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Homo erectus palaeoecology in Java: A study of cervid post-cranial ecomorphology 

Ben Jack Gruwier 

This dissertation reports on the palaeoenvironmental reconstructions of several Pleistocene 

sites from Java (mainly Trinil, Kedung Brubus and Sangiran), based on newly developed 

ecomorphological methods for the cervid calcaneus and intermediate phalanx. Using a 

geometric morphometrics approach, 3D-landmark data were collected on extant cervids of 

known habitat preference, to establish correlations between morphological traits, locomotor 

behaviour and environmental parameters. These models were then applied to deer fossils from 

the selected sites to assess past vegetation structure and substrate type. 

This study extends the suite of ecomorphological methods available for palaeoenvironmental 

reconstruction. The morphology of the calcaneus and intermediate phalanx were found to vary 

with locomotor strategy and habitat along a continuum from open habitats with dry substrate 

to closed habitats with wet substrate. Furthermore, this dissertation contributes to our 

understanding of the understudied Pleistocene environments of Java. The results of Trinil 

confirmed interpretations of an open woodland, but suggested a relatively wet substrate. The 

results of Kedung Brubus and its associated fauna indicated open, but drier conditions and 

presumably coincided with a glacial stage when Java was connected to the Asian mainland, 

allowing increased biotic interchange with the continent. The material from Sangiran 

suggested open conditions, and either dry or wet substrates, possibly reflecting the mixed 

nature of the assemblage.  

The early dispersal of Homo erectus, considered the first hominin to have expanded its 

biogeographic range over large parts of the Old World, is generally hypothesized to have been 

more driven by either extrinsic (e.g. the expansion of open environments) or intrinsic factors 

(e.g. the increased capacity of H. erectus to adapt to variable conditions). The reported 

palaeoenvironmental reconstructions provide an estimate of the extent to which this species 

depended on a specific type of environment. The results do not contradict a scenario where 

Homo erectus was restricted to more open environments for its survival and dispersal. A 

significant degree of environmental flexibility can, nevertheless, be extrapolated from its 

presence in dry and wet conditions, and in areas with different vegetation structures ranging 

from grassland to open woodland.  
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1. Introduction 

1.1 General introduction 

In palaeoanthropology it is currently recognized that in order to understand key events in 

human evolution, it is important to place them in an environmental context (Vrba 1995a, Reed 

1997, Potts 1998). One such key event, that has been the subject of intense scientific debate, 

is the appearance and rapid dispersal of Homo erectus over large parts of the Old World 

(Larsen et al. 1998, Anton 2003, Anton et al. 2016). Even though the underlying processes 

behind this biogeographic expansion remain poorly understood, it is thought that certain 

ecological parameters during the Plio-Pleistocene played a role (Anton & Swisher 2004, Lahr 

2010, Agusti & Lordkipanidze 2011, Carotenuto et al. 2016). A number of researchers have 

suggested that the large scale development of open, savannah-like environments across Africa 

and Asia facilitated this expansion, and have pointed out that early hominin dispersal out of 

Africa was part of a larger ecosystem expansion (Vrba 1996, Dennell & Roebroeks 2005, 

Dennell 2010). Others have minimized the direct role of extrinsic factors, and have proposed 

that intrinsic factors, such as the appearance of bipedalism or cranial encephalization, led to 

an increased capacity for ecological flexibility and drove early Homo dispersal (Potts 1998, 

Bobe & Behrensmeyer 2004, Carotenuto et al. 2016).  

While intrinsic and extrinsic factors are not mutually exclusive, and may well have both 

contributed to the success of Homo erectus (Carotenuto et al. 2016), understanding how they 

articulated, requires a more intimate grasp of the environmental conditions that were 

encountered by this hominin during the Early and Middle Pleistocene. Such a 

palaeoenvironmental framework is already available to some extent, but data are unequally 

distributed in time and space and the results of different proxies are sometimes contradictory. 

One region that has been comparatively neglected from a palaeoecological perspective is 
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Southeast Asia. Java especially, despite its wealth of Homo erectus fossils (Simanjuntak 

2001), has received far less attention than East Africa. Moreover, current interpretations about 

the nature of its palaeoenvironments are still a matter of debate (see section 3.5.2.3). 

Nevertheless, this island does not only represent an important region because of its rich fossil 

record, but also because of its geographical position at the margins of the currently known 

Homo erectus range (Anton 2003, Anton et al. 2016, but see section 3.2). These factors, 

alongside the large amounts of faunal remains associated with the Indonesian Homo erectus 

sites, make Java not only an ideal test case for assessing the nature and role of environmental 

conditions in an “Out of Africa” scenario, but also a priority region for further research in 

hominin palaeoecology.  

It is by studying the palaeontological record that ancient environments can be reconstructed 

and inferences made about hominin behaviour and morphology (Vrba 1975, Weinand 2004, 

Andrews & Hixon 2014). Although no single proxy is capable of providing a complete picture 

of the ecological conditions at a site, one approach within palaeontology that has made 

considerable contributions to our understanding of hominin palaeoecology, is that of 

artiodactyl ecomorphology (e.g. Kappelman 1988, Kappelman et al. 1997, Vrba 1980, 1995b, 

1999, Plummer & Bishop 1994, Degusta & Vrba 2003, Kovarovic & Andrews 2007, 

Plummer et al. 2008, Barr 2014a). This method works by examining the functional 

morphology of skeletal elements in a mammal group as it relates to certain ecological 

variables (Degusta & Vrba 2003, Andrews & Hixon 2014). By comparing morphological 

patterns in recent mammals with those observed in extinct species, inferences can be made 

about probable adaptations in fossils (Andrews & Hixon 2014). Although the 

ecomorphological method has limitations of its own, it also has important advantages, such as 

taxonomic non-dependence (see section 4.3), that make it a powerful addition to traditional 

palaeontological analyses.  
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There is a considerable body of research on African bovids wherein the effectiveness of the 

ecomorphological method is demonstrated for several postcranial elements (e.g. Vrba 1980, 

1995b, 1999, Kӧhler 1993, Kappelman 1988, Kappelman et al. 1997, Plummer & Bishop 

1994, Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, Barr 2014a, Barr 2018). Nevertheless, 

this technique has not yet been extensively applied on European and Asian assemblages, 

where palaeontological sites often comprise large numbers of cervid remains (Curran 2009). 

In response to this shortcoming, the present study seeks to develop ecomorphological models 

for a number of cervid elements and apply them on a selection of Indonesian sites, to gain 

further insight into the environments that were present there during the Pleistocene. As such, 

this is the first study of its kind in Southeast Asia after Weinand’s (2005) thesis on the bovid 

astragalus, and certainly the first to apply it on cervids in this region. Even though the main 

objective of this dissertation is to generate new palaeoenvironmental evidence for a number of 

sites, it also contributes to the field of hominin palaeoecology by extending the suite of 

methods available for palaeoenvironmental reconstruction. The ecomorphological models 

presented here are based on species that come from across the cervid range and can 

theoretically be applied on any Pleistocene assemblage with sufficient deer fossils.  

More specifically, this thesis provides ecomorphological models for the cervid calcaneus and 

intermediate phalanx. These skeletal elements are useful in ecomorphological analyses as they 

represent important components of the locomotor apparatus, a part of the artiodactyl body 

that, in terms of morphology, is thought to be mainly constrained by environmental 

parameters such as substrate type and vegetation structure (Leinders 1979, Köhler 1993, 

Degusta & Vrba 2005a, Polly 2007, Curran 2009, 2012, Barr 2014a,2014b, 2015). As such, 

the fossil materials on which the predictive models are applied can be informative about the 

type of vegetation that was present and whether substrates were of a dry or wet nature in the 

past. 
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Furthermore, this thesis aims to improve the way ecomorphological analyses are currently 

conducted. An important aspect of this is that for both the intermediate phalanx and the 

calcaneus a detailed functional framework is proposed, an aspect of ecomorphology that has 

received little attention in earlier studies of artiodactyls. The morphology of a skeletal element 

can be driven by a complex combination of different factors, including function, phylogeny, 

body size and sexual dimorphism. Therefore, a number of functional hypotheses are 

developed and tested about specific morphological traits, to objectively assess to what extent 

they are driven by function as related to ecology. In this light, a number of confounding 

factors (i.e. size, sexual dimorphism and phylogeny) are accounted for and discussed in detail 

(see section 4.3). 

Another novel aspect is the use of 3D Geometric Morphometrics (GMM) instead of the more 

commonly used linear measurements. GMM has not yet been extensively applied on 

artiodactyl post-cranial elements, but nevertheless has some advantages over traditional 

morphometrics. Besides the fact that shape can be studied more independently from size 

(Viscosi & Cardini 2011), GMM also allows for skeletal elements to be analyzed as whole 

units instead of a number of separate measurements that do not maintain the original 

geometry of the object (Zelditch et al. 2004). By applying this methodology on 3D surface 

scans taken of skeletal elements, it is possible to capture subtle shape differences that would 

have been obscured using a traditional morphometric approach. Besides the fact that the 

potential of this methodological approach has not yet been fully explored in non-primate 

ecomorphology, it is especially relevant in the case of deer, as they are morphologically 

conservative (Lister 1996) and shape differences between species are expected to be rather 

subtle.  

The ultimate goal of this study is to apply the predictive models developed here on cervid 

material from a number of hominin localities from Java: principally Trinil, Kedung Brubus 
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and Sangiran. In doing so, context is provided to the dispersal and success of Homo erectus in 

Asia.  By comparing palaeoenvironmental reconstructions of different Homo erectus sites, an 

estimate can be made of the adaptive flexibility of this hominin. If reconstructions point to a 

specific and uniform type of (dry, open) environment for the different localities, the data 

would suggest a scenario where extrinsic changes predominantly drove early hominin 

expansion. If palaeoenvironmental reconstructions are indicative of a range of different 

environments that Homo erectus occupied, the data would be more suggestive of a scenario 

where intrinsic changes made Homo erectus a more flexible species, less restricted by specific 

environmental conditions in its dispersal.  

The fossil assemblages selected for this analysis are particularly useful for such a study, as 

they are thought to correspond with two Pleistocene faunal stages (the Trinil H.K. stage: 

aprox. 0.9 Ma, and the Kedung Brubus stage: 0.7-0.8 Ma), and presumably coincided with 

one or more glacial-interglacial cycles (van den Bergh et al. 2001, Musser 1982, Sondaar 

1994, Meijaard 2003a). In fact there is some evidence that during the more recent Kedung 

Brubus stage Java underwent substantial climatic changes (Musser 1982, Sondaar 1994, 

Meijaard 2003a). The nature and significance of these purported changes and how they were 

expressed in the regional environment, nevertheless, remain poorly understood.  

The cervid ecomorphological analyses provided in this study, contribute to a complete and 

integrated picture of the palaeoenvironmental conditions in Java and improve our 

understanding of how significant potential environmental changes were during times when 

Homo erectus occupied the region. As such it allows for a better insight into the behaviour 

and adaptive flexibility of this early member of our genus and ultimately into the origins of 

modern human behaviour, which is characterized by the capacity to cope with a broad range 

of environments (Potts 1998). 
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1.2 Structure of this dissertation 

Following this introduction, this dissertation is composed of seven more chapters. In Chapter 

2 background is provided, by discussing the environmental conditions currently present in 

Java and how biotic and abiotic factors have in the past shaped the character of the island. The 

second part of Chapter 2 reviews the palaeontological record of Java within its wider 

Southeast Asian context and provides an account of the history of palaeozoological research 

in this part of the world. In Chapter 3 Homo erectus is discussed as a species. After describing 

the characteristics of this taxon from a palaeobiological, archaeological and behavioural 

perspective, the emphasis in the second part of this chapter is mainly placed on the 

palaeoecology of this taxon. In addition to reviewing the palaeoenvironmental data available 

for the principal sites, an account is given of our current knowledge of Homo erectus 

palaeoecology and how it is thought to relate to current theories about hominin dispersal.  

Chapter 4 reviews ecomorphology conceptually as a scientific method. Here it is discussed how 

this method can be used on mammalian fossils and what its relevance is as a proxy for 

hominin palaeoecology. After giving an overview of the potential problems and limitations of 

the ecomorphological method, a review is given of the Cervidae family. This review includes 

a description of the taxonomy, ecology and evolution of the extant deer as well as a discussion 

of the fossil cervids that are found in Java and the surrounding region. A final section 

examines how ecomorphology can be applied to cervids.  

Chapter 5 is made up of several sections pertaining to the methodology, materials and 

contributions of this dissertation. A first section discusses what research questions are 

addressed in this dissertation and how a number of hypotheses about Homo erectus 

palaeoecology and bahaviour will be tested. Later, a functional framework is outlined that 

provides a foundation on which the ecomorphological models can based. This section 
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concludes with a number of functional hypotheses that are later tested in the morphometric 

analyses. The chapter continues with a general discussion about GMM as a methodological 

approach and a more specific treatise of how it can -and will be- applied to (cervid) 

postcranial elements. The details of the morphometric protocols used in this dissertation are 

described, followed by a section that discusses the statistical analyses that are conducted on 

the morphometric data. Error testing methods are then outlined and the habitat groups that are 

used in the ecomorphological models are presented and justified. A final section discusses the 

extant and fossil materials that were used.  

Chapter 6 reports on the results of the extant and fossil specimen analyses. The first half of 

the chapter deals with the results of the analyses of the extant species. Within this extant 

species section, I report the results of the calcaneus and the intermediate phalanx in the same 

way: after looking at the results of error testing and a test of the effects of sexual dimorphism, 

the main results of the ecomorphological analyses are provided. The second half of Chapter 6 

deals with the results of the fossil analyses. This part of the chapter is divided in three 

sections: one section that discusses the results for Trinil and its most common species Axis 

lydekkeri, a second section that deals with the results for Kedung Brubus and Cervus 

kendengensis, and a third that gives the results for Sangiran.  

Chapter 7 discusses the implications of the results for extant and fossil cervid ecomorphology, 

followed by a section that provides an interpretation of the habitats that were present in the 

vicinity of the sites during deposition. The chapter continues with a section that places the 

palaeoenvironmental reconstructions for the sites within the broader context of Homo erectus 

palaeoecology in Java and other parts of its range, and explores the implications for early 

hominin dispersal. After providing some further considerations about the used statistical tests, 

Chapter 8 gives an overarching conclusion with suggestions for future research. 



8 
 

2. Background 

2.1 Introduction 

As this thesis deals with the conditions that were present in Java during the Pleistocene it is 

imperative to first provide a summary of the conditions that are currently present there and 

that have shaped the island and the surrounding region in its present state. In section 2.2 a 

review is provided of the geological, climatological, vegetational and zoological setting of 

this region. In section 2.3 I present a status quaestionis of our current knowledge of the fossil 

record and discuss the biostratigraphy of Java. 

2.2 The environmental context of Java 

The island of Java is part of the Indomalayan archipelago which stretches between the Indian 

Ocean in the west and the Pacific in the east. With almost 25,000 islands, it is the largest 

archipelago on earth, covering more than two million km2 (Moores & Fairbridge 1997). 

Indonesia, which takes up the largest part of the archipelago, is composed of a number of 

smaller island groups (Tomasick et al. 1997). Most important for this dissertation is the 

Greater Sunda Island chain, formed by Java, Sumatra, Borneo and Sulawesi (Simpson 1977, 

Aarsse 1993, Harrison et al. 2006). To the southeast of the Greater Sunda Islands lie the 

Lesser Sunda Islands, forming a second important chain to the east of Java, comprised of a 

number of smaller islands such as Bali, Lombok and Flores. In the northeast the Greater 

Sunda’s are bordered by the Philippines, while in the south and in west they are surrounded 

by the Indian Ocean (Simpson 1977, Harrison et al. 2006) (Fig. 2.1). Java, being the 

southernmost island of the Greater Sundas, is approximately 127,000 km2 in size. It has an 

elongated shape and measures about 1000 km from east to west and 180 km from north to 

south (Sevin 1993). 
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Figure 2.1: Map of sundaland during the last glacial maximum (adapted from Bird et al. 2005) 

The present shape and topography of Java are largely the result of Indonesia’s position at the 

intersection of four tectonic plates: the Eurasian plate, the Pacific plate, the Indo-Australian 

plate and the Philippine plate. Due to the subduction of the Indo-Australian plate under the 

Eurasian plate, the southern ridge of the latter is forced upward creating a number of Islands 

of which Java is part (Katili 1975, Bouteaux 2005). Borneo and Sumatra are thought to have 

been formed during the Early Tertiary (Zaim 2010). Of Java, only a small part in the west was 

emerged during this period. It was not until the Oligocene, in a context of increased tectonic 

activity, that the island developed its current shape (Hall 1998, Zaim 2010). After this, Java 

was subject to two other orogenic events that were instrumental in its formation: one during 

the Miocene and a final one during the Pleistocene (Saint-Marc et al. 1977, Zaim 2010). 

Java lies on the southernmost border of the Sunda shelf, a pre-tertiairy platform that forms an 

extension of the Eurasian plate that is today for a large part covered by the Java Sea (Saint-
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Marc et al. 1977). This shelf with its islands and shallow seas -that was at times in its 

geological past exposed above sealevel- is also called Sundaland (Harrison et al. 2006). To 

the east of Sundaland lies the Sahul shelf which is also partially covered by shallow seas and 

includes New Guinea and Australia. Although the Sunda- and Sahul shelfs are geographically 

close, they are separated from each other by deep marine trenches (Zaim 2010). Although this 

dissertation is focused on Java, geological and environmental changes that occurred on this 

island should be considered as part of larger events that took place in the whole Sunda region.  

From the end of the Pliocene, when Sundaland became subject to intense tectonic activity 

(Zaim 2010), Java was also heavily influenced by glacio-eustatic sea level fluctuations (van 

den Bergh et al. 2001). During glacial episodes resulting in lower sea levels, large parts of the 

Sunda shelf were exposed, connecting the major islands, Borneo, Sumatra and Java, to the 

mainland (Voris 2000, Bird et al. 2005) (Fig. 2.1). While during the Early Pleistocene sea 

levels were still relatively stable and at about -70 meters below current levels, from 0.8 Ma, 

glacial-interglacial cycles intensified and increasingly oscillating sea levels are observed 

(Prentice & Denton 1988) (Fig. 2.2). 

Today Java can be divided in a Western, Eastern and Central part (Whitten 1996). Regional 

topographical, climatic and vegetational differences between these parts are substantial. While 

West- and Central Java are generally rather mountainous, East Java is characterized by 

lowlands (Hertler 2004). In addition, in each of these three regions (East, Central and West) a 

number of physiographic zones can be found along a north-south altitudinal gradient. Van 

Bemellen (1949) divides the island in a number of physiographic units (Fig. 2.3): 
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Figure 2.2: Sea level variations in over the last 4 Ma, based on δ18O isotopic signatures of marine foraminifera 

(adapted from Prentice & Denton 1988 and van den Bergh et al. 2001). Note increasing sea level oscillations 

from the Middle Pleistocene. 

A narrow strip of alluvial plains derived from river sediments is found along the northern 

coast. These are followed by a landscape of undulating to rolling hills, called the Northern 

Foothills, composed of sedimentary rocks of volcanic and marine origin. In the center of the 

island a cluster of young volcanic mountains is found that stretches more or less over the 

whole length of Java. Interspersed by these volcanic mountains there is also the Central 

Depression in the middle of the island, made up of Plio-Pleistocene alluvial and volcanic 

deposits (van Bemellen 1949, Whitten 1996). The south of the island is characterized by the 

Southern Mountains. These formations are composed of clastic deposits of Miocene age 



12 
 

mixed with marine sediments such as limestone (van Bemellen 1949, Whitten 1996, Bouteaux 

2005). 

 

Figure 2.3: Physiographic zones of Java (adapted from van Bemmellen 1949). 

Java currently has a marine tropical climate with temperatures that are almost constant 

throughout the year, but with substantial seasonal differences in rainfall (Yamada 2016). 

Climatic variations in Java are driven by differences in air masses within the Intertropical 

Convergence Zone (ITCZ). As a result of converging airstreams from the northern- and 

southern hemispheres, air uplifting and cloud formation lead to an increased rainfall pattern 

on the island (Whitten 1996, Aldarian et al. 2008). This generally humid regime is disturbed 

in the middle of the year by dry monsoon winds that mainly influence Central- and East Java 

(Whitten 1996). Due to alternating wet and dry seasons, rainfall is the most important 

seasonal ecological variable in Java (Amien et al. 1996, Whitten 1996). This picture is, 

however, complicated by local topography, as prominent mountains can create a rainshadow 

on leeward slopes, while exposing windward slopes to increased precipitation (Whitten 1996,  

Aldrian & Djamil 2008). As a result certain parts of West Java have an annual rainfall of as 
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much as 4000 mm, while some areas in East Java receive less than 1000 mm of rain per year 

(Yamada 2016). 

Java is part of the diverse phytogeographical region Malesia, which includes a large area 

between peninsular Malaysia in the northwest and New Guinea in the southeast (Nooteboom 

1992). This high biodiversity is explained by its geographical position in between different 

floristic regions (Mainland Southeast Asia, Australia), by the presence of mountains resulting 

in increased speciation at different altitudes and as a result of glacial-interglacial cycles 

periodically connecting and disconnecting the islands to the mainland (Whitten 1996, 

Cranbrook 2010). Although Java is among the less biodiverse islands in the Malesian region, 

it is still recognized by a wide range of vegetation types (Whitten 1996). As temperatures are 

constantly high and rainfall is governed by the monsoon regime, the climax vegetation on the 

island ranges from closed tropical rainforest to savannah (Sémah & Sémah 2012, Yamada 

2016). The regional vegetation is also characterized by altitudinal gradients and includes 

lowland rainforest, lower and higher montane forest and subalpine vegetation (Backer & 

Bakhuizen van den Brinck 1965). 

As the eastern part of Java has a longer and more severe dry period, its climax vegetation is 

drier than that of Western Java. The east is therefore mainly characterized by monsoon forest 

with taxa such as Mimosaceae and Poaceae being dominant (Sémah 1993, Bouteaux 2005, 

Yamada 2016). Some savannah with isolated Acacia trees is present in the far eastern Baluran 

area (Whitten 1996, Sémah & Sémah 2012). In the western part of the island, tropical moist 

deciduous forest can be found in the lowlands and some remnants of dipterocarp tropical 

lowland rainforest in the westernmost parts (Nooteboom 1992). 

Zoogeographically Java is in the oriental realm, extending across most of Southeast Asia and 

the Indian subcontinent; and more specifically in the Sundaic subregion. The Sundaic 
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subregion encompasses the partially submerged Sunda shelf and is geographically delimited 

by a number of physical barriers restricting animal dispersal. In the northwest it is delimited 

by the Isthmus of Kra on the Thai peninsula (Hughes 2003) and in the south and the west by 

the Indian Ocean (Simpson 1977). The eastern boundary of the Sundaic subregion has for 

long been a matter of controversy and many lines have been drawn in the region in an attempt 

to delineate this zoogeographic area. Most of these lines cannot be considered absolute 

boundaries, as the distribution of taxa varies substantially between groups of organisms. For 

the distribution of mammals however, the so called Wallace’s Line as modified by Huxley is 

the most relevant eastern boundary (Huxley 1868, Simpson 1977, Voris 2000, Harrisson 

2006) (Fig. 2.4). The region East of Wallace’s line is known as Wallacea, a transitional area 

between the Oriental realm and Australasian realm (Dickerson et al. 1928, Simpson 1977, van 

den Bergh 2001). Lydekker’s line marks the eastern boundary between Wallacea and the 

Australasian realm (Simpson 1977, van den Bergh 2001). 

Even though Wallace (1869) hypothesized that the effects of ancient sea level changes must 

have had an influence on the extant faunal composition of the Malay archipelago, it is now 

recognized that the current distribution of Southeast Asian mammals is largely a function of 

the geological and climatic events that took place over the course of the Tertiary and 

Quaternary (Hughes 2003, Vallejo 2011). When during glacial periods the larger islands of 

Sundaland (Java, Sumatra and Borneo) were connected to mainland Southeast Asia, terrestrial 

species were allowed to migrate between these regions. When, on the other hand, the islands 

were cut off from the mainland during interglacial periods, isolation of animal populations led 

to periods of increased endemism (Voris 2000, Bird et al. 2005, Cranbrook 2010). 
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Figure 2.4: The Indomalayan region with main zoogeographic regions and boundaries (adapted from van den 

Bergh et al. 2001). In the west the Sundaic subregion is found, that forms the focus of this dissertation. Further 

to the east, and demarcated by Wallace’s Line, the transitional region Wallacea is found. East of Wallacea, 

demarcated by Lydekker’s line, the Austromalayan subregion is found.  

As a result the fauna of Sundaland is much more similar to that of continental Southeast Asia 

than to the fauna of Wallacea with its impoverished mammal diversity and its high degree of 

endemism as a result of prolonged isolation (Bouteaux 2005). Java, as part of the Sundaic 

zoogeographical subregion, thus has the characteristics of a continental fauna, similar to that 

of Borneo, Sumatra, Southern Thailand and the Malay Peninsula. Its animal diversity is rich, 

both in number of species and in genera, although not to the same extent as Borneo and 

Sumatra (Corbett & Hill 1992, de Jong 1992). The relatively lower diversity in Java is the 

result of a number of factors. A first reason is that high biodiversity in Southeast Asia is 

usually concentrated in tropical rainforests, a type of vegetation only present in small 
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proportions in Java. A second reason is that the island of Java is relatively small and has long 

been the subject of intense volcanic activity. This must have increased the chances of local 

extinction for certain taxa (de Jong 1992). A third explanation is that the island has a long 

history of human disturbance of its ecosystems. It is likely that Java had a higher biodiversity 

during prehistoric times (Durand 1994, Whitten 1996).  

Of the Greater Sunda Islands, Sumatra is most similar to Java in terms of mammalian 

composition. The two islands have approximately 43% of their mammal species in common, 

suggesting there was a connection between these landmasses for much of their geological past 

(de Jong 1992). Typical faunal elements associated with the Sundaic subregion are 

rhinoceroses (Rhinocerotidae), deer (Cervidae), tiger (Panthera tigris), pangolins (Manidae), 

treeshrews (Scandentia) and apes (Hominoidea) (de Jong 1992). These taxa are also present 

on Java, in addition to a number of endemics such as the Javan lutung (Semnopithecus 

auratus) or the Javan ferret badger (Melogale orientalis) (Whitten 1996). The majority of 

Java’s mammal biodiversity is, however, composed of different species of rodents (Rodentia) 

and bats (Chiroptera) (Corbet & Hill 1992). 

2.3 Quaternary palaeontology of Java and Sundaland 

Our present understanding of the fossil record of the Sundaic subregion is limited, which is in 

part due to its unevenly distributed nature. Some parts such as Peninsular Malaysia (e.g. 

Tshen 2013, Ibrahim et al. 2012) or Sumatra (e.g. de vos 1983) are only known from a 

handful localities, while others such as Java are rich in fossil deposits and have a long history 

of palaeontological research (e.g. Dubois 1907, 1908, von Koenigswald 1933, 1934, 1935). 

Nevertheless, even for the Javan record many gaps remain to be filled (van den Bergh et al. 

2001). Although it is likely that new discoveries and further research on existing collections 
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will resolve some of these problems (Louys 2007), I will for now restrict myself to Java to 

outline the evolution of the faunal record and biostratigraphy of the region. 

Some controversy surrounds the appearance of the first mammals in Java. Van den Bergh and 

colleagues (2001) put it during the Early Pleistocene, about 1.5 to 2 million years ago, but 

some more recent research in West Java found bovid remains that are tentatively placed in the 

Late-Miocene to Early-Pliocene, at approximately 5 million years ago (Meijaard 2003a, 

Weinand 2005). Although this early date is not universally accepted (Meijaard 2003a), it is 

worth mentioning that von Koenigswald (in van Bemmelen 1970) also considered the first 

mammals in the region to be of Pliocene age. This was based on similarities between the 

material from Ci Julang (West-Java) and the fauna of the Tatrot beds which are part of the 

upper Siwaliks on the Indian subcontinent (von Koenigswald 1934, de Vos 1984, Bouteaux 

2003). This would place the Ci Julang fauna between 2.5 and 3.4 Ma, taking more recent 

reevaluations of the Siwalik biostratigraphy into account (Barry et al. 1982). Pliocene 

alternating marine strata at Ci Julang may indicate an age of perhaps 2.7 million years 

(Shutler & Branches 1985). The stratigraphy and age of the fossils from this site remains, 

however, unresolved (Hooijer 1964, Meijaard 2003a). The earliest appearance of mammals on 

the nearby island of Sumatra is also unknown, but was much earlier, as some rare traces of 

terrestrial vertebrates (albeit birds) from the Oligocene suggest (Zonneveld et al. 2012). 

As for the Pleistocene of Java, von Koenigswald (1934) was the first to propose a 

biostratigraphic scheme. Based on a several sites and by comparison with the faunas from 

continental Asia, von Koenigswald recognized six biostratigraphic units in Java, ranging from 

the Middle-Pliocene to the Holocene. An overview of the sequences defined by von 

Koenigswald (1934) is given in Figure 2.5. This classic scheme was however based on 

composite faunal assemblages and contained inconsistencies (de Vos & Sondaar 1982, de Vos 
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1985, de Vos 1996, van den Bergh et al. 2001). Consequently, a revised scheme was 

developed by de Vos and Sondaar (de Vos & Sondaar 1982, de Vos et al. 1982, 1994, de Vos 

1985, Sondaar 1984) which is now generally accepted and also followed here (Fig. 2.6). 

As opposed to von Koenigswald’s (1934) original scheme, this biostratigraphy (de Vos & 

Sondaar 1982, de Vos 1985) was based only on fauna from single localities and fossils from 

sites with clear stratigraphic sequences (van den Bergh et al. 2001). The Ci Julang fauna, 

presented by von Koenigswald (1934) as the earliest stage in Java is not recognized as a 

discernable biostratigraphic unit in the new scheme. The oldest faunal stages proposed by de 

Vos and Sondaar are based on von Koenigswald’s (1934) Kali Glagah biostratigraphic unit. 

De Vos and Sondaar, however, consider Kali Glagah as heterogenous and discern two 

different faunal stages in this unit: the Satir fauna and the Ci Saat fauna (de Vos & Sondaar 

1982, de Vos et al. 1982, 1994, de Vos 1985, Sondaar 1984). 

Faunal stages Age 

Sampung fauna: Holocene 

Ngandong fauna: Late Pleistocene 

Trinil fauna: Middle Pleistocene 

Djetis fauna: Early Pleistocene 

Kalih Glagah fauna: Late Pliocene* 

Ci Julang fauna: Middle Pliocene 

 

Figure 2.5: Biostratigraphic scheme by von Koenigswald (1934) from young to old. *: In the new definition by 

the International Union for Geological Sciences, the lower boundry of the Pleistocene epoch is lowered from 

1.806 Ma to 2.58 Ma (Gibbard & Head 2009).  The Kalih Glagah fauna should in the context of this definition 

most likely be considered Early Pleistocene. 
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The Satir faunal stage ranges between 2 and 1.5 million years and is usually considered an 

unbalanced island fauna (Sondaar 1984, de Vos et al. 1994, van den Bergh et al. 2001). 

Characteristic elements that are part of this fauna are an elephantoid (Sinomastodon 

bumiajuensis), a hippopotamus (Hexaprotodon simplex), cervids and giant tortoises 

(Geochelone sp.), mostly good swimmers with the ability of cross-sea dispersal (Meijaard 

2003a). Nevertheless, little evidence is available for this period and certain researchers 

(Heaney 1985, Meijaard 2003a) have pointed out that the faunal composition of Satir may be 

subject to taphonomic or collection bias.  

The seemingly isolated island conditions seem to continue in the Ci Saat fauna, that covers 

the time range between approximately 1.2 and 1 million years ago (de Vos & Sondaar 1982, 

de Vos et al. 1994, van den Bergh et al. 2001). Typical elements of this fauna are new forms 

of elephantoids (Stegodon trigonocaphalus) and hippopotamids (Hexaprotodon sivalensis), 

cervids (Axis lydekkeri, Muntiacus sp.), bovids and possibly a large cat (Panthera sp.) (de Vos 

et al. 1994, van den Bergh et al. 2001). The giant tortoises prelevant during the Satir faunal 

stage, disappear in this period (de Vos et al. 1994). 

 

Figure 2.6: Biostratigraphic scheme by de Vos and Sondaar (de Vos & Sondaar 1982, de Vos et al. 1982, 1994, 

de Vos 1985, Sondaar 1984) and comparison with biostratigraphic scheme by von Koenigswald (1934). 

An important implication of the new scheme by de Vos and Sondaar (de Vos & Sondaar 

1982, de Vos et al. 1982, 1994, de Vos 1985, Sondaar 1984) is that a different place is given 
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to the assemblages of Trinil and Kedung Brubus in the chronology of Java. Instead of placing 

all material from Trinil together in one biostratigraphic unit, as von Koenigswald (1934) did, 

they only consider the main fossiliferous layer, also called the “Trinil Haupt-Knochen 

Schicht” or “Trinil H.K.”, as contemporaneous (de Vos & Sondaar 1982, de Vos 1985). An 

important result of this different approach is that the biostratigraphic unit based on Trinil H.K. 

has a different place in the Javan biostratigraphy than the Trinil stage that von Koenigswald 

(1934) defined. While in the scheme of von Koenigswald (1934) the fauna of Trinil and 

Kedung Brubus were thought to be similar in composition, in the scheme of de Vos and 

Sondaar (de Vos & Sondaar 1982, de Vos 1985) the fauna of Kedung Brubus is substantially 

richer than that of Trinil H.K. De Vos and Sondaar (1982) explain this by considering Trinil 

H.K. as a fauna that is still more isolated from the mainland like the older Ci Saat fauna, 

whereas Kedung Brubus is characterized by a new mammal fauna that was able to migrate 

from the Asian mainland. As such the Trinil H.K. fauna is considered older in this scheme 

than the Kedung Brubus fauna. The Djetis fauna proposed by von Koenigswald (1935) is 

thought to be part of the Kedung Brubus fauna, as its faunal composition is remarkably 

similar to that of Kedung Brubus (de Vos & Sondaar 1982, de Vos et al. 1982, 1994). 

Although an older age for the Trinil H.K. fauna is suggested by Larick et al. (2001), in the 

model of de Vos and Sondaar, the age of Trinil H.K. is thought to be around 0.9 Ma (van den 

Bergh et al. 2001). 

The age and presumed isolated nature of the Trinil H.K. fauna is not universally accepted. 

The hypothesis that Java was still more isolated during the Trinil H.K. stage is partially based 

on the presence of certain endemic species such as the proboscid Stegodon trigonocephalus 

and the bovid Duboisia santeng (de Vos & Sondaar 1982, de Vos et al. 1982, 1994). Meijaard 

(2003a) does not accept this and points out that Duboisia santeng was also described by 

Hooijer (1962) from deposits in Malaysia. For Heaney (1985) the large numbers of ungulates 
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and carnivores in the Trinil H.K. fauna are atypical for island ecosystems. Other problematic 

species in the Trinil H.K. fauna are orangutan (Pongo sp.) and gibbon (Symphalangus 

syndactylus?), both poor swimmers that are unlikely to have reached Java over sea (Meijaard 

2003a). While the Malaysian collection with Duboisia cannot be restudied as it is 

unfortunately lost (Tshen 2013), it has by now been convincingly argued by Smith and 

colleagues (2009) that the supposed orangutan teeth from Trinil are in fact remains of Homo 

erectus. A recently reanalyzed femur nevertheless, most likely belonged to a gibbon 

(Hylobatidae) (Ingicco et al. 2014). Although the presence of certain elements in support of a 

more intensive exchange with the mainland should be aknowledged, I still follow de Vos and 

Sondaar (de Vos & Sondaar 1982, de Vos et al. 1982, 1994, de Vos 1985, Sondaar 1984) in 

this dissertation. When considering the assemblages of Kedung Brubus and Trinil H.K. as a 

whole, the former is still characterized by a richer and more continental character and 

therefore in support of de Vos and Sondaar’s older age for Trinil.  

Besides the taxa already mentioned, the Trinil H.K. fauna includes a relatively diverse range 

of mammal species including a number of carnivores (e.g. Panthera tigris, Prionailurus 

bengalensis), several bovids (e.g. Bibos palaeosondaicus, Bubalus palaeokerabau), cervids 

(e.g. Axis lydekkeri), suids (Sus brachignathus), primates (Presbitis sp., Macaca fascicularis) 

and a rhinoceros (Rhinoceros sondaicus) (van den Bergh et al. 2001). In addition, a number of 

mollusks, birds, reptiles and fish are known from this faunal unit (Storm 2012). 

The Kedung Brubus fauna, as said, is characterized by more intensive mammal exchange with 

mainland Southeast Asia and may have coincided with a glacial phase (Musser 1982). In 

addition to the typical species already present during the Trinil H.K. phase, a number of new 

arrivals appear in the fossil record such as the bovid Epileptobos groeneveldtii, the one-

horned rhinoceros (Rhinoceros unicornis), a hyena (Hyena brevirostris) and the Malayan tapir 
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(Tapirus indicus). The age of the Kedung Brubus fauna is estimated between 0.7 and 0.8 Ma 

(van den Bergh et al. 2001). 

A large gap between the Kedung Brubus fauna and the Ngandong fauna exists in the fossil 

record of Java, of which little is known. According to Batchelor (1979) this period saw the 

extinction of many of the savannah-adapted species due to geographical isolation and the 

development of closed forest habitats. Despite the disappearance of a number of species, the 

fauna of Ngandong is considered similar to that of Kedung Brubus. This faunal stage is not 

well known, but includes several bovids (Bibos palaeosondaicus, Bubalus palaeokerabau), 

suids (Sus macrognathus, Sus brachignathus), cervids (Cervus (Rusa) sp.) and a primate 

(Macaca fascicularis) (van den Bergh et al. 2001). Based on biostratigraphic arguments, the 

age of the Ngandong fauna was originally estimated at approximately 135 Ka by van den 

Bergh et al. (2001). More recent radiometric dating of the Homo erectus bone bed has 

indicated an age between 108 and 117 Ka (Rizal et al. 2020). 

Another new faunal unit proposed by de Vos and Sondaar (de Vos & Sondaar 1982, de Vos et 

al. 1982, 1994, de Vos 1985, Sondaar 1984) is the Punung fauna. This biostratigraphic unit is 

characterized by major changes in the fossil record. Many of the species present in the 

Kedung Brubus fauna have disappeared in the Punung fauna, but on the other hand a number 

of new species have arrived as well (van den Bergh et al. 2001). Typical for this period is a 

tropical rainforest fauna with large numbers of primates, including the earliest uncontested 

orangutan (Pongo sp.) specimens on Java (van den Bergh et al. 2001). Other new forms 

include Sumatran serow (Capricornis sumatraensis), Asian elephant (Elephas maximus), 

bearded pig (Sus barbatus) and banded pig (Sus scrofa vittatus) (van den Bergh et al. 2001). 

Most of these new immigrants probably arrived before 70 Ka, at a time when sea levels were 

40 to 65 meters lower than today, but after the glacial maximum at 135 Ka (van den Bergh et 

al. 2001). Van den Bergh and colleagues place it between 125 and 60 Ka, with a possible age 
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of 80 Ka (van den Bergh et al. 2001). Westeway et al. (2007) give a somewhat older age of 

128 to 118 Ka, based on absolute dates obtained from luminescence and uranium series.   

The youngest stage in the biostratigraphic scheme is the Wajak fauna. Although it is 

considered to be of Holocene age in this classic scheme (de Vos & Sondaar 1982, de Vos et 

al. 1982, 1994, de Vos 1985, Sondaar 1984), more recent radiometric dates suggest a 

minimum age of at least 37.4 to 28.5 thousand years old (Storm et al. 2013). The faunal 

record is impoverished compared to the Punung fauna. A number of forest-adapted species, 

such as orangutan (Pongo sp.) and tapir (Tapirus indicus) disappeared from the record as they 

were apparently unable to cope with the dryer conditions prevalent during this period. Most of 

these lost species were not replaced by new ones (van den Bergh et al. 2001). 
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3. Homo erectus: significance, dispersal and palaeoecology 

3.1 Introduction 

Homo erectus was a large brained, relatively small toothed hominin (Anton & Swisher 2004) 

that ranged in age from 1.8 or 1.9 million years ago in East Africa (Larsen et al. 1998, Anton 

2003, Anton et al. 2016) to 250-400,000 years ago (Larsen et al. 1998, Anton et al. 2016), or 

even 100,000 years ago or less in Indonesia (Swisher et al. 1996). It was the first hominin to 

venture out of Africa into other areas of the Old World (Anton & Swisher 2004). Its fossils 

are found in South Africa, East Africa, North Africa, in the Middle East and in South, 

Southeast and East Asia. Possibly it was present in Europe (Dunsworth &Walker 2002, Anton 

2003). This chapter first gives an overview of the known fossil record for this species and its 

taxonomic position, followed by an account of the characteristics that made it unique. After 

providing a review of palaeoecological reconstructions of Homo erectus sites, the possible 

causes and underlying processes that were at the basis of its dispersal are discussed. 

3.2 Fossil record 

Although the late 19th century had already seen the discovery of the Neanderthal (Homo 

neanderthalensis) in Europe, the fossil femur, skullcap and molar that Dubois found at Trinil 

in the 1890’s were the first remains of a more archaic human ever to be discovered (Rightmire 

1990). While some (Shipman & Storm 2002) consider this event the beginning of 

palaeoanthropology as a scientific discipline, what is certain, is that Dubois’ discoveries were 

significant in that they represented the first finds and type-specimens of Homo erectus 

(Leakey & Slikkeveer 1993). Despite initial skepticism about the taxonomic position of the 

Trinil fossils, other, similar finds would soon be discovered in Africa and Asia (Fig. 3.1) that 

would ultimately lead to the recognition Dubois’ findings and the acceptance of Homo erectus 

as a species (Dunsworth & Walker 2002). 
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Figure 3.1: Map with possible- (black dots) and probable/definite (grey dots) localities with Homo erectus 

fossils. With the exception of Ceprano and Atapuerca, other possible localities in Europe have been excluded 

due to the unclear taxonomic status of early Homo on this continent (see e.g. Mounier 2009). 1. Swartkrans, 2. 

Sel’Ungur, 3. Nwe Gwe Hill, 4.Ternifine, 5. Kocabas, 6. Dmanisi, 7. Ishango, 8. Nyabusoni, 9. Zhoukoudian, 10. 

Trinil, 11. Sangiran, 12. Kedung Brubus, 13. Mojokerto, 14. Ngandong, 15. Ngawi, 16. Hathnora, 17. 

Sambungmakan, 18. Patiayam, 19. Cisanga, 20. Buia, 21. Lantian, 22. Tangshan, 23. Nihewan Basin, 24. 

Hexian, 25. Longgupo, 26. Jianshi, 27. Lang Trang, 28. Tham Khuyen, 29. Sanhe, 30. Mohui, 31. Liucheng, 32. 

Ndutu, 33. Koobi Fora, 34. Nariokotome, 35. Drimolen, 36. Olduvai, 37. Middle-Awash, 38. Sale, 39. Sidi 

Abderrahman, 40. Thomas Quarries, 41. Melka Kunture, 42. Omo, 43. Baringo, 44. Gladysvale, 45. Ceprano, 

46. Atapuerca, 47. Olorgesailie, 48. Ubeidiya (see body of text for references). 

In the 1920’s, such new finds were made at Zhoukoudian, close to Beijing (Black 1927, 

Rightmire 1990). These cave deposits were rich in hominin remains that were classified as 

early humans and placed under the nomen Sinanthropus pekinensis (Black 1927). The age of 

these fossils remains controversial until today, but is likely early Middle Pleistocene (Zhou et 



26 
 

al. 2000), perhaps between 400 and 600 Ka (Zhu & Zhou 1994, Shen et al. 1996, Zhou et al. 

2000, Dennell 2009). Due to the remarkable similarity between Sinanthropus and Dubois’ 

Pithecanthropus, the finds would later be synonymized into Homo erectus (Weidenreich 

1943, 1951, Santa Luca 1980).  

Shortly after the Chinese discoveries, new finds were made in Java at Ngandong (Oppenoorth 

1932, Barstra 1987), a site dated around 135 ka (van den Bergh et al. 2001). Although the 

taxonomic position of the Ngandong hominins is still controversial (Dubsworth & Walker 

2002), this form is usually considered a late representative of Homo erectus (Santa Luca 

1980). Meanwhile, a mandible from Kedung Brubus (0.7-0.8 Ma), previously found by 

Dubois but initially described as Homo sp. (Dubois 1891), was restudied and also placed 

under the hypodigm Homo erectus (Dubois 1924, McGregor 1925, Tobias 1966a). 

A possibly much older specimen of H. erectus was found in 1936 by von Koenigswald near 

Perning (von Koenigswald 1940, Dunsworth & Walker 2002). Some controversy surrounds 

this specimen due to its purported age (Rightmire 1990), as the radiometric dates of the 

(supposedly) surrounding sediments have indicated an age of approximately 1.8 Ma (Swisher 

et al. 1994).  As the original find location of the fossil is not known with certainty this age is 

not universally accepted (e.g. Morwood et al. 2003, Anton & Swisher 2004, Matsu’ura et al. 

2020). 

A more rich hominin site studied by von Koenigswald from the 1930’s, was Sangiran 

(Hooijer 1964). With more than 60 individuals (mostly crania and mandibles) it is the richest 

palaeoanthropological site in Java (Sartono 1971, Simanjuntak 2001). The age of the Sangiran 

hominins is controversial. Based on radiometric dates, Larick and colleagues (2001) consider 

most of the Homo erectus finds around 1.1 to 1.3 million years old, but its earliest appearance 

in the Pucangan formation is already around 1.6 Ma. This would be in line with the early 
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dates proposed by Swisher et al. (1994). Others (Sémah et al. 2002, Matsu’ura et al. 2020) 

have, nevertheless, suggested a later appearance of Homo erectus -around 1.3 Ma- in the 

Sangiran record and on Java. The youngest Homo erectus finds from this site are perhaps 

dated at 700 Ka or less (Sémah et al. 2002). 

The presence of more archaic, robust specimens (e.g. Sangiran 4, 6 and 31), found in the older 

layers and a more classic type of Homo erectus found in the younger layers (e.g. Sangiran 1 

and 17) has led to some debate about how many distinct species were present at the site 

(Rightmire 1990, Simanjuntak 2001). This led Weidenreich and von Koenigswald to consider 

the earlier type as a separate taxon named Meganthropus paleojavanicus (Schwartz & 

Tattersall 2003). Both groups are now, however, by most palaeoanthropologists considered to 

be different forms of Homo erectus (Simanjuntak 2001, Schwarz & Tattersall 2003). The 

Ngandong fossils are considered a third, even more progressed, form of Homo erectus in this 

model (Simanjuntak 2001). 

Even though the 1920’s saw the discovery of Australopithecus in South Africa (Dart 1925) 

and Homo rhodesiensis (Woodward 1921) or perhaps Homo heidelbergensis (Balzeau et al. 

2017) in Zambia, more archaic members of the genus Homo were not found in Africa during 

the first half of the 20th century. This changed after WWII when attention in 

palaeoanthropology shifted more towards this continent. In 1949 at Swartkrans, South Africa, 

new Early Pleistocene (Vogel 1985, Curnoe et al. 2001) fossils were found, that would be 

described as Telanthropus capensis (Broom & Robinson 1950). This species was later 

synonymized with Homo erectus (Mayr 1950, Dunsworth & Walker 2002). More recently 

some other, fragmentary remains of Homo sp. have been discovered in the Sterkfontein region 

(Gladysvale, Drimolen), but it is uncertain whether they can be classified as Homo erectus or 

another Pleistocene form (Moggi-Cecchi et al. 2010). 



28 
 

In the second half of the 20th century hominin finds were also being made in northern Africa. 

At Ternifine (Algeria) two 700.000 year old (Geraards et al. 1986)  mandibles were 

discovered (Arambourg 1955), while another jawbone was found at the Middle Pleistocene 

site of Sidi Abderrahman in Morocco (Arambourg & Biberson 1956). Some years later more 

cranial- and mandibular remains were found in Morocco at the Middle Pleistocene sites of 

Salé (Jaeger 1975, 1981) and Thomas Quarries (around 400 Ka) (Sausse 1975, Hublin 1985). 

These new finds were quickly recognized as similar to the African and Asian Homo erectus 

fossils (Arambourg 1955), but were initially placed under their own nomen: Atlanthropus 

mauritanicus. Eventually the species was also subsumed under Homo erectus (Mayr 1950, 

1963, Dunsworth & Walker 2002).  

Since the 1950’s East Africa has become prominent in palaeoanthropological research and 

many new fossils have come to light in this part of the continent. Of importance are a number 

of purported Homo erectus finds made at the Olduvai Gorge in northern Tanzania, including 

both cranial (e.g. OH9, OH12) and postcranial remains (Leakey 1959, 1966, 1971a, 1971b). 

At times these fossils were found in association with lithic artefacts, providing for the first 

time a clear link between Homo erectus and the Acheulian industry (Leakey 1971b, 

Dunsworth & Walker 2002). The Homo erectus remains recovered at Olduvai are thought to 

range in age between approximately 1.6 and 0.6 million years (Rightmire 1979). Ndutu, a site 

somewhat to the south of Olduvai, produced some remains of less clear taxonomic affinity. A 

skull fragment found there may belong to Homo erectus (Rightmire 1983). 

Further to the North, in the area of Lake Turkana in Kenya, some of the most prolific finds of 

Homo erectus have been made. Many of the initially discovered hominin fossils were 

fragmentary and were cautiously identified as Homo sp. (Leakey 1973) but more complete 

finds were made later (Leakey 1974, Leakey & Walker 1976, Spoor et al. 2005, Boyle & 

Desilva 2015), that have been assigned to Homo erectus (Rightmire 1990). Amongst the 
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specimens from East Turkana, more specifically from Koobi Fora, are the oldest known 

Homo erectus specimens. Some of the fossils (e.g. KNM-ER 3228 and KNM-ER 3733) date 

to 1.8- or even 1.9 Ma (Leakey & Walker 1976, Day 1971).  

The best preserved Homo erectus fossil from East Africa is nevertheless a specimen from the 

banks of the Nariokotome River (West Turkana). KNM-WT 15000 is a sub-complete skeleton 

of a young male, dubbed “Turkana boy” (Brown et al. 1985, Rightmire 1990). Although the 

fossil belongs to a sub-adult, its morphology is similar to that of the other Turkana specimens, 

confirming its classification as H. erectus (Rightmire 1990).  

More to the south, two well preserved mandibles (KNM-BK 67 and KNM-BK 8518), some 

postcranial remains and a number of Acheulean stone tools were recovered at Lake Baringo 

(Leakey et al. 1969, van Noten 1983). The mandibles are morphologically distinct from the 

other H. erectus remains from East Africa and their classification therefore remains uncertain 

(Rightmire 1990). Furthermore, a partial skull identified as Homo erectus (KNM-OL 45500), 

was found in association with Acheulean stone tools at Olorgesailie (approximately 0.9 Ma) 

(Potts et al. 2004).  

Close to the Turkana Basin, but on the the Ethiopian side of the lake, hominin remains were 

found at Omo. The age of these remains is unclear, but may be as young as 130 Ka (Day & 

Stringer 1982).  Although some of the fossils found there are now considered Homo sapiens, 

some of them (e.g, Omo II) show a morphological similarity to Homo erectus (Day & Stringer 

1982). Since the 1980’s other Ethiopian finds have been assigned to Homo erectus as well, 

including a mandible (Garba IV) excavated at Melka Kunture (Zilberman et al. 2004), dated 

between 0.7 and 1.7 Ma (Raynal et al. 2004) and several fossil remains found at Bouri (1 Ma) 

and Bodo (Middle Pleistocene) in the Middle Awash valley (Asfaw 1983, Asfaw et al. 2002).  
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In addition to the finds from Kenya, Tanzania and Ethiopia, some scattered fossils are known 

from neighboring East African countries. The identification of these fossils remains uncertain. 

At Buia (Eritrea) a cranium and some pelvic fragments were found (Martinez-Navarro et al. 

2004). The skull, dated between 0.6 and 1.4 Ma, was provisionally described as erectus-like 

(Martinez-Navarro et al. 2004). A recently restudied molar (ISH25) from Ishango, in the most 

western part of the Democratic Republic of Congo may belong to an early species within the 

genus Homo (Crevecoeur et al. 2014) and a fossil from Nyabusosi in Western Uganda was 

identified as Homo cf. erectus (Senut et al. 1987). 

The important discoveries in Africa did not mean research in Asia came to a stop during the 

second half of the 20th century. At Sambungmacan, on Java, Homo erectus specimens were 

discovered in the 1970’s, of which mainly cranium SM1 is of importance as it is the only 

specimen that clearly came from a stratified context (Delson et al. 2000, 2001). These remains 

were morphologically similar to the Ngandong specimens (Delson et al. 2001) and together 

with a number of fossils found at Ngawi in the 1980’s (Sartono 1991, Kaifu et al. 2015), they 

may represent the youngest Homo erectus finds in Asia (Swisher et al. 1996). Their exact age, 

nevertheless, remains controversial (see e.g. Swisher et al. 1996, Indriati et al. 2011). 

Furthermore, some more isolated dental remains have been found at Patiayam (Zaim 1998) 

and possibly at Cisanga (Kramer et al. 2005). 

The last decades of the 20th century saw a number of new discoveries in China as well. North 

of Zhoukoudian, at Xujiayao in the Nihewan Basin, a number of archaic human remains have 

been found (Wu & Poirier 1995, Ao et al. 2017). The classification of the fossils is uncertain, 

but they probably represent Homo erectus. With an approximate age of 260 to 370 Ka they 

are younger than the Zhoukoudian fossils (Ao et al. 2017). Further to the south, but still 

within the palaearctic realm, a few other finds have been assigned to Homo erectus. At 

Lantian, Homo erectus was identified at two localities: Chengjiawo and Gongwangling. At 
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the open air site of Gongwangling some poorly preserved cranial fragments can probably be 

assigned to Homo erectus (Wu & Poirier 1995). Their age is unclear, but has in the past been 

determined as either 750 to 800 Ka (An et al. 1990), 1.15 Ma (An & Ho 1989), or more 

recently, based on new palaeomagnetic dates, around 1.63 Ma (Zhu et al. 2015). This could 

make the fossils from this site, the oldest known Asian hominins above the Qinling mountain 

range and would place them in the age range of other early Asian finds such as those from 

Sangiran (Matsu’ura et al. 2020) and Dmanisi (Gabunia et al. 2002b, Ferring et al. 2011). An 

isolated mandible of H. erectus that was discovered at Chengjiawo (Zhu & Zhou 1994) was 

dated to 650 Ka (Liu 1985a). In addition, there are also a number of archaeological 

assemblages, such as those from Majuangou III (Zhu et al. 2004), Shangshazui (Ao et al. 

2010), Donggutuo (Pei et al. 2009) and Xiaochangliang (Peterson et al. 2003) (all from the 

Nihewan Basin) and Shangchen (Lantian) (Zhu et al. 2018), which can be considered 

chronologically compatible with a Homo erectus assignment. The latter archaeological sites 

can be placed in the Early Pleistocene (see section 3.5.2.2) and for Shangchen even an age of 

2.1 Ma has been proposed (Zhu et al. 2018). 

Hexian, another more southern site, has provided better preserved cranial remains (Wu & 

Poirier 1995). The remains recovered there in the 1980’s probably represent the youngest 

occurrence of Homo erectus in China and are dated between 150 and 190 Ka (Chen et al. 

1987). Although the identification of these specimens as Homo erectus is generally accepted, 

the relationship between the fossils from Hexian and the other Asian finds is not well 

understood (Wu & Dong 1982, Dong 1989, Wu & Poirier 1995). A fragmented partial 

cranium found at the Middle Pleistocene site of Tangshan represents another find within the 

palaearctic region of China. This specimen showed some morphological differences from the 

Zhoukoudian fossils, but was nevertheless classified as Homo erectus (Liu et al. 2005). 
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As has been described, a number of sites have produced evidence for the presence of Homo 

erectus in China north of the Qinling Mountain range. Below this geographical barrier, the 

presence of this species is less certain on the mainland. This region was during the Early and 

Middle Pleistocene associated with the typical “Stegodon-Ailuropoda fauna” (Kahlke 1961). 

In the past Homo erectus has been reported at a number of Stegodon-Ailuropoda sites, but 

such classifications have more recently been questioned (Ciochon 2010). At Mohui Cave, in 

the Guangxi province, a substantial number of Early Pleistocene faunal remains were 

recovered, amongst which there were a number of teeth of giant ape (Gigantopithecus) as well 

as two teeth of a smaller hominoid (Wang et al. 2005). The teeth were initially placed under 

the nomen Homo erectus, but were later re-classified as “Hominoid indet.” as the size of the 

molars exceeds that of the known Homo erectus teeth (Wang et al. 2007, Ciochon 2010). 

Moreover, the fossils show a morphological similarity to the Miocene ape Lufengpithecus, 

leading some (e.g. Ciochon 2009, 2010) to suspect the presence of an unidentified 

chimpanzee-sized ape in the Pleistocene of mainland Southeast Asia. As a result, doubt has 

been cast on most Homo erectus identifications in this region and the species may not have 

been present in any of the Stegodon-Ailuropoda assemblages. 

This may for example be the case for Jianshi Cave in the Hubei province, where dental 

remains similar to the Mohui teeth were discovered (Gao 1975). Although these were initially 

identified as “australopithecid” (Gao 1975) and later as Homo erectus (Zhang 1984), the 

classification of these teeth remains unclear and they may belong an undescribed ape 

(Ciochon 2010). At Longupo Cave, in the Sichuan province, a mandible was discovered and 

dated between 1.8 and 2 Ma (Huang et al. 1991, 1995, Huang & Zheng 1999). It has been 

variously identified as an early representative of the genus Homo (Huang et al. 119, Ciochon 

2010) or a relative of the orangutan (Pongo) (Schwartz & Tattersall 1996). Furthermore, at 

Sanhe Cave in the Guangxi province, some medium sized hominid teeth were excavated as 
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part of a Stegodon-Ailuropoda assemblage (Jin et al. 2009). The finds were in this case 

identified as “cf. Homininae” or “cf. Ponginae” (Ciochon 2010). 

In Vietnam, the same problem presents itself. Here hominoid teeth are also found at times in 

the Stegodon-Ailuropoda fauna. At Lang Trang cave in the Ba Thuoc province, fieldwork was 

explicitely started with the purpose of documenting Gigantopithecus blackii and Homo 

erectus (Ciochon et al. 1990, Ciochon 2010). Although no Gigantopithecus fossils were 

found amongst the large numbers of excavated fauna, a few teeth were attributed to Homo sp. 

(Ciochon et al. 1990, Long et al. 1996). It is, however, likely that the human teeth are of a 

younger age than the Stegodon-Ailuropoda fauna found in this cave, suggesting the absence 

of Homo during the Early and Middle Pleistocene at this site (Ciochon 2010). Another cave in 

Vietnam that was often cited as containing Homo erectus together with Gigantopithecus, was 

Tham Khuyen in the Lang Son province (Ciochon 2010). This site contained large samples of 

animal remains, including supposedly contemporary dental remains of Homo erectus and 

Gigantopithecus (Kha & Long 1976, Ciochon et al. 1996). Later reanalysis of the teeth 

revealed that they more likely belong to orangutan (Pongo sp.) or a new ape taxon, named 

Langsonia liquidens (Schwartz et al.1995). 

South- and Central Asia largely remain terra incognita as far as Homo erectus remains are 

concerned. Certain finds have been claimed to belong to Homo erectus, but most are 

controversial. In central Myanmar there is report of a 200,000 year old Homo erectus maxilla 

from Nwe-Gwe Hill in the Chindwin Basin (Ba Maw 1995). This identification is 

nevertheless unconfirmed and its association with Neolithic tools make an Early or Middle 

Pleistocene age unlikely. A somewhat more convincing find is known from Hathnora in India. 

A cranium, found alongside two clavicles and a rib fragment, are possibly the only known 

“pre-sapiens” specimens from the Indian subcontinent (Sonakia 1984, 1985, Sankhyan et al. 

2012). The skull is probably of Middle Pleistocene age and has been variously identified as 
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Homo erectus (de Lumley & Sonakia 1985) and early Homo sapiens (Kennedy et al. 1991). 

Another claim comes from a cave site in the Alai mountain range in Kyrgystan. During the 

1980’s a Soviet team excavated an assemblage of animal bones there that included some 

human remains (Islamov et al. 1988). The site was dated around 126 Ka (Markova 1992) and 

according to the excavators, contained a juvenile humerus and some teeth of Homo erectus 

(Islamov et al. 1988). Others (Glantz et al. 2004) have argued that the humerus can only be 

identified as Homo sp. while the teeth probably belong to cave bear (Ursus spelaeus). 

In Western Asia more is known about the species. In Turkey a skull fragment, identified as 

Homo erectus was found at Kocabas (Kappelman et al. 2008). This specimen, discovered in a 

travertine mine, is most likely of an Early to Middle Pleistocene age (Vialet et al. 2012) and 

perhaps older than 1.1 Ma (Lebatard et al. 2014). Some remains found at Ubeidiya (Israel) 

fall within the age range of Homo erectus, but do not allow taxonomic classification beyond 

the generic level (Homo sp.) (Tobias 1966b). The fossils, found alongside large amounts of 

lithic artefacts and animal bones (Tchernov 1988, Belmaker et al. 2002) are thought to be 1.4 

million years old (Tchernov 1988). 

Perhaps more important, are a large number of cranial and postcranial fossils that have been 

found at Dmanisi in Georgia. These well preserved specimens belonged to a hominin with 

clear morphological affinities to African and Asian Homo erectus (Lordkipanidze et al. 2013). 

The layers where the fossils were found are estimated to be approximately 1.7 million years 

old (Gabunia et al. 2000b) and most likely represent the oldest known Homo erectus finds 

outside of Africa (Lordkipanidze et al. 2013, Dunsworth & Walker 2002). Characteristic for 

the Dmanisi remains are their relatively small brains combined with postcranial body 

proportions closer to modern humans (Lordkipanidze et al. 2013).  
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Europe has a long tradition of palaeoanthropological research and a substantial number of 

Pleistocene hominins have been found there. Some of these finds are contemporary with the 

Homo erectus finds from Asia and Africa. In part influenced by the assumption that the 

occupation of Europe was a relatively late phenomenon (see Roebroeks 2001) and because a 

large number of the European fossils are too idiosyncratic to be included in Homo erectus, 

most archaic Homo specimens from this continent are classified as separate taxa (Eldredge & 

Tattersall 1982, Smith 2002). Forms that were presumably contemporary with Homo erectus, 

were Homo heidelbergensis (Soetenack 1908, Rightmire 1990, Mounier 2009) and Homo 

antecessor (Bermudez de Castro et al. 1997, Smith 2002). Although most researchers 

(Rightmire 2001, Stringer 2010) aknowledge the existence of a separate lineage in Europe, 

some rare specimens may nevertheless conform morphologically to the Asian or African 

Homo erectus finds, to the extent that they can be included in this species (Dunsworth & 

Walker 2002). This may be the case for a calvarium from Ceprano in Italy (Ascenzi et al. 

1996, Rightmire 1998), that is according to more recent estimates ca. 350.000 years old 

(Normade et al. 2011). Other early fossils with a potential taxonomic affinity with Homo 

erectus, are those from Sierra de Atapuerca in northern Spain (Carbonell et al. 1995).  Here, 

in several caves, hominin remains were found and identified as Homo heidelbergensis and/or 

Homo antecessor (Carbonell et al. 1995, 2008). Mainly some of the older specimens from 

Gran Dolina (Carbonell et al. 1995, Bruner et al. 2017) and Sima Del Elephante (Carbonell et 

al. 2008), (respectively dated at 0.8 and 1.2 Ma), are identified as Homo antecessor and may 

represent an intermediate form between Homo erectus and Homo heidelbergensis, evolved 

from African Homo erectus stock (Carretero et al. 1999, Bruner et al. 2017). Their taxonomic 

status nevertheless remains controversial and the specimens may in fact also be close to the 

North African Homo mauritanicus, now considered Homo erectus (see Mounier 2009, 

Stringer 2010) or a younger member of the genus Homo (Baab 2014). 
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3.3 Taxonomy, anatomy and evolution 

The taxonomic position of Homo erectus should be considered within the wider systematic 

framework of the Genus Homo (Dunsworth & Walker 2002). The definition of our genus has 

changed considerably over the years as a result of new palaeontological finds and for now 

remains unclear (Collard & Wood 2015). By most accounts the Homo lineage emerged 

somewhere between 2 and 3 Ma in Africa from a still unknown ancestral species (Collard & 

Wood 2015, Kimbel & Vilmoare 2016). It is generally agreed that Homo habilis, probably the 

ancestor of all other members of Homo, evolved from a species of Australopithecus during 

this period (Dunsworth 2010). Found in eastern Africa from around 2.8 Ma (Villomoare et al. 

2015), Homo habilis is thought to have given rise to Homo erectus somewhere around 1.8 or 

1.9 Ma (Dunsworth & Walker 2002, Dunsworth 2010). There is nevertheless evidence of 

chronological and geographical overlap of the two species, as well as with a third member of 

the genus, Homo rudolfensis and the robust australopithecines (Dunsworth 2010). In addition, 

it is thought that Homo erectus itself may in turn have been ancestral to several other 

Pleistocene species such as Homo heidelbergensis (Mounier 2009), Homo sapiens (Smith 

2002) and Homo floresiensis (Morwood et al. 2004). 

Given its derived morphology Homo erectus is relatively easily differentiated from 

Australopithecus (Dunsworth 2010). The morphological differences from other members of 

the genus are more subtle and have led in the early 20th century to a high number of names 

(e.g. Sinanthropus, Atlanthropus, Telanthropus,…) being proposed for the different Homo 

fossils (Smith 2002). Many of these new taxa were raised without much consideration for 

taxonomic protocol (Smith 2002) and eventually resulted in the 1950’s in a new paradigm that 

synonymized many of these forms into a simpler taxonomic scheme (Mayr 1950, 1960). 
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Consequently, most Early and Middle Pleistocene Homo species were lumped under Homo 

erectus, Homo sapiens and Homo habilis (Anton & Swisher 2004). In the last few decades 

growing dissatisfaction with this simplified model has led to the resurrection of some of the 

old taxa, as well as to the proposition of some new species (Eldredge & Tattersall 1982, Smith 

2002). An important exponent of this new evolution was the idea that the often more gracile 

African Homo erectus specimens merit their own binomen (Homo ergaster), separate from 

the Asian fossils (Homo erectus sensu stricto) (Groves & Mazak 1975). According to some 

researchers (e.g. Wood 1994) it was the African Homo ergaster that led to Homo sapiens, 

while the Asian Homo erectus sensu stricto was separated from the direct lineage to modern 

humans (Dunsworth & Walker 2002). The validity of Homo ergaster is nevertheless 

questioned  and others (e.g. Rightmire 1990, 2001, Baab 2008) have maintained a model 

where the African form is merely a regional variant of Homo erectus (sensu lato).  

The addition of Homo rudolfensis, another closely related form, further complicates the 

family tree (Dunsworth & Walker 2002). The validity of this species, only known from a 

cranium from Koobi Fora and a mandible from Malawi is also the subject of intense debate 

(Dunsworth 2010). According to some (Wood & Collard 1999) it should be considered a 

sister taxon of Homo erectus and/or Homo habilis. Others (e.g. Baab 2008) think it should be 

subsumed into Homo habilis. 

A third discovery with important implications for the taxonomic classification of Homo 

erectus is that of the Dmanisi hominins (Lordkipanidze et al. 2013). The Georgian specimens 

are especially important in that they show high intra-group morphological variation. As 

comparative morphometric analysis has demonstrated that this variation is not unlike that 

found in extant Homo and Pan, it suggests that some other Homo fossils, traditionally 

considered as separate species, fall within the morphological variation of Homo erectus 

(Lordkipanidze et al. 2013). This interpretation is on the other hand not universally accepted 
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(see e.g. Collard & Wood 2015) and it is likely that the debate will continue for the time to 

come. For this dissertation it will be sufficient to mention that I follow the conservative 

approach of Rightmire (1990) and consider the Asian (Homo erectus s.s.), African (Homo 

ergaster) and Georgian fossils as one species: Homo erectus (sensu lato).  

Similar to Europe and Africa, Asia also saw the establishment of a number of new Pleistocene 

hominin taxa (e.g. Meganthropus, Sinanthropus, Pithecanthropus,…) during the 20th century. 

Most of these forms have later been subsumed into Homo erectus (Dunsworth & Walker 

2002). Until recently few researchers still split the Asian lineage (except e.g. Sartono et al. 

1995, Tyler 2001), but some tantalizing new finds of the last few years have rekindled the 

debate. One important discovery in this light, is that of Homo floresiensis on Flores, a small 

island hominin of Middle to Late Pleistocene age (Morwood et al. 2004, Sutikna et al. 2016) 

and possibly derived from an early dispersal of Homo erectus (Brown et al. 2004, Morwood 

et al. 2004). Furthermore, several other Pleistocene hominins of uncertain taxonomic affinity 

are known from Asia. These include the enigmatic red deer cave people from Southern China 

(Curnoe et al. 2012) and the Siberian Denisovans (Krause et al. 2010, Reich et al. 2010). 

More indirect evidence for the presence of Middle Pleistocene hominins comes from recent 

discoveries like Kalinga in the Philippines (Ingicco et al. 2018) and Talepu in Sulawesi (van 

den Bergh et al. 2016). The suggestion by these discoveries that the Asian 

palaeoanthropological record may have been more diverse, has already driven some 

researchers to question the taxonomic status of some of the Javan Homo erectus fossils 

(Zanolli et al. 2019). Further research will, however, have to confirm whether this is in fact 

the case, but for now I will take the more traditional stance that Homo erectus is the only pre-

modern hominin present in the Pleistocene of Java. 

