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Macular holes are blinding conditions where a hole develops in the central part of retina, resulting

in reduced central vision. The prognosis and treatment options are related to a number of

variables including the macular hole size and shape. In this work we introduce a method to

segment and measure macular holes in three-dimensional (3D) data.

High-resolution spectral domain optical coherence tomography (SD-OCT) allows precise imaging

of the macular hole geometry in three dimensions, but the measurement of these by human

observers is time consuming and prone to high inter- and intra-observer variability, being char-

acteristically measured in 2D rather than 3D. This work introduces several novel techniques to

automatically retrieve accurate 3D measurements of the macular hole, including surface area,

base area, base diameter, top area, top diameter, height, and minimum diameter. Specifically, it

is introducing a multi-scale 3D level set segmentation approach based on a state-of-the-art level

set method, and introducing novel curvature-based cutting and 3D measurement procedures. The

algorithm is fully automatic, and we validate the extracted measurements both qualitatively and

quantitatively, where the results show the method to be robust across a variety of scenarios.

A segmentation software package is presented for targeting medical and biological applications,

with a high level of visual feedback and several usability enhancements over existing packages.

Specifically, it is providing a substantially faster graphics processing unit (GPU) implementation

of the local Gaussian distribution fitting (LGDF) energy model, which can segment inhomoge-

neous objects with poorly defined boundaries as often encountered in biomedical images. It also

provides interactive brushes to guide the segmentation process in a semi-automated framework.

The speed of implementation allows us to visualise the active surface in real-time with a built-in

ray tracer, where users may halt evolution at any timestep to correct implausible segmentation by



ii

painting new blocking regions or new seeds. Quantitative and qualitative validation is presented,

demonstrating the practical efficacy of the interactive elements for a variety of real-world datasets.

The size of macular holes is known to be one of the strongest predictors of surgical success both

anatomically and functionally. Furthermore, it is used to guide the choice of treatment, the

optimum surgical approach and to predict outcome. Our automated 3D image segmentation

algorithm has extracted 3D shape-based macular hole measurements and described the dimen-

sions and morphology. Our approach is able to robustly and accurately measure macular hole

dimensions.

This thesis is considered as a significant contribution for clinical applications particularly in the

field of macular hole segmentation and shape analysis.
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Chapter 1

Introduction

This thesis is exploring a method to segment and measure macular holes in three-dimensional

space (3D). The robustness of this method is demonstrated by the variety of hole shapes that

it is able to segment and measure automatically. We also implement our method on graphics

processing unit (GPU) to increase procesing speed. Further development of the measurement

method for supporting macular hole morphology in clinical analysis is also introduced.

Firstly, we introduce a multi-scale 3D level set segmentation approach based on a state-of-the-

art level set method (local Gaussian distribution fitting energy model), and novel curvature-

based cutting and 3D measurement procedures. Secondly, we provide a substantially faster

GPU implementation of the local Gaussian distribution fitting (LGDF) energy model, which

can segment inhomogeneous objects with poorly defined boundaries as often encountered in

biomedical images such as 3D OCT imagery of macular holes. Finally, we present an approach

for further clinical application of 3D measurement calculation and shape analysis.

This chapter will introduce the technology that enables acquisition of 3D imagery of the retina

and the importance of image analysis for clinical applications. The structure of this thesis will

also be outlined.
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Figure 1.1: Structure of human retina (with permission of David Steel in [4]).

1.1 Retinal Imaging and Retinal Image Analysis
Human retina, part of the human eye, converts energy as light into electrical signals and

transmitted into the brain but also performs the initial processing of information about the

visual scene [4]. Figure 1.1 shows retinal structure and its parts. The somas (cell bodies) of

the photoreceptors occupy the outer nuclear layer (ONL). In the inner nuclear layer (INL) can

be found the somas of the Horizontal cells, Amacrine cells, Bipolar cells, and Müller glial cells.

Meanwhile the somas of Retinal ganglion cells (RGCs) lie within the ganglion cell layer (GCL).

The processes and synaptic terminals of photoreceptors, Horizontal cells, and Bipolar cells lie

within the outer plexiform layer (OPL), whilst the inner plexiform layer (IPL) contains the

processes and terminals of Amacrine cells, Bipolar cells, and RGCs. The processes of Müller

glial cells span from the internal limiting membrane (ILM) of the retina to the external limiting

membrane at approximately the level of the inner segments (IS) of the photoreceptors and the

nerve fibre layer (NFL) comprising RGC axons, converge to the optic nerve which then travels to

the brain. (Connecting cilia (CC), Bruchs membrane (BrM), Outer segment (OS), Inner segment

(IS), Retinal pigment epithelium (RPE)) [4].

Retinal imaging has risen highly since the invention of the ophthalmoscope more than 150 years

ago [5, 6]. Since the ophthalmoscope needs to be close to the eye of a patient, the recorded
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Figure 1.2: Schematic diagram of SD-OCT system (adapted from [8]).

image of the retina gave birth to retinal imaging technology from digitized slides of fluorescein

angiograms and fundus camera that mainly provide two-dimensional (2D) imagery to optical

coherence tomography (OCT) for 2D and 3D images [7].

OCT technology is based on an optical physics interferometric technique whereby interference

from the splitting of light (to reference and sample) is re-combined again and then extracted by

photodetector [8]. The depth (axial) image resolution is determined by the echo time coherence

length of the light source and OCT retinal imaging, first demonstrated in 1991, has become a

common noninvasive procedure in ophthalmology [9]. With the ability of axial scan, it enabled

3D scanning of the retinal tissue and in particularly the macula (central area of the retinal for

central vision and colour differentiation [10]). OCT has provided the noninvasive cross sectional

imaging in the peripapillary area of the retina [11], detecting and monitoring a variety of macular

diseases, including macular holes [12].

Next to OCT technology is spectral-domain OCT (SD-OCT), which has become the standard of
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Figure 1.3: A normal human fovea generates by SDOCT. (with permission of David Steel in [4]).

care [7], allowing 3D reconstructions for better visualisation of specific tissue structures [13, 14]

and better diagnosis and treatment of ocular conditions [15]. Physics of SD-OCT is almost the

same as OCT. The input electric field (Ein) passing through the beam splitter and then split

into Er (the reference electric field) and Es (the sample electric field). Those Er and Es travel

back through beam splitter again and the resulting Eout travels into the detection array [8] (see

figure 1.2).

The differences between OCT and SD-OCT are that for SD-OCT machine, the reference path

are fixed and the photodetector is replaced with a spectrometer. The spectrometer is a detector

array capturing the intensity spectrum (component frequencies) and then Fourier transformed

into the time domain to reconstruct the depth resolved sample optical structure. This principle

has the advantage that no moving parts are required to obtain axial scans such as in OCT

machine [8].

SD-OCT images describe the presence of normal macula and each of the three pathologies (macu-

lar hole, macular edema and Age-related macular degeneration) separately [16]. In macular holes,

SD-OCT is useful for size classification [17, 18] as well as for quantifying macular hole surgery

outcomes. [19]. SD-OCT also enables the extraction of constructive 3D textural information for

clinical applications [20]. The horizontal SD-OCT image of a normal fovea (Figure 1.3) illustrates

retinal layer [4].

Image processing has been an essential tool in retinal imaging and has contributed to the diagnosis

of the human retina for around 40 years [7, 21]. Modern retinal imaging technology stores
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Figure 1.4: SD-OCT image of the fovea in the retina (left) and the form of the macular hole
between ILM layer and RPE layer (right). Scale bar: x = 11.58 [µm] and y = 3.87 [µm].

photographed images as digital images that keep the same quality over time. Thus, it can be

processed using image processing techniques such as enhancement and restoration to improve

retinal images and segmentation to localise regions of interest for further information extraction

[22, 23].

In this thesis, images of macular hole cases are used from spectral domain optical coherence

tomography (SD-OCT).

1.2 Macular Hole Segmentation and Measurement
A macular hole is a hole that develops in the central part of the retina, and is most commonly

caused by age related vitreous traction on the central fovea [24, 25] (see Figure 1.4).

Early in retinal analysis, the rise of cystoid in the retina, first described in 1865, has become a

focus of attention since then, including the formation of macular holes [26]. As retinal imaging

generates digital retinal images including macular hole images, development of image processing
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technique to segment macular holes has risen prominently. Macular hole segmentation was

proposed in 2D based techniques to segment and separate the hole from the retina/vitreous

boundary [27–30]. Furthermore, [30] proposed a technique to extract shape and volume of

macular holes through slice-by-slice segmentation.

The OCT based for the measurement of macular hole minimum diameter [31] shows correlation

with postoperative visual acuity. In macular hole surgery, base diameter and minimum diameter

have been shown to be valuable for prediction [32] and classification of macular holes [33]. A

selected single slice-based approach or 2D measurement are common techniques for calculating

macular hole diameter [34–37]. Meanwhile, measurement of a macular hole will be more accurate

if 3D shape is considered.

To accelerate 3D segmentation, graphics processing units (GPUs) provide energy efficient parallel

computing and enable real-time interactive segmentation for larger 2D or 3D datasets [38, 39].

The GPU based segmentation can be applied to medical images including macular holes.

In this thesis, new approaches are introduced for 3D segmentation, for separating macular holes

from the vitreous body and measuring 3D macular holes (Chapter 2 (p. 9)), and also acceleration

of 3D segmentation with GPU (Chapter 3 (p. 35)).

1.3 Macular Hole Image Analysis
Macular morphology changes continuously before and after surgery. We need to monitor mac-

ular contour improvement with time. Minimum and basal (base) diameter measurements are

performed for classifying macular hole type before surgery based on a 2D selected image from

SD-OCT [40] or for classifying macular hole size and morphological features [41].

A variety of the size of macular holes has been used to guide the choice of treatment, the optimum

surgical approach and to predict outcome [42–47]. Using a single 2D slice image, all these size

measurements have typically been measured by a human grader using calipers [As the real form

of macular hole morphology is a 3D shape and dimensions of macular holes].

In this thesis, a 3D measurement calculation and shape analysis approach (Chapter 4 (p. 60)) is

introduced for an automated 3D segmentation of macular holes (Chapter 2 (p. 9)).
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1.4 Image Segmentation
Image segmentation subdivides an image and isolates its object of interest [48]. As medical images

play an important part in diagnosis and treatment, medical image segmentation is becoming

a crucial element in medical-image analysis and extracting clinical-related information for the

physicians for decision making [49, 50].

3D retinal image acquired from SD-OCT provide a 3D view of macular hole. The macular holes

segmentation aims holes that occur in the macula as regions of interest. Therefore, a cropping

procedure is applied before the segmentation process. Active contours and level set approaches

have been used to segment OCT data [51]. The level set method was originally developed for

curves in 2D space and surfaces in 3D space [52], so it is compatible with the segmentation of

3D SD-OCT of macular hole images.

The recent method of segmentation applied in image processing is deep learning (a subset of

machine learning), where millions of parameters of deeply layered convolutions are learnt using

backpropagation [53]. Convolutional neural network approach in deep learning is able to perform

image recognition and classification in OCT-based of ophthalmology (mainly in maculae edema,

age-related macular degeneration, retinal disease management, glaucoma and corneal diseases)

[54]. Deep convolutional neural networks models are capable of learning abstract features in the

data; however, their current reliance on such large and strong training datasets as a reference

standard in order to produce accurate outcomes makes them limited for a number of applications.

In this thesis, an approach to 3D segmentation is described for macular holes captured using

SD-OCT (Chapter 2 (p. 9)). This pipeline includes a semi-automated segmentation stage using

state-of-the-art graphical processing unit (GPU) level-set technologies (Chapter 3 (p. 35)).

1.5 Overview of Thesis and Research Contributions
This thesis is divided as follows: the first section is introducing a multi-scale 3D level set

segmentation approach based on a state-of-the-art level set method, as well as novel curvature-

based cutting and 3D measurement procedures. Next we describe our segmentation software

package targeting medical and biological applications, with a high level of visual feedback and

several usability enhancements over existing packages, providing interactive brushes to guide the

segmentation process in a semi-automated framework. Finally, we introduce an application of

the automated 3D segmentation and measurement to describe the 3D morphology of macular

holes. The chapters are outlined as follows:
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Chapter 2 Accurate 3D segmentation and measurement of macular holes

Chapter 3 A novel GPU implementation of a specific active contour model: the local Gaussian

distribution fitting (LGDF) energy for a variety of real-world datasets including a macular

hole dataset

Chapter 4 3D measurement and shape analysis of macular holes
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Chapter 2

Multi-scale Segmentation and

Surface Fitting for Measuring 3D

Macular Holes

Prologue
This chapter introduces a multi-scale 3D level set segmentation approach based on the local

Gaussian distribution fitting (LGDF) method, and introduces novel curvature-based cutting and

3D measurement procedures. This measurement technique automatically retrieves accurate 3D

measurements of the macular hole.

Declaration: This chapter is based on the following publication: Nasrulloh, A. V., Willcocks,

C. G., Jackson, P. T. G., Geenen, C., Habib, M. S., Steel, D. H. W. & Obara, B. Multi-scale

segmentation and surface fitting for measuring 3D macular holes. IEEE Transactions on Medical

Imaging 37, 580–589 (2018). This chapter is presented as published, although referencing and

notation has been altered and cross-referencing added for consistency throughout this thesis.

Some stylistic changes have been made for consistency.
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2.1 Introduction
A macular hole is a hole that develops in the central part of the retina, and is most commonly

caused by age related vitreous traction on the central fovea [24, 25]. The condition affects

approximately 2 in every 1000 individuals over the age of 40 [55], and can have a devastating

impact on the quality of life and on an individual’s independence [25]. Surgery offers a 90%

likelihood of closing the hole but the improvement in vision depends on the duration of the hole,

and is related to a number of variables including macular hole size and shape [47, 56]. Recently,

[30] have proposed the first approach to segment and measure the macular hole; however, their

approach acquires the measurements of the 3D macular hole by combining individual 2D graph-

cuts segmentations of slices in the 3D image, rather than considering the overall 3D geometry.

Our approach includes a fully 3D segmentation algorithm using a state-of-the-art level set method

based on the local Gaussian distribution fitting (LGDF) energy functional [57]. However, despite

the high computational expense with level sets, we achieve fast convergence without relying on

high-end hardware acceleration. This is accomplished by employing a 3D multi-scale approach

that exploits the fact that the macular holes are considered large objects within the 3D image,

processing initial updates at lower spatial resolutions.

