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ABSTRACT 

Edward R. Treasure 

The Frontier of Islam:  

An Archaeobotanical Study of Agriculture in the Iberian Peninsula (c.700 – 1500 CE) 

This PhD uses new archaeobotanical research and crop stable carbon (δ13C) isotope analysis to 

investigate medieval agriculture in the Iberian Peninsula (6th-15th centuries). It takes as its central 

theme an analysis of the long-standing debates surrounding the impact of the Islamic conquests (c.8th 

century) on agriculture. Were there major innovations after the conquests, or alternatively, was 

agriculture characterised by longer-term continuity? There is a long tradition of researching this topic 

in the Iberian Peninsula using documentary and archaeological evidence, yet archaeobotany has had 

little impact to date. 

Archaeobotanical research was undertaken on eight medieval sites in two study areas in the north-east 

of the peninsula. The first study area examined two Islamic sites (10th-12th centuries) in Teruel, whilst 

the second examined six sites dating between the early medieval, Islamic and later medieval periods 

(6th-15th centuries) in the Huecha Valley, Zaragoza. The archaeobotanical results point towards an 

overall pattern of continuity in the range of crops cultivated, although a general trend towards 

increasing crop diversity can be identified through time, reflecting broader patterns seen across 

medieval Europe and the Mediterranean. Stable carbon isotope analysis of 290 single-entity samples 

(cereals, pulses) provided insights into crop husbandry practices, highlighting the use of rainfed and 

irrigated areas for cultivation. The results of this PhD are placed within a wider regional and pan-

regional context through a synthesis of previous archaeobotanical research undertaken on Roman to 

later medieval sites in the Iberian Peninsula. Taken together, it is suggested that the Islamic conquests 

did not lead to a clear and definable break in agriculture, but rather a series of more incremental and 

gradual changes can be identified through time. The results have wider implications for understanding 

the longer-term continuity of Mediterranean agriculture.
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minimum and maximum values see Table 4.10. 

4.20: Aerial photograph showing the location of Iglesia de San Miguel de Ambel. The Casa 

Conventual de Ambel is also plotted for reference. (Google Earth 2019, base map). 

Figure 4.21: Simplified plan of trench excavated within Iglesia de San Miguel de Ambel. The two 

silos sampled are denoted by an ‘*’. Illustration by the author, adapted from Blanco Morte (2007). 

Figure 4.22: Aerial photograph showing the location of Palacio de Bulbuente. The River Huecha is 

also plotted for reference. (Google Earth 2019, base map). 
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Figure 4.23: General photograph of the building complex, Palacio de Bulbuente. The samples 

were collected from excavations undertaken in the brick/tapial palace, adjoining the tower. Photo 

© C. Gerrard.  

Figure 4.24: Photographs of mid-14th century conflagration/destruction deposit, Palacio de 

Bulbuente. A: General photo during excavation, with exposed burnt adobes on the left, the 

charred door frame in the centre and burnt roofing tile on the right. The deposit has been cut by 

a later storage container in the top right. B: Detail of the charred door frame; C: detail of burnt 

and smashed pottery vessel. Photographs by the author. 

Figure 4.25: Pie charts displaying proportions of hulled barley, free-threshing wheat and rye 

displayed by grid. Note that samples from Trench B are not depicted, although the same pattern 

is repeated with similar proportions of all three crops. Grid C-2 has not yet been excavated in the 

photograph. 

Figure 4.26: Stable isotope results, Palacio de Bulbuente. Samples with >5 items are represented 

by box-plots. The whiskers reflect the minimum and maximum values, the grey reflects the 

interquartile range and the vertical black line reflects the median. The dashed vertical line reflects 

‘well-watered’ (irrigated) hulled barley, the dotted vertical line reflects ‘well-watered’ (irrigated) 

free-threshing wheat and lentil (see Wallace et al. 2013, Figure 2.2 and Tables 2.5-2.6). Mean, 

minimum and maximum values are presented in Table 4.17. 

Figure 4.27: Ratios of weed seeds to grain, and rachis to grain, Palacio de Bulbuente. Ratios have 

only been calculated for samples containing >30 weed seeds/rachises/grains, calculated following 

van der Veen (2007). The clustering of samples in the bottom left reflect grain-rich samples, whilst 

the three samples separated on the right contain higher rations of rachises and/or weed seeds. 

Compare with Table 4.18 for crop-specific ratios which are presented per sample. 

Figure 4.28: Aerial photograph showing the location of Castillo de Grisel. (Google Earth 2019, base 

map). 

Figure 4.29: Site and trench plan of Castillo de Grisel. The bottom image is section through the fill 

of Tank 1. Illustration by the author. 

Figure 4.30: Aerial photograph showing location of Casa Conventual de Ambel. The Iglesia de San 

Miguel de Ambel is also plotted for reference. (Google Earth 2019, base map). 

CHAPTER 5 FIGURES…………….……………………………………………………………….…………………………301-304 

Figure 5.1: Maps showing the location of previous archaeobotanical studies undertaken in the 

Iberian Peninsula. Top: Roman sites (black circles), early medieval sites (red diamonds). Bottom: 

Islamic sites (green squares), later medieval/medieval Christian sites (orange triangles). See 

Appendix 13 for information on the sites, and Appendix 14 for the archaeobotanical data. The 

location of the study areas analysed for this PhD are also plotted as stars. 

Figure 5.2: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on Roman sites (black circles) and early medieval sites (red 

diamonds). See Appendix 13 for information on the sites, and Appendix 14 for the 
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archaeobotanical data. The location of the early medieval archaeobotanical evidence analysed 

for this PhD in the Huecha Valley is also plotted as a star. 

Figure 5.3: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on Islamic sites (green squares). Locations of areas referred 

to the text are also indicated. See Appendix 13 for information on the sites, and Appendix 14 for 

the archaeobotanical data. The location of the Islamic archaeobotanical evidence analysed for 

this PhD in the Huecha Valley, Cabezo de la Cisterna and at El Quemao are also plotted as stars. 

Figure 5.4: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on later medieval/medieval Christian sites (orange diamonds). 

Locations of areas referred to the text are also indicated. See Appendix 13 for information on the 

sites, and Appendix 14 for the archaeobotanical data. The location of the later medieval 

archaeobotanical evidence analysed for this PhD in the Huecha Valley is also plotted as a star. 
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1 The frontier of Islam 

 

The Islamic ‘conquests’ of the 7th-8th centuries are widely viewed as a watershed moment in the 

history of Asia, the Middle East and the Mediterranean. The scale of the early Islamic world (c.8th-

12th centuries) was vast, spanning from the Indian subcontinent in the east to the Iberian 

Peninsula in the west. One of the most significant questions surrounding this period is the extent 

to which it was characterised by major changes in agriculture. Based primarily on documentary 

evidence, it has long been suggested that the expansion of Islam was accompanied by the 

diffusion of new cultivars and crops alongside changes in farming practices, especially irrigation 

(e.g. Lévi-Provençal 1932, 1953; Lautensach 1960; Houston 1964; Imamuddin 1965; Kress 1968; 

Glick 1970, 1977, 1979; Bolens 1972, 1977, 1978, 1981; Grigg 1974; Watson 1974, 1981, 1983; 

Arié 1981: 221-232). This has been linked to a sweeping agricultural transformation, or 

‘revolution’, underpinning wider changes in trade, urbanism and demographic growth. Put 

simply, agriculture in the early Islamic world is thought to have differed significantly from that of 

medieval Christendom. Yet while this concept of an ‘agricultural revolution’ has been highly 

influential, it is also controversial and the degree of continuity versus change is hotly debated 

(Squatriti 2014a). The central issues here revolve around scale and timing: were there major 

innovations in agriculture following the Islamic conquests? Or alternatively, was Mediterranean 

agriculture characterised by longer-term continuity? 

In al-Andalus, that is the areas of Spain and Portugal under Islamic rule between the 8th-15th 

centuries, the question of agricultural change has been researched for decades (Squatriti 2014a). 

The focus has been on two key transitions: between the late Roman/early medieval to Islamic 

period (c. early 8th century), and between the Islamic to later medieval (Christian) period from 

the 11th and 12th centuries onwards. Current understanding of agricultural change in these two 

periods is largely dependent on evidence from documentary sources which, while constituting an 

invaluable source of evidence, only forms one part of the wider picture (e.g. Carabaza Bravo et 

al. 2004; Hernández Bermejo et al. 2012; Albertini 2013). The development of medieval 

archaeology in Spain and Portugal in the 1970s-1980s did much to redress this imbalance, 

providing a focus on rural landscapes and irrigation systems in particular (Carvajal 2014). 

However, what has not developed so strongly is the use of environmental and bio-archaeological 

research methods to investigate agricultural change more directly. In particular, one important 

source of data which has had little impact on this field so far is archaeobotanical research (Peña-

Chocarro et al. 2019). 
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1.1 Aims and objectives 

This PhD, therefore uses new archaeobotanical data to investigate agriculture in one region of 

medieval Iberia (6th-15th centuries AD), and its wider relationship to socio-cultural, economic 

and political change.  The aim is to use archaeobotanical evidence to gain insights into patterns 

of agricultural production and consumption, including the range of crop species cultivated, their 

potential uses (food versus fodder), crop-processing methods and storage, as well as the use of 

wild resources. Information from the associated arable weeds is combined with stable carbon 

isotope (δ13C) analysis of charred crop remains to investigate the nature of crop husbandry 

practices, especially the use of rain-fed and irrigated areas. The overarching aim is to examine the 

degree of continuity versus change in agriculture before and after the Islamic conquests, and to 

do this, debates are examined at local, regional and pan-regional scales in light of this new 

evidence and then combined with a wider synthesis of published archaeobotanical studies for 

Roman and medieval Iberia. The key objectives of the thesis are:  

1. To evaluate the role of Islam in the transmission and innovation of agriculture and the 

transformation of agrarian landscapes. What is the evidence for new crops and cultivars? 

Did innovation take place only in urban centres? What is the relationship between social 

status, faith and new crops? Are there regional differences imposed by climate and 

geography? 

2. To assess the evidence for an agricultural ‘revolution’. Traditional understanding, 

based largely on documentary sources and archaeological analyses of irrigation systems, 

points to a sweeping agricultural transformation. However, this idea has been widely 

challenged, and archaeobotanical research from other areas of the early Islamic world 

hints that changes in agriculture may have been more protracted and that the uptake of 

new crops was smaller in scale and spatially variable. 

3. To explore changes in farming practices. Irrigation is central to debates around 

agriculture in the early Islamic world. Was dry-farming replaced by intensive irrigation-

based agriculture and an increased importance of arboriculture and vegetable gardens?  

4. To apply new and novel methodologies such as stable carbon isotope analysis of plant 

remains to enable detailed reconstructions of farming practices, particularly irrigation. 

By integrating evidence from written records, archaeobotany and stable isotopes, a 

richer comparative understanding of agriculture can be developed.  
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5. To examine longer-term patterns of change in agriculture between the Roman and 

later medieval period. Did the Islamic conquests lead to a break in the ‘traditional’ 

rhythms of Mediterranean agriculture centred around rainfed cereal cultivation, 

vineyards, olive groves and small-scale irrigated horticulture?  Or instead, should changes 

in agriculture be placed within a longer-term perspective, with more minor adjustments 

and modifications in the range of crops and farming practices?  

1.2 Study areas 

The Iberian Peninsula is an excellent region to undertake this research due to its position at the 

frontier between Christian Europe and the Islamic world. The central focus here is on two case 

studies in present day Aragón in Spain (Figure 1.1). The first case study focuses on two Islamic 

sites in the south in the province of Teruel while the second examines evidence from six sites 

dating between the early medieval, Islamic and later medieval periods in the Huecha Valley, 

Zaragoza, and explores a long-term trajectory of change in a single landscape context. There are 

currently no published medieval archaeobotanical studies in either region (Peña-Chocarro and 

Pérez-Jordà 2018). This, coupled with the near-absence of information from documentary 

sources for the Islamic period, has resulted in a very patchy and incomplete understanding of 

agriculture. In addition, in the case of the Huecha Valley, the Christian ‘conquests’ in the 12th 

century redefined the socio-cultural, economic and political organisation of the region, with a 

shift to a feudal agricultural system. It is thus possible to compare and contrast agriculture across 

the two different regimes.  

1.3 Historical and archaeological context: the north-east of Iberia 

1.3.1 Before Islam: late Roman and early medieval period (5th-8th centuries) 

Throughout the Iberian Peninsula, the late Roman (4th-6th centuries) to early medieval period is 

generally characterised by the decline of cities and a change in rural landscapes, though it is still 

poorly understood from an archaeological perspective (Collins 2004: 197-222, 2014:12-13; 

Wickham 2005; Diarte-Blasco 2018:150-156). The largest and most important city during the 

Roman period in this region was Caesaraugusta, present-day Zaragoza, although there were other 

major urban centres across the north-east and these would later form the basis of many cities 

during the Islamic and later medieval periods (Glick 2005:116-117; Kulikowski 2011). Within the 

economy and rural landscapes, one of the important changes was the gradual disappearance of 

Roman villas (Lewit 2003; 2005; Wickham 2005:473-481; Pietro Brogiolo and Chavarría i Arnau 

2008; Bolòs 2009). Whilst our understanding of the transition from the Roman to early medieval 

period remains murky, the overall picture suggests there was the reshaping of landscapes during 
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the 6th-8th centuries, with an increasingly ruralised economy centred around villages, and away 

from the Roman rural villa economy of estates (Wickham 2005:488-495; Olmo Enciso 2015). 

1.3.2 ‘Conquest’ and consolidation of Islamic rule in the Upper March (8th-10th centuries) 

Broadly defined, the north-east of the Iberian Peninsula in the Islamic period formed the ‘Upper 

March’ of al-Andalus, a region which spanned from around Huesca in the north to Teruel in the 

south, with Zaragoza in the centre as its capital (Bosch Vilá 1998). The Upper March formed one 

of three ‘frontier’ zones between al-Andalus and the Christian states in the north from the 8th-

12th centuries; the other frontiers were the ‘Middle March’ centred around Toledo and the ‘Lower 

March’ centred around Mérida (Manzano Moreno 1991; Kennedy 1996). The Upper March also 

extended along the Mediterranean coast towards Tortosa, though its limits here are poorly 

defined and this region also encompassed the ‘Eastern March’ (Torró 2012). Figure 1.2 displays 

the areas of the Iberian Peninsula under Islamic rule between the c.9th-11th centuries and 15th 

century. 

The Islamic ‘conquest’ of areas around the Ebro Valley can be dated to c.720, with Zaragoza being 

captured in 714 (Manzano Moreno 1991). The Iberian Peninsula was situated at the furthest 

western extreme of the vast Umayyad caliphate; however, the political geography of the Dar al-

Islam was profoundly reshaped following revolution in 750, leading to the emergence of the 

‘Abbasid caliphate at Baghdad (Kennedy 1981:31-45). This led to the collapse of the Umayyad 

caliphate and, as a consequence, al-Andalus became an independent state in 756, ruled by 

Umayyad emirs who had fled from the ‘Abbasids (Kennedy 1996:38-39). The Upper March had 

been the scene of rebellions in preceding years, though the Umayyads had begun to firmly 

establish their rule in al-Andalus by the end of the 8th century (Manzano Moreno 1986; Collins 

2014:27-28). Despite this, the Umayyad emirate struggled to maintain control over al-Andalus 

and regional political instability characterised the 8th to early 10th centuries (Collins 2014). 

Throughout this period the Upper March was effectively a semi-autonomous region of al-Andalus, 

largely controlled by descendants from local aristocratic families who had converted to Islam 

(Kennedy 1996:15, 54-55; Sénac 2000:90-91). The most important of these converted families 

were the Banū Qasī who became one of the dominant political forces in the region (Viguera 

Molíns 1995:52-56). Whilst the ‘conquests’ in the early 8th century marked a watershed moment, 

the following centuries were primarily characterised by continuity, particularly in rural areas 

outside cities (Wickham 2005:41; Manzano Moreno 2012:25; Collins 2014:10-12). 

It is in the 10th century when the most significant political, economic and cultural changes 

occurred in al-Andalus with the proclamation of the caliphate of Córdoba (Kennedy 1996:82-108; 
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Fierro 2005; Manzano Moreno 2012; Collins 2014). In this period, al-Andalus became the major 

power in the western Mediterranean, and it is thought that the state accumulated enormous 

wealth through tax on agriculture, particularly from irrigated areas (e.g. Watson 1983; Barceló 

1985; 1996:45; Kennedy 1996:106-107; Fletcher 2006:62-63; El Faïz 2007; Malpica Cuello 

2015:90-91; Manzano Moreno 2006, 2018; Martín Civantos 2018). Wickham (2005:41) has 

highlighted that the success of the caliphate of Córdoba reflects the emergence of a powerful 

centralised state by the 10th century.  

However, by the beginning of the 11th century, the centralised power of the Umayyads had begun 

to wane, eventually leading to the collapse of the caliphate of Córdoba in 1031 and the breakup 

of al-Andalus into independently ruled Taifa kingdoms (Wasserstein 1985:55-81; Viguera Molíns 

1994). Throughout al-Andalus this created political turmoil, though in the Upper March the period 

was characterised by a degree of continuity since the region had already been functioning semi-

autonomously (Stalls 1995:9; Kennedy 1996:133-134; Catlos 2004:55). The most important and 

powerful Taifa kingdom was that of Zaragoza which controlled the majority of the Ebro Valley 

(Viguera Molíns 1994:59-60). By this period Zaragoza was ruled by Arab families, first the Tujībids 

and later the Banū Hūd (Kennedy 1996:92). Smaller Taifa kingdoms also emerged around the 

cities of Tortosa and Lleida to the east, though these became subsumed within the Taifa of 

Zaragoza (Viguera Molíns 1994:59-60; Brufal 2017:61-62). In the upland south of the region there 

were two small Taifa kingdoms in Alpuente and Albarracín which were controlled by Berbers 

(Bosch Vilá 1959; Viguera Molíns 1994:81-84). Many Taifa kingdoms grew powerful and this was 

clearly seen in large cities which are thought to have prospered economically from industry, trade 

and especially irrigated agriculture (Wasserstein 1985; Brufal 2017). However, at the same time 

the Taifa kingdoms were unstable and the 11th century is commonly viewed as a turning point in 

the history of al-Andalus. At this time the Christian states in the north expanded and the so-called 

‘reconquest1’ of al-Andalus gained momentum (Catlos 2018:203-204). 

1.3.3 The Christian ‘conquests’ and the later medieval period (11th-15th centuries) 

After the Taifa period, the arrival of the Almoravid ruling dynasty (Berbers from Morocco) in the 

11th century marked a significant political shift in al-Andalus (Kennedy 1996:161-166). The 

Almoravids conquered the independently ruled Taifa kingdoms which had existed from the 10th 

century, ending with the capture of Alpuente, Albarracín and finally Zaragoza in 1110 (Viguera 

Molíns 1994:127-128). However, the Christian states in the north had already begun to make 

 
1 An expedient term, ‘reconquest’ (or Reconquista), is widely acknowledged to be problematic from a 
historiographical perspective. See Fletcher (1987) for further details. 
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major territorial gains by this period, notably with the capture of Toledo (1085) and later Huesca 

(1096) (O'Callaghan 2003:23-31). The Almoravids only briefly held Zaragoza before it was 

captured by Christian forces in 1118 by Alfonso I for the Aragón (Kennedy 1996:180). With the 

declining power of the Almoravids, a second short-lived Taifa period (1144-1147) emerged 

(Kennedy 1996:189-195). The appearance of another Berber ruling dynasty, the Almohads, 

brought some stability to southern areas of al-Andalus, however the Christian states made 

significant military gains in the 12th century, capturing Tortosa (1148), Lérida (1149), Teruel 

(1170) and Cuenca (1177) (O'Callaghan 2003). Thus, throughout the 11th and 12th centuries, the 

Upper March formed a ‘frontier’ zone between al-Andalus in the south and the expanding 

Christian states in the north. Ultimately, the balance of power shifted in 1212 after a decisive 

Christian victory over the Almohads at Las Navas de Tolosa (O’Callaghan 2003:78). Islamic rule in 

the peninsula would not, however, come to an end until 1492 with the conquest of Granada. As 

the frontier between al-Andalus and the Christian kingdoms in the north slid erratically further 

south, this brought with it key changes. Amongst the most important of these was the 

reorganisation of rural landscapes, with a transition to a feudal economy (Glick 1995). 

1.4 Research themes 

1.4.1 An Islamic agricultural revolution? 

It is now more than 40 years since Watson (1974) published his seminal article The Arab 

agricultural revolution and its diffusion, 700–1100. In this article, and later works, Watson (1981, 

1983, 1994, 1995) used documentary evidence to link the spread of Islam with the diffusion of 

new crops and farming practices. Those crops listed included several key species in world history 

– Asiatic rice (Oryza sativa), sorghum (Sorghum sp.), cotton (Gossypium sp.), durum wheat 

(Triticum durum) and sugarcane (Saccharum officinarum) – alongside other fruits and vegetables 

- watermelon (Citrullus lanatus), citrus fruits (Citrus spp.), artichoke (Cynara cardunculus), 

aubergine (Solanum melongena), spinach (Spinacia oleracea), date palm (Phoenix dactylifera). 

Tropical crops were also listed - banana (Musa sp.), coconut (Cocos nucifera), mango (Mangifera 

indica) and taro (Colcasia sp.). Though he did not explicitly analyse them, Watson also highlighted 

the diffusion of new cultivars, as well as their associated weeds. Key innovations in farming 

practices were also outlined, the most important of which was irrigation. It was this which 

enabled the cultivation of these ‘new’ crops, opening up the traditionally dry and ‘unproductive’ 

summer period and enabling an intensification of production. The agents of this diffusion were 

thought in many cases to be migrating farmers (see below), though the gardens of rulers and 

their courts were also key factors. Taken together, these various ‘agricultural innovations’ were 
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linked together to argue for an agricultural revolution across the early Islamic world. Juxtaposed 

against this, in later centuries a decline of ‘Islamic’ agriculture was highlighted following the 

Christian ‘conquests’ of al-Andalus, Sicily and the Latin East, resulting in a transition to a ‘feudal’ 

economy which was centred around cereals and vineyards. 

Watson was not alone in his observations, nor was he the first to suggest such a transformation 

in agriculture. A large body of earlier research based on documentary sources had already drawn 

attention to the widespread diffusion of new crops and farming practices with the advent of Islam 

(e.g. Scott 1904; Lévi-Provençal 1932, 1953; Lautensach 1960; Houston 1964; Imamuddin 1965; 

Kress 1968; Grigg 1974).  Similarly, around the same time as Watson, others were also highlighting 

the evidence for changes in crops, irrigation and agricultural knowledge (e.g. Arié 1981: 221-232; 

Glick 1970, 1977, 1979; Bolens 1972, 1977, 1978, 1981). However, the strength of the ‘Watson 

thesis’ lay in its succinct and clear articulation of a grand narrative of agricultural change and its 

wider relationship to processes of urbanisation, demographic growth and trade across the early 

Islamic world. As a result, this idea of major agricultural transformation in al-Andalus 

characterised by the diffusion of new crops and cultivars, together with an expansion in irrigation, 

has been highly influential and has subsequently generated an immense bibliography of research 

(Squatriti 2014a). The ‘Watson thesis’ is widely considered as one of the landmark pieces of 

research for the study of al-Andalus, particularly so after its translation into Spanish (Watson 

1998). 

It is worthwhile pausing here to note that documentary sources are the principal form of evidence 

in the ‘Watson thesis’, and other works. The surviving documentary evidence in al-Andalus is one 

of the richest sources of agricultural literature for any area of the medieval Islamic world. The 

most important of these sources are almanacs (agricultural calendars) and the books of Filāḥa 

(agronomic texts) which were compiled principally between the 10th-14th centuries in Córdoba, 

Toledo and Seville, although most works date from the 11th and 12th centuries (García Sánchez 

1992). Many of these agricultural texts have been translated and/or studied (see below), with 

several important compilations also being published (e.g. Ciencias de la Naturaleza en Al-Andalus; 

Carabaza Bravo et al. 2004; Hernández Bermejo et al. 2012; Albertini 2013). Nevertheless, it is 

important to emphasise that there are few surviving sources for earlier centuries (i.e. immediately 

after the ‘conquests’), either in the form of agricultural texts or other works. Similarly, 

documentary sources pre-dating the Islamic period are almost non-existent, although Isidore of 

Seville’s Etymologies (c.615-636) lists a wide range crops and he provides an important point of 

reference for the introduction of new crops recorded in subsequent Islamic agricultural texts 
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(Barney et al. 2006). Consequently, when discussing the diffusion of new crops into al-Andalus on 

the basis of documentary evidence, historians and Arabists are limited to the earliest surviving 

evidence, as opposed to earliest actual reference to a crop. 

A key source for studying the diffusion of crops into al-Andalus is the Kitāb al-anwā’, or Calendar 

of Córdoba, compiled in 961 for the caliph al-Hakam II; this is the earliest surviving piece of 

agricultural literature (Pellat 1961). It takes the form of an almanac, a form of calendar, outlining 

a range of agricultural activities on monthly basis such as irrigation, crop cultivation and 

harvesting, possibly in relation to the collection of taxes, or as a form of encyclopaedia (Pellat 

1961; López López 1994; Christys 2002:121; Trillo San José 2004:47-48). Importantly, it provides 

the first textual evidence for several new crops: grapefruit or possibly citron, rice, aubergine, 

sugarcane, cotton, banana, watermelon and a type of cucumber, alongside more typical 

Mediterranean crops such as cereals, pulses, vines and olives (López López 1994). The extent that 

the Calendar of Córdoba reflects the actual, widespread cultivation of these new crops is unclear 

(Anderson 2013:114), however, it is widely considered to be the most important and reliable 

source in tracing the introduction of new crops into al-Andalus and reflects a fundamental change 

in agriculture by the 10th century (e.g. Watson 1983; Hernández Bermejo 1987; García-Sanchez 

1992; López López 1994; Barceló 1996; Hernández Bermejo and García Sánchez 1998; Trillo San 

José 2004; Ruggles 2006; Hernández Bermejo et al. 2012; Albertini 2013). Later agronomic texts 

include those by an anonymous author (10th/11th century), Ibn Wāfid (11th century) and Ibn 

Baṣṣāl (11th/12th century) who provide references to further new crops including spinach, 

sorghum, bitter orange, pomelo and apricot (Hernández Bermejo et al. 2012).  

Aside from this evidence for the introduction of new crops, the agronomic literature underlines 

a vast breadth of contemporary knowledge about a diverse range of crops, with hundreds of 

different genera/species and new cultivars being referred to in the 11th and 12th centuries by 

the agronomists Ibn Baṣṣāl, Ibn Wāfid and Ibn al-‘Awwām (García Sánchez 1992). These sources 

detail aspects such as soil, irrigation, viticulture, arboriculture, horticulture and arable cultivation 

alongside processing, storage and different uses of crops. Particular emphasis is placed on 

irrigated agriculture, specifically horticulture (fruit trees, vines and vegetables are covered in 

detail), highlighting the importance of these crops. Cereals are also covered in detail, although 

they receive less attention than (irrigated) arboriculture or horticulture. However, the 12th 

century agronomist Al-Ṭighnarī regarded cereals as forming the basis of diets, and Hernández 

Bermejo et al. (2012:184) noted agronomic texts may have paid less to attention to cereals since 
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agronomists were already very familiar with their cultivation compared to new or more unusual 

crops.   

In many cases, these agronomic texts appear to have had didactic purpose. For example, Abū ’l-

Khayr (11th century) goes into great detail on the propagation and cultivation of olives, whilst Ibn 

al-‘Awwām (12th century) in describing barley provides meticulous detail on the types of 

seedcorn, the best soils to sow on, the number of times a field should be ploughed, rotation with 

wheat, methods of sowing, harvesting dates, threshing and the uses of the crop (Ruggles 2006: 

22-29; Hernández Bermejo et al. 2012:127-222). The purpose of these texts is debated as they 

are in one sense working manuals, yet at the same time it is important to emphasise their context 

of production in royal and courtly circles in Córdoba, Toledo, Seville and Almería (Retamero 1998; 

Anderson 2013:113). How far they reflect the reality of agriculture in rural areas is unclear; their 

perspective is skewed towards irrigated botanical gardens, palace gardens and agricultural 

estates, as well (sub-)urban irrigated areas, or huertas (Horden and Purcell 2000:259-260; 

Anderson 2013:113-118). 

Nevertheless, this agronomic literature undoubtedly reflects an upsurge in knowledge which built 

upon earlier classical foundations and which was greatly expanded through first-hand 

experimentation (Bolens 1981; Butzer 1994; El Faïz 2005, 2007; Albertini 2013). In some cases, 

agronomists such as Ibn Baṣṣāl had obtained knowledge on the cultivation of crops during their 

travels across the Mediterranean. Some consider this expansion of ‘Islamic’ agronomy between 

the 10th-12th centuries to be the defining element of al-Andalus (e.g. Bolens 1981; Samsó 2011: 

277-305; Albertini 2013). Certainly, the impressive breadth of knowledge on a diverse range of 

crops and other plants is also reflected in contemporary medical and pharmaceutical texts 

(Llavero 1990). The development of botanical gardens and palace gardens was an important 

feature of this period as new plant species were introduced and acclimatised in gardens and 

agricultural estates; these were also opportunities for experimentation (Hernández Bermejo 

1987; Ruggles 2006; García Sánchez 2011; Anderson 2013).  

A well-known early example of these processes of plant translocation is provided by the diffusion 

from Damascus of a new variety of pomegranate, the safarī, in the 8th century to the royal court 

in Córdoba (Martínez Enamorado 2003:114-116). Seeds/cuttings were subsequently propagated 

on an agricultural estate near Málaga and from there diffused throughout al-Andalus. Martínez 

Enamorado (2003:116-117) also draws attention to the introduction and acclimatisation of 

banana and sugarcane in the 10th century in Málaga. A similar pattern of plant translocation is 

provided by the diffusion of a new fig, the doñegal, which was illicitly smuggled from 
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Constantinople to Córdoba where it was passed to the emir, probably Abd al-Rahman II (Fletcher 

2006:62). Stories of plant translocations such as these are likely to be in part apocryphal, although 

they do reflect the reality of plant translocations (Glick 2005:70-71). Many of these botanical 

gardens, palace gardens and agricultural estates are known to have existed across al-Andalus 

from the 8th century, particularly in the south (Ruggles 2006). However, it is important to 

emphasise that primary agents in this diffusion of crops and irrigation are thought to have been 

peasants themselves (Glick 1970, 2005; Watson 1983, 1995; Barceló 1995, 1996; Glick and 

Kirchner 2000; Kirchner 2009; Retamero 2009; Martín Civantos 2011; Kirchner and Retamero 

2015). 

An indication of changes in agriculture across al-Andalus is also provided in an earlier geographical 

work by al-Rāzī in the 10th century (Trillo San José 2004). In particular, al-Rāzī provides abundant 

references to different areas of al-Andalus, especially cities, remarking on the abundance of 

cereal fields, irrigated huertas and vegas (sub-urban cultivated areas), lavishing with praise the 

quality of many different kinds of agricultural produce; fruits being a particular source of 

fascination. For example, references are provided to the cultivation of ‘every kind of fruit tree’ in 

in Córdoba, whilst Málaga is abundant in vines and fruit trees, Valencia is remarked upon for the 

quality of its saffron, and Zaragoza is known for the high quality of its soil and abundant irrigated 

areas with fruit trees. Later geographical works by al-Zuhrī (11th century), al-Idrīsī (12th century) 

and al-Himyari (14th century) all echo similar views; giving the impression that al-Andalus 

abounded in irrigated areas, with rich and diverse agricultural produce. On the one hand, 

descriptions of irrigated areas, fruit trees and gardens are also reflected in contemporary poetry 

and resemble the Paradise Garden in the Koran (Glick 2005:45-46) and should perhaps not be 

taken too literally. Despite this, rare evidence from hisbas (rules governing the sale produce in 

markets) and cookbooks (dating from the 13th century) do nonetheless hint at the richness and 

diversity of agricultural produce in urban areas (e.g. García Gómez 1957; Vallvé 1983; Waines 

1992; Zaouali 2009). In fact, Constable (2013) draws attention to the social dimension of changes 

in agriculture, with changes in crops having a wider link with faith, ethnicity and status. Some 

food and foodways came to be distinctive markers of Muslim identity such as the consumption 

of figs, raisins and couscous, alongside eating whilst seated on the floor. The impression given by 

the documentary sources is not just of an agricultural intensification or expansion, but one which 

affected the rhythms and routines of daily life.  

Closely related to this intensification of agriculture is the increasing commercialisation of 

agricultural products. For example, this is seen in the exportation of olive oil which according to 
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al-Idrīsī (12th century) was produced on a vast scale in Seville, although other areas of al-Andalus 

such as Lleida in the north were also known for the production of olive oil (Glick 2005:73-74). 

Dried fruits were also an important export, especially figs, which were exported across the 

Mediterranean from southern and eastern areas of al-Andalus. In particular, dried figs from 

Málaga were amongst the most highly prized. There are several indications of a major increase in 

fig cultivation in al-Andalus, and Glick (2005:74) notes that the Arabic term for ‘fig’ became a 

synonym for ‘tree’, emphasising their widespread cultivation. Raisins were another important 

dried fruit produced from irrigated areas. Evidence for the increasing commercialisation of the 

agricultural economy can also be seen in the cultivation of textile plants including flax, hemp, 

cotton and silk (produced on the mulberry tree), alongside dye plants such as henna (Lawsonia 

inermis) and saffron (Saffron crocus) (Lagardère 1990, 1993; García Sánchez 2001; Contable 

1994). Thus, for example, al-Istajn in the 10th century admired the high quality of silk production 

in al-Andalus, and Ibn Ibn-Ḥawqal, a geographer who visited al-Andalus in the 10th century, 

remarked on the quality of linen and silk production (Trillo San José 1999). The Cairo Geniza 

documents, Jewish manuscripts documenting trade across the Mediterranean, highlight the 

importance of textile exports from al-Andalus, especially silk (Goitein 1961; Constable 1996:173-

181). 

Paradoxically, despite the abundance of agronomic literature, a key source of evidence absent in 

al-Andalus is typical archival documents such as land registers, agricultural tithes, sales of land 

etc. (Guichard and Lagardère 1990; Guichard 1999). In later medieval Iberia (i.e. post-conquest), 

as elsewhere in medieval Europe, documents such as these can provide invaluable information 

about agriculture (Kirchner 2019). Thus, for instance in the north-east of Iberia, only a handful of 

sources for the Islamic period provide fleeting and scant information on irrigated areas and the 

crops cultivated, focusing almost solely on urban areas (Ortega Ortega 2010:127).  In the south 

of the peninsula the situation is different and a richer body of documentary source is available 

since these areas were conquered at a later date (13th-15th centuries), although we still lack 

early sources (e.g. Trillo San José 1999, 2004; Domínguez Rojas 2006). Consequently, a big part 

of the picture is missing for al-Andalus, especially in rural areas. In many cases, one of the principal 

sources for understanding the crops cultivated in specific areas across al-Andalus is provided by 

documentary sources generated after the Christian ‘conquests’ (e.g. Kirchner et al. 2014). 

However, such sources often only provide generic references to the crops which were cultivated 

(i.e. ‘cereals’, ‘figs’, ‘fruit trees’). In a rare case from Mallorca, one post-conquest document 

relating to a rural alquería (hamlet/farmstead) recorded mulberry trees, broad beans, peas, 

onions, garlic, cabbages, asparagus, plum trees, pomegranate trees, ?bottle gourds, cucumbers, 
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apricot trees, apple trees and citrus fruits, together with other references to barley and wheat 

(Kirchner 2018:207). Sources such as this allude to the potential range of crops cultivated 

elsewhere, yet for which no documentary currently evidence exists. 

Overall, the pattern which emerges from the documentary sources is one of a sweeping 

agricultural transformation, with irrigated agriculture being of key importance. These sources give 

the impression of relatively complete understanding of agriculture, yet on closer examination it 

is evident that there are clear gaps in the documentary records. In particular, these sources are 

biased in their chronological and geographical survival, and relevance to actual practice. How can 

archaeobotany contribute to this topic? In the first instance, archaeobotany provides a direct 

insight into daily lives, especially that of farmers in what was fundamentally a rural world. 

Secondly, it provides greater detail and scientific specificity to some areas of agriculture. 

Documentary sources often only provide generic references to crops such ‘cereals’, yet the 

distinction between durum wheat and rye for example is of critical importance to the farmer. 

Similarly, these sources are also biased to urban areas and they can obscure the rural picture, just 

as the interests of the wealthy are better represented. That said, the archaeobotanical record too 

has its challenges. Ultimately, only by interweaving evidence from documentary sources and 

archaeobotanical research is it possible to develop a more nuanced understanding of agriculture 

in medieval Iberia.  

1.4.2  Irrigated agriculture 

The ‘centrality of irrigation’ to Islamic agriculture, as Glick and Kirchner (2000:276) note, is 

reinforced by a large-body of archaeological research which has focused on the development, 

design and organisation of irrigation systems in al-Andalus. In particular, research in eastern areas 

of al-Andalus and the Balearic Islands has drawn attention to a major expansion in irrigation 

systems following the Islamic ‘conquests’ (for a review see Kirchner 2009, 2011, 2019), and this 

has been linked to the migration of Arabs and Berbers. In turn, the diffusion of new crops listed 

by Watson (1983) has been understood as part of this migration. An important aspect of this 

research on the development of irrigated spaces has been the emphasis on the non-feudal nature 

of agriculture in al-Andalus (Martín Civantos 2011). Instead, the mode of production centred on 

a tax-based system with the alquería (hamlet/farmstead) as the basic fiscal unit, rather than a 

‘feudal’ land, or rent-based system characteristic of later periods. Whilst it is clear from the 

documentary evidence and archaeological research, there was undoubtedly an expansion and 

intensification in irrigation following the Islamic ‘conquests’. The diffusionist paradigm outlined 

above which links irrigation systems and the migration of Arabs and Berbers has not gone without 
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criticism. Manzano Moreno (2018), however, questions the archaeological and documentary 

evidence to support this. In addition, one of the major issues is the difficulty of dating irrigation 

systems, something that needs to be questioned. The qanat (a subterranean irrigation channel) 

offers an example of the challenges in dating evidence. It is widely assumed that the qanat was 

either a new Islamic introduction, or at least one which became more widely diffused following 

the Islamic ‘conquests’ (Gerrard and Gutiérrez 2018a). However, recent OSL dating has identified 

qanats dating to the Roman, later medieval and post-medieval periods in different areas of Spain, 

with none (at present) directly dated to the Islamic period (Bailiff et al. 2019). We know very little 

about the scale and development of Roman irrigation, and similarly whether such systems 

persisted extant and in use into the early medieval period. 

In assessing the impact and legacy of the Islamic ‘conquests’ on agriculture, an important 

question is to understand changes to agriculture caused by the Christian ‘conquests’, especially 

from the 12th century onwards. Watson (1983:184) regarded the Christian ‘reconquests’ as 

leading to a decline of ‘Islamic’ agriculture, with a shift away from polyculture to a less-varied 

‘feudal’ economy with vineyards and, in particular, cereal cultivation taking centre place. This 

reorganisation of the agricultural economy is to some extent reflected in the copious 

documentary records for the later medieval period, which do place increasing emphasis on cereal 

cultivation, as well as the re-organisation of irrigation systems. However, as Butzer et al. (1985) 

were quick to point out, Watson was mistaken in stating that the ‘conquests’ led to the supposed 

‘retreat’ of Islamic agriculture. Some crops thought to have newly introduced in the Islamic 

period, such rice and sugarcane, are known to have been widely cultivated. 

1.4.3 Migration and conversion to Islam 

It is well-established that large numbers of Arabs and Berbers migrated to al-Andalus in the 8th 

century; however, there is considerable uncertainty over the full extent of migration with 

estimates ranging from thousands to tens of thousands (Catlos 2004; Collins 2014:6-10). Evidence 

for these migrations has primarily been identified from documentary and toponymic evidence 

(e.g. Guichard 1976), though recent archaeological research has also identified individuals of 

North African descent in other areas (e.g. Prevedorou et al. 2010; Gleize et al. 2017; Olalde et al. 

2019). In the Upper March, the focus of Arab settlement appears to have been in Zaragoza and 

surrounding areas (Manzano Moreno 1991; Acién Almansa 1999; Ṭāha 1989:115-150). In 

comparison, there is particularly strong evidence for Berber settlements in the upland south of 

the region along the Jiloca and Jalón valleys (Bosch Vilá 1959; Ṭāha 1989:173-174; Manzano 

Moreno 1991; Catlos 2004:25-27; Olmo Enciso 2011; Sarr 2013). However, to some extent both 
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Arab and Berber settlements appear to have been interspersed throughout the Upper March 

(Ṭāha 1989).  

The migration of Arabs and, in particular, Berbers is widely thought to have had a profound impact 

on rural landscapes through the introduction and diffusion of new crops, irrigation practices, 

technological knowledge and changes in the organisation of agricultural spaces. These ideas were 

laid out in influential publications which have become widely cited by Glick (1970, 1979, 1995), 

Guichard (1976), Bolens (1981), Watson (1974, 1983, 1995), Bazzana and Guichard (1981), 

Bazzana et al. (1988) and Barceló (1989, 1995). Consequently, migration has formed a key aspect 

of debates surrounding the Islamic ‘agricultural revolution’ and it has generated an immense 

bibliography. However, it is also a subject which has come under increasing scrutiny in recent 

years, particularly by Manzano Moreno (2018) and this is outlined in more detail below 

(‘Urbanisation and rural landscapes’). 

Though migration was an important feature of this period, the majority of the population within 

the Upper March comprised pre-existing communities which converted to Islam in the centuries 

following the ‘conquest’ (Catlos 2004:25). This is reflected in political power of locally-based 

converted families in this period (Kennedy 1996:15; Collins 2014:41-42). It is, however, important 

to emphasise that small Christian communities (referred to as mozárabes) were still present 

throughout the Upper March, whilst there were large Jewish communities in some areas such as 

Zaragoza (Sénac 2000:123-127; Catlos 2004:29-32). These religious minorities co-existed 

alongside Muslim populations, maintaining a degree of autonomy (Glick 2005:184-186). Despite 

this, it is thought that the vast majority of the population had converted to Islam by the 11th 

century, though there is some uncertainty over the timing of this (Catlos 2004:27-28; Glick 2005: 

22-24, 210-216). Archaeologically, one of the most visible symbols of this process was the 

construction of major mosques in large cities such as Zaragoza (Hernández Vera 2004) or Tudela 

(Cámara and Aranz 1994), alongside smaller mosques which were widely distributed throughout 

rural areas (Calva Capilla 2011). The proclamation of the caliphate of Córdoba also reflects this 

process of conversion, with caliphs serving as both political and religious rulers (Fierro 2005). This 

religious transformation, or Islamicisation, should be considered as part of a broader 

transformation, affecting the daily lives of both Muslims and non-Muslims (Insoll 1999; Carvajal 

2014; Gutiérrez Lloret 2015; Thomas et al. 2017).  

1.4.4 Urbanisation and rural landscapes 

Urbanisation has often been viewed as a defining feature of al-Andalus, and the wider early 

Islamic world, with cities occupying an intermediary position politically, culturally and 
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economically between the state and rural landscapes (Navarro Palazón and Jiménez Castillo 2007; 

Acién Almansa 2008; Malpica Cuello 2015; Kennedy 2018). There were several major cities in the 

Upper March including Zaragoza, Barbastro, Huesca, Tudela, Calatayud, Lleida and Tortosa, as 

well as many minor ones (Bosch Vilá 1998:381; Kennedy 1996:56). The largest of these was 

Zaragoza which was one of the most important cities in al-Andalus (Catlos 2018:78). Whilst many 

of these cities had already developed into large urban centres by the Late Roman period 

(Magallón Botaya 2006), there is also evidence for the development of new cities such as 

Calatuyud (Souto 2006). Generally, settlement patterns in southern areas of the Upper March 

were more dispersed and there were no major cities, though minor urban centres such as 

Albarracín grew in importance (Bosch Vilá 1959; Navarro Espinach 1999).  

In the 10th-11th centuries, and particularly during the Taifa period, cities throughout the Upper 

March expanded significantly (Brufal 2017). This extended into surrounding sub-urban areas and 

large irrigated belts (huertas) developed around cities such as Zaragoza (Ortega Ortega 2010), 

Tortosa (Kirchner and Virgili 2019) and Tudela (Hernández Charro 2007) amongst others. Whilst 

dating the origin of these urban huertas remains problematic, the development of these 

intensively cultivated areas throughout al-Andalus has been closely linked to debates surrounding 

the introduction of new crops and the commercialisation of agriculture with an expansion in 

‘cash-crops’ such as flax, dried fruits and possibly perishable vegetables such as spinach and 

aubergine (Glick 1970:197; Watson 1983, 1995:67; Barceló 1989; cf. Martín Civantos 2018; 

Gutiérrez Lloret 2019; Kirchner 2019).  

Although there were major cities in al-Andalus, it is important to emphasise that the population 

was primarily rural (Catlos 2004:33; Eiroa Rodríguez 2012). Therefore, understanding the nature 

of rural settlements, and their relationship to agriculture, is a key research area. It has long been 

suggested that the near-universal form of rural settlement throughout al-Andalus comprised a 

fortified refuge (hisn sing./husun pl.) which was surrounded by a network of c.10 small 

hamlets/farmsteads (alquería sing./alquerías pl.); this is commonly referred to as the hisn/qarya 

complex (Bazzana and Cressier 1981; Bazzana et al. 1988; Glick 1995:13-29). Husun were 

generally situated on areas of elevated ground and have a relatively standardised layout 

comprising a fortified tower surrounded by a large walled enclosure, water cisterns and 

silos/storage pits (Sénac 1998). In comparison, alquerías were dispersed across areas of low-

ground and invariably constructed around small irrigated areas (Glick 1995:84-87; Barceló 1989, 

1995). A key feature of the hisn/qarya complex is the link between these settlements and the 

migration of Arabs and especially Berbers. It has been suggested that these ethnic groups 
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maintained their own forms of tribal/clan structures intact following the colonisation of rural 

areas (Guichard 1976; Bazzana et al. 1988; Barceló 1985, 1989; Glick 1995:51-60).  

This generalised model, first developed for southern and eastern areas of al-Andalus, has 

remained at the core of debates surrounding rural settlements in al-Andalus since the 1980s, 

though it is widely recognised that it needs to be revised by new archaeological research 

(Manzano Moreno 2006, 2012, 2018; Eiroa Rodríguez 2012; Molinari 2015). For instance, as 

further archaeological research has been undertaken it has become apparent that the hisin/qarya 

complex does not reflect a pattern of uniform settlement in all areas (Manzano Moreno 

2006:433-437). One aspect which has been significantly revised and downplayed in recent years 

is the importance of tribal/clan structures in the organisation of agricultural landscapes (Manzano 

Moreno 1993, 2006, 2012, 2018; Catlos 2004:39-44; Boone 2009:95-127; Malpica Cuello 2015; 

Ortega Ortega 2018: 255-259). Whilst there is ongoing debate over how agricultural landscapes 

were organised at local levels and how this related to the state, it is generally accepted that al-

Andalus was not a feudal society (Molinari 2015). In essence, it is argued that a ‘tax-based’ system 

existed in al-Andalus which was centrally controlled by the state; alquerías formed the basic fiscal 

unit and these were managed by the rural community (Barceló 1985). This can be contrasted 

against the feudal ‘land-based’ or ‘rent-based’ system centred around seigneurial lords which was 

typical of later medieval/Christian society in the Iberian Peninsula (Glick 2005; cf. Wickham 1984, 

2005:58).  

In contrast to other areas of al-Andalus, there has been little in-depth archaeological research 

into the nature of rural settlement patterns in the Upper March (Eiroa Rodríguez 2012; Caetano 

Leitão 2018) and very few documentary sources exist for this period (Souto 1992). The available 

Islamic sources (9th-10th centuries) provide only a partial picture of rural landscapes, with 

incidental references to husun, alquerías and irrigation for some areas along the Ebro and its 

associated tributaries (Souto 1992; Ortega Ortega 2010). In comparison, a large body of 

documentary evidence exists for the period immediately following the Christian ‘conquests’ in 

the late 11th-12th centuries (Catlos 2002; Laliena Corbera 2010:40). In areas along the central Ebro 

Depression, these sources contain abundant references to almunias; sites which are thought to 

have been privately-owned farmsteads/estates linked to urban elites. However, the term almunia 

appears to reflect a wide variety of settlement types and the distinction between almunias and 

alquerías is far from clear cut (Sénac 2000, 2012; Ortega Ortega 2010:129-132; Laliena Corbera 

2010; Brufal 2017). Currently, the only areas where rural settlements have been investigated in 

detail through survey and excavation are to the north of the Ebro River (Sénac 2012) and 



 
 

32 
 

consequently it is difficult to provide any conclusions concerning the nature of rural settlement 

patterns more widely (Catlos 2002).  