Morphologically, Homo erectus is characterized by a number of novelties compared to its 

predecessors. Foremost, with 700 to 1300 cc (Dunsworth 2010) its endocranial volume was 
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substantially larger than that of Homo habilis (around 500 cc) (Miller 1990). The Dmanisi 

crania are an exception in that their capacities are unusually small for this species (600 to 775 

cc), although still larger than those of Homo habilis (Rightmire 2006, Curran 2009). 

Furthermore, there is a trend of increasing encephalization from the older to the younger 

specimens (Klein 1999). The youngest fossils have cranial capacities that approach those of 

modern humans (Klein 1999). The underlying factors that drove encephalization in Homo 

erectus are still a matter of debate (Shultz et al. 2012, Lesciotto & Rightmire 2019), but it is 

thought that the increase in brain size allowed for the execution of more complex cognitive 

tasks (Shultz et al. 2012). 

The cranium of Homo erectus typically has a thick browridge that sometimes forms a bony 

shelf called the supraorbital torus and the frontal bone recedes after the browridge towards the 

back of the skull (Dunsworth 2010). The overall shape of the cranium is low and elongated, 

has a strong torus on the occipital bone and often a sagittal keel running from the frontal bone 

to the top of the skull (Dunsworth 2010). The cranial bones of Homo erectus are also thicker 

than those found in Australopithecus or Homo sapiens (Kennedy 1991, Dunsworth 2010). Its 

teeth are relatively small compared to those of earlier forms (Anton 2003). 

The postcranial anatomy of Homo erectus is less well known due to the lack of fossils from 

this part of the skeleton. Most of what we know comes from the Nariokotome skeleton 

(Dunsworth & Walker 2010). Unlike that of Homo habilis (Collard & Wood 2015), the 

skeleton of Homo erectus is similar to that of modern humans and consistent with habitual, 

long range bipedalism (Collard & Wood 2015). Notable differences are that the cortical bone 

is thicker and that the skeleton is somewhat more robust than in Homo sapiens. The shafts of 

tibia and femur tend to be more flattened in the anterio-posterior plane relative to those of 

modern humans (Collard & Wood 2015). Adult Homo erectus probably stood about 160 cm 

and may have weighed 50 kg (Dunsworth 2010).  
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3.4 Archaeology and behaviour 

While some earlier evidence for tool making has recently come to light (Harmand et al. 

2015), it is traditionally assumed that the earliest stone tools were made in Africa by members 

of the genus Homo (Harris 1983a). This early technology, known as the Oldowan industry, is 

usually associated with Homo habilis and dates back to about 2.6 Ma in Ethiopia (Semaw et 

al. 1997).  

Homo erectus probably continued using the fairly simple Oldowan technology but some 

researchers notice a development towards more complexity between 1.8 and 1.5 Ma (Cachel 

& Harris 1998, Anton & Swisher 2004). It is thought that by 1.5 Ma, Homo erectus started 

developing a more advanced technology, called the Acheulean industry (Haviland et al. 

2013). As opposed to the less complex pebble technology associated with the Oldowan, the 

Acheulean industry typically includes more advanced teardrop-shaped handaxes (Haviland et 

al. 2013). This form probably represents the emergence of systematization, predetermination 

and the idea of symmetry in the archaeological record (Carbonell et al. 1999, Barsky 2009). 

It was initially thought that the Oldowan was a uniquely African phenomenon and that the 

Acheulean industry was the first to spread along with Homo erectus across larger parts of the 

old world. More recently this view has been contested (Barsky 2009). A number of Eurasian 

sites such as Orce in Spain (Gibert et al. 1998), Dmanisi in Georgia (Lordkipanidze et al. 

2013) and Ubeidiya in Israel (Shea 1999) have also produced Oldowan artefacts. Further to 

the east, Oldowan-like tools are found in Southern Asia (e.g. at Riwat, Pakistan) (Allchin 

1981) and increasingly in Chinese sites, like Xiaochangliang and Lanpo (Hong et al. 2013).  

The Acheulean probably originated in Africa and from there spread to Eurasia (Haviland et al. 

2013). Artefacts are known from sites such as Saint Acheul (Mortillet 1872) in France and 

several sites in Asia such as Gilan in Iran (Biglari 2011) and Hungsi and Baichal in India 
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(Paddayya 2007). From associations between fossils and lithic artefacts at sites such as Koobi 

Fora (Braun et al. 2008) and Swartkrans (Hall et al. 2006) it is clear that Homo erectus was 

making Acheulean tools. At other sites where traces of this technology have been found, the 

association with a specific taxon is less clear and other species such as Homo heidelbergensis  

and Homo sapiens may have also produced stone tools of this type (Corbey et al. 2016). 

In Southeast Asia Early Palaeolithic stone implements are rare (Haviland et al. 2013). Before 

the 1980’s there was a consensus that east of the so called Movius line, the Acheulean was 

absent and that hominins east of this line only made use of more crude flakes and cores and 

that this was indicative of the less progressive character of their societies (Movius 1944, 

1948). This demarcation line, based on Movius’ research in Burma (Movius 1944, 1948), 

extends from the Bay of Bengal, west of the Ganges-Brahmaputra delta, north over the 

Himalayas and west through Central Asia (Swartz 1980, Brumm & Moore 2012). There are, 

however, a number of conceptual problems with this model that have led researchers to 

question the validity of Movius line (Dennell 2009, 2014, 2016, Brumm & Moore 2012).  

First of all, there is no reason to assume that the presence of bifaces is an indicator of progress 

(Dennell 2014). It is more likely that their presence or absence is an adaptation to local or 

regional environmental conditions (Dennell 2016). Moreover, the chronostratigraphic 

framework and the archaeological evidence on which Movius (1944, 1948) based his 

research, were flawed (Dennell 2014, 2016). Besides the fact that some of the collected 

“artefacts” were probably geofacts, there is little evidence that they are contemporaneous with 

the Middle Pleistocene Acheulean sites of the Middle East or Africa (Dennell 2014). Probably 

most hominin sites in Southeast Asia are in fact of Late Pleistocene age. So if a clear 

difference existed between East and West Asia during the Middle Pleistocene, it was more 

likely one between a more densely occupied West versus a more sparsely occupied East 

(Dennell 2014, 2016). Some (Brumm & Moore 2012) have argued that this could also be the 
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result of differences in collection strategy and interpretation and that some bifaces are indeed 

known from sites in the region such as Ile in the Philippines (Dizon & Pawlik 2010) and Kota 

Tampan and Kuatan in Malaysia (Collings 1937, 1938). In any case, the original idea by 

Movius (1944, 1948) of East and Southeast Asia as a backwater in hominin evolution, is 

questionable. 

In Indonesia, stone tool assemblages are generally rare and never found in direct association 

with pre-modern hominin fossils (Anton & Swisher 2004). The exception, are two 

assemblages found at Mata Menge and Liang Bua (Flores), linked with Homo floresiensis 

(Brumm et al. 2006, 2010). On Java fairly simple flakes and flaked cores have been 

discovered at Sangiran (Simanjuntak 2001) and at Sambungmacan (Jacob et al. 1978). These 

artefacts are thought to represent a multipurpose, least-effort stone technology that required 

little advance planning and is probably related to the Oldowan industry (Shea 2006, Brumm & 

Moore 2012). Besides these stratified finds, a number of Acheulean-like bifaces are reported 

from surface contexts (Brumm & Moore 2012). At certain localities, such as the Baksoka 

river bed near Pacitan and at some unspecified sites along the Baksoka River, even relatively 

high densities have been recovered in the past (von Koenigswald 1936, van Heekeren 1955). 

Absolute dates for these finds are non-existent (Simanjuntak 2004) and the classification of 

these artefacts as Acheulean is uncertain (Brumm & Moor 2012). A possible explanation for 

the scarcity of lithic artefacts in early Indonesian sites may be a preference for other materials 

for the construction of tools. The recent discovery of some shells from Trinil, with signs of 

modification by retouch, is in support of this theory (Joordens et al. 2014).  

Besides lithic artefacts, some Homo erectus fossils have been associated with animal remains 

that show traces of butchery. While the emergence of more persistent carnivory in hominins is 

thought to have occurred around 2.6 Ma, alongside the appearance of flaked lithic technology, 

more substantial zooarchaeological evidence presents itself from around 2 Ma (Ferraro et al. 
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2013). Modified animal remains have been found at a number of Homo erectus-sites such as 

Olduvai (Yravedra et al. 2016), Koobi Fora (Pobiner et al. 2008), Swartkrans (Pickering et al. 

2004), Zhoukoudian (Boaz et al. 2004) and Sangiran (Choi & Driwantoro 2007). While the 

discussion whether early hominins were mainly hunters or scavengers is ongoing (e.g. Stiner 

1994, Pante 2013, Pobiner 2015, Dominguez-Rodrigo & Pickering 2017), most 

zooarchaeological studies have indicated that Homo erectus had primary access to carcass 

foods (Pickering et al. 2004, Pobiner et al. 2008, Pante 2013). This is unsurprising as the 

species distinguishes itself from earlier hominins by its large body size and brain (Wood 

1992), anatomical structures with a high metabolic cost that require an increased nutritional 

intake (Aiello & Wheeler 1995, Pante 2013).  

Another novelty that may have appeared for the first time in the archaeological record with 

Homo erectus, is the controlled use of fire. Some evidence from Swartkrans and Koobi Fora 

could be indicative of controlled fire use from as early as 1.5 or 1.6 Ma (Brain & Sillen 1988, 

Bellomo 1994). Although these sites fall into the age range of Homo erectus, the notion that 

such traces come from intentional hearths is not uncontested (Attwell et al. 2015). Evidence is 

more compelling for the Middle Pleistocene and sites such as Zhoukoudian (Rolland 2004) 

and Gesher Benot Ya’aqov in Israel (Goren-Inbar et al. 2000) indicate controlled fire was 

probably well in use by hominins by then (Attwell et al. 2015). 

In general, archaeological and anthropological data indicate that Homo erectus was a social 

species. Pathological specimens from Koobi Fora (KNM-ER 1808 with extensive periostitis) 

(Leakey 1974) and Dmanisi (D3444 and D3900 are edentulous) (Lordkipanidze et al. 2005) 

may be indicative of altruistic behaviour, as these individuals could only have survived their 

conditions with the assistance of their conspecifics (Dunsworth & Walker 2002). Some 

researchers have suggested that due to Homo erectus’ bipedal locomotion and increased 

cranial size, there was a necessity for birth assistance and possibly longer-term assistance 
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throughout childhood rearing (Rosenberg & Trevathan 1996, Anton 2003). Such life history 

changes would have involved increased cooperation and perhaps a more important role for 

postmenopausal females in the upbringing of children (O’Connell et al. 1999, Aiello & Key 

2002). Although there is no consensus about the appearance of language in hominins (Luke-

Killam 2001), some believe that Homo erectus had language-like abilities (Wynn 1998). 

3.5 Dispersal and palaeoecology 

3.5.1 Introduction 

There is a significant body of literature available that deals with palaeoenvironmental 

reconstructions of Homo erectus sites. The proxies used for such reconstructions are diverse 

and range from geomorphology, over palaeobotany, palynology and isotope geochemistry to 

several subfields of palaeozoology. I follow Bishop and colleagues (2006) and consider the 

use of multiple proxies in contrast with each other as the most useful way for reconstructing 

the ecology of an extinct taxon. Section 3.5.2 provides a status quaestionis of 

palaeoenvironmental reconstructions currently available for the principal Homo erectus sites. 

For the purpose of this study I have limited myself to sites where Homo erectus (sensu lato) 

fossils have been positively identified. Sites with merely archaeological remains or with 

fossils of dubious taxonomic affinity were generally avoided. Section 3.5.3 provides a 

theoretical framework about Homo erectus dispersal and explains how palaeoecology can 

contribute to our understanding of early Homo behaviour in the Pleistocene. This thesis 

ultimately deals with hominin behaviour and the theories about human dispersal that are 

discussed in this section will provide a foundation for the hypotheses that are tested in this 

dissertation. 
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3.5.2  Palaeoenvironmental reconstructions of Homo erectus sites 

3.5.2.1 Africa 

Palaeoecological data for the Middle Pleistocene sites in North Africa is limited. Moreover 

the incomplete contextual information available for most of the hominin sites in this region 

(Raynal et al. 2002) hampers new palaeoenvironmental reconstructions. Nevertheless, the 

palaeoecological signature of “Rhinoceros cave”, a site close to- and contemporary with- 

Thomas Quarries has provided some insight (Geraards 1980, 1993, 1994).  Rich collections of 

fossil mammals, including large numbers of gerbillids, alcelaphines and gazelles, suggest an 

open, dry environment for the Middle Pleistocene levels (Geraards 1980, 1993, 1994). A 

similar fauna was observed at Ternifine (Geraards et al. 1986), but in the latter case 

Hippopotamus suggested the presence of open water, probably subject to regular drainage 

given the absence of fish or crocodile. The palaeoenvironment was described as an open, arid 

landscape surrounding a seasonal lake or swamp (Geraards et al. 1986). At Sidi Abderrahman 

gerbillids were also predominant (Raynal et al. 2002). An analysis of carbon and oxygen 

isotopic signatures from mammal teeth from Ternifine confirmed the pattern described from 

the palaeozoological analyses. None of the mammal remains had very low δ13C values, 

typical for forest dwelling species, suggesting an open environment (Bocherens et al. 1996). 

A lot of what is known about Homo erectus palaeoecology comes from the East African 

palaeoanthropological sites. Olduvai in northern Tanzania has seen extensive fieldwork and 

many projects have included palaeoenvironmental reconstructions (e.g. Shipman & Harris 

1988, Sikes 1994, Bonnefille 1984). The Upper Beds (II) of Olduvai Gorge, relevant to Homo 

erectus have, however, been comparatively neglected. Nevertheless, some data is available. 

Several authors (Gentry & Gentry 1978, Shipman and Harris 1988) have pointed out that the 

species composition (mainly of bovids) indicate the presence of a diverse range of habitats, 
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but that the younger layers with Homo are typically rich in Antilopini and Alcelaphini, 

suggesting drier, more open habitats, perhaps equivalent to dry open bushland or tree 

savannah plains (Gentry & Gentry 1978, Shipman & Harris 1988). Shipman and Harris 

(1988) noted that there may have been a gradual trend towards aridification from the oldest, 

Pliocene layers (containing Australopithecus) to the younger Pleistocene strata (containing 

Homo). Based on these findings it was concluded that members of the genus Homo were able 

to cope with a wider range of habitat types and, unlike the robust australopithecines, were able 

to use drier, more open habitats (Shipman and Harris 1988). Although ecomorphological 

studies on bovid postcranial elements have mainly focused on the older Bed I strata, several 

analyses (Kappelman 1984, 1997, Plummer & Bishop 1994) have also indicated a gradual 

aridification of the landscape towards the end of Bed I.  

Furthermore, this trend towards increasingly arid habitats in the Upper Beds of Olduvai (II, III 

and IV) seems to be corroborated by geological data. In Bed II evidence has been described 

for the occurrence of flash flooding and mudflows, indicative of a (semi-) arid climate with 

regular downpours (Hays 1976). There were also indications for shorter climatological 

episodes within Bed II when conditions became even drier. In the upper parts of Bed II there 

was probably little standing water left (Hays 1976, Bishop 1994) and the Olduvai palaeolake 

may have at times completely disappeared (Ashley et al. 2010a). Palynological analyses have 

confirmed this picture. The Bed II sediments are generally characterized by an arid species 

spectrum and are interpreted as steppe-like grassland or wooded grassland (Bonnefille 1984, 

Ashley et al. 2010b). In addition there were indications for a very dry episode at the transition 

between Bed I and II (Bonnefille 1984). 

Some have nevertheless questioned this model of an increasingly arid environment. 

Kovarovic and colleagues (2013) have argued that the ecological differences extrapolated 

from species composition and from sedimentological analyses may have been overstated. 
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Based on a quantitative palaeoecological analysis of the mammal remains they acknowledge 

the existence of a climatic shift resulting in the disappearance of the Olduvai palaeolake, but 

warn for oversimplification and that taphonomic factors may play role in the faunal 

composition (Kovarovic et al. 2013). The results of a reanalysis of old finds in combination 

with new fieldwork have recently also indicated that a more wooded environment may have 

been present in the area than originally thought (Dominguez-Rodrigo et al. 2010).  

The area around Lake Turkana has also provided valuable insights into the palaeoecology of 

Homo erectus. Especially Koobi Fora (East Turkana), the oldest Homo erectus site, is 

important as it may provide a baseline for the type of habitat in which this species originally 

evolved (Curran 2009). As in this area of East Africa large numbers of vertebrate fossils have 

been discovered and especially bovids have played a prominent role in palaeoenvironmental 

reconstructions here (Harris 1991, Bobe et al. 2007, Bobe 2011). Faunal analysis has 

indicated a relatively high degree of heterogeneity at different areas of the Turkana basin 

(Bobe et al. 2007, Patterson et al. 2017a, 2017b). At Omo, conditions were relatively wet and 

wooded for much of the Plio-Pleistocene (Bobe et al. 2007). West Turkana, on the other hand, 

had large proportions of Alcelaphini, Antilopini and Hippotragini in the taxonomic spectrum, 

tribes indicative of open and seasonally arid grasslands. The conditions at East Turkana were 

probably intermediate between those found at Omo and West Turkana (Bobe et al. 2007) and 

may have supported lake margin- and riverine environments (Behrensmeyer et al. 2016). 

Ecomorphological studies on bovid fossils seem to confirm this diversified picture, but 

general conditions were suggested to have been more wooded than at Olduvai (Kappelman et 

al. 1997, Plummer et al. 2015). An analysis of micromammal assemblages suggested on the 

other hand relatively dry conditions, but with the presence of riverine forest (Denys 1999). 

Similar to the fauna at Olduvai, the fauna at Turkana also seems to be indicative of a gradual 

aridification of the landscape during the Plio-Pleistocene. Around 2 Ma new, open adapted, 
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bovid species appear in the fossil record, as well as the less arboreal primate Theropithecus 

oswaldi (Bobe 2011). The browsing proboscid Deinotherium disappears on the other hand 

(Harris 1983b, Bobe 2011). These changes have usually been correlated with the expansion of 

grassland during this period (Bobe 2011). A recent quantitative analysis of the mammalian 

fauna (Fortelius et al. 2016) indicated a possible decrease in precipitation from 1000 to less 

than 500 mm/year in the last six million years, but relatively stable temperatures around 24℃. 

According to the authors this could reflect a balance between a globally cooling climate and 

local heating due to decreasing forest cover and the increased prevalence of grassland 

(Fortelius et al. 2016). It was also suggested that the Turkana Basin, during certain episodes, 

may have acted as a refugium due to the presence of the Omo River, but that for most of the 

Plio-Pleistocene it was probably even more arid than the surrounding area. This situation 

would make Turkana an ideal location for new hominin species to arise that were 

(pre)adapted to local (arid) conditions and were eventually to spread over larger areas 

(Fortelius et al. 2016). 

Geomorphological and geological studies have shown that the depositional environment at 

Koobi Fora was characterized by a succession of floodplain systems interspersed with 

lacustrine phases during which the basin was largely flooded (Feibel 1993, Patterson et al. 

2017b). Between 2 and 1.8 Ma a lacustrine environment was present, succeeded by a 

regression of the lake and replacement with fluvial depositions from riverine environments 

from 1.8 to 1.7 Ma (Feibel 1993, 2011).  In the proximity of the Omo River, gallery forests 

would be supported, while further away the landscape would be dominated by dry scrubland 

(Feibel 1993, 2011). Stable carbon isotopes from pedogenic carbonates have suggested a 

landscape during this period with vegetation ranging from wooded scrubland to grassland 

(Quinn et al. 2013, Patterson et al. 2017b). An analysis of carbon isotopes in stromatolites 
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from East Turkana has indicated a climatic evolution from fairly wet, cool conditions before 

1.9 Ma, to drier, warmer conditions around 1.4 Ma (Abell et al. 1982). 

Palynological analyses have also evidenced the fluviatile and lacustrine character 

reconstructed from geological data (Bonnefille 1976). Pollen spectra for the period between 

2.5 and 2 Ma have revealed a fairly open landscape with a mosaic character and patches of 

grassland. Near the river, more wooded vegetation must have been present. A trend towards 

more open landscapes was observed. By 2 Ma, the region was apparently covered by a 

savannah with few trees, reflecting drier conditions than before (Bonnefille 1976). This trend 

seems to continue and by 1.88 Ma, the pollen record points towards a cooler, drier landscape 

with bushland, gallery woodland and grasslands (Vincens 1982). 

Palaeoenvironmental proxies at Olorgesaillie provide some insight into the palaeoecology of 

Homo erectus at a later stage of the Pleistocene in East Africa (aprox. 0.9 Ma) (Potts et al. 

2004). Geological studies have demonstrated that diatomite depositing lakes and wetlands 

were apparently predominant throughout the Olorgesaillie formation (Behrensmeyer et al. 

2002, Owen et al. 2008). This palaeolake environment was associated with alternating 

freshwater and slightly saline wetland phases (Behrensmeyer et al. 2002, Kübler et al. 2015). 

In Ethiopia additional data is available from a number of sites. At Melka Kunture the 

mammalian palaeoecological signature, especially based on the bovid spectrum, is interpreted 

as dry and open with the dominance of antilopines and alcelaphines and the lack of reduncines 

and tragelaphines (Geraards et al. 2004). Moreover, as most identified mammals are 

specifically or sub-specifically distinct from contemporary forms found in Kenya and 

Tanzania, Geraards and colleagues (2004) interpreted this as the result of a geographical 

isolation of this part of Ethiopia from the rest of East Africa during the Pleistocene. The 

results of an isotopic analysis of mammalian teeth indicated mammals were mainly relying on 
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a diet of C4 plants, similar to that found in modern grazers of open environments (Bocherens 

et al. 1996). A study of the micromammals revealed almost exclusively the presence of the 

molerat Tachyoryctes in Early Pleistocene layers, a genus typical of savannah-like 

environments or high altitude steppes (Sabatier 1982). In the Middle and Late Pleistocene 

layers this predominance was also noted, but enriched with other taxa, such as 

Stenocephalemys and Oenomys, associated with extant habitats in Ethiopia at high altitudes 

and forest-steppe ecotones (Sabatier 1982). The presence of Anatidae (ducks or geese) 

suggest the presence of a swamp or open water reservoir (Pichon 1979). Palynological 

research has demonstrated that grasses were an important component of the Melka Kunture 

ecosystem throughout the Quaternary, indicating an overall open environment, perhaps best 

classified as open woodland or highland shrub (Bonnefille 1972). Especially in the Early 

Pleistocene, open environments were predominant. In the Middle and Late Pleistocene some 

forest cover must have been present (Bonnefille 1972). 

Additional data is available from the Middle Awash valley. Palaeontological studies at Bodo 

have indicated the presence of terrestrial taxa requiring grasslands (e.g. Onotragus, Equus) as 

well as aquatic forms (e.g. Crocodilus and Hippopotamus) indicative of a water reservoir 

(Kalb et al. 1980). Amongst the vertebrate fossils from Bouri, alcelaphines were the dominant 

bovids, suggestive of open grassland. A few Kobus specimens and the presence of 

Hippopotamus pointed to the existence of water-margin habitats in the vicinity (Asfaw et al. 

2002). Pollen remains are not well preserved in this part of Ethiopia, but preliminary phytolith 

analyses on samples from the western Middle Awash have indicated that Pleistocene 

environments were probably dominated by grassland with scattered woody elements. C4-

grasses appear to have been an important component (Barboni et al. 1999). Carbon and 

oxygen isotopes from palaeosols and mammalian teeth have indicated that samples associated 

with Australopithecus around 2.5 Ma corresponded with dry wooded grassland, but that 
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younger samples (around 1 Ma) associated with Homo reflected drier, more open conditions 

(Ambrose et al. 2016). A trend towards increasingly dry landscapes, as was observed in 

Kenyan and Tanzanian sites, may therefore also have occurred in this part of Ethiopia. 

In South Africa several sites have yielded fossils identified as Homo sp., but only the remains 

from Swartkrans have been positively attributed to Homo erectus (Rightmire 1990). As such, 

my review of this region will be limited to data from Swartkrans. Palaeozoological research 

has demonstrated that over the course of the last 2 million years, alcelaphines were the 

dominant bovid tribe at this cave site. This would imply that regional landscapes were 

characterized by open environments and grasslands (Vrba 1975).  Possibly the younger strata 

at Swartkrans were more arid than the older ones (Vrbra 1975). This picture was further 

corroborated by analyses of the micromammals, pointing to open grassland, with woodland 

on the riverside (Avery 1995). A study of the primates has on the contrary suggested the 

presence of closed woodland as the main vegetation in the area (Benefit & McCrossin 1990). 

The predominance of open environments and an evolution towards increased aridification in 

this area is nevertheless supported by isotopic studies on fossil tooth enamel. A trend towards 

more open environments was observed from 3 Ma, with a marked change to open grassland 

around 1.7 Ma (Lee-Thorp et al. 2007). Well preserved pollen samples are absent from 

Swartkrans and most other sites in the area, but some preliminary data may suggest that the 

transition between the older strata, containing Australopithecus, and the younger strata with 

Homo, could have occurred in an open savannah environment (Scott & Bonnefille 1986). 

3.5.2.2   East and West Asia 

The palaeoecology of Dmanisi, the primary site of interest in Western Asia, is relatively well 

studied. The vertebrate fauna contains representatives of a range of habitats, but forest-steppe 

taxa, such as Ochotona and Struthio, are an important component of the assemblage (Gabunia 
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et al. 2000a). A high diversity of cervids is thought to reflect the vertical zonality of the 

nearby forested mountains and species like Dama cf. nesti are assumed to have had a 

preference for more open habitat (Gabunia et al. 2000a). Indicators for the presence of 

forested zones in the area may be found in fossils of artiodactyls such as Soergilia, 

Eucladoceros and Dmanisibos (Gabunia et al. 2000a). Overall the spectrum is suggestive of a 

mixed mosaic environment with open landscapes, gallery forest along the river valleys and 

forested mountains (Gabunia et al. 2000a). The herpetofauna from the site point to a warm, 

dry climate and an arid steppe-like vegetation (Blain et al. 2014). Steppe-like conditions are 

also evident in the micromammal fauna (e.g. Gerbillus sp.) and in preliminary data on the 

malacofauna (Gabunia et al. 2000a). 

The results of a palaeobotanical and palynological analyses confirm the reconstructions based 

on the palaeozoological record of Dmanisi. The macrobotanical remains indicate a temperate 

climate and an open vegetation dominated by grasses (Messager et al. 2010). The pollen 

spectrum suggests the presence of some (possibly riparian) forest in the region. The 

environment at Dmanisi is suggested to have been similar to the environments that Homo 

erectus occupied in East Africa during the Early Pleistocene (Messager et al. 2010). Possibly 

the palynological record also suggests increasingly arid conditions at the time of deposition 

(Gabunia et al. 2001). This is in line with palaeobotanical evidence from elsewhere in 

Georgia, indicating an aridification and reduction of forest cover from the end of the Pliocene 

(Shatilova & Ramishvili 1990, Gabunia et al. 2000a). 

Much less has been published about the palaeoecology of the Kocabas hominin from Turkey. 

The mammal remains are difficult to study as they are embedded in the thick travertine matrix 

from where the human skull fragment also came. Generally speaking, the palaeoenvironment 

is thought to be characterized by abundant freshwater and swamp vegetation, surrounded by 

dry limestone hills (Lebatard et al. 2014). 
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Of the Chinese Homo erectus sites Zhoukoudian (Locality 1) is probably the best studied. 

This Middle Pleistocene site, containing rich sequences of lithic artefacts, animal and human 

remains (Dennell 2009), provides most relevant palaeoenvironmental data about the region. 

The age of the large number of hominin remains discovered there is uncertain, but can 

probably be placed somewhere between 400 and 600 Ka (Zhu & Zhou 1994, Shen et al. 1996, 

Zhou et al. 2000, Dennell 2009). The mammalian record is quite rich and primarily dominated 

by cervids, rhinoceros and a large number of carnivore remains (Pei 1934, Aigner 1981, 

Dennell 2009). Depending on the layer, the fauna is either indicative of a more open (e.g. 

layers 8-9 and 10), or more closed (e.g. layer 4) forest-steppe environment (Li & Ji 1981, Zhu 

& Zhou 1994). Evidence from carbon and oxygen isotope analyses of cervid tooth enamel has 

pointed to a mixed combination of C3/C4 plants in the older layers (Gaboardi et al. 2005). 

The amount of C4 vegetation is thought to have decreased from the beginning of the Middle 

Pleistocene up until 470 Ka, perhaps related to a strengthening of the winter monsoon over 

that time period (Gaboardi et al. 2005). A number of bird remains have been reported from 

Zhoukoudian and the record is dominated by species of dry environment, including steppe 

forms such as Struthio and Aquila heliaca (Wu & Poirier 1995, Hou & Zhou 1999). A study 

of the micromammals from Zhoukoudian has pointed out an increase of dry-adapted rodents 

from the older to the younger layers. The region was at least in the early phases probably 

dominated by grasslands (Jin et al. 1999). 

Despite low pollen incidence in most samples, some attempts have been made at inferring 

palaeonvironmental data from palynological analyses at Zhoukoudian (see Della Croce 1995 

for an overview). An early attempt on a small sample has indicated low numbers of non-

arboreal pollen with a dominance of Pinus, Betula and Picea, suggesting a border zone 

between the temperate steppe and northern conifer forests (Kurten & Vasari 1960). Later 

palynological studies have demonstrated differences between individual stratigraphic layers. 
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The presence of a broadleaf-conifer mixed forest with grasslands in layer 10, suggested a 

temperate climate much like that of today (Liu 1985b), while in layers 8 and 9 the spectrum 

was characterized by an increase in taxa typical of broadleaf-forest. This was probably related 

to an increase in temperature (Liu 1985b, Zhu & Zhou 1994). The contents of Layer 4 were 

suggestive of a mixed broadleaf-conifer forest with shrub/steppe again (Zhu & Zhou 1994). 

The results of a study by Kong and colleagues (1985) indicated interglacial conditions in 

layers 9, 8, 6 and 4, and open, colder conditions in layers 11, 10 and 7.   

From the Xujiayao hominin site Middle and Late Pleistocene fluviatile and lacustrine 

sediments are availablewith animal remains indicating temperate and cold conditions (Chia et 

al. 1979, Wu & Trinkaus 2014). Geomorphological data has suggested somewhat cold 

environments for this site (Li et al. 2016), an observation confirmed by limited palynological 

evidence (Wu & Trinkaus 2014). In addition, palaeoecological data is available from a 

number of archaeological sites from the Nihewan Basin, including Donggutuo, 

Xiaochangliang and Majuangou. Pollen data is available from Donggutuo (Pei et al. 2009). 

Although no hominin fossils were found there, the archaeological record and chronology 

(around 1.1 or 1.2 Ma) (Wang et al. 2005, Pei et al. 2009) are compatible with the cultural 

and temporal range of Homo erectus. Human presence was attested in the earliest sequences 

of the site, corresponding with three environmental stages, based on the pollen spectrum. The 

earliest stage is indicative of warm and humid forest-steppe, changing in a second stage to 

drier, more temperate forest steppe. In a third stage, conditions became more warm and humid 

again (Pei et al. 2009). The mammal remains at this site were in a highly fragmented state, 

complicating identification, but the faunal spectrum is in line with a forest steppe 

interpretation, confirming the palynological analyses (Pei et al. 2009). A fossil record typical 

of the Nihewan beds is represented at Donggutuo, including rhinoceros, cervids, bovids, 

proboscids and a predominance of equids (Schick et al. 1991).  
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Evidence is also available from another archaeological site in the Nihewan basin: 

Xiaochangliang. This assemblage is dated between 1.6 to 0.9 Ma according to Peterson et al. 

(2003). Others have specified its age around 1.36 Ma (Zhu et al. 2001), or even 1.67-1.78 Ma 

(Tang et al. 1995). The highly fragmented vertebrate remains from this site include a range of 

forms such as Equus, Palaeoloxodon, Hipparion, Coelodonto, Cervus, Gazella and Struthio 

(Peterson et al. 2003, Dennell 2012). Assuming these remains are of the same age as the lithic 

artefacts, the conditions met by the hominins were probably those of a temperate, semi-arid 

steppe environment (Dennell 2012). In an isotopic study of equid enamel an important signal 

of C3 plants was found throughout the Pleistocene layers at this site (Wang et al. 1998).  

At Majuangou (III), also in the Nihewan Basin and estimated around 1.66 million years old 

(Zhu et al. 2004), malacological and palaeobotanical remains suggest the presence of a fairly 

warm climate and the presence of a marsh environment (Zhu et al. 2004, Dennell 2012). The 

vertebrate record includes a range of forms, such as cervids, equids, several carnivores, steppe 

mammoth (Mammuthus trogontherii) and Struthio, most of which are indicative of warm, 

steppe-like conditions (Zhu et al. 2004, Keates 2010).As far as Gongwangling is concerned, 

the human and animal remains were discovered at the bottom of a weakly developed 

palaeosol in a silt layer (Zhu & Zhou 1994), for which more recently a date of 1.63 Ma has 

been proposed (Zhu et al. 2015). The silt layer is associated with a cold and dry climate, while 

the bordering palaeosol, reflects warm and humid conditions (Zhu & Zhou 1994).  The Homo 

erectus remains mainly originate from the transitional phase between these warm and cold 

episodes (Zhu & Zhou 1994). The mammal remains are suggested to be similar to the 

Stegodon-Ailuropoda assemblages (Zhu & Zhou 1994), typical for the south of China (Kahlke 

1961). The mandible from Chengjiawo (also Lantian) was found amongst mammal fossils 

associated with steppe environments (Zhu & Zhou 1994). A palynological analysis specified 

that it probably concerned a forest-steppe (Wu et al. 1989, Zhu & Zhou 1994). 
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3.5.2.3   Southeast Asia 

The hominin fossils at Trinil were found in fluviatile deposits that were part of the ancestral 

Solo River system. The physiographic circumstances around the site are thought to have been 

similar to those found in the area today (Huffman 1997, 1999). Palaeoecological 

reconstructions of Trinil have been mainly based on the vertebrate fauna, but interpretations 

have at times been contradicting. In early work (Selenka et al. 1911) Trinil was reconstructed 

as a forested environment. Although some researchers (e.g. Pope 1995, Louys 2007) still 

follow this interpretation, more recent reconstructions have inferred an open woodland 

environment, mainly based on the large amounts of proboscids, bovids and cervids (de Vos et 

al. 1994, van den Bergh et al. 2001). Micromammals are rare in the Early and Middle 

Pleistocene record of Java. Nevertheless some murids found at Trinil are in agreement with an 

interpretation as open woodland (Van der Meulen & Musser 1999). A small sample of bird 

remains, including adjudant (Leptoptilos), stork (Ephippiorhynchus) and some ducks 

(Anseriformes), indicate a relatively open environment with a wet component (Meijaard 

2003a, Joordens et al. 2009, Meijer 2014). 

Certain re-analyses of the existing palaeozoological data have on the other hand led to 

different interpretations. Louys’ (2007) quantitative approach to study the community ecology 

of the Pleistocene mammals from Trinil suggested a closed environment. Another re-analysis 

based on the vertebrate and invertebrate spectrum concluded that the fauna consists of a 

combination of terrestrial and aquatic taxa and provides a more diversified reconstruction for 

the Trinil palaeoenvironment, consisting of lowland tropical rainforest, grasslands, 

floodplains, swamps and rivers (Joordens et al. 2009). Ecomorphological studies on bovid 

postcranial elements have suggested a more open environment, perhaps dominated by 

grassland, but with densely vegetated river valleys and upland forests (Weinand 2005, Arif & 

de Vos 2011). An analysis of strontium isotopes from mollusk remains has indicated the 
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presence of brackish water, possibly reflecting estuarine conditions (Joordens et al. 2009). 

Carbon and oxygen isotopes from ungulate enamel were suggestive of a diet relying primarily 

on C4 grasses in cervids and most bovids. The diet of the suid Sus brachygnathus fell into the 

C3 range, and indicated the presence of this type of vegetation as well (Janssen et al. 2016). 

No pollen records are known from Trinil. 

The palaeoenvironmental conditions at Kedung Brubus are not well known. The fauna from 

this site is thought to be associated with a peak in glacio-eustatic sea level changes, probably 

resulting in an extreme sea level drop (Sondaar 1994, van den Bergh et al. 2001).The fossils 

were probably deposited during a glacial maximum (Musser 1982, Meijaard 2003a). The 

fauna is reconstructed as dry, open woodland, mainly based on the predominance of bovids 

and the absence of primates (de Vos et al. 1994, van den bergh et al. 2001). An 

ecomorphological analysis of some bovid fossils from this site (Weinand 2005) confirmed 

this interpretation and suggested that at Kedung Brubus conditions may have been drier than 

at Trinil. The Kedung Brubus fauna may have seen a reduction of the upland forests and 

closely vegetated river valleys that were present in the Trinil (H.K.) phase (Weinand 2005). 

Louys’ (2007) reconstruction of the community ecology of the site, on the other hand, 

classified Kedung Brubus as a closed, forested environment. 

The palaeoenvironments of Sangiran have been comparatively well studied. At this site four 

formations are exposed, from old to young: the Kalibeng (or Puren) formation, the Pucangan 

(or Sangiran) formation, the Kabuh (or Bapang) formation and the Notopuro (or Pohjajar) 

formation (Indriati & Anton 2008).Together they cover a temporal range between 2.6 and 0.2 

Ma (Bouteaux 2005). The Kalibeng Formation is composed of marine deposits (Indriati & 

Anton 2008). Most terrestrial fossils are found in the Kabuh formation (Indriati & Anton 

2008), that is separated from the older and less rich Pucangan formation by a conglomerate 

layer called the Grenzbank (Bouteaux 2005). The oldest Homo erectus remains come from the 
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upper levels of the Pucangan Formation (Indriati & Anton 2008), the youngest from the upper 

Kabuh Formation (Bouteaux 2005). The exact age of the Kabuh and Pucangan formations and 

their (bio)stratigraphic correlation with other sites from Java is still a matter of debate 

(Indriati & Anton 2008, Matsu’ura et al. 2020), but it is thought that the lowest part of the 

Kabuh formation and the Grenzbank can be correlated with the Trinil (H.K.) fauna (0.8-0.9 

Ma) and the upper Kabuh formation with the Kedung Brubus fauna (0.7-0.8 Ma) (van den 

Bergh et al. 2001, Bouteaux 2005). The Pucangan formation can probably be correlated with 

the Early Pleistocene Satir and Ci Saat faunal units (Bouteaux 2005). As such the formations 

at Sangiran are associated with different depositional histories and probably varying 

environmental conditions that changed through time (Bettis et al. 2009). 

For the Pucangan formation, geological research has indicated that the upper levels were 

composed of black clay deposits, including siltstone and mudstones accumulated in brackish 

water, lacustrine environments and marshes (Watanabe & Kadar 1985, Bettis et al. 2009). A 

change from standing water to more fluvial environments marks the transition from the 

Pucangan to the Kabuh formation (Watanabe & Kadar 1985, Bettis et al. 2009). The latter 

consisted primarily of cross-bedded sandstones and pebbly sands (Indriati & Anton 2008). A 

similar picture was provided by palaeosol analysis, with pedotypes in line with a poorly 

drained landscape along lake or marsh margins in the Pucangan formation. Size and density of 

root traces also provided some evidence for the presence of shrubs with shallow rooted 

grasses and ferns (Bettis et al. 2009). Palaeosols in the Kabuh formation on the other hand, 

were better drained due to fluvial conditions and also showed root traces and bioturbation. 

Open woodland conditions were probably present during this phase (Bettis et al. 2009). 

The vertebrate fauna from the Pucangan formation is not well known, but was probably an 

endemic island fauna, with animals typical of marshy and lacustrine environments such as 

crocodile and hippo (Hexaprotodon) (Aimi & Aziz 1985, Bouteaux 2005). This would be in 
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line with the interpretation of the Pucangang formation as a Satir and/or Ci Saat fauna sensu 

de Vos and Sondaar (de Vos & Sondaar 1982, de Vos et al. 1982, 1994, de Vos 1985, Sondaar 

1984). Van den Bergh and colleagues (2001) suggested a mangrove-like environment for Satir 

and Ci Saat. More is known about the palaeozoological record of the Kabuh formation. In 

general the fauna in this formation appears to be indicative of an open woodland environment, 

drier than that found in the Pucangan formation and reminiscent of Trinil (H.K.) (Moigne et 

al. 2004b, Bouteaux 2005). Common elements are bovids, cervids and proboscids (Bouteaux 

2005). This similarity to the purported open environment found at Trinil was also confirmed 

by the micromammal record. The spectrum is mainly composed of grassland-adapted murids 

(Van der Meulen & Musser 1999). An isotopic study (Janssens et al. 2016) of fossil tooth 

enamel showed that bovids and cervids from Sangiran had a predominantly C4 grazing signal, 

suggesting a dry, open landscape. Suids had either low or high δ13C values, but consistently 

low carbon isotope values, implying the presence of some closed vegetation as well (Janssens 

et al. 2016). It should however be mentioned that in the latter study, it was unclear whether 

the samples came from the Kabuh or Pucangan formation (Janssens et al. 2016). 

Palynological records available for Sangiran allow for a more complete reconstruction of the 

environmental changes that took place in the Early and Middle Pleistocene. Samples taken 

from sediments of the Pucangan formation point to the existence of extensive mangroves and 

swampy tropical forests (Sémah et al. 2010, Sémah & Sémah 2012). Within this formation 

smaller scale changes coinciding with glacial cycles must have resulted in recurring 

contractions of closed forest to higher altitudes, but fragmentation was limited (Sémah et al. 

2010, Sémah & Sémah 2012). These circumstances changed in the Grenzbank levels and the 

Kabuh formation, which appear characterized by an open vegetational cover with seasonal 

forest rapidly evolving into a more grassland-dominated landscape (Sémah et al. 2010). 
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Forests did not disappear but underwent significant fragmentation, sometimes resulting in 

locally humid conditions (e.g. at riverbeds) (Sémah et al. 2010). 

Palaeoecological data for other hominin sites in Java is fragmentary and often difficult to 

assess due to the uncertainty about the provenience of many of the (hominin) fossils. One 

such controversial site is Mojokerto. Although efforts have been made to retrace the original 

find’s location (Huffman et al. 2005), the exact age and stratigraphic position are still debated 

(see Morwood et al. 2003, Anton & Swisher 2004, O’Connell & Desilva 2013, Ayala & Cela-

Conde 2017, Matsu’ura et al. 2020). Analysis of a pollen sample that came from the strata 

where the skull was supposedly discovered, suggested an environment characterized by 

mangroves and swamps, with forests at higher altitudes (Huffman & Zaim 2003). Some 

surface finds of vertebrate fossils from the proximity of the site were also typical of a 

lacustrine or swamp environment (Huffman & Zaim 2003). 

Although the provenience of the Ngandong hominins is not well known either (Huffman et al. 

2010), some vertebrate remains from this site have been briefly described in the literature. 

The lack of forest fauna is conspicuous at this site (Huffman et al. 2010) and the Ngandong 

palaeoenvironment has been provisionally reconstructed as open woodland, similar to that of 

Kedung Brubus (de Vos et al. 1994, van den Bergh et al. 2001). 

3.5.3 Dispersal and palaeoecological implications 

A unique aspect about Homo erectus is that it is generally believed to be the first hominin that 

expanded outside of Africa into Eurasia (Anton 2003, Anton & Swisher 2004, Leakey & 

Werdelin 2010). When this early dispersal event (Out of Africa I) took place and which 

circumstances or adaptations led Homo erectus to broaden its biogeographical distribution, 

are still heavily debated questions (see e.g. Dennell 2001, 2009, Anton & Swisher 2004, 

Dennell & Roebroeks 2005, Leakey & Werdelin 2010, Carotenuto et al. 2016, Medin et al. 
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2019, Herries et al. 2020, Matsu’ura et al. 2020) and form an important theme in this 

dissertation. In order to provide an answer to these questions it is vital to first discuss and 

define dispersal as a biological process. 

A distinction should be made between ecological dispersal and biogeographic dispersal 

(Decae 1987). According to Gibbs and colleagues (2009) ecological dispersal is the 

movement of animals among local populations and into new areas in the context of landscape 

fragmentation and climate change, resulting in gene flow. In ecological dispersal this implies 

a dispersal event within the lifetime of an individual for example for reproduction (Ronse 

2007). Such movements may be proximately beneficial for a number of reasons such as 

reduced competition or avoidance of inbreeding (Ronse 2007). In palaeontology and 

biogeography, on the other hand, the term is often meant as a wider process where species 

expand their biogeographical range, perhaps over the course of multiple generations (Pielou 

1979, Decae 1987, Lieberman 2005). While ecological dispersal can be part of biogeographic 

dispersal, it is primarily the latter definition that is relevant to this dissertation. 

Biogeographic dispersal is generally subdivided into three different types: jump dispersal, 

diffusion and secular migration (Pillou 1979, Decae 1987). Jump dispersal is a range 

expansion induced by the movement of an animal over a large distance followed by the 

establishment of a new isolated population there (Pillou 1979). Diffusion is the movement of 

a species into a new area bordering the original range within a limited number of generations 

(Pillou 1979). Secular migration is a range expansion over the course of many generations 

often related to evolutionary or long term geological or environmental changes (Pillou 1979). 

All three forms of biogeographic dispersal may be relevant to early hominin dispersal, but the 

questions about Homo erectus range expansion that will be addressed here, mainly deal with 

its dispersal on a multi-generation scale in the sense of secular migration. This term should 

not be confused with migration in the ecological sense, implying seasonal movements of an 
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individual to and from a certain area (Tchernov 1992, Ronce 2007). Hence I will from here 

simply use the term (biogeographic) dispersal in this dissertation. 

As far as Homo erectus is concerned, a few decades ago it was widely believed that this 

species, after its first occurrence at Koobi Fora around 1.8 to 1.9 Ma (Leakey & Walker 

1976), slowly spread to other parts of Africa and the Levant and eventually further into East- 

and Southeast Asia (Anton & Swisher 2004). In this model, also dubbed the “short 

chronology”, the earliest occupation outside of Africa did not take place until about 0.8 Ma 

(Klein 1999, Langbroek & Roebroeks 2000, Roebroeks 2001). Some older archaeological 

evidence from Ubeidiya (Israel) (Klein 1999, Belmaker et al. 2002) was dismissed as merely 

the result of a brief, but temporary incursion in the Middle East and that it was not before the 

advent and spread of the Acheulean technology that Homo erectus was allowed to disperse 

over larger parts of the Old World (Anton & Swisher 2004). 

The “short chronology” was disproved as increasingly robust evidence for an earlier dispersal 

into Eurasia came to light. Even though not all these early dates are universally accepted, sites 

such as Dmanisi (1.78-1.85 Ma) (Ferring et al. 2011) and Sangiran (1.6 Ma) (Swisher et al. 

1994, Indriati & Anton 2008, Matsu’ura et al. 2020) have convincingly demonstrated that 

Homo erectus was present outside of Africa well before 0.8 Ma. As the chronology of these 

sites is generally deemed reliable and based on several lines of evidence (e.g. stratigraphic, 

anatomical, radiometric, palaeomagnetic) many workers (Gabunia et al. 2000b, Larick et al. 

2001, Vekua et al. 2002, Anton & Swisher 2004) now accept a “longer chronology” (Anton & 

Swisher 2004). 

Another point of debate is how and by what route Homo erectus spread over the Old World. 

In order for a species to expand its biogeographical range over a larger area it is important that 

certain conditions are met. In general this means that there must be a physical connection 
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between the source area and the new region in the form of a corridor or land-bridge (Curran 

2009). Nevertheless, various reports exist of human and non-human primates ‘jump 

dispersing’ across sea gaps by means of (natural) rafts (Smith 2001). While early Homo 

sapiens probably reached Australia by such means, it is not clear if Homo erectus, or any 

other pre-modern hominin, was capable of crossing larger expanses of water (Smith 2001). 

The presence of  Middle Pleistocene hominins on Flores (Homo floresiensis ) (Morwood et al. 

2004) and possibly also on Sulawesi (van den Bergh et al. 2016) and the Phillipines (Ingicco 

et al. 2018) seems to suggest so. As these three island regions were probably isolated from the 

Sundashelf by a deep sea channel since before the beginning of the Pleistocene, they could 

only have been reached by water (Smith 2001). Others (Kitchener et al. 1990) have on the 

other hand argued that at the beginning of the Middle Pleistocene land-bridges existed that 

connected at least some of these regions to Sundaland, during episodes of particularly low sea 

levels. Whether or not some early hominin dispersal happened through rafting is difficult to 

verify, but it seems plausible that if such movement occurred, it was restricted to points where 

land masses were at most separated by relatively narrow sea gaps.  

What is better known, is that after leaving its home base in sub-Saharan Africa, Homo erectus 

entered North Africa quite soon. Archaeological evidence at Aïn Hanech (Algeria) has 

indicated that its spread into this part of the continent may already have occurred around 1.8 

Ma (Sahnouni et al. 2002), followed quickly by occupations in the Levant (Ubeidiya) 

(Belmaker et al. 2002) and Transcaucasia (Dmanisi) (Lordkipanidze et al. 2013). This would 

imply that the North African occupation was probably part of the same dispersal movement 

that led to the occupation of Eurasia (Lahr 2010). Four potential routes (Fig. 3.2) may have 

been used by Homo erectus to enter Eurasia from Africa: the Strait of Gibraltar (Alimen 1975, 

Straus 2001), the Sicilian Channel (Alimen 1975), the Bab-El-Mandab Isthmus (Nikitas & 

Nikita 2005) and the Sinaï Peninsula (Tchernov 1992). The latter route is thought to be the 
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most likely as it is the only one that was continuously connected to the Eurasian landmass 

since the Miocene (Tchernov 1992). The spread of Homo erectus further east is not well 

documented, but the species is found relatively early in East and Southeast Asia at sites such 

as Sangiran (1.6 Ma) (Matsu’ura et al. 2020), Gongwangling (Zhu et al. 2015) and 

Zhoukoudian (early Middle Pleistocene) (Rightmire 1991). 

Despite advances in our understanding of the timing and route of initial hominin dispersal, the 

nature of this event remains poorly understood and is surrounded by a number of questions: 

Why did it happen at this particular time? Why was Homo erectus apparently the only species 

to expand over such a large area as opposed to other contemporaneous and earlier hominins? 

Was this part of a wider dispersal event including a range of different species? What was the 

role of climatic and environmental changes (Leakey & Werdelin 2010)? A number of 

hypotheses have been proposed that attempt to provide answers to these questions.  

The general consensus is that the first dispersal of the genus Homo out of Africa was initiated 

by a combination of intrinsic- (i.e. morphological and/or behavioural novelties within Homo 

erectus) and extrinsic factors (climatic and/or environmental changes) (Petraglia 2003, Anton 

& Swisher 2004, Lahr 2010, Agusti & Lordkipanidze 2011, Carotenuto et al. 2016). Although 

the environment in which these hominins lived must have played a role, there is currently no 

agreement whether early dispersal was more driven by intrinsic or extrinsic factors 

(Carotenuto et al. 2016). 
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Figure 3.2: Potential points of entry from Africa into Eurasia. A: Gibraltar strait, B: Sicilian Channel, C: Sinaï 

Peninsula, D: Bab-El-Mandab Isthmus. 

Theories emphasizing extrinsic factors in “Out of Africa I” generally assume that another 

condition, besides a physical connection between the source area and the destination area, 

may have needed to be fulfilled before Homo erectus dispersal could take place: the presence 

of suitable habitat. According to Vrba’s (1995a) “Traffic Light model”, climatic and 

environmental conditions in the connecting corridor and the destination area must first be 

optimal for a species, before it can expand (Vrba 1995a, Curran 2009). It is implied in this 

model that species dispersal is always part of a larger expansion of ecosystems and that 

animals will be restricted to regions with habitats of a similar nature to that in which they 

originally evolved (Curran 2009). Related to the “Traffic Light model”, is Vrba’s (1995a) 

“Turnover Pulse Theory” that goes even further and states that almost all major evolutionary 

trends such as speciation, dispersal and extinction are instigated by climatic and 

environmental change (Vrba 1995a). This model predicts that, in general, periods of radical 

climate change coincide with multiple extinction- and speciation events for different 
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mammalian lineages at the same time (Vrba 1995a). While there are indications in the fossil 

record that this is the case for certain groups such as the bovids (Vrba 1995a), the question 

remains whether the evolution and success of Homo erectus was also driven by such a 

climatic ‘pulse’ and its related environmental changes (Foley 1994). 

If “Out of Africa I” was primarily instigated by such a climatic and environmental shift, 

evidence for this might be found in the form of palaeoclimatological and palaeoecological 

data indicating changes around the time Homo erectus started dispersing. Furthermore, if the 

first dispersal of Homo was part of a broader mammalian turnover, changes in the faunal 

composition as a result of (new) taxa appearing and/or disappearing at hominin localities 

might provide clues (Leakey & Werdelin 2010). Nevertheless, evidence from the carnivore, 

bovid and cercopithecid fossil records so far seems to suggest that there were no major 

dispersal events across multiple mammalian lineages at the time of Out of Africa I (Leakey & 

Werdelin 2010, O’Regan et al. 2011). Species that did expand their range during this period 

seem to have done so as a result of factors different from those that drove Homo erectus 

(Leakey & Werdelin 2010). 

Palaeoecological and palaeoclimatological evidence, on the other hand, suggests that major 

environmental changes did take place broadly around the time that Homo erectus left East 

Africa. By most accounts, the Late Pliocene and Early Pleistocene were characterized by a 

shift to more open, arid environments with increasing seasonality (Bonnefille 1984, Prentice 

& Denton 1988, Demenocal 1995, Vrba 1996). According to multiple lines of evidence (e.g. 

palynological, isotopic, palaeozoological) this would have resulted in an expansion of open 

grasslands in East Africa with a substantial increase around 1.7 Ma (Bonnefille 1984, Cerling 

1992, Demenocal 1995, Turner & Anton 2004, Curran 2009). Although the magnitude and 

timing of these environmental changes are not well understood (see e.g. Cerling 1992, Hertler 

et al. 2013), according to some researchers (Vrba 1996, Dennell & Roebroeks 2005, Dennell 
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2010) the spread of this type of grasslands wasn’t restricted to East Africa, but was part of a 

wider expansion of a savannah-like environment across large stretches of Africa and Eurasia. 

The so called “Savannahstan model” advocates the existence of a connecting corridor of 

relatively uniform savannah environment that ranged from East Africa, over North Africa, the 

Middle East and Central Asia to East Asia (Fig. 3.3) (Dennell 2010). The authors argued that 

within this savannah belt the first members of Homo could actually have first evolved in Asia 

and from there spread to Africa instead of the other way around (Dennell & Roebroeks 2005, 

Dennell 2010). Although this thesis a priori assumes an ‘Out of Africa’ scenario for the origin 

of the genus Homo, the idea that the development and spread of a savannah belt was 

instrumental in the initial dispersal of our genus is tantalizing. 

 

Figure 3.3: Purported distribution of savannah-like environments (white) during the Late Pliocene (adapted 

from Dowsett et al. 1994 in Dennell 2010) 

On a regional level the idea of a continuous savannah belt has taken form in the “savannah 

corridor theory” in Southeast Asia (Heaney 1991, Bird et al. 2005). This theory arises from 

the idea that most mammal (including hominin) colonization of Java happened during glacial 

phases associated with low sea levels, exposing the Sunda shelf and connecting the principal 

islands to the mainland (de Vos et al. 1994, van den Bergh et al. 2001). Proponents of this 
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concept (Heaney 1991, Bird et al. 2005) have argued that the Southeast Asian 

palaeoenvironmental record suggests the presence of a connected tract of open vegetation 

from the Asian mainland to Java at several times during the (Early) Pleistocene. The 

rainforests currently predominant in Sundaland would only have gradually appeared over the 

course of the Pleistocene, but open environments would have re-colonized large tracts during 

glacial episodes. The resulting savannah corridor would have allowed for the spread of open-

adapted species such as Homo erectus (Bird et al. 2005). Although the “Savannah corridor 

theory” was suggested to have been applicable to the Early Pleistocene, its main focus was 

actually on the presence of a dry corridor during the Last Glacial Maximum (Heaney 1991, 

Bird et al. 2005). The presence of such a savannah belt during the LGM has been contested 

and some (e.g. Meijaard 2003b, Stimpson 2010) have concluded that even during glacial 

maxima, forested environments persisted. As our knowledge of the palaeoenvironmental 

conditions during the earlier phases of the Pleistocene in this region is even more incomplete, 

evidence for the presence of a savannah corridor in the Early/Middle Pleistocene is limited. 

Where the “Savannahstan model” and the “Savannah corridor theory” mainly stress the 

importance of savannah-like environments in the context of early Homo dispersal (Bird et al. 

2005, Dennell & Roebroeks 2005, Dennell 2010), others have argued that a different type of 

environment was important for early expansion of Homo erectus. A number of authors have 

suggested that coastal zones and wetlands played a crucial role in this episode in human 

history (Stringer 2000, Joordens et al. 2009, Cohen et al. 2012). Hominin remains are often 

found in association with marine or lacustrine fauna (Joordens et al.2009) and many 

palaeoanthropological sites have an aquatic component in their proximity (Stringer 2000, 

Cohen et al. 2012). It was initially assumed that a focus on aquatic resources was a 

behavioural adaptation that didn’t appear in hominins before the Late Palaeolithic (see Stiner 

1994 and references therein), but more recently evidence has surfaced that such behaviour 
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could be much older and that early humans could have “coasted” their way out of Africa 

(Stringer 2000). Even though such explanations are mainly offered in the context of modern 

human expansion, some (Cohen et al. 2012) consider it likely that coastal zones provided 

important corridors for dispersal in earlier hominins as well. 

Besides these theories that highlight the importance of specific environmental conditions in 

facilitating (or constraining) the dispersal of hominins, other theories place more emphasis on 

intrinsic changes in Homo erectus (Anton & Swisher 2004, Carotenuto et al. 2016). Important 

here is Potts’ (1998) variability selection hypothesis. While this hypothesis does not 

necessarily contradict the trend towards more arid, open environments during the Plio- 

Pleistocene, it argues that an increase in climatic fluctuations from the Pliocene onward was a 

more important driver for hominin dispersal (Potts 1998, Bobe & Behrensmeyer 2004). It 

differs from theories that stress the selective effects associated with specific habitats and 

rather proposes that Homo erectus adapted to the quick and unpredictable climatic and 

environmental changes themselves that were typical for the Pleistocene (Potts 1998). 

Such an increase in climatic oscillation is indeed seen in isotopic records from deep sea cores, 

especially from about 2.8 Ma (Prentice & Denton 1988) and was apparently paralleled by 

rapidly changing environmental conditions. This is for example evidenced in the 

palynological record in Europe, where glacial and interglacial cycles were mirrored by 

contractions and expansions of temperate deciduous forest-habitats and cold dry steppe 

environments (Potts 1998, Van Kolfschoten et al. 2015). More evidence comes from 

sedimentological records in North Africa, where numerous rich organic layers are found 

interspersed with sterile strata, clearly in association with glacial/interglacial cycles (Jenkins 

& Williams 1984, Potts 1998). In such a continuously changing world it might have been 

more advantageous for hominins to adapt to environmental change itself than to a specific 

type of environment (Potts 1998). 
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Which adaptations could have led to the success of early Homo when confronted with such 

inconsistent selection regimes (Potts 1998) is unclear. According to Potts (1998) there are 

nevertheless a number of anatomical and/or behavioural features in hominins that would 

qualify as variability selection adaptations. One such adaptation is bipedality. Although 

already developed by earlier homimins (Australopithecus), this adaptation would allow for 

locomotor versatility, suitable for both open- and arboreal environments (Potts 1998). The 

postcranial morphology of Homo erectus is more similar to that of modern humans than that 

of the australopithecines (Collard & Wood 2015), which could perhaps signify a further 

development in locomotor versatility.  

Another adaptation that could perhaps have played an important role was the development of 

stone tools. This technology would have allowed access to food -such as bone marrow, meat 

or deeply buried tubers- that was previously unavailable and thus permitted more dietary 

flexibility (Potts 1998). Stone tools have been in use since at least the advent of the first 

members of the genus Homo (Harris 1983a), but Homo erectus probably was the first species 

to develop the more advanced Acheulean technology (Haviland et al. 2013). Although the 

first dispersal of Homo erectus may have antedated the appearance of the Acheulean (Anton 

& Swisher 2004), there is little doubt that the use of stone tools allowed hominins to exploit a 

wider range of resources. Especially in drier, open habitats where edible plants are harder to 

procure, the use of lithic technology may have allowed hominins to acquire meat on a more 

regular basis (Shipman & Walker 1989). Whether or not the shift towards increased carnivory 

in hominins was directly related to the development of (a specific) lithic technology, it is 

likely that it first appeared in Homo erectus (Shipman & Walker 1989, Carotenuto et al. 

2016). In fact it is argued that hominins at this stage changed from occupying a primarily 

omnivorous niche to becoming top predators (Turner 1999, Carotenuto et al. 2016).  
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A third adaptation, that is perhaps related to a more carnivorous diet (Aiello & Wheeler 1995, 

Ferarro et al. 2013) and that may have resulted from variability selection, is the trend towards 

increasing encephalization in hominins (Potts 1998). The human adaptive niche is strongly 

shaped around social and technological complexities and the increase in brain size in the last 

two million years must have profoundly affected economic and social organization (Hublin et 

al. 2015). It is known that in primates there is a correlation between neocortex size and social 

group size, suggesting bigger brains allow for more advanced ecological problem solving 

(Jerison 1973) and the development of complex social interactions needed in large groups 

(Adolphs 1999, Dunbar 2003). Such larger groups could have functioned as information 

sharing units, having several ecological advantages such as pooling the (technological) 

innovations of group members, avoidance of trial-and-error learning (e.g. eating poisonous 

plants) and sharing of information about rare ecological events (e.g. a drought only 

experienced by the oldest group members) (Mithen 1994). Such an enhanced behavioural 

flexibility must certainly have increased ecological flexibility (Potts 1998). The advantages of 

increased social cooperation are moreover exemplified in extant human foraging societies 

who have as a result of intense social cooperation and food sharing, a higher rate of energy 

extraction from their environment than the smaller brained extant apes (Kaplan et al. 2000). 

As Homo erectus underwent a major shift in encephalization (Wood & Collard 1999) this 

factor could potentially have contributed to its success as a species and to its dispersal. 

Nevertheless, even if we assume that the dispersal of Homo erectus was primarily instigated 

by intrinsic changes in morphology and behaviour resulting from variability selection, it 

remains hard to verify which adaptations were crucial to its success. What can be more easily 

tested, is whether Homo erectus was indeed able to thrive in a multitude of environments after 

its expansion from Africa or if the species was restricted to a specific type of environment. 

Perhaps the success and dispersal of Homo erectus can only be explained as the result of an 
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expansion of the habitats it originally evolved in? This is in essence also a question about the 

modernity of Homo sapiens behaviour. Is the capacity to adapt to a broad range of 

environments, as seen in modern humans (Potts 1998), a more recent phenomenon unique to 

our own species, or did earlier members of our genus already develop a similar flexibility? 

3.5.4 Concluding remarks 

Although palaeoenvironmental data is available from a number of Homo erectus sites in 

Africa and Eurasia, there are large discrepancies in our knowledge between regions and 

individual sites. Moreover, a high number of different approaches and proxies have been used 

to reconstruct ancient environmental conditions. Consequently, the results cannot always be 

easily compared and at times different methods have resulted in conflicting interpretations. 

Nevertheless, some patterns seem to emerge. It appears that for most African Homo erectus 

sites, palaeoenvironmental conditions have been interpreted as relatively dry and open. 

Especially in East Africa there is substantial evidence for an aridification of the landscape 

around the time Homo erectus appeared. This would be in line with an extrinsic explanation 

for early hominin dispersal such as the Savannahstan model (Dennell & Roebroeks 2005, 

Dennell 2010). Further afield there is also limited evidence that this trend towards drier, more 

open environments took place in South Africa, parts of Asia and North Africa. The exact 

timing and magnitude of these changes is poorly understood. There may be indications that 

these environmental changes already set in earlier and it is unclear how instrumental they 

were in driving hominin dispersal. In the light of these observations, it is interesting to note 

that a number of sites, especially in Asia, do not seem to exactly follow the patterns described 

above. Sites such as Kobacas and certain levels of Sangiran have been described as humid, 

wetland sites. This could point towards an increased adaptive flexibility in Homo erectus as 

proposed in Pott’s (1998) variability selection hypothesis. Finally, if the presence of open, dry 

landscape was not a necessary requirement for Homo erectus, we might ask ourselves the 



73 
 

question whether the presence of a wet component in the landscape was important. It should 

be taken into account that this could potentially be another extrinsic factor influencing 

hominin dispersal. 
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4. Cervids and ecomorphology 

4.1 Ecomorphology 

Ecomorphology is but one approach within the field of morphology (Bock 1994). According 

to Bock (1994) there are four primary approaches or aspects in vertebrate morphology: 

descriptive, functional, evolutionary and ecological. The descriptive aspect of morphology, as 

is implied in the name, describes the material composition and morphological attributes of a 

biological entity and defines the limits of the system of attributes in an individual. Descriptive 

morphology forms an important prerequisite for the further understanding of the other 

morphological aspects (Bock 1994).  

The functional aspect describes morphological function as related to the full set of features 

arising from the form at all levels of organization (Bock & Von Walhert 1965, Bock 1994). 

Relying on the descriptive aspect, functional morphology attempts to establish correlations 

between properties of the form and the function of features (Bock 1994). Once established, 

these correlations can be used to explain functional properties of animals of known 

morphological form (Bock 1994). Evolutionary morphology covers a wide range of 

morphological studies and often includes descriptive and functional aspects, but different 

from the other aspects (ecological, functional and descriptive), it offers a historical-narrative 

explanation (Bock 1991, 1994). 

Ecomorphology can in the broadest sense be described as the discipline that “occupies itself 

with the connection between the shape of the animal in its entirety and its surroundings” (Van 

der Klaauw 1948, p. 27). It is concerned with the adaptiveness of morphological features and 

their correlation with the function of features. As such it is dependent on the results of 

functional morphological studies but places the emphasis on the biological or ecological role 

of the organism and not on the function itself (Bock 1994). Furthermore, within 

ecomorphology there are two different principal approaches. The first one’s aim is to 
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determine adaptiveness of morphological features or systems within individual species, 

followed by comparison of these adaptations in different species, closely related or not (Bock 

1994). In a second approach, more relevant to this dissertation, the emphasis is more 

ecological and studies the adaptive features within a group of (usually closely related) species 

and tries to determine the composition of communities, niche structure and other ecological 

parameters (Bock 1994). It essentially deals with the covariation between ecology and 

morphology but draws strongly on the descriptive and functional aspects (Winkler 1988, Bock 

1994). 

For this dissertation it will further suffice to say that Bock (1994) is followed and that a 

distinction is made between functional morphology, dealing with correlations between 

properties of the form and the function of features, and ecological morphology, the study of 

functional aspects of organisms and attributes in relationship to their environment (Bock 

1994). In this sense it is similar to the definitions for ecomorphology used in many other 

palaeoecologically oriented studies (e.g. Kappelman 1988, Bishop 1994, Weinand 2005, 

Kovarovic & Andrews 2007). I do not follow Degusta and Vrba (2003) in their use of the 

term functional morphology, which includes ecological aspects. 

4.2 Artiodactyl ecomorphology in palaeoanthropology 

Mammalian ecomorphology draws its theoretical basis from the observation that species 

occupying comparable habitats display similar, convergent, adaptations (Andrews & Hixon 

2014). This is expressed in phylogenetically unrelated taxa developing similar adaptive 

features as a result of being subjected to the same selective pressures (Andrews & Hixon 

2014). While in biological anthropology this principle has been directly applied on human and 

non-human primate osteological elements with the goal of inferring correlations between 

morphological and ecological aspects in those species (e.g. Stern & Susman 1983, Cardini et 

al. 2007, Ungar 2011, Green & Alemseged 2012, Elton et al. 2016), more important in this 



76 
 

discussion is the use of ecomorphology on non-primate fossils, to be used as proxies for 

reconstructing hominin palaeoenvironments. Ecomorphological studies of this kind have been 

applied on a number of mammalian groups, such as canids (Meloro & Louys 2011), felids 

(Meloro et al. 2013), ursids (Figuerido et al. 2009), bats (Stimpson 2010), rodents (Fernandez 

& Campomanes 2003), equids (Scott 2004, Schellhorn 2009, Schellhorn & Pfretzschner 

2015) and suids (Bishop 1994, Bishop et al. 2006, Cuddahee 2008), but the family on which 

this methodology has been used most commonly is that of the Bovidae. This is especially true 

for studies that have focused on the (ecological) morphology of the locomotor system (e.g. 

Kappelman 1988, Kappelman et al. 1997, Vrba 1980, 1995b, 1999, Plummer & Bishop 1994, 

Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, Weinand 2005, Kovarovic & Andrews 

2007, Plummer et al. 2008, Schellhorn 2009, Klein et al. 2010, Barr 2014a, 2017). Given the 

wealth of research that has been conducted on this family and because of its taxonomic 

relatedness to the Cervidae (Geist 1998, Janis 2007), our review on artiodactyl 

ecomorphology will have a strong focus on this family. The validity of the assumption that 

cervids are in many ways comparable to bovids when used in an ecomorphological study, will 

be further explored in section 4.5. 