This is followed by a novel curvature-based surface cutting procedure, which separates the

macular hole from its background, allowing for fully-automatic measurement of the shape and

volume. The method is shown to be stable to the various 3D input images of different macular

holes without requiring retuning of the parameters, and is shown to be more accurate than

existing graph cut segmentation approaches.

2.2 Contributions
The objective of this paper is to develop an automatic approach to efficiently extract precise

and robust measurements of 3D macular holes. To this purpose, we have developed a level

set segmentation approach that improves the efficiency of the state-of-the-art LGDF energy by

considering multiple scales. Further, we have introduced a novel curvature-based surface cutting

procedure to separate the segmented hole from its background, and proposed novel procedures

for automatically calculating the desired measurements robustly.
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Specifically, we have:

• Composed an automatic pipeline for measuring 3D macular holes.

• Introduced a 3D multi-scale active surface which is 61 times faster than the original LGDF

implementation.

• Introduced an automatic and novel curvature-based surface cutting procedure to separate

the 3D macular hole from the vitreous body.

• Introduced automatic and novel procedures for capturing specific macular hole measure-

ments, based on our robust centerline definition.

• Provided quantitative and qualitative validation of the algorithm’s robustness and perfor-

mance accross a variety of different 3D macular hole images.

2.3 Related Work

2.3.1 Retinal Imaging
The analysis in retinal disease is a large multidisciplinary research area with collaboration from

researchers and clinicians [58, 59]. A comprehensive review by [7] shows that analysis in retinal

disease has led to significant advances in preventing blindness and visual loss, using 2D digital

fundus photography and 3D optical coherence tomography (OCT). The macula refers to the

central part of the retina with the fovea, a specialized part of it with high photoreceptor density,

sited at its centre. It is responsible for fine detailed vision including reading and facial recognition.

OCT is considered a powerful technique for imaging macular disease including macular edema

and macular holes [60]. In contrast, compared to macular edema, research into automatic macular

hole analysis is very limited.

2.3.2 Macular Hole Imaging
Optical coherence tomography allows clinicians to characterize the shape and volume of macular

holes [61], leading to new insights into the pathogenesis of macular hole formation [62]. Spectral

domain optical coherence tomography (SD-OCT) provides higher resolution images with reduced

artefacts compared to time domain OCT [25]. Recently, [27] propose a length-adaptive graph

search metric that accurately segments the retina/vitreous boundary of a 2D OCT image, whereas

[28] use auto-thresholding in ImageJ [29] and measure the binary segmentation of the forward-

facing view of a macular hole.



12

To calculate the volume of a macular hole, [63] propose fitting a truncated cone to a 2D view

of the macular hole, which fails to capture irregularities and depth information. Alternative

3D methods apply 2D segmentation algorithms to each slice in the 3D geometry [30] and then

accumulate the results to provide analysis of macular hole’s 3D shape and volume; however, the

slice-by-slice approach requires verification by a human operator to confirm the segmentation at

each slice. The minimum diameter measurement is also calculated based on single 2D slice [30,

35], which may fail to consider profiles that are elliptical in cross-section.

Similarly, [64] distinguish normal macula and multiple macular pathologies which are macular

edema, macular hole, and age-related macular degeneration from the foveal slices in retinal OCT

images on a slice-by-slice basis. They employ a simple edge-based technique with a canny edge-

detector, which has known limitations where edges are weak, blurred and/or broken; however,

they apply a multi-scale spatial pyramid and identify local binary patterns in texture and shape

encoding to efficiently infer geometric features at multiple scales and spatial resolutions.

In contrast to these approaches, 3D level set methods are able to enforce continuity along all

three axes with subpixel accuracy and smooth surfaces, while remaining robust to noise. They

can segment objects with weak, broken and/or distorted edges by not relying on image gradients

[65].

2.3.3 Active Contours
The snakes active contour model, first introduced in [66], is widely used in the image segmentation

field to deform an initial curve to lock onto edges, lines and endpoints interactively. This concept

was extended by [67], who considered the contour neighbourhood as a region-based energy.

Malladi et al. in [68] formulated the energy update rule using level sets, which allows a deformable

implicitly defined region to surround or fill inside the object of interest. By introducing a

curvature term [69], the evolving speed of the deformable region (contour or surface) can be

controlled such as to prevent leaking through small gaps in the object boundary allowing for

segmentation of more complex shapes.

The Mumford-Shah energy functional [70], establishes an optimal partitioning scheme to divide

an image into parts, which are piecewise-smooth within segments. Early active contour models

solved the Mumford-Shah under the assumption that segments had piece-wise constant intensity

[65], which was later addressed by [71] who define a pixel’s energy based on its local neighborhood
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within a predetermined scale rather than the mean intensity of an entire segment. [57] improves

on this by modifying the data fitting term to consider the intensity variance, through a maximum

a posteriori probability formulation based on Gaussian approximation of the intensity distribu-

tion, called the local Gaussian distribution fitting (LGDF) energy. The LGDF energy functional

is considered a state-of-the-art in the active contour segmentation literature; however, it has

currently only been applied to small 2D images due to its high computational requirements, in

particular relying on multiple Gaussian convolutions per update iteration.

Further, it is difficult for standard segmentation approaches to automatically separate the macu-

lar hole from the vitreous body. Previous work individually applies a 2D graph cut algorithm to

each 3D slice of the macular hole, where the graph cut boundaries are specified with morphological

erosions of adjacent slices. However, this approach requires manual verification of each slice by

a human operator to check the segmentation is plausible [30]. We perform a fully automatic 3D

segmentation algorithm with an automatic procedure to cut the relevant volume of the hole from

the background vitreous body in order to obtain the required measurements.

2.4 Materials
In this paper, we used 30 images of macular hole cases that were provided by the Sunderland

Eye Infirmary, Sunderland, UK. Patients underwent spectral domain optical coherence tomog-

raphy (SD-OCT) on the Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany)

immediately preoperatively as part of routine care. A high density central horizontal scanning

protocol with 30 [µm] line spacing was used in the central 10 by 15 [degrees]. All scans used a 25

automatic real time (ART) setting enabling multisampling and noise reduction over 25 images.

The images were exported anonymised and in a non-compressed format. All of our input images

are 200× 200× 49 voxel sub-regions of the raw data, chosen such that the macular hole is in the

centre (see Figure 2.1).

2.5 Method
We present a novel segmentation approach based on level set methods and regression analysis, for

extracting specific measurements of the 3D shape and volume of the macular hole. The proposed

approach consists of three main parts, discussed in Subsections 2.5.2, 2.5.4 and 2.5.5 respectively.
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Figure 2.1: 2D view of a 3D SD-OCT image of the retina (left) and its 2D cross-section along
the green arrowed line. The region of interest is marked by the red box (right). Scale bar: x =
11.58 [µm] and y = 3.87 [µm].

2.5.1 Overview
Level set segmentation methods, including the LGDF energy functional in [57], implicitly define

the boundary of a segmentation region as the zero level set of a scalar field φ(~x). That is, the

interior of the region is defined as {~x : φ(~x) < 0}, with φ(~x) = 0 on the boundary. Given an

input image I, φ is iteratively deformed using variational methods so as to minimise the energy

functional E(φ, I), resulting in a smooth boundary that separates regions of different properties.

The initial value of φ is set automatically as a small spherical seed region φ(~x) = |~x − ~x0| − r,
where ~x0 is (0.5, 0.6, 0.5) in normalized image coordinates, slightly below the midpoint of the

image, so as to be close to the base of the macular hole (Figure 2.2a). This is then clamped with

a binary step function using a constant value c = 2 outside the sphere and c = −2 inside the

sphere. The segmentation process involves iteratively updating φ so as to minimise the LGDF

functional ELGDF(φ, I) yielding an implicit boundary between vitreous humor and retina tissues

(Figure 2.2b-c).

To increase performance, we initially segment the cavity at low-resolution, then when convergence

is met we progressively upscale both φ and I and iterate until φ and I are at their original
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resolution and fully converged (Figure 2.2b-d). We then cut the segmented cavity from its

opening in a separate procedure (Figure 2.2e) before extracting the final measurements.

(a) Seed (b) Grow (c) Coverage (d) Multi-scale optimization (e) Cut

Figure 2.2: The proposed 3D multi-scale approach iteratively deforms an initial region (a) to fill
(b-c) the cavity of the hole at low-resolution, and then progressively upscales (d) and reiterates
until convergence. This is followed by a curvature-based cutting procedure (e).

2.5.2 3D Local Gaussian Distribution Fitting (LGDF) Energy
We adopt the LGDF energy functional in [57] (originally implemented in 2D) for a 3D active

surface. The total energy E(φ) is given by the summation of three terms: energy ELGDF(φ, I)

which drives the contour to fit along salient image edges, a length term L(φ) which penalizes

the length of the contour to ensure smoothness, and a regularization term P(φ) which keeps φ

approximating a signed distance function to ensure numerical stability:

E(φ, I) = αELGDF(φ, I) + νL(φ) + µP(φ) , (2.1)

where α, ν, µ > 0 are weighting constants. ELGDF(φ, I) is the sum of the energy of each voxel

ELGDF(φ, I, ~x):

ELGDF(φ, I, ~x) =−
∫

Ω

ω(~y − ~x) log(p1,~x(I(~y))M1(φ(~y))d~y

−
∫

Ω

ω(~y − ~x) log(p2,~x(I(~y))M2(φ(~y))d~y ,

(2.2)

where ω(~x− ~y) is a Gaussian weighting function centered on ~x, p1,~x and p2,~x are the likelihoods

assigned to the pixel intensities by Gaussian models of the intensity distributions inside and

outside the contour, and M1 and M2 are indicator functions separating the regions inside and

outside the contour. This is further elaborated in [57]. P(φ) penalizes the deviation of φ from
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signed distance function [71]:

P(φ) =

∫
1

2
(|∇φ(~x)| − 1)

2
d~x , (2.3)

and L(φ) penalizes the length of the contour [72] for a smooth surface:

L(φ) =

∫
|∇H(φ(~x))|d~x , (2.4)

where ~x = [x, y, z] is a voxel in an image I. H is a Heaviside function which we discretize by:

H(x) =
1

2

[
1 +

2

π
arctan(x)

]
. (2.5)

The energy ELGDF(φ, I) is able to segment objects with inhomogenous local intensity mean u(~x)

and variance σ(~x)2 (Equations 22-23 in [57]) allowing for slow changes in intensity accross an

object but penalizing sudden changes within it. The image force term is calculated for both

inside and outside the contour i = 1, 2 respectively, by applying the calculus of variations [57],

yielding:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

(ui(~y)− I(~x))2

2σi(~y)2

]
d~y . (2.6)

To compute the image force term e1 − e2, we expand the brackets in Equation 2.6 to get:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]
d~y

− I(~x)

∫
Ω

ω(~y − ~x)
ui(~y)

σi(~y)2
d~y

+ I(~x)2

∫
Ω

ω(~y − ~x)
1

2σi(~y)2
d~y (2.7)

= Gσ ∗
[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]
− I(~x)

[
Gσ ∗

ui(~y)

σi(~y)2

]
+ I(~x)2

[
Gσ ∗

1

2σi(~y)2

]
, (2.8)

where Gσ∗ denotes convolution with a Gaussian kernel of standard deviation σ.

This local energy is applied locally with the delta function δ(x) (derivative of Equation 2.5)

−δ(φ)(e1 − λe2) with a weighting parameter λ > 1 to give preference to external force e2 and
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hence the contour is preferable to grow to fill the hole cavity. The functional can then be

minimized by solving the gradient descent flow equation [57] which yields the following update

rule:
∂φ

∂t
= −αδ(φ)(e1 − λe2) + νδ(φ)κ+ µ

(
∇2φ− κ

)
, (2.9)

where κ is the curvature [69]:

κ = div

(
∇φ
|∇φ|

)
. (2.10)

To segment the image, we iteratively update the level set function φ according to Equation 2.9.

However, this is computationally expensive, especially in the case of 3D OCT images requiring

tens of thousands of iterations before convergence.

2.5.3 3D Multi-scale LGDF
We improve performance by initially segmenting the hole cavity at a small scale, by downsampling

I and φ (Figure 2.3a). Solving Equation 2.9 at this small scale converges much more quickly and

captures the overall shape of the macular hole. However, the zero-crossing φ = 0 lacks the finer

high-frequency surface details. Therefore we progressively upscale φ and re-solve Equation 2.9,

for multiple scale levels:

S = {si}, ∀i ∈ [1, n], si < si+1 , (2.11)

where si = (sx, sy, sz) and sx, sy, sz are scaling factors for each the x, y, z image dimensions

accordingly. Solving Equation 2.9 for these subsequent scales now only takes a small number

of iterations given that φ = 0 is already near the object boundary in each case (Figure 2.3b).

Finally we are able to process φ at the original resolution (sn = (1, 1, 1)) with a small number

of iterations, capturing the finer surface details (Figure 2.3c).

Downscaling φ and I for the initial multi-scale stage s1 is able to segment the macular hole,

exploiting the fact that the hole is a large object in the OCT image. However, noise introduced

by OCT propagates through the downscaled I, which may prevent the initial evolution from

evolving to fill the hole cavity. Therefore we denoise the I for the smallest scale s1 using a

Wiener filter by [73, 74], which is effective at removing the speckle noise encountered in OCT

imaging [75], and the result is shown in Figure 2.4a. In subsequent scales si where 2 ≤ i ≤ n, we

do not denoise the image as (1) we assume the contour is already filling the hole cavity at this

stage, and (2) we wish to capture the finer surface details unhindered by the denoising process.
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(a) (b) (c)

Figure 2.3: Result of 3D macular hole based on our multi-scale level set segmentation approach.
In our experiment, we choose n = 3 scale levels with scale parameters: (a) s1 = (0.25, 0.25, 1),
(b) s2 = (0.5, 0.5, 1), (c) s3 = (1, 1, 1). We do not alter the z-dimension in our case, as it is
already shallow in the original OCT input images.

(a) (b)

Figure 2.4: (a) OCT image from red box in Figure 2.1 downscaled by s1 = (0.25, 0.25, 1), (b)
Result of denoising using the Wiener filter with default parameters [73, 74].
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Implementation of ELGDF in 3D requires 6 × 3D Gaussian convolutions per iteration, required

for calculating intermediate variables in Equation 2.8. These convolutions are a performance

bottleneck, therefore we use an optimized implementation of Gaussian convolution in the Fourier

domain [76] which supports arbitrarily large standard deviation σ without impacting the perfor-

mance.

