it does

not change with time. Secondly, HST ’s PSF has been well-studied and it can be

described by simulations from the tinytim model (Rhodes et al., 2007). To model

SuperBIT’s PSF, we make use of the shapes of bright isolated stars (see Equa-

tion 3.3.24). We perform a 2 dimensional 2-order polynomial function fitting with

each moment of the stars. The original process in pyRRG takes the focus as one

of the fitting inputs omitted here. The best-fit models are interpolated to any posi-

tions in the field. Figure 6.4 shows the pattern of stellar ellipticities, and the best-fit

PSF model. The PSF of SuperBIT varies dramatically over the field. Close to the

the boundary, the ellipticity of the PSF is getting larger and stretched in the same

direction to the North/South edge. The best-fit model is able to describe the shape

of the majority of stars. There are a few objects with irregular and large ellipticities,

which could be due to the noise and cannot be described by the best-fit model.

Based on this shear measurement, we obtain a preliminary shear catalogue of

Abell 2218 which is contaminated by unlensed objects, such as cluster members. We

therefore make use of their colors to identify the red sequence galaxies, and exclude

them from weak lensing analysis. There is a total of five band (Lum, U, B, G and IR)

photometries available from the SuperBIT flight. Their instrumental magnitude

are output directly from SExtractor, without zero point calibration. In the long-

duration flight, they will be calibrated from observations of (specto)photometric

standard stars. For an approximate solution for data from this test flight, we conduct
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Figure 6.4: Best-fit PSF’s ellipticity for SuperBIT. The stacked image of Abell 2218

is overlaid. Red lines represent the stellar ellipticity, and the black lines are the

predictions from the best-fit PSF model which is interpolated to the whole field of

view (also extended outside the field of view).
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object matching with Abell 2218 catalogue from VizieR which have magnitudes of

B, G, R, I and Z bands with zero point correction. There are a total of 213 galaxies

common to the SuperBIT and VizierR catalogues. We then derive the mean

value of zero point magnitude from these overlaped objects. Note that these values

may not be accurate because of differences in filter shapes. A serious filter matching

need a filter correction to account for the flux mismatch. However, since in this

work we hope to identify red sequence galaxies in the color-magnitude diagram, a

roughly correct magnitude is enough for our first pass estimate.

Figure 6.5 shows the colour-magnitude diagram of SuperBIT detected galaxies

in Abell 2218. To properly select the red sequence, we follow Medezinski et al.

(2007), defined a boundary in V-I vs. I diagram for Abell 1689 cluster galax-

ies (z=0.18) to separate the E/SO sequence from the background objects. Since

Abell 1689 has a similar redshift as Abell 2218, we therefore adopt their linear rela-

tion, (G−IR) > 0.03525 IR+1.505−0.45 and (G−IR) < 0.03525 IR+1.505+0.2,

to identify cluster members. Cluster galaxies are labeled in green and background

samples are labeled in red in figure 6.5. Finally we further perform a lensing cut,

which restricts e < 1 and S/N > 3, to exclude objects with less accurate shape

measurements, and a magnitude cut, to exclude very bright objects. The final shear

catalogue contains 146 background galaxies which are labeled in yellow in figure 6.5.

This low number density of background galaxies is due to a short exposure during

the engineering flight. The tangential weak lensing shear profile (defined in equa-

tion 3.2.16) calculated from the shear signal of the identified background galaxies is

shown in figure 6.6, compared with the shear profile calibrated from ground-based

CFHT observations (Herbonnet et al., 2019, shown with black data points provided

via private communication by H. Ricardo). Even though we do not detect a high

density of background objects in this test flight, the shear profile is well consistent

with the one obtained with CFHT, showing that SuperBIT is a promising telescope

for future lensing studies. We also measure the shear profile from cluster members

and find that they are consistent with zero, agree with our expectation that cluster

members do not contain tangential shear signal.
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Figure 6.5: Colour vs. magnitude diagram for Abell 2218 cluster galaxies. The

green and red points represent the cluster members and the background galaxies,

respectively. The yellow points represent the background galaxies after applying the

lensing cut, which are finally used for our weak lensing analysis.
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σκ MSE

Training Set σγ = 0.26 0.0024± 0.0006 (5.90± 3.20)× 10−6

σγ = 0.36 0.0026± 0.0006 (7.68± 3.84)× 10−6

Testing Set σγ = 0.26 0.0026± 0.0007 (6.81± 4.15)× 10−6

σγ = 0.36 0.0032± 0.0010 (11.5± 8.33)× 10−6

Table 6.1: Statistics of the CNNs’ performances. Third (Fourth) column shows the

mean value and the standard deviation of the best-fit Gaussian function applied on

the σκ (MSE) distribution for different samples.