The highest densities of rural settlements are typically found along the Ebro and its associated 

tributaries, though few distribution maps of settlement patterns exist at present (Sénac 1998; 

Brufal 2011; Laliena Corbera 2010:41-42). Documentary sources and archaeological data suggest 

that many of these areas along the Ebro River and associated tributaries such as the Jalón (Ortega 

Ortega 2010) and Huecha (Teixera 1995) were irrigated. The full extent of these irrigation systems 

in the Islamic period is difficult to quantify and a key challenge is establishing dating evidence for 

the irrigated areas. Beyond these valleys, areas predominantly associated with dry-farming also 

appear to have been widely settled (e.g. Brufal 2011), although this tends to be overlooked in 

research and they are still poorly understood (Jiménez Castillo and Simón García 2018). At a broad 

level, husun can be identified throughout the Upper March and north of the Ebro detailed 

research suggests that they were a key component in the organisation of rural landscapes, 

perhaps as points of contact between the state and rural populations (Sénac 2012). However, this 

does not reflect a uniform pattern and husun appear absent in southern areas of the Upper March 

around the Iberian System, where research has instead identified evidence for groups of alquerías 

and occasional small fortified towers (burjs) (Ortega Ortega 1998; Laliena Corbera 2007:142-144). 

Overall, throughout the Upper March, rural settlements could vary widely in size from large sites 

such as Las Sillas (Huesca) with a population of c.200, a mosque and large courtyard houses, to 

more dispersed settlements (Sénac 2008; Laliena Corbera 2010). It is thought there was a 

significant population expansion in rural areas in the 10th century (Laliena Corbera 2010:39). 

1.5 Organisation of thesis 

Chapter 2 presents the archaeobotanical methodology for the samples studied in this thesis, 

focusing on site selection, and the sampling and analysis of the data. Following this, the methods 

used to identify crop husbandry practices - arable weeds and stable carbon isotope analysis - are 

outlined. In both cases, an overview is provided of the methodological principles underlying each 

form of analysis. 

Chapters 3 and 4 present the archaeobotanical and crop isotope evidence from the two case 

studies. In each area, a summary of background information on the history, archaeology and 

geography of the sites contextualises the evidence. The archaeobotanical and crop isotope 

evidence is examined for each site individually and the results are discussed within a local context, 

drawing on information from documentary (where available) and archaeological evidence. 
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Chapter 5 takes the archaeobotanical evidence outlined in Chapters 3 and 4 and places it within 

a regional context focusing on the north-east of Spain, exploring evidence from the whole of 

Iberia. Chapter 6 provides a conclusion to the thesis, reflecting back on the aims and objectives 

presented in Chapter 1, in particular the long-standing debates surrounding the impact of the 

Islamic ‘conquests’ on agriculture. 
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2 Methodology 

 

The first section of this chapter presents the archaeobotanical data collection methodology, 

focusing on the sites sampled, sampling strategies, laboratory methods and dating evidence. The 

second and third sections present the methodologies used to identify crop husbandry practices, 

highlighting the contributions of weed assemblages and stable carbon crop isotope analysis. The 

methodological frameworks underpinning the analysis of weed assemblages and crop isotope 

evidence are provided.  

2.1 Archaeobotanical Data Collection 

2.1.1 Sites and data collection 

Archaeobotanical data was primarily collected from sites which were excavated during the earlier 

stages of this PhD research (2016-2018). A small number of samples taken during previous 

excavations (i.e. before 2016) have also been included (see below). Summary information for the 

sites sampled in the two study areas is provided in Tables 2.1 and 2.2. Detailed contextual 

information for the samples is provided in Chapters 3 and 4, in conjunction with the 

archaeobotanical evidence.  

In the Teruel case-study area, archaeobotanical data was collected from Islamic sites through 

collaboration with the research project Husun y Qura: Estudio del poblamiento andalusí 

(Villagordo Ros 2018). In the Huecha Valley case-study area, new fieldwork was undertaken as 

part of this PhD and this produced the majority of the archaeobotanical dataset for this study 

area. This comprised a series of small-scale excavations at Bureta, La Mora Encantada and Palacio 

de Bulbuente. To supplement the dataset, a modest number of samples taken during previous 

excavations were also included from Iglesia de San Miguel de Ambel, Casa Conventual de Ambel 

and Castillo de Grisel. Since very few medieval sites have been excavated, and none have been 

comprehensively sampled for archaeobotanical remains, new fieldwork was an essential 

component of this PhD research. This fieldwork was associated with a wider research project 

within the study area, the Moncayo Archaeological Survey (Gerrard and Gutiérrez 2012, 2020). 

Bulk soil sampling to collect archaeobotanical data is typically not undertaken on excavations on 

medieval sites in Spain and there was little/or no ‘pre-existing’ dataset which could be analysed. 

Consequently, to collect the archaeobotanical data it was necessary to excavate new sites and to 

collaborate with other projects examining Islamic sites. These sites were specifically selected 
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based on their date and location. In all cases, the author was directly involved in multiple 

excavations and on-site throughout to undertake the sampling or to oversee it (Figure 2.1). 

2.1.2 Sampling and recovery 

A comprehensive sampling strategy was adopted with samples collected from contexts 

determined to have high contextual integrity. This judgemental sampling strategy (Jones 1991) 

was adopted to prioritise contexts with good potential for the recovery of archaeobotanical data 

and to minimise sampling contexts with poor contextual integrity (i.e. containing mixed material 

of uncertain date/origin). In most cases, the samples originate from a wide range of primary and 

secondary deposits (cf. Miksicek 1987; van der Veen 2007; Fuller et al. 2014). This includes silo/pit 

fills, hearths, floors, occupation layers, refuse/midden-type deposits and conflagration deposits.  

The on-site aim was to collect a minimum of 40-60 litres (L) per context (equivalent to 4-6 

buckets), or 100% of smaller contexts. Where possible, samples were scanned to assess the 

quantity of plant remains present and to determine whether the whole sample was processed or 

whether further, larger samples (>60L) were taken. Previous research suggests that a minimum 

of 40L per context is necessary to account for potentially low densities of plant remains, 

particularly within rural sites (e.g. Hoppé 1999; Samuel 2001; van der Veen et al. 2007, 2013; 

Charles et al. 2009). An exception to this sampling strategy is Ambel Church, excavated in 2007, 

where small samples (<5L) were taken at the time of excavation from a limited number of 

contexts (Blanco Morte 2007). In total, 156 samples were analysed for the whole PhD, 

corresponding to 3585 litres, with sample volumes ranging from <1L to 200L per context (average 

32L). 

The bulk samples were manually floated with the flots collected on a 300μm mesh, or a 500μm 

mesh for samples which were difficult to process. Residues were washed through a 500μm or 

1mm mesh. Sample processing was primarily undertaken by the author during excavations in 

Spain with additional sample processing undertaken in the Department of Archaeology, Durham 

University.   

2.1.3 Sorting 

Residues were sieved into fractions (>4mm, 2mm, 1mm) and scanned for additional plant remains 

(e.g. nutshell/fruitstone fragments, pulses, mineralised remains). The >4mm fraction was 100% 

scanned and, at a minimum, a sub-sample of the 2mm (≥25%) and 1mm (≥12.5%) fractions was 

scanned under a low-powered microscope. For most samples, 100% of the 2mm fraction was 

scanned. Where plant remains were present within a residue, it was either 100% sorted or re-
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floated. To minimise potential damage to plant remains caused by re-wetting/drying, only a small 

number of samples were re-floated. 

Flots were examined at X7.5 to X60 magnification using a Leica M80 stereomicroscope. With the 

exception of two very large flots from El Quemao (see Chapter 2, section 2.2.2), the coarse 

fractions (≥1mm) for all the samples were 100% sorted. Sub-sampling (≥12.5%) of the fine 

fractions (300/500μm) was undertaken for very large and/or rich flots using a riffle box (van der 

Veen and Fieller 1982). Very large flots were sub-sampled when full sorting of the fine fractions 

was unlikely to produce >30 plant remains (cf. Bogaard et al. 2013a). Plant remains identified in 

sub-samples were multiplied up to estimate the total number of remains present. 

2.1.4 Identifications 

Identifications were primarily made using the reference collection housed in the Department of 

Archaeology, Durham University. Many common species from the Mediterranean flora are 

present within this collection, however, it does not contain comprehensive collections of 

wild/weed taxa which has limited some identifications to family or genus level. In particular, wild 

Poaceae spp. caryopses have typically not been identified to genus/species. Additional reference 

material was also gathered by the author in Spain and charred to produce comparative material. 

Towards the end of this PhD research, it was also possible to consult the reference collection 

housed in the Institute of Archaeology, University College London. Wild/weed taxa identified to 

family or genus were compared with a list of geographically relevant species from the Flora de 

Aragón to refine identifications where possible (Instituto Pirenaico de Ecología y Gobierno de 

Aragón 2005). Identification criteria outlined in archaeobotanical publications (Hillman et al. 

1996; Hillman 2001) and seed atlases/manuals were also consulted (Fuller 2006; Jacomet 2006; 

Neef et al. 2011; Cappers et al. 2009, 2012). The prefix ‘cf.’ (compare) is used to designate less 

certain identifications. Nomenclature follows the Flora Europaea (Halliday and Beadle 1982). 

Latin and common names for cereals, millets, fruits/nuts, pulses, oil/fibre crops and other crops 

analysed in this PhD research are presented in Table 2.3. The appendices also contain 

Latin/common names for all plant remains identified. Throughout the text, the term ‘cereals’ is 

used to designate wheats (Triticum spp.), barleys (Hordeum spp.), oats (Avena spp.) and rye 

(Secale cereale). The term ‘millets’ is used to designate the small-grained cereals, broomcorn 

millet (Panicum miliaceum) and foxtail millet (Setaria italica). 

The identification criteria for some plant remains requires specific note. Free-threshing wheat 

species are separated based on rachis morphology (Hillman 2001), with the term ‘bread wheat’ 

referring to Triticum aestivum-type (hexaploid wheat), whilst ‘durum wheat’ refers to T. durum-
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type (tetraploid wheat). Seeds of grass pea (Lathyrus sativus) and red pea (Lathyrus cicera) exhibit 

high morphological variability which makes separation of these two species problematic, 

although red pea seeds are typically smaller (cf. Nesbitt et al. 2017). Where the distinction 

between grass pea and red pea is unclear, the term ‘grass/red pea’ is used. Fruitstones of 

wild/sweet cherry (Prunus avium) and sour cherry (Prunus cerasus) are tentatively separated 

based on their morphology and size, with longer forms attributed to sweet cherry, although this 

distinction has not been possible in all cases (Burger et al. 2011). 

Plant remains were quantified where possible by calculating the Minimum Number of Individuals 

(MNI), following methods adopted in other archaeobotanical studies (e.g. Jones 1991; Bogaard 

et al. 2013a; Fuller and Pelling 2018). Diagnostic elements were counted as one (e.g. embryo ends 

for cereal grains and pulse seeds, rachis nodes for free-threshing cereals, hooked ends for flax, 

stalks for grape pips etc.). Where fragmented, these plant remains were divided by 4 to provide 

MNI estimate. However, nutshell/fruitstone fragments are counted as individual fragments since 

it is difficult to provide an accurate MNI estimate for these remains. The original total counts are 

also presented in the Appendices. Charcoal fragments (>4mm), indeterminate charred fruit 

remains, rhizomes/tubers, small monocotyledon stems, cereal straw fragments (culms) and 

indeterminate/unidentified charred and mineralised remains were recorded semi-quantitively on 

an abundance scale: (+) = 1-5, + = 6-20, ++ = 21-50, +++ 50-100, ++++ = 100-500, +++++ = >500. 

2.1.5 Preservation 

At all the sites studied, plant remains were primarily preserved through charring. This is due to 

the semi-arid climate of the study region and charring is the most common mode of preservation 

for medieval sites in Spain/Portugal, especially in rural areas (Peña-Chocarro et al. 2019; cf. van 

der Veen 2007).  

Limited evidence for desiccated plant remains was also noted at the sites studied in the Huecha 

Valley, comprising remains of elder and, to a lesser extent, blackberry, fig, grape and occasional 

wild/weed taxa. These do not appear to be modern intrusions (i.e. due to the absence of 

endosperms, recovery from secure contexts), though direct AMS 14C dating would be necessary 

to confirm their date. It is well-established that remains of elder and raspberry are particularly 

decay resistant which may explain their presence (e.g. Moffett in Hedges et al. 1993:162-163; 

Zapata Peña and Ruiz-Alonso 2013; Speleers and van der Valk 2017). Desiccated plant remains 

have only been preserved in exceptional cases within the study region, such as within caves (e.g. 

Alcolea and Rodanés 2019) or within later medieval structures (e.g. Gerrard 2003:299).  
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A small quantity of uncharred plant remains were also preserved through biomineralisation and 

(phosphate) mineralisation (Shillito and Almond 2010). This included biomineralised 

Boraginaceae seeds and, in one case, hackberry fruitstones. These remains preserve due to the 

presence of biogenic carbonate in their pericarps, making them decay resistant (Shillito et al. 

2009; Mathews 2010). Evidence for probable (phosphate) mineralisation was also identified at 

several sites. This mode of preservation only occurs in specific burial environments which contain 

high proportions of organic waste (e.g. latrines, midden/refuse deposits), causing the mineral 

replacement of organic plant tissues, typically by calcium phosphate (Green 1979; Carruthers 

1991; McCobb et al. 2001, 2003; Marshall et al. 2008; Amichay et al. 2019). Mineralised plant 

remains were recovered from secondary contexts which probably incorporate material from 

several different sources, potentially including re-deposited material from middens/refuse 

deposits and possibly some material from latrines. This is discussed in more detail in the overview 

of the individual study sites (see Chapters 3 and 4). Mineralised plant remains are commonly 

recovered from medieval sites, especially latrines in urban sites, though they have also been 

recovered from ‘rubbish’ pits where they are probably re-deposited (e.g. Alonso 2005; Fuller and 

Pelling 2018; Ros et al. 2018). 

2.1.6 Dating evidence 

Dating evidence for the archaeobotanical assemblages was first established on the basis of 

stratigraphic relationships identified during excavations and pottery/artefactual evidence 

associated with samples. Pottery/artefactual evidence was directly associated with samples in 

many cases and this material was typically diagnostic of a specific period. Intrusive/residual 

remains are likely to be minimal since most sites did not contain multiple periods of occupation 

superimposed upon one another. 

To confirm the dates of the archaeobotanical assemblages, direct AMS 14C dates were also 

obtained on charred plant remains as part of this project (12 dates, from four sites). This dating 

strategy aimed to (i) target key samples/features associated with rich archaeobotanical 

assemblages or (ii) to establish phasing for the archaeobotanical assemblages. Single-entity 

samples of charred plant remains (cf. Ashmore 1999) were submitted to the Scottish Universities 

Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory, Glasgow. Dates are 

calibrated using IntCal13 (Reimer et al. 2013) in OxCal v 4.2 (Bronk-Ramsey 2013) and are 

expressed at 95.4% probability.  
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2.2 Identifying crop husbandry practices I: crop-processing and arable weeds 

The analysis of archaeobotanical weed assemblages can potentially provide a rich source of 

information for crop husbandry practices (Hillman 1981, 1984; Jones 2002). Different 

methodological approaches have been used to infer factors such as sowing times, the scale and 

intensity of cultivation, crop provenance, crop rotation and irrigation, amongst other factors 

(Jones et al. 2010). The basic premise of these approaches is that different crop husbandry 

practices will affect the composition of weed floras. Weed species have tolerances/preferences 

for specific ecological conditions and, by extension, cultivation conditions (Jones et al. 2010). Of 

particular relevance to this research is the use of weed assemblages to identify evidence for 

irrigation. Theoretically, irrigation may also be linked to other crop husbandry practices including 

the scale and intensity of cultivation (Halstead 2014:230-232). 

2.2.1 Methodological framework 

Irrigation and dry farming can significantly influence the composition of weed floras (e.g. Braun-

Blanquet and de Bolós 1957; Guillerm and Maillet 1982; Miller 1982: 158-160; Jones et al. 1995; 

Charles and Hoppé 2003). Central to the interpretation of archaeobotanical weed assemblages is 

present-day ecological data gathered through the analysis of weed flora in rainfed and irrigated 

fields, particularly where ‘traditional’ flood irrigation is still used (Jones et al. 2005). In this respect, 

important surveys of weed flora in rainfed and irrigated fields have been undertaken in Wadi Ibn 

Hamad, southern Jordan (Charles and Hoppé 2003), and in Borja (Jones et al. 1995), one of the 

study regions under analysis here. An earlier survey of weed floras has also been undertaken 

within the broader study region of the Ebro basin (Braun-Blanquet and de Bolós 1957; Jones et 

al. 1995). Taken together, these studies identified differences in the weed flora between rainfed 

and irrigated fields, particularly where irrigation was of an intensive type (Jones et al. 1995; 

Charles and Hoppé 2003). This provides an important basis for the identification of irrigation using 

weed assemblages, however, extrapolating the results of present-day weed surveys to 

archaeobotanical datasets is challenging due to potential changes in the composition of weed 

floras through time and differences in crop husbandry practices (Hillman 1991; Jones 1992; Jones 

et al. 1995; cf. Guillerm and Maillet 1982; Cirujeda et al. 2011). 

Different methodological approaches have been applied to interpret archaeobotanical weed 

assemblages. One approach examines the autecology of individual species, extrapolating the 

tolerances/preferences of modern weed species for certain environmental conditions to 

archaeobotanical assemblages (Jones 1992, 2002). For instance, irrigation may increase the 

frequency of species typical of damp/wet conditions in arid or semi-arid environments (e.g. Miller 
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1982: 158-160, 2011:65-66; Riehl 2010; Marston and Miller 2014). Similarly, irrigated fields may 

be managed more intensively, with the addition of manure, potentially causing an increase in 

species typical of disturbed and fertile habitats (Hillman 1973; Jones et al. 1999; Halstead 

2014:230-232).  

An alternative approach is phytosociology, the identification of plant communities (Küster 1991; 

Jones 1992). This approach classifies vegetation stands into syntaxa, hierarchical groupings of 

plant communities (class, order, alliance and association) based on their floristic composition, 

though the general habitat (e.g. a cereal field) is also considered. ‘Character species’ define a 

specific syntaxon. At the lowest syntaxonomic level of association, this approach has been 

successfully used to distinguish modern irrigated and rainfed fields in north-east Spain (Braun-

Blanquet and de Bolós 1957). However, modern syntaxa cannot be directly applied to 

archaeobotanical research since plant communities are unlikely to have remained stable through 

time and weed assemblages may only contain a small proportion of the total number of species 

present (Hillman 1991; Behre and Jacomet 1991; Küster 1991; Jones 1992; Karg 1995; Bogaard 

2004:5-7; Ernst and Jacomet 2006).  

Despite this, phytosociology may provide an indication of the ecological tolerances/preferences 

of a species when analysed at the highest syntaxomic level of class (Jones 1992; Bogaard 2004:6). 

For example, species within the Secalinetea class have been associated with (rainfed) winter 

cereal crops, indicating their tolerance/preference for drier, little disturbed environments. In 

comparison, species within the Chenopodietea class have been associated with summer crops, 

gardens and irrigated areas, indicating their preference/tolerance for disturbed, fertile and 

slightly moister environments (Braun-Blanquet and de Bolós 1957; cf. Jones 1992; Jones et al. 

1999). In the weed survey around Borja, species within the Chenopodieta class were also 

observed to be more frequent in irrigated fields, with a denser crop stand, opposed to rainfed 

fields (Charles and Jones pers comm. in Bogaard 2004:45).  

However, it is difficult to make detailed inferences using the autecology and phytosociology since 

these approaches do not distinguish between the ecological tolerances and requirements which 

cause an individual species to grow (Charles et al. 1997; Jones 2002; Bogaard 2004:6). One 

approach which circumvents some of these problems is functional autecology, or Functional 

Interpretation of Botanical Surveys (FIBS) (Jones et al. 2005). This method measures the 

functional ecological attributes of weed species (e.g. leaf area, flowering onset period); attributes 

which enable a species to grow in certain ecological conditions. A detailed approach using FIBS is 
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beyond the scope of this PhD research since plant functional attributes need to be directly 

measured in the field.  

Applications of the FIBS approach to present-day weed floras in Wadi Ibn Hamad (Charles et al. 

2003) and Borja (Charles et al. 1997) successfully distinguished irrigated and rainfed fields. 

Flowering time was one of the most important attributes, with species which finish flowering 

early in the season (a drought avoidance attribute) more frequent in rainfed fields (Jones et al. 

1995; Charles et al. 2003; Jones et al. 2005). Water availability typically had a greater effect on 

weed floras than other factors such as field location, soil type, organic content or cultivation 

intensity (Jones et al. 1995; Charles et al. 2003).  However, recent weed surveys across Morocco 

indicated that regional climatic variation, notably rainfall, obscured differences in weed species 

flowering time between irrigated and rainfed fields (Bogaard et al. 2018). This is unlikely to be a 

significant problem when comparing weed floras between sites in similar locations/regions.  

Whilst flowering time is an important drought related attribute, it cannot provide conclusive 

evidence for irrigated or rainfed cultivation when used in isolation. A more detailed approach 

would also need to directly measure other drought tolerance attributes (e.g. tap root diameter, 

stomatal size, epidermal size/area) in modern irrigated/rainfed fields (Jones et al. 2005). For 

instance, wild oat (Avena fatua) finishes flowering early in the season (June), and in the recent 

past around Borja it was a particularly pernicious weed in rainfed fields, though it also occurs in 

irrigated areas (García Manrique 1960). Similarly, flowering time is also related to whether crops 

were spring or winter sown (Bogaard et al. 2001), as well as the intensity of cultivation, 

disturbance and fertility (Jones et al. 2000). Consequently, other functional attributes have also 

been considered where applicable. These attributes are used since this information can be 

obtained from local floras. 

2.2.2 Analysis of weed assemblages 

The identification of crop husbandry practices using weed assemblages requires careful sample 

selection (Hillman 1984; Jones 1991; Bogaard 2004; van der Veen 2007). Whilst most samples are 

likely to contain crop processing debris, weeds may derive from several origins including arable 

fields, dung burning, refuse, fuel, the surrounding environment and burnt mudbricks/rammed 

earth (Hillman 1981, 1984, 1991; Jones 1984; Miller 1984; Miller and Smart 1984; Smith 1998; 

van der Veen 1999, 2007; Spengler 2019). Similarly, samples may also contain crop species (and 

associated weeds) which did not grow together as well as a mix of different crop processing 

stages. Ethnoarchaeological research has demonstrated that different crop-processing stages can 

have a significant effect on the range of weed species present and introduce biases (Jones 1992). 
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Taken together, these factors may result in the co-occurrence of weed species in assemblages 

that did not actually grow together. Where samples contain material of mixed origin, the 

inferences which can be made about crop husbandry practices using weed seed data are limited 

(Bogaard 2004:60-67; McKerracher 2019:17). 

To determine whether wild/weed taxa present reflect arable weeds, the composition of 

assemblages has been examined on a sample-by-sample basis together with an assessment of 

the potential formation processes (Hillman 1984; Jones 1991; van der Veen 2007). Samples were 

classified according to whether they contain material from one source/event or a mixture of 

different sources/events. This classification was based firstly on whether a sample is dominated 

by a single crop type (e.g. free-threshing cereals, pulses) and secondly whether a sample is 

dominated by a single crop species (e.g. durum wheat, lentils). Weeds were only considered to 

be directly associated with a specific crop if (arbitrarily) ≥70% of the remains derive from a single 

crop species (cf. Bogaard 2004: 64). Whilst it is recognised that a sample containing a mixture of 

hulled barley and free-threshing wheat could reflect a maslin (Jones and Halstead 1995), it cannot 

be assumed that these crops were actually cultivated together under the same conditions. 

Sample compositions were therefore classified as dominated by a specific crop species (e.g. 

‘hulled barley dominant’) or as ‘mixed’, provided that they contained at least 30 charred crop 

remains.  This data is presented for each sample in Appendices 1, 2, 3, 6, 8, 9, 11, 12 alongside 

the full archaeobotanical dataset.  

Nearly all the samples analysed in this PhD research are classified as ‘mixed’ (see Chapters 3 and 

4), and consequently it is suggested that the analysis of weed assemblages in broad terms at the 

site-level is more appropriate, as opposed to the sample-level. Whilst the weeds within these 

mixed samples probably derive from more than one source, they can still provide generalised 

information on the nature of cultivation conditions, particularly where they are associated with 

comparatively rich assemblages of crop processing debris (e.g. grains, rachises, culm nodes). 

Potential arable weeds may be identified based on their ecological tolerance/preferences and 

flowering onset period, since weeds which set seed when crops ripen may be harvested together 

with the crop (Charles 1998).  

Weed ecological data and the functional attributes analysed were gathered from the Flora de 

Aragón (Instituto Pirenaico de Ecología y Gobierno de Aragón 2005). Other floras were also 

examined for comparison including the Flora manual dels Països Catalans (Bolós et al. 2005) and 

the Flora Iberica (Castroviejo 1986-2014). Table 2.4 provides a summary of the weed ecological 

data and functional attributes used in this PhD research. This primarily includes wild/weed taxa 
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identified to species, though some taxa identified to genus are included in cases where only 

species with similar ecological tolerances/preferences and growth patterns are present (e.g. 

Setaria verticillata/viridis). In other cases, wild/weed taxa identified to genus which include 

species with widely different growth patterns and ecological tolerances/preferences are excluded 

(e.g. Rumex spp., Poaceae spp.). 

2.3 Identifying crop husbandry practices II: stable isotope analysis 

Recently, stable carbon isotope analysis (δ13C) has been widely applied in archaeological research 

as a novel method for directly identifying the cultivation conditions of specific crops (Fiorentino 

et al. 2015; Lodwick and Stroud 2019). It is well-established that δ13C ratios in plants with a C3 

photosynthetic pathway (e.g. cereals, legumes) are strongly influenced by environmental 

conditions, especially water availability (O’Leary 1988; Diefendorf et al. 2010; Kohn 2010). 

Consequently, the method has been used to provide evidence for crop provenance (e.g. Heaton 

et al. 2009 Fiorentino et al. 2012), climatic fluctuations/droughts (e.g. Riehl et al. 2014) and crop 

husbandry practices, including irrigation (e.g. Araus and Buxó 1993; Araus et al. 1997a, 1999, 

2007, 2014; Ferrio et al. 2005; Aguilera et al. 2008; Riehl et al. 2008; Masi et al. 2014; Wallace et 

al. 2015; Styring et al. 2017; Bogaard et al. 2018).  

2.3.1 Methodological framework 

2.3.1.1 RELATIONSHIP BETWEEN WATER AVAILABILITY AND STABLE CARBON ISOTOPE RATIOS 

Plant stable carbon isotope ratios primarily reflect a plants’ photosynthetic pathway (C3, C4, CAM), 

the δ13C value of atmospheric CO2 and environmental conditions, especially water availability 

(O’Leary 1988; Dawson et al. 2002). For C3 plants, the relationship between water availability and 

δ13C ratios is methodologically well established and this is normally expressed as carbon isotope 

discrimination (∆) in plant sciences. ∆13C reflects changes in plant isotopic composition 

independently of variation in the δ13C value of atmospheric CO2 (δ13Cair). This is calculated 

following Farquhar et al. (1989): 

∆13C = (δ13Cair - δ13Csample) / (1 + δ13Csample) 

During photosynthesis plants assimilate atmospheric CO2 through stomata (O’Leary 1981; 

Farquhar et al. 1982; Farquhar et al. 1989). This process discriminates against the heavier isotope 

13C, opposed to the lighter isotope 12C (Farquhar et al. 1989). The degree of 13C discrimination is 

strongly controlled by the opening and closing of plant stomata (stomatal conductance), which in 

turn is closely linked to water availability (Farquhar and Sharkey 1982). Under optimal conditions 

(i.e. higher water availability), stomata remain ‘open’ allowing atmospheric CO2 to diffuse into 
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their leaves, causing maximum 13C discrimination, i.e. a higher ∆13C value (Farquhar et al. 1989). 

However, under low water availability stomata ‘close’, restricting the diffusion of atmospheric 

CO2 into leaves, causing less 13C discrimination, i.e. a lower ∆13C value (Farquhar et al. 1989). The 

‘closure’ of stomata is a physiological response by the plant to restrict water loss (Farquhar et al. 

1989). In comparison to C3 plants, there is no clear relationship between water availability and 

13C discrimination in C4 plants such as millets (Farquhar 1983; Flohr et al. 2019). 

Variation in ∆13C values can be potentially caused by a wide range of environmental and biological 

factors including salinity, temperature, nutrient availability, light intensity and altitude (e.g. 

O’Leary 1991; Farquhar et al. 1982; Körner et al. 1988, 1991; Tieszen 1991; Condon et al. 1992; 

Peñuelas et al. 1997; Heaton et al. 1999; Dawson et al. 2002; Shaheen and Hood-Nowotny 2005; 

Cernusak et al. 2013). However, it has been widely demonstrated that water availability is the 

most influential factor determining ∆13C values in arid/semi-arid environments (e.g. Chaves et al. 

2002; Diefendorf et al. 2010; Kohn 2010; Hartman and Danin 2010; Prentince et al. 2011). Water 

availability is primarily correlated with rainfall, though it is also affected by other related variables 

including soil depth, soil type, topography, temperature, wind speed, evapotranspiration rates, 

competition from weeds and seasonality amongst other factors. Whilst environmental factors 

strongly determine water availability and therefore ∆13C values, the impact of this may to some 

extent be overridden by crop husbandry practices such as the cultivation of naturally wetter soils 

or irrigation (Wallace et al. 2013; Riehl et al. 2014; Flohr et al. 2019). 

Alongside ∆13C values, stable nitrogen isotope analysis (δ15N) has also been used to identify 

evidence for manuring (Fiorentino et al. 2015). The interpretation of plant δ15N values in 

Mediterranean regions is complicated by the fact that aridity (and salinity) can significantly 

increase δ15N values (Styring et al. 2016a; Bogaard et al. 2018). This can make it difficult to 

disentangle the effect of manuring from aridity, though a baseline δ15N value from wild herbivore 

collagen may help to resolve this. Similarly, charred cereal grains can have low %N in some cases, 

making measurements of δ15N unreliable. Consequently, δ15N analysis has not been undertaken 

for this PhD research. 

2.3.1.2 RELATIONSHIP BETWEEN IRRIGATION AND CROP ∆13C VALUES  

The relationship between irrigation and ∆13C values in cereals has been widely examined in 

agronomic research (e.g. Craufurd et al. 1991; Febrero et al. 1994; Teulat et al. 2001; Merah et 

al. 1999, 2002; Araus et al. 2003; Monneveux et al. 2004, 2005, 2006; Jiang et al. 2006; Tambussi 

et al. 2007; Rizza et al. 2012). This provides a basis for understanding the relationship between 

irrigation and grain/chaff ∆13C values, however, these studies cannot necessarily be directly 
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applied to archaeological research. Modern agronomic studies typically use modern cultivars 

which have been specifically selected to perform better (i.e. semi-dwarf varieties, earlier/uniform 

ripening, higher yields) and consequently there can be large (c.>1‰) variation in ∆13C values 

compared to ‘traditional’ landraces (Araus et al. 1997b, 2006; Merah et al. 1999; Voltas et al. 

1999; Royo et al. 2008; Heaton et al. 2009; Khazaei et al. 2010; Bogaard et al. 2016; Fiorentino et 

al. 2015). To interpret archaeological data accurately it is necessary to gather a large quantity of 

reference ∆13C data for landraces, from both controlled experiments and ‘traditionally’ managed 

farms (Fiorentino et al. 2015). Currently only a small number of studies focusing on applications 

to archaeological research have been undertaken (Araus et al. 1997a, 1997b, 2003; Wallace et al. 

2013; Flohr et al. 2019). These studies have primarily focused on hulled barley and free-threshing 

wheats (bread wheat, durum wheat), with little/or no comparative work undertaken for glume 

wheats (e.g. emmer wheat), rye and pulses.  

Cereal grain ∆13C values are strongly linked to water availability during the grain filling period 

(Araus et al. 1997a, 2003; Ferrio et al. 2005; Flohr et al. 2019). However, water availability before 

grain filling has also been shown to affect ∆13C values (Wallace et al. 2013; Flohr et al. 2019). This 

may be due to the retention of water in the soil for long-periods and/or it may reflect the carbon 

sources contributing to grain filling (Wallace et al. 2013). Two sources of carbon can contribute 

to grain filling: assimilates acquired through photosynthesis or the remobilisation of stored 

assimilates (Merah et al. 2002; Yang and Zhang 2006; Merah and Monneveux 2015). Remobilised 

stored assimilates can significantly contribute to grain filling under low water availability; 

April/May droughts during grain filling are common throughout the Mediterranean (Merah and 

Monneveux 2015). Assimilates acquired in earlier stages of growth, when water availability was 

higher (i.e. due to rainfall or irrigation), may have a higher ∆13C value (Merah and Monneveux 

2015). Overall, grain ∆13C values probably reflect water availability over a long growth period, 

rather than the relatively short grain-filling period (Wallace et al. 2013; Flohr et al. 2019). A 

comparison between grain and chaff ∆13C values may provide an indication of water availability 

earlier in the growing season (Merah et al. 2002; Wallace et al. 2013). 

Very little data is available for pulses such as broad beans or lentils (Araus et al. 1997a; Wallace 

et al. 2013; Bogaard et al. 2018). As with cereals, a positive relationship between water availability 

and ∆13C values has been observed in pulses, though they are thought to be more sensitive to 

drought stress (cf. Khan et al. 2007). The interpretation of pulse ∆13C values can be complicated 

by the fact they ripen indeterminately and pods may be harvested at different stages throughout 

the growing season. 
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2.3.1.3 INTERPRETING ARCHAEOBOTANICAL ∆13C VALUES 

Different interpretative models have been used to identify irrigation/drought stress in cereal 

remains using ∆13C values (Table 2.5). Wallace et al. (2013) have developed a broad framework 

using evidence from their own research and other studies across Mediterranean regions with 

data from controlled experiments and farm studies. This framework has been used in several 

subsequent studies (Bogaard et al. 2013b, 2018; Vaiglova et al. 2014a; Wallace et al. 2015; Nitsch 

et al. 2017, 2019a; Vignola et al. 2017; Styring et al. 2017; Alagich et al. 2018). Wallace et al. 

(2013) distinguish three broad bands to approximate water-status: ‘poorly watered’, ‘moderately 

watered’ and ‘well-watered’ for free-threshing wheat, hulled barley and lentils (Wallace et al. 

2013). ‘Poorly watered’ free-threshing wheat and hulled barley grains ∆13C values are <16‰ and 

<17.5‰ respectively, whereas ‘well-watered’ wheat and barley ∆13C values are >17‰ and 

>18.5‰ respectively, with intermediate ‘moderately watered’ values (Wallace et al. 2013). ∆13C 

values for free-threshing wheat rachis segments were on average +1.7‰ higher than the 

corresponding grain (data not presented in Table 2.5). Water-status bands for lentils were similar 

to wheat (Wallace et al. 2013).  

This framework proposed by Wallace et al. (2013) is comparable to other research. Riehl et al. 

(2014) suggests a similar ∆13C value for ‘poorly watered’ hulled barley, with values between 16-

17‰ and below indicating increasing drought stress. Similarly, Araus et al. (1997a) suggested 

irrigated durum wheat and hulled barley ∆13C values are typically >17.5‰ and >18‰ respectively.  

Recently, Flohr et al. (2019) have re-assessed the framework proposed by Wallace et al. (2013) 

through controlled experiments in Jordan using durum wheat and 6-row hulled barley. Flohr et 

al. (2019) proposed the use of more conservative cut-off points (i.e. only interpreting extreme 

values), between ‘poorly watered’ and ‘well-watered’. Following Flohr et al. (2019), ‘well-

watered’ free-threshing wheat grain and hulled barley grain values are >17.6-18‰ and >18.5-

19‰ respectively, whilst ‘poorly watered’ values for free-threshing wheat and hulled barley are 

c.<15‰ and <16.5‰ respectively. Flohr et al. (2019) note that the differentiation between 

‘poorly watered’ and ‘moderately watered’ bands proposed by Wallace et al. (2013) may be 

ambiguous in some cases, particularly for free-threshing wheat.  

Figure 2.2 summarises cereal grain ∆13C values for free-threshing wheat grains and hulled barley 

grains using data from a range of studies across semi-arid environments in the Mediterranean. 

Some of these studies have been previously cited (and used) in the framework developed by 

Wallace et al. (2013), although Figure 2.2 also includes data from additional studies. Overall, there 

is a separation between ∆13C values between rainfed and irrigated samples. For free-threshing 
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wheat, irrigated samples are typically c.>17‰, whereas rainfed samples typically fall between 

c.15-17‰. However, as identified by Flohr et al. (2019), there is very large variation in irrigated 

free-threshing wheat ∆13C values. For hulled barley, irrigated samples are typically c.>18.5‰, 

whilst rainfed samples are typically c.<18.5‰. Most rainfed hulled barley grains fall within the 

range c.15-17‰. The median ∆13C value for both rainfed free-threshing wheat and hulled barley 

is c.16‰. The separation between rainfed and irrigated samples is clearer for hulled barley than 

free-threshing wheat. The location of the ‘cut-off’ points for irrigated free-threshing wheat and 

hulled barley are directly comparable to the framework proposed by Wallace et al. (2013), and 

similar to those suggested by other researchers (Table 2.5). 

The large overlap between rainfed and irrigated samples in Figure 2.2 may be attributed to 

several factors. This could include genotypic variation between landraces, different crop 

husbandry practices (i.e. weeding, fallowing), different soil types or annual fluctuations water 

availability (i.e. abnormally high rainfall); all these factors could cause ‘anomalous’ ∆13C values. 

Consequently, Figure 2.2 provides an indication of the potential range of variation in ∆13C values 

which may be expected between rainfed and irrigated cultivation regimes in semi-arid 

environments2. Due to this potential variability, the interpretation of ∆13C values should be limited 

to ‘high’ and ‘low’ values, as suggested by Flohr et al. (2019). 

Other factors should also be considered when interpreting cereal grain/rachis ∆13C values: 

i) Inter-ear/plant and inter-plot/field variation in grain and rachis ∆13C values has been 

shown to be small, typically ±0.3-1.3‰ (Heaton et al. 2009; Wallace et al. 2013; Riehl 

cited in Fiorentino et al. 2015; Flohr et al. 2019). Consequently, when there is large 

variation in ∆13C values for a specific crop species (>1‰), this may indicate that the grains 

were cultivated under different regimes (i.e. rainfed versus irrigated), different fields or 

different years.  

ii) There is natural variation in ∆13C values between free-threshing wheat and hulled barley 

grains when cultivated under the same conditions.  Bread wheat and durum wheat have 

similar ∆13C values, whilst emmer wheat is also thought to be similar (Wallace et al. 2015). 

In comparison, hulled barley has a higher ∆13C value than wheats, with potential 

differences c.+1‰ for 2-row types and c.+2‰ for 6-row types (Voltas et al. 1999; Jiang 

et al. 2006; Aniya et al. 2007). Therefore, if free-threshing wheat has a higher ∆13C value 

 
2 The relationship between cereal ∆13C values and water availability is different for arid environments 
(Flohr et al. 2019). 
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than hulled barley, this indicates that barley has been cultivated under drier conditions 

and vice versa. 

iii) ∆13C values in free-threshing wheat rachis segments should support the interpretation of 

the corresponding grain ∆13C values. Rachis segments have a higher ∆13C value than grain, 

c.+1.7-2‰ (Merah et al. 2002; Wallace et al. 2013).  

As noted above, very little research has examined the relationship between irrigation and ∆13C 

values in pulses (Table 2.6). There can be large variation in ∆13C values for lentils and broad beans 

when cultivated under rainfed and irrigated conditions. Overall, the cut-off point between 

irrigated and rainfed samples is >17-18‰ (cf. Wallace et al. 2013). Comparative data from a sub-

humid environment in northern Morocco which receives high rainfall (703mm) similarly suggests 

that pulses cultivated in high water-availability have ∆13C values c.>17-18‰ (Bogaard et al. 2018). 

2.3.1.4 CLIMATIC VARIATION OR IRRIGATION? 

The identification of rainfed versus irrigated agriculture requires a comparison with climatic 

records. The present-day climate of north-east Spain is semi-arid and rainfed cereal cultivation is 

possible in most areas. However, high evapotranspiration rates and erratic winter-spring rainfall 

can lead to severe droughts, causing either crop failure or severely limiting crop growth (Halstead 

2014:230-232). Higher and more reliable yields may be obtained from irrigated cereals (Halstead 

2014:230-232, 241). Whilst present-day climatic conditions differ from the medieval period, there 

is little evidence that crop water availability has significantly changed based on palaeoclimatic 

records. In the early medieval period (c.6th-9th/10th CE), cooler and wetter conditions can be 

identified, although documentary sources also point to severe droughts in this period, especially 

in the 8th and 9th centuries (Domínguez-Castro et al. 2014; Sánchez-López et al. 2016). The 

Medieval Climate Anomaly (MCA) between the 9th/10th to 13th century was in turn generally 

characterised by a shift to a warmer, more arid climate, although some record regional 

heterogeneity and climatic oscillations  between wet/dry intervals (Mann and Jones 2003; Mann 

et al. 2008, 2009; Moreno et al. 2011, 2012; Corella et al. 2013; Barreiro-Lostres et al. 2014; Cook 

et al. 2016; Sánchez-López et al. 2016; Büntgen et al. 2017; Lüning et al. 2019; López-Blanco and 

Romero-Viana 2019). The subsequent transition from the MCA to the Little Ice Age (LIA), c.1300-

1400, was accompanied by a widely oscillating climate, with a general trend towards a cooler and 

wetter climate, yet severe weather-events and droughts are also recorded (Barreiro-Lostres et al. 

2014; Oliva et al. 2018; Barriendos et al. 2019; López-Blanco and Romero-Viana 2019). As in 

present-day agricultural systems, water availability is likely to have been one of the main limiting 

factors on crop growth throughout the medieval period.  
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A challenge for archaeobotanical research is inferring whether variation in crop ∆13C values 

between samples from the same period or between sites of different periods reflects irrigation, 

cultivation in naturally wetter soils or climatic change (i.e. increased rainfall, abnormally dry/wet 

years). It has been suggested that the analysis of wood charcoal ∆13C values, especially in pine, 

can corroborate crop ∆13C values (e.g. Ferrio et al. 2007), however, this approach assumes that 

(i) pine charcoal and crops are contemporary with one another, and that pine  grew in the same 

environment  as cereal fields. For example, in the Huecha Valley, pine (Pinus spp.) currently only 

grows at higher altitudes, where the climate is notably cooler and wetter, compared to the 

lowland, more arid areas where cereals are cultivated. Similarly, crop ∆13C values reflect annual 

water availability, whereas charcoal ∆13C values reflect a composite of up to several years. To 

some extent, the problems of weather/climatic changes can be mitigated against by analysing a 

large number of samples which potentially derive from different ears, plants, fields and years. 

Similarly, interpretations of crop ∆13C values may be strengthened through comparison with 

weed seed data (Bogaard et al. 2016, 2018) and the analysis of irrigation systems where they are 

well-understood (e.g. Gerrard 2011; Gerrard and Gutiérrez 2018a). 

2.3.1.5 IMPACT OF CHARRING AND CONTAMINATION 

The impact of charring and contamination on the interpretation of crop ∆13C values also needs to 

be considered. Charring experiments suggest low temperature charring causes a very small 

increase in cereal grains and pulse seeds ∆13C values, +0.11‰ (Nitsch et al. 2015). For 

archaeological samples, the charring temperatures are unknown, though an approximation of 

charring conditions can be obtained by assessing the preservation level of cereal grains and pulse 

seeds. Morphologically well preserved and undistorted cereal grains are thought to be produced 

under a relatively narrow range of conditions: low temperatures (c.220-260oC) and a 

reducing/oxygen poor environment (Boardman and Jones 1990; Braadbaart and van Bergen 

2005; Braadbaart et al. 2005; Braadbaart 2008; Charles et al. 2015; Berihuete-Azorín et al. 2019). 

By assessing the overall level of preservation, an indication of charring temperatures may be 

obtained. Consequently, for very well preserved, undistorted grains/seeds there is likely to be 

minimal offset in ∆13C values due to charring. 

Contamination during burial may cause small variation in ∆13C values (Vaiglova et al. 2014b; 

Brinklemper et al. 2018). However, pre-treatment methods designed to remove potential 

contaminants can significantly reduce sample size and also alter the original ∆13C value of the 

sample (Vaiglova et al. 2014b; Brinkkemper et al. 2018). Various studies have reported no 

significant and consistent differences between ∆13C values in pre-treated and non-treated 
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samples (Lightfoot and Stevens 2012; Styring et al. 2016b; Aguilera et al. 2018; Brinkkemper et 

al. 2018). Brinkkemper et al. (2018) indicate that reliable ∆13C measurements may be obtained 

from un-treated samples recovered through flotation which are manually cleaned of visible 

adhering sediment.  

2.3.1.6 VARIATION IN ATMOSPHERIC CO2 

Changes in the δ13C value of atmospheric CO2 (δ13Cair) throughout the Holocene need to be 

corrected for when comparing modern and archaeological plant ∆13C values. The δ13Cair of air has 

decreased from c.-6‰ c.10 000ya to a present-day value of c.-8‰ and an estimate of δ13Cair 

throughout the Holocene can be obtained from ice core records using the AIRCO2_LOESS system 

(Ferrio et al. 2005). The effect of changes in the pressure of atmospheric CO2 (pCO2) on plant 

∆13C values are uncertain throughout the Holocene, though it is unlikely to cause large variation 

(i.e. c. <0.5‰) in plant ∆13C values (Schubert and Jahren 2012; Kohn 2016; Hare et al. 2018). In 

general, changes in pCO2 throughout the Holocene are not corrected for archaeological datasets 

(e.g. Araus et al. 1997a; Bogaard et al. 2013b; see however Mora-González et al. 2019a).  

2.3.2 Sample selection and preparation 

The archaeobotanical assemblages from each site were examined carefully to assess whether 

they were suitable for stable carbon isotope analysis based on the following criteria: (i) they 

contain large and very well-preserved assemblage of cereal grains, chaff and/or pulse seeds; (ii) 

the contexts were directly AMS 14C dated, or associated with a directly dated context.   

In total, 290 single-entity samples were submitted for stable carbon isotope analysis from four 

sites (Table 2.7). The samples are all charred and include 231 cereal grains, 24 cereal rachis 

segments and 35 pulse seeds. Free-threshing wheat and hulled barley grains were targeted for 

analysis since these were the most common cereal species recorded at all sites and most present-

day research has examined these species. Millets have not been analysed since there is no clear 

relationship between irrigation and C4 plants (Flohr et al. 2019). 

Each sample analysed is an individual cereal grain, rachis segment or pulse seed. This 

methodology is in contrast to other approaches which have used bulk-samples of c.10 

grains/seeds (e.g. Vaiglova et al. 2014b; Wallace et al. 2015; Nitsch et al. 2015, 2017, 2019a; 

Styring et al. 2016, 2017; Alagich et al. 2018; Bogaard et al. 2018). By analysing bulk-samples, 

variability in ∆13C values is reduced (Nitsch et al. 2015; Flohr et al. 2019: ESM3). However, a single-

entity approach is used here to avoid combining samples which were potentially cultivated in 

different fields, using different crop husbandry practices or during different years. Single-entity 
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approaches have been used in other studies (e.g. Masi et al. 2014; Riehl et al. 2014; Gron et al. 

2017; Mora-González et al. 2016, 2018, 2019a, b; O'Connell et al. 2019). Previous research 

suggests that it is necessary to analyse 5-10 charred plant remains, or preferably more, per 

context to achieve accurate results (Reihl et al. 2014; Nitsch et al. 2015; Flohr et al. 2019). A 

minimum of 5 charred plant remains were analysed per context, though in most cases a larger 

number of samples were analysed.  