2.5.4 Curvature-based Cutting Surface
The problem of LGDF is that it will only separate the vitreous humour from the retinal tissue,

and cannot separate the macular hole from the main body of vitreous humour. We need to cut

the previously segmented vitreous humour in such a way as to only capture the macular hole

shape (Figure 2.2e). In our approach, we initially attempted to cut the macular hole based on

intensity information in the image, but we found that a curvature-based approach is more robust

across the different images.

We compute curvature κ of the 3D active surface by using an efficient integral invariant approach

[77, 78] based on [79], which uses a spherical kernel in 3D. We apply the signum function to φ

and then convolve with a spherical kernel of radius r (Figure 2.5a). This effectively computes the

difference between the inside and outside volume within a sphere centered at every point on the

surface. The radius of the kernel determines the scale of the curves that it responds strongly to.

In our case we find that r = 116.10 [µm] captures the lip of the macular hole (in 200×200×49

[voxels] OCT images), while smoothing out high-frequency surface noise.

The curvature κ (Figure 2.5b) is defined over all points in the OCT image; however, we are only

interested in the surface curvature at the lip of the macular hole. We therefore binarize φ and

select only the surface voxels where κ < 0 (brown voxels in Figure 2.5c). We then fit a two

variable 2nd order polynomial to these voxels (Figure 2.5d). The mathematical function of the

polynomial fitting y(x, z) from the surface voxels with negative κ:

y(x, z) = p00 + p10x+ p01z + p20x
2 + p11xz + p02z

2, (2.12)

where p00, p10, p01, p20, p11, and p02 are coefficients represent the free parameters of the model.

In some pathalogical cases (e.g. Image 25, Table 2.3), the curvature based cutting surface is

too high, and does not cleanly separate the macular hole. Therefore, we use Euclidean distance

transform calculation function for 3D binary image [80] to translate the surface down by a fixed
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Figure 2.5: (a) Spherical kernel applied at the surface φ = 0, (b) Curvature κ on the 3D surface,
(c) Surface voxels with negative κ (brown), (d) Fitting a 2nd order polynomial to these voxels.
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amount of pixels (in x, y and z dimensions) and then convert into microns as listed in the SD-

OCT images property (we choose 154.80 [µm]), and finally “re-grow” the macular hole up to a

fixed distance (we choose 100.62 [µm]) on all images. We find that these extra steps increase our

overall accuracy.

2.5.5 Measurements
From a 2D side-view of the 3D macular hole, ophthalmologists require precise measurements

of the minimum diameter (most narrow point on the hole) and base diameter. To compute

these measurements robustly, we first extract a smooth ‘centerline’ of the macular hole, denoted

C = {~ci}, to act as a frame of reference for our measurements (Figure 2.6 red dashed line). The

centerline is calculated using the approach proposed in [81], but extended to 3D. Specifically,

each coordinate of the ‘centerline’ is defined to be the centroid of the slice:

~ci =

(∫
Ψi

~x d~x

)/(∫
Ψi

d~x

)
=

1

|Ψi|
∑
~x∈Ψi

~x , (2.13)

where Ψi ⊂ Ω ⊂ <2 is a set of the binary segmented pixels for the ith slice (in the y-axis) in the

macular hole after the cutting procedure. The centerline is then smoothed using robust local

regression [82], as in the paper [81], using a smoothing parameter (in our case we choose 0.9 to

represent a span of 90% of the signal). This is important as it ensures the centerline acts as a

descriptor for the overall shape and direction of the hole (especially in the middle as we are not

concerned about the centerline veering off at the top and base of the hole) and ensures that it

remains highly insensitive to surface noise.

We compute the height measurement of the macular hole as the length of C, and then take

the normal of the middle point along C (shown by purple and yellow arrows in Figure 2.6 left)

to act as a basis for the three planes (Figure 2.6 middle: pink, blue, and green lines). The

remaining measurements (top area, base area, and smallest area) are inferred from these planes:

by examining the cross-section at distances 20% and 80% along the curve, and then finding the

minimal cross-sectional area between these two planes accordingly. Since these cross-sections are

generally elliptical, rather than circular, we define their diameters as their major axis lengths,

as in [30].

Ophthalmologists currently use the minimum diameter from a 2D side view of the macular hole.

Therefore we first find the smallest cross-sectional area between the top and bottom planes,
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Figure 2.6: (a) We initially compute a smooth centerline (dashed red line), (b) normal at the
central point is used as a basis for finding the top region and bottom region, as well as the
minimal diameter between these two regions, (c) we view orthogonal projections of the cropped
3D volumes (striped regions) separately from above and below, giving us 2D areas (opaque
regions) measuring the top and bottom of the hole accordingly.

and then calculate the diameter from this cross-section’s centroid to act in place of the 2D

measurement.

2.5.6 Method Parameters and Suggested Default Values
We found stable default level set evolution parameters through both our own empirical tuning

across 30 images provided by the Sunderland Eye Infirmary, Sunderland, UK, and also through

an experiment by minimizing the mean Jaccard Index across the 30 images with ground-truth

segmentations using the built-in MATLAB genetic algorithm implementation [83]. We found

that the results of the genetic algorithm coincide with our own findings, whereby the default

values are chosen to be: σ = 4, α = 20, µ = 1, ν = 39, λ = 1.04, across all images. We

conducted a cross-validation experiment to evaluate the robustness of these suggested parameter

values (σ, α, µ, ν, and λ) using leave-one-out validation [84] (suitable for such small datasets).

The leave-one-out cross-validation across all 30 images results in a mean Jaccard Index of 0.9644

and standard deviation 0.0015. The small standard deviation values indicate the stability of our

proposed parameters.

2.6 Results and Discussion

2.6.1 Qualititive Validation
In this section, we present the results of our automatic segmentation approach for 30 real-world

OCT images provided by the Sunderland Eye Infirmary, Sunderland, UK. Tables 2.1 to 2.6 show
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the results of our multi-scale 3D segmentation after the curvature cutting procedure for each

patient, and also a 2D z-slice showing the maximal hole cross-section of the 3D segmented hole.

The results demonstrate that our approach is able to successfully capture the macular hole in

all the images, in particular several challenging cases such as the narrow hole in Image 8 and

the complex scenario in Image 12. Furthermore, our curvature-based cutting procedure is robust

and can correctly identify the lip of holes that are valley-shaped (Image 2, Image 25), hill-shaped

(Image 1, Image 8, Image 14, ...), flat (Image 6, Image 7, Image 16), and slanted (Image 9). The

curvature cutting procedure is excluded for Image 30 as the hole is fully enclosed and without

any opening (Table 2.6).

2.6.2 Quantitative Validation
In order to validate our method quantitatively, we compare the shape of our automatically

segmented macular hole with 3D ground truth segmentations. These ground truth segmentations

were acquired by a clinical eye surgeon manually sketching a 2D region for each slice of the

macular hole for 10 images (Table 2.1). The results in Table 2.7 show the accuracy, sensitivty,

Jaccard index (ratio of intersection and union between our segmentation and ground truth)

and the Dice similarity coefficient (DSC), as defined in [85, 86]. These metrics are calculated

(1) between the 3D ground truth sketched region, (2) for the same dataset of our 3D multi-

scale LGDF (MS-LGDF) segmentation, (3) for a 3D continuous max-flow (CMF) graph cuts

with default parameters [87–89] based approach using a 5× 5× 5 [voxels] 3D median filter pre-

processing as with [30]. We also constrain the top of the hole manually as a constraint boundaries

(as with [30]). Table 2.7 also show a side-by-side comparison with the ground truth, our method,

and the existing approach in Figure 2.7. In general, we see that our method scores highly in all

cases and that our method more closely captures the shape of the macular hole, in particular at

the macular hole boundary.

We show the 3D measurements extracted with our approach in Table 2.8. Pixels are converted

to [mm] metric scaling according to the OCT image metadata, yielding the real size and form of

the macular hole (volume, surface area, base area, base diameter, top area, top diameter, height,

and minimum diameter). The Bland and Altman method [90, 91] was used to calculate the mean

difference (d̄) and standard error (se) for the base diameter (BD) and minimum diameter (MD).

This includes 30 datasets (Table 2.9) and ground truths acquired from the average of two manual

measurements, taken by a clinical eye surgeon at 4 month intervals (intra-observer validation).

The validation between the ground truth and MS-LGDF has smaller difference than validation
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Table 2.1: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure.

Surface Fitting 3D Segmentation 2D Cross-Section

Image 1

Image 2

Image 3

Image 4

Image 5
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Table 2.2: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure (continued).

Surface Fitting 3D Segmentation 2D Cross-Section

Image 6

Image 7

Image 8

Image 9

Image 10
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Table 2.3: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure (continued).

Surface Fitting 3D Segmentation 2D Cross-Section

Image 11

Image 12

Image 13

Image 14

Image 15
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Table 2.4: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure (continued).

Surface Fitting 3D Segmentation 2D Cross-Section

Image 16

Image 17

Image 18

Image 19

Image 20
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Table 2.5: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure (continued).

Surface Fitting 3D Segmentation 2D Cross-Section

Image 21

Image 22

Image 23

Image 24

Image 25
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Table 2.6: Segmentation results of our multi-scale 3D segmentation after the curvature cutting
procedure (continued).

Surface Fitting 3D Segmentation 2D Cross-Section

Image 26

Image 27

Image 28

Image 29

Image 30
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Table 2.7: Validation of macular hole segmentation results (Mean±Standard Deviation) with the
ground truth between MS-LGDF and 3D CMF.

Segmentation

Method
Accuracy % Sensitivity %

Jaccard

Index %
DSC %

MS-LGDF 99.19±00.56 85.18±04.63 76.34±10.31 86.19±07.55

CMF 98.83±00.74 71.89±07.61 66.31±10.51 79.27±08.33

(a) Ground truth (b) MS-LGDF approach (c) CMF approach

Figure 2.7: 2D cross-sections comparing macular hole segmentations with the ground truth by
an expert, our method, and a 3D CMF graph-cuts approach.

between the ground truth and CMF. MS-LGDF is shown to be robust and stable, producing

the same results when run on the same data. The Bland and Altman plots in Figure 2.8 -

Figure 2.10 from Table 2.9 show the agreement between the manual clinician measurements,

our approach, and the graph cuts approach. The intraclass correlations two-way model Case

2, ICC (A,1) [92], was calculated to show correlation of intra-observer, manual - MS-LGDF,

and manual - CMF (Table 2.9). The correlation coefficient shows greater agreement between

clinician measurements and our approach than with the CMF method. It is worth noting that

the manual 2D measurements are fundamentally limited by their assumption that the cross-

section of the macular hole is circular. This assumption fails in cases where the cross-sections

are elliptical. Therefore we expect to see some disagreement between the proposed automated

3D measurement, which is not limited to such cases, and the manual measurements.

2.6.3 Performance
In our experiments, we measure the performance for all input OCT images with size 200 ×
200 × 49 [voxels] at all the stages in our approach. In particular, the average segmentation



31

Table 2.8: 3D measurements of macular holes with our approach.

3D Image

Data

Volume

[10−3mm3]

Surface

Area

[mm2]

Base

Area

[mm2]

Base

Diameter

[mm]

Top

Area

[mm2]

Top

Diameter

[mm]

Height

[mm]

Minimum

Diameter

[mm]

Image 1 148.55 2.72 0.266 0.97 0.141 0.69 1.43 0.46

Image 2 85.45 1.61 0.199 0.83 0.153 0.56 0.50 0.52

Image 3 82.63 1.73 0.164 0.70 0.128 0.66 0.98 0.46

Image 4 57.94 1.48 0.145 0.71 0.122 0.62 1.06 0.24

Image 5 95.95 1.97 0.219 0.86 0.118 0.65 1.27 0.39

Image 6 45.33 1.19 0.123 0.66 0.065 0.50 0.95 0.34

Image 7 20.25 0.79 0.036 0.34 0.073 0.52 0.97 0.13

Image 8 66.43 1.50 0.164 0.73 0.092 0.55 1.27 0.20

Image 9 61.99 1.35 0.175 0.74 0.098 0.55 0.92 0.31

Image 10 49.36 1.31 0.124 0.70 0.058 0.49 1.21 0.31

Image 11 99.61 2.12 0.247 0.92 0.109 0.69 1.11 0.39

Image 12 62.04 1.41 0.156 0.73 0.103 0.59 1.03 0.34

Image 13 59.46 1.54 0.108 0.54 0.107 0.73 1.19 0.34

Image 14 187.48 3.36 0.374 1.26 0.125 0.67 1.52 0.43

Image 15 76.86 1.90 0.147 0.74 0.092 0.56 1.27 0.44

Image 16 48.72 1.26 0.067 0.49 0.096 0.58 1.08 0.32

Image 17 135.13 2.61 0.253 0.90 0.093 0.63 1.47 0.40

Image 18 54.84 1.29 0.239 1.05 0.086 0.63 0.63 0.52

Image 19 110.10 1.89 0.221 0.64 0.166 0.52 1.12 0.32

Image 20 41.62 1.13 0.036 0.34 0.123 0.62 0.97 0.35

Image 21 64.17 1.58 0.163 0.84 0.121 0.63 0.95 0.31

Image 22 25.95 0.77 0.087 0.37 0.102 0.53 0.58 0.20

Image 23 24.11 0.83 0.043 0.39 0.091 0.56 1.18 0.15

Image 24 65.96 1.67 0.135 0.72 0.089 0.52 1.07 0.39

Image 25 38.80 1.07 0.011 0.20 0.265 1.10 0.70 0.20

Image 26 53.74 1.35 0.091 0.55 0.140 0.58 1.11 0.23

Image 27 59.82 1.43 0.085 0.52 0.138 0.69 1.07 0.28

Image 28 51.59 1.34 0.107 0.63 0.125 0.64 1.07 0.25

Image 29 56.02 1.44 0.160 0.73 0.085 0.52 1.03 0.35

Image 30 7.25 0.26 0.056 0.47 0.011 0.22 0.26 0.22
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Table 2.9: Validation of the base diameter (BD) and minimum diameter (MD). For intra-observer
comparison, d̄ is the old measurement minus the recent. Otherwise, d̄ is the manual measurement
minus our approach or the graph cuts approach.

Observer d̄ [mm] se [mm] Confidence [mm] ICC

Intra-Observer BD 0.023 0.012 0.025 0.9539

MD -0.012 0.010 0.020 0.9153

Manual-MS-LGDF BD 0.033 0.018 0.036 0.9032

MD 0.023 0.014 0.028 0.7849

Manual-CMF BD 0.105 0.020 0.041 0.7744

MD 0.040 0.015 0.031 0.6778

Figure 2.8: Bland-Altman plot of base diameter (left) and minimum diameter (right) for intra-
observer from Table 2.9.
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Figure 2.9: Bland-Altman plot of base diameter for the manual measurement minus our approach
(left) and the graph cuts approach (right) from Table 2.9.