The functional morphology of the limb bones in bovids has long been established to be 

strongly influenced by environmental conditions (Gentry 1970, Oboussier & Ernst 1979, 

Leinders 1979, Scott 1983, 1985, 1987). More traditional palaeoenvironmental 

reconstructions based on bovid remains have heavily focused on the presence or absence of 

certain taxa in the fossil record (e.g. Vrba 1975, Gentry & Gentry 1978, Shipman and Harris 

1988). This method has the weakness that it relies on taxonomic uniformitarianism, assuming 

that extinct species had ecological preferences similar to those of their closest living relatives 

(Andrews 1995), an assumption not necessarily valid (Dodd & Stanton 1990).  
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Ecomorphology on the other hand is often called a taxon-free method (Kovarovic & Andrews 

2007, Andrews & Hixon 2014) and has the advantage that it can be applied on fossil remains 

that have not been identified beyond the family level (see Klein et al. 2010). In other words, 

ecological morphology can provide a more direct reconstruction of past habitats, as it asks 

‘how’ an animal moved through a habitat instead of ‘who’ is present in the fossil record 

(Curran 2009).   

Working within this framework, the last decades have seen a number of researchers 

developing bovid ecomorphological models that are palaeoecologically informative (e.g. Vrba 

1980, 1995b, 1999, Kӧhler 1993, Kappelman 1988, Kappelman et al. 1997, Plummer & 

Bishop 1994, Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, Weinand 2005, Kovarovic & 

Andrews 2007, Plummer et al. 2008, Klein et al. 2010, Barr 2014a, Barr 2018). The best 

studied aspects in bovid ecomorphology are probably the shape of the femur, astragalus and 

metapodials (e.g. Kappelman 1988, Kappelman et al. 1997, Plummer & Bishop 1994, 

Degusta & Vrba 2003, Kovarovic 2004, Scott 2004, Weinand 2005, Schellhorn 2009). 

Moreover these elements illustrate well how ecomorphology can be used on artiodactyls 

elements in palaeoanthropological contexts. 

 An early example for the metapodials is the work by Kathleen Scott (1983, 1985, 1987), who 

found that the metacarpus and metatarsus, as well as some other distal limb bones, varied with 

habitat. Species living in more open habitats typically had relatively longer metapodials, 

while species found in more closed environments had shorter metapodials (Scott 1985). 

Although Scott (1983, 1985, 1987) didn’t explicitly dwell on the functional aspects that lie at 

the basis of this ecomorphological correlation, her observations were picked up by others (e.g. 

Plummer & Bishop 1994, Scott 2004, Klein et al. 2010) who realized its potential for habitat 

reconstructions and related it functionally to differences in joint stabilization and lever arm 

length. Studies of the femur have been particularly important in bovid ecomorphology. Gentry 
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(1970) was the first to establish that femoral morphology is closely related to locomotor 

behaviour and environment, but especially Kappelman’s (1988) study has been influential. 

Kappelman (1988) argued that variation in the shape of the caput femoris is linked to 

differences in locomotor behaviour between species that are adapted to open environments 

(e.g. savannah) and species adapted to closed environments (e.g. forest). Bovids with more 

’rectangularly’ shaped femoral heads are found in open habitats while bovids with 

’spherically’ shaped femoral heads are found in more closed environments (Fig. 4.1). As there 

are few obstacles to evade in open landscapes when escaping predators, bovids living in such 

environments optimize cursorial efficiency by limiting axial rotation and abduction in the hip 

joint (Kappelman 1988). Bovids adapted to closed environments allow more axial rotation 

and abduction in the hip-joint for better maneuverability in dense vegetation (Kappelman 

1988). Animals being pursued through dense vegetation tend to place obstacles between 

themselves and a pursuing predator (Curran 2009).  It is worth mentioning that such 

differences in femoral head shape have also evolved between cursorial and saltatorial 

carnivores (Jenkins & Camazine 1977, Kappelman 1988). 

The astragalus, having been studied by several researchers (Degusta & Vrba 2003, Kovarovic 

2004, Kovarovic & Andrews 2007, Weinand 2005, 2007, Plummer et al. 2008, Schellhorn 

2009, Barr 2014a), has proven to be a useful element in ecomorphology, as well. Similar to 

the femur, functional differences in the astragalus have been explained as the results of 

differences between a more cursorial or saltatorial locomotor strategy. Animals adapted to 

open environments tend to have relatively shorter astragali as they increase the range of 

angular excursion in the hock joint (Barr 2014a). Cursorial bovids adapted to open 

environments are also thought to have a larger trochlear articular surface, as a means to 

dissipate increased loads during fast running (Barr 2014a).  
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Figure 4.1: Proximal articulation of bovid femurs typical of environments with open vegetation (A) and closed 

vegetation (B) (adapted after Kappelman 1988). 

 

Although a number of other correlations between morphological traits and ecological 

variables have been described in the literature on artiodactyl ecomorphology (see e.g. Degusta 

& Vrba 2005a, 2005b, Kovarovic & Andrews 2007, Schellhorn 2009), research into the 

biomechanics and underlying functional explanations of the bovid limb has generally received 

less attention (Vrba 1980, Curran 2009). Most researchers (Jenkins and Camazine 1977, 

Leinders 1979, Kappelman 1988, Scott 2004, Barr 2014a) agree that predator avoidance is the 

principle constraint on bovid locomotor morphology and that variation in limb morphology is 

driven by differences in vegetation and/or substrate type, each associated with unique escape 

strategies (Kappelman 1988, Leinders 1979, Kӧhler 1993). How these morphological traits 

are biomechanically linked with ecological parameters has been comparatively neglected. 

Some ecomorphologists (Degusta & Vrba 2003, 2005a) have even explicitly abstained from 

providing functional explanations, as they felt it was safer to wait for more rigorous 

biomechanical analyses than to provide “speculative” hypotheses. Others (Curran 2009, Barr 

2014a, 2014b, Scott & Barr 2014a) have advocated that even though a more detailed 

understanding of functional morphology and its relationship to locomotion would be useful, it 

shouldn’t keep us from developing interpretations based on observations and on what is 

known from the available literature. 
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In ideal circumstances ecomorphological hypotheses and their functional bases are tested 

experimentally on living specimens (Wainwright 1994). This is unfortunately impractical on 

large animals such as bovids, but a substantial body of literature is available (e.g. Leinders 

1979, Köhler 1993, Curran 2009, 2012, Scott 2004, Scott & Barr 2014, Barr 2014a, Barr 

2018) that provides useful discussions about the underlying biomechanical aspects that are at 

the basis of morphological variation in artiodactyl limb bones. It is therefore the intention in 

this dissertation to provide a theoretical framework based on the literature and on direct 

observations of limb bone anatomy, as a foundation in functional morphology on which 

further ecomorphological correlations can be based. 

Ecomorphological studies are usually conducted in a typical way by combining data from 

behavioural ecology with osteomorphometric data of extant and ultimately fossil specimens 

(e.g. Plummer & Bishop 1994, Degusta & Vrba 2003, 2005a, Scott 2004, Weinand 2005, 

Kovarovic & Andrews 2007, Plummer et al. 2008). Typically, a model is first constructed, 

based on data from extant species of known taxonomy and habitat preference. To avoid 

overcomplicating the model, habitat preferences are almost always summarized into a limited 

number of broad habitat categories such as “closed vegetation” or “open vegetation” 

(Kappelman et al. 1997, Curran 2009). In most studies (e.g. Plummer & Bishop 1994, 

Weinand 2005, Kovarovic & Andrews 2007), the morphology of the limb bones is quantified 

by taking measurements on the bones, although in some cases non metric traits are used as 

well (e.g. Degusta & Vrba 2005b). When a morphometric approach is used, data is usually 

gathered by collecting linear measurements from key landmarks on the skeleton (e.g. 

Kappelman 1988, Degusta & Vrba 2003, 2005a, Kovarovic & Andrews 2007). The resulting 

variables in that case are often standardized for body size before meaningful comparisons can 

be made (Curran 2009), but some recent studies (Curran 2009, 2012, Borphy et al. 2014) have 

made use of geometric morphometrics, an alternative approach that by-passes the need to 
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control for (isometric) body size differences. Regardless of which method is used, 

morphometric data will invariably result in high numbers of variables that can be analyzed 

using a range of multivariate statistical tests. These are often dimensionality reduction 

techniques, producing linear recombinations of original variables by maximizing variability in 

the dataset (Mendoza et al. 2002). Techniques typically used are Principal Component 

Analysis (PCA) (e.g. Curran 2009), Discriminant Function Analysis (DFA) (e.g. Kovarovic & 

Andrews 2007), and Factor Analysis (FA) (e.g. Schellhorn & Pfretzschner 2015). By means 

of these statistical analyses an estimate can be made of how well morphological variation 

correlates with differences in habitat (Curran 2009). In a second phase the same 

measurements, this time taken on fossil specimens, are added to the dataset. By assessing the 

behaviour of the fossil specimens in a dataset relative to the data collected on extant 

specimens, predictions can be made about the ecology of extinct taxa. 

So far most artiodactyl ecomorphological research has focused on reconstructing African 

palaeoenvironments ((e.g. Vrba 1980, 1995b, 1999, Kappelman 1988, Kappelman et al. 1997, 

Bishop 1994, Plummer & Bishop 1994, Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, 

Kovarovic & Andrews 2007, Plummer et al. 2008, Klein et al. 2010, Barr 2014a, 2014b, 

2015, 2017). Only a limited number of studies have focused on the palaeoecology of Eurasian 

assemblages. Some notable exceptions are Curran (2009, 2012) who worked on cervid fossils 

from the Pleistocene of Europe and the Middle East and Scott (2004) who reconstructed 

palaeoenvironments of Miocene hominoid sites in Europe and Asia based on equid and bovid 

remains. Weinand (2005, 2007) developed a model for the bovid astragalus and applied it on 

fossil assemblages from two Pleistocene sites from Java, that also form an important part of 

this dissertation (Kedung Brubus and Trinil). In addition, Arif and de Vos (2011) applied 

Kappelman’s (1988) method in a pilot study on some bovid femurs from Trinil. 
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4.3 Problems and limitations 

Although ecomorphology has the advantage that it makes use of easily quantified data 

(Andrews & Hixon 2014) and that it does not rely as much on taxonomic unformitarianism as 

methods based on species diversity (Andrews 1995), it also poses some problems in itself. 

One question that could be asked about ecomorphology, is how independent of taxonomy this 

method really is. Although ecomorphology is often dubbed a “taxon-free” method because it 

does not require specific identifications of fossil specimens (Barr 2014a), there are reasons to 

assume this is only partially true. An issue that was recently raised in this context is that 

individual datapoints in an ecomorphological training set of extant species cannot be 

considered independent, as they are related to one another in a hierarchical phylogeny (Klein 

et al. 2010, Barr 2014a). Closely related species, having common ancestors, often share 

morphological and ecological characteristics because they inherited them from their ancestors 

and not always because they are adapted to similar environments (Barr 2014a). This is 

illustrated by a study of Klein and colleagues (2010) who realized that in their analysis of 

bovid metapodials a number of species of the same habitat plotted out differently along the 

axes of their PCA. According to the authors this was to a large extent due to morphological 

similarities and differences that resulted from phylogenetic relatedness rather than from 

purely functional differences (Klein et al. 2010, Scott & Barr 2014). The problem is further 

complicated by the fact that habitat preference itself may to some extent be driven by 

phylogeny in certain mammalian families. It is for example known that a number of bovid 

lineages tend to specialize in particular habitats (Vrba 1980, Kappelman 1984, Shipman & 

Harris 1988, Barr 2014a, 2014b). As a result, many bovid species assigned to specific habitat 

categories will often also be closely related to each other (Barr 2014a). Ecomorphological 

models based on such species or families may give biased results if they are interpreted 

without taking this factor into account.  
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Partially in response to this critique a number of statistical methods and measures have been 

used –mainly phylogenetic comparative methods- that deal with the issue of phylogenetic 

non-independence (Meloro 2007, Meloro et al. 2008, Meloro & Louys 2011, Meloro et al. 

2013, Barr 2014a, Barr & Scott 2014). Some well known methods that have been used in this 

context are phylogenetic independent contrasts, a method in which standardized contrasts are 

calculated that form the difference between trait values of species weighed by their 

evolutionary distance (Felsenstein 1985, Monteiro 2013) and the more recently proposed 

Phylogenetic Principal Components Analysis (PPCA), which works similar to a standard 

PCA, but where the ordination of multivariate data is phylogenetically weighed (Polly et al. 

2013a). In (artiodactyl) osteological studies Phylogenetic Generalized Least Squares (PGLS) 

(Grafen 1989) has probably been the most commonly used method (e.g. Meloro 2007, 2008, 

Walmsley et al. 2012, Barr 2014a, 2014b, Curran 2015, Van Heteren et al. 2015). In this type 

of weighed regression phylogeny is incorporated as an error term during regression of shape 

variables on e.g. locomotor or ecological categories (Martins & Hansen 1997, Walmsley et al. 

2012). As such, PGLS provides a flexible and formal statistical method to estimate the 

presence and magnitude of a phylogenetic signal in a given dataset (Barr 2014a). 

A similar issue, also highlighted by Klein and colleagues (2010) is the presence of a second 

confounding factor complicating ecomorphological analyses: body size. In their study on 

bovid metapodials Klein et al. (2010) noted that besides phylogeny, size differences between 

species also had an important effect on statistical separations along the axes of their PCA. 

This problem of the influence of body size on the mammal skeleton has concerned other 

ecomorphologists before (e.g. Scott 2004, Curran 2009, Meloro et al. 2013, Van Heteren et al. 

2015). It should nevertheless be mentioned that body size in itself can be considered an 

ecomorphological character (Andrews & Hixon 2014). As an animals’ size is closely related 

to locomotion, energy requirements and dietary requirements, it can be correlated with certain 
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life history variables (Geist 1998). In artiodactyls this is, for example, illustrated by the 

Jarman-Bell principle (Bell 1970, Jarman 1974) that poses that small bodied species with high 

metabolic rates, but low energy requirements, generally prefer high quality food items that are 

more widely distributed. Large bodied species with low metabolic rates on the other hand 

often have to be less selective and focus on more commonly availably low quality grasses that 

contain higher amounts of fiber (Kovarovic 2004). In addition, body size also has an effect on 

predator evasion strategies and social organisation. Some smaller species might have a more 

solitary lifestyle and hide when pursued by predators. Other, larger forms often have a more 

gregarious lifestyle and rely on herds as an anti-predatory strategy (Jarman 1974, Geist 1998). 

Despite the established association between body size and ecology, the exact relationships 

between these factors are not well understood and within the context of individual mammalian 

families instead of entire communities, it is thought that body size is not a particularly good 

predictor for habitat preference (Kovarovic 2004). Hence there are arguments against 

including the effects of body size in ecomorphological studies. In families with substantial 

between-species size variation it is likely that body size will consistently account for the 

majority of morphometric differences in an ecomorphological dataset when not accounted for 

(Kovarovic 2004). As a result many ecomorphological studies have included size correcting 

procedures in their models. Some of these methods (e.g. Scott 2004) have simply attempted to 

reduce the effect of isometric size differences by making use of ratio’s, other studies (e.g. 

Kovarovic 2004) used more complex (regression) techniques that control the effects of 

isometric as well as allometric differences. 

Klein et al. (2010) were rather pessimistic about the confounding effects of phylogeny and 

body size in ecomorphological studies and suggested that many models based on postcranial 

elements merely capture phylogenetic and body size differences and much less functional 

differences related to habitat. Many others (e.g. Kappelman 1991, Kovarovic 2004, Barr 
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2014a, 2014b) have nevertheless clearly demonstrated that distantly related species living in 

the same habitats often display similar, convergent adaptations in their skeletal morphology. 

In this dissertation the latter authors are followed and it is believed that by providing a 

adequate functional framework to support potential ecomorphological correlations and by 

sufficiently accounting for confounding factors such as size and phylogeny, predictions can 

be made about habitat preferences of fossil taxa based on functional differences. 

A final problem, of a different kind, is that the nature of ecomorphological studies and the 

way in which morphometric data is analysed, requires that species are assigned to a limited 

number of habitat categories (Curran 2009). On the one hand this has the problem that some 

species cannot be easily placed in one category, as they can perhaps be found in different 

habitats or because their ecology is less well known. More problematic is that the categories 

themselves are always an oversimplification of ecological reality as habitat variation is lost in 

single categories (Curran 2009). Although further breaking down the habitat continuum into a 

higher number of groups could potentially allow for more accurate palaeoenvironmental 

reconstructions, it reduces the ability of statistical models to correctly classify specimens in 

the right habitat category. Curran (2009) found that in bovid studies, models that applied 

higher numbers of habitat groups systematically had a lower success rate of reclassification.  

This dissertation will make use of five to six habitat categories as a consensus. Being on the 

high side, compared to some bovid studies (Kappelman 1988, Plummer & Bishop 1994, 

Degusta & Vrba 2003, Scott 2004) it attempts to minimize loss of habitat specificity while at 

the same time acknowledging that any of the current models are a compromise between 

operationality and resolution. 
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4.4 Extant and fossil cervids 

4.4.1 Extant cervids 

4.4.1.1 Origins and evolution 

The cervidae, or colloquially deer, are a family in the order Artiodactyla, or even toed 

ungulates (Kingdon 1997). This order is currently the predominant ungulate order and 

includes 10 families, 85 genera and 217 species (Janis 2007). The artiodactyls appeared in the 

Eocene around 55 million years ago (Gentry 2000) and were probably related to a primitive 

group of herbivores called the condylarths (Rose 1996). While initially the artiodactyls only 

consisted of a few small forms of less than 5 kg, towards the Middle Eocene this group 

diversified into a large number of taxa and started to replace the previously dominant 

perissodactyls (Janis 2007). By the late Middle Eocene three suborders had appeared: 

Tylopoda, Suina and Ruminantia (Janis & Scott 1987). It was the suborder of the Ruminantia 

that ultimately became the most successful and to which today most artiodactyls belong. 

During the Miocene, the artiodactyl order reached its height in terms of diversity and many 

new forms appeared. Besides the Bovidae, a number of other families, such as the Giraffidae, 

Palaeomericydae, Antilocapridae and Camelidae diversified into a large number of species, 

many of which are now extinct (Janis 2007).    

Although the phylogenetic history of cervids is still unresolved (di Stephano & Petronio 2002, 

Heckeberg et al. 2016, Heckeberg 2020), deer evolution should be considered as part of 

broader artiodactyl evolution (Geist 1998). This family likely evolved from the group of 

ruminants called the Palaeomerycidae, which also gave rise to the Giraffidae (Kurten 2007). 

While cervids have long been considered primitive members of the artiodactyl lineage, it has 

by now been demonstrated that they also possess a number of derived characters, such as a 

closed metatarsal gully (Leinders & Heintz 1980, Janis et al. 1998). Even though it is true that 

deer evolution started in the Miocene with small, primitive, slinker type animals, they soon 
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developed into a range of new forms (Geist 1998, Curran 2009). These early primitive deer 

were antlerless, of small stature and with large canines, not unlike today’s muntjacs (Geist 

1998). About 20 million years ago, the family radiated into a number of taxa, characterized by 

a larger size and more adapted to open landscapes (Clutton-Brock et al. 1982, Curran 2009).  

Deer radiation appears to have happened in a number of phases that were influenced by 

changes in distribution and environment (Geist 1998). In a first radiation, small duiker like 

forms radiated from tropical forest environments into a number of open habitat forms. In a 

second phase, during the Middle Miocene, three prong antlered deer evolved and spread into 

more temperate zones (Curran 2009). The Plio-Pleistocene period marked a third radiation 

event and was the era when cervids reached their greatest diversity. It saw the appearance of 

four prong antlered deer in more northern, open areas (Geist 1998).  

Until the Pliocene, deer were restricted to Eurasia, but probably increasing diversity and 

population pressure, as a result of climatic changes, led to cervids dispersing from Eurasia 

into new areas of the Old and New World (Heintz et al. 1990). India and Indonesia were 

probably colonized some 3 million years ago and North America about 5 million years ago 

(Heintz et al. 1990, Curran 2009). South America was colonized much later than North 

America. Before the Pliocene, the former continent had its own unique megafauna that had 

evolved in isolation from the North American continent. Around 3 to 3.5 million years ago, 

the uprising of the Panama Isthmus led to the connection of the two continental plates and 

resulted in an event called the ‘great American biotic interchange’, during which many 

species were exchanged between the North- and South America. This event included cervids 

spreading to South America and occupying a range of niches on this continent (Geist 1998). 

Of the current cervid tribes, the Capreolini and Muntiacini probably originated in the Middle 

Miocene (Pitra et al. 2004, Groves 2007). The Cervini, Odocoileini and Alceini appeared in 

the Late-Miocene and Early-Pliocene (Gentry 2000). The extant deer genera originate in the 
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Plio-Pleistocene, with Odocoileus probably being the oldest genus with an age of more than 5 

million years (Kurten & Anderson 1980, Geist 1998). Most extant species, such as roe deer 

(Capreolus capreolus), moose (Alces alces) or red deer (Cervus elaphus) have their origin in 

the Middle and Late Pleistocene (Kurten 2007).  

Although cervids were part of a wider and increasing diversification in artiodactyls during the 

Late Tertiary and Quaternary, deer took their own unique evolutionary path, which led to a 

number of characteristics that set them apart from other families, such as the bovids and 

giraffids (Geist 1998, Janis 2007). Some conspicuous traits evolved by deer are antlers, a 

primitive, low crowned dentition (Kurten 2007), and a bovid like body plan (Kingdon 1997). 

Cervids range in size between the diminutive pudu (Pudu puda), that weighs only 3.3 to 6 kg 

and the huge moose (Alces alces) that can weigh up to 600 kg (Geist 1998). Giant forms such 

as moose and Irish elk (Megaloceros giganteus) are typical taxa of the Pleistocene period and 

were able to develop because high quality food was seasonally abundant in colder 

environments (Geist 1998). These large species were mainly a phenomenon of the Old World 

and never evolved in the Americas, probably due to competition with the more specialized 

endemic megafauna (Curran 2009). After the Late Pleistocene megafaunal extinctions in 

North America, a number of newly opened niches were re-occupied by some of these giant 

Old World deer (Geist 1998). Smaller dwarf forms, such as the Bawean deer (Axis kuhlii), are 

often found on islands. This is a result of efficiency selection, whereby animals increase 

fitness if they are able to take resources for maintenance and use them for reproduction. The 

lack of predators in such isolated environments allows animals to invest more in reproduction 

(Geist 1998). Other cervids of small stature, such as the brockets (Mazama spp.) secondarily 

evolved into primitive looking, small species, as an adaptation to habitats with dense 

vegetation in South America (Geist 1998). 
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Deer in general retain a rather primitive, low crowned dentition in comparison with bovids 

(Kurten 2007). This is related to the fact that deer never evolved into true grazing specialists 

like many of the Bovidae (Janis 2007). Instead of competing with the latter family for harder 

fibered forage, deer evolved to be more opportunistic feeders, removing high quality, nutrient 

rich food wherever it is found (Geist 1998). As result deer are not as well adapted to open 

environments as bovids and few species are found in truly open habitats (Geist 1998). 

A final important trait that evolved in many deer species is antlers. The only species that 

currently lacks them is the water deer (Hydropotes inermis) (Geist 1998). These bony 

extensions of the skull are usually only found in males, except in the reindeer (Rangifer 

tarandus). It first appeared in the genera Dicrocerus and Stephanocemas in the Middle-

Miocene (Clutton-Brock et al. 1982). The antlers of these early members were small and 

covered with velvet, like in the giraffids (Geist 1998, Salmeron 2014), the closest living 

relatives of the cervids (Kurten 2007). In the Plio-Pleistocene antlers often reached impressive 

proportions. Antlers should be considered a luxury organ and a display of fitness (Geist 

1998). They are shed on a regular basis and are used in fights between males for females 

(Whitaker et al. 1998). It is known that females often select the males with the largest antlers 

(Curran 2009).  

4.4.1.2 Taxonomy 

The taxonomy of cervids has been a topic of controversy for more than a century (di Stefano 

& Petronio 2002, Heckeberg et al. 2016). According to the classic taxonomic scheme by 

Groves & Grubb (1987) and a more recent concensus classification based on the literature 

(Heckeberg et al. 2016), there are two subfamilies of Cervidae: the Capreolinae and the 

Cervinae. The Capreolinae can be divived into four tribes: the Alceini, the Capreolini, the 

Odocoileini and the Rangiferini. The Cervinae on the other hand are composed of only two 

tribes: the Cervini and the Muntiacini. Of these six tribes only two occur in Southeast Asia: 
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the Cervini and the Muntiacini. The other tribes occur either in the more northern and western 

parts of Eurasia (Alceini, Capreolini and Rangiferini) or in North- and South America 

(Odocoileini, Rangiferini and Alceini) (Heckeberg et al. 2016). A schematic overview of deer 

taxonomy above species level is given in Figure 4.2. 

A tribe with an important presence in Southeast Asia and which forms the main emphasis of 

this dissertation is that of the Cervini. In the taxonomic scheme by Groves and Grubb (1987) 

four genera are recognized in this group, with eight subgenera. The genus Cervus (sensu lato) 

is divided into four subgenera, namely Rusa (including Cervus timorensis, Cervus unicolor, 

Cervus alfredi and Cervus mariannus), Rucervus (containing Cervus eldii, Cervus duvaucelli 

and Cervus schomburgki), Prezwalskium (only Cervus albirostris) and Cervus (sensu stricto) 

(Cervus elaphus and Cervus nippon).  

 

 

Figure 4.2: Overview of deer taxonomy above species level (adapted from Heckeberg et al. 2016). 

 

A second genus in the tribe of the Cervini is Axis, composed of the subgenera Axis (containing 

only Axis axis) and Hyelaphus (containing Axis kuhlii, Axis porcinus and Axis calamianensis). 

The genus Dama is represented by Dama dama and the genus Elaphurus includes only Père 
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David’s deer (Elaphurus davidianus), but may have been the result of hybridization between 

two unknown species (Groves & Grubb 1987), most likely of the Rucervus and Cervus 

subgenera (Meijaard & Groves 2004). 

Recent genetic research has shed doubt on some of these relationships. Randi et al. (1998) 

argued for a fusion of the subgenera Rucervus and Elaphurus, based on mitochondrial DNA 

sequencing. In addition, they highlight the need for a revision of the subgenus Rusa (Randi et 

al. 1998). A mitochondrial DNA analysis by Pitra and colleagues (2004) proposed a number 

of changes on the generic level as well as the species level. According to their analyses, the 

Middle Eastern subspecies of Dama dama, should be awarded true species status as Dama 

mesopotamica. The subgenus Hyelaphus should be excluded from the genus Axis and 

considered its own genus, possibly more closely related to the Rusa-deer. Elaphurus 

davidianus is confirmed to belong to a genus separate from Cervus (s.l). All other species are 

placed under the genus Cervus (s.l.) with the exception of Cervus eldii, which is placed under 

its own genus (Panolia). The North American elk (Cervus canadensis) is separated from the 

European red deer (Cervus elaphus) and given species status (Pitra et al. 2004). As no definite 

consensus taxonomy is available for the Cervini at this point, I chose to maintain a relatively 

conservative view regarding this group based on the scheme by Groves and Grubb (1987), but 

keeping in mind more recent developments. A summary of the taxonomic scheme adhered to 

in this dissertation is given in Table 4.1. 

The Muntiacini are a relatively diverse tribe that is also well represented in Southeast Asia 

(Groves & Grubb 2011). It is composed of two genera: Muntiacus and Elaphodus. The latter 

genus is monotypic and contains only Elaphodus cephalopus (Groves & Grubb 1987, 2011, 

Heckeberg 2016), Muntiacus is more diverse and traditionally most researchers distinguish 

five different species, as well as a number of subspecies (Groves 1982, Groves & Grubb 

1987, Ma et al. 1986). Although a number of new species have been proposed in the last two 
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decades, such as Muntiacus vuquangensis and Muntiacus putaoensis (Groves 2011), I will 

adhere to the traditional scheme and recognize the following species: Muntiacus muntjak, 

Muntiacus reevesi, Muntiacus rooseveltorum, Muntiacus feae and Muntiacus crinifrons. 

 

Genus Subgenus Species 

Axis 

Axis Chital (Axis axis) 

Hyelaphus 

Hog deer (Axis porcinus) 

Bawean deer (Axis kuhlii) 

Calamian deer (Axis calamianensis) 

Dama Dama Fallow deer (Dama dama) 

Cervus (s.l.) 

Cervus (s.s.) 
Red deer (Cervus elaphus) 

Sika deer (Cervus nippon) 

Przewalskium White lipped deer (Cervus albirostris) 

Rucervus 
Eld's deer (Cervus eldii) 

Barasingha (Cervus duvaucelii) 

Schomburgk's deer (Cervus schomburgki) 

Rusa 

Sambar (Cervus unicolor) 

Javan rusa (Cervus timorensis) 

Philippine spotted deer (Cervus alfredi) 

Philippine deer (Cervus mariannus) 

Elaphurus Elaphurus Pere David's deer (Elaphurus davidianus) 

Table 4.1: Taxonomic scheme of the Cervini tribe (based on Groves &Grubb 1987) 

 

The Odocoileini represent a controversial tribe of cervids, and systematic relationships in this 

clade are unresolved (Heckeberg et al. 2016). It consists of six genera: Odocoileus, Mazama, 

Blastocerus, Hippocamelus, Pudu, and Ozotocerus, of which the latter five are all placed in 

the subtribe Blastocerina and the genus Odocoileus in the subtribe Odocoileina (Heckeberg et 

al. 2016). The members of the Blastocerina subtribe are endemic to South America and are a 

clear example of adaptive radiation on this continent (Curran 2009). The relationship between 

the different genera and species is problematic, but Groves and Grubb (1987) recognize a 

number of different taxa in their taxonomic scheme which is also followed in this dissertation. 

Two species are recognized in the genus Hippocamelus: Hippocamelus bisulcus and 

Hippocamelus anitisensis. The genera Blastocerus and Ozotoceros are thought to be 

monotypic and include respectively Blatocerus dichotomus and Ozotocerus bezoarticus 
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(Groves & Grubb 1987). In the South American brockets (genus Mazama) several species are 

accepted by Groves and Grubb (1987): Mazama americana, Mazama temana, Mazama 

gouazoubira, Mazama permira, Mazama rufina, Mazama chunyi and possibly Mazama 

brincenii and Mazama nana (Groves & Grubb 1987, Geist 1998). Of the small pudu (Pudu), 

there are probably only two species: Pudu mephistopheles and Pudu puda (Groves & Grubb 

1987, Geist 1998). Odocoileus, the only genus of the subtribe Odocoileina includes 

Odocoileus virginianus and Odocoileus hemionus (Groves & Grubb 1987, Geist 1998). 

The Rangiferini tribe certainly includes only one species (Rangifer tarandus) (Groves & 

Grubb 1987, 2011) while the same is probably true for the Alceini (Alces alces) (Groves & 

Grubb 1987, Geist 1998), although some sources separate the North American moose (Alces 

americanus) on the species level (Groves & Grubb 2011). The Capreolini tribe consists of two 

genera: Capreolus and Hydropotes. In Capreolus, two species are recognized: Capreolus 

capreolus and Capreolus pygarus. In the genus Hydropotes there is only one species: 

Hydropotes inermis (Groves & Grubb 1987). 

 

4.4.1.3 Ecology 

Deer are able to subsist in a wide range of habitats, which is to be suspected in a family with a 

very wide distribution (Putman & Flueck 2011). Cervid habitats range from closed tropical 

rainforest (e.g. Muntiacus muntjak) (Ekwal et al. 2012) to semi-arid open grassland (e.g. 

Ozotoceros bezoarticus) (Merino & Semenjuk 2011). Some species have an extremely broad 

geographical range (e.g. Cervus unicolor) (Francis 2008), while others are restricted to small 

islands (e.g. Axis kuhlii) (Geist 1998). They are mostly species of tropical to temperate 

regions, but some taxa are adapted to more extreme conditions like reindeer (Rangifer 

tarandus) that live in the arctic tundra (Baskin 1986). Generally speaking, deer are probably 

best adapted to young, poorly stocked ecosystems (Geist 1998). 
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These extreme habitat differences are reflected in substantial variation in a number of 

physiological traits (e.g. in metabolic rate, digestion, heat tolerance and water management) 

that allow species to survive in these conditions (Putman & Flueck 2011). In part due to their 

increased metabolic rate, reindeer are, for example, able to tolerate temperatures down to -

50°C (Geist 1998, Putman & Flueck 2011). The influence of body size and ambient 

temperature on water management in deer species is another example. Temperate forms like 

red deer (Cervus elaphus) tend to have a higher water intake than tropical species like Javan 

rusa (Cervus timorensis) (Yape Kii & Dryden 2005). 

Cervid habitats not only differ in vegetation and climate, but also in terms of substrate type 

(wet or dry) and altitude. Certain species, like Eld’s deer (Cervus eldii) and Chinese water 

deer (Hydropotes inermis) are clearly adapted to wet environments (Tordoff et al. 2005, 

Zhang et al. 2006), while other species such as white-lipped deer (Cervus albirostris) are 

found at high altitudes (Leslie 2010). It should however be mentioned that no deer are truly 

adapted to mountainous terrain in the way that some bovids are (Geist 1998). White-lipped 

deer have a preference for plains at high altitude and even the huemul (Hippocamelus 

bisulcus), traditionally considered a mountain deer, has been shown to occur mainly on flat 

terrain (Flueck & Flueck 2017).  

In general, deer are not as specialized in terms of food habits as some bovids. High quality 

food with low amounts of fiber is preferred and is shredded and moved quickly trough the 

alimentary tract (Geist 1998). Deer are ruminants, meaning they have complex stomachs 

where food is digested mainly by means of microbial fermentation. Characteristic for this type 

of digestion is the regular regurgitation of partially digested food for re-chewing (rumination) 

(Whitfield 1986). Despite their preference for low fibered, high quality food, there is still 

considerable variation in dietary composition between deer species. Some forms, such as the 

white lipped deer (Cervus alibirostris), are able to include a substantial amount of graze in 
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their diets, while others (e.g. Alces alces) are true browsers that live on leaves and young 

shoots (Geist 1998). Slinker type deer (e.g. Muntiacus reevesi) usually feed on soft, easily 

digestible plants such as buds, flowers and fruit (Geist 1998), while more cursorial forms (e.g. 

Axis axis) are often more inclined towards grazing (Schaller 1967). Reindeer (Rangifer 

tarandus) are exceptional again, as a large part of their diet consists of nutrient poor lichens 

(Nieminen & Heiskari 1988). 

Social organization in deer also differs substantially between taxa and is found to be 

correlated with environmental factors. Some species, like the chital (Axis axis), are highly 

gregarious (Schaller 1967), while others, such as the hog deer (Axis porcinus) tend to be more 

solitary (Fernando 1984). Usually, increased sociality in deer is found in animals living in 

more open environments and vice versa (Geist 1998). Besides environmental aspects, 

discrepancies in social organization between deer are also subject to other factors such as 

seasonal variation and differences in age and sex (Geist 1998). 

Anti-predator adaptations are powerful drivers in deer evolution and have a profound 

influence on cervid morphology and behaviour (Geist 1998). Because areas outside their 

home range may be poorer in resources or are defended by conspecifics, deer can’t just leave 

when a predator enters the area. As a result cervids have a number of anti-predator strategies 

to overcome such encounters (Geist 1998). One such strategy is to avoid being detected, by 

for example minimizing movement or masking scent (Geist 1998). Another tactic, used by 

e.g. muntjacs is the release of puffs of scent, marking objects in the surrounding area, which 

confuses predators (Ralls 1974, Geist 1998). Some species such as the chital (Axis axis) are 

adapted to living in herds as an anti-predatory countermeasure (Schaller 1967). 

Once detected, however, deer will flee. Depending on the habitat in which an encounter takes 

place, deer have evolved different strategies to escape from their predators. These differences 

can be mainly summarized as an evolution from saltatorial hiders using obstructed surfaces to 
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cursorial movement specialists (Geist 1998). Species living in thick vegetation make use of 

two tactics. Small forms, such as the muntjacs (Muntiacus spp.), attempt to maximize the 

distance between themselves and the predator in order to gain time to hide (Geist 1998). For 

this they use e.g. trail tunnels through vegetation. As the pursuing predator is usually too large 

to easily pass through these tunnels, it is either blocked or slowed down by this strategy, 

allowing the prey to find cover (Geist 1998). Larger species that cannot rely on these trail 

tunnels make use of another strategy. These forms rely heavily on saltation (jumping or 

leaping) as a means to place objects such as branches or rocks between them and their pursuer 

(Geist 1998).They may also use steep slopes and give conflicting signals about their direction 

to the predator (Barrette 1977, Geist 1998). This strategy confuses and disorients the predator 

and allows the prey to escape (Geist 1998) 

Other species living in more open habitats, devoid of objects that can be placed in between the 

predator and the fleeing animal, have developed a cursorial escape strategy. Such species are 

characterized by high speed and increased endurance (Geist 1998). For example red deer 

(Cervus elaphus) are known to easily outrun dogs or horses when being being chased by 

hunters (Geist 1998). Some species do not really belong in any of these categories (saltatorial 

or cursorial) and have developed their own unique evasion strategies. One such animal is the 

moose (Alces alces) which makes optimal use of its large size and long legs to place obstacles 

between itself and predators. While the moose can easily “glide” over obstacles by just 

stepping or trotting over them, predators like wolves will quickly tire from having to jump 

over them (Geist 1998) (Fig. 4.3). 
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 Figure 4.3: Moose escaping wolves by trotting over obstacles (adapted from Geist 1998) 

 

Although there are strong indications for a general link between predator evasion strategies 

and habitat in cervids, there is little quantitative data available about how these evasion tactics 

translate into specific locomotor behaviours (Caro 1986, 1994). Knowledge of these specific 

locomotor behaviours is nevertheless important for the construction of ecomorphological 

models such as the ones in this dissertation. Fortunately, some research on bovids in African 

environments (Caro 1986, 1994, Caro et al. 2004) provides a good model that can most likely 

be extrapolated to the cervid family. Caron (1994) observed five different locomotor 

behaviours associated with predator evasion: leaping, bounding, prancing and tacking or zig-

zag running. An overview with explanations is given in Table 4.2. In these studies it is 

pointed out that stotting and prancing probably act more as signals to wrongfoot the predator 

than as locomotor adaptations that directly help during flight (Caro 1994, 2004). Tacking, or 

zig-zag running, was found to be more common amongst bovids living in open habitats (Caro 

2004) and bounding leaps were more likely to occur in bovids when the topography was more 

rugged or when vegetation was tall (Caro 1994). It is therefore likely that specific locomotor 

behaviours associated with saltatorial deer living in landscapes with closed vegetation are 

bounding and leaping, while cursorial deer, adapted to more open habitats probably 

emphasize tacking and increased speed when escaping pursuing predators. 
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Leap: High jump where the individual rises vertically of the ground 

Bound: Long jump that carries the animal over at least double the distance covered by one galloping stride 

Stot: A bouncing gait with all four legs held stiff and straight, landing on all fours 

Tack/zig-
zag: Sharp turn that suddenly changes course by approximately 90° 

Prance: 
Series of pronounced and exaggerated high steps made at slow speed, similar to the "piaffer gait" in race 
horses 

Table 4.2: Locomotor behaviours associated with predator evasion (adapted after Caro 1994) 

 

4.4.2 Quaternary cervids of Java and Sundaland 

Fossil deer are known from a number of sites in Island Southeast Asia. Deposits in Sundaland 

that contain cervids are found in peninsular Thailand and Malaysia, Sumatra, Borneo, 

Palawan and Java, but are unevenly distributed. Although outside the scope of this review, 

deer fossils are also known from a number of sites in mainland Southeast Asia, which is in 

zoogeographical terms part of the Indochinese subregion. In this region Pleistocene sites with 

cervids are found in Northern-and Central Thailand (e.g. Auetrakulvit 2004, Tougard & 

Montuire 2006, Zeitoun et al. 2005, 2010, Conrad et al. 2013, Filoux et al. 2015, Suraprasit et 

al. 2016), Cambodia (Beden & Guérin 1973, Forestier et al. 2015), Laos (Bacon et al. 2008a, 

2010, Demeter et al. 2010), Vietnam (e.g. Long et al. 1996, Bacon et al. 2006, 2008b, Rabett 

et al. 2011), Southern China (e.g. Wei 1957, Li 1961, Wang et al. 2007) and Myanmar (e.g. 

Pickford 2013, Aung et al. 2015). The following review will focus on the fossil deer of the 

Sundaic subregion, of which Java is part. A map with the sites mentioned in this review is 

given in Figure 4.4. 

A number of excavations of prehistoric cave sites in Malaysian Borneo have since the 1960s 

provided evidence for the presence of cervids since at least the Late Pleistocene (Harrison 

1998, Piper et al. 2008). The oldest records are from Niah cave in the Sarawak province 

(Medway 1964, Piper et al. 2008, Cranbrook 2010) and date back to about 45.000 Ka. Only 
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extant species are known from the Bornean records. At Niah cave (Piper et al. 2008) and 

Madai cave (Harrison 1998), also on the Malaysian part of the island, sambar (Cervus (Rusa) 

unicolor) and muntjac (Muntiacus cf. muntjak) were indentified. Evidence is absent from the 

Indonesian part of Borneo. The fossil record of Peninsular Malaysia is also poorly known. 

From the latter region Hooijer (1962) identified a possible large deer of the subgenus Rusa 

from the Middle Pleistocene site of Ipoh (Kinta Valley, Perak). Some more recently collected 

material from Perak and Sengalot -of uncertain age- contained fragments of Cervus (Rusa) 

unicolor (Ibrahim et al. 2012).  

 

 

Figure 4.4: Quaternary sites in Sundaland with deer fossils mentioned in this chapter. 1. Niah cave, 2. Madai 

cave, 3. Ipoh,  4. Perak, 5. Tabon, 6. Ile cave, 7. Sibrambang-,Djambu- and Lida Ajer caves, 8. Binjaj Tamieng, 

9. Thung Nong Nien, 10. Lang Rongrien, Moh Khiew I and II, 11. Wajak cave, Ketjil cave and Hoekgrot, 12. 

Sampung, 13. Ngandong, 14. Punung, 15. Trinil, 16. Kedung Brubus, 17. Watualang and Pitu, 18. Pandejan, 19. 

Sangiran, 20. Bumiaju, 21. Perning, 22. Baringinan, 23. Bangle, 24. Sembungan, 25. Braholo cave, 26. Tianko 

Panjang, 27. Hagop Bilo. K= Kra Isthmus, W= Wallace’s line (as modified by Huxley). 
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Adjacent to Eastern Borneo lies the smaller island of Palawan which also forms part of the 

Sundaic biogeographical subregion (Reis & Garong 2001) and has an extant fauna broadly 

similar to that of Borneo. Here the fossil record goes back to the Late Pleistocene in Tabon 

(Fox 1970) and Ile cave (Piper et al. 2011). Fossils of at least two deer species are known 

from the island: a smaller species identified as Axis (Hyelaphus) calamianensis and a larger 

species identified as Cervus (Rusa) sp. The taxonomic classification of the latter remains 

unresolved, but metric data suggest an affinity with Cervus (rusa) mariannus (Piper et al. 

2011). Both taxa are extinct from the main island of Palawan today, although Axis 

(Hyelaphus) calamianensis is still present on the nearby smaller islands of Busuanga and 

Culion (Piper et al. 2011). In the Northernmost part of the Sundaic subregion, the Thai 

peninsula, only the remains of extant forms from the Late Pleistocene are present. Remains of 

Muntiacus muntjak and Cervus (Rusa) unicolor were found at Thung Nong Nien, Lang 

Rongrien and Moh Khiew I and II (Auetrakulvit 2004). 

In Sumatra a number of cave deposits from the Padang Highlands have provided evidence of 

Pleistocene deer (de Vos 1983). The Sibrambang-, Djamboe- and Lida Ajer cave 

assemblages, thought to date from the early Last Interglacial (between 125 and 60 ka) (de Vos 

1983, Westeway et al. 2007) contain deer remains. Taxa identified on these sites are: Cervus 

(Rusa) sp., Muntiacus sp. and Muntiacus muntjak (de Vos 1983, Gruwier et al. 2015).  

Similar to the cervids from other areas of Sundaland, the identification of the Rusa deer from 

Sumatra remains problematic, but morphometric data indicate a close match with Cervus 

(Rusa) unicolor, the Javan Cervus (Rusa) timorensis or its probable ancestor Cervus (Rusa) 

kendengensis (Gruwier et al. 2015). Some Late Pleistocene/Early Holocene fragments of 

Cervus (Rusa) cf. unicolor and Muntiacus sp. are known from Binjaj Tamieng, a prehistoric 
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shellmidden in Northern Sumatra (Schürmann 1928, Gruwier 2017). An unspecified large 

deer was described at Tianko Panjang (Bronson & Asmar 1975).  

The palaeontological record of Java is probably the best known in the region (Louys et al. 

2007). Many of the Pleistocene deposits on this island have yielded remains of cervids. This 

has led to a high number of species being described in the literature (e.g. von Koenigswald 

1933, 1934) although some of these may be obsolete (Gruwier et al. 2015). In general the 

Javan fossil record is characterized by large sized deer of the genus Cervus (subgenus Rusa), 

medium sized deer that are generally assigned to the genus Axis and small sized species of the 

genus Muntiacus (Gruwier et al. 2015, Amano et al. 2016). The exact classification of these 

forms remains controversial. An overview of the taxa described from the palaeontological 

record of Java is given in Table 4.3. 

All three species currently living in Java (Axis (Hyelaphus) kuhlii, Cervus (Rusa) timorensis 

and Muntiacus muntjak) are known from the fossil record. The Bawean deer (Axis kuhlii), 

which currently has a distribution limited to the small Bawean Island, north of Java, is thought 

to have had a wider historical range. It was at least present on the main island of Java during 

the Early Holocene, as testified by its presence in Wajak cave (van den Brink 1982, 

Simanjuntak & Asikin 2004). Its taxonomic affinities with the Pleistocene deer of Java are not 

well understood though. Cervus (Rusa) timorensis is certainly present in a number of 

Holocene cave deposits such as Sampung cave (Dammerman 1934), Wajak cave (van den 

Brink 1982, 1983) and Hoekgrot (Storm 1990). Cervus sp. described from the Late 

Pleistocene Punung (Badoux 1959, Storm & de Vos 2006, Westaway et al. 2007) probably 

belongs to this species and Cervus hippelaphus known from the Late Pleistocene locality of 

Ngandong (von Koenigswald 1934) should also be considered synonymous with this form. 
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  Taxon Synonyms 

Small sized taxa [genus Muntiacus] 
Muntiacus muntjak (Zimmerman 1780)* 

Cervulus sp. (Dubois 1908) 
Cervulus kendengensis (Stremme 1911) 
Muntiacus muntjac kendengensis (von 

Koenigswald 1933) 
Cervus muntjak (Zimmerman 1780)* 
Cervus moschatus (Blainville 1816)* 

Cervulus moschatus (Blainville 1816)* 
Cervulus muntiacus typicus (Ward 1910)* 

Muntiacus bancanus (Lyon 1906)* 

Muntiacus bumiajuensis (von 
Koenigswald 1933) 

Unknown 

Medium sized taxa [probably genus Axis] 

Axis Lydekkeri 
(Martin 1888) 

Cervus lydekkeri (Martin 1886, Vogel von 
Falkenstein 1910) 

Axis axis (Dubois 1891) 
Cervus liriocerus (Dubois 1907, 1908) 

Cervus (Axis) lydekkeri (Stremme 1911, 
Stehlin 1925,  

Von Koenigswald 1933, 1934) 

Axis javanicus  
(Von Koenigswald 1933) 

Cervus javanicus (Von Koenigswald 
1933,1934) 

Axis sunda (Kretzoi 1947) 

Axis (Hyelaphus)kuhlii  
(Temminck 1836)* Cervus kuhlii (Haltenorth 1963)* 

Cervus zwaani  
(Von Koenigswald 1933) 

Possibly junior synonym of Axis lydekkeri 
(Martin 1886) 

Cervus (Rusa) stehlini  
(Von Koenigswald 1933) 

Unknown 

Medium- to large sized taxon [(sub)genus 
uncertain] 

Cervus oppenoorthi  
(von Koenigswald 1933) 

According to Van Bemmel (1944)  
a junior synonym of Axis (Hyelaphus) kuhlii * 

Large sized taxa [probably (sub)genus 
Cervus(Rusa)] 

Cervus (Rusa) timorensis  
(de Blainville 1822)* 

Cervus hippelaphus  (Cuvier  1825)* 
Cervus russa (Muller  & Schlegel 1885)* 

Cervus  timorensis russa (Muller & Schlegel 
1885)* 

Cervus peronii (Cuvier 1825)* 
Cervus tavistockii (Lydekker 1900)* 

Cervus kendengensis  
(Dubois 1908) Unknown 

Cervus palaeomendjangang  
(Dubois 1908) 

Possibly junior synonym of Cervus 
kendengensis 

(Von Koenigswald 1933) 
Cervus problematicus  

(von Koenigswald 1933) Unknown 

Cervus sp. (Martin 1888) Unknown 

Cervus (Dubois 1907) Unknown 

Cervus (Rusa) sp. (Dubois 1892) Unknown 

Cervus (Rusa) sp.  
(Von Koenigswald 1933) Unknown 

Cervus sp. (Stehlin 1925) Unknown 

Cervus sp.  
(Von Koenigswald 1933) 

Unknown 

Cervus (Rusa) sp. (Aziz & De Vos 1999) Unknown 

Cervus sp. (Stehn & Umgrove 1926) Unknown 

Table 4.3: Taxa known from the Javan fossil record by size category. *= described from extant form. 
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Dammerman (1934) mentioned the presence of Cervus (Rucervus) eldii in the Holocene of 

Java based on the presence of one antler fragment from Sampung cave. This specimen was 

described by the author as peculiar in morphology due to the fact that the brown tine forms an 

almost continuous curve with the beam. Von Koenigswald (1933) did however describe 

similarly shaped antlers from Nandong and considered them as belonging to a subspecies of 

Cervus (Axis) javanicus. As such a morphology is apparently not unique to Cervus eldii and 

given its further absence from the rest of Sundaland, the presence of this species in Java is 

unlikely. 

Fossil remains of muntjacs from the Quaternary of Java have for the most part been identified 

as the extant red muntjac (Muntiacus muntjak). Holocene red muntjacs are known from a 

number of cave sites such as Ketjil cave (Span 1993), Wajak cave (van den Brink 1982), 

Braholo cave (Amano et al. 2015) and Hoekgrot (Storm 1990). From the Late Pleistocene its 

presence is mentioned at Ngandong (von Koenigswald 1933), from the Punung deposits 

(Badoux 1959) and from the Late Pleistocene/Holocene Braholo cave (Amano et al. 2015). 

Other Pleistocene fragments of this species were found at Pandejan, Watugudel (Pitu), 

Bangle, Kedung Brubus, Sembungan (von Koenigswald 1933) and Sangiran (von 

Koenigswald 1934).  

A possibly extinct species of muntjac (Cervulus/Muntiacus kendengensis) was described from 

the Early/Middle Pleistocene sites of Trinil and Pandejan based on a small number of antler 

fragments (Stremme 1911, von Koenigswald 1933). According to Stremme (1911) the antlers 

of this form were sufficiently different in size and morphology to separate it from the extant 

red muntjac (Muntiacus muntjak). Von Koenigswald (1933) on the other hand considered it 

merely a subspecies of the recent form (Muntiacus muntjak kendengensis). The only extinct 

muntjac recognized by von Koenigswald was a new species from the Early Pleistocene of 
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Bumiaju: Muntiacus bumiajuensis (von Koenigswald 1933). This form was described on the 

basis of a single maxillary fragment (von Koenigswald 1933). 

Of the medium sized deer of Java, probably one of the most common species in the fossil 

record is Axis lydekkeri (Martin 1888). This form was described on the basis of an almost 

complete, smooth, groove-less antler with a typical lyre-shape (Martin 1888, Zaim et al. 

2003). The type specimen most likely belongs to a subadult (Dubois 1908). A. lydekkeri is 

relatively well known and identified from the fossil record by a number of researchers 

(Dubois 1908, Vogel von Falckenstein 1910, Stremme 1911, von Koenigswald 1933, 1934). 

Although in the initial description it was already realized that its morphology was different 

from any extant species (Martin 1888), it was Dubois (1908) who pointed out its similarity to 

the Indian Chital (Axis axis). Meijaard and Groves (2004) classify it under the subgenus 

Hyelaphus, which is confirmed by a more recent morphometric study (Gruwier et al. 2015). 

Axis lydekkeri is abundant in Trinil (von Koenigswald 1934), but also present in other sites 

such as Kedung Brubus (von Koenigswald 1934), Pitu, Watualang (von Koenigswald 1933) 

and Sangiran (Moigne et al. 2004a, 2004b). According to Zaim and colleagues (2003) it is 

similar in size to Axis (Hyelaphus) porcinus and Vogel von Falckenstein (1910) mentions that 

it is somewhat smaller than Axis axis. Both these statements are confirmed by recent 

morphometric research (Gruwier et al. 2015). 

Another medium sized species of the same genus, but without a clearly assigned type 

specimen, is Axis javanicus (von Koenigswald 1933, 1934). Many antler fragments from the 

Late Quaternary are placed under this taxon (Zaim et al. 2003). It is best known from the Late 

Pleistocene at Ngandong (von Koenigswald 1933) in addition to Watualang, Pandejan and 

possibly Pitu (Zaim et al. 2003). Characteristic for this species are slightly pearled antlers 

with an angle between the beam and the brown tine of more than 90 ° and usually with an 
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accessory tine within this angle (von Koenigswald 1933, Zaim et al. 2003). Moigne (2004a) 

argues this species is most similar to Axis (Hyelaphus) kuhlii, and might be considered a 

subspecies of the latter. Meijaard and Groves (2004) on the other hand consider it 

synonymous with- or closely related to- a form of the extant chital (Axis axis) that migrated 

from the mainland to Java during the Late-Pleistocene. 

A species of intermediate size described by von Koenigswald (1933) is Cervus zwaani. This 

taxon is based on four mandibles and an upper third molar from the Early Pleistocene of 

Bumiaju in Western Java. In addition some fragments from Perning (von Koenigswald in de 

Terra & Patterson 1939, de Terra 1941), Sangiran and Baringinan (von Koenigswald 1934) 

were also provisionally attributed to this species. No antlers have been attributed to Cervus 

zwaani (Zaim et al. 2003), but according to von Koenigswald (1933) it was slightly larger and 

had more robust premolars than Axis lydekkeri. Later studies (Zaim et al. 2003, Gruwier et al. 

2015) did however not find any substantial metric or morphological differences between 

Cervus zwaani and Axis lydekkeri. It is not unlikely that C. zwaani is a junior synonym of A. 

lydekkeri. 

Besides these animals of intermediate size, generally assigned to the genus Axis, there are a 

high number of large deer, usually attributed to the genus genus Cervus and subgenus Rusa. 

One of the better known taxa is Cervus kendengensis (Dubois 1908). Dubois (1908) thought 

C. kendengensis was similar to the recent Cervus hippelaphus (now Cervus (Rusa) timorensis) 

but considered it a separate species due to its shorter and thicker antlers. Although Dubois 

(1908) gave a short description of this species and many fossils from the Middle Pleistocene 

sites of Bangle and Kedung Brubus in the collection of Naturalis were placed by him under 

this taxon, no type specimen was designated. In the same publication, Dubois (1908) also 

described another new species: Cervus palaeomendjangan. This second large cervid was 
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characterized by the peculiar morphology of its antlers with typically small tines pointing 

outwards and to the front, similar to the recent large Javan deer (Cervus (Rusa) timorensis) 

(Dubois 1908). This species was however not recognized by von Koenigswald (1933). 

Another large sized species is Cervus stehlini. This form was described on the basis of several 

mandibles and a small number of antler fragments from the Early Pleistocene of Bumiaju 

(von Koenigswald 1933). Von Koenigswald (1933) considered it a separate species from 

Cervus hippelaphus (now Cervus (Rusa) timorensis) based on the morphology and 

slenderness of its premolars. Besides these small differences however, the author considered it 

similar in shape and size to the living rusa deer from Java (Cervus (Rusa) timorensis). 

Cervus (Rusa) oppenoorthi, a species of unclear taxonomic status, is known from a number of 

antler fragments from Pitu and Sembungan (von Koenigswald 1933). Von Koenigswald 

(1933) noted that its antlers were strongly pearled and similar in morphology to the recent 

Axis (Hyelaphus) kuhlii, but larger in size.  He considered it distinct from Axis lydekkeri and 

the Javan Rusa deer (Cervus (Rusa) timorensis) and probably most closely related to A. kuhlii 

(von Koenigswald 1933). This point of view was shared by van Bemmel (1944) who even 

considered it a subspecies of A. kuhlii. Zaim and collegues (2003) on the other hand have 

argued that it was probably more closely related to the Rusa-subgenus. It should be noted that 

at the time von Koenigswald classified these specimens, the Bawean deer (Axis (Hyelaphus) 

kuhlii) was placed in the subgenus Rusa (von Koenigswald 1933). Moreover, the taxonomic 

status of the subgenus Hyelaphus remains unresolved to this day and some recent molecular 

studies have supported a close relationship between the subgenus Hyelaphus and the Cervus 

(Rusa) timorensis/Cervus (Rusa) unicolor-clade (Pitra et al. 2004). 
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The largest form recognized in the Pleistocene record of Java is Cervus (Rusa) problematicus. 

It is known from a partial cranium and a lower first molar from the Early Pleistocene of 

Bumiaju (von koenigswald 1933). Later von Koenigswald (1934) included other remains in 

this taxon and placed it under the subgenus Rusa. In addition, the skull fragment from 

Bumiaju, was recently re-identified as a bovid and should be excluded from this species (van 

den Bergh in Zaim et al. 2003). The tooth fragment on the other hand appears to be properly 

identified as a large sized cervid (personal observation). 

Von Koenigswald (1933) also described several large forms from the fossil record which he 

did not assign to a species. It is unclear whether these finds should be considered separate taxa 

from the ones already mentioned. A badly preserved antler fragment was identified as Cervus 

sp. (von Koenigswald 1933) and a partial skull with antlers from Sembungan was classified in 

the same publication as Cervus (Rusa) sp. (von Koenigswald 1933). The author noticed that it 

was similar to Cervus (Rusa) timorensis and Cervus (Rusa) unicolor, but due to its unusual 

morphology and the sharp kink in the skull profile he refrained from giving it a more specific 

classification (von Koenigswald 1933). 

In addition to von Koenigswald, a number of other researchers also noticed the presence of 

larger sized deer in the Javan fossil record without assigning them to a species. Martin (1888) 

mentioned that there was a larger deer (Cervus sp.) present in the then known collections 

besides the smaller axis-like deer. Dubois (1891) came to the same conclusion and observed 

at least two different deer amongst the fossils he had collected in the field.  In addition to Axis 

lydekkeri, there was a larger, rarer species with heavier antlers that was reminiscent of Cervus 

(Rusa) timorensis and to some extent also to Cervus (Rusa) unicolor (Dubois 1891, 1907). In 

the absence of a type specimen it is unclear which fossils the author was referring to. Other 
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large sized deer of unclear taxonomic affinity include Cervus sp. sensu Stehlin (1925), Cervus 

sp. sensu Stehn and Umgrove (1929) and Cervus (Rusa) sp. sensu Aziz and de Vos (1999) 

4.5 Cervids in ecomorphology 

While some ecomorphological studies of bovids have included some cervid specimens in their 

extant training set (Kovarovic 2004, Schellhorn 2009, Schellhorn & .Pfretzschner 2015) so far 

only Curran’s  (2009, 2012, 2015) work has specifically focused on the cervid family. There 

are a number of reasons why cervids are an appropriate subject for palaeoecological studies 

similar to those based on bovid ecomorphology. 

First of all, cervids are members of the artiodactyl order, like the suids and bovids that have 

both already proven to be useful palaeoenvironmental proxies in ecomorphological studies 

(e.g. Kappelman 1988, Bishop 1994, Bishop et al. 2006, Kappelman et al. 1997, Vrba 1980, 

1995b, 1999, Plummer & Bishop 1994, Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, 

Weinand 2005, Kovarovic & Andrews 2007, Cuddahee 2008, Plummer et al. 2008, 

Schellhorn 2009, Klein et al. 2010, Barr 2014a, Forrest et al. 2018). There are indications 

that, similar to other ruminants, predator evasion strategy is also the main selective constraint 

on cervid postcranial morphology (Geist 1998, Curran 2009). On a higher taxonomic level it 

should be added that most of the differences in (limb) morphology between cervids and 

bovids are probably the result of adaptation to different environments (Leinders 1979). There 

are indications that the same principle also applies within the cervid family (Janis 2007, 

Curran 2009). 

Cervids are a widely distributed family that is characterized by a high number of species that 

have adapted to a range of environments (Putman & Flueck 2011). Although the 

environmental flexibility of cervids is not of the same magnitude as that found in bovids 
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(Geist 1998, Janis 2007), they are expected to show a similar morphological variation to that 

seen in bovids adapted to different kinds of environments. As deer tend to be more 

generalistic in their behaviour than bovids (Geist 1998) it is predicted that this is also reflected 

in their osteomorphology. Ecomorphological differences are expected to be more subtle than 

in bovids but of the same nature. 

Deer having originally evolved in Asia, never managed to successfully colonize most of 

Africa, apparently being unable to overcome the geographical barriers that the Sahara and the 

Nile Delta posed (Tchernov 1992, Geist 1998). The reasons for this are unclear, especially as 

bovids did manage to disperse over most of Africa and Eurasia (Goss 1983, Geraards 2010). 

In any case, the range of niches occupied in Africa by a diversity of bovids, is in Eurasia to a 

large extent occupied by cervids (Geist 1998). It is known that in regions where bovids and 

cervids are sympatric, niches that have opened up (e.g. as a result of extinction) are often 

reoccupied by members of the other group (Leinders 1979). Consequently fossils of cervids 

are a common element in European and Asian palaeontological and archaeological 

assemblages (Curran 2009). In that sense such fossils can serve as valuable palaeoecological 

proxies in the same way as bovids can for African Pleistocene sites. 
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5. Hypotheses, methods and materials 

5.1 Research questions and hypotheses 

In chapter 3 I discussed how Homo erectus was the first hominin able to expand its 

biogeographic range over large parts of Africa and Eurasia (Anton & Swisher 2004). The 

underlying causes for this event are not well understood, but it is likely that a combination of 

extrinsic (i.e. environmental) and intrinsic changes (i.e. behavioural and/or morphological) in 

and around Homo erectus allowed it to disperse into new areas (Carotenuto et al. 2016). It is 

nevertheless unclear whether intrinsic or extrinsic factors played a more decisive role in early 

Homo dispersal. 

This dissertation addresses this question by looking at the palaeoecology of hominin sites in 

Southeast Asia and elsewhere. By comparing palaeoenvironmental reconstructions of 

different Homo erectus sites, an estimate can be made of the adaptive flexibility of this 

species. If reconstructions point to a relatively specific and uniform type of environment (e.g. 

savannah-like environment) for all sites, the data would support a scenario where extrinsic 

changes in the landscape primarily drove early hominin expansion and success. If 

palaeoenvironmental reconstructions point to a range of different environments that Homo 

erectus occupied, the data would support a scenario where intrinsic changes (perhaps as a 

result of variability selection) made Homo erectus a flexible species that was less restricted by 

specific ecological parameters in its dispersal over larger parts of the Old World. 

The palaeoecological analyses in this dissertation are therefore not merely for the sake of 

providing insight into the regional conditions that were present in Java during the Pleistocene, 

but should ultimately be considered as a test of the above outlined theories concerning 

hominin dispersal. By presenting new palaeoecological data based on ecomorphological 
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analyses of Indonesian Pleistocene cervids and by examining them in conjunction with data 

from other palaeoecological proxies and from other sites, a contribution is made to our 

understanding of the capacity for environmental flexibility in Homo erectus. 

More specifically cervid fossils from several sites in Java, associated with two 

biostratigraphic units (the Trinil H.K. and the Kedung Brubus faunal units), are subjected to 

ecomorphological analyses. The island of Java forms the ideal test case for such an analysis 

for a number of reasons. First, because it lies at the easternmost limit of the Homo erectus 

range and despite being rich in hominin fossils, the palaeoecology of this area has not been as 

well studied compared to that of East Africa and Europe. As some of the currently available 

palaeoecological data is conflicting (e.g. van den Bergh et al. 2001, Louys 2007), alternative 

approaches such as ecomorphology, can make an important contribution to settling disputes 

surrounding the nature of the Pleistocene environments of Java. A second advantage is that, 

contrary to many African sites, there is less doubt about the identification of the human fossils 

from this region. As Homo erectus is currently thought to be the only Early to Middle 

Pleistocene hominin present on the island (Dunsworth & Walker 2002), there is little chance 

of confusion with other members of the genus (although see Zanoli et al. 2019). And finally, 

as was already discussed in detail in Chapter 2, the fossil record of Java is exceedingly rich 

and has a long history of palaeontological research (e.g. Dubois 1907, 1908, von Koenigswald 

1933, 1934, 1935). This has resulted in large collections of faunal remains found in 

association with Homo erectus, providing sufficient materials for robust quantitative analyses.  

An important aspect about the Trinil H.K. (0.9 Ma) and the Kedung Brubus biostratigraphic 

units (0.7-0.8 Ma) (van den Bergh et al. 2001) is that there are indications that the transition 

between these successive phases may correspond to significant climatic and environmental 

changes. This is indicated by the appearance of a range of new vertebrates and the possible 
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coincidence of the Kedung Brubus fauna with a glacial maximum and extremely low global 

sea levels (Musser 1982, Sondaar 1994, Meijaard 2003a). Most important for this study is the 

appearance in the younger levels of one or more new cervid species (e.g. Cervus (Rusa) 

kendengensis). Despite these observations, the palaeoenvironmental changes that took place 

in the region during this transition are not well known. This supposed coincidence with a 

glacial stage and influx of new species from the continent could imply that Kedung Brubus 

represented a more arid phase than Trinil H.K. While certain researchers (Weinand 2005) 

have found evidence for such an aridification, others have merely seen a continuation of the 

general conditions present during the deposition of the Trinil H.K. fauna (van den Bergh et al. 

2001).  

By using cervid fossils from sites that are associated with these biostratigraphic units it is 

possible to generate new palaeoenvironmental interpretations that will allow for a more 

detailed insight into the changes that took place in Java during the Early and Middle 

Pleistocene. This will lead to a better understanding of what role Homo erectus played in 

these ancient ecosystems and indirectly provide clues about the extent to which extrinsic 

environmental conditions constrained its biogeographic distribution.  

In order to gain a more detailed understanding of the nature of Javan palaeoenvironments by 

means of ecomorphological analysis, it is first necessary to develop a functioning model 

based on extant species of known ecological preference. Developing such a predictive model 

that can be applied on fossil cervids is a goal in itself because it can also be used on 

specimens from other palaeontological sites, as long as the appropriate skeletal elements are 

present. In this case a model was constructed for the calcaneus and the intermediate phalanx. 

As part of the development of this model, a number of hypotheses will be tested that 

specifically deal with the relationship between certain morphological traits in these elements 
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and ecological parameters. The specific hypotheses with respect to the functional and 

ecological morphology of the cervid lower limb are presented in section 5.2, but in general the 

main research questions dealing with hominin behaviour and palaeoecology in this 

dissertation are the following:  

- What environmental conditions were present around the Early and Middle Pleistocene 

sites where Homo erectus was found, as suggested by the cervid ecomorphological 

analyses?  

- Were there any significant differences between the older Trinil H.K. biostratigraphic 

unit and the younger Kedung Brubus unit? If this is the case, can these differences be 

reconciled with current palaeoclimatological and palaeoecological data from the 

region? Is there for example a shift towards more arid environments that could be 

linked to regional or global climatological events? 

- Was Homo erectus in Java only found in one specific type of habitat or was it able to 

adapt to significant environmental change? Does the data perhaps suggest that Homo 

erectus was associated with a open (savannah-like) environments or was the presence 

of an aquatic component a necessary condition? 

- To what extent do these findings support or refute current models about early hominin 

palaeoecology and dispersal? 

5.2 Functional morphology and biomechanics of the cervid limb 

In order to develop an ecomorphological model for the cervid intermediate phalanx and 

calcaneus it is important to start from a number of hypotheses that predict the relationship 
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between morphological characteristics and ecological variables that are firmly rooted in 

ecological and biomechanical theory (Bock 1994, Cuddahee 2008, Curran 2009). Although 

limited research has been conducted on cervid functional morphology and biomechanics, by 

combining theory from the existing literature on ecologically and morphologically similar 

bovids (e.g. Kappelman 1988, Kappelman et al. 1997, Scott 2004), artiodactyls (e.g.  Leinders 

1979, Köhler 1993) and other mammalian groups (e.g. Polly 2007, 2008, Warburton & 

Prideaux 2010, Galvez-Lopez & Casinos 2012, Scarborough et al. 2016), valuable hypotheses 

can be formulated and their viability explored. 

The calcaneus and intermediate phalanx are thought to be suitable for such analyses as 

previous research on artiodactyls has already demonstrated that their morphology is correlated 

with vegetation and substrate type (e.g. Degusta & Vrba 2003, 2005a, 2005b, Kovarovic 

2004, Kovarovic & Andrews 2007, Schellhorn 2009, Barr 2018). Moreover there are 

indications that the two elements may be, at least partially, driven by different ecological 

parameters. The morphology of the calcaneus is considered to be more influenced by 

vegetation type (Curran 2009, Barr 2018), while the shape of the intermediate phalanx may 

covary more with substrate type (Curran 2009). Consequently, they can be complementary in 

palaeoenvironmental reconstructions. Although these assumptions will be further explored in 

this chapter, they played a role in the initial selection of these elements for ecomorphological 

analysis. A third reason for choosing these elements was their availability in the fossil record. 