The dimensions of each sample were measured, and the level of preservation/distortion 

recorded. For cereal grains an adapted version of the preservation/distortion scale outlined by 

Hubbard and al-Azm (1990) was followed and this was extended to include rachis segments and 

pulse seeds. In the Hubbard and al-Azm (1990) scale, preservation and distortion are recorded 

separately, however the two variables are linked (Charles et al. 2015) and therefore an adapted 

preservation (‘P’) scale is used (Table 2.8). This scale only provides a subjective indication of the 

level of preservation and there can be inter-observer variation when assigning a ‘P’ number, with 

some samples falling into intermediate categories (i.e. ‘P2/P3’). Theoretically, the scale outlined 

in Table 2.8 correlates with charring temperatures, though it is important to note that mechanical 

damage during sampling and recovery will also alter the preservation level. The samples 

submitted for stable isotope analysis were generally in an excellent state of preservation: 80% = 

P1/P2, 3% = P2/P3, 17% = P3.  

Due to the excellent preservation, a change in ∆13C values due to charring is therefore likely to be 

minimal. An offset of +0.11‰ recommended by Nitsch et al. 2015 has not been applied since the 

precise offset is highly dependent on charring temperature and this can only be approximated 

for archaeological samples. In addition, it is important to note that the outer epidermis/testa 

(seed coat) for cereal grains and pulses was either intact or near-intact. In cereal grains, there is 

a 0.4-1‰ difference in ∆13C values between the epidermis and endosperm (Heaton et al. 2009; 

Flohr et al. 2019), whilst in pulse seeds there may be a 2‰ difference in ∆13C values between the 

testa and cotyledon (Treasure et al. 2016).  

The samples were generally very clean (i.e. minimal/no adhering sediment) and contamination is 

likely to be minimal. Where sediment was present adhering to a sample, this was gently removed 

by scraping with a scalpel. Samples were not pre-treated since reliable ∆13C values can be 

obtained from untreated samples (Brinkkemper et al. 2018) and the impact of different pre-

treatment strategies on the original ∆13C value is unclear. Each sample was homogenised in an 

agate pestle and mortar, with equipment cleaned between samples. 
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2.3.3 Stable Isotope Analysis 

Stable isotope measurements and total organic carbon content of the samples were undertaken 

in the Stable Isotope Biogeochemistry Laboratory (SIBL) at Durham University using a Costech 

Elemental Analyser (ECS 4010) connected to a Thermo Scientific Delta V Advantage isotope ratio 

mass spectrometer. Carbon isotope ratios are corrected for 17O contribution and reported in 

standard delta (δ) notation in per mil (‰) relative to Vienna Pee Dee Belemnite (VPDB). Isotopic 

accuracy was monitored through routine analyses of in-house standards (glutamic acid, δ13C = 

−11‰; urea, δ13C = −43.3‰; spar calcite, δ13C = 2.9‰), which were stringently calibrated against 

international standards (eg, USGS40, USGS24, IAEA-600): this provided a linear range in δ13C 

between −44‰ and 3‰. Analytical variation in carbon isotope analyses was typically ±0.1‰ for 

replicate analysis of the international standards and <0.2 ‰ on replicate sample analysis. Total 

organic carbon was obtained as part of the isotopic analysis using an internal standard (Glutamic 

Acid, 40.82% C). 

2.3.4 Interpretation of data 

Following the discussion outlined above, this PhD research uses an adapted version of the 

frameworks proposed by Wallace et al. (2013) and Flohr et al. (2019) to interpret crop ∆13C values 

(Tables 2.5-2.6). Two levels of water-status are used: ‘poorly/moderately watered’ probably 

reflecting rainfed cultivation, and ‘well-watered’ probably reflecting irrigation. It is important to 

emphasise that these ‘bands’ only approximate water-status.  
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3 Teruel case-study area (Islamic sites, 10th-12th 

centuries) 

 

This chapter presents the archaeobotanical evidence for the two rural Islamic (10th-12th century) 

sites examined in Teruel: Cabezo de la Cisterna (Alba del Campo) and El Quemao (Sarrión). The 

crop isotope evidence is also presented for El Quemao. The sites were investigated as part of the 

project ‘Husun y Qura: Estudio del poblamiento andalusí’ which is examining rural Islamic 

settlements in the wider Teruel region through survey and excavation (Villagordo Ros 2018). 

3.1 Regional setting 

3.1.1 Present-day climate and topography 

Both the study sites are situated within the present-day region of Teruel in the south of Aragón 

(Figure 3.1). The physical geography of this region is dominated by the extensive uplands of the 

Iberian System; a major mountain range effectively forming a barrier between the Ebro Valley 

and other areas of Spain. Two of the most important valleys cutting through this mountain range 

are the Jalón and Jiloca, which together form the Calatuyud-Daroca-Teruel Depression. This area 

of land between c.600m and 1200m (a.s.l.) links the Ebro Valley to central areas of Spain in the 

west, also forming a natural communication route to the Mediterranean coast in the east.  

In comparison to the cold semi-arid climate of the Ebro Valley (Köppen–Geiger zone BSk), Teruel 

is primarily characterised by a temperate oceanic climate (Köppen–Geiger zone Cfb). This is 

largely a reflection of its high altitude, though in the river valleys which dissect the region the 

climate becomes increasingly arid, especially in more southerly areas around the city of Teruel. 

Cabezo de la Cisterna is situated at the transition between these two climatic gradients, whilst El 

Quemao is within a more arid setting. Though both sites are situated at comparatively high 

altitudes (1000-1100m a.s.l.), mean annual rainfall is still low, averaging c.400-500mm annually. 

Temperatures can fluctuate widely, winter temperatures potentially reaching -20oC (average 0-

2oC in January), whilst summer temperatures can be as high as c.40oC (average 20-22oC in July) 

(Iberian Climate Atlas 2010; AEMET 2019). Consequently, droughts are a common occurrence. 

Extensive woodlands cover the Iberian System and these are dominated by Meso-Mediterranean 

species, especially pines (Pinus spp.) and holm oak (Quercus ilex). 

Traditionally, agriculture in the region has been characterised by transhumance and the rainfed 

cultivation of wheat, barley, rye and oats (Moreno García 1997; Pinilla 2006). The sites examined 
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here are situated in areas which are today devoted towards the extensive rainfed cultivation of 

cereals. However, the small river valleys which cut through the region are potentially irrigable and 

small irrigated areas exist around many modern villages and towns.  

3.1.2 Historical and archaeological context 

The study area examined was broadly situated at the intersection between three 

political/geographical regions of al-Andalus: the Middle March around Toledo, the Upper March 

around Zaragoza and the Eastern March around Valencia (Cervera Fras 1989; Bosch Vilá 1998; 

Torró 2012). Though the limits these ‘March’ regions are poorly defined, the Eastern March 

spanned along the Mediterranean coast from Tortosa in the north to Almería in the south (Torró 

2012). The sites examined here broadly fall within this Eastern March, particularly in the case of 

El Quemao, emphasising their connections with Valencia and the Mediterranean coast (Guichard 

2001:217).  

Following the Islamic conquests, this region is thought to have been predominantly settled by 

Berber communities, following toponymic and documentary evidence (Bosch Vilá 1959; Guichard 

1976; Ṭāha 1989:173-174; Manzano Moreno 1991; Catlos 2004:25-27; Olmo Enciso 2011; Sarr 

2013). Until the 11th century, it was (at least nominally) under the control the Umayyad state 

from Córdoba, however, with the break-up of al-Andalus during the Taifa period, two small 

kingdoms emerged in Alpuente and Albarracín (Bosch Vilá 1959; Viguera Molíns 1994:81-84). The 

Taifa of Albarracín was an important and powerful kingdom within al-Andalus, whilst little is 

known about the comparatively small Taifa of Alpuente (Viguera Molíns 2010:27-30). These Taifa 

kingdoms controlled the region until the arrival of Berber ruling dynasties from North Africa, the 

Almoravids and Almohads, in the 11th-12th centuries (Fierro 2010:72; Viguera Molíns 1994:127-

128). During this period, the region was closely tied to Valencia (Guichard 2001:472). The 

Christian conquests in the final decades of the 12th century (Teruel was captured in 1170) 

brought an end to Islamic rule, though Valencia itself was not conquered until the 13th century 

(Kennedy 1996).  

Numerous archaeological studies have examined rural settlements in areas of the Eastern March, 

especially around Valencia (Eiroa Rodríguez 2012). However, very little research has been 

undertaken within more inland areas in Teruel and documentary sources also provide limited 

information. In general, the region does not appear to have been densely settled and there were 

no major cities, though minor urban centres such as Albarracín did grow in importance (Bosch 

Vilá 1959; Navarro Espinach 1999). Where archaeological research has been undertaken, the 

settlements identified appear to primarily comprise burjs (small fortified towers) and alquerías 
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(hamlets/farmsteads) alongside hisn/pl. husun (fortified refuges); these husun are comparatively 

small in comparison to other, more urbanised areas of al-Andalus (Ortega Ortega 1997; Laliena 

Corbera 2007:142-144). Near to the study site of El Quemao, a hisn is referred to in documentary 

sources at Sarrión, though no archaeological remains have been identified (Guichard 2001: 297; 

Ortega Ortega 2004:86). Many of these rural settlements are thought have been abandoned 

following the Christian conquests (cf. Laliena Corbera 2007).  

3.2 The sites: archaeobotanical and crop isotope evidence 

3.2.1 Cabezo de la Cisterna, Alba del Campo (11th-12th centuries) 

Cabezo de la Cisterna is situated on a small, steep sided hill c.5km south-west of the town of Alba 

del Campo (Figure 3.2). This area of high altitude (1130m a.s.l.) forms the upper section of the 

Jiloca Valley, a tributary of the River Jalón. The modern landscape consists of a patchwork of 

rainfed cereal fields.  

The site is a small, fortified rural Islamic settlement, with archaeological remains comprising a 

fortified tower, a perimeter wall, a water cistern and several structures/houses. The surrounding 

area is rich in iron ore and the settlement may be related to mining activity (Rico et al. 2005; 

Ortega Ortega 2008). It is also situated on an important communication route between the Jiloca 

Valley, the Sierra de Albarracín to the south and the Sierra Menera to the north-west. 

Between 2015 and 2016, small-scale excavations were undertaken at the site as part of the 

project Husun y Qura: Estudio del poblamiento andalusí, targeting the fortified tower in the centre 

of the site and occupation areas on its edge (Villagordo Ros 2015, 2016). Through collaboration 

with this project in the 2016 excavation season, bulk-sampling was undertaken on occupation 

deposits associated with two houses/rooms (Area 1 and Area 3) as part of this PhD (Figures 3.3-

3.4). The excavated deposits contained background waste typical of occupation (e.g. charcoal, 

ash, pottery, faunal remains) and large rotary quern was identified in Area 3. Pottery recovered 

from the houses places the abandonment of the site at the end of the 11th to early 12th century 

(Villargordo Ros 2015, 2016). 

3.2.1.1 SAMPLING 

Overall, 17 small samples were collected from multiple locations within the occupation deposits, 

with the aim of reaching a total sample volume of 40-60L per context. The total sample volume 

is 157L (Table 3.1).  
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3.2.1.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 3.2, with the full dataset in Appendix 1.  

The 17 samples produced a modest assemblage of charred plant remains, with 167 charred plant 

remains identified. The flots are small to moderate in size (c.250ml on average) comprising 

abundant modern roots and varying quantities of charcoal and charred plant remains. The density 

of charred plant remains is low, ranging from 0.3 to 2.5 items/L. The assemblage includes cereal 

grains, chaff and wild/weed taxa, alongside low numbers of millet grains, pulses and flax capsules. 

The level of preservation is generally poor and many of the cereal grains present could not be 

identified to species.  

Crops 

The cereal species identified include rye, free-threshing wheat and barley. The better preserved 

barley grains can be identified as hulled barley, with symmetric and asymmetric grains noted 

indicating the presence of 6-row hulled barley. Only a small number of indeterminate barley 

rachis fragments are present and consequently the presence of 2-row hulled barley cannot be 

excluded.  Other chaff remains include one indeterminate free-threshing wheat rachis and several 

rye rachises. Some of the rye rachis segments are (sub-)basal. The assemblage is dominated by 

grains, whilst chaff and weeds are comparatively rare (Table 3.3). 

A single millet grain recovered is probably foxtail millet. Lentil seeds are present in low numbers 

in three samples and one bitter vetch seed is present in sample 9. Flax is also recorded, with 

evidence comprising three capsule fragments in samples 1/5, 11 and 14. Theoretically, the flax 

capsule fragments could derive from a single plant, though this is unlikely since they were 

recovered from both Areas 1 and 3 in separate samples. Fruit/nut remains are very rare, 

comprising fig nutlets, a single mulberry fruitstone and a single pedicle which is probably from a 

grape.  

Wild/weed taxa 

A small assemblage of wild/weed taxa is present, with 49 remains identified, reflecting 

approximately 14 different taxa/types. All of the samples can be classified as ‘mixed’ and it is not 

possible associate specific weeds with crops (see Chapter 2, section 2.2.2). The remains are 

generally poorly preserved, making identification to species difficult. This includes 

Asperula/Galium sp., Chenopodium sp., Chenopodium album-type, Medicago sp., Polygonum 

convolvulus, indeterminate Polygonaceae, Portulaca oleracea, cf. Reseda sp., Rumex sp. and 

Silene sp. These are all annuals, and typically associated with arable and ruderal habitats. They all 
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have early/intermediate flowering periods and could have been in seed when cereals were 

harvested (June/July). 

3.2.1.3 OVERVIEW 

Sample composition and formation 

The low-densities of cereal grains, chaff and weeds within the occupation deposits of the two 

houses/rooms probably derive from the routine processing of cereals for consumption (discussed 

below). Much of this material is likely to have become charred in domestic hearths, subsequently 

becoming redeposited within the occupation layers. The generally poor level of preservation is 

also typical of material charred in hearths (Guarino and Sciarrillo 2004).  

Crop-processing and arable weeds 

The ratios of cereal grains to chaff and weed seeds suggests a (semi-) cleaned grain product, 

though the total number of remains is low (Table 3.3). Free-threshing cereal grains are typically 

stored in a semi-cleaned state and taken from storage and processed on a day-to-day basis for 

consumption (Hillman 1985). This semi-cleaned grain often contains cereal-sized weed seeds, 

small stones, occasional culm nodes and the basal parts of rachises. Small-seeded weeds and 

small rachis fragments may also be present depending on the thoroughness of fine sieving. Prior 

to consumption, additional fine sieving and hand sorting would be undertaken to remove these 

contaminants. These ‘cleanings’ are commonly discarded onto domestic fires and this seems the 

mostly likely route of preservation for the charred assemblage. Evidence for cereal processing is 

also provided by identification of a rotary quern in Area 3. Cereal grains could easily have become 

charred during processing, particularly if this was undertaken in proximity to domestic hearths 

(Hillman 1985; Alonso et al. 2014b) The chaff by-products from earlier processing stages could 

have been used as fuel source (van der Veen 1999). This may also account for the presence of 

flax capsules, which could have been deliberately burnt once the seeds had been extracted. 

Similarly, the other crops/crop items recorded including pulses and fruit remains could reflect 

material which has been deliberately discarded into hearths, or incidentally charred (i.e. below 

the base of the hearth, or close proximity to it).  

The few remains of wild/weed taxa present possibly reflect arable weeds since they are likely to 

have been in seed when cereals were harvested (June/July). Chenopodium sp., Polygonum 

convolvulus and Portulaca oleracea commonly grow in ruderal habitats, preferring moister soils 

rich in nitrogen. These weeds are more commonly associated with spring-sown crops due to their 

long-flowering periods and preference for disturbed soils. Consequently, they are often 
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associated with garden cultivation, though they can also grow in winter-sown cereals (Jones et al. 

2000). However, any links between the wild/weed taxa present and cultivated cereal fields is 

tenuous since the occupation deposits sampled contain a mixture of material from several 

sources. Similarly, it has been demonstrated that fine-sieving can artificially skew the proportions 

of summer and winter annual species within an assemblage. In particular, summer annuals 

typically have smaller seeds than winter annuals and they are therefore likely to be 

overrepresented in fine sieving by-products (Jones 1992; Bogaard et al. 2005). 

3.2.1.4 SUMMARY OF THE ARCHAEOBOTANICAL EVIDENCE 

• The samples produced a moderately sized archaeobotanical assemblage, dating to the 

Islamic period (11th-12th century). 

 

• The assemblage probably reflects material which was routinely charred by accident in 

domestic hearths during processing or food preparation. Crop-processing by-products 

may also have been deliberately discarded into hearths. 

 

• The cereal species identified include free-threshing wheat, hulled barley and rye. The 

assemblage is generally poorly preserved. Barley and free-threshing wheat rachises could 

not be identified to species. The rarity of chaff and weed seeds, relative to grain, are 

indicative of a (semi-) cleaned grain product. 

 

• Other crops identified include probable foxtail millet, pulses (bitter vetch, lentil) and flax. 

Unusually, the evidence for flax comprises capsule fragments. Remains of fruits/nuts are 

very rare and include fig, mulberry and probably grape. 

 

• The small assemblage of wild/weed taxa includes arable and ruderal species, some of 

which are likely to derive from cultivated fields brought in with the (semi-) cleaned grains. 

3.2.2 El Quemao, Sarrión (10th-12th centuries) 

El Quemao is situated on a small area of elevated ground above dry-farmed cereal fields, c.4km 

north-west of the current town of Sarrión (Figure 3.5). The site is today covered in holm oak and 

low scrub. Within the wider region, it is situated in the south of the province of Teruel, close to 

the border with modern Castellón and Valencia. The site is a small, rural Islamic settlement 

covering an area of c.<2ha, with a cluster of 8/9 houses, each with several rooms and a central 

courtyard. To the west of the site, traces of terraces have been identified and it is possible that 
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these are also Islamic in date. No irrigation features are clearly associated with the settlement. 

Evidence for earlier occupation in the Iberian-Roman period has also been identified, though this 

activity appears to be concentrated in a different area of the site, away from the Islamic 

settlement. 

Between 2016 and 2018, small-scale excavations were undertaken at the site as part of the 

project Husun y Qura: Estudio del poblamiento andalusí (Villargordo Ros 2017, 2019). In the 2017 

season, 4 trenches were excavated targeting different rooms/houses (Figure 3.6). In 3 of the 

trenches excavated, the only Islamic occupation deposits identified were thin clay floor surfaces 

which were constructed from (and situated directly above) the natural sub-soil. These contexts 

were considered unsuitable for sampling since they were essentially natural soils. Consequently, 

only samples in Trench 1 (House 2) were selected for analysis to prioritise contexts with good 

potential for the recovery of plant remains and to minimise sampling contexts with poor 

contextual integrity. The archaeological remains identified include mixed occupation deposits, 

ash-rich spreads of material and a large silo [17-18] in the corner of one of the rooms (Figures 

3.7-3.8). This silo measured 1.7m in depth, with a maximum width of 1.3m (the opening at the 

top measured 0.9m). It was sealed beneath a layer of rubble and contained a series of distinct 

fills:  

- (17-19): Mixed deposit consisting of rubble and general occupation debris. 

- (17-20): Ash-rich deposit (17-20). This was also identified covering the floor surface of 

the surrounding room (17-10). 

- (17-22): Collapse of the walls/edges of the silo. This context was not sampled. 

- (17-23): Thick, ash-rich context (0.88m), containing abundant charcoal and finds. 

- (17-24): Thin, ash-rich context (0.10m), containing abundant charcoal and very few finds. 

- (17-25): Basal fill (0.25m), comprising of mixed deposit of pottery and charcoal. 

Finds recovered from the silo [17-18] included abundant faunal remains and pottery, with sherd 

links between contexts. Other finds included an intricately carved bone mount for a box, dated 

to the 9th-10th century, and decorated with zoomorphic designs. A whole iron mattock/hoe 

(azada) was also recovered from the silo.  

In the 2018 season, a single larger trench was excavated over one house (House 1A), revealing 

different rooms and a central patio/courtyard (Figure 3.9). The contexts/features types included 

the fill of a central drain within the courtyard, occupation/floor deposits, mixed refuse deposits 

and small ash-rich deposits.  
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Diagnostic pottery and other artefactual evidence place the occupation of the site between the 

10th and 12th centuries, with more than one phase of occupation (Villargordo Ros 2018, 2019). 

As part of this PhD, two direct AMS 14C dates were obtained (Table 3.4) to date the 

archaeobotanical assemblage within fill of silo [17-18] in Trench 1 and to date an ash-rich deposit, 

(18-11), containing abundant charred plant remains in Trench 5. In Trench 1, a free-threshing 

wheat grain from (17-23), a thick ash-rich deposit filling silo [17-18] returned a date of 890-1000 

cal CE (SUERC-88605). In Trench 5, a hulled barley grain from (18-11) returned a date of 1010-

1160 cal CE (SUERC-88606); this provides a date for one of the latest features in Trench 5.  

3.2.2.1 SAMPLING 

Overall, 21 samples were collected with a total sample volume of 644L (Table 3.5). For the 2017 

season, 9 samples were collected, with a total sample volume of 479L. The fills of silo [17-18] 

were 100% sampled. A 25% sub-sample of the thick, ash-rich deposit (17-23) was processed due 

to the large size of this context. The ash-rich occupation deposit, (17-10), was also 100% sampled 

on-site and a 10% sub-sample was processed. For the 2018 season, most of the contexts suitable 

for sampling were small, and 100% of the excavated deposit was collected in all cases. 

3.2.2.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 3.6, with the full dataset in Appendix 2.  

The 21 samples analysed produced a large assemblage, with 4722 charred and 195 mineralised 

plant remains identified. The flots vary in size from very small (80ml) to very large (>1000ml), 

comprising varying quantities of charcoal and charred plant remains. Modern roots are common 

to very abundant in the flots, though modern wild/weed seeds are only present in trace quantities 

in some of the samples. In Trench 1, the flots are generally very large, containing abundant 

charcoal, particularly from contexts in silo [17-18], with sample 4 producing a flot 13,500ml in 

size. In comparison, the flots from Trench 5 are generally smaller and contain less charcoal, 

though charred plant remains are present in high densities in samples 10, 13, 14, 19, 20 and 23. 

Overall, the density of charred plant remains ranges widely from 0.2 to 48 items/L. Samples 4 and 

10 produced the largest assemblages of charred plant remains. The level of preservation is 

variable, though it is typically poor. 

The charred plant remains primarily comprise cereal grains, chaff, pulse seeds and wild/weed 

taxa, whilst other crop items are rare. The discussion below combines the archaeobotanical 

evidence from both trenches together, though reference is made to particular samples/trenches. 

Crops 
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The cereal species identified primarily comprise free-threshing wheat and hulled barley, with less 

evidence for rye and emmer/einkorn wheat grain are only recorded in one sample. In general, 

the cereal grains are very poorly preserved and a high proportion (56%) of the grains are 

unidentifiable. 

The free-threshing wheat grains are typically short and stubby in morphology (cf. Jacomet 2006). 

One grain in sample 4 has clear evidence for rodent gnaw marks. Diagnostic free-threshing wheat 

rachises are generally too poorly preserved to enable identification to species. Some of the better 

preserved examples can be identified as durum wheat, though one rachis in sample 10 may be 

from bread wheat. Considering the generally poor level of preservation, bread wheat cannot be 

excluded. Most of the barley grains are too poorly preserved to identify to species, though the 

better preserved grains are clearly hulled. Low numbers of both symmetric and asymmetric grains 

indicate that 6-row barley is present. Identifiable barley rachises are all from 6-row hulled barley, 

though the presence of 2-row hulled barley cannot be excluded. Rye grains are present in 

comparatively lower numbers in 15 samples. However, rye rachises are particularly common, 

including (sub-)basal segments, especially in samples 3, 10 and 11. Sample 11 produced two 

emmer/einkorn wheat grains and one indeterminate glume wheat spikelet fork. Overall, the 

cereal assemblage is dominated by grains, with only two samples (3, 11) containing comparatively 

high ratios of rachises, predominantly from rye (Figure 3.10). 

Millet grains are generally present in low numbers, with the exception of samples 4 and 5. Most 

of the grains are broomcorn millet, with the presence of both hulled/unhulled and 

immature/mature grains noted. A large number of Setaria sp. grains are present in sample 4, 

however, these are probably from weed species, green/bristly foxtail millet (Setaria cf. 

verticillata/viridis) based on their slim morphology (Nesbitt and Summers 1988). 

Ten samples produced low numbers of pulse seeds, with lentil, pea, red pea and bitter vetch 

recorded. An exception to this is sample 10 which produced a rich assemblage of pulses, 

comprising a total of 372 seeds (9 items/L). In general, the pulses are poorly preserved and a large 

proportion (28%) are indeterminate. In order of abundance, the species recorded include lentil, 

red pea, pea and bitter vetch. The pea seed fall into two types: Type A with a clearly spherical 

morphology and Type B with a cuboid-spherical morphology. This variability in pea morphology 

may reflect two different cultivars, different position of the peas within the pod or moisture 

content when charred. The red pea seeds are tentatively distinguished from grass pea based on 

their small size. It may be possible to identify some of the indeterminate pulse seeds with the use 

of a larger reference collection. 
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Flax is only recorded in sample 4 and represented by one seed and one capsule fragment. Sample 

2 produced two probable mineralised gold-of-pleasure seeds. These seeds have lost their 

distinctive rugose surface pattern, though their overall morphology and large size (>3mm) is 

comparable to gold-of-pleasure.  

Fruit/nut remains are typically present in low numbers and comprise fig, grape, mulberry and 

hackberry in order of abundance. Fig nutlets are present in 13 samples and mineralised fig nutlets 

are present in three samples. Sample 2 produced a fragment of a fig fruit, whilst sample 10 

produced a small number of fig nutlets and large fragments of fig fruits including peduncles and 

fragments of fruits. Mulberry fruitstones are also recorded in sample 10 and 12. Evidence for 

other fruit/nut remains is slight, with small quantities of grape pips (whole and fragmented) and 

pedicles present in five samples. Low numbers of mineralised fig nutlets and grape pips are also 

recorded in the samples from silo [17-18]. 

One find of particular interest is a whole garlic clove in sample 10 (Figure 3.10). 

Wild/weed taxa  

In total, 1429 remains of wild/weed taxa have been identified, representing approximately 32 

different taxa/types. In general, wild/weed taxa are present in low numbers, with the exception 

of samples 4 and 10. Poaceae spp. are the most common remains, with taxa identified including 

Apiaceae, Asperula sp., Avena sp., Chenopodium sp., Chenopodium album-type, indeterminate 

small-seeded Fabaceae, Fumaria sp., Galium sp., cf. Glaucium corniculatum, cf. Lamiaceae, 

Lithospermum sp., Medicago/Meliotus sp., Malva sp., Boraginaceae, Papaver sp., cf. Plantago sp., 

indeterminate Polygonaceae, Polygonum convolvulus, Portulaca oleracea, Setaria cf. 

verticillata/viridis, Silene sp. and Vicia sp..  

Two samples, 4 and 10, produced comparatively rich assemblages in wild/weed taxa. In sample 4 

from silo [17-18], the assemblage is dominated by Chenopodium album-type seeds and Setaria 

cf. verticillata/viridis. These are both ruderal species, with a preference for nitrogen-rich and 

slightly moister environments. An assemblage of mineralised wild/weed taxa was also recorded 

in samples 1 and 4 including Agrostemma githago, Cirsium sp., Glaucium corniculatum, Papaver 

sp., Poaceae spp. and Silene sp. In sample 10 from an ash-rich deposit, a diverse range of 

wild/weed taxa are present alongside abundant crop remains including Chenopodium sp., 

indeterminate small-seeded Fabaceae, Galium sp. cf. Glaucium corniculatum, Lithospermum sp., 

Malva sp., Medicago sp., Papaver sp., Plantago sp., small/large Poaceae spp., indeterminate 

Polygonaceae, Setaria sp. and Silene sp. In particular, Galium sp. seeds (probably G. aparine) are 
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common (n=48) and species within this genus are scrambling plants commonly harvested 

alongside cereals or pulses (Hillman 1991). 

The wild/weed taxa are all either winter or summer annuals3, and they are typically associated 

with arable and ruderal habitats. They have an early-intermediate flowering onset period, with 

flowering durations ranging from short (1-3 months), medium (4-5 months) to long (>6 months). 

These wild/weed taxa could therefore have been in seed when cereals were harvested 

(June/July). One exception to this is Setaria cf. verticillata/viridis in sample 4 which flowers late in 

the season (July onwards).  

3.2.2.3 STABLE CARBON ISOTOPE ANALYSIS 

In total, 60 cereal grains (6-row hulled barley, free-threshing wheat, rye) and 10 pulse seeds 

(lentils) were selected for stable carbon isotope analysis. Samples dating to the 10th century were 

analysed from silo [17-18] in Trench 1, whilst samples dating to the 11th-12th century were 

analysed from an ash-rich deposit (18-11) in Trench 5. The results are analysed separately for 

each trench. Although a large number of cereal grains were recovered from the site, these were 

generally poorly preserved and unsuitable for stable isotope analysis. Mean ∆13C values are 

presented in Table 3.7 and box plots of the results are presented in Figure 3.11. The results for 

each sample individually are presented in Appendix 3. 

For silo [17-18] (contexts 17-23, 17-24), the mean ∆13C values for 6-row hulled barley and free-

threshing wheat are 17.0 ± 0.5‰ and 15.9 ± 0.6‰ respectively. Both of these results are 

consistent with rainfed cultivation and the small variation in ∆13C values also suggests that the 

samples could potentially derive from a single harvest. The mean ∆13C value for rye grains is 16.3 

± 1.0‰, falling within ‘severe drought’ range recorded by Kottmann et al. (2014).  

For context (18-11), the mean ∆13C values for 6-row hulled barley and free-threshing wheat are 

17.7 ± 0.8‰ and 16.4 ± 0.8‰ respectively. These ∆13C values are slightly higher than the samples 

from silo [17-18], though they are still consistent with rainfed cultivation. The small variation in 

∆13C also suggests that the crops were harvested from a single field. The mean ∆13C value for 

lentils is 17.8 ± 0.8‰, falling above the ‘well-watered’ range defined by Wallace et al. (2013).  

3.2.2.4 OVERVIEW 

Sample composition and formation 

 
3 None of the taxa recorded can be clearly identified as perennials, though identifications to species 
would be necessary to exclude perennial species.  
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In Trench 1, the archaeobotanical assemblage in sample 3 from the ash-rich occupation layer (17-

10) and samples 1, 2, 4 and 5 from the ash-rich fills of silo [17-18] could have formed through 

broadly similar processes. This inference is supported by their similar ash-rich nature and the 

presence of pottery sherd links between the contexts. These deposits are likely to include fuel 

waste, refuse, crop-processing debris and background settlement ‘noise’. However, sample 

compositions differ between the contexts, suggesting that they probably include plant remains 

from different sources. In particular, the presence of mineralised remains of fruits (fig nutlets, 

grape pips), cereal grains and wild/weed taxa are indicative of midden-type deposits rich in 

organic waste (McCobb et al. 2003). An element of cess/latrine waste may also be present since 

grape pips and fig nutlets are consumed with the fruit, and the gold-of-pleasure seeds may also 

have been consumed (cf. Alonso 2005). The use of silos as rubbish pits and latrines once they had 

finished being used as grain stores is well-documented in medieval/Islamic sites (Malalana Ureña 

et al. 2013; van Staëvel et al. 2016; Alonso et al. 2014b, 2017). The preservation of cereal grains 

and probable arable weeds (see below) by mineralisation is more unusual, though this material 

potentially reflects crop-processing debris discarded alongside organic-rich refuse (Marshall et al. 

2008; Fuller and Pelling 2018). The archaeobotanical assemblage from the silo can be contrasted 

with samples 7, 8 and 9 from nearby occupation deposits which contain very low densities of 

charred plant remains, probably reflecting background settlement ‘noise’. 

In Trench 5, different preservation pathways can be suggested for some of the samples. Here, 

several samples (13, 14, 19, 20, 23) from small ash-rich deposits contain high proportions of grain 

and few other remains. These samples could reflect accidentally spilled grain during food 

preparation. Sample 10 stands out as unusual since it contains abundant remains of cereal grains 

and pulse seeds, together with chaff, fig fruit fragments, a garlic clove and large assemblage of 

wild/weed taxa. This sample was collected from the corner of a room and it clearly contains a 

mixture of material from several sources. In comparison, samples 18, 21 and 22 collected from 

floor/occupation deposits contain few cereal grains and probably reflect a mixture of background 

settlement noise and accumulations of refuse. 

Exceptions to this samples 11 and 12 (from the same context) which contain a high proportion of 

rye rachises (with rye making up 81% of the remains). This sample comes from an obviously mixed 

context containing pottery, ash, charcoal and faunal remains, and it can be contrasted against the 

grain-rich deposits outlined above. The high proportion of rye rachises may derive from an earlier 

crop-processing stage such as the by-product from coarse sieving. Interestingly, this sample also 

produced the only diagnostic remains of glume wheats, comprising two emmer/einkorn grains 
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and an indeterminate spikelet fork. Clearly, a different taphonomic origin accounts for the range 

of plant remains within these two samples.  

Crop-processing and arable weeds 

In general, the low ratios of rachises to grain and weed seeds to grain suggests that most of the 

samples in both trenches contain (semi-)cleaned grain products (Table 3.8; Figure 3.12; van der 

Veen 2007). Whilst chaff is likely to be partly underrepresented due to a preservation bias 

(Boardman and Jones 1990), weeds are also generally rare and it is thought these smaller, denser 

remains should still be represented in samples with poor preservation (Jones 1987). This suggests 

that most of the samples are genuinely grain-rich. The near-absence or rarity of crop-processing 

by-products from the earlier stages of threshing, winnowing, coarse sieving is unsurprising since 

these activities would typically be undertaken outside settlements due to the dust created 

(Hillman 1984:8, 1985). Additional coarse sieving, fine sieving and hand-cleaning to remove stray 

rachises, culm nodes and other contaminants could then have been undertaken within the 

settlement on a routine basis when required (Hillman 1985; Fuller et al. 2014). One exception to 

this pattern is sample 10 which produced a relatively large assemblage of culm nodes and rachis 

segments from rye, free-threshing wheat and barley. This material probably derives from an 

earlier crop-processing stage, suggesting that some unprocessed cereals were also brought into 

the settlement. 

It is possible that some cereals were stored in the ear and the 12th century agronomist Ibn al-

‘Awwām mentions the storage of cereal ears in silos (Malalana Ureña et al. 2013). This is also 

supported by ethnographic data from Morocco and desiccated archaeological finds (12th-14th 

century) of cereal ears from Valencia (Peña-Chocarro et al. 2015). This could be a factor in 

explaining the occurrence of rachises at the site, particularly the case of rye rachises which are 

comparatively frequent. The relatively common occurrence of rye rachises could also reflect the 

use of rye straw as a construction or binding material (e.g. thatching, weaving, binding cereal 

sheathes or hay) (Halstead 2014:78, 96, 139). However, it is unclear whether rye rachises have a 

higher potential of surviving charring due to their small size and dense form, compared to either 

barley or free-threshing wheat rachises 

In Trench 1, sample 4 from silo [17-18] produced a large assemblage of cereal grains, broomcorn 

millet and wild/weed taxa. Due to the mixture of different crops present, the wild/weed taxa 

present cannot be directly associated with a specific crop. However, the large number of Setaria 

cf. verticillata/viridis caryopses identified may be a weed of broomcorn millet since both these 
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species ripen late in the season (July), i.e. after cereals are harvested. S. verticillata and S. viridis 

cannot be separated based on grain morphology (Nesbitt and Summers 1988). They both have a 

preference/tolerance for nitrogen-rich soils, though S. verticillata typically grows in wetter 

conditions. Other nitrophilous species with a preference for slightly moister environments are 

also present including Chenopodium album-type, Polygonum convolvulus, Malva sp. and 

Portulaca oleracea. These species have intermediate/long flowering periods, a functional 

attribute typical of species growing in disturbed habitats such as hoe cultivated fields (Jones et al. 

2000).  

The small assemblage of mineralised wild/weed taxa in silo [17-18], samples 1 and 4, are probably 

arable weeds. This includes Agrostemma githago, Cirsium sp., Glaucium corniculatum, Papaver 

sp., Poaceae spp. and Silene sp. With the exception of Silene sp. and Poaceae spp., these taxa 

were not recorded in the charred assemblage. Agrostemma githago is a character species of the 

phytosociological Secalinetea class associated with (rainfed) winter cereal fields (Braun-Blanquet 

and de Bolós 1957). Glaucium corniculatum has a short flowering duration (3 months) and finishes 

flowering early in the season (June). Consequently, it is a common weed in rainfed cereals (Braun-

Blanquet and de Bolós 1957; Guillerm and Maillet 1982; Cirujeda et al. 2011).  

In Trench 5, samples 13, 14, 19, 20 and 23 are particularly grain-rich and contain few 

‘contaminants’ of other crops (e.g. pulses, fig seeds). These samples all come from the central 

courtyard of the structure and they could reflect accidentally spilled grain during the preparation 

of foodstuffs, particularly during boiling or roasting (Hillman 1985; Alonso et al. 2014b). Although 

these samples come from different contexts, it is possible that they derive from the same 

processes due to the similarity of their compositions and their close proximity to one another. 

A mixture of different cereal species is present, though in some cases near-pure assemblage of a 

single cereal species or maslins of free-threshing wheat and hulled barley may be present. For 

instance, barley forms 92% of the identifiable grain assemblage in sample 19 and 72% in sample 

20. In comparison, samples 13, 14 and 23 contain a mixture of free-threshing wheat and hulled 

barley, together with some rye. All of these samples contain probable arable weeds, though only 

low numbers of poorly preserved remains are present. The taxa recorded include Asperula sp., 

Chenopodium sp., Galium sp. Medicago sp., Poaceae spp., Silene sp., Vicia sp.. These weeds are 

small-seeded (assuming they are separated from flower heads/pods) and they could reflect the 

by-product of additional fine-sieving undertaken prior to consumption (Jones 1987; van der Veen 

2007).   
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3.2.2.5 SUMMARY OF THE ARCHAEOBOTANICAL AND CROP STABLE CARBON ISOTOPE EVIDENCE  

• The samples from the two trenches produced a large archaeobotanical assemblage 

dating to the Islamic period (10th-12th centuries). 

 

• The assemblage includes material from several different sources, including domestic 

refuse, crop-processing debris, background settlement ‘noise’ and possibly, in some 

cases, an element of cess/latrine waste. Most of the samples contain a mixture of 

material, though a series of grain-rich samples in Trench 5 are likely to reflect accidentally 

charred grain during processing or food preparation. 

 

• The assemblage is dominated by cereals. Free-threshing wheat, hulled barley and rye are 

the most frequent species. The identifiable free-threshing wheat rachises are from 

durum wheat, with one possible bread wheat rachis. The barley grains are generally 

indeterminate, though sufficient numbers of well-preserved grains are present to be 

identified as hulled barley, with both symmetric and asymmetric grains present indicating 

6-row hulled barley. The presence of 2-row hulled barley cannot, however, be excluded. 

Rye also occurs throughout the samples. There is sparse evidence for other cereal 

species, with two indeterminate glume wheat grains and one indeterminate spikelet fork 

in one sample. The samples are typically grain-rich, probably indicating that (semi-) 

cleaned grain was brought into the settlement and charred accidentally during food 

processing/preparation. 

 

• Other crops identified include broomcorn millet, flax, gold-of-pleasure, and pulses (red 

pea, pea, lentil, bitter vetch). One unusual find is a whole garlic clove. Fruits/nuts 

identified comprise grape, mulberry and fig, with near whole fig fruits present in one 

sample. Low numbers of mineralised remains also include grape and fig. 

 

• A large assemblage of wild/weed taxa is present, though nearly all the samples are 

classified as ‘mixed’ and it is not possible to directly associate specific weeds with crops. 

Despite this, the wild/weed taxa are probably from cultivated fields/gardens since the 

assemblage is dominated by arable and ruderal species.  

 

• The crop stable carbon isotope results for rye, free-threshing wheat and hulled barley are 

indicative of rainfed cultivation. All of the cereal grain ∆13C values fall below the expected 
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ranges for well-watered (i.e. irrigated) crops. Rye may also have been cultivated under 

similar conditions. In comparison, the high ∆13C values for lentils probably reflect 

irrigation. 

3.3 Discussion 

This section brings the archaeobotanical evidence together from the two sites examined, 

discussing it within a local and regional context. The primary focus is on El Quemao since a 

significantly larger archaeobotanical assemblage was recovered from this site. No previous 

archaeobotanical research has been undertaken on any Roman, early medieval, Islamic or later 

medieval sites within the region and only a handful of studies (primarily unpublished) exist for the 

neighbouring region of Valencia (Peña-Chocarro et al. 2019; see Chapter 5). Similarly, there is also 

a dearth of documentary evidence for the Islamic period, with the existing sources primarily 

concerned with irrigated areas and urban centres in the north towards Zaragoza and in the east 

towards Valencia (Ortega Ortega 2010). Only one source of the 11th/12th century gives a 

generalised picture of agriculture, referring to the territories of the Banu Razin around Albarracín 

as the ‘most fertile’ in the Upper March and noting the ‘abundance’ and ‘variety of crops’ grown 

there (Bosch Vilá 1959: 54).  

The archaeobotanical evidence analysed here provides the first record of the range of crops 

cultivated during the Islamic period in this area, as well as providing insights into the crop 

husbandry practices. At both sites a similar range of crops are present, with cereals dominating 

the assemblages. The species recorded include free-threshing wheat, rye and hulled barley, 

probably the 6-row type. In the case of El Quemao, durum wheat has been positively identified. 

There is sparse evidence for glume wheats with emmer/einkorn recorded in one sample at El 

Quemao and these remains could be a crop contaminant (Jones and Halstead 1995). No definitive 

evidence for the cultivation of oats is recorded at either site and the low numbers of grains 

identified are likely to be weeds. It is possible that oats are missing from the archaeobotanical 

record if most of the crops present were intended human consumption, since oats have been 

commonly favoured as a source of fodder (Jones 1998). Wheat, barley, rye and oats are all 

referred to in later medieval documentary sources for the region, and oats probably became a 

more important crop after the Islamic period (e.g. Muñoz Garrido 1999; Abad Asensio 2006; 

Navarro Espinach 2017). 

The large silo identified at El Quemao is probably related to the storage of cereal grains, only later 

becoming filled with refuse, as has been documented in other Islamic sites (cf. Malalana Ureña 

et al. 2013; Alonso et al. 2017). Above ground storage features may also have been present, 
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though these are less likely to be identified archaeologically (Peña-Chocarro et al. 2015). The silo 

was situated in the corner of a room within the building, probably reflecting private storage at 

the household level. The use of silos to store ‘normal surplus’ (typical overproduction of crop 

requirements) was commonplace in the recent past throughout the Mediterranean, mitigating 

against the risk of shortages since crops could be stored for several years (Halstead 1989; Forbes 

and Foxhall 1995; Forbes 2017). This practice is also indicated in documentary sources for the 

Islamic period, where silos are described for this same purpose and were considered an effective 

method for storing cereals, as well as nuts (hazel nut, walnut, almond), and even dried fruits 

(Malalana Ureña et al. 2013:342-343). In particular, hulled barley and durum wheat which have 

low water contents are well-suited to long-term storage. Silos were typically lined and often 

packed with straw, with ethnographic data indicating the use of einkorn for this purpose 

(Halstead 2014:157-159; Peña-Chocarro et al. 2015). Chaff, dung, clay and ash (a natural 

insecticide) may have been combined to form a lining and to seal the silo (Malalana Ureña et al. 

2013; cf. Hakbijl 2002). The evidence for rodent gnaw marks on one free-threshing wheat grain 

highlights the potential vulnerability of stored crops to pest damage (cf. Halstead 2014:161).  

The crop stable isotope evidence from El Quemao clearly indicates that free-threshing wheat and 

hulled barley were cultivated under rainfed conditions. Comparative evidence from the weed 

assemblage cannot be used to directly infer cereal cultivation practices due to the mixed nature 

of the assemblage, though some weeds present are likely to be associated with cereals. Pure crop 

samples, containing few contaminants, would be required to investigate aspects such as sowing 

time, harvesting method or the scale and intensity of cultivation (Jones et al. 2010). The evidence 

for rainfed cultivation is consistent with the archaeological interpretation of the site. Large-scale 

irrigation would not have been possible due to the nature of the topography and the lack of 

suitable water-sources in the vicinity of the site. Survey of the areas surrounding the site has not 

identified any evidence for irrigation channels, though this does not exclude the possibility that 

small cultivated areas received some irrigation (see below) through methods such as rainwater 

capture, which have been documented at other sites (cf. Chapman 1978; Jiménez Castillo and 

Simón García 2018).  

The evidence from El Quemao suggests hulled barley and free-threshing wheat were cultivated 

under similar conditions, and it is possible that they were cultivated together as a maslin (cf. Jones 

and Halstead 1995). Possible evidence for this also comes from the grain-rich samples in Trench 

5 which contain mixtures of hulled barley and free-threshing wheat, together with some rye. The 

identification of maslins is challenging from an archaeobotanical perspective since monocrops 
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were rarely pure, often containing admixtures of other cereals and pulses as contaminants, and 

crops may have been mixed together post-harvest or through charring and redeposition (Jones 

and Halstead 1995). However, maslins of wheat/barley, wheat/rye and cereals/pulses have 

traditionally been cultivated across the Mediterranean as a means of risk management (Hillman 

1978; Jones and Halstead 1995; Forbes 1998). By cultivating a maslin, it is possible to take 

advantage of good years with sufficient rainfall which favours less drought-tolerant crops such as 

free-threshing wheats, whilst hulled barley can cope well with unfavourable growing conditions. 

The omnipresent risk of drought is highlighted in a fatwa (legal document) from 1084 in Zaragoza, 

which highlights that rent must still be payed on a wheat crop if it fails for any other reason than 

drought (Lagardère 1995:no.209). Similarly, it is known that grain had to be imported into al-

Andalus in the 9th century (Constable 1996:134, 141-2) and severe droughts are recorded in 

chronicles between the 8th and 11th centuries (Domínguez-Castro et al. 2014). 

Documentary sources indicate that maslins were cultivated in the later medieval period in the 

north-east of Iberia and southern France (Ainaga Andrés 1987:n.73; Forey 1988; Comet 

1992:249; Alonso 2000; Latorre Ciria 2007). Contemporary Islamic sources of the 11th and 12th 

centuries describe the best bread as that made of wheat, they also mention how bread could be 

made of any mix of several cereal types, dried legumes or even vegetables, especially during times 

of shortage (Bolens 1980; García Sánchez 1983). In other cases, bread could be made from a 

mixture of wheat, barley and rye, as well as millets (Bolens 1980; García Sánchez 1983; García 

Marsilla 2013).  

Other cereal crops recorded include millets, comprising a single grain of probable foxtail millet at 

Cabezo de la Cisterna and a large number of broomcorn millet grains at El Quemao. Though 

millets are a drought adapted crop, they may have required some supplemental irrigation since 

they grow during the dry summer period (cf. Miller et al. 2016). There is no evidence for sorghum 

at either site which is surprising, particularly in the case of El Quemao given the strong 

documentary evidence for its cultivation in areas around Valencia during the Islamic and later 

medieval period (Watson 1983, 1995; Guichard 2001). Similarly, archaeobotanical evidence for 

sorghum has also been identified in the later medieval settlement at Benialí, Valencia (Butzer et 

al. 1985b), though there is currently no other archaeobotanical evidence for sorghum in the 

Iberian Peninsula during the Islamic period (Peña-Chocarro et al. 2019; see Chapter 5). 

Pulses were cultivated at both sites, with a greater diversity of species recorded at El Quemao 

which includes lentil, pea, grass pea and bitter vetch. Though grass pea may be a weed rather 

than a cultivated crop, it has traditionally been used as a source of both food and, in particular, 
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fodder (Peña-Chocarro and Zapata Peña 1999; cf. Halstead and Jones 1989; Jones and Halstead 

1995; Valamoti et al. 2011). Bitter vetch may also have been cultivated as fodder, though the 

small number of these remains could also represent contaminants of other crops (Jones and 

Halstead 1995). In comparison, lentil and pea have traditionally been favoured as a food crop, 

though the boundary between food and fodder crops is not always clear (Jones 1998; Halstead 

2014:133-134). The predominance of lentil at El Quemao may reflect a preservation bias since 

the small seeds have a higher probability of surviving than other pulses when charred (Cappers 

and Neef 2012). Despite this, it is clear that a range of pulses were cultivated, and this would have 

mitigated against the risk of crop failure (Marston 2012). Peas and lentils have been considered 

sensitive to water shortages in the Mediterranean (more so than grass pea or bitter vetch), and 

often benefit from irrigation (Farah et al. 1988; Oweis et al. 2004; Kreuz and Marinova 2017). This 

inference is supported by the stable isotope evidence which suggests that the lentils at El Quemao 

were irrigated.  