Figure 2.10: Bland-Altman plot of minimum diameter for the manual measurement minus our
approach (left) and the graph cuts approach (right) from Table 2.9.
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performance of our 3D MS-LGDF is 147.65 seconds (2.46 minutes), which is significantly faster

than the original 3D LGDF with a mean of 9122.87 seconds (2.5 hours) to converge. The mean

time for the surface cutting procedure is 19.84 seconds. While the timings in our unoptimized

MATLAB CPU implementation are considered acceptable, we believe our method can be heavily

optimized if rewritten in C/C++. Additionally, the average segmentation performance of our

MATLAB GPU-Array [83] implementation is 91.70 seconds for 3D MS-LGDF and 11.45 seconds

for the surface cutting procedure (significantly faster than manual segmentation, which take

28.10 minutes in average).

The mean time for our automatic procedures to acquire all of the measurements is 1.15 minutes

per OCT image, which is largely due to calculating volumetric analysis metrics in Table 2.8 such

as volume, surface area, base area, base diameter, top area, top diameter, height and minimum

diameter. The automatic minimum diameter calculation takes the longest time due to finding

the minimal cross-sectional area between 20% and 80% of these two planes. The average times

to measure base diameter and minimum diameter manually are 19.06 seconds and 22.73 seconds

respectively (total for both is 41.79 seconds). This exclude calculating the areas, compared to

1.15 minutes for calculating all the measurement using our unoptimized automatic method.

2.7 Conclusion and Future Work
In conclusion, we have proposed an automatic and robust method to both segment and extract

measurements from 3D OCT images of macular holes. In particular, we found that the lip or

opening of the macular hole can be automatically cut based on curvature information, and that

a significant performance increase can be obtained over state-of-the-art level set methods for

large objects through multi-scale techniques. Furthermore, we have proposed a novel method to

collect various macular hole measurements through our definition of a robust centerline, and the

method has been validated both quantitatively and qualitatively.

In the future, we would like to extend our approach to automatically extract more recent

measurements, such as the area ratio factor (ARF) shown to be an effective predictive factor for

diagnostic and treatment outcomes [93].

Epilogue
In this chapter, we demonstrated an extended 3D segmentation method with a novel curvature-

based cutting and 3D measurement procedure for macular holes.
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Chapter 3

Interactive GPU Active Contours

for Segmenting Biological and

Medical Images

Prologue
In this chapter, a faster GPU implementation of the LGDF energy model will be presented,

which can segment inhomogeneous objects with poorly defined boundaries as often encountered

in biomedical images. This method demonstrates the practical efficacy of our interactive elements

for a variety of real-world datasets including a macular hole dataset.

Declaration: This chapter is based on the following publication: Willcocks, C. G., Jackson,

P. T., Nelson, C. J., Nasrulloh, A. V. & Obara, B. Interactive GPU active contours for seg-

menting inhomogenous objects. Journal of Real-Time Image Processing, 1–14 (2017). This

chapter is presented as published, although referencing and notation has been altered and cross-

referencing added for consistency throughout this thesis. Some stylistic changes have been made

for consistency.
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3.1 Introduction
Image segmentation is a large research field with many practical applications, including but not

limited to:

• Biosciences:

– Cellular, developmental and cancer biology.

– Plant biology, including plant-pathogen interactions.

– Animal biology, including virus-host interactions and bacterial infections.

– Microbiology, including food safety.

– Neuroscience, including connectome projects and developmental neuroscience.

• Medicine:

– Automated differential diagnosis.

– Diagnostic measurements, shape and volume, of:

∗ Macular holes in retinal degeneration.

∗ Aneurysms, clotting and infarction.

∗ Tumors, neoplasia and dermatological moles.

∗ MRI segmentation in dementia and Alzheimer’s.

– Computer Assisted Surgery:

∗ Pre-surgical planning and surgery simulation.

∗ Guided surgical navigation.

The primary problems with current segmentation approaches are that they are either: (1) too

limited, e.g. only able to segment objects by simple criteria, such as objects with consistent

mean intensity [94, 95], (2) using too much memory or too slow, taking several hours to segment

large 2D or 3D objects [57], (3) lacking in interactivity with the segmentation process in response

to visual feedback [96], (4) requiring copious training data [53], or (5) difficult to use, requiring

complex interfaces and multiple algorithms [97].

The oldest and most widely cited segmentation approaches are active contours [66]; these are

variational frameworks which allow users to define an initial open or closed curve that deforms

so as to minimize an energy functional, outlining or surrounding the object of interest. While
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active contours have been realized as fully automatic approaches without initial contours [98],

their original foundation as an assisted approach is still important today as it allows users, such

as clinicians, to extract precise measurements from specific objects of interest within a complex

image. However, such interactivity relies on real-time visual feedback; therefore they must also

be computationally efficient.

Graphics processing units (GPUs) provide energy efficient parallel computing and enable real-

time interactive segmentation for larger 2D or 3D datasets [38, 39], but existing GPU seg-

mentation methods currently rely on simple segmentation criteria restricting their usage and

applications. The popular local Gaussian distribution fitting (LGDF) energy model [57] is much

more powerful and able to segment a wider variety of general objects. However, it requires several

intermediate processing steps that must be implemented sequentially, making it challenging to

efficiently implement on graphics hardware. The current implementation of the LGDF energy

model can segment small 2D images (99 × 120 pixels in 27.37 seconds), but requires several

hours of processing for larger 2D or 3D images [57]. For a 3D image of size 256 × 256 × 160

voxels, this would take 6.6 hours if the implementation were available for 3D, preventing usage

in many practical applications.

3.1.1 Contributions
In our approach, we: (1) significantly increase the performance of the LGDF energy model

through an optimized GPU implementation, handling much larger 2D images and even 3D images

at interactive performance, (2) introduce a novel set of interactive brush functions that are

integrated into the GPU kernels such as to modify and constrain the evolving level set in real-

time, (3) provide a ray tracer to view the segmentation results at each time-step, and (4) expose

a simpler and more intuitive parameter space to the user, with suggested values and ranges.

The combination of these four enhancements greatly improves the practicality of what is already

considered a state-of-the-art level set method of particular relevance to the biomedical image

processing communities. Our software is shown to be stable with respect to its input parameters

and robust to noise through a large experiment on synthetic data, and is further evaluated

through segmenting a wide variety of real-world images, such as those in Figure 3.1.

3.2 Related Work
The field of active contours first gained mainstream adoption with the ‘active snakes’ model

published by [66]. This seminal work proposes iterative evolution of an initial spline curve, with
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(a) Brain and ventricles (b) Dental scan (c) Foot bones and tis-
sues

(d) Zebrafish cells

Figure 3.1: A selection of 3D objects segmented by our software. Our interactive method allows
users to efficiently capture specific objects (coloured separately) within the data, such as the
teeth in (b). Image (a) is a simulated brain MRI [99], images (b) and (c) are CT scans [100] and
(d) shows selective plane illumination microscopy (SPIM) of zebrafish eye lens cells [101]. (a)
Brain and ventricles. (b) Dental scan. (c) Foot bones and tissues. (d) Zebrafish cells.

the evolution being governed by the minimization of an energy functional, the local minima of

which correspond to curves that fit along prominent edges in the image. Level set methods

(core theory explained in [102]) model contours implicitly as the zero-crossing of a scalar field.

Originally they were proposed in [69] to model the evolution of inter-region boundaries in physical

simulations. Malladi et al. [68] applied level sets to active contours, with the evolution of the

contour being governed by its local mean curvature and the intensity gradient magnitude of the

image, in such a way that local curvature is reduced and the motion of the contour stops as

it approaches an edge. In [65], the authors develop a level set based active contour framework

in which the energy functional is based on the Mumford-Shah model, rather than image edges,

which in practice are often faint, blurred or broken. The Mumford-Shah energy model [70] is

minimized by an optimal partition of an image into piecewise smooth segments, and high-quality

implementations exist on the GPU [103]. The global optimum can be found using a primal-dual

algorithm [104] resulting in a cartoon-like rendering of the original image. Local solutions, such

as with a trust-region approach [105], have applications in interactive segmentation, where local

edits need to be made frequently.

Deep convolutional neural networks are the state-of-the-art in image segmentation, where millions

of parameters of deeply layered convolutions are learnt using backpropagation [53]. These models

are capable of learning abstract features in the data; however, their current reliance on such large

datasets makes them unusable for a number of applications.
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The influential public datasets with groundtruth segmentations (such as BSDS, MSRC, iCoseg,

FlickrMFC, SegTrack) include RGB videos or 2D images such as cars, chairs, and people. Of

these, the interactive approaches take as input a set of scribbles where objects follow similar

colour distributions [106]. Graph cut segmentation is popular in this field, where Grady [107]

and Vineet and Narayanan [108] propose GPU implementations. For interactive segmentation

in the biosciences, we find the main limitations being (1) the initialization of the foreground-

background scribbles in 3D datasets such as networks and (2) the opaque intermediate steps of

the cutting algorithm making it difficult to obtain a high level of visual feedback. While popular

and easy to validate, these approaches address a different problem to grayscale 3D segmentation

as with imaging modalities (such as CT, PET, SPECT, MRI, fMRI, ultrasound, optical imaging

and microscopy) in the biosciences [38]. There is still a need for benchmark medical datasets

with well-defined interactive performance evaluation [109].

Accelerating image segmentation with GPUs is a large research field with several comprehensive

surveys [38, 39, 110, 111]. The survey by [38] covers a broad range of algorithms and different

imaging modalities, whereas Smistad et al. [39] focuses more on GPU segmentation with a

detailed discussion on the current GPU architecture.

The GPU level set methods in the literature focus on limiting the active computational domain

to a small region near the zero-crossing of the level set function, such as the traditional narrow

band algorithm [112]. More recent extensions classify the active region using simple operations on

the spatial and temporal derivatives of the level set function [95], and then discard unimportant

regions through parallel stream compaction. While limiting the active computational domain

produces excellent performance with lower memory usage, the current implementations all use

simple speed functions that attract the level set to make it grow and/or shrink within a fixed

intensity range [94, 95, 113]. In contrast, the LGDF model proposed by [57] is able to segment

much more challenging images, in which objects exhibit intensity inhomogeneity or even have

the same mean intensity as their background, being distinguished only by intensity variance.

However, to date the only existing implementation runs on the CPU, likely due to the sequential

dependency of convolutions in the intermediate steps. Further, the LGDF model is derived from

[65] who introduce C∞ regularization of the Heaviside and Dirac functions which are non-zero

everywhere, unlike the C2 regularized Heaviside (proposed in [114]) which is non-zero only in

the vicinity of the contour. C∞ regularization restrains the algorithm from converging on local

minima, but precludes traditional narrow band or sparse field algorithms because it requires the

level set to update at all points on each time step.
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GPU active contour methods parallelize the calculation of the energy forces described in the

original snakes paper [66]. Traditional methods rely on simple intensity gradients and are prone

to converging on local minima; however, [115] introduced a diffusion of the gradient vectors called

gradient vector flow (GVF) to address this problem. [116] were one of the first GPU active contour

implementations using GVF, and more recent optimizations in Open Computing Language

(OpenCL) exploit cached texture memory which has spatial locality in multiple dimensions

[117]. The active contour can also be approximated by a surface mesh, such as in [118] who

use Laplacian smoothing on local neighborhoods in conjunction with driving mesh vertices with

gradient and intensity forces. However, these approaches still rely on the image gradient being

a reliable indication of object boundaries, which is not the case in many real-world images [65].

Ever since the original snakes paper, active contours have gained popularity through being able

to interactively edit the contour, or setup constraints to guide its motion [66]. Region-based

active contour methods provide the option to initialize with a simple primitive shape, or sketch a

starting region [119]. The more advanced approach by [120] introduces non-Euclidean radial basis

functions, which are weighted by the image features and blended to form an implicit function

whose sign can be fixed at user-defined control points. The tool by [97] provides an interactive

interface with geodesic active contours [121] and region competition [122]. Region competition

favors a well-defined intensity range, whereas the geodesic approach is better suited for images

with clear edges; by combining both approaches, [97] can segment a broad range of images, yet

it requires significant tuning and can still fail in complex images with neither a well-defined

intensity range nor clear edges.

There are several GPU approaches that produce segmentation without relying on initialization

of a seed region [98]. Clustering methods join regions of a high-dimensional feature space [123]

and superpixel approaches [124] form clusters that are deliberately over-segmented into more

manageable regions. These approaches are good at simplifying complex images, yet they do not

capture specific objects. In contrast, active shape and appearance methods fit a model to the

data based on prior knowledge; however, this inherently makes assumptions of the overall shape

of the objects and fails when these assumptions are not met.

3.3 Method
The LGDF model, originally proposed in [57], builds on existing active contour literature by

introducing a new energy functional based on the local Gaussian distributions of image intensity.
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This functional drives a variational level set approach which is able to segment objects whose

intensity mean and variance are inhomogeneous. Rather than creating segments whose intensity

is as uniform as possible, this algorithm allows slow changes in intensity across an object,

penalizing only sudden changes within it, without relying on a gradient based edge detector

[65].

The segmentation is represented by a level set function φ(~x). The foreground region is the set

of points {~x : φ(~x) < 0} and the exterior (or background) is {~x : φ(~x) ≥ 0}. The contour itself

(or surface in 3D) is thus defined implicitly as the zero level set, {~x : φ(~x) = 0}. Segmentation

is achieved by minimizing a global energy functional:

E = ELGDF(I, φ) + µP(φ) + νL(φ) , (3.1)

where µ, ν > 0 are weighting constants, ELGDF is the LGDF energy term which drives the

contour to fit along salient image edges, P avoids the need to periodically re-initialize φ to a

signed distance function [72], and L penalizes the contour length to ensure smoothness. The

ELGDF term is the sum of the individual LGDF energies for each pixel ~x:

ELGDF(I, φ, ~x) =−
∫

Ω

ω(~y − ~x) log(p1,~x(I(~y)))M1(~y)d~y

−
∫

Ω

ω(~y − ~x) log(p2,~x(I(~y)))M2(~y)d~y ,

(3.2)

where ω(~y−~x) is a Gaussian weighting function centered on ~x, p1,~x is a Gaussian approximation

of the intensity distribution for the part of the neighborhood of ~x lying outside the contour (and

inside for p2,~x), and M1 equals one outside the contour, zero inside (vice-versa for M2). This

quantity is smaller when the intensity distributions in the parts of the neighborhood of ~x lying

outside and inside the contour are well approximated as Gaussian distributions, which can only

be achieved by deforming the contour so that it separates regions of different intensity mean and

variance.

