

Durham E-Theses

Fluorine Gas as a Selective Diffuorinating Reagent

HAMPTON, ALEXANDER, STUART

How to cite:

HAMPTON, ALEXANDER, STUART (2020) Fluorine Gas as a Selective Difluorinating Reagent, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13631/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

FLUORINE GAS AS A SELECTIVE DIFLUORINATING REAGENT

ALEXANDER S. HAMPTON

A thesis submitted for the degree of Doctor of Philosophy

Department of Chemistry Durham University April 2020

Abstract

The development of organofluorine chemistry has revolutionised the way many agrochemical and pharmaceutical companies design and screen potential new active ingredients. As part of these advances, several methods of selectively introducing C-F, $>CF_2$ or $-CF_3$ groups into a range of organic compounds has been developed.

In this thesis, we describe the selective syntheses of >CF₂ groups using fluorine gas (F₂) by transformation of CH₂ groups α - to carbonyl systems. Our fluorination methodology was applied to a range of 1,3-diketone, 1,3-diester, 1,3-ketoester and ester substrates to produce the corresponding CF₂C=O derivatives. The reactivity of F₂ was mediated by the addition of various nitrogen bases, with the addition of quinuclidine appearing to afford the best selectivity for the selective synthesis of >CF₂ containing compounds which could, in principle, be scaled up to manufacturing quantities.

Further reactions of some of the diffuoroesters synthesised during this project were investigated. The $ArCF_2X$ moiety is of particular interest currently to the life science industries due to the beneficial physicochemical and pharmacokinetic properties that the incorporation of fluorine provides. In particular, amidation reactions were successfully performed to generate a new synthetic route to diffuoroamides.

Finally, selective fluorinations of aromatic systems using F_2 in basic media was attempted to complement previous literature on the fluorination of these systems in acidic media.

Scheme 1: Selective diffuorination reactions performed using F_2 described in this thesis

Scheme 2: A midation reactions involving diffuoroesters synthesised using F_2

Acknowledgements

I would firstly like to acknowledge all of the support that Professor Graham Sandford has given me throughout my time at Durham; both as my PhD supervisor, and as my academic advisor during my undergraduate degree. I'm thankful for the introduction into organofluorine chemistry, the constant encouragement, advice — both in and out of the lab, and more recently — patience reading this thesis.

I would also like to thank Syngenta for funding this project, and Dr. Graham McDougald for his support over the years. Dr. Martin Bowden, Dr. Peter Burland and Dr. Rachel Donkor were extremely helpful during my placement at Syngenta Jealott's Hill.

This research would not have been possible without the support of the experienced analytical and support staff in Durham's Chemistry Department. I would like to thank Alan, Juan and Catherine in NMR, Dima for his incredible work in crystallography, Dave and Pete in mass spectrometry, Malcolm and Aaron in the glassbowing workshop and Annette for her tireless work in ensuring the efficient running of this Department.

I have greatly enjoyed the past few years with various members of the Sandford research group; Tony, Craig, Etienne, Darren, my fellow Musketeers Josh and Marcus, Neshat, Ben and Mark. I would also like to thank the many 4th year and exchange students that we have been lucky to have spend time with us; Alex, Anne, Bobbi, Zahide, Rob, Sophie, Lawrence, Kiera, Johnny, Ellis and Tom. I would especially like to thank Etienne for teaching me how to use the fluorination rig, and Johnny for continuing parts of this work.

While not in the lab, I have greatly enjoyed the last few years spending time with some wonderful people at Ustinov, in particular those that I spend time with on the Exec; Alex, Jamie, Thom, Alastair, Tom, Diana, Connor, Vera, Bryony and Rebecca. I will also miss the lazy afternoons and late nights spent at both Howlands and Sheraton with Ed, Yan, Matt and James.

I would like to thank my parents for their continual love and support, despite spending twice as long in Durham as I originally planned to! I am eternally grateful for all the opportunities and inspiration that they have provided me with.

Finally I would like to thank my wonderful partner Hayley for keeping my sane, and more importantly fed throughout the past few years. I would not have been able to finish this thesis without being able to run ideas by you, and hope that some of them made sense.

Memorandum

The work described in this thesis was carried out at Durham University between September 2016 and September 2019, or at Syngenta's Jealott's Hill International Research Centre during October 2018. This thesis is the work of the author, except where acknowledged by reference, and has not been submitted for any other degree. The copyright of this thesis rests with the author. No quotation from it should be published without the author's prior written consent and information derived from it should be acknowledged.

This work has been presented, in part, at:

- Syngenta Collaborative Research Conference, Jealott's Hill, UK, 19–20th September 2019, oral presentation, 1st place talk prize
- 19th European Symposium on Fluorine Chemistry, Warsaw, Poland, 25–31st August 2019, poster presentation, 2nd place prize of the organic stream
- 3. Postgraduate Gala Symposium, Durham, UK, 20th June 2019, oral presentation
- 18th RSC Postgraduate Symposium in Fluorine Chemistry, Southampton, 11– 12th April 2019, poster presentation
- Syngenta Collaborative Research Conference, Jealott's Hill, UK, 13–14th September 2018, poster presentation
- 22nd International Symposium on Fluorine Chemistry, Oxford, UK, 22–27th July 2018, poster presentation
- 7. Postgraduate Gala Symposium, Durham, UK, 21st June 2018, *poster presentation*

Abbreviations

18-crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane		
a	anhydrous		
Å	angström		
AcOF	acetyl hypofluorite		
$AgBF_4$	silver tetrafluoroborate		
AgF	silver fluoride		
AI	active ingredient		
Ar	aryl		
ASAP	atmospheric solid analysis probe		
BIOMe	methoxybenziodoxole		
BKE	β -ketoester		
BPU	benzoyl phenyl urea		
Bu	butyl		
CaF_2	fluorspar		
CCDC	Cambridge Crystallographic Data Centre		
$(CD_3)_2CO$	deuterated acetone		
CD_3CN	deuterated acetonitrile		
$CFCl_3$	trichlorofluoromethane		

CHCl ₃	chloroform
CNS	central nervous system
conc.	concentrated
COSY	correlation spectroscopy
Cs_2CO_3	caesium carbonate
CsF	caesium fluoride
$Cu(NO_3)_2 \cdot 2.5 (H_2O)$	hydrated copper (II) nitrate
$Cu(OTf)_2$	copper (II) triflate
d	day
D_2O	deuterium oxide
DABCO	1,4-diazabicyclo $[2.2.2]$ octane
DAST	diethylaminosulfur trifluoride
dba	dibenzylideneacetone
DBH	1,3-dibromo-5,5-dimethylhydantoin
DBM	1,3-diphenylpropane-1,3-dione
DBU	1,8-diazabicyclo $[5.4.0]$ undec-7-ene
DCM	dichloromethane
difluoro-BKE	α, α -difluoro- β -keto esters
DMF	dimethylformamide
DMI	1,3-dimethyl-2-imidazolidinone
DPPF	1,1'-bis(diphenylphosphino)ferrocene
DT_{50}	half life
dq	doublet of quartets
Е	electrophilicity parameter

EDG	electron-donating group
EI	Electronic ionisation
equiv.	equivalents
ESI	Electrospray ionisation
Et	ethyl
EWG	electron-withdrawing group
F_2	fluorine gas
FBB	fluorinated building block
g	gram
GC	Gas Chromatography
GC-MS	Gas chromatography—Mass spectrometry coupling
h	hour
H_2	hydrogen gas
h u	photochemical
Hz	Hertz
H_2O	water
halex	halogen exchange
НСООН	formic acid
HgF_2	mercury(II) fluoride
HSQC	heteronuclear single quantum coherence
HMBC	heteronuclear multiple bond correlation
HF	hydrogen fluoride
IR	infrared
J	coupling constant, Hz

К	Kelvin
K_2CO_3	potassium carbonate
KF	potassium fluoride
KHMDS	potassium bis(trimethylsilyl)amide
LiHMDS	lithium bis(trimethylsilyl)amide
LiOTf	lithium trifluoromethanesulfonate
Lit.	literature
LiTMP	lithium tetramethylpiperidide
<i>m</i> -	meta
М	molar
m/z	relationship mass/charge
Me	methyl
mL	mililliter
MeOH	methanol
MeCN	acetonitrile
MgCl_2	magnesium chloride
MgSO_4	magnesium sulfate
MHz	Megahurtz
min	minutes
Mp	melting point
M.S.	Mass spectrometry
Ν	nucleophilicity parameter
N_2	nitrogen gas
$n-\mathrm{Bu}_4\mathrm{NH}_2\mathrm{F}_3$	tetrabutylammonium dihydrogentrifluoride

Na_3AlF_6	cryolite
$NaBF_4$	sodium tetrafluoroborate
$NaBH_4$	sodium borohydride
NaCl	sodium chloride
NaCO ₃	sodium carbonate
NaF	sodium fluoride
NaH	sodium hydride
NaHCO ₃	sodium bicarbonate
NaOEt	sodium ethoxide
NaOtBu	sodium tert-butoxide
NaOTf	sodium trifluoromethanesulfonate
NBS	N-bromosuccinimide
NH ₃	ammonia
NH ₃ NMP	ammonia N -methyl-2-pyrrolidone
NH ₃ NMP NMR	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance
NH ₃ NMP NMR <i>o</i> -	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho
NH ₃ NMP NMR <i>o</i> - <i>p</i> -	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para
NH ₃ NMP NMR <i>o</i> - <i>p</i> - P ₄ O ₁₀	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide
NH ₃ NMP NMR <i>o</i> - <i>p</i> - P ₄ O ₁₀ Pd/C	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide palladium on carbon
NH ₃ NMP NMR <i>o</i> - <i>p</i> - P ₄ O ₁₀ Pd/C Ph	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide palladium on carbon phenyl
NH3 NMP NMR <i>o</i> - <i>p</i> - P4O10 Pd/C Ph	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide palladium on carbon phenyl acid dissociation constant
NH3 NMP NMR <i>o</i> - <i>p</i> - P4O10 Pd/C Ph <i>pK</i> a ppm	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide palladium on carbon phenyl acid dissociation constant parts per million
NH3 NMP NMR <i>o</i> - <i>p</i> - P ₄ O ₁₀ Pd/C Ph pKa ppm Pt/C	ammonia N-methyl-2-pyrrolidone nuclear magnetic resonance ortho para phosphorous pentoxide palladium on carbon phenyl acid dissociation constant parts per million platinum on carbon

R	alkyl
Rf	retention factor
$\rm Rh/C$	rhodium on carbon
r.t.	room temperature
S	nucleophilic-specific slope parameter
$S_{\rm E}Ar$	aromatic electrophilic substitution
$\operatorname{Selectfluor}^{\operatorname{TM}}$	1-chloromethyl-4-fluoro-diazonia[2.2.2]bicyclooctane bis(tetrafluoroborate)
SET	single electron transfer
SF_4	sulfur tetrafluoride
SiF_4	silicon tetrafluoride
SIPr	1,3-bis-(2,6-diisopropyl phenyl)imidazoline-2-ylidene
S_NAr	aromatic nucleophilic substitution
temp.	temperature
THF	tetrahydrofuran
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
$\mathrm{TMSCF}_{2}\mathrm{H}$	(difluoromethyl)trimethylsilane
Ts	tosyl
Х	halogen
${\rm XeF}_2$	xenon difluoride
XRC	X-ray crystallography
δ	chemical shift/ ppm
Δ	heat

Contents

1	Sele	ective	Fluorination Strategies	19
	1.1	Introd	luction	19
	1.2	Prope	rties of Fluorine	21
		1.2.1	Size of Fluorine	21
		1.2.2	Bond Strengths	22
		1.2.3	pK_a	24
		1.2.4	Lipophilicity	24
		1.2.5	Degradation of Active Ingredients in Soil	26
		1.2.6	Oxidative Metabolism	27
	1.3	Select	ive Difluorination Strategies	29
		1.3.1	Nucleophilic Fluorinations for $\mathrm{RCOCF}_2\mathrm{R}$ Synthesis	30
		1.3.2	Electrophilic Fluorination for CF_2 Synthesis	34
		1.3.3	CF_2 Containing Building Blocks	40
		1.3.4	Direct Fluorinations	45
	1.4	Concl	usion	54
2	Syn	thesis	of 2,2-Difluoro-1,3-diketones	57
	2.1	Aims	and Approach	57
	2.2	Media	ting the Direct Fluorination of DBM	59
		2.2.1	Effect of Bases on the Fluorination of DBM	60
		2.2.2	Optimisation of the Synthesis of 2,2-Difluoro-1,3-	
			diphenylpropane-1,3-dione	62
		2.2.3	Recycling Quinuclidine	68
	2.3	Synth	esis of 1,3-Diphenylpropane-1,3-dione Derivatives	68
	2.4	Synth	esis of 2,2-Difluoro-diketone Derivatives	71
		2.4.1	Isolation of Products $93c-h$	71
	2.5	Mecha	anism of Fluorination	76
		2.5.1	Quinuclidinium– F_2 Interaction	85

CONTENTS

	2.6	Difluorination of 1,3-Diester Derivatives
		2.6.1 Introduction
		2.6.2 Fluorination of Dimethyl Malonate
		2.6.3 Fluorination of Dibenzoyl Malonate
	2.7	Conclusion
3	\mathbf{Syn}	athesis of 2,2-Difluoro- β -ketoesters95
	3.1	Aim and Approach
	3.2	Fluorination of β -Ketoesters
		3.2.1 Base Mediated Direct Fluorination of Ethyl Benzoylacetate 96
		3.2.2 Synthesis of Ethyl Benzoylacetate Derivatives
		3.2.3 Synthesis of Ethyl 2,2-Difluoro-3-oxo-3-propanoate Derivatives 105
		3.2.4 Difluorination of Alkyl β -Ketoesters
	3.3	Reactions of 2,2-Difluoro- β -ketoesters with
		Amines
	3.4	Proposed Fluorination Mechanism
	3.5	Conclusion
4	\mathbf{Syn}	thesis of $ArCF_2X$ Compounds 117
	4.1	Introduction to $ArCF_2X$ chemistry
	4.1 4.2	Introduction to $ArCF_2X$ chemistry $\dots \dots \dots$
	 4.1 4.2 4.3 	Introduction to $ArCF_2X$ chemistry
	4.14.24.3	Introduction to $ArCF_2X$ chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126
	4.14.24.34.4	Introduction to ArCF2X chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132
	 4.1 4.2 4.3 4.4 4.5 	Introduction to ArCF2X chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations121Fluorination of Ethyl Phenylacetate Derivatives126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136
	 4.1 4.2 4.3 4.4 4.5 4.6 	Introduction to ArCF2X chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate138
	 4.1 4.2 4.3 4.4 4.5 4.6 	Introduction to ArCF_2X chemistry117Aims121Aims of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF_2X Compounds140
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Introduction to ArCF_2X chemistry
	$ \begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ \end{array} $	Introduction to ArCF_2X chemistry117Aims121Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF_2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Att 	Introduction to ArCF2X chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152empted Direct Fluorination of Aromatic Systems Using Medi-
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attrational equation (Applied Content) 	Introduction to ArCF2X chemistry117Aims121Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate152empted Direct Fluorination of Aromatic Systems Using Meding Agents153
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attraction 5.1 	Introduction to ArCF2X chemistry117Aims121Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152empted Direct Fluorination of Aromatic Systems Using Meding Agents153Introduction to Fluoroaromatics153
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attraction 5.1 5.2 	Introduction to ArCF2X chemistry117Aims121Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152empted Direct Fluorination of Aromatic Systems Using Meding Agents153Introduction to Fluoroaromatics153Fluorination of Aromatics154
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attration 5.1 5.2 	Introduction to ArCF2X chemistry117Aims121Huorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152empted Direct Fluorination of Aromatic Systems Using Meding Agents153Introduction to Fluoroaromatics153Fluorination of Aromatics1545.2.1Anisole155
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attratime 5.1 5.2 	Introduction to ArCF2X chemistry117Aims121Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of ArCF2X Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate148Conclusion152empted Direct Fluorination of Aromatic Systems Using Meding Agents153Introduction to Fluoroaromatics153Fluorination of Aromatics1545.2.1Anisole1555.2.2Aniline156
5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Attrating 5.1 5.2 	Introduction to $\operatorname{ArCF}_2 X$ chemistry117Aims121Fluorination of Ethyl 2-(4-Nitrophenyl)acetate1214.3.1Base Mediations126Fluorination of Ethyl Phenylacetate Derivatives132Proposed Fluorination Mechanism136Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate1384.6.1Hydrogentations of $\operatorname{ArCF}_2 X$ Compounds140Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate152empted Direct Fluorination of Aromatic Systems Using Medi-ng Agents153Introduction to Fluoroaromatics1545.2.1Anisole1555.2.2Aniline1565.2.34-Nitroaniline157

	5.3	Conclusion	163
6	Con	clusions	165
7	Fut	ure Work	169
8	Gen	eral Experimental and Instrumentation	171
9	Exp 9.1 9.2 9.3	General Procedure 1 (GP1)—Synthesis of compounds 91a–91g General Procedure 2 (GP2)—Synthesis of 93–93g	 175 175 180 186
	9.4	tion of DBM	187
10	\mathbf{Exp}	perimental to Chapter 3	189
	10.1 10.2 10.3 10.4	General Procedure 3 (GP3)—Synthesis of compounds 94a–94f General Procedure 4 (GP4)—Synthesis of compounds 96–96g General Procedure 5 (GP5)—Synthesis of compounds 210b–210e Screening Conditions for the Base Mediated Direct Fluorination of	189 194 198
		Ethyl Benzoylacetate	200
11	\mathbf{Exp}	perimental to Chapter 4	203
	11.1 11.2	Screening Conditions for the Base Mediated Direct Fluorination of Ethyl 2-(4-nitrophenyl)-acetate	203
	11.3	ates	205
		(4-nitrophenyl)-acetate	209
	11.4 11.5	Hydrogenation Screening of Ethyl 2,2-diffuoro-2-(4-nitrophenyl)acetat Hydrogenation Screening of 1-(Diffuoromethyl)-4-nitrobenzene 11.5.1 Hydrogenation of 1-(Diffuoromethyl)-4-nitrobenzene Using an	e211 211
	11.6	EasyMax ReactorFurther Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate11.6.1 General Synthesis of α, α -Difluoroamides	211212213
12	\mathbf{Exp}	perimental to Chapter 5	217
	12.1	Fluorination of Aromatics	217

12.1.1 Fluorinations Using Selectfluor ^{\mathbb{M}}				
12.2 Screening Conditions for the Base Mediated Direct Fluorination of				
4-nitroanisole	220			
References	223			

Chapter 1

Selective Fluorination Strategies

1.1 Introduction

The world's population is growing at a steady pace and is expected to reach 9.7 billion by the year 2050.¹ At the same time, the amount of land available for the growth of arable crops is decreasing due to climate change making some areas no longer available for crop production. This is compounded by the increase in meat-based diets as global populations move to cities. Meat-based diets require more water, land and energy than a vegetarian diet, and so it is likely that global food shortages will increase, and begin to affect the developed world.² As such, there is growing pressure on agrochemical companies to develop new methods of increasing global food production; either by increasing crop yields by the development of new herbicides and insecticides or by the development of new crop strains that themselves are more resistant to disease or have a wider tolerance of growing conditions.

Fluorine is incorporated into bioactive molecules due to a wide range of favourable physiochemical properties such as enhanced bioavailability as well as increased metabolic permeability and stability.^{3–5} Agrochemical companies are following the trend set by pharmaceutical companies of regularly introducing fluorine atoms into potential active ingredients (AI)s. One discovery strategy involves systematically incorporating fluorine into every synthetically available position of a potential agrochemical to determine if this will increase beneficial physiochemical properties of the AI. In 2018, 30% of the new Food and Drug Administration (FDA) approved drugs contained at least one fluorine atom, with an average of 2.7 fluorine atoms per fluorinated drug, and fluorine is found in 50% of marketed agrochemicals.⁶ In general, fluorine atoms have seen growing use in applications in everything from household applications, such as non-stick frying pans and waterproof phones, to industrial applications, such as refrigerants and fluoropolymers. Its unique properties have led to the development of new areas of synthetic chemistry focusing on the selective incorporation of fluorine into molecules. Despite being the 13^{th} most abundant element in the earth's crust, fluorine is usually found naturally in the insoluble salts fluorspar (CaF_2) or cryolite (Na_3AlF_6) which give rise to the limited examples of fluorinated highly toxic natural products. Since the discovery of the first fluorinated natural product potassium fluoroacetate and its metabolites, there have only been a handful of other fluorinated natural products discovered, such as 4-fluorothreonine, nucleocidin, several ω -fluorinated fatty acids and recently (2R3S4S)-5-fluoro-2,3,4trihydroxypentanoic acid.⁷⁻¹³ Despite the other halogens having a lower natural abundance than fluorine, there are around 3000 natural products containing other halogens which highlights the difficulties organisms have incorporating fluorine.¹⁴ Fluorine has been used to increase bioactivity since fludrocortisone (1, Florinef), was approved in 1955 in which fluorine replaces hydrogen at the 9- position (Figure 1.1).

Figure 1.1: Fludrocortionse, tradename Florinef

Agrochemical companies incorporate fluorine into AIs to utilise its unique biochemical and physiochemical properties. This thesis is concerned with the development of inexpensive fluorination methodologies that could, in principle, be used for the manufacture of new fluorinated agrochemicals.

Consequently, this introduction discusses organofluorine chemistry in general, and its applications in agrochemicals. It will also discuss reactions concerning the formation of CF_2 groups, which are of particular relevance to the results discussed.

1.2 Properties of Fluorine

Fluorine is slightly larger than hydrogen, but with completely different electronic properties due to fluorines high electronegativity and three lone pairs of electrons. It is this difference in electronegativity that leads to a range of physiochemical and biochemical properties that are beneficial in AIs.

1.2.1 Size of Fluorine

While the van der Waals radius of fluorine is only 20% larger than hydrogen, the C-F bond displays characteristics such as size and length that are more similar to a C=O bond than a C-H bond (Table 1.1).¹⁵⁻¹⁷ Fluorine is often used as a bioisostere for the C-OH group. For example, fluorine has been successfully used to replace a tertiary hydroxyl group in the Syngenta triazole fungicide flutriafol **2**. While the fluorinated analogue is still able to bind to its target site and display some biological activity, the overall fungicidal effect is reduced due to the lack of a hydroxyl functionality to act as a hydrogen bond donor.¹⁸

Figure 1.2: Flutriafol and its trifluorinated analogue

The high electronegativity of fluorine leads to a highly polarised C-F bond (1.41 D) that leads to a bond with more electrostatic and less covalent character (Table 1.2).

Bond	Bond $length/\mathring{A}$	van der Waals radius/ \mathring{A}	van der Waals volume of $\operatorname{atom}/\mathring{A}^3$	Total size $/\mathring{A}$
C-H	1.09	1.20	7.24	2.29
$C\!-\!F$	1.35	1.47	13.31	2.82
C-Cl	1.77	1.75	22.45	
C = O	1.23	1.52	14.71	2.73
$\rm C-OH$	1.43	1.52	14.71	
S = O	1.44	1.52	14.71	

Table 1.1: Bond length and volumes of the C–F bond compared to the C–H, C=O, C–OH and S=O bonds^{15–17}

Table 1.2: Electronic properties of the C–F bond compared to the C–H, C=0, C–OH and S=O bonds

Bond	Electronegativity of the element	Dipole moment $(\mu)/D$
$\mathrm{C}\mathrm{-H}$	2.20	~ -0.4
$C\!-\!F$	3.98	1.41
C-Cl	3.16	$1.87 (CH_3Cl)$
C = O	3.44	$2.33 (H_2C=O)$
C-OH	3.44	$2.87 (CH_3OH)$
S = O	3.44	$4.44~(\mathrm{CH}_3\mathrm{SO}_2\mathrm{CH}_3)$

1.2.2 Bond Strengths

The C-F bond (105.4 kcal mol⁻¹) is the strongest single bond to carbon in organic chemistry due to its increased electrostatic nature. Ionic contributions between $F^{\delta-}$ and $C^{\delta+}$ contributes to the standard covalent bond increasing overall bond strength. The strength of a C-F bond depends on the number of fluorine atoms attached to the carbon. As more fluorines are added to carbon, the *p*-character of the C-F increases, leading to more polarization and, hence, stronger bonds as observed for the bond strengths of fluoromethane to tetrafluoromethane (Table 1.3).¹⁹ The negative charge density on each additional fluorine remains constant, and so successive fluorines are attached to an increasingly positive carbon, therefore, increasing the electrostatic contributions to bond strength.

Entry	Compound	C-F Bond energies/ kcal mol^{-1}	
1	CH_3F	107	
2	$\mathrm{CH}_{2}\mathrm{F}_{2}$	110	
3	CHF_3	115	
4	CF_4	116	

Table 1.3: Effect of fluorine substitution on the strength of the C-F bond

Increasing the number of hydrogens replaced by fluorine can have significant effects on the overall polarity of the molecule. Whereas 1,4,7,10,13,16-

hexaoxacyclooctadecane (18-crown-6, 4) shows good selectivity for binding cations, the corresponding perfluorinated crown ether 5 has reversed polarity at the centre and thus binds to anions such as fluoride or superoxide anions (Figure 1.3).

Figure 1.3: Comparison of the ion complexes of 18-crown-6 and its perfluorinated analogue

A further effect of the C-F bond polarization is its effect on hybridisation. The non-polarized C-H bond prefers to be attached to sp^2 hybridised carbons whereas fluorine prefers to be attached to sp^3 hybridised carbon atoms. The fluorine attracts *p*-electron density from the sp^3 carbon into its low lying 2p orbital. The preference for fluorine to be attached to an sp^3 carbon can be shown in the Cope 3,3-sigmatropic rearrangement of 1,1-difluoro-1,5-hexadiene **6** to 3,3-difluoro-1,5-hexadiene **7** which is favoured by 5 kcal mol⁻¹ (Figure 1.4).²⁰

Figure 1.4: Isodemic Cope rearrangement of $\mathbf{6}$ illustrating the preference for fluorine to bond to an sp³ carbon

1.2.3 pK_{a}

Fluorine is the most electronegative element and as such, can have a significant electronic effect on nearby functional groups. Incorporating fluorine into organic molecules can lower the pK_a of functional groups, even several carbons away (Table 1.3) and this effect increases with the incorporation of subsequent fluorine atoms.²¹ Changes in pK_a can have many positive effects on physiochemical properties such as solubility and binding affinities, and pharmacokinetic properties such as bioavailability and metabolism. The lowering of the pK_a of nearby amines, alcohols, carboxylic acids and phosphonic acids can increase bioavailability and efficacy by increasing membrane penetration at physiological pH.²²

Table 1.4: Effect of fluorine substitution on pK_a and pK_b

Carboxylic acid	pK_{a}	Alcohol	$\mathrm{p}K_{\mathrm{a}}$	Amine	$\mathrm{p}K_\mathrm{b}$
$\rm CH_3 \rm CO_2 \rm H$	4.76	$\rm CH_3 CH_2 OH$	15.9	$\mathrm{CH}_3\mathrm{CH}_2\mathrm{NH}_2$	10.6
$\rm CH_2FCO_2H$	2.59	$\rm CF_3CH_2OH$	12.4	$CF_3CH_2NH_2$	5.7
$\mathrm{CHF}_{2}\mathrm{CO}_{2}\mathrm{H}$	1.34	$(CH_3)_3CH_2OH$	19.2	$\rm C_6H_5NH_2$	4.6
CF_3CO_2H	0.52	$(CF_3)_3CH_2OH$	5.1	$\mathrm{C}_{6}\mathrm{F}_{5}\mathrm{NH}_{2}$	-0.36

1.2.4 Lipophilicity

The lipophilicity of an AI is important in agrochemicals for two main reasons; membrane permeability and soil leaching. Lipophilicity is expressed as $\log P$ where P is the partition coefficient between octanol and water.

$$\log P_{\rm oct/wat} = \log \left(\frac{[\rm substrate]_{\rm octanol}}{[\rm substrate]_{\rm water}} \right)$$
(1.1)

Lipophilicity increases the amount of the AI that is transported *in vivo* around the target organism and raises the rate of passive diffusion across membranes. More

lipophilic molecules often have higher binding efficiencies at the active site regions of enzymes as these have a lower polarity than the rest of the cellular environment.

Increased lipophilicity is commonly exploited in insecticides such as diffubenzuron 8 which has an increased penetration into the central nervous system (CNS) of insects that is correlated to their $\log P$.²³ This strategy effects the CNS of insects, thus not harming treated crops.

Figure 1.5: Diflubenzuron

If a molecule is too lipophilic then the increase in solubility causes formulation and stability issues. While the incorporation of an AI across a membrane by passive diffusion is desired, if the AI is too lipophilic, it is possible for the compound to remain trapped in the lipid core and not be transported to the desired site. Above a $\log P$ value of approximately 3.5, the mobility of the compound through the plants xylem starts to become very limited.²⁴ Lipophilicity of an AI requires a balance though; if the AI is not lipophilic enough then it will not be taken up by the plant or insect or transported around the organism.

The incorporation of fluorine can modulate lipophilicity, either raising or lowering it, depending on the location of the fluorine atom. In the case of aliphatic systems, terminal mono-, di-, and tri-fluorinated systems tend to decrease lipophilicity due to the polar effects of the strong C-F and C-CF₃ bond dipoles created by the electronegative fluorine.²⁵

Perfluoroalkyl groups are added to organic molecules to increase lipophilicity such as in the broad spectrum insecticide flubendiamide $9.^{26}$ Incorporation of fluorine into aryl and heteroaryl systems such as PhF, PhCF₃ and PhOCF₃ also increases lipophilicity due to interactions of fluorine with π -bonds. AIs are often made more lipophilic by incorporating a fluorophenyl moiety such as in meperfluthrin 10. While α -fluorinated carbonyl derivatives are more lipophilic in octanol, the standard organic solvent used to determine partition coefficients, they are less lipophilic in hydrocarbon-water systems such as hexane or benzene. α -Fluoro and α, α -difluoro carbonyl derivatives undergo an increased rate of hydration compared to the nonfluorinated carbonyl system. In an octanol-water mixture, fluorine substitution increases the rate of acetalization with the alcohol, and hence lipophilicity increases.

Figure 1.6: Flubendiamide and meperfluthrin

A $\log P$ value of around 3 is the trigger for potential leaching of an AI through the soil, which can have significant environmental concerns unless half-life in the soil (DT_{50}) is short. Aquatic organisms uptake organic compounds at a rate that is roughly in proportion to their $\log P$ value and, with limited means of excretion, AIs can build up to toxic amounts.

1.2.5 Degradation of Active Ingredients in Soil

The DT_{50} is essential to consider in the development of new agrochemicals due to environmental and economic considerations. There is a beneficial steric halogen effect of introducing fluorine into the 2- and 6- positions of phenyl rings on environmental stability. The introduction of fluorine can cause different metabolic pathways to decompose the AI as discovered by comparing the benzyl phenyl urea insecticide diffubenzuron **8** with its *N*-2,6-dichlorobenzoyl analogue **11**.

Scheme 1.1: Metabolism of diffubenzuron and its dichlorinated analogue under soil conditions

Both diflubenzuron 8 and the chlorinated analogue 11 are stable at acidic pH but hydrolysed in the soil (pH 9-10) with a DT_{50} of 2-3 days (d) and 6-12 months respectively.²⁷ At higher pH values, they undergo different amide hydrolysis reactions. The different reactions can be explained by comparing the bond angles between the -CO(NH)- moiety and the aromatic ring. Due to the larger size of chlorine, the 2,6-dichlorobenzoyl moiety is at 90° to the benzoyl phenyl urea (BPU) frame, whereas the smaller fluorine results in the 2,6-difluorobenzoyl moiety lying in the same plane as the BPU frame.²³ Without this rotation, the amide adjacent to the diffuorophenyl ring in 8 is susceptible to hydrolysis, and so is metabolised at a much faster rate. Interestingly, 8 has a larvicidal activity against *Pieris brassicae* 20 times that of the chlorinated analogue 11 despite having a lower log*P* value due to the more hydrophilic nature of fluorine than chlorine. Usually, the larvicidal activity is proportional to a higher log*P* value.

1.2.6 Oxidative Metabolism

AIs are rarely excreted from an organism without some modification performed to aid excretion. In mammals, this is usually performed by Cytochrome P450 monooxygenases found in the liver. This family of heme-thiolate proteins selectively oxidise compounds at specific, metabolically labile sites. Once oxidised, lipophilicity is decreased, and, hence, the metabolites are excreted more readily. This is a significant issue for the pharmaceutical industry, as the body attempts to detoxify and excrete drugs before they reach their desired target site. The C-F bond is the strongest single bond in organic chemistry, and introduction of fluorine effectively blocks oxidative metabolism at that position.²⁸ This effect was used in the lead optimisation of the cholesterol inhibitor Ezetimib $16.^{29,30}$ Introduction of fluorine onto the aromatic rings in the *para* position prevents ring oxidation by Cytochrome P450 enzymes. Additionally dealkylation of the C4 methoxy group and stereoselective benzylic oxidation, resulted in a compound that was 400 times more potent than the lead compound 17.

In particular, 4-fluorophenyl groups are often used in AIs to increase bioavailability.³¹ However, while electron-withdrawing fluorine atoms stabilise aromatics against oxidative and electrophilic attack, polyfluorination can increase susceptibility to nucleophilic attack. It is for this reason that usually only a few fluorine atoms, in specific locations, are incorporated into agrochemicals, in general.

Figure 1.7: Ezetimibe and its precursor clinical candidates with their effective doses (ED_{50})

The metabolic pathways that an AI can undergo are very crop-specific. By careful selection of the fluorination site, the applicable crop selection can be broadened or narrowed and, in some cases, can be drastically altered. By moving the location of a $-CF_3$ group and a few other minor structural changes, picoxystrobin **19** (Syngenta) is now no longer a fungicide, but the acaricide fluacryprim **20** with a completely different mode of action as it now fits the active site of a different enzyme.

Figure 1.8: Picoxystrobin and fluacryprim

The importance of fluorine in the agrochemical industries can not be overstated due to the range of beneficial physicochemical properties it can imbue as discussed above. As fluorine is generally not present in naturally occurring molecules, there has been much focus on developing methods of introducing fluorine into organic systems. Importantly, the specific location of fluorine in a molecule is important as it relates to pK_a and metabolic stability and, therefore, regioselective fluorination strategies are desired. There are many excellent reviews on selective electrophilic and nucleophilic fluorination strategies to introduce C-F, CF₃ and $-\text{OCF}_3$ into molecules, and, of particular relevance to the research in this thesis, Pattison has recently written a review on synthetic strategies to generate α, α -difluorodiketones.^{5,32–38} In the following sections, a brief overview of the fluorination methodology of particular relevance to the research in this thesis is described.

1.3 Selective Difluorination Strategies

Fluorine increases the electrophilicity of carbonyl carbons when it is introduced α to the moiety. Incorporation of two fluorine atoms can often drastically increase the rate of hydration of the carbonyl group due to fluorines electronegativity that activates the C=O group to nucleophilic attack. While hydration is often not desired for synthetic applications, it can have beneficial biophysical properties. Several enzymes are inhibited by hydrated ketones, and hydrated difluoroketones have been used as highly effective inhibitors by replacing amide moieties that are susceptible to hydrolysis (Scheme 1.2).^{39,40}

Scheme 1.2: Hydrate formation of an α , α -diffuoroketone and examples of enzyme inhibitors containing this functionality

Of particular interest to the agrochemical and pharmaceutical industries are the synthesis of $ArCF_2H$ containing compounds due to unique biochemical properties that allow these systems to act as a bioisostere of both hydroxyl and thiol as wells as acting as a lipophilic hydrogen bond donor.^{41,42} For example, the fluorinated pyrazole carboxamide **30** has increased fungicidal activity against *Alternia solani* when a diffuoromethyl group (**30a**, X = H) is present compared to the triffuoromethyl derivative (**30b**, X = F) (Figure 1.10).⁴³ The diffuoromethyl group acts as a weak hydrogen bond donor to the amide carbonyl, and appears to have a significant role in the enzyme-inhibitor interaction. Incorporation of an $ArCF_2H$ moiety into an organic molecule also increases the metabolic stability, solubility and oral bioavail-ability compared to the phenyl derivative. Consequently, this thesis will focus on the

Figure 1.9: Example CF_2 containing pharmaceuticals and agrochemicals

growing field of selective formation of CF_2 by fluorination strategies; in particular the synthesis of α, α -difluorodiketones, the use of difluoromethyl fluorinated building blocks and direct fluorinations using relatively inexpensive fluorine gas.

30a;X=H 30b;X=F

Figure 1.10: Fluorinated pyrazole carboxamide

1.3.1 Nucleophilic Fluorinations for RCOCF₂R Synthesis

Most nucleophilic fluorination reactions using fluoride occur through halogen exchange (halex) reactions utilising existing synthetic strategies for incorporating other halogens into molecules. Hydrogen fluoride (HF) is often used on an industrial scale due to its low cost (Scheme 1.3). Mixing HF with a nitrogen base such as triethylamine or pyridine gives a less volatile fluorinating reagent with a pH near neutral which lowers the corrosive nature of the HF reagent.⁴⁴

Scheme 1.3: Part of the synthesis of flucarbazone highlighting nucleophilic fluorination by HF to form an $-\text{OCF}_3$ group⁴⁴

While these halex strategies are useful to introduce C-F, C-CF₃ or O-CF₃ groups, the formation of *gem*-difluoro groups is more difficult due to the formation of monofluorinated products or unwanted by-products. Some success at transforming *gem*dichloro and *gem*-diiodo groups to the desired CF₂ is achieved using silver salts such as silver tetrafluoroborate (AgBF₄).⁴⁵ An advantage of using this methodology is that different halogens in a molecule can be replaced by fluorine, such as in the synthesis of a *gem*-difluorinated glucopyranosyl using silver fluoride (AgF) (Scheme 1.4).⁴⁶

Scheme 1.4: Nucleophilic substitutions of halogens by fluoride

The CF_2 functionality can be readily introduced using deoxyfluorination agents such as sulfur tetrafluoride SF_4 , diethylaminosulfur trifluoride (DAST) **39**, Deoxo-Fluor **40**, Xtalfluor-E and Xtalfluor-M **41a**,**b** (Figure 1.11).

These reagents convert carbonyls to CF_2 groups in usually good yields and are often functional group tolerant. DAST **39** has been used to successfully diffuorinate potentially biologically active compounds, as well as a wide range of carbonyl-containing molecules (Scheme 1.5).^{47,48} Unfortunately **39** is moisture sensitive, and upon heating can convert to the highly explosive (NEt₂)₂SF₂ after eliminating SF₄.

Figure 1.11: Nucleophilic fluorinating agents DAST, Deoxo-Fluor, Xtalfluor-E, Xtalfluor-M

Scheme 1.5: Examples of nucleophilic fluorinations using DAST including part of the synthesis of (R)-14,14-difluoro-13-hydroxy-9(Z),11(E)-octanedienoic acid

Deoxofluor 40 now has more widespread use than DAST 39 as it is more thermally stable, but is also moisture-sensitive, and decomposes to produce HF. 41a is also commonly used as it is non-explosive, crystalline, less moisture sensitive and results in fluorodeoxygenation with fewer by-products such as corrosive HF. While these

nucleophilic fluorinating agents offer more control than HF, in general, they are too expensive to use on the scales required for the agrochemical industry.⁴⁹

These general reagents for CF₂ formation have been used to synthesise diffuorocarbonyl derivatives (CF₂C=O groups). It is possible to selectively replace bromine instead of chlorine with fluorine α - to carbonyls by using mercury (II) fluoride (HgF₂).⁵⁰ While this strategy of bromination using *N*-bromosuccinimide (NBS) followed by fluorination using HgF₂ proceeds with excellent conversion and selectivity to form α , α -diffuorocarbonyls (Scheme 1.6), HgF₂ is highly toxic, and so not practical on larger scales.

Scheme 1.6: Halogen exchange of gem-dihalodicarbonyl compounds

Some examples of α, α -diffuorocarbonyl compounds synthesised by the deoxyfluorination of 1,2-dicarbonyl compounds using DAST and related fluorinating agents are shown in Scheme 1.7.^{37,51–53} These reagents show selectivity for deoxyfluorination of benzylic carbonyl in 1,2-ketoesters, though extreme care must be taken when heating reactions using **39** as it is potentially explosive at temperatures above 50 °C. Reactions with 1,2-diketones showed a similar selectivity, with diffuorination preferentially replacing the benzylic carbonyl. Fluorination of 1,2-ketoaldehydes leads in general to the polyfluorinated ethers due to increased reactivity of the aldehyde carbonyl, though the diffuoro acid can be obtained by reacting the aldehyde in low concentration in the presence of moisture to form the hydrated adduct which blocks dimerisation.

 α , α -Difluorocarbonyl derivatives have also been synthesised by oxidative fluorodesulfurization of an α -hydroxyorthothioester **64** with tetrabutylammonium dihydrogentrifluoride (n-Bu₄NH₂F₃) and 1,3-dibromo-5,5-dimethylhydantoin (DBH) (Scheme 1.8). DBH acts as a source of electrophilic bromine which activates the thioethers as leaving groups. Fluoride from n-Bu₄NH₂F₃ then displaces the thioether and, after oxidation, the resulting difluoro(methylthio)methyl ketone **65** is produced.^{54,55}

Scheme 1.7: Examples of nucleophilic fluorinations of dicarbonyls to give α, α -difluorocarbonyl compounds^{37,51–53}

Scheme 1.8: Oxidative fluorode sulfurization to give α, α -difluorocarbonyl compounds^{54,55}

1.3.2 Electrophilic Fluorination for CF₂ Synthesis

While many nucleophilic fluorinating reagents give good conversion to the desired >CF₂ containing products, they are often hazardous. Electrophilic fluorinating agents were designed to be easier to use on a discovery scale using general laboratory equipment and many successful synthetic strategies have been widely reported.^{56–59} The majority of currently used electrophilic fluorinating agents contain a labile N-F bond that is used to deliver "F⁺", often from a quaternary (R₃N⁺FX⁻) nitrogen salt. SelectfluorTM **66** is a bench stable, non-hygroscopic white solid that is commonly used on a discovery scale to regioselectively introduce a single fluorine atom. The synthesis of the most common electrophilic fluorinating agents are well reported in the literature, and there is continual development of related chiral electrophilic fluorinating agents (Scheme 1.9).^{60,61}

Scheme 1.9: Commonly used electrophilic fluorinating agents

The development of electrophilic fluorinating agents has greatly pushed the boundaries of synthetic organofluorine chemistry but it is worth noting that there are two significant limitations to these reagents that are often overlooked. Many electrophilic fluorinating agents have a very low atom economy due to the low molecular weight of fluorine relative to the fluorinating agent—SelectfluorTM **66** is only 5% fluorine by weight. Due to the low atom economy relatively large amounts of the reagent are required, which can often cost significantly more than nucleophilic reagents. Due to these cost issues, electrophilic fluorinating agents are rarely used on an industrial scale with the noticeable exception of the high value fluorinated steroid fluticasone propionate **75** (Flovent, Flonase) (Scheme 1.10).⁶²

Scheme 1.10: Synthesis of fluticasone propionate highlighting the fluorination using Selectfluor^{™62}

Electrophilic fluorinating agents are easy to use in regular glassware, and they allow for the avoidance of corrosive or hazardous sources of fluorine. However, it is worth mentioning that all electrophilic fluorinating agents are synthesised by dir-
ect fluorination using fluorine gas followed by a counterion exchange. Electrophilic fluorinating agents do not remove the issues created by using fluorine gas in the synthesis of SelectfluorTM **66**, as frequently stated in the literature.

Electrophilic fluorinating agents give the highest conversion when there are enolizable protons present in a compound, usually α - to a carbonyl group. Selective difluorination of cytidine **77** to give the 5,5-difluoro-6-methoxy adduct **78** is achieved using both SelectfluorTM **66** and acetyl hypofluorite (AcOF) (Scheme 1.11).^{63,64} The 5-fluoro adduct is not detected under these conditions.

Scheme 1.11: Diffuorination of cytidine by Selectfluor^{\mathbb{M}} to give the 5,5-diffuoro-6-methoxy adduct⁶³

1.3.2.1 Synthesis of α , α -Difluorocarbonyl Derivatives

Electrophilic fluorinating agents introduce fluorine with good selectivity at enolisable positions by reacting with the enol tautomer, and so are often used to introduce fluorine α - to carbonyl groups; monofluorination of α - and β -dicarbonyl derivatives is well reported.^{56,65–68} Difluorination is often seen as an unwanted side reaction in these fluorinations, and, in many cases, conditions are optimised to limit the formation of difluorinated by-products.

Banks found that while monofluorination of positions α - to C=O groups can occur relatively quickly, diffuorination occurs much slower, and depends on the proportion of the monofluorinated intermediate existing in the enol form (Scheme 1.12).⁵⁶ The rate of diffuorination appears to decrease in the order diketone > ketoester > ketoamide. Intermediates that have a high proportion of the keto form can eventually achieve complete conversion to the diffuoro product, but can this take over 20 days. The rate of diffuorination can be dramatically increased by forming the sodium enolate of the monofluorinated intermediate before the addition of a second equivalent of the electrophilic fluorinating agents. Diffuorination of the less reactive substrates was only achieved by fluorinating the monofluoro enolate in a stepwise reaction. These results indicate that the keto form of the monofluoro intermediate is resistant to subsequent fluorination but the enol, and especially the enolate form, can undergo additional fluorination to give the *gem*-difluoro product.

Scheme 1.12: General mechanism of electrophilic diffuorination of β -dicarbonyl derivatives⁵⁶

However, a one-pot diffuorination of propiophenone **82** was achieved with good selectivity (95:5 diF:mF) using the *N*-F sultam **83** as a source of electrophilic fluorine, and potassium bis(trimethylsilyl)amide (KHMDS) as a strong organometallic base to form the metal enolate (Scheme 1.13).⁶⁹ Interestingly the choice of base is important, as using lithium bis(trimethylsilyl)amide (LiHMS) to generate the lithium enolate and one less equivalent of **83** gives the monofluorinated product with a 95:5 selectivity compared to the diffuoro product.