Flax is recorded in small quantities at both sites, with low numbers of capsule fragments at Cabezo 

de la Cisterna and one seed and capsule fragment at El Quemao. The evidence for capsule 

fragments is unusual since these remains are generally less frequently recovered than the seeds, 

presumably because they were discarded following processing and due to a preservation bias 

during charring (cf. Valamoti 2011; Orendi in press). The presence of capsules may be an 

indication of local cultivation. At both sites, flax could have been cultivated in rainfed areas, 

although the crop can benefit from supplemental irrigation or cultivation in naturally wetter soils, 

producing longer stems better suited to fibre production (Castro et al. 1999; Lloveras et al. 2006; 

Halstead 2014:230-231). It is, however, possible that these crops were acquired via trade. 

Evidence for gold-of-pleasure is also recorded at El Quemao and this is commonly thought to be 

a weed of flax crops (Lataowa 1998; Alonso 2005). However, the gold-of-pleasure seeds are 

mineralised and they occur alongside grape pips and fig nutlets suggesting that the crop was 

consumed. Alonso et al. (2014a) have also recorded mineralised gold-of-pleasure seeds at Islamic 

sites. 

Fruit remains are generally present in low quantities at both sites with evidence for mulberry, fig 

and grape4. Hackberry was also recorded at El Quemao, in both mineralised and charred states 

of preservation. The relatively limited evidence for fruits and the low species diversity is likely to 

reflect the relatively harsh climate which is unsuited to the large-scale cultivation of these crops, 

although trade might have helped the supply. Dried figs, for example, were widely traded 

 
4 Grape is only represented at Cabezo de la Cisterna by a probable grape pedicle.  
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throughout al-Andalus (Constable 1996:220-221). Similarly, dried raisins were stored in ash and 

widely exported (Lapeyre and Carande 1959). In the modern landscape, fruits are primarily 

cultivated in the irrigated areas surrounding towns (huertas), or in smaller market-gardens 

(huertos) such as those in the nearby village of Sarrión at El Quemao. Similarly, documentary 

evidence generated after the Christian conquest of the Valencia region indicates the cultivation 

of a diverse range of fruits and vegetables, especially in irrigated huertas (e.g. Butzer et al. 1985b; 

Guichard 2001; Saura Gargallo 2015). As noted above, there is evidence to suggest that a small 

irrigated area probably existed at El Quemao, and this could potentially have supported the 

cultivation of some fruit species, pulses (see above) and millets. The evidence for garlic is also 

indicative of a small irrigated garden. Though the weed assemblage cannot be linked to specific 

crops, summer annual species typical of disturbed habitats such as hoe cultivated fields or 

gardens are common (Jones et al. 2000). It is interesting to note that a mattock/hoe was 

recovered from the site and these tools are traditionally used to cultivate soils and to weed in 

between crops.  

Taken together, the evidence from both sites indicates that crop cultivation focused primarily on 

cereals (hulled barley, free-threshing wheat, rye), followed by pulses (lentil, bitter vetch, grass 

pea, pea). Millets (broomcorn millet) are only recorded in substantial quantities at El Quemao. 

Evidence for other crops is comparatively slight though it also includes fruits (grape, fig) and flax, 

with gold-of-pleasure also recorded at El Quemao. Rainfed areas were used for the cultivation of 

cereals at El Quemao, though there are several indications that a small irrigated area also existed 

at the site. The evidence from Cabezo de la Cisterna was generally poorly preserved, though a 

similar pattern of crop husbandry is likely to have existed there also. 
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4 Huecha Valley, Zaragoza, case-study area (early 

medieval, Islamic and later medieval sites, 6th-15th 

centuries) 

 

This chapter presents the archaeobotanical and crop isotope evidence for the sites examined in 

the Huecha Valley, Zaragoza (Figure 4.1). The sites date between the early medieval (6th-early 

8th centuries), Islamic (10th-early 12th centuries) and later medieval (Christian) periods (12th-

15th centuries), with the aim of establishing a trajectory of change in a single landscape context. 

The research undertaken is linked to a larger ongoing project in the Huecha Valley, the Moncayo 

Archaeological Survey (MAS) which is investigating population, economic and environmental 

change in the Huecha Valley using systematic field survey, excavation and geo-archaeological 

research in prehistoric and historic periods (Wilkinson et al. 2005; Gerrard and Gutiérrez 2012, 

2020). To date, some of the results of the MAS have already been published and these are cited 

in the sections below. However, as the project is ongoing, the results from the field surveys and 

the small number of excavations undertaken remain to be examined in detail. There is a 

significant disparity in the information available, with little known for the early medieval and 

Islamic periods, whereas significantly more information is available for the later medieval period 

due to documentary sources. The results presented here are the first archaeobotanical studies 

to be undertaken on medieval sites in the study area, and amongst the only to be undertaken in 

Aragón5. The only previous archaeobotanical research has examined evidence from prehistoric 

settlements (Wetterstrom 1994; Alcolea et al. 2018). 

4.1 Regional setting 

4.1.1 Present-day climate and topography 

The Huecha Valley runs for c.51km from the Sierra de Moncayo in the south to the River Ebro in 

the north. The study area examined here is located to the west of Zaragoza province, 

encompassing the districts (comarcas) of Campo de Borja and Tarazona y el Moncayo. The most 

important urban centres within the region are Borja and Tarazona. Present-day settlements are 

primarily situated between c.300 and 600m (a.s.l.) in areas close to the River Huecha. The land 

 
5 Only one archaeobotanical study has been undertaken on an Islamic site in the north of Aragon (Ros et 
al. in press). 
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rises steeply as it approaches the Sierra de Moncayo, where it reaches 2314m (a.s.l.) (Figures 4.2-

4.3). 

The geology of the valley is primarily composed of Quaternary river terrace deposits and Tertiary 

sedimentary geology (clays, marls). Irrigated agriculture is concentrated within the Quaternary 

river terrace deposits, whilst dry cereal cultivation and rough pasture predominates in areas of 

Tertiary sedimentary geology. Beyond the cultivated areas are the badlands, severely eroded 

areas characterised by low scrubland and steppic grasslands. The natural vegetation primarily 

comprises shrub-land (e.g. Cistus sp., Rosmarinus sp., Thymus sp.) and grasses at lower levels 

typical of Mediterranean habitats (sensu Blondel et al. 2010:123-124). Areas above >700m are 

characterised by typical Meso-Mediterranean woodland species, holm oak, kermes oak (Quercus 

ilex, Q. coccifera), whilst Supra-/Montane-Mediterranean species, pines, beach, (e.g. Pinus spp., 

Fagus sylvatica) are present at higher altitudes (>1000m) (sensu Blondel et al. 2010:120).  

Lowland areas of the valley are characterised by a cold semi-arid climate (Köppen–Geiger zone 

BSk), whilst areas of higher altitude towards the Sierra de Moncayo are characterised by a 

temperate oceanic climate (Köppen–Geiger zone Cfb). Mean annual rainfall for Borja is 417mm, 

with the majority of rain falling in spring and autumn. However, on an annual basis the quantity 

of rainfall can be erratic, with severe storms/flash floods between June and September, whilst 

droughts are not uncommon (Iberian Climate Atlas 2010; AEMET 2019). These severe weather 

events can be very damaging, causing crop failures (García Manrique 1960). There is considerable 

variation in mean annual rainfall between different areas of the valley; closer to the Sierra de 

Moncayo rainfall can exceed >600mm per year, whilst further downstream rainfall can be less 

<400mm per year. Despite this, rainfall is typically sufficient for rainfed cereal cultivation. The 

average annual temperature is 13-14oC (January 4-6oC; July 22-24oC). Temperatures can reach 

40oC In July and -10oC in December. 

Agriculture in the region today comprises a diverse range of crops including cereals, fruit trees 

(primarily olives and almonds) and vineyards. In the recent past, a rotational system of hemp, 

flax, wheat and barley was widely cultivated. Irrigation in the region is still centred around a 

traditional system of acequias (gravity-flow irrigation channels) which distribute water across 

lower areas across the valley, irrigating several hundred hectares of land (Gerrard 2011). 

Irrigation was traditionally divided between three areas until the mid-19th century (García 

Manrique 1960:63): 

- Huertos: intensively cultivated market-gardens. 
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- Huerta: an irrigated area traditionally used for the cultivation of cereals, flax and hemp.  

- Regadío eventual, orrillada or orillo: areas of poorer soil, on the periphery of la huerta, 

occasionally receiving irrigation. These areas are primarily used for the cultivation of 

olives and vineyards today.  

- Secano (or dry land) lies beyond this, an area reserved for rainfed cereal cultivation and 

the bajo monte (rough pasture). 

4.1.2 Historical and archaeological context 

4.1.2.1 EARLY MEDIEVAL PERIOD (5TH-EARLY 8TH CENTURIES) 

The early medieval period is still poorly documented in the Huecha Valley. Whereas Roman 

settlements are densely distributed throughout the area, early medieval settlements are rare 

(Corral Lafuente 1992). Currently, the only substantial evidence for occupation in the early 

medieval period within the Huecha Valley is at Bureta, where small-scale excavation has pointed 

towards multiple phases of occupation in the 6th to early 8th centuries (Gutiérrez and Gerrard 

2019), although stray finds hint at the existence of other settlements in the region (e.g. Paz 2004; 

García and Bonilla 2010:278; Aguilera 2014).  Overall, the available evidence suggests that there 

was probably a significant reorganisation in rural settlement patterns from the late Roman to 

early medieval period in the Huecha Valley, echoing patterns seen elsewhere in Iberia (cf. Collins 

2004: 197-222, 2014:12-13; Diarte-Blasco 2018:150-156). Bureta is therefore an important site 

for understanding this period, particularly when set against the comparative rarity of early 

medieval settlements across the wider Ebro Valley (Laliena Corbera 2010; Picazo Millán et al. 

2016). 

4.1.2.2 ISLAMIC PERIOD (8TH-EARLY 12TH CENTURY) 

Very little is known about the nature of early Islamic settlement in the centuries following the 

conquest; documentary sources are almost non-existent for this period (Viguera Molíns 1995; 

Catlos 2002). The main urban centre was Borja, which has been identified as a hisn (fortified site) 

under the control of the Banū Qasī, a powerful muwallad family (converted Muslim) based in the 

city of Tudela (Lorenzo Jiménez 2007). The Banū Qasī controlled sizeable territories across the 

Ebro Valley between the 8th and 9th centuries and they were the dominant political force in the 

region (Kennedy 1996:54-59). By the 10th-11th centuries, the power of the Banū Qasī had 

declined and their territories were taken over by Arab families; first Tujībids and then later the 

Banū Hūd who came to rule the powerful Taifa state of Zaragoza (Kennedy 1996: 80-81, 136-137).  

Current evidence suggests the Islamic settlements are distributed throughout lowland areas 

along the natural terraces which form the banks of the River Huecha (Wilkinson et al. 2005). In 
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many cases, settlements appear to be located beneath modern villages/towns. A well-studied 

example of is at Ambel where the 11th century settlement comprised a small, three-storey 

fortified tower associated with silos and a walled enclosure, a mosque and nucleated settlement 

(Gerrard 1999; Blanco Morte 2007). Similarly, excavations at La Mora Encantada, near Bulbuente, 

identified a 10th-12th century settlement with evidence for a fortified structure/wall and silos, 

whilst a geophysical survey has also identified probable houses (Gerrard and Gutiérrez 2018b). 

Other evidence for Islamic settlements comes from documentary sources generated after the 

Christian conquests (12th-13th centuries) which contain common references to almunias (privately 

owned farmsteads/estates) (Teixeira 1993). However, this may be misleading since the term 

almunia could have been applied retrospectively to range of different settlement types (Laliena 

Corbera 2010; Ortega Ortega 2010). At present it is not possible to establish a detailed picture of 

settlement patterns in the Islamic period; however, it would appear that the generalised model 

suggested for al-Andalus of a hisn surrounded by a dispersed network of alquerías 

(hamlets/farmsteads) has no validity here (cf. Eiroa Rodríguez 2012). 

In other areas of al-Andalus (such as Granada), it has been demonstrated that rural Islamic 

settlements were commonly associated with small irrigated areas (Martín Civantos 2018). Within 

the Huecha Valley, it is known that the present-day irrigation system was expanded and modified 

throughout the later medieval period, however, the origins of the system are more difficult to 

establish (Gerrard 2011). A key source of dating evidence for the irrigation systems comes from 

mid-late 12th century documentary sources relating to a major Cistercian monastery at Veruela 

(Cabanes Pecourt 1987; Teixeira 1995; Lerín de Pablo 1999; Rodríguez Lajusticia 2010). These 

sources provide a terminus ante quem, confirming that some elements of the irrigation system 

already existed in the Islamic period. Similarly, it has been noted that the terminology used to 

distribute and allocate water from the acequias in the late 12th century was inherited from an 

earlier Islamic system (Arié 1982: 225; Glick and Teixeira 2002). Despite this, the full extent of the 

irrigation system in the Islamic period cannot yet be mapped, nor is it clear how much it overlaps, 

if at all, with earlier Roman systems (Gerrard 2011; Rodríguez Lajusticia 2014). 

4.1.2.3 CHRISTIAN CONQUEST AND REPOPULATION (12TH CENTURY) 

The Christian conquest of the Huecha Valley can be dated to the early 12th century, with the 

capture of Tarazona in 1119 and Borja in 1124 (or 1122), following a negotiated surrender (Stalls 

1995:41-43). It is around this time that the first references to nearby settlements appear in 

documentary sources, which survive better than for earlier periods (e.g. Ambel: Gerrard and 

Gutiérrez 2003a:48). Within the wider region, there is debate over whether the Christian 
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conquests led to the large-scale emigration of Muslims, or alternatively whether the majority of 

Muslim populations remained (Stalls 1995:297-301; Laliena Corbera 1998, 2005, 2007; Catlos 

2004:95-100). In the Huecha Valley, Christians established themselves in frontier towns and 

strategic settlements such as Tarazona, Borja and Los Fayos, however, the local Muslim 

population appears to have largely remained in place, especially in irrigated valleys such as Grisel, 

Trasmoz, Bulbuente or Ambel (García Manrique 1960: 220). Muslims retained a degree of 

religious, political and economic freedom in return for paying tribute/tax (Corral Lafuente 1999; 

Catlos 2004: 96-97; Laliena Corbera 2005: 128-129). 

Following the military campaigns, there followed a period of consolidation and repopulation, with 

large accessions of land and properties granted to trusted lords, monastic orders and the Military 

Orders (Forey 1992; Fernández Conde 2005). This was an important aspect of the colonisation 

process, with these powerful new landowners maintaining stability, order and control in this 

‘frontier’ zone. Within the Huecha Valley, land and properties were acquired by the Hospitallers 

at Añón in 1140 and the Templars at Ambel in 1151 (Gerrard and Gutiérrez 2003a), whilst the 

Cistercians constructed a major monastery at Veruela beginning in 1147 (Vispe Martínez 1984). 

The arrival of the Cistercians and the Military Orders had direct social, economic, political and 

ideological impacts on the region, reflected in the introduction of a feudal regime, changes to 

settlements and a reorganisation of agricultural spaces (Catlos 2004:100, 2014:423). Amongst all 

this, Muslims continued to make up a significant proportion of the population and they were a 

key component of the agricultural system throughout this period until their expulsion in the early 

17th century (García Manrique 1960: 219-228; Gerrard 1999; cf. Catlos 2004). 

4.1.2.4 LATER MEDIEVAL PERIOD (12TH-15TH CENTURIES) 

The degree of continuity and change in settlement patterns between the Islamic and later 

medieval period after the so-called ‘reconquest’ remains to be examined in detail. Whilst there is 

some evidence for the creation of new settlements, in many cases pre-existing settlements 

probably continued to be occupied following the Christian conquests (Teixeira 1995; Gerrard 

1999) and some Islamic settlements were also abandoned (such as La Mora Encantada, see 

above), potentially with a shift towards nucleated communities (Gerrard 1999:147; cf. Laliena 

Corbera 2010:39-40).  

Overall, the area had a relatively low population density through the later medieval period and 

the current evidence suggests that existing settlements were adapted. For example, at Ambel, 

the c.12th century the settlement underwent significant reorganisation (probably overseen by 

the Templars), with the construction of a morería (a separate new Muslim quarter), a church and 



 
 

78 
 

the creation of a preceptory (Gerrard 1999). At Magallón, a similar reorganisation took place, 

with the creation of both a Muslim quarter and a judería (Jewish quarter) (Teixeira 1993). This 

segregation within towns also extended to agricultural areas (García Manrique 1960; Motis 1985; 

1988; Assis 1997; Gerrard 1999). The new seigneurial centres represent an important change; 

they served as both as administrative units within the feudal regime and visible symbols of 

Christian authority (cf. Glick 2005:158-159). 

It has been widely highlighted that one of the most significant changes which took place following 

the Christian conquests was the introduction of a feudal regime. In essence, this involved a shift 

from a ‘tax-based’ to a ‘land-based’ or ‘rent-based’ system where seigneurial lords extract 

revenues, primarily from agriculture (Glick 2005; cf. Wickham 1984, 2005:58). Whilst the ideal-

type dichotomy between these two contrasting modes of production has been downplayed in 

recent years (e.g. Wickham 2008), the arrival of powerful new landholders, such as private 

landowners, the Cistercians and the Military Orders, did have a significant impact on the 

organisation of rural landscapes (cf. Pluscowksi et al. 2011).  

Already by the late 12th to 13th centuries, the Cistercians and the Military Orders had begun to 

reorganise agricultural spaces to reflect their own requirements. Of particular importance was 

irrigation; higher rents could be charged from irrigated land (due to higher yields) making it a key 

source of income (Forey 1987:128-129). Similarly, an expansion in the area of irrigated land could 

have enhanced cereal yields (cf. Carranza Alcalde 2009), and it may also have been linked been 

to a shift in the crops cultivated. A wide range of documentary sources provide evidence for the 

modification and expansion of the pre-existing irrigation system, though it is difficult to establish 

the full extent of the irrigated area for earlier periods (Teixeira 1995; Gerrard 2011). The 

Cistercians played a central role in the reorganisation of irrigation systems, seeking to support a 

network of settlements and agricultural estates under their control (Rodríguez Lajusticia 2008; 

Gerrard 2011). Given the limited access to water in the area, this was also a priority for the 

Hospitallers at Añón and the Templars at Ambel; consequently, there were extensive disputes 

over irrigation rights between these major landholders throughout the later medieval period 

(Gerrard and Gutiérrez 2003b:87-88; Gerrard 2011; Rodríguez Lajusticia 2015). A considerable 

body of documentary evidence exists concerning the administration and allocation of water rights 

(Gerrard 2011).  

Inseparable from the irrigation systems were mills and here seigneurial landholders held a 

monopoly over mill construction and use (e.g. Gerrard and Gutiérrez 2003b: 49; Forey 1987). The 

earliest identified mill belonged to the Templars at Ambel, dating to 1192; other mills have also 
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been identified throughout the Huecha Valley (Gerrard 2011). Mills have often been considered 

as a defining element of the shift to a feudal regime in the later medieval period (Glick 2006). It 

is generally thought that change in the role and importance of mills accompanied an expansion 

in cereal cultivation (e.g. Stalls 1995:216-220; Laliena 1998; Glick 2005:91-94; Kirchner 2011, 

2018, 2019; Kirchner et al. 2014). This may have involved a process of extensification, whereby 

the dry-cultivation of cereals expanded, though documentary sources also indicate that cereals 

were cultivated in irrigated areas (Gerrard 2011).  

An expansion in vineyards and olive groves can be identified from the 12th-13th century onwards 

(e.g. Gerrard and Gutiérrez 2003b; Rodríguez Lajusticia 2010). Other important crops which 

commonly appear within the documentary evidence are flax and hemp, both cultivated for fibre 

(Ainaga Andrés 1987; Gerrard and Gutiérrez 2003b; Rodríguez Lajusticia 2014). Beyond cultivated 

areas, there may also have been a shift in animal husbandry practices, perhaps linked to 

transhumance. Rights to pasture feature in 12th-13th century cartas pueblas (settlement charters) 

as well as later documentary evidence (Cabanes Pecourt 1984; Pérez Giménez 2003).  

Taken together, there is considerable evidence to suggest that there was a reorganisation of rural 

landscapes following the Christian conquest in the early 12th century. Importantly, our 

understanding of this period is significantly broadened due to the survival of a wide range of 

documentary sources. In particular, a large body of these documentary sources relate to land 

tenure and irrigation (Corral Lafuente 1992; Catlos 2002). This information can be placed 

alongside evidence from archaeological research to develop a more detailed picture (e.g. Gerrard 

1999, 2003, 2011). Within the Ebro Valley, very few studies have combined documentary 

evidence and archaeological research to analyse evidence for change and continuity before and 

after the Christian conquests (Ortega Ortega 2010). 

4.2 The sites: archaeobotanical and crop isotope evidence 

4.2.1 Bureta (early medieval, 6th-early 8th century) 

The site is situated c.2.5km south-west of the village of Bureta (Figure 4.4). The land immediately 

surrounding the site is today devoted to dry-farming/scrub pasture. However, to the south-west 

of the site is an irrigated area fed by an adit (water-mine) and a qanat (a sub-terranean irrigation 

channel) which draws water from a natural aquifer (Gerrard and Gutiérrez 2018a). In the recent 

past, this irrigated area (33ha) supported the cultivation of a diverse range of crops. Direct 

luminescence (OSL) dating of the qanat places its construction in the 13th century, with later 

modification in the 16th-17th centuries (Bailiff et al. 2015). Archaeological surveys by the MAS 
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project in the vicinity of the site have also identified evidence for a late Iron Age settlement, a 

Roman villa and several early medieval settlements. 

The site at Bureta was excavated in 2017 as part of this PhD, and the Moncayo Archaeological 

Survey (Gutiérrez and Gerrard 2019). This confirmed its date as an early medieval settlement and 

the results of field survey and geophysical prospection revealed evidence for a dense spread of 

probable early medieval archaeological features over an area of c.1ha (Treasure et al. in prep). 

Two trenches (C and P) were excavated (Figure 4.5). 

In Trench C, a complex spread of archaeological features was identified, reflecting multiple phases 

of occupation which are probably associated with one or more structures. This included 

plaster/clay floor surfaces, building/levelling deposits, occupation layers, refuse deposits, pits and 

a wall/robber trench (Figures 4.6-4.7). Many of the contexts identified can be interpreted as 

secondary or tertiary deposits, probably formed through multiple, repeated activities (i.e. refuse 

disposal, fuel waste). This is particularly evident in the case of wall/robber trench [C7] and pit 

[C61] which contained a series of discrete ash-rich fills which were rich in pottery, faunal remains, 

eggshell and charcoal. These ash-rich fills can be interpreted as redeposited midden-type 

deposits. Evidence for a similar deposit rich in refuse was also identified in pit [C6], a large shallow 

feature containing near-complete (broken) pottery vessels and abundant faunal remains. 

In Trench P, multiple phases of occupation were also identified (Figures 4.8-4.9). One of the 

earliest phases identified comprises a roughly constructed stone wall [P10] and an associated 

charcoal-rich occupation layer (P11). Immediately to the north of wall [P10], a stratigraphically 

later, large U-shaped pit [P37] was identified. This pit contained a series of alternating ash-rich 

deposits between layers of marl/clay and sand. Some of these deposits were clearly laminated, 

suggesting that they had been redeposited and that the pit had remained open and exposed to 

erosion. As in Trench C, these ash-rich deposits appear to reflect a mixture of fuel waste and 

refuse which have been incorporated into the pit, either deliberately or through erosion from a 

nearby midden-type deposit.   

Interpretation of the archaeological features at Bureta is complex due to the absence of clear 

structural remains and the small-scale of the excavation. The evidence is indicative of a small rural 

settlement, with multiple phases of occupation in the early medieval period and the faunal 

remains recovered point towards the importance of sheep/goat herding (Gidney pers comm.). 

No clear evidence for earlier occupation in the Roman period or later activity in the Islamic period 
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was identified. As part of this PhD, four direct AMS 14C dates were obtained to establish the dates 

of the stratigraphically earliest and latest features identified in Trench C and P (Table 4.1). 

In Trench C, a wheat grain from (C27), a building/levelling deposit associated with an early floor 

surface, (C26), returned a date of 560-650 cal CE (SUERC-81226), whilst a peach fruitstone from 

(C5c), a stratigraphically later pit, [C6], returned a date of 540-640 cal CE (SUERC-81225). The 

dates from Trench C are statistically identical, indicating occupation in the 6th to 7th century.  In 

Trench P, a free-threshing wheat grain from (P11), a charcoal-rich occupation deposit associated 

with wall [P10], returned a date of 640-770 cal CE (SUERC-80216), whilst a wheat grain from 

(P29/30) in the stratigraphically later pit [P37] returned a date of 550-640 cal CE (SUERC-81227). 

The discrepancy between the two dates suggests that the sample from pit [P37] is probably 

residual. To clarify this, three further samples were submitted from the upper fills (P15, P18, P26) 

of pit [P37], however, these failed to return dates. Despite this, the AMS 14C dates are consistent 

with the pottery dating evidence, indicating occupation in the 6th to early 8th century (pre-

Islamic). 

4.2.1.1 SAMPLING 

Table 4.2 provides details of the contexts/features sampled. In total, 21 samples were collected 

in Trench C and 21 samples were collected from Trench P, with a combined volume of 1134.2L. 

The samples in Trench C come from a range of contexts, primarily secondary/tertiary deposits, 

and it was possible to collect large samples (c.40-60L) in most cases. In Trench P, a very large 

sample (200L) was taken from a charcoal-rich occupation deposit, (P11), representing 

approximately 50% of the excavated deposit. This large sample was collected since an initial 

assessment of a sub-sample indicated that well-preserved plant remains were present, though in 

low-densities. The other samples from Trench P are all from pit [P37], which were collected 

directly from the cleaned section to avoid mixing/contaminating the relatively thin deposits. In all 

cases, 100% of the visible deposit in the section was sampled.   

4.2.1.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 4.3, with the full dataset in Appendix 4.  

Due to the relatively small areas excavated and for simplicity, the assemblages from both 

trenches are discussed together. Reference is made to specific samples where appropriate. The 

42 samples analysed produced a modest-sized assemblage, and a total of 1599 charred and 36 

mineralised remains have been identified. The flots vary widely in size (5-3450ml). In general, 

small flots containing rare/trace quantities of charcoal and charred plant remains derive from 

plaster/clay floor surfaces, building/levelling deposits and occupation layers in Trench C, and from 
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deposits of clay/marl and sand in pit [P37] in Trench P. In comparison, large flots containing 

abundant charcoal are primarily associated with ash-rich deposits in both trenches, though 

comparatively low numbers of charred and mineralised plant remains are present. The overall 

density of charred plant remains is low, 1.4 remains/L (range: 0.3-3.7 remains/L), and 20 samples 

have <10 identifiable plant remains. 

The charred plant remains primarily comprise cereal grains, chaff, grape pips and wild/weed taxa, 

with limited evidence for pulses, fruits/nuts, millets and other crops. Other charred non-plant 

remains identified include low numbers of intact sheep/goat dung pellets in 14 samples and 

rodent droppings in sample 2, pit [C6]. Small (<4mm) amorphous charred ‘conglomerations’ in 

other samples may also be charred dung. Some of these ‘conglomerations’ were comparable in 

appearance to fragmented sheep/goat dung pellets. The mineralised plant remains include low 

numbers of grape pips, fig nutlets and wild/weed taxa. Other mineralised plant remains include 

indeterminate fragments and possible mineralised roots in seven samples, all from the ash-rich 

midden-type deposits. Mineralised non-plant remains include a textile fragment in sample 43 and 

a probable dog coprolite in sample 19.  

Crops 

Cereal grains and chaff dominate the assemblage, though the total number of remains (288 

grains, 148 chaff items) is small considering the large number/volume of samples processed. The 

preservation level of cereal grains is generally poor, with unidentifiable grains forming 50% of the 

assemblage. The chaff remains comprise barley and free-threshing wheat rachises, alongside low 

numbers of culm nodes/bases. The rachises are typically very well preserved, providing secure 

identifications to species.  

Free-threshing wheat and barley are the most common cereals recorded. Amongst the free-

threshing wheat grains, the better preserved examples are all relatively short and stubby (cf. 

Jacomet 2006). The identifiable rachises are all from bread wheat and it is likely that the 

corresponding free-threshing wheat grains also derive from bread wheat. The majority of barley 

grains are indeterminate, though some can be identified as hulled barley with both symmetric 

and asymmetric grains present. The identifiable rachis segments derive from both 6-row and 2-

row hulled barley. Rye grains and rachises are present in nine samples, though they form a minor 

component of the total assemblage. Two large (>2mm) oat grains in sample 37 may be from the 

cultivated species, though associated diagnostic floret bases are absent. Evidence for other cereal 

species is restricted to a single glume base in sample 27 which is probably from emmer wheat.  
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Very low numbers of foxtail and broomcorn millet grains are present. The foxtail millet grains are 

poorly preserved, though they probably derive from the cultivated species based on their overall 

morphology, thickness and embryo groove length (cf. Nesbitt and Summers 1988). Pulses form a 

minor component of the assemblage and the species identified include lentil, bitter vetch and 

probable grass pea. The grass pea seeds were recovered from two closely related samples, 32 

and 33, and are tentatively distinguished from red pea based on their large size (>3mm) and very 

angular morphology. Oil/fibre crops form a minor component of the assemblage, with a single 

poorly preserved flax seed in sample 12 and five mineralised gold-of-pleasure seeds recovered 

from closely related samples 19 and 20. Evidence for other crops is scant, though a find of 

particular note is a single coriander seed/fruit in sample 31.  

The fruit/nut remains (wild and cultivated) are dominated by grape, though other remains 

recorded include fig, mulberry, olive, sweet cherry, peach and hazelnut. Low numbers of grape 

remains (whole/fragmented pips, pedicles) are present in 21 samples. In comparison, sample 27 

produced 213 whole pips and abundant fragments, though the density of remains is still low (1.1 

items/L). The pips recorded in sample 27 are relatively short and rounded, with a similar 

morphology to modern wild grape (cf. Smith and Jones 1990; Mangafa and Kotsakis 1996; Bouby 

et al. 2018). Separation of the two forms may be resolved through morphometrics and detailed 

measurements of stalk length, though the pips are clearly distorted due to charring, blurring the 

differences between wild and domestic forms.  

Wild/weed taxa 

Wild/weed taxa form a large percentage (42%) of the total assemblage, corresponding to 639 

charred and 20 mineralised plant remains. Most samples contain relatively low numbers of 

wild/weed taxa, with few species present. An exception to this is the comparatively rich 

assemblages of wild/weed taxa in samples 15, 16 and 17 in the ash-rich fills of wall/robber trench 

[C7] and samples 19, 20 and 21 in the ash-rich fill of pit [C61]. These samples contain large and 

diverse assemblages of wild/weed taxa, including probable arable weeds (Table 4.4, discussed 

below). Samples from similar ash-rich deposits in pit [P37] contain small assemblages of 

wild/weed taxa. 

Approximately 44 different taxa/types are presented, though three taxa dominate the 

assemblage: Chenopodium sp./Chenopodium album-type (49%), Poaceae spp. (18%) and 

Medicago sp. (7%). In particular, Chenopodium spp. seeds are particularly frequent in samples 
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containing sheep/goat dung and indeterminate charred ‘conglomerations’ which may also be 

dung (Figure 4.10). 

The majority of weeds present can be classified as arable or ruderal species including 

Chenopodium spp., Agrostemma githago, Galium sp., Galium aparine, Avena fatua, 

Lithospermum sp., Glaucium corniculatum, Malva sp., Neslia apiculata/paniculata, Polygonum 

aviculare, Polygonum convolvulus, Portulaca oleracea, Hyoscyamus niger, Raphanus 

raphanistrum, Urtica pilulifera and Vaccaria pyramidata. Other wild/weed taxa identified to 

genus also include common arable and ruderal species, such as Papaver sp., Silene sp., Solanum 

sp. and Vicia sp.. Species typical of wet/damp habitats are only recorded in sample 27, including 

Arctostaphylos uva-ursi and Carex spp./Cyperaceae, suggesting that they potentially derive from 

the same habitat/environment. Medicago sp., Plantago lanceolata and Hippocrepsis sp. may grow 

in grasslands, though they can also be identified in arable and ruderal habitats such as fallow 

fields (Ruas 2005). Many of the wild/weed taxa identified have a preference for calcareous soils, 

reflecting the local geology of marls. 

The assemblage is dominated by annual species which germinate in winter and/or spring, with 

early (January-June) or intermediate (April-June) flowering onset periods suggesting that they 

could have been in seed when cereals were harvested (June/July). The flowering durations range 

from short (1-3 months) to long (>6 months). 

4.2.1.3 STABLE CARBON ISOTOPE ANALYSIS 

In total, 16 cereal grains (6-row hulled barley, free-threshing wheat, rye) were selected for stable 

carbon isotope analysis. The grains all derive from Trench P and they have been selected from 

sample 27, (P11), and multiple closely related samples 30, 35 and 37 in pit [P37]. These contexts 

were selected as they contained some of the only well-preserved grains. In comparison, cereal 

grains associated with ‘weed-rich’ samples (see above) in Trench C were too poorly preserved to 

be analysed. Mean ∆13C values are presented in Table 4.5 and the results are plotted in Figure 

4.11. The results for each sample individually are presented in Appendix 5. 

For all the cereal grains, mean ∆13C values are indicative of rainfed cultivation. Mean ∆13C values 

are 17.0 ± 0.9‰ for 6-row hulled barley grains, 15.0 ± 1.2‰ for free-threshing wheat grains and 

15.0 ± 2.6‰ for rye grains. Although only a small number of grains have been analysed, none of 

the cereal grains ∆13C values within the range expected for a well-watered (i.e. irrigated) crop. 
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4.2.1.4 OVERVIEW 

Sample composition and formation 

Analysing the assemblage on a sample-by-sample basis suggests that all the samples contain plant 

remains from several different sources and they can be classified as ‘mixed’ (see Chapter 2, 

section 2.2.2). The samples contain varying mixtures of different cereal species, pulses and 

fruits/nuts, as well as low numbers of mineralised plant remains and sheep/goat dung pellets. 

Consequently, material from several different sources is potentially represented including crop-

processing debris food waste, background settlement noise, roofing/construction materials, fuel, 

animal fodder and weed seeds within dung. The similar composition of samples from the ash-rich 

deposits in both trenches suggests that they were probably formed though the same/similar 

processes. 

Dung burning may (at least partly) be an important factor in the formation of the charred 

assemblages. Low numbers of intact and fragmented dung pellets are recorded in 14 samples, 

with an internal composition comprising an amorphous mass of vegetative material including 

traces of monocotyledon culms. No seeds were identified within the dung, though only a small 

number of fragmented/intact pellets are present and this cannot be taken as conclusive evidence 

for their absence. Small charred conglomerations recovered in other samples may also be charred 

dung. Chenopodium sp. seeds are particularly well-represented in these samples (Figure 4.10).  

Chenopodium sp. seeds have been demonstrated to be widely overrepresented in samples 

containing burnt dung since they have a particularly high probability of surviving digestion and 

charring (Wallace and Charles 2013; Spengler et al. 2013; Spengler 2019). Similarly, other weeds 

which are likely to survive digestion and charring are also present in samples containing burnt 

dung including Poaceae spp. Medicago sp., Galium sp., Vaccaria pyramidata, Silene sp., Malva sp. 

and Papaver sp. amongst others (cf. Wallace and Charles 2013). In comparison, cereal grains 

typically do not survive this process in an intact and identifiable form, especially grains such as 

bread wheat and rye which lack protective hulls, opposed to hulled barley (Charles 1998; 

Derreumaux 2005; Valamoti and Charles 2005; Wallace and Charles 2013). This may be a factor 

in the poor preservation of cereal grains at the site. It is unclear to what extent chaff from free-

threshing cereals survives digestion and charring. If some of the charred plant remains derive 

from dung burning, then their presence may be linked to animal fodder (Charles 1998). 

Chenopodium sp., Medicago sp. and Poaceae spp. are well-known sources of fodder, as are the 

by-products of crop-processing, millets and some fruits such as grapes/grape pressings and dried 

figs (Jones 1998; Foxhall 1998; Valamoti and Charles 2005).  
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The routine burning of dung would quickly generate large assemblages of wild/weed taxa (Miller 

1984; Miller and Smart 1984). Similarly, dung fuel cakes typically incorporate other material which 

act as a temper, including crop-processing by-products such as chaff and other domestic waste. 

The excellent preservation of chaff in some samples (e.g. 15, 16, 17, 19, 20, 21) could be 

attributed to its inclusion within dung as a temper for fuel use, which would restrict the availability 

of oxygen. Despite this, it is important to note that charcoal is abundant in many samples, 

indicating that wood was also used as fuel source. Though wood may often be viewed as the 

‘ideal’ fuel, in many semi-arid areas of the world dung is valued as a fuel source and often used 

for specific purposes (Spengler 2019). 

A related factor to consider in the formation of the assemblage is that many of wild/weed taxa 

recorded could have been growing around the site. Chenopodium sp., Polygonum convolvulus, 

Portulaca oleracea, Hyoscyamus niger, Urtica pilulifera, Galium aparine and Malva neglecta-type 

are all nitrophilous and prefer slightly moister environments. These species could have thrived on 

nitrogen-rich soils created by stalling sheep/goats (as suggested by the presence of dung and 

faunal remains) and through accumulations of domestic waste in midden-type deposits (cf. 

Spengler 2019). The low numbers of mineralised plant remains and probable root fragments are 

also indicative of midden-type deposits (McCobb et al. 2003). The disposal of hot ashes/hearth 

debris onto middens, or the lighting of fires on the surfaces of middens, could lead to large 

numbers of wild/weed taxa and sheep/goat dung becoming charred (van der Veen 2007; Spengler 

2019). Alternatively, accumulations of refuse may have been deliberately burnt as a means of 

disposal. In either case, this would lead to the charring of wild/weed taxa which are not 

necessarily related to cultivated fields. It is important to emphasise that dung burning is unlikely 

to be the sole factor contributing to the formation of the assemblage and it should be considered 

in tandem with other processes (Charles 1998; Smith et al. 2015). The spring/summer flowering 

date of the weed species would indicate that animals were present at the site in the summer 

months, potentially suggesting that transhumance (with summer grazing in mountains) was not 

undertaken. 

Crop-processing and arable weeds 

Disentangling the different processes forming the assemblage is challenging, though a small 

number of samples contain good evidence for crop-processing debris and potentially associated 

arable weeds. Specifically, samples 15, 16 and 17 from wall/robber trench [C7] and samples 19, 

20 and 21 from pit [C61] produced comparatively rich assemblages of grains, chaff (culm nodes, 

rachises) and weeds (Table 4.4). The variable proportions of grain, rachises, culm nodes and weed 
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seeds may reflect material from the early stages of crop-processing or alternatively stray chaff 

items present in a coarse-sieved product (Hillman 1985; Jones 1987, 1990; van der Veen 2007). 

A potential arable weed origin may be suggested for some of the taxa recorded.  

Firstly, all the species have early/intermediate flowering onset periods and these may have been 

in seed when crops were harvested. Secondly, species typical of arable habitats are present 

including Agrostemma githago, Avena fatua, Glaucium corniculatum, Neslia apiculata/paniculata 

and Vaccaria pyramidata. With the exception of Agrostemma githago, these species have short 

flowering durations (1-3 months) and finish flowering early in the season (June). This last factor 

is a drought tolerance attribute (Jones et al. 2005) and consequently these weeds are common 

in rainfed cereal fields (Braun-Blanquet and de Bolós 1957; Guillerm and Maillet 1982; Cirujeda 

et al. 2011). Whilst Avena fatua can be a particularly pernicious weed of rainfed cereal fields, 

García Manrique (1960) noted that it was also growing in irrigated fields around Borja. 

Agrostemma githago has a long flowering period (>6 months), and it is character species of the 

phytosociological Secalinetea class associated with (rainfed) winter cereal fields, indicating its 

habitat preference/tolerance for dry conditions (Braun-Blanquet and de Bolós 1957). Short 

flowering durations have been linked to autumn sowing and low soil disturbance (Jones et al. 

2005). 

However, these samples do not solely contain material associated with crop-processing debris 

and some of the weeds are unlikely to be associated with cultivated cereals. Pulses, millets, 

fruits/nuts (especially grapes), charred dung and mineralised remains indicate the inclusion of 

material from other sources. Other wild/weed taxa recorded (e.g. Chenopodium sp., Portulaca 

oleracea) are summer annuals with medium/long flowering durations (3-6 months, >6 months) 

are more indicative of fertile and disturbed conditions, such as garden plots (Jones et al. 2000). 

These weeds may be associated with other crops or the later stages of crop-processing which can 

create bias towards small-seeded summer annual species (Jones 1992; Bogaard et al. 2005). 

Alternatively, as suggested above, some of these weeds are more likely to be associated with 

midden-type deposits and/or dung burning.  

4.2.1.5 SUMMARY OF THE ARCHAEOBOTANICAL AND CROP STABLE CARBON ISOTOPE EVIDENCE 

• The samples produced a large archaeobotanical assemblage dating to the early medieval 

period (6th to early 8th century). The level of preservation is generally poor, with low 

densities of plant remains present throughout the samples. 
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• The charred assemblage probably includes material from several sources, including crop-

processing debris food waste, background settlement noise, fuel, animal fodder and 

weed seeds within dung. In particular, it is suggested that dung burning may be an 

important factor in the formation of the archaeobotanical assemblage based on the 

presence of charred sheep/goat dung pellets in 14 samples. In addition, the inclusion of 

domestic refuse, possible cess/latrine waste, is also indicated by the presence of low 

numbers of mineralised plant remains. This mixture is characteristic of midden-type 

deposits. 

 

• The crop spectrum is dominated by cereals. Free-threshing wheat and (hulled) barley are 

the most common species. Diagnostic rachises indicate the presence of bread wheat in 

several samples and it is likely that all the free-threshing wheat grains are also bread 

wheat. Both 2-row and 6-row hulled barley are definitively identified based on the 

presence of diagnostic rachises. Rye forms a smaller proportion of the assemblage, whilst 

there is scant evidence for emmer wheat (one glume base) and low numbers of large 

(>2mm) oat grains may be from the cultivated species.  

 

• There is very limited evidence for millets (broomcorn, foxtail millet) and pulses 

(indeterminate seeds, lentils, probable grass pea).  Oil/fibre crops comprise a poorly 

preserved flax seed and five mineralised gold-of-pleasure seeds. The fruit/nut remains 

(both wild and cultivated) are dominated by grape pips, though there is also evidence for 

fig, mulberry, olive, sweet cherry, peach and hazelnut. An unusual crop/food plant 

recorded is coriander, which was identified in one sample. 

 

• The large assemblage of wild/weed taxa is dominated by Chenopodium sp., Poaceae spp. 

and Medicago sp. These species, together with the presence of charred sheep/goat dung 

pellets, may derive from animal foddering and dung burning. Crop-processing by-

products and other plants could also have been fed as a source of fodder. Several weed 

species are indicative of nitrogen-rich conditions, probably reflecting accumulations of 

refuse in midden-type deposits and the stalling of sheep/goats (as suggested by the 

faunal evidence and sheep/goat dung pellets). 

 

• Probable arable weeds are present in a small number of samples together with crop-

processing debris. The weeds may reflect rainfed cultivation, based on their short 
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flowering duration and flowering period. However, the samples contain material from 

several sources, with spurious combinations of weeds which are unlikely to have grown 

together.  

 

• The crop stable carbon isotope evidence suggests that free-threshing wheat, hulled 

barley and rye were cultivated under rainfed conditions. The samples all fall below the 

ranges expected for well-watered (i.e. irrigated crops).  

 

 

4.2.2 La Mora Encantada, Bulbuente (Islamic, 10th-12th century) 

La Mora Encantada is situated c.1km north-east of the village of Bulbuente (Figure 4.12). The site 

is situated in an area of uncultivated/scrub pasture and surrounded primarily by rainfed cereal 

fields, almonds and vines. To the south of the site, the ground gradually slopes towards the River 

Huecha, where (potentially) irrigated fields are located.  

Small-scale excavations were undertaken on the site in 2016 as part of this PhD research, and the 

Moncayo Archaeological Survey (Gerrard and Gutiérrez 2018b). The site had been identified 

through fieldwalking and the visible surface remains are distributed over a small, steep hill which 

is bounded to the north by a large sink-hole. The archaeological remains identified include a 

substantial fortified wall, other smaller structures and rock-cut silos (Figure 4.13). Five small 

trenches were excavated to examine visible structural remains (Trench 1 and 3) and rock-cut silos 

(Trench 2, 4 and 5).  

In Trench 1, evidence for a major stone wall [1018] and an associated smaller walled structure 

[1006, 1017], likely constructed from adobes (mudbricks), was identified (Figure 4.14). The fill of 

this smaller structure comprised a near-pure deposit of ash (up to 0.8m thick) which contained 

abundant pottery, adobes and faunal remains as well as fire-cracked stones/rubble, adobes and 

charcoal. This ash-deposit is likely to reflect a major conflagration, though substantial charred 

timbers were not identified. The deposit was excavated in spits, with an upper (1003, 1007), 

middle (1011, 1012) and lower (1004, 1013) layer identified. Beneath this ash-rich deposit, 

evidence for an occupation/floor surface (1015) and building/levelling deposit (1016) was 

identified. In Trench 3, evidence for a similar ash-deposit (3005) was also identified. The 

geophysical prospection indicates that this ash-deposit extends over an area of c.22m by 6m and 

it is probably contained within the footprint of a building (Treasure et al. in prep). 
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Trenches 2, 4 and 5 targeted rock-cut silos. Previous research suggests that features such as these 

are likely to contain secondary/tertiary deposits of refuse (e.g. Malalana Ureña et al. 2013; Alonso 

et al. 2017). This only partly proved to be the case here. Trench/Silo 2 contained only un-stratified 

fills and was not sampled.  Trench/Silo 5, a very deep feature was largely infilled with 

stones/colluvium. The basal fill (5008) may also represent natural in-wash, though it produced a 

later medieval coin (the only find to post-date the Islamic period). In Trench/Silo 4, deposits of 

colluvium sealed a basal deposit (4004) rich in refuse, including faunal remains and four near-

complete/broken cooking vessels (Figures 4.15-4.16). 

The archaeological evidence at La Mora Encantada is indicative of a small, rural settlement. 

Fieldwalking data and a geophysical prospection suggests that the site could extend over an area 

of c.2ha (Treasure et al. in prep.).   The pottery evidence recovered indicates that the site was 

occupied in the Islamic period (10th-12th centuries), with no clear evidence for earlier or later 

occupation, though only a small area has been excavated (Gerrard and Gutiérrez 2018b).  

Two direct AMS 14C dates were obtained to date the richest archaeobotanical assemblages 

associated with the lower layer (1013) of the ash-rich deposit in Trench 1 and the basal fill (4004) 

of Trench/Silo 4 (Table 4.6). A hulled barley grain from (1013) returned a date of 990-1160 cal CE 

(SUERC-74723). A hulled barley grain from (4004) returned a date of 1010-1160 cal CE (SUERC-

74722). The AMS 14C dates, together with diagnostic pottery evidence, place the occupation at La 

Mora Encantada in the 10th-12th centuries. This would suggest that the site was abandoned 

around the time of the Christian conquest in the early 12th century.  

4.2.2.1 SAMPLING 

Overall, 12 samples were collected and analysed, with a total sample volume of 570L (Table 4.7). 

In Trench 1 and 3, the ash-rich deposit was 100% sampled, with later sub-sampling during 

processing and analysis. Originally, four to five smaller samples were taken from each context/spit 

and later amalgamated to form one sample for each context/spit, equivalent to 40-60L. By 

combining several small samples, the probability of recovering rarer items increases. An 

additional control sample (12) was also collected from the base of the ash-rich context (1013). 