The mean and variance parameters for these local Gaussian distributions are denoted ui(~x),

σi(~x) where i ∈ {1, 2} for regions outside and inside the contour, respectively:

ui(~x) =

∫
ω(~y − ~x)I(~y)Mi(φ(~y))d~y∫
ω(~y − ~x)Mi(φ(~y))d~y

, (3.3)
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σi(~x)2 =

∫
ω(~y − ~x)(ui(~x)− I(~y))2Mi(φ(~y))d~y∫

ω(~y − ~x)Mi(φ(~y))d~y
. (3.4)

Specifically, they express for each pixel the mean and variance of neighboring grey values that

lie outside and inside the contour (for pixels whose entire neighborhood lies on one side of the

contour, only one pair of these values is defined). The size of each pixel’s neighborhood is

determined by the standard deviation of the Gaussian weighting function, ω. This is a user-

defined parameter, denoted σ. A larger neighborhood increases the range from which a pixel

may influence the contour. This results in faster evolution, greater capture range, and a greater

tendency to produce segments whose boundaries separate large regions of different mean intensity.

The internal energy term P penalizes the contour’s deviation from a signed distance function

[72] to ensure numerical stability [125]:

P(φ) =

∫
Ω

1

2
(|∇φ(~x)| − 1)

2
d~x (3.5)

and L penalizes the contour length to ensure smoothness:

L(φ) =

∫
Ω

|∇H(φ(~x))|d~x , (3.6)

where H is the C∞ regularized Heaviside function, discretized to operate on a regular grid, first

proposed by [65]:

H(x) =
1

2

[
1 +

2

π
arctan (x)

]
. (3.7)

The total energy functional (Equation 3.1) can be minimized by applying the calculus of varia-

tions [57] yielding the following PDE:

∂φ

∂t
= −δ(φ)(λ1e1 − λ2e2) + µ

(
∇2φ− κ

)
+ νδ(φ)κ , (3.8)

where δ is the regularized Dirac function δ(x) = H ′(x) [65], λ1, λ2, ν and µ are parameters

controlling the weight of the terms, and κ is the contour’s local curvature [69]:

κ = div

(
∇φ
|∇φ|

)
(3.9)
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and −δ(φ)(λ1e1 − λ2e2) is the force due to ELGDF:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

(ui(~y)− I(~x))2

2σi(~y)2

]
d~y . (3.10)

The data fitting term e1(~x) quantifies how badly the pixel ~x would fit with the outside-contour

parts of its neighbors’ neighborhoods. When e1 is high and ~x does not belong outside, ∂φ
∂t is

made more negative, so φ lowers at that point and the contour grows outwards, swallowing ~x.

The same applies in reverse for e2.

Due to the smooth form of the C∞ regularized Heaviside (Equation 3.7), δ(φ) = H ′(φ) is non-

zero everywhere. This allows φ some freedom to change at any point in the image, not just in a

narrow band around the contour. This helps prevent convergence on local energy minima [65].

3.3.1 GPU Implementation
The goal of the implementation is to iteratively solve Equation 3.8 for φ(~x, t), and visualise

the results at each iteration. This is done by discretizing φ with respect to time and applying

numerical integration: starting with φ(~x, t = 0) (which is specified by the user), an update loop

computes φ(~x, t + ∆t) by computing ∂φ
∂t according to Equation 3.8 and assuming this quantity

stays constant during the short time step ∆t. Existing GPU level set methods implement their

update rule inside a single kernel function; however, ELGDF is more challenging as relies on

intermediate stages with neighborhood operations, such as convolutions and derivatives, whose

sequential dependencies must be considered such as to avoid race conditions.

The update rule in Equation 3.8 requires convolutions (Equation 3.10) of intermediate variables

that themselves rely on other convolutions (Equations 3.3-3.4). The relationships of these

variables are shown in Figure 3.2, where an arrow from A to B indicates that A is required

in the computation of B. Wherever they appear, I denotes the input image and H the smooth

Heaviside function (Equation 3.7). All variables of the form GX represent the n-dimensional

Gaussian convolution of X.

We compute the means and variances (Equations 3.3-3.4) from GIH, GH, GI2H, GI and GI2
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Figure 3.2: Dependency graph between variables in the update process. The red variables require
neighborhood computations whereas the blue variables represent constants. All variables except
for the parameters ν, µ, λ and ∆t are spatially varying fields. The green variables are quantities
that are computed ‘on the fly’ and never stored in a texture.

using the following formulas:

u1 =
GIH

GH
, σ2

1 =
GI2H

GH
− u2

1 , (3.11)

u2 =
GI −GIH

1−GH
, σ2

2 =
GI2 −GI2H

1−GH
− u2

2 . (3.12)

For σ2
i we have used the alternative variance formula Var[X] = E[X2]− E[X]2, and for u2 and

σ2 we have used Gσ ∗ (1−H) = 1−Gσ ∗H in the denominators, where Gσ∗ denotes convolution

with a Gaussian kernel of standard deviation σ. This is not to be confused with σ1 and σ2, the

local intensity standard deviations outside and inside the contour. By exploiting these tricks we

are able to compute Equations 3.11 - 3.12 using only three convolutions per update cycle (since

GI and GI2 are constant). To compute the image force term e1 − e2, we expand the brackets in
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Equation 3.10 to get:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]
d~y

− I(~x)

∫
Ω

ω(~y − ~x)
ui(~y)

σi(~y)2
d~y

+ I(~x)2

∫
Ω

ω(~y − ~x)
1

2σi(~y)2
d~y (3.13)

= Gσ ∗
[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]
− I(~x)

[
Gσ ∗

ui(~y)

σi(~y)2

]
+ I(~x)2

[
Gσ ∗

1

2σi(~y)2

]
. (3.14)

To compute the three terms in Equation 3.14, we first pre-compute the operands of the Gaussian

convolutions (E0, E1 and E2 in Figure 3.2), then convolve them (GE0, GE1 and GE2 in

Figure 3.2), then weight them by 1, I and I2 and sum them. This results in just six convolutions

altogether. Note that e1 and e2 are not computed separately; the variables E0, E1 and E2 are

the three corresponding parts of e1 − e2.

3.3.2 GPU Architecture
The six required Gaussian convolutions require a large number of buffer reads. However, an

n-dimensional Gaussian filter can be separated into the matrix product of n vectors allowing

us to convolve with n 1D filters instead of one very large n-dimensional filter. This reduces l2

texture samples to 2l in 2D or l3 texture samples to 3l in 3D, for a truncated Gaussian kernel of

length l. Therefore our overall algorithm complexity is O(n · l) for an input of size n.

The buffer reads for the horizontal Gaussian pass are coalesced, but for the vertical and depth

passes the reads are not coalesced and therefore very slow. This could be alleviated by transposing

the image between convolutions, making the buffer reads coalesced for vertical and depth passes.

However, transposing the image three times per convolution is slow, even when this is optimized

by using local/shared memory. In our architecture we instead make use of texture memory, which

preserves spatial locality among neighbouring pixels in all three dimensions, making access time

for all three passes comparable to coalesced buffer reads. This allows us to skip the transpositions

altogether and convolve up to four images at once in the available texture memory channels,

yielding faster overall performance than local/shared memory approaches.
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Texture memory buffers must either be read-only or write-only within a given kernel function;

therefore, results computed from data in a texture buffer must be written to a different buffer.

The memory layout for our architecture includes kernels for the separable X, Y and Z Gaussian

passes accordingly, which we show in Figure 3.3. This figure lists our kernels in the order they

are called and shows their inputs and outputs (corresponding to the nodes in Figure 3.2) within

the available 4×32-bit channels per GPU texture buffer. Besides the convolutions, the rest of

our implementation is straightforward; we store the 1D convolution filter weights in constant

memory and all intermediate values reside in registers.

Figure 3.3: Memory layout of our GPU kernels for the 3D case. Each row represents a kernel
operating on 4-channel texture objects A, B, C. The kernels read variables from one or two of
the textures (blue) and write into a single texture (red).

The three Gaussian convolutions of the image and Heaviside (GIH, GH, GI2H, Figure 3.2) are

the result of neighborhood operations, but are not dependent on each other. This is also the

case with the three Gaussian convolutions GE0, GE1, GE2. We therefore create kernels shown

in Figure 3.3 to perform each set of three Gaussian convolutions simultaneously, and two more
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kernels to prepare for them (called ‘Prep Conv 1’ to compute H, IH, I2H, and ‘Prep Conv 2’

to compute E0, E1, E2). The curvature field κ (Equation 3.9) requires all three (two in 2D)

gradient components to be first stored in texture memory in order to avoid race conditions, since

all differential operations are computed by central finite differences, a neighborhood operation.

This is why we compute κ early on and pass it through the Gaussian convolution kernels in the

conveniently available w channel of the texture buffer; computing κ immediately before ‘Update

φ’ would require an extra texture buffer since there is only one unused channel at that point.

After updating, we force the partial derivatives of φ to be zero at their corresponding image

boundaries (in the ‘Neumann/Copy’ kernel) to prevent numerical instability, and copy the result

back into buffer A for the next iteration.

3.3.3 Interactive Brushes
There are many applications in the biosciences, computer vision, medical, and pattern recognition

communities where guidance by human experts is required [66, 97, 119, 120, 126]. The current

interactive GPU level set methods, such as [95], provide interfaces to (1) initialize φ inside/outside

the object, (2) dynamically adjust parameters, and in some cases (3) allow φ to be edited (a

union operator on new objects/regions, followed by rerunning of the algorithm); however, it is

difficult to refine evolution such as to prevent contour leaking or constrain the evolution. The

graph-cuts and radial-basis function approaches [107, 120] allow users to sketch lines or define

control points which are tagged to both the desired object and the undesired regions, but we find

the process difficult to refine where the segmented boundary lies somewhere between the input

locations, where there may not be discernible image intensity features (see Figure 3.4 top-left).

To address these issues, we follow the strategies outlined in the survey [127] with similar functions

to the modeling/graphics literature [128]; however, we closely integrate brush functions with our

segmentation kernels with the goal of editing and constraining φ during the iterative evolution

process itself. Specifically, we provide functions to initialize, append, erase, and constrain (locally

stop evolution of φ) after each iteration of the update step (Equation 3.8), and visualise the

results after each iteration. Note that for simplicity we define our functions with circular (2D)

or spherical (3D) regions, but there is nothing to prevent implementing more bespoke functions,

such as surface pulling [128].

All brush functions are centered at the mouse position ~p with radius r, and are implemented in

the ‘Compose’ kernel (Figure 3.3). We have deliberately arranged the read buffer B to link to
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φ from the previous update iteration. To complete a brush action, we relaunch the ‘Compose’

kernel with the brush parameters followed by the ‘Neumann/Copy’ kernel between each update

iteration. The initialization brush sets φ to a binary step function with a small positive constant

(we choose 2 empirically):

φ(~x) := 2 · sgn(‖~x− ~p‖ − r) , (3.15)

where := denotes assignment. The user can continue to ‘paint’ new foreground regions using the

additive brush:

φ(~x) :=

{
φ(~x)

min(‖~x− ~p‖ − r, φ(~x))

if ‖~x− ~p‖ − r > 0

otherwise .
(3.16)

To erase a foreground region, we simply reassign any values inside the brush region with a small

positive constant:

φ(~x) :=

{
φ(~x) if ‖~x− ~p ‖ − r > 0

2 otherwise .
(3.17)

However, while the erase brush is useful for undoing undesired strokes, it will not stop the

contour from leaking into undesired regions, as φ will continually update and burst through the

previously erased region again. Therefore, we introduce a ‘barrier’ brush to persistently block

the level set from growing into a fixed region. Rather than define this region in another buffer,

we set φ to ∞ and check for ∞ values when computing ∆φ in the ‘Update φ’ kernel:

φ(~x) :=

{
φ(~x) if ‖~x− ~p‖ − r > 0

∞ otherwise ,
(compose kernel) (3.18)

∆φ(~x) :=

{
0 if φ(~x) =∞
∆φ(~x) otherwise .

(update φ kernel) (3.19)

In our implementation, we found it useful to allow users to pause and unpause evolution with

∆t = 0 and ∆t = 0.1, while still allowing users to commit brush strokes. This makes it easier

to guide the contour without having to compete against its growth. Furthermore, by using the

previous value of φ stored in the B buffer z-channel in combination with the rendered value of

φ stored in the A buffer z-channel, we can display the currently brush size and position without

committing the stroke.

In Figure 3.4 we illustrate two simple use-cases of our interactive brushes. In the top row, the

user paints using the ‘barrier’ brush to cover the full image region, shown in blue. This is followed

by the ‘erase’ brush (Equation 3.17), to cut a permissible region in which a new seed region is
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Figure 3.4: Figure illustrating interactive use of our brush functions. The blue region represents
the barrier brush φ =∞ and red regions are where φ < 0 and otherwise φ > 0.

placed (Equation 3.16), which evolves to segment the macular hole without leaking into the

opening (we show this in 3D in the accompanying video). Similarly, in the lower row, the vessels

are segmented without leaking into the heart (see also Table 3.5 2b-c).

3.3.4 Real-Time Rendering
To render the zero-crossing of the level set function φ in 3D, we launch a render kernel after

the Neumann/Copy step in the update loop (Figure 3.3). We send a camera matrix to initialize

each pixel with a ray origin ~o and direction unit vector d̂. We parameterize the ray’s position

by ~r = ~o + d̂s and, assuming φ to be the signed distance to the zero-crossing, advance the ray

in steps by si+1 = si + φ(~r). However, φ is not a perfect signed distance function; therefore,

we must divide our step size by the maximum derivative of φ; this value is not known precisely,

but in practice we find we can obtain sufficiently small visual artifacts at good performance by

choosing a constant step size ∆s = 0.3φ(~r). Further, given that φ is not defined outside of the

image boundaries, we initially advance s0 to the start of the image axis-aligned bounding box

(where the s0 is calculated using an analytical ray-box intersection function [129]). To increase

visual quality, we implement 3D ambient occlusion and soft-shadows by marching the ray in the

directional of the normal and light source once it has hit a surface [130].

The output of our real-time rendering implementation, using hardware trilinear interpolation to
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sample φ and with ∆s = 0.3φ(~r), is shown in Figure 3.5 (the render kernel has negligible impact

on performance).

(a) (b)

Figure 3.5: 3D views during segmentation rendered in real-time. (a) 3D segmented brain. (b)
3D segmented macular hole.