Smaller, more compact elements have a higher chance of survival due to their density and 

because they are less attractive to scavengers (Borerro 1990). This is not different for 

Indonesian palaeontological assemblages and intact calcanei and phalanges are fairly common 

in the sites studied in this dissertation. 
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The calcaneus and intermediate phalanx are both part of the lower hindleg. As the extant 

ecomorphological models developed here are primarily based on posterior phalanges and 

because the anterior and posterior phalanges are serially homologeous in ungulates (Hanot et 

al. 2017), the emphasis will be on describing this element as part of the hindfoot. The bone 

structure of this part of the leg in deer is similar to that found in domestic cattle (Bos taurus) 

(Getty 1986, Schimming et al. 2015). It comprises the tarsus, metatarsus and posterior 

phalanges (Schimming 2015) (Fig. 5.1). The tarsus is composed of a proximal and a distal 

row (Rajani et al. 2013, Schimming et al. 2015). The proximal row contains the calcaneus and 

the astragalus, with the cubonavicular (fused central tarsal and fourth tarsal bone) and the 

small and large cuneiform bones in the distal row (Rajani et al. 2013). The metatarsus is 

characterized by fusion of the third and the fourth metatarsal bones into a sturdy cannon bone 

while the second and fifth metatarsals are absent in the hind legs (Geist 1998). In the front 

legs the second and fifth metacarpals (not shown in figure 5.1) are still present in a vestigial 

state (Brooke 1878, Geist 1998). In New World deer and musk deer these vestigial 

metapodials are reduced to distal splinters medio-lateral to the cannon bone (the 

telemetacarpalian condition), while in Old World deer they are reduced to proximal splinters 

(the plesiometacarpalian condition) (Geist 1998, Groves 2007).  

Deer have four fingers in the hind legs, two of which are well developed and touch the ground 

(digits III and IV), while the other two (digits II and V) are vestigial (Rajani et al. 2013, 

Schimming et al. 2015). Each digit is composed of three phalanges of different lengths, the 

proximal (or first) one being the longest and the intermediate one (or second) being about one 

third the size of the former (Rajani et al. 2013). The distal (or third) phalanx is the shape of a 

hoof and has a sharp dorsal border (Rajani et al. 2013, Schimming et al. 2015). 
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Figure 5.1: The cervid hindfoot (adapted from Ferrié 2005 and Pales & Garcia 1981). 1:Tibia, 

2:Malleolus, 3:Astragalus, 4:Calcaneus, 5:Cubonavicular, 6:Metatarsus, 7:proximal (first) phalanx 

(digits III & IV), 8:Intermediate (second) phalanx (digits III & IV), 9:Distal (third) phalanx (digits III 

& IV), 10:Vestigeal phalanges (digits II & V), 11:Large cuneiform bone, 12:Small cuneiform bone, 

13:Proximal interphalangeal joint, 14:Distal interphalangeal joint, 15: Metapodial verticillus. 
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Deer have four fingers in the hind legs, two of which are well developed and touch the ground 

(digits III and IV), while the other two (digits II and V) are vestigial (Rajani et al. 2013, 

Schimming et al. 2015). Each digit is composed of three phalanges of different lengths, the 

proximal (or first) one being the longest and the intermediate one (or second) being about one 

third the size of the former (Rajani et al. 2013). The distal (or third) phalanx is the shape of a 

hoof and has a sharp dorsal border (Rajani et al. 2013, Schimming et al. 2015). 

The intermediate phalanx 

The intermediate phalanx proximally articulates with the distal articulation of the proximal 

phalanx and distally articulates with the third phalanx. The main movement of the proximal 

interphalangeal joint is volar flexion of the intermediate phalanx, while the distal 

interphalangeal joint (Fig. 5.1) permits dorsal and volar flexion (Leinders 1979). 

According to Köhler (1993) and Leinders (1979) interspecific variation in phalangeal 

morphology is to a large extent driven by ecological differences such as vegetation and/or 

substrate type. These variations are also mirrored in the wider difference between cervids on 

the one hand and medium sized open landscape bovids on the other hand (Leinders 1979). 

Morphological differences between cervids and bovids are described in a number of works 

that deal with the morphology of these animals (e.g. Heintz 1970, Schmid 1972, Leinders 

1979, Prummel 1988), albeit not necessarily all from a functional or ecological morphological 

perspective. Other works are more specifically concerned with the relationship between 

specific morphotypes and ecological variables (e.g. Köhler 1993, Degusta & Vrba 2005a).  As 

the functional explanations underlying the morphological differences between intermediate 

phalanges are sometimes contradictory, I first present an overview of the observed differences 

across species of different habitat types, based on the literature and on personal observations. 
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Then I will consider the functional explanations that are thought to be at the basis of these 

differences. 

A first notable osteomorphological difference observed in the phalanges between open 

environment species and those living in closed environments is the depth of the metapodial 

verticillus in the proximal articular surface of the first phalanx (Köhler 1993) (Fig. 5.1). This 

incision is deeper and more stable in species adapted to dry/open habitats. In wet/closed 

environment taxa it appears to be shallower and to allow for more medio-lateral movement 

(Köhler 1993). 

Another difference observed by Köhler (1993), is that there is a high degree of variation in the 

general robusticity of the phalanges. These elements are thought to be more robust in 

closed/wet environment species than in open/dry environment forms (Köhler 1993). The 

opposite is, however, stated by Degusta and Vrba (2005b), who interpreted the greater relative 

length of the phalanx in the bovid Tragelaphus spekii as an adaptation to closed, swampy 

terrain. My examinations confirm high variability in robusticity between species, but a clear 

relationship with environment type could not be established from preliminary qualitative 

observations.  

Köhler (1993) also described several other differences on the proximal side of the phalanges 

(Fig. 5.2). The proximal articular surface is more strongly concave in species of open/dry 

habitat, while it is flatter in species adapted to wet/closed environments. This is probably 

allows for more medio-lateral movement in wet/closed environment taxa. In addition, there 

are also substantial differences in the size of the plateau postarticulaire of the proximal 

articulation. In open/dry adapted species its anterio-posterior length is shorter than in species 

adapted to wet/closed environments (Köhler 1993).  
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A difference on the distal articulation of the intermediate phalanx is the placement of the 

extensor process on the anterior side (Fig. 5.2). According to Köhler (1993) it is extended 

towards the proximal side of the bone in species adapted to dry/open environments and closed 

to the distal side in animals adapted to closed/wet environments. The same may be the case 

for the palmar extensions on the posterior side of the phalanx. They are extended further 

towards the proximal side in dry/open adapted species and vice-versa. Furthermore, the shape 

of the outline of the distal articulation is also different between ecotypes. It is round in 

wet/closed forms and more oval with an apex pointing towards the posterior side in dry/open 

adapted forms (Köhler 1993).  Mountain species are similar in shape to open/dry adapted 

species, but less slender in overall shape and the distal articular surface is more square-shaped 

than round (Köhler 1993). 

 

Figure 5.2:Anatomical terms of location and parts of the intermediate phalanx. A: proximal articular surface; B: 

plateau postarticulaire; C: extensor process on anterior side; D: palmar extensions on posterior side; E: distal 

articular surface (adapted after Köhler 1993). 

While the above morphological variations are explicitely tested in a more quantitative way in 

chapter 6, the underlying explanations that link phalangeal morphology via function to 

ecology first need further exploration. Two key functional models are of importance with 
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respect to artiodactyl phalangeal morphology. A model developed in the 1970’s by Leinders 

(1979) focuses heavily on the mechanical advantages of certain morphological adaptations in 

relation to jumping behaviour and shock absorption capacity, which he considers substantially 

different between open adapted species and closed environment species. A later model by 

Köhler (1993) is related to that of Leinders, but puts more weight on substrate type. She 

argued that differences in morphology are primarily adaptations that allow for more or less 

flexibility in the joints depending on the terrain on which the animal moves (Köhler 1993). 

In Leinders’ (1979) model the elastic properties of the tendo interosseus and its advantage in 

vertical and horizontal jumping is emphasized.  Ruminants are characterized by a tendonified 

musculus interosseus. This so called tendo interosseus, or suspensory ligament, originates in 

the proximal metatarsus, connects the proximal sesamoids and inserts into the proximal 

phalanx. It continues through the plateau postarticulaire of the proximal phalanx until the 

plateau postarticulaire of the intermediate phalanx. During locomotion the tendo interosseus 

supports the metapodial-phalangeal joint and while running or jumping it prevents the 

phalanges from excessive flexion (Leinders 1979). The tendonification of this muscle 

provides a mechanical advantage due to its increased elastic properties. As a result of this 

added elasticity each dorsal flexion triggers a spring-like response whereby the foot bones are 

automatically placed in their original position again (Leinders 1979) (Fig. 5.3). This 

mechanism is better known in horses where it is called the pogostick mechanism (Sondaar 

1968, Leinders 1979).  

This pogostick mechanism is not equally developed in all ruminants (Leinders 1979). Cervids 

as well as goat-like bovids are considered “obstacle jumpers” in this model, as they both have 

the ability to jump over obstacles that are found in their typical (more closed) environments 

(Grzimek 1968, Leinders 1979). Contrarily, ruminants that live in open environments are 
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characterized by a different locomotor behaviour. These forms typically make long horizontal 

jumps when running at high speed and make so-called “stotting jumps”, vertical leaps in the 

air that are used when in danger (Leinders 1979). Although open-habitat species are capable 

of making impressively long jumps, they are hesitant to jump over obstacles (Leinders 1979).  

 

Figure 5.3: The pogostick mechanism. A:medial view of the elements responsible for the pogostick mechanism, 

with the tendo interosseus or suspensory ligament as a black dotted line  (1=metatarsus, 2=proximal sesamoid, 

3=proximal phalanx, 4=plateau postarticulaire of proximal phalanx, 5=plateau postarticulaire of intermediate 

phalanx, 6=intermediate phalanx, 7=distal phalanx, 8=metapodial-phalangeal joint, 9=to proximal metatarsus, 

10=proximal interphalangeal joint, 11=distal interphalangeal joint); B: open habitat species with strongly 

developed pogostick mechanism; C: closed habitat species with weakly developed pogostick mechanism (thin 

black lines=neutral position of the foot bones, thin grey lines= flexed position of the foot bones) (adapted after 

Leinders 1979 and Pales and Garcia 1981). 

These behavioural differences are reflected in the morphology of the lower limb (Leinders 

1979) (see Fig. 5.3). By allowing greater dorsal flexion of the proximal interphalangeal joint 

and greater volar flexion of the distal interphalangeal joint, a higher shock absorbing capacity 

is achieved, which is especially advantageous for animals living in open landscapes that make 

long jumps and need to be able to quickly come to a stop when running at full speed. It is 

especially useful during zig-zag leaping at high speed in open plains (Leinders 1979). 

Furthermore, this adaptation is mostly useful on hard substrates (Leinders 1979). In the lower 
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leg this is reflected in a number of osteological traits such as the proximal extension of the 

articular surface of the distal metatarsus, allowing for more dorsal flexion in open adapted 

species. In the intermediate phalanx a difference is seen in the development of the so called 

plateau postarticulaire. In open adapted species the plateau behind the proximal articular 

surface is reduced, allowing the further volar flexion of the intermediate phalanx (Leinders 

1979) (see Figures 5.2 and 5.3). In large bovids these jumping adaptations are less developed 

according to Leinders (1979), as jumping abilities are restricted by weight in these animals. 

Köhler (1993) dismissed the notion that the main functional differences in the phalanges are 

related to shock absorption. She argued that most “good jumpers” are found in wooded 

habitats and that those species would especially need an increased ability to absorb shocks 

produced by the impact of jumping (Köhler 1993). According to Köhler (1993), animals 

adapted to closed environments have another way of absorbing the shock produced by vertical 

jumping. A spring effect is mainly created by volar flexion of the proximal phalanx on the 

metapodial-phalangeal joint (see Figures 5.2 and 5.3), while the intermediate- and distal 

phalanx stay in their neutral position. The interphalangeal flexion seen in open environment 

species is more related to “breaking” in the horizontal plane. In Köhler’s (1993) functional 

model, however, splaying of the phalanges explains the main functional difference in the 

morphology of the digits (Fig. 5.4). Animals adapted to open plains that run at high speed 

have railed articulations between the metapodial-phalangeal joint and between the 

interphalangeal joints, preventing them from disarticulating. Species that live on more 

difficult substrates such as those found in mountainous or wet areas, allow more medio-lateral 

movement (splaying) of the articulations for stability (Köhler 1993). In this model predator 

evasion is less emphasized (Scott 2004), although it is likely that these adaptations would be 

of most use when escaping a predator at high speed. 
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Figure 5.4: Splaying of phalanges; A: Species adapted to wet/forested environment with phalanges that allow 

medio-lateral splaying; B: Species adapted to open/dry environment with railed phalanges that do not allow 

medio-lateral movement; (adapted after Köhler 1993). 

The calcaneus 

The calcaneus is the largest tarsal bone in cervids and consists of an anterior portion that 

articulates with the astragalus, the os malleolus and cubonavicular and a posterior part: the 

tuber calcanei (Lessertisseur & Saban 1967, Curran 2012) (Fig. 5.5). Together with the 

articulations between the tibia and astragalus, and between the astragalus and cubonavicular, 

it forms the hock joint (Curran 2012). While the astragalus functions as a hinge point between 

the tibia and the metatarsus (Barr 2014), the calcaneus acts as the lever for the calf muscles 

that insert into the tuber calcanei via the achilles tendon (Galvez-Lopez & Casinos 2012). 

Being mostly restricted to movement in the sagittal plane (Schaeffer 1947), the calcaneus 

pushes the limb against the ground and causes the animal to advance during locomotion when 

the calf muscles contract (Alexander 1983, Galvez-Lopez & Casinos 2012, Curran 2012). 
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Figure 5.5: I=elements of  the hock joint with indication of the articulations between the elements (1:tibia, 

2:calcaneus, 3:astragalus, 4:cubonavicular, 5:Large cuneiform bone, 6:Small cuneiform bone, 7:metatarsus, 

8:Os malleolus, 9:Insertion achilles tendon) II= parts of the calcaneus (A: tuber calcanei; B: articular surface 

to the malleolus; C: articular facet between calcaneus and astragalus; D: articular facet between calcaneus and 

cubonavicular) (adapted after Pales & Garcia 1981). 
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Most researchers (Alexander 1983, Polly 2007, 2008, Curran 2009, Warburton & Prideaux 

2010, Galvez-Lopez & Casinos 2012) agree that the length of the lever arm of the calcaneus 

(the tuber) determines the force produced by the limbs as they push against the ground.  

Increasing the length of the calcaneus will increase power, but will make the joint move 

slower (Curran 2009, 2012). Similar to the phalanges, morphological variation in the 

calcaneus is explained in Curran’s (2009, 2012) model by differences in predator evasion 

strategy between species of different environments. A shorter calcaneus will be less powerful, 

but allow for quicker movement (Curran 2009). Therefore, species that use bounding leaps to 

escape predators (mostly in closed habitats) are thought to have longer calcanei, while 

animals in open habitats are predicted to have shorter calcanei (Curran 2009).  

In addition, the rest position of the calcaneus is also thought to differ between open habitat 

forms and closed habitat forms. If the calcaneus is positioned more vertically on the astragalus 

and the cubonavicular, the distance covered by the lever arm is shorter, but less powerful 

(Curran 2012), an observation also made for carnivores (Polly 2008). This morphological 

adaptation is associated with animals of open environments that increase their number of 

paces when accelerating (Gambardyan 1974, Geist 1998, Curran 2012). Cervids adapted to 

closed environments, on the other hand, have a calcaneus with a more horizontal neutral 

position. When the gastrocnemius muscle contracts more power is generated, which is 

especially advantageous in species that escape predators by series of bounding leaps (Curran 

2009, 2012). In the osteomorphology of the calcaneus this is thought to be seen in a more 

oblique orientation of the articular surfaces on the anterior side in open habitat species 

(Curran 2012). Polly (2007) adds that in cursorial animals, the calcaneus is tightly locked to 

the astragalus to minimize movement to the parasagittal plane. As a result, the ridges and 

grooves on the articular surfaces between the calcaneus and astragalus are thought to have the 

highest relief in cursorial animals (Polly 2007). In some mammals the calcaneal articular facet 
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for the malleolus probably helps in stabilizing medio-lateral movement during locomotion 

(Scarborough et al. 2016). 

Further considerations about functional morphology 

Although Köhler (1993) reconstructed potential joint movements in the digits by testing 

maximal extension and flexion of the phalanges in osteological specimens, the above 

mentioned functional models (Leinders 1979, Köhler 1993) should ideally be tested in a more 

holistic, comparative approach that links ecology, performance and musculoskeletal anatomy. 

It is better to investigate functionally interconnected complexes of attributes together, to make 

sure that a more complete understanding of the individual attributes (i.e. osteomorphological 

traits) can be achieved (Bock 1994). Recent studies on muscle structure in ruminants, such as 

those by Curry et al. (2012) and Kohn (2014) can be instructive and have, for example, shown 

that differences in muscle type and oxidative capacity between bovids with different 

ecological affinities, may be correlated with cursorial effectiveness and jumping ability. These 

studies unfortunately don’t link their findings with morphological adaptations in the skeleton, 

but can be instructive for ecomorphological studies on artiodactyl skeletal elements. 

As such, holistic studies are currently lacking; researchers so far have had to rely on more 

general ideas about the relationship between performance, morphology and ecology. Curran 

(2009, 2012, 2018) emphasized the importance of increased strength for obstacle jumping in 

animals adapted to closed environments, while Kappelman’s (1988) femoral studies, in 

contrast, associated closed environment species with a higher need for maneuverability. 

Leinders (1979) argued that species of open and dry environments have a more developed 

capacity for horizontal jumping, zig-zag running and stotting. Weighing these statements 

against some of the available behavioural data on predator evasion strategies in free ranging 

artiodactyls (Caro 1986, 1994, Caro et al. 2004), some further conclusions can be drawn. 
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Tacking or zig-zag running is probably more common amongst bovids living in open habitats 

(Caro 2004) and bounding leaps are more likely to occur in bovids when the topography is 

more rugged or when vegetation is tall (Caro 1994). These observations are in accordance 

with Curran’s model, associating species of closed environments with obstacle jumping 

(Curran 2009, 2012, 2018). However, they do not confirm Leinders’ (1979) emphasis on 

horizontal leaps and stotting in animals adapted to open environments. It is correct that 

stotting does occur more frequently in open landscape forms, but it is probably an indirect 

way to avoid being chased and not a true locomotory adaptation to escape during flight (Caro 

1994, 2004). Leaping is actually more likely to occur in closed environments (Caro 1994). 

The importance of zig-zag running as an adaptation in open environment species (Leinders 

1979) is acknowledged. 

Ecomorphological hypotheses 

Building on the above observations, a number of hypotheses are formulated here about the 

morphology of the intermediate phalanx (Fig. 5.4) and the calcaneus (Fig. 5.5) with respect to 

habitat: 

- The proximal articulation of the intermediate phalanx is predicted to be deeper or more 

concave in species adapted to more open/drier environments: Following Köhler 

(1993), this trait might be related to a reduction in medio-lateral movement in the 

proximal interphalangeal joint to avoid disarticulation in more cursorial taxa. Species 

adapted to wet environments are predicted to have a shallower proximal articular 

surface that allows for more medio-lateral movement on a less predictable substrate 

(i.e. splaying of the digits). 

- The plateau postarticulaire of the intermediate phalanx is predicted to be shorter in 

species adapted to drier/more open environments: The shape of the plateau 
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postarticulaire is probably not related to splaying of the phalanges, as it does not 

influence medio-lateral movement. It does, however, potentially restrict movement in 

the sagittal plane. Therefore I follow Leinders (1979) and associate a reduced plateau 

postarticulaire as an adaptation to increase flexion in the sagittal plane which could 

result in a more effective “pogostick effect” and heightened capacity to withstand 

forces during sudden breaks when zig-zag running or when taking large (horizontal) 

jumps. 

- The extensor process on the anterior side and the palmar extensions on the posterior 

side of the distal articular surface of the intermediate phalanx are predicted to be 

further extended in species adapted to more open/drier environments: This is probably 

related to increased flexibility of the terminal phalanx in the sagittal plane and may 

also amplify the “pogostick effect” and increase the capacity to withstand higher 

forces during sudden breaks when zig-zag running or when taking large (horizontal) 

jumps (Leinders 1979). 

- The shape of the distal articular surface of the intermediate phalanx is predicted to be 

round on the medial and lateral side in species adapted to closed or wet environments 

and characterized by a posterior apex on the medial side in species adapted to open 

environments: This is probably related to the splaying of the phalanges (Köhler 1993), 

as a rounded, equal shape of the articular surface on the lateral and medial side of the 

distal articulation allows more medio-lateral movement than an unequally shaped, 

medially pointed distal articular surface. 

- The general shape of the intermediate phalanx is predicted to be more gracile/robust in 

species adapted to wet/closed or open/dry environments: Köhler (1993) associated 

species adapted to open/dry environments with more gracile phalanges. Contrarily, 

Degusta and Vrba (2005a, 2005b) linked gracile phalanges with species adapted to wet 



129 
 

substrate. Although none of these authors gave a true functional explanation to these 

differences it will nevertheless be informative to test whether gracility in the 

intermediate phalanx is in any way correlated with environmental differences. 

- The relative length of the tuber calcanei is predicted to be greater in species adapted to 

closed environments and shorter in species adapted to open environments: A longer 

tuber calcanei increases the lever arm and provide more powerful, but slower 

movement of the lower hind leg. This morphotype is associated with animals that 

escape predators using bounding leaps. A shorter tuber calcanei and thus shorter lever 

arm provides less strength, but quicker movement. This is linked with animals that 

rely on speed to evade predators (Curran 2009, 2012). 

- The articular surface supporting the malleolus is predicted to be larger in species 

adapted to open environments. An increase in relative size of this articular surface 

might provide more stability in the ankle joint (Scarbourough et al. 2016), an 

adaptation that might be associated with more cursorial species of open environments. 

- A more oblique orientation of the articular facets between calcaneus and 

cubonavicular and between calcaneus and astragalus is predicted for species adapted 

to more open environments. Calcanei with a more vertically positioned tuber calcanei 

are able to generate less power, but a higher pace during contraction. This is associated 

with animals living in open environments that primarily rely on speed to escape 

predators (Curran 2009, 2012). 

5.3 Geometric Morphometrics 

One of the advantages of the ecomorphological method is that the morphology of skeletal 

elements can be quantified and objectively compared (Andrews & Hixson 2014). But how 

morphology is quantified has an important effect on what kind of data is captured in a 
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morphometric dataset (e.g. Evin et al. 2013a, Gruwier et al. 2015). Ecomorphological studies 

of artiodactyls have traditionally used linear measurements by means of calipers to quantify 

osteomorphological traits (e.g. Kappelman 1988, Bishop et al. 1996, Scott 2004, Weinand 

2005, Kovarovic & Andrews 2007, Plummer et al. 2008), but a number of recent studies (e.g. 

Cucchi et al. 2009, 2011, Evin et al. 2013a, 2013b, Brophy et al. 2014, Forrest et al. 2018)  

have pointed out that Geometric Morphometrics, or GMM, can be used as an alternative way 

to effectively quantify artiodactyl morphology. 

Generally speaking a morphometric study aims to report morphological variations within a 

collection of specimens by means of quantitative descriptions of aspects of morphology, 

resulting in abstract representations of the studied objects (O’Higgins 2000).  Geometric 

morphometrics shares this goal with linear morphometric approaches and should be seen as a 

further development in this field that has come of age in the last few decades (e.g. Bookstein 

1991, Rohlf & Marcus 1993, Rohlf 1998, Klingenberg 1996, O’Higgins 2000). As such, 

GMM can be described as a set of methods that analyzes the relative positions of anatomical 

landmarks and sets of points used to approximate curves and surfaces to quantify size and 

shape (Jensen 2003, Viscosi & Cardini 2011). Shape is defined here as all geometric 

information after location, scale and rotational effects are filtered out from the object (Kendall 

1977, Zelditch et al. 2004). It encompasses methods and techniques of data acquisition and 

analysis, the results of which can be mapped in shape space and used to visualize shape 

variance within and between groups of specimens (Slice 2005, Plomp 2013). 

In practice GMM is generally founded on the use of landmark data, where a landmark is a 

precisely defined point on a biological structure, the position of which is recorded by 

Cartesian coordinates (Baab et al. 2012). The definition of these landmarks is based on 

criteria of homology of the structures one wishes to quantify (Baab et al. 2012). In other 
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words, landmarks should be anatomical loci that do not alter their topographical positions 

relative to other landmarks, that provide enough coverage of the structure, and that can be 

easily identified (Zelditch et al. 2004). How and where landmarks are placed depends on the 

research questions being asked. Questions related to functional aspects of form may require a 

different placement of landmarks than questions related to aspects of evolution or ontogeny 

(Viscosi & Cardini 2011). In any case, the choice or selection of landmarks is an important 

step in any morphometric analysis (Viscosi & Cardini 2011). 

Landmarks used in GMM can be divided into different types. Type I landmarks are 

characterized by having the strongest homology and are defined as locations where multiple 

discrete tissues intersect (Bookstein 1991, Baab 2012). Type II landmarks have no real 

biological correspondence, but their homology is supported by the surrounding structures 

(Bookstein 1991, Baab 2012). Type III landmarks are extreme points only defined by some 

distant structure (Bookstein 1991, Slice 2005). In a fourth type, called semilandmarks, the 

anatomical loci are not homologous by themselves. Only the wider structure or surface where 

these landmarks are positioned is homologous (Baab et al. 2012). Landmarks can be defined 

in two or three dimensions. In cases where landmarks are registered in 3D, they are defined 

by three (x, y and z) instead of two (x and y) Cartesian coordinates (Zelditch et al. 2004).  

Although linear morphometrics still hold an important place in palaeontological and 

biological analyses (Killick 2012), GMM has a number of advantages over standard linear 

approaches. A first advantage is that the geometry of a measured object is retained in the data 

(Slice 2005). Contrary to linear morphometrics, measurements in GMM are not independent 

and can preserve both the dimensions of the object as well as the spatial relationships among 

the dimensions (Rohlf et al. 1993, Zelditch et al. 2004, Baab et al. 2012) (Fig. 5.6). Using 

ratios of variables can partially resolve these issues in linear morphometrics (e.g. Scott 2004, 
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Albarella 2009), but such an approach has limitations when it comes to quantifying 

multifaceted anatomic structures such as skeletal elements (Baab et al. 2012). GMM has the 

advantage that it is capable of quantifying more complex and subtle morphological 

differences (Strand Vidarsdottir et al.2002, Perez et al. 2007). 

 

Figure 5.6: Hypothetical linear measurements (A) and GMM landmarks (B) on an artiodactyl mandible 

illustrate differences in retained data between the two methods. Method ‘A’ results in a set of independent 

dimensions. Method ‘B’ results in several Cartesian coordinates that preserve dimensions and spatial 

relationships. (M=measurement, LM=landmark). Photo adapted from Fischer 2014. 

A second problem that GMM provides an answer to, is that in linear morphometric studies 

size forms a significant component of measurements (Zelditch et al. 2004). Although size 

sometimes is an essential part of palaeoecological studies, it is a confounding factor when one 

is specifically looking for morphological differences in osteological elements. While some 

techniques have been developed to control for body size in linear morphometrics (see section 

4.3), GMM provides a more effective way to study morphology in isolation (Viscosi & 
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Cardini 2011). In practice this is usually done by performing a Generalized Procrustes 

Analysis (GPA) on the raw coordinate data, a process that removes information about size, 

orientation and location (Zelditch et al. 2004). In this process two or more configurations of 

landmarks are translated to a common location by superimposing their centroids, after which 

they are scaled to unit centroid size and rotated so that the distance between corresponding 

pairs of landmarks is minimized using a least-square algorithm (Zelditch et al. 2004, Baab 

2012). The remaining difference between specimens corresponds to differences in shape 

(Bookstein 1991). GPA is one of a number of superimposition methods, but it is the most 

standard method used in GMM and has several advantages, such as high statistical power and 

increased accuracy in estimating sample means (Viscosi & Cardini 2011).  

As a result of translation, rotation and scaling during the GPA analysis, landmark 

configurations lose degrees of freedom. The number of degrees of freedom lost can be 

calculated using the following equation: pk-k-k(k-1)/2-1, where p is the number of landmarks 

and k is the number of dimensions. For three dimensional analyses this translates to 3p-3-3-1, 

or 3p-7 (Slice 2005). In other words, GPA leads to a loss of seven degrees of freedom in three 

dimensional analyses (Slice 2005, Viscosi & Cardini 2011). The shape space that remains 

after rotation, translation and scaling is called Kendall’s shape space (Kendall 1977). This 

shape space, however, describes shape in a curved, non Euclidean way (Slice 2001). This is 

problematic as most statistical methods require data to be in flat Euclidean space (Viscosi & 

Cardini 2011). This is solved by projecting the coordinate data into Euclidean space tangent to 

Kendall’s shape space (Rohlf 1996, Owen 2013). This orthogonal projection from the 

Generalized Procrustes Superimposition preserves the distance between specimens in both 

shape spaces and does not result in any loss of shape information (Slice 2005). All further 

analysis can therefore be performed in this tangent Euclidean shape space. 
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It should be mentioned that although GPA scales landmark configurations to standard size, 

this does not exclude potential allometric size differences from the dataset (Zelditch et al. 

2004). These have to be dealt with separately in further statistical analyses. Moreover, 

isometric size is still retained separately as an independent variable in the form of ‘centroid 

size’ (Zelditch et al. 2004). This commonly used measure of size in GMM is calculated as the 

square root of the sum of squared distances of each landmark in a landmark configuration to 

the configuration’s centroid (Baab et al. 2012). It is a useful measurement of the overall scale 

of a landmark configuration (Strand Vidarsdottir et al. 2002, Plomp 2013) and can be 

included again in further statistical analysis whenever needed. Transformation to its natural 

logarithm is often used to scale centroid size to the mean configuration (Viscosi & Cardini 

2011, Owen 2013). 

A third advantage of GMM is that changes in morphology can be more clearly visualized and 

are quite easily produced (Zelditch et al. 2004).This is usually done by making use of 

transformation grids that describe changes in shape from one specimen to another as 

distortions in a grid (Zelditch et al. 2004). A commonly used visualization method used for 

landmark configurations is the thin plate spline interpolation technique (Bookstein 1991) (Fig. 

5.7). This method provides a visually interpretable description of a deformation, using 

procrustes distance as a metric (Zelditch et al. 2004). It illustrates on a grid the amount of 

deformation that is needed to change a form from a reference shape such as the mean shape of 

a group (Zelditch et al. 2004, Plomp 2013). 
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Figure 5.7: Thin plate spline deformation grids of a landmark configuration of a mammalian mandible illustrate 

shape changes in GMM. Figure adapted after Figueirido et al.2009. 

5.4 Morphometric protocols and the application of GMM to the cervid limb 

GMM has been increasingly applied in palaeoanthropology over the last decade and many 

studies have used these techniques directly on primate materials (e.g. Delson et al. 2001, 

Harvati & Weaver 2006, Baab 2008, Cardini & Elton 2011, 2017, San Milan et al. 2015). In 

addition, GMM has been used with variable intensity in morphometric studies of almost every 

other mammalian order (e.g. Bignon et al. 2005, Caumul & Polly 2005, Meloro 2007, 2008, 

Figueirido et al. 2009, Owen 2013) and for a number of purposes.  

Although several recent GMM studies have focused on the Suidae (e.g. Cucchi et al. 2009, 

2011, Ottoni et al. 2013, Owen 2013, Evin et al. 2013a, 2013b, Oueslati & Cronier 2014), 

these techniques are not yet commonly applied on fossil cervids and bovids. Some recent 

studies (Curran 2009, 2012, 2015, Brophy et al. 2014, Forrest 2017, Forrest et al. 2018) have 

nevertheless demonstrated that GMM is at least equally suitable for morphometric studies in 

these families. According to Forrest (2017), bovid ecomorphological studies based on 3D 

GMM have higher classification success rates when using LDA models (see section 5.5 for 

explanation), than studies based on linear measurements. Curran (2009, 2012, 2015), using 

3D GMM specifically on cervid bones, also achieved high classification success rates in her 

analyses. Brophy and colleagues (2014) made use of a two dimensional GMM model, applied 
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on photos of bovid teeth, based on the assumption that the flat occlusal surface can be easily 

quantified in a 2D projection. Although the appropriateness of using either a three 

dimensional or two dimensional model should ultimately be dictated by the research questions 

and the nature of the anatomical structure that is digitized (Buser et al. 2018), it seems clear 

from the above mentioned studies that GMM is suitable for the quantification of cervid 

osteomorphology.  

This study is concerned with the ecomorphology of two complex anatomical elements of the 

lower hindlimb: the calcaneus and intermediate phalanx. It was therefore considered 

appropriate to make use of a three dimensional model and thus 3D coordinate data were 

collected at a number of anatomical loci on the two elements. For this purpose raw data in the 

form of 3D surface scans were generated using a NextEngine laser scanner (model 2020i): a 

portable three dimensional surface scanner able to capture 3D data by projecting a laser beam 

on an object placed on a rotating platform. Using a support pole, the object is stabilized 

during rotation and scanned from different angles. From the resulting distance measurements, 

a 3D object was generated in the associated software package ‘Scanstudio HD v. 1.3.2’. 

Individual scan divisions were manually cleaned and aligned into a fused 3D-object and saved 

in .ply format. Scan settings were set at 360°, eight divisions, high definition (2000 points/in2) 

and at wide range.  

To virtually place the landmarks on the 3D-objects, the resulting .ply-files were uploaded in 

Landmark editor 3.0, a software package developed to easily place landmark points accurately 

and with high repeatability on complex surfaces (Wiley et al. 2005). In this software six 

landmarks were placed on the calcaneus and eight landmarks on the intermediate phalanx. A 

limited number of landmarks were used for each element because Geometric Morphometric 

data results in high numbers of variables. Although there is no reliable rule of thumb for an 
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exact sample size/number of variables ratio (N:p) (Maccallum & Widaman 1999), it is 

generally advised for further statistical analysis to avoid low N:p ratios (see e.g. Cattell 1978, 

Gorsuch 1983, Evin et al. 2013a). As palaeontological datasets, including this one, are often 

limited in size, I chose to develop models with a relatively small number of variables to 

maximize the accuracy of group estimation and minimize the probability of errors. 

As this dissertation deals with the ecological and functional morphology of two different and 

distinctive anatomical elements, a unique set of landmarks to capture shape information was 

developed for each element. All landmarks used in the two models were either type I or type 

II landmarks, because they have the most biological relevance (Zelditch et al. 2004). The 

locations were chosen because of their relevance to the functional hypotheses and because 

they were considered to represent the shape of the elements as a whole. They were also 

inspired by earlier ecomorphological models developed for the same elements in artiodactyls 

(Degusta & Vrba 2005a, 2005b, Kovarovic & Andrews 2007, Curran 2009, 2012, 2015). 

On the calcaneus, the first landmark (LM1) was located on the most posterior point of the 

tuber calcanei (Fig. 5.8). Landmark 2 (LM2) was located on the most anterior point of the 

cubonaviculair articular surface. Landmark 3 (LM3) was located on the most posterior point 

of articular surface supporting the os malleolus and landmark 4 (LM4) on the most anterior 

point of the os malleolus articular surface. The fifth landmark (LM5) was located on the most 

superolateral point of the posterior astragalar articular surface. Landmark 6 (LM6) was 

located on the most inferolateral point of the posterior astragalar articular surface. 
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Figure 5.8: Landmarks 1 to 6 recorded on a 3D model of a calcaneus. A= medial view, B= lateral view, C= 

posterior view, D=anterior view. 

On the intermediate phalanx, landmark 1 (LM1) was located on the most anterior point of the 

proximal articular surface (Fig. 5.9). Landmark 2 (LM2) was found on the most proximal 

point of the anterior extensor process. The third landmark (LM3) was located on the most 

posterior point of the distal articular surface at the junction between the left and the right facet 

of the articular surface, respectively supporting the medial and lateral portion of the distal 

articulation of the proximal phalanx. Landmarks 4 (LM4) and 5 (LM5) were found on the 

most posterior point of the lateral and medial extensions on the posterior side of the plateau 

postarticulaire respectively. Landmark 6 (LM6) and 7 (LM7) were located on the most 

proximal points of the medial and lateral palmar extensions on the posterior side of the 

phalanx. The eighth landmark (LM8) is positioned on the apex and most distal point of the 

medial ridge of the distal articular surface. 



139 
 

 

Figure 5.9: Landmarks 1 to 8 recorded on a 3D model of an intermediate phalanx. A= lateral view, B= 

posterior view, C= medial view, D=anterior view. 

The resulting coordinate data for each specimen were then exported from Landmark editor in 

.PTS format and manually converted and appended into .TPS format. The appended file was 

then uploaded in Morphologika 2.5, an integrated morphemetrics package that is used for 

examining shape and size variation in objects described by landmark configurations 

(O’Higgins & Jones 2006). Morphologika was used to perform a Generalized Procrustes 

Analysis on the dataset in order to remove information about size, orientation and location 

from the coordinate data. From the output-file generated by the software, (log)centroid size 

was also saved for each specimen. Although Morphologika was not used for further statistical 

analysis of the morphometric data, a PCA was performed in this software on the mean shape 

calculated for each habitat/functional group, as a method (A. Cardini pers. comm.) to generate 
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thin plate spline visualizations of shape changes along each between groups principal 

component axis (see section 5.5). 

The data matrices with procrustes residuals were exported from Morphologika and ordered by 

habitat/functional group or taxonomic group and imported in PAST 2.17 (Hammer et al. 

2001) for further statistical analysis. This statistics package was especially designed for 

numerical analysis in palaeontology (Hammer et al. 2001) and allows for most multivariate 

analyses needed in GMM studies. 

This procedure was initially performed for each anatomical element on a dataset with all 

extant specimens. The (procrustes fitted) data generated during this first analysis was used for 

the ecomorphological model based on extant cervid species. For the analyses of the 

palaeontological materials the procedure was repeated: newly appended .TPS files, with 

extant specimen data and a selection of fossil specimens included were created, and a new 

GPA analysis was performed on each individual dataset.  

5.5 Statistical analysis 

To investigate potential habitat prediction based on cervid hindlimb elements, a number of 

statistical analyses were conducted on the morphometric data. Most ecomorphological studies 

primarily make use of ordination methods such as Canonical Variates Analysis (e.g. Scott 

2004, Curran 2009, 2012, 2015) and Principal Components Analysis (e.g. Bignon et al. 2005, 

Figueirido et al. 2009, Forrest et al. 2018) that are used to simplify descriptions of variation 

between specimens or groups (Zelditch et al. 2004). 

In this case Principal Components Analysis (PCA) was chosen as the main analysis to explore 

morphological variation in the dataset. PCA is a multivariate statistical technique that 

simplifies patterns of variation and makes interpretation easier by transforming variables into 
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new artificial ones called principal components (PC’s). This is done by rigidly rotating the 

original data into new linear re-combinations (Dryden & Mardia 1998, Zelditch et al. 2004). 

Principal components are orthonormal eigenvectors of the covariance matrix and can be 

considered independent and further analyzed accordingly (Dryden & Mardia 1998). 

Conducting a PCA on shape data does not lead to changes in spatial relationships between 

specimens. The original structure of the data remains unchanged as only the axes on which 

the data is projected are rotated (Viscosi & Cardini 2011). A good analogy is to compare 

specimens in a PCA with a cloud of points in multidimensional space, where only the point of 

view of the observer is changed to a better position to get a view on the longest sides of the 

cloud (Viscosi & Cardini 2011).  

In PCA, the first component describes the largest part of the variance in the dataset. Each 

following PC describes the next greatest part of the variance (Owen 2013). This means that 

most of the variation in a sample is usually described by the first few PC’s (Zelditch et al. 

2004). As such, PCA can be used as a dimensionality reduction method. This is especially 

useful in the case of 3D GMM coordinate data that usually consists of particularly high 

numbers of variables. Using a Principal Components Analysis therefore simplifies 

interpretation and clarifies what has to be explained (Zelditch et al. 2004). 

In many ecomorphological studies Linear Discriminant Analysis (LDA) is the preferred 

statistical analysis (e.g. Kappelman 1988, Plummer & Bishop 1994, Plummer et al. 2008, 

Degusta & Vrba 2003, 2005a, Kovarovic & Andrews 2007, Forrest 2017). This ordination 

method functions in a similar way as PCA in that it constructs a new coordinate system from 

linear re-combinations of original variables (Zelditch et al. 2004). However, LDA is used to 

describe differences among group means, whereas PCA is primarily used to describe 

differences among specimens (Zelditch et al. 2004). The disadvantage of LDA is that it uses a 
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priori assigned groups and looks for the direction of greatest variance between these groups 

by distorting shape space to minimize within-group variance (Klingenberg & Monteiro 2005, 

Seetah et al. 2012). This can potentially lead to overly optimistic group separation or over-

fitting of the data (Kovarovic et al. 2011, Seetah et al. 2012).There are a number of factors 

that influence the chances of over-fitting. To avoid an over-fitted model, LDA typically 

requires equality of within-group covariance matrices, sufficiently large total sample size and 

group sample sizes and limited group inequality (Kovarovic et al. 2011). These assumptions 

are often violated in archaeological and palaeontological datasets and are sometimes hard to 

test (Kovarovic et al. 2011). As the datasets (especially the palaeontological ones) used in this 

dissertation are relatively small and of unequal size we followed Seetah and colleagues (2012) 

and instead of LDA, used a between groups Principal Component Analysis (bg-PCA) to 

explore between group morphological variation. In this approach eigenvectors are derived 

from the variance-covariance matrix of the group means instead of all the data-points, after 

which the individual specimens are projected onto them (Seetah et al. 2012). In other words, 

the bg-PCA will look for the axes of greatest variance between the groups mean shapes 

instead of that of all the specimens. This approach has the advantage that it is more robust to 

over-fitting and still preserves the original procrustes distances in shape space, but at the same 

time emphasizes between group differences (Seetah et al.2012). 

In this dissertation all Principal Components Analyses (except when explicitly stated) were 

based on variance-covariance matrices of group means. In the first place, analyses were run 

on the procrustes residuals of a dataset of only extant specimens. For the analysis of the 

palaeontological specimens, PCA’s were separately run on a combination of all extant 

specimens and a number of selections of fossil specimens. All PCA’s were conducted in 

PAST 2.17. 
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Clusters in scatter plots resulting from ordination methods such as PCA are valuable for 

interpretation, but do not necessarily represent statistically distinct entities (Zelditch et al. 

2004). Therefore additional statistical methods are needed to further determine statistical 

significance between designated groups (Zelditch et al. 2004, Goodpaster & Kennedy 2011). 

There is currently no standard metric that has been widely adopted to assess the statistical 

significance of cluster separation in PCA scatter plots (Goodpaster & Kennedy 2011). In this 

case an approach was taken, following work by Polly (see Schutz et al. 2009, Polly et al. 

2013b), that involved conducting a MANOVA (Multivariate Analysis of Variance) on the 

relevant Principal Component scores. However, standard parametric statistical analyses, such 

as MANOVA, require that certain assumptions are met such as variance-covariance matrices 

that are homogeneous across groups and normal distribution (Lopez-Lazaro et al. 2018). This 

is not necessarily the case for GMM datasets and especially multivariate normality can be 

difficult to test in highly dimensional data resulting from 3D GMM (Cardini et al. 2015). To 

avoid violating these assumptions a non-parametric MANOVA (NPMANOVA), where 

significance was obtained from permutations (Anderson 2001), was used to test for 

differences between groups in multidimensional space. Non-parametric MANOVA tests were 

run on a data matrix including all relevant (i.e. describing a sufficient amount of the total 

variance) principal component scores. In cases where between-group differences were 

significant, the overall NPMANOVA was followed by a post-hoc test in the form of pairwise 

NPMANOVAs between all pairs of groups, to asses which groups differed significantly.  

The number of relevant components retained for further analysis was first assessed using the 

broken stick method (Frontier 1976). In this model it is assumed that if the total sum of the 

variance is divided randomly amongst the principal components, the distribution of the 

eigenvalues is expected to follow a broken stick distribution (Jackson 1993). Eigenvalues are 

thought to be relevant if they exceed the values generated by the broken stick model (Frontier 
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1976, Jackson 1993). Although there are several other methods to assess the number of 

principal components to retain (see Jackson 1993 and references therein), the broken stick 

method is considered to provide a good evaluation of the dimensionality relative to most other 

methods (Jackson 1993). In cases where the number of components to retain, as suggested by 

the broken stick model, was extremely low (e.g. only PC1), I followed the rule of thumb to 

retain a number of components that cumulatively accounted for at least 90% of the variance 

(Rea & Rea 2016).  In addition to providing a measure for the number of PCs to extract for 

the NPMANOVA, the same components considered relevant by the broken stick method were 

also used for visual assessment of the PCA scatter plots and for the further analyses described 

in this section (ordinary least squares regressions, PGLS regressions, Kruskal-Wallis tests).  

Next to the NPMANOVA, which was used to assess significance of group differences in 

multidimensional space, a univariate equivalent was used to assess statistical significance 

between pre-assigned groups on individual PCA axes (Bratchell 1989, Harvati 2004, Carrera 

et al. 2007). Here the non-parametric Kruskal-Wallis test was used (Zar 1996, Yao et al. 

2013). This test compares the medians of multiple groups and can be considered a multi-

group extension of the Mann-Whitney test (Zar 1996). In cases where the Kruskal-Wallis test 

resulted in significant differences between group medians, Mann-Whitney pairwise 

comparisons were conducted as a post-hoc test to assess which pairs of groups differed 

significantly. 

It was explained in section 5.3 that Geometric Morphometrics provides a capable set of tools 

to study size and shape separately in a morphometric dataset (Zelditch et al. 2004). By using 

techniques such as Generalized Procrustes Analysis, the effects of isometric size differences 

can be excluded from a set of landmark configurations (Zelditch et al. 2004, Baab et al. 

2012). Allometric size differences are, nevertheless, not excluded by the GPA procedure. To 
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account for allometric effects, potential correlations between size and shape were explored by 

regressing PC-scores against the natural log of centroid size, a method commonly used in 

GMM studies (e.g. Cucchi et al. 2011, Killick 2012, Owen 2013). Ordinary least squares 

regression is a technique that estimates the relationship between a dependent variable and one 

or more independent variables, to predict how the dependent variable behaves for a given 

value of the independent variable (Legendre & Legendre 1998). When significant correlations 

between size and shape are found in the regressions, they are considered as indicative of an 

allometric effect (Zelditch et al. 2004). Where allometry drives morphological differences, 

this was taken into account during interpretation of the results, but no attempt is made here to 

remove these allometric effects. 

Statistical methods are often applied to the problem of phylogenetic non-independence (see 

section 4.3). In this dissertation phylogenetic generalized least squares (PGLS) regressions 

(Martins & Hansen 1997) were conducted on the relevant PC scores (as indicated by the 

broken stick model) to assess morphometric datasets for phylogenetic signals. PGLS works as 

a weighted regression analysis where data is weighted in accordance with the phylogenetic 

closeness of species (Price 2015). In other words, this generalized linear model incorporates 

phylogeny as an error term into the regression models of shape variables on 

habitat/locomotion (Martins & Hansen 1997, Rohlf 2001, Walmsley et al. 2012). 

Phylogenetic tree branch lengths are used to estimate phylogenetic covariance (Monteiro 

2013). The covariance for two given species is proportional to the sum of branch lengths from 

the root to the last common ancestor (Monteiro 2013).  It is assumed here that cervid traits 

evolved according to a simple Brownian motion model (Monteiro 2013, Barr & Scott 2014), 

where changes are random and independent from previous and subsequent changes 

(Felsenstein 1985, Barr & Scott 2014). Pagel’s λ was used in this analysis as a measure for 

phylogenetic dependence (Pagel 1999). If values were close to 0, this indicated a low 
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phylogenetic signal and that the trait evolved independently of phylogeny. If values were 

close to 1, the phylogenetic signal was high and closely related species were more similar in 

morphology under a Brownian motion model (Molina-Venegas & Rodriguez 2017). 

In this dissertation a modified approach was used, based on earlier methods developed for 

carnivore elements (Meloro et al. 2008, Walmsley et al. 2012), using the caper package (1.0) 

in R (Orme et al. 2018). Habitat/locomotion groups were transformed into dummy variables 

and regressed against the mean shape coordinates for each species. Phylogentic tree distances, 

included as error terms, were downloaded from the 10KTrees project website (Arnold et al. 

2010) (Fig. 5.10). Although a discussion of the extant cervid species used in this dissertation 

is provided further down in section 5.8.1, it should be mentioned here that two of the species 

included in the main ecomorphological analyses (Cervus (Rusa) marianna and Cervus (Rusa) 

alfredi), were excluded from the PGLS regressions, as they were not part of the 10KTrees 

phylogenetic tree. In addition, two forms that were treated as full species in the main 

ecomorphological analyses (Cervus elaphus and Cervus canadensis) (see section 5.8.1), were 

in the phylogenetic tree considered conspecific and consequently lumped together in the 

PGLS regressions. 

In addition, to study how phylogeny drove the behaviour of species in morphospace, the mean 

shapes per species were calculated and projected on the PCA scatterplots derived from the 

variance-covariance matrix of the habitat/locomotion group means. Minimal spanning trees 

were calculated to estimate the minimal total lengths connecting all datapoints as a visual aid 

in grouping together taxa (Hammer et al. 2001). If species clustered close together by 

specific, generic or tribal association, this was interpreted as an indication that the 

morphology was correlated with phylogeny (Curran 2015). 
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Figure 5.10: Phylogenetic tree of species used in this dissertation for PGLS regressions. Adapted from 10Ktrees 

(Arnold et al. 2010). 

In most ecomorphological studies focused on artiodactyl phalanges (Degusta & Vrba 2005a, 

2005b, Kovarovic & Andrews 2007, Curran 2009, 2012, 2015), no distinction is made 

between anterior and posterior phalanges because their position is often difficult to ascertain 

in fossil specimens. Although the ecomorphological model developed for the intermediate 

phalanx in this dissertation was based on posterior phalanges, fossil anterior and posterior 

specimens were combined in all further analyses. To test the validity of the assumption that 

the anatomical position (forelimb or hindlimb) of the phalanges does not significantly 

interfere with ecomorphological (and phylogenetic) signals, an additional test was conducted. 

A dataset composed of 16 intermediate phalanges (eight anterior and eight posterior) 

belonging to Capreolus capreolus and 10 intermediate phalanges (5 anterior and 5 posterior) 
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belonging to Dama dama, was submitted to a (between groups) PCA. Statistical significance 

between groups was tested using an NPMANOVA on the first four principal components. 

Finally, many species of deer have marked sexual dimorphism (Geist 1998). This is most 

obvious in the presence of antlers in the males. Only in reindeer (Rangifer tarandus) both 

sexes possess such defensive weapons (Geist 1998). Although determining sex in post-cranial 

fossils of deer is difficult, sexual dimorphism can influence bone morphology in this region as 

well (Curran 2009). Most ecomorphological studies (e.g. Plummer & Bishop 1994, Kovarovic 

& Andrews 2007, Schellhorn 2009) have not explicitly tested for the confounding effects of 

sex differences. Moreover, the extant datasets used in this dissertation are also unsuitable for 

such tests as they lack sufficiently large samples of individual species of known sex. Although 

Curran’s (2009) work on cervid post-cranials already indicated that the effect of sexual 

dimorphism is relatively small on the calcaneus and phalanges, a limited exploratory analysis 

was conducted on the Dama dama specimens used in this dissertation. Thus two separate 

analyses (one on the intermediate phalanx and one on the calcaneus), emphasizing male-

female differences, were conducted on a dataset that consisted of only this species. To 

examine if specimens could be assigned to different sexes a (standard) PCA was performed 

on the two datasets, including respectively 10 intermediate phalanges and 10 calcanei. 

Significance of group differences was tested using an NPMANOVA on the first four principal 

components. 

5.6 Error testing 

To assess intra-observer error and the repeatability of the digitization protocol an adjusted 

version of the protocol developed by Adriaens (2007) was used. Five specimens of the 

calcaneus and the intermediate phalanx were randomly selected and scanned using the 

NextEngine and landmarked five separate times using the standardized landmarking 
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procedure. After procrustes superimposition, a standard PCA, based on the variance-

covariance matrix of all specimens, was conducted on the dataset of the replicates. When the 

replicated specimens clustered tightly together on the first two axes of the PCA, the error due 

to differences in scanning/digitisation quality was considered low (Adriaens 2007). The 

following calcanei specimens were selected for error testing of the digitization process: KBIN 

1290e (Rangifer tarandus), KBIN 1290g (Rangifer tarandus), CAR dd001 (Dama dama), 

KBIN 1297e (Axis axis) and KBIN 1297y (Axis porcinus). For the intermediate phalanx the 

following specimens were selected for error testing: MNHN 1879222 (Cervus unicolor), 

MNHN 129744 (Cervus timorensis), KBIN 2256 (Dama dama), MNHN nonr001 

(Hydropotes inermis) and KBIN 3720 (Axis axis). See Appendix B for further details about 

these specimens. 

Intra-observer error was tested using the same protocol, but only repeating the landmarking 

procedure and not rescanning the specimens. The landmarking procedure was repeated four 

times for another five specimens with three month intervals. The test was conducted four 

times on the same specimens held at the zooarchaeology labs of the University of Lille and 

the Center for Artefact Research (see Appendix B). For the intermediate phalanx these were 

the following specimens: CAR b056 (Capreolus capreolus), CAR b057b (Muntiacus reevesi), 

ULILLE 782 (Capreolus capreolus), ULILLE DD001 (Dama dama), ULILLE CE001 

(Cervus elaphus). For the calcaneus the following specimens were included in the test: 

ULILLE 782 (Capreolus capreolus), ULILLE CC002 (Capreolus capreolus), ULILLE 

DD001 (Dama dama), CAR b057b (Muntiacus reevesi), CAR DD001 (Dama dama). 

5.7 Habitat/locomotor categories 

Defining habitats presents a challenge for studies that are based on comparisons with modern 

environments (Kovarovic 2004). As has been explained in chapter 4, assigning extant 
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specimens to predefined categories is an oversimplification of ecological reality, but a 

necessary requirement for further statistical analysis in ecomorphological studies (Curran 

2009). Consequently, a six category system, somewhat similar to that found in many bovid 

studies (e.g. Kappelman et al. 1997, Degusta & Vrba 2003, 2005, Kovarovic & Andrews 

2007) was developed in this dissertation. However, unlike earlier studies, I was chose to 

assign species in the first place to functional/locomotor categories rather than ecological 

categories. This was done to emphasize the fact that different morphotypes are thought to 

primarily differ as a result of functional differences related to locomotor strategy (Barr 2014a, 

2014b). Only in a second step are these functional differences linked to different habitats or 

vegetation types. Although in practice this difference in approach is mainly theoretical, in 

some cases it can have an effect on how certain taxa are assigned to specific categories. This 

is exemplified in animals primarily adapted to closed environments. Such forms generally 

tend to have a more saltatorial predator evasion strategy, but have in some instances 

developed alternative means to optimally use their environment when fleeing from predators. 

This is the case for very large and heavy species such as moose (Alces alces) that tend to step 

over obstacles in their environment instead of jumping over them (Geist 1998). In these cases 

species were in the first place assigned to a group based on their locomotor strategy. 

In addition, room was left for separate categories for forms that had either a more cursorial or 

saltatorial strategy, but that were associated with very specific environmental conditions  (i.e. 

swamp environments,  mountainous environments and tundra environments). Unlike some 

previous studies (Kappelman 1988, Curran 2009) wet adapted species were placed in a 

separate category in this study. In addition, Kovarovic and Andrews (2007) were followed in 

placing mountain adapted species in a separate category, albeit not subdividing this category 

in high altitude species of light cover or heavy cover. An overview of extant taxa and their 
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habitat assignments is given in Table 5.1. A breakdown of the number of species and 

specimens per habitat/locomotor group can be found in Appendix A.  

Species Locomotion/ 
habitat group 

Justification 

Alces alces Type 1 Range of woodland habitats; not too far from water (Bauer & 
Nygrén 1999), but fast, more cursorial (trotting) lomotor strategy 
(Geist 1998). 

Axis axis Type 1 Dry deciduous habitats with scrub are favoured (Eisenberg & 
Seidensticker 1976). Cursiorial locomotor strategy (Geist 1998). 

Axis porcinus Type 5 Wet grassland, often associated with floodplains (Bhowmik et al. 
1999). Runs awkwardly with head low, but at reasonable speed 
(Blandford 1888). 

Axis kuhlii Type 2 Very versatile but found in hill forest rather than marsh grassland 
like hog deer (Blouch & Atmosoedirdjo 1987). Outrun by dogs, 
probably not cursorial (Geist 1998). 

Capreolus capreolus Type 3 Versatile, often found in deciduous, mixed or coniferous forests, 
moorland and pastures (Stubbe 1999). Certainly not cursorial 
(Geist 1998). 

Cervus albirostris Type 4 Found in grassland, shrubland and forest at high altitudes in the 
eastern Tibetan Plateau (Leslie 2010). Uses rocky terrain to 
escape, but speedy flight (Geist 1998). 

Cervus canadensis Type 1 Open country grazer and cursorialist (Geist 1998). 

Cervus elaphus Type 1 Originally open deciduous woodland species, but also upland 
moors, pastures and meadows (Koubek & Zima 1999). Cursorial 
escape behaviour (Geist 1998). 

Cervus eldi Type 5 Variety of wet, open and grass dominated habitats (Tordoff et al. 
2005). Good runners (Geist 1998). 

Cervus mariannus Type 2 Adaptable, primary and secondary forest, but forages in 
grassland (Taylor 1934). Anti-predator strategies unclear (Geist 
1998). 

Cervus nippon Type 2 Woodlands with dense understory, but also forages in open 
grassy areas (Smith and Xie 2008). Saltatorial runner (Geist 1998). 

Cervus timorensis Type 1 Although flexible, essentially a cursorial, tropical and subtropical 
grassland species (Medway 1977, Geist 1998). 

Cervus unicolor Type 3 Found in a wide variety of forest types (Schaller 1967). Species of 
moderate speed (Blandford 1888). 

Cervus alfredi Type 2 It was known to rely on dense forest for refuge , but versatile and 
also makes use of open habitats (Rabor 1977). 

Dama dama Type 1 Adaptable species that can survive in a range of habitats, often 
open woodland, shrubland and grassland (Apollonio et al. 1998). 
It has a body-plan similar to Megaloceros, the most cursorial deer 
ever to exist (Geist 1998) and reaches high speeds similar to that 
of cursorial species (Janis & Wilhelm 1993).  

Elaphodus cephalopus Type 4 High altitude forests, close to water (Ohtaishi & Gao 1990). 
Saltatorial escape strategist (Geist 1998). 
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Elaphurus davidianus Type 5 Low-lying grasslands and reed beds, often in seasonally flooded 
areas such as the lower Yangtze River valley and coastal marshes 
(Hu & Jiang 2002). Low running speed (Geist 1998). 

Hydropotes inermis Type 5 Prefers coastal plains, salt marshes, and riparian areas (Zhang et 
al. 2006). Fast, but leaps to escape predators (Geist 1998). 

Hippocamelus 
antisensis 

Type 4 Grassland species living at altitudes between 2000 and 5000 m 
(Gazzolo & Barrio 2016). Cursorial escape behavior (Geist 1998). 

Mazama americana Type 3 Bodmer (1997) states this Amazonian species occurs in humid 
forest borders. Slow and more saltatorial (Geist 1998). 

Mazama gouazoubira Type 3 Humid to dry regions where there are areas of woody or brush 
cover (Cartes 1998). More cursorial than M. Americana (Geist 
1998). 

Muntiacus muntjak Type 3 This animal preferes rainforests and monsoon forests (Ekwal et 
al. 2012). Places objects between itself and the predator by 
jumping and giving conflicting signals (Geist 1998). 

Muntiacus reevesi Type 3 Preference for temperate or (sub-) tropical primary forest 
(Chiang 2007).  Places objects between itself and the predator by 
jumping and giving conflicting signals (Geist 1998). 

Odocoileus virginianus Type 2 Cursorial capacity, but on occasion saltatorial (Geist 1998). 
Occupies a variety of habitats from northern forests to shrubby 
savannas (Potapov et al. 2014). 

Odocoileus hemionus Type 4 Associated with thickets and rocky outcrops. Steep and rugged 
terrain with brushlike vegetation is preferred, but versatile 
(Olson 1992). Less speedy, not cursorial (Geist 1998). 

Ozotoceros 
bezoarticus 

Type 1 Found in the semi-arid grasslands (Merino & Semeniuk 2011). 
Unclear in terms of escape behavior, but probably cursorial to 
some extent. 

Pudu mephistophiles Type 4 Lives especially in high altitude mountain forests and humid 
grasslands above the treeline (Escamilo et al. 2010). Saltatorial 
species (Geist 1998). 

Pudu puda Type 3 The Southern pudu inhabits dense temperate forest (Hershkovitz 
1982). Saltatorial species (Geist 1998). 

Rangifer tarandus Type 1/6* Tundra, but adapted for melted snow (Baskin 1986), Cursorial 
escape behavior (Geist 1998). 

Table 5.1: Habitat assignments per species in alphabetic order (*:Rangifer tarandus was placed in a separate 

tundra-category [Type 6] for the analysis of the phalanges). 

Thus six locomotor/habitat groups (type 1 to type 6) were devised to which each extant 

species was assigned. In the first group (type 1) animals were included that have a cursorial 

escape strategy and tend to live in more open environments. It should nevertheless be 

remembered that cervids are less flexible in their habitat preferences than bovids and are not 

often found in truly open, coverless environments such as dry grasslands or steppe (Geist 

1998). Therefore this category groups together taxa that are adapted to open woodland (e.g. 

Cervus timorensis) and the few species that are adapted to dry open plains (e.g. Ozotoceros 
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bezoarticus). Open woodland is defined here as an area of trees with an open canopy of 40% 

or less closure (Thomas & Packham 2007). Such landscapes often (but not always) have a dry 

and firm substrate and have comparatively few obstacles that an animal can place between 

itself and a predator when being chased. As a result such species are more adapted for high 

speed and endurance, enabling them to escape potential predators by outrunning them (Curran 

2009). The capacity for splaying the phalanges is not thought to be particularly well 

developed in this group (Kӧhler 1993, Curran 2009). 

Type 3 species are animals that primarily rely on a saltatorial escape strategy and tend to live 

in more closed environments. This group includes animals of a number of forest types ranging 

from closed woodland, over temperate seasonal forest (e.g. Pudu puda) to tropical evergreen 

rainforest (e.g. Muntiacus muntjak). These environments are often associated with a relatively 

soft or wet substrate and with a high number of obstacles that can be used by an animal to 

place between itself and a predator during flight. Such animals have lower endurance and 

speed and evade predators by leaping over obstacles and diving in the undergrowth to break 

visual contact with their pursuer as quickly as possible (Curran 2009). Splaying of the 

phalanges is more developed in this group as an adaptation to more yielding substrates 

(Kӧhler 1993, Curran 2009). 

Type 2 species are intermediate between type 1 and type 3 species. They are usually 

generalists that can easily adapt to either open- or closed environments and are found in softer 

and harder substrates. As a result they are neither true cursorial species, nor true saltatorial 

specialists (e.g. Cervus marianna). They lack the high speed and endurance of cursorial 

species, but are not as flexible or as good at leaping as saltatorial species. Their evasion 

strategy is intermediate between the two other groups and their capacity for splaying the 

phalanges is not particularly well developed for either very firm or very soft substrates. 



154 
 

Type 4 species are species found at high altitude in mountainous environments and are 

generally thought to be more saltatorial in escape behaviour due to their proximity to steep 

terrain with rocky outcrops (Curran 2009). They are, nevertheless, not as well adapted to these 

environments as mountain bovids (Geist 1998) and even when found at high altitude, they 

often prefer relatively flat terrain (e.g. Cervus albirostris) (Flueck & Flueck 2017). As a result 

these species can also show high endurance and speed and may be cursorial to some extent. 

Their capacity for phalangeal splaying is thought to be high (Kӧhler 1993, Curran 2009). 

Type 5 species are found in open wetlands and, similar to type 1 species, associated with a 

cursorial escape strategy. These environments mostly have soft substrate and typical habitats 

are swamps (e.g. Blastoceros dichotomus), wet grasslands (e.g. Cervus eldii), and saltmarshes 

(e.g. Hydropotes inermis). Even though these habitats often have few solid objects to put 

between prey and predator, they are often vegetated with tall grasses or reedbeds that provide 

cover (Curran 2009). As a result species of this type don’t necessary have to rely as much on 

speed and endurance as true cursorial forms (type 1) and may show some morphological traits 

similar to type 2 species. Their phalanges are thought to have a relatively high capacity for 

splaying (Kӧhler 1993, Curran 2009). 

A final group (type 6) was solely composed of reindeer (Rangifer tarandus). This species has 

a cursorial evasion strategy and is found in fairly open tundra environments (Geist 1998). 

Reindeer phalanges, however, are thought to be adapted to the particular conditions present in 

the tundra: alternating episodes of frozen soil and melting snow that require additional grip 

(Hildebrand 1985, Nieminen 1990). It was therefore felt that at least for the limb extremities it 

was more appropriate to place this species in its own group.  
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5.8. Materials 

5.8.1 Extant specimens 

Data on extant specimens were collected at a number of institutes: the Royal Belgian Institute 

of Natural Sciences (Brussels, Belgium), the National Museum of Natural History (Paris, 

France), the Naturalis Biodiversity Center (Leiden, The Netherlands), the Natural History 

Museum Rotterdam (The Netherlands), the National Museum of Natural History (Washington 

D.C., U.S.), the American Museum of Natural History (New York, U.S.), the Charles-de-

Gaule Lille III University (Lille, France), the University of Liège (Belgium) and the Center 

for Artefact Research vzw (Mechelen, Belgium). In addition, 3D data from a small number of 

specimens was shared by the Max Planck Institute of Evolutionary Anthropology (Leipzig, 

Germany) (Niven et al. 2009) and the Virtual Zooarchaeology of the Arctic project (Idaho 

University, United States) (Maschner et al. 2011, Betts et al. 2011). In Appendix B the 

institutions are listed where the latter specimens are held. 

In total 166 extant individuals were studied, resulting in a dataset of 142 intermediate 

phalanges and 125 calcanei. The composition of the dataset was to an extent a function of the 

availability of species at the different institutes visited. Although the extant sample was not as 

extensive as in certain earlier works (e.g. Kovarovic 2004), all reasonably available data was 

collected and sample sizes were in the same range as in a number of other ecomorphological 

studies on artiodactyls (e.g. Weinand 2005, Curran 2009, Schellhorn 2009). For certain taxa 

(e.g. Cervus elaphus), larger numbers of skeletons were available, but it was decided that for 

each species a maximum 16 specimens were scanned of each element, to prevent the dataset 

from becoming too skewed towards more common species. While the majority of the 

specimens came from wild caught animals, some zoo specimens were included as certain taxa 

were extremely rare in museum collections (see Appendix B). Although captivity is known to 
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affect morphology in certain mammals (O’Regan & Kitchener 2005) captive specimens were 

still considered useful additions to maximize the diversity and sample size of the dataset. The 

modern sample of cervids was comprised of 29 different species, belonging to 6 tribes. Each 

species was assigned a three digit code that was used throughout this dissertation (Table 5.2). 

Both males and females were included in the sample, but except for an exploratory analysis of 

between-sex morphological variation, no specific distinction was made between sexes in the 

analysis of the data (see section 5.5). An attempt was made to sample specimens evenly 

across sexes, but since most museum collections are biased towards male trophy-hunted 

specimens (Curran 2009) this was impossible for all taxa. Only adult, non pathological, 

specimens were included. Skeletons were considered adult when all epiphyses were fused and 

all teeth were erupted. In cases where only isolated bones were present, it was deemed 

sufficient if the epiphyses of the individual specimens were fused. Cervids from all 

geographical areas were included as it was felt that a dataset of only (Southeast-) Asian 

species would be too restrictive in terms of taxonomic diversity. The sampled species come 

from a wide range of habitats in Europe, Asia, North- and South America (Table 5.2). A more 

detailed list of all specimens is given in Appendix B. 

When possible, the medial phalanx from the left posterior leg was selected for data collection. 