The basal fill (4004) of Trench/Silo 4 was also 100% sampled to account for the low-density of 

plant remains present. In Trench/Silo 5, examination of a sub-sample from the basal fill (5008) 

produced no identifiable charcoal or charred plant remains and the remaining unprocessed 

samples were discarded. 
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4.2.2.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Tables 4.8-4.9, with the full dataset in Appendix 

6.  The 12 samples analysed produced a large assemblage, and a total of 3879 charred and 7 

mineralised plant remains have been identified. The flots comprise widely varying quantities of 

charcoal and charred plant remains. Sample 1, the basal fill (4004) of Trench/Silo 4, produced a 

modest flot (350ml) with a small assemblage of fragmented (<4mm) charcoal and a low-density 

of charred plant remains (2.2 items/L). The samples from the ash-rich deposits in Trench 1 and 3 

produced very large flots (>1000ml), comprising extremely abundant charcoal and variable 

quantities of charred plant remains. These samples also contained abundant fragments of fused, 

ashy/silty material which may derive from partly decomposed adobes. Samples from the 

upper/middle spit of the ash-rich deposit contain low densities of charred plant remains (1.3-2 

items/L). In comparison, samples 7 and 12, taken from the base of the ash-rich deposit (1013), 

contain the highest densities of charred plant remains (31.6 items/L). Sample 10, from the ash-

rich deposit (3005), also contains a high density of charred plant remains (8.6 items/L). 

The charred plant remains comprise abundant cereal grains, chaff, fruits/nuts (primarily walnut, 

grape and fig) and wild/weed taxa, with smaller quantities of millets, flax and pulses. Sample 7/12 

also contains charred sheep/goat dung pellets and abundant conglomerations of charred material 

in the 2mm and >4mm fractions. These conglomerations are probably also charred dung based 

on their internal composition (amorphous matrix of vegetative material), though they appear to 

have become fused to other material, notably cereal straw and culm nodes. As is outlined below, 

this material probably reflects a combination of animal bedding, fodder and dung. 

 Very low numbers of mineralised plant remains present include fig nutlets, grape pips/seeds, 

millets and a sweet cherry fruitstone. Other charred non-plant remains include rare/trace 

quantities of unidentified insects and textile fragments, especially in sample 7/12. 

Crops 

Cereal remains (grains, chaff) are abundant in samples 1, 7/12 and 10. In total, the assemblage 

comprises 442 cereal grains and 760 chaff remains (rachis segments, culm nodes). The level of 

preservation for cereal grains is generally moderate to good, with unidentifiable grains forming 

23% of the assemblage. Chaff is typically very well preserved and near-perfectly preserved rachis 

segments are present in some cases with hairs still visible and several conjoined segments (Figure 

4.17). Sample 7/12 produced abundant culm nodes and culm/straw fragments, alongside lower 
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number of indeterminate light chaff fragments which are probably lemmas/paleas. Straw 

fragments were identified within charred dung. 

Hulled barley grains form 40% of the grain assemblage, with both symmetric and asymmetric 

grains recorded indicating the presence of 6-row hulled barley. The ratio of symmetric to 

asymmetric grains is 0.76 which is higher than the theoretical ratio of 0.5 in 6-row hulled barley 

(Jacomet 2006). This may indicate that 2-row hulled barley is present, though it should also be 

borne in mind that crop-processing and charring can artificially skew the proportions of 

symmetric to asymmetric grains (Jones 1996). Well-preserved 6-row hulled barley rachises are 

common, forming 18% of the identifiable rachises. Indeterminate barley rachises with a 

morphology similar to 2-row types are present, however, none of the rachises can be securely 

assigned to 2-row barley. Three probable naked barley grains are also present, with a 

characteristic rounded form and wrinkled grain surface (Jacomet 2006). In sample 7/12, the ratio 

of barley rachises to grain is 1.8. 

Free-threshing wheat grains only form 13% of the assemblage, though this may reflect the poorer 

preservation of bread/durum wheat during charring making identifications more difficult 

(Boardman and Jones 1990). The free-threshing wheat grains are highly variable in morphology 

with short stubby forms, long slim forms and intermediate variants all recorded (cf. Jacomet 

2006). Both bread and durum wheat are definitively identified based on the presence of 

diagnostic rachis segments, particularly in samples 7/12 and 10. Combined together, free-

threshing wheat rachises form 33% of the identifiable rachises. In sample 7/12, the ratio of free-

threshing wheat rachises to grain is very high (3.4), exceeding the theoretical ratio (0.33) in an 

ear (Jones 1990). 

Evidence for other cereal species is comparatively slight. Rye grains only form 5% of the grain 

assemblage, though rachises are better represented, forming 13% of the assemblage. Five large 

(>2mm) oat grains have been identified, though the only diagnostic floret base is from Avena 

fatua. There is no secure evidence for other cereal types, though a small number of indeterminate 

wheat grains are relatively slim (<2.5mm) and could possibly derive from a glume wheat species. 

No diagnostic glume bases/spikelet forks are present.  

Millets are present in all the samples and the identifiable grains are primarily broomcorn millet 

(85%). Sample 7/12 produced a small conglomeration of >10 fused broomcorn millet, as well as 

two mineralised grains. The presence of both hulled/unhulled and immature/mature grains is 

noted in sample 7/12. Foxtail millet only forms 5% of the millet assemblage, whilst indeterminate 
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broomcorn/foxtail millet grains make up the remaining 10%. Evidence for pulses is rare, with 

lentil, bitter vetch, pea and probably grass pea identified. Well-preserved flax seeds are present 

in multiple samples with a total of 68 seeds identified. A conglomeration of >10 fused flax seeds 

is present in sample 7/12. No remains of flax capsules have been identified.  

Fruit/nut remains (both wild and cultivated) are very abundant, including walnut, fig, mulberry, 

sweet cherry, blackberries, possibly pomegranate, olive and grape. Unidentified 

fruitstone/nutshell fragments are also common and other species may be represented amongst 

these remains. Sample 7/12 produced the richest assemblage of fruit/nut remains, comprising 

201 walnut shell fragments, 401 fig nutlets, a fig fruit fragment, >22 mulberry fruitstones, 12 

sour/sweet cherry stone fragments, a whole olive, 178 blackberry fruit stones (as well as other 

blackberry species) and 153 grape pips. Some fruit remains were identified embedded within 

charred dung: fig, mulberry, grape and blackberry. 

The grape remains are of particular note since they include abundant pips (whole/fragmented) 

and pedicles, alongside low numbers of whole berries (including fragments), immature whole 

berries and ‘pressed’ skins (Figure 4.18). These remains are comparable to the by-products of 

grape pressings (cf. Margaritis and Jones 2006). A possible fragment of a pomegranate seed is 

also present in sample 7/12 which is identified based on the presence of a distinctive central 

groove and a ‘tarry’ appearance (Fuller and Pelling 2018). 

Wild/weed taxa 

In total, 996 remains of wild/weed taxa have been identified, representing approximately 47 

different taxa/types, excluding remains of possible wild food plants such as blackberry. Sample 

7/12 contains 65% of the total assemblage of wild/weed taxa. Poaceae spp. are the most common 

remains, which are present in all the samples and form 36% of the assemblage. Other common 

wild/weed taxa include Asteraceae, Chenopodium sp. and cf. Reseda sp..  

Many of the taxa recorded can be classified as growing in arable or ruderal habitats including 

Agrostemma githago, Avena fatua, Chenopodium album-type, Convolvulus arvensis, Fumaria sp., 

Lithospermum sp., Polygonum convolvulus, Polygonum aviculare, Portulaca oleracea, Raphanus 

raphanistrum, Silene sp., Solanum nigrum, Vaccaria pyramidata and Verbena officianalis. With 

the exception of Verbena officianalis and Convolvulus arvensis, these species are all either winter 

or summer annuals with early-intermediate flowering onsets and flowering durations ranging 

from short (1-3 months), medium (4-5 months) to long (>6 months). This includes species which 

can tolerate drier conditions, finish flowering early in the season and have short flowering 
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durations (e.g. Avena fatua, Vaccaria pyramidata). In comparison, other species recorded are 

nitrophilous with a preference for moister environments typically found in gardens, ditches, near 

irrigation channels or other disturbed habitats (e.g. Chenopodium album-type, Portulaca 

oleracea, Verbena officianalis). 

Taxa typical of wet/damp and/or grasslands habitats are poorly represented including Carex spp., 

cf. Thalictrum sp. and a capsule of wild Linum sp. comparable in size to Linum catharticum. One 

large culm node and culm base, c.7mm in width, was recovered from sample 7/12 which may be 

from a reed (Phragmites) or large grass (Arundo donax). Sambucus sp. seeds are very abundant 

in sample 7/12, and these are probably from S. racemosa (a tree/shrub) based on their 

morphology and size, rather than or S. elubus (a weed species). Possible Sambucus sp. rachises 

(stalks supporting the inflorescence) are also abundant in sample 7/12, suggesting that whole 

panicles have been charred. Sambucus sp. seeds were identified embedded within charred dung. 

The large number of blackberry fruit stones are indicative of shrub/woodland edge habitats, 

though this species can also be commonly observed growing today in moisture-rich areas (e.g. 

edges of irrigation channels, abandoned gardens) (personal observation). 

4.2.2.3 STABLE CARBON ISOTOPE ANALYSIS  

In total, 65 cereal grains (6-row hulled barley, free-threshing wheat, rye), 24 rachises (bread 

wheat, durum wheat) and 5 pulse seeds (lentils) were selected for stable carbon isotope analysis. 

The samples are from the basal fill (4004) of Trench/Silo 4, an ash-rich deposit (3005) in Trench 3 

and multiple related contexts/spits from the ash-rich deposit in Trench 1, grouped together under 

context (1013) for simplicity. Rachis segments of bread wheat and durum wheat were analysed 

to assess if there is any difference in cultivation practices between these two species since free-

threshing wheat grains cannot be separated. Rachis ∆13C values may also provide an indication of 

growing conditions before the grain filling period (Wallace et al. 2013). Mean ∆13C values are 

presented per context in Table 4.10 and box plots of the results for the site as a whole are 

presented in Figure 4.19. The results for each sample individually are presented in Appendix 7. 

Mean ∆13C values for 6-row hulled barley are 15.6 ± 1.5‰ in context (1013), 15.3 ± 1.1‰ in 

context (3005) and 15.8 ± 1.9‰ in context (4004). The mean ∆13C value for all the 6-row hulled 

barley samples (n = 41) is 15.6 ± 1.6‰. These results are indicative of rainfed cultivation, and 

clearly fall within the ‘poorly watered’ ranges defined by Wallace et al. (2013) and Flohr et al. 

(2019). The large range of values (i.e. >1‰), particularly in context (4004), suggests that the 

samples derive from different fields and/or different years. The mean ∆13C value for rye, 15.1 ± 

1.0‰, is probably also indicative of rainfed cultivation. Kottmann et al. (2014) recorded that rye 
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growing under ‘severe drought’ had a ∆13C value <18‰, though further modern comparative data 

is required. 

Mean ∆13C values for free-threshing wheat are 16.9 ± 0.9‰ in context (1013) and 17.4 ± 1.1‰ in 

context (3005), whilst the mean ∆13C value for all the free-threshing wheat grain samples (n= 19) 

is 17.0 ± 0.9‰. Most of the samples fall broadly within the range expected for an irrigated crop 

(>17‰). This is equivalent to the ‘well-watered’ band defined by Wallace et al. (2013), whilst 37% 

(7/19) of the samples are within the conservative ‘well-watered’ band (>17.5‰) defined by Flohr 

et al. (2019). This interpretation is also supported by the higher ∆13C value for free-threshing 

wheat (+1.4‰) compared to hulled barley. If wheat and barley were cultivated under the same 

conditions, 6-row hulled barley would be expected to have a higher ∆13C value, potentially c.+2‰ 

higher (Voltas et al. 1999; Jiang et al. 2006; Aniya et al. 2007).  

The corresponding bread wheat and durum wheat rachis ∆13C values can help to corroborate the 

interpretation of the free-threshing wheat grain ∆13C values (cf. Wallace et al. 2013). In context 

(1013), the mean ∆13C values for bread wheat and durum wheat rachises are 17.9 ± 1.9‰ and 

17.6 ± 1.5‰ respectively, whilst in context (3005) the mean ∆13C value for durum wheat rachises 

is 19.7 ± 0.5‰. There is no statistically significant difference between the ∆13C value for bread 

and durum wheat rachises (Mann-Whitney U-Test: U=53, p=0.41), suggesting both crops may 

have been cultivated under similar conditions. The higher ∆13C value in rachises compared to free-

threshing wheat grains corresponds to a known pattern for 13C discrimination to be higher in 

rachises (Merah et al. 2002; Wallace et al. 2013). Rachis typically have a ∆13C value +1.7-2‰ 

higher than the corresponding grain, though the difference can be as little as c.0.5‰. High ∆13C 

values for durum wheat rachises (19.2-20.7‰) in context (3005) are indicative of irrigation, 

though only a small number of samples were analysed (n=5) and it is possible that the rachis 

segments derive from a single cereal ear. Despite this, the high rachis ∆13C values in context 

(3005) are corroborated by a slightly higher mean free-threshing wheat grain ∆13C value of 17.4 

± 1.1‰, compared to context (1013) which has a mean ∆13C of 16.9 ± 0.9‰. Further research 

may help to clarify the potential range of rachis ∆13C values which could be expected for rainfed 

and irrigated conditions in semi-arid environments. 

Considering the large difference in mean ∆13C values between hulled barley and free-threshing 

wheat (1.3‰), the most likely explanation is that free-threshing wheat was irrigated, though the 

cultivation of naturally wetter soil may also be a factor in this. A hypothesis suggested here is that 

hulled barley (and possibly also rye) was cultivated in the more exposed areas surrounding the 

site, whilst free-threshing wheat was cultivated in fields situated towards valley bottom and River 
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Huecha. These fields are potentially irrigable (and they currently are), though the date of the 

acequia running below the site is currently unknown. 

The mean ∆13C value for lentils is 16.1 ± 0.5‰. This is below the ‘well-watered’ range (>17‰) 

defined by Wallace et al. (2013). This does not exclude the possibility that lentils were irrigated, 

since irrigated lentils can have ∆13C values between 16-17‰. 

4.2.2.4 OVERVIEW 

Sample composition and formation 

The archaeobotanical assemblages in Trench 1 and Trench 3 formed through similar processes. 

These ash-rich deposits probably derive from a major conflagration and consequently any plant 

remains present within the structure could have become charred. This could include deliberately 

stored crops/crop components such as cleaned cereal grains or the valuable by-products of crop-

processing such as straw and chaff. If structures were used for several years the remnants of 

previously stored material and ‘stray’ items could also create background ‘noise’. Other materials 

used within the construction of the building are also a potential source of plant remains such as 

flooring or roofing. Similarly, chaff and weeds could have been incorporated into the production 

of adobes6 and these could have become charred and dispersed throughout the deposits (cf. 

Delgado and Guerrero 2006; Henn et al. 2015). Consequently, whilst the charred plant remains 

are within a primary deposit, the assemblage probably also contains material of a secondary or 

tertiary origin (cf. Fuller et al. 2014).  

The rich and diverse assemblage of charred plant remains recovered, particularly in samples 7/12 

and 10, clearly derive from multiple origins and it is suggested that, in part, this assemblage 

includes stable manure (sensu Kenward and Hall 1997). Different cereal species (bread wheat, 

durum wheat, hulled barley, rye) are present alongside broomcorn millet, flax, fruit/nut remains 

and wild/weed taxa. The large numbers of culms/straw fragments, culm nodes and rachises, 

together with abundant wild/weed taxa, clearly reflect material from the early stages of crop-

processing. It is not uncommon for mixtures of different cereals, together with other crops, arable 

weeds, grape-pressings and other plants to be fed as a source of fodder. Foxhall (1998) even 

suggests that the provisioning of animal fodder was almost entirely dependent on agricultural 

residues such as these. 

 
6 Two small fragments of partly charred adobes were disaggregated in water and were found to only 
contain flecks of charcoal/charred plant remains. 
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The argument for stable manure is strengthened by the presence of charred dung. Charred 

sheep/goat dung pellets are frequent in sample 7/12, together with abundant conglomerations 

with an amorphous matrix of vegetative material closely resembling charred dung. It is also 

possible that dung from larger animals such as cattle is present as this is less likely to preserve in 

a diagnostic form. Sheep/goat and cattle were identified in the faunal assemblage (Gidney pers 

comm.). Identified plant remains within the charred sheep/goat dung pellets and 

conglomerations include cereal straw, cereal culm nodes, grape pips, fig seeds, mulberry 

fruitstones, Rubus sp. fruitstones and Sambucus sp. fruitstones. These latter two species are 

particularly common. It is interesting to note that probable Sambucus sp. rachises are also present 

suggesting that panicles (inflorescences) have become charred. Small twigs are also abundant 

within the assemblage. Together this material probably could reflect leaf foddering or vegetation 

browsing by sheep/goats on field edges (Halstead 1998; Halstead et al. 1998). It has been 

highlighted that the by-product of leaf foddering (small, dry twigs) can be gathered up and stored 

since this material makes an excellent fuel for hearths or bread ovens (Zapata Peña et al. 2003). 

Though wild/weed taxa (i.e. arable weeds) were not recorded within the dung, many of the 

species present are likely to have survived digestion and charring (cf. Wallace and Charles 2013). 

Taken together, there is good evidence to suggest that the assemblage includes animal fodder 

and stable manure (sensu Kenward and Hall 1997). However, it is also evidence that material from 

other origins also present and animal fodder/stable manure can only partly account for the range 

of plant remains recorded.  

In Trench/Silo 4, the recovery of faunal remains and discarded pottery cooking vessels suggests 

the disposal of refuse (Gerrard and Gutiérrez 2018b). This interpretation would fit with the 

archaeobotanical evidence, which includes a mixture of different cereal species, broomcorn 

millet, fruits/nuts, flax, pulses and wild/weed taxa. Many of the cereal grains and flax seeds are 

very well preserved suggesting that they probably do not derive from background settlement 

waste, but rather are likely to have been deposited along with other refuse and quickly buried. 

The more poorly preserved items may reflect charring at higher temperatures and/or the 

subsequent redeposition of sweepings from floors or hearths.  

Grape pressings? 

Sample 7/12 produced probable evidence for the by-products of grape pressings, comprising 

whole pips, pip fragments, pedicles, whole berries, berry fragments, immature whole berries and 

‘pressed’ skins (Figure 4.18). Though only a small number of the diagnostic ‘pressed’ skins are 

present, these remains are morphologically comparable to the experimental charred by-products 
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of grape pressing (Margaritis and Jones 2006; Valamoti et al. 2007). ‘Pressed’ skins are not 

produced by charring whole grapes or raisins, strengthening the case that they derive from grape 

pressings.  

Crop-processing and arable weeds 

As outlined above, sample 7/12 contains a large assemblage of crop-processing debris, 

comprising culm/straw fragments, culm nodes, rachises and grains, which derive from 6-row 

hulled barley, rye, bread wheat and durum wheat (Table 4.11). The crop isotope evidence 

indicates that these crops were grown under different conditions, though since they are all free-

threshing cereals they could theoretically have been processed together (see Hillman 1985; Jones 

and Halstead 1995). The presence of culms/straw, culm nodes and (sub-)basal rachises suggests 

the harvesting of ears with the straw (Hillman 1985), though it is also possible that straw could 

have been harvested separately from the ears at a later date (Halstead 2014:86-88). Harvesting 

of straw could also reflect the requirement for animal fodder (Halstead 2014:50-51). The high 

ratio of chaff (culm nodes, rachises) to grain, and weed seeds to grain in samples 7/12 and 10 

indicates that the material derives from the early stages of crop processing (see Jones 1984; van 

der Veen 2007). In comparison, the low ratios in sample 1 are indicative of a (semi-)cleaned cereal 

crop, suggesting that this sample contains domestic refuse, probably linked to food preparation.  

It is likely that many of wild/weed taxa are associated with the cultivation of cereal crops and 

most of the species could have been in seed at the time of harvest (June/July). However, the 

samples are all classified as ‘mixed’ (see Chapter 2, section 2.2.2) and the weeds could equally be 

associated with other crops including flax and millet, or from crops cultivated under different 

conditions as suggested by the stable isotope analysis. These factors have probably created 

spurious combinations of species that did not actually grow together.  

Despite this, the rich assemblage of wild/weed taxa can provide some information on the nature 

of cultivation conditions. Firstly, some of the weeds are probably associated with cereals. Avena 

fatua and Vaccaria pyramidata are present; these tolerate dry conditions, have short flowering 

durations (1-3 months) and finish flowering early in the season (June) to cope with droughts 

(Jones et al. 2005). Short flowering durations have also been associated with autumn sowing and 

low soil disturbance. Consequently, these species have been commonly associated, though not 

invariably, with autumn sown (rainfed) cereal fields. Similarly, Agrostemma githago is character 

species of the phytosociological Secalinetea class associated with rainfed winter cereal fields 
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(Braun-Blanquet and de Bolós 1957), whilst Raphanus raphinstrum is also typical of arable 

habitats.  

Secondly, summer annual species with medium/long flowering periods (3-6 months, >6 months) 

a preference for nitrogen-rich and moister habitats are well represented (e.g. Chenopodium 

album-type, Convolvulus arvensis, Fumaria sp., Polygonum convolvulus, Polygonum aviculare, 

Portulaca oleracea, Solanum nigrum, Verbena officianalis). These weeds are primarily annuals, 

associated with fertile and disturbed habitats in areas such as gardens, ditches or the edges of 

acequias/irrigated fields. Convolvulus arvensis reproduces by vegetative propagation and this 

functional attribute is commonly associated with more intensively disturbed habitats such as 

gardens or in fields where crop-rotation/fallowing is used (Bogaard et al. 1999; Jones et al. 2000). 

However, whilst Convolvulus arvensis has a preference for nitrogen-rich and moist soils, it has 

been observed growing in irrigated and rainfed fields in Borja (P. Halstead pers comm.). 

Polygonum aviculare may have been a common weed in fallow fields and in cereal stubble after 

harvesting (P. Halstead pers comm.). Low numbers of species with preference for wet/damp 

conditions (Cyperaceae, Carex spp., cf. Thalictrum sp., possibly reeds) could have grown along the 

edges of acequias or irrigated fields (cf. Miller 1982: 158-160, 2011:65-66; Riehl 2010; Marston 

and Miller 2014). However, it should be noted that species with a preference for wet/damp 

habitats can also grow in poorly drained rainfed cereal fields (Hillman 1991).  

4.2.2.5 SUMMARY OF THE ARCHAEOBOTANICAL AND CROP STABLE CARBON ISOTOPE EVIDENCE 

• The samples produced a large and generally very well-preserved archaeobotanical 

assemblage dating to the Islamic period (10th-12th centuries). 

 

• In Trenches 1 and 3, an ash-rich (conflagration?) deposit was sampled and this produced 

a rich and diverse assemblage of charred plant remains including abundant crop-

processing debris, millets, flax, fruits/nuts and wild/weed taxa. Charred sheep/goat dung 

is also present. This range of plant remains reflects a mixture of material from several 

sources, though it is suggested that stable manure is present. In comparison, in Trench 4 

from the basal fill of a silo, an assemblage of cereal grains and other remains (flax, pulses, 

weeds) can be interpreted as a mixed refuse deposit. 

 

• Cereals are very common, and the species identified include free-threshing wheat, 6-row 

hulled barley, rye and possibly oat. Large numbers of diagnostic bread wheat and durum 

wheat rachises are present. There is no conclusive evidence for 2-row hulled barley. 



 
 

100 
 

Other crops identified include broomcorn millet, foxtail millet, flax and pulses (pea, lentil, 

probable grass pea, bitter vetch). Fruit/nut remains are very abundant, with grape, fig, 

mulberry, olive, sweet cherry, walnut and blackberry all recorded. Evidence for grape 

pressings has also been identified.  

 

• A rich and diverse assemblage of wild/weed taxa are present, particularly in the samples 

from Trench 1 and 3. The assemblage can be classified as ‘mixed’ and it is not possible to 

associate specific weeds with crops. Despite this, some of the species present are typical 

of wet/damp habitats and these could reflect irrigation. Similarly, ruderal species with a 

preference for nitrogen-rich and slightly moister environments are well represented and 

these species are typical of environments such as ditches, gardens or irrigated areas. 

However, there are also species which are typical of drier conditions and these may be 

linked to rainfed fields. 

 

• The crop stable carbon isotope results indicate cultivation under a range of different 

conditions. The ∆13C values for free-threshing wheat are indicative of an irrigated crop 

and these results are to some extent corroborated by the analysis of the corresponding 

bread and durum wheat rachis segments. In comparison, the ∆13C values for hulled barley 

clearly indicate a rainfed crop. Rye may also have been cultivated in rainfed fields. It is 

unclear from the small number of lentil seeds analysed whether they were irrigated. 

4.2.3 Iglesia de San Miguel, Ambel (Islamic, early 12th century) 

The Iglesia de San Miguel is a 14th century church located within the centre of the small village 

of Ambel (Figure 4.20). The village covers an area of sloping ground, at the foothills of the Sierra 

del Moncayo which rises to 2314m (a.s.l.). The church is associated with the adjacent Casa 

Conventual de Ambel (see below), a 12th-13th century building complex originally constructed 

by the Templars, and later passing to the Hospitallers in the 14th century (Gerrard 2003a). The 

site is centred around an earlier, fortified tower, probably dating from the Islamic period. In 2007, 

excavations were undertaken within the footprint of the church during restoration works (Blanco 

Morte 2007). 

The excavations identified a range of archaeological features associated with the earlier fortified, 

Islamic tower (Blanco Morte 2007). The features identified include a perimeter enclosure wall 

and 11 silos surrounding the base of the tower (Figure 4.21). These silos contained typical refuse-

type deposits, characterised by faunal remains, coins and pottery which date the infilling of the 
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features to the early 12th century (i.e. around the time of the Christian conquest, c.1121). Other 

features identified may also be of Islamic date including a small tank and an area of burning, 

possibly a hearth.  

4.2.3.1 SAMPLING 

Overall, 7 samples were collected, with a total sample volume of 14.1L (Table 4.12). Four samples 

were collected from the fills of silos [2] and [9]. Two samples were also collected from the fill of 

the small tank [C1] and the hearth [H1]. 

4.2.3.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 4.13, with the full dataset in Appendix 8.  

The seven samples analysed produced a very small assemblage of plant remains, with 19 charred 

and 2 mineralised remains identified. The flots are very small (2-100ml), with varying quantities 

of charcoal and identifiable plant remains are either absent or present in trace quantities. An 

exception to this is sample 1 from Silo 2, which produced a small assemblage of cereal grains, 

chaff, millets, grape and wild/weed taxa. The density of remains in silo 2 is modest, 4 items/L and 

the level of preservation is good.  

Crops 

The cereal grains present include unidentifiable grains (and fragments), rye and free-threshing 

wheat. Chaff remains comprise one well-preserved 6-row hulled barley rachis and a culm node 

which is probably from a cereal. Millets are represented by one indeterminate grain and a 

mineralised broomcorn millet grain which is still retained within its hull/chaff. Fruit/nut remains 

include a grape pedicle and an indeterminate fleshy fruit fragment which may also be from a 

grape.  

Wild/weed taxa 

In total, remains of 12 wild/weed taxa have been identified, including Chenopodium sp., an 

unidentified small seeded Fabaceae, Malva sp., Lamiaceae, Papaver sp. Rubiaceae and Poaceae 

spp.. A single bio-mineralised Boraginaceae seed is also present. These species could grow in a 

wide range of habitats, though they are common in arable and ruderal habitats. 

4.2.3.3 OVERVIEW 

Sample composition and formation 
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With the exception of sample 1, the absence/near-absence of plant remains (excluding charcoal) 

probably partly reflects the small size of the samples collected, rather than their actual absence. 

In sample 1, the small assemblage of cereal grains, chaff, millets, possibly grape and wild/weed 

taxa could reflect refuse, background settlement noise or crop-processing debris which has been 

redeposited into the silo. The use of silos to dispose of refuse is well documented in 

medieval/Islamic contexts (cf. Malalana Ureña et al. 2013; Alonso et al. 2017). The assemblage is 

well-preserved suggesting that the material was probably quickly buried once charred. The 

mineralised broomcorn millet grain could derive from a midden-type deposit rich in organic 

waste, or an ingested seed which has not broken down. Though the assemblage is small, the good 

preservation suggests that an appropriate sample size between 40-60L in size would have 

recovered a relatively large and interpretatively meaningful assemblage. 

4.2.3.4 SUMMARY OF THE ARCHAEOBOTANICAL EVIDENCE 

• The samples produced a small assemblage dating to the Islamic period (early 12th 

century). Nearly all of the remains derive from one feature, Silo 2. Despite this, a 

surprisingly diverse and well-preserved assemblage of both charred and mineralised 

remains are present. 

 

• The assemblage probably reflects a mixture of material from several sources which has 

become incorporated into the silo as refuse. 

 

• The crops identified include free-threshing wheat, rye, 6-row hulled barley, broomcorn 

millet and grape. 

 

• The small assemblage of wild/weed taxa recovered are probably all arable and ruderal 

weeds. 

4.2.4 Palacio de Bulbuente, Bulbuente (later medieval, 14th century) 

The Palacio, or Castillo, Bulbuente is a multi-period building complex situated within the southern 

end of the small village of Bulbuente, on the northern bank of the River Huecha (Figure 4.22). A 

settlement at Bulbuente is referred to in 12th century documentary sources (i.e. after the Christian 

conquest) and, in the 13th century the town and castillo became the property of the nearby 

Cistercian monastery at Veruela (González Palencia 1945; Cabanes Pecourt 1984). The building 

complex was an abbot’s palace, forming part of the monastery’s extensive land holdings and 

network of properties along this part of the Huecha Valley 
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The present-day building complex at Bulbuente comprises an early (possibly Roman or Islamic) 

fortified tower and an adjoining 15th-16th century brick and rammed earth (tapial) palace 

(Figures 4.23). Excavations at the site (2013-2014) primarily identified archaeological deposits 

dating to the later medieval and post medieval periods (Gerrard and Gutiérrez 2014). In 

particular, beneath the standing 15th-16th century palace there is an earlier structure which was 

destroyed in a major conflagration in the 14th century. The destruction of the complex is probably 

linked to the war of the two Peters (1357-1369), between Pedro IV of Aragón and Pedro I of 

Castilla, which is known to have affected the area (Cabanes Pecourt 1984; Gerrard 2003:43). The 

present-day building complex, dating predominantly to the 15th-16th centuries, seals these 

earlier deposits. Intensive bulk-sampling was carried out in Trench Z (Gerrard and Gutiérrez 

2014). 

The mid-14th century destruction/conflagration deposit was highly distinctive, containing 

abundant burnt adobes, heat-shattered stones, whole pottery vessels, charred timbers/beams 

and the near-complete remains of charred door constructed from walnut (Figure 4.24). This 

destruction/conflagration deposit was identified in Trenches H, B and Z. In Trench Z, it comprised 

three distinct layers: 

- (Z7 I): An upper layer of burnt/degraded adobes and roof tile. This context was not 

sampled since it may have been partly truncated in the 15th-16th centuries.  

- (Z7 II): A middle layer consisting of a mixture of burnt adobes, pottery and charred 

timbers/beams. This context is equivalent to (B53) in Area B. 

- (Z7 III): A basal layer of near-pure charcoal and heat-shattered stones.  

Beneath this destruction/conflagration deposit was a burnt occupation layer (Z22). This context 

is equivalent to (H104) in Trench H and (B57) in Trench B. Limited evidence for earlier 

archaeological deposits, pre-dating the 14th century structure, were also identified. This included 

a large pit containing abundant iron slag and associated deposits, possibly Roman, however, the 

archaeobotanical evidence recovered appears to be intrusive within this feature from the 14th 

century destruction/conflagration deposit (see below).  

Three direct AMS 14C dates were obtained on the destruction/conflagration deposit (Table 4.14), 

two from its southern edge in Trench H (H104) and one from its northern edge in Trench B (B500). 

A barley and oat grain submitted from (H104) returned dates of 1220-1390 cal CE (SUERC-68397) 

and 1290-1420 cal CE (SUERC-68398). A sample of elm roundwood charcoal submitted from B500 

returned a date of 1280-1400 cal CE (SUERC-68396). Several attempts were made to obtain a 

further direct date on the destruction/conflagration deposit in Trench Z, however, these failed 
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due to an insufficient carbon yield. An emmer wheat grain was also submitted from a slag-filled 

pit [B35/45] pre-dating the destruction/conflagration deposit in Trench B. The sample returned a 

date of 1260-1390 cal CE (SUERC-74721), suggesting that the archaeobotanical assemblage is 

intrusive within this feature as suspected. 

4.2.4.1 SAMPLING 

Overall, 52 samples were collected, with a total sample volume of 481L.  The majority of samples 

come from Trench Z (Table 4.15). Samples 1-7 are not included in Table 4.15 since these are post-

medieval in date. These deposits were comprehensively sampled in a grid due to their large size 

and to identify potential evidence for spatial patterning in the distribution of archaeobotanical 

evidence. A minimum of one c.20L bulk-sample, or 100% of the deposit, was collected in each 

grid square, often in the form of multiple smaller samples.  

4.2.4.2 ARCHAEOBOTANICAL EVIDENCE 

The discussion below only focuses on the 43 samples collected from the mid-14th century 

destruction/conflagration deposits in Trench H (context H104), Trench Z (contexts Z7, Z22) and 

Trench B (contexts B53, B57). The archaeobotanical results are summarised in Table 4.16, with 

the full dataset in Appendix 9.  The 43 samples analysed produced a large assemblage of plant 

remains, with 7040 charred remains and 8 mineralised remains. Samples from the 

destruction/conflagration deposits, (Z7) and (B53), produced very large flots (c.700ml on 

average), containing extremely abundant charcoal, particularly the base of the destruction 

deposit (layer III). The burnt occupation layer in Trench B, (B57), also produced a very large flot 

(1500ml). In comparison, samples from the burnt occupation layer in Trench Z, (Z22), and Trench 

H, (H104), produced small flots (c.75ml on average) with little charcoal and variable quantities of 

charred plant remains. 

The assemblage is dominated by cereal grain, whilst chaff and wild/weed seeds are comparatively 

rare in most samples (excluding rye). Millets, pulse seeds and fruit/nut remains are also present 

in low numbers throughout the samples. The highest density of plant remains were recovered in 

samples 19 (60 items/l) and 20 (44 items/l) from Trench B. Samples in Trench Z vary in the density 

of plant remains present (typically 3-14 items/L), with the highest density in samples 39, 51 and 

75 from context (Z7) in Grid C-3 (24 items/l), and sample 22 (39 items/L) from context (Z22) in 

Grid D-2. In sample 9, Trench H, the density of charcoal and plant remains is low (0.9 items/L). 

Other charred non-plant remains present abundant burnt construction/building material 

(adobes, tiles) and occasional insects and textile fragments. Charred sheep/goat dung pellets are 

present in low numbers in two samples.  
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Crops 

Free-threshing wheat, hulled barley and rye occur in remarkably similar proportions in all the 

different grid squares (Figure 4.25). The free-threshing wheat grains are variable in morphology 

and a small number of rachises indicate the presence of both bread and durum wheat. The barley 

grains which can be identified to species are overwhelmingly hulled, with both symmetric and 

asymmetric grains present indicating the presence of 6-row hulled barley. The ratio of 

symmetric:asymmetric grains is 1:3, which is higher than the theoretical ratio of 1:2 (Jacomet 

2006). Rachises of 6-row hulled barley are also present. None of the rachises identified are from 

2-row types, though it cannot be excluded that 2-row hulled barley is present. Two probable 

grains of naked barley have been identified based on their characteristic rounded form and 

‘wrinkled’ grain surface (cf. Jacomet 2006). Low numbers of tail/runt grains from both free-

threshing wheat and hulled barley are present.  

Rye grains are near-perfectly/perfectly preserved in many cases and they could be easily 

separated from wheat. Rye rachis segments are particularly abundant in the samples, especially 

in samples 39 and 51 from grid C-3. This grid potentially contains the partial remains of rye straw 

based on the presence of rye grains, long conjoined rachis segments, (sub-)basal rachises, as well 

as abundant culm nodes, culm/straw fragments, lemma/palea fragments and awns which also 

probably derive from rye. In total, a large number (n=368) rachis segments are present, however 

75% of these derive from only 6 samples. 

Large (>2mm) oat grains are common, though they are present in smaller quantities than other 

cereals. The oats are probably from cultivated common oat due to their large size and 

morphology, though the only floret bases identified derive from Avena fatua. The presence of A. 

fatua could account for the comparatively sparse small <2mm oat grains. Low numbers of emmer 

wheat and possible einkorn wheat grains are present throughout the samples. The emmer wheat 

grains have the characteristic long, narrow form and dorsal ‘hump’ as defined by Jacomet (2006). 

A small number of grains may be from einkorn with slightly convex ventral surface and high dorsal 

ridge. However, no glume bases or spikelet forks of either species are present. 

Other crops are distributed throughout the samples, though they are typically present in low 

numbers including millets, pulses and flax. A total of 199 millet grains are present and identifiable 

grains are primarily from broomcorn millet (97%), including both hulled and unhulled grains. Only 

one sample, 19, produced a probable foxtail millet grain. Pulse seeds are common and broad 

bean is by far the most common species recorded (n=104). The broad bean seeds are relatively 
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large, measuring 11.9mm (length), 8.2mm (width) by 6.1mm (breadth) on average, with the 

largest length of one bean measuring 13.8mm. This suggests that these remains are approaching 

the dimensions of Vicia faba var. major (Neef et al. 2011; Zohary et al. 2012). Similarly, the broad 

bean seeds have the characteristic morphology of V. faba var. major, as opposed to the short, 

rounded morphology of V. faba var. minor. One bean has a possible weevil hole, probably from 

the bean weevil, Bruchus rufimanus. Other pulse crops identified include pea, lentils, bitter vetch 

and an unidentified Vicia/Lathyrus-type species. Vetches are also present, though they are poorly 

preserved and could be a weed. Evidence for other crops is slight, within a single flax seed 

recorded in sample 68. 

Remains of fruits/nuts are present in most samples, though the number of remains is generally 

low (excluding grape). The species (wild and cultivated) identified include grape, fig, mulberry, 

olive, blackberry, possibly plum, sweet cherry, peach, almond, hazelnut and walnut. Analysis by 

grid square indicates that fruit/nut remains are particularly common in samples 39 and 51 from 

C-3. There is, however, no clear evidence for spatial patterning in the distribution of the fruit/nut 

remains. Grape is the most common species with whole pips, fragments and pedicles present in 

most contexts, though they are often poorly preserved. Low numbers of mineralised pips are 

present in samples 27 and 63. Other grape remains include low numbers of whole charred 

berries, particularly in samples 31, 39 and 51 in grids C-3 and D-3. It is unclear whether these 

whole berries derive from fresh grapes or inflated raisins (Margaritis and Jones 2006). In sample 

63, one whole ‘pressed’ grape skin is morphologically similar to the by-product of grape pressings. 

Wild/weed taxa 

These are rare in comparison to the substantial quantity of cereal grains and other cultivated 

crops present. The taxa recorded are typical of arable and ruderal habitats, including Agrostemma 

githago, Avena fatua, Chenopodium sp., Fumaria sp., Galium sp., Medicago sp., Malva sp., 

Papaver sp., Polygonum convolvulus, Rubiaceae, Silene sp. and Vicia sp.. These are all annual 

species with early/intermediate flowering onset periods, suggesting that they could have been in 

seed when crops were harvested. Many of these weeds are large-seeded/equivalent to grain size, 

or remain in heads (e.g. Malva sp.) during processing (cf. Jones 1987). 

4.2.4.3 STABLE CARBON ISOTOPE ANALYSIS 

In total, 100 cereal grains (6-row hulled barley, free-threshing wheat, emmer wheat, rye) and 20 

pulse seeds (broad beans) were selected for stable carbon isotope analysis. The cereal grains and 

pulse seeds come from a range of different samples taken throughout the mid-14th century 
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destruction/conflagration deposit in Trenches B and Z, to increase the probability that the plant 

remains derive from different plants, fields and/or years. Though the destruction/conflagration 

deposit is a primary context, it is important to emphasise the plant remains present within the 

structure when it was destroyed by fire were not necessarily deposited in one episode. The 

cereals could therefore reflect a mixture of harvests from several years. Mean ∆13C values are 

presented in Table 4.17 and box plots of the results are presented in Figure 4.26. The results for 

each sample individually are presented in Appendix 11. 

The mean ∆13C value for 6-row hulled barley is 17.8 ± 1.0‰, with 46% (23/50) of samples falling 

within the ‘moderately watered’ band (17-18.5‰) defined by Wallace et al. (2013). Samples 

within this range are difficult to interpret since they could reflect a mixture of rainfed or irrigated 

cultivation, though 24% (12/50) of the samples have ∆13C values <17% (i.e. poorly 

watered/rainfed), whilst 30% (15/50) of the samples have ∆13C values >18.5% (i.e. well-

watered/irrigated). The total range of ∆13C values is 15.1-19.4‰. This wide range may indicate 

that the hulled barley grains were cultivated under a range of different conditions. Support for 

this interpretation is provided by comparing the results to the minimum/maximum ∆13C values 

recorded for modern rainfed and irrigated hulled barley (see Chapter 2, Table 2.5 and Figure 2.2). 

For modern rainfed barley, the maximum recorded ∆13C value is 19.2‰, however, 95% of modern 

grains have ∆13C values which are <18.5‰. In comparison, for modern irrigated hulled barley, the 

minimum recorded ∆13C value is 16.6‰, however, 97% of grains have ∆13C values which are 

>18‰. The archaeological samples have ∆13C values which are significantly higher the typical 

maximum range for rainfed crops (>18.5‰) as well as samples which are significantly lower than 

the typical minimum range for irrigated crops (<18%). This would suggest a mixture of both 

rainfed and irrigated hulled barley grains are present, from different fields. 

Free-threshing wheat grain ∆13C values also range widely, 14.6-19.1‰, with a mean ∆13C value of 

17.0 ± 1.2‰. A small sample of emmer wheat grains (n=5) have a similar mean ∆13C value, 17.0 ± 

0.8‰. Overall, 54% (19/35) of the samples are within the typical range for an irrigated crop 

(>17‰), equivalent to the ‘well-watered’ band defined by Wallace et al. (2013). In comparison, 

31% (11/35) of the samples fall within the more conservative ‘well-watered’ band defined by 

Flohr et al. (2019). It is notable that four samples have very high ∆13C values (>18‰), beyond the 

maximum range currently recorded for rainfed cultivation (see Chapter 2, Table 2.5 and Figure 

2.2). As with hulled barley, the wide range of free-threshing wheat grain ∆13C values likely indicate 

a mixture of rainfed and irrigated free-threshing wheat grains are present. Rye grain ∆13C values 

also range widely, 15.2-20.1‰, with a mean ∆13C value of 17.0 ± 1.5‰. The rye grains fall 
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primarily within the range recorded by Kottmann et al. (2014) for ‘severe drought’ (<18‰), 

though as already noted this needs to be clarified through further research. 

In comparison to the range of ‘rainfed’ and ‘irrigated’ ∆13C values for cereal grains, the broad 

bean samples clearly stand out as a ‘well-watered’ or irrigated crop. The mean ∆13C value is 18.4 

± 1.0‰, and 90% (18/20) of the samples have ∆13C values >17‰. This is comparable to the mean 

∆13C values for modern irrigated broad beans in south-eastern Spain (16.7‰, 16.0-17.9‰: Araus 

et al. 1997a) and Greece (17.7 ± 1.5‰: Wallace et al. 2013). Similarly, Bogaard et al. (2018) 

recorded a mean ∆13C value of 18.6 ± 0.2‰ for broad beans cultivated in an area of high rainfall 

in northern Morocco. The cultivation of broad beans around Bulbuente is today restricted to 

irrigated market-gardens (huertos) since they cannot feasibly be grown on large-scale without 

irrigation. 

4.2.4.4 OVERVIEW 

Sample composition and formation 

The samples from the conflagration/destruction deposit appear to primarily reflect the remains 

of stored free-threshing wheats, hulled barley and rye. The crop remains in the burnt occupation 

layers (H104, B57, Z22) below the conflagration deposit probably reflect stored crops falling from 

containers or areas above, possibly in addition to any other crop items present. The highest 

density of cereal grains (and other plant remains) are in samples from Trench B. This could reflect 

crops stored up against the wall, or a natural preservation bias created by debris falling from the 

wall restricting the supply of oxygen. The overall density of cereal grains within the deposit is not 

particularly high and other examples of studied granaries destroyed by fire have produced thick 

grain-rich deposits, comprising several hundred or several thousand items/L (e.g. Ruas 2002; Ruas 

et al. 2005a). However, it is important to note that only a small area of the burnt structure has 

been excavated and it is possible that grain-rich deposits could be present in other areas.  

Several different sources of plant remains have probably become mixed together when the 

structure burnt down, particularly if crops were stored on a first storey. The grid-squares contain 

strikingly similar proportions of free-threshing wheat, hulled barley and rye; it is unlikely that this 

has happened purely by chance. However, it cannot be established whether the different cereal 

species were stored separately in similar quantities in close proximity to one another, 

subsequently becoming mixed in the conflagration. Or alternatively, whether the different cereals 

had already been deliberately mixed together in storage. The lower numbers of other charred 

plant remains present could reflect minor crop contaminants, particularly in the case of oat, 
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emmer/einkorn wheat, flax and pulse seeds which resemble the cereal grains in growth pattern 

and/or seed size (Jones and Halstead 1995). However, minor crop contaminants are unlikely to 

explain the occurrence of large fruit stones (e.g. peaches) and nutshells (e.g. walnuts). 

As already outlined in reference the conflagration deposit at La Mora Encantada, it is necessary 

to consider that any plant remains present within the structure could have become charred. 

Whilst the majority of plant remains present probably derived from the storage of cereal grains, 

associated weeds and potential crop contaminants, it is clear that plants from other sources have 

also become charred within the structure. This could potentially include discarded food items, 

residues from previous crops or plants introduced by wild animals. It is not unreasonable to 

suggest that the low numbers of fruitstones/nutshells from olives, peaches, sweet cherry, figs 

and walnuts could have been introduced by wild animals (birds, rodents) inhabiting the building. 

In the case of chaff and wild/weed taxa, some of these could derive from flooring/roofing, or 

material incorporated into the production of adobes7 (cf. Delgado and Guerrero 2006; Henn et 

al. 2015). Within the dry confines of the building, plants from several different origins could 

potentially survive for decades or even longer, only becoming charred when the structure burnt 

down (cf. Ernst and Jacomet 2006). Plants may also have been introduced by stalling animals 

within the building as suggested by the low numbers of charred sheep/goat dung pellets in 

samples 38 and 50. 

Crop-processing and arable weeds 

The assemblage is dominated by cereal grains suggesting a cleaned store crop which has 

undergone coarse-sieving and fine-sieving to remove contaminants including chaff and weeds 

(Table 4.18; Figure 4.27). The cereal grains probably reflect prime grain based on their large size 

and the comparatively low numbers of runt/tail-grains. A small number of large-seeded weed 

seeds (e.g. Agrostemma githago, Galium aparine, Polygonum convolvulus), or headed-weeds (e.g. 

segments of Malva sp. flowerheads), are likely to have been retained with the coarse-sieve 

product (Jones 1984, 1987). The presence of small-seed weed species could derive from earlier 

crop processing stages, or material which has not been removed during fine-sieving. All of the 

wild/weed taxa recorded are probably all arable weeds, though the samples are all classified as 

‘mixed’ due the presence of non-cereal crops (e.g. millets, fruits/nuts, pulses) and the 

 
7 Four small fragments of charred adobes were disaggregated in water and were found to contain only 
flecks of charcoal/charred plant remains. See note 1, for the same conclusion. 
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combination of different cereal species (see Chapter 2, section 2.2.2). Consequently, some of the 

weeds could equally derive from other cultivated crops such as millets or pulses. 

Although the assemblage is dominated by cleaned cereal grains, material from earlier crop 

processing stages may also be present in some samples containing large numbers of rachises, 

particularly for rye (Table 4.18). It would not be unusual for by-products of crop processing to be 

stored alongside cleaned cereal grains. For instance, in his ethnographic research, Hillman (1985) 

observed pots containing cleaned cereal grains and crop-processing by-products could be found 

alongside one another in storerooms. In Grid C-3, the partial remains of rye straw may be present 

(accounting the for the large number of rye rachises). Rye has traditionally been valued for is 

straw since it produces tall, tough stems suited to purposes such as thatching or binding cereal 

sheathes (Halstead 2014:78, 96, 139). 

4.2.4.5 SUMMARY OF THE ARCHAEOBOTANICAL AND CROP STABLE CARBON ISOTOPE EVIDENCE 

• The samples produced a large, well-preserved archaeobotanical assemblage dating to 

the later medieval period (mid-14th century).  