3.4 Results and Validation
In this section we provide quantitative results validating our algorithm’s performance, parameter

insensitivity, and robustness to noise. We also provide qualitative results to justify the utility of

our interactive brushes and assess the segmentation of real-world images from various domains.

To confirm that our algorithm implements the LGDF energy model correctly, we measure the

Jaccard index between the resulting segmentations from the original sequential CPU implemen-

tation and our GPU implementation, and show the results in Table 3.1.

Table 3.1: Comparing the Jaccard index for our GPU implementation with the CPU implemen-
tation.

Image Jaccard index
Synthetic Objects 2D 1

Tumour (small) 2D 1
Tumour (large) 2D 0.981

Macular Hole 3D 0.990
Brain 3D 0.984

Tumour 3D 0.993

These results show the GPU to be near-identical to the CPU implementation; we find small

discrepancies at the boundary at sub-voxel precision caused by different implementations of low-
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Table 3.2: Segmentation without interactive brushes attained from a single circular seed region
inside the object.

PSNR PSNR

15 12.5 10 7.5 15 12.5 10 7.5

Gauss

Salt and

Pepper

Speckle

Clouds

level math library functions and different (mathematically equivalent) algebra in the intermediate

steps (Equations 3.11 and 3.12).

3.4.1 Noise and Parameter Insensitivity
We conducted a large number of noise experiments on a synthetic 2D object, which has sharp and

smooth features, and plot the mean and standard deviation of the results in Figure 3.6. These

experiments all use the same parameters and initialize φ to a small circle inside the synthetic

object. We also qualitatively show a subset of the experiments in Table 3.2 from the same

synthetic 2D object, and for a 3D macular hole [25].

The results in Figure 3.6 show that the method can segment severely noisy images, corrupted

with a PSNR of about 101.05, under a constant parameter assignment. While the results in

Figure 3.6 show the method is more robust to Gaussian noise than speckle noise, it is important

to understand that this is only within the parameters chosen; improvements can generally be

made by adjusting the parameters for individual scenarios. In addition to Gaussian, salt and

pepper, and speckle noise, we implemented a multi-frequency ‘cloud’ noise at a target PSNR,

which simulates intensity inhomogeneity. In Figure 3.6, it appears that the cloud noise improves

under a PSNR of 100.81; however, this is caused by the cloud-like objects inside the synthetic

object being captured. In such cases, we can still segment the underlying object, but only through

decreasing σ or using the interactive brushes.
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Figure 3.6: The Jaccard index of a synthetic ground-truth segmentation and our segmentation
result using the same parameters on 4 different types of noise. The standard deviation is shown
by the error envelopes (transparent shaded regions); our method is robust to several noise types
heavily corrupting the object to a PSNR of about 101.05.

By systematically adjusting the parameters to maximize the mean Jaccard index over all noise

types, we found the following defaults: σ = 3, ν = 50, λ1 = 1, λ2 = 1.05, ∆t = 0.1, µ = 1 (these

are the parameters used in Figure 3.6 and Table 3.2). We also found, through our synthetic

experiments and in segmenting real-world images, that across all of the encountered images we

only need to adjust σ, ν, and λ, where λ1 = 1 + max(0,−λ) and λ2 = 1 + max(0, λ). To make

these parameters more intuitive, we assign more meaningful descriptions to them in Table 3.3.

Table 3.3: Our proposed parameters for controlling the method. All images in this paper are
generated using these three parameters within their suggested range and constants ∆t = 0.1 and
µ = 1.0.

Description Symbol Suggested Range Default

Capture Range σ [1.01, 10] 3

Smoothing Weight ν [10, 90] 50

Shrink or Grow λ [−0.1, 0.1] 0.05

We call σ a ‘capture range’ parameter as it describes the range from which a pixel’s energy may be

affected by the contour (see Equations 3.2-3.4), and therefore determines the capture range. The

parameter ν penalizes the length of the contour (Equation 3.6 and 3.8); a larger ν value results

in a smoother contour which is less likely to burst through small gaps or capture small/sharp

features. Traditionally many active contour methods have been designed to grow or shrink until
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they reach the object boundary and then stop; the parameter λ optionally enables this behaviour

by weighting the image terms e1 and e2 by λ1 and λ2 respectively (Equation 3.8), biasing the

contour towards shrinking or growing. By adjusting these parameters in real-time, inexperienced

users quickly learn to intuitively manipulate them in combination with our interactive brushes.

In most cases, we set λ = 0.05 to prefer contour growth, and adjust only σ and ν.

To further justify the importance of our interactive brushes, we construct 6 extreme synthetic

scenarios in Table 3.4. Images 1-3 show Gaussian, salt and pepper, and cloud noise corrupted to

a severe PSNR of 5 (fail cases in Figure 3.6). By adjusting the parameters and constraining the

contour with our brushes, we can easily (3-5 seconds per image) segment the underlying object.

Images 4-5 show that the LGDF energy can segment noisy objects with intensity inhomogeneity

and weak/blurred edges. Image 6 shows an object whose intensity mean is the same as its

background, with the only difference being in intensity variance.

Table 3.4: The following challenging scenarios are quickly and easily segmented with our
interactive brushes. Images 1-5 have a PSNR of 5 for Gaussian, salt and pepper, and multi-
frequency noise accordingly, and images 4-6 show extreme scenarios of poorly defined and/or
blurred boundaries.

Segmentation Using Interactive Brushes

1 2 3 4 5 6

3.4.2 Segmenting Real-World Images
We evaluate our software against several different imaging modalities using real-world images

and show the results in Table 3.5. In all our results, we only adjust the parameters σ, ν, and

λ as described in Table 3.3. By initializing φ(~x) = 2 uniformly, we are able to automatically

segment small objects without an initial seed region, such as for images of cells. This works

because δ(2) is large enough that φ can still be deformed by image forces, allowing new segments

to appear anywhere in the image; this is not possible with a narrow band approach. In general

the default parameters suggested in Table 3.3 work well for most object segmentations; however,

in challenging cases (such as multiple objects or thin objects) the parameters σ and ν can be
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dynamically adjusted in real-time where the user can ‘slide’ the parameter within the suggested

range until the motion of the contour is satisfactory to achieve the desired result.

Many of the segmentations (Table 3.5 1a, 3a-b, and 5b-c) are not possible with the current GPU

level set segmentation approaches, which use simple speed functions to attract and/or shrink the

contour within a fixed intensity range [94, 95, 113]. For example, when painting an initial seed

region inside a vessel network with intensity inhomogeneity, the active contour will not grow

along the vessel. In contrast, the adopted LGDF energy model allows us to paint a simple initial

sphere anywhere on the object which then spreads through the network of vessels. In cases where

the contour evolution misses a vessel or oversegments part of the object, evolution is temporarily

halted (∆t = 0), local amendments are made, and then evolution is resumed (∆t = 0.1). By

making local adjustments with a high level of visual feedback, we can spot such issues and make

amendments immediately.

3.4.3 Performance and Memory Usage
In our cross-platform C++/OpenCL application, we measure the mean kernel timings over 100

frames for different sized images on a GTX TITAN X and show the results in Figure 3.7.

We can see that the overall algorithm performance is approximately linear in the number of

pixels/voxels, since we process the full dataset as the C∞ Heaviside and Dirac functions are

non-zero everywhere. This agrees with our expected complexity of O(n · l) for an input of n

voxels and a truncated 1D Gaussian kernel of length l.

Figure 3.8 shows how the overall running time increases with larger σ and that the performance

in the z-axis becomes more similar to the y- and x-axes with larger σ. In the practical and

suggested range of σ [1.01, 10] (Table 3.3), it can be seen that the running time increases in

small steps (zoom to the lower-left of the graph). This is because running time is primarily

influenced by the size of the 1D Gaussian filter buffer, whose size is b4σ+ 1c to approximate the

Gaussian function with reasonable support.

We also investigated other optimizations given that the Gaussian convolution is the primary

bottleneck of our approach. We implemented Gaussian convolution in the Fourier domain using

MATLAB GPU arrays. While Fourier convolution allows for a lower order of growth, the benefits

are outweighed by the large constant factor due to the algorithm complexity; this takes 400ms

per frame using a GTX TITAN X, which is off the scale in Figure 3.8.
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Table 3.5: Segmentation results of multiple objects displayed in different colours. 1a shows a
segmented image of HaCaT human cell culture cells using confocal microscopy, 1b shows the
interdigitation of segmented layers of eisosome proteins from cryo-EM tomography data [131],
1c shows a malaria sporozoite [132]. Row 2 shows medical CT scans of the abdomen, body,
and thorax [100]. 3a shows an MRI of a cerebral aneurysm, and 3b an XA angiogram [100]. 3c
shows the structure of the Sec13/31 COPII coat cage from cryo-EM data [133]. Row 4 shows
the herpes simplex virus capsid [134], phi procapsid [135], and the mumps virus [136], all from
cryo-EM data. Row 5 shows applications outside of biology and medicine: 5a is a CT scan of
an engine block [137], 5b sintered alumina [132], and 5c shows a selection of objects from a CT
scan of a backpack [137].

a b c

1

2

3

4

5
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Figure 3.7: Mean kernel timings over 100 frames for different images of different sizes. σ = 3 in
all cases. Despite using texture memory, which is cached and has spatial locality in multiple
dimensions [39], and fast constant memory to store the 1D separable Gaussian coefficients,
convolution in the z-axis is significantly slower than the y and x axes.
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Figure 3.8: Mean kernel timings over 100 frames with increasing σ for 3D macular hole. In
practice we rarely require σ > 10.
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The mean time of 100 iterations with our C++ OpenCL implementation is evaluated across

different hardware and compared to our GPU Fourier implementation and the original MATLAB

version on the CPU (which is vectorized and calls code written in C for the Gaussian convolution).

These results are shown in Figure 3.9.

In Figure 3.9, our algorithm substantially outperforms the original implementation in all images.

Given that we process the entire dataset with compact kernels and separable convolutions, we

can fully utilize high-end GPU hardware to obtain a substantial speedup of up to three orders

of magnitude from the original version, and 1-2 orders of magnitude from our GPU Fourier

convolution version. This means that segmentations which previously took over an hour can

now be achieved in a few seconds, without any trade in quality.

With high-end GPU hardware, our algorithm is limited by memory consumption. We require

48 bytes of texture memory per pixel or voxel for the entire image (4 bytes per channel in

Figure 3.3). In cases where the image does not fit into the available GPU memory, we must

either downsample or crop the region of interest before segmentation.
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Figure 3.9: Mean time [ms] over 100 iterations on different GPU hardware, compared to the
original MATLAB implementation and our implementation using fast Fourier convolution on the
GPU. Our OpenCL implementation achieves over a ×103 speedup over the original vectorized
MATLAB version in larger images, scaling up with the parallel hardware accordingly.
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3.5 Discussion
The primary limitation of our implementation is that we require storing the full dataset at the

original resolution in GPU texture memory, as the C∞ Heaviside and Dirac functions are non-

zero everywhere to reduce convergence on local minima [65]. This also limits the algorithm’s

speed. In future work, we will investigate dynamically adjusting the resolution away from the

zero-crossing of the C∞ Heaviside, to reduce the memory requirements and improve performance,

and evaluate the impact of this approach on segmentation quality.

While there are some excellent publicly available datasets for interactive segmentation of real-

world 2D colour images and videos [106], the problem of segmenting everyday objects in colour

photographs, e.g., with a graph cut approach on distributions of colour information, is funda-

mentally different to segmenting a tissue or organ. In the latter case, the challenge is more often

due to intensity inhomogeneity or poorly defined edges, rather than complex backgrounds or

discontinuities within the object. As with [109], we would like to see benchmark 3D biological

and medical datasets for evaluating interactive performance.

3.6 Conclusion
In conclusion, we have shown that sophisticated level set segmentation energy models, with

sequential dependencies amongst intermediate processing steps, can be implemented efficiently

on the GPU through careful structuring of the GPU kernels within the constraints of the GPU

memory architecture. While active contours are used in unsupervised algorithms, they continue

to benefit from interactive approaches that enable users to guide and constrain the contour

to capture specific parts of more challenging objects. We have shown that the LGDF energy

model proposed by [57] requires little parameter tuning, is robust against different types of

noise, and can be generalized to a broad range of real-world 3D images from biology and

medicine. Segmenting many of these images was not possible with existing GPU level set

algorithms due to their simple energy functionals. We have greatly enhanced the LGDF model’s

performance, making it practical in many more use-cases than before (including 3D images).

We also extended its functionality through interactive brush functions that give direct influence

over the dynamic contour evolution. In the future, we believe GPU adaptations of advanced

segmentation algorithms will continue to proliferate, using similar design processes to ours.
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3.7 Availability
We release our C++/OpenCL software and source code under the GNU General Public License

Version 3, alongside an optional MATLAB wrapper. The implementation is cross-platform using

GLFW with few dependencies, where binaries for Linux and Windows are also available [138].

Epilogue
In this chapter, a faster GPU implementation of local Gaussian distribution fitting (LGDF)

has been presented. It is applicable to a variety of real-world datasets including macular hole

datasets.
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Chapter 4

Macular Hole Morphology and

Measurement Using an

Automated Three Dimensional

Image Segmentation Algorithm

Prologue
This chapter introduces macular hole morphology and measurements based on 3D shape viewing.

This macular hole shape analysis is automatically retrieved from accurate 3D segmentation and

measurements of the macular hole.

Declaration: This chapter is based on the following publication: Chen, Y., Nasrulloh, A. V.,

Wilson, I., Geenen, C., Habib, M. S., Obara, B. & Steel, D. H. W. Macular hole morphology and

measurement using an automated three dimensional image segmentation algorithm. BMJ Open

Ophthalmology. In press (2020). This chapter is presented as submitted, although referencing

and notation has been altered and cross-referencing added for consistency throughout this thesis.

Some stylistic changes have been made for consistency.
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4.1 Introduction
Full thickness macular holes (MH) are a common cause of blindness with a prevalence of up to

0.5% in the over 60-year-old age group and are bilateral in 7-16% [41, 139]. Vitrectomy surgery

is an established and successful treatment, with Ocriplasmin and expansile gas also effective in a

lower proportion of selected patients [56, 140]. Macular holes are classified partly by the presence

of vitreoretinal adhesion at the fovea and optic disc but principally by their size [42]. Indeed,

size is used to guide the choice of treatment, the optimum surgical approach and to predict

outcome. A variety of size measures have been described with minimum linear diameter being

used to divide holes into small, medium and large [42]. Ratios of various size parameters have

also been suggested, including diameter hole index (DHI), macular hole index, and macular hole

closure index [43–46]. Similarly, the difference between base diameter and the minimum linear

diameter (MLD) has been shown to predict response to Ocriplasmin [47]. All these measures have

typically been made using a single two dimensional (2D) slice of a horizontal optical coherence

tomography (OCT) image, and measured by a human grader using calipers. This is known to be

prone to high intra and inter-observer error and also vulnerable to further error from off centre

scan location [141]. Furthermore, the true three dimensional measures of the macular hole are

not measured, with symmetry in the x/y axis being assumed.