A commonly used strategy to synthesise an α, α -diffuoroketo compound by C-F bond formation is to diffuorinate the related enamine or imine and then hydrolysis to give the desired ketone. As imines tautomerize to the corresponding enamines faster than ketones to enols, fluorinations with electrophilic fluorinating agents often given greater conversion to the diffuoro product than their ketone equivalent. During the diffuorination of the *N*-butylimine **85** with **71**, the addition of a weak base such as sodium carbonate (Na₂CO₃) is required to remove the super acid by-product bis[(triffuoromethane)sulfonyl]azane (HN(SO₂CF₃)₂) produced after **71** has trans-

Scheme 1.13: gem-Difluorination of propiophenone⁶⁹

ferred its fluorine atom (Table 1.5).⁵⁸ Stavber expanded the results of DesMarteau to compare the observed selectivity when different electrophilic fluorinating agents are used to fluorinate 85.⁷⁰ While most give the diffuoro compound as the major product, the *N*-fluoro pyridinium salt (Table 1.5, Entry 4) shows complete selectivity for the monofluorinated product 86.

Table 1.5: Selectivity of fluorination of an N-buimine³⁷

"Bu	I. Fluorinating reagent (2 Na ₂ CO ₃ , DCM, r.t 2. HCl/ H ₂ O	equiv.)	P F F
8	5	86	87
Entry	Fluorinating	Ratio 86:87	Yield ^a /%
	reagent		
1	$71^{ m b}$	0:100	$65^{\rm c}$
2	66	0:100	95
3	72	12:88	65
4	CI N ⁺ CI F BF4 ⁻	100:0	65

 $^{\rm a}$ Total yield of both ${\bf 87a}$ and ${\bf 87b}$ as determined by $^{19}{\rm F}$ NMR spectroscopy

b Na_2CO_3 added

c Isolated yield

Alkynes can be diffuorinated in an acetonitrile (MeCN)/ H_2O solvent mixture to produce α, α -diffuoroketones (Scheme 1.14). The two solvent system plays a key

role, the MeCN solvates the alkyne, and the water traps the carbocation formed during fluorination. The reaction proceeds selectively when a phenylacetlyene is used as the substrate, with complete Markovnikov regioselectivity observed due to formation of the more stable carbocation at the benzylic position. This selectivity is observed when a range of electrophilic fluorinating reagents are used.^{71–73}

Scheme 1.14: Fluorination of phenylalkynes with electrophilic fluorinating agents such as Accufluor^{™71-73}

Browne *et al.* developed successful *qem*-diffuorination by grinding β -diketones and β -ketoesters in a mixture mill with an electrophilic fluorination agent (Scheme 1.15).^{74,75} While high conversion of starting material to the 2-fluoro and 2,2-difluoro was achieved, selectivity for the diffuoro product is low. Benefits of this method include reactions not requiring solvent or heat, and requiring significantly shorter reaction times (2 h compared to up to 5 d) for similar reactions using conventional methods. Interestingly, the selectivity for the monofluoro product can be increased to 50:1 from 3:2 to the diffuoro product by the addition of a small amount of MeCN. This selectivity is similar to that observed when these substrates are fluorinated with electrophilic fluorinating agents under various conditions.^{67,68} The addition of sodium chloride (NaCl) as a grinding auxiliary is required to achieve any conversion to the diffuoro product when a liquid ketoester is used as a starting material. Addition of sodium carbonate increases conversion to the diffuoro product, but from these experiments, it cannot be determined if this improvement is due to the Na_2CO_3 acting as a base, as an additional grinding auxiliary agent, or a combination of these two factors.

Gem-diffuorination is most successful when there is only one preferred enolizable carbon atom. The desired 2,2-diffuoro-1,3-keto product was isolated as the major product by Bertozzi despite the presence of alternative enolisable sites by the addition of an excess of cesium carbonate (Cs_2CO_3) (Scheme 1.16).⁷⁶ By premixing the diketone and base, the central >CH₂ is deprotonated forming the enolate as these protons are more acidic than the enolisable protons adjacent to each carbonyl. Excess base ensures that the monofluorinated intermediate remains as the enolate, allowing for subsequent fluorination.

Scheme 1.15: Mechanochemical grinding diffuorinations of 1,3-diphenylpropane-1,3-dione and ethyl benzoylacetate with Selectfluor^{M74,75}

Scheme 1.16: Synthesis of 2,2-difluoro-1,3-cyclooctanedione⁷⁶

Pattison developed a hybrid electrophilic fluorination/ fragment based building block methodology to potentially fix the issue of non-regioselective diffuorination in compounds with multiple enolisable protons (Scheme 1.17).⁷⁷ A geminal bis(boron) compound **99** is deprotonated using lithium tetramethylpiperidide (LiTMP) then coupled with an ester to form an α -diboryl ketone **101** which readily tautomerises to a boron enolate. This enolate is selectively formed, even if there are other enolisable protons present because boronates can stabilise α -carbanions through hyperconjugation with the empty p-orbital of boron. The enolate can then be trapped with an electrophile such as **72** twice to yield the desired *gem*-diffuoro compounds **102**. This diffuoro-coupling has a vast potential scope by simple variations of the starting materials.

1.3.3 CF₂ Containing Building Blocks

While it is certainly possible to make *gem*-diffuoro products using nucleophilic or electrophilic fluorinating agents, there are often issues associated with using these such as selectivity and toxicity of some reagents. There is a large amount of liter-

Scheme 1.17: Synthesis of α , α -diffuoroketones via an α , α -bis(enolate) equivalent⁷⁷

ature on the introduction of a trifluoromethyl $(-CF_3)$ group into a molecule. Key examples of $-CF_3$ reagents include the Ruppert-Prakash (trifluoromethyltrimethyl-silane, TMSCF₃, **103**), Togni I **104** and II **105** and Umemoto reagents I **106** and II **105**.

Figure 1.12: Several commonly used reagents used to incorporate the $-CF_3$ group

By adapting the reagents and strategies used to incorporate $-CF_3$ into molecules, there has been a recent growth in the number of papers published that can introduce $>CF_2$ into organic systems in the form of $-CF_2H$, $-CF_2CO_2R$, $-OCF_2H$ and $-SCF_2H$ using adapted reagents. For example, (diffuoromethyl)trimethylsilane (TMSCF₂H, **108**) is often used in an analogous fashion to the CF₃ variant **103**. While fluoride-activated addition reactions to aldehydes using **103** proceed with excellent yields at r.t., the use of TMSCF₂H gives low yields using these conditions, even at 100 °C, due to the stronger C–Si bond in TMSCF₂H.⁷⁸ Further studies have shown that room temperature additions can proceed using TMSCF₂H by performing the reaction in polar aprotic solvents such as dimethylformamide (DMF) (Scheme 1.18).⁷⁹ While this provides a simple route for introducing a CF₂H moiety into organic systems, the high cost of **108** prohibits the use of this reagent on a manufacturing scale.

Scheme 1.18: Direct nucleophilic diffuoromethylation of various aldehydes with (diffuoromethyl)trimethylsilane⁷⁹

Alternatively, diffuoromethyl phenyl sulfoxide (PhSOCF₂H, **111**) and diffuoromethyl phenyl sulfone (PhSO₂CF₂H, **112**) have been used as simple, one-step reagents to introduce the >CF₂ functionality (Scheme 1.19).^{80,81} Reactions occur with good conversion, but poor diastereoselectivity, yet the additional PhSO or PhSO₂ handle allows for additional processes to expand the range of CF₂ containing compounds.⁸²

Scheme 1.19: Additions of $PhSOCF_2H$ and $PhSO_2CF_2H$ and further functionalisation^{80–82}

The ethyl halodifluoroacetates, in particular commercially available ethyl bromodifluoroacetate **119**, have been used as fluorinated building blocks (FBB) through various synthetic strategies such as Reformatsky and aldol reactions.^{83–86} Successes have been achieved with good yields, but often require multiple equivalents of zinc (Scheme 1.20).

Ethyl aryldifluoroacetates **124** can be synthesised by coupling **119** with arylboronic acids **129**, aryl halides **130** or arylzinc compounds **131**.^{87–90} Yields for these reactions are moderate to good, but often require the use of expensive palladium, ruthenium or cobalt catalysts for radical reactions via a diffuorocarbene like intermediate, or stoichiometric quantities of copper or zinc (Scheme 1.21).

Scheme 1.20: Reformatsky reaction (top) and aldol reaction (bottom) using ethyl bromodifluoroacetate

Scheme 1.21: Synthesis of $ArCF_2CO_2Et$ compounds using ethyl bromodifluoroacetate^{87–90}

Notably, the diffuoro ester can be hydrolysed to the diffuoroacid, and then decarboxylated to produce the $-CF_2H$ containing substrate such as in the case of benzofuran derivatives (Scheme 1.22).⁹¹

Additionally, there is growing interest in one pot diffuoromethylations to produce $ArCF_2H$ using the readily available FBB **119** (Scheme 1.23).^{92,93} While these meth-

Scheme 1.22: Stepwise synthetic strategies to generate $ArCF_2H$ compounds using $> CF_2$ containing $FBBs^{91}$

ods use a cheap source of >CF₂, they usually require large amounts of expensive metal catalysts.

Scheme 1.23: One-pot synthetic strategies to generate $ArCF_2H$ compounds using CF_2 containing $FBBs^{92,93}$

Iseki *et al.* showed that 2,2-difluoro- β -ketoesters can be synthesised by reaction of an acid chloride and difluoroketene silyl acetal **122** using mild conditions developed by Hosomi (Scheme 1.24).^{94,95}

Scheme 1.24: Synthesis of 2,2- β -ketoesters from an acid chloride and silyl enol ether⁹⁵

While gem-diffuoroalkene building blocks usually react with nucleophiles at the difluoro substituted carbon by addition-elimination or $S_N 2$ type additions, the introduction of a siloxy group causes the diffuoroalkene to react with electrophiles to give α , α -diffuoroketones.⁹⁶ Addition of copper (II) triflate (Cu(OTf)₂) in MeCN causes oxidation of the diffuoroenol silyl ether **140** which homocouples to form the tetrafluoro dimer **141** in excellent yields. Addition of a heteroaromatic and slight modification of the reaction conditions allowed for oxidative cross-coupling between the diffuoroenol silyl ether and the heteroaromatic giving a more complex FBB (Scheme 1.25).

Scheme 1.25: Oxidative cross-coupling of diffuoroenol silvl ethers 140 with heteroaromatics or itself to give the homocouple product 141^{96}

These are only a selection of the ever growing field of CF_2 containing FBBs. This thesis will focus on strategies of C-F bond formation, particularly industrially viable routes to fluorinate organic compounds for the synthesise of $CF_2-C=O$ containing organic systems.

1.3.4 Direct Fluorinations

We discussed above the synthesis of diffuoro containing compounds, in particular diffuoroketones and $ArCF_2H$ derivatives. While many of these strategies give the desired products with good conversions, they often require reagents that may be impractical on an industrial scale due to cost. Fluorine gas (F₂) is a potentially useful fluorinating reagent due to its low cost and high reactivity. It is synthesised from the electrolysis of potassium bifluoride in anhydrous hydrogen fluoride (aHF).⁹⁷ This molten fluoride salt is used as the electrolyte due to the very low electrical conductivity of aHF. F₂ is an attractive reagent for industrial fluorinations as it can

be generated *in situ* which helps alleviate safety concerns with storing large amounts of pressurised F_2 on site. Despite the use of F_2 as a selective fluorinating agent on an industrial scale for several decades in the synthesis of 5-fluorouracil, many proponents of electrophilic fluorinating agent still maintain that it is too dangerous to use, despite the recent ongoing development of direct fluorination apparatus at various sites in the UK. The choice of solvent is important and a high dielectric medium, such as MeCN or formic acid (HCOOH), is used to promote electrophilic fluorinations over radical fluorination.

1.3.4.1 Selective Monofluorination Reactions

Despite fluorine's high reactivity, there are several examples of selective monofluorination using F_2 and many of the strategies used to selectively monofluorinate compounds were developed at Durham.^{98–102} The most successful selective direct fluorinations have been achieved using carbonyl containing substrates with enolisable protons. In these cases, F_2 acts as an electrophilic source of fluorine, with conversion to the desired fluorinated product dependent on the degree of enolisation. The observed reactivity (cyclic 1,3-diketones > 1,3-diketones > 1,3-ketoesters) is similar to that observed using electrophilic fluorinating agents, which is indicative of a similar electrophilic mechanism.

The first successful direct fluorination of 1,3-dicarbonyls to give a 2-fluoro-1,3dicarbonyl product was the fluorination of sodium diethyl nitromalonate **145** by Adolph *et al.* (Scheme 1.26).¹⁰³ The desired 2-fluoro product **146** was isolated in excellent yield without formation of the 2,2-difluoro product that had previously been formed when perchloryl fluoride was used as the fluorinating agent. While an efficient synthesis of **146**, this methodology has very limited substrate scope as only highly acidic dialkyl malonates are deprotonated by the aqueous sodium bicarbonate and then soluble in the water solvent. Additionally, a 50% mixture of F_2 and N_2 was used which is now avoided due to safety concerns.

Purrington developed methodology to directly fluorinate trimethylsilyl enol ethers to give α -fluoro ketones using dilute fluorine in trichlorofluoromethane (CFCl₃).¹⁰⁴ Attempts in other solvents and temperatures give no α -fluoroketone product. This methodology was then applied to the fluorination of β -diketones and β -ketoesters to give average yields (Scheme 1.26). The best results are achieved when the only enolisable proton was in the desired 2-position, but when there were several possible enolisable protons, a mix of products is produced that can not be separated.¹⁰⁵

Scheme 1.26: Direct fluorination with F_2 to give 2-fluoro-1,3-dicarbonyl compounds^{103,105}

Greenhall investigated the direct fluorination of various 1,3-dicarbonyl compounds in HCOOH and determined that diketones and ketoesters form the 2-fluoro product with high selectivity.¹⁰⁶ It is worth noting that little tar was formed, even at the relatively high temperature (10–15 °C), and that there is no reaction with diesters under the same conditions. Isolation of products with multiple enolisable protons was possible using this methodology allowing for the selective fluorination of diketones with alkyl substituents (Table 1.6, Entry 1). Small amounts of the 2,2diffuoro product is formed, but the rate of diffuorination is significantly lower than the rate of monofluorination under the conditions employed. Fluorination of ethyl 2-chloroacetoacetate **148** using these conditions gave a conversion of 15% to the mono-fluoro product. Analysis of the tautomerism of **148** in HCOOH determined that the enol content is approximately 15%, with a ketone enolisation half life of 18 h. This indicates that no **149-keto** converts to **149-enol** during the reaction conditions, and that only **149-enol** is fluorinated during the reaction.

R ₁	P_{R_2} P_{R_3} P_{R	(10% //v in N₂, 2 e HCOOH (50 mL) 10–15 ℃	quiv.)	$ \begin{array}{c} 0 0 \\ R_1 F_2 \\ F R_2 \\ 80 \end{array} $	0 0 F R ₂ 150	CH₂F
Entry	R_1	R_2	R_3	$\operatorname{Conversion} / \%$	Yiel	ld%
					80	150
1	CH_3	Н	CH_3	90	70	11
2	OCH_2CH_3	Н	CH_3	60	80	10
3	OCH_2CH_3	Cl	CH_3	15	85	5

Table 1.6: Direct fluorination of 1,3-dicarbonyl compounds^{103,105}

Chambers investigated the synthesis of α -fluoroketones by reacting enol acetates and silvl enol ethers in MeCN and HCOOH.¹⁰⁷ The enol acetates gave good yields in general (56–66%) when MeCN is used as the solvent. Reactions were slower in 98% HCOOH but tended to give higher conversion (61–71%) to the α -fluoroketones when the esters were stable to acid hydrolysis. The silvl enol ethers have a noticeably lower stability in acidic medium, which explains why the desired products were isolated in a lower yield (23–35%) than in MeCN, and reactions in HCOOH give the parent ketone as the major product instead of any fluorinated products.

While ketones and ketoesters can be directly fluorinated in MeCN or acidic solvents, diesters have very low reactivity under these conditions and show no signs of fluorination. Fluorinations in MeCN or HCOOH are very slow with low conversion of starting material, with fluorination occurring on alkyl groups preferentially to fluorinations at the 2- position.

Dialkyl fluoromalonate esters, in particular, diethyl 2-fluoromalonate **152** have shown potential use as FBB, and have been used to synthesise several biologically important molecules (Scheme 1.27).^{108–110}

These compounds can be synthesised via halex reactions or reactions with electrophilic fluorinating agents, and so it was recognised that a route using F_2 would be desired for an industrial scale. Based on previous work by Adolph, Hutchinson investigated the direct fluorination of sodium salts of dialkyl malonates and noticed high conversion to the desired 2-fluoro product.¹¹⁴ The overall conversion to the 2-fluoro product is dependent on the conversion to the sodium salt, with the fluorination step occurring with complete conversion (Table 1.7). While NMR conversion

Scheme 1.27: Example uses of diethyl 2-fluoromalonate as a ${\rm FBB}^{111-113}$

is high, there is limited selectivity between the 2-fluoro and 2,2-difluoro products when $R_2 = H$ (Table 1.7, Entries 1 and 2). Conversions appear to be lower when sodium ethoxide (NaOEt) is used instead of NaH highlighting the importance of forming the carbanion before fluorination.

		NaH or NaOAc (1 equiv.) MeCN (60 mL) r.t.		F ₂ (10%	5 °C − − − − − − − − − − − − − − − − − −	
15 12.5 n	1 nmol		158			159
Entry	R1	Ba	Equ	iv.	NMR	NMR
	101		NaH	F_2	Conversion	% Yield%
1	Et	Н	1	2	71	$37^{\rm a} + 23^{\rm b}$
2	Et	Н	2.25	3	94	$14^{\rm a} + 37^{\rm b}$
3	Et	Me	1	2	74	59
4	Et	Me	$1^{\rm c}$	2	42	59
5	Et	<i>n</i> -Bu	1.25	2.3	66	69
6	Me	OMe	1.25	2.9	75	51
7	Et	NO_2	1.25	2	100	73
8	Et	NO_2	$1^{\rm c}$	2	77	89
9	Et	Cl	1.25	2	97	40
10	Et	Ph	1.25	1.2	72	41

Table 1.7: Direct fluorination of dialkyl malonate salts¹¹⁴

^a Diethyl fluoromalonate

^b Diethyl difluoromalonate

c NaOEt used as the base

Chambers investigated using transistion metal salts to promote selective fluorination at the 2-position.¹¹⁵ While the addition of transition metal salts does not effect the conversion or selectivity detected when **160** is fluorinated with F_2 in HCOOH, there is an increase in conversion to the 2-fluoro product when MeCN is the solvent. In particular, hydrated copper (II) nitrate (Cu(NO₃)₂ · 2.5 (H₂O)) gives high selectivity for the 2-fluoro product when a range of malonates was trialled and give very little of the 2,2-difluorinated products (Scheme 1.28). Copper nitrate allows for the selective fluorination of β -ketoesters, but the conversion is noticeably lower than for malonates (~40%). Chambers proposes that the increase in selectivity for the 2-fluoro position is due to the metal increasing the rate of enolisation, the rate-determining step of fluorination in which the malonate chelates the Cu²⁺ in the enol form. Direct fluorination of **160** to **152** was further optimised by Harsanyi (Scheme 1.28).¹¹⁶

The most industrially important FBB synthesised using F_2 is methyl 2-fluoro-3oxopentanoate **162** by F2 Chemicals Ltd based in Preston, UK. Methyl 3-

Scheme 1.28: Copper catalysed direct fluorination of malonates and optimisiation of reaction conditions by Harsanyi^{115,116}

engoxopentanoate **161** is fluorinated on a multi tonne scale to give **162** with excellent selectivity. This is then cyclised by the addition of formadine acetate and sodium methoxide (NaOMe) to give 6-ethyl-5-fluoro-4(3H)-pyrimidone **163** (Scheme 1.29).^{106,117,118} This is used in the synthesis of voriconazole (**164**, Vfend, Pfizer), a triazole auntifungal that previously had annual sales of over a billion USD.

Scheme 1.29: Part of the synthesis of voriconazole highlighting the selective direct fluorination step using $F_2^{106,117,118}$

1.3.4.2 Selective Difluorination Reactions

The previous section highlights examples of selective direct mono-fluorination strategies using F_2 . In contrast, there are very few examples in the literature of >CF₂ compounds made selectively using F_2 ; usually diffuorinated derivatives are recorded as by-products during attempts to selectively introduce a single fluorine atom at a specific site.

While diazoketones were first fluorinated using F_2 in 1976 by Leroy and Wakselman to give a mixture of products, it was not until Patrick investigated the fluorination

of diazo compounds with F_2 that the corresponding >CF₂ containing products were isolated in excellent yields (65–94%, Scheme 1.30).^{119,120} While this gives a route to making a range of diffuoro compounds selectively due to the favourable enthalpy change upon transformation of a >CN₂ to a >CF₂ group, it requires the use of CFCl₃ as a solvent. This has been banned since the Montreal Protocol in 1987 after it was discovered that it is an ozone-depleting chemical.

Scheme 1.30: Synthesis of an α -difluoro compound by the direct fluorination of the corresponding diazo compound with F_2^{120}

Linear 1,3-diketones such as pentane-2,4-dione 167 form the monofluorinated product 168 rapidly in acidic solvents such as HCOOH when fluorinated with F_2 . The 3,3-diffuoro product 169 is formed very slowly due to 168 existing in the keto form in HCOOH and tautomerizing to the reactive enol form very slowly. Chambers *et al.* discovered that cyclic diketones produce the corresponding *gem*-diffuoro product when fluorinated using similar conditions.¹²¹ The exact ratio of the monofluorinated products 171a or 171b and diffuoro 172a or 172b compared to unreacted starting material depends on the amount of F_2 added, and the duration of the reaction (Table 1.8).

C		F ₂ (10% <i>v/v</i> in N ₂) HCOOH 0–5 °C	→	+ 0	
X = H X = Me	170a 170b		171a 171b	$1 \\ 1$	72a 72b
Entry	Substrate	Molar ratio	Conversion/%	Yiel	d/%
		F_2 :Substrate		171	172
1	170a	2.2:1	100	-	75^{a}
2	170a	1.1:1	70	$40^{\rm b}$	$33^{\rm b}$
3	170b	2.6:1	100	-	80^{a}
4	170b	1.0:1	85	$27^{\rm b}$	$38^{\rm b}$

Table 1.8: Direct fluorination of cyclic ketones using F_2^{121}

^a Isolated yield

^b Yield calculated by GC-MS

While monofluorination decreases the rate of enolization to the enol form in acyclic 1,3-diketones, cyclic 1,3-diketones such as **171a** and **171b** exist in the enol form as determined by NMR spectroscopy and crystallography. Christe's investigation into proton acceptors determined that although fluorine can act as a proton acceptor in a bifurcated bond, the OH…O interactions are stronger and so the enol H is hydrogen-bonded to the carbonyl.¹²² Purrington theorised that while introducing a filled p orbital from the fluorine into the 1,3-diketone pentadienyl anion system results in a destabilising primary HOMO-HOMO interaction, there are two favourable secondary orbital interactions between the fluorine and carbonyl groups.¹⁰⁵ As such, the enol form is more stable than the ketone. As the rate of fluorination depends on the proportion of the enol form present, this suggests why **171a** and **171b** can readily fluorinate again forming **172a** or **172b** under the reaction conditions.

The diffuoro product is formed as the major product when an excess of fluorine is used; however, a further hydration reaction appears to occur as shown by the appearance of a second peak in the ¹⁹F NMR spectra. In (Table 1.8, Entries 1 and 3) there was full conversion of starting material and none of the monofluoro present, but 20–25% of the hydrated products **173a**,**b** as determined by comparing the ¹⁹F NMR shifts to a sample of the hydrated product formed by recrystallisation of pure samples of the diffuoro products from aqueous acetone (Figure 1.13). These systems can be dehydrated using strong dehydrating agents such as phosphorous pentoxide (P_4O_{10}) .

Figure 1.13: Hydrated diffuoro product¹²¹

When roughly equivalent amounts of F_2 to starting material were used (Table 1.8, Entries 2 and 4) the ratio of **174** to **175** was roughly equal, with a slight excess of **172**. This indicates that the rate of fluorination of **171** is only slightly higher than that of **170** and appears to be based purely on the proportion of material in the enol conformer.

1.4 Conclusion

Fluorine plays a highly important role in the design of new biologically active compounds as AIs in agrochemistry. Introduction of fluorine into specific sites of biologically active molecules can drastically improve various desired properties for the agrochemical industries. Even a minor improvement can have a noticeable effect given the large amounts of herbicides and insecticides that are applied to crops globally each year. As profit margins in the agrochemical industry are significantly lower than in the pharmaceutical industry, methods of introducing fluorine selectively into AIs for manufacture on an industrial scale as cheaply as possible are required.

The >CF₂ group is of growing interest in FBBs due to many beneficial physiochemical properties. This introduction has reviewed some of the current methods of introducing >CF₂ groups, specifically α - to carbonyl derivatives, as possible routes to develop potential new AIs. Unfortunately some diffuoromethylating reagents are often expensive or require stoichiometric amounts of metal.

There are limited examples of introducing fluorine via C-F bond formation to form desired $>CF_2$ functionalities. Current methods often involve thermally unstable deoxyfluorinating agents such as DAST **39**, or large excesses of expensive electrophilic fluorinating agents. There appears to be no general route to synthesising $> CF_2$ functionalities using F_2 as a cheap and readily available fluorinating agent.

Chapter 2

Synthesis of 2,2-Difluoro-1,3-diketones

2.1 Aims and Approach

Fluorine gas is a relatively inexpensive fluorinating agent that has successfully been used to selectively monofluorinate dicarbonyl compounds on an industrial scale to manufacture pharmaceutical products. However, although F_2 has been used to introduce a CF₂ group α - to a carbonyl in a limited number of cyclic β -diketones, a general methodology for the selective introduction of a CF₂ α - to a carbonyl moiety using fluorine gas has not been achieved.

Previous fluorinations of carbonyl systems in acidic conditions have given the >CHF product almost exclusively, and the incorporation of a second fluorine atom at these sites appears to be inhibited. The aim of this thesis is to develop a synthetic methodology to selectively convert >CH₂ groups α - to carbonyls to >CF₂ groups with the possibility that this could be used on the industrial scale. To do this, the effect of bases as mediating agents for selective fluorinations using F₂ shall be investigated with the aim at increasing selectivity for the diffuoro product by increasing the concentration of fluoro enol intermediates in solution that reacts readily with F₂ (Scheme 2.1).

A final issue with the synthesis of *gem*-difluoro products appears to be isolation of the products. Given the significantly lower reactivity of monofluorinated intermediates with fluorinating reagents compared to the non-fluorinated starting material, there is often not insignificant amounts of monofluorinated products present in the product

Scheme 2.1: Proposed synthetic strategy for the selective introduction of CF_2 groups α - to carbonyls by base mediated selective direct fluorination

mixture. In most reported cases in the literature, either no attempt is made to fully remove this unwanted by-product, or isolation has been unsuccessful. As so few groups have successfully managed this, it is possible that this separation is difficult, and so synthetic strategies with very high selectivity for the diffuoro product are required.

At Durham we have shown that DBM **91** and its derivatives react via the enol tautomer with electrophilic fluorinating agents and that bases catalyse the tautomerism to the enol form.^{123,124} While we can not conclusively state that F_2 reacts in a bimolecular $S_N 2$ reaction with **91** in a similar manner to SelectfluorTM it is likely that any *in situ* N-F intermediates formed with a similar structure to SelectfluorTM may react similarly, with the enol tautomer.¹²⁵

SelectfluorTM **66** is currently synthesised from 1,4-diazabicyclo[2.2.2]octane (DABCO, **177**) on an industrial scale in a three step synthesis including fluorination using F_2 (Scheme 2.2).¹²⁶

Scheme 2.2: Industrial synthesis of Selectfluor[™]

The *in situ* generation of a fluorinating agent would significantly lower the costs of electrophilic fluorinating agents, as well as allowing for the more widespread use of F_2 on a laboratory scale if reactivity could be controlled (Scheme 2.3).

Various different bases will be trialled as potential mediating agents to try and replicate the high selectivity obtained using pre-formed electrophilic fluorinating agents (Scheme 2.4).

Scheme 2.3: Proposed in situ N-F⁺ fluorinating agent produced by DABCO and F₂

Scheme 2.4: Screening conditions for the fluorination of 1,3-diketones

There are two main safety considerations with using F_2 ; the highly corrosive nature of fluorine, and the highly exothermic nature of C-F bond formation using F_2 . All apparatus connected to the fluorination apparatus must be formed out of a highly fluorinated material such as polytetrafluoroethylene (PTFE), and any metal parts must be sufficiently passivated. This is achieved by slowly passing small amounts of F_2 through the experimental rig system and selectively coating the inner metal layer of any components to form a metal fluoride layer lining the inside of the fluorination apparatus. Pressurised F_2 should be diluted with an inert gas such as nitrogen (usually to a 10% or 20% mixture v/v with N₂) or helium. The apparatus is described in Figure 8.1 in the General Experimental. Reaction vessels must be appropriately cooled to prevent decomposition of the C-C bonds with a bond dissociation energy of 348 kJ mol⁻¹.¹⁶ Dilution of F_2 with nitrogen helps slow down the reaction allowing time for cooling to occur.

2.2 Mediating the Direct Fluorination of DBM

Scheme 2.5: Fluorination of 1,3-diphenylpropane-1,3-dione with Selectfluor^{™56}

While fluorinations with Selectfluor^{\mathbb{M}} **66** or other electrophilic fluorinating agents give good conversions of diketones to the monofluorinated products with high se-

lectivity (Scheme 2.5), our attempts to fluorinate 1,3-diphenylpropane-1,3-dione (DBM, **91**) at the >CH₂ site with one equiv. of F₂ in acetonitrile (MeCN) gave no noticeable conversion by NMR spectroscopy. Isolation of the 2-fluoro product **92** in a good yield has been reported when a large excess (16 equiv.) of F₂ in acetic acid was used, confirming the very low reactivity of diketones under these reaction conditions.¹²⁷ However, in the polar aprotic solvent MeCN, a polyfluorinated tar was formed when a large excess (20 equiv.) of F₂ was used (Table 2.1, Entries 1 and 2). These control experiments show that DBM would make an ideal model system to use to develop selective fluorinations at the >CH₂ site, as direct fluorinations in MeCN doesn't give fluorinated products to any extent compared to existing electrophilic fluorinating agents.

2.2.1 Effect of Bases on the Fluorination of DBM

Chambers investigated the effect of adding potassium fluoride (KF) as a base to promote the selective fluorination of carbonyl compounds with acidic protons.¹¹⁵ While the addition of excess KF promoted converison of the starting material, selectivity for the monofluoro product was detected over the diffuoro product in an 8:1 ratio on average. With this in mind, we decided to look at soluble nitrogen bases to mediate the selectivity of direct fluorinations of DBM using F_2 .

2.2.1.1 Bases

DABCO 177 was trialled as the first mediating agent due to its structural similarity to SelectfluorTM 66. A solution of DBM with one equivalent of DABCO was made in MeCN. After cooling to 0 °C and purging the reaction vessel with N₂, one equivalent of F₂ diluted to a 10% v/v mixture in N₂ was added at a prescribed flow rate of 15 mL min⁻¹. The addition of F₂ was kept relatively slow to ensure good mixing. NMR yields were calculated by comparisons of the integrals (CF dp at -189.9 ppm, CF₂ s at -102.7 ppm) to a known amount of α, α, α ,-trifluorotoluene.

\sim	Ĵ Ĵ	\sim	F ₂ (10% v/v in N ₂) Mediating agent					
			MeCN (20 mL) 0 °C		F	+	F F	
_	91 2 mmol				92		93	
	Entry	Base	Equiv.	Equiv. Equiv.		Yield by NMR/%		
	Enery	Dase	of base	of F_2	91	92	93	
	1	-	-	1	100	0	0	
	2	-	-	20	Poly	fluorinate	ed tar	
	3	DABCO	1	1	32	4	$20(7)^{a}$	
	4	DABCO	1	1^{b}	30	3	19	
	5	DABCO	1	2	1	1	37	
	6	DABCO	1	3	Poly	fluorinate	ed tar	
	7	DABCO	2	2	Many flu	orinated	products	
	8	DABCO	0.1	1	22	28	8	
	9	Quinuclie	dine 1	1	$42(41)^{a}$	$10(8)^{a}$	$43(33)^{a}$	
	10	Quinuclie	dine 1.2	1^{b}	54	1	43	
	11	$\mathrm{Et}_{3}\mathrm{N}$	1	1	56	25	6	
	12	$\mathrm{Cs}_2\mathrm{CO}_3$	1	1	0	4	14	
	13	NaCl	1	1	0	33	$12(6)^{a}$	
	14	NaCl,	1	1	7	19	16	
		DBU						

Table 2.1: Screening conditions for the fluorination of1,3-diphenylpropane-1,3-dione

^a Isolated yield

b F₂ (20% v/v in N₂) used

When equivalent amounts of DBM, F_2 and DABCO were used (Table 2.1, Entry 3), the 2,2-difluoro product **93** was the main product formed as determined by ¹⁹F NMR. The formation of **93** contrasts with results seen when equivalent amounts of SelectfluorTM and substrate are reacted, in which the monofluorinated product **92** is formed rather than the difluoro product **93** (Scheme 2.5).^{56,66,67}

After workup and purification by column chromatography on silica gel with hexane and dichloromethane (DCM) (1:1) as the eluent, the major diffuorinated product was isolated in 7% yield and confirmed as the diffuorinated product by NMR spectroscopy and X-ray crystallography (XRC).

Increasing amounts of F_2 to 2–3 equivalents (Table 2.1, Entries 6 and 7) caused the formation of a polyfluorinated tar making it very difficult to identify or separate any fluorinated compounds present. With the amount of DABCO limited to 0.1 equiv. (Table 2.1, Entry 8), the monofluorinated product **92** was the main product detected by ¹⁹F NMR spectroscopy. The noticeable drop in the conversion of **91** to **92** and **93** when DABCO is less than stoichiometric indicates that the fluorination is dependent on the concentration of DABCO.

Other organic bases were used to try and increase the chemoselectivity of the fluorination of DBM. Addition of other bases showed varying effects on the conversions to **92** and **93** (Table 2.1). Quinuclidine (Table 2.1, Entries 9 and 10) provided the highest conversion to the diffuorinated product **93** according to ¹⁹F NMR spectroscopy, with very little unwanted aromatic fluorination competing.

Several potential mediating agents that do not contain nitrogen were trialled and selective direct fluorination was detected when both cesium carbonate (Cs₂CO₃) (Table 2.1, Entry 12) and sodium chloride (NaCl) (Table 2.1, Entry 13) were used. While there was conversion to the desired fluorinated products with Cs₂CO₃ and NaCl (Table 2.1, Entries 12 and 13), there was also significant amounts of unwanted aromatic fluorination making it difficult to isolate desired products. The reaction was repeated with an equivalent of the strong base 1,8-diazabicyclo[5.4.0]undec-7ene (DBU), (Table 2.1, Entry 14) to see if this addition aided conversion to **93**. Analysis of the ¹⁹F NMR spectra after an aqueous workup showed the formation of several new unwanted fluorinated products.

2.2.2 Optimisation of the Synthesis of 2,2-Difluoro-1,3diphenylpropane-1,3-dione

Given the results discussed in Table 2.1, quinuclidine appears to be the best mediating agent of the bases screened at maximising conversion to the desired diffuoro product. Therefore, fluorination of **91** was repeated with varying amounts of quinuclidine and F_2 and conversion to **92** and **93** monitored by NMR spectroscopy to optimise conditions to provide the highest yield of diffuoro-DBM **93**.

	91	2 (10 % <i>v/v</i> in N ₂ , 1 Quinuclidin MeCN (20 m 0 °C	5 ml min ⁻¹) ne + () nL)			
Entry	Equiv. of quinuclidine	Equiv. of F_2	Conversion —	Ratio 91	of products by 92	7 NMR 93
1	1	1	81	3	2	4
2	1.1	2.1	99	1	5	47
3	1.1	2.3	99	1	16	120

Table 2.2: Screening conditions for the quinuclidine mediated fluorination of1,3-diphenylpropane-1,3-dione

Only a small excess of both quinuclidine and F_2 were required to obtain high conversions (nearly 90% by NMR spectroscopy) of **91** to **93** with minimal traces of remaining **91** or other products observed. While increasing the equivalents of F_2 gave ever increasing amounts of the desired product **93** as observed by ¹H and ¹⁹F NMR spectroscopy, an increase in aromatic fluorination (Figure 2.1) was seen. Thus the optimised conditions were adjusted to limit the formation of these undesired fluoroaromatic products.

Figure 2.1: Unwanted fluoroaromatic by-product

After purging the reaction vessel with N_2 , the reaction mixture was partitioned between H₂O and DCM in order to remove any HF or protonated quinuclidine produced as by-products during the fluorination. Initial attempts at isolating **93** by column chromatography on silica gel with 15% EtOAc v/v in hexane mixture as the eluent were unsuccessful, with many fractions containing both the desired **93** and **92**. Replacing EtOAc with DCM helped increase the separation between **92** and **93**, but there was still some overlap of **93** and unreacted starting material when hexane and DCM (1:1) was used as the eluent. Complete separation was achieved using a hexane and CHCl₃ (1:1) mixture as the eluent and **93** was isolated as a white solid (57%). The product was fully characterised by high resolution NMR spectroscopy, accurate mass spectrometry and XRC. Individual carbon atoms were assigned using heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) 2D NMR spectroscopy.

Scheme 2.6: Synthesis of 2,2-difluoro-1,3-diphenylpropane-1,3-dione

Figure 2.2: ¹H NMR spectrum of 2,2-difluoro-1,3-diphenylpropane-1,3-dione

Figure 2.3: $^{19}\mathrm{F}$ NMR spectrum of 2,2-difluoro-1,3-diphenyl propane-1,3-dione

Figure 2.4: $^{13}\mathrm{C}$ NMR spectrum of 2,2-difluoro-1,3-diphenyl propane-1,3-dione

Figure 2.5: HSQC NMR spectrum of 2,2-difluoro-1,3-diphenylpropane-1,3-dione

Figure 2.6: HMBC NMR spectrum of 2,2-difluoro-1,3-diphenylpropane-1,3-dione)

Figure 2.7: Molecular structure of 2,2-difluoro-1,3-diphenyl propane-1,3-dione as confirmed by X-ray crystallography

2.2.3 Recycling Quinuclidine

Quinuclidine is an expensive and toxic base, and so a method for reusing it would make successive reactions more cost efficient. In an attempt to determine if the reaction could be repeated with the same high selectivity for **93**, another equivalent of **91** was added to the reaction mixture after the initial fluorination was completed, and then a second fluorination was undertaken.

Scheme 2.7: Attempt at recycling the quinuclidine for a base mediated direct fluorination of 91

The lack of peak at 6.87 ppm in the ¹H NMR spectrum after the second fluorination corresponding to the C2-H in 91-enol indicated that the reaction had successfully gone to full conversion with an increase in the total amount of the desired 93 formed. Unfortunately, large amounts of aromatic ring fluorination had occured as detected by ¹H and ¹⁹F NMR spectroscopy. It appears that approximately 22% of the total amount of 93 formed has undergone an additional ring fluorination to form 180. Given the difficulty of removing trace amounts of 180, no attempts were made to isolate the desired product 93. Unfortunately this appears to be a non-viable method for reducing the amount of quinuclidine required due to the significant amounts of unwanted extra fluorination of 91 that occurs in the longer reaction conditions.

2.3 Synthesis of 1,3-Diphenylpropane-1,3-dione Derivatives

Given the success in synthesising and isolating diffuoro product **93**, various DBM derivatives were synthesised as starting materials to develop the scope of the subsequent fluorination reaction. As would be expected, DBM derivatives with electron-donating substituents have shown an increased reactivity to monofluorination with existing electrophilic fluorinating agents such as SelectfluorTM over those with electron-withdrawing substituents.¹²³

Various acetophenone and benzoyl chloride derivatives were coupled using lithium bis(trimethylsilyl)amide (LiHMDS) in THF based on an established literature procedure.¹²⁸ Incomplete conversion to the desired product was detected if the reaction was left overnight. Stirring for 48 hrs at r.t. led to complete conversion as observed by ¹H NMR, and the products were isolated as solids in excellent yields after purification by recrystallization or column chromatography.

- of the second		. LiN(SiMe	₃) ₂ , THF, -78 2. HCl, r.t.	°C, 48 hrs	
181	182			91	
	DBM Derivative	Х	Y	Isolated Yield/ $\%$	
	91a	Н	Me	95	
	91b	Η	OMe	94	
	91c	Η	Cl	98	
	91d	F	Η	100	
	91e	Η	NO_2	99	
	91f	Cl	Cl	98	
	$91\mathrm{g}$	F	F	81	
	91h	NO_2	NO_2	99	

Table 2.3: Synthesis of DBM derivatives

The isolated yield for **91g** is noticeably lower than that of the other derivatives. Analysis by GC-MS of the crude product showed two products, the desired product and a minor product with an M^+ of 382 m/z. This mass corresponds to the formation of the tribenzoyl product (**183** formed by the subsequent further reaction of **91g**), which was removed during purification (Scheme 2.8).

Scheme 2.8: Mechanism for the synthesis of the unwanted product with m/z 382

Analysis of the ¹H NMR spectra of **91-91h** in CDCl₃ indicated that the products exist in solution in a high enol ratio (>90%) (Figure 2.8). The high enol ratio was calculated by comparing the integrals of the peak at approximately 6.8 ppm due to the enol C-H and the peak at approximately 4.6 ppm corresponding to the ketone CH_2 . The enol -OH proton was not visible in CDCl₃ due to the low concentration of the keto form. The structure of several derivatives of **91** were confirmed by XRC (Figure 2.9).

Figure 2.8: ¹H NMR spectrum of 1,3-bis(4-chlorophenyl)propane-1,3-dione with the enol and keto forms highlighted

Removal of solvent under reduced pressure can result in the product precipitating out as two differently coloured solids which we believe are the keto and enol forms. We believe the whiter coloured solid is the enol form of the product, and appeared to be less soluble in organic solvents then the darker keto forms.¹²⁴

For most examples, both aromatic rings are in the same plane, however for **91b** the non-substituted ring is at a 26° angle relative to the carbonyl plane. While half the examples are orthorhombic (**91a**,**b**,**f**) and the other monoclinic (**91d**,**e**,**g**), all exist in the *enol* form. For the bis-substituted compounds **91f**,**g** the alcoholic hydrogen is found to lie in the middle of the two oxygen atoms as shown by the same C2-CO bond lengths. For the other derivatives, the O-H and C2-CO bond lengths are

Figure 2.9: Molecular structure of **91a**,**b**,**d**–**g** as determined by XRC

shorter on the non-substituted ring side, which indicates that these derivatives are enolised on the left side (C1) as viewed.

2.4 Synthesis of 2,2-Difluoro-diketone Derivatives

2.4.1 Isolation of Products 93c-h

With reaction conditions and a purification method optimised for the fluorination of DBM **91**, fluorination of the 1,3-diketone substrates were performed. There are reports on the monofluorination of **91** and its derivatives, but very little literature on the synthesis of the corresponding difluorinated product **93** and its derivatives.^{74,129} Most literature methods involve using large amounts of an electrophilic fluorinating agent in an attempt to achieve full conversion to the difluorinated product. Further reading into the supporting information of the published papers show that isolation of the difluorinated products were either not attempted or performed unsuccessfully; indeed, most reported preparations of difluorinated diketones contain significant amounts of the monofluorinated product.
		$\frac{F_2 (10 \% v/v \text{ in } N_2, 2.3 \text{ equiv.})}{\text{Ouinuclidine } (1.1 \text{ equiv.})}$	
x 01	Ϋ́Υ	MeCN (20 mL) X	
1 2 dilutopo	Droduct	Structure	93
	Product	Structure	Isolated yield/ 70
91	93		57
91a	93a	Me F F	41 ^a 10 ^a (mono-F) 12 ^a (Ar-F)
91b	93b	MeO F F	31 ^a 16 ^a (Ar-F)
91 <u>c</u>	93c		60
91d	93d		60
91e	93e		50
9 <u>1</u> f	93f		72
$91\mathrm{g}$	93g		76
91h	93h		77

Table 2.4: Synthesis of 2,2-difluro-1,3-diketones

^a NMR yield

Using the optimised fluorination conditions described in Scheme 2.6, the desired diffuoro products **93c**-**h** were synthesised and isolated in good yields and purity (Table 2.4), with their structures confirmed by XRC in many cases (Figure 2.11).

Attempts to isolate the desired products via column chromatography on silica gel with hexane and EtOAC or DCM as the eluent were unsuccessful, and gave the products as an oil. However, purification via column chromatography on silica gel using hexane and chloroform (1:1) as the eluent allowed isolation of the desired products as solids.

The two derivatives with electron donating groups on the rings, **91a** (-Me) and **91b** (-OMe), were not isolated due to the formation of significant amounts of ring fluorinated impurities (Figure 2.1). Large amounts of polyfluorinated tar was formed and removed during the purification previously mentioned. The desired diffuoro products that had undergone a single additional ring fluorination appeared to have identical retention factors on silica gel thin layer chromatography (TLC) to the desired products in every solvent system trialled. Due to their viscous nature, these impurities could not be separated from the diffuoro products by recrystallization or distillation. Unfortunately, these polyfluorinated by-products could not be removed thus highlighting the need to prevent over-fluorination.

In the case of **93b** the isolated product contained the desired product and a further fluorinated product in a 2:1 ratio. This higher ratio of aromatic fluorination matches the better electron donating ability of the methoxy group compared to the methyl derivative. GC-MS of this product gave two peaks with masses corresponding to the desired product, and one that had undergone further fluorination on the aromatic ring. Analysis of the Mass spectrometry peaks show a fragment with an m/z of 105.1 corresponding to a $[C_8H_6FO_2]^+$ fragment (Figure 2.10). The fluorine is located on the aromatic ring bearing the -OMe substituent which confirmed that the addition of an electron donating group increases aromatic fluorination. Electron donating groups are activating and *ortho* and *para* directing, and NMR spectroscopy confirmed that the fluorine is located *ortho* to the -OMe group of **93b**.

Analysis of the crude products by ¹⁹F NMR and GC-MS showed that none of the diketones underwent aromatic fluorination prior to enol fluorination as no aryl-F was formed before CF_2 . The reactive nature of F_2 means that even though fluorination at C2 is favoured, aromatic fluorination will still occur if the aryl rings are sufficiently activated.

Products **91c-91h** containing electron withdrawing groups were isolated in moderate to good yields because these substituents helped prevent unwanted aromatic fluorination by deactivating the phenyl rings. Products **91f-91h** containing two electron withdrawing groups lowered the nucleophilicity at C2 to such an extent that

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 m/z (Da)

the reaction was slowed enough that almost no aromatic fluorination occurred. The crude products were isolated as solids in over 90% conversion before purification by recrystallisation. This sharply contrasts with products **93** and **93c**–**e** which were initially isolated as oils requiring column chromatography to fully purify.