 

• The samples come from a destruction/conflagration deposit and contain abundant cereal 

grains, alongside other material, which has become mixed together when the structure 

collapsed. The rarity of chaff and weed seeds is indicative of a (semi-) cleaned grain 

product. However, the density of cereal grains within the deposit is not especially high 

(<100 items/L), as would be expected in a fully stocked granary destroyed by fire. 

 

• Rye, hulled barley and free-threshing wheat dominate the archaeobotanical assemblage, 

occurring in near-identical proportions within all the areas sampled. Both bread wheat 

and durum wheat are confirmed by the presence of diagnostic rachises. 6-row hulled 

barley is indicated by asymmetric grains and diagnostic rachises, though 2-row hulled 

barley cannot be excluded. Large oat grains are also common and these are probably 

from the cultivated species, though no diagnostic floret bases were recovered. There is 

little evidence for other cereal species, including emmer wheat and possible einkorn 

wheat grains. 

 

• Other crops identified include millets (broomcorn millet, foxtail millet), pulses (pea, broad 

bean, lentils, bitter vetch) and flax. Fruits/nuts are relatively common, including olive, 
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blackberry, grape, fig, mulberry, possible plum, peach, almond, sweet cherry, walnut and 

hazelnut. One probable pressed grape skin has also been identified.  

 

• Remains of wild/weed taxa are rare, as expected for a (semi-) cleaned grain product. The 

few species present are typical of arable and ruderal habitats, though specific weeds 

cannot be associated with crops. 

 

• The crop stable carbon isotope evidence suggests that the free-threshing wheat and 

hulled barley grains are from different fields and/or different years. This inference is 

based on the very wide spread of ∆13C values observed, which includes samples within 

the ranges expected for both rainfed and irrigated crops. Rye may have been cultivated 

in rainfed fields. In comparison, there is less variation in the broad bean ∆13C values, 

which clearly reflect an irrigated crop. 

4.2.5 Castillo de Grisel, Grisel (later medieval, 14th century) 

The castle at Grisel is a small fortification situated on a rock outcrop (625m a.s.l.) within the village 

of Grisel (Figure 4.28). The area around the site forms the lower slopes of the Sierra del Moncayo. 

The castle dates from the 12th century, with the earliest phase of construction corresponding to 

a fortified stone tower, though much of the present-day structure dates from the 14th-15th 

centuries (Gutiérrez 2005). Small-scale excavations were undertaken during the restoration of 

the castle in 1988-1991 (Gutiérrez and Gerrard 1992).  

The features identified during the restoration works included two large, plaster-lined rectangular 

tanks (Figure 4.29). The form of these tanks suggests that they were originally designed to retain 

a liquid (possibly grape pressings), though their original function is unclear. The tanks were 

truncated by the construction of a 14th-15th century perimeter wall and one tank (Tank 1) was 

deliberately infilled at this date. This feature contained a secondary, or probably tertiary deposit 

(1003, 1004), rich in refuse-type material (faunal remains, pottery etc.). Pottery recovered from 

the fills dated to the 14th century. Bulk-samples taken during the excavation were retained and 

selected for analysis as part of this PhD research. 

4.2.5.1 SAMPLING 

Overall, 2 samples were collected, with a total sample volume of 122L (Table 4.19). The upper 

(1003) and lower (1004) fills of the tank were 100% sampled. 
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4.2.5.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 4.20, with the full dataset in Appendix 12.  

The two samples analysed produced a small assemblage of plant remains, with 86 charred and 4 

mineralised plant remains identified. The flots are moderate in size (150-220ml), with varying 

quantities of charcoal and plant remains. The density of plant remains is low in both samples, 0.3 

items/L in sample 1 and 2 items/L in sample 2. The charred plant remains comprise cereal grains, 

chaff, flax, millets, pulses, fruit/nut remains and wild/weed taxa. The level of preservation is 

variable. The low numbers of mineralised remains include indeterminate fragments, grape pips 

and a fig nutlet.  

Crops 

The cereal grains identified range from poorly preserved to near-perfect. The species include 

large (>2mm) oat, free-threshing wheat and hulled barley. Two of the hulled barley grains are 

asymmetric, indicating the presence of 6-row hulled barley. Runt/tail grains of hulled barley are 

also present. Chaff remains comprise indeterminate rachis fragments and two free-threshing 

wheat rachises. Millets are represented by three grains of broomcorn millet, whilst the only 

identifiable pulse seed is a pea. Sample 2 produced a small assemblage of poorly preserved flax 

seeds, comprising 20 whole seeds, 5 fragments and a further 5 probable fragments. No flax 

capsule fragments are present. Fruit/nut remains include indeterminate fleshy fruit fragments, 

indeterminate fruitstone/nutshell fragments, fig nutlets, walnut shell, grape pips, a whole grape 

berry and grape berry fragments. The mineralised remains also include grape pips and a fig nutlet.  

Wild/weed taxa 

Low numbers of wild/weed taxa are present including Agrostemma githago, Chenopodium sp., 

Poaceae spp., Rumex sp., Thalictrum cf. flavum and Vicia sp. Whilst Agrostemma githago is a 

character species of the phytosociological Secalinetea class associated with (rainfed) winter 

cereal fields (Braun-Blanquet and de Bolós 1957), Thalictrum cf. flavum tolerates/prefers damp 

habitats (e.g. streamsides) and it is unlikely to be weed of cereal cultivation since it has a late 

flowering onset period (July-September).  

4.2.5.3 OVERVIEW 

The fills of the tank may be characterised as secondary or tertiary deposits, containing a mixture 

of refuse from several sources. Some of this material is likely to derive from crop-processing 

debris based on the presence of chaff and cereal grains, including runt/tail-grains which may 

reflect the coarse sieving by-products (cf. Hillman 1985). The assemblage of flax seeds is more 
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difficult to explain, though the remains could conceivably derive from a single plant. The low 

numbers of mineralised plant remains suggest an organic-rich input (McCobb et al. 2003). Since 

fig nutlets and grape pips are ingested with the fruit this could reflect the inclusion of some 

(redeposited?) cess/latrine waste.  

4.2.5.4 SUMMARY OF THE ARCHAEOBOTANICAL EVIDENCE 

• The samples produced a small, though diverse assemblage of plant remains including 

both charred and mineralised remains dating to the later medieval period (14th century). 

 

• The tank contained a secondary or tertiary deposit of refuse and the archaeobotanical 

assemblage reflects this. The charred assemblage probably incorporates crop-processing 

debris and refuse, whilst the mineralised remains may indicate an element of cess/latrine 

waste.   

 

• The crops recorded include cereals (free-threshing wheat, hulled barley, possibly oat), 

broomcorn millet, pea, flax and fruits/nuts (grape, fig, walnut). Considering the small 

quantity of charred plant remains present, flax is particularly frequent. Low numbers of 

mineralised grape pips are present.  

 

• The wild/weed taxa present include arable and ruderal weeds, some of which are likely 

to be associated with crop-processing debris.  

4.2.6 Casa Conventual de Ambel, Ambel (later medieval, 15th century) 

The Casa Conventual, or preceptory, is a multi-period building complex adjacent to the church of 

San Miguel, within the village of Ambel (Figure 4.30; see above). The earliest structure at the site 

is a probable Islamic fortified tower, around which a 12th-13th century building complex was 

constructed by the Templars (Gerrard 2003). In the 14th century, the site passed to the 

Hospitallers and over several centuries it has been extensively remodelled. From 1993 to 1995, 

small-scale excavations were undertaken within the building complex (Gerrard and Gutiérrez 

1995). 

The 1993 excavation season targeted a very large, bell-shaped rock-cut pit (c.3m deep), probably 

a silo or water-cistern (Gerrard 2003; cf. Blanco Morte 2007). This feature may originally have 

been constructed during the Islamic period, however, it was deliberately infilled in later centuries, 

predominantly between the 15th-17th. Bulk-sampling was undertaken during the excavation and 

a small quantity of archaeobotanical evidence was recovered from the upper fills (Straker in 
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Gerrard 2003). Unprocessed bulk-samples collected from the lower fills of the feature had been 

retained and samples from four contexts were selected for analysis as part of this PhD project. 

The samples derive from secondary or tertiary deposits containing a mixture of refuse and 

building rubble. Pottery associated with the samples suggests that the deposits date to the 15th 

century.  

4.2.6.1 SAMPLING 

Overall, four samples were collected, with a total sample volume of 375L (Table 4.21). A 100% 

sampling strategy was adopted on-site, with later sub-sampling during processing.  

4.2.6.2 ARCHAEOBOTANICAL EVIDENCE 

The archaeobotanical results are summarised in Table 4.22, with the full dataset in Appendix 13.  

The four samples analysed produced a very small assemblage of plant remains, with 36 charred 

and 3 mineralised remains identified. The flots are small (80-160ml). The density of plant remains 

is very low, <0.1-0.2 items/L, in all the samples. The level of preservation is variable, though the 

preservation of charcoal and charred plant remains is notably better in sample 4. The charred 

plant remains include cereal grains, chaff, millet, pulses, fruits/nuts, flax and wild/weed taxa. 

Other charred non-plant remains include a textile fragment in sample 1.  

Crops 

The cereal remains present include grains of hulled barley, rye and wheat, indeterminate 

grains/fragments and one cereal-sized culm node. One millet grain can be identified as 

broomcorn millet. The pulses present include one well-preserved pea and one unidentified 

fragment, comparable in size to a pea or bean.  Two well-preserved flax seeds are present in 

samples 1 and 4. Remains of fruits/nuts are comparatively frequent by comparison to the other 

charred plant remains present. This includes one large (>10mm) walnut shell fragment, one olive 

fruitstone fragment, grape pips (and fragments), a whole charred grape berry and numerous 

grape berry fragments. Mineralised grape pips are present in sample 4. 

Wild/weed taxa 

No identifiable remains of wild/weed taxa are present in the samples. 

4.2.6.3 OVERVIEW 

Sample composition and formation 
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The small quantity of charred and mineralised plant remains present probably reflect a mixture 

of material from several sources. The very low densities of remains are indicative of background 

settlement ‘noise’, probably incorporated alongside other domestic refuse and rubble when the 

feature was infilled from the 15th century onwards. The mineralised grape pips could indicate the 

inclusion of some cess/latrine waste. Although cereals (and other products) were stored in 

granaries at the site, crop-processing activities probably took place elsewhere which may partly 

explain the rarity of charred plant remains.  

4.2.6.4 SUMMARY OF THE ARCHAEOBOTANICAL EVIDENCE 

• The samples produced a small archaeobotanical assemblage and an extremely low 

density of charred/mineralised plant remains dating the later medieval period (15th 

century). 

 

• The assemblage probably reflects a mixture of background settlement ‘noise’, refuse and 

possibly an element of cess/latrine waste (based on the presence of mineralised 

remains). 

 

• The crops identified include cereals (wheat, hulled barley and rye), broomcorn millet, 

flax, pea and fruits/nuts (grape, fig, walnut, olive). Low numbers of mineralised grape pips 

are present. No remains of wild/weed taxa are present. 

 

4.3 Discussion 

The final section of this chapter brings the archaeobotanical and crop isotope evidence together 

from all the sites studied in the Huecha Valley to examine diachronic changes between the early 

medieval, Islamic and later medieval periods. The evidence is discussed within a local context, 

and for the later medieval period it is compared against documentary sources and archaeological 

evidence.  

Due to the arrival of the Cistercians and the Military Orders in the 12th century, there is a large 

body of documentary evidence for the later medieval period, whereas none exist for the early 

medieval or Islamic periods. These landowners had a vested interest in the organisation of 

agriculture, and consequently many of the sources are concerned with sales of land, irrigation 

and the collection of rents/tithes. It is beyond the scope of this PhD to undertake an in-depth 

review of these sources, which would require new archival research, however several studies 
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have compiled and analysed the surviving documentary sources (e.g. Corral Lafuente and 

Escribano Sánchez 1980; Corral Lafuente 1981; Ainaga Andrés 1987; Forey 1988; Gerrard 2003, 

2011; Rodríguez Lajusticia 2010, 2014).  

Whilst these documentary sources provide valuable information, it is important to be aware of 

their limitations. Firstly, there are unsurprisingly more sources for later centuries, with few 

providing detailed information for the 12th and 13th centuries (i.e. the two centuries after the 

Christian conquest). Secondly, the sources are biased towards the most important crops in the 

collection of rent/tithes, namely cereals, vines, olives, flax and hemp. In comparison, cultivation 

that needed no recording for tax purposes (e.g. vegetables for family consumption) are almost 

totally absent from the records. There is a general bias towards the priorities of the landowners, 

and consequently this has skewed the relative importance of different crops. 

The terminology used in historic sources can also pose some challenges. There are often only 

generic references to fruits, pulses or the produce from huertos, particularly for earlier periods. 

Similarly, generic terms are used to refer to crops and it is unclear in some cases which species is 

being referred to. For example, whilst some sources simply refer to ‘wheat’, others include 

references to both trigo candeal (durum wheat) and trigo (?bread wheat). Trigo candeal is 

normally thought to be durum wheat, however, the term may also have been used to refer to 

bread wheat. Similarly, it is unclear whether the designation trigo solely refers to bread wheat or 

potentially a mixture of different free-threshing wheat species. Finally, little information is also 

provided about crop husbandry practices, with only occasional references to specific produce 

from the irrigated huertas or huertos in later centuries (e.g. Gerrard and Gutiérrez 2003b:89).  

Despite these limitations, the archaeobotanical and documentary evidence provide different 

kinds of information. A major strength of the documentary sources is that they provide 

information on aspects such as the management of irrigation systems or the collection of 

rents/tithes which are difficult to identify archaeologically. On occasions, the geographical 

location of certain crops is also given, mentioning field-names or areas that still exist today. In 

comparison, archaeobotanical evidence provides a record of aspects not touched upon in the 

documentary sources such as ‘missing’ crops or cultivation practices.  By interweaving the 

archaeobotanical evidence with information from documentary sources and archaeological 

studies, it is possible to provide a more holistic understanding of changes in agriculture.  
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4.3.1 Cereals 

From the early medieval to later medieval period, two cereal species dominate the 

archaeobotanical record: hulled barley and free-threshing wheats. In the early medieval period 

at Bureta, the only free-threshing wheat species identified is bread wheat, with 34 rachis 

segments recorded in multiple samples/contexts. The crop isotope evidence suggests that the 

corresponding grains (probably all bread wheat) were cultivated under rainfed conditions. 

Whether durum wheat was genuinely absent, or simply not recovered, is unclear. Durum wheat 

has previously been recorded in other early medieval settlements in Iberia (Sopelana 2012; Vigil-

Escalera Guirado et al. 2014) and it was probably also present in the Roman period (Alonso 2005), 

although the relative importance of these two wheat species is unclear (Peña-Chocarro et al. 

2019; see Chapter 5). Further samples from a larger excavated area would be required to test 

whether durum wheat was actually absent in the early medieval period across the Huecha Valley.  

By the Islamic period, both durum wheat and bread wheat are clearly present at La Mora 

Encantada. A large number of well-preserved rachises from both species were recorded in similar 

proportions. Provided that this does reflect a change in crop husbandry, the introduction of 

durum wheat may reflect a shift in culinary and cooking traditions. Traditionally, durum wheat 

has been used to produce products such as coarse breads, flatbreads, pastas, couscous, frikké 

and bulgur, whilst bread wheat (as its name suggests) was used to produce a finer type of bread 

(Hillman 1985; Alonso et al. 2014b). The 10th century Calendar of Córdoba refers to the 

harvesting of farīk (green durum wheat), probably freekeh (Pellat 1960). The two crops may also 

be combined together to produce a coarse bread, comparable to those traditionally consumed 

throughout the Mediterranean (Bolens 1980; Hillman 1985). The crop isotope evidence indicates 

that both bread wheat and durum wheat were irrigated, potentially being cultivated under the 

same conditions. These two crops can be cultivated together (Halstead 2014:68). Free-threshing 

wheats, especially bread wheats, are thought to be a more drought-sensitive and demanding crop 

than hulled barley (e.g. Riehl 2009). It is interesting to note that the isotopic evidence points 

towards the rainfed cultivation of hulled barley (see below). However, it should be noted that 

traditional landraces of bread wheat are better adapted to growing in more marginal conditions 

(i.e. lower water and nutrient availability) than modern varieties (Bogaard 2016). The preferential 

irrigation of free-threshing wheats potentially reflects a cultural preference, and ‘wheats’8 are 

 
8It is often unclear which wheats are being referred to in these sources, though in most cases it is thought 
that they are referring to the free-threshing wheats (Hernández Bermejo et al. 2012). 
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thought to have been the most widely consumed cereal in al-Andalus (Bolens 1980; García 

Sánchez 1996; Hernández Bermejo et al. 2012).  

In the later medieval period, both durum wheat and bread wheat are also recorded at Palacio de 

Bulbuente. The crop isotope evidence suggests that the assemblage includes grains harvested 

from different fields/years, with cultivation in both rainfed and irrigated areas. It is unclear 

whether bread wheat and durum wheat were cultivated together, or under the same conditions, 

since too few rachis segments were available for isotope analysis. Free-threshing wheat was also 

recorded at Castillo de Grisel. 

Documentary references to wheat are common from the 12th century onwards, though it is often 

unclear which wheat species is being referred to (Rodríguez Lajusticia 2010). However, in the 14th 

century tithes provided to the Bishop of Tarazona included both trigo candeal (durum wheat) and 

trigo (?bread wheat) (Ainaga Andrés 1987). In this case, trigo appears to have been cultivated on 

a larger scale than durum wheat. At Ambel in 1380, trigo candeal is recorded as growing in the 

irrigated huerta, close to the acequia (Gerrard and Gutiérrez 2003b:89). Later sources from 

Ambel, and graffiti in the granaries, also refer to wheat with further references to its cultivation 

in the huerta (Gerrard and Gutiérrez 2003b:89-91; Gerrard 2003b:312). In neighbouring 

Tarazona, some wheat was cultivated beneath fruit trees in the 17th century (Ponsot 1971), a 

practice documented in other Mediterranean areas (cf. Forbes 1998; Hasltead 2014:205). Surplus 

wheat may have been treated as a cash-crop, and it was exported to neighbouring areas from the 

12th to 13th century onwards, though this was prohibited at times of ecological stress due to 

grain shortages (Corral Lafuente 1983; Laliena Corbera 2008; Rodríguez Lajusticia 2019; cf. 

Halstead 2014:24).  

In the 17th century, seven different wheat species/types are recorded as growing in Tarazona, in 

both rainfed areas and the irrigated vega (Ponsot 1971). In some cases, different wheat 

species/types are recorded as growing together (Ponsot 1971), presumably reflecting a mixture 

of durum and bread wheats. The cultivation of several different free-threshing wheat 

species/types appears to have been commonplace in north-east Spain until the 20th century 

(Verde et al. 1998; cf. Halstead 2014:233-288). It is highly probable that several different varieties 

of either bread wheat or durum wheat were cultivated throughout the medieval period. 

However, from an archaeobotanical perspective, the identification of free-threshing wheats 

typically does not go beyond the ploidy level (i.e. tetraploid durum-type wheats, hexaploid bread-

type wheats). Some researchers have associated the presence of short/stubby free-threshing 

wheat grains with ‘compact-type’ wheats in the Iberian Peninsula (e.g. Alonso 2005; 2008; 
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Queiroz 2009). Similar short/stubby grains were recorded in the Islamic and later medieval 

assemblages analysed here and they occur alongside longer/thinner grains and intermediate 

forms (sensu Jacomet 2006). This variability in grain morphology could reflects different sub-

species/landraces or alternatively within-ear variability, however, long intact rachises segments 

are required to accurately identify compact wheats (sensu stricto) (Jacomet 2006; cf. Maier 1996; 

Cappers 2012:316-317). With crop aDNA, it may eventually be possible to identify specific cereal 

landraces (Brown et al. 2015). 

In comparison to free-threshing wheats, glume wheats (i.e. emmer, einkorn) are very rare. Only 

a single cf. emmer wheat glume base was identified in the early medieval period at Bureta, whilst 

no glume wheats were recorded in the Islamic period at La Mora Encantada. In comparison, by 

the later medieval period at Palacio de Bulbuente, emmer wheat and probably also einkorn are 

present, though they still form a minor component of the total assemblage. From the 

archaeobotanical evidence, it is clear that the scale of glume wheat cultivation was small, or 

alternatively that some of these remains could be contaminants of another crop (Jones and 

Halstead 1995). No references to either emmer or einkorn have been identified in documentary 

sources for the later medieval period and the archaeobotanical evidence thus provides a valuable 

record of their cultivation. No glume wheats are cultivated in the area today and they largely 

disappeared from cultivation across the Iberian Peninsula during the 20th century (Verde et al. 

1998; Peña-Chocarro 1999). The small-scale cultivation of glume wheats may reflect their use to 

prepare specific foodstuffs (Hillman 1984b; Halstead 2014:284) or for the use of their straw, 

particularly in the case of einkorn (Peña-Chocarro et al. 2015). 

Together with free-threshing wheats, barley was the most common species cultivated in all 

periods. In many cases, the grains were sufficiently well preserved to be identified as hulled 

barley. Only a handful of probable naked barley grains with a characteristic rounded cross-section 

and wrinkled surface are recorded. Naked barley is generally rare from the later prehistoric period 

onwards in western Europe (Buxó et al. 1997; Lister and Jones 2013), though it has been recorded 

in small quantities in Islamic and later medieval sites in north-east Spain (Alonso et al. 2014a). 

The low numbers of probable naked barley grains recorded are probably minor contaminants of 

the hulled barley crops. The 6-row hulled form is recorded from the early medieval to later 

medieval period, based on the presence of diagnostic rachises and asymmetric grains. The only 

secure identifications of the 2-row form are in the early medieval period at Bureta, though its 

presence at later sites cannot be excluded. Both 2-row and 6-row forms could have been 

cultivated together (Harlan 1978). 
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The crop isotope evidence suggests that in both the early medieval and Islamic periods hulled 

barley was cultivated under rainfed conditions. Hulled barley is considered to be the most 

drought tolerant of the cereals, with 2-row forms better adapted to drier conditions than 6-row 

forms (Helbaek 1960; Harlan 1978: 19-20; Charles 1984). Despite this, droughts may still have 

caused crop failures (cf. García Manrique 1960). In the later medieval period at Palacio de 

Bulbuente, the isotope evidence suggests a different picture with hulled barley cultivated under 

both rainfed and irrigated conditions. Irrigation can significantly increase the yields of hulled 

barley. For instance, at Aşvan in Turkey, Hillman (1973) noted that irrigation increased yields of 

traditional landraces of 2-row hulled barley (up to 6 times higher) and 6-row hulled barley (up to 

12 times higher). Consequently, the cultivation of hulled barley in irrigated areas provided two 

benefits: it reduced the risk of crop failure and it could have significantly increased yields. Barley 

is widely referred to in documentary sources from the 12th century onwards (Rodríguez Lajusticia 

2010), and at Ambel, 16th and 17th century sources refer to the cultivation of barley in the 

irrigated huerta (Gerrard and Gutiérrez 2003b).   

Barley has traditionally been highly favoured as fodder, though it would be incorrect to assume 

that it was not also intended for human consumption, often being combined with free-threshing 

wheats to produce a coarse bread (Bolens 1980; García Marsilla 2013; Halstead 2014:68). Both 

crops could also have been cultivated together as a maslin, and as outlined earlier for the Teruel 

study area, this may have been a risk management strategy (Jones and Halstead 1995). In an 

inventory of items destroyed following a dispute between the Templars and Hospitallers in 1273 

at Novillas, this wheat/barley maslin is referred to as comuña, and valued at a higher price than 

pure barley (Forey 1988). Interestingly, comuña is also recorded at Grisel in 1389 in payment of 

rent to the Bishop of Tarazona (Ainaga Andrés 1987:no.73). A further barley crop also recorded 

in documentary sources is alcaceres, a green barley hay harvested when immature (Gerrard and 

Gutiérrez 2003b:70; Coral Lafuente 1981:259). The 12th century agronomist Ibn al-‘Awwām also 

refers to the cultivation of a green barley crop for fodder which was sown on irrigated land in 

May (Hernández Bermejo et al. 2012) and this practice is also attested ethnographically (Forbes 

1998; Halstead 2014:27). It is interesting to note that barley is simultaneously referred to in the 

documentary sources as both ordio and cebada, with the latter possibly referring to alcaceres.  

Rye is recorded at all the sites from the early medieval to later medieval period. In the early 

medieval period at Bureta it only forms a minor component of the total assemblage recovered, 

however, by the Islamic period at La Mora Encantada it is present in similar quantities to free-

threshing wheats and hulled barley. In the later medieval period at Palacio de Bulbuente, it occurs 
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in very similar proportions to both free-threshing wheats and hulled barley, indicating that it was 

a major crop. Documentary sources refer to rye from the 12th century onwards, though most 

references to cereals are to either barley or wheat (Rodríguez Lajusticia 2010). However, in tithes 

provided to the Bishop of Tarazona in the 14th century, rye was clearly a major crop at Añón, Los 

Fayos and Ambel, whilst other settlements in the Huecha Valley appear to have produced little 

rye (Ainaga Andrés 1987). The larger-scale of rye cultivation at Añón, Los Fayos and Ambel may 

in part be related to altitude since these villages would potentially have had access to fields in 

higher areas and rye is well-adapted to growing in cooler, mountainous environments (Hillman 

1978; Halstead 2014:203). At Ambel, rye is mentioned from the 13th century onwards and it is 

also recorded as graffiti in the granaries (Gerrard and Gutiérrez 2003b; Gerrard 2003b). 

Traditionally, rye has been cultivated either as a monocrop or as a maslin with wheat (Hillman 

1978; Latorre Ciria 2007).  

One cereal species which clearly increases in importance in the later medieval period are oats. In 

the early medieval and Islamic period, oat grains are only recorded in low numbers and it is 

unclear whether these derive from the cultivated form (Avena sativa) or whether they are a weed 

(e.g. Avena fatua). In the later medieval assemblage at Palacio de Bulbuente, oat grains form a 

large proportion of the total grain assemblage. Although the diagnostic floret bases of common 

oat (A. sativa) were not identified, their frequency and the large size of the grains suggests that 

they are from the cultivated species. References to oats in documentary sources are less frequent 

than those to wheat or barley (Rodríguez Lajusticia 2010). However, oats were a major crop 

provided in tithes in the 14th century to the Bishop of Tarazona (Ainaga Andrés 1987). It is 

probable that oats were used as a source of animal fodder and given their tolerance for poor 

growing conditions, their cultivation may be linked to extensification. 

The documentary sources for the later medieval period also provide a valuable insight into other 

aspects of the cereal economy. Firstly, there are numerous references to draught oxen 

throughout the later medieval period, and other draught animals (donkeys, horses) are also 

recorded (Forey 1988; Gerrard and Gutiérrez 2003a:51). An inventory of items/possessions 

destroyed in 1273 at Cabañas following a dispute between the Templars and Hospitallers is 

particularly insightful in this respect (Forey 1988). This inventory records ards/scratch ploughs 

(and associated components), plough parts (including iron coulters), yokes, draught oxen, sickles, 

a threshing sledge and numerous sieves, most likely for processing grain. Animal fodder is also 

recorded, including sacks of cereal bran. This inventory provides compelling evidence for an 

extensive form of agriculture involving draught oxen. Extensive cereal cultivation requires less 
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labour input per unit area of land, potentially achieving a larger scale of cultivation and generating 

larger surpluses, yet a corollary of this is an increase in fodder requirements (Halstead 1995). This 

may be an important factor in explaining the increase in oat cultivation during the later medieval 

period. Draught oxen were no doubt present in the earlier early medieval and Islamic periods, 

although there is no direct evidence for this in the Huecha Valley. Oxen, ard points, plough 

coulters and other agricultural implements (i.e. yokes, mattocks/hoes, sickles) are documented 

elsewhere in al-Andalus (cf. Navarro Palazón and Robles Fernández 1996). In Córdoba, 10th 

century fatwas (legal documents) give the impression that oxen or draught cattle and seedcorn 

were shared out between farmers (Lagardère 1995; cf. Halstead 2014:51). 

4.3.2 Millets 

Millets (foxtail and broomcorn) were recorded at all the sites examined, though they were only 

present in low numbers relative to cereal grains during the early medieval period at Bureta. In 

comparison, by the Islamic and later medieval periods they are present in larger quantities, 

though it is difficult to gauge their importance relative to other cereals. The dominant species in 

all cases is broomcorn millet, with foxtail millet only forming a minor component of the 

assemblages. Both broomcorn and foxtail millet can be cultivated together and ethnographic 

research from north-west Spain supports this (Moreno-Larrazabal et al. 2015). Traditionally, 

millets have primarily been grown as a source of animal fodder, either being harvested at an 

immature green stage as a hay or as a fully mature crop (Halstead 2014:28). Grains from millets 

may also have been specifically fed to domestic fowl (Hernández Bermejo et al. 2012:199; cf. 

Alexander et al. 2019) although millets could also have been consumed and combined with other 

cereals to make bread (Gutiérrez Lloret 1991). Millets are no longer cultivated in the Huecha 

Valley, probably being replaced with the introduction of maize.  

Though millets are a drought adapted crop, they typically require either high rainfall or irrigation 

due to their short summer growing season (Halstead 2014:28; Miller et al. 2016). A possible 

expansion in millet cultivation by the Islamic period may therefore reflect an increase in irrigated 

areas (cf. Miller 2011:66; Nesbitt et al. 2017:131). The Islamic agronomists Ibn Baṣṣāl (11th-12th 

century) and Ibn al-‘Awwām (12th century) both state that broomcorn millet required irrigation 

(Hernández Bermejo et al. 2012:198). The earliest documentary reference to millet in the Huecha 

Valley is in 1179, when the monastery at Veruela was drawing up agreements over the allocation 

of water for irrigation with the neighbouring communities of Trasmoz, Trahit and Vera. The 

agreement stipulated:  
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“Veruela y Trasmoz tomarían el agua cinco días y cinco noches, y regarían sus mieses, en forma 

que Alfara no perdiese su zaiara. Recogidas las mieses, Veruela y Trahit ya no regarían, ni siquiera 

el mijo, sino con permisio de los hombres de Trasmoz.” (González Palencia 1945:85-86) 

[Veruela and Trasmoz will take water for five days and five nights and irrigate their cereal fields, 

with Alfara not losing its turn for watering. Once the cereal fields have been harvested, Veruela 

and Trahit will no longer irrigate, not even millet, without the permission of the people of 

Trasmoz] 

This source implies that millet was normally irrigated. Throughout the later medieval period, 

millet is occasionally recorded in documentary sources, though it is simply referred to as mijo or 

panizo (Gerrard and Gutiérrez 2003b; Ainaga Andrés 1987; Rodríguez Lajusticia 2010). The 

translation of mijo or panizo is not straightforward, however. Mijo was potentially applied to 

different millet species, including broomcorn millet, foxtail millet and even sorghum; and panizo 

was applied to maize in later periods (Hernández Bermejo et al. 2012). Broomcorn millet with its 

short, summer growing period and tolerance of poor soils filled an important niche in agricultural 

systems, potentially as a catch-crop.  

4.3.3 Pulses 

Pulses form a minor component of all the archaeobotanical assemblages from the early medieval 

to later medieval period. Given the small quantities of pulse seeds identified, it is difficult to assess 

their relative importance in subsistence practices and diachronic changes in their use. In the early 

medieval period at Bureta, the pulses recorded include lentil, bitter vetch and grass pea. The same 

range of species are recorded in the Islamic period at La Mora Encantada, with the addition of 

pea. By the later medieval period, the species recorded include bitter vetch, pea and broad bean. 

The recovery of broad bean at Palacio de Bulbuente is of interest since these are large in size and 

comparable to the subspecies Vicia faba var. major. This larger-seeded broad bean may be a 

Roman or medieval introduction (Zohary et al. 2012:90). The isotope evidence clearly indicates 

that the broad beans were irrigated, most likely on a small, garden-scale in a huerto. Evidence for 

a weevil hole in one bean is indicative of a dried stored crop; low-level infestations such as these 

were often tolerated in crops intended for human consumption (Forbes 1998: note 5). 

Later medieval documentary sources contain few references to pulses, presumably because they 

were cultivated on a smaller-scale than other crops and they were generally not supplied in 

rent/tithes, but for domestic consumption. Pulses have traditionally been viewed as a foodstuff 

of poorer classes (Valamoti et al. 2011), or as fodder crops in the case of bitter vetch and grass 
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pea (Peña-Chocarro and Zapata Peña 1999; Halstead 2014:52-54). No documentary references 

to either bitter vetch or grass pea have been identified. The pulse species recorded in the 

documentary sources include chickpeas in the 13th century (Forey 1988) and broad beans a 

century later (Corral Lafuente 1981:461; Ainaga Andrés 1987; Rodríguez Lajusticia 2014). Corral 

Lafuente (1981:461) suggests that broad beans were one of the most important pulses cultivated 

in the area, and they were provided as tithes to the Bishop of Tarazona in the 14th century. Other 

sources indicate that dried broad beans were traded (Gaul 1976:311). At Ambel in the 16th and 

17th centuries, documentary sources indicate that a range of pulses were cultivated in the 

irrigated huertos, including arbellas (peas), alubias (broad beans), lentils, chickpeas and New 

World beans (Gerrard and Gutiérrez 2003b). One further pulse recorded in the documentary 

sources is the fodder crop alfalfa. This is recorded at Ambel in the 16th and 17th centuries 

(Gerrard and Gutiérrez 2003b:70). Whilst no archaeobotanical evidence for alfalfa has been 

identified, seeds of Medicago sp. (which is in the same genus) were present at all the sites. Wild 

Medicago sp. could still have been provided as a fodder crop. 

4.3.4 Oil/Fibre crops 

Flax was recorded in all the sites examined. All the remains identified are seeds and no flax 

capsules have been identified, although these are less likely to be preserved than seeds in charred 

assemblages (cf. Valamoti 2011; Orendi in press). In the early medieval period at Bureta, only one 

flax seed was identified which is probably from the cultivated variety. Evidence for gold-of-

pleasure was also identified at this site, and this is thought to be a weed of flax crops (Lataowa 

1998; Alonso 2005). However, the gold-of-pleasure seeds are mineralised, suggesting that they 

were consumed (Alonso 2005). In the Islamic period at La Mora Encantada, a comparatively large 

number of flax seeds were recovered (n=68). Small quantities of flax seeds were also recovered 

at all of the later medieval sites examined, indicating its widespread cultivation. 

The cultivation of flax, together with hemp, is widely recorded in documentary sources from the 

13th century onwards (Corral Lafuente 1981:461; Ainaga Andrés 1987; Gerrard and Gutiérrez 

2003b; Rodríguez Lajusticia 2014). Both were cultivated in the irrigated huertas as a fibre crop, 

and this continued up until the 19th century (García Manrique 1960). The production of flax or 

hemp fibres follow similar processes, with the removal of seed heads before retting (literally 

rotting) to breakdown the stems and this is then followed by breaking, which separates the 

‘woody stems’ from the required fibres. Later medieval archaeological evidence for fibre 

production has been identified at Ambel, comprising retting tanks which are supplied with water 

from acequias and in 1514 a molino trapero (fulling mill) is also recorded there (Gerrard and 
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Gutiérrez 2003b:101). It is unclear whether earlier fulling mills existed in the Huecha Valley, 

though they were known in other areas (Utrilla Urtilla 1995; Navarro Espinach 2003a). Fibre 

production could also have been undertaken on a smaller-scale, with retting in small pools and 

stems broken by hand (Halstead 2014:140). By the later medieval period, both flax and hemp 

were important cash-crops and they were cultivated on a sufficient scale to be exported from 

Borja and surrounding towns (Rubio 2002; Monterde Albiac and Cabanes Pecourt 2000:545; cf. 

Falcón 1977). A small conglomeration of flax seeds at La Mora Encantada could reflect a crop 

which has been cleaned and processed for seed production (cf. Valamoti et al. 2011). 

No archaeobotanical evidence for hemp was recovered which is surprising given the frequent 

remains of flax. This is unlikely to reflect a preservation bias caused by charring since experimental 

studies indicate that hemp seeds are more likely to survive charring than flax seeds (Märkle and 

Rösch 2008). A potential explanation is that some flax seeds were produced as a by-product of 

harvesting the plants for fibre, potentially with some flax also cultivated for seed production 

(Ertuğ 2000; Kislev et al. 2011). Flax seeds can be consumed, or alternatively they can be pressed 

to extract linseed oil. Traditionally, the seeds are roasted prior to consumption or oil extraction, 

increasing the probability of accidental charring (cf. Ertuğ 2000). Oil extraction involves grinding 

the roasted seeds (often using a mill stone) and then combining the product with water to form 

a dough which is then pressed to extract the oil. The resulting pressed dough, or linseed cake, 

was potentially a valuable source a fodder (Bond and Hunter 1987; Ertuğ 2000). Linseed oil has 

been used for a variety of purposes, including treatments for medical conditions, cooking, burning 

in lamps and as a preservative for materials such as rope and wood. 

4.3.5 Fruits/nuts, vegetables and other crops 

By far, the most common fruit recorded is grape, which was present at all the sites examined. In 

most cases, the evidence comprises charred pips/seeds and pedicles, alongside smaller numbers 

of mineralised pips/seeds. In addition, rarer evidence for whole charred berries and probable 

pressed grape skins were recorded in the Islamic and later medieval periods. In particular, in the 

Islamic period at La Mora Encantada, there is strong evidence to suggest that some of the grape 

remains are the by-product of grape pressings, which includes whole berries (and fragments), 

immature whole berries and ‘pressed’ skins. These remains are comparable to grape-pressings 

and they could be related to wine production, or the production of grape juices, vinegars, 

molasses or sweet pastes (cf. Marín 2003; Waines 2003; 2010:77). In the later medieval period, 

at Palacio de Bulbuente, a similar ‘pressed’ grape was also identified, alongside whole berries 
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(and fragments). Berry fragments were also recorded at Castillo de Grisel and Casa Conventual 

de Ambel. All of these remains are potentially associated with wine production. 

There are copious references to vineyards throughout the later medieval period, with the earliest 

sources dating to the 12th century (Gerrard and Gutiérrez 2003b; Ainaga Andrés 1987; Rodríguez 

Lajusticia 2010). Throughout the 13th century, vineyards feature prominently in the acquisitions 

of the monastery at Veruela (Rodríguez Lajusticia 2010:260-263) and a settlement charter issued 

to Villamayor in 1246 stated that 20 nietros of must (c.3000L) was to be provided to Veruela 

annually (Cabanes Pecourt 1984). Wine was also a priority for the Military Orders, and at Ambel 

the first reference to the Templars buying a vineyard is in 1162 (Gerrard and Gutiérrez 2003b:68). 

A later inventory from Ambel in 1289 recorded c.23, 000L of wine (Gerrard and Gutiérrez 

2003b:51). An indication of the scale of cultivation is also provided in a document dating to 1273, 

which notes that c.43 000 vines were destroyed following a dispute between the Templars in 

Novillas and the Hospitallers in Cabañas (Forey 1988).  

Evidence for olive is recorded between the early medieval to later medieval period, though in all 

cases the number of fruitstones recovered is low (n=<5). The rarity of olives in the 

archaeobotanical record is surprising given that olive groves are widely recorded in documentary 

sources throughout the later medieval period. In fact, this disparity between the documentary 

sources and archaeobotanical evidence may provide a clue to the use of the by-product from 

olive oil production, the press-cake. This press-cake is unlikely to have been discarded since it was 

potentially highly valued as fuel source (Rowan 2015), and also as a source of animal fodder 

(Foxhall 1998). 

The importance of olive oil production is highlighted by documentary sources. For example, the 

monastery at Veruela was acquiring large numbers of olive groves from the 13th century onwards 

(Rodríguez Lajusticia 2010:257-260). At Ambel, an inventory from 1289 recorded 26 arrobas of 

oil (c.180kg) (Gerrard and Gutiérrez 2003b:51). Traditionally in the Huecha Valley, olives (together 

with vines) have been cultivated in areas on the periphery of the irrigated huerta due to their 

tolerance of thin soils and limited water availability (Gerrard 2011). It is interesting to note that 

olive cultivation appears to have been undertaken on a more widespread and intensive scale in 

the Huecha Valley compared to the neighbouring Queiles Valley (Corral Lafuente 1981:260-261). 

This difference in cultivation can be attributed to the different populations of these valleys; 

Muslims were predominant in the Queiles Valley, whereas Christians were more frequent in the 

Huecha Valley and olive cultivation was less heavily taxed (Corral Lafuente 1981:261; Wilkinson 
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et al. 2005). This provides an interesting example of the factors which constrain and shape 

agricultural production. 

With the exception of figs, evidence for other fruit/nut species is slight and probably reflects a 

preservation bias. Fruit/nut remains are typically underrepresented in charred assemblages, 

compared to waterlogged or mineralised assemblages (cf. Alonso et al. 2014a; Peña-Chocarro et 

al. 2014). Consequently, it is difficult to identify the introduction of new species and their relative 

importance. With the exception of grape and olive outlined above, there are few changes in the 

species recorded. In the early medieval period at Bureta, this included fig, mulberry, sweet cherry, 

peach and hazelnut. With the exception of peach and hazelnut, these species are all recorded in 

the Islamic period at La Mora Encantada alongside walnut. The largest diversity of fruit/nut 

species was recorded in the later medieval period, with fig, mulberry, ?plum, peach, almond, 

sweet cherry, hazelnut and walnut all recorded. The evidence for walnut from the Islamic period 

(none were recovered in the early medieval period) is of interest and walnut shell fragments were 

found in all the later medieval sites. It is likely that this expansion in walnut cultivation is coeval 

with an expansion in irrigation since the tree cannot easily cope with long, summer droughts 

(Djamali et al. 2010). In the Huecha Valley today, walnuts can be observed growing along the 

edges of acequias (personal observation).  

Documentary sources for the later medieval period infrequently refer to the cultivation of 

fruit/nut species, and it is more typical to find references to huertos, fruit trees or simply just to 

trees. For example, in 1147 the monastery at Veruela acquired a huerto with trees (Rodríguez 

Lajusticia 2010:264). In 1273, hundreds of fruit trees (without specifying which species) are listed 

as property destroyed following a dispute between the Templars and Hospitallers (Forey 1988). 

A century later in neighbouring Tarazona, a more complete record of the range of species 

cultivated is provided. This includes cherries, peaches, ?apricot, plum, hazel nut, quince, apple, 

pear, walnut and fig (Corral Lafuente 1981:261). Provided that apricot is correctly translated in 

the documentary sources/correctly identifed, this is likely to be a new medieval introduction 

(Albertini 2013; Ruas et al. 2015; Peña-Chocarro et al. 2019). Mulberry is first recorded in 

documentary sources in the 17th centuries at Ambel (Gerrard and Gutiérrez 2003b:90; cf. Serrano 

Martín 1989:118). Interestingly, no documentary references have been identified to almond, a 

crop which is widely cultivated throughout the Huecha Valley today.  

One group of plants largely absent from the archaeobotanical record are vegetables (excluding 

pulses) and other ‘garden’ crops (cf. Peña-Chocarro and Pérez Jordà 2019). Documentary sources 

from Ambel in the 16th and 17th centuries indicate that a range of vegetables and other crops 
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were cultivated, including cabbage, cauliflower, onion, garlic, saffron, lettuce, calabaza (?bottle 

gourd) and cucumber (Gerrard and Gutiérrez 2003b:89-90). Other vegetables and crops may also 

have been cultivated which are not recorded in the documentary sources. It is possible that some 

the wild/weed taxa recorded in the archaeobotanical evidence were garden crops such purslane 

(Portulaca oleracea) and common vervain (Verbena officinalis).  

4.4 Summary 

The archaeobotanical record analysed here from the early medieval to later medieval period 

provides the first analysis of long-term changes in agriculture in the Huecha Valley. Overall, the 

pattern is one of broad continuity in the crop-spectrum between the periods, with small shifts in 

the range of crops cultivated and the relative importance of different crops. In particular, an 

increase in the scale of rye and broomcorn millet cultivation can be identified by the Islamic 

period, whilst oat increases from the later medieval period. More significant changes are 

apparent in the use of rainfed and irrigated areas, with an expansion in the use of irrigated areas 

for cereal cultivation through time. Changes in the organisation and management of agricultural 

spaces are highlighted by documentary sources and archaeological evidence for the later 

medieval period and these are hinted at in the archaeobotanical record. In particular, the 

increasing ‘cerealisation’ can be detected, accompanying the transition to a feudal regime 

following the feudal conquests. These changes are summarised by period below, and their wider 

implications are fleshed out in greater detail in the following chapter. 

In the early medieval period, the crop spectrum is dominated by bread wheat and hulled barley, 

with both 2-row and 6-row forms cultivated. Rye is also present in small quantities and it is most 

likely a cultivated crop, opposed to a weed. On the basis of the small number of crop isotope 

samples, these cereals appear to have been cultivated in rainfed fields. Pulses form a minor 

component of the assemblage, and evidence for millets (foxtail and broomcorn) is equally rare. A 

diverse range of fruit/nut species are recorded, the most significant of these is grape, highlighting 

the importance of viticulture in this period.    

A broad pattern of continuity in the range of crops cultivated can be identified into the Islamic 

period, although some new crops are added, whilst the importance of other crops changes. As in 

the preceding period, (6-row) hulled barley and free-threshing wheats are the dominant crops; 

however, in this case, there is evidence for both bread wheat and durum wheat, a new addition. 

Rye also increases in importance in this period, becoming a major component of the cereal 

assemblage. The crop isotope evidence provides a detailed picture of cultivation practices, with 

hulled barley (and probably rye) cultivated in rainfed conditions, whereas both bread wheat and 
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durum wheat were cultivated in irrigated fields. There is also evidence for the increasing 

importance of broomcorn millet cultivation and this is probably linked to an expansion in irrigated 

areas. Pulses continue to form a minor component of the assemblage. Flax is well-represented in 

this period, and its presence is again likely to reflect an expansion in irrigation. The fruit/nut 

species present show a similarity to the preceding early medieval period, with the predominance 

of fig and grape. One new addition for this period is walnut and this could be linked to the 

development of irrigated arboriculture.  

By the later medieval period, both (6-row) hulled barley and free-threshing wheat continue to 

remain the most important crops, although rye is now present on a par with these crops. The 

cultivation of both bread wheat and durum wheat can be confirmed for this period. Oat, most 

likely the cultivated species, is also present in larger quantities, whilst low numbers of emmer 

wheat and probably einkorn grains are also present. The crop isotope evidence from Palacio de 

Bulbuente suggests that cereal assemblage includes grains from several different fields and/or 

harvests, most likely reflecting the accumulation of grains through rent. Evidence for the 

cultivation of hulled barley and free-threshing wheats in both rainfed and irrigated fields is 

present, contrasting with the preceding Islamic period. It is suggested that these changes reflect 

the increasing importance of cereals in the economy, or ‘cerealisation’ (cf. Comet 2004), which 

accompanied the transition to a feudal system following the Christian ‘conquests’. Other crops 

recorded for this period include broomcorn millet and pulses, especially broad bean. The fruit/nut 

species present again show similarity to the preceding Islamic period, with the addition of almond 

for the first time. However, the documentary sources point towards an increase in olive 

cultivation and, in particular, viticulture; neither of these changes are currently visible in the 

archaeobotanical record.  
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5 Discussion: regional and pan-regional perspectives 

This chapter expands the discussion of the archaeobotanical and crop isotope evidence from the 

two study areas outlined in chapters 4 and 5. Revisiting the central tenet of this PhD, it assesses 

how the results fit into current debates surrounding the degree of continuity versus change in 

agriculture following the Islamic conquests. In particular, it revisits some of the questions outlined 

at the beginning of this research: what evidence is there for new crops and cultivars?  Did 

innovation take place only in urban centres? What is the relationship between social status, faith 

and crops? Are there regional differences imposed by climate and geography? What evidence is 

there for changes in farming practices? Was dry-farming replaced by intensive irrigation-based 

agriculture and an increased importance of arboriculture and vegetable gardens? Were there 

major innovations following the Islamic conquests? Or alternatively, was Mediterranean 

agriculture characterised by longer-term continuity? 

To address these questions, the results from this PhD are placed within a wider review 

archaeobotanical research from 164 Roman and medieval sites9 in Iberia. This meta-analysis 

builds upon a previous synthesis by Peña-Chocarro et al. (2019)10 who provide a comprehensive 

synthesis of previous archaeobotanical research. However, their study included data from many 

unpublished sites and the underlying dataset has not been made publicly available so the results 

are not reproducible (cf. Lodwick 2019). All of the available (published and unpublished) 

archaeobotanical from the original publications reviewed by Peña-Chocarro et al. (2019) has been 

re-examined on a site-by-site basis and updated to incorporate evidence from a larger number of 

sites and recently published studies, as well as charcoal evidence.  