In cases where this element was unavailable or inappropriate for scanning, the lateral phalanx 

of the same leg or the medial phalanx of the opposite leg was selected. When necessary, 

scanned specimens were virtually mirrored using Meshlab 2.0. When selecting calcanei for 

scanning, I systematically opted for the left calcaneus. Some right specimens were also 

mirrored using Meshlab, in cases where the preferred side was unavailable. Preference was 

given to specimens that included more detailed associated catalog data (especially pertaining 

to locality). 
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Tribe Species Code N Calc Ph2 Geographic range 

Cervini 

Axis axis AXA 13 11 10 India 
Axis (Hyelaphus) kuhlii AXK 3 2 3 Java (Bawean) 
Axis (Hyelaphus) porcinus AXP 5 4 5 South-and Southeast Asia 
Cervus (Przewalskium) albirostris CEA 1 - 1 Tibet and China 
Cervus (Elaphurus) davidianus ELD 3 3 3 China 
Cervus (Panolia) eldii CEL 5 2 4 South-and Southeast Asia 
Cervus (Rusa) timorensis CET 5 2 5 Java 
Cervus (Rusa) alfredi CAL 2 1 2 Philippines 
Cervus (Rusa) marianna CEM 1 1 1 Philippines 
Cervus (Rusa) unicolor CEU 6 3 6 South-and Southeast Asia 
Cervus canadensis CCA 7 4 5 North America 
Cervus elaphus CEE 12 10 9 Western Eurasia and North Africa 
Cervus nippon CEN 2 2 2 East Asia 
Dama dama DDA 11 11 11 Europe and Western Asia 

Muntiacini 
Elaphodus cephalopus ELC 5 3 4 East Asia 
Muntiacus reevesi MUR 3 3 3 East- and Southeast Asia 
Muntiacus muntjak MUM 6 4 6 South-and Southeast Asia 

Capreolini 
Capreolus capreolus CAC 20 16 16 Europe and Western Asia 
Hydropotes inermis HYI 11 11 8 China 

Rangiferini Rangifer tarandus RAT 15 12 14 Northern Eurasia and North America 

Odocoileini 

Hippocamelus antisensis HIA 1 - 1 North-East of South America 
Mazama gouazoubira MAG 1 - 1 North-West of South America 
Mazama americana MAA 6 2 5 North of South America 
Odocoileus virginianus ODV 3 3 3 North- and Central America 
Odocoileus hemionus ODH 3 2 2 West of North America 
Ozotoceros bezoarticus OZB 1 1 1 Central South America 
Pudu mephistophiles PUM 3 2 2 North-West of South America 
Pudu puda PUP 5 5 3 South-West of South America 

Alceini Alces alces ALA 7 5 6 Northern Eurasia and North America 
 

Table 5.2: Extant species used in the dataset, including species code (Code), geographic range, total sample of 
studied skeletons (N), number of calcanei (Calc) and number of intermediate phalanges (Ph2). 

 

5.8.2 Fossil specimens 

3D surface scans were taken of fossil specimens at the Naturalis Biodiversity Center (The 

Netherlands, Leiden), the Museum für Naturkunde Berlin (Germany) and the Geological 

Museum of Bandung (Indonesia). A substantial amount of fossils were available for 

observation, but ultimately a sample of 80 sufficiently preserved specimens was selected for 

further analysis (Table 5.3). Left and right calcanei were included, but right specimens were 

digitally mirrored in Meshlab 2.0 for inclusion in the model. Similarly, fossil phalanges were 

mirrored in Meshlab to match their laterality with that of the extant specimens used in the 



158 
 

training set. Due to the difficulty of distinguishing anterior and posterior intermediate 

phalanges, both were included in the model. Incomplete bones were not studied because they 

generally perform worse in ecomorphological studies than complete bones (Curran 2009) and 

because of their tendency to give misleading results, as the missing values often alter the 

specimen’s position relative to the group centroid in multivariate space (Bishop 1994).  

The fossils used in this dissertation were found at several Early to Middle Pleistocene sites 

from Java (Fig. 5.11). The majority of the material came from sites where Homo erectus was 

confirmed to have been present (Trinil, Sangiran and Kedung Brubus). A smaller number of 

fossils were included that were found in the Kendeng Hills in the proximity of these larger, 

well studied sites and have been considered part of the Kedung Brubus biostratigraphic unit 

(Bangle, Sembungan, Butak, Banuraja) (von Koenigswald 1933, Brongersma 1935, van 

Heekeren 1957, Aziz & de Vos 1999). In addition, a number (N=15) of Early to Middle 

Pleistocene specimens from East/Central Java were included that lacked precise locality data, 

but were still relevant as they belonged to species that were also found in Trinil, Kedung 

Brubus or Sangiran. As such they are still informative about the habitat preferences of these 

species. In Appendix C a list with detailed catalog data is provided for all fossil specimens. 

 

Locality Biostratigraphic unit Age N Calc Ph2 
East/Central Java - Early/Middle Pleist. 15 7 8 
Trinil Trinil H.K. 0.9 Ma 43 28 15 
Sangiran Trinil H.K./Kedung Brubus ≤ 0.7-0.9 Ma 16 9 7 
Kedung Brubus Kedung Brubus 0.7-0.8 Ma 2 - 2 
Butak Kedung Brubus 0.7-0.8 Ma 1 - 1 
Bangle Kedung Brubus 0.7-0.8 Ma 1 1 - 
Sembungan Kedung Brubus 0.7-0.8 Ma 1 1 - 
Banuraja Kedung Brubus 0.7-0.8 Ma 1 1 - 
Total: - - 80 47 33 
 

Table 5.3: Fossil specimens used in dataset, including find locality, associated biostratigraphic unit, estimated 
age, total sample of studied fossils (N), number of calcanei (Calc) and number of intermediate phalanges (Ph2). 
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Figure 5.11: Map of Java with the location of the palaeontological and palaeoanthropological sites where the 

studied materials were found. 

The largest sample of 43 specimens, came from Trinil H.K. (hauptknochenschicht= main 

fossiliferous layer), the Homo erectus type locality. This site, first excavated by Dubois in the 

late 19th century, was found near the village of Trinil on the banks of the Solo River (de Vos 

2004). A large part of the material that was included in this study (N=28) comes from this 

early excavation and is now kept at the Naturalis Biodiversity Center in Leiden as part of the 

Southeast Asian palaeontological collections. In addition, a sample (N=15) of cervid fossils 

that came from the early 20th century German campaign at Trinil, led by Selenka and 

colleagues (1911), was also included in the dataset. The latter collection was studied at the 

Museum für Naturkunde of the Humbolt University in Berlin.  

The main fossiliferous layer (H.K.) found at Trinil is composed of volcanic tephra of an Early 

to Middle Pleistocene age (Watanabe et al. 1985). It is dated around 0.9 Ma (van den Bergh et 

al. 2001). The only cervids that were positively identified at this site are a rare muntjac 

(Muntiacus kendengensis) and the extinct, but commonly found, Axis lydekkeri (von 

Koenigswald 1933, van den Bergh et al. 2001, Gruwier et al. 2015). The larger deer, regularly 

found in younger sites on Java are absent from Trinil. Although there are indications that the 

limited number of species identified at Trinil are a true reflection of the taxonomic diversity 



160 
 

of the site (Gruwier et al. 2015), it can nevertheless not be excluded that some cryptid species 

were present in the unidentified (or identified) sample from Trinil. It is in this case a priori 

assumed that all specimens from Trinil, included in the dataset, belonged to Axis lydekkeri. 

From the hominin site of Kedung Brubus only two fossils were appropriate for inclusion in 

the dataset. This second Homo erectus site was found in the southern part of the Kendeng 

Hills near the village of Kedung Brubus (Sondaar 1994) and is mainly composed of fluviatile 

deposits of sand, sandstone and pebbles (Watanabe et al. 1985). According to van den Bergh 

et al. (2001) the deposits represent a single faunal unit and can be dated between 0.7 and 0.8 

Ma. The two studied specimens are thought to belong to the large sized Cervus kendengensis. 

Although no other specimens useful to this analysis were available from the site, the smaller 

Axis lydekkeri is also represented within this assemblage (van den Bergh et al. 2001, Gruwier 

et al. 2015). The materials from Kedung Brubus are kept at the Naturalis Biodiversity Center.  

Although the sample from Kedung Brubus itself was limited in size, four specimens were 

added to the dataset that came from other localities in the same region that were also 

considered part of the Kedung Brubus biostratigraphic unit. This was the case for one 

specimen from the foot of Butak Hill very close to the Kedung Brubus type site. Butak is 

stratigraphically composed of alternating tuff- and sandstone layers and bears fossils typical 

of this fauna (van Heekeren 1957). A second specimen came from Bangle, approximately 12 

km north of Kedung Brubus, and is also biostratigraphically placed under the Kedung Brubus 

unit (Brongersma 1937). This little known site on the Solo River was excavated by Dubois 

and is part of the Southeast Asian collections of the Naturalis Biodiversity Center. The fossil 

from Bangle was identified as Cervus kendengensis. A third fossil came from Sembungan, 

found somewhat further to the north of Kedung Brubus, but also within the Solo River Basin. 

Although the age of the deposit is controversial, the faunal spectrum is suggestive of a similar 

Middle Pleistocene age as Kedung Brubus (van den Bergh et al. 2014). This cervid specimen 
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was not further taxonomically identified, but probably of the genus Cervus (personal 

observation), and is currently kept at the Geological Museum of Bandung. A final fossil of 

this kind that was included in the dataset came from Banuraja, a site on the banks of the 

Citarum River, more to the west of Kedung Brubus (Aziz & de Vos 1999). The site was 

discovered and first described by Stehn and Umbgrove (1929) and is probably of fluviatile 

origin (Aziz & de Vos 1999). Based on biostratigraphic arguments, the site is considered 

similar in age to Kedung Brubus (Aziz & de Vos 1999). The cervid specimen was placed 

under the nomen Cervus kendengensis and is stored at the Naturalis Biodiversity Center.   

The second largest fossil sample used in this study (N=16) came from Sangiran. Although 

von Koenigswald (1940) excavated at Sangiran, the material included here comes from the 

1970’s Japanese-Indonesian campaign (Watanabe et al. 1985) of which the resulting fossils 

are kept at the Geological Museum of Bandung. This Homo erectus site lies north of 

Soerakarta and is formed by a dome shaped anticline lying between the volcanoes Mount 

Merapi and Mount Lawu (Indriati & Anton 2008). As opposed to the other sites described 

here, Sangiran has a long chronological sequence covering multiple biostratigraphic units, 

ranging from 0.2 to 2.6 Ma (Bouteaux 2005). Of the four formations exposed at Sangiran (see 

section 3.5.2.3), the Kabuh formation, which is separated from the Pucangan formation by the 

Grenzbank, is the richest in fossils (Indriati & Anton 2008). Based on biostratigraphic 

arguments, the cervids included here are all thought to come from the Kabuh formation or the 

Grenzbank, and are part of the Trinil (H.K.) or Kedung Brubus biostratigraphic unit.  

As the exact provenance of the fossils from Sangiran is unknown (Larick et al. 2001, Indriati 

& Anton 2008) it is unclear whether the studied cervids were part of the Upper Kabuh 

formation (Kedung Brubus unit) or Lower Kabuh formation/Grenzbank (Trinil H.K. unit). 

Some of the specimens (N=3) were nevertheless catalogued as part of the older Grenzbank 
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layers and may be correlated with the Trinil H.K. fauna. In terms of species diversity, a 

substantial number of taxa have been described from Sangiran (see section 4.4.2), such as 

Cervus zwaani (von Koenigswald 1934), Muntiacus muntjak (von Koenigswald 1934) and 

Axis lydekkeri (Moigne et al. 2004a, 2004b), but the specimens collected during the Japanese-

Indonesian campaign were not identified below family level. While it is possible that some of 

these originally described forms are taxonomically obsolete (Gruwier et al. 2015), large sized 

species (cf. Cervus (Rusa) sp.) as well as medium sized species (cf. Axis sp.) were present in 

the collection used here (personal observation). It is therefore assumed that at least one form 

of Axis sp. and one form of Cervus (Rusa) sp. are represented in the Sangiran collection. 
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6. Results 

6.1 Introduction 

In section 6.2 the results of the extant cervid ecomorphological analyses were presented for 

the calcaneus and the intermediate phalanx. After providing the results of error testing for the 

two models and discussing the results of two preliminary PCA’s that deal with the effects of 

sexual dimorphism and the differences between anterior and posterior specimens (only 

phalanges), the results of the PCA on all specimens, were discussed. Although the 

habitat/locomotion groups used in this analysis were already described in chapter 5, a short 

review of the categories used for the two elements is given in Table 6.1.  

Based on a on a broken stick model of eigenvalue distributions and on the accumulative 

percentage of explained variance a number of relevant components were retained for further 

analysis (see section 5.5). An NPMANOVA was run on these relevant components to 

determine statistical significance between predefined groups in the dataset as a whole. Shape 

changes observed in the thin plate spline deformation grids associated with the axes of the 

first four principal components were discussed for the two elements. Only those shape 

differences that were obvious in the deformation grids were further assessed. Visualization of 

morphological variation along the axes was provided together with the PCA scatterplots and 

also illustrated in a separate scheme for each principal component. 

PCA scatterplots were discussed in terms of specimen patterns and relationships to the 

observed shape changes. Statistical significance between groups along individual axes was 

determined using a Kruskal-Wallis test on the PC-scores. The results of a number of ordinary 

least squares regression analyses, with shape variables regressed against log centroid size, 

were provided to account for allometric effects. Finally the possible role of a phylogenetic 

effect was accounted for by visually assessing PCA scatterplots after specimens were 
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taxonomically labelled and the mean scores for each species calculated for the different axes. 

A phylogenetic generalized least squares regression was run on the relevant principal 

components to quantify the overall phylogenetic effect in the dataset. 

Type 1 Associated with relatively dry, open environments. Cursorial escape strategy. Limited splaying. 
Type 2 Intermediate between type 1- and type 3. 
Type 3 Associated with relatively wet, closed environments. Saltatorial escape strategy. More splaying. 
Type 4 Associated with mountain environments, saltatorial but with high endurance and speed. More splaying. 

Type 5 Associated with open wetland, cursorial but less reliance on speed/endurance than type 1. More splaying. 
Type 6* Associated with tundra habitat, cursorial. More splaying. (*only for the phalanx) 

 

Table 6.1: Short review of habitat/locomotion groups used for the calcaneus and intermediate phalanx 

Section 6.3 presented the results of the ecomorphological analyses of the fossil specimens. It 

was divided in four sub-sections dealing with fossil datasets from different faunal units, sites 

and extinct species. In section 6.3.1.1, the results of the material from Trinil were discussed, 

followed in section 6.3.1.2 by the results of an analysis of the species most commonly 

associated with this site: Axis lydekkeri. Section 6.3.1.3 discussed the results of an analysis of 

Cervus kendengensis fossils from several sites associated with the Kedung Brubus faunal unit. 

In section 6.3.1.4 the results of an analysis of materials from Sangiran was presented. The 

results for the phalanges (6.3.2) were organized in a similar way, with the exception of section 

6.3.2.3. This section also dealt with Cervus kendengensis and the Kedung Brubus faunal unit, 

but was composed of material from other localities (see section 5.8.2). For all combined 

datasets (extant plus fossil specimens) the appended file was resubmitted to a new GPA and a 

bg-PCA was conducted on the new procrustes residuals. The same number of principal 

components were retained as in the extant species analysis, but only those axes that were 

considered to primarily summarize functionally driven morphological variation, were 

discussed in detail. PCA scatterplots were visually assessed and statistical significance 

between pre-assigned groups (along individual axes) was tested using a Kruskal-Wallis test. 

Differences in multidimensional space were further assessed using a NPMANOVA. 
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6.2 Results extant specimens 

6.2.1 Calcaneus 

6.2.1.1 Error testing 

Close clustering of replicates in the PCA of the specimens used in the digitization error test 

(Appendix D) suggested that the protocol used for scanning and creating the surface models 

for the calcaneus, did not result in large errors. The replicates of the same individuals 

consistently plotted out closely together and often overlapped in the scatterplot, indicating this 

error did not have a confounding effect on normal biological variation. Similarly, an intra-

observer test revealed that specimen replicates in a second PCA on a group of five individuals 

formed close clusters in the scatterplot (Appendix D). Following Adriaens’ (2007) protocol 

this indicated that variation in the placement of landmarks over the course of several months 

of data collection did not obscure normal biological variation. 

6.2.1.2 Sexual dimorphism 

An exploratory PCA on a dataset of ten Dama dama specimens of known sex (Appendix E) 

revealed no clear visual separation between male and female specimens. Furthermore, an 

NPMANOVA on the first four components confirmed that male-female separations were non-

significant (p=0.734). Based on these results and on analyses in previous studies (Curran 

2009, 2012), it could be concluded that shape related sexual dimorphism was minimal in the 

calcaneus and did not obscure phylogenetic and functional patterns to a large extent. 

6.2.1.3 Results PCA 

The results of the between groups PCA provided reasonable visual separation along the axes 

of the first four principal components. Because in the between groups PCA, the eigenanalysis 
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was run on the five group means, only four principal components were calculated from the 

original data (as the number of calculated components in this analysis is n-1, where n is the 

number of datapoints). Because of this reason and since the broken stick distribution of the 

eigenvalues (see Appendix G) suggested that all four components were relevant, PC1 to PC4 

(together summarizing 99.8% of the total variance) were retained for further analysis.  

Non parametric MANOVA 

 The results of the NPMANOVA indicated highly significant differences between the groups 

(F=4.35, p=0.0001). Pairwise comparisons (Table 6.2) showed that type 1 specimens were 

significantly different from type 2 (p=0.0018), type 3 (p=0001), type 4 (p=0.0009) and type 5 

specimens (p=0.0001). Although type 2 specimens were significantly different from type 1 

specimens (p=0.0018), they were not different from type 3 specimens (p=0.2285). These were 

the only groups that did not give significant separations and indicated that type 2 specimens 

were more similar in morphology to type 3 specimens as far as the shape differences 

described by the PCA were concerned. In addition, type 2 specimens were also significantly 

different from type 4 (p=0.0011) and type 5 specimens (p=0.0017). Besides being 

significantly different from type 1 specimens, type 3 specimens were also significantly 

different from type 4 (p=0.0004) and type 5 specimens (p=0.0001). Furthermore, type 5 

specimens were found to be significantly different from the type 4 group (p=0.0001). 

 
Type 1 Type 2 Type 4 Type 3 Type 5 

Type 1 
 

0.0018 0.0009 0.0001 0.0001 
Type 2 0.0018 

 
0.0011 0.2285 0.0017 

Type 4 0.0009 0.0011 
 

0.0004 0.0001 
Type 3 0.0001 0.2285 0.0004 

 
0.0001 

Type 5 0.0001 0.0017 0.0001 0.0001 
  

Table 6.2: p-values of pairwise comparisons of an NPMANOVA on the first four principal component scores of a 
between groups PCA on the calcaneus dataset, with significant values (p<0.05) in bold. 
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Scatterplots and thin plate spline deformation grids 

PC1 summarized 73% of the total variance in the between groups PCA. As expected, a very 

large part of the shape variance was concentrated in the first component. Visual assessment of 

the morphological variation summarized by PC1 revealed two main shape changes (Fig. 6.1). 

A first shape change was a difference in height and angle of the tuber calcanei relative to the 

articular surfaces of the element. Specimens with a more positive score had tuber calcanei that 

were positioned more perpendicular relative to the anterior part of the bone with the articular 

surfaces, as a result of a different orientation of the articular surface supporting the astragalus.  

Specimens with a negative score had tuber calcanei that were positioned at approximately the 

same height as the anterior part of the calcaneus. This variation in angle of the tuber calcanei 

appears to be linked to the hypothesis that in more cursorial forms the calcaneus is expected 

to be more vertically placed relative to the hindleg in order to achieve a higher pace of 

contraction during locomotion. A more horizontal tuber calcanei is expected in saltatorial 

species. Such a shape provides slower contraction but more powerful movement, ideal for 

leaping. Based on the thin plate spline deformation grids, this observed shape difference could 

be interpreted as functional. 

A second shape change summarized by PC1 was the length of the tuber calcanei itself, 

relative to the anterior part of the element with the articular surfaces. Specimens with a high 

score tended to have calcanei that had relatively short tuber calcanei. Specimens with a lower 

score, on the other hand, had relatively long tuber calcanei. This shape difference was related 

to the functional hypothesis that the length of this part of the calcaneus is linked to differences 

in locomotor strategy. As with the angle of the tuber calcanei, the length of the tuber also has 

an influence on power and speed of contraction in the hock joint. An increased lever arm 

provides more powerful movement, ideal for saltatorial forms. A shortened lever arm allows 
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for faster contraction and increased acceleration and is more suitable for cursorial forms. The 

interpretation of this shape difference would suggest a functional interpretation.  

 

 

Figure 6.1: Shape changes observed along PC1 of a bg-PCA on all specimens, with visualizations of the 

calcaneus all from medial perspective, unless stated otherwise. The illustrations on the right present landmark 

configurations registered on the calcaneus, the illustrations on the left; their corresponding positions on the 

bone. In “A” a difference in angle of the tuber calcanei, relative to the anterior portion of the calcaneus is 

presented. Specimens with a high score on PC1 (top, far right) had a tuber positioned at an increased angle 

relative to the anterior portion of the bone. Specimens with a low score on PC1 (top, second from the right) had 

a tuber positioned at approximately the same height as the anterior portion of the calcaneus. In “B” a difference 

in length of the tuber calcanei is illustrated. Specimens with a low score on PC1 (bottom, second from the right) 

had a long tuber relative to the size of the whole bone. Specimens with a high score on PC1 (bottom, first from 

the right) had a short tuber relative to the size of the whole calcaneus. 
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The assessment of the scatterplots associated with PC1 suggested that the trends predicted by 

the functional hypotheses were partially confirmed by specimen distribution along this axis 

(Fig. 6.2 and 6.3). Despite substantial overlap, when PC1 was plotted against PC2 (Fig. 6.2), 

groups showed the highest amount of visual separation. When PC1 was plotted against PC3 

(Fig. 6.3), separation was mainly driven by PC1.  

 
Figure 6.2: PC1 and PC2 scatterplot of a bg- PCA of all specimens ordered by habitat/evasion strategy with 

50% confidence intervals. 
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Figure 6.3: PC1 and PC3 scatterplot of a bg- PCA of all specimens ordered by habitat/evasion strategy with 

50% confidence intervals. 

 

Type 1 specimens (cursorial/open) tended to have a high score on PC1. Type 3 specimens 

(saltatorial/closed) also behaved as predicted and tended to give a low score on the first axis. 

Statistically significant differences between group medians were indicated by the Kruskal-

Wallis test (H=53.08, p<0.0001), and pairwise comparisons showed a significant difference  

between the type 1 and type 3 groups (p=0.0006) (Table 6.3). This implied that the type 1 and 

type 3 groups had morphological characteristics predicted to be associated with specimens of 

their habitat and/or locomotor strategy. Type 2 specimens, being intermediate between type 1 

and type 3 specimens, visually gave intermediate scores as predicted. This group was found to 

be significantly different from the type 1 group (p=0.0025), but not from the type 3 group 

(p=0.7908), indicating its shape was more similar to the saltatorial/closed habitat specimens 
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(type 3).  This pattern generally corroborated the primarily functional interpretation of the thin 

plate spline deformation grids associated with this shape variable.  

Type 4 specimens (saltatorial/high altitude) gave high scores most similar to type 1 

specimens, or even higher. The group of type 4 specimens was significantly different from the 

type 1 (p=0.0061), type 2 (p=0.0013), type 3 (p=0.0004) and type 5 groups (p<0.0001). This, 

nevertheless, suggested this group was most similar on average to the type 1 specimens. Type 

4 specimens were, however, expected to behave more like type 1 specimens (cursorial/open) 

in the scatterplot due to their tendency to prefer relatively flat terrain over steep, difficult 

terrain (see further explanation in section 7.2). 

 

PC1 Type 1 Type 2 Type 3 Type 4 Type 5 

Type 1 - 0.0025 0.0006 0.0061 <0.0001 
Type 2 0.0025 - 0.7908 0.0013 0.0036 
Type 3 0.0006 0.7908 - 0.0004 0.0005 
Type 4 0.0061 0.0013 0.0004 - <0.0001 
Type 5 <0.0001 0.0036 0.0005 <0.0001 - 

PC2 Type 1 Type 2 Type 3 Type 4 Type 5 

Type 1 - 0.0161 0.0008 0.3609 0.1017 
Type 2 0.0161 - 0.6286 0.5635 0.0299 
Type 3 0.0008 0.6286 - 0.2419 0.001 
Type 4 0.3609 0.5635 0.2419 - 0.2134 
Type 5 0.1017 0.0299 0.001 0.2134 - 

PC3 Type 1 Type 2 Type 3 Type 4 Type 5 

Type 1 - 0.0169 0.0607 0.6303 0.7687 
Type 2 0.0169 - 0.0025 0.1278 0.0428 
Type 3 0.0607 0.0025 - 0.1746 0.2568 
Type 4 0.6303 0.1278 0.1746 - 0.643 
Type 5 0.7687 0.0428 0.2568 0.643 - 

PC4 Type 1 Type 2 Type 3 Type 4 Type 5 

Type 1 - 0.2843 0.2205 0.0579 0.0005 
Type 2 0.2843 - 0.6286 0.5635 0.2134 
Type 3 0.2205 0.6286 - 0.2546 0.044 
Type 4 0.0579 0.5635 0.2546 - 0.8644 
Type 5 0.0005 0.2134 0.044 0.8644 - 

 

Table 6.3: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 to PC4 of the bg- 

PCA on all extant calcanei with significant values (p<0.05) in bold. 
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Type 5 specimens (cursorial/open wetland) were visually well separated from the main luster 

of datapoints. This group was found to be significantly different from the type 1 (p<0.0001), 

type 2 (p=0.0036), type 3 (p=0.0005) and type 4 specimens (p<0.0001).  In the PCA, this 

group produced prominently negative scores, most similar to the type 2 and type 3 groups. 

This indicated that their morphology, as summarized by PC1, was more similar to that of 

intermediate- and saltatorial (closed habitat) species. Although in the functional hypotheses 

(see chapter 5) it was predicted that type 5 specimens would be morphologically similar to the 

more cursorial type 1 specimens, this pattern could perhaps be explained by the fact that 

sufficient cover is still present in the open wetlands that type 5 species inhabit (see further 

explanation in section 7.2).  

Overall, specimen between-group relationships along the first component implied that shape 

variation along this axis was to a substantial extent functionally driven. This is mainly 

suggested by a gradient in shape from type 1, over type 2, to type 3 species. In addition, the 

placement of type 4 and type 5 specimens could also potentially be explained as a result of 

functional differences. 

PC2 was responsible for 15.3% of the total variance. The primary shape difference that was 

observed along the second axis was a difference in length of the articular surface that supports 

the malleolus (Fig. 6.4). In specimens with a high score, the articular surface tends to be 

longer and in specimens with a low score it tends to be shorter in the anterio-posterior 

direction. This could be related to the functional hypothesis that cursorial species are 

predicted to have a longer articular surface for the malleolus, as this provides more stability 

when running at high speed. A functional interpretation for this shape difference is therefore 

not unlikely.  
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Figure 6.4: Shape changes observed along PC2 of a bg-PCA on all specimens, with visualizations of the 

calcaneus all from medial perspective, unless stated otherwise. The illustrations at the bottom present landmark 

configurations registered on the calcaneus, the illustrations on the top; their corresponding positions on the 

bone. In the schematic a difference in the size of the articular surface with the malleolus is illustrated. Specimens 

with a high score on PC2 (bottom right) had a relatively short articular surface supporting the malleolus. 

Specimens with a low score on PC2 (bottom left) had a relatively long articular surface supporting the 

malleolus. 

Even though on the second axis visual separation in the scatterplot was not as good as on the 

first axis, the predefined groups were still clearly distinct (Fig. 6.2 and 6.5). Separations 

appeared to be best when the second component was plotted against the first component, but 

were mainly driven by the first axis (Fig. 6.2). When PC2 was plotted against PC3, 

separations on the second axis were less obscured than in the first scatterplot (Fig. 6.5). 
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Figure 6.5: PC2 and PC3 scatterplot of a bg- PCA of all specimens ordered by habitat/evasion strategy with 

50% confidence intervals. 

Type 1 specimens (open/cursorial) tended to give a high score on PC2, while type 3 

specimens (closed/saltatorial) gave a lower score. The Kruskal-Wallis test indicated that 

overall differences between group medians were highly significant (H=19.36, p=0.0006) and 

pairwise comparisons showed significant differences between the type 1 and type 3 specimens  

(p=0.0008) (Table 6.3). Type 2 specimens appeared intermediate between type 1- and type 3, 

but were only significantly different from the former (p=0.0161) and not the latter group 

(p=0.6286).  This means that type 1 specimens had a relatively long articular surface 

supporting the malleolus, as was expected for this group. In type 3 specimens this articular 

surface was shorter, while in type 2 specimens, it was intermediate between type 1 and type 3, 

but probably more similar to the type 3 group. 
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Type 5 specimens (cursorial/open wetland) were not well separated on the second axis and 

gave results similar to type 1 specimens in the PCA. According to the pairwise comparisons 

of the Kruskal-Wallis test (Table 6.3) this group was significantly different from type 2 

(p=0.0299) and type 3 specimens (p=0.001), but not from type 1 (p=0.1017) and type 4 

specimens (p=0.2134).The location of this group in the scatterplot as far as the articular 

surface of the malleolus is concerned, is not necessarily surprising. This is a morphological 

aspect predicted to be found in animals with a more cursorial locomotor strategy, also found 

in type 1 specimens. It is nevertheless somewhat contradictory to the pattern described by this 

group along the first axis. In PC1, type 5 specimens gave scores more similar to the type 2 

and type 3 specimens, although differences from these groups were still significant.  

Type 4 specimens (saltatorial/high altitude) also gave a similar score to type 1 specimens as in 

most other scatterplots of the PCA. The length of the articular surface for the malleolus was 

therefore probably more similar in shape to cursorial species and not, to the more saltatorial 

type 3 species. No significant differences between the type 4 group and the other groups were 

found though (Table 8). Overall the scatterplots associated with PC2 suggested that the shape 

differences summarized by this axis may be at least partially functional, although other 

confounding factors such as allometry or phylogeny could play a role, too (see below). 

PC3 explained 6.4% of the total variance. Two main shape differences were observed during 

visual assessment of the thin plate spline deformation grids associated with the third axis (Fig. 

6.6). A first shape change (Fig. 6.6) summarized by PC3 was the size of the posterior talar 

articular surface. Specimens with a more positive score had larger posterior talar articular 

surfaces, while in specimens with a negative score this articular surface was smaller. No clear 

link can be made with any of the proposed functional hypotheses, but the size of this articular 

surface could perhaps also be associated with joint stabilization, as is probably the case for the 
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articular surface supporting the malleolus, a shape change described along the second axis. A 

second shape change (Fig. 6.6) summarized by PC3 was a variation in the distance between 

the articular surface of the malleolus and the posterior talar articular surface. In specimens 

with a low score the distance between these two articular surfaces was high. In specimens 

with a high score, the distance between the articular surfaces was limited. Based on the thin 

plate spline deformation grids it could not be concluded that there was a clear link between 

this morphological difference and any of the proposed functional explanations. 

 
 
Figure 6.6: Shape changes observed along PC3 of a bg-PCA on all specimens, with visualizations of the 

calcaneus from medial perspective, unless stated otherwise. The illustrations on the right present landmark 

configurations registered on the calcaneus, the illustrations on the left; their corresponding positions on the 

bone. In “A” a difference in size of the posterior talar articular surface is presented. Specimens with a high 

score on PC3 (top, far right) had a posterior talar articular surface that was relatively long in the proximo-

distal direction. Specimens with a low score on PC3 (top, second from the right) had a posterior talar articular 

surface that was shorter in the proximo-distal direction. In “B” a difference in the distance between the 

posterior talar articular surface and the articular surface supporting the malleolus is shown. In specimens with 

a high score on PC3 (bottom, far right), the distance between the two articular surfaces was small. In specimens 

with a low score on PC3 (bottom, second from the right), the distance between the two articular surfaces was 

large. 
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Unsurprisingly, the third component did not show as good visual separation in the scatterplot 

as the first two components. When plotted against PC1 (Fig. 6.3) and PC2 (Fig. 6.5) it was 

mostly the other components that drove the separations. In the scatterplot with PC4 no clear 

pattern was observed and all specimens clustered together in the center (Fig. 6.7). 

Nevertheless, statistically significant differences were found in the Kruskal-Wallis test of the 

scores of PC3 (H=11.24, p=0.024). Furthermore, pairwise comparisons indicated significant 

differences between the type 2 group and the type 1 (p=0.0169), type 3 (p=0.0025) and type 5 

groups (p=0.0428). As the scatterplot generally did not result in clear separations and the 

deformation grids did not suggest a clear link with any of the functional hypotheses, there 

does not appear to be a clear functional signal summarized by this component. 

 
Figure 6.7: PC3 and PC4 scatterplot of a bg- PCA of all specimens ordered by habitat/evasion strategy with 

50% confidence intervals. 
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PC4 was responsible for 5.1% of the variance. The main shape difference that was observed 

along the axis of PC4 was a difference in height of the anterior end of the articular surface 

with the cubonavicular (Fig. 6.8). In specimens with a low score it was positioned 

comparatively high relative to the rest of the calcaneus. In specimens with a high score it was 

positioned lower relative to the rest of the calcaneus. Possibly this had an effect on the 

placement of the calcaneus on the cubonavicular and on the positioning of the calcaneus as a 

whole in the hockjoint. A lower anterior end of this articular surface may place the calcaneus 

on the cubonavicular in a more vertical position relative to the rest of the hindleg. This more 

vertical position would be expected in more cursorial forms as it is optimized for quicker but 

less powerful movements in the joint during contraction. A more horizontal postion of the 

calcaneus would be expected in saltatorial forms, as this morphotype is associated with 

slower, but more powerful movement in the joint. This shape difference is nevertheless not as 

clearly linked with any of the previously formulated functional hypotheses. 

In the scatterplot associated with PC4, all specimens clustered together in the center of the 

graph (Fig. 6.7). Although not clearly visible in the scatterplot, the Kruskal-Wallis test  

indicated  overall significant differences between groups (H=13.43, p=0.0093). Moreover, 

pairwise comparisons showed significant differences between the group of type 5 specimens 

and type 1 (p=0.0005) and type 3 specimens (p=0.044) (Table 6.3). Although the deformation 

grids may indicate a potential connection with the previously formulated functional 

hypotheses, the weak separations associated with this shape variable are not in support of a 

strong functional signal.  
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Figure 6.8: Shape changes observed along the axis of PC4 of a bg-PCA on all specimens, with visualizations of 

the calcaneus all from medial perspective, unless stated otherwise. The illustrations at the bottom present 

landmark configurations registered on the calcaneus, the illustrations on the top; their corresponding positions 

on the bone. In the schematic a difference in the height of the anterior end of the articular surface with the 

cubonavicular is shown. In specimens with a high score on PC4 (bottom right), the anterior end of the articular 

surface with the cubonavicular was placed lower, relative to the rest of the bone. In specimens with a low score 

on PC4 (bottom left), the anterior end of the articular surface with the cubonavicular was placed higher, relative 

to the rest of the calcaneus. 

Allometry 

The results of the ordinary least squares regressions against log centroid size suggested that 

some of the principal components may be partially driven by allometric size effects. Fitted 

line plots can be found in Appendix H. When PC1 was regressed against log centroid size a 

significant, but very weak, correlation was found between shape and centroid size 

(R²=0.0414, p=0.0202). This implied that only a small amount of the shape variance 

explained by PC1 could be attributed to an allometric effect. A similar result was found for 

PC2. A regression of the second component against centroid size gave a significant, but weak 
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correlation between the shape- and size variables (R²=0.0306, p=0.0462). As in the first 

component, only a small amount of the variance in shape summarized by PC2 could be 

attributed to allometric differences. The regression on the third component did not reveal a 

significant correlation with size (R²=0.005, p=0.4199), implying that the allometric effects of 

size difference had little to no effect on this component. In PC4 on the other hand, the 

allometric effect was potentially the strongest. The regressions resulted in a highly significant, 

although relatively weak, correlation with log centroid size (R²=0.0975, p<0.001). This 

implied that, in comparison with the other components, PC4 was subject to a more substantial, 

although still fairly small, allometric effect. 

Phylogeny 

A phylogenetic generalized least squares regression on the relevant principal components 

(PC1 to PC4) indicated that phylogeny may have also contributed to the shape differences 

summarized by the PCA. The PGLS regression resulted in a high pagel’s λ (0.906), but one 

that was not significantly different from 1 (p(H₀:λ=1)=0.2902) or from 0 (p(H₀:λ=1)=0.3227). 

These results indicated that there was a phylogenetic signal in the dataset. However, as p-

values were not significantly different from the upper (1) and lower bound (0), it was likely 

that phylogenetic relatedness was only partially responsible for the morphological differences 

summarized by the between groups PCA. It was reasonable to assume that functional 

differences played a role, as well. Full output data and R-scripts were provided in Appendix I. 

When re-assessing PCA scatterplots after calculating mean shapes per species, no clear 

patterns were revealed that would suggest that the morphological differences summarized by 

the between groups PCA were primarily driven by phylogenetic relatedness (Fig. 6.9, 6.10, 

6.11 and 6.12). On the other hand, some closely related taxa clustered together, indicating that 

phylogeny did play a role. 
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Figure 6.9: Scatterplot of mean shapes per species as described by PC1 and PC2 of a bg-PCA on all calcaneus 

specimens with minimal spanning tree representing shortest possible distance between data points. 

 

 

 
Figure 6.10: Scatterplot of mean shapes per species as described by PC1 and PC3 of a bg-PCA on all calcaneus 

specimens with minimal spanning tree representing shortest possible distance between data points. 
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Figure 6.11: Scatterplot of mean shapes per species as described by PC2 and PC3 of bg-PCA on all calcaneus 

specimens with minimal spanning tree representing shortest possible distance between data points. 

 

 

 
Figure 6.12: Scatterplot of mean shapes per species as described by PC3 and PC4 of a bg-PCA on all calcaneus 

specimens with minimal spanning tree representing shortest possible distance between data points. 
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On the first axis, several members of the Cervini tribe gave high scores (Fig. 6.9 and 6.10). 

Species such as Cervus elaphus, Cervus canadensis, Cervus unicolor, Cervus timorensis and 

Axis axis were all found in the upper right corner of the graph when PC1 was plotted against 

PC2 (Fig. 6.9). Although most of these species can be associated with broadly similar habitats 

and their corresponding locomotor adaptations, forms such as C. unicolor and C. timorensis 

have somewhat different ecological preferences and may be close together due to their 

phylogenetic relatedness. The members of the Cervini tribe that were associated with a type 5 

strategy (cursorial/open wetland), on the other hand, were found in the upper left corner of the 

graph and clustered well together with type 5 species of other tribes, such as Hydropotes 

inermis. The separation should probably be interpreted as a functional difference. This pattern 

was less clearly observed on the second and third axes. Although the Cervini still clustered 

relatively well together there, the distinction between type 1 and type 5 members was not so 

clear anymore (Fig. 6.9, 6.11 and 36). PC4 did not reveal any clear phylogenetic patterns for 

this tribe (Fig. 6.12). 

The members of the Odocoileini tribe were relatively well separated from the Cervini tribe, 

with the exception of the genus Odocoileus. The main group of smaller (mainly saltatorial) 

Odocoileini was found in the lower center and lower left corner when PC1 was plotted against 

PC2 (Fig. 6.9). Despite its atypical habitat- and locomotor adaptations, Ozotoceros also 

clustered with this group. This association might have been driven by phylogeny. The fact 

that the genus Odocoileus clustered more closely with the Cervini might have been 

functionally driven, though. This pattern was observed along the first two axes (Fig. 6.9, 6.10 

and 6.11), but not along PC3 and PC4 (Fig. 6.10, 6.11 and 6.12). 

Possibly some members of the Muntiacini tribe clustered together due to phylogenetic 

relatedness, although it should be mentioned that the members of the genus Muntiacus have 
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fairly similar habitat preferences. When PC1 was plotted against PC2, Muntiacus muntjak was 

still reasonably close to M. reevesi, but nevertheless much closer to some other species such 

as Capreolus capreolus and Cervus mariannus (Fig. 6.9). On the second axis Muntiacus 

muntjak was at least the closest species to M. reevesi, but other, unrelated species (e.g. C. 

capreolus), were again closer to the M. muntiacus (Fig. 6.11). On PC3 and PC4 the muntjacs 

did not cluster together at all (Fig. 6.12). The genus Elaphodus gave different scores on all 

axes and despite its relatedness to Muntiacus, never gave similar results (Fig. 6.9, 6.10, 6.11 

and 6.12). Probably this pattern was driven by functional differences. 

The Rangiferini gave a relatively positive score on PC1 and PC2, similar to the type 1 Cervini 

(Fig. 6.9, 6.10 and 6.11). The Rangiferini are, however, most closely related to the 

Odocoileini. The fact that they were more closely positioned to the main group of type 1 

specimens would indicate that this group’s place on the scatterplot was driven more by 

functional differences in this case. On PC3 and PC4, on the other hand, it was close to the 

genera Pudu and and Ozotoceros too (Fig. 6.10, 6.11 and 6.12).  This could be a pattern 

driven by phylogenetic relatedness.  

The Alceini tribe, consisting of Alces alces only, was on the first two axes closest to the 

Rangiferini, the tribe to which it is most closely related. On the first two axes, but not the 

third, it was also relatively close in shape to the cursorial type1 Cervini (Fig. 6.9, 6.10 and 

6.11). Its closeness to the Rangiferini in the first two components could reflect a phylogenetic 

signal, but the proximity to the cervini on most axes would also indicate that functional 

similarities played a role in driving this group in the PCA. 

The Capreolini, with the genera Capreolus and Hydropotes, gave very different results on the 

first two axes of the PCA (Fig. 6.9, 6.10, and 6.11). Capreolus gave slightly negative scores 

on PC1, closest to Axis kuhlii and Muntiacus muntjak. Hydropotes gave scores similar to the 
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type 5 Cervini. The divide between the two genera was probably mainly functional. On the 

third and fourth axis the two genera were relatively close together, though (Fig. 6.12). 

Overall, it appeared that morphological variation in the first four principal components of the 

between groups PCA was driven by a combination of function and phylogeny. Some of the 

closely related taxa had the tendency to cluster together, probably due to phylogenetic 

relatedness and the PGLS regression indicated that there was certainly a phylogenetic signal 

present in the dataset. Nevertheless, is seemed clear that many of the larger patterns observed 

in the PCA were driven by functional differences. Many taxa of the same functional and 

ecological affinity appeared to cluster together, despite being only distantly related. Although 

a scenario where each component was driven by a closely intertwined combination of 

functional and phylogenetic factors was most realistic, it appeared that on the first two axes, 

and especially in the first component, the functional signal was particularly strong. Such an 

interpretation was also corroborated by the links that were found between some of the 

morphological changes observed along the first (and possibly the second) axis and some of 

the earlier described functional hypotheses about the calcaneus (see further discussion in 

section 7.2). 

6.2.2 Intermediate phalanx 

6.2.2.1 Error testing 

Replicates in the PCA of the phalanges used in a digitization error test (Appendix D) clustered 

closely together, suggesting that imprecision in the scanning process, did not result in 

substantial errors. The replicates of the same individuals consistently plotted out closely 

together. This indicated that errors resulting from differences between scans did not confound 

normal biological variation to a large extent. In addition, an intra-observer test revealed that 

landmarking replicates in a PCA on a group of five individuals also clustered close together in 
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a scatterplot of the first two components (Appendix D). This implied that variation in 

landmark-placement over multiple months of data collection did not have a confounding 

effect on normal biological variation (Adriaens 2007). 

6.2.2.2 Sexual dimorphism 

An exploratory PCA on a set of ten Dama dama specimens of known sex (Appendix E) 

revealed no clear male-female visual separation on a scatterplot of the first two components. 

In addition, an NPMANOVA on PC1 to PC4 confirmed that separations between sexes were 

non-significant (p=0.6677). It could be concluded from these results and from earlier studies 

on sexual dimorphism in cervid phalanges (Curran 2009, 2012), that shape related sexual 

dimorphism was limited in the intermediate phalanx and did not obscure phylogenetic and 

functional patterns. 

6.2.2.3 Anterior or posterior position 

An exploratory PCA on intermediate phalanges of known anatomical position 

(anterior/posterior) resulted in limited visual separation between the anterior and posterior 

elements (Appendix F). Posterior phalanges appeared to give a somewhat higher score on 

PC2, but the pairwise comparisons of an NPMANOVA on the first four PC-scores (F=15.74, 

p=0.0001) indicated that differences between phalanges of different anatomical position were 

non-significant within species for Dama dama (p=0.1755) and Capreolus capreolus 

(p=0.0658). Visual separation between species was on the other hand clear in the scatterplot 

of PC1 and PC2. This was confirmed by the pairwise comparisons, resulting in significant 

differences between all species groups: between C. capreolus anterior phalanges and D. dama 

anterior phalanges (p=0.0008), between C. capreolus anterior phalanges and D. dama 

posterior phalanges (p=0.001), between D. dama anterior phalanges and C. capreolus 

posterior phalanges (p=0.0007) and between D. dama posterior phalanges and C. capreolus 
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posterior phalanges (p=0.001). Although it should not necessarily be taken from these results 

that no morphological differences between anterior and posterior phalanges exist, it is 

indicated by the PCA that the landmarking protocol mainly registered shape variation driven 

by other factors. As will be further explored in section 6.2.2.4, these are mainly phylogeny 

and differences in locomotor strategy pertaining to substrate and vegetation type. From the 

above analysis, it appeared that differences resulting from the anatomical position of the 

phalanx did not obscure these phylogenetic or ecological signals. 

6.2.2.4 Results PCA 

The results of a bg-PCA on the procrustes residuals of the intermediate phalanx provided 

moderate visual separation along the axes of the first four components. As in the calcanei, the 

eigenanalysis was run on six group means. Only five PC’s were calculated from the dataset. 

Because visual separation was best for the first four axes and because the broken stick 

distribution of eigenvalues (Appendix G) indicated only the first two PC’s were relevant, PC1 

to PC4 (together sumerizing 97.2 % of the total variance) were retained for further analysis.  

Non parametric MANOVA 

The results of an NPMANOVA on the first four components indicated significant between-

group differences (F=15.38, p=0.0001). Moreover, pairwise comparisons showed significant 

differences between  type 1 specimens and type 2 (p=0.0052), type 3 (p=0.0001), type 4 

(p=0.0259), type 5 (p=0.0001) and type 6 specimens (p=0.0001) (Table 6.4). While type 2 

specimens were significantly different from type 1 (p=0.0052), type 3 (p=0.0011) and type 6 

specimens (p=0.0001), differences from the type 4 (p=0.2415) and type 5 groups (p=0.0677) 

were not. Moreover, separations were significant between the type 3 group and the type 4 

(p=0.0021), type 5 (p=0.0089) and type 6 groups (p=0.0001), as well as between the type 4 

group and the type 5 (p=0.0348) and type 6 groups (p=0.0019). Differences between the type 
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5 and type 6 groups were highly significant (p=0.0006), as were differences between type 6 

and all other groups. 

  Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Type 1   0.0052 0.0001 0.0259 0.0001 0.0001 
Type 2 0.0052 

 
0.0011 0.2415 0.0677 0.0001 

Type 3 0.0001 0.0011 
 

0.0021 0.0089 0.0001 
Type 4 0.0259 0.2415 0.0021 

 
0.0348 0.0019 

Type 5 0.0001 0.0677 0.0089 0.0348 
 

0.0006 
Type 6 0.0001 0.0001 0.0001 0.0019 0.0006   

 

Table 6.4: p-values of pairwise comparisons of an NPMANOVA on the first four principal component scores of a 

between groups PCA on the intermediate phalanx dataset, with significant values (p<0.05) in bold. 

Scatterplots and thin plate spline deformation grids 

PC1 summarized 47.1% of the total variance in the between groups PCA. A visual assessment 

of the morphological differences described by this component revealed one clear primary 

shape difference summarized by this axis (Fig. 6.13). Specimens with a lower score on PC1 

generally had a more slender, elongated shape. Specimens with a high score on this axis had a 

shorter, more robust morphology. A correlation between the gracility of the intermediate 

phalanx and function and environment was expected in the proposed functional hypotheses. 

How these factors are connected was nevertheless unclear. According to Kӧhler (1993) 

gracile intermediate phalanges are to be expected in cursorial, open environment species. 

 Degusta and Vrba (2005a, 2005b) on the other hand suggested that gracile phalanges are 

more typical for species adapted to wet substrate. As Degusta and Vrba (2005a, 2005b) did 

not give a functional explanation to their prediction, the potential biomechanical reasons 

behind these morphological differences remain somewhat obscure, but it is likely that this 

shape difference can at least be partially explained in terms of function. Possibly there is a 
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link with an increased capacity for splaying the phalanges in species adapted to more yielding 

substrates. 

 

Fig. 6.13: Difference in gracility between phalanges observed along the axis of PC1 of a between groups PCA 

on all intermediate phalanges, with visualizations of the phalanx all from medial perspective. The illustrations at 

the bottom present landmark configurations registered on the intermediate phalanx, the illustrations on the top; 

their corresponding positions on the bone. In the schematic a difference in gracility along the first axis is 

presented. Specimens with a high score on PC1 (bottom right) were relatively robust, while specimens with a 

low score on PC1 (bottom left) had a more gracile shape. 

An assessment of the scatterplots associated with PC1 suggested that the patterns observed in 

the thin plate spline deformation grids and the proposed functional hypotheses were at least 

partially confirmed by specimen and group separations along the axis (Fig. 6.14 and 6.15). 

Visual overlap between the groups was substantial, but individual clusters could still be 

clearly discerned in the graph, especially when PC1 was plotted against the second 

component (Fig. 6.14). When PC1 was plotted against PC3 (Fig. 6.15) visual separation was 

good, but less clear than in the first scatterplot (Fig. 6.14). Separations were in this case 

mainly driven by the first axis. 



190 
 

 

Figure 6.14: PC1 and PC2 scatterplot of a between groups PCA of all extant phalanges ordered by 
habitat/locomotor strategy with 50% confidence intervals. 

 

Figure 6.15: PC1 and PC3 scatterplot of a between groups PCA of all extant phalanges ordered by 
habitat/locomotor strategy with 50% confidence intervals. 
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As predicted, type 1 specimens (cursorial/open/dry substrate) generally gave a relatively high 

score on PC1. Type 3 species (saltatorial/closed/wet substrate) on the other hand gave a more 

negative score on this axis, while the intermediate type 2 species overlapped with the type 1 

and type 3 groups. This separation suggested a gradient between type 1, type 2 and type 3 

species, as was proposed in the functional hypotheses. The Kruskal-Wallis test indicated 

statistically significant differences between group medians (H=60.57, p<0.0001). Pairwise 

comparisons confirmed that the separation between type 1 and type 3 specimens was 

statistically highly significant (p<0.0001) on the first axis (Table 6.5). The difference between 

type 2 and type 3 specimens was also significant (p=0.007), but type 2 specimens were not 

statistically significant from type 1 specimens (p=0.3069). This implied that intermediate type 

2 specimens were generally more similar to type 1 species, characterized by cursoriality and 

by drier, open environments.  

Type 4 specimens (saltatorial/mountain) tended to be dispersed across the scatterplot (Fig. 

6.14 and 6.15). This was reflected in the pairwise comparisons of the Kruskal-Wallis test 

(Table 6.5). Type 4 specimens were not significantly different from most other groups (type 2, 

type 3 and type 5) on the first axis. They were, however, significantly different from the type 

1 (p=0.006382) (open/cursorial) and type 6 (tundra/cursorial) (p=0.0004584) groups. This 

would imply that the shape of the phalanx in mountain adapted type 4 specimens was more 

similar to that of the type 2, type 3 and type 5 species, groups that were expected to have an 

increased capacity for splaying the phalanges.  
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PC1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Type 1   0.3069 <0.0001 0.0063 0.0056 <0.0001 

Type 2 0.3069 
 

0.007 0.3072 0.2079 <0.0001 

Type 3 <0.0001 0.007 0.161 0.3489 <0.0001 

Type 4 0.0063 0.3072 0.161 
 

0.7749 0.0004 

Type 5 0.0056 0.2079 0.3489 0.7749 0.0016 

Type 6 <0.0001 0.0004 <0.0001 0.0004 0.0016   

PC2 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Type 1   0.0062 <0.0001 0.1467 <0.0001 0.0247 

Type 2 0.0062 
 

0.026 0.6985 0.1934 0.5623 

Type 3 <0.0001 0.026 0.0155 0.7549 0.0002 

Type 4 0.1467 0.6985 0.0155 
 

0.1405 0.9259 

Type 5 <0.0001 0.1934 0.7549 0.1405 0.0801 

Type 6 0.0247 0.5623 0.0002 0.9259 0.0801   

PC3 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Type 1 0.7334 0.0292 0.0517 0.0009 0.8258 

Type 2 0.7334 
 

0.4259 0.2453 0.0098 0.8167 

Type 3 0.0292 0.4259 0.7006 <0.0001 0.1281 

Type 4 0.0517 0.2453 0.7006 
 

0.0004 0.2265 

Type 5 0.0009 0.0098 <0.0001 0.0004 0.0011 

Type 6 0.8258 0.8167 0.1281 0.2265 0.0011 
 PC4 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Type 1 0.004 0.9626 0.7187 0.316 0.1033 

Type 2 0.004 
 

0.0034 0.0067 0.001 0.132 

Type 3 0.9626 0.0034 0.7006 0.2589 0.0831 

Type 4 0.7187 0.0067 0.7006 
 

0.6129 0.0507 

Type 5 0.316 0.001 0.2589 0.6129 0.0158 

Type 6 0.1033 0.132 0.0831 0.0507 0.0158 
  

Table 6.5: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 to PC4 of the 

between groups PCA on all extant phalanges, with significant values (p<0.05) in bold. 

Type 5 specimens (cursorial/wet environment) also overlapped substantially with the other 

groups, but not to the same extent as the type 4 group. In the scatterplot the type 5 group 

appeared to be more similar in score to the type 3 specimens. This pattern was confirmed by 

the pairwise comparisons associated with the Kruskal-Wallis test (Table 6.5). Type 5 

specimens were significantly different from type 1 specimens (p=0.005676) and type 6 

specimens (p=0.001632), but not from the type 2 (p=0.2079), type 3 (p=0.3489) and type 4 

specimens (p=0.7749). This would be in line with the functional hypotheses, as both groups 
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are found in environments with a more yielding substrate, which would be associated with an 

increased capacity for splaying the phalanges. 

Type 6 specimens (tundra/cursorial) formed a somewhat unusual group and gave the most 

negative scores on the first axis. This implied that the intermediate phalanx in reindeer had a 

more gracile shape than that of the wet adapted species. As expected, this was confirmed by 

the pairwise comparisons associated with the Kruskal-Wallis test (Table 6.5). Differences 

between the type 6 group and the type 1 (p<0.0001), type 2 (p=0.0004091), type 3 

(p<0.0001), type 4 (p=0.0004584) and type 5 groups (p=0.001632) were all highly significant. 

This observation confirmed the suspicion that the morphology of the reindeer phalanges is 

different from that of all other cervid species.  

PC2 was responsible for 37.9% of the total variance. Two major shape differences were 

observed in the thin plate spline deformation grids associated with this component (Fig. 6.16). 

A first shape change along this axis was a difference in the size of the distal articulation and 

in the height of the extensor process on the anterior side of the distal articulation. Specimens 

with a lower score had smaller shaped distal articulations relative to the rest of the element 

and an extensor process positioned lower on the anterior side of the phalanx. Specimens with 

a higher score had a larger distal articulation relative to the rest of the phalanx and an extensor 

process positioned higher on the anterior side of the phalanx.  

A second shape change that was observed (Fig. 6.16), was a difference in morphology of the 

proximal articular surface. In specimens with a low score the proximal articulation was deeper 

and more concave in shape. Specimens with a higher score had a flatter and less deep 

proximal articular surface. Part of these shape changes seem to be linked to some of the 

functional hypotheses that were proposed for this element. The height of the extensor process 

is thought to be further extended in more cursioral, open habitat species because it increases 
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the flexibility of the terminal phalanx in the sagittal plain and allows for a higher capacity to 

withstand forces when running and increases the “pogostick effect” (Leinders 1979). 

 

Figure 6.16: Shape changes observed along the axis of PC2 of a bg-PCA on all extant phalanges, with 

visualizations all from medial perspective. The illustrations on the bottom present landmark configurations 

registered on the calcaneus, the illustrations at the top; their corresponding positions on the bone. In “A” a 

difference in size of the distal articulation and difference in placement of the extensor process on the anterior 

side is shown. Specimens with a low score on PC2 (bottom far left) had a long distal articular surface relative to 

the size of the phalanx and a highly placed extensor process on the anterior side. Specimens with a high score on 

PC2 (bottom, second from the left) had a small distal articular surface relative to the size of the phalanx and a 

low extensor process on the anterior side. In “B” a difference in depth of the proximal articular surface is 

shown. Specimens with a low score on PC2 (bottom, second from the right) had a relatively deep, concave 

proximal articular surface. Specimens with a high score on PC2 (bottom, first from the right) had a flatter, more 

shallow proximal articular surface. 

It is therefore likely that this shape difference represents a functional signal. Similarly, the 

shape of the proximal articular surface was also mentioned in the proposed functional 

hypotheses. A more concave proximal articular surface was predicted to be more commonly 

found in cursorial animals, associated with more open environments. Kӧhler (1993) linked the 

deep articular surface to a reduction in medio-lateral movement of the articulation, which 

would prevent the interphalangeal joint from disarticulating during fast running. This shape 
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difference is probably at least in part functional. The relative size of the distal articulation was 

not predicted in any of our functional hypotheses. It is unclear whether this variation in shape 

was also driven by functional differences. 

An assessment of the scatterplots associated with the second component suggested that the 

patterns observed in the thin plate spline deformation grids and the proposed functional 

hypotheses were at least partially confirmed (Fig. 6.14 and 6.17). Visual overlap between the 

groups was substantial, but certain patterns could still be discerned (see following paragraph), 

especially when PC2 was plotted against PC1 (Fig. 6.14). When PC2 was plotted against PC3 

(Fig. 6.17) there was more visual overlap, as expected, and separations were mainly driven by 

the second component.  

 

 

Figure 6.17: PC2 and PC3 scatterplot of a between groups PCA of all extant phalanges ordered by 

habitat/locomotor strategy with 50% confidence intervals. 
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Similar to the first axis, type 1 specimens (cursorial/open/dry substrate) gave higher scores on 

PC2 than the type 3 group (saltatorial/closed/wet substrate), while the group of type 2 

specimens gave an intermediate score (Fig. 6.14 and 6.17). This suggested a gradient between 

type 1, 2 and 3 specimens that was also observed along the first axis, related to functional 

differences. The Kruskal-Wallis test (Table 6.5) confirmed the significance of between group 

differences (H=50.95, p<0.0001). Pairwise comparisons indicated significant differences on 

this axis between type 1 and type 2 specimens (p=0.006248), between type 1 and type 3 

specimens (p<0.001) and type 2 and 3 (p=0.02609) (Table 6.5). These results implied that all 

groups generally had a substantially different shape, but that intermediate type 2 specimens 

were perhaps more similar in shape to saltatorial type 3 specimens, associated with wet, 

closed environments along this axis. 

Type 4 specimens, associated with mountainous habitats, behaved similar on PC2 as on PC1 

(Fig. 6.14 and 6.17). Specimens tended to be dispersed on the scatterplot. This resulted in the 

pairwise comparisons (Table 6.5) in no significant differences from the type 1 (p=0.1467), 

type 2 (p=0.6985), type 5 (p=0.1405) and type 6 groups (p=0.9259). The type 4 group was, 

however, indicated to be more different from the type 3 group (saltatorial/closed/wet) 

(p=0.1558) on this axis. Contrary to the observed between-group relationships along the first 

component, this could suggest that the high altitude type 4 species had a morphology more 

similar to that of animals of cursorial behaviour, found in more open/dry environments. 

Similarly, type 5 specimens, found in open wetland environments and associated with a 

somewhat more cursorial escape strategy, displayed substantial overlap with the other groups 

on the second axis (Fig. 6.14 and 6.17). This group visually gave a similar score to the type 3 

specimens associated with a saltatorial behaviour and closed, relatively wet environments and 

with the intermediate type 2 group. In the pairwise comparisons (Table 6.5) these differences 
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were only confirmed to the extent that the type 5 group was significantly different on this axis 

from the type 1 group (p<0.001), associated with cursoriality and open, relatively dry 

environments. No significant differences were found between this group and the type 2 

(p=0.1934), type 3 (p=0.7549), type 4 (p=0.1405) and type 6 specimens (p=0.0801). The 

highest p-values were however measured for the type 3 group, perhaps indicating type 5 

specimens were most similar to the latter. These results could imply that the phalanges in the 

type 5 group had a morphology associated with an increased capacity for splaying as was 

predicted in the functional hypotheses. In the calcaneus analysis this group appeared to be 

morphologically more similar to the cursorial type 1 specimens, a result that at first sight 

contradicts with that of the phalanges. But, it is not unlikely that the shape of the phalanges is 

more driven by substrate type than the calcaneus. This could be interpreted as characteristic 

for open wetland species, with calcanei adapted for cursorial movement in open landscapes, 

but with phalanges suitable for more yielding substrates.  

Type 6 specimens were not well separated on the second axis of the PCA. Although this 

group of specimens was well separated on the first axis, on PC2 the type 6 specimens gave 

intermediate results that plotted out similar to the type 2 specimens. This was reflected in the 

results of the pairwise comparisons following the Kruskal-Wallis test (Table 6.5). The type 6 

specimens were not significantly different on this axis from the type 2 (p=0.5623), type 4 

(p=0.9259) and type 5 groups (p=0.0801). Significant differences were, however, found 

between the type 6 groups and the type 1 (cursorial/open/dry substrate) (p=0.02474) and type 

3 groups (saltatorial/closed/wet substrate) (p<0.001). This result indicated that although the 

relative gracility of the reindeer phalanges is higher than in most other species (see PC1), the 

shape variation in the proximal and distal articulation, that were expected to be driven by 

functional differences related to locomotion and vegetation/substrate type, are not observed in 

this group.  
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PC3 was responsible for 8.8% of the total variance in the dataset. Two main shape differences 

were noted along this axis (Fig. 6.18). A first shape difference was similar to one of those 

already observed along PC2. A variation was noted in depth and concavity of the proximal 

articular surface. Specimens with a higher score had a deeper, more concave proximal 

articular surface, while in specimens with a lower score the proximal articular surface was 

flatter and shallower. Similar to PC2, this shape difference can probably also be interpreted as 

the one that was described in the functional hypotheses. A deeper articular surface was 

hypothesized to provide more joint stability during fast running in cursorial forms (Kӧhler 

1993).  

 

Figure 6.18: Shape changes observed along the axis of PC3 of a between groups PCA on all extant phalanges, 

with visualizations all from medial perspective. The illustrations on the bottom present landmark configurations 

registered on the intermediate phalanx, the illustrations at the top; their corresponding positions on the bone. In 

“A” a difference in height of the palmar extensions on the posterior side of the distal articulation is shown. In 

specimens with a low score on PC3 (bottom, first from the left) the palmar extensions on the posterior side were 

relatively low. In specimens with a high score on PC3 (bottom, second from the left), the palmar extensions on 

the posterior side were relatively high. In “B” a difference in the shape of the proximal articular surface is 

shown. In specimens with a low score on PC3 (bottom, second from the right) the proximal articular surface was 

relatively flat and less deep. In specimens with a high score on PC3 (bottom, first from the right) the proximal 

articular surface was deeper and more concave. 
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A second shape change that appeared to be summarized by the third axis was a difference in 

height of the palmar extensions on the posterior side of the distal articular surface. The palmar 

extentions were found to extend further to the proximal side in specimens with a more 

positive score and were found at a lower height in specimens with a negative score. This 

variation in shape was also predicted in our functional hypotheses and may be similarly 

explained as the height of the anterior extensor process. Cursorial species found in more open 

environments were predicted to have higher palmar extensions as they increase flexibility of 

the terminal phalanx and amplify the “pogostick effect” and allow animals to withstand higher 

forces when zig-zag running at high speed (Leinders 1979). It seems likely that the concavity 

of the proximal articular surface and the height of the palmar extensions to some extent signal 

a functional difference. 

Assessment of the scatterplots associated with the third component revealed less clear patterns 

that could be associated with the proposed functional hypotheses (Fig. 6.17 and 6.19). There 

was much more visual overlap between the groups than on the first two axes, so that few 

clusters could be clearly discerned. Only the type 5 group was somewhat separated from the 

other groups, but this was mainly clear when PC3 was plotted against PC2 and, in that case, 

the separation was also driven by the latter component  (Fig. 6.17). When PC3 was plotted 

against PC4 (Fig. 6.19) visual separations became even more minimal. 
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Figure 6.19: PC3 and PC4 scatterplot of a between groups PCA of all extant phalanges ordered by 

habitat/locomotor strategy with 50% confidence intervals. 

 

Although few differences were discerned visually, group separations were nevertheless found 

to be significant by the Kruskal-Wallis test (H=27.69, p<0.0001). Pairwise comparisons 

(Table 6.5), moreover, indicated that the type 5 specimens were significantly different from 

type 1 (p=0.0009073), type 2 (p=0.009869), type 3 (p<0.0001), type 4 (p=0.0004696) and 

type 6 specimens (p=0.001111), confirming the visual separation of this cluster. In addition, 

the group of type 1 specimens was also significantly different from the type 3 specimens 

(p=0.02921). Although the latter two groups were visually not well separated, they were 

expected to be functionally most different from each other. As the shape changes explained by 

this axis were predicted in the proposed functional hypotheses, it not unlikely that the third 
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component is to some extent picking up a functional signal, but given the large overlap this 

signal is perhaps less strong as in first two components. 

PC4 explained only 3.2% of the total variation in the dataset. The shape differences observed 

along this axis visually appear to be similar to those differences already described for the 

other components (Fig. 6.20). The fourth component also describes a difference in overall 

gracility of the element, but in this case alongside other shape changes. Specimens with a 

higher score had more robust phalanges than specimens with a lower score. How the shape 

variation explained by this axis is related to that of the first component is unclear. Like in the 

first component, variation in gracility of the phalanges is probably explained in part by 

functional differences. Unlike the morphological variation described by PC1, in PC4 

differences in gracility seem to be mainly expressed in the shaft and proximal articulation. 

The distal articulation does not seem to increase as much in size, giving the elements with a 

higher score on this axis an “inflated” look. Furthermore, this component also seems to 

express variation in the depth of the proximal articular surface, a shape difference similar to 

that described by PC2 and PC3. Along the fourth axis, specimens with a lower score had 

deeper, more concave proximal articular surfaces. In specimens with a high score, the 

proximal articular surface was less deep. Judging from the deformation grids, it is possible 

that the shape changes observed along PC4 are at least in part functional. 

Assessment of the scatterplot associated with PC4 (Fig. 6.19) revealed little visual separation 

between the groups. Most specimens clustered together in the center of the graph. Only the 

type 2 group (intermediate specimens) was visually separated from the main cluster when 

plotted against PC3. Other separations were driven by PC3. This was confirmed by the results 

of the Kruskal-Wallis test indicating significant between group differences (H=16.17, 

p=0.0063). Pairwise comparisons showed significant differences between the type 2 group 
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and the type 1 (p=0.004095), type 3 (p=0.003418), type 4 (p=0.006706) and type 5 group 

(p=0.00103) (Table 6.5). Differences with the type 6 group were non-significant (p=0.132). 

Although not visually clear in the scatterplot, type 5 specimens were also considered 

significantly different from type 6 specimens (p=0.01581). Although the deformation grids 

may indicate a potential connection with the proposed functional hypotheses, the weak 

separations associated with this shape variable do not support a strong functional signal along 

this axis. 

 

 

Figure 6.20: Shape changes observed along the axis of PC4 of a between groups PCA on all extant phalanges, 

with visualizations all from medial perspective. The illustrations on the bottom present landmark configurations 

registered on the intermediate phalanx, the illustrations at the top; their corresponding positions on the bone. In 

“A” a difference in gracility of the phalanx is shown. Specimens with a low score on PC4 (bottom, far left) had a 

more gracile shaft and proximal articulation. Specimens with a high score on PC4 (bottom, second from the left) 

had a more robust shaft and proximal articulation. In “B” a difference in the shape of the proximal articular 

surface is shown. Specimens with a low score on PC4 (bottom, second from the right) had a more concave 

proximal articular surface. Specimens with a higher score on PC4 (bottom, far right) had a flatter, more shallow 

proximal articular surface. 



203 
 

Allometry 

The results of an ordinary least squares regression of the shape variables against log centroid 

size suggested that to some extent an allometric effect was present in the morphometric 

dataset. Fitted line plots associated with the regressions are provided in Appendix H. A 

regression of PC1 against log centroid size indicated a significant, although very weak 

correlation between size and this shape variable (R²=0.0629, p=0.0026). This implied that 

only a small portion of the shape variance explained by PC2 could be attributed to the 

allometric effects of size differences. A somewhat larger allometric effect was suggested by 

the results of a regression of the second component against log centroid size (R²=0.2579, 

p<0.001). Although in this component a larger portion of the shape variance could be 

attributed to size differences, overall this was still relatively limited and probably only 

partially explained measured shape differences. When PC3 was regressed against centroid 

size, the results indicated a significant, but limited correlation (R²=0.0276, p=0.0488). As in 

PC1, this suggested that the allometric effects of size differences played only a minor role in 

the shape differences explained by this axis. The regression of PC4 against centroid size did 

not reveal a significant correlation between shape and size (R²=0.0199, p=0.0946), implying 

that the allometric effects of size difference had little to no effect on this component. 

Phylogeny 

A phylogenetic generalized least squares regression of the relevant principal components 

(PC1 to PC4) against habitat/locomotor dummy variables indicated that phylogeny may have 

an effect on the shape differences summarized by the PCA (see full output data and R-scripts 

in Appendix I). The PGLS regression resulted in a high pagel’s λ (0.811) that was not 

significantly different from 1 (p(H₀:λ=1)=0.0667) or from 0 (p(H₀:λ=1)=0.0725). From these 

results it could be interpreted that there was a phylogenetic signal in the dataset, but given that 
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p-values were not significantly different from the upper (1) and lower bound (0), it was likely 

that phylogenetic relatedness was only partially responsible for the morphological differences 

summarized by the PCA.  

A re-assessment of PCA scatterplots after calculating the mean shapes per species generally 

confirmed the results from the PGLS regression. While some closely related taxa appeared to 

cluster together as a result of phylogenetic relatedness, no clear patterns were observed that 

would suggest that phylogeny was the predominant driver of shape differences in the dataset 

(Fig. 6.21, 6.22, 6.23 and 6.24). Phylogeny did, however, most likely contribute to certain 

separations. 