We have designed a three dimensional automated image processing algorithm which is able to

segment macular holes with high accuracy. We describe the dimensions and morphology of a

consecutive cohort of 104 macular holes from patients prior to surgery, and compare them to

clinician acquired measurements in 2D.

4.2 Method
The spectral domain OCT images of a consecutive cohort of patients assessed for vitreoretinal

surgery for idiopathic primary full thickness macular hole over a two-year-period in a single

eye hospital, were prospectively collected as part of routine care and retrospectively analysed.

Secondary, myopic, and persistent holes after previous surgery were all excluded, as were eyes with

axial lengths of less than 22 [mm] and greater than 25.5 [mm]. The fellow eyes of patients already

included were excluded. All had undergone spectral domain optical coherence tomography (SD-

OCT) imaging using the Heidelberg Spectralis (Heidelberg, Germany) as part of routine care,

using the same imaging protocol. A high density central horizontal scanning protocol with 30

[µm] line spacing was used in the central 10 by 15 [degrees]. All scans used a 20 automatic
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real time setting enabling multisampling and noise reduction over 20 images. Prior to image

export two independent experienced clinicians measured the minimum linear diameter (MLD)

and maximum base diameter (BD). Observer 2 also measured hole height as previously described

and the height above the inner surface of the retinal pigment epithelium (RPE) at which the

minimum linear diameter was measured. MLD was defined as the horizontal minimum hole

diameter in the approximate mid zone of the hole away from any operculum, in the OCT slice

with the widest dimensions.

The presence of any vitreomacular attachment was noted. In the case of any of the measurements

being greater than 15% different between the two observers’ measurements, the two observers

were asked to independently check their measurements to ensure no transcription or identity

errors had occurred. Differences in the presence of vitreomacular adhesions (VMA) were arbi-

trated by a third experienced grader. The volume of the hole was calculated using the volume

of a truncated cone formula as previously used [63], and diameter hole index as MLD/BD [44].

Each person’s scan was exported as a folder of anonymised non-compressed .tiff files with the

accompanying data file containing the image information including the x, y and z axis pixel/[µm]

conversion ratio. Basic demographic data accompanied each image including age and gender.

The images were then analysed using an automated 3D segmentation algorithm as previously

described. The system uses a state-of-the-art level set method based on the local Gaussian

distribution fitting (LGDF) energy functional, employing a 3D multi-scale approach. This is

followed by a novel curvature-based surface cutting procedure, which separates the macular hole

from its background, allowing for fully-automatic measurement of the shape and volume [1]. We

have previously shown that the method is stable to a variety of different macular hole shapes

and more accurate than other existing graph cuts segmentation approaches, with an accuracy

of segmentation of 99.19% (Table 2.7 in Chapter 2) as compared to a ground truth manual

segmentation approach by an experienced clinician. The procedure is also highly repeatable.

A 3D model of the macular hole was produced with the following axes (Figure 4.1):

• x: the axis along the base of the macular hole in the horizontal line scan.

• y: the axis representing the retinal height, from the RPE to internal limiting membrane

(ILM).
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Figure 4.1: Schematic diagram of the MH 3D model (a) and SD-OCT of a MH with 2D labels
(b).

• z: the axis across the macular hole slices and at right angles to x and y.

The following parameters were derived from the 3D model and expressed in [µm] units:

1. The maximum and minimum diameters of the base area (BA) of the hole i.e. the area of

the hole in the plane of the RPE, and the axes of the maxima in the xz and xy planes of

the scan. The maximum diameter represents the base dimension most commonly measured

clinically.

2. The maximum and minimum diameters of the minimum area (MA) of the hole defined as

the minimum area in the central 20% - 90% of the hole height. The minima of the MA

represents the minimum linear diameter (MLD) as used clinically and in the international

vitreo-macular interface (VMI) classification. The meridian of the minimum axis in the xz

and xy planes were also measured as well as the height of the minimum area as measured

perpendicularly above the RPE.

3. The total surface area and volume of the extracted 3D macular hole shape measured in

pixel areas and voxels respectively.
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4. The diameter hole index defined as the minimal dimension of the minimum area divided

by the maximal dimension of the base area.

All data and scans were collected as part of routine care and fully anonymised, and as such under

UK guidelines the investigation was categorised as service evaluation and did not require ethical

approval. Preoperative visual acuities were recorded either using Snellen charts or early treatment

diabetic retinopathy study (ETDRS) letter charts and converted to logarithm of minimal angle

resolution (logMAR) visual acuity for analysis.

4.2.1 Statistical Analysis
Descriptive and statistical analysis was performed using R [142] and plots using ggplot2 packages

[143].

Macular hole variables are presented in terms of mean, standard deviation (SD) and range when

normally distributed, and percentage as appropriate. Distribution plots are given for a variety

of parameters.

Association between continuous data were assessed using correlations and between categorical

data using two sample t-tests. Stepwise multiple regression was used to analyse the effect of

multiple variables. Statistical significance was considered with a p-value of 0.05 or less.

4.3 Results
Images and clinical data on 104 eyes from 104 patients were analysed. The mean age was 70-years-

old (SD 6.6, range 48-84), 85 (82%) were female and 52 (50%) were right eyes. Vitreomacular

traction (VMT) was present in 27 (26%).

4.3.1 3D Image Analysis
The parameters as measured by the image analysis approach are presented in Table 4.1. The

mean diameter of the MA was 384.7 [µm] (SD 155.1, range 133-899 [µm]).

There was a mean difference of 54.87 [µm] between the maximal and minimal dimensions of the

MA and 87.14 [µm] for the BA, representing 17% and 12% of the mean dimensions, but ranging

up to 48% and 36% respectively.
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There was no clear trend for these meridian differences to vary in extent in holes of different

sizes. (See Figure 4.2)

Figure 4.2: Difference in the maximal and minimal dimensions of the MA compare to the mean
diameter of the MA.

The mean angle to the x axis of the minimal dimension of the MA was approximately 90 [degrees]

in the xz plane i.e. at nearly right angles to the horizontally acquired SD-OCT scan, with a

slight tilt downward. Only 10 of the 104 images had a minimal dimension within 10 [degrees] of

the horizontal. There were small variances, mostly within 2.5 [degrees] in the minimal dimension

in the xy plane. (Figure 4.3)

By distinction the maximum dimension of the BA was approximately in line with the x axis,

with 40 of the 104 images (38%) being within 10 [degrees] of the horizontal.

The minimum dimensions of the MA were related to the maximum of BA with a quadratic

relationship. The rate of increase of the maximum BA was smaller relative to the rate of increase

of the minima of the MA particularly for larger holes. The fit of the quadratic (shown as solid

line) was better than the linear fit (shown as dashed line with slope beta = 0.5, p=0.004)(

Figure 4.4).

The height of the MA increased with the width of the MA. Wider holes had MAs that were

higher from the RPE than narrower ones. (Figure 4.5)
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Figure 4.3: Axis of minima of minimum area in xz plane compare to its axis of in xy plane.

Table 4.1: Baseline parameters of MH derived from image analysis algorithm.

Parameter Mean SD Minimum Maximum
Retinal height at centre of Hole [µm] 366.28 52.73 223.11 487.65
Minimum dimension of MA [µm] 357.27 152.77 110.26 871.27
Maximum dimension of MA [µm] 412.14 159.17 146.91 926.70
Height of centre of MA above RPE [µm] 189.14 64.11 50.31 341.45
Difference between maxima and minima of MA [µm] 54.87 34.01 4.71 143.92
Difference expressed as a percentage
of mean dimension of MA [%]

15.69 10.05 1.78 47.89

Angle in xz plane of axis of minima of MA [degrees] 89.58 44.15 1.85 175.73
Angle to xy plane of MA [degrees] -0.37 2.09 -6.98 9.97
Minima of BA [µm] 716.09 250.42 147.58 1,408.65
Maxima of BA [µm] 803.23 267.13 192.57 1,474.14
Difference between maxima and minima of BA [µm] 87.14 47.41 15.29 266.73
Difference expressed as a percentage of
mean dimension of BA [%]

12.22 6.57 1.79 36.21

Angle in xz plane of BA maxima [degrees] 4.36 33.12 -86.49 85.32
Surface area [mm2] 1.66 0.81 0.25 4.28
Volume [×10−3mm3] 0.74 0.48 0.068 2.36
Diameter hole index 0.45 0.12 0.22 0.81



67

Maxima of BA [μm]

M
a
x
im

a
 o

f 
M

A
 [
μ

m
]

0

Figure 4.4: The relationship between the mean dimension of BA and the mean dimension of MA
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Figure 4.5: Mean width of MA compared to the height of MA of the MH.
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Several of the macular hole dimensions were highly collinear in particular the MA, BA, surface

area (SA) and volume. DHI correlated poorly to most other parameters with the exception of a

weak association with MA. Retinal height similarly was weakly correlated with BA, volume and

SA and negatively correlated with DHI. (Figure 4.6)

4.3.2 Macular Hole Shape
Heat maps with colour coding of the number of overlapping hole outlines in the xy, xz and yz

profiles are shown in Figure 4.7a, 4.7b, 4.7c, giving a representation of shape in the three planes.

To assess the vertical symmetry of the macular hole, the centre point of the hole on the inner

surface was mapped to the base area (Figure 4.7d), with the centre line of the holes shown

schematically in (Figure 4.7e), showing that several of the holes did not have an orientation

perpendicular to the retinal surface.

Hole shaped varied widely as shown in Figure 4.8 where the holes are ordered according to BA.

The presence of VMT (shown as darker shading) was not related to hole size.

4.3.3 Human Measurements and Their Relationships to Algorithm

Values
The measured values for the macular holes for observers 1 and 2 are shown in Table 4.2.

Table 4.2: Observers 1 and 2 macular hole measurements based on 2D OCT images.

Observer Parameter Mean SD Minimum Maximum

1
MLD [µm] 406.6 151.9 122 885
BD [µm] 787.1 255.1 242 1416

2

MLD [µm] 403.8 179.5 105 1122
BD [µm] 825.8 268.1 225 1507
Hole height [µm] 389.6 55.2 240 515
MLD height [µm] 190.5 55.8 71 341

Mean of observer 1 and 2
MLD [µm] 405.3 162.2 113.5 965
BD [µm] 806.5 259.9 233.5 1461.5

Difference between mean of
observer 1 and 2 versus
algorithm derived values

MLD [µm]
([%] difference from algorithm)

+47.9 (11.9) 53.4 (13.3) -90.8 (-26.9) 212.8 (49.2)

BD [µm]
([%] difference from algorithm)

+87.1 (12.2) 47.4(6.6) 15.3 (1.79) 266.7 (36.2)

There was no significant difference for MLD between Observer 1 and 2 (p=0.69) but there was a

significant difference in measured BD between the two observers (mean of the differences 38.75
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Figure 4.6: Correlation between mean dimension of MA and BA, surface area, volume, DHI and
height of the MH.
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(a) (b) (c)

(d) (e)

Figure 4.7: Heat maps with colour coding of the number of overlapping hole outlines in the xy,
xz and yz profiles (a, b, c); mapping of centre point of hole to base area (d); centre line of hole
at apex compared to retinal surface (e).

[µm] with observer 2 overestimating BD compared to observer 1, P<0.0001). (Figure 4.9). The

95% limits of agreement between the two observers for MLD were -140.3 [µm] (-164.6 [µm],

-115.9 [µm]) to 145.9 [µm] (121.6 [µm], 170.3 [µm]) and those for BD were -161 [µm] (-181.8

[µm], -140.2 [µm]) to 83.5 [µm] (62.7 [µm], 104.3 [µm]).

The mean of both observers for MLD and BD differed significantly from the algorithm acquired

measurements (p<0.0001 for both) with both observers overestimating MLD and BD signifi-

cantly. (Figure 4.9)

The MLD height was not significantly different to the algorithm derived values (mean 189.1 [µm]
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Figure 4.8: Schematic diagram of hole shapes ordered according to base area, with presence of
VMT as darker shading.
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Figure 4.9: Bland Altman plots for BD diameter measurements with observer 1 against the
algorithm and observer 2 against the algorithm superimposed. The 95% confidence intervals are
shown for the mean differences (shaded) and 95% intervals for the differences (lines).

versus 190.5 [µm], p=0.76) but as can be seen in Figure 4.10 there was wide variability between

the values.

The retinal height was significantly different to the algorithm acquired measurement. (mean

366.3 [µm] algorithm versus 389.6 [µm] Human p<0.001)

Using the human measured MLD, 16 holes were classified as small (<250 [µm]), 44 medium

(251-400 [µm]) and 44 large (>400 [µm]). Using the algorithm measures of the minimum

dimension of the MA as compared to the mean of the human measured MLD resulted in a

change in classification in 25 of the 104 eyes, with 26 classified as small, 48 medium, and 30

large. (Table 4.3).

The human derived DHI and volume differed significantly from the algorithm values with high

variability. The human observers overestimated DHI compared to the algorithm derived values.

Volume was slightly underestimated using the human observers measurements but with a trend

to increased variability as hole size increased. (Figures 4.11 and 4.12).
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Figure 4.10: Bland Altman plots for algorithm derived measured height of minimum area above
RPE and human measurements of MLD height. The 95% confidence intervals are shown for the
mean differences (shaded) and 95% intervals for the differences (lines).

Table 4.3: Classification of MH based on size. Algorithm derived measurements in black, human
measurements in grey.

<250 [µm] 250-400 [µm] >400 [µm] Algorithm
<250 [µm] 16 9 1 26
250-400 [µm] 33 15 48
>400 [µm] 2 28 30
Human 16 44 44 104

4.3.4 Associations with Preoperative Variables
Age, gender, VMT presence and laterality were not associated with any size variable nor DHI.

Preoperative visual acuity was positively associated with size both for MA r2 = 0.57 , higher

for minimum than maximum diameter) and BA (r2 = 0.56, higher for maximum diameter

than minimum) as well as volume (r2 = 0.54), surface area (r2 = 0.57, and height of the MA

(r2 = 0.45) but not retinal height (r2 = 0.08) nor DHI (r2 = 0.02) (Figures 4.13). Using the

mean human measurements, the correlation values were slightly lower at MLD (0.49) and BD

(0.48).
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Figure 4.11: Bland Altman plots for human and algorithm derived DHI measurement. The
95% confidence intervals are shown for the mean differences (shaded) and 95% intervals for the
differences (lines).