All of the products decomposed slightly on silica as the addition of two fluorine atoms α - to a carbonyl increase the electrophilicity of C1.³⁷ Product **91e** decomposed significantly on silica, with the formation of signals in the ¹⁹F NMR spectra consistent with a CF₂H moiety indicating that debenzoylation has occurred. These signals were not present in the crude product mixture. In the presence of a base, nearly all products **91-91h** are susceptible to undergo a debenzoylation reaction.¹³⁰ It is currently unknown why this side reaction has occurred significantly more in the case of **91e** compared to the isolation of other diffuoro products, in particular the isolation of **184** which contains two $-NO_2$ groups.

The molecular structures of **93c**,**e**–**h** as determined by XRC are noticeably different to the non-fluorinated starting materials (Figure 2.11). While the non-fluorinated

Figure 2.11: Molecular structure of $\mathbf{93c},\,\mathbf{184},\,\mathbf{185},\,\mathbf{186}$ and $\mathbf{187}$ as determined by XRC

derivatives exist in the *enol* form with the two aryl rings and dicarbonyl moiety mostly in the same plane due to stabilising intra molecular hydrogen bonding, there is significant rotation seen in the diffuorinated derivatives. These all exist in the keto form, with the dicarbonyl moiety rotated to maximise the distances between the lone pairs of the electron-rich fluorine and oxygen atoms. Usually one of the fluorine atoms lies in a *syn* orientation to one of the oxygens (eg. **93e** has a F-C-C-O dihedral angle of 15.6°) creating a dipole. This dipole appears to aid in crystal packing by forming weak intermolecular interactions with an aryl ring in an adjacent molecule (Figure 2.12). The two aryl rings are rotated so that they are no longer in the same plane to create an additional orthogonal π -stacking interaction. Similar π -stacking interactions were seen in the non fluorinated derivatives, but as compounds were mostly planar, formed repeating layers of overlapping molecules.

Figure 2.12: Crystal packing structures of **93e** as determined by XRC

2.5 Mechanism of Fluorination

The exact mechanism of direct fluorination, either electrophilic or radical, has been a subject of debate and depends on both the substrate and solvent. Many of the earliest reported direct fluorinations are proposed to occur via a free radical mechanism using F^{\bullet} , though due to the low dissociation of F_2 (<1% at rt and atmospheric pressure) Miller theorised an initiation step utilising a C–H containing molecule to generate F^{\bullet} and R^{\bullet} .^{131–134} In general, radical fluorinations require higher temperatures and usually result in perfluorination.

An electrophilic mechanism was suggested in previous attempts at direct fluorinations of 1,3-dicarbonyl substrates.¹⁰⁶ Formic acid was used as the solvent which would increase the susceptibility of F_2 towards nucleophilic attack. The rate of fluorination is dependant on the rate of enolisation, with fluorination occuring at either the C1- or C3- position depending on which enol is formed. Further fluorination at the 3- position to yield the diffuoro product is possible, but occurs much slower due to the lower rate of enolisation compared to the non fluorinated parent compound (Scheme 2.9). Chambers *et al.* hypothesised that a comparison of the product profiles produced by fluorination of a substrate with electrophilic fluorinating agents and by direct fluorination could provide further insight into the mechanism.¹⁰⁰ The similar products seen when F_2 and SelectfluorTM were used help support our conclusion that our base mediated direct fluorinations of 1,3-dicarbonyl substrates described above are occurring via an electrophilic mechanism, rather than a single electron transfer (SET) reaction.

Previous work by Rozatian *et al.* have shown that DBM and its derivatives react via the *enol* tautomer with electrophilic fluorinating agents, and that bases cata-

Scheme 2.9: Previous work on the direct fluorination of 1,3-dicarbonyls¹⁰⁶

lyse tautomerism to the enol form.¹²³ A quantitive reactivity scale for commercially available electrophilic fluorinating agents based on kinetics studies of the monofluorination of **91** and several derivatives was developed. Importantly, it was confirmed that electrophilic fluorinating agents react in a similar mechanism to an S_N2 reaction utilising "F⁺". Consequently, we presume that the base mediated direct fluorination occurs in an electrophilic process with the *enol* tautomer in a similar method to SelectfluorTM.

Keto-enol tautomer studies have shown that DBM exists nearly entirely (92%) in the enol form in MeCN.¹³⁵ The two tautomers can be identified by characteristic shifts in the ¹H NMR spectrum, with a peak at 4.6 ppm relating to the keto and at 6.9 ppm relating to the enol form. The enol form is strongly favoured due to the formation of an intramolecular hydrogen bond between the two carbonyls. Unlike the starting material, the monofluorinated intermediate exits in the ketone form as fluorine prefers to be sp³ hybridised compared to sp², as shown by a doublet in the ¹H NMR spectrum at 6.5 ppm, and confirmed by XRC (Figure 2.13).

Figure 2.13: Molecular structure of 2-fluoro-1,3-diphenylpropane-1,3-dione (92) as confirmed by X-ray crystallography

Thus, fluorination of diketones by F_2 , N-F or any other electrophilic fluorinating agent occurs by reaction with the enol form only. Similarly, reaction of 2-fluoro diketones occurs via the fluorination of the enol form and the rate determining step for the second diffuorination is the tautomerisation of the mono-fluoro ketone form to the enol.¹²⁴ Monofluoro diketones exist predominantly in the keto form. Dolbier determined that a single fluorine is thermodynamically more stable at an sp^2 carbon compared to an sp^3 carbon in monofluoropropenes. Purrington *et al.* investigated the position of keto–enol equilibria in α -fluoro- β -diketones and found that in general, acylic variants display the keto form while cyclic variants display the enol form.^{105,136} However, it was determined that **92** has a pK_a two units less than **91** in absolute ethanol. This implies that the fluorine increases the stability of **92-enolate**, which conflicts with their conclusion that fluorine destabilises **92-enol** relative to **92-keto**.

Purrington proposes that as the enolate cannot form the intramolecular hydrogen bonded enol, the molecule rotates around the C1-C3 bond to maximise the distance between the two partially charged oxygen atoms (Scheme 2.10). In this orientation there is a favourable secondary orbital interaction between one of the oxygen atoms and the fluorine that helps to reduce the unfavourable HOMO-HOMO interaction between the fluorine and the extended β -diketone framework that is isoelectronic with a pentadienyl anion. This favourable interaction, along with the inductive effect of fluorine, explains why the **92-enolate** is more acidic than **91-enolate**.

Scheme 2.10: Proposed conformation of the enolate form of 2-fluoro-1,3-diphenylpropane-1,3-dione in solution¹⁰⁵

When a sample of **92** was isolated by column chromatography, recrystallisation from hexane and analysis by XRC confirmed that **92** exists in the rotated keto conformer in the solid state originally proposed by Purrington (Figure 2.13). It is unknown whether upon protonation there is a significant barrier to rotation to reform the original orientation in the solution phase, or if this form is only thermodynamically stable in the solid phase.

Consequently, we could propose that the role of the quinuclidine is to catalyse the tautomerism of the keto form of the monofluoro diketone intermediate to the corresponding enol form.

At first glance, we may expect a base such as quinuclidine to deprotonate the **keto-92** to give the enolate (Scheme 2.11). However, neither DABCO (pK_{aH} (MeCN) = 18.29), quinuclidine (pK_{aH} (MeCN) = 19.5) or Et₃N (pK_{aH} (MeCN) = 18.46) are strong enough bases to deprotonate **91-keto** (estimated pK_{aH} (MeCN) = pK_{aH} (DMSO) + 12.9 = 13.4 + 12.9 = 26.3).¹³⁷⁻¹³⁹ Consequently, the simple mechanism of quinuclidine acting as a base for deprotonation is unlikely (Scheme 2.11).

Scheme 2.11: Proposed deprotonation of 2-fluoro-1,3-diphenylpropane-1,3-dione by quinuclidine

Quinuclidine gave the best conversion of **91** to **93** upon fluorination with F_2 , and so it is clear that it plays an important role in the mechanism. Alternatively, an *in situ* N-F electrophilic fluorinating agent might be formed between quinuclidine and fluorine, which is then selectively fluorinating **91** (Scheme 2.12).

Since Selectfluor^{\mathbb{M}} is synthesised by directly fluorinating **178b** in the presence of sodium tetrafluoroborate (NaBF₄) (Scheme 2.2), a similar reaction was attempted with DABCO to see if a stable N-F reagent similar to Selectfluor^{\mathbb{M}} could be formed *in situ*.

A solution of DABCO in MeCN reacted with 1 equiv. of F_2 in order to determine if a stable *in situ* intermediate between DABCO and F_2 was formed. After purging, 1 equiv. of DBM was added, but after 30 min stirring, no fluorination of DBM was identified by ¹⁹F NMR spectroscopy.

To test the possibility that N-fluoroquinuclidinium fluoride (191) is formed in situ, N-fluoroquinuclidinium triflate (192) was synthesised following a literature procedure (Scheme 2.14) and then reacted with 91. These N-fluoroquinuclidinium salts

Scheme 2.12: Quinuclidine forming an *in situ* fluorinating agent that fluorinates 1,3-diphenylpropane-1,3-dione

Scheme 2.13: Attempts to fluorinate DABCO to develop an $in \ situ$ fluorinating agent

appear to be milder fluorinating agents than Selectfluor[™] (**66**) as shown by their lower reactivity with similar substrates, and the reported quantitative "F⁺" transfer from **66** to quinuclidine upon mixing at r.t.^{140–145} **192** appears to have the same reactivity as **191**, but is more soluble in a range of solvents including MeCN, and is not nearly as hygroscopic—**191** requires handling in a glovebox. Sharif gave no prediction on whether the N-fluoroquinuclidinium salts fluorinate via an S_N2 or SET pathway, but the similar N⁺ – F bond lengths in **192** (1.407(6) Å) to **66** (1.37(2) Å) indicate a similar bond strength which could result in a transfer of F⁺ by the same mechanism.¹⁴⁶

DBM was reacted with an equivalent of **192** in CD_3CN in an NMR tube kept at 25 °C to monitor the rate of conversion. After 144 h there was 12% conversion to the monofluorinated product by ¹H NMR spectroscopy but none of the diffuorinated product. This is a lower conversion than that seen with **66** as expected. The reaction was repeated on a larger scale with varying amounts of **192** and quinuclidine

Scheme 2.14: Synthesis of N-fluoroquinuclidinium triflate (192) based on a literature procedure

(Table 2.5). After stirring for 72 h at 60°C, the solvent was removed, and yields calculated by comparison of the integral values against a known amount of $\alpha, \alpha, \alpha,$ -trifluorotoluene (Table 2.5).

Table 2.5: Fluorination of DBM with N-fluoroquinuclidinium triflate

2.5.0.1 PK_a Analysis

Unfortunately, a comparison of the pK_as in MeCN of the mediating agents shows no real correlation between basicity and conversion to the diffuoro product. Conversion to the monofluorinated product was higher when Et_3N was used despite having a similar pK_a to DABCO (Table 2.1, Entry 11). DABCO and quinuclidine are more nucleophilic than Et_3N due to steric reasons which may help interactions with DBM or F_2 , increasing the observed rate constant.

Base	pk	Ka	NMR yield/%	
Dase	H_2O	MeCN	92	93
$DABCO-H_2^{+2}$	3.0, 8.8	18.3	4	20(7)
Quinuclidine-H ⁺	11.0	19.5	$10(8)^{*}$	$43(33)^{*}$
$\mathrm{Et}_{3}\mathrm{N}\text{-}\mathrm{H}^{+}$	10.8	18.5	25	6
Cs_2CO_3	6.4, 10.3		4	14
NaCl	-7	10.3	33	$12(6)^{*}$

Table 2.6: pK_a of the mediating agents in H₂O and MeCN with their effect on the fluorination of DBM

In the case of Cs_2CO_3 (Table 2.1, Entry 12), the lower pK_a is unlikely to deprotonate **92**, and so we propose that the carbonate reacts with any HF present that is produced as a by-product from fluorination.

In (Table 2.6, Entry 5) NaCl is not nearly basic enough to deprotonate the enol form of the starting material. Instead, it is hypothesised that the salt is interacting with F_2 to generate small amounts of ClF and F^- which is then reacting with the enol forms of **91** and **92**. The lower conversion when Et_3N is used compared to DABCO, despite their similar pK_as in MeCN, indicates that the selectivity is not entirely due to the base strength. Deprotonation of either the starting material or the monofluorinated product gives the corresponding enolate which then reacts with F_2 . Quinuclidine gave an NMR yield of the diffuoro product **93** that was 7 times higher than when Et_3N was used, far more than expected given the pK_a difference of 1, and thus implies that quinuclidine is also interacting with fluorine.

2.5.0.2 N-F Compound

The nitrogen of quinuclidine could, in principle, interact with fluorine to form either a discrete $N-F^+$ bond or some form of associated amine-fluorine compound. Alternatively, the nitrogen could be protonated and fluorine interacting with this quinuclidinium-H⁺. (Figure 2.14).

Figure 2.14: Possible N-F fluorinating reagents generated $in \ situ$ in a quinuclidine mediated direct fluorination

2.5.0.3 Reactions of 2-Fluoro-1,3-diphenylpropane-1,3-dione with Quinuclidine

To investigate potential interactions between 92 and quinuclidine, equivalent amounts were dissolved in CD_3CN in an NMR tube kept at 25 °C. This proton integral initially rapidly decreased, but then slowly increased over the next several days (Figure 2.15).

As soon as the quinuclidine was added to 92 in the CD₃CN the solution turned more yellow. Analysis by ¹⁹F NMR immediately after this addition showed a significant number of peaks corresponding to aromatic fluorination. A new doublet at -190 ppm had appeared indicating that some of 92 has undergone an unwanted fluorination on the aromatic ring (Figure 2.16).

It appears that **92** is unstable in the presence of quinuclidine, and so it is possible that some of the aromatically fluorinated products may not be entirely due to an unselective direct fluorination of **91**, but are products of a competing unwanted

Figure 2.15: Change in intensity of the C2H peak in the keto form of 2-fluoro-1,3-diphenylpropane-1,3-dione in the ¹H NMR spectrum after an equivalent of quinuclidine was added

Figure 2.16: ¹⁹F NMR spectrum of 2-fluoro-1,3-diphenylpropane-1,3-dione in CD_3CN minutes after the addition of an equivalent of quinuclidine

reaction pathway (Scheme 2.15). This is supported by the relatively minimal amount of ring fluorinated products detected by ¹⁹F NMR spectroscopy when quinuclidine was initially screened as a base.

Scheme 2.15: Unwanted defluorination of 2-fluoro-1,3-diphenylpropane-1,3-dione by quinuclidine leading to the *in situ* generation of an $N-F^+$ reagent that performed unselective ring fluorination

2.5.1 Quinuclidinium–F₂ Interaction

Due to the experimental setup requiring purging the apparatus with nitrogen before the introduction of fluorine, quinuclidine is added to a solution of DBM in MeCN at r.t. Upon mixing, the solution appears to turn slightly more yellow coloured, which could be indicative of a deprotonation occuring. It is likely that a significant proportion of the **91-enol** is deprotonated prior to fluorination which would allow for the formation of **193** as a potential fluorinating agent.

Given the observations above, a mechanism for the quinuclidine mediated direct fluorination of DBM with F_2 is proposed in Scheme 2.17. **91** is deprotonated by quinuclidine prior to the addition of fluorine, and it is proposed that the fluorinating agent is generated *in situ* by the interaction of fluorine with this protonated base **193**. This will act as an electrophilic fluorinating agent and fluorinate **91-enol** to give **92**. A rotation and deprotonation will occur to give **92-enolate** in the orientation proposed by by Purrington with the two oxygen atoms far apart.

Since reaction between N-fluoroquinuclidinium triflate **192** and diketones such as DBM only proceed at elevated temperatures (Table 2.5), fluorination of DBM with **192** in a similar mechanism to SelectfluorTM is probably not occuring.

It is well established that in the reaction of fluorine with nitrogen bases such as DABCO derivatives, that a $R_3N^+F\cdots F^-$ salt is formed which can be transformed to $R_3N^+F\cdots BF_4^-$ upon addition of sodium tetrafluoroborate.¹²⁶ Consequentially, the reaction of quinuclidine with F_2 is most likely to form *N*-fluoroquinuclidinium fluoride **191** in situ.^{142,147}

Fluoride ion is a very strong base, especially when formed *in situ* in anhydrous conditions. Since the $pK_a(MeCN)$ of HF is ~25.2 and the $pK_a(MeCN)$ of DBM-keto **91** is ~26.3, F⁻ could be sufficiently basic to deprotonate the enol form of DBM as this would have a slightly lower $pK_a(MeCN)$. Additionally, F⁻ would be strong

enough to deprotonate the keto form of 2-fluoro-1,3-diphenylpropane-1,3-dione to give the enolate. The enolate is highly reactive towards electrophiles and can be fluorinated by R_3N^+-F or $[R_3NH-F_2]^+$ in solution. A proposed mechanism is as follows (Scheme 2.16).

Clearly, there is an unusually beneficial effect of quinuclidine compared to other bases. The reaction with fluorine to give a $R_3N^+F\cdots F^-$ intermediate, transfer of fluoride to deprotonate the keto form and any subsequent reaction of enolates with R_3N^+-F or $[R_3NH-F_2]^+$ all contribute to the efficient diffuorination process.

The increased acidity of the **92** compared to **91** will ensure that in the presence of F^- or other bases, **92** is preferentially deprotonated to **91**, and hence reacts with fluorine preferentially. This explains the observed preferential selectivity for **93** as the major product. While the introduction of fluorine usually inhibits further fluorination at the same site due to electronegativity, in this case the increased acidity due to the introduction of a single fluorine leads to increased conversion to the diffuoro product.

Additionally, quinuclidine appears to be able to react with **92** and possibly **93** (Scheme 2.18). As the reaction proceeds the ratio of C2H to C2F decreases, and so it becomes increasingly likely that quinuclidine could come into contact with a C2F. In this case, a side reaction appears to occur that leads to unwanted ring fluorination reactions.

When electron withdrawing groups are added to the aromatic ring, limited amounts of unwanted ring fluorinated products are produced. These groups appear to lower the electron density in the ring, deactivating them to ring fluorination by any *in situ* generated fluorinating agents. The similar isolated yields of **93** with an electron-withdrawing group (EWG) present on both rings (**91f**, **184** and **187**) show that it is not dependent on which EWG is added.

Scheme 2.16: Proposed mechanism of the quinuclidine mediated direct fluorination of DBM \$

Scheme 2.17: Proposed mechanism of the quinuclidine mediated direct fluorination of DBM $\,$

Scheme 2.18: Proposed side reaction between 2-fluoro-1,3-diphenylpropane-1,3-dione and quinuclidine to give unwanted ring fluorinated products

2.6 Difluorination of 1,3-Diester Derivatives

2.6.1 Introduction

Given previous Durham research synthesising diethyl 2-fluoromalonate 152 using F_2 , we attempted to develop a route to diffuorinated malonates from dimethyl malonate 196. Dibenzoyl malonate 199 was also trialled as a model diester system as it has structural similarities to 91, and so may be diffuorinated with similar reactivity and selectivity.

2.6.2 Fluorination of Dimethyl Malonate

Quinuclidine mediated direct fluorination of dimethyl malonate **196** was trialled using conditions optimised for the diffuorination of **91** (Scheme 2.19).

Scheme 2.19: Quinuclidine mediated direct fluorination of dimethyl malonate using conditions optimised for DBM

A sample of the reaction mixture was added to a mixture of 1 mL CDCl₃ and 1 mL H_2O and shaken. The organic phase was extracted for NMR analysis, and showed a 23:1 ratio of the diffuoro product **198** to the monofluoro product **197** (Figure 2.17). The reaction mixture was concentrated, diluted with H_2O and the organic products extracted with EtOAc. It appears that significant amounts of defluorination and hydrolysis has occurred during the aqueous workup as shown by the significant increase in the proportion of **197**, and the presence of two CF₂ containing products—the desired **198** and an acid produced by hydrolysis of **198**. The two ester groups become highly activated to nucleophilic attack after diffuorination has occurred, which can lead to this unwanted hydrolysis and the possible formation of hydrate products.

2.6.3 Fluorination of Dibenzoyl Malonate

Upon fluorination of dibenzoyl malonate **199**, good selectivity (5:1) for the diffuoro product **201** over the monofluoro product **200** was detected in the ¹⁹F NMR spectra

Figure 2.17: ¹⁹F NMR spectra of the reaction mixture (bottom) and the crude product after an aqueous workup (top)

of the crude product after filtering through a short silica plug to remove any excess HF or protonated quinuclidine. (Figure 2.18). Significant amounts of ring fluorination appears to have occurred as can be determined by the peaks around -113--117 ppm. This can be rationalised as the $-CH_2OCOR$ is more electron donating than the -COR found in **91** and, hence, activates the ring towards ring fluorination.

Scheme 2.20: Quinuclidine mediated direct fluorination of dibenzyl malonate using conditions optimised for DBM

The fluorination was repeated using 1.5 equiv. of quinuclidine and 4.0 equiv. of 10% v/v F₂ in N₂ at an increased flow rate of 30 mL min⁻¹ in 40 mL MeCN. We proposed that increasing the equivalents of reactants would increase the conversion to **201**, and the increased flow rate would limit the reaction time and thus help prevent unwanted further ring fluorinations from occurring. After fluorination, the majority of the solvent was removed under reduced pressure, and the resulting orange solution passed through a silica plug with CHCl₃ as the eluent to remove any protonated

Figure 2.18: ¹⁹F NMR spectrum of the crude product mixture of the quinuclidine mediated direct fluorination of dibenzoyl malonate

quinuclidine or polyfluorinated tar. Removal of the solvent gave a clear yellow oil that contained a mixture of **201** and **200** in a 3:1 ratio.

Attempts to isolate the desired product **201** by Kugelröhr distillation, column chromatography with both hexane and DCM (1:1), and 15% EtOAc v/v in hexane mixtures as the eluents, all proved unsuccessful at removing the unwanted ring fluorinated products. It was theorised that an acid-base extraction at various pH would allow for the selective separation of any unreacted starting material **199** and any of the monofluorinated intermediate **200** by utilising the effect of fluorine substitution on the p K_a . This also proved unsuccessful.

While these experiments have shown that 2,2-difluoro-1,3-diesters can be synthesised using base mediated direct fluorination strategies with high selectivity over the 2fluoro product, the increased reactivity of the carbonyl groups adjacent to the CF_2 group caused significant problems with isolating the desired product and no further attempts to isolate **198** or **201** were made at this stage of the project.

2.7 Conclusion

Selective diffuorinations using F_2 was investigated. While F_2 does not react significantly with the 1,3-diketone DBM in MeCN, fluorination to give the 2,2-diffuoro product could be achieved by mediation with one of several nitrogen bases. Of these, quinuclidine performed the best, giving high selectivity for the 2,2-diffuoro product over the 2-fluoro product and minimising unwanted aromatic fluorinations. A range of DBM derivatives were synthesised following a literature procedure and fluorinated using optimised conditions to develop several new 2,2-diffuoro-1,3-diketone products.

This appears to be the first general case of F_2 being used to selectively introduce a gem-difluoro group, and a mechanism for this has been proposed. We believe that quinuclidine reacts with F_2 producing F^- which deprotonates **91-enol** and **92**. These reactive enolates then react with an electrophilic sources of fluorine, either R_3N^+-F , or $[R_3NH-F_2]^+$ that are formed *in situ*.

Chapter 3

Synthesis of 2,2-Difluoro- β -ketoesters

3.1 Aim and Approach

In the previous chapter 1,3-diketones and 1,3-diesters were successfully selectively fluorinated with F_2 to give the corresponding α, α -difluoro products. While mono-fluorination of 1,3-ketoesters in acidic solvents has been used to create products that have seen use industrially, such as in the synthesis of the antifungal Voriconazole **164**, there appears to be very little literature on the fluorination of 1,3-ketoesters in non-acidic solvents, or the synthesises of the corresponding difluoro products. It has been determined experimentally that BKEs are much less reactive to difluorination using a range of electrophilic fluorinating agents or F_2 than related 1,3-diketones, and selective difluorination using F_2 has not been previously reported. Previous attempts at fluorinating ethyl acetoacetate with F_2 gave less than 1% of the desired difluoro product by ¹⁹F NMR spectroscopy.¹⁰⁶

There are very few AIs that are synthesised using α, α -diffuoro- β -ketoesters (diffuoro-BKEs). We propose that the current limitations in synthesising this class of compounds has resulted in a lack of available FBBs for agrochemical and pharmaceutical companies to use to develop new AIs. It would, therefore, be of significant interest to develop cheap and scalable synthetic strategies to diffuoro-BKEs, as these could potentially be highly desired FBBs for the synthesis of more complex fluorinated systems.

3.2 Fluorination of β -Ketoesters

While 1,3-diesters have previously successfully been fluorinated with F_2 to give the chemoselective α, α -diffuoro product, the introduction of a >CF₂ group activates the carbonyl groups leading to hydrolysis and decomposition during aqueous workups and purification by column chromatography on silica gel. We theorised that the replacement of one of the ester groups with a ketone group would increase the stability of the corresponding diffuoro compound and allow for isolation of the desired product.

3.2.1 Base Mediated Direct Fluorination of Ethyl Benzoylacetate

Readily available ethyl benzoylacetate **94** was used as a model system for the development of conditions for selective 2,2-difluorinations. In an initial experiment to isolate a pure sample for reference purposes, **94** was fluorinated using similar conditions that were developed for the difluorination of **91** and its derivatives (Scheme 3.1) and we hoped that quinuclidine would show a similar selectivity for the difluoro product **96** over the monofluoro product **95**.

Scheme 3.1: Quinuclidine mediated direct fluorination of ethyl benzoylacetate using conditions optimised for DBM

In an attempt to limit decomposition by purification via column chromatography using silica gel, the product was isolated by vacuum distillation using Kugelröhr distillation. The introduction of the two fluorine atoms is predicted to lower the boiling point significantly, which could allow for the easy separation from any unreacted starting material. A significant amount of material thermally decomposed resulting in the low (11%) isolated yield by mass recovery.

While the reaction did not produce significant amounts of tar, the low crude yield (49%) was explained by significant amounts of hydrolysis occurring during the aqueous work-up prior to distillation. Reextraction of the aqueous phase several times with CHCl₃ gave 0.119 g of a beige coloured solid. Analysis by ¹⁹F NMR

spectroscopy showed a second peak at -106.9 ppm corresponding to a different CF₂-containing compound **202**. We suggest that this is the diffuoro acid produced by hydrolysis of **96** — the lack of signals corresponding to the ethyl ester group in the ¹H NMR spectrum support this. There are also signals corresponding to a product containing a CF₂H group(**203**) which highlights the increased reactivity of carbonyl groups α - to a CF₂ group.³⁷ There is a 2:1 ratio of resonances between **202** and **203**.

Figure 3.1: Top: ¹⁹F NMR spectrum of **96**, Bottom: ¹⁹F NMR spectrum of the beige coloured solid isolated after reextraction of the aqueous phase with CHCl₃ with proposed assignments

This initial experiment demonstrated the possibilities of using F_2 for the synthesis of diffuoro-BKEs but the difficult purification stage requires some development.

3.2.1.1 Base Screening

Successful fluorination with quinuclidine indicated that selectivity for the diffuoro product could be mediated with bases, but that aqueous workup and purification by distillation would not be appropriate methods of purifying the desired product. The fluorination was repeated with varying equivalents of several potential nitrogen bases. After purging the reaction vessel, the MeCN was removed under reduced pressure, and the crude tarry mixture was washed through a large silica plug with CHCl₃ as the eluent. No aqueous work-up was performed in order to limit the amount of unwanted hydrolysis. We proposed that any remaining HF would react with the silica gel, possibly to form hexafluorosilicic acid $(H_3O)_2[SiF_6]$ which would be absorbed onto the silica (3.1). CHCl₃ was chosen as the eluent as its relatively high eluting power should limit the time organic material is exposed to silica while not dissolving any tar or amine residues.

$$\operatorname{SiO}_2 + 6 \operatorname{HF} \longrightarrow (\operatorname{H}_3 \operatorname{O})_2 [\operatorname{SiF}_6]$$

$$(3.1)$$

After washing through the small scale silica plug, the products were analysed by ¹⁹F NMR and yields of the fluorinated products **95** and **96** calculated by comparison of peak integrals to a α, α, α -trifluorotoluene reference.

As expected, the lack of mediating agent (Table 3.1, Entry 1) led to unselective fluorination, with the formation of several undesired fluorinated products including fluoroatomatic derivatives as observed by the ¹⁹F spectrum. Comparisons of the ¹⁹F NMR spectra of the base screenings are available in the Experimental section. DABCO was subsequently trialled as a mediating agent (Table 3.1, Entry 2). Conversion to the fluorinated products 95 and 96 was considerably lower with 1.1 equiv. of DABCO than conversion to the corresponding fluorinated diketones when DBM (91) was used as a starting material, and matches the differences in reactivity of diketones and BKEs.¹⁰⁶ The volume of solvent was increased to 40 mL from 20 mL (Table 3.1, Entry 3) to effectively double the path length that fluorine passes through before it leaves the solution but the conversion was significantly lower than when 20 mL of MeCN was used. To ensure that this was not due to the concentration of base and starting material decreasing by half, the experiment was repeated with double the equiv. of 94 and F_2 (Table 3.1, Entry 4) to maintain the same concentration of reactants as Entry 2. In both of these cases trace amounts of 95 and 96 were detected by ¹⁹F NMR spectroscopy. Instead significant amounts of dark brown tar were formed. Increasing the amount of DABCO added (Table 3.1, Entries 4 and 5) also resulted in the formation of a large amount of tarry products, and so we concluded that while small amounts of DABCO and F₂ gave relative selectivity but low conversion, attempts to increase the conversion result in the formation of tar.

	OEt F2 (10% v/v in N2) Mediating agent MeCN (20 mL)	-		+	
94 2 mmo	bl		95		96
Entry	Base	Equiv. of	Equiv. of	NMR y	rield/%
		Base	F_2	95	96
1	None	-	2.3	8	2
2	DABCO	1.1	2.3	16	10
3	DABCO ^a	1.1	2.3	1	1
4	$DABCO^{b}$	1.1	2.3	0	0
5	DABCO	1.5	2.3	0	3
6	DABCO	1.5	4.0	0	1
7	DBU	0.5	2.3	12	6
8	DBU	1.5	2.3	18	3
9	$\mathrm{Et}_{3}\mathrm{N}$	1.1	2.3	11	1
10	3-Quinuclidinol ^a	1.1	2.3	0	1
11	Quinuclidine	1.1	2.3	0	42
12	Quinuclidine	1.1	3.5	6	41
13	Quinuclidine	1.1	3.0°	6	51
14	Quinuclidine	1.5	$3.0^{\rm c}$	0	73
15	Quinuclidine	1.5	$3.0^{\rm c}$	0	$85^{\rm d}$

Table 3.1: Screening conditions for the base mediated diffuorination of ethyl benzoylacetate

 $^{\rm a}\,40~{\rm mL}$ MeCN used

 $^{\rm b}$ 40 mL MeCN, 4.0 mmol 94, 2.3 equiv. F₂ and 1.1 equiv. DABCO used $^{\rm c}$ 30 mL min⁻¹ flow rate of 10% v/v F₂ in N₂ used

^d Isolated yield after 20 mL column

Attempts to mediate the selectivity with the strong base DBU (Table 3.1, Entries 7 and 8) showed limited conversion to products **95** and **96**. Increasing the equiv. of DBU decreased the amount of **96** produced as detected by NMR but resulted in the formation of large amounts of tarry by-products. Similar results were seen when Et_3N was used to mediate the selectivity, with **95** detected as the major desired

fluorinated product (Table 3.1, Entry 9). 3-Quinuclidinol has a similar structure to quinuclidine, but is significantly cheaper and less toxic. Fluorinations with 3-quinuclidinol as a mediating agent showed very limited conversion to desired fluorinated products (Table 3.1, Entry 10). Due to the low solubility of 3-quinuclidinol in MeCN, 40 mL of MeCN was used. A similar conversion to **96** was seen when 40 mL of MeCN was used with both DABCO and 3-quinuclidinol.

Similarly to the base mediated fluorination of DBM observed in Chapter 2, quinuclidine appeared to be the most effective base at increasing selectivity for the difluoro product **96**. Increasing the equivalents of F_2 to 3.0 equiv. with an increased flow rate of 30 mL min⁻¹ and 1.5 equiv. of quinuclidine were found to be the optimum conditions for conversion to **96** (Table 3.1, Entry 14). Filtering the concentrated reaction mixture through a small column made out of silica in a 20 mL syringe with CHCl₃ as the eluent afforded the desired product **96** as a pale yellow oil in 85% isolated yield (Table 3.1, Entry 15). No further purification was required as the desired products were isolated in excellent purity (>95%). These fluorination conditions and method of purification was used to isolate products **96** and **96b–f** in good to excellent yields.

Figure 3.2: Small scale silia plug used to remove tar and HF without an aqueous workup to isolate compounds **96** and **96b–f**

Figure 3.3: ¹H NMR spectrum of 2,2-difluoro-3-oxo-3-phenylpropanoate

Figure 3.5: ¹³C NMR spectrum of 2,2-difluoro-3-oxo-3-phenylpropanoate

3.2.2 Synthesis of Ethyl Benzoylacetate Derivatives

Derivatives of **94** with various substituents on the phenyl ring are not commercially available, but there are various synthetic routes to prepare these substrates in the literature.^{148–152} While many of these require the use of sodium hydride (NaH), work by *Clay et al.* developed a method using milder reagents, magnesium chloride (MgCl₂) and Et₃N, that achieved excellent yields (up to 99%) with a methodology that has been scaled up to a multi kilogram scale.¹⁵³ In an attempt to further increase the substrate scope, a derivative replacing the phenyl ring with a pyridine moiety was synthesised following a literature procedure (Table 3.2).¹⁵⁴

The derivatives were synthesised in excellent yields, with purity higher than the reported literature in some cases as shown by the isolation of the desired products as solids and not as the reported oils. We propose that the large range of values reported in the literature for the NMR shifts and melting point values is due to different keto-enol ratios. The keto:enol ratio in CDCl₃ were calculated by comparison of the integrals of the keto and enol forms of the C2H. In all cases, the major enol tautomer is formed using the ketone carbonyl, with 94a,b and 94e displaying an additional enol form based on the ester carbonyl. It appears that the keto-enol ratio has no effect on whether the product is a solid or oil as shown by the range in keto proportions (16–75%) detected in the NMR spectrum of the isolated products (Table 3.3).

	Eto 20	о 1 ОК _	. MgCl ₂ (1.7 equiv), Et ₃ N (3.5 equiv) EtOAc (40 mL) 0-30 °C 2. Benzoyl chloride (1 equiv) 0-30 °C	Eto 94
]	Entry	Compour	nd Structure	Yield/%
_	1	94a	Eto	76 DMe
	2	94b	Eto Eto	91 °CI
	3	94c	Eto O	95 CF₃
	4	94d	Eto	98 No2
	5	94e	Eto	95 CN
	6	94f	EtO	NO₂ 75
	7	94g	EtO	72*

Table 3.2: Synthesis of ethyl benzoylacetate derivatives synthesises following a literature preparation 153

 * Synthesised following the literature procedure reported by Ragavan $et \ al.^{154}$

The different keto-enol ratios are only present in solution, and so are probably solvent dependent. Crystals of the solid products were grown by slow evaporation of a supersaturated solvent and were analysed by single crystal XRC. These were all found to form as the enol tautomer which indicates that the enol form is thermodynamically stable more often than not under these conditions (Figure 3.6).

Entry	Compound	Ketone/ $\%$	Enol/%	State
1	94a	75	17, 8	Oil
2	94b	73	20, 7	Solid
3	94c	60	40	Oil
4	94d	26	74	Solid
5	94e	75	17, 8	Solid
6	94f	58	42	Solid
7	$94\mathrm{g}$	16	84	Solid

Table 3.3: Comparison of the keto–enol ratios in CDCl_3 of the benzoylacetate derivatives synthesised

Figure 3.6: Molecular structure of several synthesised ethyl benzoylacetates as determined by XRC

3.2.3 Synthesis of Ethyl 2,2-Difluoro-3-oxo-3-propanoate Derivatives

Derivatives **94a**–**g** were fluorinated using the conditions optimised for **94** (Table 3.4). Purification by column chromatography using the small scale silica column with CHCl₃ as the eluent yielded **96b–f** in high yields with no further purification needed. The methoxy derivative (**96a**) gave substantial amounts of product that had undergone further aromatic ring fluorination in a similar fashion as to when 1-(4-methoxy)-3-phenylpropane-1,3-dione (**91b**) was fluorinated. This reaction was repeated with 2.5 equiv. of F_2 , however a significant amount (20%) of this unwanted aryl fluoride product was detected by ¹⁹F NMR spectroscopy. The methoxy group increases the rate of fluorination at C**2** but additionally, activates the aromatic ring towards fluorination. Given the difficulties with removing the unwanted fluorinated products in the DBM based reactions, no further attempts at isolating **205a** was attempted. The lack of success with this compound compared to the others highlighted the beneficial effect of electron withdrawing groups on decreasing the reactivity of the aromatic ring of starting materials towards competing fluorination.

Compound **96d** contained some unwanted aryl fluoride material, but repeating with 2.8 equiv. of F_2 gave the desired product after purification.

Compound **96g** was not isolated as a pure product as several fluorinated products were detected in the ¹⁹F NMR spectrum after attempts at purification by column chromatography using a silica gel support. Reaction of F_2 with the nitrogen of the pyridine ring to give an *N*-fluoropyridinium salt is suggested to be the cause of low yields in this case.

		F ₂ (3.0 equiv, 10% Quinuclidine (1.5 MeCN (20 m	$\frac{v/v \text{ in } N_2}{(requiv)} \qquad \qquad$	
	R 94 2 mmol	0 °C 96 70–89%		
Entry	Starting Material	Product	Structure	Yield/%
1	94a	96a		Not isolated
2	94b	96b		89
3	94c	96c		87
4	94d	96d		77
5	94e	96e		70
6	- 94f	96f		78
7	94g	96g		Not isolated

Table 3.4: Quinuclidine mediated direct fluorination of ethyl benzoylacetate derivatives (94a-g)

A suitable crystal of **96d** for XRC was grown by slow evaporation from an EtOH and water mixture. Interstingly the molecular structure identified was that of the gem-diol hydrate of the ketone carbonyl group (Figure 3.7). The molecules in the crystal are linked by hydrogen bonds to form corrugated layers. α,α -Difluoroketones can readily form hydrates in aqueous solution, but there are very few examples of organic structures containing a C(OH)₂-CF₂-C fragment in the Cambridge Crystallographic Data Centre (CCDC), and only one of these is acyclic.

Figure 3.7: Molecular structure and crystal packing structure of **96d** as determined by XRC and crystallography

Given the success of selectively diffuorinating **94** and its derivatives using a quinuclidine optimised direct fluorination, attempts were made to diffuorinate other BKEs of potentially industrial relevance.

3.2.4 Difluorination of Alkyl β -Ketoesters

The ethyl and methyl 3-oxopentanoate esters were trialled as simple aliphatic BKE that could lead to potentially useful CF_2 containing FBBs.

		0 0	F_2 (10% v/v in N ₂ , 30 mL min ⁻¹ Quinuclidine (1.5 equiv.)		
			MeCN 0 °C	F F	
_		161 2 mmol 0.251 mL		206	
	Entry	Volume of	Equiv of	NMR conversion	Recovered
_		MeCN/ mL	F_2	to $\mathbf{206\%}$	Mass/g
	1	20	3.0		0.001^{a}
	2	20	4.5	84	$0.203^{\rm b}$
	3	40	5.5	89	0.237^{c}
	4	40	$5.5^{\rm d}$	90	0.311 ^e

Table 3.5: Screening conditions for the base mediated diffuorination of methyl3-oxopentanoate

^a Silica plug used instead of 20 mL column

^b Further purification by vaccuum distillation attempted

^c Further purification by column chromatography attempted

^d 1.7 equiv. of quinuclidine added

^e Further purification by distillation using a Kugelröhr

The recovered yield of the crude product when a silica plug was used instead of a mini column is significantly lower despite washing through with a much larger volume of solvent (Table 3.5, Entry 1). While conversions to **206** were good when a large amount of F_2 was added, full conversion was never achieved. Increasing the volume and F_2 (Table 3.5, Entries 3 and 4) did not significantly increase conversion to **206** as measured by NMR, though trace amounts of unwanted fluorinated by-products were detected in the ¹⁹F NMR spectra.

Despite being predicted to have different boiling points, with the introduction of fluorine lowering the boiling point, isolation of **206** by vaccuum distillation was unsuccessful (Table 3.5, Entry 2). Distillation using a Kugelröhr was also attempted as these are better at separating small volumes of material that has multiple different boiling points (Table 3.5, Entry 4). A colourless oil (0.146 g) was obtained, but unfortunately analysis by NMR spectroscopy indicated that this oil contained 12% of unreacted **161** by weight. Purification was also attempted by column chromatography using silica gel with a 15% EtOAc v/v in hexane mixture as the eluent (Table 3.5, Entry 3). No desired product was detected in any fractions obtained, and thus it appears that **206** has hydrolysed on the column similarly to 2,2-difluoro-1,3-diesters (**198**, **207**) that were synthesised previously but not isolated.

Fluorination attempts with ethyl 3-oxopentanoate **208** also showed good selectivity for the desired diffuoro product **209** (Table 3.6). However, full conversion could not be achieved, and isolation of **209** was not successful due to hydrolysis during an aqueous work-up. Increasing the equivalents of F_2 to 4.0 and purification by column chromatography using silica gel in a 20 mL syringe as the column afforded 0.264 g of a pale yellow oil that was 73% **209** and 27% unreacted **208** by NMR. Use of the mini column drastically increased the mass recovered compared to using a silica plug. No further attempts to isolate **209** were attempted but, on a larger scale, distillation of the pure diffuoro ketoester **209** should be possible.

Table 3.6: Screening conditions for the base mediated diffuorination of ethyl

3-oxopentanoate

^a Aqueous work-up performed before washing through a silica plug used instead of 20 mL column

Quinuclidine appears to dramatically increase selectivity for the 2,2-diffuoro product during direct fluorinations of β -ketoesters with F₂. Selectivity of >95% was detected, but full conversion was not achieved despite the addition of a large excess of F₂. Isolation of these 2,2-diffuoro- β -ketoesters is inherently difficult due to their tendency to hydrolyse in aqueous conditions and during purification via column chromatography. The success at isolating **96** and its derivatives indicated that an aromatic ring helps to prevent rapid hydrolysis and aid isolation.

3.3 Reactions of 2,2-Difluoro- β -ketoesters with Amines

We previously noted that **96** appears to hydrolyse and also potentially decarboxylate during the aqueous workup. While this could potentially be used to expand the range of FBBs that **96** can be used to make, no further investigations into this were attempted as part of this thesis. Instead, **96** was reacted with several amines to develop a new route to diffuoroamide derivatives (Scheme 3.2).

Scheme 3.2: Route to diffuoroamides using F_2 as a fluorinating agent

Figure 3.8: ¹⁹F NMR spectra of the starting material (top) and crude product from the reaction in EtOH (bottom)

The synthesis of a few diffuoroamides with a similar structure to **96** have previously been reported. These can be either be made by fluorinating the corresponding amide with an excess of an electrophilic fluorinating agent such as SelectfluorTM or by palladium-catalyzed carbonylation of aryl boronic acid derivatives.^{155,156} Both of

these methods are much less viable on a manufacturing scale due to the cost of the reagents.

Middleton reported the synthesis of several α, α -diffuoroarylacetamides by mixing the corresponding amine and ethyl α, α -diffuoroarylacetate in EtOH and stirring overnight. Consequently, reacting **96** with varying amounts of benzylamine in EtOH led to complete conversion of starting material after stirring overnight at 40 °C. Investigation of the ¹⁹F spectrum showed the presence of an unidentified product as shown by the presence of CF_AF_B systems with ²J_{FF} coupling constants of 257 Hz **210c** (Figure 3.8).

It is likely that several possible diastereomers were formed, but could not be identified. However, changing the reaction solvent to tetrahydrofuran (THF), increasing the equivalents of base to ten and the reaction time to 3 d gave conversion to the desired products.

The amides were isolated in good yields with the exception of **210a** (Table 3.7, Entry 5). Incomplete conversion by ¹⁹F NMR was detected even after leaving the reaction to stir for a week. The desired product could not be isolated from unreacted **96**, even appearing to co-crystalise with it. The lower reactivity of morpholine reflects its lower nucleophilicity.

		Base (1 THF r.t.	$0 \text{ equiv.}) \qquad \qquad R \qquad N \qquad N$	
	96 0.5 mmol		210	
Entry	Amine	Product	Structure	Isolated Yield/%
1	Ammonia ^a	210b	H ₂ N F F	58
2	Benzylamine ^b	210c		75
3	Allylamine	210d		70
4	Propargylamin	ne 210e		62
5	Morpholine	210a		Not isolated

Table 3.7: Synthesis of diffuoroamides from 2,2-diffuoro-3-oxo-3-phenylpropanamide in THF

^a 4 M ammonia (NH₃) in MeOH used

^b 2 equiv. of amine used

3.4 Proposed Fluorination Mechanism

We propose a similar mechanism for the quinuclidine mediated direct fluorination of BKEs as we proposed previously for 1,3-diketones. BKEs react with electrophilic sources of fluorine in the enol conformer, with the corresponding enolate reacting faster. The pK_a of the **95** is predicted to be slightly lower (by ~1.6) than the non fluorinated **94**, thus is deprotonated preferentially, which explain why selectivity for the diffuoro product **211** is achieved (Scheme 3.3).

Scheme 3.3: Proposed mechanism of the quinuclidine mediated direct fluorination of $\mathbf{94}$ to give $\mathbf{96}$

Derivatives of **94** with an electron donating group on the aromatic ring **94a** underwent additional unwanted aromatic fluorination. Similar to when **91b** was fluorinated, the –OMe group activates the aromatic rings to unwanted fluorination *ortho* to the substituent. These unwanted products could not be separated from the desired product. Derivatives with electron withdrawing substituents **94b**–**f** had their aromatic rings deactivated towards unwanted fluorination, and so were isolated easily.