 

 

Figure 6.21: Scatterplot of mean shapes per species as described by PC1 and PC2 of a bg-PCA on all phalanx 

specimens with minimal spanning tree representing shortest possible distance between data points. 
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Figure 6.22: Scatterplot of mean shapes per species as described by PC1 and PC3 of a bg-PCA on all phalanx 

specimens with minimal spanning tree representing shortest possible distance between data points. 

 

 

Figure 6.23: Scatterplot of mean shapes per species as described by PC2 and PC3 of a bg-PCA on all phalanx 

specimens with minimal spanning tree representing shortest possible distance between data points. 
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Figure 6.24: Scatterplot of mean shapes per species as described by PC3 and PC4 of a bg-PCA on all phalanx 

specimens with minimal spanning tree representing shortest possible distance between data points. 

 

On PC1 most members of the Cervini tribe gave a relatively high score (Fig. 6.21 and 6.22). 

In addition, members of the same genus or subgenus within this tribe, such as the Axis deer 

and the subgenus Rusa were found in close proximity to each other when PC1 was plotted 

against PC2 or PC3 (Fig. 6.22 and 6.22). Especially for the genus Axis this could well be the 

result of phylogenetic relatedness, as the species within this group do not occupy very similar 

habitats. However, several other species outside of the Cervini tribe (e.g. Hippocamelus 

antisensis, Ozotoceros bezoarticus and Alces alces) had a similarly high score on the first axis 

that cannot be explained by phylogenetic relatedness only. In addition, it is interesting to note 

that within the group of Cervini, the species associated with a more cursorial behaviour or 

with a more open habitat preference (e.g. Cervus albirostris and Dama dama) often had a 

higher score than those species associated with a more closed habitat preference and 

saltatorial behaviour (e.g Cervus unicolor). On the second axis the Cervini did not give 

similarly high scores as on PC1 and the pattern described for the first component seemed to 
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be confounded by a number of unrelated species (e.g. Rangifer tarandus and Odocoileus 

hemionus) giving similar scores on the axis as the Cervini species (Fig. 6.21 and 6.23). Cervus 

elaphus and Cervus albirostris gave a very high score on PC2. Especially when PC2 was 

plotted against PC1 these species clustered closely together. While these forms are closely 

related, it is worth mentioning that Cervus nippon, which forms a sister taxon with Cervus 

albirostris and Cervus elaphus, does not behave in the same way and gave a lower score, 

more similar to e.g. Elaphurus davidianus. This would suggest other factors besides 

phylogeny driving shape differences. PC3 (Fig. 6.22, 6.23 and 6.24) and PC4 (Fig. 6.24) did 

not reveal any clear patterns for this tribe that could be associated with phylogenetic 

relatedness. 

The placement of the Muntiacini tribe along the PCA scatterplots suggested that its shape was 

in part driven by phylogenetic relatedness. The members of this group consistently clustered 

together when PC1 was plotted against PC2 (Fig. 6.21), when PC1 was plotted against PC3 

(Fig. 6.22) and when PC2 was plotted against PC3 (Fig. 6.23). On the first three components 

the group always gave rather negative scores. This was especially the case for the two species 

of the genus Muntiacus, but also the third species in this group (Elaphodus cephalopus) was 

often found in close proximity to the muntjacs. Although it is likely that phylogeny played a 

role here, it should be mentioned that the muntjacs have a similar habitat preference and that 

the unrelated Hydropotes inermis also had the tendency to cluster closely together with the 

muntjacs. It is therefore likely that the shape of the phalanges in this tribe is also driven by a 

combination of functional and phylogenetic factors. This could perhaps indicate that larger 

patterns in the scatterplots corresponded to differences between locomotor/functional groups, 

but that variation within these groups is to a certain extent driven by phylogeny. 

The Odocoileini did not appear to follow the patterns observed for the Cervini and Muntiacini 

and separations did not seem to be driven at all by phylogeny in this group. As opposed to the 
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Cervini and the Muntiacini, the members of the Odocoileini tribe were spread over the 

scatterplots of all axis combinations (Fig. 6.21, 6.22, 6.23 and 6.24). Moreover, when 

considering PC1 (Fig. 6.21 and 6.22), the species in this tribe that were associated with more 

open habitats or a more cursorial strategy (e.g. Ozotoceros bezoarticus) tended to give higher 

scores than those associated with closed habitats and saltatorial behaviour (e.g. the genus 

Mazama). For PC2, PC3 and PC4 (Fig. 6.21, 6.22, 6.23 and 6.24) this division was less clear, 

but the position of this group along these axes gave similar results and tended to support a 

functional explanation. 

The Rangiferini gave a rather negative score on PC1, similar to the type 3 group (including 

Hydropotes and Muntiacus) (Fig. 6.21 and 6.22), but high scores on PC2, more similar to the 

type 1 and type 2 groups (Fig. 6.21 and 6.23). When the first two axes were plotted together, 

the species closest to the Rangiferini on the scatterplot were Mazama gouazoupira and 

Odocoileus hemionus, members of the Odocoileini tribe. As the Odocoileini tribe is closely 

related to the Rangiferini tribe, it is possible that the clustering of these species is to a certain 

extent driven by phylogenetic relatedness. However, the distance between Rangifer and these 

other species is still large. Moreover, the Rangiferini group was well separated on its own and 

had a very peculiar placement on the scatterplot of all specimens (see Fig. 6.14 and 6.15). It is 

therefore likely that functional differences played a large role in driving separations on the 

scatterplots of the first two components (Fig. 6.21, 6.22 and 6.23). As allometry played a 

limited role on the second axis, it may be that size differences also drove specimen 

distribution to some extent on PC2. On PC3 and PC4 the Rangiferini gave more intermediate 

scores. When PC2 was plotted against PC3 (Fig. 6.23) this led to Alces alces and Mazama 

gouazoupira being the two closest species. Alces and Mazama are both relatively closely 

related to the Rangiferini tribe, so phylogeny may have played a role here. When PC3 was 
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plotted against PC4 no meaningful relationships were discerned from visual assessment of the 

scatterplot (Fig. 6.24). 

The Alceini tribe, consisting of Alces alces only, is most closely related to the Rangiferini and 

Odocoileini tribes. The placement of the Alces specimens on the scatterplots did not 

necessarily result in a clustering with these two tribes. On the first two axes (Fig. 6.21, 6.22 

and 6.23) Alces gave very high scores, similar to some of the type 1 Cervini (e.g. Cervus 

elaphus), but also to the more closely related Hippocamelus antisensis. As the other 

Odocoileini specimens were spread all over the scatterplots and did not indicate that 

phylogeny played a substantial role in their distribution, its closeness to Alces should 

therefore not necessarily be considered phylogenetically meaningful. On PC3 Alces gave 

more intermediate scores (Fig. 6.22, 6.23 and 6.24). When PC3 was plotted against PC2 (Fig. 

6.23), Rangifer tarandus was the closest species to Alces on the scatterplot. As the Rangiferini 

tribe is relatively closely related to the Alceini tribe, phylogeny may have played a role here. 

When PC3 was plotted against PC4 (Fig. 6.24), Alces was closest to Hydropotes inermis. 

There were no patterns observed on the scatterplot that would indicate that specimen 

placement on the fourth axis was primarily driven by phylogeny here. 

The members of the Capreolini tribe (Hydropotes inermis and Capreolus capreolus) gave low 

scores on the first two axes (Fig. 6.21, 6.22 and 6.23), but the two species never clustered 

particularly close together. Other, not closely related, species such as Muntiacus muntjak and 

Muntiacus reevesi gave similar scores on PC1 and PC2 (Fig 6.21, 6.22 and 6.23). On PC3 and 

PC4 the scores for these species were more intermediate (Fig 6.22, 6.23 and 6.24). When PC3 

was plotted against PC2 (Fig. 6.23) Hydropotes inermis was closest to the Muntjacs again, but 

Capreolus capreolus closer to some of the Cervini such as Cervus nippon and the Axis deer. 

When PC3 was plotted against PC4, the Capreolini were close to some of the Cervini again, 
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in particular species such as Cervus unicolor and Cervus timorensis. It would appear that 

phylogenetic relatedness played only a limited role in driving the position of specimens in this 

tribe on the PCA scatterplots. Especially on the first two axes, separations appear to be more 

driven by functional differences. 

In sum, the results of the PCA and the regressions suggested that the morphological variation 

described by the first three principal components was driven by a combination of function and 

phylogeny. The fourth component did not appear to describe meaningful ecological or 

phylogenetic patterns. Allometry seemed to play a minor role as a confounding factor in the 

dataset, although its effects may be felt to some extent on the second component. This effect 

was nevertheless considered limited. The major patterns observed in the scatterplots appeared 

to correspond primarily to differences in habitat and/or locomotor behaviour. On a smaller 

scale, certain closely related taxa had a tendency to cluster together, mainly within these 

larger (functional/ecological) groups. Similar to the results of the calcaneus model, a scenario 

where each shape component was driven by a closely intertwined combination of functional 

and phylogenetic factors was considered most realistic. That being said, on the first two 

components, the functional signal was probably the strongest, as separations between 

habitat/locomotor groups were more pronounced and because the shape variations explained 

by these axes corresponded well to the morphological differences that were predicted in the 

functional hypotheses.  
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6.3 Results fossil specimens 

6.3.1 Trinil and Axis lydekkeri 

6.3.1.1 Introduction 

For the analysis of the Trinil specimens a combination of intermediate phalanges and calcanei 

were used. In total 15 purported Axis lydekkeri phalanges from this site were added to the 

extant species model, that together added up to a combined dataset of 157 specimens. 

Furthermore, 28 fossil calcanei, also identified as Axis lydekkeri, were added to the calcaneus 

model, amounting to a combined dataset of 153 specimens (see Tables 5.2 and 5.3).  

In addition a small number of extra Axis lydekkeri fossils were added to the Trinil datasets in 

order to assess the locomotor strategy and habitat preference of this species as a unit of 

analysis. The additional fossils (three calcanei and six phalanges) came from non-specified 

Pleistocene localities in East/Central Java and resulted in two datasets of respectively 156 

(calcanei) and 163 (phalanges) specimens (see Tables 5.2 and 5.3). 

In each combined dataset the appended files were re-submitted to a new GPA, after which a 

bg-PCA was run on the procrustes residuals. An NPMANOVA was conducted on the relevant 

principal components and scatterplots were provided for those components that were deemed 

significant for the ecomorphological analysis (see section 6.2). The Kruskal-Wallis test was 

used to assess significance of between group differences along individual axes. Eigenvalues 

and broken stick distributions associated with the PCA were provided in Appendices J 

(calcaneus) and K (intermediate phalanx). 

6.3.1.2 Calcaneus 

The results of an NPMANOVA on PC1 to PC4 of the PCA-scores on the Trinil specimens 

indicated significant between group differences (F=9.16, p=0.0001). Pairwise comparisons 
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(Table 6.6-A) revealed the same differences between the habitat/locomotion groups as 

discussed in the results of the extant species model (section 6.2.1.3). Only the difference 

between the type 2 and type 3 groups was not significant in multidimensional space 

(p=0.2472). This indicated that adding the fossil sample to the extant dataset did not interfere 

to a large extent with the patterns observed in the model. The sample from Trinil was 

significantly different from most habitat/locomotion groups. Differences from the type 3 

group (p=0.0001), the type 2 group (p=0.0001) and the type 5 group (p=0.0001) were highly 

significant, and significant differences (p=0.0173) were also measured between the Trinil 

fossils and the type 1 group. No significant differences were, however, found between the 

type 4 group and the Trinil sample (p=0.1953).  

Adding the additional Axis lydekkeri specimens to the sample did not alter most of the 

patterns described in the more restricted Trinil dataset (Table 6.6-B). Similar to the analysis of 

the Trinil specimens, the NPMANOVA indicated significant between group differences 

(F=9.64, p=0.0001). In the pairwise comparisons significant differences were measured 

between most extant groups, with the exception of the type 2 and type 3 groups (p=0.2035).  

The Axis lydekkeri specimens themselves were significantly different from the type 1 group 

(p=0.0135) and highly significantly different from the type 3 (p<0.001), type 2 (p<0.001) and 

type 5 groups (p<0.001). No significant difference was measured between the Axis lydekkeri 

specimens and the type 4 group (p=0.1243). 

The pairwise comparisons in other words indicated that the specimens from Trinil, as well as 

the unprovenanced Axis lydekkeri specimens, were morphologically most similar to extant 

forms found in mountainous environments and perhaps to some extent to the cursorial type 1 

forms, found in more open environments. The analysis also indicated that the specimens from 

Trinil were different in morphology from saltatorial species found in closed environments and 

from forms associated with open, wet environments. 
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A (TRIN) Type 3 Type 2 Type 4 Type 1 TRIN Type 5 
Type 3 - 0.2472 0.003 0.0001 0.0001 0.0001 
Type 2 0.2472 - 0.0211 0.0034 0.0001 0.0019 
Type 4 0.003 0.0211 - 0.0071 0.1953 0.0001 
Type 1 0.0001 0.0034 0.0071 - 0.0173 0.0001 
TRIN 0.0001 0.0001 0.1953 0.0173 - 0.0001 
Type 5 0.0001 0.0019 0.0001 0.0001 0.0001 - 
 

 B (ALY) Type 3 Type 2 Type 4 Type 1 ALY Type 5 
Type 3 - 0.2035 0.0032 0.0001 0.0001 0.0001 
Type 2 0.2035 - 0.0188 0.002 0.0001 0.0018 
Type 4 0.0032 0.0188 - 0.0039 0.1243 0.0001 
Type 1 0.0001 0.002 0.0039 - 0.0135 0.0001 
ALY 0.0001 0.0001 0.1243 0.0135 - 0.0001 
Type 5 0.0001 0.0018 0.0001 0.0001 0.0001 - 

       Table 6.6: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on “A”: a sample of all extant calcanei and the Trinil fossils (TRIN); and “B”: a sample of all extant 

calcanei and Axis lydekkeri fossils (ALY), with significant values (p<0.05) in bold. 

 

A visual assessment of the PCA scatterplot of the first two components in the Trinil analysis 

partially confirmed the results of the NPMANOVA. The same patterns that were described in 

the extant species model were still visible when PC1 was plotted against PC2 (Fig. 6.25). The 

Trinil specimens gave low scores on the first component. Although visual overlap between 

the different groups was substantial, Trinil clustered best with the type 1 and type 4 species. 

There was also some overlap with the type 3 and the type 2 groups, but these groups generally 

gave higher scores on PC1 and were also separated from the Trinil group on PC2. The type 5 

specimens were well separated from the Trinil group and gave even higher scores than the 

type 3 group on PC1. The equivalent scatterplot of the PCA on the Axis lydekkeri analysis was 

almost identical to the one generated in the Trinil analysis (Fig. 6.25-A). Adding the extra 

Axis lydekkeri fossils did not interfere with specimen distribution along the axes. The Axis 

lydekkeri specimens gave low scores on PC1 and visually overlapped with the type 1 and type 

4 groups. The type 2, type 3 and type 5 groups gave more positive scores on PC1. 
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Figure 6.25: PC1 and PC2 scatterplot of a between groups PCA of: A: all extant calcanei and fossil Axis 

lydekkeri specimens, and B: all extant calcanei and fossil calcanei from Trinil. All extant specimens are ordered 

by habitat/locomotor strategy with 50% confidence intervals. 

The Kruskal-Wallis test on the scores of PC1 of the Trinil analysis confirmed that overall 

between group differences were significant (H=65.49, p<0.0001). Pairwise comparisons gave 

significant differences between the Trinil group and the other groups on PC1 (Table 6.7-A). 
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Trinil differed significantly from the type 1 (p=0.008), type 2 (p<0.001), type 3 (p<0.001) and 

type 5 groups (p<0.001), but not from the type 4 group (p=0.5832), the latter group being 

similar to the type 1 group (p=0.0591). The Kruskal-Wallis test of the Axislydekkeri 

specimens indicated significant differences (H=66.7, p<0.0001). Pairwise comparisons (Table 

6.7-B) showed that the Axis lydekkeri group differed significantly from the type 1 (p=0.0075), 

type 2 (p<0.001), type 3 (p<0.001) and type 5 groups (p<0.001), but not from the type 4 group 

(p=0.5819), the latter being more similar to the type 1 group (p=0.0699). 

A: PC1 (TRIN) Type 3 Type 2 Type 4 Type 1 TRIN Type 5 
Type 3 - 0.8637 0.0081 0.0008 <0.0001 0.0001 
Type 2 0.8637 - 0.0141 0.0044 <0.0001 0.0031 
Type 4 0.0081 0.0141 - 0.0591 0.5832 0.0004 
Type 1 0.0008 0.0044 0.0591 - 0.008 <0.0001 
TRIN <0.0001 <0.0001 0.5832 0.008 - <0.0001 
Type 5 0.0001 0.0031 0.0004 <0.0001 <0.0001 - 
A: PC2 (TRIN) Type 3 Type 2 Type 4 Type 1 TRIN Type 5 
Type 3 - 0.5022 0.467 0.0003 0.012 0.0013 
Type 2 0.5022 - 0.9616 0.0091 0.2616 0.0428 
Type 4 0.467 0.9616 - 0.1255 0.313 0.1239 
Type 1 0.0003 0.0091 0.1255 - 0.1486 0.2648 
TRIN 0.012 0.2616 0.313 0.1486 - 0.1082 
Type 5 0.0013 0.0428 0.1239 0.2648 0.1082 - 
 
B: PC1 (ALY) Type 3 Type 2 Type 4 Type 1 ALY Type 5 
Type 3 - 0.8392 0.0081 0.0007 <0.0001 0.0002 
Type 2 0.8392 - 0.0141 0.0041 <0.0001 0.0026 
Type 4 0.0081 0.0141 - 0.0699 0.5819 0.0004 
Type 1 0.0007 0.0041 0.0699 - 0.0075 <0.0001 
ALY <0.0001 <0.0001 0.5819 0.0075 - <0.0001 
Type 5 0.0002 0.0026 0.0004 <0.0001 <0.0001 - 
B: PC2 (ALY) Type 3 Type 2 Type 4 Type 1 ALY Type 5 
Type 3 - 0.5022 0.5412 0.0003 0.0075 0.0011 
Type 2 0.5022 - 0.9616 0.0102 0.244 0.0381 
Type 4 0.5412 0.9616 - 0.1302 0.2436 0.094 
Type 1 0.0003 0.0102 0.1302 - 0.228 0.2195 
ALY 0.0075 0.244 0.2436 0.228 - 0.1407 
Type 5 0.0011 0.0381 0.094 0.2195 0.1407 - 
 
Table 6.7: Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the bg- PCA on all 

extant calcanei and A: Trinil fossils (TRIN); B: A. lydekkeri fossils (ALY), significant values (p<0.05) in bold. 
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In sum, specimen distribution along the first axis indicated that the fossils from Trinil and the 

unprovenanced Axis lydekkeri calcanei had a shape similar to that of cervids associated with a 

cursorial behaviour or somewhat saltatorial behaviour but with a capacity for high endurance 

and speed, attributes found in animals of more open or mountainous environments. This was 

morphologically expressed in relatively short calcanei with a tuber that was positioned at a 

higher angle relative to the anterior portion of the calcaneus (see Fig. 6.1). Because the shape 

variation explained by PC1 was probably to a substantial extent functionally correlated (see 

section 6.2.1), it was likely that the patterns described by the Trinil group were 

ecomorphologically significant. 

As in the extant species model, PC2 (Fig. 6.25) gave substantially more visual overlap than 

PC1. The Trinil specimens gave high scores on this axis together with the type 1, type 4 and 

the type 5 specimens (Fig. 6.25-B). The type 2 and type 3 groups gave somewhat lower 

scores. In the scatterplot with PC1, Trinil mainly clustered with the type 1 and type 4 

specimens and was visually relatively well separated from the type 2 and 3 specimens. The 

position of the Axis lydekkeri group along the second axis (Fig. 6.26-A) was very similar to 

that of the Trinil group. The fossil Axis lydekkeri specimens gave high scores on PC2, 

together with the type1, type 4 and type 5 specimens, while the type 2 and type 3 groups gave 

low scores. Plotted against PC1 (Fig. 6.25-A), the fossils clustered with the type 1 and type 4 

groups. 

The Kruskal-Wallis test on the Trinil specimens indicated significant differences between 

groups on the second axis (H=21.8, p=0.0005). The between group differences visually 

observed in the scatterplots were in part confirmed by the pairwise comparisons (Table 6.7). 

The Trinil group was significantly different from the type 3 group on this axis (p=0.012). No 

significant differences were found between the Trinil group and the type 1 (p=0.1486), type 2 

(p=0.2616), type 4 (p=0.3130) and type 5 specimens (p=0.1082), implying that the shape of 
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the Trinil calcanei, as summarized by this axis, was perhaps most similar to that of type 1, 

type 2 and type 4 species. The same trends were mirrored in the Axis lydekkeri analysis. In 

addition to the significant group differences measured in the Kruskal-Wallis test (H=21.8, 

p=0.0005), the Axis lydekkeri group was in the pairwise comparisons shown to be 

significantly different from the type 3 group on the second axis. P-values were even lower 

than in the Trinil analysis (p=0.0075). No significant differences were found between the Axis 

lydekkeri group and the type 1 (p=0.228), type 2 (p=0.244), type 4 (p=0.2436) and type 5 

specimens (p=0.1407).  

In terms of morphology, this meant that the calcanei from Trinil and the unprovenanced Axis 

lydekkeri specimens had relatively long articular surfaces supporting the malleolus, a trait not 

usually associated with more saltatorial species, adapted to closed environments and wet 

substrate (see Fig. 6.4). This morphotype is more likely to be found in species of dry, open or 

intermediate environments (possibly at high altitude) that require a more cursorial behaviour. 

However, on this axis the type 5 specimens, associated with cursorial behaviour and open, wet 

environments, also gave high scores like the type 1 and type 4 groups. Consequently, the 

specimens from Trinil and the other Axis lydekkeri specimens were also morphologically 

similar to a morphotype associated with open, wet environments. In the extant species model 

(section 6.2.1) the morphological variation explained by the second component was 

considered at least in part functionally correlated. It could therefore be concluded that the 

patterns described by the Trinil and Axis lydekkeri groups along this axis were 

ecomorphologically significant. 

On PC3 and PC4 visual separation between the different groups was minimal. On the third 

component only the type 3 group was somewhat separated from the main cluster of specimens 

in the Trinil and Axis lydekkeri analyses, but the Kruskal-Wallis test provided only limited 

support for these separations (Appendix L). Similarly, on PC4, there was too much visual 
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overlap to discern any meaningful patterns (Appendix L). Furthermore, the few visual 

separations that were observed along PC3 and PC4, were not considered particularly relevant 

to this ecomorphological study. As mentioned in section 6.2.1.3, the lack of meaningful 

patterns and the absence of a clear functional correlation for these axes in the extant model, 

made it doubtful that the morphological variation explained by PC3 and PC4, and therefore 

the position of the fossil groups, was ecomorphologically significant.  

In summary it could be concluded from the results of the Trinil and Axis lydekkeri analyses 

that the fossil Axis lydekkeri calcanei (from Trinil) were most similar in shape to those of 

cursorial animals of open, dry environment, potentially of high altitude. The morphotype 

associated with such a high elevation environment was, nevertheless, very similar to that of 

lowland species adapted to dry, open environments and possibly indistinguishable. When 

taking only those shape components into account that were considered ecomorphologically 

significant (PC1 and PC2), the same pattern surfaced: the Trinil fossils and the 

unprovenanced Axis lydekkeri fossils conformed to a morphotype typical of cursorial species 

adapted to dry, open environment, possibly of high altitude (PC1), but certainly not like that 

of saltatorial species, adapted to wet, closed environment (PC2). 

6.3.1.3 Intermediate phalanx 

The results of the NPMANOVA on PC1 to PC4 resulted in significant between group 

differences (F=15.43, p=0.0001). Pairwise comparisons (Table 6.8) in part revealed the same 

differences between individual groups that were observed in the extant species analysis (see 

section 6.2.2.4). As in the model, significant differences were lacking between the type 2 

group and the type 4 (p=0.3058) and type 5 groups (p=0.1068) in the Trinil analysis (Table 

6.8-A). Adding the Trinil fossils to the extant dataset altered specimen between-group 

relationships to a certain extent in the type 5 group, as additional non-significant differences 



219 
 

were measured between this group and the type 3 (p=0.2421) and type 4 group (p=0.1941). 

As far as the fossils were concerned, it was indicated that the Trinil specimens were 

significantly different from the type 1 (p=0.0001), type 2 (p=0.0006), type 3 (p=0.0001), type 

4 (p=0.0033), type 5 (p=0.0034) and type 6 groups (p=0.0001). The results suggested that the 

intermediate phalanges from Trinil were different in multidimensional space from all extant 

groups. 

A (TRIN) Trinil Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Trinil - 0.0001 0.0006 0.0001 0.0033 0.0034 0.0001 
Type 1 0.0001 - 0.0073 0.0001 0.0128 0.0001 0.0001 
Type 2 0.0006 0.0073 - 0.0008 0.3058 0.1068 0.0003 
Type 3 0.0001 0.0001 0.0008 - 0.0195 0.2421 0.0001 
Type 4 0.0033 0.0128 0.3058 0.0195 - 0.1941 0.004 
Type 5 0.0034 0.0001 0.1068 0.2421 0.1941 - 0.0005 
Type 6 0.0001 0.0001 0.0003 0.0001 0.004 0.0005 - 
 
B (ALY) Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 ALY 
Type 1 - 0.0073 0.0001 0.0288 0.0001 0.0001 0.0001 
Type 2 0.0073 - 0.0015 0.4792 0.0971 0.0002 0.0014 
Type 3 0.0001 0.0015 - 0.0027 0.012 0.0001 0.0008 
Type 4 0.0288 0.4792 0.0027 - 0.0383 0.0051 0.0029 
Type 5 0.0001 0.0971 0.012 0.0383 - 0.001 0.0055 
Type 6 0.0001 0.0002 0.0001 0.0051 0.001 - 0.0001 
ALY 0.0001 0.0014 0.0008 0.0029 0.0055 0.0001 - 
 

Table 6.8: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on all extant intermediate phalanges and A: all Trinil fossils (TRIN); B: all Axis lydekkeri fossils (ALY), 

with significant values (p<0.05) in bold. 

Adding the unprovenanced Axis lydekkeri specimens to the dataset did not result in substantial 

differences compared to the Trinil analysis, although some discrepancies were noted (Table 

6.8-B). In the more extended Axis lydekkeri analysis the NPMANOVA also suggested 

significant between group differences (F=14.02, p=0.0001), but pairwise comparisons of the 

extant habitat groups suggested a closer similarity to the patterns observed in the extant 

species model (see Table 6.5). In the Axis lydekkeri analysis, non-significant differences were 
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only measured between the type 2 and the type 4 group (p=0.4792) and between the type 2 

and the type 5 group (p=0.0971). The Axis lydekkeri specimens were significantly different 

from the type 1 (p=0.0001), type 2 (p=0.0014), type 3 (p=0.0008), type 4 (p=0.0029), type 5 

(p=0.0055) and type 6 groups (p=0.0001). The phalanges were significantly different in 

multidimensional space from all extant groups, but with perhaps the highest similarity to the 

type 4 and the type 5 groups. 

The results of the NPMANOVA and the associated pairwise comparisons were in line with 

those of the PCA scatterplots of PC1 and PC2 (Fig. 6.26). In the Trinil analysis the same 

patterns were visible for the habitat/locomotor groups as in the extant model. Despite overlap 

between most of the groups, the Trinil specimens generally gave high scores on this axis, 

together with the type 3, type 5 and type 6 groups. The type 2 specimens were intermediate 

and the type 4 and type 1 specimens gave lower scores. When PC1 was plotted against PC2 

(Fig. 6.26-A), the fossils visually clustered best with the type 5 group. In the Axis lydekkeri 

analysis, the same patterns were visible as in the extant model and the Trinil analysis. On PC1 

(Fig. 6.26-B), the Axis lydekkeri specimens gave low scores with the type 3, type 5 and type 6 

specimens. The type 1 and type 4 specimens gave higher scores, while the type 2 specimens 

were intermediate. When PC1 was plotted against PC2 (Fig. 6.26-B), the Axis lydekkeri 

fossils clustered best with the type 3 and type 5 groups. 

The Kruskal-Wallis test on the Trinil specimens indicated significant differences between 

groups along the first axis (H=22.07, p=0.0011). Pairwise comparisons for the largest part 

gave the same significant differences between the habitat/locomotor groups as in the extant 

species model (Table 6.9-A). The only exception was the type 6 group. Where this group was 

still significantly different from all other groups on PC1 in the extant model (see Table 6.5), 

in the Trinil analysis the data was somewhat altered by the addition of the extra specimens. 

Consequently, significant differences were only measured between the type 6 group and the 
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type 1 (p<0.0001) and type 2 groups (p=0.0108). The group of Trinil fossils was significantly 

different from the type 1 (p<0.0001), type 2 (p=0.0081) and type 4 groups (p=0.0491). No 

significant differences were measured between the Trinil group and the type 3 (p=0.189), type 

5 (p=0.2937) and type 6 specimens (p=0.7898), suggesting a similarity between the Trinil 

deer and the latter groups. 

The Kruskal-Wallis test on the Axis lydekkeri dataset also indicated significant differences 

between groups along the first axis (H=61.89, p<0.0001). This was largely confirmed by the 

pairwise comparisons (Table 6.9-B). Significant separations along PC1 were mostly the same 

as in the Trinil analysis, although some discrepancies were noted. The type 2 group was 

significantly different from the type 1 group (p=0.033). The type 3 group was significantly 

different from the type 4 group (p=0.0432), but not from the type 6 group (p=0.9831). 

Furthermore, the type 6 group was in the Axis lydekkeri analysis not significantly different 

from the type 4 (p=0.0673) and type 5 groups (p=0.6718). As far as the fossil specimens were 

concerned, the Axis lydekkeri group was significantly different from the type 1 (p<0.0001), 

type 2 (p=0.0069) and type 4 groups (p=0.0295) on the first axis. The fossils were not 

significantly different from the type 3 (p=0.3853), type 5 (p=0.3682) and type 6 groups 

(p=0.3756). The results in other words largely mirrored those of the Trinil analysis. The extra 

Axis lydekkeri specimens in the dataset did not alter the originally observed patterns on PC1 in 

the more limited analysis of the Trinil fossils. 
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Figure 6.26: PC1 and PC2 scatterplot of a between groups PCA of: A: all extant phalanges and fossil phalanges 

from Trinil, and B: all extant calcanei and fossil Axis lydekkeri specimens. All extant specimens are ordered by 

habitat/locomotor strategy with 50% confidence intervals. 
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A: PC1 (TRIN) TRIN Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
TRIN - <0.0001 0.0081 0.189 0.0491 0.2937 0.7898 
Type 1 <0.0001 - 0.0528 <0.0001 0.0101 0.0002 <0.0001 
Type 2 0.0081 0.0528 - 0.0076 0.4941 0.1543 0.0108 
Type 3 0.189 <0.0001 0.0076 - 0.0958 0.5051 0.211 
Type 4 0.0491 0.0101 0.4941 0.0958 - 0.5877 0.0713 
Type 5 0.2937 0.0002 0.1543 0.5051 0.5877 - 0.4501 
Type 6 0.7898 <0.0001 0.0108 0.211 0.0713 0.4501 - 
A: PC2 (TRIN) TRIN Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
TRIN - <0.0001 0.0147 0.0014 0.0072 0.0059 <0.0001 
Type 1 <0.0001 - 0.0271 0.0002 0.751 0.0007 0.0003 
Type 2 0.0147 0.0271 - 0.8457 0.5433 0.47 <0.0001 
Type 3 0.0014 0.0002 0.8457 - 0.2839 0.5994 <0.0001 
Type 4 0.0072 0.751 0.5433 0.2839 - 0.2116 0.0825 
Type 5 0.0059 0.0007 0.47 0.5994 0.2116 - <0.0001 
Type 6 <0.0001 0.0003 <0.0001 <0.0001 0.0825 <0.0001 - 
 
B: PC1 (ALY) Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 ALY 
Type 1 - 0.033 <0.0001 0.0447 0.0002 <0.0001 <0.0001 
Type 2 0.033 - 0.0065 0.9719 0.2079 0.037 0.0069 
Type 3 <0.0001 0.0065 - 0.0432 0.4962 0.9831 0.3854 
Type 4 0.0447 0.9719 0.0432 - 0.2811 0.0673 0.0295 
Type 5 0.0002 0.2079 0.4962 0.2811 - 0.6718 0.3682 
Type 6 <0.0001 0.037 0.9831 0.0673 0.6718 - 0.3756 
ALY <0.0001 0.0069 0.3854 0.0295 0.3682 0.3756 - 
B: PC2 (ALY) Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 ALY 
Type 1 - 0.03 0.0481 0.5035 0.0032 <0.0001 0.0012 
Type 2 0.03 - 0.2813 0.1131 0.8526 <0.0001 0.5518 
Type 3 0.0481 0.2813 - 0.2014 0.0479 <0.0001 0.0324 
Type 4 0.5035 0.1131 0.2014 - 0.0263 0.02 0.0169 
Type 5 0.0032 0.8526 0.0479 0.0263 - <0.0001 0.686 
Type 6 <0.0001 <0.0001 <0.0001 0.02 <0.0001 - <0.0001 
ALY 0.0012 0.5518 0.0324 0.0169 0.686 <0.0001 - 
 

Table 6.9: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the bg- 

PCA on all extant phalanges and: A: Trinil fossils (TRIN); B: Axis lydekkeri fossils (ALY), with significant 

values (p<0.05) in bold. 

Based on the visual assessment of the scatterplots associated with PC1 and the Kruskal-Wallis 

tests, it could be concluded that the intermediate phalanges from Trinil and the 

unprovenanced Axis lydekkeri phalanges were most similar in shape to those of cervids found 
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in open or closed environments with wet, yielding substrate, or more unlikely, to those of 

tundra species. Morphologically this meant that the Axis lydekkeri phalanges and the fossils 

from Trinil were relatively gracile, a trait associated with an increased capacity for splaying in 

taxa adapted to wet, yielding substrates (see section 6.2.2.4). As the variation in this trait was 

linked to the functional hypotheses proposed for the phalanx, it was likely that the patterns 

described by the fossils on this axis were ecomorphologically significant. 

On PC2 in the Trinil analysis, the type 1 specimens gave relatively low scores, while the type 

3 and type 5 specimens gave high scores. Type 2 specimens were intermediate and type 4 

specimens were more dispersed over the scatterplot (Fig. 6.25-A). Where in the extant species 

model the type 6 group gave intermediate scores, in the Trinil analysis the type 6 specimens 

gave scores more similar to the type 1 group.  Apparently the placement of this group on the 

second axis was somewhat altered by the addition of the fossil specimens, but the observation 

that the type 6 group gave different results on PC2 than on PC1 was still confirmed. The 

Trinil specimens themselves gave high scores on the second axis, similar to the type 3 and 

type 5 groups, sometimes even exceeding the highest scores of the latter groups. In the 

scatterplot with PC1 (Fig. 6.25-A), the Trinil group also clustered best with these two extant 

groups. Adding the unprovenanced Axis lydekkeri specimens to the dataset resulted in broadly 

similar patterns (Fig. 6.25-B). Notwithstanding, the position of the type 6 group was 

somewhat altered, relative to the extant species model. The Axis lydekkeri group itself gave 

positive scores on PC2, like the type 3, type 5 and type 6 groups. Where in the Trinil analysis 

the fossil specimens gave scores that sometimes exceeded that of the type 3 and type 5 

groups, in the Axis lydekkeri analysis the fossil specimens appeared to be more within the 

normal range of these two extant groups.  When PC2 was plotted against PC1 (Fig. 6.25-B), 

the fossil group clustered best with the type 3 and type 5 groups. 
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The Kruskal-Wallis test on the Trinil specimens indicated significant between group 

differences along the second axis (H=57.99, p<0.0001). Pairwise comparisons (Table 6.9-A) 

confirmed part of the differences observed on the second axis in the extant species model. 

Differences were mostly the same, except that the type 3 group was not significantly different 

from the type 2 (p=0.8457) and type 4 groups (p=0.2839) anymore. Moreover, the better 

separation of the type 6 group in the scatterplots (Fig. 6.29) also led to additional significant 

differences. Significant differences were measured between the type 6 group and the type 2 

(p<0.0001), type 5 (p<0.0001), type 1 (p=0.0003) and type 3 groups (p<0.0001). The fossil 

Trinil specimens were significantly different from the type 1 (p<0.0001), type 2 (p=0.0147), 

type 3 (p=0.0014), type 4 (p=0.0072), type 5 (p=0.0059) and type 6 groups (p<0.0001).  

The Kruskal-Wallis test (H=49.08, p<0.0001) and associated pairwise comparisons (Table 

6.9-B) on the more extended Axis lydekkeri dataset, generally confirmed these patterns for the 

second axis, but some differences were noted. Especially the type 5 group was better 

separated than in the extant model and the Trinil analysis. In the Axis lydekkeri analysis this 

group was also significantly different from the type 3 (p=0.0479) and type 4 groups 

(p=0.0263). Additional significant differences were also measured between the type 6 group 

and the type 3 group (p<0.0001) and type 6 group and type 4 group (p=0.02). Contrary to the 

extant model, the type 3 group was not significantly different from the type 2 (p=0.2813) and 

type 4 groups (p=0.2014), like in the Trinil analysis. 

As far as the Axis lydekkeri specimens themselves were concerned, separations were not as 

well supported by the pairwise comparisons as in the Trinil analysis. Significant differences 

were measured between the Trinil group and all extant habitat/locomotor groups, but the 

larger Axis lydekkeri sample was not significantly different from the type 2 (p=0.5518) and 

type 5 groups (p=0.686). Significant differences were, on the other hand, measured between 
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the Axis lydekkeri fossils and the type 1 (p=0.0012), type 3 (p=0.0324), type 4 (p=0.0169) and 

type 6 specimens (p<0.0001). 

In sum, the visual assessments of specimen distributions along the second component and the 

results of the Kruskal-wallis test and the associated pairwise comparisons, indicated that the 

phalanges from Trinil and the unprovenanced Axis kydekkeri specimens were morphologically 

different from those of cursorial deer adapted to open environments with a dry substrate. The 

morphology of the Trinil phalanges was more similar to that of saltatorial forms of closed 

environments with wet substrates, or perhaps more likely, to that of somewhat cursorial forms 

found in open environments with wet, yielding substrates.  

In morphological terms this meant that the phalanges had relatively shallow proximal articular 

surfaces, a trait more typical of species adapted to environments with wet, yielding substrates. 

The results also implied that in the Axis lydekkeri fossils (from Trinil) the placement of the 

extensor process on the anterior side of the phalanx was relatively low. This is a trait more 

typical of forms found in closed or open environments with wet, yielding substrates. As the 

morphological variation summarized by the second component was linked to the functional 

hypotheses proposed for the intermediate phalanx, it was likely that the patterns described by 

the Trinil fossils along this axis were ecomorphologically significant. 

PC3 and PC4 were retained as relevant components (for the NPMANOVA) as they explained 

a substantial amount (see Appendix M) of real shape variance in the PCA. On PC3 in the 

Trinil and Axis lydekkeri analyses, separations were somewhat better than in the extant 

species model. In these analyses the type 1 group, together with the fossil specimens, gave 

somewhat higher scores on this axis than the rest of the specimens. These separations were 

confirmed by the Kruskal-Wallis test and the pairwise comparisons (see Appendix M). On 

PC4 all groups tended to cluster in the center of the graph and visual overlap obscured all 
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possible patterns. The extant species analysis, however, indicated that the morphological 

changes along PC3 and PC4 were not to a large extent functionally driven. The 

ecomorphological significance of these shape components was therefore probably limited.  

In summary it could be concluded from the results of the Trinil analysis and of the 

unprovenanced Axis lydekkeri calcanei, that the fossils were, generally speaking, most similar 

in morphology to those of somewhat cursorial species, adapted to open environments with 

wet substrate. A more specific assessment of the shape components that were considered 

ecomorphologically most significant (PC1 and PC2) confirmed a similarity to wet, open 

environment cervids, or alternatively to cervids adapted to a more closed environment with 

wet substrate.  

6.3.2 Kedung Brubus and Cervus kendengensis 

6.3.2.1 Introduction 

For this analysis a small dataset of six Cervus kendengensis calcanei, associated with the 

Kedung Brubus faunal unit, was appended to the extant species model. This resulted in a 

combined dataset of 131 specimens (see Tables 5.2 and 5.3). In addition, a sample of five 

Cervus kendengensis phalanges from the Kedung Brubus faunal unit was combined with the 

extant model, resulting in a dataset of 147 specimens (see Tables 5.2 and 5.3). Each 

combination was resubmitted to a new GPA, followed by a bg-PCA on the procrustes 

residuals. Due to small sample size, only one analysis was run for each element. No separate 

analyses were conducted on material from the different localities that form part of the Kedung 

Brubus faunal unit. A table with eigenvalues and broken stick distributions associated with 

the PCA were provided in Appendices J (calcaneus) and K (intermediate phalanx). 
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6.3.2.2 Calcaneus 

An NPMANOVA on the scores of PC1 to PC4 indicated significant between group 

differences (F=7.55, p=0.0001). Pairwise comparisons (Table 6.10) gave the same significant 

differences also observed between the habitat/locomotion groups in the extant species model 

(see section 6.2.1.3). For the habitat/locomotion groups, differences were only non-significant 

between the type 2 and the type 3 specimens (p=0.4706). Adding the Cervus kendengensis 

fossils did not interfere with the patterns described by the extant species model. The Cervus 

kendengensis sample was found to be significantly different from the type 3 (p=0.0259), type 

4 (p=0.0202) and type 5 groups (p<0.001) in multidimensional space.  

The NPMANOVA and associated pairwise comparisons indicated that the Cervus 

kendengensis calcanei, associated with the Kedung Brubus faunal unit, were morphologically 

most similar to the cursorial extant forms, more likely to be found in dry, open or intermediate 

environments. The morphology of the fossil calcanei was different from that of more 

saltatorial species of closed environments or wet, open environment forms. 

 
Type 3 CKE Type 2 Type 4 Type 1 Type 5 

Type 3 - 0.0259 0.4706 0.0044 0.0001 0.0001 
CKE 0.0259 - 0.0624 0.0202 0.055 0.0006 
Type 2 0.4706 0.0624 - 0.0164 0.0008 0.0067 
Type 4 0.0044 0.0202 0.0164 - 0.0026 0.0001 
Type 1 0.0001 0.055 0.0008 0.0026 - 0.0001 
Type 5 0.0001 0.0006 0.0067 0.0001 0.0001 - 

 

Table 6.10: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on all extant calcaneus specimens and the Cervus kendengensis fossils (CKE) from a number of Kedung 

Brubus sites, with significant values (p<0.05) in bold. 

 

A visual assessment of the PCA scatterplot of PC1 and PC2 (Fig. 6.27) revealed patterns that 

were in line with the results produced by the NPMANOVA. Generally speaking, specimens 
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behaved in a similar way as in the extant species model. As a group, the Cervus kendengensis 

specimens gave relatively low scores on the first axis, together with the type 1 and type 4 

groups. The type 3 and type 5 groups gave more positive scores. The type 2 group was 

intermediate. Overall, the Cervus kendengensis group clustered best with the type 1 group in 

the scatterplot. Pairwise comparisons following a Kruskal-Wallis test (H=49.24, p<0.0001) on 

the scores of PC1 only partially confirmed the visual separations (Table 6.11). For most 

extant habitat/locomotor groups, significant differences were measured on the first axis. 

Notable exceptions were differences between the type 2 and type 3 group (p=0.8149) and 

between the type 1 and type 4 group (p=0.07902). The Cervus kendengensis specimens were, 

however, only significantly different from the type 5 group (p=0.00148). P-values were 

especially high between the fossil group and the type 1 group (p=0.6147). 

 

Figure 6.27: PC1 and PC2 scatterplot of a between groups PCA of all extant calcanei and fossil Cervus 

kendengensis calcanei ordered by habitat/locomotor strategy with 50% confidence intervals. 
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PC1 Type 3 CKE Type 2 Type 4 Type 1 Type 5 

Type 3 - 0.2166 0.8149 0.0068 0.0006 0.0003 
CKE 0.2166 - 0.0612 0.1753 0.6147 0.0014 
Type 2 0.8149 0.0612 - 0.0141 0.0036 0.0031 
Type 4 0.0068 0.1753 0.0141 - 0.079 0.0003 
Type 1 0.0006 0.6147 0.0036 0.079 - <0.0001 
Type 5 0.0003 0.0014 0.0031 0.0003 <0.0001 - 

PC2 Type 3 CKE Type 2 Type 4 Type 1 Type 5 

Type 3 - 0.0233 0.5637 0.6209 0.0001 0.0013 
CKE 0.0233 - 0.0612 0.1407 0.7167 0.7484 
Type 2 0.5637 0.0612 - 0.8852 0.0259 0.0299 
Type 4 0.6209 0.1407 0.8852 - 0.0476 0.0417 
Type 1 0.0001 0.7167 0.0259 0.0476 - 0.492 
Type 5 0.0013 0.7484 0.0299 0.0417 0.492 - 

 

Table 6.11: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the 

bg- PCA on all extant calcaneus specimens and Cervus kendengensis fossils (CKE), with significant values 

(p<0.05) in bold. 

 

All things considered, the position of the Cervus kendengensis group along PC1 suggested 

that the calcaneus of this form, associated with the Kedung Brubus faunal unit, had a 

relatively short tuber calcanei that was positioned at a higher angle relative to the anterior 

portion of the bone, a trait usually found in cursorial species of dry, open environment. 

Although statistical strength was limited, it was likely that Cervus kendengensis was closest in 

morphology to the type 1 species. It was morphologically different from that of species found 

in wet, open environments. As the morphological variation explained by PC1 was most likely 

functionally driven to a substantial extent (see section 6.2.1), the above described patterns 

should be considered ecomorphologically significant. 

The patterns visually observed in the extant species model were also not altered on the second 

axis in the Cervus kendengensis analysis (Fig. 6.27). The Cervus kendengensis specimens 

gave high scores on PC2, together with the type 1, type 4 and type 5 specimens. The type 2 

and type 3 groups gave lower scores. When PC2 was plotted against PC1 (Fig. 6.27), the 
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fossils clustered fairly well with the type 1 group. In pairwise comparisons (Table 6.11) 

following a Kruskal-Wallis test (H=23.6, p=0.0002) the same between-group differences were 

found as in the extant species model. The type 4 group even gave somewhat better separations 

on the second axis than in the model. In the Cervus kendengensis analysis, the type 1 group 

was significantly different from the type 2 (p=0.02598), type 4 (p=0.04763) and type 3 groups 

(p<0.001). The type 5 group was significantly different from the type 2 (p=0.0299), type 3 

(p=0.001302) and type 4 groups (p=0.0417). No significant differences were, however, found 

between the fossil Cervus kendengensis specimens and most of the other groups on this axis, 

with the exception of the type 3 group (p=0.0233). 

Taking into account the results of the Kruskal-Wallis test, the associated multiple 

comparisons and the visual assessment of specimen distribution along the second axis, it 

could be concluded that the calcaneus of the Cervus kendengensis specimens from the 

Kedung Brubus faunal unit had comparatively long articular surfaces supporting the 

malleolus. Although stastical strength was limited for the fossil group, this trait is usually 

found in more cursorial, or at least intermediate species, associated with either dry or wet 

open environments or mountainous environments. It was, nevertheless, relatively certain that 

the Cervus kendengensis calcanei were unlike those found in saltatorial animals associated 

with closed environments with wet substrates. 

On the third and fourth axis, visual overlap between the different groups was substantial. On 

the third axis, only the type 2 specimens, together with the fossils gave somewhat lower 

scores. On PC4 no clear patterns were visually discerned and all groups tended to cluster in 

the center of the scatterplot (see Appendix L). Despite that PC3 and PC4 were retained as 

relevant components in the extant species analysis, and explained real shape variation 

between the different calcaneus specimens, the extant species analysis suggested that most of 

the morphological variation summarized by these axes was not to a large extent functionally 
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driven. The third and fourth components were therefore considered of limited 

ecomorphological significance. The scatterplots, the results of the Kruskal-Wallis test and of 

the pairwise comparisons can be found in Appendix L. 

In summary it could be concluded from the results of the Cervus kendengensis analysis that 

the calcanei from the Kedung Brubus faunal unit were similar in shape to those of cursorial 

cervids, adapted to dry, open environments, possibly of high elevation. The Cervus 

kendengensis calcanei were different in shape from calcanei of species with a saltatorial 

locomotor strategy, adapted to closed, wet environments or from those linked with open, wet 

environments. The more specific assessment of the ecomorphologically significant 

components (mainly PC1 and PC2) confirmed this and further specified that the fossils were 

probably more allied to open, dry environment forms, associated with lowland.  

6.3.2.3 Intermediate phalanx 

The results of the NPMANOVA on the first four components (F=7.48, p<0.0001) confirmed 

the between group-differences that were observed in the extant species model (section 

6.2.2.4). The associated pairwise comparisons (Table 6.12) indicated that the fossil specimens 

were significantly different from the type 1 (p=0.0001), type 2 (p=0.0009), type 3 (p=0.0001), 

type 4 (p=0.0069), type 5 (p=0.003) and type 6 groups (p=0.0002). Alternatively, the results 

suggested that the Cervus kendengensis phalanges from the Kedung Brubus faunal unit were 

significantly different in multidimensional space from all extant groups, but with possibly the 

highest similarity to the type 4 and type 5 groups. 

A visual assessment of the scatterplot associated with the first two components, gave some 

further insight into the relationships between the habitat/locomotor groups and the fossil 

group (Fig. 6.28). The results of the NPMANOVA and pairwise comparisons were partially 

confirmed by specimen positions in the scatterplots. On the first axis the patterns described by 
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the habitat/locomotor groups were almost identical to those described in the extant species 

model. This was not surprising as the small sample size of the Cervus kendengensis group 

was probably not able to alter specimen relationships to a large extent in the dataset. Although 

there was substantial overlap between most of the groups, the Cervus kendengensis specimens 

gave intermediate to high scores on the first axis, similar to the type 1, type 2 and part of the 

type 4 group. When PC1 was plotted against PC2 (Fig. 6.28), the fossils visually clustered 

best with the type 1, type 4 and type 5 groups.  

 
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 CKE 

Type 1 - 0.0094 0.0001 0.0267 0.0001 0.0001 0.0001 
Type 2 0.0094 - 0.0021 0.4193 0.1124 0.0001 0.0009 
Type 3 0.0001 0.0021 - 0.0023 0.009 0.0001 0.0001 
Type 4 0.0267 0.4193 0.0023 - 0.0367 0.0044 0.0069 
Type 5 0.0001 0.1124 0.009 0.0367 - 0.0006 0.003 
Type 6 0.0001 0.0001 0.0001 0.0044 0.0006 - 0.0002 
CKE 0.0001 0.0009 0.0001 0.0069 0.003 0.0002 - 

 

Table 6.12: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on all extant intermediate phalanges and the Cervus kendengensis fossils (CKE), with significant values 

(p<0.05) in bold. 

The Kruskal-Wallis test resulted in significant differences between group medians (H=62.09, 

p<0.0001). Pairwise comparisons (Table 6.13) showed that the same significant differences 

were observed between the habitat/locomotor groups as in the extant species model (Table 

6.5). This meant that the fossils specimens did not alter the between-group relationships 

observed in the model. The Cervus kendengensis fossils were significantly different from the 

type 3 (p=0.006209) and the type 6 groups (p=0.005779) on this axis, but not significantly 

different from the type 1 (p=0.1662), type 2 (p=0.4278), type 4 (p=0.5815) and type 5 groups 

(p=0.9729).  
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 Figure 6.28: PC1 and PC2 scatterplot of a between groups PCA of all extant intermediate phalanges and 

Cervus kendengensis phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 

PC1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 CKE 
Type 1 - 0.2801 <0.0001 0.0056 0.0052 <0.0001 0.1662 
Type 2 0.2801 - 0.0061 0.2751 0.2393 0.0004 0.4278 
Type 3 <0.0001 0.0061 - 0.1764 0.3656 <0.0001 0.0062 
Type 4 0.0056 0.2751 0.1764 - 0.676 0.0004 0.5815 
Type 5 0.0052 0.2393 0.3656 0.676 - 0.0016 0.9729 
Type 6 <0.0001 0.0004 <0.0001 0.0004 0.0016 - 0.0057 
CKE 0.1662 0.4278 0.0062 0.5815 0.9729 0.0057 - 
PC2 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 CKE 
Type 1 - 0.0031 <0.0001 0.0819 <0.0001 0.0114 0.9879 
Type 2 0.0031 - 0.1011 0.5495 0.1934 0.3247 0.0541 
Type 3 <0.0001 0.1011 - 0.019 0.8414 0.0004 0.0012 
Type 4 0.0819 0.5495 0.019 - 0.0556 0.6418 0.1984 
Type 5 <0.0001 0.1934 0.8414 0.0556 - 0.0234 0.0108 
Type 6 0.0114 0.3247 0.0004 0.6418 0.0234 - 0.061 
CKE 0.9879 0.0541 0.0012 0.1984 0.0108 0.061 - 

Table 6.13: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the 

bg- PCA on all extant intermediate phalanx specimens and Cervus kendegensis fossils (CKE), with significant 

values (p<0.05) in bold. 
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Together the results of the Kruskal-Wallis test, the associated pairwise comparisons and the 

visual assessment of the PCA scatterplot, suggested that Cervus kendengensis had 

intermediate to relatively robust phalanges, a trait associated with limited capacity for 

splaying and preference for open environments with dry, unyielding substrates. It remains 

possible that Cervus kendengensis had phalanges that were morphologically in the range of 

animals adapted to intermediate environments or species of open environments with wet, 

yielding substrates. On the other hand, it was unlikely that Cervus kendengensis had 

phalanges similar in shape to those of species adapted to closed environments with wet 

substrates. Since the morphological differences summarized by PC1 were linked to the 

functional hypotheses proposed for the intermediate phalanx (see section 6.2.2.4), the patterns 

described by the Cervus kendengensis group were most likely ecomorphologically significant. 

On the second axis the patterns described by the habitat/locomotor groups were also virtually 

the same as in the extant model (Fig. 6.28). This suggested that the addition of the fossil 

specimens did not lead to altered between-group relationships on the second axis. The visual 

assessment of the scatterplots showed that the fossil group gave high scores on PC2, along 

with the type 1 and (part of) the type 4 specimens. When PC2 was plotted against PC1 (Fig. 

6.28), the Cervus kendengensis specimens visually clustered best with the type 1 and type 4 

groups.  

The Kruskal-Wallis test on the scores of PC2 indicated significant between group differences 

(H=53.42, p<0.0001). Pairwise comparisons (Table 6.13) for the largest part gave the same 

significant differences between the habitat/locomotor groups as in the extant model (see Table 

6.5). Two exceptions were noted: in the Cervus kendengensis analysis the type 2 group was 

not significantly different from the type 3 group (p=0.1011) and the type 5 group was 

significantly different from the type 6 group (p=0.02346). The observed trends largely 

corroborated the observation that the fossil specimens did not alter (extant) specimen 
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between-group relationships to a large extent. As far as the fossil specimens were concerned; 

the pairwise comparisons associated with the Kruskal-Wallis test indicated that the Cervus 

kendengensis group was significantly different from the type 3 (p=0.001294) and type 5 

groups (p=0.01085) on the second axis, but not from the type 1 (p=0.9879), type 2 

(p=0.05412), type 4 (p=0.1984) and type 6 groups (p=0.06108). As such, the results mainly 

suggested a similarity between Cervus kendengensis and the type 1 and type 4 groups. 

Taking the results of the Kruskal-Wallis test, the associated pairwise comparisons and the 

visual assessment of the scatterplot associated with PC2 into account, it could be concluded 

that the Cervus kendengensis phalanges were probably most similar in morphology to those of 

cursorial cervids adapted to open environments with dry, unyielding substrates, or –perhaps 

more unlikely- to those of relatively cursorial species found in high altitude environments 

with dry, open vegation. Morphologically this was expressed in phalanges with deep proximal 

articular surfaces and in a highly placed anterior extensor process. As the morphological 

differences summarized by the second axis were linked to the functional hypotheses proposed 

for the phalanx, the patterns described by the Cervus kendengensis specimens on this axis can 

be considered ecomorphologically significant. 

On PC3 and PC4 visual separation between the different groups was minimal. On the third 

axis all groups tended to cluster in the center of the graph. The type 1 group tended to give 

somewhat higher scores and the type 3 and Cervus kendengensis group gave somewhat lower 

scores, but differences were too small to discern a clear pattern in the scatterplots (see 

Appendix M). Similarly, on PC4, there was  also too much visual overlap to discern any 

meaningful patterns. Furthermore, the few visual separations that were observed along PC3 

and PC4, were not considered particularly relevant to this ecomorphological study. As 

mentioned in section 6.2.1.3, the lack of meaningful patterns and the absence of a clear 

functional correlation for these axes in the extant model, made it doubtful that the 
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morphological variation explained by PC3 and PC4, and therefore the position of the fossils 

along these axes, was ecomorphologically significant.  

In sum, it could be concluded from the analysis of the Cervus kendengensis phalanges, that in 

terms of general shape, the phalanges of this species were most comparable to those of 

somewhat cursorial cervids associated with open environments and wet substrate or 

alternatively high altitude environments. However, when specifically looking at the shape 

components that were thought to contain the strongest ecomorphological signals (PC1 and 

PC2), a similarity was suggested between the fossil phalanges and the phalanges of cursorial 

cervids of dry, open environments, high altitude environments or intermediate environments.  

6.3.3 Sangiran 

6.3.3.1 Introduction 

For the analysis of Sangiran, nine calcanei from this site were added to the extant species 

model, resulting in a combined dataset of 134 specimens (see Tables 5.2 and 5.3). Eight of 

these were of the size of Axis and probably belonged to this genus. One specimen was of the 

size of Cervus (Rusa) and was also placed in this taxon (see Appendix C). Although all 

calcanei were part of the Grenzbank or the Upper/Lower Kabuh formation, one specimen 

(GMB sa170378 in Appendix C) was certainly associated with the Grenzbank. For the 

analysis of the intermediate phalanges, seven fossil specimens were added to the extant 

sample, resulting in a combined dataset of 149 specimens (see Tables 5.2 and 5.3). Four of 

these were of the size of Axis and presumably belonged to this genus and three were of the 

size of Cervus (Rusa) and should also be placed in this taxon (see Appendix C). All 

specimens were thought to belong to the Grenzbank or the Upper or Lower Kabuh formation, 

but one phalanx (GMB sa-nr16 in Appendix C) was definitely part of the Grenzbank. 
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All specimen combinations were resubmitted to a new GPA, followed by a bg-PCA on the 

procrustes residuals. As sample sizes for both elements were relatively small, no separate 

analyses were conducted on the Cervus- or Axis-sized materials that were part of the Sangiran 

collection. Eigenvalues and broken stick distributions were added to Appendix K. 

6.3.3.2 Calcaneus 

An NPMANOVA on the scores of the first four components indicated significant between 

group differences (F=8.81, p=0.0001). Pairwise comparisons (Table 6.14) gave the same 

significant differences that were also observed between the habitat/locomotion groups in the 

extant species model (see section 6.2.1.3). Non-significant differences were only measured 

between the type 2 and the type 3 specimens (p=0.2813). The Sangiran fossils did not 

interfere with the patterns described by the extant specimens. In addition to the extant 

between-group differences, the Sangiran sample was found to be significantly different from 

the type 1 (p=0.0005), type 2 (p=0.0058), type 3 (p=0.0001), type 4 (p=0.0014) and type 5 

groups (p=0.0001) in multidimensional space. It was in other words suggested that the 

calcaneus specimens from Sangiran had a different morphology from that of the other species 

in the extant habitat/locomotor groups. 

 
Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 

Sangiran - 0.0005 0.0058 0.0001 0.0014 0.0001 
Type 1 0.0005 - 0.0009 0.0001 0.0026 0.0001 
Type 2 0.0058 0.0009 - 0.2813 0.0155 0.003 
Type 3 0.0001 0.0001 0.2813 - 0.0042 0.0001 
Type 4 0.0014 0.0026 0.0155 0.0042 - 0.0001 
Type 5 0.0001 0.0001 0.003 0.0001 0.0001 - 

Table 6.14: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on all extant calcaneus specimens and the Sangiran fossils, with significant values (p<0.05) in bold. 

The visual assessment of the scatterplot of PC1 and PC2 (Fig. 6.29) was in line with the 

results of the NPMANOVA and the pairwise comparisons, but provided additional insight 
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into the relationships between the fossils and the extant habitat/locomotor groups. Specimen 

distribution on PC1 confirmed the patterns found in the extant species model. Despite 

considerable visual overlap, type 1 and type 4 specimens gave relatively high scores, while 

type 3 and type 5 specimens gave lower scores. Type 2 specimens were intermediate. The 

fossil specimens from Sangiran gave high scores, similar to the type 1 and type 4 groups. 

When PC1 was plotted against PC2, the fossils primarily clustered with the type 1 group.  

The patterns observed in the visual assessment of PC1 on the scatterplot were corroborated by 

the results of the Kruskal-Wallis test (H=48.25, p<0.0001) and the pairwise comparisons 

(Table 6.15). The Sangiran specimens differed significantly from the type 2 (p=0.0184), type 

3 (p=0.002728) and type 5 groups (p=0.000294) on this axis. No significant differences were 

found between the Sangiran group and the type 1 (p=0.1973) and type 4 groups (p=0.5365). 

 

Figure 6.29: PC1 and PC2 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from 

Sangiran ordered by habitat/locomotor strategy with 50% confidence intervals. 
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PC1 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 
Sangiran - 0.1973 0.0184 0.0027 0.5365 0.0002 
Type 1 0.1973 - 0.0091 <0.0001 0.1973 <0.0001 
Type 2 0.0184 0.0091 - 0.5428 0.0485 0.0179 
Type 3 0.0027 <0.0001 0.5428 - 0.0081 0.0223 
Type 4 0.5365 0.1973 0.0485 0.0081 - 0.0009 
Type 5 0.0002 <0.0001 0.0179 0.0223 0.0009 - 
PC2 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 
Sangiran - 0.0018 0.0017 0.0004 0.0019 0.6509 
Type 1 0.0018 - 0.3851 0.0032 0.0261 0.0032 
Type 2 0.0017 0.3851 - 0.4633 0.1629 0.0137 
Type 3 0.0004 0.0032 0.4633 - 0.9073 <0.0001 
Type 4 0.0019 0.0261 0.1629 0.9073 - 0.0013 
Type 5 0.6509 0.0032 0.0137 <0.0001 0.0013 - 
 
Table 6.15: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the 

bg- PCA on all extant calcaneus specimens and Sangiran fossils, with significant values (p<0.05) in bold. 

 

Based on the Kruskal-Wallis test, the pairwise comparisons and the visual assessment of the 

scatterplots associated with PC1, it could be concluded that the fossil calcanei from Sangiran 

had a shape similar to that of cervids associated with a cursorial locomotor strategy or perhaps 

somewhat saltatorial strategy but with high endurance and speed, traits found in animals of 

open or possibly mountainous environments. Morphologically this was expressed in relatively 

short calcanei with a tuber that was at a higher angle relative to the anterior portion of the 

calcaneus (see Fig. 6.1). This was not surprising, as most cervid specimens from Sangiran 

were in the smaller Axis size class and could well belong to Axis lydekkeri, the species 

commonly found in Trinil and giving a similar result (see section 6.3.1.2). The single 

Sangiran specimen placed in the Cervus size class, did not differ in this respect and gave 

similar scores on the first axis. Considering that the shape variation explained by the first 

component was probably to a substantial extent functionally driven (see section 6.2.1), it was 

likely that the patterns described by the Sangiran specimens were ecomorphologically 

significant. 
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PC2 resulted in reasonably good visual separations (Fig. 6.29). Like in the extant species 

model, the type 1, type 2 and type 5 groups gave relatively high scores on the axis, while the 

type 3 group gave low scores. Contrary to the extant model, the type 4 group gave rather low 

scores on the axis in this case. This indicated that the addition of the fossils from Sangiran 

somewhat interfered with the original specimen positions on this axis. Deformation grids 

nevertheless showed that the same shape changes were summarized by PC2 as in the model. 

The fossils from Sangiran themselves gave high scores on the second axis, similar to the type 

1 and type 5 groups. It should be mentioned that the single Cervus-sized specimen in the 

fossil dataset, together with one of the smaller Axis-sized specimens gave exceedingly high 

scores on the axis. When PC2 was plotted against PC1 the fossils clearly clustered with the 

type 1 group, but not the type 5 group. 

The observed between group-differences were partially confirmed by the Kruskal-Wallis test 

(H=35.07, p<0.0001) and the associated pairwise comparisons (Table 6.15). Separations were 

better supported in this analysis than in the analysis of the extant species (see Table 6.3), 

again indicating that the addition of the Sangiran specimens to some extent interfered with the 

original patterns described by PC2 in the model. The shape changes explained by this axis 

were, nevertheless, the same as in the model. The pairwise comparisons furthermore indicated 

that the Sangiran group was significantly different from the type 1 (p=0.001806), type 2 

(p=0.001764), type 3 (p=0.000431) and type 4 groups (p=0.001998). No significant 

differences were, on the other hand, found between the Sangiran group and the type 5 group 

(p=0.5609), perhaps implying the fossil group was most similar to this habitat/locomotor 

group on the second axis.  

Considering the results of the Kruskal-Wallis test, the associated pairwise comparisons and 

the visual assessment of the second axis in the scatterplot, it could be concluded that the 

Sangiran calcanei had relatively long articular surfaces supporting the malleolus. This was 
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especially the case for the single Cervus-sized specimen. Such a trait is unlikely to be found in 

saltatorial animals associated with closed environments and wet substrates. As far as the 

articular surface supporting the malleolus was concerned, the Sangiran specimens were 

morphologically similar to more cursorial species, or at least intermediate forms, associated 

with either dry or wet open environments, or high altitude environments. 

PC3 and PC4 (Appendix L) only resulted in limited visual separation. On the third axis all 

specimens tended to give intermediate scores and clustered in the center of the plot. Only the 

type 2 specimens, together with the Sangiran specimens, gave somewhat lower scores. These 

separations were confirmed by the Kruskal-Wallis test and the pairwise comparisons 

(Appendix L). Similarly, PC4 also resulted in little visual separation in the scatterplot 

(Appendix L). All habitat/locomotor groups, as well as the specimens from Sangiran, tended 

to cluster in the center of the plot. The analysis of the extant specimens already suggested that 

the shape differences explained by the second and fourth axes of variation lacked a clear 

functional correlation with locomotor strategy and substrate/vegetation type (see section 

6.2.1.3). Consequently, specimen distribution along PC3 and PC4 was probably of limited 

ecomorphological significance. 

In conclusion, it could be stated from the results of the Sangiran analysis that the calcanei 

from this site were, in terms of general shape, most similar to those of intermediate 

environment species on a gradient between cursorial forms of dry, open environments and 

saltatorial forms of wet, closed environments. However, when specifically looking at those 

traits that were considered to contain the strongest ecomorphological signal (PC1 and PC2), 

the calcanei were morphologically much more similar to those of species with a cursorial 

locomotor strategy, associated with dry, open environment, potentially of high altitude (PC1 

and PC2). The shape of the calcanei was also to a lesser extent somewhat similar to that of 

open, wet environment species (PC2).  
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6.3.3.3 Intermediate phalanx 

The results of the NPMANOVA on PC1 to PC4 indicated significant between group 

differences (F=13.71, p=0.0001). P-values calculated in the pairwise comparisons (Table 

6.16) largely mirrored the significant differences between the habitat/locomotion groups in 

the extant species model. The only difference was that in the model the type 4 group was 

significantly different from the type 5 group (see Table 6.4), but that this was not the case in 

the Sangiran analysis (p=0.1115). This implied that the addition of the Sangiran fossils led 

only to limited interference in the patterns described by the different groups in the model. The 

Sangiran sample itself was significantly different from the type 1 (p=0.0041), type 3 

(p=0.0001) and type 6 groups (p=0.0001), but not from the type 2 (p=0.0742), type 4 

(p=0.0939) and type 5 groups (p=0.0518). 

  Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Sangiran - 0.0041 0.0742 0.0001 0.0939 0.0518 0.0001 
Type 1 0.0041 - 0.0075 0.0001 0.0087 0.0001 0.0001 
Type 2 0.0742 0.0075 - 0.0019 0.56 0.0736 0.0003 
Type 3 0.0001 0.0001 0.0019 - 0.0154 0.008 0.0001 
Type 4 0.0939 0.0087 0.56 0.0154 - 0.1115 0.0048 
Type 5 0.0518 0.0001 0.0736 0.008 0.1115 - 0.0013 
Type 6 0.0001 0.0001 0.0003 0.0001 0.0048 0.0013 - 

 

Table 6.16: p-values of pairwise comparisons of an NPMANOVA of the first four PC-scores of a between groups 

PCA on all extant intermediate phalanges and the Sangiran fossils, with significant values (p<0.05) in bold. 

The visual assessment of the scatterplot associated with the first two components (Fig. 6.30) 

was largely in line with the results of the NPMANOVA, but gave further insight into the 

between-group relationships of the extant groups and the fossil specimens along the principal 

component axes. Along PC1 (Fig. 6.30), the same patterns were observed between the 

habitat/locomotor groups as in the extant model. As a group, the Sangiran specimens were 

probably closest to the intermediate the type 2 group. When looking at the specimens 
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individually it appeared that the Axis-sized fossils gave scores in the range of the type 3 and 

type 5 groups, while the Cervus-sized fossils gave lower scores, similar to the type 1 group.  