The archaeobotanical evidence identified through this review of published and unpublished 

evidence is first assessed at the regional scale, focusing broadly on the north-east of Iberia, with 

wider comparison made to other areas. For each period, the evidence from previous 

archaeobotanical studies and documentary sources is first outlined, and this is then compared 

with the results obtained from this PhD.  

5.1 Archaeobotanical review methodology 

Published and unpublished archaeobotanical data was compiled up to June 2019. Previous 

reviews of archaeobotanical evidence were consulted and where possible the original publication 

 
9 The term ‘site’ is used to refer to a specific occupation period i.e. distinguishing between Roman and early 
medieval evidence from a single excavation. 
10 This paper was published in 2017 and it identified evidence from 83 sites (98 in total accounting for 
multiple periods of occupation), of which 34 were unpublished (35%) 
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has been examined to ensure the accuracy of the dataset (Pinto da Silva 1988; Hopf 1991; Núñez 

1988; Buxó 2005; Livarda 2008; Tereso et al. 2013; Peña-Chocarro et al. 2019). In many cases, the 

original archaeobotanical datasets are either unpublished or only presented as summary and 

consequently a fully quantitative review of the evidence has not been possible. 

The archaeobotanical data gathered from these published and unpublished studies was recorded 

in a database, and the sites/data assigned into broad chronological periods: Roman, early 

medieval, medieval (Islamic), medieval (Christian), later medieval and post-medieval (i.e. post-

15th century). The period classifications ‘medieval (Islamic)’ and ‘medieval (Christian)’ are used 

to refer to different geographical areas of Iberia under Islamic rule and Christian rule between 

the 8th and 12th centuries. The classification ‘later medieval’ is used to refer to sites dating after 

the 11th-12th centuries, specifically in areas conquered following the Christian conquests. Site 

locations (latitude/longitude) were recorded to the nearest identified area. Broad site type 

classifications are used and, where available, specific information on the feature(s)/context(s) 

sampled was also noted (silos, pits, ditches, wells, latrines (cesspits), ovens/hearths, general 

occupation deposits, burnt/conflagration deposits, shipwrecks and unknown). Dating evidence 

for the feature(s)/context(s) sampled was also recorded: associated finds/stratigraphy (i.e. 

pottery, small finds), radiocarbon dating of associated material (i.e. bone, charcoal) and direct 

(AMS) radiocarbon dating of plant remains. Only in exceptional cases have charred plant remains 

been directly AMS dated and most dating evidence comes either through phasing or pottery 

evidence. 

Full references for both the site/excavation report and/or archaeobotanical data are provided 

where available. The archaeobotanical data was recorded on a presence/absence basis and the 

preservation type (charred, mineralised, waterlogged, desiccated, other/unknown, charcoal), 

recovery method, number of samples, sample volume, number of plant remains was also 

recorded.  The dataset includes archaeobotanical data recovered systematically through bulk-

sampling and flotation, as well as ‘grab samples’ and hand-recovered remains. The full dataset is 

presented in Appendices 13 and 14 and site locations are plotted in Figure 5.1. In the discussion 

below sites are referred to with the specific ‘site number’ and associated reference e.g. Lleida 

(Site 110: Alonso 2005) refers to the early medieval occupation period, whereas Lleida (Site 111: 

Alonso 2005) refers to the Islamic occupation period. References to the sites are provided in 

Appendix 13. Sites with unpublished data are also listed in Appendix 13 to note areas where 

research has been undertaken, although no archaeobotanical evidence has collated from these 

sites.  
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5.2 Overview of previous archaeobotanical research 

In comparison to other areas of Iberia, a relatively large number of systematic archaeobotanical 

studies have been undertaken on Roman period sites in the north-east, though the evidence is 

overwhelmingly restricted to (urban) sites in Cataluña (Figure 5.1). In particular, key studies for 

the Roman period include those from the cities of Iesso (Site 89: Buxó et al. 2004) and Lleida (Sites 

108-109: Alonso 2005) as well as the Roman and early medieval villa site of Vilauba (Sites 184-

186: Colominas et al. 2017). Other key assemblages for the early medieval period include El 

Mallols (Site 75: Alonso et al. 2008) and l’Esquerda (Sites 106-107: Cubero et al. 2008). For the 

Islamic period, detailed studies have been undertaken in the cities of Lleida, Balaguer and Tortosa 

(Sites 111, 133, 177: Alonso et al. 2014a). To this list can be added a handful of evidence from 

other Roman, early medieval, Islamic and later medieval settlements in Cataluña. A notable 

absence in the current archaeobotanical dataset is evidence from later medieval urban sites.  

Away from Cataluña, archaeobotanical studies are either very rare or non-existent in other areas. 

For example, in Aragón only one systematic archaeobotanical study has been undertaken on the 

Islamic settlement at Las Sillas (Site 105: Ros et al. press), whilst in La Rioja the only available 

evidence is from La Noguera where a preliminary archaeobotanical report has been published for 

the Roman and medieval (8th-15th centuries) periods (Sites 95-98: Peña-Chocarro et al. 2019). 

Similarly, further south along the Mediterranean coast in the region of Valencia, there are few 

published archaeobotanical studies and the majority of available evidence is restricted to charcoal 

studies on Islamic and later medieval sites. Consequently, the sites analysed for this PhD within 

the region of Aragón fill a clear gap in the current evidence. 

5.3 Roman (1st-5th centuries) and early medieval period (5th-8th centuries) 

Figure 5.2 shows the location of previous archaeobotanical studies undertaken on Roman and 

early medieval period sites in the north-east. 

For the Roman period, the dominant cereals are (6-row) hulled barley and free-threshing wheat. 

At La Noguera (Site 96: Peña-Chocarro et al. 2019) bread wheat rachises have been identified, 

whilst at Lleida (Site 107: Alonso 2005) ‘probable’ durum wheat rachises are recorded. The 

relative importance of these two crops is unclear. Other cereal species (emmer wheat, oat, rye) 

form only a minor component of assemblages, and there is currently no evidence for either 

einkorn or spelt wheat. Rye is only recorded in very small quantities in this period at Lleida (Site 

107: Alonso 2005) and in late Roman Vilauba, where it also occurs alongside oat (Site 182: 
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Colominas et al. 2017). Given the very limited evidence for rye, it was clearly a minor crop and 

potentially a weed of other cereals in these three sites at least (cf. Hillman 1978).  

Millets have not been recorded for the Roman period, although they are present in small 

quantities during the Bronze Age and, in particular, the Iron Age when they become more widely 

cultivated (Alonso 2008; Alonso et al. 2008; Alonso and Bouby 2017). Their absence from the 

archaeobotanical record for the Roman period is therefore likely to reflect the paucity of 

archaeobotanical research undertaken to date. In either case however, it appears that that millets 

were not an important crop during the Roman period. Pulses have been identified in low 

numbers, including lentil, pea, broad bean, grass/red pea and vetch. One crop conspicuously 

absent for this period is flax, though it has been recorded in Roman settlements elsewhere in 

Iberia e.g. Castro de Orellán in Castilla and León (Site 56: López-Merino et al. 2010), and in 

Marroquíes Bajos (Site 115: Montes Moya 2014), Obulco, Jaén (Site 124: Stika et al. 2017). 

A relatively diverse range of fruit/nut species are recorded for the Roman period. This can be 

partly attributed to waterlogged preservation in wells at Iesso, where hazel nut, fig, olive, stone 

pine, sweet cherry, plum, almond, blackthorn/sloe, peach, acorn, melon, blackberry, walnut and 

grape have been identified (Site 88: Buxó et al. 2004). Several of these species have also been 

recorded at other Roman sites in the north-east, with pomegranate also recorded in a charcoal 

assemblage at Lleida (Site 107: Piqué et al. 2012). By far the most common fruit/nut species for 

this period are fig, grape and olive, with these last two species overrepresented at sites where 

sampling and flotation have not been undertaken.  

In the early medieval period, the crop spectrum is predominately characterised by continuity, 

with hulled barley and free-threshing wheats the most common cereal species. However, there 

are indications that free-threshing wheat was cultivated on a larger-scale than hulled barley at El 

Mallols (Site 75: Alonso 2008) and l’Esquerda (Site 106: Ollich et al. 2014). Similarly, at Vilauba, 

there is strong evidence for the cultivation of free-threshing wheat monocrops in both the late 

Roman and early medieval periods (Site 186: Colominas et al. 2017). At this site, weed 

assemblages associated with free-threshing wheat are interpreted as reflecting an extensive form 

of cultivation with low soil disturbance (Colominas et al. 2017). 

Rye continues to remain rare in this period and forms a trace component of assemblages at El 

Bovalar (Site 73: Cubero 1990), El Mallols (Site 75: Alonso 2008) and l’Esquerda (Site 106: Ollich 

et al. 2014). An exception to this pattern is in Andorra at Camp Vermell (Site 31: Alonso et al. 

2010) and Roc d’Enclar (Site 150: Buxó and González 1997), where rye is clearly a major crop. For 
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example, at Roc d’Enclar, rye forms 22% (885/3939) of the total cereal assemblage. The 

mountainous and cooler climates where these sites are located probably accounts in part for the 

predominance of rye since it is well-adapted to growing in these environments (Hillman 1978; 

Halstead 2014:203). Oats are recorded at several sites, though it is unclear whether these are a 

cultivated species or a weed. At Vilauba, >3000 oat grains were present in a context containing 

c.60, 000 free-threshing wheat grains, however, the only diagnostic floret bases identified are 

from Avena fatua (Site 186: Colominas et al. 2017). Emmer wheat and naked barley are also 

recorded, though they form a minor component of assemblages e.g. El Mallols (Site 75: Alonso 

2008). Millets, both broomcorn and foxtail, are also a minor crop in this period, except at 

l’Esquerda where broomcorn millet is comparatively abundant (Site 106: Ollich et al. 2014). At 

sites where millets are found in trace quantities, it needs to be questioned whether such remains 

are intrusive i.e. later contaminants (cf. Motuzaite-Matuzeviciute et al. 2013). 

The pulse species present also show continuity with the previous Roman period, with lentil, 

grass/red pea, pea, bitter vetch, broad bean and vetches recorded. Flax has been identified at 

three sites, and at El Bolivar it is abundant with >18, 000 seeds identified, although no information 

is given on whether these remains derive from a single burnt cache (Site 73: Cubero 1990). The 

range of fruit/nut species recorded also show a similar pattern to the Roman period, with 

hazelnut, walnut, apple, olive, sweet cherry, fig and grape recorded. A probable melon seed has 

been identified in a waterlogged well at Foneira (Site 82: Ravotto et al. 2016), emphasising the 

potential preservation bias against fruit/nut remains in charred assemblages. One new fruit 

species is also recorded for this period: mulberry11 at Vilauba (Site 186: Colominas et al. 2017).  

The results of these previous archaeobotanical studies on Roman and early medieval sites in 

Iberia provide a valuable comparison to the evidence examined for this PhD in the early medieval 

settlement of Bureta (Table 5.1). This is currently the most intensively sampled early medieval 

settlement in north-east Iberia and it therefore provides a significant contribution to the current 

archaeobotanical dataset. Overall, the crop spectrum shows clear similarities to other sites, with 

hulled barley and free-threshing wheats dominating the assemblage. The excellent preservation 

of barley rachises indicates that both 6-row and 2-row hulled forms are present. In addition, it 

has been possible to securely identify the free-threshing wheat rachises as bread wheat. The data 

 
11 Mulberry at Vilauba is identified as black mulberry (Morus nigra), however, there is no reliable method 
for distinguishing the fruitstones from those of white mulberry (Morus alba). The fruits of both species can 
be consumed, though white mulberry is normally associated with silk production. 
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from Bureta provides the first diagnostic evidence for both 2-row hulled barley and bread wheat 

in the early medieval period. 

The relative importance of the 6-row and 2-row forms of hulled barley is unclear, although 6-row 

hulled barley generally appears to be dominant. However, there is a bias towards the 

identification of 6-row forms which can (in general) be confirmed by the presence of asymmetric 

grains, whilst the identification of 2-row forms requires well-preserved rachis segments which are 

less likely to be recovered and identified (Bouby 2001; Jacomet 2006). Consequently, evidence 

for 2-row hulled barley is probably underrepresented. For example, Isidore of Seville writing in 

the 7th century, identifies both 6-row, hexaticum, and 2-row barley, distichon (Barney et al. 2006: 

338), whilst in Mediterranean south-western France, the 2-row form has been identified 

sporadically in Roman and medieval settlements (Ros et al. 2014b; Ros and Ruas 2017).  

Similarly, the relative importance of durum wheat or bread wheat during the Roman and early 

medieval periods is unclear since the diagnostic rachis segments have only been preserved from 

a small number of sites. Currently, the Roman city of Lleida is only site to have produced probable 

durum wheat rachises (Site 109: Alonso 2005), whilst bread wheat rachises have been recovered 

from the Roman settlements of La Noguera in La Rioja (Site 96: Peña-Chocarro et al. 2019), Obulco 

in Andalucía (Site 124: Voropaeva and Stika 2018) and Monte Mozinho in north Portugal (Site 

120: Tereso et al. 2013a, 2013b). In the early medieval period, both bread and durum wheat have 

been identified at Gózquez in Madrid (Site 84: Vigil-Escalera Guirado et al. 2014) and at Zaballa in 

the Basque Country (Site 191: Sopelana 2012). Whilst both bread wheat and durum wheat have 

been recorded in Iberia since the Neolithic period (e.g. Antolín et al. 2014), different cultivars 

were probably introduced throughout prehistoric, Roman and medieval periods. Whether durum 

wheat was truly absent at Bureta needs to be examined through further excavation and sampling. 

Nevertheless, given the large number and volume of samples analysed (42 samples, 1134L), it 

would be expected that any remains of durum wheat would have been recovered. 

Rye occurs in low numbers in several contexts at Bureta, and it is probably a cultivated crop rather 

than a weed. This is therefore an important record of rye cultivation during the early medieval 

period. In Iberia, the earliest securely dated remains of rye have been recovered from the Roman 

period at Monte (Site 122: Tereso et al. 2013a). The rarity of other cereals (emmer wheat, oat) 

and millets is paralleled at most other sites in the north-east. The limited evidence for pulses 

(lentil, grass/red pea, bitter vetch) at Bureta may reflect a preservation bias, and these species 

have all been recorded at other sites. Flax is also probably present, and gold-of-pleasure is also 

recorded for the first time in this period.  
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The fruit/nut species recorded also show a similar pattern to other sites, with grape and fig 

dominating the assemblage. The evidence for mulberry is of particular note since it has only been 

recorded at one other site, Vilauba (Site 186: Colominas et al. 2017), in the early medieval period. 

In addition, peach is also recorded for the first time in the early medieval period, although peach 

has previously already been identified in Roman settlements. Similarly, the evidence for coriander 

at Bureta is also the first record of this crop in either the Roman or early medieval period. 

To summarise the key findings of archaeobotanical research undertaken on Roman and early 

medieval sites: 

• Free-threshing wheats and (6-row) hulled barley are the dominant cereals in both 

periods, with slight evidence for glume wheats. Oats and rye are also rare in this period, 

although there are indications that rye becomes a more important crops in the transition 

between the Roman period and early medieval period. The archaeobotanical evidence 

from Bureta provides evidence for the cultivation of bread wheat, 2-row and 6-row hulled 

barley, possibly oat and rye. The assemblage provides evidence for the expansion of rye 

cultivation in the north-east, paralleling evidence from elsewhere in Iberia and Medieval 

Europe. 

 

• Evidence for millets is comparatively slight. Millets are absent in the Roman period sites 

investigated to date, and in most cases millets (primarily foxtail millet) are present in 

trace quantities at early medieval sites. Broomcorn millet is, however, recorded in large 

quantities at a single early medieval site. Both foxtail and broomcorn millet are rare in 

comparison to cereals in the evidence analysed from Bureta.  

 

• Flax is also absent in the Roman period sites investigated, although this may reflect a lack 

of archaeobotanical research, as opposed to its genuine absence. In the early medieval 

period, flax is recorded at a handful of sites, and one flax seed (probably the cultivated 

species) is recorded at Bureta, where evidence for gold-of-pleasure is also recorded.  

 

• Pulses are poorly represented in archaeobotanical assemblages for both the Roman and 

early medieval periods. Despite this, a range of pulse species are recorded including pea, 

broad bean, lentil, bitter vetch, grass pea and vetch. Some of these species are also 

recorded at Bureta.  
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• A diverse range of fruit/nut species have been recorded in both the Roman and early 

medieval period, including hazel nut, fig, olive, stone pine, sweet cherry, plum, almond, 

blackthorn/sloe, peach, acorn, melon, blackberry, walnut and grape. Mulberry is added 

in the early medieval period. The archaeobotanical evidence from Bureta provides 

another early identification of mulberry in Iberia, together with coriander which is 

recorded for the first time in the early medieval period.  

5.4 Islamic period (8th-12th centuries) 

Figure 5.3 shows the location of previous archaeobotanical studies undertaken on Islamic period 

sites in the north-east. 

For the Islamic period, the most detailed and comprehensive archaeobotanical studies 

undertaken to date are from the cities of Lleida, Balaguer and Tortosa in Cataluña (Sites 111, 133, 

177: Alonso et al. 2014a). Here assemblages of charred and, in particular, mineralised remains 

have been recovered from 10th-12th century contexts. The cereal assemblages from these sites 

are dominated by 6-row hulled barley and free-threshing wheat, with bread wheat rachises 

identified at Pla d’Almatà. There is currently no evidence for durum wheat, although this could 

reflect an absence of diagnostic rachises rather than its actual absence. Rye has not been 

recorded, whilst evidence for other cereals (oat, emmer wheat) is sparse. Other crops are poorly 

represented, comprising foxtail millet, lentil, flax and gold-of-pleasure. The co-occurrence of flax 

and gold-of-pleasure is notable since this latter species is widely viewed as a weed of flax crops, 

and evidence for mineralised remains suggests that the crop was consumed (Alonso 2005). In 

comparison, fruit/nut species are abundant, primarily due the presence of cesspits/latrines with 

mineralised preservation. The species identified include cucumber/melon, walnut, apple, olive, 

pine nut, almond, peach, pomegranate and fig. By far the most abundant species are fig and 

grape. Evidence for spices/condiments has also been recovered in these mineralised 

assemblages, including celery, fennel and nigella. 

At Tortosa, detailed research combining archaeobotanical, archaeological and documentary 

evidence provides further information on the cultivated areas (Virgili 2010, 2018; Kirchner et al. 

2014; Puy et al. 2014; Kirchner and Virgili 2019). Here evidence for the drainage of wetlands has 

been identified during the Islamic period, and it is suggested that spring-sown 6-row hulled barley 

was cultivated in these areas. This interpretation is based on weed-rich samples with a 

predominance of spring germinating annual weeds, with long flowering periods and which flower 

late in the season (Kirchner et al. 2014; cf. Bogaard et al. 2001; Jones et al. 2005). Similarly, 

Kirchner et al. (2014) note the presence of the weed Bolboschoenus cf. maritimus, a species 
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typical of poorly drained cereal fields (cf. Hillman 1991; Wollstonecroft et al. 2011). Other weeds 

recorded were more typical of extensive forms of cereal cultivation, with shorter and earlier 

flowering periods (e.g. Avena fatua, Raphanus raphanistrum subsp. raphanistrum). Analysis of 

documentary sources after the Christian conquest (c.12th century) indicates that irrigated 

huertas, olive groves and vineyards were common to the north of the city, whilst areas to the 

south were primarily characterised by campus and terra, probably reflecting field crops (e.g. 

cereals) and pasture (Virgili 2010; Kirchner et al. 2019). The documentary sources, however, 

provide little information on the range of crops cultivated, with only scant reference to ordeum 

(barley), triticum (wheat), frumentum (bread wheat?) and bladum (wheat?) (Virgili 2010). The 

term bladum could have referred to any grains used to make bread, only later becoming a 

synonym for wheat (Burns 1975:77; Commet 1992: 212-213). It is unclear whether durum wheat 

was also present. 

Based on the documentary evidence, it is thought that the irrigated huerta(s) surrounding Tortosa 

were used primarily used for fruit trees and vegetables (Kirchner and Virgili 2019), though the 

possibility that cereal cultivation was also undertaken here should not be excluded (cf. Hernández 

Charro 2006: 322; Jiménez Puertas 2007:16; Martín Civantos 2011: 406). For example, in 17th 

century Tarazona, both cereals and fruit trees were cultivated together in irrigated huertas 

(Ponsot 1971). At other cities in the north-east, evidence for these irrigated huertas has also been 

identified such as in Tudela (Hernández Charro 2007) or Zaragoza (Ortega Ortega 2010), although 

their origin and development have not been examined in detail. The development of these (sub-

)urban huertas is thought to be a key feature of the Islamic period across Iberia, however, dating 

their origins is problematic (Glick and Kirchner 2000:296; Martín Civantos 2018). The huertas span 

the rural/urban divide, and Kirchner (2019:86) highlights in the case of Valencia that the city was 

surrounded by networks of rural alquerías (farmsteads/hamlets). 

Frustratingly, very little is known about the crops cultivated in these (sub-)urban huertas around 

cities beyond the examples of Lleida, Balaguer and Tortosa cited above since no archaeobotanical 

studies have been undertaken. In part, this reflects a lack of sampling, rather than a lack of 

excavation. Documentary references for the Islamic period only provide generic and sporadic 

references to irrigated areas and crops, especially fruits, in cities such as Barbastro, Calatayud, 

Daroca, Fraga, Huesca Monzón, Lleida, Tarragona, Tortosa, Tudela and Zaragoza (Table 5.3). For 

example, the 11th century geographer al-Udri remarked that Zaragoza was ‘abundant in fruits’ of 

‘immeasurable quality’, whilst in Huesca there are references to apple, pear, medlar and service 

tree (Granja 1967:426; Cuchí Oterino 2005). At Tudela, al-Himyari notes the ‘cereals of excellent 
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quality’ and the ‘cultivation of fruit trees’ (Martin Duque 1957). As highlighted above in the case 

of Tortosa, documentary sources generated after the Christian conquests can provide 

information on crops cultivated, although this information often takes the form of generic 

references to ‘cereals’, ‘vineyards’ and ‘fruit trees’ (Kirchner 2018:207).  

Further south, the huerta of Valencia has been examined in greater detail and it is thought to 

have its origins in the Islamic period, although it was considerably modified and expanded after 

the Christian conquest in the 13th century (Torró 2009; Esquilache 2011; Kirchner 2018; Guinot 

Rodríguez 2019). Here post-conquest documents highlight a broader range of crops, including 

wheat, barley, rice, pulses (broad bean, pea, lentil), millet, sorghum, fig, carob, olive, grape, flax 

and vegetables (Guichard 2001:307; Parra Villaescusa 2013). Earlier sources from the Islamic 

period also refer to the cultivation of rice, sugarcane and citrus fruits in Valencia (Watson 1983; 

Butzer et al. 1985a); these crops are currently absent from the archaeobotanical record. Guichard 

(2000:81) has questioned whether ‘new’ crops such as rice in Valencia were important beyond 

the (sub-)urban irrigated huerta and this view is also echoed by others (Horden and Purcell 

2000:259-260; Glick 2004). There are currently no published archaeobotanical studies from urban 

contexts in Valencia. However, recent stable isotope analyses of human remains (10th-13th 

century CE) from the Islamic period in Valencia provide some evidence for the crops cultivated, 

suggesting that C4 crops such as millets and/or sorghum were potentially an important 

component of diets (Alexander et al. 2019).  

Shifting the focus to rural areas, very little archaeobotanical research has been undertaken on 

Islamic sites. Currently, one of the only systematically sampled sites is Las Sillas in the north of 

Aragón, although the total number of samples (n=13) and sample volume (95.5L) is still small (Site 

105: Ros et al. in press). As a point of comparison with the sites analysed in this PhD, 9 samples 

were analysed at El Quemao with a volume of 644L, whilst at La Mora Encantada, 12 samples 

were analysed with a volume of 570L. The cereal assemblage from Las Sillas includes hulled 

barley, free-threshing wheat, oat and rye. It is clear that rye was an important crop here, and the 

frequency of oat grains suggests that they could derive from the cultivated species. No evidence 

for millets, pulses or flax has been identified, and only a small assemblage of fruit/nut remains 

was recorded including fig, olive, plum, hawthorn and grape. A small number of samples have 

also been analysed from silos at Melque (Site 118: Arnanz et al. 1999), where there was a very 

large assemblage of hulled barley (c.50 000 grains) and flax (c.28 000 seeds), alongside smaller 

quantities of free-threshing wheat and rye. A large assemblage of olive fruitstones were 

recovered in a separate feature, and a single grape/pip seed was also recovered. 
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Comparative evidence from other rural Islamic sites in the north-east is restricted to Tossal de 

Solibernat in Cataluña (Site 180: Cubero 1990), however, only a summary of the archaeobotanical 

evidence is published, with no information on the sampling methods. The assemblage from the 

site primarily comprised free-threshing wheat and hulled barley, with smaller quantities of naked 

barley, oat, rye and bitter vetch. At Zafranales, in the north of Aragón, a hand-picked grab sample 

included whole figs, peach fruitstones, olives and whole walnuts (Site 195: Montón Broto 1997). 

Evidence for walnut has also been recorded in a charcoal assemblage at Juslibol (Site 91: Alcolea 

Gracia et al. 2016). In the north of Valencia, the only rural Islamic site is Torre la Sal, where a small 

archaeobotanical assemblage was recovered, with evidence for hulled barley, fig, apple/pear and 

grape (Site 172: Pérez-Jordà 2010). Further south, at Castillo de Ambra, evidence for carob is 

recorded for the first time in a charcoal assemblage (Site 48: de Haro Pozo 2002).  

Carob is not listed by Peña-Chocarro et al. (2019) as a crop in their review, however, it is a 

potential medieval re-introduction into al-Andalus, or it at least became more widely cultivated 

in this period (Carabaza Bravo 2004:206-209; Ramón-Laca and Mabberley 2004; Servera-Vives et 

al. 2018). There are currently no archaeobotanical finds of carob pods (fruits) or seeds, however, 

it is likely that the crop was specifically exploited for its pods/seeds and later medieval 

documentary sources record it as being cultivated and exported from Valencia (Guichard 

2001:307; Soller Milla 2004, 2007). The pods and seeds of this tree have medicinal uses and they 

have been used to produce confectionery, although their primary use may have been as a source 

of animal fodder (Forbes 1998).  

Comparing the results of these previous archaeobotanical studies with the evidence from the 

rural Islamic sites of La Mora Encantada, Cabezo de la Cisterna and El Quemao examined for this 

PhD reveals both similarities and differences in the range of crops present (Table 5.4). In terms of 

the cereal species recorded, the predominance of (6-row) hulled barley and free-threshing 

wheats is clearly paralleled at other Islamic sites in the north-east, both in urban and rural areas. 

The evidence from La Mora Encantada provides an important record of both bread wheat and 

durum wheat, whilst at El Quemao durum wheat is also securely recorded. These are currently 

the first records of durum wheat in the Islamic period for the whole of Iberia, with only bread 

wheat recorded to date e.g. Calle Nuncio 13 in Madrid (Site 24: Ismodes Ezcurra et al. 2010). The 

absence, or near-absence of glume wheats at all the sites examined also reflects a wider pattern, 

and it is clear that emmer wheat and einkorn wheat were only cultivated on a small-scale in the 

Islamic period. It is also possible that glume wheats are contaminants of other crops (cf. Jones 

and Halstead 1995). Similarly, there is little to evidence at present to indicate that oats were an 
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important crop in this period, although further archaeobotanical data would be required to 

confirm this. 

However, one clear difference in the range of cereals recorded is the evidence for rye at all the 

sites examined for this PhD. At La Mora Encantada, rye is present in similar proportions to hulled 

barley and free-threshing wheats, whilst at El Quemao it is present in several samples. 

Interestingly, in the rural settlement of Las Sillas, rye was also recorded in comparatively large 

quantities relative to hulled barley and free-threshing wheat (Site 105: Ros et al. in press). In 

contrast, rye is entirely absent in the cities of Lleida, Balaguer and Tortosa (Sites 111, 133, 177: 

Alonso et al. 2014a). Further research is necessary to assess whether this reflects a genuine 

difference between rural and urban sites, or alternatively whether it reflects a geographical 

difference with rye more frequent in settlements away from the lowland areas of the Ebro Basin. 

In Madrid, a small number of archaeobotanical studies undertaken in urban contexts have also 

revealed a predominance of free-threshing wheat and hulled barley, with rare evidence for rye: 

Calle Nuncio 13 (Site 24: Ismodes Ezcurra et al. 2010), La Casa de San Isidro (Site 92: Serrano 

Herrero and Torra Pérez 2004), Plaza del Oriente (Site 139: Retuerce Velasco 2004). Frustratingly, 

none of these archaeobotanical studies undertaken in Madrid have been fully published. Further 

afield in the rural settlement Albalat, Extremadura, rye also forms an important component of 

the assemblages (Site 8: Ros et al. 2018, in press). The importance of rye in these rural sites may 

in part lie in its ability to produce higher yields on poorer soils than other cereals, and as a means 

of spreading risk by increasing crop diversity and exploiting wider ecological niches (Duby 

1968:90; Halstead and Jones 1989). Similarly, rye has traditionally been highly valued for its straw 

for purposes such as thatching, weaving or tying together cereal sheaves (Hasltead 2014:78). 

The crop isotope evidence from El Quemao and La Mora Ecantada are currently the first 

applications of this method on Islamic sites in Iberia. The evidence from El Quemao clearly points 

towards the rainfed cultivation of both free-threshing wheat and hulled barley (and probably also 

rye), with the possibility that these crops were cultivated together as a maslin. It has been widely 

highlighted that the unirrigated surrounding alquerías (hamlets/farmsteads) were used for cereal 

cultivation and this is reflected in the evidence from El Quemao (e.g. see Kirchner 2018:212-213 

for mapped example in the Balearics). In comparison, at La Mora Encantada a different picture is 

provided by the crop isotope evidence, with hulled barley (and possibly rye) cultivated in rainfed 

areas, whilst free-threshing wheats, both bread wheat and durum wheat, were irrigated. Other 

researchers have drawn attention to the fact that irrigated areas were potentially used for the 

cultivation of cereals in al-Andalus, however, there is a lack of documentary evidence reflecting 
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this (Jiménez Puertas 2007:16; Martín Civantos 2011: 406). Whilst large numbers of rural Islamic 

irrigation systems have been mapped and analysed, especially in the Balearics, direct 

archaeobotanical evidence for the crops cultivated in these irrigated areas is lacking (Kirchner 

2011:62). Consequently, the crop isotope evidence examined here provides an important record 

of bread and durum wheat cultivation in these areas, probably in rotation with other crops such 

as flax, millets and potentially pulses further research is necessary to examine whether this 

pattern is replicated at other sites.  

The large assemblages of broomcorn millet recovered from La Mora Encantada and El Quemao 

also provide an important record of millet cultivation in this period. Foxtail millet was only 

recorded in minor quantities at La Mora Encantada and Cabezo de la Cisterna, suggesting that its 

cultivation was undertaken on a smaller-scale, possibly as a contaminant of broomcorn millet 

crops. There is currently no evidence for broomcorn millet in the Islamic period at other sites in 

the north-east, whilst foxtail millet has only been recorded in trace quantities at Lleida (Site 111: 

Alonso 2005) and Tortosa (Site 177: Kirchner et al. 2014). The archaeobotanical evidence 

analysed for this PhD also indicates that sorghum is absent during this period in the sites/areas 

examined. Currently, the only archaeobotanical evidence for sorghum is at Benialí, Valencia, in 

the 14th-16th century (Site 16: Butzer et al. 1985b). 

The first record of sorghum in documentary sources is in 11th century Islamic agronomic texts 

and it is thought to be a new ‘Islamic’ introduction. There are references to its cultivation in 

southern and eastern areas of Iberia, especially around Valencia, as well as in Mediterranean 

south-western France and northern Italy (Watson 1983:9-14; 1995:63; Hernández Bermejo and 

García Sánchez 1998; Guichard 2001; Glick 2004; Torró 2009; Saura Gargallo 2010). Watson 

(1983:9-14) also cites its cultivation in north-western Iberia, however, it may be confused with 

other millets considering the strong tradition of cultivation foxtail and broomcorn millet here (cf. 

Moreno-Larrazaba et al. 2015). There is some congruence between the documentary and 

archaeobotanical evidence for sorghum and it may genuinely be absent in the north-east during 

the Islamic period. However, its absence from El Quemao, which is near Valencia, is more 

surprising. Sorghum has been recovered from a few 11th-13th century sites in Mediterranean 

south-western France (Ruas et al. 2015; Pradat and Ruas 2017), whilst in northern Italy it has been 

recovered from the 5th/6th century onwards, though it appears to become more frequent in the 

c.9th-11th centuries (Castiglioni and Rottoli 2013; Rottoli 2014). Recently, the first 

archaeobotanical evidence for sorghum has been recovered in Morocco (Ruas et al. 2011). The 

absence of sorghum during the Islamic period in eastern areas is probably due to a lack of 
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archaeobotanical research. Sorghum has similar cultivation and processing requirements to 

broomcorn and foxtail millet, enabling its potentially rapid adoption into pre-existing agricultural 

systems (Fuller and Stevens 2018). 

Evidence for flax was also recorded at all the Islamic sites examined for this PhD, with a relatively 

large assemblage at La Mora Encantada. These are valuable records of flax cultivation given that 

the oil-rich seeds (which burn quickly) are likely to be significantly underrepresented in 

archaeobotanical assemblages (Märkle and Rösch 2008; Valamoti 2011). Gold-of-pleasure is also 

recorded at El Quemao, with mineralised seeds present, paralleling the evidence from the cities 

of Lleida, Balaguer and Tortosa (Sites 111, 133, 177: Alonso et al. 2014a). This adds further weight 

to the interpretation that gold-of-pleasure was consumed (cf. Butzer et al. 1985b).  At Lleida, the 

geographer al-Himyari records flax as growing abundantly (Alonso et al. 2014a). Islamic 

agronomic texts widely refer to the cultivation of flax, often in association with hemp, for the 

production of fibre (García Sánchez 2001), although there is currently no evidence for hemp in 

the archaeobotanical record. At Lleida and Tortosa, mineralised flax seeds were recovered, 

potentially suggesting that they had been consumed (Sites 111, 177: Alonso et al. 2014a).  

Pulses are generally poorly represented relative to cereals in the sites examined for this PhD, only 

being present in large quantities in one sample at El Quemao. This is typically thought to reflect 

a preservation bias, with pulses only occasionally becoming charred during parching/roasting or 

through the accidental/incidental charring of stray seeds (cf. Fuller and Harvey 2006). However, 

the same argument could also be extended to free-threshing cereals which are unlikely to come 

into contact with fire during processing; so the rarity of pulses probably does in part support the 

view that they were a less important component of diets than cereals. The pulses recorded 

include lentil, pea, grass pea, red pea, bitter vetch and pea. Considering the rarity of pulses, it is 

difficult to reliably infer which species were present and which were absent. No evidence for 

pulses has been recorded at Las Sillas (Site 105: Ros et al. in press), whilst only bitter vetch is 

recorded at Tossal de Solibernat (Site 180: Cubero 1990). In comparison, only lentil (including 

mineralised seeds) is recorded in minor quantities in the cities of Lleida and Balaguer (Sites 111, 

133: Alonso et al. 2014a). It is interesting to note that the typical ‘fodder’ crops, red/grass pea 

and bitter vetch, are absent in these urban sites. No archaeobotanical evidence for either broad 

bean or chickpea has been identified; these are the only pulses recorded by the 12th century 

geographer al-Zuhri at Zaragoza (Ortega Ortega 2010:127). The absence of chickpea may reflect 

a preservation bias during charring (Jupe 2003 cited in Fuller and Harvey 2006:240). 



 
 

144 
 

At La Mora Encantada, a diverse range of fruit/nut species include sweet cherry, mulberry, 

blackberry, walnut, olive, fig and grape; these last two species are particularly abundant. In 

comparison, the sites examined at El Quemao and Cabezo de la Cisterna, produced a smaller less 

diverse assemblage of fruit/nut remains comprising mulberry, fig and grape. At El Quemao, 

hackberry is also represented. The less severe climate and evidence for irrigation at La Mora 

Encantada (and throughout the Huecha Valley) probably accounts for the greater diversity of 

fruit/nut species recorded. Most of these fruit/nut species have been previously recorded in the 

cities of Lleida, Balaguer and Tortosa, although a more diverse range of species are present there 

including plum, almond, peach, pomegranate, melon/cucumber, apple, apple/pear (Sites 111, 

133, 177: Alonso et al. 2014a). The larger and more diverse range of fruits/nuts recorded at these 

sites probably reflects a preservation bias considering that many of the sampled features are 

cesspits/latrines with mineralised preservation. Despite this, in the sites examined for this PhD a 

surprisingly diverse range of fruits/nuts are recorded for a charred archaeobotanical assemblage. 

In particular, two species are recorded archaeobotanically for the first time: hackberry at El 

Quemao and mulberry at La Mora Encantada, El Quemao and Cabezo de la Cisterna.  

Hackberry has previously not been recorded in Islamic sites in the north-east, however, it has 

been identified at other sites in al-Andalus and later medieval sites e.g. Castello de Silves (Site 46: 

Pais 1996), Besalú in Cataluña (Site Valenzuela et al. 2013), and Castillo de Turís in Valencia (Site 

55: Carrión Marco and Pérez Jordà 2014). According to Islamic texts, hackberry was widely 

esteemed in al-Andalus, being cultivated in irrigated areas for the consumption of its fruit and for 

use of its wood (Carabaza Bravo 2004:83-86). The fruitstones of hackberry have a high probability 

of being recovered in archaeobotanical assemblages since they can preserve through 

biomineralisation. It is thus difficult to distinguish between a modern and an archaeological 

specimen, however, at El Quemao both biomineralised and charred fruitstones are present, 

supporting the interpretation that they are Islamic in date. 

Similarly, mulberry is also recorded for the first time in the north east. In all cases, the fruitstones 

are preserved in charred form. In comparison, mineralised mulberry fruitstones have previously 

been identified in cesspits/latrines at Albalat in Extremadura (Site 8: Ros et al. 2018) and Rua dos 

Correiros12 in Lisbon (Site 152: Bugalhâo and Queiroz 2005). Mulberry is also noted in a pit (cess 

pit/latrine?) at Plaza del Oriente, Madrid, however, no archaeobotanical report has been 

published for the site (Site 139: Retuerce Velasco 2004). Since all these finds are from 

 
12 The fruitstones are identified as black mulberry here, however, as noted above, the fruitstones of black 
and white mulberry cannot be reliably distinguished. 
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cesspits/latrines, it is likely that they reflect the consumption of the fruits. It is possible these finds 

reflect traded dried fruits. 

In the sites examined for this PhD, it is unclear whether the white or black mulberry is recorded; 

the black mulberry is present in the Mediterranean from at least the Roman period (if not earlier), 

whilst the white mulberry is thought to be an ‘Islamic’ or medieval introduction linked to silk 

production (Carabaza Bravo 2004:98-101; Aubaile Sallenave 2012).  Mulberry, probably black 

mulberry, has been recorded pre-Roman contexts in the Mediterranean, however, it is unclear 

how widely it was cultivated (van Zeist et al. 2001; Saboto et al. 2015). The leaves of the black 

mulberry can also be used for silk production, although a coarser, inferior silk is produced 

(Bergmann 1940). Evidence for silk production is recorded in a fatwa (legal document) in 1084 in 

Zaragoza, where reference is provided to the illegal sales of mulberry leaves (Lagardère 

1995:no.209). The 10th-11th century geographer al-Zuhri noted that Zaragoza was famous for its 

textiles (Constable 1996:176). In the south of al-Andalus, an extensive study of documentary 

sources highlights the widespread cultivation of mulberry trees for silk production, where it was 

an important cash-crop for several centuries (Lagardère 1990; 1993:391-412). The Geniza 

documents from Cairo record that silk was an export from al-Andalus to other Mediterranean 

areas (Goitein 1961; Constable 1996:173-181).  

It is likely that some of the fruit/nut species and pulses referred to above were cultivated in 

irrigated areas, either in the larger huerta or, more likely, in a more intensively managed huerto 

(market-garden) (cf. García Sánchez 1995; Lagardère 1993:64-86). For instance, the crop isotope 

evidence from El Quemao points towards the cultivation of lentils in irrigated areas, and this is 

possibly also reflected in the weed assemblage. At La Mora Encantada, it is unclear whether the 

lentils were intensively irrigated. Clear evidence for other ‘garden’ crops is slight, however, 

relative to their small size, the more intensively managed and irrigated huertos potentially 

contributed disproportionately to diets (cf. Grigg 1974:125-128; Halstead 1987:75). Recently, 

Peña-Chocarro and Pérez Jordà (2019) have reviewed the archaeobotanical evidence for ‘garden’ 

crops in al-Andalus, highlighting a wide range of fruits/nuts and pulses which were cultivated, 

with less clear evidence for vegetables, herbs and spices. A research problem from an 

archaeobotanical perspective is the difficulty of identifying many of these other ‘garden’ crops 

(Greig 1996). Similarly, where potential garden crops are recorded in the archaeobotanical record 

it can be difficult to establish whether they were consumed, or whether they are a wild/weed 

taxa (e.g. mints, rosemary, common purslane, common vervain) introduced through other 

taphonomic processes. 
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As noted above, previous archaeobotanical research has identified spices/condiments at Lleida 

and Tortosa, including celery, nigella and fennel in cesspits/latrines, probably reflecting their 

consumption (Sites 111, 177: Alonso et al. 2014a). Evidence for fennel has also been identified at 

other Islamic sites e.g. Castelo de Mértola and Castelo de Silves in the south of Portugal (Sites 45, 

46: Pais 1996; Mateus and Queiroz 2006). Similarly, celery has been recorded in a 

waterlogged/mineralised latrine deposit at Rua dos Correiros, Lisbon (Site 152: Bugalhâo and 

Queiroz 2005). Fenugreek is recorded at Las Sillas which is currently a unique record in al-Andalus 

(Site 105: Ros et al. in press). In other areas of al-Andalus, coriander is recorded at Albalat in 

Extremadura (Site 8: Ros et al. 2018) and at Casa dos Bicos (Site 40: Queiroz and Mateus 2011) 

and Santarém in the south of Portugal (Site 65: Queiroz 2001). At Yakka, Murcia, bottle-gourd has 

been identified for the first time, although little information is given on the identification of this 

species (Site 189: Ruiz Molina 2000). Watermelon has been also been identified for the first time 

in a cesspit/latrine at Sa Capelleta, Ibiza (Site 154: López and Marlasca 2009); a potentially ‘new’ 

Islamic introduction (Watson 1983:58-61; see however, Paris 2015 for its earlier origin). The 

archaeobotanical evidence analysed for this PhD at El Quemao adds garlic to this list of garden 

crops. There are few archaeobotanical finds of garlic cloves in Europe, probably because the 

cloves are unlikely to become charred and preserve (Bakels and Jacomet 2003; Badura et al. 

2013). 

A wider diversity of vegetables and other garden crops are unsurprisingly recorded in Islamic 

agronomic texts than the archaeobotanical recorded, including several species which are either 

thought to be new introductions, or at least became more widely cultivated in this period 

(Lagardère 1993:64-86; Trillo San José 2004:47-50; Albertini 2013:144-145). For example, two of 

these ‘new’ introductions are aubergine and spinach, both of which could have been easily and 

quickly incorporated into the existing spectrum of garden crops, whilst new fruit tree species (e.g. 

citrus fruits) and other crops (e.g. sugarcane) required more specialised cultivation and took 

longer to establish (cf. Halstead 2014:286). No documentary references have been identified to 

either spinach or aubergine in north-east Iberia, nor are they recorded in archaeobotanical 

assemblages. However, their absence may reflect a preservation bias and at present it is unclear 

how widely some of these ‘new’ crops were diffused across al-Andalus. For example, citrus fruit 

seeds and apricot (both new introductions) have at present only been recorded in the south of 

al-Andalus (van Leeuwaarden and Querioz 2003; Morales et al. 2019).  

Similarly lacking for this period is clear archaeobotanical evidence for imported crops and 

condiments/spices, including exotic or luxury species. On the basis on archaeobotanical research 
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undertaken in central and northern Europe, it would be expected that imports would be more 

common in urban centres, ports and high status sites (cf. Livarda and van der Veen 2008; Livarda 

2011). In fact, the widespread trade of exotic crops is a feature of the medieval period across 

Europe. Dried or preserved fruits such as olives, figs and raisins were widely traded along the 

Mediterranean coast and it is possible that they are represented in archaeobotanical assemblages 

in the north-east (Constable 1996:161-164, 181-185; Puig 2005; Ruas et al. 2005b). However, 

distinguishing between a locally cultivated and a traded olive, fig or raisin is problematic from an 

archaeobotanical perspective since these crops were also widely cultivated. In other cases, ‘novel’ 

or ‘exotic’ crops such as cotton, rice, dates and sugar are recorded in documentary sources as 

traded commodities along the Mediterranean coast (Constable 1996; Puig 2005; Ouerfelli 2008; 

Kirchner 2018:208). There is currently little to no documentary or archaeological evidence which 

indicates that rice, cotton, dates or sugarcane were widely cultivated (if at all) in many areas of 

the north-east. 

To summarise the key findings of archaeobotanical research undertaken on Islamic sites: 

• Free-threshing wheats and (6-row) hulled barley are the dominant cereals. Glume wheats 

are either absent or present in trace quantities. There is no clear evidence for the 

cultivation of oat. Rye is (largely) absent in urban sites, whilst there are indications that it 

was a more important crop in rural areas. The archaeobotanical evidence from La Mora 

Encantada and El Quemao provides the first diagnostic evidence for the cultivation of 

durum wheat. Bread wheat is also recorded at La Mora Encantada. 

 

• Millets are very rare or absent in previously analysed archaeobotanical assemblages, 

whereas broomcorn millet is abundant at La Mora Encantada and El Quemao. There is 

only slight evidence for foxtail millet. Sorghum, a new ‘Islamic’ introduction, is absent in 

the archaeobotanical record. 

 

• Flax is typically recorded in low numbers, although a very large assemblage has been 

recovered from Melque (Site 118: Arnanz et al. 1999) highlighting the importance of its 

cultivation. At all the sites examined for this PhD, flax was recovered. There is no evidence 

for other fibre crops (e.g. hemp, cotton). 

 

• As in the preceding period, pulses are generally poorly presented and the species 

recorded include pea, lentil, grass pea, red pea and bitter vetch. A large number of pulse 
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seeds were recovered from El Quemao, providing a valuable record of their cultivation. 

Broad bean is absent on the basis of the current evidence. 

 

• A diverse range of fruit/nut species are recorded for this period, especially in urban sites 

with cesspits/latrines providing excellent preservation. The species recorded include 

cucumber/melon, walnut, apple, olive, pine nut, almond, plum, sweet/sour cherry, 

peach, pomegranate, grape and fig. Evidence for carob is recorded in charcoal 

assemblages in Valenica, hinting at the exploitation of the carob pods and seeds. Other 

‘garden’ species recorded include celery, fennel, nigella and fenugreek. The 

archaeobotanical evidence analysed for this PhD adds mulberry, hackberry and garlic to 

this list of crops. There is currently no archaeobotanical evidence for ‘new’ crops such as 

spinach, aubergine or citrus fruits in the north-east. 

5.5 Later medieval period 

Figure 5.4 shows the location of previous archaeobotanical studies undertaken on later medieval 

period sites in the north-east. 

Very little archaeobotanical research has been undertaken on later medieval sites in the north-

east to provide a comparison with the evidence analysed in the Huecha Valley for this PhD. At 

present, the best comparison is with l’Esquerda in the north of Cataluña (Site 107: Cubero et al. 

2008). The assemblage from l’Esquerda, dating between the 11th-13th centuries, is currently the 

largest (n=1038 charred remains) published for the later medieval period in the north-east. Of 

particular note is an assemblage recovered from a granary destroyed by fire in the 13th century, 

from which the majority of the charred plant remains were recovered. A diverse range of cereals 

are recorded here including hulled barley, oat, emmer wheat, free-threshing wheat, einkorn and 

rye in order of abundance. The assemblage is, however, dominated by pulses, with bitter vetch 

the most common species, forming 35% of the total number of remains and the authors suggest 

a fodder crop origin for the assemblage (Cubero et al. 2008) Other pulses recorded include lentil, 

vetches and, unusually, chickpea, which is recorded for first time in a medieval deposit in Iberia. 