3.5 Conclusion

Several nitrogen bases were trialled to increase the selectivity of fluorination with F_2 to give desired 2,2-difluoro-1,3-ketoester products. Similarly to the fluorination

of 1,3-diketones, quinuclidine was found to most effectively mediate fluorination to give desired *gem*-diffuoro products. More forcing conditions were required to achieve conversion to the desired diffuoroketoester product which matches the literature assessment that BKEs are less reactive to 2,2-diffuorination than 1,3-diketones. There appeared to be less unwanted fluorinated by-products as these BKEs contained only one aromatic ring, and no fluorination was detected on the ethoxide group. Isolated yields were higher due to the formation of less unwanted products, and the modified workup to use a smaller 20 mL column with $CHCl_3$ as the eluent. Shortening the time that products were on the column from several hours to 20–30 min. limited the amount of hydrolysis that occurred on exposure to silica. This is important for the 2,2-diffuoro BKEs which readily hydrolyse during an aqueous workup, or while eluting down a regular sized column.

Chapter 4

Synthesis of ArCF₂X Compounds

4.1 Introduction to ArCF₂X chemistry

Diffuoromethylene, >CF₂, compounds are of increasing interest to the life sciences due to potentially potent biophysicochemical properties as mentioned previously in this thesis. The $-CF_2H$ group is isosteric and isopolar to the -OH and -SH groups, and can act as a lipophilic hydrogen bond donor. Examples of ArCF₂H containing agrochemicals are the pre-emergence herbicides dithiopyr **212** and thiazopyr **213** (Figure 4.1).

Figure 4.1: Example $ArCF_2H$ containing agrochemicals

There are currently limited industrially viable methods for the synthesis of $ArCF_2H$ systems, though new methods are being developed on a discovery scale. For example, the *gem*-difluoro group can be introduced by deoxyfluorination using hazardous nucleophilic fluorinating agents such as DAST **39**.⁵¹

Alternatively, a diffuoromethylating reagent can be incorporated into target compounds to generate ArCF₂H **46** derivatives.^{157–160} This often requires stoichiometric amounts of metals to couple an aryl system with the CF₂H reagent. Hartwig developed coupling conditions of iodoarenes **214** with TMSCF₂H **108** as a route to 46, but this method requires a large excess of the expensive $-CF_2H$ fluorinating agent 108 and was limited to electron-rich and electron-neutral iodoarenes (Scheme 4.1).¹⁶¹ This reaction was later modified to encompass electron-poor iodoarene and heteroaryl iodide 215 substrates by Xu *et al.* (Scheme 4.1).¹⁶² However, aldehydes and ketones functionalities are not tolerated using this methodology as the CF₂H anion adds directly to the carbonyl group.

Scheme 4.1: Synthesis of $ArCF_2H$ from iodoarenes and heteroaryl iodides^{161,162}

Given the strength of the C-F bond, it is difficult to selectively reduce readily available $ArCF_3$ containing compounds made using TMSCF₃ to the corresponding $ArCF_2H$. It requires the presence of a second $-CF_3$ group on the ring, and a large excess (30 equiv.) of magnesium.¹⁶³

Sato developed coupling conditions between the readily available ethyl bromodifluoroacetate **119** and several vinyl or aryl iodides in the presence of copper powder (Scheme 4.2).⁸⁷ Yields are varied (21–69%), and only three examples using aryl iodides were reported.

Scheme 4.2: Synthesis of ethyl 2,2-difluoro-2-arylacetates⁸⁷

Amii expanded on this work by developing a route to a range of ring-substituted $ArCF_2CO_2Et 124$ systems in good yield by coupling ethyl 2,2-difluoro-2-

(trimethylsilyl)acetate **219a** with iodoarenes **220** (Scheme 4.3).¹⁶⁴ While the reaction requires stoichiometric copper, substrates include iodoarenes with either electron-donating or withdrawing groups or heteroaryl iodides. While a large range of diffuoroesters were synthesised, the overall yield of this two-step process is highly varied.

The reaction was further modified to use a catalytic amount of copper in the coupling process and using the related ethyl 2,2-difluoro-2-(triethylsilyl)acetate **219b** as the >CF₂ containing reagent. Yields are significantly lower for this reaction, and the substrate scope is more limited.

More recently, Uneyama developed a similar route to **219a** using ethyl trifluoroacetate **221** as starting material (Scheme 4.3).¹⁶⁵ While the >CF₂ containing reagent **221** is much cheaper than TMSCF₂H **108**, these routes still require large excesses of metal reagents to ensure conversion to the desired product.

Scheme 4.3: Literature synthesis of ethyl 2,2-difluoro-2-arylacetates from iodoarenes and ethyl 2,2-difluoro-2-(trimethylsilyl)acetate^{164,165}

As part of their work into coupling iodoarenes with >CF₂ reagents, Amii *et al.* developed conditions to obtain ArCF₂H compounds by hydrolysing **124** to the diffuoro acid **223**, and then decarboxylating to the target **46** (Scheme 4.4).¹⁶⁴ The presence of the >CF₂ group in **124** increases the reactivity of nucleophilic substrates at the carbonyl, and hence **124** is readily hydolysed to **223** using the mild base pottasium carbonate (K₂CO₃). This diffuoroacid can be used as a FBB in a range of reactions including the synthesis of a pyridine derived >CF₂ containing pharmacophore **225** (Scheme 4.4).^{166–170}

Scheme 4.4: Syntheses and uses of $\rm ArCF_2CO_2H$ as a $> \rm CF_2$ containing $\rm FBB^{164,166-170}$

There are limited methods of generating $ArCF_2X$ compounds on an industrial scale, despite their potential usage as FBBs. Previously in this thesis the selective diffuorination of 1,3-dicarbonyl products was successfully developed and this chapter will focus on the selective direct diffuorination of carbonyl compounds as a potential route to $ArCF_2X$ containing FBBs.

4.2 Aims

Amii *et al.* developed a route to $ArCF_2H$ containing compounds from the related diffuoro ester **124** in excellent yields. These esters were made in a two step reaction with a varied, and often low, overall yield. This chapter will investigate attempts at synthesising $ArCF_2CO_2Et$ derivatives in a one-step selective diffuorination of the non-fluorinated starting material. Further reactions shall be investigated to expand the potential uses of $ArCF_2CO_2Et$ derivatives as $ArCF_2X$ containing FBBs.

4.3 Fluorination of Ethyl 2-(4-Nitrophenyl)acetate

The 4-nitrophenyl derivative **234a** was chosen as a target to develop fluorination conditions. This product has previously been reported, but in a low isolated yield of 29% (20% over the two steps).¹⁶⁴ The non-fluorinated ester ethyl 2-(4-nitrophenyl)acetate **232a** is commercially available for a low cost, and we believe the presence of the electron withdrawing $-NO_2$ group should limit unwanted ring fluorination. These factors make **232a** an ideal test substrate for developing conditions to selectively diffuorinate α - to the ester. Selective direct fluorinations of this compound will be investigated to try and synthesise **234a** in a one step reaction (Scheme 4.5).

Scheme 4.5: Literature synthesis of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (top),¹⁶⁴ and proposed one step synthesis using F₂ (bottom)

An initial test fluorination of **232a** was attempted with quinuclidine as a mediating agent to see if selective diffuorination α - to the carbonyl is feasible following the successful use of quinuclidine in previous chapters. The number of equiv. of quinuclidine was reduced to try and limit the overall degree of fluorination, and especially

prevent any unwanted aromatic fluorination so that a pure sample of **234a** could be isolated. Following successful small scale experiments, the reaction was scaled up to provide a suitable mass of **234a** for these studies (Scheme 4.6).

Scheme 4.6: Trial synthesis of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate using F₂

Following reaction with F_2 in MeCN in the presence of quinuclidine, the reaction solvent was removed under reduced pressure and the yellow oil residue partitioned between DCM and H₂O. The aqueous phase was then washed with DCM. The combined organic phases were dried over MgSO₄, and the solvent removed under reduced pressure to give a crude product that was purified by column chromatography on silica gel with ethyl acetate 15% v/v in hexane solvent mixture as the eluent to give the desired product **234a** as a white solid in 32% yield. A sample was dissolved in hexane, and gave crystals by slow evaporation of the solvent which were analysed by single crystal XRC (Figure 4.7).

The aromatic protons in a 1,4-disubstitued aromatic would usually be detected as a dq in the ¹H NMR spectra as they show an AA'XX' pattern. The C4H protons in **234a** are detected as a multiplet due to ${}^{4}J_{\rm HF}$ coupling with the fluorine atoms on the CF₂ group (Figure 4.2). Several of the carbon atoms in **234a** are split by the CF₂ group as shown by the four triplets seen in the ¹³C NMR spectrum (Figure 4.4).

Figure 4.2: ¹H NMR spectrum of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

-101.5-102.0-102.5-103.0-103.5-104.0-104.5-105.0-105.5-106.0-106.5-107.0-107.5-108.0-108.5-109.0-109.5-110.0-110.5 Δ

Figure 4.4: ¹³C NMR spectrum of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

Figure 4.5: HSQC NMR spectrum of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

Figure 4.6: HMBC NMR spectrum of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

Figure 4.7: Molecular structure of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate as confirmed by X-ray crystallography

4.3.1 Base Mediations

The conditions to promote formation of the desired *gem*-diffuoro product were optimised using a similar strategy as described in the previous chapters. The conversion of **232a** to the monofluoro product **233a** and the diffuoro product **234a** by fluorination with F_2 were investigated and analysed by ¹⁹F NMR spectroscopy. Various possible mediating agents were used to try and optimise conversion to the target product **234a**.

The >CH₂ group in **232a** is predicted to have a significantly higher pK_a than the >CH₂ group of the 1,3-diketones fluorinated previously due to the presence of only one electron withdrawing carbonyl group. Non substituted phenylacetate **232** has a $pK_a(\text{DMSO})$ calculated to be 22.7.¹⁷¹ The $pK_a(\text{DMSO})$ can be converted to the $pK_a(\text{MeCN})$ value by the following equation to give the $pK_a(\text{MeCN})$ of **232** as 33.3 (Equation 4.1).¹³⁸

$$pK_{a}(MeCN) = 1.00pK_{a}(DMSO) + 12.9$$
 (4.1)

By comparison, the $pK_a(MeCN)$ of quinuclidine is 19.5, a difference of roughly 14 units from the $pK_a(MeCN)$ of **232**. This difference should be too large for quinuclidine to deprotonate any of **232** by acting as a specific base. It is possible that the fluoride anion F⁻ could act as a base as its $pK_a(MeCN)$ of 26 is significantly closer to the $pK_a(MeCN)$ of **232** as discussed in previous chapters. Consequently, mediating agents that would increase the concentration of F⁻ such as potassium fluoride and urea were trialled, as well as the nitrogen bases used previously.

After each fluorination, the reaction mixture was purged with N₂ before the reaction solvent was removed under reduced pressure. The crude product mixture was washed through a silica plug on a sinter with several volumes of DCM as the eluent to remove any remaining HF. To determine the relative conversion to the desired product **234a** compared to other fluorinated products, the integrals of all signals in the ¹⁹F NMR spectra were summated and the proportion of integrals due to **233a** (-190.9 ppm) and **234a** (-104.5 ppm) were then calculated.

 EtO O	F ₂ (2.3 NO ₂	equiv., 10% <i>v/v</i> in N ₂) Mediating agent MeCN (20 mL) 0 °C	EtO 0	F 233a	+ EtO NO ₂ + 0 NO ₂	
Entry	Base	Equiv. of base -	Proportion of signals in the $^{19}{\rm F}$ NMR spectrum/%			
			233a	234a	Polyfluorinated products	
1	None	-	14	0	86	
2	KF	2.0	8	0	92	
3	KF 18-crown-6	2.0 2.0	6	1	93	
4	KF 18-crown-6	2.0 0.1	8	0	92	
5	Urea	1.0	0	0	100	
6	Tetramethylurea	1.0	0	0	0	
7	DABCO	2.0	27	2	73	
8	$\mathrm{Et}_{3}\mathrm{N}$	2.0	0	0	0	
9	Quinuclidine	1.1	7	85	8	
10	DBU	0.1	9	0	91	
11	DBU	2.0	22	5	73	
12	${\rm Tri}\text{-}n\text{-}{\rm butylamine}$	1.0	0	0	100	
13	Pyridine	1.0	0	0	100	
14 <i>l</i>	V-methyl pyrrolidor	ne 0.5	4	0	96	

Table 4.1: Comparison of selectivity for the desired ethyl 2-(4-nitrophenyl)acetate over other fluorinated products

F

The conversion to the desired product 234a with 2.0 equiv. of KF was not significantly different to the base fluorination with no mediating agent present (Table 4.1, Entries 1 and 2). However, significant amounts of KF were present as an undissolved solid prior to the fluorination due to its low solubility in MeCN and so there was no significant increase in the amount of fluoride ion present in solution. Upon addition of the KF, the pale yellow-coloured solution of 232a in MeCN changed to a pale lilac/purple.

An equiv. of 18-crown-6 ether was added due to its affinity for the potassium cation K^+ to increase the solubility of the F^- in MeCN (Table 4.1, Entry 3). Instantly, the reaction solution turned from the clear pale yellow coloured solution to a clear dark purple coloured solution. While trace amounts (1%) of the desired diffuoro product **234a** were now detected, the major product with 57% of the relative fluorinated signals in the ¹⁹F NMR spectrum of the crude product is a peak at -132.88 ppm (dt). Comparison with the literature indicates that this is due to formation of monofluoro-18-crown-6 **235** (Figure 4.8).¹⁷² Repeating with 0.1 equiv. of 18-c-6 (Table 4.1 Entry 4) gave no conversion to the unwanted by-product **235**, but also no conversion to the desired product **234a**.

Figure 4.8: Monofluoro-18-crown-6

Urea was also trialled as a mediating agent (Table 4.1, Entry 5) but the lack of conversion to the desired products may be due to the apparant low solubility of urea in MeCN. Tetramethylurea was then trialled as the addition of four methyl groups to the two nitrogens dramatically increases the solubility of tetramethylurea in MeCN compared to urea (Table 4.1, Entry 6). However, no fluorination of **232a** was detected by NMR spectroscopy. A weak singlet at -23.1 ppm was detected in the ¹⁹F NMR spectrum which may be due to the formation of an *N*-F associated product, but no further attempts to identify this product were made.

Several amines previously trialled as mediating agents for the selective 2,2-difluorination of 1,3-dicarbonyls were then used (Table 4.1, Entries 7–11). Similar selectivities for the monofluoro and difluoro product were obtained compared to reactions with dicarbonyl compounds as reported previously. The fluorination with Et_3N as the mediating agent was noticably different, with no fluorination of starting material Et_3N occuring (Table 4.1, Entry 8). A singlet at -163.5 ppm was present before the aqueous work-up. We believe this to be silicon tetrafluoride (SiF₄), produced by reaction of HF with the glassware used to store the concentrated reaction mixture, which is hydrolysed upon the addition of H₂O. Two additional nitrogen bases were trialled as mediating agents. Tri-*n*-butylamine $(pK_a(MeCN) 18.1)$ was used to determine the effect of increasing the alkyl chain length compared to Et₃N (Table 4.1, Entry 12). Upon addition of this base, a slow change in the solution colour to a pinkish hue occured over approximately 10 min. While small amounts of fluorination of the starting material does occur using **236**, none of the desired products, and only unwanted ring fluorinated products were detected.

Pyridine was trialled as a mediating agent as its lone pairs should be unhindered by the alkyl groups attached as these are locked in the planar aromatic ring structure (Table 4.1, Entry 13). It is also possible that the electrophilic fluorinating agent *N*-fluoro pyridinium fluoride **70a** could be made *in situ*, which would likely react with **232a** to give the monofluoro product **233a**. However, after aqueous workup, neither of the desired products **237a** or **234a** were detected by ¹⁹F NMR spectroscopy.

Conversions to 234a when either DABCO, Et₃N, quinuclidine or DBU were used as mediating agents appear to be unrelated to the $pK_{a}(MeCN)$ of the protonated amines (18.3, 18.5, 19.5 and 24.3 respectively). DBU has a higher $pK_a(MeCN)$ than quinuclidine, but significantly lower selectivity for 234a. DABCO and Et₃N have very similar $pK_{as}(MeCN)$, but the addition of Et₃N appeared to prevent all fluorination of **232a** from occurring. A colour change similar to that seen previously was detected, with the intensity dependent on the base added. The addition of DABCO afforded no noticeable change in colour, Et_3N turned the solution very, very pale purple, and quinuclidine and DBU producing an intense purple solution, requiring only 0.1 equiv. of DBU to achieve this colour. Quinuclidine has repeatedly mediated regiselectivity for the desired *gem*-diffuoro product for a range of substrates far more successfully than should be expected purely from its $pK_a(MeCN)$. To investigate the nucleophilicity of quinuclidine, N-methyl pyrrolidine was trialled as a mediating agent. It has the same $pK_a(MeCN)$ as DABCO (18.3), but a similar nucleophilicity parameter (N) and nucleophilic-specific slope parameter (s) for a given electrophilicity parameter (E) to quinuclidine (4.4).^{173,174}

$$\log(k)_{20^{\circ}\mathrm{C}} = s(\mathrm{N} + \mathrm{E}) \tag{4.2}$$

Quinuclidine:
$$s = 0.60, N = 20.54$$
 (4.3)

N-Methyl pyrrolidine: s = 0.52, N = 20.59 (4.4)

Interestingly, a highly unselective fluorination occured when N-methyl pyrrolidine was trialled as the mediating agent (Table 4.1, Entry 14). None of the desired diffuoro product **234a** was formed, and the monofluoro product **233a** made up a very small proportion (<5%) of all the fluorinated material.

Given the results discussed in Table 4.1, quinuclidine again appears to be the most effective mediating agent of the bases screened. Therefore, fluorination of **232a** was repeated with varying amounts of quinuclidine and F_2 and conversion to **233a** and **234a** monitored by NMR spectroscopy to optimise this process.

 Table 4.2: Screening conditions for the quinuclidine mediated fluorination of ethyl

 2-(4-nitrophenyl)acetate

	- EtO 0 23 2 m	NO ₂ F ₂	: (10% <i>v/v</i> in N ₂) Quinuclidine MeCN (20 mL) 0 °C	EtO F O 233a	EtO、 * NO ₂		
	Entry	Equiv. of I quinuclidine	Equiv. of	Ratio of products by a combination of 1 H and 19 F NMR			
			~ - 2	232a	233a	234a	
	1	0.1	2.3^{a}	50	4	1	
	2	1.0	2.3	3	1	5	
	3	1.1	2.3	3	1	5	
	4	1.5	2.3	2	1	7	
	5	1.1	3.0	1	1	7	
	6	1.5	2.5	3	1	10	
	7	1.5	3.0	2	11	11	
	8	1.5	3.5	1	Trace	7	
	9	1.5	4.0	1	Trace	6	
	10	1.5	4.5	1	Trace	11	
	11^{b}	1.5	4.1	2	1	12	
	$12^{\rm b}$	1.5	4.5	1	1	13	
	$13^{\rm b}$	1.3	4.6	1	1	11	

 $^{\rm a}\,5$ mmol ${\bf 232a},\,5$ ml min $^{-1}$ flow rate of 10% v/v ${\rm F}_2$ in ${\rm N}_2$ and 50 mL MeCN used

 $^{\rm b}\,20$ mmol of ${\bf 232a}$ and 200 mL MeCN used

A limiting amount of quinuclidine was added to investigate whether quinuclidine acts catalytically in increasing the selectivity to **234a** (Table 4.2, Entry 1). The low conversion to **234a** shows that this is not the case, and that stoichiometric amounts of quinuclidine are required. Increasing the amount of quinuclidine added promoted conversion to the desired diffuoro product (Table 4.2 Entries 2–4), but a more noticeable effect was seen when the amount of F_2 was increased (Table 4.2, Entry 5).

The reaction was repeated with 1.5 equiv. of quinuclidine, and samples of the reaction mixture periodically taken after increasing equivalents of F_2 had been added (Table 4.2 Entries 6–11). Unreacted starting material remained even after a large excess of F_2 had been added, but further attempts to increase conversion by adding yet more F_2 resulted in the formation of unwanted ring fluorinated products.

The reaction was scaled up to a 20 mmol scale using a a 500 mL glass reactor fitted with an overhead stirrer with details in Figure 8.2 in the Experimental General (Table 4.2 Entries 11–13). This setup allows for more efficient mixing of the reaction mixture with an increased path length for the fluorine to pass through the solvent. A higher conversion to the desired product **234a** was detected by NMR spectroscopy using this setup as expected.

With fluorination conditions developed, different workups to isolate **234a** without causing unwanted hydrolysis were investigated. Recrystallisation of crude **234a** using CHCl₃, acetone and a mixture of EtOH/ and H₂O as solvent systems resulted in significant amounts of hydrolysis to the diffuoroacid **223a** (Figure 4.9).

Purification of crude reaction mixtures by column chromatography on silica gel was then attempted and various solvent systems were assessed to limit decomposition of **234a** during purification. A 10% EtOAc v/v in hexane solvent mixture solvent mixture as the eluent afforded **234a** which was isolated as a pale yellow solid in a 60– 69% yield depending on the scale used (Scheme 4.7). More forcing conditions were needed than previously used to fluorinate 1,3-diketones and BKEs. This highlights the lower reactivity and selectivity of *gem*-difluorination α - to carbonyls compared to 1,3-dicarbonyl substrates. Isolated yields were lower than the related 4-nitrophenyl containing difluoro-BKE product **96d** (Table 3.4) highlighting the tendency of **234a** to decompose or hydrolyse during workup and purification.

Figure 4.9: ¹⁹F NMR spectrum after attempts at purifying ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate by recrystallisation

Scheme 4.7: Synthesis of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetatee using F₂

4.4 Fluorination of Ethyl Phenylacetate Derivatives

The conditions in Scheme 4.7 were then used to fluorinate a range of ethyl phenylacetate derivatives with EWGs attached to the ring. No derivatives with EDGs were trialled as we predicted these would form significant amounts of ring fluorinated by-products.

Ethyl 2-(4-fluorophenyl)acetate **232b** was fluorinated using 4.0 equiv. of F_2 (Scheme 4.8). No singlet was detected in the ¹⁹F NMR spectrum of the concentrated reaction mixture in a similar region to the >CF₂ group in **234a** (-104.5 ppm). Several peaks were detected in the ¹⁹F NMR spectrum, but these all disappeared after a D₂O/CDCl₃ shake. We propose that these signals are due to polyfluorinated

tar by-products. A small amount ($\sim 5\%$ of total peak signals) of unreacted **232b** remained in the crude product mixture. The fluorination was repeated with 3.0 equiv. of F₂, but again, no desired diffuoro-product was detected by NMR.

Scheme 4.8: Attempted synthesis of ethyl 2,2-difluoro-2-(4-fluorophenyl) acetate using F_2

The 4-fluoro moiety is less of an EWG than the 4-nitro, and so it is possible that the aromatic ring in **234b** was not sufficiently deactivated to prevent unwanted ring fluorination. Ethyl 2-(4-(trifluoromethyl)phenyl)acetate **232c** was trialled as the $-CF_3$ group has similar inductive properties to the $-NO_2$ group (Scheme 4.9).

Scheme 4.9: Attempted synthesis of ethyl 2,2-difluoro-2-(4-(trifluoromethyl)phenyl)acetate using F_2

Analysis by ¹⁹F NMR spectoscopy of a sample of the reaction mixture taken after the addition of 3.0 equiv. of F_2 low conversion to a singlet peak at -104.5 ppm believed to be the desired diffuoro product **234c**, as well as trace amounts of the monofluoro product (doublet at -184.2 ppm). An additional 3.0 equiv. of F_2 were then added. While conversion to **234c** increased, several peaks were present at around -63.0 ppm corresponding to unwanted products containing a $-CF_3$ moiety (Figure 4.10). The reaction mixture was purified by column chromatography on silica gel with a 5% EtOAc v/v in hexane solvent mixture as the eluent to try and isolate desired products, but the product mixture largely decomposed on silica, and **234c** could not be isolated.

The 4-CN derivative **232d** could similarly activate the CH_2 group by inductive and by resonance effects to the 4-NO₂ system and the fluorination of the 4-CN derivative was studied (Scheme 4.10).

Figure 4.10: Reaction mixture after fluorination of ethyl 2-(4-(trifluoromethyl)phenyl)acetate with 6.0 equiv. of F_2

Scheme 4.10: Attempted synthesis of ethyl 2,2-difluoro-2-(4-cyanophenyl) acetate using ${\rm F}_2$

Good selectivities for the desired diffuoro product **234d** and the monofluoro product **233d** were observed, though the reaction did not go to completion after 6.0 equiv. of F_2 were added. The ratio of **234d**:**233d** decreased by roughly a half (3.3:1 to 1.8:1) during the aqueous workup, and a singlet was seen in the aqueous phase at -122.3ppm (Figure 4.11). We believe that some of the desired product **234d** hydrolyses to the corresponding diffuoro acid **223b**.

The crude product was then purified by column chromatography on silica gel with a 5% EtOAc v/v in hexane solvent mixture as the eluent, but the desired product **234d** could not be isolated due to hydrolysis problems.

Figure 4.11: ¹⁹F NMR of the concentrated reaction mixture (top), the aqueous phase (middle) and the organic phase after an aqueous workup (bottom)

The 2-NO₂ and 3-NO₂ derivatives **232e** and **232f** respectively were fluorinated to see if the position of the $-NO_2$ EWG on the ring effects the selectivity of diffuorination α - to the carbonyl.

Scheme 4.11: Attempted synthesis of ethyl 2,2-difluoro-2-(2-nitrophenyl)acetate (top) and ethyl 2,2-difluoro-2-(3-nitrophenyl)acetate (bottom) using F_2

Both **232e** and **232f** showed better conversion to the corresponding monofluoro and diffuoro products than **232b**–d, even with less equivalents of F_2 . However, many signals (>10) were seen in the ¹⁹F NMR spectra of each crude crude product. At-

tempts at isolating the diffuoro products **234e** and **234f** by column chromatography proved unsuccessful.

4.5 Proposed Fluorination Mechanism

A mechanism has been proposed in the previous chapters for the quinuclidine mediated direct fluorination of dicarbonyl systems in which quinuclidine forms a $R_3N^+F^-F^$ salt whyich allows deprotonation of keto forms by fluoride.

Scheme 4.12: Proposed $-NO_2$ stabilised resonance forms

Alternatively, if selectivity is increased due to the inductive effect of the electron withdrawing $-NO_2$ group in the *para* position, then a similar selectivity should be seen with **232c** and **232d** as the $-CF_3$ and -CN groups have similar inductive effects to the $-NO_2$ group. Additionally, selectivity in the cases of **232e** and **232f** should be higher due to their location closer to the $-CH_2$ protons. The results found indicate that selectivity does not appear to be due to inductive effects.

A proposed mechanism for the quinuclidine mediated selective diffuorination of **232a** is provided in Scheme 4.13. This mechanism is primarily based off the assumed mechanism for the diffuorination of related dicarbonyl systems. Further mechanistic studies are needed to determine why fluorination of substrates where the $-NO_2$ group is in the *para* position are more efficient.

More forcing conditions are required for diffuorination compared to those used to diffuorinate dicarbonyl containing substrates. The CH₂ protons in **232a** are less acidic than the corresponding protons in related dicarbonyl compounds due to the lack of the second electron withdrawing carbonyl moiety. As such, fluorination of **232a** is predicted to be significantly slower than fluorination of dicarbonyls. To test this hypothesis, an equal mix of **232a** and the dicarbonyl DBM **91** were fluorinated in the presence of a limiting amount of F_2 (Scheme 4.14).

Scheme 4.13: Proposed mechanism of the quinuclidine mediated fluorination of ethyl 2-(4-nitrophenyl)acetate

Scheme 4.14: Competition reaction between DBM and ethyl 2-(4-nitrophenyl)acetate

Analysis by NMR spectroscopy indicated that selective diffuorination of **91** was observed to give **93** (Figure 4.12). No fluorination of **232a** was detected confirming the lower reactivity of the monocarbonyl substrates to direct fluorination with F_2 .

Figure 4.12: ¹⁹F NMR spectra of the crude product post aqueous workup up (top) and reference spectra of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (middle) and 2,2-difluoro-1,3-diphenylpropane-1,3-dione (bottom)

4.6 Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate

Amii *et al.* developed conditions to hydrolyse a range of ethyl 2,2-difluoro-2phenylacetate derivatives to the corresponding difluoro acid, and subsequently decarboxylate to give the corresponding ArCF_2H derivative.¹⁶⁴ This hydrolysis reaction proved successful for **234a**, giving 2,2-difluoro-2-(4-nitrophenyl)acetic acid **223a** as a pale yellow solid, isolated in near quantitive yields (Scheme 4.15).

The diffuoroacid **223a** was then decarboxylated using the same literature procedure to give the $ArCF_2H$ containing compound 1-(diffuoromethyl)-4-nitrobenzene **238a** as a dark yellow oil (Scheme 4.16).

These reactions allow a $ArCF_2H$ containing compound **238a** to be isolated in good overall yield (59%) after three steps from the readily commercially available starting material **232a** (Scheme 4.17). This is a significant improvement on the current literature synthetic route that this work adapts (16%, 5 steps).¹⁶⁴

Scheme 4.15: Hydrolysis of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate following a literature procedure¹⁶⁴

Figure 4.13: Molecular structure of 2,2-difluoro-2-(4-nitrophenyl)acetic acid as confirmed by X-ray crystallography

Scheme 4.16: Decarboxylation of 2,2-difluoro-2-(4-nitrophenyl)acetic acid following a literature procedure¹⁶⁴

However, unfortunately this new direct fluorination synthetic strategy only appears to be successful with **232a**. Other ethyl phenylacetates do not appear to undergo a selective diffuorination at the CH₂ position α - to the carbonyl and are usually not commercially available. A possible method of expanding the range of ArCF₂H compounds made using F₂ would be to hydrogenate the $-NO_2$ group in **238a** to produce the amine **239**, and subsequently perform diazotisation reactions to produce the diazonium salt **240** (Scheme 4.18). This diazonium salt could undergo many substitution reactions to expand the range of ArCF₂H derivatives available using our potentially lower cost methodology.

Scheme 4.17: Comparison of the 3 step route to 1-(diffuoromethyl)-4-nitrobenzene using F_2 with an existing 5 step literature method¹⁶⁴

Scheme 4.18: Proposed hydrogenation and subsequent diazotisation of **238a** to produce a reactive diazonium salt

4.6.1 Hydrogentations of ArCF₂X Compounds

There are two possible synthetic routes to the target **239** from the diffuoroester **234a** as either of the two functionalities of **234a** could be transformed first (Scheme 4.19). There is a literature example of the hydrogenation of **234a** to give ethyl 2,2-diffuoro-2-(4-aniline)acetate **241**, but not of **238a**.¹⁷⁵ No details were provided on the reaction conditions other than the reaction occured in EtOAc with a palladium on carbon (Pd/C) catalyst.

The following work in this chapter was undertaken during a placement at Syngenta's Jealotts Hill site under the supervision of Martin Bowden.

Scheme 4.19: Possible routes to 1-(diffuoromethyl)-4-nitrobenzene. a) hydrogenation, b) hydrolysis, c)decarboxylation

A catalyst screening for the hydrogenation of **234a** was performed on a 0.1 mmol scale using a Cat24 hydrogenation reactor and pressurised with H_2 to 5 bar (Scheme 4.20). The screening involved trialling 10% w/mol of either a 5% Pd on C, 10% Pd on C, 5% Pt on C or 5% Rh on C in either MeOH or EtOAc (Scheme 4.20).

After the reaction, the vessel was purged of H_2 and left under an atmosphere of nitrogen for 62 h. Analysis by ¹⁹F NMR spectroscopy showed no conversion to the desired product in either solvent. However, significant amount (~30%) of the unreacted **234a** in the samples with MeOH as the solvent underwent transesterification to form methyl 2,2-difluoro-2-(4-nitrophenyl)acetate **243** when the reaction was left before workup (Scheme 4.21).

After hydrogenation, the desired amine 241 would need to be hydolysed to 242 as an intermediate step of the synthesis of 239. Analysis of the pK_a of 242 suggests that extraction of the product into the organic layer may be difficult due to zwitterion formation. 241 can exist as one of four different forms depending on the pH, with extraction into an organic phase likely only occuring when 241 exists in a non-charged isomer. A computer simulation of the ratios of these possible products predicts that the highest distribution of the desired non charged form is 7.4% at pH 3.4 (Figure 4.14, Compound 1), and this narrow distribution range is likely to prevent a simple extraction of the 241 to be used as an intermediate step in the synthesis of 239.

Given the potential issues in isolating 242 and the difficulty in reducing the $-NO_2$ to $-NH_2$ in 234a, it was decided to investigate hydrogenation of 238a. Several changes were made to the experimental setup to try and increase the conversion in each trial so a better comparison of the catalyst efficiency could be made. The

Scheme 4.20: Catalyst screening for the hydrogenation of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate using a Cat24 hydrogenation reactor

Scheme 4.21: Transesterification of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

amount of catalyst added as part of the screening was increased to 10% w/w of **238a**. The hydrogenation reactor was charged with the relevant catalyst before 1.5 mL of a 0.067 M solution of **238a** was added. MeOH was replaced by EtOH as a solvent to trial hydrogenation in an protic solvent that could not cause an unwanted transesterification.

Figure 4.14: Various forms of 2,2-difluoro-2-(4-nitrophenyl)acetic acid across a range of pHs

Scheme 4.22: Catalyst screening for the hydrogenation of 1-(difluoromethyl)-4-nitrobenzene
Reaction conversions were monitored by following the shift of signals in the ¹H and ¹⁹F NMR spectra corresponding to the CF₂H moiety. In EtOH, there was no noticeable difference in the NMR spectra of the reaction mixture after hydrogenation and the starting material regardless of which catalyst was used. It appears that no noticeable conversion had taken place. By contrast, the NMR spectra of the reactions in EtOAc showed noticeable conversion of the starting material (Figure 4.15). An additional triplet was detected in the ¹H NMR spectra of the reaction mixture at 6.34 ppm, as were two new doublets at approximately 7.1 and 6.8 ppm.

4.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 ΔH (ppm)

Figure 4.15: ¹H NMR spectra of the screens in EtOAc after hydrogenation and a 1-(diffuoromethyl)-4-nitrobenzene reference

Several new doublets corresponding to various $-CF_2H$ intermediates were present in the ¹⁹F NMR spectra. There are two possible reaction pathways that **238a** can undertake during hydrogenation to produce **244**, one of which involves a coupling to produce an azo intermediate (Scheme 4.23). All of these intermediates contain a $-CF_2H$ group in a slightly different chemical environment. These can be detected independently by ¹⁹F NMR spectroscopy due to the sensitivity of the fluorine nucleus.

Scheme 4.23: Mechanism of the hydrogenation of 1-(diffuoromethyl)-4-nitrobenzene

While the specific intermediates could not be identified by analysis of the ¹⁹F NMR spectra, the conversion of **238a** could be calculated by comparing the integrals of each signal. Conversion was highest when 10% Pd/C was used as the catalyst with EtOAc as the solvent giving a 35% conversion of **238a**.

This reaction was repeated on a larger scale using an EasyMax reactor using the optimised catalyst conditions (Figure 4.16). This reactor has a significantly higher mass transfer ratio which should help increase conversion by increasing the contact between substrate, catalyst and H_2 . It also allows for samples to be taken during the reaction and *in situ* monitoring using infrared (IR) spectroscopy.

Samples were periodically taken throughout the reaction and analysed by ¹⁹F NMR spectroscopy. Conversion was monitored by the gradual disappearance of the doublet at -113.0 ppm indicative of **238a** and the appearance of new doublets (Figure 4.17). After 5 h 30 min there appeared to be nearly full conversion to a $-CF_2H$ containing product with a doublet at -107.5 ppm arising from the product.

The reaction vessel was purged with N_2 before samples were filtered to remove the catalyst then concentrated under reduced pressure using a rotary evaporator. During this process the product appeared to decompose, going from a clear yellow solution to a dark tar that was sparingly soluble in organic solvents. Analysis by ¹⁹F NMR

Figure 4.16: Hydrogenation of 1-(difluoromethyl)-4-nitrobenzene using an EasyMax reactor

of this tar confirmed that the integral of the peak at -107.5 ppm had significantly decreased while signals at -111.4 and -112.0 ppm increased (Figure 4.18).

CHAPTER 4. SYNTHESIS OF $ARCF_2X$ COMPOUNDS

Figure 4.17: ¹⁹F NMR spectra of samples taken at increasing time intervals

Figure 4.18: 19 F NMR spectra of the orange tar

Any azo intermediates present are likely to be unstable when the solvent is removed. Additionally the target product **239** may also be unstable in air due to the presence of an amine and $-CF_2H$ moiety *para* to each other (Scheme 4.24). There is no reported literature on the synthesis or properties of **239** which may be due to difficulties in its isolation.

Scheme 4.24: Possible hydrolysis of 4-(diffuoromethyl)aniline

The reaction was repeated with the substrate under hydrogenation conditions for 6 h to try and push conversion completely to the desired product **253**. After filtering off the catalyst, the product was concentrated by rotary evaporation to yield a dark brown solid that was also sparingly soluble in CDCl₃. Analysis of the ¹⁹F NMR spectrum showed the presence of similar doublets indicating that a similar decomposition has occurred. No further attempts at isolating **253** from the tarry mixtures were attempted.

4.7 Further Reactions of Ethyl 2,2-Difluoro-2-(4nitrophenyl)acetate

Unfortunately, reduction of the $-NO_2$ group in both **234a** and **238a**, and isolation of the amine products proved unsuccessful. Other reactions of **234a** were carried out in collaboration with Jonathan Hill, a 4th year MChem student at Durham University, and the rest of this chapter is a brief summary of the results of his Masters thesis, included here for completeness.¹⁷⁶

Reduction to the alcohol using sodium borohydride (NaBH₄) following a literature procedure was achieved with complete conversion at r.t. highlighting how incorporation of fluorine α - to a carbonyl increases its electrophilicity.¹⁷⁷ The desired product 2,2-difluoro-2-(4-nitrophenyl)ethanol **254** was isolated in 90% yield after tituration with hexane and filtration through celite (Scheme 4.25).

Scheme 4.25: Reduction of ethyl 2,2-difluoro-2-(4-nitrophenyl) acetate using ${\rm NaBH_4^{176}}$

A sample was dissolved in $CHCl_3$ and gave crystals by slow evaporation of the solvent which were analysed by single crystal XRC. Investigation of the F-C-C=O torsion angles shows that the C-OH bond bisects the F-C-F moiety.

Figure 4.19: Molecular structure of 2,2-difluro-2-(4-nitrophenyl)ethanol as confirmed by X-ray crystallography

The tosylation reaction of the non-fluorinated derivative of **254** has previously been reported in the literature.¹⁷⁸ This methodology was followed to tosylate **254** to give 2,2-difluoro-2-(4-nitrophenyl)ethyl tosylate **255** in good isolated yields of 68% (Scheme 4.26).

Scheme 4.26: Tosylation of 2,2-difluro-2-(4-nitrophenyl)ethanol¹⁷⁶

Amidation reactions were performed between **234a** and a range of amines similarly to previous aminations using **211** (Table 3.7). Conversions and isolated yields were significantly higher when **234a** is used highlighting the increased reactivity of the *gem*-difluoro ester compared to the 2,2-difluoro BKE.

		Amine EtOH (2–5 mL) O2 0 °C–r.t., 18 h	\rightarrow $R' \xrightarrow{F} F$	NO ₂
Entry	234a Base	Product	256 Structure	Isolated Yield/%
1	Benzylamine	256a		94 NO2
2	Allylamine	256b		99 ^a
3	Propargylamine	256c		95 92
4	Morpholine	256d		97
5	Methylamine	256e		95^{a}
6	t-Butylamine	256f		90

Table 4.3: Amidation reactions of ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate¹⁷⁶

^a Reaction was carried out using an excess of the amine and no solvent.

With the exception of **256e**, the desired products were isolated as solids. Crystals were grown by slow evaporation of $CHCl_3$ and analysed by XRC. These single crystals exist as a mix of monoclinic or orthorhombic crystal systems, and usually adopt conformations in which the two fluorine atoms are paired *gauche-anti* to the C=O moiety. This geometry minimises unfavourable dipole-dipole interactions between the C=O and the two C-F groups and also maximises possible intramolecular H-bonding between the amide proton and a fluorine atom. An *eclipsed-eclipsed* conformation is seen in **256d** due to the lack of proton on the amide produced by the secondary amine morpholine which prevents stabilisation from an intramolecular H-bond. Without this stabilisation, the fluorine atoms would not appear *anti* to

Figure 4.20: Molecular structure of diffuoroamides ${\bf 256a-d, f}$ as determined by $$\rm XRC^{176}$$

the C=O, and instead are both eclipsed in order to maximise distance between the three EWGs.

4.8 Conclusion

Several nitrogen bases were trialled to increase the selectivity of fluorination of nitrophenylesters with F_2 to give desired ethyl 2,2-difluoro-2-phenyl esters. Similarly to the fluorination of 1,3-diketones and BKEs, quinuclidine was found to most effectively mediate fluorination to give the desired *gem*-difluoro product. The 4-nitrophenyl derivative **232a** was successfully difluorinated to give a product that could be isolated. This was successfully hydrolysed and decarboxylated following a literature procedure to the corresponding ArCF₂H derivative, but attempts at subsequent hydrogenations were unsuccessful. The difluoroesters appear more reactive than their related non-fluorinated analogues, and were successfully reacted with several amines, with their structures confirmed by XRC.

Chapter 5

Attempted Direct Fluorination of Aromatic Systems Using Mediating Agents

Previous chapters of this thesis have focused on the use of F_2 as a selective fluorination reagent to synthesise potential diffuorinated FBBs. One of the most widely used class of FBB are the fluoroaromatics and this Chapter will focus on the ongoing development of synthesising fluoroaromatics with high selectivity using F_2 as the source of fluorine.

5.1 Introduction to Fluoroaromatics

HF is often used on an industrial scale to synthesise fluorobenzene derivatives using halex reactions with other haloaromatics, or by using well established Balz-Schiemann chemistry. In this case, a reactive diazonium salt is allowed to thermally decompose in the presence of an HF source to generate the desired fluoroaromatic (Scheme 5.1). While care is needed with the unstable diazonium intermediate, the reaction does not require the presence of an EWG, on the aromatic ring as would be needed for a standard nucleophilic aromatic substitution (S_NAr) processes.

Previous work at Durham has shown that direct fluorination of aromatic substrates using F_2 can proceed with some selectively using acidic conditions. Mono- and diffuorination of 1,4-disubstituted aromatic compounds occurs *ortho* to EDGs and *meta* to EWGs as would be expected of an electrophilic aromatic substitution (S_EAr)

Scheme 5.1: Multistep synthesis of fluoroaromatics using Balz-Schiemann chemistry

process (Scheme 5.2).^{99,179} The presence of a single strong EWG such as $-NO_2$ or -CN affords good conversion of starting material, but substrates bearing two EWGs prevents fluorination indicating that highly electron deficient aromatics do not react well with F₂. Fluorinations of electron rich aromatics containing two or more alkoxy groups leads to a complicated mixture of fluorinated products.¹²⁷

Scheme 5.2: Fluorination of 1,4-disubstituted aromatics⁹⁹

Fluorinating aromatics with an EWG *para* to an EDG allows for good regioselectivity of fluorination *ortho* to the EDG as would be expected for an S_EAr process. For example, full conversion of 4-nitroanisole **264** can be achieved if fluorinated in HCOOH (Scheme 5.3).^{99,102}

Scheme 5.3: Fluorination of 4-nitroanisole in HCOOH⁹⁹

5.2 Fluorination of Aromatics

Similar attempts at fluorinating simple aromatics using F_2 were trialled under basic conditions to try and increase the selectivity of aromatic fluorination for more electron rich substrates. Quinuclidine was trialled as a mediating agent due to its success at improving the selectivity of fluorinations with F $_2$ $\alpha \text{-}$ to carbonyls as described in previous chapters.

5.2.1 Anisole

Anisole was fluorinated with an equivalent of quinuclidine at a flow rate of $15 \text{ cm}^3 \text{ min}^{-1}$ (Scheme 5.4). After the reaction had proceeded for approximately 5 minutes small amounts of a white gas, presumably HF, evolves.

Scheme 5.4: Quincuclidine mediated fluorination of anisole

An aqueous workup was performed and yielded 0.244 g of a mixture of a brown oil with small amounts of tar. This tar was not soluble in CDCl_3 . Analysis of soluble organics by ¹⁹F NMR spectra showed several fluorinated products as well as some unidentifiable peaks. Fluorinated analogues were identified by comparing chemical shifts in the ¹⁹F NMR spectra to reference samples. Comparison of the intensities of the 5 signals due to -OMe moieties in the ¹H NMR spectrum indicated that 60% of the oily tar consisted of unreacted **267**. Ratios of the identified fluorinated products were calculated, and showed that **267** was preferentially converted to **268**.

The two diffuoro products **270** and **271** have boiling points of 78 °C and 85 °C. It is, therefore, possible that some of these products were lost on the rotary evaporator when the MeCN and EtOAc used in the reaction and purification steps were removed. The 3-fluoro product **272** was not detected to have been made by ¹⁹F NMR spectroscopy. Fluorinated products could not be isolated by Kugelröhr distillation and this non-selective reaction was not studied further.

CHAPTER 5. ATTEMPTED DIRECT FLUORINATION OF AROMATIC SYSTEMS USING MEDIATING AGENTS

Figure 5.1: ¹⁹F NMR spectrum of product from fluorination of anisole^{180–182}

5.2.2 Aniline

A similar reaction was performed using aniline as a starting material (Scheme 5.5). After 5 minutes, large volumes of HF were produced as seen by the evolution of large amounts of white gas. During this time the reaction solvent rapidly changed from a very pale yellow to a clear orange colour. At this point, the flow rate was reduced from 15 to 5 mL min⁻¹ for the remainder of the experiment. After workup, a black polyfluorinated tar was produced containing numerous signals in the ¹⁹F and ¹H NMR spectra. The reaction was not pursued further.

Scheme 5.5: Quincuclidine mediated fluorination of aniline

5.2.3 4-Nitroaniline

4-Nitroaniline was then trialed as a less activated aniline system due to the incorporation of a $-NO_2$ group (Scheme 5.6).

Scheme 5.6: Quincuclidine mediated fluorination of 4-nitroaniline

Significantly fewer fluorinated signals were detected in the ¹⁹F NMR spectrum of the crude product. Purification by Kugelröhr distillation was attempted to try and identify these products but proved unsuccessful. After this result, no further investigations of anline based systems were investigated.