The Kruskal-Wallis test on the scores of PC1 gave significant between group differences 

(H=63.39, p<0.0001). Pairwise comparisons (Table 6.17) mirrored the between group-

differences measured between the habitat/locomotor groups in the extant species model.  The 

only exceptions were that in the Sangiran analysis, the type 1 group differed significantly 

from the type 2 group (p=0.03642) and the type 6 group was not significantly different from 

the type 3 (p=0.1003) and type 5 groups (p=0.2171), like in the model. The fossils (as a 

group) differed significantly from the type 3 (p=0.001068) and type 6 groups (p=0.002602), 

but not from the type 1 (p=0.1687), type 2 (p=0.8563), type 4 (p=0.204) and type 5 groups 

(p=0.2806), confirming a possible closeness of the Sangiran group to the type 2 group. 

 

Figure 6.30: PC1 and PC2 scatterplot of a between groups PCA of all extant intermediate phalanges and 

Sangiran phalanges, ordered by habitat/locomotor strategy with 50% confidence intervals. 
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PC1 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Sangiran - 0.1687 0.8563 0.001 0.204 0.2806 0.0026 
Type 1 0.1687 - 0.0364 <0.0001 0.003 0.0003 <0.0001 
Type 2 0.8563 0.0364 - 0.0046 0.3619 0.2562 0.0076 
Type 3 0.001 <0.0001 0.0046 - 0.0648 0.4193 0.1003 
Type 4 0.204 0.003 0.3619 0.0648 - 0.832 0.0162 
Type 5 0.2806 0.0003 0.2562 0.4193 0.832 - 0.2171 
Type 6 0.0026 <0.0001 0.0076 0.1003 0.0162 0.2171 - 
PC2 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Sangiran - 0.0128 0.3191 0.4285 0.1688 0.7609 0.0089 
Type 1 0.0128 - 0.0099 <0.0001 0.1339 <0.0001 0.6534 
Type 2 0.3191 0.0099 - 0.5592 0.9394 0.0603 0.0011 
Type 3 0.4285 <0.0001 0.5592 - 0.6237 0.0831 <0.0001 
Type 4 0.1688 0.1339 0.9394 0.6237 - 0.0771 0.2045 
Type 5 0.7609 <0.0001 0.0603 0.0831 0.0771 - <0.0001 
Type 6 0.0089 0.6534 0.0011 <0.0001 0.2045 <0.0001 - 

Table 6.17: p-values of Mann-Whitney pairwise comparisons of a Kruskal-Wallis test for PC1 and PC2 of the 

bg- PCA on all extant intermediate phalanx specimens and Sangiran fossils, with significant values (p<0.05) in 

bold. 

 

In sum, the Kruskal-Wallis test, the associated pairwise comparisons and the visual 

assessment of the scatterplots associated with PC1 indicated that the Sangiran specimens, as a 

group, had a morphological signature typical of intermediate species on a gradient between 

cursorial species of dry, open environments with more robust phalanges and saltatorial species 

of wet, closed environments with more gracile phalanges. Yet, there appeared to be a 

dichotomy in the fossil sample and the Axis-sized specimens were more similar in shape to 

somewhat cursorial species of open, wet environments with more gracile phalanges, while the 

Cervus-sized specimens were more robust and similar to forms typical of dry, open 

environments. As the morphological traits associated with PC1 were considered functionally 

correlated, it is assumed that the patterns described by the fossils on this axis, were 

ecomorphologically significant. 

On PC2, the patterns visually observed in the Sangiran analysis (Fig. 6.30) were largely the 

same as in the extant model. The type 1 and type 4 specimens gave more negative scores 
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while the type 3 and type 5 specimes gave more positive scores. The fossil specimens, on 

average, seemed to give intermediate scores on the second axis, similar to the type 2 group. 

Like on the first axis, there also appeared to be a difference between the Axis-sized specimens, 

that gave high scores, similar to the type 5 group, and the Cervus-sized specimens, that gave 

lower scores, similar to the type 1 group.  

The patterns observed in the visual assessment of the scatterplot associated with PC2 were 

partially confirmed by the results of the Kruskal-Wallis test (H=46.2, p<0.0001) and the 

pairwise comparisons (Table 6.17). The addition of the Sangiran specimens to the extant 

species sample altered the original patterns between the habitat/locomotor groups to some 

extent. In addition to the significant differences observed on PC2 in the model (see Table 6.5), 

the type 6 group was in the Sangiran analysis also significantly different from the type 2 

(p=0.001177) and type 5 groups (p<0.0001), but not from the type 1 group (p=0.6534). The 

type 3 group was also not significantly different from the type 2 (p=0.5592) and the type 4 

group (p=0.6237). The Sangiran fossils, as a group, were significantly different from the type 

1 (p=0.01286) and type 6 groups (p=0.008922), but not from the type 2 (p=0.3191), type 3 

(p=0.4285), type 4 (p=0.1688) and type 5 groups (p=0.7609) on the second axis. This implied 

that the Sangiran specimens were morphologically different from the type 1 and type 6 groups 

and possibly similar to the type 2 group, but also to the type 3 group and the type 5 group. 

The visual assessement of the scatterplot associated with PC2,  the results of the Kruskal-

Wallis test and the associated pairwise comparisons suggested that the Sangiran phalanges 

morphologically conformed to those of intermediate cervids on a gradient between cursorial 

species of dry, open environments and saltatorial species of wet, closed environments, or 

alternatively to somewhat cursorial species of wet, open environments. In reality the results 

most likely reflected the same dichotomy between the Cervus-sized specimens and Axis-sized 

specimens, also observed along PC1. The smaller Axis-sized deer seemed to belong to a 
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morphotype characterized by relatively shallow proximal articular surfaces and a low 

placement of the extensor process on the anterior side of the phalanx, traits typical of species 

adapted to environments with wet, yielding substrates. The larger Cervus-sized specimens 

appeared to be of a morphotype characterized by relatively deep proximal articular surfaces 

and a high placement of the extensor process on the anterior side of the phalanx, both traits 

typical of cursorial species adapted to environments with dry substrates. From the extant 

model it was concluded that the morphological variation summarized by PC2 was 

functionally correlated. The patterns described by the Sangiran specimens on this axis should 

therefore be considered ecomorphologically significant. 

PC3 and PC4 were retained as relevant components as they explained a substantial amount of 

real shape variance in the PCA (see Appendix M). On PC3 separations did not result in any 

meaningful patterns from an ecomorphological perspective. Most specimens tended to cluster 

in the center of the graph. Only the type 6 group and the Sangiran specimens gave somewhat 

more positive scores on the axis, a pattern that was confirmed by the Kruskal-Wallis test and 

the associated pairwise comparisons (Appendix M). On PC4, separations were even more 

limited, with only the type 5 group giving somewhat more positive scores (Appendix M).  The 

extant species analysis, however, indicated that the morphological variation along the third 

and fourth axes was not strongly functionally correlated. The ecomorphological significance 

of these shape components was therefore probably limited.  

In summary, the results of the analysis revealed that the phalanges from Sangiran were, in 

terms of general shape, most similar to those of intermediate cervids on a gradient between 

cursorial forms of dry, open environments and saltatorial forms of wet, closed environments, 

or somewhat cursorial forms associated with high altitude environments. When looking 

specifically at the shape components with the strongest ecomorphological signal (PC1 and 

PC2) a morphological similarity to the intermediate species was confirmed, but a difference 



248 
 

was noted between the Axis-sized and Cervus-sized specimens, the former being more similar 

in shape to species of open or closed environments with a wet substrate, the latter being more 

similar in shape to species of dry, open environments. 
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7. Discussion 

7.1 Introduction 

This dissertation had multiple objectives. A first goal was to construct ecomorphological 

methods for the cervid calcaneus and intermediate phalanx that allow for predictions to be 

made about fossils of unknown ecological affinity. This involved exploring a number of 

functional hypotheses related to these two elements (see section 5.2) and assessing the 

effectiveness of certain morphological traits in predicting ecological parameters. The second 

goal, was to apply these newly developed methods on fossils from several Javan hominin sites 

to: A) assess past environmental conditions at Homo erectus localities, B) detect any 

differences/changes in these environmental conditions through time and space, C) determine 

to what extent Homo erectus was associated with a specific type of environment or was able 

to adapt to changing conditions, and D) evaluate how the findings relate to current models 

about hominin dispersal. 

In this chapter I discuss how these goals have been reached and how the results presented in 

chapter 6 fit with evidence from other studies and proxies pertaining to the above outlined 

research problems. More specifically, section 7.2 builds on the results of the extant and fossil 

analyses (see sections 6.2 and 6.3) and discusses the utility of the ecomorphological methods 

presented here and how they relate to earlier, similar studies. In section 7.3, the results of the 

fossil analyses are integrated and discussed in connection with other palaeoenvironmental 

studies from the examined sites and the region. Section 7.4 deals with the contributions of 

these habitat reconstructions in the broader context of hominin palaeoecology and discusses 

the wider implications for early Homo erectus dispersal in Southeast Asia and further afield. 

A final section 7.5 gives some further consideration to some of the statistical tests that were 

used in this study and the implications for the results. 
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7.2 Cervid ecomorphology 

Developing postcranial ecomorphological models to predict extinct species’ habitat 

preferences was fundamental to this dissertation. Consequently, it was imperative to first 

consider the utility of the specific models developed. The best way to estimate the 

effectiveness of a skeletal element in predicting habitat preference is to look at how extant 

specimens of known ecological affinity “behave” in a predictive model and at the underlying 

reasons for certain anatomical patterns to manifest themselves in morphospace (Curran 2009, 

Barr 2014).  

Many similar ecomorphological studies have made use of Linear Discriminant Analyses 

(LDA) (e.g. Bishop 1994, Kovarovic & Andrews 2007, Plummer & Bishop 1994, Plummer et 

al. 2008) and have correspondingly looked at reclassification rates to assess model 

effectiveness. As this dissertation made use of between groups PCA as an alternative for the 

informed LDA method (i.e. a method where pre-assigned groups drive separations), 

evaluating the success of the models isn’t as easy as comparing the success rates of the 

correctly predicted individuals in an LDA. The effectiveness of a given element to predict 

habitat preference was assessed here in another way (see below) and the results were therefore 

more difficult to directly compare to those of LDA-based studies. That being said, problems 

of comparison are not unique to this dissertation, as a wide range of different methods (e.g. 

different sets of linear measurements or GMM landmarks, different numbers and types of 

habitat categories) have been reported in the artiodactyl ecomorphological literature (see e.g. 

Kappelman 1988, Plummer & Bishop 1994, Degusta & Vrba 2003, 2005a, 2005b, Scott 2004, 

Plummer et al. 2008, Schellhorn 2009, Barr 2014a).  

Emphasis was placed on the functional aspects underlying morphological variation, so the 

effectiveness of a predictive model was estimated by how well a proposed functional 
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hypothesis fitted with the results of the analyses. The deformation grids associated with the 

individual axes of the PCA (see section 6.2) proved useful for this. When the morphological 

variation explained by the deformation grid of a specific axis was in line with the shape 

differences that were predicted to be functional, this was taken as an indication for a 

correlation between shape and locomotor strategy/ecological affinity. The placement of 

specimens along the axis, the statistical significance of separations between the groups and 

the extent to which the patterns could be reconciled with the proposed hypotheses, were used 

to assess the presence of a functional signal. 

Calcaneus 

In Chapter 5 three functional hypotheses were proposed for the calcaneus, a summary of 

which can be found in Figure 7.1. Morphological traits predicted to be ecomorphologically 

significant, were the length of the tuber calcanei, the orientation of the articular facets 

between the calcaneus and astragalus and between the calcaneus and cubonavicular, and the 

size of the articular surface supporting the malleolus (see full explanations in section 5.2).  

The first two hypotheses were confirmed by the patterns displayed along the first axis of the 

PCA and by the associated deformation grids. As explained in chapter 6, the shape variation 

of this axis reflected a gradient from saltatorial species of wet, closed environments (type 3) 

with long, horizontally placed tuber calcanei to cursorial species of dry, open environments 

(type 1), with short, vertically placed tuber calcanei. These differences were statistically 

significant (see section 6.2.1.3) and suggested that the model effectively differentiated 

between species of dry, open environment and wet, closed environment. 
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Figure 7.1: Summary of the results of the extant calcaneus model, with proposed functional hypotheses and 

drawings of morphotypes (shaded regions represent features relevant to functional hypotheses). 
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The fact that morphological variation in the length and orientation of the tuber were 

summarized together by the same axis indicated a close (functional) relationship between the 

two traits, as predicted in the functional hypotheses. Intermediate species (type 2) gave values 

in between these two opposites and had tuber calcanei of intermediate length and with an 

orientation that was neither as vertically placed as in those of cursorial species, nor as 

horizontally placed as in those of saltatorial species. Although the intermediate group had a 

transitional shape, overlap with the wet, closed environment group was substantial. 

Accordingly, the model did not discriminate as well between intermediate and wet, closed 

environment species.  

Despite being predicted in the functional hypotheses, variation in the orientation of the 

articular surface with the cubonavicular was not observed. This was, no doubt, a 

methodological issue. Although an attempt was made to define a landmark on the anterior end 

of this facet, as a way to account for the morphology of this part of the bone, preliminary tests 

revealed that no easily repeatable homologous landmarks were found there. It was therefore 

difficult to adequately register variation in this morphological trait using the GMM protocol.  

The separately treated mountain species (type 4) and open wetland species (type 5) proved 

somewhat more difficult to interpret. The calcanei of mountain adapted species had tuber 

calcanei that were of the same length and orientation, as those of species of dry, open 

environments. As indicated before (section 6.2.1.3), this may be because none of the extant 

deer are true mountain species. Most cervids found at high altitudes are adapted to locomotion 

on relatively flat (often open) terrain (Geist 1998). That being said, certain bovids are more 

adapted to true mountain environments (e.g. Capra ibex and Hemitragus jemlahicus), but 

even in the Bovidae family the addition of a mountain category in ecomorphological analyses, 

has not proven to be of much use for the calcaneus and astragalus (Kovarovic 2004, Weinand 

2005, 2007). In these studies type 4 specimens were misclassified into other habitat categories 
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and substantially overlapped with other groups. A plausible explanation for this is that the 

morphology of the calcaneus and astragalus in mountain species is probably more driven by 

vegetation structure than by altitude or the gradient of the slope. In the relatively open 

environments in which most “mountain” cervids are found, a cursorial evasion strategy may 

be most optimal. The statistically significant differences (see section 6.2.1.3) measured 

between the mountain group and the other habitat/locomotor groups confirmed that the model 

could effectively differentiate this group on the shape of the tuber, but that there was a 

similarity to the dry, open environment species, who employ cursorial locomotion in avoiding 

prey. 

In the functional hypotheses proposed for the calcaneus (section 5.2) the emphasis was placed 

on the idea that the morphology of the calcaneus was mainly driven by differences in 

vegetation structure. Although not strictly a vegetational parameter, due to the specificity of 

wetland environments there was, nevertheless, a distinction made between species adapted to 

dry environments with an open vegetation and species adapted to wet environments with an 

open vegetation. The results of the ecomorphological analyses showed that calcanei of species 

of wet environments with open vegetation (type 5) had tuber calcanei, and a general 

orientation, similar to those of taxa associated with a closed vegetation structure. As 

previously suggested (section 6.2.1.3), this could be because the specific vegetation structure 

of such open wetlands has characteristics more similar to the vegetation structure found in 

closed vegetation habitats. A plausible explanation is offered by Curran (2009), who argued 

that the open wetlands inhabited by type 5 forms, are usually dominated by tall grasses and 

reeds that provide more cover than the truly open landscapes inhabited by cursorial forms. 

Such obstacles in the landscape require a more saltatorial strategy for evading predators.  

The third functional hypothesis for the calcaneus was confirmed by specimen patterns along 

the second component in the PCA and by the associated deformation grids (section 6.2.1.3). 
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The shape variation explained by PC2 showed variation in the relative size of the articular 

surface supporting the malleolus on a gradient from dry, open species (type 1) with relatively 

long articular surfaces supporting the malleolus, to wet, closed habitat species (type 3) with 

relatively short articular surfaces supporting the malleolus. These differences were 

statistically significant (section 6.2.1.3) and suggest that the model can effectively 

differentiate between species of open environments and closed environments. Intermediate 

specimens (type 2) were morphologically in between these two extremes, but more similar to 

the closed environment group. 

The mountain species (type 4) were morphologically analogous to cursorial species of dry, 

open environments, further confirming the interpretation that the (functional) morphology of 

the calcaneus in such species is driven more by vegetation structure than by altitude (see 

explanation above). The relatively long articular surface supporting the malleolus in mountain 

species suggests a reliance on cursoriality and that such species are probably more adapted to 

relatively flat, open terrain at high altitude (Geist 1998). 

The open wetland morphotype (type 5) was more difficult to interpret, as the results are at 

odds with the second functional hypothesis (see section 6.2.1.3). When looking at the length 

and orientation of the tuber calcanei (second hypothesis), this group is similar to cervids of 

wet, closed environments. However, the shape of the articular surface supporting the 

malleolus was typical of dry, open environment species. The reason for this discrepancy was 

unclear, but it seems that cervids adapted to open wetlands also retain some cursorial traits. 

That being said, the length and orientation of the tuber calcanei were, in all probability, the 

more important morphological traits (i.e. explaining a larger proportion of the shape variance, 

see section 6.2.1.3) and better discriminators between habitat/locomotor groups. The 

unexpected shape of the articular surface for the malleolus in open wetland species, could, 
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nevertheless, indicate that stability in the hock joint, when running at high speed, was more 

important in this group than in species of wet, closed environment.  

Intermediate phalanx 

For the intermediate phalanx five functional hypotheses were proposed (see section 5.2). 

Morphological traits predicted to be ecomorphologically significant, were: the depth of the 

proximal articulation, the antero-posterior length of the plateau postarticulaire, the height to 

which the anterior extensor process and the palmar extensions are extended in the proximal 

direction, the shape and position of the apex on the distal articulation and the overall relative 

length and gracility of the intermediate phalanx (Fig. 7.2). 

The first and (in part) the third functional hypotheses were confirmed by the patterns 

displayed along the second axis of the PCA and by the associated deformation grids. The 

shape variation of this axis reflected a gradient from cursorial species of dry, open 

environments (type 1), with deep proximal articulations and anterior processes further 

extended in the proximal direction, to saltatorial species of wet, closed environments (type 3), 

with shallow proximal articulations and anterior processes less far extended in the proximal 

direction (Fig. 7.2). The observed differences were statistically significant (see section 

6.2.1.3) and it can be concluded that the model effectively differentiated between the two 

ecological extremes. For the predicted relationship between the placement of the posterior 

palmar extentions and habitat preference/locomotor behaviour (also part of hypothesis 3), 

there was only limited support. Variation in this morphological trait was only observed along 

PC3, where between group separations where not statistically significant and no clear visual 

patterns were observed in the scatterplots (see section 6.2.2.4). This trait was probably not 

strongly driven by functional differences. 
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Figure 7.2: Summary of the results of the extant intermediate phalanx model, with proposed functional 

hypotheses and drawings of morphotypes (shaded regions represent features relevant to functional hypotheses). 

Intermediate species (type 2) gave scores that were in between those of dry, open forms and 

those of wet, closed forms and had proximal articulations of an intermediate shallowness and 

an intermediately placed extensor process on the anterior side. The intermediate group 

differentiated well from the saltatorial species of wet, closed environments, as well as from 

the cursorial species of open, closed environments.  

It should be remembered that for the intermediate phalanx, two mechanisms were proposed 

that could play an important role in the functional morphology of this element: the splaying of 
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the phalanges and the development of morphological accommodations to increase the 

“pogostick effect” in the lower leg (see section 5.2).  In this context the deeper proximal 

articulations observed in species of open, dry environments could only be explained as an 

adaptation to restrict medio-lateral movement (splaying) in the phalanges, as a means to 

increase stability when running on firm, dry substrates (Köhler 1993). The further placement 

of the extensor process in the proximal direction can, on the other hand, better be explained as 

an adaptation to increase the “pogostick effect”, as this would allow for further antero-

posterior flexion and extension of the phalanx (Leinders 1979). It can therefore be concluded 

that both mechanisms played a role in driving the shape of the intermediate phalanx. 

Like for the calcaneus, the results of the intermediate phalanges from wet, open environments, 

mountainous environments and tundra environments needed some further contextualization. 

The phalanges from wet, open environments (type 5), as predicted, were of a morphotype 

similar to that of saltatorial species of wet, closed environment (type 3): a more shallow 

proximal articulation and an extensor process that was less far extended in the proximal 

direction. This was in accordance with functional hypotheses 1 and 3, as the shape of the 

phalanx was predicted to be mainly driven by substrate type and less by vegetation structure.  

The separately treated tundra group (type 6) was predicted to be of a morphotype similar to 

that of species of wet, yielding substrate (type 3), as their shape supposedly accommodates to 

the more yielding nature of tundra: alternating frozen and thawing soil (Hildebrand 1985, 

Nieminen 1990). In practice, this group was more intermediate in shape, as far as the extensor 

process and the proximal articulation are concerned. Tundra species (i.e. Rangifer tarandus) 

did not have an exceptionally high or low placement of the anterior extensor process and the 

depth of the proximal articulation was not unusually shallow or deep. Although the results for 

this group did not contradict functional hypotheses 1 and 4, the more intermediate shape of 

the phalanx may indicate that animals found in tundra environments, perhaps in part, 



259 
 

accommodate their phalangeal morphology differently to this type of yielding environment, 

than animals found on wet substrate. 

The phalanges of species found in mountainous environments (type 4) were similar to those 

of species found on drier substrate, but overlapped substantially with most groups. It appeared 

that altitude did not play a large role in driving the shape of the bone. Species that were found 

on dry substrate at high altitude, were of a morphotype similar to species of dry substrate at 

low altitude (type 1). Species found on wet substrate at high altitude were of a morphotype 

similar to other species adapted to wet substrates. 

Although the relationships between shape and function were not as well defined for the fifth 

functional hypothesis, it was predicted that the gracility of the intermediate phalanx was 

probably also ecomorphologically correlated. Köhler (1993) proposed that the intermediate 

phalanx is more robust in species of wet, closed environment, but Degusta and Vrba (2005b) -

despite using similar species in their study- stated that the phalanges of taxa found on wet, 

swampy terrain are more gracile. From the results presented in this thesis it was clear that a 

large part of the shape variation measured between the phalanges, were a function of gracility 

(summarized by PC1, see section 6.2.2.4). The shape variation along this axis reflected a 

gradient from cursorial species of dry, open environment (type 1) with robust phalanges, to 

saltatorial species of wet, closed environment (type 3) with gracile phalanges. Species with 

intermediate habitat preferences and locomotor strategy had an intermediate shape on the 

gradient. This confirmed the pattern predicted by Degusta and Vrba (2005b), and was 

somewhat at odds with that of Köhler (1993). Degusta and Vrba (2005b) did not provide 

specific functional explanations for the gracility in the phalanx and interpreting the observed 

variation in this trait is not straight forward. However, as in the first and fourth functional 

hypotheses, shape variation was primarily explained as the result of; either a difference in 

development of the “pogostick effect” (Leinders 1979) or a difference in the capacity to splay 
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the phalanges (Köhler 1993), this is probably also the case for the fifth functional hypothesis. 

Considering the fact that longer, more gracile phalanges were apparently connected with wet 

substrates (Degusta & Vrba 2005b, this study), it is not unlikely that this trait is also an 

accommodation that allows for a better grip on yielding substrate types. 

The shape of the phalanges from wet, open (type 5), mountainous (type 4) and tundra 

environments (type 6) generally corroborated the confirmation of the fifth functional 

hypothesis. In these three groups, substrate type was also the primary driver of shape 

variation, certainly more so than vegetation structure. In this light, the intermediate phalanges 

of species associated with wet, open environments were of a more gracile morphotype, similar 

to that of saltatorial species of wet, closed environment (type 3). The yielding nature of 

substrates found in habitats such as floodplains, wet grasslands and swamps most likely 

played an important role. 

Similar to the placement of the extensor process (hypothesis 3) and the depth of the proximal 

articulation (hypothesis 1), the gracility of the intermediate phalanx (hypothesis 5) was 

evidently also primarily driven by substrate type, and much less by the altitude at which a 

species is found. The phalanges of mountain species morphologically overlapped with those 

of species found in other habitats, but were, generally speaking, of a morphotype most similar 

to that of species adapted to dry substrate (type 1). This was probably the case because most 

mountain species included in the study were associated with a relatively dry substrate at high 

altitude. Species found on wet substrates at high altitude, tended to be morphologically more 

similar to forms associated with wet substrates of low altitude (types 3 and 5). 

The tundra species (type 6) were predicted in the functional hypotheses to display a shape 

similar to that of species found on wet substrate (type 3). Although the placement of the 

extensor process and the depth of the proximal articulation (hypothesis 1 and 3) were more 

intermediate than expected, the tundra phalanges confirmed this and were of a similar 
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gracility as those of species associated with wet substrates. This confirmed the fifth functional 

hypothesis and the idea that reindeer have phalanges that are morphologically accommodated 

to the more yielding nature of tundra substrate when it thaws and refreezes (Hildebrand 1985, 

Nieminen 1990). It is likely that the more gracile intermediate phalanges in reindeer allow for 

an increased capacity for phalangeal splaying. However, the fact that these morphological 

accommodations to yielding substrate seemed to be mainly expressed in the overall gracility 

of the phalanx, and less so in the shape of the articulations, confirmed the unique shape and 

idiosyncratic adaptations of the reindeer phalanx. 

Two other functional hypotheses were proposed for the intermediate phalanx: one related to 

the shape of the plateau postarticulaire (hypothesis 2) and a second one related to the shape of 

the distal articular surface (hypothesis 4) (see Fig. 7.2). There were no clear indications from 

the ecomorphological analyses that could confirm these functional hypotheses. The shape of 

the plateau postarticulaire and the distal articular surface were not functionally correlated and 

these characters were not good predictors of locomotor strategy and habitat preference. 

Implications and confounding factors 

As far as the calcaneus was concerned, the results were in line with those of earlier GMM-

based models developed for this element (Curran 2009, 2012, 2015). Using an LDA-

approach, the calcaneus resulted in high reclassification rates and generally performed quite 

well as a habitat predictor (Curran 2009, 2012, 2015). In contrast, studies of bovid 

ecomorphology have been less unanimous in their estimation of the calcaneus as a good 

habitat predictor (Kovarovic 2004, Kovarovic & Andrews 2007, Schellhorn 2009, Schellhorn 

& Pfretzschner 2015, Barr 2018). While some have merely urged for caution when 

interpreting its morphological traits (Barr 2018), others have considered it a weaker element 

for palaeoenvironmental inference (Kovarovic 2004, Kovarovic & Andrews 2007). The 

underlying reasons for this lower performance of the calcaneus are illusive, but Kovarovic 
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(2004) attributed misclassifications in her models to the unique morphologies present in 

certain forms and to phylogenetic relatedness between species. Barr (2018), who did a more 

detailed study of the functional morphology of the calcaneus, considered it a useful habitat 

predictor, but also warned for the confounding effects of allometry and phylogeny. 

Despite reservations in the bovid ecomorphology literature, the model presented in this thesis 

is subject to limited confounding effects from phylogeny and allometry in the functionally 

correlated components (PC1 and PC2). The regressions of shape against log centroid size 

indicated that only a small degree of the shape variance explained by these components could 

be attributed to an allometric effect. This was in line with the observation by Biewener (1989) 

that in most mammals between 0.1 and 300 kg, against expectation, limb bones tend to scale 

more isometrically than expected. Although there were indications from the PGLS that 

phylogeny did play a role in driving the shape of the calcaneus, from the assessment of the 

(taxonomically re-ordered) PCA scatterplots it was clear that this signal was subordinate to a 

functional signal in the first two components (see section 6.2.1.3).  

Why this study as well as Curran’s (2009, 2012, 2015) cervid models have registered a 

weaker confounding effect from allometry and phylogeny than some bovid studies 

(Kovarovic 2004, Kovarovic & Andrews 2007, Barr 2018), is unclear. It could suggest a 

discrepancy between cervids and bovids, but could also be the consequence of methodological 

differences (e.g. GMM versus linear measurements). In this context it is worth noting that in 

Barr’s (2018) bovid analyses the primary shape variations in the calcaneus were practically 

identical to those in the model presented here: variation in the length of the tuber calcanei, 

variation in the size and shape of the articular surface supporting the cubonavicular (not tested 

here) and variation in the articular surface supporting the astragalus. Where the latter two 

traits were considered mainly functional by Barr (2018), it was purported that the length of 

the tuber was more confounded by body size and phylogenetic relatedness (Barr 2018). 
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One possible explanation is that in bovids the larger species are driving the allometric signal. 

Cervids -with the exception of Alces alces- normally do not exceed the 300 kg boundry (Geist 

1998), below which most mammals scale relatively isometrically (Biewener 1989). In bovids, 

on the other hand, many larger forms exist (e.g. Syncerus, Bos, Taurotragus) that may require 

additional morphological accommodations to support their weight (Scott 1979). Moreover, 

some of these large species are probably too heavy to benefit from saltatorial adaptations (e.g. 

the longer tuber calcanei) and could therefore obscure the functional signal (Geist 1998). 

Although some morphological studies (Scott 1979, Plummer & Bishop 2008) have a priori 

excluded very heavy species from their analyses for precisely these reasons, those that have 

focused on the calcaneus, have not done so (Kovarovic 2004, Kovarovic & Andrews 2007, 

Schellhorn 2009, Schellhorn & Pfretzschner 2015, Barr 2018).  

Another explanation for the discrepancy between cervid and bovid studies of the calcaneus, 

could be that the GMM methods, used in cervid studies so far (Curran 2009, 2012, 2015, this 

study), more efficiently exclude size differences from the dataset than the linear size 

corrections often used in bovid studies (e.g. in Kovarovic & Andrews 2007, Barr 2018).  It is 

well established that the use of ratios does not completely eliminate size effects from 

morphometric variables (Albrecht et al. 1993 and references therein). This is only the case 

when there is a linear relationship between the shape variable and size, an assumption often 

not met in morphometric datasets (Albrecht et al. 1993). Ratios are, however, a commonly 

used method for size correction in bovid ecomorphological studies (e.g. Degusta & Vrba 

2003, Plummer & Bishop 2008). Others (Kovarovic 2004, Kovarovic & Andrews 2007) have 

not attempted to directly exclude size effects from their dataset, but have used log transformed 

measurements to satisfy assumptions about normality and homogeneity of variances. It is 

therefore possible that some residual size differences remain in such datasets. The GPA 

procedures used in GMM based models, like those developed by Curran (2009, 2012, 2015), 
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and the ones used in this dissertation, are thought to remove information about size in a much 

more efficient way from morphometric datasets (Viscosi & Cardini 2011) (see section 5.3) 

and could potentially explain the limited size effects seen in the currently available cervid 

studies (Curran 2009, 2012, 2015, this study). 

The above explanations may account for the absence of an allometric effect in the cervid 

calcaneus, but they do perhaps not fully explain the (in some cases more prominent) 

phylogentic signal found in certain bovid studies (Kovarovic 2004, Kovarovic & Andrews 

2007, Barr 2018). As already mentioned, there was a phylogenetic effect measured for the 

calcaneus in the model presented here. The shape components associated with the functional 

hypotheses (PC1 and PC2) were presumably constrained by phylogeny to some extent. This 

was expected, because some cervid tribes have an evolutionary history of adaptation to certain 

habitats (e.g. muntjacs to closed habitats) (Geist 1998). 

Degusta and Vrba (2003) argued that phylogenetic effects can be easily excluded from 

morphometric datasets, by selecting those anatomic features that co-vary with locomotion and 

habitat. While this is true to some extent, the underlying assumption is that a specific feature 

is either driven by phylogeny or by function. What appeared from the results in this 

dissertation, is that for most shape traits, this is not possible. Features such as the length of the 

tuber calcanei are not driven by either phylogenetic relatedness or functional aspects, but 

most likely by a combination of both. That being said, the major patterns in the PCA 

scatterplots in this study were probably still largely dominated by ecologically driven 

functional differences (see section 6.2.1.3). As such, the critique by Klein and colleagues 

(2010), that morphological variation in artiodactyls is more driven by phylogenetic 

relatedness than by function, is unwarranted as far as the calcaneus is concerned. Perhaps the 

best way to assess the ecological significance of similarities between fossil and extant 

specimens, is to look at how they behave in a model, despite of their taxonomic affinities. 
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Few ecomorphological works have focused on the intermediate phalanx in artiodactyls. Those 

that have (Kovarovic 2004, Kovarovic & Andrews 2007, Degusta &Vrba 2005a, 2005b), gave 

high reclassification rates for this element and agreed that it is a fairly good predictor of 

habitat, albeit not as good as the proximal phalanx. The effects of phylogeny have not been 

explicitly tested for the phalanges in any of the mentioned studies (Kovarovic 2004, 

Kovarovic & Andrews 2007, Degusta &Vrba 2005b), but Kovarovic (2004) acknowledged 

that phylogeny could explain part of the shape variation. Degusta and Vrba (2005b) trusted 

that their use of LDA would effectively exclude phylogenetic effects. They assumed that 

when specimens were grouped by habitat, traits driven by function would be summarized by 

the first discriminant functions. As has been explained for the calcaneus (see above), this 

relies on the assumption that a specific morphological trait is driven either by function or 

phylogeny. The results presented in this thesis have, nevertheless, shown that for the 

intermediate phalanx, those two factors may not be mutually exclusive. Functionally 

correlated traits such as the overall gracility of the phalanx (summarized by PC1), the depth of 

the proximal articular surface and the position of the anterior extensor process (PC2) were 

also driven by phylogenetic relatedness to some extent. The PGLS analysis (see section 

6.2.2.4) suggested this was probably even more the case for the intermediate phalanx than for 

the calcaneus. Nevertheless, the patterns observed in the PCA scatterplots and the fact that 

many of the functional hypotheses were confirmed, made clear that functional differences 

were responsible for the majority of the shape variation in this element.  

The data in this thesis suggested that the confounding effects of allometry were also limited in 

the case of the intermediate phalanx. The regression analyses indicated that the functionally 

correlated traits (as summarized by PC1 and PC2) were to a very small extent driven my 

allometric differences, but that this probably did not significantly affect the overall shape 

variation. In other words, larger deer did not necessarily have much more robust intermediate 
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phalanges or phalanges with deeper proximal articular surfaces than species of small stature. 

This may be unexpected as some earlier -non ecomorphological- studies on allometry in 

artiodactyls have  noted certain relationships between leg bone size, shape and body weight 

(Scott 1983, 1985, 1987). Although the specific effects of allometry in the cervid intermediate 

phalanx are not well studied, a number of workers have considered the problem in bovids. 

Most of these studies (Kovarovic 2004, Kovarovic & Andrews 2007, Degusta and Vrba 

2005b) have made use of linear size corrections to eliminate the effects of body size 

differences from morphometric variables. While such an approach is probably less efficient in 

excluding size differences than the GMM methods used here, no significant confounding 

effects were reported after size corrections (Kovarovic 2004, Kovarovic & Andrews 2007, 

Degusta and Vrba 2005b). Furthermore, Curran’s (2009, 2012, 2015) models of the distal 

phalanx in cervids did not find allometry to be a strongly confounding factor either. Even 

though no direct comparison for the cervid intermediate phalanx was available, similar studies 

at least do not contradict the limited effect of allometry on this element. The fact that the 

observed morphological differences in these specific traits were not to a large extent driven by 

size effects, corroborated the idea that the observed morphological variation could be 

primarily attributed to differences in function 

A final confounding factor that has rarely been explored in ecomorphological studies is that of 

sexual shape dimorphism. A test of the effects of sexual dimorphism in a subsample of 

specimens indicated that sex played only a small role as a morphological driver in the 

calcaneus or the intermediate phalanx (see sections 6.2.1.2 and 6.2.2.2). Only limited (non-

significant) shape differences were noted between male and female specimens. In spite of the 

small sample sizes, the data clearly suggested that in the two elements (calcaneus and 

intermediate phalanx) sexual dimorphism was subordinate to the more prominent interspecific 

morphological variation. 
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The effect of sex on limb bone morphology has not been extensively tested in artiodactyl 

ecomorphological studies (Scott & Barr 2014). Sexual dimorphism is, nevertheless, known in 

several deer species (e.g. in Axis axis and Elaphurus davidianus) and is mainly expressed in 

the presence or absence of antlers and in body size differences (Geist 1998). Some more 

descriptive studies of bovid morphology have also found differences between males and 

females in the shape of certain limb bones (e.g. Brugal 1985, Drees 2005, Fernandez & 

Monchot 2007). It is generally thought that the effects of sexual dimorphism vary between the 

different elements (Brugal 1985, Drees 2005, Fernandez & Monchot 2007), but that the 

calcaneus and intermediate phalanx are probably some of the less dimorphic elements 

(Fernandez & Monchot 2007). An analysis of sexual dimorphism in Odocoileus virginianus 

and O. hemionus confirms that this is probably also the case for cervids (Curran 2009). 

Looking at this from an ecological perspective, it should, nevertheless, be kept in mind that 

there is certainly a relationship between sexual dimorphism and ecology (Mysterud 2000). In 

many deer a sexual segregation exists on the habitat level (Bowyer 2004). Because of 

differences in body size, social and reproductive strategy, females of certain species tend to 

have somewhat different requirements than males. This is especially seen in females focusing 

more on low-fiber/high quality food than males, because of the high nutritional demands 

associated with gestation and lactation (Clutton Brock et al. 1987, Bowyer 2004). 

Nevertheless, most sexual segregation in cervids manifests itself on a microhabitat level 

(Clutton Brock et al. 1987), while both sexes are still found in the same larger habitats. In 

other words, as ecological differences between species of different macrohabitats are much 

more prominent than ecological differences between males and females of the same species, it 

makes sense that the morphology of the skeletal elements is also primarily affected by larger 

between-species differences. 
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Further considerations about fossil applications 

It is important to remember that the functional hypotheses on which the predictive models 

were based relied on the assumption that similar selection pressures (i.e. predator evasion 

strategy) also drove the morphology of the extinct deer on which the models were applied. In 

the absence of large predators, especially heavier species will face reduced selection pressure 

(Scott et al. 1991). Although specific body size reconstructions of extinct deer were beyond 

the scope of this dissertation, earlier work on the cervids from Java (Gruwier et al. 2015) has 

clearly demonstrated that these forms did not fall outside of the normal size range of extant 

deer in Southeast Asia. With carnivores such as tiger (Panthera tigris), leopard (Panthera 

pardus), dhole (Cuon alpines), hyena (Crocuta bathygnatha) (Storm 2010) and sabertoothed 

cat (Homotherium ultimum) (Volmer et al. 2016), there was no lack of large predators in Java 

during the Pleistocene. As at least some of these carnivore taxa (i.e. tiger, leopard and dhole) 

are known to focus heavily on large ungulates (Schaller 1967, Nurvianto et al. 2016, Rahman 

et al. 2018), it can be assumed that the deer in this region must all have faced considerable 

predation pressure. Java clearly did not have an impoverished carnivore fauna, as is 

sometimes seen on the more oceanic islands of the Indo-Pacific (Bouteaux 2005). It could 

thus be assumed that the Javan fossil deer underwent similar selection pressures, and that their 

locomotor apparatus was constrained in a similar way as most extant deer. 

Another issue that arose from the ecomorphological analyses of the fossils, was the apparent 

discrepancy between some of the results for the calcaneus and those for the intermediate 

phalanx. More specifically, in the analyses of the Trinil and Axis lydekkeri specimens, the 

calcaneus was suggestive of a dry, open landscape, while the intermediate phalanx was typical 

of open or closed environment with wet substrate. This discrepancy might be explained in a 

number of ways (see below) and it is important to consider the underlying mechanisms that 

could lie at its basis. 
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One possible explanation is that the Axis lydekkeri specimens from Trinil represent a 

transitional form that retained certain adaptations from an earlier phase with different 

environmental conditions. There are in fact indications that the preceding faunal stage in Java 

was characterized by wetter conditions (Sémah et al. 2010, Sémah & Sémah 2012). In this 

scenario, Axis lydekkeri would have retained wet adapted intermediate phalanges from an 

ancestor adapted to this earlier wet stage, but the calcaneus would have evolved into a dry, 

open adapted morphotype. This possibility cannot be fully dismissed, but a study by Senter 

and Moch (2015) has suggested that, generally speaking, phalanges in the mammalian 

skeleton are more easily reduced to vestigial structures than the elements of the tarsus. This 

could imply that the calcaneus is morphologically more conservative than the intermediate 

phalanx and that if Axis lydekkeri from Trinil would have retained wet adapted traits from a 

preceding phase, they would probably be more clearly expressed in the calcaneus. 

A second possibility is that the Trinil assemblage contains other, cryptic palaeospecies that 

were adapted to different habitat types in the surrounding area of the site. In this case the 

intermediate phalanges would belong to another, more wet adapted species, where the 

calcanei would belong to more dry adapted species. It was, nevertheless, a priori assumed in 

this thesis that all specimens included in the Trinil dataset belonged to Axis lydekkeri. This 

has also been confirmed by a number of earlier studies that have dealt with the deer from Java 

(Dubois 1908, Koenigswald 1933, 1934, van den Bergh et al. 2001, Gruwier et al. 2015). 

Moreover, given the fairly large dataset for Trinil, it would be expected that if two species 

were present, a significant portion of the specimens of one element would belong to the same 

habitat group as the specimens of the other element. As in the results of the ecomorphological 

analyses almost all the calcanei gave a different ecological signal than the intermediate 

phalanges, this was probably not the case. 
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A more likely scenario was that the two elements represented different aspects of the 

autoecology of Axis lydekkeri. In the models developed by Curran (2009, 2012, 2015, 2018), 

the calcaneus and distal phalanx were pre-assigned to vegetation-type groups (calcaneus) or 

substrate-type groups (phalanx). Even though in Curran’s (2009, 2012, 2015, 2018) work it 

was predicted that the phalanx would be exclusively driven by substrate type and the 

calcaneus by vegetation structure, in this dissertation both elements were assigned to 

combined habitat/locomotor groups that included aspects of both substrate type and 

vegetation structure. This was done because according to some sources (Leinders 1979) 

vegetation structure can also affect the morphology of the phalanges to some extent (see 

section 5.2) and the morphology of the calcaneus may also not be exclusively shaped by 

vegetation. Despite these assumptions, the results of the ecomorphological analyses 

confirmed that substrate type was indeed the more important driver of phalanx morphology, 

while vegetation structure was the principal driver of calcaneus shape.  

The apparent discrepancy between ecological signals in different anatomical elements was 

also noted in a similar study of fossil suids from East Africa (Bishop et al. 2006). Instead of 

interpreting their results as contradictive, they argued that the different elements of the 

skeleton highlight different aspects of the animals’ ecology. In fact, by using these different 

aspects in concert with each other and with other proxies (e.g. stable isotope analysis), a more 

detailed picture can be reconstructed (Bishop et al. 2006). Accordingly, the results of the 

Trinil analyses can be interpreted in a similar way. Fossil calcanei similar to those of species 

of dry, open environment were probably in the first place adapted to an open vegetation 

structure, irrespective of substrate type. Intermediate phalanges similar to those of species of 

wet, closed environments were presumably mainly adapted to wet, yielding substrates, 

irrespective of vegetation structure.  
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7.3 Palaeoenvironmental reconstructions 

Despite a long research history (see section 3.5.2.3), palaeoenvironmental studies of Trinil 

have lead to conflicting reconstructions (e.g. Van den Bergh et al. 2001, Louys 2007, 

Joordens et al. 2009). The results of this study suggested that the cervid species most 

commonly found there (Axis lydekkeri) was associated with a relatively open environment 

with a wet component (Table 7.1). The Trinil calcanei, shown to primarily signal differences 

in vegetation structure (see section 6.2.1), were typical of cursorial species found in 

environments with an open vegetation. The intermediate phalanges conformed to those of 

cervids adapted to environments with wet, yielding substrates. 

Species and provenance Calcaneus Intermediate phalanx 

Trinil & Axis lydekkeri 
Typical of (dry) open 
environments, possibly at 
high altitude 

Typical of (open or closed) environments with 
wet, yielding substrate 

Kedung Brubus unit &  
Cervus kendengensis 

Typical of (dry) open 
environments 

Typical of (dry) open or  intermediate 
environments, possibly at high altitude 

Sangiran 
Typical of (dry or 
possibly wet) open 
environments 

Combination of a morphotype associated with 
(open) environments with dry substrate and a 
morphotype associated with (open or closed) 
environments with wet substrate 

 Table 7.1: Summary of the results of the fossil analyses. 

These findings generally agree with some more recent interpretations of the Trinil 

palaeoenvironment as a grassland or open woodland with more densely vegetated river 

valleys (de Vos et al. 1994, Van den Bergh et al. 2001, Van der Meulen & Musser 1999, 

Weinand 2005) (Fig. 7.3). Although certain authors have interpreted Trinil as a closed 

environment (Selenka et al. 1911, Louys 2007), a number of “traditional” palaeontological 

studies (de Vos et al. 1994, Van den Bergh et al. 2001, Van der Meulen & Musser 1999, 

Meijer 2014) have suggested the presence of open woodland, an interpretation confirmed by 
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isotope studies on artiodactyl bones, that indicated that most Trinil herbivores relied on C4 

grasses (Janssen et al. 2016) and by an ecomorphological study of bovid astragali (Weinand 

2005) (Fig. 7.3). The findings presented in this thesis are in line with a scenario where an 

open vegetation structure was present around the site, but unfortunately the model did not 

discriminate well between open woodland and grassland evironments. It is, however, unlikely 

that Trinil was characterized by a truly open grassland environment, as the (extant) members 

of the cervid family do not thrive as well in such landscapes as some bovids do (Geist 1998). 

An open woodland environment, defined here as area with an open canopy of 40% or less 

closure (Thomas & Packham 2007) is therefore a more likely scenario. 

As discussed in section 7.2, there was an apparent discrepancy between the results of the 

Trinil calcanei and intermediate phalanges. This was explained as a result of different aspects 

of the animal’s ecology being measured. The intermediate phalanges, being a better measure 

for substrate type than vegetation structure, indicated that Trinil and Axis lydekkeri had 

phalanges adapted for wet, yielding substrates. This suggested that, despite its more open 

vegetation structure, the Trinil landscape also had a significant wet component. 

To what extent this wet signal should be considered a reflection of a localized aspect of the 

landscape (i.e. the immediate surroundings of the Solo river) or signal a broader phenomenon 

in the regional environment (i.e. the wider region around Trinil as a wet environment), is not 

immediately clear from the data. Nevertheless, some reflection on the taphonomy of Trinil 

and other Quaternary palaeontological sites in equatorial regions, was helpful in this case. In 

fact, this interpretative problem touches on the wider issue of using animal remains as 

palaeoenvironmental indicators: to what extent are fossil assemblages representative for the 

regional mammalian community? Paleontological assemblages are always point collections 

and it is worth considering at what spatial scale they signal the conditions of the surrounding 

landscape (Andrews & Hixson 2014). 
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Figure 7.3: Summary of palaeoenvironmental data from Sangiran, Trinil and Kedung Brubus.( 1: Van den 

Bergh et al. 2001, 2: Sagnotti et al. 2014, 3: Head & Gibbard 2005, 4: Indriati & Anton 2008, 5: Sémah 2010, 

6: Janssens et al. 2016, 7: Moigne 2004b, 8: Bouteaux 2005, 9: Bettis et  al. 2009, 10: Storm 2012, 11: Weinand 

2005, 12: Louys 2007, 13: Joordens et al. 2009, 14:this study.( Mammal symbols from Roberts & Amano 2019) 
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Certain neotaphonomic studies (Andrews et al. 1979, Saarinen et al. 2010) have tested the 

relationship between such point collections and the community ecology of the wider area in 

East Africa. In these cases it was concluded that point collections usually tend to predict the 

regional mammalian community quite well in e.g. a 50x50 km grid (Saarinen et al. 2010).  

For Java such experimental studies are non-existent, but some (Storm 2012, Hill et al. 2015) 

have at least considered the problem of representation in the Trinil assemblage. Based on 

taphonomic arguments (the fluviatile nature of the deposit, the taxonomic composition and 

lack of evidence for accumulation and selection by animal agents), the Trinil collection was 

considered a good indicator for the regional palaeocommunity (Storm 2012). Indeed, most 

palaeoecological studies of Trinil have made use of the vertebrate fossils as a proxy on a 

regional scale (e.g. de Vos et al. 1994, Van den Bergh et al. 2001, Van der Meulen & Musser 

1999, Weinand 2005). Given that cervid remains (i.e. Axis lydekkeri) make up almost a third 

(NISP) of the vertebrate assemblage (Storm 2012), it is unlikely that they represent an 

uncommon form that was adapted to localized wet conditions that were perhaps present in the 

immediate vicinity of the Solo riverbed (Weinand 2005).  

The notion that deer fossils signal more regional conditions implies that the wider area around 

Trinil was characterized by an open, relatively wet environment. This does not necessarily 

mean that wet conditions were present throughout the year. The wet signal could perhaps also 

indicate the presence of seasonally flooded plains. This would be in line with the 

predominance of C4 grasses at Trinil, as indicated by the isotope signatures in some 

artiodactyl teeth (Janssens et al. 2016). In any case, such an interpretation is certainly not 

unprecedented. Given that the Trinil fossils were excavated from an ancient river terras, 

geological evidence unsurprisingly indicated wet, fluviatile conditions (Huffman 1997, 1999), 

but based on a reevaluation of the terrestrial fauna and a number of aquatic biota, Joordens 

and colleagues (2009) argued for the presence of a regional environment that consisted of 
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grasslands, floodplains, swamp forest and rivers. An analogy was drawn with the Sundarban 

swamp forests of Southern India and Bangladesh (Joordens et al. 2009). Even though in most 

other studies (de Vos et al. 1994, Van den Bergh et al. 2001, Van der Meulen & Musser 1999, 

Weinand 2005, Janssen et al. 2016), including this one, there are indications that the Trinil 

environment was of a more open nature than that of the Sunderbans, it is plausible that 

(seasonal) floodplains were a significant part of the Trinil environment. Perhaps a better 

modern analogy would be Cambodia’s northern and eastern plains that are dominated by open 

deciduous, dipterocarp woodland, alternated by seasonally wet grasslands (Packman et al. 

2013). Examples of this, now mostly converted habitat type, are still found in reserves such as 

the Srepok and Phnom Prich wildlife sanctuaries (Cox 2019) (Fig. 7.4).  

 

Figure 7.4: Modern environments found at the Phnom Prich wildlife sactuary in East Cambodia (adapted from 

Cox 2019) may approach those found at Trinil around c. 0.9 million years ago. 

As argued by Joordens et al. (2009), the faunal list of Trinil shows a high degree of similarity 

to that of the Sundarban National Park in India, but both on the specific and generic level the 

Phnom Prich wildlife sanctuary in Cambodia, is a better match. Taking only mammals above 

10 kg into account, Trinil shares 13 taxa (or their closely related extinct counterparts) with the 

Sundarbans (Joordens et al. 2009), but 15 with Phnom Prich (Gray & Phan 2011). Even 
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though the additional two mammals (a proboscid and Trachypithecus sp.) shared with Phnom 

Prich are not necessarily indicative of a (seasonally) wet, open environment by themselves, 

they do suggest that the environments found in East Cambodia are at least as similar, if not 

more comparable, to the Trinil palaeoenvironment. 

Axis lydekkeri, the only cervid that was with certainty identified at Trinil, could therefore also 

be considered a form adapted to (seasonally) wet, open woodland and/or grassland. This was 

not only confirmed by the isotopic signatures measured on a number of cervid teeth from 

Trinil (Janssens et al. 2016), but also by dental meso-and microwear analyses of Pleistocene 

Axis teeth from elsewhere in Java, that indicated a grass-dominated (mixed) diet (Amano et 

al. 2016). Perhaps its closest ecological equivalent could be Axis porcinus, a species currently 

found in mainland South and Southeast Asia. This cervid is primarily reported from wet 

grasslands and light woodland and reaches its highest densities in seasonal floodplains 

(Bhowmik et al. 1999). Although Axis porcinus is currently under threat, some of its last 

strongholds are, coincidentally, the remnant wet grasslands and open woodlands of East 

Cambodia (Maxwell et al. 2006). While an assessment of the taxonomic position of Axis 

lydekkeri is beyond the scope of this dissertation, a previous study (Gruwier et al. 2015) 

pointed out that Axis lydekkeri was probably also closely related to Axis porcinus. In any case, 

the ecomorphological signature of Axis lydekkeri is not the same as that of some other extant 

members of its genus (e,g, Axis axis). This highlights the value of ecomorphological studies, 

as earlier works have suggested a closer taxonomic and ecological affinity between Axis 

lydekkeri and Axis axis from India or the geographically closer Axis kuhlii (Dubois 1908, 

Meijaard and Groves 2004). The latter two species are, nevertheless, adapted to drier 

environments (Blouch & Atmosoedirdjo 1987) and irrespective of their phylogenetic position, 

may not be good ecological analogies for Axis lydekkeri. 
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Analyses of the Cervus kendengensis remains from the Kedung Brubus unit yielded different 

results than those of the Trinil cervids (Table 7.1). While the morphology of the calcaneus 

suggested the presence of relatively open environments, similar to those of Trinil, the phalanx 

was more indicative of intermediate to dry substrates. Keeping in mind that sample sizes were 

low, this could imply that the open woodland environments inferred for Trinil persisted 

during the Kedung Brubus phase, but that the region may have experienced an aridification. 

Although only limited palaeoecological data is available from other sources for Kedung 

Brubus (see overview in Figure 7.3), traditional palaeontological analyses of the vertebrate 

community (de Vos et al. 1994, Van den Bergh et al. 2001) and an ecomorphological analysis 

of the bovids (Weinand 2005) have also demonstrated the presence of drier conditions for 

Kedung Brubus. This fits with the currently accepted biochronological model for the 

Pleistocene of Java, where the Kedung Brubus phase (ca. 0.7 to 0.8 Ma) is characterized by a 

new influx of mammal taxa (including Cervus kendengensis) from continental Southeast Asia 

during a glacial maximum (Musser 1982, van den Bergh et al. 2001). Although the precise 

chronology of the Kedung Brubus stage is not well understood, it could potentially coincide 

with MIS 18 (761-712 Ka) or MIS 20 (814-719 Ka) (Head & Gibbard 2005) (see Fig. 7.3), 

during which sea levels were low enough to connect Java to the mainland (Voris 2000). The 

scenario proposed by Louys (2007), where a more forested environment was inferred for 

Kedung Brubus, was not supported by the data.   

Based on its postcranial morphology, Cervus kendegensis could thus be considered a species 

of dry, open woodland and/or grassland. Perhaps its habitat preferences were similar to those 

of the only member of the genus Cervus, still present on Java: Cervus timorensis (Geist 1998). 

Although this species is flexible, it has a preference for dry, open woodland or tropical 

grassland with some vegetation cover (Medway 1977, Geist 1998). Cervus timorensis is 

particularly common in the savannah environments of far eastern Java, for example found in 
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the Baluran National Park (Fig. 7.5). This type of environment could perhaps also be 

considered similar to the palaeoenvironments that were present in the Kedung Brubus area at 

the beginning of the Middle Pleistocene.  

 

Figure 7.5: Modern environments found at the Baluran National Park in easternmost Java (adapted from 

Kusuma 2018) may approach those found at Kedung Brubus between 0.7 and 0.8 Ma. 

The sample used for the ecomorphological analyses of the Kedung Brubus unit was solely 

composed of Cervus kendengensis specimens, but it should be remembered that Axis lydekkeri 

was not completely replaced during this phase. It merely became much rarer. Where at Trinil, 

the Axis lydekkeri remains still represented approximately 27 % of the total number of 

identified specimens (NISP), in the Kedung Brubus assemblage this number was reduced to 4 

% (van Zelst 2013). In other words, the results of the ecomorphological analyses for Kedung 

Brubus were driven by the dry, open adapted Cervus kendengensis, but the marginal presence 

of Axis lydekkeri during this phase indicated that this species adapted to (seasonally) wet 

environments was still able to persist to some extent. Perhaps in this case, the more localized 

wet conditions along the banks of the Solo River acted as a refugium and are reflected in the 

fossil record. Certain other rare elements in the Kedung Brubus collection, such as the 

Pleistocene otter Lutrogale palaeoleptonyx (Willemsen 1986) support this interpretation. 
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The results of the ecomorphological analyses of Sangiran suggested that the (unidentified) 

cervids found there were associated with a wet or dry, but certainly relatively open, 

environments (Table 7.1). The Sangiran calcanei gave a similar signal as the specimens from 

Trinil and Kedung Brubus and were typical of species adapted to environments with an open 

vegetation structure. For the intermediate phalanges a dichotomy between two parts of the 

sample was noted. The smaller specimens -possibly belonging to the genus Axis- were 

morphologically similar to the more wet adapted cervids from Trinil, while the larger fossils -

perhaps belonging to the genus Cervus- were morphologically more similar to dry adapted 

forms such as those from Kedung Brubus.  

A problem with the Sangiran collection was that the provenance of the materials is not well 

known (see Larick et al. 2001, Indriati & Anton 2008). Fossils from the Grenzbank and the 

Kabuh formation were possibly present in the sample, meaning that two distinct phases could 

be mixed, respectively corresponding to the Trinil H.K. and Kedung Brubus faunal units (see 

section 5.8.2). This could explain the dichotomy between the Axis-sized specimens with a 

more wet adapted ecomorphological signature and the Cervus-sized specimens with a dry 

adapted ecomorphological signature. The few specimens that certainly belonged to the 

Grenzbank, were all Axis-sized deer with phalanges of a more wet adapted morphotype. This 

suggested that, at least during the Grenzbank phase, the conditions at Sangiran were similar to 

those found at Trinil at the end of the Early Pleistocene. The larger Cervus-sized specimens 

would then, presumably, belong to the upper Kabuh formation, corresponding with the drier 

Kedung Brubus phase. Such an interpretation would be in line with the idea of an aridification 

in the younger Kabuh formation (Sémah 2010).  

Even though it could not be excluded that some of the (dry adapted) Cervus-sized specimens 

were present in the Grenzbank as well, other palaeoecological proxies for Sangiran have been 

suggestive of a trend towards drier conditions over time (see Figure 7.3). There are 
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indications in the pollen record for further forest fragmentation. Seasonally wet areas 

probably became reduced to relics in the immediate proximity of rivers in the Upper Kabuh 

formation (Sémah 2010). Geomorphological data has also suggested a change from lacustrine 

to more fluvial conditions during and after the deposition of the Grenzbank (Bettis et al. 

2009). Palaeozoological studies available for Sangiran have not been specific enough about 

possible differences between the strata, but confirm the generally open character of the 

landscape during those periods. The mammalian community was indicative of open woodland 

with the presence of water (Van der Meulen & Musser 1999, Moigne 2004b, Bouteaux 2005) 

and stable isotope analyses on cervid, bovid and suid tooth enamel mostly reflected a reliance 

on C4 grasses, similar to Trinil (Janssens et al. 2016). 

Although the chronological correlation of the formations at Sangiran with the Trinil (H.K.) 

and Kedung Brubus faunal units is a point of discussion (Indriati & Anton 2008), the results 

presented in this thesis suggest that, generally speaking, the conditions in East Java at the end 

of the Early Pleistocene and the beginning of the Middle Pleistocene were continually of an 

open nature. Throughout the studied period, the landscape was dominated by open woodland 

(and/or grassland) with at least some tree cover. At the end of the Early Pleistocene the 

landscape in the region was probably also characterized by the presence of seasonally wet 

floodplains. During glacial maxima, climatic changes occurred that led to aridifcation, further 

forest fragmentation and the possible disappearance of these (seasonally) wet environments. 

Nevertheless, even in these drier phases, refugia with wetter conditions must have persisted in 

the immediate vicinity of large streams. Truly closed forest conditions, such as those currently 

found in far western Java and on other Sundanese islands such as Borneo (Nooteboom 1992), 

were apparently not present in East Java during the late Early and early Middle Pleistocene. 

Presumably such conditions did not appear in the region before the advent of the Punung 

faunal stage (60 to 120 Ka) (Badoux 1959, van den Bergh et al. 2001). 
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7.4 Homo erectus palaeoecology and significance to dispersal theories 

Although the ecomorphological models did not differentiate well between open woodland and 

grassland, the results of the analyses were all indicative of relatively open conditions -

probably open woodland- in the surroundings of the studied Homo erectus localities. As has 

been explained in section 7.3, this was largely in line with data from a number of other 

proxies for these sites (e.g. Indriati & Anton 2008, Sémah 2010, Janssens et al. 2016, Moigne 

2004b, Bouteaux 2005, Weinand 2005). Palaeoecological data from other Homo erectus sites 

are sparse for Java, but the limited data from Ngandong were also indicative of open 

woodland environment (de Vos et al. 1994, van den Bergh et al. 2001, Huffman et al. 2010). 

Generally speaking the results of the ecomorphological analyses, especially in concert with 

other palaeoenvironmental data (e.g. Indriati & Anton 2008, Sémah 2010, Janssens et al. 

2016, Moigne 2004b, Bouteaux 2005, Weinand 2005), confirmed the idea that Homo erectus 

was primarily associated with open environments.This interpretation fitted to a certain extent 

with the idea that the expansion of open environments in Asia and Africa during the Plio-

Pleistocene was an important driver of early hominin dispersal (Bonnefille 1984, Prentice & 

Denton 1988, Demenocal 1995, Vrba 1996, Dennell & Roebroeks 2005, Dennell 2010). In 

this scenario, dry, open landscapes, became especially prominent around 1.8 Ma, coinciding 

with the appearance and range expansion of Homo erectus across large parts of the Old World 

(Dennell & Roebroeks 2005, Dennell 2010). In Pleistocene Southeast Asia this would have 

taken shape in the form of a savannah corridor that stretched from the Asian mainland, over 

the exposed Sunda shelf, to Java (Heaney 1991, Bird et al. 2005). Such a continuous tract of 

more open habitat would have allowed Homo erectus, alongside a range of other mammals, to 

colonize Sundaland (Bird et al. 2005).  
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It should, nevertheless, be said that the open environments, supposed to drive early hominin 

dispersal, are often interpreted as dry, savannah-like grasslands, that appeared in a context of 

wider aridification in the Northern Hemisphere (Bonnefille 1984, Prentice & Denton 1988, 

Demenocal 1995, Vrba 1996, Dennell & Roebroeks 2005, Dennell 2010). The environments 

reconstructed for the Javan sites, on the other hand, seem to be characterized by a somewhat 

more closed vegetation structure (open woodland) than what is suggested in the Savannahstan 

model (Dennell & Roebroeks 2005, Dennell 2010). While the evidence does not contradict an 

extrinsic explanation where climate change and the appearance of more open environments in 

Africa and Asia played a role in Homo erectus dispersal, it is likely that the ecological reality 

on a regional level was probably one of considerable variation. It should be remembered that 

global climatic changes, as for example evidenced in marine isotope records (e.g. Prentice & 

Denton 1988) are regionally expressed in different ways under the influence of a complex 

combination of forcing mechanisms (e.g. the position of the ITCZ and ocean surface 

temperatures), that are –especially for the tropics- not well understood (Burnett et al. 2011). 

Although a global arridification in the Late Pliocene and Early Pleistocene likely resulted in 

the development of corridors of more open vegetation across the Homo erectus range, this 

idea somewhat obscures the notion that within the context of those climatic conditions, there 

was still room for a range of different (open) habitats, many of which were probably suitable 

for Homo erectus. In island Southeast Asia such suitable habitat was probably present in the 

form of an open woodland setting. In other regions, however, such as North Africa, Homo 

erectus seems to have also thrived in habitats with a more limited tree cover (Geraards 1980, 

1993, 1994). This testifies to a certain ecological flexibility in this species. 

A further argument for such a flexibility lies in the wet component inferred for Trinil (this 

study and Joordens et al. 2009). This is an important issue, considering that some other Homo 

erectus sequences from Java, besides Trinil, have also indicated the presence of wet 
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conditions. For the Pucangan formation at Sangiran, marshy and lacustrine conditions have 

been suggested (Aimi & Aziz 1985, van den Bergh et al. 2001, Bouteaux 2005) and at 

Mojokerto a mangrove or swamp environment was possibly present (Huffman & Zaim 2003). 

Despite the fact that a wet component in the landscape does not contradict the presence of 

relatively open environments, such conditions are more difficult to reconcile with the often 

emphasized Plio-Pleistocene aridification in the hominin dispersal narrative (Vrba 1996, 

Dennell & Roebroeks 2005, Dennell 2010). This potential incompatibility is illustrated by the 

position of Dennell (2010), who in fact recognized the presence of swamp-like conditions in 

the Pucangan formation at Sangiran, but argued that the hominin remains found there were 

probably washed down from a drier region upstream. 

It is certainly possible that some of the Sangiran hominins were not in situ, but it is unlikely 

that this was also the case for the Homo erectus remains from Trinil. In fact, there are no 

indications at Trinil that the processes of accumulation, sedimentation and preservation were 

different for the hominin fossils than for the majority of the other faunal remains (Hill et al. 

2015). Furthermore, it should be remembered that the wet signal measured for the Trinil 

cervids does probably not merely reflect localized wet conditions in the immediate vicinity of 

the Solo river (see section 7.3). It should therefore be considered plausible that, despite an 

apparent preference for open environments, Homo erectus was not only capable of coping 

with a range of open conditions, but also more marshy conditions, seasonally wet habitats or 

floodplains. Indeed, there is even some evidence for the active exploitation of such 

environments in the form of a number of aquatic mollusk remains from Trinil. As all the 

shells found there were of a uniformous, large size and because the identified specimens all 

belonged to taxa that are currently still known as edible, the shells were probably consumed 

after being collected from shallow waters (Joordens et al. 2009). 
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Looking at Homo erectus from a diachronic perspective, it seems that this species was able to 

survive significant environmental changes that occurred along the glacial-interglacial cycles 

of the Early and Middle Pleistocene. Although Trinil, Kedung Brubus and the different 

formations at Sangiran are difficult to correlate with each other and with specific stages in 

climatic history, the potential aridification noted from the Trinil to the Kedung Brubus phases, 

also testifies to a certain adaptive flexibility in Homo erectus.  

This inevitably leads to the question; which specific aspects of the environments of the Plio-

Pleistocene constrained Homo erectus dispersal and success? From the apparent 

omnipresence of open landscapes at the hominin sites in Java, the impression emerges that 

vegetation structure was probably an important criterion. A plausible explanation for this 

could be that Homo erectus focused its hunting strategy on large mammals of open 

environments. It is sometimes argued that hominins, around this time, underwent a shift from 

occupying a primarily omnivorous niche to becoming top predators (Turner 1999, Carotenuto 

et al. 2016). Perhaps Homo erectus’ adaptive strategy was based on following such animals 

along the large tracts of savannah-like open environment that ranged from East Africa to 

Southeast Asia (Shipman & Walker 1989, Cachel & Harris 1998, O’Regan et al. 2011, 

Carotenuto et al. 2016, Roberts & Amano 2019). Whether or not these open habitats 

regionally consisted of arid grasslands, open woodlands or on occasion of floodplains or open 

swamps may not have been decisive, as long as sufficient and accessible protein resources 

were available. The presence of a minimum of tree or shrub cover would, however, have been 

advantageous, as this would have provided cover for concealement or ambush hunting 

(Finlayson 2011). In closed, forested environments, where such resources are scarce, 

unevenly distributed and more difficult to access (Bailey et al. 1989), Homo erectus probably 

met the limits of its adaptive flexibility. 
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It is interesting to note that in almost all Homo erectus localities in Southeast Asia, the 

dominant mammals are Stegodon, large bovids and suids, forms generally adapted to open 

environments (van den Bergh et al. 2001, Roberts & Amano 2019). This pattern not only 

emerges from the currently known Homo erectus sites in the region, but also from other 

localities with evidence for the presence of pre-modern hominins, such as Liang Bua, where 

Homo floresiensis was found (Brown et al. 2004) and some recently studied sites like Kalinga 

in the Philippines (Ingicco et al. 2018) and Talepu on Sulawesi (van den Bergh et al. 2016). 

So despite the fact that early hominins may have crossed the Wallace line and occupied more 

oceanic islands with accessibility to other resources (e.g. marine shells or birds), the earlier 

members of our genus seem to have largely retained their adaptive strategy focused on large 

mammals of open environments (Roberts & Amano 2019). Evidence for human presence in 

closed, forested habitats in Southeast Asia does not appear before the Late Pleistocene. At 

sites such as Niah cave in Borneo (Barker et al. 2007, 2009) and Braholo (Amano et al. 2015) 

and Punung (Badoux 1959) in Java, hominins clearly subsisted on forest resources, but these 

sites have all been associated with Homo sapiens. 

Looking at Homo erectus palaeoecology on a continental scale a similar picture emerges 

(Table 7.2). Most, if not all, of the principal sites are characterized by relatively open 

environments, but with significant regional differences. In East Africa, where Homo erectus 

probably originated, most sites -including Olduvai, Koobi Fora and Melka Kunture- are 

characterized by what seems to be a relatively dry, open woodland savannah (Bonnefille 

1972, 1984, Gentry 1978, Pichon 1979, Sabatier 1982, Shipman & Harris 1988, Bobe et al. 