Figure 6.6: Shear profiles of Abell 2218 observed from SuperBIT (this work) and

CFHT (Herbonnet et al., 2019, private communication by H. Ricardo). The red

errorbars are calculated from bootstrap resampling. The y axis in the upper panel

represents the magnitude of the tangential component of the shear, and the bot-

tom panel shows the 45 degree rotated component of the shear, which should be

consistent with zero in cluster lensing.
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6.3.2 Future Plans

During the 2019 SuperBIT’s test flight, the observations of Abell 2218 were unfor-

tunately obtained while the telescope was away from optimal focus. This enlarged

the PSF. It is therefore not trivial to measure shear using pyRRG, which is de-

signed for diffraction-limited images. Especially when the size of the PSF is larger

or equivalent to the size of the object, the assumption of pyRRG breaks and may

lead to an unreliable correction. In the future, we will try to use other software, such

as NGMIX (Sheldon, 2015), to improve the performances of the shear estimation.

Moreover, in order to accurately calibrate the weak lensing shear from observations,

a set of simulated images convolved with a similar PSF model as SuperBIT’s and

known weak lensing shear, is needed. These simulated images with the known shear

signal can be used to quantify the precision of estimated shear from different shear

measurement codes. Similar calibrations were successfully conducted by the STEP

(Shear TEsting Programme; Heymans et al., 2006; Massey et al., 2007b).

SuperBIT is scheduled for a long duration super-pressure balloon flight from

Wanaka, New Zealand in 2021. We will extend the exposure times in order to

detect enough background galaxies. The matured weak lensing analysis pipeline will

be used to calibrate the weak lensing shear signal for these observations. Together

with the weak lensing mass reconstruction methods described in Section 3.4, detailed

mass distribution of more than 150 galaxy clusters will be mapped. These wide-field

dark matter distributions will therefore be useful in detecting large-scale structures,

probing the evolutionary history of structures, and constraining the nature of dark

matter. Furthermore, this large sample of galaxy clusters will allow us to probe the

abundance of galaxy clusters as a function of redshift and mass, which provides a

potentially sensitive test of cosmological models (e.g. Holder et al., 2001).
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Chapter 7

Conclusions

In this thesis, we have focused on the gravitational lensing analyses of massive galaxy

clusters in order to map the dark matter distribution and its surrounding large-

scale structures. To find the optimal method that is suitable for space-based weak

lensing data, we first tested different mass mapping techniques using simulation data

and developed an aperture moment filter to search for filaments. We then applied

these optimal measurements on the massive galaxy cluster MS 0451-03 to conduct a

comprehensive cluster study. In this concluding chapter we summarise our findings

and suggest future prospects for these areas of research.

7.1 Calibrating Weak Lensing Methods on Simu-

lated Data

High-precision calibration of weak-lensing mass mapping techniques will be needed

for upcoming space-based surveys. We have used mock observations of ten massive

galaxy clusters from the BAHAMAS simulation to find the optimal methods for

various cluster analyses. To mimic real observational imaging data, we included two

sources of noise: intrinsic shapes of background galaxies, and large-scale structures

along the line of sight.
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7.1.1 Comparison of Two Mass Reconstruction Methods

We first quantified the performance of two mass mapping techniques: 1) direct in-

version method (KS93), denoised by MRLens; 2) the Lenstool multi-scale grid

technique. We found that MRLens is efficient at suppressing shape noise, whilst

retaining signal from statistically significant structures on all scales. The recov-

ered density profile from KS93+MRLens is unbiased, except the smooth central

profile which causes difficulty in identifing the cuspy core. Its noise suppression via

smoothing also makes the shape of the galaxy cluster rounder. The KS93+MRLens

method will be suitable in stacked analysis for constraining the mean properties of

an ensemble of galaxy clusters.

Lenstool suppresses noise much further thanks to its physical prior on the

mass distribution. This method is thus ideal for precise reconstructions of individual

clusters or detections of irregular, low signal-to-noise quantities, such as filaments.