5.2.4 4-Nitroanisole

Given the synthetic problems using anisole and aniline as starting materials, a less activated substrate was used to assess the effect of quinuclidine on fluorination reactions. 4-Nitroanisole **264** was trialled. Unlike anisole, it is a solid, and so it is unlikely that there will be volatility issues caused by the addition of fluorine atoms to the aromatic ring. The introduction of a $-NO_2$ group in the 4-position should also limit the number of fluorinated products produced by blocking the *para* position. The -OMe group will activate the ring *ortho* to its position while the $-NO_2$ group will deactivate the ring, but also direct electrophilic substitution at the same position.

A sample of **264** was fluorinated using our previous methodology (Scheme 5.7). The reaction solvent was removed under reduced pressure, and an aqueous workup

performed yielding a large amount of orange tar that was only partially soluble in $CDCl_3$. This tarry mixture was then filtered through a small scale silica plug with $CHCl_3$ as the eluent to remove the tar and yield 0.158 g of yellow crystals.

Scheme 5.7: Fluorination of 4-nitroanisole

Analysis of the crude product by NMR spectroscopy and GC-MS indicated the presence of significant amounts of tar, as well as products with a m/z of 171 and 189 corresponding to the formation of a monofluoro and diffuoro product. Two peaks were present in the ¹⁹F NMR spectra at shifts consistent with **265** and **266** (Figure 5.2). Yields of each product were estimated by calculating the relative product distribution of these crystals. Trace amounts of an additional unidentified product (X) was detected in the ¹⁹F NMR spectra (Figure 5.2).

-124.0 -124.5 -125.0 -125.5 -126.0 -126.5 -127.0 -127.5 -128.0 -128.5 -129.0 -129.5 -130.0 -130.5 -131.0 -131.5 -132.0 -132.5 ΔF (ppm)

Figure 5.2: $^{19}{\rm F}$ NMR spectrum of product mixture from the fluorination of 4-nitroanisole ${\bf 264}$

The fluorination was repeated with the addition of an equivalent of quinuclidine (Scheme 5.8) and, after purging, the reaction was filtered through a small scale silica plug (Figure 3.2) with MeCN as the eluent to remove unwanted tarry by-products. Removal of solvent under reduced pressure gave 0.323 g of an orange solid.

Scheme 5.8: Quincuclidine mediated fluorination of 4-nitroanisole

Purification of the crude product was performed by column chromatography on silica gel with a gradient of 0–15% EtOAc v/v in hexane solvent mixture as the eluent. Unreacted **264** was isolated in a 40% yield while other fractions contained mixtures of two compounds. By comparing the relative integrals and coupling constants (J) of signals in the NMR spectra with product masses from GC-MS results taken of each fraction, it was possible to identify the identity of each peak in the ¹H NMR spectra of the crude products of both reactions (Figure 5.3).

While the conversion of **264** is higher when no base is added, a significant amount of tar was produced. The addition of quinuclidine as a mediating agent lowered the overall conversion, but also limited the formation of unwanted tar.

CHAPTER 5. ATTEMPTED DIRECT FLUORINATION OF AROMATIC SYSTEMS USING MEDIATING AGENTS

Figure 5.3: 1 H NMR spectrum from the quinuclidine mediated fluorination of 4-nitroanisole

5.2.4.1 Base Screening

Quinuclidine appears to lower the reactivity of F_2 when 4-nitroanisole **264** is the substrate as shown by the lower conversion and lack of other fluorinated products or tar. Other nitrogen bases were trialled in order to compare their effect at mediating the selectivity of fluorination to the desired products **265** and **266** (Table 5.1).

Previous attempts at workup involved an aqeuous workup. While this is an efficient method of removing HF, it does not appear to remove unwanted tarry products. During base screening reactions, the reaction mixture was concentrated under reduced pressure after fluorination. This mixture was then filtered through a small scale silica plug with $CHCl_3$ as the eluent to remove unwanted HF and tarry products. Yields of the desired products were then calculated by comparing the product distributions of the samples after removal of all unwanted tarry by-products.

	OMe F ₂ (10% /// Mediat MeCr NO ₂	v in N₂, 2 equiv.) ing agent) V (20 mL) 0 °C	OMe NO ₂ +	OMe F NO ₂	+ F	F F
	264 2 mmol		264	265	266	
Entry	Base	Equiv. of	NMR yield/% Recc		Recovered	
		base	264	265	266	$\mathrm{mass}/\%$
1	-	-	5	37	5	$47^{\rm a}$
2	Quinuclidine	1	52	24	1	77^{a}
3	-	-	11	65	9	86
4	Quinuclidine	1	67	20	3	90
5	Quinuclidine	2	90	3	0	93
6	DABCO	1	94	5	0	99
7	DABCO	2	95	2	0	97
8	DBU	1	76	19	2	97
9	DBU	2	92	4	1	96
10	$\mathrm{Et}_{3}\mathrm{N}$	1	49	25	3	77
11	$\mathrm{Et}_{3}\mathrm{N}$	2	91	3	1	95
12	Pyridine	1	74	11	2	87
13	Pyridine	2	94	3	0	97
14	DABCO	1^{b}	23	51	5	79
15	DBU	1^{b}		Polyflue	orinated	tar
16	$\mathrm{Et}_{3}\mathrm{N}$	1^{b}		Polyflue	orinated	tar

Table 5.1: Screening conditions for the base mediated fluorination of 4-nitroanisole $\mathbf{264}$

^a Aqueous workup performed prior to washing the product mixture through a small silica plug with $CHCl_3$ as the eluent

^b 5.0 equiv. of F_2 used

Repeating the previous fluorinations of **264** without performing an aqueous workup significantly improved the recovered yield (Table 5.1, Entries 1–4). Increasing the equiv. of quinuclidine (Table 5.1, Entry 5) lowered the conversion of **264** to desired fluorinated products, but increased the recovered mass. It appears that an excess of base interacts with either F_2 or **264** and significantly limits the overall amount of fluorination that occurs. A similar trend was observed for allmost all of

CHAPTER 5. ATTEMPTED DIRECT FLUORINATION OF AROMATIC SYSTEMS USING MEDIATING AGENTS

the nitrogen bases when the equivalents were increased from one to two. In each case, the recovered yield increased, but the proportion of unreacted starting material increased to $\sim 90\%$ of the recovered material. Exceptions were when DABCO or DBU were used (Table 5.1, Entries 6–9). There was very little change in the product distribution when the equivalents were increased from one to two and these bases prevent almost any tar from being formed. Unfortunately DABCO almost completely stopped fluorination of **264** from occurring.

The highest conversion to the fluorinated products **265** and **266** was achieved when Et_3N was used as the mediating agent (Table 5.1, Entry 10). Unfortunately, the conversion of **264** to desired fluorinated products was significantly lower than previously reported using no base or HCOOH as the solvent (Scheme 5.3).⁹⁹

In an attempt to push conversion, mediations using DABCO, Et_3N and DBU were trialled using a large excess (5 equiv.) of F_2 (Table 5.1, Entries 14–16). When Et_3N and DBU were trialled the excess of fluorine caused large amounts of unselective fluorination to occur producing large amounts of tarry products that could not be removed by the small scale silica plug purification method.

Conversion to **265** reached 51% when DABCO was used, significantly higher than other attempts (Table 5.1, Entry 14). It appears that while DABCO lowers the reactivity of F_2 with **264**, it appears to promote selective fluorination as seen by the relatively high recovered yield of 79% and minimal formation of tar compared to Entries 15–16.

It is possible that there is some form of interaction between F_2 and DABCO that occurs preferentially to a reaction between F_2 and **264** which accounts for the low conversion of **264** when 2 equiv. of DABCO were added (Table 5.1, Entry 7). This might involved forming small amounts of an *N*-fluoro compound which performs the fluorination, and then is remade *in situ* by the addition of F_2 (Scheme 5.9).

Scheme 5.9: Possible fluorination by an $in \ situ$ N-F reagent

To test this hypothesis, fluorination of **264** was attempted with the commonly available electrophilic fluorinating agent SelectfluorTM **66** (Scheme 5.10). This fluorinat-

ing agent has a similar structure to any possible N-F compound produced between DABCO and F_2 (Scheme 2.2).

Scheme 5.10: SelectfluorTM fluorination of 4-nitroani soleane

After stirring overnight at r.t., no reaction appeared to have occurred by NMR spectroscopy. The reaction mixture was then left to react for 72 h at 60 °C, but again no conversion was detected by NMR spectroscopy. The reaction was repeated with 2 equiv. of **66** but again no reaction with **264** was detected by NMR spectroscopy. This indicated that an *N*-F compound made *in situ* between DABCO and F_2 is unlikely to be a fully formed *N*-fluoro salt and may have a loose interaction between the base and F_2 .

5.3 Conclusion

New industrially viable routes to fluoroaromatics are desired to increase the range of available FBBs at lower costs. Several fluorinations of a mixture of electron rich and electron poor aromatics in MeCN were performed, and various nitrogen bases were trialled as mediating agents. Electron rich aromatics were fluorinated in multiple different positions which prevented simple determination of products and their isolation.

The presence of an EWG *para* to an EDG in the case of 4-nitroanisole allowed for regioselective fluorination to form one of two fluorinated products. The additions of nitrogen bases increased the recovered mass by limiting the formation of polyfluorinated tar, but also tended to limit the overall rate of fluorination. Conversions are currently lower than related fluorinations in acidic systems, but by increasing the amount of F_2 added and further base screening, it may be possible to achieve regioselective fluorinations of *para*-substituted aromatics with full conversion of starting material by this base mediated approach.

Chapter 6

Conclusions

In this thesis we have presented the advantages of organofluorine chemistry, in particular the beneficial impact of introducing a >CF₂ functionality into potential active ingredients. While methods of selectively introducing a >CF₂ group into an organic molecule is an active area of research, there are limited industrially viable routes available. In this thesis, selective diffuorination α - to carbonyls was investigated using fluorine gas as a potentially cheaper route to this class of compounds for large scale synthesis.

Selective diffuorination of 1,3-diketones was investigated using F_2 (Scheme 6.1). We discovered that the addition of various nitrogen bases had a noticeable effect on the efficiency of the fluorination reaction and, in particular, the addition of quinuclidine afforded high conversion to desired 2,2-diffuoro products.

This synthetic methodolgy was successfully applied to related 1,3-ketoester compounds. Further base screening was investigated, though quinuclidine again provided the highest conversion to the desired 2,2-difluoro products. Reactions with various amines were established to generate difluoro amides by utilising the increased reactivity of 2,2-difluoro-1,3-ketoesters towards nucleophiles (Scheme 6.2).

Highly desired fluorinated systems are $ArCF_2H$ containing compounds. Methods for the synthesis of $ArCF_2H$ compounds was expanded to include the one-step synthesis using F_2 highlighting the application of base mediated direct fluorinations of sufficiently reactive monocarbonyl compounds (Scheme 6.1, **232a**). Further attempts to expand the substrate scope by developing hydrogenation conditions were investigated at Syngenta's Jealotts Hill site with limited success.

Scheme 6.1: Summary of selective diffuorinations performed using F_2 in this thesis

Amidation reactions of diffuoro-amide **232a** were undertaken in collaboration with MChem student Jonathan Hill. X-ray analysis of these products provides further insight into the effect of intramolecular H–F interactions on the conformation around the amide bond.

Scheme 6.2: Summary of amidation reactions performed on diffuoroesters

The final chapter involved further development on direct fluorinations of aromatic systems. It appears that the addition of nitrogen bases lower the overall conversion and prevent the formation of unwanted tar-like by-products but conversions to desired products remained low.

Out of all the mediating agents tested, quinuclidine was the most successful mediating agent at increasing conversion to the desired diffuoro- products. While some mechanistic experiments were undertaken in Chapter 2 to try and identify the roles of quinuclidine in the fluorination, the specific reasoning behind quinuclidines superior results remains elusive. Comparing the conversion to desired products against the pK_a of the nitrogen bases gives no evidence as to why quinuclidine affords such a selective diffuorination (Figure 6.1).

Figure 6.1: Comparisons of the NMR conversions to **93** (top-left), **96** (top-right) and selectivity for **234a** compared to other signals in the ¹⁹F NMR spectrum (bottom) for various mediating agents

Many of the substrates fluorinated in this thesis undergo monofluorination or no reaction with the commonly used electrophilic fluorinating agents Selectfluor^{\mathbb{M}}. It appears that a quinuclidine-HF adduct forms an *in situ* fluorinating agent with F₂. This appears to be more reactive than commercially available solid, electrophilic fluorinating agents, while less reactive than F₂ as shown by the selective formation of *gem*-difluoro products (Scheme 6.3).

Overall, new methodology for the synthesis of various >CF₂ containing derivatives from F₂ mediated by quinuclidine provides the potential for inexpensive large-scale synthesis of many CF₂ derivatives.

Scheme 6.3: Comparison of the reactivity of possible fluorinating agents

Chapter 7

Future Work

While quinuclidine has excelled at mediating the selectivity towards desired diffuoroproducts, its toxicity and cost may limit its use on an industrial scale. For this work to be applied on an industrial scale, an alternative mediating agent is needed. While small nitrogen bases gave inferior results, it is possible that a mediating agent based on cinchona alkaloids such as quinine may prove successful (Figure 7.1). These readily available alkaloids are either made synthetically or extracted from the bark of Rubiaceae *Cinchona* genus of flowering plants, and notably all contain a quinuclidine-like bicyclic amine.

Figure 7.1: General structure of a cinchona alkalkoid

Selective diffuorinations using F_2 were most effective for 1,3-dicarbonyl substrates as these have relatively acidic >CH₂ protons. Fluorinations using the methodologies developed in this thesis could be performed on a range of other 1,3-dicarbonyl derivatives to expand the range of available >CF₂ containing compounds as potential fluorinated building blocks.

Amidation reactions were successfully performed with high conversion on some of the diffuoroesters synthesised in this thesis. This work could be readily expanded to include other amines or diffuoroesters, possibly as a route to the synthesis of tetrafluoro compounds (Figure 7.2). Conformations of these diffuoro and tetrafluoro amides could be determined by single crystal X-ray crystallography and could provide useful insight for designing new active ingredients incorporating new di- or tetra-fluorinated subunits.

Figure 7.2: Possible tetrafluoro amides that could be synthesised using synthetic strategies investigated in this thesis

While selective diffuorination of 1,3-diesters was achieved, these products were not successfully isolated due to their tendency to hydrolyse and decarboxylate. Future studies may determine non-aqueous purification conditions to successfully isolate these compounds.

The selective fluorination of aromatics using fluorine gas remains an industrially important reaction. Work in this thesis has determined that the addition of nitrogen bases significantly lowers the degree of conversion, and prevents unwanted tar formation. Mediation of activated aromatics may lead to an increased conversion to desired fluorinated products upon developing appropriate conditions

Chapter 8

General Experimental and Instrumentation

Chemicals were purchased from Fisher Scientific, Apollo Scientific, Fluorochem or Sigma Aldrich and, unless otherwise stated, were used without any further purification. All column chromatography was carried out using Silicagel LC60A (40 63 micron) purchased from Fluorochem. Proton, carbon and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR)were recorded on a Bruker 400 Ultrashield (¹H NMR at 400 MHz; ¹³C NMR at 101 MHz; ¹⁹F NMR at 376 MHz) spectrometer, Varian DD2-500 (¹H NMR at 500 MHz; ¹³C NMR at 126 MHz) spectrometer, Varian VNMR-600 Ultrashield (¹H NMR at 600 MHz; ¹³C NMR at 151 MHz) spectrometer or a Varian VNMRS-700 (¹H NMR at 700 MHz; ¹³C NMR at 176 MHz) spectrometer with residual solvent peaks as the internal standard. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectroscopic data are reported as follows: chemical shift (ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constant (Hz). Accurate mass analysis was achieved with a QtoF Premier mass spectrometer (Waters Ltd, UK) or an LCT Premier XE mass spectrometer (Waters Ltd, UK) equipped with an accurate solids analysis probe (ASAP). Infra-red (IR) spectra were recorded on a Perkin Elmer FTIR Spectrum Two[™] fitted with an ATR probe. Melting points were measured with a Gallenkamp apparatus at atmospheric pressure and are uncorrected.

Fluorinations were carried out in a borosilicate glass fluorination reactor (100 mL, 250 mL or 500 mL) unless otherwise stated. The reactor was built from a standard glass bottle with GL 45 thread joint and a PTFE screw crap equipped with a gas

inlet/outlet head built of stainless steel, PTFE and FEP Swagelok components. The flow rates were controlled with a Brooks instruments gas mass flow controller.

Figure 8.1: Small scale (\leq 10 mmol) fluorination set-up

Figure 8.2: Large scale (\leq 20 mmol) fluorination set-up

Chapter 9

Experimental to Chapter 2

9.1 General Procedure 1 (GP1)—Synthesis of compounds 91a–91g

The acetophenone derivative (10 mmol) and LiN(SiMe₃)₂ (1 M in THF, 20 mmol, 20 mL) in anhydrous THF (20 mL) were stirred at -78 °C for 30 min under N₂. The corresponding acid chloride (10 mmol) was added slowly and the reaction mixture allowed to warm to room temperature overnight and stirred for 48 hours. Where the acid chloride was a solid, the amount was added to a round bottom flask, purged with argon, and dissolved in anhydrous tetrahydrofuran (10 mL) before being transferred to the reaction mixture via cannula. The reaction mixture was quenched with 36% hydrochloric acid (3 mL), before being partitioned between water (10 mL) and ethyl acetate (30 mL). The aqueous layer was extracted with ethyl acetate (2×30 mL) and the combined organic phases washed with saturated sodium bicarbonate solution (30 mL) and water (30 mL). The organic layer was dried over magnesium sulfate and the solvent removed under reduced pressure to yield the crude product. This was further purified by recrystallisation or column chromatography on silica gel if required to give the pure product.

1-(4-Methylphenyl)-3-phenylpropane-1,3-dione (91a)

Prepared according to GP1, 4-methylacetophenone (1.34 mL, 10.03 mmol) and benzoyl chloride (1.16 mL, 9.99 mmol) after purification by column chromatography on silica gel with ethyl acetate 15% v/v in hexane solvent mixture as the eluent gave 1-(4- methylphenyl)-3-phenyl-1,3-propanedione (2.408 g, 95%) as a white solid; Mp 85–86 °C [lit. Mp 84–85 °C¹⁸³]. Enol product (92%) ¹H NMR (700 MHz, CDCl₃) δ 2.44 (3 H, s, C8H₃), 6.84 (1 H, s, C2H), 7.28–7.31 (2 H, m, C6H), 7.47–7.51 (2 H, m, C6'H), 7.53-7.57 (1 H, m, C7'H), 7.88-7.92 (2 H, m, C5H), 7.97-7.99 (2 H, m, C5'H); ¹³C NMR (176 MHz, CDCl₃) δ 21.8 (C8), 93.0 (C2), 127.2 (C5'), 127.4 (C5), 128.8 (C6'), 129.6 (C6), 132.4 (C7'), 133.0 (C4), 135.8 (C4'), 143.4 (C7), 185.3 (C3), 186.2 (C1); ketone product (8%) ¹H NMR (700 MHz, CDCl₃) δ 4.61 (2H, s, C2H), 2.42 (3 H, s, C8H); m/z (EI⁺) 238.2 ([M]⁺, 92%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), $161.1 \ ([C_{10}H_9O_2]^+,\ 22\%),\ 147.1 \ ([C_9H_7O_2]^+,\ 16\%),\ 119.1 \ ([C_8H_7O]^+,\ 87\%),\ 105.1 \ ([C_8H_7O_2]^+,\ 105.1 \ ([C_8H$ $([C_7H_5O]^+, 44\%), 91.1 ([C_7H_7]^+, 43\%), 77.1 ([C_6H_5]^+, 39\%), 69.0 ([C_5H_9]^+, 59\%).$ HRMS (ASAP) m/z calculated for $[M+H]^+$ C₁₆H₁₅O₂ 239.1072; found 239.1067. IR (neat, cm^{-1}) 2923, 1459, 1185, 1018, 767, 687, 582. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. Data consistent with that previously reported in the literature.¹⁸⁴

1-(4-Methoxyphenyl)-3-phenylpropane-1,3-dione (91b)

Prepared according to **GP1**, acetophenone (1.17 mL, 10.03 mmol) and 4-methoxybenzoyl chloride (1.35 mL, 9.97 mmol) after recrystallisation from ethyl acetate gave 1-(4-methoxyphenyl)-3-phenyl-1,3-propanedione (2.399 g, 95%) as colourless crystals; Mp 127–128 °C [lit. Mp 127–128 °C¹⁸⁵]. Enol product (90%) ¹H NMR (700 MHz, CDCl₃) δ 3.89 (3 H, s, C8H), 6.80 (1 H, s, C2H), 6.97–7.00 (2 H, m, C6H), 7.47–7.50 (2 H, m, C6'H), 7.53–7.56 (1 H, m, C7'H), 7.96–7.98 (2 H, m, C5'H), 7.97–7.99 (2 H, m, C5H); ¹³C NMR (176 MHz, CDCl₃) δ 55.6 (C8), 92.5 (C2), 114.1 (C6), 127.1 (C5'), 128.4 (C4), 129.5 (C5), 132.3 (C7'), 135.7 (C4'), 163.4 (C7), 163.4 (C7), 184.2 (C3), 186.3 (C1); ketone product (10%) ¹H NMR (700 MHz, CDCl₃) δ 4.59 (2H, s, C2H), 3.87 (3 H, s, C8H); m/z (EI⁺) 254.1 ([M]⁺, 100%), 177.1 ([C₁₀H₁₉O₃]⁺, 19%), 135.1 ([C₈H₇O₂]⁺, 95%), 108.1 ([C₇H₈O]⁺, 60%), 105.1 ([C₇H₅O]⁺, 30%), 77.1 ([C₆H₅]⁺, 56%), 69.0 ([C₅H₉]⁺, 31%), 51.1 ([C₄H₃]⁺, 9%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₆H₁₅O₃ 255.1021; found 255.1024. IR (neat, cm⁻¹) 2923, 1459, 1185, 1018, 767, 687, 582. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. Data consistent with that previously reported in the literature.¹⁸⁶

1-(4-Chlorophenyl)-3-phenylpropane-1,3-dione (91c)

Prepared according to **GP1**, acetophenone (1.17 mL, 10.03 mmol) and 4-chlorobenzoyl chloride (1.28 mL, 9.98 mmol) after recrystallisation from hexane afforded *1-(4chlorophenyl)-3-phenyl-1,3-propanedione* (2.314 g, 90%) as a pale yellow solid; Mp 85–87 °C [lit. Mp 86–88 °C¹⁸⁷]. *Enol product* (94%) ¹H NMR (600 MHz, CDCl₃) δ 6.81 (1 H, s, C2H), 7.47 (2 H, dt, ³J_{HH} 8.7, ⁴J_{HH} 2.4, C6H), 7.48–7.51 (2 H, m, C5'H), 7.57 (1 H, tt, ³J_{HH} 7.4, ⁴J_{HH} 1.4, C7'H), 7.93 (2 H, dt, ³J_{HH} 8.7, ⁴J_{HH} 2.4, C5H), 7.97–8.00 (2 H, m, C6'H); ¹³C NMR (151 MHz, CDCl₃) δ 93.2 (C2), 127.3 (C6'), 128.7 (C5), 128.9 (C5'), 129.1 (C6), 132.8 (C7'), 134.1 (C4), 135.5 (C4'), 138.9 (C7), 184.7 (C1), 185.9 (C3); *ketone product* (6%) ¹H NMR (600 MHz, CDCl₃) δ 4.61 (2H, s, C2H); *m/z* (EI⁺) 258.1 ([M]⁺, 79%), 181.0 ([C₉H₆ClO₂]⁺, 22%), 147.1 ([C₉H₇O₂]⁺, 21%), 139.1 ([C₇H₄ClO]⁺, 43%), 111.1 ([C₆H₄Cl]⁺, 20%), 105.1 ([C₇H₅O]⁺, 56.7%), 77.1 ([C₆H₅]⁺, 96%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₂ClO₂ 259.0526; found 259.0531. IR (neat, cm⁻¹) 2924, 1516, 1282, 1093, 1012, 843, 757, 682. Data consistent with that previously reported in the literature.¹⁸⁶

1-(4-Fluorophenyl)-3-phenylpropane-1,3-dione (91d)

Prepared according to **GP1**, 4-fluoroacetophenone (1.16mL, 9.99 mmol) and benzoyl chloride (1.28 mL, 9.98 mmol) after recrystallisation from hexane afforded 1-(4-fluorophenyl)-3-phenyl-1,3-propanedione (2.417 g, 100%) as a beige solid; Mp 78–79 °C [lit. Mp 88 °C¹⁸⁸]. Enol product (93%) ¹H NMR (700 MHz, CDCl₃) δ 6.81

(1 H, s, C2H), 7.14–7.20 (2 H, m, C6H), 7.47–7.52 (2 H, m, C5'H) 7.56 (1H, tt, ${}^{3}J_{\rm HH}$ 7.4, ${}^{4}J_{\rm HH}$ 1.2, C7'H), 7.97–7.99 (2 H, m, C6'H), 8.00–8.02 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –106.22 (tt, ${}^{3}J_{\rm HF}$ 8.4, ${}^{4}J_{\rm HF}$ 5.4); ¹³C NMR (176 MHz, CDCl₃) δ 93.0 (C2), 116.0 (d, ${}^{2}J_{\rm CF}$ 21.9, 6), 127.3 (C6'), 128.9 (C5'), 129.8 (d, d, ${}^{3}J_{\rm CF}$, C5), 132.6 (C7'), 135.4 (C4'), 165.6 (d, ${}^{1}J_{\rm CF}$ 253.9, C7), 185.26 (C1), 185.27 (C3); ketone product (7%) ¹H NMR (700 MHz, CD Cl₃) δ 4.61 (2H, s, C2H); ¹⁹F NMR (376 MHz, CDCl₃) δ –103.90 (tt, ${}^{3}J_{\rm HF}$ 8.3, ${}^{3}J_{\rm HF}$ 5.3); m/z (EI⁺) 242.0 ([M]⁺, 19%), 223.1 ([C₁₅H₁₁O₂]⁺, 3%), 147.1 ([C₉H₇O₂]⁺, 10%), 123.1 ([C₇H₄FO]⁺, 10%), 119.1 ([C₈H₇O]⁺, 4%), 105.1 ([C₇H₅O]⁺, 20%), 77.0 ([C₆H₅]⁺, 29%), 69.0 ([C₅H₉]⁺, 19%), 51.0 ([C₄H₃]⁺, 12%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅H₁₂FO₂ 243.0821; found 243.0826. IR (neat, cm⁻¹) 3112, 1729, 1520, 1348, 1284, 1108, 955, 764, 688, 562. Data consistent with that previously reported in the literature.¹⁸⁹

1-(4-Nitrophenyl)-3-phenylpropane-1,3-dione (91e)

Prepared according to GP1, acetophenone (1.17 mL, 10.03 mmol) and 4-nitrobenzoyl chloride (1.860 g, 10.02 mmol) without further purification gave 1-(4 nitrophenyl)-3-phenyl-1,3-propanedione (2.677 g, 99%) as a yellow solid Mp 145–146 °C [lit. Mp 160–161 °C¹⁸³]. Enol product (95%) ¹H NMR (700 MHz, CDCl₃) δ 6.90 (1 H, s, C2H), 7.51–7.54 (2 H, m, C5'H), 7.59–7.62 (1 H, C5H), 8.00–8.03 (2 H, m, C6'H), 8.14 (2 H, dt, ${}^{3}J_{\rm HH}$ 9.0, ${}^{4}J_{\rm HH}$ 2.3, C6H), 8.34 (2 H, dt, ${}^{3}J_{\rm HH}$ 9.0, ${}^{4}J_{\rm HH}$ 2.3, C5H); ¹³C NMR (176 MHz, CDCl₃) δ 94.4 (C2), 124.0 (C2), 127.6 (C6'), 128.2 (C6), 129.0 (C5'), 133.3 (C7'), 135.3 (C4'), 141.1 (C2), 150.1 (C7), 181.8 (C1), 188.0 (C3); ketone product (5%) ¹H NMR (700 MHz, CDCl₃) δ 4.69 (2 H, s, C2H); m/z (EI^+) 269.1 ($[M]^+$, 77%), 222.1 ($[C_{15}H_{10}O_2]^+$, 15%), 192.0 ($[C_9H_6NO_4]^+$, 17%), 147.1 $([C_9H_7O_2]^+, 24\%), 120.1 ([C_8H_8O]^+, 7\%), 105.1 ([C_7H_5O]^+, 76\%), 91.1 ([C_7H_7]^+, 7\%))$ 4%), 77.1 ($[C_6H_5]^+$, 49%), 69.0 ($[C_5H_9, 51\%)$, 51.0 ($[C_4H_3]^+$, 11%). HRMS (ASAP) m/z calculated for $[M+H]^+ C_{15}H_{12}NO_4$ 270.0766; found 270.0757. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm^{-1}) 3121, 2981, 1692, 1513, 1343, 1103, 855, 744. Data consistent with that previously reported in the literature.¹⁹⁰

1,3-Bis(4-chlorophenyl)-propane-1,3-dione (91f)

Prepared according to GP1, 4-chloroacetophenone (1.30 mL, 10.03 mmol) and 4chlorobenzoyl chloride (1.28 mL, 9.98 mmol) after recrystallisation from hexane and ethyl acetate afforded 1,3-bis(4 chlorophenyl)propane-1,3-dione (2.882 g, 99%) as a very pale yellow solid; Mp 151–153 °C [lit. Mp 159 °C¹⁹¹]. Enol product (94%) ¹H NMR (700 MHz, CDCl₃) δ 6.77 (1 H, s, C2H), 7.46–7.48 (4 H, m, C4H), 7.91–7.93 (4 H, m, C5H); ¹³)C NMR (176 MHz, CDCl₃) δ 93.0 (C2), 128.7 (C4), 129.2 (C5), 133.9 (C6), 139.1 (C3), 184.8 (C1); ketone product (6%) ¹H NMR (700 MHz, CDCl₃) δ 4.58 (2 H, s, C2H); m/z (EI⁺) 292.1 ([M]⁺, 68%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), 181.0 ([C₉H₆ClO₂]⁺, 40%), 139.1 ([C₇H₄ClO]⁺, 100%), 111.1 ([C₆H₄Cl]⁺, 54%), 69.0 ([C₅H₉]⁺, 54%). HRMS (ASAP) m/z calculated for [M+H]⁺ ([C₁₅H₁₁Cl₂O₂]⁺ 293.0136; found 293.0147. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹) 2981, 1582, 1503, 1397, 1279, 1177, 970, 775. Data consistent with that previously reported in the literature.¹⁹²

1,3-Bis(4-fluorophenyl)-propane-1,3-dione (91g)

Prepared according to GP1, 4-fluoroacetophenone (1.21 mL, 9.97 mmol) and 4-fluorobenzoyl chloride (1.18 mL, 9.99 mmol) after recrystallisation from hexane and ethyl acetate afforded 1,3-bis(4-fluorophenyl)-propane-1,3-dione (2.099 g, 81%) as a beige solid; Mp 107–108 °C [lit. Mp 109 °C¹⁹³]. Enol product (92%) ¹H NMR (700 MHz, CDCl₃) δ 6.74 (1 H, s, C2H), 7.14–7.20 (4 H, m, C5H), 7.98–8.02 (4 H, m, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ –106.1 (tt, ³J_{HF} 8.4, ⁴J_{HF} 5.4); ¹³)C NMR (176 MHz, CDCl₃) 92.6 (C2), 116.0 (d, ²J_{CF} 21.9, C5), 129.7 (d, ³J_{CF} 9.2, C4), 131.8 (d, ⁴J_{CF} 3.1, C3), 165.6 (d, ¹J_{CF} 254.1, C6), 184.6 (s, C1); ketone product (8%) ¹H NMR (700 MHz, CDCl₃) δ 4.58 (2 H, s, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ –103.6 (tt, ³J_{HF} 8.3, ³J_{HF} 5.3); m/z (EI⁺) 260.1 ([M]⁺, 58%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), 165.1 ([C₉H₆FO₂]⁺, 30%), 123.1 ([C₇H₄FO]⁺, 100%), 95.1 ([C₆H₄F]⁺, 47%), 69.0 ([C₅H₉]⁺, 32%). HRMS (ASAP) m/z calculated for [M+H]⁺ . C₁₅H₁₁F₂O₂] 293.0727; found 261.0718. IR (neat, cm⁻¹) 3082, 1596, 1467, 1301, 1221, 1012, 859, 856, 784, 505. Data consistent with that previously reported in the literature.¹⁹²
1,3-Bis(4-nitrophenyl)-propane-1,3-dione (91h)

4-Nitroacetophenone (1.648 g, 9.97 mmol) and $LiN(SiMe_3)_2$ (1M in tetrahydrofuran, 20 mmol, 20 mL, 2 equiv. in anhydrous tetrahydrofuran (20 mL) were stirred at -78 $^{\circ}$ C for 30 min under N₂. 4-Nitrobenzoyl chloride (1.856 g, 10.0 mmol) was dissolved in anhydrous tetrahydrofuran (10 mL) and added to the reaction mixture which was left to stir for 48 hours. The reaction mixture was quenched with 36% hydrochloric acid (3 mL) before partitioned between water (10 mL) and dichloromethane (500 mL)mL). The aqueous layer was extracted with dichloromethane $(2 \times 50 \text{ mL})$ and the combined organic phases washed with sodium bicarbonate (30 mL) and water (20 mL). The organic layer was dried over magnesium sulfate and the solvent removed under reduced pressure to yield the crude product. Recrystallisation from acetone gave 1,3-(4-nitrophenyl)propane-1,3-dione (3.098 g, 99%) as a yellow solid; Mp 240-242 °C [lit. Mp 241-242 °C¹⁹¹]. Enol product (100%) ¹H NMR (700 MHz, CDCl₃) δ 6.93 (1 H, s, C2H), 8.15–8.18 (4 H, m, C5H), 8.35–8.38 (4 H, m, C4H); ¹³C NMR $(176 \text{ MHz}, \text{CDCl}_3) \delta 95.2 \text{ (C2)}, 124.2 \text{ (C4)}, 128.5 \text{ (C5)}, 140.5 \text{ (C3)}, 150.4 \text{ (C6)},$ 184.1 (C1); m/z (ES⁻) 313.2 ([M-H]⁻, 100%. HRMS (ASAP) m/z calculated for $[M-H]^+$. $C_{15}H_9N_2O_4$ 313.0461; found 313.0434. IR (neat, cm⁻¹) 3095, 1511, 1344, 1224, 1093, 1009, 855, 747, 450. Data consistent with that previously reported in the literature.¹⁹²

9.2 General Procedure 2 (GP2)—Synthesis of 93– 93g

The corresponding 1,3-diketone (2.0 mmol, 1 equiv.) and quinuclidine (0.245 g, 2.2 mmol, 1.1 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (4.6 mmol, 2.3 equiv.)

15 mL min⁻¹) that was controlled by a mass flow controller for 75 min. After purging with nitrogen for 20 minutes, the reaction vessel was removed and the solvent diluted with water (20 mL) and dichloromethane (90 mL). The two layers were separated and the aqueous layers were washed with dichloromethane (3×30 mL). The organic fractions were combined, washed with saturated sodium bicarbonate solution (20 mL) and dried over magnesium sulfate. The solvent was removed under reduced pressure to yield the crude product which was purified by column chromatography on silica gel or recrystallisation to yield the pure product.

2,2-Difluoro-1,3-diphenylpropane-1,3-dione (93)

Prepared according to **GP2**, 1,3-diphenyl-1,3-propanedione (0.448 g, 2.00 mmol) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 2,2-difluroro-1,3-diphenyl-1,3-propanedione (0.338 g, 57%) as a white solid; Mp 56–57 °C [lit. Mp 56–57 °C¹⁹⁴]. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (4 H, td, ³J_{HH} 7.4, ⁴J_{HH} 2.0, C6H), 7.62–7.68 (2 H, m, C7H), 8.09 (4 H, d, ³J_{HH} 7.4, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.7 (s); ¹³C NMR (151 MHz, CDCl₃) δ 112.8 (t, ¹J_{CF} 265.8, C2), 129.1 (C6), 130.4 (t, ⁴J_{CF} 2.7, C5), 135.2 (C7), 187.5 (t, ²J_{CF} 27.0, C1); m/z (EI⁺) 105.2 ([C₇H₅F₂O₂]⁺, 87%), 77.1 [C₆H₅]⁺, 43%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅H₁₁F₂O₂ 261.0727; found 261.0723. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹) 3073, 1694, 1594, 1449, 1251, 1135, 887, 679, 523. Data consistent with that previously reported in the literature.¹²⁹

2,2-Difluoro-1-(4-methylphenyl)-3-phenylpropane-1,3-dione (93a)

Prepared according to GP2, 1-(4-methylphenyl)-3-phenyl-1,3-propanedione (0.477 g, 2.00 mmol) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 0.397 g of a yellow oil that contained a mixture of fluorinated products; ¹⁹F NMR (376 MHz, CDCl₃) -187.4--186.2 (m, monofluoro product), -168.7 (d, J 4.6), -116.3 (d, J 11.9), -115.3 (ddd, J 9.9, J 7.6, J 2.3), -114.9 (ddq, J 9.9, J 7.6, J 2.4), -105.5--105.2 (m), -102.6 (s, diffuoro product).

2,2-Difluoro-1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione (93b)

Prepared according to GP2, 1-(4-methoxyphenyl)-3-phenyl-1,3-propanedione (0.509 g, 2.00 mmol) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 0.270 g of a yellow oil that contained a mixture of fluorinated products; ¹⁹F NMR (376 MHz, CDCl₃) -186.4 (dt,²J_{HF} 49.3, ⁵J_{HF} 1.0, monofluoro product), -133.4 (ddd, J 11.8, J 8.1, J 1.2), -132.9 (ddd, J 11.7, J 8.0, J 1.2), -126.4 (dq, J 9.8, J2.1), -107.3 (s), -102.5 (s, diffuoro product), -102.5 (t, J 1.0), -102.4 (t, J 1.0).

2,2-Difluoro-1-(4-chlorophenyl)-3-phenylpropane-1,3-dione (93c)

Prepared according to GP2, 1-(4-chlorophenyl)-3-phenyl-1,3-propanedione (0.514 g, 2.01 mmol) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 2,2-difluroro-1-(4-chlorophenyl)-3-phenyl-1,3-propanedione (0.352 g, 59%) as a white solid; Mp 63–64 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.44–7.49 (2 H, m, C6H), 7.50–7.53 (2 H, m, C6'H), 7.67 (1 H, tt, ³J_{HH} 7.5, ⁴J_{HH} 1.2, C7'H), 8.03 (2 H, d, ³J_{HH} 8.8, C5H), 8.08 (2 H, dd, ³J_{HH} 8.5, ⁴J_{HH} 1.0, C5'H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.7 (p, ⁵J_{HF} 0.9); ¹³C NMR (176 MHz, CDCl₃) δ 112.8 (t, ¹J_{CF} 266.0, C2), 129.1 (C6'), 129.5 (C6), 130.1 (C4), 130.4 (t, ⁴J_{CF} 2.7, C5'), 131.6 (C4'), 131.8 (t, ⁴J_{CF} 2.8, C5), 135.3 (C7'), 142.0 (C7), 186.5 (t, ²J_{CF} 27.1, C1), 187.4 (t, ²J_{CF} 26.9, C3); m/z (EI⁺) 294.1 ([M]⁺, 1%), 139.1 ([C₇H₄ClO]⁺, 62%), 77.1 ([C₆H₅]⁺, 96%), 51.1 ([C₃H₄]⁺, 12%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅H₁₀ClF₂O₂ 295.0337; found 295.0335. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹ 1692, 1588, 1449, 1250, 1138, 884, 682, 561.

2,2-Difluoro-1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (93d)

Prepared according to **GP2**, 1-(4-fluorophenyl)-3-diphenyl-1,3-propanedione (0.484 g, 2.00 mmol)) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 2,2-difluoro-1-(4-fluorophenyl)-3-diphenyl-1,3-propanedione (0.327 g, 59%) as a white solid; Mp 36–37 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.1–7.2 (2 H, m, C6H), 7.5–7.5 (2 H, m, C6'H), 7.7 (1 H, tt, ³J_{HH} 7.3, ⁴J_{HH} 1.3, C7'H), 8.1 (2 H, ddd, ³J_{HH} 7.7, ⁴J_{HH} 2.2, ⁵J_{HH} 1.1, C5'H), 8.1–8.2 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.6 (s, CF2, C2F), –100.6 (tt, ³J_{HF} 8.2, ⁴J_{HF} 5.3, C7F); ¹³C NMR (176 MHz, CDCl₃) δ 112.8 (t, ¹J_{CF} 265.8, C2), 116.5 (d, ²J_{CF} 22.1, C6), 128.2 (d, ³J_{CF} 2.9, C4), 129.1 (s, C6'), 130.4 (t, ⁴J_{CF} 2.6, C5'), 131.7 (C4'), 133.4 (dt, ³J_{CF} 9.9, ⁴J_{CF} 2.8, C5), 135.3 (C7), 167.0 (d, ¹J_{CF} 259.2, C2), 186.0 (t, ²J_{CF} 27.1, C1), 187.5 (t, ²J_{CF} 26.8 C3); m/z (EI⁺) 278.1 ([M]⁺, 2%), 123.2 ([C₇H₄FO]⁺, 100%), 105.2 ([C₇H₅O]⁺, 100%), 95.1 ([C₆H₄F]⁺, 58%), 77.1 ([C₆H₅]⁺, 90%), 51.1 ([C₃H₄]⁺, 26%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅H₁₀F₃O₂ 279.0633; found 279.0642. IR (neat, cm⁻¹) 3080, 1693, 1597, 1450, 1241, 1108, 885, 683, 572.

2,2-Difluoro-1-(4-nitrophenyl)-3-phenylpropane-1,3-dione (93e)

Prepared according to **GP2**, 1-(4-nitrophenyl)-3-phenylpropane-1,3-dione (0.535 g, 1.99 mmol) in MeCN (60 mL) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 2,2-difluoro-1-(4-nitrophenyl)-3-diphenylpropane-1,3-dione (304 g, 50%) as a pale yellow solid; Mp 54–56 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.52–7.58 (2 H, m), 7.71 (1 H, tt, ³J_{HH} 7.5, ⁴J_{HH} 1.2), 8.09–8.12 (2 H, m), 8.22–8.25 (2 H, m), 8.33–8.35 (2 H, m); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.7 (pent, ⁵J_{HF} 0.8); ¹³C NMR (176 MHz, CDCl₃) δ 112.5 (t, ¹J_{CF} 266.9, C**2**), 124.1 (C**6**), 129.3 (C**6**'), 130.5 (t, ⁵J_{CF} 2.7, C**5**'), 131.3 (C**4**'), 131.5 (t, ⁵J_{CF} 2.8, C**4**), 135.7 (C**7**'), 136.3 (C**4**), 151.2 (C**7**), 186.6 (t, ²J_{CF} 27.7, C**1**), 187.4 (t, ²J_{CF} 27.1, C**3**); m/z (EI⁺) 150.1 ([C₇H₄NO₃]⁺, 32%), 105.2 ([C₇H₅O]⁺, 100%), 77.1 ([C₆H₅]⁺, 54%), 51.1 ([C₃H₄]⁺, 10%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅H₁₀F₂NO₄ 306.0567; found 306.0578. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹) 3111, 1698, 1525, 1290, 1101, 954, 841, 711, 522.

2,2-Difluoro-1,3-bis(4-chlorophenyl)propane-1,3-dione (93f)

Prepared according to **GP2**, 1,3-bis(4 chlorophenyl)-propane-1,3-dione (0.590 g, 2.01 mmol) in MeCN (60 mL) after column chromatography on silica gel with hexane and DCM (1:1) as the eluent yielded 1,3-bis(4-chlorophenyl)-2,2-difluoropropane-1,3-dione (0.475 g, 72%) as a white solid; Mp 93–94 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.48–7.50 (4 H, m, C5H), 8.02 (4 H, d, ³J_{HH} 8.4, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.8 (s); ¹³C NMR (176 MHz, CDCl₃) δ 112.7 (t, ¹J_{CF} 266.3, C2), 129.6 (C5), 129.9 (t, ³J_{CF} 1.5, C3), 131.8 (t, ⁴J_{CF} 2.8, C4), 142.2 (C6), 186.4 (t, ²J_{CF} 27.1, C1); m/z (EI)⁺ 328.0 ([M]⁺, 1%), 139.1 ([C₇H₄ClO]⁺, 100%), 111.0 ([C₆H₄Cl]⁺, 41%), 50.0 ([C₄H₂]⁺, 4%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₅HCl₂₉F₂O₂328.9948; found 328.9937. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻1) 1698, 1588, 1488, 1405, 1251, 1139, 1013, 884, 773, 542.

2,2-Difluoro-1,3-bis(4-fluorophenyl)propane-1,3-dione (93g)

Prepared according to **GP2**, 1,3-bis(4-fluorophenyl)-propane 1,3 dione (0.522 g, 2.01 mmol) in MeCN (60 mL) after recrystallisation from hexane and chloroform yielded 2,2-difluoro-1,3-bis(4-fluorophenyl)propane-1,3-dione (0.451 g, 76%) as a pale yellow solid; Mp 79–81 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.16–7.20 (4 H, m, C5H), 8.12–8.16 (4 H, m, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.6 (s, C2F₂), –100.3 (tt, ³J_{HF} 8.2, ⁴J_{HF} 5.3, C6F); ¹³C NMR (126 MHz, CDCl₃) δ 112.9 (t, ¹J_{CF} 265.9, C2), 116.5 (d, ²J_{CF} 22.2, C5), 128.1 (dt, ³J_{CF} 3.1, ⁴J_{CF} 1.6, C3), 133.5 (dt, ⁴J_{CF} 9.9, ⁵J_{CF} 2.9, C4), 167.0 (d, ¹J_{CF} 259.4, C6), 186.0 (t, ²J_{CF} 27.0, C1); *m/z* (EI)⁺ 296 ([M]⁺, 1%), 123.1 ([C₇H₄FO]⁺, 100%), 95.1 ([C₆H₄F]⁺, 78%), 50.0 ([C₄H₂]⁺, 3%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₉F₄O₂ 297.0539; found 297.0537. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹) 1695, 1596, 1504, 1413, 1235, 1134, 867, 780, 600.