2007, Behrensmeyer et al. 2016). In terms of vegetation structure, it could therefore be said 

that the conditions Homo erectus encountered in Java, where not that different from those in 

which it presumably evolved in East Africa. 
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Site Age Palaeoenvironment 

Tomas Quarries, Morocco 0.4 Ma ₁,₂ Dry, open environment ₂₅,₂₆,₂₇ 

Ternifine, Algeria 0.7 Ma ₃ Dry, open environment with seasonal lake or swamp ₃,₂₈ 

Sidi Abderrahman, Middle Pleistocene₄ Dry, open environment ₂₉,₂₈ 

Olduvai (Bed II), Tanzania 1.6-0.6 Ma ₅ Dry, open bush with savannah or wooded grassland ₃₀,₃₁,₃₂,₃₃ 
East Turkana (Koobi 
Fora), Kenya 1.8-1.9 Ma ₆,₇ 

Dry, open, wooded savannah with lake margins and riverine 
environments ₃₄,₃₅,₃₆,₃₇,₃₈ 

West Turkana 
(Nariokotome), Kenya 1.5-1.6 Ma ₈ Open, seasonally arid grasslands ₃₄ 

Olorgesaillie, Kenya 0.9 Ma ₉ Open, wetland conditions ₃₉,₄₀ 

Melka Kunture, Ethiopia 0.7-1.7 Ma ₁₀ 
Dry, open, savannah-like conditions, woodland savannah 
with presence water ₄₁,₄₂,₄₃,₂₈,₄₄ 

Bodo, Ethiopia Middle Pleistocene ₁₁,₁₂ Open grassland, with presence of water ₄₅,₄₆,₄₇ 

Swartkrans, South Africa Early Pleistocene ₁₃ Open grassland, with woodland on the riverside ₄₈,₄₉ 

Dmanisi, Georgia 1.78-1.85 Ma ₁₄,₆₈ Dry forest steppe with forested mountains nearby ₅₀,₅₁,₅₂,₅₃ 

Kocabas, Turkey 
Early to Middle 
Pleistocene ₁₅ Swamp-like conditions, surrounded by dry limestone hills ₅₄ 

Zhoukoudian, China 0.4-0.6 Ma ₁₆,₁₇,₆₉ 
Dry forest steppe, with alternating stages with increased 
forest cover ₅₅,₅₆,₁₆,₅₇,₅₈ 

Xujiayao, China 0.26-0.37 Ma ₁₈ Temperate to cold lacustrine conditions, forest steppe? ₅₉,₆₀,₆₁ 

Gongwangling, China 0.75-0.8/1.63 Ma? ₁₉,₇₀ Alternating cold and warm, but dry conditions ₁₆ 

Chengjiawo, China 0.65 Ma ₂₀ Steppe, probably forest steppe ₆₂,₁₆ 

Trinil, Java 0.9 Ma ₂₁ 
Open woodland with (seasonally) wet component ₆₃,₂₁,₆₄,₆₅,this 
study 

Sangiran, Java 1.6-0.7 Ma ₂₂,₂₃,₂₄ 
Open, initially wetland conditions, later more arid but with 
wet component ₂₁,₆₅,₆₆,₆₇, this study 

Kedung Brubus, Java 0.7-0.8 Ma ₂₁ Dry, open woodland₆₃,₂₁, this study 

Ngandong, Java 108-117 Ka ₇₁ Open woodland ₆₃,₂₁ 

Mojokerto, Java 1.8 Ma? ₂₂ Mangrove or swamp environment ₆₈ 

 
Table 7.2: Summary of palaeoenvironmental reconstructions for the principal Homo erectus sites in Africa and 

Asia    (1: Sausse 1975, 2: Hublin 1985, 3: Geraards et al. 1986, 4: Arambourg &Biberson 1956, 5: Rightmire 

1979, 6: Leakey & Walker 1976, 7: Day 1971, 8: Brown et al. 1985, 9: Potts et al. 2004, 10: Raynal et al. 2004, 

11: Asfaw 1983, 12: Asfaw et al. 2002, 13: Curnoe et al 2001, 14: Gabunia et al. 2002b, 15: Vialet et al. 2012, 

16: Zhu & Zhou 1994, 17: Zhou et al. 2000, 18: Ao et al. 2017, 19: An et al. 1990, 20: Liu 1985a, 21: van den 

Bergh et al. 2001, 22: Swisher et al. 1994, 23: Sémah et al. 2010, 24: Indriati & Anton 2008, 25: Geraards 

1980, 26: Geraards 1993, 27: Geraards 1994, 28: Bocherens et al. 1996, 29: Raynal et al. 2002, 30: Gentry 

1978, 31: Shipman & Harris 1988, 32: Bonnefille 1984, 33: Ashley et al. 2010b, 34: Bobe et al. 2007, 35: 

Behrensmeyer et al. 2016, 36: Kappelman et al. 1997, 37: Plummer et al. 2015, 38: Bonnefille 1976, 39: 

Behrensmeyer et al. 2002, 40: Kübler et al. 2015, 41: Bonnefille 1972, 42: Pichon 1979, 43: Sabatier 1982, 44: 

Geraards et al. 2004, 45: Kalb et al. 1980, 46: Barboni et al. 1999, 47: Ambrose et al. 2016, 48: Vrba 1975, 49: 

Avery 1995, 50: Gabunia et al. 2000a, 51: Gabunia et al. 2001, 52: Messager et al. 2010, 53: Blain et al. 2014, 

54: Lebatard et al. 2014, 55: Li & Ji 1981, 56: Liu 1985b, 57: Jin et al. 1999, 58: Gaboardi et al. 2005, 59: 

Chia et al. 1979, 60: Pei et al. 2009, 61: Wu & Trinkaus 2014, 62: Wu et al. 1989, 63: de Vos et al. 1994, 64: 

Van der Meulen & Musser 1999, 65: Joordens et al. 2009, 66: Moigne et al.2004b, 67: Bouteaux 2005, 68: 

Huffman & Zaim 2003), 68: Ferring et al. 2011, 69: Shen et al. 1996, 70: Zhu et al. 2015, 71: Rizal et al. 2020. 
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Although recent reanalyses have added nuance to some of the drier reconstructions in East 

Africa (Kovarovic et al. 2013, Dominguez-Rodrigo et al. 2010), some sites in this region 

(Nariokotome, Bodo), but especially in North Africa (Sidi Abderrahman, Ternifine, Tomas 

Quarries), give evidence that Homo erectus was also present in drier, open grassland 

conditions (Geraards 1980, 1986, 1993, 1994, Kalb et al. 1980, Bocherens et al. 1996, 

Barboni et al. 1999, Raynal et al. 2002, Bobe et al. 2007). Even though it should be taken into 

account that these sites are considerably younger than some of the early East African sites, it 

demonstrates that Homo erectus, at some point successfully adapted to different conditions 

than those in which it originally evolved. 

The same can be said for certain sites such as Olorgesaillie and Kocabas that were probably 

characterized by swamp-like environments (Behrensmeyer et al. 2002, Lebatard et al. 2014, 

Kübler et al. 2015). Even more so than Trinil, they show that, across its range, Homo erectus 

was equally capable of coping with (open) wetland conditions as with drier environments. 

While true wetland conditions are unlikely to have been an absolute requirement for Homo 

erectus, the presence of at least some standing water probably was. This idea is supported by 

the notion that for the majority of the Homo erectus sites (see Table 7.2) there are indications 

for some kind water reservoir in the vicinity. This is even the case for the North African sites, 

that despite their aridity probably also boasted seasonal lakes or swamps (Geraards 1980, 

1986, 1993, 1994, Raynal et al. 2002). This could suggest that access to water was also a 

constraining factor in early hominin distribution. 

As the Pleistocene hominin record of continental Asia remains largely unknown, it is difficult 

to make generalizations about Homo erectus palaeoecology in this region.  Based on the few 

sites, that are far apart and not all studied in the same detail (Table 7.2), it seems that Homo 

erectus was mainly found in relatively open forest steppe conditions (Chia et al. 1979, Li & Ji 

1981, Liu 1985b, Wu et al. 1989, Zhu & Zhou 1994, Jin et al. 1999, Gabunia et al. 2000a, 
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2001, Pei et al. 2009, Messager et al. 2010, Blain et al. 2014). In terms of vegetation structure 

this type of environment is not unlike the open, wooded savannah environments of the Early-

Middle Pleistocene of East Africa and Java. This observation lends further support to the 

Savannahstan model that stresses the importance of similar, open environments for the early 

dispersal of hominins in Asia (Dennell & Roebroeks 2005, Dennell 2010). On the other hand, 

as was the case in Africa, drier and more open (steppe) environments seem to have also been 

occupied in mainland Asia (Zhu & Zhou 1994). Interestingly, some of these sites with drier 

stages (e.g. Gongwangling, Xujiayao an Zhoukoudian) not only suggest changes in aridity 

over time, but also in temperature (Kurten & Vasari 1960, Chia et al. 1979, Li & Ji 1981, Wu 

et al. 1989, Zhu & Zhou 1994, Wu & Trinkaus 2014, Li et al. 2016). Apparently even the 

colder stages in these sequences did not form a major obstacle for Homo erectus. Rather than 

limiting its success as a species, it is more likely that Homo erectus was capable of making 

optimal use of these environments. 

It thus seems that, within the constraints of relatively open environments, Homo erectus was a 

flexible species with a preference for open, wooded savannah-like environments within the 

proximity of water or wetlands. This type of environment, becoming more prominent over the 

course of the Early and Middle Pleistocene, probably at least facilitated its dispersal. Whether 

this means that intrinsic changes in the hominin lineage only played a minor role in its success 

and dispersal, cannot be said based on the current evidence. Given its success in a range of 

different (open) environments, it is plausible that Homo erectus was well suited to cope with 

the increasing climatic oscillations of the Plio-Pleistocene, as proposed in Potts’ (1998) 

variability selection hypothesis. It is, nevertheless, unclear whether in this aspect it differed 

significantly from its predecessors. What seems more evident, is that the degree of adaptive 

flexibility currently seen in modern humans, was probably something that appeared at a later 

stage in human evolution. The engagement of Homo sapiens with a wide range of 
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environments, including closed tropical rainforest and arctic conditions, is not only testified 

by studies of contemporary hunter-gatherer societies (Kelly 2013, Cosgrove 2015), but also 

by archaeological evidence from across Southeast Asia (e.g. Badoux 1959, Barker et al. 2007, 

Amano et al. 2015, 2016).  

 

7.5 Further considerations about the statistical analyses 

This study primarily made use of between-groups PCA to explore morphological variation in 

the datasets (see section 5.5). To quantify the significance of the between-group separations in 

the clusters generated by the PCA’s, Kruskal-Wallis tests were conducted on the PC-scores, 

followed by post-hoc pairwise comparisons to explore which pairs differed significantly. The 

Kruskal-Wallis test is a rank-based test and functions as a statistical procedure to test the null 

hypothesis that several univariate samples are taken from populations with equal medians 

(Hammer 1999, Corder & Foreman 2009). As in this dissertation, it was also important to 

assess which groups differed from other groups, post-hoc testing was conducted to analyse 

specific pairs for significant differences (Goodpaster & Kennedy 2011).  Although there is 

currently no standard metric to quantify cluster separation in PCA (Goodpaster & Kennedy 

2011), there are also other statistical approaches (see below) that could have been employed 

to assess the significance of the separations generated by the PCA’s. Some of these alternative 

methods could potentially improve the results of this dissertation. 

The approach used in this thesis followed established procedures from the literature to 

determine significance of groups in the PCA scores (Lynch et al. 1999, Harvati 2003, 2004, 

Nicholson & Harvati 2006, Yao et al. 2013). Due to the nature of the geometric morphometric 

data a non-parametric test (the Kruskal-Wallis test) was required to assess between-group 

differences (Yao et al. 2013). The reason for this was that, despite the fact that individual 

principal components are orthogonal and can be treated as mathematically independent 
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variables (Polly & Motz 2016), the GMM data on which the linear recombinations of the PCA 

are based, tend to violate statistical assumptions such as normal distribution (Cardini et al. 

2015). For the pairwise comparisons the commonly used Mann-Whitney pairwise test was 

chosen. Although other post-hoc tests, such as Dunn’s test (Dunn 1964) or the Conover-Iman 

test (Conover & Iman 1979), can be used in conjunction with the Kruskal-Wallis test, the 

Mann-Whitney pairwise test was preferred as it performs well on small datasets with unequal 

sample sizes (Mann & Whitney 1947, Nachar 2008).  

However, in pairwise comparisons, where statistical tests are repeated multiple times, it is 

often advisable to re-calculate probabilities to control the Type I error rate (Conover & Iman 

1979). There are several procedures available for multiple comparison correction, including 

Holm’s method (Holm 1979), the Benjamini-Hochburg procedure (Benjamini & Hochburg 

1995) and the commonly used Bonferroni correction (Dunn 1961, 1964). While all these 

methods provide more or less stringent control of Type I errors, they have the disadvantage 

that the likelihood of Type II errors increases and important between-group differences can be 

missed (Perneger 1998, Gelman et al. 2012). 

In this dissertation the uncorrected p-values of the Mann-Whitney pairwise comparisons were 

reported. Even though the Kruskal-Wallis Mann-Whitney procedure is thought to provide a 

better balance between type I and type II errors than some other methods, such as Dunn’s test 

(Conover & Iman 1979), it is possible that the lack of multiple corrections has led to a number 

of false positives. In the light of continued research, it may therefore be useful to provide 

additional corrected p-values for the analyses of the calcaneus and intermediate phalanx. Most 

correction procedures (e.g. Holm’s method) are, however, more appropriate for parametric 

tests, so in the context of the non-parametric analyses conducted in this thesis the use of 

Bonferroni correction would be most advisable (Shiratsuchi et al. 2006). It should, 

nevertheless, be mentioned that Bonferroni corrected values should be interpreted with some 
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caution as well, as this correction procedure is conservative and tends to inflate the number of 

Type II errors (Armstrong 2014). 

The implications of not using multiple correction in this study can only be fully appreciated 

with additional tests on the datasets. Nevertheless, as the Bonferroni correction is a relatively 

simple procedure that adjusts the α-value to the number of comparisons (Perneger 1998), it 

follows that those significant between-group differences that show the highest uncorrected p-

values will be the most likely candidates to appear as non-significant after correction. This 

was confirmed by unreported preliminary tests on the datasets with the extant calcanei and 

phalanges. Bonferroni corrected Mann-Whitney pairwise comparisons conducted on the data 

altered the initial results, but showed that, for both elements, it was often the type 2 

(intermediate species) and type 4 group (mountain species) that gave non-significant 

differences after correction. This implies that mainly those groups that were already shown to 

have a high degree of visual overlap in the PCA scatterplots, could also not be reliably 

separated in the pairwise comparisons following the Kruskal-Wallis test. Consequently, 

between-group differences that were supported by the latter test, but not by visual assessment 

of the scatterplots, should be cautiously interpreted. As the interpretation of the trends 

observed in the analyses in this thesis already relied heavily on the visual interpretation of the 

scatterplots, it is not unreasonable to assume that the ultimate categorization of the fossil 

groups would not be altered to a large extent after additional corrections. This was confirmed 

by an unreported preliminary reanalysis of the Trinil calcanei dataset. The uncorrected 

pairwise comparisons following the Kruskal-Wallis test on PC1 of the Trinil calcanei 

indicated non-significant differences between the fossils and the type 4 group (p=0.5832). 

After the Bonferroni corrections the pairwise comparisons gave non-significant differences 

between the fossils and the type 4 group (p=1) and the type 1 groups (p=0.1204). This is an 

interesting observation, as the Trinil calcanei were ultimately interpreted as similar to the type 
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1 and type 4 groups, based on visual assessment of their position in the PCA scatterplots. 

Further reanalyses of the data will have to confirm if this will also hold for other datasets. 

Despite the fact that Bonferroni corrections could provide extra nuance to the interpretation of 

the results of the univariate tests, it should be mentioned that other approaches are possible for 

testing between group significance in PCA besides the Kruskal-Wallis Mann-Whitney 

procedure. In this context, improvement could be sought in the further use of multivariate 

methods, which was already explored to an extent with the NPMANOVA. Even though these 

methods will not assess between-group significance of individual component scores, for 

theoretical reasons they may be more reliable as an indicator for the significance of group 

separations in a PCA. This is because, even though individual components can technically be 

treated as independent variables, the underlying biological shapes on which they are based are 

multivariate in nature (Polly & Motz 2016). A multivariate analysis may therefore pick up 

differences not registered on a single axis. An alternative method that has been applied, 

besides the NPMANOVA, is the use of a two-sample Hotelling’s T2
 test on the distance 

between group centroids, where an F-test is conducted to determine if cluster separations are 

significant (Goodpaster & Kennedy 2011). But for GMM-based datasets such an approach is 

not ideal, as this test assumes normal distribution. Moreover, the challenge remains that 

multivariate approaches are only of limited help with the interpretation of individual 

scatterplots.  

One simple solution that avoids conducting additional univariate tests on the PC-scores, but 

helps with the visual interpretation of the clusters in the PCA scatterplots, is to provide 

simplified one-dimensional plots of Euclidean distances between cluster centroids 

(Goodpaster & Kennedy 2011). In this method plots are generated that visualize the distance 

between group centroids compared to the distances between individual points within a cluster 

(Goodpaster & Kennedy 2011). To illustrate, an example based on a small subset of extant 
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calcanei is provided in Figure 7.6. A list with used species and specimens is provided on the 

right side of the graph. 

 

Figure 7.6: One-dimensional plot of Euclidean distances between cluster centroids of a PCA scatterplot of a 

sample of seven type 1 calcanei (a,b,c,d,e,f,g) and seven type 2 calcanei (h,i,j,k,l,m,n). The centroid of each 

group is represented by a horizontal line (A and B), where the distance between A and B is the Euclidean 

distance between the two group centroids. The vertical lines (a to g and h to n) visualize the distance from each 

datapoint to its group centroid.  

In summary it can be said that, although there were reasons that justified the use of the current 

protocol (i.e. the need to quantify separations between each group in individual scatterplots 

using non-parametric tests), there are possibilities to improve the results in this thesis. Future 

improvements include providing Bonferroni-corrected p-values in addition to the uncorrected 

p-values. That being said, the results of the Kruskal-Wallis test and following pairwise 

comparisons should be cautiously interpreted, and only in conjunction with visual assessment 

of the PCA scatterplots and the results of the NPMANOVA.  One-dimensional plotting of the 

Euclidean distances between group centroids could be a useful additional way to help with the 

visual interpretation of group differences in the scatterplots. 
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8. Conclusion 

This thesis had two primary objectives. A first goal was to construct ecomorphological 

models for the cervid intermediate phalanx and calcaneus that can be used to make 

predictions about the nature of ancient environments. The second objective was to apply these 

methods on a number of Javan Pleistocene sites to contribute to a more detailed 

palaeoenvironmental framework for this region and to provide context to the behaviour and 

early dispersal of Homo erectus. Emphasis was placed on assessing the ecological flexibility 

of this hominin species by examining the nature and significance of environmental differences 

between sites. Specifically, by comparing materials from the Kedung Brubus faunal unit with 

those of the Trinil (H.K.) faunal unit and from Sangiran, the aim was to assess whether an 

environmental and/or climatic shift could be discerned in the fossil record. It was hoped that 

the results of these analyses would be informative about the extent to which Homo erectus 

was associated with a specific type of environment. As such, this study was also conceived as 

a test whether the conditions were met in Java for a scenario where early hominin dispersal 

was largely driven by extrinsic factors. Addressing these research questions did not only lead 

to new and valuable insights pertaining cervid ecomorphology, but also successfully 

contributed to our understanding of Homo erectus behaviour and palaeoecology in Java and 

further afield.  

Building on previous research in artiodactyl ecomorphology, it has been demonstrated that the 

morphology of the cervid calcaneus and intermediate phalanx can be used to predict the 

habitat preferences of (extinct) taxa of unknown ecological affinity. The shape of the two 

studied elements varied along a continuum from open habitats with dry, firm substrate to 

closed habitats with wet, yielding substrate. The shape of the calcaneus was found to be 

primarily a good predictor of vegetation structure, while the intermediate phalanx was 

demonstrated to be mainly indicative of substrate type. As such, the two elements were 
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confirmed to be good indicators of different ecological aspects in the regional environment. 

The ecomorphological methods presented here, in other words, provide a valuable new proxy 

for palaeoenvironmental reconstruction of Pleistocene sites. The possibilities for applying 

these new methods are, moreover, not limited to palaeoanthropological sites in Southeast 

Asia. As the models were broadly conceived and included a large and taxonomically balanced 

sample of extant cervids from across the globe, they could theoretically be applied on any site 

with sufficient deer fossils. 

It was further demonstrated that the use of 3D GMM forms an improvement over the linear 

morphometric analyses usually used in similar studies. In addition to allowing for more subtle 

morphological differences to be analyzed, the deformation grids reconstructed from the 

morphometric data, allowed for a much needed visualization of the quantified shape 

differences. This proved to be especially helpful for interpreting the underlying causes and 

functional significance of morphological variation. The introduction of a functional 

framework, where shape differences can be explicitly tested against predetermined functional 

hypotheses, represents a novel –but enhanced- approach in artiodactyl ecomorphology. By 

assessing morphological differences against this framework, in concert with other statistical 

tests (i.e. PGLS, linear regressions), it was shown that the confounding effects of a number of 

factors (including size, sexual dimorphism, anterior/posterior position and phylogeny) did not 

interfere to a large extent with the predominantly functional signal measured in the datasets.  

The application of the ecomorphological methods on the hominin sites from Java added 

significantly to our current knowledge of the Pleistocene environments in this region. The 

analyses of Trinil and the cervid species most commonly found there (Axis lydekkeri), 

indicated the presence of an open environment -probably an open woodland environment- 

with a (seasonally) wet character. This interpretation corroborated earlier reconstructions of 

the Trinil palaeoenvironment (de Vos et al. 1994, Van den Bergh et al. 2001, Joordens et al. 
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2009), but rejected interpretations of Trinil as a closed, forested environment (Selenka et al. 

1911, Louys 2007). Axis lydekkeri itself was argued to have been ecologically analogous to 

the extant Axis porcinus, a species of wet grasslands and open woodlands, and not to certain 

other members of the genus (Axis axis and Axis kuhlii) that have in the past been considered 

closer equivalents (Dubois 1908, Meijaard and Groves 2004). This notion underlined the 

value of ecomorphological studies in identifying the habitat preferences of extinct species. 

Kedung Brubus and the species most commonly found there (Cervus kendengensis), were 

shown to be associated with open conditions that were more arid than those reconstructed for 

Trinil. This was in line with a number of earlier studies of the Kedung Brubus 

palaeoenvironment (de Vos et al. 1994, Van den Bergh et al. 2001, Weinand 2005), but 

challenged the idea that it was characterized by a closed, forested environment (Louys 2007). 

The (seasonally) wet component found in the older Trinil stage largely disappeared during the 

younger Kedung Brubus stage. Cervus kendengensis was interpreted as ecologically 

analogous to Cervus timorensis, a species currently still present on Java. This new arrival 

from the Asian mainland was most likely able to colonize Java as part of a larger influx of 

new species during a glacial maximum when Sundaland was connected to continental 

Southeast Asia. 

For Sangiran reconstructions also confirmed the presence of open conditions, as has been 

suggested in the literature (Moigne 2004b, Bouteaux 2005, Sémah 2010, Janssens et al. 

2016). The sample consisted of a combination of fossil specimens indicating dry substrate as 

well as others indicating wet substrate, making it unclear whether the regional environment 

was of a wet nature like Trinil or had a more arid character like Kedung Brubus. It was 

suggested that this dichotomy was the result of the chronologically mixed nature of the 

sample, containing specimens of the upper Kabuh formation, corresponding with the younger 
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and drier Kedung Brubus stage, and specimens from the Grenzbank, that can be correlated 

with the older and wetter Trinil (H.K.) stage.  

These newly generated palaeoenvironmental reconstructions made an important contribution 

to our knowledge of the environmental context of Homo erectus in Southeast Asia. In East 

Java where this hominin species was present, regional environments were shown to be of a 

continually open nature. This was in line with the idea that Homo erectus was a species that 

depended on environments with an open vegetation structure and lends support to a scenario 

where its dispersal was fascilitated by the spread of open environments in Africa and Eurasia 

in the Plio-Pleistocene (Dennell & Roebroeks 2005, Dennell 2010). 

This study cannot be considered as a direct test of the role of extrinsic or intrinsic factors in 

early hominin dispersal, but it does serve as a test whether the conditions were met to allow 

for a predominantly extrinsic explanation for this event in human evolution. Although the 

results of this thesis show that those conditions were fulfilled, there are also indications for a 

certain behavioural flexibility in Homo erectus. Despite the fact that most -if not all- Homo 

erectus sites tend to be of an open nature, the differences between conditions present at Trinil 

and Kedung Brubus (the latter being substantially drier than the former) were such that it can 

only by concluded that Homo erectus must have had a certain capacity to cope with changing 

environmental conditions. Upon closer inspection, the available palaeoecological data for 

other known Homo erectus sites corroborated this picture and confirmed that the species was 

found in a range of habitats, albeit confounded by the presence of an open vegetation 

structure.  

Although this dissertation tried to make optimal use of new and existing palaeoecological data 

to address questions about early hominin behaviour, it should be remembered that our 

understanding of the palaeoenvironmental context of Homo erectus remains limited. Many 
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areas where this species was probably present at some point (e.g. Central Asia or West Africa) 

have barely received any attention from palaeoanthropologists.  Even for other regions, where 

the presence of Homo erectus has already been attested (North Africa, Turkey), 

palaeoecological data often remain scarce (see Chapter 3.5). This makes the inferences made 

in this study, by necessity, of a generalized nature, but also leaves a number of directions for 

future research open.  

A combination of further fieldwork in the unexplored regions of the purported Homo erectus 

range and new palaeoecological research on known sites, will help to fill in the gaps of a more 

solid and detailed palaeoenvironmental framework. New fieldwork would ideally also focus 

on refining the chronological framework, as correlating events in human evolution with 

climatic and environmental history is currently complicated by problems of timing (see e.g. 

Anton 2003, Anton & Swisher 2004). Renewed palaeoecological research would benefit from 

a multiproxy approach, where different methods, such as ecomorphology, palynology and 

isotope studies, can together provide a more holistic picture of regional environments that 

allows for uncomplicated inter-site comparisons. Such improvements would undoubtedly help 

to specify which ecological parameters played a role in limiting or facilitating Homo erectus 

dispersal. For Java specifically, future research should perhaps focus on the oldest and 

youngest stages associated with Homo erectus. The conditions surrounding Mojokerto are still 

a matter of debate (Huffman & Zaim 2003, Morwood et al. 2003, Anton & Swisher 2004, 

O’Connell & Desilva 2013, Morley et al. 2020) and about the younger Ngandong fossils (and 

the corresponding biostratigraphic stage) practically nothing is known (Huffman et al. 2010). 

These sites are, nevertheless, important as they can be informative the conditions that were 

present during the first appearance and final disappearance of Homo erectus in the region. 

Methodologically there are also a number of directions in which this research can be taken. So 

far only a limited number of anatomical elements have been used in cervid ecomorphological 
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studies (Curran 2009, 2012, 2015, 2018, this study), but research on bovids  has indicated that 

a number of other elements in the artiodactyl skeleton are also promising for further analysis 

(see Kovarovic & Andrews 2007). The other way around, bovids have more often been used 

in ecomorphological studies, but represent an interesting family on which the new methods 

developed in this thesis could be applied. Especially the use of GMM is still in its infancy and 

should be further developped as far as its application on artiodactyl bones is concerned. When 

developing such new models (for bovids as well as for cervids), increasing the sample size 

would be advisable, as this should lead to more robust results. A final angle that deserves 

further exploration, is the use of detailed georeferenced data in predictive models, where 

museum specimens with precise locality data can be correlated with specific environmental 

data (e.g. precipitation, tree cover, soil composition) available for those coordinates. Although 

museum specimens with such precise metadata are less common, models developed using this 

type of data could allow for much more detailed habitat reconstructions. 

Ultimately this dissertation represents but a first step in the application of new methods to old 

problems. Considerable work remains to be done, improving our understanding of Early- and 

Middle Pleistocene environments and the way in which we conduct palaeoecological studies. 

This study focused on a number of specific sites to contextualize the behaviour and dispersal 

of Homo erectus in Southeast Asia. By successfully using newly developped 

ecomorphological methods to reconstruct hominin palaeoenvironments in Java, the notion 

was strengthened that identifying the environmental conditions surrounding our ancestors is 

imperative to understand their behaviour. Nevertheless, it was also shown that in order to 

understand such broad, overarching patterns in human evolution, it is necessary to combine 

data from multiple localities. Future palaeoanthropological research will have to take such an 

integrative approach, which will undoubtedly lead to exciting new insights in the decades to 

come. 
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Appendix A: Habitat assignments 

 

1. Habitat assignments: breakdown of number of species and specimens per 
habitat/locomotor group. 

 

  Calcaneus Intermediate phalanx 
  N (specimens) N (species) N (specimens) N (species) 
Type 1 56 8 47 7 
Type 2 9 5 11 5 
Type 3 33 7 40 7 
Type 4 7 5 10 5 
Type 5 20 4 20 4 
Type 6 - - 14 1 
Total: 125 26 142 29 
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Appendix B: Extant specimens 

 

Taxon Institute Coll. number 
Sp. 

code 
Provenance Sex Calc Ph2 

Axis axis KBIN 1297s AXA India f x x 
Axis axis KBIN 1297y AXA India f x x 
Axis axis KBIN 3719 AXA f x x 
Axis axis KBIN 7499 AXA m x x 
Axis axis KBIN 7599 AXA f x x 
Axis axis KBIN 1297e AXA Zoo Brussels f x 
Axis axis KBIN 3706 AXA f x 
Axis axis KBIN 3707 AXA f x 
Axis axis KBIN 3720 AXA f x x 
Axis axis RMNH 43556 AXA Bengal, India m x x 
Axis axis RMNH 43557 AXA Bengal, India f x x 
Axis axis KBIN 1297e AXA Zoo Brussels f x 
Axis axis KBIN 3703 AXA x 
Axis (Hyelaphus) kuhlii RMNH 10605a AXK Bawean, Indonesia m x x 
Axis (Hyelaphus) kuhlii RMNH 43559 AXK Bawean, Indonesia m x x 
Axis (Hyelaphus) kuhlii RMNH 43558 AXK Bawean, Indonesia m x 
Cervus (Przewalskium) albirostris MNHN 2011895 CEA x 
Alces alces KBIN 1287c ALA m x x 
Alces alces KBIN 18068 ALA m x x 
Alces alces MFN 77296 ALA * x 
Alces alces UWBM 39479 ALA Canada** x x 
Alces alces KBIN 1287b ALA f x 
Alces alces KBIN 16402 ALA Zoo Antwerp m x x 
Alces alces KBIN 1287b ALA f x 
Capreolus capreolus KBIN 1173 CAC Belgium m x 
Capreolus capreolus KBIN 1285b CAC Bouillon, Belgium f x x 
Capreolus capreolus KBIN 13353 CAC f x x 
Capreolus capreolus KBIN 14891 CAC f x x 
Capreolus capreolus KBIN 33479 CAC Zonienwoud, Belgium m x x 
Capreolus capreolus KBIN 34543 CAC Waals Brabant, Belgium f x x 
Capreolus capreolus KBIN 34561 CAC La Reid, Liège, Belgium f x 
Capreolus capreolus KBIN 37267 CAC Theux, Liège, Belgium f x x 
Capreolus capreolus KBIN 39037 CAC Theux, Liège, Belgium m x x 
Capreolus capreolus ULILLE 782 CAC France f x x 
Capreolus capreolus KBIN 7753 CAC Haute Lesse, Belgium m x 
Capreolus capreolus KBIN 15870 CAC Norway f x x 
Capreolus capreolus KBIN 17191 CAC Zoo Antwerp f x 
Capreolus capreolus KBIN 17472 CAC Zoo Antwerp f x x 
Capreolus capreolus CAR b057 CAC Belgium f x x 
Capreolus capreolus ULILLE cc002 CAC France f x x 
Capreolus capreolus KBIN 15639 CAC x 
Capreolus capreolus NMR 999000002020 CAC x 
Capreolus capreolus NMR 999000002022 CAC x 
Capreolus capreolus CAR b056 CAC Belgium f x 
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Taxon Institute Coll. number 
Sp. 

code 
Provenance Sex Calc Ph2 

Cervus canadensis MNHN 1897346 CCA f x 
Cervus canadensis KBIN 3718 CCA f x x 
Cervus canadensis KBIN 3977 CCA m x 
Cervus canadensis IMNH r749 CCA Canada** f x x 
Cervus canadensis KBIN 3897 CCA Canada f x 
Cervus canadensis KBIN 3716 CCA zoo Antwerp f x 
Cervus canadensis KBIN 3977 CCA zoo Antwerp m x 
Cervus elaphus KBIN 1174 CEE Neupont, Belgium m x x 
Cervus elaphus KBIN 1307y CEE f x x 
Cervus elaphus MPIEVA 501 CEE * m x x 
Cervus elaphus RMNH 6958 CEE Lisse, The Netherlands x 
Cervus elaphus ULILLE ce001 CEE France f x x 
Cervus elaphus ULILLE ce002 CEE France f x 
Cervus elaphus ULILLE ce003 CEE France x 
Cervus elaphus KBIN 3704 CEE m x x 
Cervus elaphus Ul 1082 CEE Belgium x x 
Cervus elaphus Ul 1082e CEE Belgium x x 
Cervus elaphus Ul 15143 CEE Belgium x 
Cervus elaphus CAR ce001 CEE Belgium x 
Elaphodus cephalopus MNHN 1896689 ELC Setchuan, China x x 
Elaphodus cephalopus AMNH 114551 ELC x 
Elaphodus cephalopus AMNH 84462 ELC x x 
Elaphodus cephalopus AMNH 84463 ELC x 
Elaphodus cephalopus AMNH 115638 ELC x 
Cervus nippon RMNH 25990 CEN Japan m x x 
Cervus nippon RMNH 25991 CEN Japan m x x 
Dama dama KBIN 2255 DDA Namur, Belgium m x x 
Dama dama KBIN 2256 DDA Namur, Belgium m x x 
Dama dama KBIN 2256a DDA Namur, Belgium f x x 
Dama dama KBIN 2258 DDA Namur, Belgium m x x 
Dama dama KBIN 3709 DDA Namur, Belgium m x x 
Dama dama KBIN 3710 DDA Namur, Belgium f x x 
Dama dama CAR dd001 DDA Belgium f x x 
Dama dama KBIN 2254 DDA Villers-sur-Lesse,  Belgium m x x 
Dama dama KBIN 1310b DDA Limerick, Ireland m x x 
Dama dama ULILLE dd001 DDA France f x x 
Dama dama RMNH 51506 DDA x x 
Cervus (Elaphurus) davidianus MNHN 197392 ELD x x 
Cervus (Elaphurus) davidianus KBIN 15252 ELD Zoo Antwerp m x x 
Cervus (Elaphurus) davidianus MNHN 19662 ELD x x 
Cervus (Panolia) eldii MNHN 1937157 CEL f x 
Cervus (Panolia) eldii RMNH 11415 CEL Diergaarden Blijdorp zoo f x 
Cervus (Panolia) eldii MNHN 201322 CEL France (Captive) m x x 
Cervus (Panolia) eldii MNHN 2011190 CEL x 
Cervus (Panolia) eldii MNHN 2011191 CEL France (Captive) x 
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Taxon Institute 
Coll. 

number 
Sp. 

code 
Provenance Sex Calc Ph2 

Hippocamelus antisensis MNHN 19571303 HIA Putina, Puno, Peru f x 
Axis (Hyelaphus) porcinus KBIN 1299 AXP f x x 
Axis (Hyelaphus) porcinus KBIN 1299y AXP f x x 
Axis (Hyelaphus) porcinus KBIN 3700 AXP m x x 
Axis (Hyelaphus) porcinus MNHN 197172 AXP Vietnam f x x 
Axis (Hyelaphus) porcinus MNHN 1908531 AXP x 
Hydropotes inermis MNHN 194887 HYI f x x 
Hydropotes inermis MNHN 197136 HYI China m x 
Hydropotes inermis KBIN 12153 HYI Zoo Antwerp m x x 
Hydropotes inermis KBIN 15510 HYI Zoo Antwerp f x x 
Hydropotes inermis MNHN 1935118 HYI x 
Hydropotes inermis MNHN 1962323 HYI m x x 
Hydropotes inermis MNHN 1992403 HYI Zoo Vincennes m x x 
Hydropotes inermis MNHN a9994 HYI x 
Hydropotes inermis MNHN nr001 HYI x x 
Hydropotes inermis KBIN 197136 HYI China m x x 
Hydropotes inermis KBIN 14221 HYI Zoo Antwerp m x x 
Mazama gouazoubira MNHN 1981687 MAG French Guyana m x 
Mazama americana RMNH 43562 MAA "America" f x x 
Mazama americana rufa RMNH 51209a MAA Surinam m x 
Mazama americana rufa RMNH 51238a MAA Brazil f x 
Mazama americana KBIN 1473 MAA Zoo Antwerp m x 
Mazama americana RMNH 51237 MAA Surinam f x 
Mazama americana MNHN 1971285 MAA f x 
Muntiacus reevesi MNHN 198543 MUR Zoo Paris f x x 
Muntiacus reevesi CAR B057b MUR Belgium (feral) f x x 
Muntiacus reevesi MNHN 194912 MUR Zoo Paris x x 
Muntiacus muntjak KBIN 3705 MUM m x x 
Muntiacus muntjak MNHN 197936 MUM x x 
Muntiacus muntjak MNHN 185662 MUM m x x 
Muntiacus muntjak MNHN 1992379 MUM x 
Muntiacus muntjak RMNH 51384 MUM Java, Indonesia f x x 
Muntiacus muntjak MNHN 1909442 MUM x 
Odocoileus virginianus leucurus KBIN 7755 ODV Zoo Antwerp m x x 
Odocoileus virginianus KBIN 9746 ODV New York, United States f x x 
Odocoileus virginianus KBIN 39526 ODV m x x 
Odocoileus hemionus IMNH r146 ODH United States** x x 
Odocoileus hemionus IMNH r2093 ODH United States** x 
Odocoileus hemionus MNHN nonr002 ODH x 
Ozotoceros bezoarticus RMNH 51320 OZB South East Brazil m x x 
Pudu mephistophiles USNM 92167 PUM x 
Pudu mephistophiles USNM 282141 PUM x x 
Pudu mephistophiles USNM 309045 PUM x 
Pudu puda KBIN 21137 PUP Zoo Antwerp f x 
Pudu puda KBIN 36522 PUP Zoo Antwerp m x x 
Pudu puda KBIN 39041 PUP Zoo Antwerp f x 
Pudu puda MNHN 2006501 PUP Zoo Paris m x x 
Pudu puda MNHN 19981956 PUP Zoo Paris m x x 
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Taxon Institute Coll. number 
Sp. 

code 
Provenance Sex Calc Ph2 

Cervus (Rusa) alfredi MNHN ra01 CAL m x 
Cervus (Rusa) alfredi MNHN ra02 CAL m x x 
Rangifer tarandus CMC f11378 RAT Canada** x x 
Rangifer tarandus KBIN 3731 RAT f x 
Rangifer tarandus KBIN 6327 RAT f x x 
Rangifer tarandus KBIN 7497 RAT x x 
Rangifer tarandus ASM nnr7 RAT * m x 
Rangifer tarandus KBIN 1290e RAT Zoo Brussels f x x 
Rangifer tarandus KBIN 1290g RAT m x x 
Rangifer tarandus KBIN 3702 RAT m x x 
Rangifer tarandus KBIN 16936 RAT m x x 
Rangifer tarandus KBIN 17192 RAT f x x 
Rangifer tarandus MNHN 194529 RAT x x 
Rangifer tarandus Persbodibratlund nnr1 RAT Sweden* x x 
Rangifer tarandus Ul 4350 RAT x x 
Rangifer tarandus KBIN 7496 RAT Zoo Antwerp m x 
Rangifer tarandus MNHN vI1200 RAT x 
Cervus (Rusa) timorensis KBIN 1303d CET Indonesia  m x x 
Cervus (Rusa) timorensis RMNH 43496 CET x x 
Cervus (Rusa) timorensis MNHN 18793036 CET Zoo Paris x 
Cervus (Rusa) timorensis MNHN 129744 CET x 
Cervus (Rusa) timorensis MNHN 1886366 CET x 
Cervus (Rusa) unicolor KBIN 7500 CEU f x x 
Cervus (Rusa) unicolor RMNH 43544 CEU Indonesia f x x 
Cervus (Rusa) unicolor KBIN 1300 CEU Zoo Brussels m x x 
Cervus (Rusa) unicolor RMNH 41452 CEU  Borneo m x 
Cervus (Rusa) unicolor MNHN 1878425 CEU x 
Cervus (Rusa) unicolor MNHN 1879222 CEU x 
Cervus (Rusa) marianna MNHN 1854221 CEM f x x 
 

-Specimens with a star (*) were shared as 3D scans by the Max Planck Institute of Evolutionary Anthropology (Leipzig, 
Germany) (Niven et al. 2009), specimens with two stars (**) by the Virtual Zooarchaeology of the Arctic project (Idaho 
University, U.S.) (Maschner et al. 2011, Betts et al. 2011). 
 
Institute acronyms: 
AMNH= American Museum of Natural History, New York, U.S. 
ASM= Anatomische Staatssamlung München, München, Germany 
CAR= Center for Artefact Research vzw, Mechelen, Belgium 
CMC=Canadian Museum of History, Gatineau, Canada 
IMNH= Idaho Museum of Natural History, Pocatello, U.S. 
KBIN=Royal Belgian Institute of Natural Sciences, Brussels, Belgium 
MFN= Museum für Naturkunde, Berlin, Germany 
MNHN= Muséum National d’Histoire Naturelle, Paris, France 
MPIEVA= Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany 
NMR= Natural History Museum Rotterdam, Rotterdam, The Netherlands 
Persbodibratlund= Personal collection Bodi Bratlund, Sweden 
RMNH= Naturalis Biodiversity Center, Leiden (formerly Rijksmuseum Natuurlijke Historie), The Netherlands 
Ul= Université de Liège (Palaeontology Service), Liège, Belgium 
ULILLE= Université Charles-de-Gaule Lille III (Zooarchaeology laboratory), Lille, France  
USNM= National Museum of Natural History, Washington D.C., U.S. 
UWBM= University of Washington Burke Museum, Seattle, U.S. 
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Appendix C: Fossil specimens 

 

Taxon Institute Collection  Coll. number 
Sp. 
code Provenance Element 

Cervus kendengensis RMNH Dubois 5409 CKE Java calc 
Cervus kendengensis RMNH Dubois 5889 CKE Java calc 
Cervus kendengensis RMNH Dubois 6438 CKE Bangle calc 
Cervus kendengensis RMNH Dubois 6441 CKE Java calc 
Cervus kendengensis RMNH Stehn & Umbgrove j2035 CKE Banuraja calc 
Cervus kendengensis RMNH Dubois nonr CKE Java calc 
Cervus kendengensis RMNH Dubois  6480 CKE Java Ph2 
Cervus kendengensis RMNH Dubois  6257 CKE Java Ph2 
Cervus kendengensis RMNH Dubois  6972 CKE Kedung Brubus Ph2 
Cervus kendengensis RMNH Dubois  8697 CKE Kedung Brubus Ph2 
Axis lydekkeri RMNH Dubois  nonr1 ALY Java calc 
Axis lydekkeri RMNH Dubois  nonr2 ALY Java calc 
Axis lydekkeri RMNH Dubois  5648 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  5649 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  5651 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  5652 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  5952 ALY Trinil calc 
Axis lydekkeri RMNH Dubois. 5998 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6045 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6046 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6049 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6149 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6150 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6156 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6157 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6160 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6867 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6880 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6881 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6884 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6885 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6886 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  6887 ALY Trinil calc 
Axis lydekkeri RMNH Dubois  10958 ALY Java calc 
Axis lydekkeri MFN Selenka 22490 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22491 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22492 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22493 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22495 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22496 ALY Trinil calc 
Axis lydekkeri MFN Selenka 22497 ALY Trinil calc 
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Taxon Institute Collection Coll. number 
Sp. 
code Provenance Element 

Axis lydekkeri RMNH Dubois 1575g ALY Butak Ph2 
Axis lydekkeri RMNH Dubois 5918e ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 13322 ALY Java Ph2 
Axis lydekkeri RMNH Dubois nonr1 ALY Java Ph2 
Axis lydekkeri RMNH Dubois nonr2 ALY Java Ph2 
Axis lydekkeri RMNH Dubois nonr3 ALY Java Ph2 
Axis lydekkeri RMNH Dubois nonr4 ALY Java Ph2 
Axis lydekkeri RMNH Dubois 5918a ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 13324 ALY Java Ph2 
Axis lydekkeri RMNH Dubois 5918b ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 5918d ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 6245d ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 5918f ALY Trinil Ph2 
Axis lydekkeri RMNH Dubois 5918i ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22447 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22448 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22635 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22636 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22641 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22642 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22643 ALY Trinil Ph2 
Axis lydekkeri MFN Selenka 22644 ALY Trinil Ph2 
Cervidae indet. GMB Watanabe & Kadar sa240178a CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa240178b CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa250178 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa250878 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa11087849 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa1401791 CSP Sangiran calc 
Cervidae indet. GMB Aziz sem0405193e CSP Sembungan calc 
Cervidae indet. GMB Watanabe & Kadar sa060877 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa170378 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar nonr1 CSP Sangiran calc 
Cervidae indet. GMB Watanabe & Kadar sa140878 CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa240779 CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa240779a CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa910104 CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa18087940 CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa1261177 CSP Sangiran ph2 
Cervidae indet. GMB Watanabe & Kadar sa-nr16 CSP Sangiran ph2 
 

Institute acronyms: 

GMB= Geological Museum Bandung, Bandung, Indonesia 

MFN= Museum für Naturkunde, Berlin, Germany 

RMNH= Naturalis Biodiversity Center, Leiden (formerly Rijksmuseum Natuurlijke Historie), The Netherlands 
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Appendix D: Results error tests 

1. Scatterplot resulting from (standard) PCA conducted on five re-scanned replicates of five cervid calcanei 
(KBIN 1290e (Rangifer tarandus), KBIN 1290g (Rangifer tarandus), CAR dd001 (Dama dama), KBIN 1297e (Axis 
axis) and KBIN 1297y (Axis porcinus)). Eigenvalues are given for the first ten PC’s. 

 

2. Scatterplot resulting from (standard) PCA conducted on five re-scanned replicates of five cervid intermediate 
phalanges (MNHN 1879222 (Cervus unicolor), MNHN 129744 (Cervus timorensis), KBIN 2256 (Dama dama), 
MNHN nonr001 (Hydropotes inermis) and KBIN 3720 (Axis axis)). Eigenvalues are given for the first ten PC’s. 
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3. Scatterplot resulting from (standard) PCA conducted on four landmarking replicates of five cervid 
intermediate phalanges (CAR b056 (Capreolus capreolus), CAR b057b (Muntiacus reevesi), ULILLE 782 
(Capreolus capreolus), ULILLE DD001 (Dama dama), ULILLE CE001 (Cervus elaphus)), used as intra-observer 
error test. Eigenvalues are given for the first ten PC’s. 

 

 

4. Scatterplot resulting from (standard) PCA conducted on four landmarking replicates of five cervid 
intermediate phalanges (ULILLE 782 (Capreolus capreolus), ULILLE CC002 (Capreolus capreolus), ULILLE DD001 
(Dama dama), CAR b057b (Muntiacus reevesi), CAR DD001 (Dama dama)), used as intra-observer error test. 
Eigenvalues are given for the first ten PC’s. 
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Appendix E: Results test sexual dimorphism 

1. Results PCA (I) on group of ten D. dama calcanei to assess sexual dimorphism, with eigenvalues (II), broken stick 
model of eigenvalues (IV) and pairwise comparisons of an NPMANOVA on PC1 to PC4 (III). (M=male, F=female) 

 

 

2. Results PCA (I) on group of ten D. dama phalanges to assess sexual dimorphism, with eigenvalues (II), broken stick 
model of eigenvalues (IV) and pairwise comparisons of an NPMANOVA on PC1 to PC4 (III). (M=male, F=female) 
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Appendix F: Results test difference anterior and posterior phalanges 

 

1. Scatterplot of a (between groups) PCA on a dataset of 16 intermediate phalanges (eight anterior and eight 
posterior) belonging to Capreolus capreolus and 10 intermediate phalanges (5 anterior and 5 posterior) 
belonging to Dama dama to test for differences between forelimb and hindlimb specimens. With eigenvalues 
provided for PC’s 1 to 4. 

 

 

 

 

2. Pairwise comparisons of NPMANOVA on components 1 to 4 of a (between groups) PCA on anterior and 
posterior C. capreolus and D. dama specimens, with significant differences in bold. 

 

 

D. dama 
anterior 

D. dama 
posterior 

C. capreolus 
anterior 

C. capreolus 
posterior 

D. dama anterior - 0.1755 0.0008 0.0007 
D. dama posterior 0.1755 - 0.001 0.001 
C. capreolus anterior 0.0008 0.001 - 0.0658 
C. capreolus posterior 0.0007 0.001 0.0658 - 
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Appendix G: Eigenvalues associated with bg-PCA on all extant specimens 

 

1. Eigenvalues associated with bg-PCA on all extant intermediate phalanges (II), with broken stick model of 
eigenvalue distributions (I). 

 

 

 

2. Eigenvalues associated with bg-PCA on all extant calcanei (II), with broken stick model of eigenvalue 
distributions (I). 
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Appendix H: Regressions of relevant principal components against log 
centroid size 

1. Results of ordinary least squares regressions of the first four principal components against log centroid 
size for all extant calcanei. 

 

 

PC1 
 

PC2 
 

PC3 
 

PC4 
 R² 0.0414 R² 0.0306 R² 0.005 R² 0.0975 

R 0.2035 R 0.17516 R -0.71336 R 0.31231 
p 0.0202 p 0.0462 p 0.4199 p 0.00029 
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2. Results of ordinary least squares regressions of the first four principal components against log centroid 
size for all extant intermediate phalanges. 

 

 

PC1 
 

PC2 
 

PC3 
 

PC4 
 R² 0.0629 R² 0.2579 R² 0.0276 R² 0.0199 

R 0.2508 R 0.5078 R 0.1662 R 0.1413 
p 0.0026 p <0.001 p 0.0488 p 0.0946 
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Appendix I: R-scripts and output data of PGLS regressions in Caper on the 
relevant principal components 

1.  R-scripts and output of PGLS regression on relevant components of a PCA on all extant calcanei. 

 

Script: 

cerviddata<-read.table("C:\\Users\\Userone\\Desktop\\calcaneus\\cerviddata.txt, header = TRUE) 

cervidtree<-read.nexus("C:\\Users\\Userone\\Desktop\\ calcaneus \\cervidtree.nex") 

cervid<- comparative.data(phy = cervidtree, data = cerviddata, names.col = Species, vcv = TRUE, na.omit = 
FALSE, warn.dropped = TRUE) 

model.pgls<-pgls(PC1+PC2+PC3+PC4+PC5~factor(habitat), data = cervid, lambda ="ML", bounds = 
list(lambda=c(0.001,1), kappa=c(1e-6,3), delta=c(1e-6,3))) 

summary(model.pgls) 

Output: 

Call: 

pgls(formula = PC1 + PC2 + PC3 + PC4 + PC5 ~ factor(habitat),  

    data = cervid, lambda = "ML", bounds = list(lambda = c(0.001,  

        1), kappa = c(1e-06, 3), delta = c(1e-06, 3))) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.41509 -0.20067 -0.03795  0.15045  0.52727  

Branch length transformations: 

kappa  [Fix]  : 1.000 

lambda [ ML]  : 0.906 

   lower bound : 0.001, p = 0.3227 

   upper bound : 1.000, p = 0.29021 

   95.0% CI   : (0.218, NA) 

delta  [Fix]  : 1.000 

Coefficients: 

                     Estimate Std. Error t value Pr(>|t|) 

(Intercept)        -0.0093037  0.0391663 -0.2375   0.8148 



370 
 

factor(habitat)for -0.0232979  0.0386020 -0.6035   0.5533 

factor(habitat)gra -0.0137229  0.0362072 -0.3790   0.7089 

factor(habitat)mou  0.0315348  0.0445770  0.7074   0.4879 

factor(habitat)tun -0.0347755  0.0753348 -0.4616   0.6496 

factor(habitat)woo  0.0446740  0.0362310  1.2330   0.2326 

 

Residual standard error: 0.2994 on 19 degrees of freedom 

Multiple R-squared: 0.283,      Adjusted R-squared: 0.09431  

F-statistic:   1.5 on 5 and 19 DF,  p-value: 0.2366  

 

 

2.  R-scripts and output of PGLS regression on relevant components of a PCA on all extant intermediate 
phalanges. 

 

Script: 

NHIS<-read.table("C:\\Users\\Userone\\Desktop\\Phalanges\\cerviddata.txt ",header=TRUE) 

NHIS<-read.nexus("C:\\Users\\Userone\\Desktop\\Phalanges\\cervidtree.nex ") 

NHIS<- comparative.data(phy = cervidtree, data = cerviddata, names.col = Species, vcv.dim=3, vcv = TRUE, 
na.omit = FALSE, warn.dropped = TRUE) 

model.pgls<-pgls(PC1+PC2+PC3+PC4~factor(habitat), data = cervid, lambda ="ML", bounds = 
list(lambda=c(0.001,1), kappa=c(1e-6,3), delta=c(1e-6,3))) 

summary(model.pgls) 

Output: 

Call: 

pgls(formula = PC1 + PC2 + PC3 + PC4 ~ factor(habitat), data = cervid,  

    lambda = "ML", bounds = list(lambda = c(0.001, 1), kappa = c(1e-06,  

        3), delta = c(1e-06, 3))) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.50537 -0.12803  0.08418  0.26392  0.53630  
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Branch length transformations: 

 

kappa  [Fix]  : 1.000 

lambda [ ML]  : 0.811 

   lower bound : 0.001, p = 0.072579 

   upper bound : 1.000, p = 0.066754 

   95.0% CI   : (NA, NA) 

delta  [Fix]  : 1.000 

 

Coefficients: 

                     Estimate Std. Error t value Pr(>|t|) 

(Intercept)        -0.0209160  0.0442900 -0.4723   0.6421 

factor(habitat)for -0.0124746  0.0461532 -0.2703   0.7899 

factor(habitat)gra  0.0086361  0.0434242  0.1989   0.8445 

factor(habitat)mou  0.0615649  0.0533889  1.1531   0.2632 

factor(habitat)tun -0.0207286  0.0870846 -0.2380   0.8144 

factor(habitat)woo  0.0502388  0.0432959  1.1604   0.2603 

 

Residual standard error: 0.3394 on 19 degrees of freedom 

Multiple R-squared: 0.1881,     Adjusted R-squared: -0.02559  

F-statistic: 0.8802 on 5 and 19 DF,  p-value: 0.5131  
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Appendix J: Eigenvalues associated with bg-PCA on calcaneus model with 
fossil specimens 

 

1. Eigenvalues associated with bg-PCA on all extant calcanei and Trinil fossils (II), with broken stick model of 
eigenvalue distributions (I). 

 
 
 
 
2. Eigenvalues associated with bg-PCA on all extant calcanei and Axis lydekkeri fossils (II), with broken stick 
model of eigenvalue distributions (I). 
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3. Eigenvalues associated with bg-PCA on all extant calcanei and Cervus kendengensis fossils from the Kedung 
Brubus faunal unit (II), with broken stick model of eigenvalue distributions (I). 

 

 
 
 

 

4. Eigenvalues associated with bg-PCA on all extant calcanei and Sangiran fossils (II), with broken stick model of 
eigenvalue distributions (I). 
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Appendix K: Eigenvalues associated with bg-PCA on intermediate phalanx 
model with fossil specimens 

 

1. Eigenvalues associated with bg-PCA on all extant phalanges and fossils from Trinil (II), with broken stick 
model of eigenvalue distributions (I). 

 

 
 

2. Eigenvalues associated with bg-PCA on all extant phalanges and Axis lydekkeri fossils (II), with broken stick 
model of eigenvalue distributions (I). 
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3. Eigenvalues associated with bg-PCA on all extant phalanges and Cervus kendengensis fossils from the Kedung 
Brubus faunal unit (II), with broken stick model of eigenvalue distributions (I). 

 

 

 
 

 

4. Eigenvalues associated with bg-PCA on all extant phalanges and fossils from Sangiran (II), with broken stick 
model of eigenvalue distributions (I). 
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Appendix L: bg-PCA scatterplots of PC3 and PC4 of the fossil calcaneus 
analyses, with associated results of Krukal-Wallis test 

1. PC1 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Trinil ordered 
by habitat/locomotor strategy with 50% confidence intervals. 

 

2. PC2 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Trinil ordered 
by habitat/locomotor strategy with 50% confidence intervals. 

 



377 
 

3. PC3 and PC4 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Trinil ordered 
by habitat/locomotor strategy with 50% confidence intervals. 

 

 

4. p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
calcaneus specimens and fossils from Trinil, with significant values (p<0.05) in bold. (TRIN=Trinil)  

 

PC3 Type 3 Type 2 Type 4 Type 1 TRIN Type 5 
Type 3 - 0.007621 0.4153 0.2776 0.03259 0.4984 
Type 2 0.007621 - 0.07505 0.03692 0.06497 0.00431 
Type 4 0.4153 0.07505 - 0.8518 0.6839 0.6838 
Type 1 0.2776 0.03692 0.8518 - 0.2843 0.8925 
TRIN 0.03259 0.06497 0.6839 0.2843 - 0.1486 
Type 5 0.4984 0.00431 0.6838 0.8925 0.1486 - 
PC4 Type 3 Type 2 Type 4 Type 1 TRIN Type 5 
Type 3 - 0.4082 0.004768 0.8906 0.7767 0.03737 
Type 2 0.4082 - 0.229 0.3328 0.6343 0.5747 
Type 4 0.004768 0.229 - 0.007541 0.02458 0.469 
Type 1 0.8906 0.3328 0.007541 - 0.8922 0.02287 
TRIN 0.7767 0.6343 0.02458 0.8922 - 0.07378 
Type 5 0.03737 0.5747 0.469 0.02287 0.07378 - 
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5. PC1 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil Axis lydekkeri calcanei 
ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

6. PC2 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil Axis lydekkeri calcanei 
ordered by habitat/locomotor strategy with 50% confidence intervals. 
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7. PC3 and PC4 scatterplot of a between groups PCA of all extant calcanei and fossil Axis lydekkeri calcanei 
ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 

8. p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
calcaneus specimens and Axis lydekkeri fossils (ALY), with significant values (p<0.05) in bold.  

 

PC3 Type 3 Type 2 Type 4 Type 1 ALY Type 5 

Type 3 - 0.009161 0.3671 0.3807 0.01056 0.5312 
Type 2 0.009161 - 0.0606 0.02109 0.07326 0.006766 
Type 4 0.3671 0.0606 - 0.9702 0.3818 0.7173 
Type 1 0.3807 0.02109 0.9702 - 0.1061 0.982 
ALY 0.01056 0.07326 0.3818 0.1061 - 0.06485 
Type 5 0.5312 0.006766 0.7173 0.982 0.06485 - 

PC4 Type 3 Type 2 Type 4 Type 1 ALY Type 5 

Type 3 - 0.2419 0.004768 0.7907 0.719 0.04058 
Type 2 0.2419 - 0.2685 0.2765 0.5428 0.7511 
Type 4 0.004768 0.2685 - 0.007131 0.02543 0.4153 
Type 1 0.7907 0.2765 0.007131 - 0.8203 0.03233 
ALY 0.719 0.5428 0.02543 0.8203 - 0.1008 
Type 5 0.04058 0.7511 0.4153 0.03233 0.1008 - 
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9. PC1 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil Cervus kendengensis 
calcanei ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 

10. PC2 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil Cervus kendengensis 
calcanei ordered by habitat/locomotor strategy with 50% confidence intervals. 
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11. PC3 and PC4 scatterplot of a between groups PCA of all extant calcanei and fossil Cervus kendengensis 
calcanei ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 

12. p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
calcaneus specimens and and Cervus kendengensis fossils (CKE), with significant values (p<0.05) in bold. 
 

PC3 Type 3 CKE Type 2 Type 4 Type 1 Type 5 

Type 3 - 0.07362 0.2546 0.6416 0.4166 0.294 
CKE 0.07362 - 0.4014 0.01569 0.001637 0.01551 
Type 2 0.2546 0.4014 - 0.0606 0.03183 0.05393 
Type 4 0.6416 0.01569 0.0606 - 0.9553 0.6186 
Type 1 0.4166 0.001637 0.03183 0.9553 - 0.5505 
Type 5 0.294 0.01551 0.05393 0.6186 0.5505 - 

PC4 Type 3 CKE Type 2 Type 4 Type 1 Type 5 

Type 3 - 0.472 0.1382 0.01704 0.3426 0.04226 
CKE 0.472 - 0.4777 0.2159 0.7698 0.466 
Type 2 0.1382 0.4777 - 0.4705 0.1978 0.9417 
Type 4 0.01704 0.2159 0.4705 - 0.03316 0.5871 
Type 1 0.3426 0.7698 0.1978 0.03316 - 0.1122 
Type 5 0.04226 0.466 0.9417 0.5871 0.1122 - 
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13. PC1 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Sangiran 
ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 

14. PC2 and PC3 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Sangiran 
ordered by habitat/locomotor strategy with 50% confidence intervals. 
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15. PC3 and PC4 scatterplot of a between groups PCA of all extant calcanei and fossil calcanei from Sangiran 
ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 

16. p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
calcaneus specimens and Sangiran fossils, with significant values (p<0.05) in bold.  
 

PC3 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 
Sangiran - 0.000138 0.8099 0.03367 0.01342 0.021 
Type 1 0.000138 - 0.000616 0.1168 0.6404 0.3383 
Type 2 0.8099 0.000616 - 0.04411 0.0184 0.0299 
Type 3 0.03367 0.1168 0.04411 - 0.5804 0.6722 
Type 4 0.01342 0.6404 0.0184 0.5804 - 0.892 
Type 5 0.021 0.3383 0.0299 0.6722 0.892 - 
PC4 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 
Sangiran - 0.5252 0.8099 0.3827 0.1853 0.2774 
Type 1 0.5252 - 0.5558 0.7845 0.0288 0.01406 
Type 2 0.8099 0.5558 - 0.3412 0.4134 0.4208 
Type 3 0.3827 0.7845 0.3412 - 0.03131 0.02135 
Type 4 0.1853 0.0288 0.4134 0.03131 - 0.7514 
Type 5 0.2774 0.01406 0.4208 0.02135 0.7514 - 
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Appendix M: bg-PCA scatterplots of PC3 and PC4 of the fossil intermediate 
phalanx analyses, with associated results of Krukal-Wallis test 
 
1. PC1 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and fossil Phalanges 
from Trinil ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

2. PC2 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and fossil Phalanges 
from Trinil ordered by habitat/locomotor strategy with 50% confidence intervals. 
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3. PC3 and PC4 scatterplot of a between groups PCA of all extant intermediate phalanges and fossil Phalanges 
from Trinil ordered by habitat/locomotor strategy with 50% confidence intervals. 

 
 
 

4. p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
intermediate phalanx specimens and Trinil fossils, with significant values (p<0.05) in bold. 

PC3 Trinil Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Trinil - 0.2905 0.008123 0.001652 0.08377 0.001154 0.02703 
Type 1 0.2905 - 0.000477 0.00016 0.2417 1.81E-05 0.09962 
Type 2 0.008123 0.000477 - 0.03225 0.0334 0.2739 0.02385 
Type 3 0.001652 0.00016 0.03225 - 0.1672 0.09805 0.08067 
Type 4 0.08377 0.2417 0.0334 0.1672 - 0.01519 0.8938 
Type 5 0.001154 1.81E-05 0.2739 0.09805 0.01519 - 0.002675 
Type 6 0.02703 0.09962 0.02385 0.08067 0.8938 0.002675 - 
PC4 Trinil Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Trinil - 0.2553 0.2129 0.000975 0.02004 0.000103 0.3109 
Type 1 0.2553 - 0.442 0.00029 0.03111 3.32E-06 0.9789 
Type 2 0.2129 0.442 - 0.05584 0.4033 0.004683 0.4869 
Type 3 0.000975 0.00029 0.05584 - 0.2506 0.09336 0.003012 
Type 4 0.02004 0.03111 0.4033 0.2506 - 0.01519 0.02318 
Type 5 0.000103 3.32E-06 0.004683 0.09336 0.01519 - 2.89E-05 
Type 6 0.3109 0.9789 0.4869 0.003012 0.02318 2.89E-05 - 
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5. PC1 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Axis lydekkeri 
phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 

 
 

6. PC2 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Axis lydekkeri 
phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 
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7. PC3 and PC4 scatterplot of a between groups PCA of all extant intermediate phalanges and Axis lydekkeri 
phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 

 
 

8.  p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
intermediate phalanx specimens and Axis lydekkeri fossils (ALY), with significant values (p<0.05) in bold. 
 

PC3 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 ALY 
Type 1 - 0.1889 0.03691 0.9262 1.07E-06 0.3552 0.01992 
Type 2 0.1889 - 0.7967 0.3072 0.0302 0.6021 0.0291 
Type 3 0.03691 0.7967 - 0.1845 4.60E-05 0.4343 0.003572 
Type 4 0.9262 0.3072 0.1845 - 0.000284 0.4382 0.07948 
Type 5 1.07E-06 0.0302 4.60E-05 0.000284 - 0.000118 0.000604 
Type 6 0.3552 0.6021 0.4343 0.4382 0.000118 - 0.02125 
ALY 0.01992 0.0291 0.003572 0.07948 0.000604 0.02125 - 
PC4 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 ALY 
Type 1 - 0.01623 3.65E-06 0.009215 0.9732 0.3461 0.6434 
Type 2 0.01623 - 0.9254 0.9719 0.04987 0.1178 0.1421 
Type 3 3.65E-06 0.9254 - 0.8719 0.001325 0.005634 0.01773 
Type 4 0.009215 0.9719 0.8719 - 0.0263 0.07715 0.1449 
Type 5 0.9732 0.04987 0.001325 0.0263 - 0.4071 0.8654 
Type 6 0.3461 0.1178 0.005634 0.07715 0.4071 - 0.8316 
ALY 0.6434 0.1421 0.01773 0.1449 0.8654 0.8316 - 
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9. PC1 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Cervus 
kendengensis phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 

 
 

10. PC2 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Cervus 
kendengensis phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 
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11. PC3 and PC4 scatterplot of a between groups PCA of all extant intermediate phalanges and Cervus 
kendengensis phalanges ordered by habitat/locomotor strategy with 50% confidence intervals. 

 
 

12.  p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
intermediate phalanx specimens and Cervus kendegensis fossils (CKE), with significant values (p<0.05) in bold. 

 

PC3 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 CKE 
Type 1 - 0.02585 4.31E-11 0.008676 0.5492 0.03533 0.000393 
Type 2 0.02585 - 0.0169 0.8053 0.4957 0.6851 0.009171 
Type 3 4.31E-11 0.0169 - 0.03832 0.005202 0.002342 0.01982 
Type 4 0.008676 0.8053 0.03832 - 0.4157 0.4382 0.008458 
Type 5 0.5492 0.4957 0.005202 0.4157 - 0.5432 0.004812 
Type 6 0.03533 0.6851 0.002342 0.4382 0.5432 - 0.005779 
CKE 0.000393 0.009171 0.01982 0.008458 0.004812 0.005779 - 
PC4 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 CKE 
Type 1 - 0.2631 0.000417 0.8129 6.97E-05 0.2209 0.001474 
Type 2 0.2631 - 0.1819 0.6985 0.01967 0.7281 0.003224 
Type 3 0.000417 0.1819 - 0.161 0.03811 0.07588 0.004947 
Type 4 0.8129 0.6985 0.161 - 0.01462 0.6869 0.02346 
Type 5 6.97E-05 0.01967 0.03811 0.01462 - 0.01581 0.2923 
Type 6 0.2209 0.7281 0.07588 0.6869 0.01581 - 0.003105 
CKE 0.001474 0.003224 0.004947 0.02346 0.2923 0.003105 - 
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13. PC1 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Sangiran 
phalanges, ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 
14. PC2 and PC3 scatterplot of a between groups PCA of all extant intermediate phalanges and Sangiran 
phalanges, ordered by habitat/locomotor strategy with 50% confidence intervals. 
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15. PC3 and PC4 scatterplot of a between groups PCA of all extant intermediate phalanges and Sangiran 
phalanges, ordered by habitat/locomotor strategy with 50% confidence intervals. 

 

 
 

16.  p-values of pairwise comparisons of a Kruskal-Wallis test for PC3 and PC4 of the bg- PCA on all extant 
intermediate phalanx specimens and Sangiran fossils, with significant values (p<0.05) in bold. 

 

PC3 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Sangiran - 0.000469 0.001525 7.52E-05 0.005921 0.006167 0.1538 
Type 1 0.000469 - 0.17 0.1181 0.751 0.6618 0.000698 
Type 2 0.001525 0.17 - 0.6552 0.1965 0.2079 0.001177 
Type 3 7.52E-05 0.1181 0.6552 - 0.1309 0.05279 3.83E-06 
Type 4 0.005921 0.751 0.1965 0.1309 - 0.9812 0.01943 
Type 5 0.006167 0.6618 0.2079 0.05279 0.9812 - 0.01931 
Type 6 0.1538 0.000698 0.001177 3.83E-06 0.01943 0.01931 - 
PC4 Sangiran Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 
Sangiran - 0.01588 0.8563 0.9167 0.8323 0.001772 0.2048 
Type 1 0.01588 - 0.03642 0.000363 0.003024 0.01953 0.1563 
Type 2 0.8563 0.03642 - 0.9361 0.9394 0.003607 0.2024 
Type 3 0.9167 0.000363 0.9361 - 0.9691 2.38E-05 0.1339 
Type 4 0.8323 0.003024 0.9394 0.9691 - 0.000531 0.04514 
Type 5 0.001772 0.01953 0.003607 2.38E-05 0.000531 - 0.007559 
Type 6 0.2048 0.1563 0.2024 0.1339 0.04514 0.007559 - 
 