4.4 Discussion
We have described the 3D morphology of MH using a novel and validated automated 3D

segmentation algorithm. The algorithm is robust and was able to accurately segment the full

consecutive series of 104 SD-OCTs included in the study, including when there was VMT present.

We used a high density scanning protocol with 30 [µm] line spacing and averaging 20 A scans

per line, reducing noise and meaning that the scan lines were more likely to include the maximum

hole dimensions [141]. We have previously shown that the 3D image analysis methodology we

used can very accurately segment out the macular hole boundaries as compared to a human

observer, and can therefore be regarded as providing a ground truth for macular hole dimensions

and shape. MH are shown to be complex shapes with significant asymmetry, meaning that

conventionally acquired clinician measurements fail to represent their key parameters accurately.

For example, we found that the xz meridian of the minima of the MA was only within 10

[degrees] of the conventionally measured horizontal x axis in 10% of cases, and differed from the

human measured MLD by a mean of nearly 50 [µm], and up to 200 [µm]. Similarly, the true

maximum base diameter varied from the mean of the human measurements by 87 [µm] or 12%.
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Figure 4.12: Bland Altman plots for human and algorithm derived MH volume. The 95%
confidence intervals are shown for the mean differences (shaded) and 95% intervals for the
differences (lines).

The resultant differences led to a reclassification in size using the International Vitreomacular

Traction Study Group classification in a quarter of the patients [42, 144, 145]. This has significant

implications for studies using macular hole measurements to predict outcomes and to act as cut

off points for deciding on treatments.

The human measurements had a consistent tendency to overestimate the widths of the holes.

To measure a macular hole MLD, a human observer must first accurately locate the scan line

with the greatest dimensions and then pick the minimum hole dimension, avoiding the area of

the operculum if present. The minimal dimension is typically measured parallel to the RPE.

Measuring MH using a horizontal line scanning protocol relies on the MH being symmetric but

we show that the holes were significantly asymmetric in all dimensions. There was a mean

difference of 55 [µm] in maximum and minimum dimensions of the MA and 87 [µm] for the same

measures of the BA. These differences concur with those found by Philippakis et al. [144] using

en face SD-OCTs to measure MH dimensions, although they did not comment on the orientation

of the maximum/minimum measurements. The minima of the MA were typically approximately
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Figure 4.13: Schematic diagram representing all 104 holes by their height, base, minimal and
top dimensions and ordered by preoperative visual acuity. The variability in the maxima and
minima of the MA and BA is shown by the thickness of the borders of the holes. Holes with VMT
are shaded in darker grey. The association between hole size and preoperative visual acuity is
clearly seen with a trend towards bigger holes at the base of the diagram. The lack of association
between hole size and VMT and preoperative visual acuity and VMT is also seen.
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90 [degrees] to the horizontal, whilst the maximum of the BA was predominantly horizontal.

The holes were therefore oval with their maximum dimension in the xz axis at the horizontal

meridian. Interestingly this corresponds to asymmetries found in the foveal vascular zone (FAZ)

where previous studies have found an approximate 30 [µm] difference with the horizontal diameter

being widest [146]. It is known that FAZ size is closely related to foveal floor size, and a recent

study has suggested an association between macular hole size and foveal floor width [147, 148].

The minimal area had a tilt to the horizontal ranging from -7 to +10 [degrees], and over 5

[degrees] in 7%. Furthermore, although the holes were generally vertical the centre point of the

MA and BA were misaligned by over 150 [µm] in 70% of the eyes. This therefore adds to the

measurement error of human graders who have tended to measure the MLD and maximum BD

on the same SDOCT slice when in reality this occurrence will rarely occur. These asymmetries

further explain the human measurement error compared to the true measurements found by the

algorithm, but the two observers also varied significantly between themselves, as others have

noted. The 95% limits of agreement between the two observers for MLD were -140 [µm] to 146

[µm], which is in broad agreement with the values found by Banerjee et al. [149]. We asked

observer 2 to record the height above the RPE at which they measured the MLD and found that

although it was not significantly different to the height the algorithm measured the minimal area

at, it varied from the algorithm by more than 40 [µm] in 29% of eyes, and it is likely that this is

another source of error between observers. The two observers were both experienced in measuring

macular holes and from the same institution and it is likely that less experienced observers, with

different training may have had even greater differences between them. If different scanning

protocols and SD-OCT machines were added, then the differences would be greater again. We

did not assess intra-visit variability which would have increased the variability further.

A number of derived values have been proposed to assess macular holes with including DHI

and hole volume. We automatically calculated these using the algorithm and compared them

to the values generated by human measures. Both significantly varied from the human derived

values particularly in larger holes which might explain some of the conflicting results in the

literature for their utility. A number of other novel predictive factors for hole closure and visual

acuity have been suggested including area ratio factor [93] (surface area of hole/ base area)

which will optimally rely on an automated segmentation algorithm as we have described. We

did not attempt to measure external limiting membrane (ELM) height which has been shown to

be predictive of outcome on its own [150], and could therefore also not measure the macular hole

closure index which has also been shown to be useful in predicting surgical results [46].
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The accurate algorithm derived measurements we have presented allow us to examine some shape

relationships. We found that retinal height was only weakly associated with the BA but not with

MA, and height was negatively related to DHI. In other words as holes widened at their base

they became higher, and the DHI increased with height with the increase in BA. There was a

quadratic relationship between MA and BA, with holes getting wider in both dimensions with an

approximate 1:2 ratio, but with the rate of increase of the BA being smaller relative to the rate

of increase of the MA, particularly for larger holes. It is known that macular holes enlarge with

time. Two hypotheses have been proposed to account for MH enlargement and shape change.

One is based on hydration of the para-hole retinal tissue [151], and another that the retina at the

fovea is bistable and tangential traction after hole formation results in the hole edges everting

akin to an umbrella in the wind [152]. Based on the bistable theory, BA would be expected to

increase more than MA as enlargement occurs. This is not what we describe although we present

a snap shot of holes rather than a longitudinal study which may have produced different results.

It is thought that most macular holes are formed by the effects of antero-posterior vitreoretinal

traction and VMT. 26% of the holes in this series had VMT which is keeping with figures from

the same population area that we have previously reported on [153]. We found no significant

association between the presence of VMT and any of the size parameters measured which is in

keeping with the findings of Philippakis, Amouyal et al. [144]. Forsaa et al. found that a small

MLD combined with a large BD was inversely associated with the presence of VMT and thus

hypothesised that after VMT release macular holes tended to assume a more triangular rather

than rectangular shape [41]. Using our data fitting a logistical model to the presence of VMT

gave a model where VMT was associated with increased MLD and decreased BD, but neither

variable was statistically significant. This is in the same direction as Forsaa et al. [41], but not

statistically significant. The lack of a relationship can be seen on our shape diagram, Figure 4.13.

We assessed the association of age, gender, and preoperative vision with the algorithm and

human measured values. Age and gender were not significantly associated with any parameter

but preoperative vision was as other authors have found [154, 155]. Interestingly the strongest

relationships were all those derived from the algorithm as opposed to the human observers.

However, some of the preoperative visions were checked without a protocol refraction and on a

Snellen chart before conversion to logMAR and hence are clustered and exact relationships are

uncertain.

Three other approaches have been suggested to evaluate macular hole shape and dimensions

beyond that achieved by measuring from standard SD-OCT line scans. Philippakis et al.
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elegantly demonstrated the use of en face reconstruction to measure macular hole minimal area

and dimensions [144]. The technique; however, had a high technical failure rate of ∼50%, often

had to be manually adjusted when VMT was present, and was unable to measure other hole

parameters. Problems may also be encountered with this technique in cases where holes are

misaligned vertically as we have already observed above. Geng et al. used a manual segmentation

technique combined with MATLAB to produce a 3D representation of the hole from which a

variety of 3D parameters could be measured but involves a very time consuming manual mark up

[93]. Xu et al. have described an approach of automatically measuring macular hole dimensions

based on the sum of 2D images [30]. In contrast to the solution by Xu et al., our algorithm

considers the overall 3D geometry of the hole and is significantly faster. We have also validated

the accuracy of the system used in this study against human segmentation in a set of 30 eyes

and showed very high accuracy.

Our study has several limitations. We did not correct the measurements for axial length

although we restricted the entry criteria to eyes with axial lengths between 22 [mm] and 25

[mm] to minimise errors introduced by this. Furthermore, inaccuracies introduced by doing

this would only affect absolute measurements, not the differences in dimension we describe nor

differences from the human measures. The exclusion of eyes with more extreme axial lengths

limits the applicability of our results. We used a specified scanning protocol which also limits

the applicability of our technique and although a consecutive cohort, our sample was restricted

to patients undergoing surgery in one centre which may not be representative of all idiopathic

macular holes or other ethnicities and populations.

In conclusion we present a 3D automated MH segmentation system that is able to accurately mea-

sure MH dimensions and present the detailed dimension findings from a cohort of 104 consecutive

macular holes, showing significantly different results from experienced human graders. Macular

hole size is known to be one of the strongest predictors of surgical success both anatomically

and functionally. Evaluation of the measurements generated from this automated system, in a

prospectively collected dataset of eyes undergoing surgery with outcomes analysis will be of great

interest.

4.5 Implementation
All codes (Chapter 2 and Chapter 4) were implemented and written in MATLAB 2018a [83] on

Linux Ubuntu 64-bit PC running an Intel Core i7-4790 CPU (3.60 GHz) with 16GB RAM and

GeForce GTX 1080. The source code is available in a GitHub repository [156].
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4.6 Epilogue
In this chapter, we have provided an application of an automated 3D segmentation and mea-

surements of macular hole in the analysis of macular hole morphology.
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Chapter 5

Concluding Remarks

In this thesis, new techniques have been introduced for the 3D segmentation and measurement

of macular hole objects in 3D OCT images. These methods have been built upon the ideas and

concepts of a multi-scale 3D level set segmentation approach based on a state-of-the-art level set

method, and novel curvature-based cutting and 3D measurement procedures (Chapter 2 (p. 9)).

A substantially faster GPU implementation of our level set method (Chapter 3 (p. 35)) has

been developed. It can segment inhomogeneous objects with poorly defined boundaries as often

encountered in biomedical images including 3D macular hole images.

Finally, an approach has been developed for the 3D shape-based measurements and shape analysis

of macular holes. Here, further application and measurements from Chapter 2 (p. 9) have been

applied to describe the dimensions and morphology (Chapter 4 (p. 60)).

5.1 Contributions to the Research Field
This thesis constitutes a series of contributions to the research area of image processing and

shape analysis, especially in the field of macular hole clinical applications.

In Chapter 2 (p. 9), we described an automatic pipeline for segmenting and measuring 3D macular

holes. We introduced a 3D multi-scale active surface which is 61 times faster than the original
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LGDF implementation. We introduced an automatic and novel curvature-based surface cutting

procedure to separate the 3D macular hole from the vitreous body. We introduced automatic

and novel procedures for capturing specific macular hole measurements, based on our robust

centerline definition. We provided quantitative and qualitative validation of the algorithm’s

robustness and performance accross a variety of different 3D macular hole images.

In Chapter 3 (p. 35), we significantly increase the performance of the LGDF energy model

through an optimized GPU implementation, handling much larger 2D images and even 3D images

at interactive performance. We introduce a novel set of interactive brush functions that are

integrated into the GPU kernels such as to modify and constrain the evolving level set in real-

time, provide a ray tracer to view the segmentation results at each time-step, and expose a

simpler and more intuitive parameter space to the user, with suggested values and ranges. The

combination of these four enhancements greatly improves the practicality of what is already

considered a state-of-the-art level set method of particular relevance to the biomedical image

processing communities.

Finally, in Chapter 4 (p. 60), we demonstrate an application of our 3D automated macular hole

segmentation system. Using a dataset of 104 consecutive macular holes, we accurately measure

dimensions and present our detailed findings. As macular hole size is known to be one of the

strongest predictors of surgical success both anatomically and functionally, evaluation of the

measurements generated from this automated system in a prospectively collected dataset of eyes

undergoing surgery with outcomes analysis will be of great interest.

5.2 Conclusions
In this thesis, we have demonstrated an automatic and robust method to segment, perform

curvature information-based cuts, and extract measurements (Chapter 2 (p. 9)) from 3D OCT

images of macular holes. Segmenting through careful structuring of the GPU kernels within

the constraints of the GPU memory architecture was not possible with existing GPU level set

algorithms due to their simple energy functionals (Chapter 3 (p. 35)). The LGDF model’s

performance has been greatly enhanced, making it practical in many more use-cases than before

including 3D macular hole images. 3D shape-based macular hole measurement is able to robustly

and accurately measure macular hole dimensions and present the detailed dimension findings

(Chapter 4 (p. 60)).
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These new techniques have been shown to work well on many different types of 3D macular hole

images and can be considered a significant contribution for clinical applications.

The results of these new techniques compare to deep learning method as the current state-of-the-

art approach has pros and cons of each method. In general, the main advantage of the traditional

image processing methods such as level set approach compared to the deep learning method is

from the ability to trace back the algorithms step by step so it is easier to develop and/or to revise

compared to the deep learning method that is end-to-end learning [157]. Another advantage of

the traditional image processing methods specifically in the 3D segmentation of macular holes

is it does not need large number of 3D image datasets; however, in the deep learning method

it can be mitigated with transfer learning approach. Meanwhile, one of the main advantage of

the deep learning models is no more manual parameter tuning compare to the traditional image

processing; in our 3D macular holes segmentation case, it will be no more method parameters

and suggested default values (chapter section 2.5.6 (p. 22)) and curvature-based cutting surface

procedure (chapter section 2.5.4 (p. 19)).

5.3 Future Work
The work in this thesis, particularly macular hole images has been developed for 3D images.

With the rise of deep learning method, the 3D segmentation of macular holes can be done by

combining both traditional image processing methods and the deep learning method. This hybrid

approach will offer the advantages of both methodologies.

Further measurements of macular holes may also be possible by combining the macular hole and

macular layers for medical diagnosis purposes. The hybrid approach will be more efficient for 3D

macular holes and retinal layer segmentation across a variety of different 3D macular hole and

macular layers images. Meanwhile the clinical measurements will be done by traditional image

processing; in our case such as based on 3D centerline definition.
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