2,2-Difluoro-1,3-bis(4-nitrophenyl)propane-1,3-dione (93h)

Prepared according to **GP2**, 1,3-bis(4-nitrophenyl)-propane 1,3 dione (0.630 g, 2.00 mmol) in MeCN (60 mL) after recrystallisation from hexane and chloroform yielded

1,3-bis(4-nitrophenyl)-2,2-difluoropropane-1,3-dione (0.542 g, 77%) as a pale yellow solid; Mp 117–119 °C. ¹H NMR (700 MHz, CDCl₃) δ 8.25–8.28 (4 H, m, C4H), 8.37–8.40 (4 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.9 (s); ¹³C NMR (176 MHz, CDCl₃) δ 112.2 (t, ¹J_{CF} 267.7, C2), 124.3 (C5), 131.5 (t, ⁴J_{CF} 2.9, C4), 135.8 (C6), 151.5 (C2), 186.3 (t, ²J_{CF} 27.9, C1). m/z (EI)⁺ 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 22%). HRMS (ASAP) m/z calculated for [M+H]⁺ 1₅H₉F₂N₂O₄ 351.0430; found 351.0429. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. IR (neat, cm⁻¹) 3112, 1729, 1520, 1349, 1126, 955, 827, 715, 562.

N-Fluoroquinuclidinium triflate (192)

Quinuclidine (0.556 g, 5.0 mmol, 1 equiv.) and sodium triflate (1.032 g, 6.0 mmol, 1.2 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (40 mL). The reaction vessel was cooled to -40 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (6.0 mmol, 1.2 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 98 min. After purging with nitrogen for 20 minutes, the reaction vessel was removed and the reaction mixture filtered, and the solvent removed under reduced pressure. The crude product was dissolved in hot acetone, and triturated with cold ethyl acetate to yield *N*-fluoroquinuclidinium triflate (1.241 g, 89%) as a white solid. ¹H NMR (400 MHz, D₂O) δ 2.26 (1 H, dp, ³J_{HH} 9.5, ⁴J_{HH} 3.1, C**3**H), 2.32—2.40 (6 H, m, C**2**H), 4.19 (6 H, q, ³J_{HF} 8.4, C**1**H); ¹⁹F NMR (376 MHz, D₂O) δ -78.9 (3F, s, C**4**F₃), 56.6 (1F, s, NF); ¹³C NMR (101 MHz, D₂O) δ 18.9 (d, ⁴J_{CF} 4.8, C**3**), 27.3 (d, ³J_{CF} 4.0, C**2**), 60.8 (d, ²J_{CF} 9.2, C**1**), 119.6 (q, ¹J_{CF} 317.2, C**4**). Data consistent with that previously reported in the literature.^{144,147}

9.3 Screening Conditions for Base Mediated Direct Fluorination of DBM

Dibenzoylmethane (0.449 g, 2.00 mmol) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. A known mass of α, α, α ,-trifluorotoluene was added as a reference standard, and the organic products were analysed by NMR spectroscopy.

Entry	Base	Equiv of base	Equiv of F_2	Yield by $NMR/\%$		
				91	92	93
1	-	-	1	100	0	0
2	-	-	20	Poly	fluorinate	d tar
3	DABCO	1	1	32	4	$20(7)^{a}$
4	DABCO	1	1^{b}	30	3	19
5	DABCO	1	2	1	1	37
6	DABCO	1	3	Polyfluorinated tar		
7	DABCO	2	2	Many flu	orinated	products
8	DABCO	0.1	1	22	28	8
9	Quinuclid	ine 1	1	$42(41)^{a}$	$10(8)^{a}$	$43(33)^{*}$
10	Quinuclid	ine 1.2	1^{b}	54	1	43
11	$\mathrm{Et}_{3}\mathrm{N}$	1	1	56	25	6
12	$\mathrm{Cs}_2\mathrm{CO}_3$	1	1	0	4	14
13	NaCl	1	1	0	33	$12(6)^{a}$
14	NaCl,	1	1	7	19	16
	DBU					

^a Isolated yield

b F₂ (20% v/ v in N₂) used

9.4 Screening Conditions for the Quinuclidine Mediated Direct Fluorination of DBM

Dibenzoylmethane (0.449 g, 2.00 mmol) and quinuclidine were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were analysed by NMR spectroscopy as described above.

Entry	Equiv of	Equiv of	Ratio of products by NMR			
	quinuclidine	F_2	91	92	93	
1	1	1	3	2	4	
2	1.1	2.1	1	5	47	
3	1.1	2.3	1	16	120	

Chapter 10

Experimental to Chapter 3

10.1 General Procedure 3 (GP3)—Synthesis of compounds 94a–94f

Based on a literature procedure,¹⁵³ ethyl potassium malonate (2.383 g, 14 mmol) in ethyl acetate (40 mL) was cooled to 0 °C. Triethylamine (4.9 mL, 35 mmol) and magnesium chloride (1.619 g, 17 mmol) were added and the resulting slurry stirred at 30 °C for 6 h before the mixture was cooled to 0 °C and the corresponding benzoyl chloride (10 mmol) was added dropwise over 5 min. The mixture was stirred overnight at r.t. before being cooled to 0 °C and quenched with 13% hydrochloric acid (30 mL). The aqueous phase was removed and extracted with toluene (20 mL), then the combined organic phases were washed with 13% hydrochloric acid (2×10 mL) and water (2×10 mL),dried over magnesium sulfate and the sovlent removed under reduced pressure. The crude product was filtered through a silica plug with chloroform as the eluent to give the desired product which did not need any further purification.

Ethyl (4-methoxy)benzoylacetate (94a)

4-(Methoxy)benzoyl chloride (1.354 mL, 2.00 mmol) gave *ethyl* (4-methoxy)benzoylacetate (1.658 g, 75%) as a pale orange oil. Ketone product (75%) ¹H NMR (700 MHz,

CDCl₃) δ 1.26 (3 H, t, ³J_{HH} 7.1, C9H), 3.88 (3 H, s, C10H), 3.94 (2 H, s, C2H), 4.21 (2 H, q, ³J_{HH} 7.1, C8H), 6.93–6.96 (2 H, m, C6H), 7.91–7.94 (2 H, m, C5H); ¹³C NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.0 (C2), 55.7 (C10), 61.6 (C8), 114.1 (C6), 129.3 (C4), 131.1 (C5), 164.1 (C7), 167.9 (C1), 191.1. (C3); enol product (17%) ¹H NMR (700 MHz, CDCl₃) δ 5.58 (1 H, s, C2H), 3.85 (3H, s, C10H); enol product (8%) ¹H NMR (700 MHz, CDCl₃) δ 6.06 (1 H, s, C2H), 3.86 (3H, s, C10H); m/z(EI⁺) 222.1 ([M]⁺, 7%), 150.1 ([C₉H₁₀O₂]⁺, 14%), 135.1 ([C₈H₇O₂]⁺, 100%), 107.1 ([C₇H₇O]⁺, 15%), 77.1 (([C₆H₅]⁺, 18%). HRMS (ASAP) m/z calculated for [M+H]⁺ = C₁₂H₁₅O₄ 223.0970, found 223.0968. IR (neat, cm⁻¹) 2982, 1675, 1599, 1511, 1422, 1257, 1170, 1024, 843, 566. Data consistent with that previously reported in the literature.¹⁴⁹

Ethyl (4-chloro)benzoylacetate (94b)

4-(Chloro)benzoyl chloride (1.282 mL, 2.00 mmol) gave *ethyl* (4-chloro)benzoylacetate (2.053 g, 91%) as a low-melting yellow solid. Ketone product (73%) ¹H NMR (700 MHz, CDCl₃) δ 1.25 (3 H, t, 3JHH 7.1, C9H), 3.95 (2 H, s, C2H), 4.20 (2 H, q, 3JHH 7.2, C8H), 7.43–7.46 (2 H, m, C6H), 7.87–7.90 (2 H, m, C5H); ¹³C NMR (176 MHz, CDCl₃) δ 14.19 (s, C9), 46.06 (s, C2), 61.74 (s, C8), 129.25 (s, C6), 130.06 (s, C5), 140.42 (s, C7), 167.32 (s, C1), 191.42 (s, C3); *enol product* (20%) ¹H NMR (700 MHz, CDCl₃) δ 5.63 (1 H, s, C2H), 12.57 (1H, s, C2OH); *enol product* (7%) ¹H NMR (700 MHz, CDCl₃) δ 6.04 (1 H, s, C2H), 13.48 (1H, s, C2OH); *m/z* (EI⁺) 226.0, ([M]m/z, 5%), 154.1 ([C₈H₇ClO]⁺]+, 9%), 139.1 ([C₇H₄ClO]⁺]⁺, 100%), 111.0 ([C₆H₄Cl]⁺]⁺, 29%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ = C₁₁H₁₂ClO₃ 227.0475, found 227.0471. IR (neat, cm⁻¹) 2980, 2160, 1722, 1624, 1426, 1258, 1177, 1073, 796. Data consistent with that previously reported in the literature.¹⁵⁰

Ethyl (4-trifluoromethyl)benzoylacetate (94c)

4-(Trifluoromethyl)benzoyl chloride (1.486 mL, 2.00 mmol) gave ethyl (4-trifluoro methyl)benzoylacetate (2.463 g, 95%) as a pale orange oil. Ketone product (60%) ¹H

NMR (700 MHz, CDCl₃) δ 1.26 (3 H, t, ${}^{3}J_{\rm HH}$ 7.1, C9H), 4.01 (2 H, s, C2H), 4.22 (2 H, q, ${}^{3}J_{\rm HH}$ 7.1, C8H), 7.76 (2 H, d, ${}^{3}J_{\rm HH}$ 8.2, C6H), 8.04–8.07 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, C10F₃), ¹³C NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.3 (C2), 61.9 (C8), 122.8 (q, ${}^{1}J_{\rm CF}$ 273.0, C10), 126.0 (q, ${}^{4}J_{\rm CF}$ 3.7, C6), 129.0 (C5), 135.1 (q, ${}^{2}J_{\rm CF}$ 32.8, C7), 138.8 (C4), 167.1 (C1), 191.7 (C3); enol product (40%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ${}^{3}J_{\rm HH}$ 7.1, C9H), 4.29 (2 H, q, ${}^{3}J_{\rm HH}$ 7.1, C8H), 5.71 (1 H, s, C2H), 7.68 (2 H, d, ${}^{3}J_{\rm HH}$ 8.3, C6H), 7.87–7.89 (2 H, m, C5H), 12.56 (1 H, s, C3OH); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, C10F₃); ¹³C NMR (176 MHz, CDCl₃) δ 14.4 (C9), 60.8 (C8), 89.2 (C2), 124.7 (q, ${}^{1}J_{\rm CF}$ 272.9, C10), 125.7 (q, ${}^{4}J_{\rm CF}$ 3.8, C6), 126.5 (C5), 132.9 (q, ${}^{2}J_{\rm CF}$ 32.6, C7), 137.0 (s, C4), 169.6 (C1), 173.0 (C3); m/z (EI⁺) 260.1, ([M]⁺, 6%), 173.1 ([C₈H₄F₃O]⁺, 100%), 145.1 ([C₇H₄F₃]⁺, 39%), 69.0 ([CF₃]⁺, 3%), 45.0 ([C₂H₅O]⁺, 3%). HRMS (ASAP) m/z calculated for [M+H]⁺ = C₁₂H₁₂F₃O 261.0739, found 261.0743. IR (neat, cm⁻¹) 2980, 2160, 1722, 1624, 1426, 1258, 1177, 1073, 796. Data consistent with that previously reported in the literature.¹⁹⁵

Ethyl (4-nitro)benzoylacetate (94d)

4-(Nitro)benzoyl chloride (1.856 g, 2.00 mmol) was dissolved in 5 mL EtOAc and gave *ethyl* (4-nitro)benzoylacetate (2.336 g, 99%) as a peach coloured solid; Mp 62–63 °C [lit. Mp. 63–67 °C¹⁵⁰]. *Enol product* (74%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.2, C9H), 4.30 (2 H, q, ³J_{HH} 7.1, C8H), 5.76 (1 H, s, C2H), 7.92–7.95 (2 H, m, C5H), 8.26–8.29 (2 H, m, C6H), 12.57 (1 H, s, C2OH); ¹³C NMR (176 MHz, CDCl₃) δ 14.4 (C9), 61.0 (C8), 90.4 (C2), 123.9 (C6), 127.1 (C5), 139.5 (C4), 149.4 (C7), 168.4 (C1), 172.8 (C3); *ketone product* (26%) ¹H NMR (700 MHz, CDCl₃) δ 1.26 (3 H, t, ³J_{HH} 7.1, C9H), 4.03 (2 H, s, C2H), 4.22 (2 H, q, ³J_{HH} 7.1, C9H), 8.10–8.13 (2 H, m, C5H), (8.32–8.35 (2 H, m, C6H), ¹³C NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.4 (C2), 62.0 (C8), 124.1 (C6), 129.7 (C5), 140.5 (C4), 150.8 (C7), 166.8 (C1), 191.2 (C3); *m/z* (EI⁺) 165.0 ([₈H₇NO₃]⁺, 20%), 150.1 ([₇H₄NO₃]⁺, 100%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ = C₁₁H₁₁NO₅ 238.0715, found

238.0715. IR (neat, cm^{-1}) 3114, 2910, 2160, 1619, 1519, 1428, 1339, 1215, 1032, 797. Data consistent with that previously reported in the literature.¹⁵⁰

Ethyl (4-cyano)benzoylacetate (94e)

4-(Cyano)benzovl chloride (1.656 g, 2.00 mmol) was dissolved in 5 mL of ETOAc and gave ethyl (4-cyano)benzoylacetate (2.060 g, 95%) as a white solid after recrystallisation from EtOH; Mp 60–62 °C [lit. Mp. 62–63 °C¹⁹⁶]. Enol product (88%) ¹H NMR (400 MHz, CDCl₃) δ 1.34 (3 H, t, ³J_{HH} 7.1, C9H), 4.30 (2 H, q, ³J_{HH} 7.1, C8H), 5.72 $(1 \text{ H}, \text{ s}, \text{C2H}), 7.71 (2 \text{ H}, \text{d}, {}^{3}J_{\text{HH}} 7.6, \text{C6H}), 7.86 (2 \text{ H}, \text{d}, {}^{3}J_{\text{HH}} 7.6, \text{C5H}), 12.57 (1 \text{ L})$ H, s, C2OH); ¹³C NMR (101 MHz, CDCl₃) δ 14.4 (C9), 60.9 (C8), 89.9 (C2), 123.9 (C6), 137.7 (C4), 118.4 (C10), 126.7 (C5), 132.5 (C6), 149.4 (C7), 168.7 (C1), 172.8 (C3); ketone product (12%) ¹H NMR (400 MHz, CDCl₃) δ 1.25 (3 H, t, ³J_{HH} 7.0, C9H), 4.00 (2 H, s, C2H), 4.22 (2 H, q, ${}^{3}J_{\text{HH}}$ 7.0, C8H), 7.79 (2 H, d, ${}^{3}J_{\text{HH}}$ 7.7, C6H), 8.04 (2 H, d, ${}^{3}J_{\text{HH}}$ 7.7, C5H); 13 C NMR (101 MHz, CDCl₃) δ 14.2 (C9), 46.2 (C2), 62.0 (C8), 117.1 (C7), 117.9 (C10), 129.1 (C5), 132.8 (C6), 139.0 (C4), 166.9 (C1), 191.4 (C3); m/z (EI⁺) 145.1 ([C₉H₇NO]⁺, 34%), 130.1 ([C₈H₄NO]⁺, 100%), 102.1 ($[C_7H_4N]^+$, 70%), 75.1 ($[C_3H_7O_2]^+$, 16%), 63.1 ($[C_2H_5O_2]^+$, 2%), 51.1 $([C_4H_3]^+, 9\%), 43.1 ([C_2H_3O]^+, 19\%)$. HRMS (ASAP) m/z calculated for $[M+H]^+$ $= C_{12}H_{12}NO_3$ 218.0817, found 218.0836. IR (neat, cm⁻¹) 2999, 2233, 2159, 1977, 1739, 1621, 1422, 1356, 1253, 1192, 1029, 800, 715, 543, 433. Data consistent with that previously reported in the literature.¹⁹⁷

Ethyl (3-nitro)benzoylacetate (94f)

3-(Nitro)benzoyl chloride (1.856 g, 2.00 mmol) was dissolved in 5 mL EtOAc and reacted according to the general procedure to yield *ethyl (3-nitro)benzoylacetate* (1.777 g, 75%) as a peach coloured solid; Mp 70–71 °C [lit. Mp. 66–67 °C¹⁹⁸]. *Ketone product* (58%) ¹H NMR (700 MHz, CDCl₃) δ 1.27 (3 H, t, ³J_{HH} 7.1, C11H), 4.05 (2 H, s, C2H), 4.23 (2 H, q, ³J_{HH} 7.1, C10H), 7.71 (1 H, t, ³J_{HH} 7.9, C8H), 8.29 (1 H, dt, ³J_{HH} 7.9, ⁴J_{HH} 1.2, C9H), 8.46 (1 H, ddd, ³J_{HH} 8.2, ⁴J_{HH} 2.1, ⁴J_{HH} 1.2, C7H), 8.77 (1 H, t, ⁴J_{HH} 2.1, C5H); ¹³C NMR (176 MHz, CDCl₃) δ 14.2 (C11), 46.1

(C2), 62.0 (C10), 123.6 (C5), 128.1 (C7), 130.3 (C8), 134.1 (C9), 137.4 (C4), 148.7 (C6), 166.8 (C1), 190.6 (C3); enol product (42%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.1, C11H), 4.30 (1 H, q, ³J_{HH} 7.1, C10H), 5.77 (1 H, s, C2H), 7.62 (1 H, t, ³J_{HH} 7.9, C8H), 8.10 (1 H, ddd, ³J_{HH} 7.9, ⁴J_{HH} 1.7, ⁴J_{HH} 1.0, C9H), 8.31 (1 H, ddd, ³J_{HH} 8.2, ⁴J_{HH} 2.2, ⁴J_{HH} 1.0, C7H), 8.62 (1 H, t, ⁴J_{HH} 2.2, C5H), 12.62 (1 H, s, C3OH); ¹³C NMR (176 MHz, CDCl₃) δ 14.4 (C11), 61.0 (C10), 89.4 (C2), 121.2 (C5), 125.7 (C7), 129.8 (C8), 131.8 (C9), 135.4 (C4), 128.1 (C9), 148.6 (C6), 168.4 (C1), 172.9 (C3); m/z (ESI⁺) 238.3 ([C₁₁H₁₁NO₅]⁺, 100%), 115.1 ([C₇H₅NO₃]⁺, 29%), m/z (EI⁺) 165.0 ([C₈H₇NO₃]⁺, 17%), 150.1 ([C₇H₄NO₃]⁺, 100%). HRMS (ASAP) m/z calculated for [M+H]⁺ = C₁₁H₁₁NO₅ 238.0715, found 238.0722. Data consistent with that previously reported in the literature.¹⁹⁹

Ethyl 3-oxo-3-(pyridin-4-yl)propanoate (94g)

Based on a literature procedure,¹⁵⁴ ethyl isonicotinate (1.498 mL, 10 mmol) was dissolved in ethyl acetate (30 mL) and cooled to -50 °C before LiN(SiMe₃)₂ (1 M in THF, 30 mL, 30 mmol) was added and the mixture was stirred for 20 min. The reaction was quenched with acetic acid (50 mmol), basified with saturated sodium bicarbonate solution and extracted with ethyl acetate $(2 \times 100 \text{ mL})$. The organic phases were combined, washed with water (20 mL), saturated sodium chloride solution (20 mL) before drying over magnesium sulfate and the solvents removed under reduced pressure. Recrystallisation from ethanol gave the desired *ethyl* 3oxo-(pyridin-4-yl)propanoate (1.377 g, 71%) as a white solid; Mp 52–54 °C [lit. Mp. 55–57 °C²⁰⁰]. Ketone product (42%) ¹H NMR (600 MHz, CDCl₃) δ 1.25 (3 H, t, $^{3}J_{\rm HH}$ 7.1, C8H), 3.98 (2 H, s, C2H), 4.21 (2 H, q, $^{3}J_{\rm HH}$ 7.1, C7H), 7.71 (2 H, dt, $^{3}J_{\rm HH}$ 4.3, $^{4}J_{\rm HH}$ 1.3 C5H), 8.83 (2 H, dt, $^{3}J_{\rm HH}$ 4.4, $^{4}J_{\rm HH}$ 1.3, C6H); $^{13}{\rm C}$ NMR (151 MHz, $CDCl_3$) δ 14.2 (C8), 46.1 (C2), 62.0 (C7), 121.4 (C5), 141.9 (C4), 151.3 (C6), 166.8 (C1), 192.2 (C3); enol product (58%) ¹H NMR (600 MHz, CDCl₃) δ 1.34 (3 H, t, ${}^{3}J_{\text{HH}}$ 7.1, C8H), 4.28 (2 H, q, ${}^{3}J_{\text{HH}}$ 7.2, C7H), 5.76 (1 H, s, C2H), 7.60 (2 H, dt, ${}^{3}J_{\rm HH}$ 4.5, ${}^{4}J_{\rm HH}$ 1.3, C5H), 8.70 (2 H, dt, ${}^{3}J_{\rm HH}$ 4.4, ${}^{4}J_{\rm HH}$ 1.3, C6H), 12.43 (1 H, s,); ¹³C NMR (151 MHz, CDCl₃) δ 14.4 (C8), 61.0 (C7), 90.1 (C2), 119.8 (C5), 140.9 (C4), 150.6 (C6), 168.4 (C3), 172.8 (C1); m/z (ESI⁺) 194.1 ([C₁₀H₁₁NO₃]⁺, 100%), 148.1 ([C₈H₆NO₂]⁺, 69%), 120.1 (([C₇H₆NO]⁺, 3%), 106.0 ([C₆H₄NO]⁺, 1%). HRMS (ASAP) (m/z) calculated for $[M+H]^+ C_{10}H_{12}NO_3$ 194.0817; found 194.0810. Data consistent with that previously reported in the literature.¹⁵⁴

10.2 General Procedure 4 (GP4)—Synthesis of compounds 96–96g

Quinuclidine (0.334 g, 3.00 mmol, 1.5 equiv.) and the relevant ethyl benzoylacetate (2.00 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (6.00 mmol, 3.0 equiv., 30 mL min⁻¹) that was controlled by a mass flow controller for 49 min. After purging with nitrogen for 10 min., the reaction vessel was disconnected and the solvent removed *in vacuo*. The crude residue was filtered through a silica plug with chloroform as the eluent to give the desired product.

Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (96)

Following **GP4**, ethyl benzoylacetate (0.35 mL, 2.02 mmol, 1.0 equiv.) afforded ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (0.393 g, 85%) as a pale yellow oil; ¹H NMR (700 MHz, CDCl₃) δ 1.32 (3 H, t, ³J_{HH} 7.1, C9H), 4.39 (2 H, q, ³J_{HH} 7.1, C8H), 7.51–7.54 (2 H, m, C6H), 7.66–7.69 (1 H, m, C7H), 8.08 (2 H, ddt, ³J_{HH} 7.8, ⁴J_{HH} 2.2, ⁵J_{HH} 1.1, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.6 (s); ¹³C NMR (176 MHz, CDCl₃) δ 14.0 (C9), 63.9 (C8), 109.9 (t, ¹J_{CF} 264.6, C2), 129.1 (C4), 130.1 (t, ⁴J_{CF} 2.7, C5), 131.2 (t, ⁵J_{CF} 2.0, C6), 135.2 (C7), 161.9 (t, ²J_{CF} 30.5, C1), 185.6 (t, ²J_{CF} 27.6, C3); m/z (EI)⁺ 183.0 ([C₉H₅F₂O₂]⁺, 2%), 155.1 ([C₈H₅F₂O]⁺, 3%), 105.1 ([C₇H₅O]⁺, 100%), 77.1 ([C₆H₅]⁺, 76%), 51.0 ([C₄H₃]⁺, 17%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₁H₁₁F₂O₃ 229.0676; found 229.0682. IR (neat, cm⁻¹) 2988, 1772, 1599, 1451, 1311, 1098, 922, 832, 685, 584. Data consistent with that previously reported in the literature.¹⁵⁵

Ethyl 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate (96a)

Following **GP4**, ethyl (4-methoxy)benzoylacetate (0.444 g, 2.00 mmol, 1.0 equiv.) after washing through a silica plug with CHCl₃ as the eluent gave 0.424 g of a yellow oil that contained a mixture of products; ¹⁹F NMR (376 MHz, CDCl₃) δ -132.9 (ddd, J 11.7, J 8.1, J 1.2), -126.7--126.1 (m), -107.3 (s), -107.3 (s, diffuoro product), -107.3 (s).

Ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxopropanoate (96b)

Following **GP4**, ethyl (4-chloro)benzoylacetate (0.453 g, 2.00 mmol, 1.0 equiv.) afforded ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxopropanoate (0.466 g, 89%) as a pale yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 1.33 (3H, t, ³J_{HH} 7.1, C**9**H), 4.39 (2H, q, ³J_{HH} 7.1, C**8**H), 7.49–7.52 (2H, m, C**6**H), 8.03 (2H, d, ³J_{HH} 8.8, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.6 (s, C**2**F₂); ¹³C NMR (151 MHz, CDCl₃) δ 14.0 (s, C**9**), 64.0 (s, C**9**), 109.9 (t, ¹J_{CF} 264.8, C**2**), 129.5 (t, ³J_{CF} 2.1, C**4**), 129.6 (s, C**6**), 134.5 (t, ⁴J_{CF} 2.9, C**5**), 142.1 (s, C**7**), 161.7 (t, ²J_{CF} 30.4, C**1**), 184.6 (t, ²J_{CF} 28.0, C**3**); m/z (EI)⁺ 217.0 ([C₉H₄ClF₂O₂]⁺, 3%), 189.0 ([C₈H₄CLF₂O]⁺, 3%), 139.1 ([C₇H₄ClO]⁺, 100%), 111.0 ([C₆H₄Cl]⁺, 83%), 85.0 ([C₆H₁₃]⁺, 3%), 75.0 ([C₃H₇O₂]⁺, 35%), 50.0 ([C₄H₂]⁺, 9%). HRMS (ASAP) m/z calculated for [C₁₁H₁₀ClF₂O₃]⁺ 263.0287; found 263.0287. IR (neat, cm⁻¹) 2988, 1773, 1702, 1589, 1491, 1373, 1406, 1310, 1254, 1158, 1088, 1014, 922, 847, 759, 549.

Ethyl 2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-3-oxopropanoate (96c)

Following **GP4**, ethyl (4-trifluoromethyl)benzoylacetate (0.520 g, 2.00 mmol, 1.0 equiv.) afforded *ethyl* 2,2-*difluoro-3-(4-trifluoromethylphenyl)-3-oxopropanoate* (0.516 g, 87%) as a pale yellow oil; ¹H NMR (700 MHz, CDCl₃) δ 1.34 (3H, t, ³J_{HH} 7.1, C9H), 4.41 (2H, q, ³J_{HH} 7.1, C8H), 7.79–7.81 (2H, m, C6H), 8.19–8.21 (2H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.9 (2F, s, C2F₂), -63.5 (3F, s, C10F₃);

¹³C NMR (176 MHz, CDCl₃) δ 14.0 (s, C9), 64.2 (s, C9), 109.7 (t, ¹J_{CF} 264.9, C2), 123.4 (q, ¹J_{CF} 273.0, C10), 126.2 (q, ³J_{CF} 3.8, C6), 130.5 (t, ⁴J_{CF} 2.8, C5), 133.9 (s, C4), 136.3 (q, ²J_{CF} 33.1, C7), 161.5 (t, ²J_{CF} 30.3, C1), 185.1 (t, ²J_{CF} 28.4, C3); m/z(EI)⁺) 297.1 ([C₁₂H₁₀F₅O₃]⁺, 34%), 269.0 ([C₁₀H₆F₅O₃]⁺, 6%), 232.1 ([C₁₀H₄F₄O₂⁺, 3%), 173.0 ([C₈H₄F₃O]⁺, 16%), 145 ([C₇H₄F₃]⁺, 4%). HRMS (ASAP) m/z calculated for [C₁₂H₁₀F₅O₃]⁺ 297.0539; found 297.0538. IR (neat, cm⁻¹) 1775, 1713, 1514, 1414, 1375, 1327, 1315, 1254, 1128, 1117, 1064, 1017, 925, 857, 832, 708, 595. Data consistent with that previously reported in the literature.²⁰¹

Ethyl 2,2-difluoro-3-(4-nitrophenyl)-3-oxopropanoate (96d)

Following **GP4**, ethyl (4-nitro)benzoylacetate (0.474 g, 2.00 mmol, 1 equiv.) afforded ethyl 2,2-diffuoro-3-(4-nitrophenyl)-oxo-3-phenylpropanoate (0.455 g, 77%) as a white solid; Mp 66–68 °C. ¹H NMR (700 MHz, CDCl₃) δ 1.34 (3 H, t, ³J_{HH} 7.1, C9H), 4.41 (2 H, q, ³J_{HH} 7.1, C9H), 8.24–8.27 (2 H, m, C6H), 8.35–8.38 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.8 (s); ¹³C NMR (176 MHz, CDCl₃) δ 14.0 (C9), 64.4 (C8), 109.6 (t, ¹J_{CF} 265.1, C2), 124.2 (s, C6), 131.3 (t, ⁴J_{CF} 2.9, C5), 135.6 (s, ³J_{CF} 2.0, C4), 151.4 (s, C7), 161.2 (t, ²J_{CF} 30.2, C1), 184.7 (t, ²J_{CF} 28.8, C3) ;m/z (EI)⁺ 228.0 ([C₁₁H₁₀F₂O₃]⁺, 2%), 200.0 ([C₈H₄F₂NO₃]⁺, 4%), 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 55%), 50.0 ([C₄H₂]⁺, 13%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₁H₁₀F₂NO₅ 274.0527; found 274.0526. IR (neat, cm⁻¹) 3539, 3411, 2991, 1773, 1748, 1724, 1606, 1527, 1349, 1312, 1165, 1137, 1100, 1082, 1043, 1012, 1001, 926, 854, 827, 782, 733, 710, 671, 567. Data consistent with that previously reported in the literature.¹²⁹

Ethyl 2,2-difluoro-3-(4-cyano)-3-oxopropanoate (96e)

Following **GP4**, ethyl (4-cyano)benzoylacetate (0.4346 g, 2.00 mmol, 1.0 equiv.) afforded *ethyl 2,2-difluoro-3-(4-cyanophenyl)-3-oxopropanoate* (0.339 g, 67%) as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (3H, t, ³J_{HH} 7.1, C**9**H), 4.40 (2H, q, ³J_{HH} 7.1, C**8**H), 7.80–7.86 (2H, m, C**6**H), 8.18 (2H, d, ³J_{HH} 8.1, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.8 (s); ¹³C NMR (101 MHz, CDCl₃) δ 14.0 (s, C**9**),

64.3 (s, C9), 109.6 (t, ${}^{1}J_{CF}$ 265.0, C2), 117.5 (s, C10), 118.4 (s, C7), 130.4 (t, ${}^{5}J_{CF}$ 2.9, C5), 132.8 (s, C6), 134.1 (t, ${}^{3}J_{CF}$ 2.1, C4), 161.3 (t, ${}^{2}J_{CF}$ 30.2, C1), 184.8 (t, ${}^{2}J_{CF}$ 28.7, C3); m/z (ESI⁺) 208.0 ([C₁₀H₄F₂N₀₂]⁺, 2%), 180.0 ([C₉H₄F₂NO]⁺, 4%), 130.2 ([[C₈H₄NO]⁺, 100%), 102.1 ([C₇H₄N]⁺, 76%), 75.1 ([C₃H₇O₂]⁺, 17%), 51.0 ([C₄H₃]⁺, 9%). HRMS (ASAP) m/z calculated for [C₁₂H₁₀F₂NO₃]⁺ 254.0629; found 254.0635. IR (neat, cm⁻¹) 2986, 2235, 1772, 1718, 1608, 1471, 1448, 1410, 1374, 1312, 1294, 1253, 1156, 1128, 1098, 1077, 1007, 924, 855, 765, 544. Data consistent with that previously reported in the literature.²⁰¹

Ethyl 2,2-difluoro-3-(3-nitrophenyl)-oxo-3-phenylpropanoate (96f)

Following **GP4**, ethyl (3-nitro)benzoylacetate (0.474 g, 2.00 mmol, 1 equiv.) afforded ethyl 2,2-difluoro-3-(3-nitrophenyl)-oxo-3-phenylpropanoate (0.460 g, 78%) as a pale yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.2, C**11**H), 4.42 (2 H, q, ³J_{HH} 7.1, C**10**H), 7.77–7.79 (1 H, m, C**9**H), 8.40 (1 H, ddq, ³J_{HH} 8.1, ⁴J_{HH} 1.9, ⁵J_{HH} 0.8, C**8**H), 8.53 (1 H, ddd, ³J_{HH} 8.1, ⁴J_{HH} 2.3, ⁴J_{HH} 1.1, C**7**H), 8.91 (1 H, ddd, ⁴J_{HH} 2.3, ⁴J_{HH} 1.6, ⁵J_{HH} 0.8, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.7 (s); ¹³C NMR (176 MHz, CDCl₃) δ 14.0 (C**11**), 64.4 (C**10**), 109.6 (t, ¹J_{CF} 265.2, C**2**), 125.0 (t, ⁴J_{CF} 2.9, C**5**), 129.3 (C**7**), 130.5 (C**9**), 132.4 (t, ³J_{CF} 2.2, C**4**), 135.4 (t, ⁵J_{CF} 2.9, C**8**), 148.7 (C**6**), 161.2 (t, ²J_{CF} 30.1, C**1**), 184.2 (t, ²J_{CF} 28.8, C**3**); m/z (EI)⁺ 228.0 ([C₁₁H₁₀F₂O₃]⁺, 1%), 200.0 ([C₈H₄F₂NO₃]⁺, 4%), 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 55%). HRMS (ASAP) m/z calculated for [M+H]⁺ C₁₁H₁₀F₂NO₅ 274.0527; found 274.0525. IR (neat, cm⁻¹) 2990, 1773, 1714, 1615, 1534, 1350, 1316, 1250, 1163, 1126, 1078, 1003, 968, 949, 929, 857, 829, 719, 691, 585.

Ethyl 2,2-difluoro-3-(pyridin-4-yl)-3-oxopropanoate (96g)

Following **GP4**, ethyl 3-oxo-3-(pyridin-4-yl)propanoate (0.193 g, 1.00 mmol, 1.0 equiv.) and quinuclidine (0.167 g, 1.5 mmol, 1.5 equiv.) were reacted with F_2 (3.0 mmol, 3.0 equiv., 24 min). Washing the product mixture through a silica plug with CHCl₃ as the eluent gave 0.023 g of a yellow oil that contained several products by

NMR spectroscopy; ¹⁹F NMR (376 MHz, CDCl₃) δ -229.1, -225.0--222.0 (m), -208.3--207.6 (m), -191.3 (dt, J 48.8, 1.1) (s), -150.0 (s), -144.9 (s), -127.3 (d, J 53.4), -126.7--125.2 (m), -118.5 (s), -117.7 (s), -117.3 (s), -112.6 (s), -112.2 (s), -110.9 (d, J 48.2) (s), -108.5 (s), -106.5 (s), -105.5 (s), -86.2--85.2 (m), -76.0 (s), -67.8 (s), -66.8 (s), -65.9 (s), -65.2 (s), -64.6 (s).

10.3 General Procedure 5 (GP5)—Synthesis of compounds 210b–210e

Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (0.114 g, 0.5 mmol, 1 equiv.) and the corresponding amine (5 mmol, 10 equiv.) were dissolved in THF (5 mL) and stirred at r.t. for 3 d. The reaction mixture was partitioned between DCM (20 mL) and 13% HCl (25 mL), and the aqueous phase washed with DCM (2×10 mL). The organic phases were combined, dried over magnesium sulfate before removal of the solvent under reduced pressure. The crude product was filtered through a silica plug with ethyl acetate 15% v/v in hexane solvent mixture as the eluent to give the desired product.

2,2-Difluoro-3-oxo-3-phenylpropanamide (210b)

Following **GP5**, ammonia (1.25 mL of 4M NH₃ in MeOH, 5 mol, 10 equiv.) afforded 2,2-difluoro-3-oxo-3-phenylpropanamide (0.058g, 58%) as a white solid; Mp 92–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.56 (2 H, s, NH₂), 7.48–7.54 (2 H, C5H), 7.67, (1 H, t, ³J_{HH} 7.4, C7H), 8.13 (2 H, d, ³J_{HH} 7.8, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.1 (q, ⁵J_{CF} 1.2); ¹³C NMR (101 MHz, CDCl₃) δ 110.8 (t, ¹J_{CF} 266, C2), 129.0 (s, C6), 130.5 (t, ⁴J_{CF} 2.9, C5), 131.5 (t, ³J_{CF} 1.4, C4), 135.2 (s, C7), 163.8 (t, ²J_{CF} 28.1, C1), 187.1 (t, ²J_{CF} 27.1, C3); m/z (EI)⁺ 199.3 ([C₉H₇F₂NO₂]⁺, 1%), 156.0 ([C₈H₆F₂O]⁺, 1%), 105.1 ([C₇H₅O]⁺, 100%), 77.1 ([C₆H₅]⁺, 83%), 51.0 ([C₄H₃]⁺, 25%). HRMS (ASAP) calculated for [M+H]⁺ C₉H₈F₂NO₂ 200.0523; found 200.0524.

IR (neat, cm⁻¹) 3383, 3184, 2922, 2537, 2159, 2027, 1977, 1721, 1689, 1622, 1597, 1451, 1402, 1312, 1271, 1145, 1061, 911, 891, 818, 788, 744, 681, 619, 602, 569, 552. Data consistent with that previously reported in the literature.²⁰²

N-Benzyl-2,2-difluoro-3-oxo-3-phenylpropanamide (210c)

Following **GP5**, benzylamine (0.109g mL, 1 mmol, 2 equiv.) afforded *N*-benzyl-2,2diffuoro-3-oxo-3-phenylpropanamide (0.109 g, 75%) as a yellow solid; Mp 91–93 °C. ¹H NMR (600 MHz, CDCl₃) δ 4.54 (2H, d, ³J_{HH} 5.9, C8H), 6.76, (1H, s, NH), 7.27–7.30 (2H, m, C10H), 7.30–7.33 (1H, m, C12H), 7.34–7.37 (2H, m, CH), 7.49– 7.53 (2H, m, C6H), 7.64–7.68 (2H, m, C7H), 8.13–8.16 (2H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –108.1 (s); ¹³C NMR (151 MHz, CDCl₃) δ 44.0 (s, C8), 111.1 (t, ¹J_{CF} 265.7, C2), 128.0 (s, C10), 128.3 (s, C12), 128.9 (s, C6), 129.1 (s, C11), 130.5 (t, ⁴J_{CF} 2.9, C5), 131.8 (s, C4), 135.1 (s, C7), 136.4 (s, C9); *m/z* (EI)⁺ 289.1 ([C₁₆H₁₃F₂NO₂]⁺, 14%), 164.1 (10%), 105.1 ([C₇H₅O]⁺, 100%), 91.1 ([C₇H₇]⁺, 36%), 77.1 ([C₆H₅]⁺, 43%), 65.0 (7%), 51.1 ([C₄H₃]⁺, 8%). HRMS (ASAP) calculated for [M+H]⁺ C₁₆H₁₄F₂NO₂ 290.0993; found 290.0982. IR (neat, cm⁻¹) 3313, 2547, 2159, 2030, 1977, 1708, 1681, 1596, 1544, 1495, 1450, 1324, 1274, 1239, 1154, 1134, 1102, 1011, 922, 903, 806, 754, 706, 684, 667, 607, 581, 526. Data consistent with that previously reported in the literature.²⁰³

2,2-Difluoro-3-oxo-3-phenyl-N-(prop-2-en-1-yl)propanamide (210d)

Following **GP5**, allylamine (0.375 mL, 5.00 mol, 10 equiv.) afforded 2,2-difluoro-3oxo-3-phenyl-N-(prop-2-en-1-yl)propanamide (0.084 g, 70%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃) δ 3.99 (2 H, t, ³J_{HH} 5.9, C8H), 5.18– 5.30 (2 H, m, C10H), 5.77–5.90 (1 H, m, C9H), 6.59 (1 H, s, NH), 7.51 (2 H, t, ³J_{HH} 7.7, C6H), 7.6 (1 H, t, ³J_{HH} 7.4, C7H), 8.15 (2 H, d, ³J_{HH} 7.9, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.2 (s); ¹³C NMR (101 MHz, CDCl₃) δ 42.2 (s, C8), 111.1 (t, ¹J_{CF} 265.5, C2), 118.0 (s, C10), 128.9 (s, C6), 130.6 (t, ⁴J_{CF} 2.9, C5), 131.7 (t, ³J_{CF} 1.6, C4), 132.3 (s, C9), 135.1 (s, C7), 161.5 (t, ²J_{CF} 27.4, C1), 187.6 (t, ²J_{CF} 27.2, C3); m/z (EI)⁺ 239.1 ([C₁₂H₁₁F₂NO₂]⁺, 4%), 156.1 ([C₈H₆F₂O]⁺, 12%), 105.1 ([C₇H₅O]⁺, 100%), 77.1 ($[C_6H_5]^+$, 80%), 56.1 ($[C_3H_6N]^+$, 5%), 51.0 ($[C_4H_3]^+$, 18%). HRMS (ASAP) calculated for $[M+H]^+$ $C_{12}H_{12}F_2NO_2$ 240.0836; found 240.0840. IR (neat, cm⁻¹) 3313, 3075, 1686, 1647, 1598, 1581, 1450, 1432, 1267, 1160, 1100, 1028, 992, 915, 805, 746, 710, 684, 575.

2,2-Difluoro-3-oxo-3-phenyl-N-(prop-2-yn-1-yl)propanamide (210e)

Following **GP5**, propargylamine (0.320 mL, 5 mmol, 10 equiv.) afforded 2,2difluoro-3-oxo-3-phenyl-N-(prop-2-yn-1-yl)propanamide (0.074g, 62%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃) δ 2.30 (1 H, t, ⁴J_{HH} 2.6, C10H), 4.15 (2 H, dd, ³J_{HH} 5.4, ⁴J_{HH} 2.6, C8H), 6.86 (1 H, s, NH), 7.50 (2 H, t, ³J_{HH} 7.9, C6H), 7.63– 7.67 (1 H, m, C7H), 8.12 (2 H, dd, ³J_{HH} 8.1, ⁴J_{HH} 1.7, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.2 (s); ¹³C NMR (151 MHz, CDCl₃) δ 29.8 (s, C8), 73.1 (s, C10), 77.6 (s, C9), 110.8 (t, ¹J_{CF} 265.8, C2), 128.9 (s, C6), 130.5 (t, ⁴J_{CF} 2.9, C5), 131.6 (s, C4), 135.1 (s, C7), 161.3 (t, ²J_{CF} 27.9, C1), 187.1 (t, ²J_{CF} 27.1, C3); m/z (EI)⁺ 237.0 ([C₁₂H₉F₂NO₂]⁺, 1%), 156.1 ([C₈H₆F₂O]⁺, 4%), 106.1 ([C₇H₆O]⁺, 41%), 105.1 ([C₇HO]⁺, 100%), 77.1 ([C₆H₅]⁺, 82%), 51.0 ([C₄H₃]⁺, 20%), 39.1 ([C₃H₃]⁺, 13%). HRMS (ASAP) calculated for [M+H]⁺ C₁₂H₁₀F₂NO₂ 238.0680; found 238.0692.

10.4 Screening Conditions for the Base Mediated Direct Fluorination of Ethyl Benzoylacetate

Ethyl benzoylacetate (0.346 mL, 2.0 mmol) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 min. before fluorine gas, (4.6 mmol, 2.3 equiv.) as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller for 75 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were washed through a silica plug with CHCl₃ (100 mL) and

Entry	Base	Equiv of	Equiv of	NMR yield/ $\%$	
		Base	F_2	95	96
1	None	-	2.3	8	2
2	DABCO	1.1	2.3	16	10
3	$DABCO^{a}$	1.1	2.3	1	1
4	$\rm DABCO^{b}$	1.1	2.3	0	0
5	DABCO	1.5	2.3	0	3
6	DABCO	1.5	4.0	0	1
7	DBU	0.5	2.3	12	6
8	DBU	1.5	2.3	18	3
9	$\mathrm{Et}_{3}\mathrm{N}$	1.1	2.3	11	1
10	3-	1.1	2.3	0	1
	Quinuclidinol ^a				
11	Quinuclidine	1.1	2.3	0	42
12	Quinuclidine	1.1	3.5	6	41
13	Quinuclidine	1.1	$3.0^{\rm c}$	6	51
14	Quinuclidine	1.5	$3.0^{\rm c}$	0	73
15	Quinuclidine	1.5	$3.0^{\rm c}$	0	$85^{\rm d}$

concentrated under reduced pressure to give the crude product which was analysed by NMR spectroscopy.

 $^{\rm a}\,40~{\rm mL}$ MeCN used

 $^{\rm b}$ 40 mL MeCN, 4.0 mmol ${\bf 94},$ 2.3 equiv. ${\rm F}_2$ and 1.1 equiv. DABCO used

 $^{\rm c}$ 30 mL min $^{-1}$ flow rate of 10% v/v ${\rm F}_2$ in ${\rm N}_2$ used

 $^{\rm d}$ Isolated yield after 20 mL column

Chapter 11

Experimental to Chapter 4

11.1 Screening Conditions for the Base Mediated Direct Fluorination of Ethyl 2-(4-nitrophenyl)acetate

Ethyl 2-(4-nitrophenyl)acetate (0.418 g, 2.0 mmol) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, (4.6 mmol, 2.3 equiv.) as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were washed through a silica plug with chloroform (100 mL) and concentrated under reduced pressure to give the crude product which was analysed by NMR spectroscopy.