The shortcoming of this technique is the over-estimation of mass. Since Lenstool

imposes a strong prior that the mass density is positive over the field of view, the

recovered density profile has an excess of mass at large radii. This changes the

shape of the density profile, which could cause bias in the inferred properties of the

cluster. This issue will need to be managed carefully when people perform profile

fitting with halo models.

7.1.2 Searching for Filaments

We also developed an optimal filter to search for filaments in the reconstructed

maps. In principle, multipole aperture moments can be used to detect filaments. In

practice, the signals of filaments are mimicked by background galaxy shape noise

and projected LSS noise. Our optimal method allows us to detect narrow filaments

from space-based data, with a purity > 75% and completeness > 40%. However,

finding filaments remains challenging, because they have low signal-to-noise ratio

and the signal from many filaments can rarely be stacked. The dominant source

of noise relevant to filament detection comes from intrinsic shapes of background

galaxy. It is therefore impossible to detect individual filaments using data from
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ground-based telescopes, and remains challenging with current space-based (HST )

data. Fortunately, upcoming space-based observations will resolve a higher density

of background galaxies which can reduce the noise level and make this method

potentially useful for filament searches.

7.2 Lensing Analysis of the Post-Merger Cluster

MS 0451-03

We then applied these measurements on a massive galaxy cluster, MS 0451-03 to

conduct a combined strong+weak lensing analysis. MS 0451 is an unique cluster that

has the largest mosaic of HST imaging today, covering an area of ∼20×20 arcmin2.

Thanks to these wide-field high-resolution imaging data, we were able to map the

detailed dark matter distribution up to R ∼ 3 Mpc. Using the Lenstool multi-

scale grid reconstruction, we discovered six substructures, constituting three possible

filaments with mean convergence 〈κ〉 ∼ 0.03.

We found that the cluster core is a bimodal mass distribution elongated along

the South-East to the North-West with total mass M200 = (1.65± 0.24)× 1015 M�

and NFW concentration c200 = 3.79 ± 0.36. The MS 0451’s baryonic fraction

fb,500 = (14.6 ± 1.4)% is well consistent with the cosmic baryonic fraction (Planck

Collaboration et al., 2016). We detected the flattening features of MS 0451’s density

profile at R ≈ 2 Mpc, which is well fitted by the splashback feature in the DK14

model. However, since this feature is very close to the boundary of the field of

view, this could be just noise corresponding to edge effects or large-scale structures

projected from other redshifts.

We compared our lensing results with an X-ray analysis which measured a total

mass of M200,HSE = (1.75 ± 0.75) × 1015 M� and cHSE = 2.35+0.89
−0.70, assuming that

the system is in hydrostatic equilibrium (HSE). The distribution of gas is rounder

than that of dark matter and there are also strong excesses of gas entropy in the

cluster core. These findings suggest that MS 0451 is an unrelaxed system which

underwent a major merger ∼2–7 Gyr ago, and the two dark matter components

in the centre are now approaching second apocentre. The post-merger stage of MS
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0451 we inferred is consistent with the quenched star-formation history discovered by

Moran et al. (2007b). Therefore, MS 0451 will be a useful cluster for future studies to

characterise infalling substructures along filaments and the star-formation processes

after a major merger. The analyses we presented here can be extended and applied

to other systems observed in future surveys.

7.3 Future prospects

Finally we presented some preliminary results of two ongoing projects. We recon-

structed the mass maps of NFW halos using a U-Net Convolutional Neural Net-

work. The pre-trained network effectively removes the random noise peaks caused

by background galaxies’ shape noise, and recover well the mass distribution and

density profile. In the future, a more realistic training dataset with complex cluster

mass distributions from simulations is needed for this approach to be applied on

real observational data, including irregular and unrelaxed clusters that cannot be

described by simple analytic halo models.

We also showed the preliminary shear profile of Abell 2218 observed from Super-

BIT during the test flight in 2019, which is consistent with what is observed from

CFHT. This suggests that SuperBIT is a promising telescope which can deliver

high-resolution imaging at a fraction of the cost of a space-based mission.
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Appendix A

Auxiliary Results

A.1 Splashback radius

Diemer & Kravtsov (2014) shows that in N -body simulations density profiles of dark

matter halos exhibit a sharp steepening at radii comparable to the virial radius. This

feature depends on the accretion history of the cluster, resulting from an absence of

particles orbiting beyond the radius of second turnaround. It gives us a physically

motivated definition for the boundary of dark matter halos. Here we investigate

the splashback feature of MS 0451 by fitting its density profile with a DK14 profile

(Sect. 5.6.2). The marginalized posterior constraints are listed in Table A.1 where

we employ the biweight estimators of Beers et al. (1990) for the center and dispersion

of the marginalized posterior distributions (e.g. Chiu et al., 2018; Sereno & Umetsu,

2011; Umetsu et al., 2014a).