Entry	Base	Equiv. of	Proportion of signals in the $^{19}{\rm F}$ NMR spectrum/%		
		base	233a	234a	
1	None	-	14	0	
2	KF	2.0	8	0	
3	KF	2.0	C	1	
	18-crown-6	2.0	0	1	
4	${ m KF}$	2.0	Q	0	
	18-crown-6	0.1	8	0	
5	Urea	1.0	0	0	
6	Tetramethylurea	1.0	0	0	
7	DABCO	2.0	27	2	
8	$\mathrm{Et}_{3}\mathrm{N}$	2.0	0	0	
9	Quinuclidine	1.1	7	85	
10	DBU	0.1	9	0	
11	DBU	2.0	22	5	
12	Tri- <i>n</i> -butylamine	1.0	0	0	
13	Pyridine	1.0	0	0	
14	N-methyl pyrrolidone	0.5	4	0	

11.2 General Procedure 6 (GP6)—Direct fluorination of Ethyl Phenylacetates

Quinuclidine and the relevant ethyl benzoylacetate (2.00 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (10 mL equiv.). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 min. before fluorine gas, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 min., the reaction vessel was disconnected and the solvent removed *in vacuo*.

2,2-Difluoro-2-(4-nitrophenyl)acetate (234a)

Ethyl 2-(4-nitrophenyl)acetate (1.675 g, 8.0 mmol) and quinuclidine (0.865 g, 7.8 mmol, 1.0 equiv.) in acetonitrile (80 mL) were directly fluorinated with fluorine gas (5.6 mmol, 2.3 equiv.) for 5 h. The reaction mixture was partitioned between water (30 mL) and dichloromethane (120 mL), and the aqueous phase washed with dichloromethane $(3 \times 30 \text{ mL})$. The combined organic phases were dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel with ethyl acetate 15% v/v in hexane solvent mixture as the eluent to yield 2,2-difluoro-2-(4-nitrophenyl)acetate (0.637 g, 32%) as a while solid. ¹H NMR (599 MHz, CDCl₃) δ 1.32 (3 H, t, ³J_{HH}, 7.1, C8H), 4.32 (2 H, q, ${}^{3}J_{\rm HH}$ 7.1, C7H), 7.80–7.83 (2 H, m, C4H), 8.31–8.34 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (s, C2F₂); ¹³C NMR (151 MHz, $CDCl_3$) δ 14.0 (C8), 63.9 (C7), 112.5 (t, ¹J_{CF} 253.8, C2), 124.0 (C5), 127.2 (t, ³J_{CF}) 6.0, C4), 139.0 (t, ${}^{1}J_{\rm CF}$ 25.9, C3), 149.7 (C6), 163.3 (t, ${}^{2}J_{\rm CF}$ 34.4, C1); m/z (EI)⁺ $245.1 \ ([CH_9F_2NO_4]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 1\%), \ 172.1 \ ([C_7H_4F_2NO_2]^+, \ 100\%), \ 156.1 \ ([C_6H_4NO_2Na]^+, \ 100\%),$ 20%), 142.1 (29%), 126.1 (57%), 114.1 (35%), 107.1 (9%), 95.1 (6%), 75.1 (11%), 57.1 (3%). HRMS (ASAP) calculated for $[M+H]^+ C_{10}H_{10}F_2NO_4$ 246.0578, found 246.0569. Crystals suitable for x-ray diffraction were grown by slow evaporation from hexane. Data consistent with reported literature.¹⁶⁴

The reaction was repeated on a 2 mmol and 20 mmol scale to give the desired 2,2-difluoro-2-(4-nitrophenyl)acetate in yields of 60% and 69% respectively. Spectroscopic data consistent with that reported above.

Ethyl 2,2-difluoro-2-(4-fluorophenyl)acetate (234b)

Ethyl 2-(4-fluorophenyl)acetate (0.364 g, 2.0 mmol) and quinuclidine (0.334 g, 3 mmol, 1.5 equiv.) in acetonitrile (20 mL) were directly fluorinated with fluorine gas (8.0 mmol, 4.0 equiv.) for 98 min. Removal of the reaction solvent under reduced pressure gave a tarry mixture which consisted of many products by NMR; ¹⁹F NMR (376 MHz, CDCl₃) δ -167.4 (d, J 217.0), -115.9 (ddd, J 14.0, J 8.9, J 5.4), 57.6 (s), 58.6 (s).

Ethyl 2,2-difluoro-2-(4-(trifluoromethyl)phenyl)acetate (234c)

Ethyl 2-(4-(trifluoromethyl)phenyl)acetate (0.464 g, 2.0 mmol) and quinuclidine (0.334 g, 3 mmol, 1.5 equiv.) in acetonitrile (20 mL) were directly fluorinated with fluorine gas (12.0 mmol, 6.0 equiv.) for 3 h and 13 min. After removal of the reaction solvent under reduced pressure the organic products were partitioned between water (30 mL) and ethyl acetate (30 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were washed with saturated so-dium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to give 0.583 g of a yellow oil. Purification of this crude product was attempted by column chromatography on silica gel with ethyl acetate 5% v/v in hexane solvent mixture as the eluent, but the desired product could not be isolated; ¹⁹F NMR (376 MHz, CDCl₃) δ –184.4 (d, ²J_{HF} 49.1, monofluoro product), –115.7–114.0 (m), –66.5 (s), –66.3 (s), –63.2 (s), –63.0–62.8 (m), –62.7 (d, J 5.3), –62.3 (s), –61.8 (d, J 12.8), –61.7 (d, J 13.1), –61.4 (d, J 13.9), –61.2 (d, J 11.2).

Ethyl 2,2-difluoro-2-(4-cyanophenyl)acetate (234d)

Ethyl 2-(4-cyanophenyl)acetate (0.378 g, 2.0 mmol) and quinuclidine (0.334 g, 3 mmol, 1.5 equiv.) in acetonitrile (20 mL) were directly fluorinated with fluorine gas (12.0 mmol, 6.0 equiv.) for 3 h and 13 min. After removal of the reaction solvent under reduced pressure the organic products were partitioned between water (30 mL) and ethyl acetate (30 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to give 0.536 g of a brown oil. Purification of this crude product was attempted by column chromatography on silica gel with ethyl acetate 5% v/v in hexane solvent mixture as the eluent, but the desired product was not isolated; ¹⁹F NMR (376 MHz, CDCl₃) δ -186.0 (d, J 46.6, monofluoro product), -119.4 (dddt, J 16.8, J 8.4, J 5.7, J 1.5), J113.6 (dd, J 9.2, J 6.9), -111.7 (ddd, J 16.6, J 8.6, J 5.1), -104.9 (s, diffuoro product).

Ethyl 2,2-difluoro-2-(2-nitrophenyl)acetate (234e)

Ethyl 2-(2-nitrophenyl)acetate (0.418 g, 2.0 mmol) and quinuclidine (0.334 g, 3.0 mmol, 1.5 equiv.) in acetonitrile (20 mL) were directly fluorinated with fluorine gas (9.0 mmol, 4.5 equiv.) for, 2 h and 15 min. After removal of the reaction solvent under reduced pressure the organic products were partitioned between water (15 mL) and ethyl acetate (15 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (10 mL), dried over magneisum sulfate and concentrated under reduced pressure give 0.498 g of an orange oil containing many fluorinated products by NMR spectroscopy. Purification of this crude product was attempted by column chromatography on silica gel with ethyl acetate 5% v/v in hexane solvent mixture as the eluent, but the desired product was not isolated; ¹⁹F NMR (376 MHz, CDCl₃) δ -188.3–187.8 (m), -187.5 (d, J 46.6), -185.0 (d, J 45.2), -113.3–112.3 (m), -111.4–111.0 (m), -110.8 (t, J 7.0), -108.7–107.9 (m), -107.4 (d, J 7.9),

 $\begin{array}{l} -103.7--103.1 \ (\mathrm{m}), \ -100.0 \ (\mathrm{s}); \ ^{19}\mathrm{F} \ \mathrm{NMR} \ (376 \ \mathrm{MHz}, \ \mathrm{CDCl}_3) \ \delta \ -185.9 \ (\mathrm{d}, \ J \ 47.0), \\ -184.6 \ (\mathrm{d}, \ J \ 46.4), \ -184.4 \ (\mathrm{d}, \ J \ 47.2, \ \mathrm{monofluoro} \ \mathrm{product}), \ -184.0 \ (\mathrm{d}, \ J \ 46.1), \\ -129.2 \ (\mathrm{dt}, \ J \ 20.2, \ J \ 6.1), \ -126.5 \ (\mathrm{d}, \ J \ 16.9), \ -122.4 \ (\mathrm{t}, \ J \ 6.5), \ -122.0--121.7 \\ (\mathrm{m}), \ -120.0--119.8 \ (\mathrm{m}), \ -114.6--114.4 \ (\mathrm{m}), \ -109.0 \ (\mathrm{t}, \ J \ 8.4), \ -107.0 \ (\mathrm{t}, \ J \ 8.1), \\ -106.0 \ (\mathrm{ddd}, \ J \ 8.7, \ J \ 6.0, \ 4.4), \ -105.9--105.6 \ (\mathrm{m}), \ -103.9 \ (\mathrm{s}, \ \mathrm{difluoro} \ \mathrm{product}). \end{array}$

Ethyl 2,2-difluoro-2-(3-nitrophenyl)acetate (234f)

Ethyl 2-(3-nitrophenyl)acetate (0.418 g, 2.0 mmol) and quinuclidine (0.334 g, 3.0 mmol, 1.5 equiv.) in acetonitrile (20 mL) were directly fluorinated with fluorine gas (9.0 mmol, 4.5 equiv.) for 2 h and 15 min. After removal of the reaction solvent under reduced pressure the organic products were partitioned between water (15 mL) and ethyl acetate (15 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (10 mL), dried over magnesium sulfate and concentrated under reduced pressure give 0.524 g of an orange oil containing many fluorinated products by NMR spectroscopy. Purification of this crude product was attempted by column chromatography on silica gel with ethyl acetate 5% v/v in hexane solvent mixture as the eluent, but the desired product was not isolated.

2,2-Difluoro-2-(4-nitrophenyl)acetic acid (223a)

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.245 g, 1.00 mmol) was dissolved in methanol (3 mL) and stirred with 1 M potassium carbonate solution (3 mL) for 2 h at r.t. before being poured into 5% hydrochloric acid (20 mL) to quench the reaction. The mixture was extracted with ethyl acetate (3×30 mL), and the organic fractions combined, washed with saturated sodium bicarbonate solution (20 mL) then dried over magnesium sulfate. The solvent was removed under reduced pressure to yield without further purification 2,2-difluoro-2-(4-nitrophenyl)acetic acid (0.218 g, 100%) as an off white solid. ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.0 (2H, d, ³J_{HH} 8.9, C4H), 8.4 (2H, d, ³J_{HH} 8.6, C 5H); ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -104.9 (s); ¹³C NMR (126 MHz, (CD₃)₂CO) δ 113.7 (t, ¹J_{CF} 251.8, C**2**), 124.7 (C**5**), 127.8 (t, ${}^{3}J_{CF}$ 6.1, C4), 139.7 (t, ${}^{2}J_{CF}$ 25.7, C3), 150.5 (C6), 164.2 (t, ${}^{2}J_{CF}$ 33.8, C1); m/z (ESI)⁻ 433.2 ([2M]⁻, 100%), 216.1 ([M]⁻, 22%), 172.1 ([C₇H₄F₂NO₂]⁻, 79%). Data consistent with reported literature.¹⁶⁴

The reaction was repeated on a 10 mmol scale to give the desired 2,2-difluoro-2-(4-nitrophenyl)acetic acid in yield of 95%. Spectroscopic data consistent with that reported above.

1-(Diffuoromethyl)-4-nitrobenzene (238a)

2,2-Difluoro-2-(4-nitrophenyl)acetic acid (1.592 g, 7.33 mmol) was dissolved in dimethylformamide (64 mL) and stirred with potassium fluoride (2.3 g, 39.6 mmol, 5.4 equiv.) at 170 °C for 2 h under an atmosphere of nitrogen gas before being allowed to cool to r.t. The reaction mixture was partitioned between water (50 mL) and ethyl acetate (50 mL), and the aqueous phase extracted with ethyl acetate (2×30 mL). The organic phases were combined, washed with water (10×20 mL) then dried over magnesium sulfate. The solvent was removed under reduced pressure to yield without further purification 1-(difluoromethyl)-4-nitrobenzene (1.191 g, 94%) as a dark yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.74 (1 H, t, ²J_{HF} 55.6, C5H), 7.72 (2 H, d, ³J_{HH} 8.7, C2H), 8.33 (2 H, d, ³J_{HH} 8.7, C3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.0 (d, ²J_{HF} 55.6, C5F₂); ¹³C NMR (101 MHz, CDCl₃) δ 113.3 (t, ²J_{CF} 241.0, C5), 124.2 (C3), 127.0 (t, ³J_{CF} 6.1, C2), 140.3 (t, ²J_{CF} 22.9, C1), 149.5 (C4) m/z (EI)⁺ 173.1 ([M]⁺, 83%), 143.1 (14%), 127.1 ([C₇H₅F₂]⁺, 100%), 115.1 (22%), 107.1 (26%), 101.1 (36%), 95.1 (13%), 77.1 (35%), 63.0 (5%), 51.0 (12%). Data consistent with reported literature.¹⁶⁴

The reaction was repeated on a 2 mmol scale to give the desired 1-(difluoromethyl)-4-nitrobenzene in yield of 93%. Spectroscopic data consistent with that reported above.

11.3 Screening Conditions for the Quinuclidine Mediated Direct Fluorination of Ethyl 2-(4-nitrophenyl)-acetate

Ethyl 2-(4-nitrophenyl)acetate (0.418 g, 2.0 mmol) and quinuclidine were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, (4.6 mmol, 2.3 equiv.) as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller for 75 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were washed through a silica plug with chloroform (100 mL) and concentrated under reduced pressure to give the crude product which was analysed by NMR spectroscopy.

Entry	Equiv. of	Equiv. of	Ratio of products by NMR			
Lifting	quinuclidine	F_2	232a	233a	234a	
1	0.1	2.3^{a}	50	4	1	
2	1.0	2.3	3	1	5	
3	1.1	2.3	3	1	5	
4	1.5	2.3	2	1	7	
5	1.1	3.0	1	1	7	
6	1.5	2.5	3	1	10	
7	1.5	3.0	2	11	11	
8	1.5	3.5	1	Trace	7	
9	1.5	4.0	1	Trace	6	
10	1.5	4.5	1	Trace	11	
11^{b}	1.5	4.1	2	1	12	
$12^{\rm b}$	1.5	4.5	1	1	13	
$13^{\rm b}$	1.3	4.6	1	1	11	

 $^{\rm a}\,5$ mmol ${\bf 232a},\,5$ ml min $^{-1}$ flow rate of 10% v/v F_2 in N_2 and 50 mL acetonitrile used

^b 20 mmol of **232a** and 200 mL acetonitrile used

11.4 Hydrogenation Screening of Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.025 g, 0.1 mmol) and the desired solvent (ethyl acetate or methanol, 1.5 mL) were loaded into 3 mL glass vials in a HEL CAT24 reactor with 10% m/w of the catalyst to be screened (5% Pd/C, 10% Pd/C, 5% Pt/C or 5% Rh/C). After performing a leak test, the reactor was purged 3× with nitrogen gas then 3× with hydrogen gas and agitation started. The reactor was left under an atmosphere of hydrogen (5 bar) for 2 h before venting and purging 3× with nitrogen. The catalysts were filtered off and the reaction mixtures analysed by NMR spectroscopy as discussed in the text.

11.5 Hydrogenation Screening of 1-(Difluoromethyl)-4-nitrobenzene

Stock solutions were made by dissolving 1-(diffuoromethyl)-4-nitrobenzene (0.087 g, 0.5 mmol) in 7.5 mL of ethyl acetate and ethanol. Aliquots (1.5 mL) of each solution were loaded into 3 mL glass vials in a HEL CAT24 reactor with 10% w/w of the catalyst to be screened (5% Pd/C, 10% Pd/C, 5% Pt/C or 5% Rh/C). After performing a leak test, the reactor was purged $3\times$ with nitrogen gas then $3\times$ with hydrogen gas and agitation started. The reactor was left under an atmosphere of hydrogen (5 bar) for 2 h before venting and purging $3\times$ with nitrogen. The catalysts were filtered off and the reaction mixtures analysed by NMR spectroscopy as discussed in the text.

11.5.1 Hydrogenation of 1-(Difluoromethyl)-4-nitrobenzene Using an EasyMax Reactor

An EasyMax hydrogenator was charged with 1-(difluoromethyl)-4-nitrobenzene (0.346 g, 2.0 mmol), 10% Pd/C (0.035 g, 10% w/w) and ethyl acetate (30 mL). After per-

forming a leak test, the reactor was purged $3 \times$ with nitrogen gas then $3 \times$ with hydrogen gas and agitation started. The reactor was left under an atmosphere of hydrogen (5 bar) for 5 h 30 min before venting and purging $3 \times$ with nitrogen. The catalyst was filtered off, and the reaction solvent removed under reduced pressure to give a brown tar that was sparingly soluble in organic solvents.

11.6 Further Reactions of Ethyl 2,2-Difluoro-2-(4-nitrophenyl)acetate

The following reactions were carried out by Durham University MChem student Jonathan Hill as part of his 4th year work, and included here for completeness.¹⁷⁶

2,2-Difluoro-2-(4-nitrophenyl)ethanol (254)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.505 g, 2.06 mmol) was dissolved in EtOH (10.0 ml) and NaBH4 (0.158 g, 4.18 mmol) was slowly added. The reaction was stirred at r.t. for 20 mins before being quenched with 2 M HCl (20 ml). Diethyl ether (30 ml) was added and the organic solution was washed with 2 M HCl (3×20 ml), NaHCO3 soln (3×20 ml) and finally with brine (3×20 ml). The organic fraction was then dried (MgSO₄) and concentrated in vacuo to give the title compound as a pale yellow solid (0.378 g, 90%). Mp 78–79 °C; IR (neat, cm⁻¹ 3524, 3123, 3087, 2936, 2161, 1728, 1607, 1517, 1354; ¹H NMR (400 MHz; CDCl₃) δ 8.27 (2H, d, ³J_{HH} 8.4, C2H) 7.71 (2H, d, ³J_{HH} 8.6, C3H) 4.00 (2H, t, ³J_{HF} 12.9, C6H) 2.69 (1H, s, -OH); ¹⁹F NMR (176 MHz; CDCl₃) δ -107.18 (t, ³J_{FH} 12.9); ¹³C NMR (101 MHz; CDCl₃) δ 149.24 (s, C1) 140.90 (t, ²J_{CF} 26.1, C4) 127.18 (t, ³J_{CF} 6.1, C3) 123.86 (s, C2) 119.80 (t, ¹J_{CF} 244.9, C5) 65.72 (t, ²J_{CF} 32.8, C6); MS (ASAP) m/z 204 ([M+H]⁺, 100%); HRMS (ASAP) m/z calculated for C₈H₈F₂NO₃ [M+H]⁺ 246.0472, found 246.0473.

2,2-Difluoro-2-(4-nitrophenyl)ethyl tosylate (255)

This product was characterised by Jonathan Hill.¹⁷⁶

2,2-Difluoro-2-(4-nitrophenyl)ethanol (0.071 g, 0.350 mmol) and NEt3 (0.5 ml, 3.6 mmol) were dissolved in DCM (1.2 ml), followed by addition of TsCl (0.099 g, 0.519 mmol). The reaction was then stirred at r.t. overnight, after which, further NEt3 (5 ml, 36 mmol) was added and a white precipitate formed. Dil. HCl (10 ml) was added, and the mixture was extracted with DCM $(2 \times 10 \text{ ml})$. The combined organic fractions were washed with dil. HCl (5 \times 20 ml), brine (3 \times 10 ml) and then dried (MgSO4). Solvents were removed under reduced pressure yielding the crude product as a yellow oil. The oil was triturated with ice-cold hexane $(3 \times 20 \text{ ml})$ which precipitated 2,2-diffuoro-2-(4-nitrophenyl)ethyl tosylate as a yellow solid (0.085 g, 68%). Mp 110–111 °C; IR (neat, cm $^{-1}$ 3124, 2925, 1940, 1612, 1597, 1523, 1363, 1350, 1319; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (2H, d, ³J_{HH} 9.0, C2H) 7.65 (2H, d, ${}^{3}J_{\rm HH}$ 8.3, C8H) 7.60 (2H, d, ${}^{3}J_{\rm HH}$ 9.0, C3H) 7.30 (2H, d, ${}^{3}J_{\rm HH}$ 8.4, C9H) 4.40 (2H, t, J 11.2, C6H) 2.44 (3H, s, 11H); ¹⁹F NMR (176 MHz; CDCl₃) δ -104.30 (t, J 11.3); ¹³C NMR (101 MHz; CDCl₃) δ 149.45 (s, C1) 145.88 (s, C10) 139.27 (t, ${}^{2}J_{CF}$ 25.7, C4) 132.10 (s, C7) 130.15 (s, C8) 128.01 (s, C9) 127.16 (t, ${}^{3}J_{CF}$ 6.2, C3) 123,90 (s, C2) 117.63 (t, ${}^{1}J_{CF}$ 246.6, C5) 69.16 (t, ${}^{2}J_{CF}$ 37.4, C6) 21.79 (s, C11); MS (ASAP) m/z 356 ([M-H]⁺, 9%) 338 ([M-F]⁺, 82%); HRMS (ASAP) m/zcalculated for $C_{15}H_{12}F_2NO_5S[M-H]^+$ 356.0404, found 356.0419.

11.6.1 General Synthesis of α, α -Difluoroamides

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (1 eq.) and an excess of the amine were dissolved in EtOH (2–5 ml) at 0 °C and the reaction was then stirred at r.t. for 18–24 h. Volatile materials were then removed under reduced pressure, followed by addition of DCM (20 ml). The organic solution was then washed with dil. HCl (5×30 ml), followed by NaHCO3 soln (3×20 ml) and brine (3×20 ml) before being dried (MgSO₄). Solvents were then removed in vacuo to yield the crude amide which was then purified by Celite or silica plug. Single crystals suitable for X-ray diffraction analysis were grown from CHCl₃.

N-benzyl-2,2-difluoro-2-(4-nitrophenyl)acetamide (256a)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.042 g, 0.17 mmol) was dissolved in EtOH (2 ml) at 0 °C and benzylamine (0.02 ml, 0.17 mmol) was added with stirring. The reaction mixture was then stirred at r.t. for 19 h. The solvent was then removed under reduced pressure followed by addition of DCM (c. 20 ml). The organic solution was then washed according to the general procedure. The crude product was purified by flash silica column chromatography and N-benzyl-2,2difluoro-2-(4-nitrophenyl) acetamide was isolated as a pale yellow crystalline solid (0.050 g, 94%). Mp 154–156 °C; IR (neat, cm⁻¹ 3284, 2917, 1717, 1688, 1525; ¹H NMR (700 MHz, CDCl₃) δ 8.31 (2H, d, ³J_{HH} 9.0, C2H) 7.83 (2H, d, ³J_{HH} 9.0, C3H) 7.39–7.25 (5H, m, C9H–C11H) 6.81 (1H, s, R₂NH) 4.52 (2H, d, J 5.8, C7H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.24 (s) -104.29 (s); 13¹³C NMR (176 MHz, CDCl₃) δ 163.01 (t, ²J_{CF} 30.1, C6) 149.66 (s, C1) 139.04 (t, ²J_{CF} 25.8, C4) 136.47 (s, C2) 129.19 (s, C8) 128.40 (s, C10) 128.06 (s, C9) 127.30 (t, ${}^{3}J_{CF}$ 6.1, C3) 123.91 (s, C11) 114.00 (t, ${}^{1}J_{CF}$ 256.2, C5) 44.06 (s, C7); MS (ESI) m/z 307 ([M+H]⁺, 25%) 348 ([M+HMeCN]⁺, 100); HRMS (ESI) m/z calculated for C₁₅H₁₁F₂N₂O₃ [M+H]⁺ 305.0738, found 305.0747.

N-allyl-2,2-difluoro-2-(4-nitrophenyl)acetamide (256b)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.060 g, 0.24 mmol) was dissolved in allylamine (15.0 ml, 201 mmol) and stirred at r.t. for 24 h. The reaction was worked up according to the general procedure to yield *N-allyl-2,2-difluoro-2-(4-nitrophenyl)acetamide* as pale yellow crystals (0.062 g, 99%). Mp 109–111 °C; IR (neat, cm⁻¹ 3292, 3085, 2924, 2854, 1687, 1553, 1520; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (2H, d, ³J_{HH} 9.0, C2H) 7.83 (2H, d, ³J_{HH} 8.9, C3H) 6.68 (1H, s, R₂NH) 5.84 (1H, m, C8H) 5.23 (2H, m, C9H) 3.96 (2H, t, ³J_{HH} C7H); ¹⁹F NMR (376 MHz; CDCl₃) δ -103.55 (s); ¹³C NMR (101 MHz; CDCl₃) δ 162.95 (t, ²J_{CF} 30.2, C6) 149.59 (s, C1) 139.05 (t, ²J_{CF} 25.7, C4) 132.43 (s, C2) 127.26 (t, ³J_{CF} 6.1, C3) 123.88 (s, C8) 118.07 (s, C9) 113.94 (t, ¹J_{CF} 255.0, C5) 42.21 (s, C7); MS (ASAP)

m/z 257 ([M+H]⁺, 100%) 209 ([M-HNO₂]⁺, 20%); HRMS (ASAP) m/z calculated for C₁₁H₁₁F₂N₂O₃ [M+H]⁺ 257.0738, found 257.0739.

2,2-difluoro-2-(4-nitrophenyl)-N-(prop-2-ynyl)acetamide (256c)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.088 g, 0.360 mmol) and propargylamine (0.5 ml, 7.8 mmol) were dissolved in EtOH (2 ml) and stirred at r.t. for 24 h. The reaction was worked up according to the general procedure to yield 2,2-difluoro-2-(4-nitrophenyl)-N-(prop-2-ynyl)acetamide as a yellow solid. (0.087 g, 95%). Mp 171–172 °C; IR (neat, cm⁻¹ 3266, 3086, 2925, 1687, 1608, 1519; ¹H NMR (400 MHz, CD₃CN) δ 8.32 (2H, d, ³J_{HH} 9.2, C2H) 7.84 (2H, d, ³J_{HH}9.0, C3H) 4.01 (2H, dd, ³J_{HH} 5.8, ⁴J_{HH} 2.6, C7H) 2.49 (1H, t, ³J_{HH} 2.6, C9H); ¹⁹F NMR (376 MHz; CD₃CN) δ –104.46 (s); ¹³C NMR (101 MHz; CD₃CN) δ 163.69 (t, ²J_{CF} 30.7, C6) 150.73 (s, C1) 139.87 (t, ²J_{CF} 25.9, C4) 127.99 (t, ³J_{CF} 6.2, C3) 124.94 (s, C2) 114.91 (t, ¹J_{CF}253.3, C5) 79.73 (s, C8) 72.61 (s, C9) 29.59 (s, C7); MS (EI) m/z 254 (M+, 1%) 173 ([M-CONHR]⁺, 100%) 126 (C₇H₄NO⁺, 41%) 82 (C₄H₄NO⁺, 76%) 39 (C₃H₃⁺, 82%); HRMS (ASAP) m/z calculated for C₁₁H₉F₂N₂O₃ [M+H]⁺ 255.0581, found 255.0587.

2,2-difluoro-1-morpholino-2-(4-nitrophenyl)ethenone (256d)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.052 g, 0.212 mmol) was dissolved in ^tBu-NH2 (3.0 ml, 29 mmol) and stirred at r.t. for 21 h. The reaction was worked up according to the general procedure to yield *N-(tert-butyl)-2,2-difluoro-2-(4-nitrophenyl)acetamide* as a pale yellow oil. (0.055 g, 95%); IR (neat, cm⁻¹ 3385, 2973, 1705, 1530, 1353, 1264, 1130; ¹H NMR (400 MHz; CDCl₃) δ 8.30 (2H, d, ³J_{HH} 8.9, C2H) 7.80 (2H, d, ³J_{HH} 9.1, C3H) 6.34 (1H, s, R₂NH); ¹⁹F NMR (376 MHz; CDCl₃) δ -102.74 (m); ¹³C NMR (101 MHz; CDCl₃) δ 127.25 (t, ³J_{CF} 6.0, C3)
123.84 (s, C2) 52.62 (s, C7) 28.53 (s, C8); MS (EI) m/z 273 ([M+H]⁺, 1%) 173 ([M-CONH^tBu]⁺, 72) 57 (^tBu⁺, 100); HRMS (ASAP) m/z calculated for C₁₂H₁₅F₂N₂O₃ [M+H]⁺ 273.1051, found 273.1048.

,2-difluoro-2-(4'-nitrophenyl)acetamide (256e)

This product was characterised by Jonathan Hill.¹⁷⁶

Ethyl 2,2-difluoro-2-(4-nitrophenyl)acetate (0.085 g, 0.347 mmol) and 33% MeNH₂ in EtOH (5.0 ml, 40 mmol) were dissolved in EtOH (2 ml) and stirred at r.t. for 24 h. The reaction was worked up according to the general procedure to yield 2,2difluoro-2-(4'-nitrophenyl)acetamide as a yellow solid (0.072 g, 90%). Mp 146–148 °C; IR (neat, cm⁻¹ 3317, 3092, 2960, 1682, 1527, 1350, 1145; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (2H, d, ³J_{HH} 8.9, C2H) 7.82 (2H, d, ³J_{HH} 8.9, C3H) 6.69 (1H, s, R₂NH) 2.93 (3H, d, ³J_{HH} 5.0, C7H); ¹⁹F NMR (376 MHz; CDCl₃) δ –103.58 (m); ¹³C NMR (101 MHz; CDCl₃) δ 163.72 (t, ²J_{CF} 30.0, C6) 149.55 (s, C1) 139.12 (t, ²J_{CF} 25.9, C4) 127.25 (t, ³J_{CF} 6.1, C3) 123.83 (s, C2) 113.95 (t, ¹J_{CF} 254.8, C5) 26.56 (s, C7); MS (ASAP) m/z 231 ([M+H]⁺, 100%) 183 ([M–HNO₂]⁺, 95%); HRMS (ASAP) m/z calculated for C₉H₉F₂N₂O₃ [M+H]⁺ 231.0581, found 231.0580.

Chapter 12

Experimental to Chapter 5

12.1 Fluorination of Aromatics

Anisole

Anisole (0.217 mL, 2.00 mmol, 1.0 equiv.) and quinuclidine (0.222 g, 2.0 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the reaction mixture was partitioned between ethyl acetate (50 mL), water (20 mL) and saturated sodium chloride solution (10 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were dried over magnesium sulfate and concentrated under reduced pressure to yield 0.244 g of a vicous brown oil that was analysed by NMR spectroscopy as discussed in the text.

Aniline

Aniline (0.182 mL, 2.00 mmol, 1.0 equiv.) and quinuclidine (0.222 g, 2.0 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure.

The crude product was partitioned between ethyl acetate (30 mL), water (30 mL) and saturated sodium chloride solution (10 mL), and the aqueous phase washed with ethyl acetate (2×30 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to yield 0.215 g of a black tar. Analysis by NMR spectroscopy showed the presence of many polyfluorinated products and not pursued further.

4-Nitroaniline

4-Nitroaniline (0.276 g, 2.00 mmol, 1.0 equiv.) and quinuclidine (0.222 g, 2.0 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The crude product was partitioned between ethyl acetate (30 mL) and water (30 mL), and the aqueous phase washed with ethyl acetate (2×20 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to yield 0.275 g of a black tar. Purification by kugelrohr distillation was attempted but unsuccessful.

4-Nitroanisole

4-Nitroanisole (0.306 g, 2.00 mmol, 1.0 equiv.) was added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The crude product was partitioned between ethyl acetate (30 mL) and water (30 mL), and the aqueous phase washed with ethyl acetate (2×20 mL). The combined organic phases were washed with saturated sodium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to yield 0.389 g of an orange tar. The crude residue was filtered through a silica plug with chloroform as the eluent to yield 0.158 g of yellow crystals. Analysis by NMR spectroscopy identified this a mixture of unreacted 4-nitroanisole (5%, ¹H NMR (400 MHz, CDCl₃ δ) 3.91 (3H, s, $-OCH_3$), 6.93–6.98 (2 H, m, Ar-H), 8.17–8.23 (2 H, m, Ar-H)), 2-fluoro-4-nitroanisole (37%, ¹H NMR (400 MHz, CDCl₃ δ) 4.00 (3 H, s, $-OCH_3$), 7.04 (1 H, dd, ³J_{HH} 9.1, ⁴J_{HF} 8.1, Ar-H), 7.98 (1 H, dd, ³J_{HF} 10.8, ⁴J_{HH} 2.8, Ar-H), 8.07 (1 H, ddd, ³J_{HH} 9.1, ⁴J_{HH} 2.8, ⁵J_{HF} 1.6, Ar-H); ¹⁹F NMR (376 MHz, CDCl₃) –131.0 (ddd, ³J_{HF} 10.2, ⁴J_{HF} 8.1, ⁵J_{HF} 1.6)), 2,6-difluoro-4-nitroanisole (5%, ¹H NMR (400 MHz, CDCl₃ δ) 4.16 (3 H, t, ⁵J_{HF} 2.0, $-OCH_3$), 7.81–7.86 (2 H, m, Ar-H); ¹⁹F NMR (376 MHz, CDCl₃) –124.7 (dq, ³J_{HF} 8.6, ⁵J_{HF} 2.0)).

4-Nitroanisole

4-Nitroanisole (0.306 g, 2.00 mmol, 1.0 equiv.) and quinuclidine (0.222 g, 2.0 mmol, 1.0 equiv.) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The crude product was partitioned between ethyl acetate (30 mL) and water (30 mL), and the aqueous phase washed with ethyl acetate $(2 \times 20 \text{ mL})$. The combined organic phases were washed with saturated sodium bicarbonate solution (20 mL), dried over magnesium sulfate and concentrated under reduced pressure to yield 0.323 g of an orange solid. $(52\%, {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_{3} \delta) 3.91 (3\text{H}, \text{s}, -\text{OCH}_{3}),$ 6.93--6.98 (2 H, m, Ar-H), 8.18-8.23 (2 H, m, Ar-H)), 2-fluoro-4-nitroanisole (24%, ¹H NMR (400 MHz, CDCl₃ δ) 4.00 (3 H, s, -OCH₃), 7.04 (1 H, dd, ³J_{HH} 9.1, ⁴J_{HF} 8.1, Ar-H), 7.99 (1 H, dd, $^{3}J_{\rm HF}$ 10.7, $^{4}J_{\rm HH}$ 2.7, Ar-H), 8.07 (1 H, ddd, $^{3}J_{\rm HH}$ 9.1, $^4J_{\rm HH}$ 2.7, $^5J_{\rm HF}$ 1.6, Ar-H); $^{19}{\rm F}$ NMR (376 MHz, CDCl_3 $\delta)$ -131.0 (ddd, $^3J_{\rm HF}$ 10.2, ${}^{4}J_{\rm HF}$ 8.1, ${}^{5}J_{\rm HF}$ 1.6)), 2,6-diffuoro-4-nitroanisole (1%, ¹H NMR (400 MHz, CDCl₃ δ) 4.17 (3 H, t, ${}^{5}J_{\rm HF}$ 2.0, $-{\rm OCH}_{3}$), 7.83–7.86 (2 H, m, Ar-H); ${}^{19}{\rm F}$ NMR (376 MHz, $\text{CDCl}_3 \delta$ -124.7 (dq, ${}^3J_{\text{HF}}$ 8.6, ${}^5J_{\text{HF}}$ 2.0)). Purification of this crude product by column chromatography on silica gel with ethyl acetate 15% v/v in hexane solvent mixture as the eluent afforded any recovered 4-nitroanisole (40% isolated).

12.1.1 Fluorinations Using Selectfluor[™]

4-Nitroanisole (0.077 g, 0.50 mmol, 1.0 equiv.) and SelectfluorTM(0.177 g, 0.50 mmol, 1.0 equiv.) were dissolved in MeCN (5 mL) and stirred at r.t. overnight, then at 60

°C for 72 h. The reaction solvent was removed under reduced pressure. Analysis by NMR spectroscopy indicated that no reaction had occured.

4-Nitroanisole (0.077 g, 0.50 mmol, 1.0 equiv.) and SelectfluorTM(0.354 g, 1.0 mmol, 2.0 equiv.) were dissolved in MeCN (5 mL) and stirred at r.t. overnight, then at 60 °C for 72 h. The reaction solvent was removed under reduced pressure. Analysis by NMR spectroscopy indicated that no reaction had occured.

12.2 Screening Conditions for the Base Mediated Direct Fluorination of 4-nitroanisole

4-Nitroanisole (0.306 g, 2.00 mmol, 1.0 equiv.) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v), was added at a prescribed flow rate, (4.0 mmol, 2.0 equiv., 15 mL min⁻¹) that was controlled by a mass flow controller for 65 min. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The crude product was filtered through a silica plug with chloroform as the eluent to remove unwanted tarry by-products. NMR yields of the desired products were then calculated by comparing the product distributions in the crystalline product.

Entry	Base	Equiv of		NMR yield/%	7 0	Recovered
Linery	Dabo	base	264	265	266	yield/%
1	-	-	5	37	5	$47^{\rm a}$
2	Quinuclidine	1	52	24	1	$77^{\rm a}$
3	-	-	11	65	9	86
4	Quinuclidine	1	67	20	3	90
5	Quinuclidine	2	90	3	0	93
6	DABCO	1	94	5	0	99
7	DABCO	2	95	2	0	97
8	DBU	1	76	19	2	97
9	DBU	2	92	4	1	96
10	$\mathrm{Et}_{3}\mathrm{N}$	1	49	25	3	77
11	$\mathrm{Et}_{3}\mathrm{N}$	2	91	3	1	95
12	Pyridine	1	74	11	2	87
13	Pyridine	2	94	3	0	97
14	DABCO	1^{b}	23	51	5	79
15	DBU	1^{b}		Polyfluor	inated tar	
16	$\mathrm{Et}_{3}\mathrm{N}$	1^{b}		Polyfluor	inated tar	

 $^{\rm a}$ Aqueous workup performed prior to washing the product mixture through a small silica plug with $\rm CHCl_3$ as the eluent

 $^{\rm b}\,5.0$ equiv. of ${\rm F}_2$ used

References

- Department of Social and Economic Affairs, Population Division (2019). World Population Prospects 2019: Ten Key Findings, tech. rep., United Nations, 2019.
- (2) D. Pimentel and M. Pimentel, Am. J. Clin. Nutr., 2003, 78, 660S–663S.
- (3) K. Müller, C. Faeh and F. Diederich, *Fluorine in pharmaceuticals: Looking beyond intuition*, 2007.
- (4) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, *Chem Soc Rev*, 2008, 37, 237–432.
- (5) T. Liang, C. N. Neumann and T. Ritter, Angew. Chemie, Int. Ed., 2013, 52, 8214–8264.
- (6) B. G. de la Torre and F. Albericio, The pharmaceutical industry in 2018. An analysis of FDA drug approvals from the perspective of molecules, 2019.
- (7) J. Marais and Du Toi PJ, J. Vet. Sci. Anim. Ind., 1943, 18, 203–206.
- (8) J. Marais, Onderstepoort J. Vet. Sci. Anim. Ind., 1944, 20, 67–73.
- O. Thomas, S., L. Singleton, V., A. Lowery, J., W. Sharpe, R., M. Pruess, L.,
 N. Porter, J., H. Mowat, J. and N. Bohonos, *Antibiot. Annu.*, 1956, 716–721.
- (10) M. Sanada, T. Miyano, S. Iwadare, J. M. Williamson, B. H. Arison, J. L. Smith, A. W. Douglas, J. M. Liesch and E. Inamine, J. Antibiot., 1986, 39, 259–265.
- (11) D. O'Hagan and D. B. Harper, J. Fluorine. Chem., 1999, **100**, 127–133.
- (12) M. F. Carvalho and R. S. Oliveira, Crit. Rev. Biotechnol., 2017, 37, 880–897.
- (13) L. Ma, A. Bartholome, M. H. Tong, Z. Qin, Y. Yu, T. Shepherd, K. Kyeremeh, H. Deng and D. O'Hagan, *Chem. Sci.*, 2015, 6, 1414–1419.
- (14) G. W. Gribble, Acc. Chem. Res., 1998, **31**, 141–152.
- (15) A. Bondi, J. Phys. Chem., 1964, 68.
- (16) D. O'Hagan, Chem. Soc. Rev., 2008, **37**, 308–319.
- (17) N. A. Meanwell, J. Med. Chem., 2018, 61, 5822–5880.
- (18) P. Jeschke, *ChemBioChem*, 2004, **5**, 570–589.

- (19) V. P. Reddy, Organofluor. Compd. Biol. Med., 2015, 1–27.
- (20) W. R. Dolbier and K. W. Palmer, J. Am. Chem. Soc., 1993, 115, 9349–9350.
- (21) M. Morgenthaler, E. Schweizer, A. Hoffmann-Röder, F. Benini, R. E. Martin, G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, J. Schneider, F. Diederich, M. Kansy and K. Müller, *Predicting and tuning physicochemical* properties in lead optimization: Amine basicities, 2007.
- (22) M. B. Van Niel, I. Collins, M. S. Beer, H. B. Broughton, S. K. Cheng, S. C. Goodacre, A. Heald, K. L. Locker, A. M. MacLeod, D. Morrison, C. R. Moyes, D. O'Connor, A. Pike, M. Rowley, M. G. Russell, B. Sohal, J. A. Stanton, S. Thomas, H. Verrier, A. P. Watt and J. L. Castro, *J. Med. Chem.*, 1999, **42**, 2087–2104.
- (23) J. M. Luteijn and J. Tipker, *Pestic. Sci.*, 1986, **17**, 456–458.
- (24) R. H. Bromilow, K. Chamberlain and A. A. Evans, Weed Sci., 1990, 38, 305–314.
- (25) B. E. Smart, J. Fluorine. Chem. Elsevier, 2001, vol. 109, pp. 3–11.
- (26) M. Tohnishi, T. Nishimatsu, K. Motoba, T. Hirooka and A. Seo, J. Pestic. Sci., 2010, 35, 508–515.
- (27) W. B. Nimmo, P. C. de Wilde and A. Verloop, *Pestic. Sci.*, 1984, 15, 574.
- (28) A. S. Hampton, L. Mikulski, W. Palmer-Brown, C. D. Murphy and G. Sandford, *Bioorg. Med. Chem. Lett.*, 2016, 26, 2255–2258.
- (29) S. B. Rosenblum, T. Huynh, A. Afonso, H. R. Davis, N. Yumibe, J. W. Clader and D. A. Burnett, J. Med. Chem., 1998, 41, 973–980.
- M. Van Heek, C. F. France, D. S. Compton, R. L. McLeod, N. P. Yumibe,
 K. B. Alton, E. J. Sybertz and H. R. Davis, *J. Pharmacol. Exp. Ther.*, 1997, 283, 157–163.
- (31) J. A. Olsen, D. W. Banner, P. Seiler, B. Wagner, T. Tschopp, U. Obst-Sander, M. Kansy, K. Müller and F. Diederich, *ChemBioChem*, 2004, 5, 666–675.
- (32) H. Yamamoto, Organofluorine Compounds: Chemistry and Applications, Springer, 2000.
- (33) M. G. Campbell and T. Ritter, Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis, 2015.
- (34) P. A. Champagne, J. Desroches, J. D. Hamel, M. Vandamme and J. F. Paquin, *Chem. Rev.*, 2015, **115**, 9073–9174.
- (35) X. Liu, C. Xu, M. Wang and Q. Liu, *Trifluoromethyltrimethylsilane: Nucle*ophilic trifluoromethylation and beyond, 2015.

- (36) X. Yang, T. Wu, R. J. Phipps and F. D. Toste, Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions, 2015.
- (37) G. Pattison, Methods for the Synthesis of α, α -Difluoroketones, 2018.
- (38) P. Adler, C. J. Teskey, D. Kaiser, M. Holy, H. H. Sitte and N. Maulide, *Nat. Chem.*, 2019, **11**, 329–334.
- (39) B. Imperiali and R. H. Abeles, *Biochemistry*, 1986, **25**, 3760–3767.
- (40) H. L. Sham, N. E. Wideburg, S. G. Spanton, W. E. Kohlbrenner, D. A. Betebenner, D. J. Kempf, D. W. Norbeck, J. J. Plattner and J. W. Erickson, J. Chem. Soc. Chem. Commun., 1991, 110–112.
- (41) J. A. Erickson and J. I. McLoughlin, J. Org. Chem., 1995, 60, 1626–1631.
- (42) N. A. Meanwell, J. Med. Chem., 2011, 54, 2529–2591.
- (43) M. J. Graneto and W. G. Phillips, 3-difluoromethylpyrazolecarboxamide fungicides, compositions and use, 1992.
- (44) T. Fujiwara and D. O'Hagan, 2014, **167**, 16–29.
- (45) A. J. Bloodworth, K. J. Bowyer and J. C. Mitchell, *Tetrahedron Lett.*, 1987, 28, 5347–5350.
- (46) J. P. Praly and G. Descotes, *Tetrahedron Lett.*, 1987, 28, 1405–1408.
- (47) L. N. Markovskij, V. E. Pashinnik and A. V. Kirsanov, Synthesis, 1973, 1973, 787–789.
- (48) C. Fäh, R. Mathys, L. A. Hardegger, S. Meyer, D. Bur and F. Diederich, European J. Org. Chem., 2010, 4617–4629.
- (49) A. Lheureux, F. Beaulieu, C. Bennett, D. R. Bill, S. Clayton, F. Laflamme, M. Mirmehrabi, S. Tadayon, D. Tovell and M. Couturier, *J. Org. Chem.*, 2010, **75**, 3401–3411.
- (50) B. Modarai and E. Khoshdel, J. Org. Chem., 1977, 42, 3527–3531.
- (51) W. J. Middleton and E. M. Bingham, J. Org. Chem., 1980, 45, 2883–2887.
- (52) R. P. Singh, U. Majumder and J. M. Shreeve, J. Org. Chem., 2001, 66, 6263–6267.
- (53) R. P. Singh and J. M. Shreeve, Org. Lett., 2001, 3, 2713–2714.
- (54) K. Orito, Y. Seki, H. Suginome and T. Iwadare, *Bull. Chem. Soc. Jpn.*, 1989, 62, 2013–2017.
- (55) M. Kuroboshi, S. Furuta and T. Hiyama, *Tetrahedron Lett.*, 1995, 36, 6121–6122.
- (56) R. E. Banks, N. J. Lawrence and A. L. Popplewell, J. Chem. Soc. Chem. Commun., 1994, 92, 343–344.

- (57) G. Stavber, M. Zupan, M. Jereb and S. Stavber, Org. Lett., 2004, 6, 4973– 4976.
- (58) W. Ying, D. D. DesMarteau and Y. Gotoh, *Tetrahedron*, 1996, **52**, 15–22.
- (59) R. E. Banks, M. K. Besheesh and R. G. Pritchard, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 2003, 59, m141–m143.
- (60) J. A. Ma and D. Cahard, J. Fluorine. Chem., 2004, 125, 1357–1361.
- (61) X. Yang, T. Wu, R. J. Phipps and F. D. Toste, Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions, 2015.
- (62) J. Zhou, C. Jin and W. Su, Org. Process Res. Dev., 2014, 18, 928–933.
- (63) G. S. Lai, W. Pastore and R. Pesaresi, J. Org. Chem., 1995, 60, 7340-7342.
- (64) G. W. Visser, R. E. Herder, F. J. De Kanter and J. D. Herscheid, J. Chem. Soc., Perkin Trans. 1, 1988, 1203–1207.
- (65) F. A. Davis, W. Han and C. K. Murphy, J. Org. Chem., 1995, 60, 4730–4737.
- (66) J. C. Xiao and J. M. J. M. Shreeve, J. Fluorine. Chem., 2005, **126**, 473–476.
- (67) G. Stavber, M. Zupan and S. Stavber, *Tetrahedron Lett.*, 2007, 48, 2671– 2673.
- (68) G. Stavber and S. Stavber, Adv. Synth. Catal., 2010, 3521 G. St, 2838– 2846.
- (69) E. Differding, G. M. Rüegg and R. W. Lang, *Tetrahedron Lett.*, 1991, **32**, 1779–1782.
- (70) I. Pravst, M. Zupan and S. Stavber, *Synthesis*, 2005, 3140–3146.
- (71) S. Stavber and M. Zupan, J. Org. Chem., 1987, 52, 5022–5025.
- (72) M. Zupan, J. Iskra and S. Stavber, J. Org. Chem., 1995, 60, 259–260.
- (73) S. Stavber and M. Zupan, *Synlett*, 1996, **1996**, 693–694.
- (74) J. L. Howard, Y. Sagatov, L. Repusseau, C. Schotten and D. L. Browne, *Green Chem.*, 2017, **19**, 2798–2802.
- (75) J. L. Howard, Y. Sagatov and D. L. Browne, *Tetrahedron*, 2018, 74, 3118– 3123.
- (76) J. A. Codelli, J. M. Baskin, N. J. Agard and C. R. Bertozzi, J. Am. Chem. Soc., 2008, 130, 11486–11493.
- (77) C. E. Iacono, T. C. Stephens, T. S. Rajan and G. Pattison, J. Am. Chem. Soc., 2018, 140, 2036–2040.
- (78) T. Hagiwara and T. Fuchikami, *Synlett*, 1995, **1995**, 717–718.
- (79) Y. Zhao, W. Huang, J. Zheng and J. Hu, Org. Lett., 2011, 13, 5342–5345.
- (80) G. K. Prakash, J. Hu, Y. Wang and G. A. Olah, Org. Lett., 2004, 6, 4315– 4317.

- (81) L. Zhu, Y. Li, C. Ni, J. Hu, P. Beier, Y. Wang, G. K. Surya Prakash and G. A. Olah, J. Fluorine. Chem., 2007, 128, 1241–1247.
- (82) S. Furuta, M. Kuroboshi and T. Hiyama, Bull. Chem. Soc. Jpn., 1998, 71, 1939–1951.
- (83) E. A. Hallinan and J. Fried, *Tetrahedron Lett.*, 1984, **25**, 2301–2302.
- (84) T. T. Curran, J. Org. Chem., 1993, 58, 6360–6363.
- (85) K. Iseki, Y. Kuroki, D. Asada and Y. Kobayashi, *Tetrahedron Lett.*, 1997, 38, 1447–1448.
- (86) K. Sato, A. Tarui, T. Kita, Y. Ishida, H. Tamura, M. Omote, A. Ando and I. Kumadaki, *Tetrahedron Lett.*, 2004, 45, 5735–5737.
- (87) K. Sato, M. Omote, A. Ando and I. Kumadaki, J. Fluorine. Chem., 2004, 125, 509–515.
- (88) Y. Ohtsuka and T. Yamakawa, *Tetrahedron*, 2011, **67**, 2323–2331.
- (89) K. Araki and M. Inoue, *Tetrahedron*, 2013, **69**, 3913–3918.
- (90) Q. Lin, L. Chu and F. L. Qing, *Chinese J. Chem.*, 2013, **31**, 885–891.
- (91) M. C. Belhomme, T. Poisson and X. Pannecoucke, J. Org. Chem., 2014, 79, 7205–7211.
- (92) Y. Gu, X. Leng and Q. Shen, *Nat. Commun.*, 2014, 5, 5405.
- (93) Z. Feng, Q. Q. Min and X. Zhang, Org. Lett., 2016, 18, 44–47.
- (94) H. Ito, T. Ishizuka, J. I. Tateiwa and A. Hosomi, *Tetrahedron Lett.*, 1998, 39, 6295–6298.
- (95) Y. Kuroki, D. Asada and K. Iseki, *Tetrahedron Lett.*, 2000, 41, 9853–9858.
- (96) K. Uneyama, H. Tanaka, S. Kobayashi, M. Shioyama and H. Amii, Org. Lett., 2004, 6, 2733–2736.
- (97) R. E. Banks, J. Fluorine. Chem., 1986, **33**, 3–26.
- (98) R. D. Chambers, J. Hutchinson and G. Sandford, J. Fluorine. Chem., 1999, 100, 63–73.
- (99) R. D. Chambers, J. Hutchinson, M. E. Sparrowhawk, G. Sandford, J. S. Moilliet and J. Thomson, J. Fluorine. Chem., 2000, 102, 169–173.
- (100) R. D. Chambers, A. M. Kenwright, M. Parsons, G. Sandford and J. S. Moilliet, J. Chem. Soc., Perkin Trans. 1, 2002, 2, 2190–2197.
- R. D. Chambers, D. Holling, G. Sandford, H. Puschmann and J. A. Howard, J. Fluorine. Chem., 2002, 117, 99–101.
- (102) G. Sandford, Elemental fluorine in organic chemistry (1997-2006), 2007.
- (103) H. G. Adolph, R. E. Oesterling and M. E. Sitzmann, J. Org. Chem., 1968, 33, 4296–4299.

- (104) S. T. Purrington, N. V. Lazaridis and C. L. Bumgardner, *Tetrahedron Lett.*, 1986, 27, 2715–2716.
- (105) S. T. Purrington, C. L. Bumgardner, N. V. Lazaridis and P. Singh, J. Org. Chem., 1987, 52, 4307–4310.
- (106) R. D. Chambers, M. P. Greenhall and J. Hutchinson, J. Chem. Soc. Chem. Commun., 1995, 52, 21–22.
- (107) R. D. Chambers and J. Hutchinson, J. Fluorine. Chem., 1998, 89, 229–232.
- (108) H. Weintritt, U. Stelzer, H. Gayer and W. Hubsch, US 20030092723A1. 2003.
- (109) M. O. Polla, L. Tottie, C. Nordén, M. Linschoten, D. Müsil, S. Trumpp-Kallmeyer, I. R. Aukrust, R. Ringom, K. H. Holm, S. M. Neset, M. Sandberg, J. Thurmond, P. Yu, G. Hategan and H. Anderson, *Bioorg. Med. Chem.*, 2004, **12**, 1151–1175.
- (110) Y. Zhao, L. Zhu, D. P. Provencal, T. A. Miller, C. O'Bryan, M. Langston, M. Shen, D. Bailey, D. Sha, T. Palmer, T. Ho and M. Li, *Org. Process Res. Dev.*, 2012, 16, 1652–1659.
- (111) C. A. Fisher, A. Harsanyi, G. Sandford, D. S. Yufit and J. A. K. Howard, *CHIMIA*, 2014, 68, 425–429.
- (112) A. Harsanyi, G. Sandford, D. S. Yufit and J. A. Howard, *Beilstein J. Org. Chem.*, 2014, **10**, 1213–1219.
- (113) A. Harsanyi and G. Sandford, 2-Fluoromalonate esters: Fluoroaliphatic building blocks for the life sciences, 2014.
- (114) R. D. Chambers, J. Hutchinson and J. Thomson, J. Fluorine. Chem., 1996, 78, 165–166.
- (115) R. D. Chambers and J. Hutchinson, J. Fluorine. Chem., 1998, 92, 45–52.
- (116) A. Harsanyi and G. Sandford, *Green Chem.*, 2015, **17**, 3000–3009.
- (117) M. Butters, J. Heterocycl. Chem., 1992, 29, 1369–1370.
- (118) M. Butters, J. Ebbs, S. P. Green, J. MacRae, M. C. Morland, C. W. Murtiashaw and A. J. Pettman, Org. Process Res. Dev., 2001, 5, 28–36.
- (119) J. Leroy and C. Wakselman, J. Chem. Soc., Perkin Trans. 1, 1978, 1224– 1227.
- (120) T. B. Patrick, J. J. Scheibel and G. L. Cantrell, J. Org. Chem., 1981, 46, 3917–3918.
- (121) R. D. Chambers, J. Hutchinson, A. S. Batsanov, C. W. Lehmann and D. Y. Naumov, J. Chem. Soc., Perkin Trans. 1, 1996, 2271–2275.
- (122) K. O. Christe, J. Fluorine. Chem., 1987, **35**, 621–626.
- (123) N. Rozatian, I. W. Ashworth, G. Sandford and D. R. Hodgson, *Chem. Sci.*, 2018, 9, 8692–8702.

- (124) N. Rozatian, A. Beeby, I. W. Ashworth, G. Sandford and D. R. W. Hodgson, *Chem. Sci.*, 2019, Advance Ar, DOI: 10.1039/C9SC04185K.
- (125) S. H. Wood, S. Etridge, A. R. Kennedy, J. M. Percy and D. J. Nelson, *Chem. Eur. J.*, 2019, 25, 5574–5585.
- (126) R. E. Banks, S. N. Mohialdin-Khaffaf, G. S. Lal, Sharif Iqbal; and R. G. Syvret, J. Chem. Soc. Chem. Commun., 1992, 595–596.
- (127) J. Breen, Ph.D. Thesis, Durham University, 2012.
- (128) N. Y. Yang, Z. L. Li, L. Ye, B. Tan and X. Y. Liu, *Chem. Commun.*, 2016, 52, 9052–9055.
- (129) T. J. Nash and G. Pattison, European J. Org. Chem., 2015, 2015, 3779– 3786.
- (130) Y. M. Lin, W. B. Yi, W. Z. Shen and G. P. Lu, Org. Lett., 2016, 18, 592–595.
- (131) J. D. Calfee and L. A. Bigelow, J. Am. Chem. Soc., 1937, 59, 2072–2073.
- (132) J. L. Adcock and R. J. Lagow, J. Am. Chem. Soc., 1974, 96, 7588–7589.
- (133) R. J. Lagow and J. L. Margrave, in, John Wiley & Sons, Ltd, 2007, pp. 161– 210.
- (134) W. T. Miller and S. D. Koch, J. Am. Chem. Soc., 1957, 79, 3084–3089.
- (135) M. Moriyasu, A. Kato and Y. Hashimoto, J. Chem. Soc., Perkin Trans. 2, 1986, 515–520.
- (136) W. R. Dolbier, K. S. Medinger, A. Greenberg and J. F. Liebman, *Tetrahed-ron*, 1982, **38**, 2415–2420.
- (137) J. F. Coetzee and G. R. Padmanabhan, J. Am. Chem. Soc., 1965, 87, 5005– 5010.
- (138) B. G. Cox, Acids and Bases: Solvent Effects on Acid-Base Strength, Oxford University Press, 1st edn., 2013, p. 137.
- (139) W. N. Olmstead and F. G. Bordwell, J. Org. Chem., 1980, 45, 3299–3305.
- (140) R. E. Banks and I. Sharif, J. Fluorine. Chem., 1991, 55, 207–214.
- (141) R. E. Banks, R. A. Du Boisson, W. D. Morton and E. Tsiliopoulos, J. Chem. Soc., Perkin Trans. 1, 1988, 2805–2811.
- (142) R. E. Banks and I. Sharif, J. Fluorine. Chem., 1988, 41, 297–300.
- (143) R. E. Banks and I. Sharif, J. Fluorine. Chem., 1988, 41, 297–300.
- (144) R. E. Banks, R. G. Pritchard and I. Sharif, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 1993, 49, 1806–1807.
- (145) M. Abdul-Ghani, E. R. Banks, M. K. Besheesh, I. Sharif and R. G. Syvret, *J. Fluorine. Chem.*, 1995, **73**, 255–257.
- (146) R. E. Banks, I. Si-Iarif and R. G. Pritchard, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 1993, 49, 492–495.

- (147) R. E. Banks and I. Sharif, J. Fluorine. Chem., 1991, 55, 207–214.
- (148) N. Sampathkumar, A. Murugesh and S. P. Rajendran, J. Heterocycl. Chem., 2016, 53, 924–928.
- (149) S. Kumar, W. Namkung, A. S. Verkman and P. K. Sharma, *Bioorg. Med. Chem.*, 2012, **20**, 4237–4244.
- (150) U. Košak, A. Kovač and S. Gobec, Synlett, 2012, 23, 1609–1612.
- (151) Y. Zhu, X. Zou, F. Hu, C. Yao, B. Liu and H. Yang, J. Agric. Food Chem., 2005, 53, 9566–9570.
- (152) Y. Fu, X. L. Zhao, H. Hügel, D. Huang, Z. Du, K. Wang and Y. Hu, Org. Biomol. Chem., 2016, 14, 9720–9724.
- (153) R. J. Clay, T. A. Collom, G. L. Karrick and J. Wemple, Synthesis, 1993, 1993, 290–292.
- (154) R. Venkat Ragavan, V. Vijayakumar, K. Rajesh, B. Palakshi Reddy, S. Karthikeyan and N. Suchetha Kumari, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4193–4197.
- (155) G. Stavber and S. Stavber, Adv. Synth. Catal., 2010, **352**, 2838–2846.
- (156) T. L. Andersen, M. W. Frederiksen, K. Domino and T. Skrydstrup, Angew. Chemie, Int. Ed., 2016, 55, 10396–10400.
- (157) K. Sato, R. Kawata, F. Ama, M. Omote, A. Ando and I. Kumadaki, *Chem. Pharm. Bull.*, 1999, **47**, 1013–1016.
- (158) S. Murakami, S. Kim, H. Ishii and T. Fuchigami, *Synlett*, 2004, 0815–0818.
- (159) Z. Feng, Q. Q. Min, Y. L. Xiao, B. Zhang and X. Zhang, Angew. Chemie, Int. Ed., 2014, 53, 1669–1673.
- (160) R. Beniazza, B. Abadie, L. Remisse, D. Jardel, D. Lastécouères and J. M. Vincent, Chem. Commun., 2017, 53, 12708–12711.
- (161) S. I. Arlow and J. F. Hartwig, Angew. Chemie, Int. Ed., 2016, 55, 4567– 4572.
- (162) X. L. Jiang, Z. H. Chen, X. H. Xu and F. L. Qing, Org. Chem. Front., 2014, 1, 774–776.
- (163) S. B. Munoz, C. Ni, Z. Zhang, F. Wang, N. Shao, T. Mathew, G. A. Olah and G. K. Prakash, *European J. Org. Chem.*, 2017, 2017, 2322–2326.
- (164) K. Fujikawa, Y. Fujioka, A. Kobayashi and H. Amii, Org. Lett., 2011, 13, 5560–5563.
- (165) S. Utsumi, T. Katagiri and K. Uneyama, *Tetrahedron*, 2012, **68**, 580–583.
- (166) J. N. Desrosiers, C. B. Kelly, D. R. Fandrick, L. Nummy, S. J. Campbell, X. Wei, M. Sarvestani, H. Lee, A. Sienkiewicz, S. Sanyal, X. Zeng, N. Grinberg, S. Ma, J. J. Song and C. H. Senanayake, *Org. Lett.*, 2014, 16, 1724–1727.

- (167) O. René, A. Souverneva, S. R. Magnuson and B. P. Fauber, *Tetrahedron Lett.*, 2013, 54, 201–204.
- (168) B. Yang, X. H. Xu and F. L. Qing, Org. Lett., 2016, 18, 5956–5959.
- (169) F. Chen and A. S. K. Hashmi, Org. Lett., 2016, 18, 2880–2882.
- (170) X. Li, S. Li, S. Sun, F. Yang, W. Zhu, Y. Zhu, Y. Wu and Y. Wu, Adv. Synth. Catal., 2016, 358, 1699–1704.
- (171) F. G. Bordwell and H. E. Fried, J. Org. Chem., 1981, 46, 4327–4331.
- (172) R. Beniazza, B. Abadie, L. Remisse, D. Jardel, D. Lastécouères and J. M. Vincent, *Chem. Commun.*, 2017, 53, 12708–12711.
- (173) M. Baidya, S. Kobayashi, F. Brotzel, U. Schmidhammer, E. Riedle and H. Mayr, Angew. Chemie, Int. Ed., 2007, 46, 6176–6179.
- (174) J. Ammer, M. Baidya, S. Kobayashi and H. Mayr, J. Phys. Org. Chem., 2010, 23, 1029–1035.
- (175) L. Willard, B. Subramanian, O. Johan D. and Y. Joshua C., United States Patent Application: 0060035908, 2005.
- (176) J. Hill, MA thesis, 2019.
- (177) T. Hirayama, J. Fujimoto, D. R. Cary and Y. Hirata, US20170044132 (A1), 2017.
- (178) S. S. Y. Cho, WO2004041793 (A1), 2004.
- (179) M. E. Sparrowhawk, Ph.D. Thesis, 1998, pp. 1–236.
- (180) S. Stavber and M. Zupan, Fluorination with cesium fluoroxysulfate. Roomtemperature fluorination of benzene and naphthalene derivatives, 1985.
- (181) S. D. Schimler, R. D. Froese, D. C. Bland and M. S. Sanford, J. Org. Chem., 2018, 83, 11178–11190.
- (182) K. K. Laali and G. I. Borodkin, J. Chem. Soc., Perkin Trans. 2, 2002, 953– 957.
- (183) I. Urasaki and Y. Ogata, J. Chem. Soc., Perkin Trans. 1, 1975, 1285–1287.
- (184) S. Nakaiida, S. Kato, O. Niyomura, M. Ishida, F. Ando and J. Koketsu, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2010, **185**, 930–946.
- (185) E. Hasegawa, K. Ishiyama, T. Horaguchi and T. Shimizu, J. Org. Chem., 1991, 56, 5236.
- (186) H. S. P. Rao and N. Muthanna, European J. Org. Chem., 2015, 2015, 1525– 1532.
- (187) H. Ishihara and Y. Hirabayashi, Chem. Lett., 1978, 7, 1007–1010.
- (188) J. C. Hubaud, I. Bombarda, L. Decome, J. C. Wallet and E. M. Gaydou, J. Photochem. Photobiol. B Biol., 2008, 92, 103–109.

- (189) S. Saito, T. Tanaka, T. Koizumi, N. Tsuboya, H. Itagaki, T. Kawasaki, S. Endo and Y. Yamamoto, J. Am. Chem. Soc., 2000, 122, 1810–1811.
- (190) Z. He, X. Qi, S. Li, Y. Zhao, G. Gao, Y. Lan, Y. Wu, J. Lan and J. You, Angew. Chemie, Int. Ed., 2015, 54, 855–859.
- (191) A. Sieglitz and O. Horn, *Chem. Ber.*, 1951, 84, 607–618.
- (192) J. Zawadiak and M. Mrzyczek, Spectrochim. Acta, Part A Mol. Biomol. Spectrosc., 2012, 96, 815–819.
- (193) M. Lipp, F. Dallacker and S. Munnes, Justus Liebigs Ann. Chem., 1958, 618, 110–117.
- (194) S. Stavber, B. Šket, B. Zajc and M. Zupan, *Tetrahedron*, 1989, 45, 6003– 6010.
- (195) M. Gao, Y. Zhao, C. Zhong, S. Liu, P. Liu, Q. Yin and L. Hu, Org. Lett., 2019, 21, 5679–5684.
- (196) G. Wagner, C. Garbe and P. Richter, *Pharmazie*, 1975, **30**, 271–276.
- (197) W. Wendell and I. S. Harvey, J. Org. Chem., 1979, 44, 310–311.
- (198) C. A. Maggiuli, *FR 1318368*, 1963.
- (199) H.-S. Wang and J.-E. Zeng, Chem. Res. Chin. Univ., 2009, 25, 343–346.
- (200) A. R. Katritzky, Z. Wang, M. Wang, C. R. Wilkerson, C. D. Hall and N. G. Akhmedov, J. Org. Chem., 2004, 69, 6617–6622.
- (201) H. Y. Zhao, Z. Feng, Z. Luo and X. Zhang, Angew. Chemie, Int. Ed., 2016, 55, 10401–10405.
- (202) Z. Zhang, D. Zheng, Y. Wan, G. Zhang, J. Bi, Q. Liu, T. Liu and L. Shi, J. Org. Chem., 2018, 83, 1369–1376.
- (203) A. P. Häring, P. Biallas and S. F. Kirsch, European J. Org. Chem., 2017, 2017, 1526–1539.

Appendix: Crystallographic Data

1-(4-Methylphenyl)-3-phenylpropane-1,3-dione 91a

Table 12.1: Crystal data and structure remement for 91a			
Identification code	17srv259		
Empirical formula	$\mathrm{C_{16}H_{14}O_{2}}$		
Formula weight	238.27		
Temperature/K	120.0		
Crystal system	orthorhombic		
Space group	Pbca		
a/Å	8.7320(40)		
b/Å	10.2647(5)		
c/Å	27.3442(13)		
$lpha/^{\circ}$	90		
$\beta/^{\circ}$	90		
$\gamma/^{\circ}$	90		
$Volume/Å^3$	2450.9(2)		
Z	8		
$ ho_{ m calc}{ m g/cm^3}$	1.291		
$\mu/{ m mm^{-1}}$	0.084		
F(000)	1008.0		
$Crystal size/mm^3$	$0.27\times0.23\times0.06$		
Radiation	$MoK\alpha \ (\lambda = 0.71073)$		
2Θ range for data collection/°	5.536 to 57.994		
Index ranges	$-11 \le h \le 11, -14 \le k \le 14, -37 \le l \le 37$		
Reflections collected	34007		
Independent reflections	3254 [$R_{int} = 0.0495, R_{sigma} = 0.0269$]		
Data/restraints/parameters	3254/0/219		
Goodness-of-fit on \mathbf{F}^2	1.055		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0469, wR_2 = 0.1268$		
Final R indexes [all data]	$R_1 = 0.0690, wR_2 = 0.1268$		
Largest diff. peak/hole / e Å $^{-3}$	0.46/-0.23		

Table 12.1: Crystal data and structure refinement for **91a**

1-(4-Methoxy phenyl)-3-phenyl propane-1, 3-dione~91b

Identification code	17srv227
Empirical formula	$C_{16}H_{14}O_3$
Formula weight	254.27
Temperature/K	120.0
Crystal system	orthorhombic
Space group	Pbca
a/Å	7.5562(6)
b/Å	10.7325(8)
c/Å	30.169(2)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
$Volume/Å^3$	2446.6(3)
Z	8
$ ho_{ m calc}{ m g/cm^3}$	1.381
$\mu/{ m mm^{-1}}$	0.095
F(000)	1072.0
$Crystal size/mm^3$	$0.225 \times 0.191 \times 0.041$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.402 to 54.984
Index ranges	$-9 \le h \le 9, -13 \le k \le 13, -39 \le l \le 39$
Reflections collected	37412
Independent reflections	2791 [R _{int} = 0.0452, R _{sigma} = 0.0209]
Data/restraints/parameters	2791/0/228
Goodness-of-fit on \mathbf{F}^2	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373, wR_2 = 0.0862$
Final R indexes [all data]	$R_1 = 0.0506, wR_2 = 0.0932$
Largest diff. peak/hole / e Å $^{-3}$	0.28/-0.21

Table 12.2: Crystal data and structure refinement for ${\bf 91b}$

1-(4-Fluorophenyl)-3-phenyl propane-1, 3-dione~91d

Table 12.3: Crystal data and structure refinement for ${\bf 91d}$

Identification code	17srv287
Empirical formula	$\mathrm{C_{15}H_{11}FO_{2}}$
Formula weight	242.24
Temperature/K	120.0
Crystal system	monoclinic
Space group	$P2_1/c$
$\mathrm{a}/\mathrm{\AA}$	11.5084(10)
b/Å	11.5599(9)
c/Å	9.3184(8)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	112.899(3)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1141.98(17)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.409
$\mu/{ m mm^{-1}}$	0.104
F(000)	504.0
$Crystal size/mm^3$	$0.43\times 0.06\times 0.03$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.214 to 54.998
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -12 \le l \le 12$
Reflections collected	15666
Independent reflections	2618 [R _{int} = 0.0595, R _{sigma} = 0.0513]
Data/restraints/parameters	2618/0/203
Goodness-of-fit on \mathbf{F}^2	1.020
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0582, wR_2 = 0.1454$
Final R indexes [all data]	$R_1 = 0.0980, wR_2 = 0.1663$
Largest diff. peak/hole / e Å $^{-3}$	0.96/-0.32

1-(4-Nitrophenyl)-3-phenylpropane-1,3-dione 91e

Identification code 17srv289 $C_{15}H_{11}NO_4$ Empirical formula Formula weight 269.25 Temperature/K 120.0 Crystal system monoclinic $P2_1/c$ Space group a/Å 8.1666(6)b/Å 6.7088(5)c/Å 22.0382(15) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 94.322(3) $\gamma/^{\circ}$ 90 Volume/Å³ 1204.00(15)Ζ 4 $\rho_{\rm calc} {\rm g/cm^3}$ 1.485 μ/mm^{-1} 0.109F(000)560.0Crystal size/mm³ $0.22\times0.04\times0.02$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 5.002 to 54.996 Index ranges $-10 \le h \le 10, -8 \le k \le 8, -28 \le l \le 28$ Reflections collected 21883 Independent reflections 2769 [$R_{int} = 0.0739, R_{sigma} = 0.0621$] Data/restraints/parameters 2769/0/225 Goodness-of-fit on F^2 1.034 Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0463, wR_2 = 0.1019$ Final R indexes [all data] $R_1 = 0.0867, wR_2 = 0.1174$ Largest diff. peak/hole / e Å⁻³ 0.30/-0.24

Table 12.4: Crystal data and structure refinement for **91e**

1, 3-Bis (4-chlorophenyl)-3-phenylpropane-1, 3-dione~91 g

Identification code	Ah81
Empirical formula	$\mathrm{C_{15}H_{10}O_2Cl_2}$
Formula weight	273.135
Temperature/K	273.15
Crystal system	orthorhombic
Space group	Pnma
a/Å	6.0742(2)
b/Å	30.4413(12)
c/Å	6.9268(3)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
$Volume/Å^3$	1280.81(9)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.520
$\mu/{ m mm^{-1}}$	0.500
F(000)	600.0
$Crystal size/mm^3$	$0.224\times0.520\times0.626$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.352 to 63.208
Index ranges	$-8 \leq h \leq 8,-44 \leq k \leq 44,-10 \leq l \leq 9$
Reflections collected	23769
Independent reflections	21731 [R _{int} = 0.0634, R _{sigma} = 0.0329]
Data/restraints/parameters	2173/0/92
Goodness-of-fit on \mathbf{F}^2	1.234
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0508, wR_2 = 0.1159$
Final R indexes [all data]	$R_1 = 0.0570, wR_2 = 0.1178$
Largest diff. peak/hole / e Å $^{-3}$	0.39/-0.40

Table 12.5: Crystal data and structure refinement for $\mathbf{91g}$

1, 3-Bis (4-fluorophenyl)-3-phenylpropane-1, 3-dione~91h

Identification code	19srv262
Empirical formula	$\mathrm{C_{15}H_{10}F_2O_2}$
Formula weight	260.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	C2/c
a/Å	3.8574(15)
b/Å	11.914(5)
c/Å	25.388(10)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	94.36
$\gamma/^{\circ}$	90
$Volume/Å^3$	1163.4(8)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.486
$\mu/{ m mm^{-1}}$	0.119
F(000)	536.0
$Crystal size/mm^3$	$0.28\times0.24\times0.01$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.828 to 53.952
Index ranges	$-4 \le h \le 4, -14 \le k \le 14, -32 \le l \le 32$
Reflections collected	7253
Independent reflections	1257 [R _{int} = 0.1021, R _{sigma} = 0.0998]
Data/restraints/parameters	1257/0/108
Goodness-of-fit on \mathbf{F}^2	0.951
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0553, wR_2 = 0.1169$
Final R indexes [all data]	$R_1 = 0.1410, wR_2 = 0.1505$
Largest diff. peak/hole / e Å $^{-3}$	0.16/-0.27

Table 12.6: Crystal data and structure refinement for ${\bf 91h}$

$\hbox{2-Fluoro-1,3-diphenylpropane-1,3-dione 92}$

Identification code	17srv039
Empirical formula	$C_{15}H_{11}FO_2$
Formula weight	242.24
Temperature/K	120.0
Crystal system	monoclinic
Space group	C2/c
a/Å	19.951(3)
b/Å	5.1203(7)
c/Å	13.2495(18)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	123.559(5)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1127.9(3)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.427
$\mu/{ m mm^{-1}}$	0.105
F(000)	540.0
$Crystal size/mm^3$	$0.11\times 0.07\times 0.06$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.9 to 54.976
Index ranges	$-25 \le h \le 25, -6 \le k \le 6, -17 \le l \le 17$
Reflections collected	9993
Independent reflections	1302 [R _{int} = 0.0547, R _{sigma} = 0.0364]
Data/restraints/parameters	1302/0/90
Goodness-of-fit on \mathbf{F}^2	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0502, wR_2 = 0.1138$
Final R indexes [all data]	$R_1 = 0.0847, wR_2 = 0.1288$
Largest diff. peak/hole / e Å $^{-3}$	0.16/-0.23

Table 12.7: Crystal data and structure refinement for ${\bf 92}$

2, 2-Diffuoro-1, 3-diphenyl propane-1, 3-dione 93

Table 12.8: Crystal data and structure refinement for ${\bf 93}$

Identification code	17srv034
Empirical formula	$\mathrm{C_{15}H_{10}F_2O_2}$
Formula weight	260.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	C2/c
$\mathrm{a}/\mathrm{\AA}$	19.9091(14)
b/Å	5.3345(4)
c/Å	13.0943(9)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	123.898(2)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1154.31(15)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.497
$\mu/{ m mm^{-1}}$	0.120
F(000)	536.0
$Crystal size/mm^3$	$0.31\times0.3\times0.18$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.93 to 57.924
Index ranges	$-26 \le h \le 26, -7 \le k \le 7, -17 \le l \le 17$
Reflections collected	11191
Independent reflections	1531 [$R_{int} = 0.0338, R_{sigma} = 0.0206$]
Data/restraints/parameters	1531/0/87
Goodness-of-fit on \mathbf{F}^2	1.086
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0480, wR_2 = 0.1373$
Final R indexes [all data]	$R_1 = 0.0597, wR_2 = 0.1480$
Largest diff. peak/hole / e Å $^{-3}$	0.45/-0.39

2, 2- Diffuoro-1-(4-chlorophenyl)-3-phenylpropane-1, 3-dione~93c

Table 12.9: Crystal data and structure refinement for $\mathbf{93c}$

Identification code	ASH85
Empirical formula	$\rm C_{15}H_9ClF_2O_2$
Formula weight	294.68
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/Å	7.719(2)
b/Å	7.814(2)
c/Å	11.659(3)
$\alpha/^{\circ}$	102.016(20)
$\beta/^{\circ}$	92.78(2)
$\gamma/^{\circ}$	112.898(13)
$Volume/Å^3$	627.0(5)
Z	2
$ ho_{ m calc}{ m g/cm^3}$	1.5611
$\mu/{ m mm^{-1}}$	0.327
F(000)	300.5
$Crystal size/mm^3$	$0.210\times0.262\times0.377$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.78 to 63.14
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -17 \le l \le 17$
Reflections collected	14755
Independent reflections	4185 [R _{int} = 0.0259, R _{sigma} = 0.0277]
Data/restraints/parameters	4185/0/218
Goodness-of-fit on \mathbf{F}^2	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0415, wR_2 = 0.1150$
Final R indexes [all data]	$R_1 = 0.0553, wR_2 = 0.1225$
Largest diff. peak/hole / e Å^{-3}	0.91/-0.37
	$Z4\overline{Z}$

 $2, 2\mbox{-Diffuoro-1-(4-nitrophenyl)-3-phenyl propane-1, 3-dione \ 93e$

Table 12.10: Crystal data and structure refinement for ${\bf 93e}$

Identification code	19srv123
Empirical formula	$\mathrm{C_{15}H_9F_2NO_4}$
Formula weight	305.23
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
$\mathrm{a}/\mathrm{\AA}$	7.1508(3)
b/Å	8.0322(3)
c/Å	12.1238(5)
$\alpha/^{\circ}$	77.7835(16)
$\beta/^{\circ}$	76.0100(16)
$\gamma/^{\circ}$	77.3328(17)
$Volume/Å^3$	649.93(5)
Z	2
$ ho_{ m calc}{ m g/cm^3}$	1.560
$\mu/{ m mm^{-1}}$	0.133
F(000)	312.0
$Crystal size/mm^3$	$0.35\times0.17\times0.06$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.272 to 55.996
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -16 \le l \le 15$
Reflections collected	12595
Independent reflections	3138 [R _{int} = 0.0521, R _{sigma} = 0.0453]
Data/restraints/parameters	3138/0/199
Goodness-of-fit on F^2	1.033
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0415, wR_2 = 0.1082$
Final R indexes [all data]	$R_1 = 0.0518, wR_2 = 0.1138$
Largest diff. peak/hole / e Å^{-3}	0.58/-0.25

Identification code	ASH88
Empirical formula	$\mathrm{C_{15}H_8Cl_2F_2O_2}$
Formula weight	329.11
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/Å	8.0050(5)
b/Å	8.0563(5)
c/Å	11.9916(8)
$lpha/^{\circ}$	96.853(2)
$\beta/^{\circ}$	96.648(2)
$\gamma/^{\circ}$	115.655(2)
$Volume/Å^3$	679.91(8)
Z	2
$ ho_{ m calc}{ m g/cm^3}$	1.608
$\mu/{ m mm^{-1}}$	0.501
F(000)	332.0
Crystal size/mm ^{3}	$0.150 \times 0.242 \times 0.0397$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.714 to 63.184
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -17 \le l \le 17$
Reflections collected	16351
Independent reflections	4544 [$R_{int} = 0.0298, R_{sigma} = 0.0296$]
Data/restraints/parameters	4544/0/223
Goodness-of-fit on F^2	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0312, wR_2 = 0.0809$
Final R indexes [all data]	$R_1 = 0.0436, wR_2 = 0.0856$
Largest diff. peak/hole / e Å $^{-3}$	0.41/-0.30

Table 12.11: Crystal data and structure refinement for ${\bf 93f}$

2,2-Difluoro-1,3-bis(4-fluorophenyl)-propane-1,3-dione 93g

Table 12.12: Crystal data and structure refinement for ${\bf 93g}$

Identification code	ASH88
Empirical formula	$\mathrm{C_{15}H_8F_4O_2}$
Formula weight	296.22
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/Å	7.5207(19)
b/Å	7.775(2)
c/Å	11.654(3)
$lpha/^{\circ}$	97.358(16)
$\beta/^{\circ}$	97.935(14)
$\gamma/^{\circ}$	112.458(12)
$Volume/Å^3$	611.4(4)
Z	2
$Crystal size/mm^3$	$0.253 \times 0.369 \times 0.480$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.938 to 60.02
Reflections collected	25651

2,2-Diffuoro-1,3-bis(4-nitrophenyl)-propane-1,3-dione 93h

19srv022 Identification code Empirical formula $C_{15}H_8F_2N_2O_6$ 350.23 Formula weight 120.0 Temperature/K Crystal system monoclinic Space group $P2_1/c$ a/Å 13.4814(12)b/Å 6.9481(5)c/Å 15.0112(11) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 96.591(7) $\gamma/^{\circ}$ 90 Volume/Å³ 1396.82(19)Ζ 4 $\rho_{\rm calc} {\rm g/cm^3}$ 1.665 μ/mm^{-1} 0.147F(000)712.0 Crystal size/mm³ $0.34 \times 0.3 \times 0.02$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 5.464 to 55 $-17 \leq h \leq 17, \, -9 \leq k \leq 8, \, -19 \leq l \leq 19$ Index ranges Reflections collected 17018 Independent reflections $3204 [R_{int} = 0.0904, R_{sigma} = 0.0730]$ Data/restraints/parameters 3204/0/226 Goodness-of-fit on ${\rm F}^2$ 1.018 Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0841, wR_2 = 0.2604$ Final R indexes [all data] $R_1 = 0.1276, wR_2 = 0.2511$ Largest diff. peak/hole / e Å $^{-3}$ 0.87/-0.34

Table 12.13: Crystal data and structure refinement for **93h**

Identification code	19srv294
Empirical formula	$C_{11}H_{11}ClO_3$
Formula weight	226.65
Temperature/K	120.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	5.5336(3)
b/Å	26.5949(14)
c/Å	7.2914(4)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	102.921(2)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1045.87(10)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.439
$\mu/{ m mm^{-1}}$	0.348
F(000)	472.0
$Crystal size/mm^3$	$0.23\times0.17\times0.03$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.934 to 58.998
Index ranges	$-7 \le h \le 7, -36 \le k \le 36, -10 \le l \le 9$
Reflections collected	21815
Independent reflections	2903 [R _{int} = 0.0410, R _{sigma} = 0.0280]
Data/restraints/parameters	2903/0/180
Goodness-of-fit on F^2	1.056
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0394, wR_2 = 0.0878$
Final R indexes [all data]	$R_1 = 0.0532, wR_2 = 0.0927$
Largest diff. peak/hole / e Å $^{-3}$	0.38/-0.24

Table 12.14: Crystal data and structure refinement for ${\bf 94b}$

Ethyl (4-nitro)benzoylacetate 94c

	Table	12.15:	Crystal	data	and	structure	refinement	for	94d
--	-------	--------	---------	------	-----	-----------	------------	-----	-----

Identification code	19 srv 295
Empirical formula	$C_{11}H_{11}NO_5$
Formula weight	237.21
Temperature/K	120.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.0608(12)
b/Å	10.8129(10)
c/Å	7.6147(7)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	91.584(4)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1074.98(17)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.466
$\mu/{ m mm^{-1}}$	0.117
F(000)	496.0
$Crystal size/mm^3$	$0.46\times0.21\times0.08$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.892 to 57.996
Index ranges	$-17 \le h \le 17, -14 \le k \le 14, -10 \le l \le 10$
Reflections collected	20718
Independent reflections	2854 [$R_{int} = 0.0646, R_{sigma} = 0.0475$]
Data/restraints/parameters	2854/0/198
Goodness-of-fit on \mathbf{F}^2	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0409, wR_2 = 0.1097$
Final R indexes [all data]	$R_1 = 0.0546, wR_2 = 0.1203$
Largest diff. peak/hole / e Å $^{-3}$	0.38/-0.30

Identification code 19srv260 Empirical formula $C_{12}H_{11}NO_3$ 217.22 Formula weight 120.0 Temperature/K Crystal system monoclinic Space group $P2_1/n$ a/Å 7.3255(6)b/Å 14.0134(11)c/Å 11.1405(9) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 108.533(3) $\gamma/^{\circ}$ 90 Volume/Å³ 1084.32(15)Ζ 4 $\rho_{\rm calc}{\rm g/cm^3}$ 1.331 μ/mm^{-1} 0.097 F(000)456.0Crystal size/mm³ $0.4 \times 0.07 \times 0.06$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.83 to 53.996 Index ranges $-9 \le h \le 9, -17 \le k \le 17, -14 \le l \le 14$ Reflections collected 18915 Independent reflections $2374 [R_{int} = 0.0948, R_{sigma} = 0.0778]$ Data/restraints/parameters 2374/0/189 Goodness-of-fit on ${\rm F}^2$ 1.031 Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0532, wR_2 = 0.1255$ Final R indexes [all data] $R_1 = 0.0845, wR_2 = 0.1408$ Largest diff. peak/hole / e Å $^{-3}$ 0.56 / -0.26

Table 12.16: Crystal data and structure refinement for 94e

Ethyl (3-nitro)benzoylacetate 94f

Table 12.17: Crystal data and structure refinement for ${\bf 94f}$

Identification code	19srv235
Empirical formula	$C_{11}H_{11}NO_5$
Formula weight	237.21
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/Å	8.6967(10)
b/Å	8.7824(10)
c/Å	15.0932(17)
$\alpha/^{\circ}$	76.146(4)
$\beta/^{\circ}$	76.070(4)
$\gamma/^{\circ}$	76.820(5)
$Volume/Å^3$	1068.4(2)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.475
$\mu/{ m mm^{-1}}$	0.118
F(000)	496.0
$Crystal size/mm^3$	$0.34\times0.17\times0.08$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.858 to 56.998
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -20 \le l \le 20$
Reflections collected	19986
Independent reflections	5398 [$R_{int} = 0.0527, R_{sigma} = 0.0661$]
Data/restraints/parameters	5398/0/318
Goodness-of-fit on \mathbf{F}^2	1.030
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0630, wR_2 = 0.1624$
Final R indexes [all data]	$R_1 = 0.0940, wR_2 = 0.1859$
Largest diff. peak/hole / e ${\rm \AA}^{-3}$	0.68/-0.41

Identification code 19srv259 Empirical formula $C_{10}H_{11}NO_3$ 193.20Formula weight Temperature/K 120.0Crystal system monoclinic Space group $P2_1/c$ a/Å 10.0076(14)b/Å 11.2997(16)c/Å 9.2450(14) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 115.701(6) $\gamma/^{\circ}$ 90 Volume/Å³ 942.0(2)Ζ 4 $\rho_{\rm calc} {\rm g/cm^3}$ 1.362 μ/mm^{-1} 0.101 F(000)408.0Crystal size/mm³ $0.37 \times 0.06 \times 0.05$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.518 to 53.982 Index ranges $-12 \le h \le 12, -14 \le k \le 14, -11 \le l \le 11$ Reflections collected 11759 Independent reflections $2056 [R_{int} = 0.1129, R_{sigma} = 0.1038]$ Data/restraints/parameters 2056/0/171 Goodness-of-fit on F^2 1.019 Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0582, wR_2 = 0.1074$ Final R indexes [all data] $R_1 = 0.1049, wR_2 = 0.1304$ Largest diff. peak/hole / e Å $^{-3}$

Table 12.18: Crystal data and structure refinement for **94g**

0.28/-0.22
Ethyl 2,2-difluoro-3-(4-nitrophenyl) 3-oxopropanoate
 211a

Identification code	18srv057
Empirical formula	$\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{F}_{2}\mathrm{NO}_{6}$
Formula weight	291.21
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/Å	7.0838(5)
b/Å	9.1649(7)
c/Å	9.4064(7)
$\alpha / ^{\circ}$	92.399(3)
$eta/^{\circ}$	97.285(3)
$\gamma/^{\circ}$	106.626(3)
$Volume/Å^3$	578.46(7)
Z	2
$ ho_{ m calc}{ m g/cm^3}$	1.672
$\mu/{ m mm^{-1}}$	0.156
F(000)	300.0
Crystal size/mm ^{3}	$0.43\times 0.21\times 0.1$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	4.38 to 58
Index ranges	$-9 \le h \le 9, -12 \le k \le 12, -12 \le l \le 12$
Reflections collected	11966
Independent reflections	$3062 \; [R_{int} = 0.0380, R_{sigma} = 0.0318]$
Data/restraints/parameters	3062/0/225
Goodness-of-fit on \mathbf{F}^2	1.062
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0333, wR_2 = 0.0896$
Final R indexes [all data]	$R_1 = 0.0407, wR_2 = 0.0940$
Largest diff. peak/hole / e Å^{-3}	0.44/-0.24

Table 12.19: Crystal data and structure refinement for $\mathbf{211a}$

Ethyl	2,2-difluoro-2-(4-nitrophenyl)acetate	234a
•	/		/	

 Table 12.20: Crystal data and structure refinement for 234a

Identification code	18srv 057
Empirical formula	$C_{10}H_9F_2NO_4$
Formula weight	245.18
Temperature/K	120.0
Crystal system	monoclinic
Space group	$P2_1/c$
$\mathrm{a}/\mathrm{\AA}$	7.7025(5)
b/Å	17.7810(10)
c/Å	7.6053(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	93.423(2)
$\gamma/^{\circ}$	90
$Volume/Å^3$	1039.75(11)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.566
$\mu/{ m mm^{-1}}$	0.144
F(000)	504.0
$Crystal size/mm^3$	$0.28\times0.15\times0.03$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.298 to 58.986
Index ranges	$-10 \le h \le 10, -24 \le k \le 24, -10 \le l \le 10$
Reflections collected	21973
Independent reflections	2903 [$R_{int} = 0.0383, R_{sigma} = 0.0246$]
Data/restraints/parameters	2903/0/190
Goodness-of-fit on F^2	1.068
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0347, wR_2 = 0.0845$
Final R indexes [all data]	$R_1 = 0.0496, wR_2 = 0.0906$
Largest diff. peak/hole / e Å^{-3}	0.42/-0.28

2,2-Difluoro-2-(4-nitrophenyl) acetic acid 223a

Table 12.21: Crystal data and structure refinement for ${\bf 223a}$

Identification code	19srv021
Empirical formula	$C_8H_5F_2NO_4$
Formula weight	217.13
Temperature/K	120.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.4392(4)
b/Å	7.3807(3)
c/Å	7.6053(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	91.051(4)
$\gamma/^{\circ}$	90
$Volume/Å^3$	847.85(6)
Z	4
$ ho_{ m calc}{ m g/cm^3}$	1.701
$\mu/{ m mm^{-1}}$	0.164
F(000)	440.0
$Crystal size/mm^3$	$0.41 \times 0.22 \times 0.06$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.33 to 57.998
Index ranges	$-14 \le h \le 14, -10 \le k \le 10, -15 \le l \le 15$
Reflections collected	10311
Independent reflections	2255 [R _{int} = 0.0471, R _{sigma} = 0.0401]
Data/restraints/parameters	2255/0/156
Goodness-of-fit on \mathbf{F}^2	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0428, wR_2 = 0.0984$
Final R indexes [all data]	$R_1 = 0.06446, wR_2 = 0.0118$
Largest diff. peak/hole / e Å $^{-3}$	0.33/-0.23