We follow More et al. (2015b) to define the splashback radius, rsp, as the radius

of a local minimum in the logarithmic slope of the density profile, γ ≡ d logρ/d logr.

Figure A.1 shows the mean and 68 per cent confidence intervals of γ, inferred from

the DK14 fit, together with the posterior probability distribution of the splashback

radius, rsp, and the posterior probability distribution of γ(rsp). The biweight central

location of γ(rsp) is −3.10± 0.74, at rsp = 1.49± 0.57 Mpc. This is not significantly

different from the value of γ ∼ −2.4 for the best-fit NFW at this radius, and

the Bayesian and Akaike Information Criteria disfavour the increased complexity

of the DK14 model. Furthermore, our best-fit rsp is lower than predictions from
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Figure A.1: Radial gradient of the total mass distribution, from fitted NFW (red)

and DK14 (blue) models. Solid lines show the mean inferred values; shaded regions

show 68% confidence intervals The upper and right panels show the posterior prob-

ability distributions of the splashback radius rsp, and the gradient at the splashback

radius γ(rsp). Dashed lines and shaded regions indicate the mean and 68% confi-

dence intervals respectively.
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Parameter Constraint

ρs [103M�/kpc3] 598.32± 6.41

rs [Mpc] 0.33± 0.12

rt [Mpc] 1.76± 1.34

logα −0.78± 0.39

log β 0.87± 0.45

log γ 0.70± 0.45

be 1.96± 1.00

se 1.75± 0.54

Table A.1: Marginalized posterior constraints on the DK14 model.

cosmological simulations and other observational analyses (e.g. Contigiani et al.,

2018). One explanation could be that a true splashback feature is close to (or

ouside) the edge of the HST field of view, where ‘noise’ in the form of lensing

signal from projected substructures exceeds the lensing signal of the cluster, and is

correlated between radial bins. Hence, similarly to Umetsu & Diemer (2017) on a

different cluster sample, our measurement of MS 0451 places only a lower limit on

the splashback radius rsp > 1.49 Mpc.

A.2 Redshift distribution of detected weak lens-

ing peaks in MS 0451’s field

The summed probability density functions (PDFs) of photometric redshifts zphot for

all galaxies within R = 480 kpc of each substructure are shown in figure A.2. For

comparison, the dashed red line shows the redshift distribution of galaxies observed

in the H ST imaging with the same pass-band and to the same depth, but in a blank

region of the sky (the COSMOS field). Its normalisation has been rescaled to the

same number density of galaxies in our catalogue that have photometric redshifts

(a higher fraction of COSMOS galaxies have photometric redshifts, particularly at

high redshift, thanks to the deeper Subaru imaging). The grey band shows the
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Figure A.2: Normalized PDF of photometric redshifts zphot for all galaxies within

an aperture (R = 480 kpc) for each of the 14 detected weak-lensing peaks. Galaxy

overdensities within 0.48 < zphot < 0.61 (vertical red bands) are consistent with

being at the redshift of MS 0451, within typical zphot uncertainties. For comparison,

the red dashed line is the redshift distribution of galaxies detected in comparable

H ST imaging of a blank patch of sky (the COSMOS field), and the grey band shows

the 1σ scatter in this. August 16, 2020
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1σ scatter in the redshift distribution of COSMOS galaxies, calculated using the

bootstrap method. The width of the grey band is unchanged by the higher precision

of zphot measurements using many more colours.

Substructures 1, 2, 3, 4, 5 and 6 are dominated by galaxies at the same redshift

as the main cluster, and must therefore be physically associated. Indeed, there

are some galaxies at this redshift throughout the entire H ST mosaic. However,

substructures 7 to 14 (marked by black circles in figure 5.10) are dominated by

galaxies at a different redshift or at a mixture of redshifts. We therefore do not

consider these to be associated to MS 0451. Substructures 8, 9 and 11 might be a

linked system behind the cluster (z ∼ 0.7), and even appear as an extended mass

distribution in the AMM map (figure 5.11).
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