The rarity of chickpea may, however, reflect a preservation bias and charring experiments have 

indicated that it is less likely to preserve than either lentils or peas (Jupe 2003 cited in Fuller and 

Harvey 2006:240). Low numbers of millet grains are present, with broomcorn millet the only 

securely identified species. There is slight evidence for fruit/nut remains, comprising grape and 

almond.  
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Also in Cataluña, small archaeobotanical assemblages have been recovered from 10th-12th 

century Ca l’Estrada (Site 21: Fortó García et al. 2009) and 10th-13th century Besalú (Sites 17-18: 

Valenzuela et al. 2013). At Ca l’Estrada, the assemblage is comparable to l’Esquerda, with free-

threshing wheat, hulled barley, millets and pulses (lentil, pea) recorded, although oat and glume 

wheats are absent (Site 21: Fortó García et al. 2009). Similarly, at Besalú, the assemblage includes 

free-threshing wheat, hulled barley, oat, broomcorn millet, lentil, fig, grape and hackberry (Sites 

17-18: Valenzuela et al. 2013). In Andorra, at Camp Vermell, a small assemblage dating broadly 

to the 8th-12th centuries, primarily includes free-threshing wheat and hulled barley, with slight 

evidence for naked barley, rye, emmer wheat, broomcorn millet, pulses (red/grass pea, broad 

bean) and fruits/nuts (grape, peach) (Site 32: Alonso et al. 2010). There is currently no 

archaeobotanical data from later medieval urban sites in the north-east. 

In contrast to the dearth of documentary evidence for the preceding Islamic period, the Christian 

conquests in the 11th-12th centuries generated a large body of documentary evidence, 

particularly the repartimientos (land registers) (Glick 2005:100-104). The repartimientos provide 

valuable information on the reorganisation of agricultural spaces, especially irrigated areas, 

although specific information concerning the crops cultivated is often sparse (Kirchner 2019). It 

has been widely highlighted that a corollary of the Christian conquests and the shift to a feudal 

regime was the expansion and modification of irrigation systems together with an increase in 

olive groves, viticulture and, above all, cereal cultivation (e.g. Corral Lafuente 1983; Bolòs 1993, 

2001; Barceló 1989, 1995; Stalls 1995:216-220; Laliena Corbera 1986, 1989, 1998, 2007; Laliena 

Corbera and Ortega Ortega 2011, 2012; Ortega Ortega 2010; Pico Torné 2015; Torró 2019; 

Rodrigo Estevan 2007; García-Contreras Ruiz 2018; Kirchner 2012, 2018, 2019; Kirchner et al. 

2014; Virgili 2010, 2018; Kirchner and Virgili 2019). This ‘cerealisation’ reflects a widespread 

phenomenon across Europe (cf. Comet 2004). However, as Butzer et al. (1985a) have highlighted 

in the case of Valencia, the Christian conquests did not lead to the abandonment of the new 

‘Islamic’ introductions such as sugar and rice; instead there is documentary evidence for the 

increasing commercialisation of these crops, especially sugar until the 15th century (contra 

Watson 1983; cf. Vidal 1973; Constable 1996:233; Coulon 2001; Glick 2005:223; Ouerfelli 2008).  

Where specific information on the cereals cultivated is provided in documentary sources, wheat 

appears to hold the greatest importance, although it is unclear which species is being referred to. 

This is then followed by barley, and to a lesser extent by rye and oat. There is some evidence to 

suggest that cereals were cultivated in both irrigated areas, with more stable and higher yields 

achieved under irrigation, enabling higher rents to be extracted (e.g. Laliena Corbera 1989; Bolòs 
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1993, 2001; Kirchner 2012:34; Torró 2019). A shift in the use of irrigated areas for cereal 

cultivation has also been documented elsewhere e.g. Valencia (Torró 2009; Guinot Rodríguez 

2019). At the same time, an expansion in rainfed cereal cultivation has been identified. Olive 

groves may also have expanded in this period, although given that olive trees take a long time to 

establish it is difficult to ascertain the full extent of their cultivation before the Christian conquests 

(e.g. Tortosa: Kirchner et al. 2014). Flax and hemp are widely recorded from the 12th-13th 

century onwards in documentary sources and by the 14th century they are important cash-crops 

across the north-east (Navarro Espinach 2003b). Crops not directly linked to, or less frequently 

received in rent are given less attention and there are only sporadic references to other crops 

such as millets, fruits/nuts (excluding grape and olive), pulses and vegetables in earlier periods 

(e.g. Laliena Corbera 1989).  

Placing the archaeobotanical evidence for the north-east into a wider context, it is evident that a 

similar range of crops are recorded in later medieval deposits in the north of the Iberian Peninsula 

in País Vasco at Catedral Vitoria (Sites 60-62: Pérez-Díaz et al. 2015), Zaballa (Sites 192-193: 

Sopelana 2012) and Zornoztegi (Site 198: Sopelana and Zapata Peña 2009). At these sites, 

archaeobotanical assemblages are also dominated by free-threshing wheats and hulled barley, 

with evidence for oat, millets (both broomcorn and foxtail millet), flax, and fruits/nuts also 

recovered. At Catedral Vitoria in particular, rye forms an important component of the 

assemblages (Sites 60-62: Pérez-Díaz et al. 2015). In Mediterranean south-western France, 

documentary and archaeobotanical evidence show clear similarities in the range of crops present 

(Puig 2005; Ruas 2005; Ruas et al. 2005a, b; Ros et al. 2014a, 2019; Ruas et al. 2015). The 

dominant cereals are hulled barley and free-threshing wheat, with diagnostic bread wheat 

rachises identified at some sites. Common oat and rye are also recorded at several sites, whilst 

glume wheats occur frequently although are present in low proportions in relation to other 

cereals the (Ruas 2007). An archaeobotanical assemblage from La Gravette, an 11th century 

granary associated with a seigneurial household, was dominated by free-threshing wheat, with 

other cereals of secondary importance including hulled barley, rye, common oat and einkorn 

wheat (Ruas et al. 2005a). Other crops recorded include both flax and hemp, pulses (broad bean, 

grass/red pea, lentil, pea, vetch) and fruits/nuts (grape, olive, hazel nut, walnut, sweet/sour 

cherry, plum, fig and mulberry). 

Two new crops are also recorded for this period, spinach and sorghum. At Montaillou in the 

French Pyrenees, charred remains of spinach (achenes, seeds) were recovered from 12th-13th 

century contexts in a castle; these are amongst the only finds in the Mediterranean (Hallavant 
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and Ruas 2014). The only other archaeobotanical record of spinach is in 13th century Sicily at 

Mazara del Vallo (Carver et al. 2019). It is suggested that spinach was introduced via al-Andalus, 

where it is recorded in documentary sources from the 11th century (Hallavant and Ruas 2014; cf. 

Hernández Bermejo and García Sánchez 1998). A further new crop is sorghum, which occurs in 

small quantities in multiple sites dating between the 11th-13th centuries across Mediterranean 

south-western France (Ruas et al. 2015). 

Analysis of documentary sources for the later medieval period in Mediterranean south-western 

France adds further information on the range of crops cultivated and imported (Puig 2005; Ros 

et al. 2014a). The sources provide references to staple crops such as forment/frumentus, probably 

bread wheat, alongside barley, oat and rye from the 12th-13th centuries onwards. There is some 

evidence for the cultivation of maslins, either comprising mixes of wheat/barley or wheat/rye (cf. 

Comet 1992:249). Pulses are also recorded, the most important of which is broad bean, with 

other species including pea, grass/red pea, lentil, vetch and chickpea; of these species, only 

chickpea is absent in the archaeobotanical record. The documentary sources also provide 

evidence for a range of cultivated and wild fruits, including imported exotic species to al-Andalus: 

melon, cucumber, peach, apple, pear, fig (imported) citrus fruits (imported?) and date (imported) 

(cf. Constable 1996:220-221). There is also evidence for rice in the documentary sources and it is 

probably an import since there is little evidence to suggest it was cultivated until the c.15th 

century. Finally, a diverse range of fruits/vegetables are recorded (predominately in later 

periods), including leek, cabbage, carrot, onion, shallot, garlic, turnip, gourd, cucumber, spinach, 

chard and aubergine. Whilst some of these species have also been verified in archaeobotanical 

deposits, aubergine (first recorded in the 13th century) is currently absent in the 

archaeobotanical record (Ruas et al. 2015). Evidence for spinach and aubergine also recorded in 

14th-15th documentary sources, including cookbooks, in north-east Iberia; the most common 

vegetables being cabbages, leeks, onions and garlic (Sarasa Sánchez 2013; Bertrán Roigé 2013; 

Vogelzang 2008; Constable 2018:130). Another important crop recorded is saffron, yet there is 

no archaeobotanical evidence for this. 

How does this evidence compare with the archaeobotanical assemblages analysed for this PhD 

at Palacio de Bulbuente, Castillo de Grisel and the Casa Conventual de Ambel in the Huecha Valley 

(Table 5.4)? The three dominant cereals in the sites analysed are hulled barley, free-threshing 

wheat and rye, with oat and glume wheats (emmer wheat and probably einkorn) of secondary 

importance. At Palacio de Bulbuente, diagnostic free-threshing wheat rachises confirm the 

presence of both bread wheat and durum wheat for the first time in the later medieval period. 
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The low proportions of glume wheats parallel the evidence from other sites in the north-east and 

Mediterranean south-western France, probably reflecting their widespread, though small-scale 

cultivation. As outlined previously, the cultivation of emmer wheat and einkorn may be related 

to their use to prepare specific foodstuffs, or for the use of their straw (Hillman 1984b; Halstead 

2014:284; Peña-Chocarro et al. 2015). The high proportion of rye, and to a lesser extent, oat at 

Palacio de Bulbuente reflects wider shift in the archaeobotanical record across Europe (Behre 

1992; Comet 1992, 2004; Bouchette et al. 2011; Squatriti 2016). 

The crop isotope evidence from Palacio de Bulbuente points towards the cultivation of hulled 

barley and free-threshing wheat in both rainfed and irrigated areas. As in the Huecha Valley, 

several studies across the north-east have documented the reorganisation and modification of 

‘Islamic’ irrigated areas following the Christian conquests. In some cases, these irrigated areas 

were increasingly used for the cultivation of cereals, and this is reflected in the evidence from 

Bulbuente. Concurrently, there is also evidence for a shift towards more extensive forms of cereal 

cultivation in rainfed areas, entailing less-labour inputs per area of land. Oat and rye are well-

adapted to cultivation in these low-intensity regimes, being well-adapted to marginal and dry 

soils. The crop isotope evidence suggests that rye was cultivated in rainfed areas, although a 

larger modern reference dataset is required to support this. This extensificiation was probably 

accompanied by an expansion in the use of draught animals, and consequently requirements for 

fodder and pasture would have increased (Halstead 1995). This is likely to be an important factor 

in explaining the increase in oats, together other fodder crops such as alcaceres (green barley), 

and potentially also millets and pulses, especially bitter vetch (cf. Halstead 2014:52). Overall, it is 

suggested here that the evidence from Palacio de Bulbuente reflects the local reverberations of 

this expansion in cereal cultivation which accompanied the Christian conquests. This was 

characterised by an increase in crop diversity and an increase in yields/surplus through cultivation 

in irrigated areas and through extensification.  

Millets are recorded at all the sites, with broomcorn millet the dominant species, paralleling the 

evidence from other sites in north-east Iberia and Mediterranean south-western France. Foxtail 

millet is only present in minor quantities in the sites analysed, however, this crop is abundant in 

the north of the Iberian Peninsula in País Vasco. Similarly, in the north-west, foxtail millet is also 

abundant. It is difficult to directly identify when millet cultivation increased, however, it is evident 

that by the later medieval period (c.12th century onwards) broomcorn millet was widely 

cultivated in the north-east, whereas foxtail millet is rare. 
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Evidence for other crops is relatively slight. Pulses form a minor component of the assemblages 

analysed, with lentil, pea, bitter vetch and broad bean recorded, which is the most abundant 

species. Similarly, broad bean appears to have been the most important pulse species in other 

areas. Two crops not recorded in the assemblages are grass/red pea and chickpea; this may 

simply reflect a lack of evidence recovered for these crops, as opposed to their genuine absence 

in the archaeobotanical record and, in the case of chickpea this is likely to reflect a preservation 

bias (cf. Jupe 2003 cited in Fuller and Harvey 2006:240).  

Flax is recorded at all the later medieval sites examined for this PhD, highlighting its widespread 

cultivation. This valued crop has previously not been recorded for later medieval assemblages in 

the north-east, however, it is present in the north of the Iberian Peninsula and in Mediterranean 

south-western France. On the basis of the archaeobotanical evidence, little can be said 

concerning the scale of flax cultivation. Instead, it is necessary to rely on the documentary sources 

which point towards the increasing commercialisation of flax cultivation, together with hemp, 

especially from the 14th century onwards. It is anticipated that as further archaeobotanical 

research is undertaken, evidence for flax will increase, and hemp is likely to be recovered. 

The evidence for fruit/nut remains is comparatively slight in terms of their frequency. Despite 

this, a diverse range of crops are recorded including peach, almond, plum(?), hazel nut, mulberry, 

walnut, olive, fig and grape. All these species are recorded in documentary sources between the 

12th-14th centuries, with mulberry added a century later. There is no archaeobotanical evidence 

for mulberry in the later medieval period in the north-east, however, it is recorded in 

Mediterranean south-western France. Archaeobotanical evidence for mulberry is currently very 

rare in the Iberian Peninsula for the later medieval period, only being recorded in Portugal in a 

Medieval Islamic/Christian deposit in Casa dos Bicos (Site 40: Queiroz and Mateus 2011) and in a 

post-medieval deposit at Santa Clara a Velha (Site 156: Queiroz et al. 2006). The evidence for 

mulberry at Palacio de Bulbuente is therefore an important record of this crop in the later 

medieval period. As outlined above in reference to the Islamic period, there is currently no clear 

archaeobotanical evidence for imported fruit/nut species or spices in this period (cf. Bouby 2005; 

Puig 2005; Ruas et al. 2005b). 

Grape pips/seeds are ubiquitous in the sites examined for this PhD, with some evidence also for 

fruit/berry fragments and a potential ‘pressed skin’; it is possible that these remains are all linked 

to wine production. It is difficult to explain why grape seeds/pips so frequently become charred 

given that fruit/nut species are typically thought to be underrepresented in charred assemblages 

(cf. van der Veen 2007). From an archaeobotanical perspective it is difficult gauge any change in 
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the importance of viticulture, although theoretically it would be expected that grape seeds/pips 

would occur in higher densities in later medieval deposits compared to earlier periods. With 

further research, it may be possible to identify this. 

To summarise the key finding of archaeobotanical research undertaken on later medieval sites: 

• Free-threshing wheats and (6-row) hulled barley are the dominant cereals. Glume wheats 

are present in low numbers in several sites highlighting the widespread, small-scale 

cultivation of these crops. Both oat and rye are major crops in this period. The 

archaeobotanical evidence from Palacio de Bulbuente provides the first diagnostic 

records of both bread wheat and durum wheat for the later medieval period. 

 

• Broomcorn millet is the most widely cultivated millet species in the north-east, and 

although foxtail millet is widely recorded it only occurs in low numbers. An exception to 

this pattern are sites in the north in País Vasco where both broomcorn and foxtail millet 

are cultivated in similar proportions. Evidence for broomcorn millet was recorded at all 

the later medieval sites analysed for the PhD. 

 

• Flax and hemp are widely recorded in documentary sources for this period. However, 

archaeobotanical evidence for flax is typically slight, whereas hemp is currently absent 

from the archaeobotanical record in the north-east of the Iberian Peninsula. Hemp has 

only been recorded in one assemblage in Mediterranean south-western France. 

 

• Pulses are present in low numbers at most sites, including pea, lentil, grass pea, red pea, 

bitter vetch and broad bean. Chickpea is also recorded in an archaeobotanical 

assemblage in this period for the first time, however, its absence at other sites may reflect 

a preservation bias.  

 

• The range of fruit/nut species and vegetables present shows continuity with the 

preceding Islamic period and no new species are identified. This includes species 

including cucumber/melon, hazel nut, walnut, apple, olive, almond, plum, sweet/sour 

cherry, peach, carob, mulberry, carob, fig and grape. The documentary sources for this 

period point towards an expansion in viticulture. 
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5.6 Discussion: regional and pan-regional perspectives  

The overall pattern that emerges from the evidence is one of broad continuity in the crop 

spectrum. There are only minor adjustments in the range of crops of cultivated, although a 

general trend towards increasing crop diversity can be detected through time. In comparison, 

there appear to have been more significant changes in the nature of farming practices (e.g. 

irrigation) and in the organisation and management of agriculture (e.g. modes of production); the 

manifestation of these changes in the archaeobotanical record are only faintly discernible at 

present.  The Islamic conquests did not lead to a clear and definable break in the ‘traditional’ 

rhythms of Mediterranean agriculture, but rather a series of more incremental and gradual 

changes which can be traced between the end of the Roman period through to the later medieval 

period. Despite this, there were undoubtedly some innovations in agriculture after the Islamic 

conquests. The most important of these was a change in farming practices with an expansion in 

irrigation, alongside the diffusion of new cultivars and crops. A pressing question is how widely 

these new ‘innovations’ were adopted. From the evaluation of the evidence outlined above, some 

key points can be drawn out and it is possible to revisit some of the questions and themes outlined 

at the beginning of this thesis:  

Firstly, there is continuity in the cultivation of the two main cereals – hulled barley and free-

threshing wheats from the Roman to later medieval period. In most cases, it is apparent that the 

6-row form of hulled barley was the most widely cultivated type, whilst evidence for the 2-row 

form is currently slight. In terms of the free-threshing wheat species cultivated, the relative 

importance of bread wheat and durum wheat cannot yet be resolved due to a paucity of 

diagnostic evidence. At present, durum wheat has only been securely recorded in the Islamic 

period. Further archaeobotanical research is necessary to examine whether the Islamic conquests 

led to the re-introduction, or at least expansion in the cultivation of durum wheat. Modern crop 

DNA evidence perhaps hint at the spread of different durum wheat landraces (Moragues et al. 

2007; Oliveira et al. 2012) It is conceivably that an expansion in the cultivation of free-threshing 

wheats occurred in tandem with the growth of urban centres throughout the Islamic and later 

medieval period, however, the is insufficient data to support this argument. Certainly, in the later 

medieval period documentary sources indicate that ‘wheat’ had become a commercial crop, 

although earlier evidence for this is difficult to find. 

Secondly, a broad pattern of increasing crop diversity can be identified, with an expansion in the 

cultivation of oat, rye and millets (especially broomcorn millet). Whilst these crops were already 

known by the Roman period, an expansion in their cultivation can be broadly dated to the late 
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Roman to early medieval period. By the Islamic and later medieval period, these crops appear to 

have been widely cultivated, although comparative data from later medieval urban sites is 

currently absent. This increase in oat and rye cultivation reflects wider patterns in medieval 

archaeobotanical record across Europe, whilst millet cultivation also appears to have increased 

in more southerly areas. The expansion in the cultivation of these crops may in part lie in their 

ability to fill specific niches within agricultural systems. Both rye and oat are tolerant of poor 

growing conditions, coping with either higher altitudes, low fertility or limited water availability. 

Similarly, millets are tolerant of poor soils and due to their short, summer growing cycle they 

could act as a catch-crop. Millets could potentially have been planted during fallow periods, 

intensifying land-use in the summer period (Halstead 2014:21). These crops could have served as 

animal fodder, or as food and their use in bread is well documented (e.g. Rubio 2002). A corollary 

of this increase in crop diversity may have been an expansion in extensive forms of cultivation, 

entailing fewer labour inputs per area of land, yet higher provisions of fodder for draught animals. 

There is circumstantial evidence for the increasing ‘cerealisation’ of the economy of the following 

the Christian conquests, broadly reflecting the shift to a feudal regime with a ‘land-based’ or ‘rent-

based’ system in which seigneurial lords extract revenues though agriculture (cf. Glick 2005; 

Wickham 1984, 2005:58). 

It has been suggested that greater emphasis was placed on polyculture during the Islamic period, 

with irrigated arboriculture, viticulture and vegetables being of particular significance (though 

with cereals still forming the mainstay of diets) (e.g. Barceló 1985; Watson 1983; Glick 2005). In 

comparison, by the later medieval period there is evidence, primarily from documentary sources, 

to suggest that greater emphasis was placed on the cultivation of a less varied ‘monoculture’ of 

cereals, albeit with arboriculture, viticulture and vegetables still forming an important component 

of farming practices (Kirchner 2018). Seigneurial lords sought to extract greater revenues by 

promoting the more widespread cultivation of cereals, and importantly they also maintained 

monopolies on flour mills (Glick 2006). 

Thirdly, a diverse range of fruit/nut species (and possibly vegetables), both wild and cultivated, 

are recorded in the Roman period, highlighting the early development of arboriculture and 

viticulture (which has prehistoric antecedents cf. Alonso and Bouby 2017; Pérez Jordà et al. 2017). 

The species recorded include hazel nut, fig, olive, stone pine, apple/pear, sweet cherry, plum, 

almond, blackthorn/sloe, peach, pomegranate, acorn, melon, blackberry, walnut and grape. In 

the early medieval period, mulberry is added to list of species, although this crop may have been 

present in earlier periods. Despite this, mulberry appears to become more widely diffused and 
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cultivated during the Islamic period. In other cases, it is currently not possible to discern any clear 

shifts in the archaeobotanical record in the presence/absence of fruit/nut species, or their 

relative importance to one another. The few documentary sources for the Islamic period allude 

to the abundance of fruits grown in the north-east, and the development of irrigated 

arboriculture is viewed as a defining feature of the Islamic period. To some extent this is reflected 

in the archaeobotanical record in urban areas, which highlights the diverse range of species 

consumed. For the later medieval period the picture is less clear due to the paucity of 

archaeobotanical evidence, however, one change recorded in documentary sources is an 

expansion in viticulture following the Christian conquests. 

Fourthly, the cultivation of flax is recorded from at least the early medieval period, and 

archaeobotanical finds of flax are widespread in the Islamic period. It is likely that flax was 

primarily cultivated for its fibre, possibly in association with hemp although there is currently no 

archaeobotanical evidence for this latter crop. By the later medieval period, documentary sources 

indicate that both flax and hemp were important commercial crops, although the 

commercialisation of these crops probably has earlier antecedents in crops in the Islamic period. 

Fifthly, the development and expansion of irrigated farming is often viewed as a defining feature 

of the Islamic period in both urban and rural settings. At present, few irrigation systems have 

been subject to detailed research using evidence from archaeological research and documentary 

sources in the north-east. A note of caution is needed in assessing the nature and scale of 

irrigation during the Islamic period due to a lack of dating evidence. Current understanding is 

based overwhelmingly on later medieval archaeological and documentary evidence which is 

projected retrospectively into the Islamic period. Similarly, we do not a have clear picture of 

irrigation systems pre-dating the Islamic conquests. Despite the centrality of irrigation to 

discussions of the Islamic and later medieval period, most knowledge of the crops cultivated in 

these areas is based on anecdotal evidence. Archaeobotanical research has contributed little to 

this important topic, and this PhD highlights that significant potential lies in the use of crop 

isotope evidence to infer the use of rainfed and irrigated areas for the cultivation of cereals and 

pulses.  

Finally, there is currently no clear evidence for the introduction of new crops or for exotic imports 

in the archaeobotanical record. Does this reflect their genuine absence or a preservation bias? 

Whilst some new crops and imports are likely to have been rare, or primarily restricted to urban 

centres, ports and high status sites, a preservation bias is an important factor in explaining their 

absence. New crops and imports are only likely to be recovered in exceptional circumstances in 
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charred assemblages, and instead they are more likely to be preserved in specific burial 

environments such as cesspits/latrines or in waterlogged deposits. This is particularly the case 

where the seeds of fruits or vegetables have a high probability of being consumed such as in citrus 

fruits or aubergines. At present, sites with waterlogged preservation are exceptionally rare, with 

none yet identified in the north-east, and only a handful urban sites with cesspits/latrines have 

been investigated for the Islamic period. In comparison, no (published) urban sites have been 

examined in the later medieval period. In other cases, the absence of crops such as rice or 

sorghum probably reflects the case that very limited archaeobotanical research has been 

undertaken in areas where these crops are thought to have been grown (e.g. the Valencia region).  

As is outlined below in more detail, there is growing evidence for diffusion of new crops across 

the Mediterranean with a broadly Islamic/medieval timescale. It is hypothesised that as further 

research is undertaken, evidence for new crops and exotic imports will increase, especially in 

urban centres. In particular, with the growth of urban centres during the Islamic period, it might 

be expected that agriculture became increasingly commercialised with a concomitant expansion 

in cash-crops and the cultivation of novel, ‘new’ species as luxuries (Watson 1995:67; Horden and 

Purcell 2000:259-260; Martínez Enamorado 2003:114-118; Boivin et al. 2012, 2014; Molinari 

2015; Amichay et al. 2019). In comparison, rural areas are likely to have been more conservative 

in the adoption of new crops, cultivars and farming techniques, although there was likely some 

space for experimentation, potentially on a small-scale in gardens by peasant communities 

(Johnson 1972; Netting 1993). Migration is often linked to the movement of crops, and this may 

have been an important factor (in this case Arabs and Berbers, section 1.4.3) in explaining some 

of the changes in cropping patterns and the use of irrigated areas (cf. Grew 1999:3). This is, 

however, a contentious issue, with some researchers increasingly questioning the relationship 

between agriculture and the migration of Arabs and Berbers (e.g. Manzano Moreno 2018). At 

present, it is difficult to evaluate in detail the wider impact of the Islamic conquests on agriculture 

until further archaeobotanical research is undertaken in other areas. Nevertheless, the results 

presented here add nuance to our understanding of this period, providing valuable insights into 

rural economies and a longer-term perspective on agriculture. 
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6 Conclusions 
 

This final chapter summarises some of the wider implications of the evidence presented in 

chapters 3, 4 and 5. It briefly re-examines the context of this research, focusing on the idea of an 

Islamic agricultural revolution across a wider area and recent contributions of archaeobotanical 

research to this topic. The chapter concludes with a reflection on the research themes of this PhD 

and avenues for future research. 

The impact of the Islamic conquests on agriculture is one of the big research questions in the 

history of the Mediterranean and beyond. In particular, Watson’s (1974, 1981, 1983) grand 

narrative of a sweeping agricultural transformation in the first centuries of the early Islamic world 

has been highly influential, remaining an enduring concept. Sherratt (2004:28) stressed that “this 

was the most important movement of crops before the Columbian exchange” and others have 

drawn comparisons between the spread of Islam and crop globalisation (Squatriti 2014b; Boivin 

et al. 2014; Boivin 2017; van der Veen and Morales 2017). 

Nonetheless, it is a concept which has also been widely challenged and critiqued (e.g. Aubaile 

Sallenave 1984; Johns 1984; Brett 1985; Butzer et al. 1985a; Butzer 1994; Horden and Purcell 

2000:258-263; Reihl and Nesbitt 2003; Decker 2009, 2011). For example, some have considered 

the model overly simplistic, whilst others have questioned how widely new innovations were 

adopted. However, one of the main critiques levied against the ‘Watson thesis’ concerns the 

proposed timing of these agricultural innovations – are they Islamic in date or do some of the 

innovations have earlier antecedents? It is now widely acknowledged that some elements 

considered to be ‘Islamic’ innovations such as summer cropping or new methods of irrigation 

were already present in areas of the Mediterranean and Middle East before the Islamic conquests 

(e.g. Aubaile Sallenave 1984; Butzer et al. 1985; Malouta and Wilson 2012). This can also be 

extended to the list of supposedly ‘new’ crops, with a considerable body of research highlighting 

their pre-Islamic diffusion in some cases (e.g. Rowley-Conwy 1989; Pelling 2008; Decker 2009). In 

particular, one of the most prominent critiques is by Decker (2009), who focuses on the examples 

of durum wheat, cotton, rice and artichoke, noting that there is good evidence for these crops 

before the Islamic period. It is often overlooked that Watson (1983) did actually note that some 

of the new crops and techniques of irrigation were already present in earlier periods (e.g. 

sorghum), yet they were not widely diffused; however, many would now suggest that greater 

emphasis needed to be placed on the longer-term, pre-Islamic perspective.  
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This last point raises a question concerning the mechanisms of diffusion. In particular, it has been 

widely highlighted that the diffusion processes of agricultural technologies and crops are often 

complex and protracted, potentially involving numerous (re-)introductions of a crop or 

technology prior to its more widespread uptake (van der Veen 2010; Boivin et al. 2012, 2014; 

Ruas et al. 2015). Similarly, the use and significance of a crop can vary significantly between 

different periods. Walshaw (2010) provides the example of rice in east Africa; there was a long 

delay of centuries between its initial, small-scale cultivation and its far more widespread uptake 

with the ‘Islamisation’ of the area. Similarly, cotton in the Middle East provides another example; 

archaeobotanical evidence confirms the pre-Islamic cultivation of cotton, yet it is not until after 

the Islamic conquests that we see a widespread intensification of its cultivation (Bulliet 2009; 

Bouchard et al. 2011; Brite and Marston 2013). Consequently, it is more significant to identify the 

cumulative impact of various agricultural innovations (van der Veen 2010; cf. Rowley-Conwy 

1989). The question then shifts from identifying the first introduction of a new crop or irrigation 

technology, to assessing the degree of continuity versus change in agriculture. Do we see a clear 

and definable break in agriculture after the Islamic conquests, or instead a picture of longer-term 

continuity? 

Though most researchers now acknowledge that issues remain with the ‘Watson thesis’, the idea 

that the early Islamic world provided a medium for the diffusion of crops and farming practices, 

notably irrigation, has remained highly influential and it continues to stimulate research and 

debate (Squatriti 2014a). When originally conceived the ‘Watson thesis’ was almost wholly 

dependent on evidence from documentary sources, since very few archaeobotanical studies had 

been undertaken at that date. However, the potential contribution of archaeobotanical research 

to this topic was highlighted early on. For example, in a review of Watson’s (1983) book, Johns 

(1984:344) observed: 

“The hypothesis of an…agricultural revolution is challenging and may well prove useful. It will 

certainly stimulate debate as present and future archaeological and palaeobotanical research 

yields new evidence.” 

With the growth of medieval, or Islamic archaeology, and the increasing application of 

archaeobotanical research across the Mediterranean and Middle East, new perspectives on the 

concept of an Islamic agricultural revolution are beginning to emerge, highlighting a broadly 

medieval, or Islamic, timeframe for the diffusion of new crops (cf. Boivin et al. 2014). At present, 

the best evidence for the diffusion of new crops and cultivars comes from Quseir al-Qadim, a port 

situated on the Indian Ocean coast in Egypt where both Roman (1st-3rd centuries) and Islamic 
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(11th-13th, 14th-15th centuries) evidence has been recovered (van der Veen 2011). At this site, 

desiccated preservation of archaeobotanical remains points towards the introduction of new 

crops in the Islamic period – sugarcane, taro, aubergine, lime and banana – whilst other crops 

became more widely cultivated – sorghum, pearl millet, cotton, rice, citrus fruits. Evidence for 

the diffusion of new cultivars was also identified, in this case the watermelon, a crop already 

present in the Roman and earlier periods (cf. Paris 2015), yet by the Islamic period, a different 

cultivar was introduced. The overall impression given by the evidence from Quseir al-Qadim is of 

a profound reorientation in agriculture, diets and foodways away from a Mediterranean focus in 

the Roman period to one that looked increasingly towards the east in the Islamic period. In the 

case of Egypt at least, there is compelling evidence to support some of Watson’s (1983) claims 

over the diffusion of new crops, cultivars and farming practices (van der Veen 2011:231). 

Elsewhere the situation is less clear, however, recent finds across the Mediterranean and Middle 

East add to the growing body of archaeobotanical evidence for the diffusion of new crops. For 

example, in Jerusalem, aubergine has recently been recovered in 8th-10th century contexts 

(Amichay et al. 2019). Whilst in Sicily, archaeobotanical evidence dating from the Islamic and later 

medieval periods at Mazara del Vallo has recorded citrus fruits in the 10th century, watermelon, 

aubergine and cotton in the 11th-12th century, and finally spinach is recorded in the 13th century 

(Carver et al. 2019). In southern France, spinach has also recently been identified in the 12th-

13th century, whilst sorghum is recorded in the 11th-13th centuries (Ruas et al. 2015; Pradat and 

Ruas 2017). In al-Andalus, a small number of ‘new’ crops have been identified. Apricot is recorded 

in a 12th-13th century Islamic context in Mértola, southern Portugal (van Leeuwaarden and 

Querioz 2003). Citrus fruit seeds from 9th-11th century contexts have also been recently 

recovered from Mértola, as well as Lorca in the south-east of Spain (Morales et al. 2019). In 

Mallorca, at Sa Capellata, a 12th-13th century Islamic context produced watermelon (López and 

Marlasca 2009). These rare archaeobotanical finds do not prove the ‘Watson thesis’ per see, 

however, they do allude to the diffusion of new crops within a broadly Islamic, or medieval, 

timescale. In a recent review article focusing on the ‘Watson thesis’, Squatriti (2014a:1216) noted 

that “such unpredictable congruence between current archaeobotany and many of Watson’s 

1970s findings give hope that the revolution is not over yet.”  

When we combine this archaeobotanical evidence with what is known from the documentary 

sources and archaeological analyses of irrigation systems, there were undoubtedly important 

changes in agriculture following the Islamic conquests. Nevertheless, it is still far from clear how 

widely new crops, cultivars and farming practices were adopted.  The extent to which we identify 
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continuity and contrast in agriculture across this period will in part depend on the analysis of 

larger archaeobotanical datasets. In particular, the key benefit of archaeobotanical research to 

this topic is the analysis of a longer-time perspective and a focus on areas not covered by the 

documentary record, namely the rural early Islamic world. At present, archaeobotanical research 

is still in its early stages and the evidence is highly fragmentary (van der Veen 2011:111; Wilkinson 

2016). Consequently, it is not yet possible fully evaluate the role of Islam in the transmission and 

innovation of agriculture and the transformation of agrarian landscapes. Nevertheless, the 

archaeobotanical and crop isotope evidence analysed in this PhD contributes significantly to our 

understanding of agriculture at the frontier of Islam in the Iberian Peninsula.  

Reflecting back on the original themes of this PhD, some key conclusions can be drawn out. In 

particular, through the study areas examined this PhD challenges the notion of a sweeping 

agricultural transformation following the Islamic conquests. Instead, a pattern of longer-term 

continuity is emphasised with more minor adjustments and changes in agriculture through time. 

In general, we see a gradual increase in crop diversity which reflects broader patterns seen across 

Europe and the Mediterranean. It is hypothesised that there may have been a divergence in 

agriculture between rural and urban settings, with documentary sources and archaeobotanical 

evidence hinting at the cultivation of a different crops in these areas during the Islamic period. 

Shifts in the nature of farming practices (e.g. irrigation) and in the organisation and management 

of agriculture (e.g. modes of production) were potentially more significant, although the 

reflection of these in the archaeobotanical record is relatively slight at present. However, at the 

same time, the archaeobotanical record draws attention to a different picture of agriculture, 

contrasting with the idea of a sweeping agricultural transformation suggested by documentary 

sources. Consequently, it is suggested that a more holistic understanding of changes in agriculture 

can be developed by interweaving evidence from both archaeobotanical and documentary 

evidence.  

6.1 Avenues for future research  

The results of this PhD highlight a number of areas where future research could provide new 

insights into agriculture:  

• Further integration between the archaeobotanical and archaeological evidence. There is 

a long tradition of analysing cultivated spaces, especially irrigated areas, in medieval 

Iberia through so-called ‘hydraulic archaeology’. Such research provides valuable 

information on the nature, organisation and design of these areas, yet a key line of 

evidence missing is direct evidence for the crops themselves. Archaeobotanical and crop 
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isotope evidence can help to fill this gap. In the case of the Huecha Valley, the results 

from this PhD could be combined with those from the ongoing Moncayo Archaeological 

Survey (MAS). This could involve the mapping of pottery scatters to help identify 

diachronic patterns of land-use, especially the manuring of irrigated fields (cf. Forbes 

2013). Similarly, the results could be combined in greater detail with the survey and the 

irrigation system and field terraces (cf. Gerrard 2011). Of key importance here would be 

the direct OSL dating of acequias and terraces (cf. Bailiff et al. 2015). Through the 

combination of these approaches, it would in effect be possible to map the 

archaeobotanical evidence onto the landscape. A similar approach to this has been 

undertaken for the Islamic city of Tortosa (Kirchner et al. 2014). 

 

• Primary documentary research. For the later medieval period an extensive body of 

documentary evidence exists and this PhD has only scraped the surface of this material. 

It has been beyond the scope of this PhD to undertake a comprehensive review of these 

documents which would, in part, require new archival research. There are two principal 

areas where the evidence from these documentary sources can provide valuable 

information. Firstly, documents produced immediately following the Christian conquests 

may shed light on the range of crops cultivated in the preceding Islamic period. Similar 

approaches to this have been undertaken in other areas of al-Andalus (e.g. Trillo San José 

2004; Kirchner et al. 2014; Kirchner 2018). Secondly, the documentary evidence would 

add more nuance to our understanding of the range of crops cultivated during the later 

medieval period. This could form a key component of discussions over the transition from 

an ‘Islamic’ agricultural system to a later medieval or feudal one. The degree of continuity 

between these two periods a key aspect of research in Iberia. 

 

• Charcoal analysis. It was beyond the scope of this PhD to undertake the analysis of 

charcoal, which could in itself be another project. Charcoal could help to corroborate the 

picture presented by the analysis of the archaeobotanical dataset, providing valuable 

evidence for arboriculture and viticulture. In particular, charcoal may better reflect local 

cultivation since the seeds from dried fruits (e.g. figs, raisins) recovered in 

archaeobotanical assemblages could reflect traded items. Methodologically, Terral and 

Durand (2006) also highlight that it may be possible to distinguish between irrigated and 

rainfed olives through charcoal anatomy. It has generally been thought there was an 

expansion in irrigated arboriculture following the Islamic conquests (e.g. Glick 2005:72-
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75) and the application of this methodological approach could provide an insight into 

this. 

 

• Stable carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) isotope analysis of plant remains. 

There is significant potential in expanding the use of the stable isotopes of carbon, 

nitrogen and sulphur to investigate in greater detail agriculture and patterns of land-use. 

As this PhD has demonstrated, stable carbon isotope analysis of cereal grains, rachises 

and pulse seeds can provide a valuable insight into irrigated and rainfed agriculture. This 

approach could also be extended to remains of fruits (e.g. grape, fig, walnut) and there is 

a methodological basis for this (see, for example, de Souza et al. (2005) and Gómez‐

Alonso et al. (2010) on carbon isotopes in grape vines). The use of nitrogen isotopes to 

investigate manuring in cereals and pulses is well-established and this could also be 

undertaken for the samples analysed in the PhD (Bogaard et al. 2007; Fraser et al. 2011). 

For example, it is likely that rainfed cereals received no manure, whilst irrigated cereals 

could have been manured (cf. Watson 1983:125). However, the interpretation of plant 

nitrogen isotope values in Mediterranean regions can be complicated by aridity (and 

salinity) which can significantly increase δ15N values (Styring et al. 2016a; Bogaard et al. 

2018). Finally, sulphur isotopes may provide evidence for crop provenance and 

cultivation in different areas of the landscape since they are (in part) influenced by 

geology and soil conditions (Nitsch et al. 2019b). For example, in the present-day Huecha 

Valley, irrigated agriculture is primarily undertaken within areas of Quaternary river 

terrace deposits, whilst rainfed cereal cultivation predominates in areas of Tertiary 

sedimentary geology. The cultivation of crops in these different areas may be 

distinguishable using sulphur isotope analysis, especially when combined with carbon 

isotope analysis to identify irrigated/rainfed cultivation. Ultimately, applying a multi-

isotope approach in conjunction with evidence from arable weeds could allow greater 

discrimination of changes in agriculture. 

 

• Further archaeobotanical research. The most obvious and pressing requirement is for 

further archaeobotanical research to be undertaken. In the first instance, the sampling 

of a wider range of sites in the Huecha Valley would cover some of the gaps in the current 

evidence. In particular, evidence from Roman sites, early Islamic sites (8th-10th century) 

and sites immediately post-dating the Christian conquest (c.12th century). The approach 

adopted in this PhD highlights the potentially rich archaeobotanical datasets which can 
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be obtained from multiple, small-scale excavations (cf. Rippon et al. 2014:216). Secondly, 

research in different areas of Iberia would provide a valuable comparison to the evidence 

analysed for this PhD. Given the widely varying climate and geography of the Iberian 

Peninsula, the development of agriculture in different regions no doubt also differed. For 

example, archaeobotanical research in the south of the peninsula with its milder climate 

(and even sub-tropical climate in some coastal areas) might be expected to produce the 

best evidence for the introduction of new crops in the Islamic period. Certainly, the 

documentary sources allude to the introduction of new crops in the south (e.g. Martínez 

Enamorado 2003:114-116). The priority contexts for identifying the introduction of new 

crops would in the first case be waterlogged deposits. Whilst waterlogged deposits are 

very rare, they might be expected to occur in wells and cities, especially those in coastal 

locations (cf. Pérez-Jordà et al. 2017). The few waterlogged deposits sampled to date in 

Iberia have revealed a great diversity of remains (e.g. Rua dos Correiros: Bugalhâo and 

Queiroz 2005, Banco de España: Teira Brión 2015). Secondly, cesspits/latrines with 

mineralised preservation also hold significant potential, particularly in charting changes 

in diets and the introduction of new fruit species (cf. Greig 1996; Amichay et al. 2019). In 

comparison, charred archaeobotanical assemblages provide the best indication of the 

arable component of economies (van der Veen 2007). 

 

  



 
 

166 
 

Bibliography 

 

Abad Asensio, J.M. 2006. Algunas ordenanzas medievales de la Comunidad de aldeas de Teruel. 
Aragón en la Edad Media 19: 25-38. 

Acién Almansa, M. 1999. Poblamiento indígena en al-Andalus e indicios del primer poblamiento 
andalusí. Al-Qanṭara 20: 47-64. 

Acién Almansa, M. and Manzano Moreno, E. 2009. Organización social y administración política 
en Al-Ándalus bajo el emirate. Territorio, Sociedad y Poder 2: 331-348. 

Acién Almansa, M.P. 2008. Poblamiento y sociedad en el al-Andalus: un mundo de ciudades, 
alquerías y husun, pp.141-168 in Iglesia Duarte, J.I. (ed.), Cristiandad e Islam en la Edad Media 
hispana: XVIII Semana de Estudios Medievales, Nájera, del 30 de julio al 3 de agosto de 2007. 
Logroño: Instituto de Estudios Riojanos 

Agencia Estatal de Meteorología [AEMET] (2019). Visor del Atlas climático de la Península y 
Baleares, 1971-2000. Madrid: Agencia Estatal de Meteorología. Available at: 
http://agroclimap.aemet.es. 

Aguilera, I. 2014. Un capitel visigodo hallado en la iglesia de San Bartolomé de Borja (Zaragoza). 
Cuadernos de Estudios Borjanos 17: 13-34. 
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Lautensach, H. 1960. Maurische Züge im geographischen Bild der iberischen Halbinsel. Bonn: 
Bonner Geographische Abhandlungen. 
 
Lerín de Pablo, J. 1999. Relaciones económicas y pleitos del monasterio de Veruela con sus 
convecinos en los siglo XII al XVIII. Cuadernos de Estudios Borjanos 41-42: 43-99. 
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Pietro Brogiolo, G. and Chavarría i Arnau, A. 2008. El final de las villas y las transformaciones del 

territorio rural en Occidente (siglos V-VIII), pp.193-214 in C. Fernández Ochoa, V. García Entero 

and F. Gil Sendin (eds.), Las "villae" tardorromanas en el Occidente del Imperio. Gijón: Trea. 

Pinilla, V. 2006. The development of irrigated agriculture in twentieth-century Spain: a case study 
of the Ebro basin. Agricultural History Review 54: 122-141. 

Pinto Da Silva, A. R. 1988. A paleobotánica na arqueología portuguesa. Resultados desde 1931 a 
1987. pp.5–49 in F. Queiroga, I. Sousa and C. Oliveira (eds), Actas do Encontro Palaeocologia e 
Arqueologia. Câmara Municipal: Vila Nova de Famalicâo. 

Pluscowksi, A., Boas, A.J. and Gerrard, C. 2011. The ecology of crusading: Investigating the 
environmental impact of holy war and colonisation at the frontiers of medieval Europe. Medieval 
Archaeology 55: 192-225. 

Ponsot, P. 1971. Les Morisques, la culture irriguée du blé et le problème de la décadence de 
l'agriculture espagnole au XVIIe siècle. Un témoignage sur la Vega de Tarazona. Mélanges de la 
Casa de Velázquez 7: 237-262. 

Pradat, B. and Ruas, M.P. 2017. Plante importée ou acclimatée: le sorgho (Sorghum bicolor (L.) 
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Figure 1.1: Map showing the location of the study areas within the north-east of the Iberian 

Peninsula. Stars 1a and 1b indicate the location of the Teruel study area (Islamic period sites). 

Star 2 indicates the location of the Huecha Valley, Zaragoza, study area (early medieval, Islamic 

and later medieval period sites). See Tables 2.1-2.2, Chapter 2, for further details on the sites 

investigated. 
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Figure 1.2: Map showing the areas of the Iberian Peninsula under Islamic rule between the c.9th-

15th centuries, in the context of the wider early Islamic world in the c.9th-11th centuries. 

Illustration by the author, based on data in Kennedy (2002). Place names underlined in red were 

capitals of Taifa states (11th century).  
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Latin name (Common name) 

Cereals (exc. Millets) 

Avena sp. (large >2mm, Oat)  
Cerealia (indeterminate cereal) 
Hordeum sp. (Barley) 
Hordeum vulgare L. (Hulled Barley) 
Hordeum vulgare var. nudum (Naked Barley) 
Hordeum distichon L. (2-row Hulled Barley)  
Hordeum vulgare L. (6-row Hulled Barley) 
Secale cereale L. (Rye) 
Triticum sp. (Wheat) 
Triticum aestivum L./durum Desf. (Free-threshing Wheat) 
Triticum aestivum L. (Bread-type Wheat) 
Triticum dicoccon Schrank (Emmer Wheat) 
Triticum durum Desf. (Durum-type Wheat) 
Triticum monococcum L. (Einkorn Wheat) 

Millets 

Panicum miliaceum L. (Broomcorn Millet) 
Setaria italica (L.) Beauv. (Foxtail Millet) 

Fruits/Nuts 

Celtis australis L. (Hackberry) 
Corylus avellana L. (Hazel) 
Ficus carica L. (Fig) 
Morus alba/nigra L. (White/Black Mulberry) 
Juglans regia L. (Walnut) 
Olea europaea L. (Olive) 
Prunus amygdalus Bätsch (Almond) 
Prunus avium L. (Wild/Sweet Cherry) 
Prunus cerasus L. (Sour Cherry) 
Prunus persica (L.) Bätsch (Peach) 
Vitis vinifera L. (Grape) 

Pulses 

Lathyrys cicera L. (Red Pea) 
Lathyrus satvus L. (Grass Pea) 
Lens culinaris Medicus (Lentil) 
Pisum sativum L. (Pea) 
Vicia ervilia (L.) Willd. (Bitter Vetch) 
Vicia faba L. (Broad bean) 

Oil/Fibre Crops 

Linum usitatissimum L. (Flax) 
Camelina sativa (L.) Crantz. (Gold-of-pleasure) 

Other 

Allium sativum L. (Garlic) 

 

Table 2.3: Latin and common names for cereals, millets, fruits/nuts, pulses, oil/fibre crops and 

other crops analysed in this PhD research.  



 
 

214 
  

  

Taxa 
H

ab
itat/ 

Eco
lo

gy 
A

n
n

u
al/ 

P
eren

n
ial 

O
n

se
t 

p
erio

d
 

D
u

ratio
n

 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Au 

Sep 

Oct 

Nov 

Dec 

A
g

ro
stem

m
a

 g
ith

a
g

o
 

A
rab

le
 

A
n

n
u

al 
In

ter. 
Lo

n
g 

- 
- 

- 
(+) 

(+) 
(+) 

+ 
+ 

+ 
+ 

- 
- 

A
ven

a
 fa

tu
a

 
A

rab
le

 
A

n
n

u
al 

In
ter. 

Sh
o

rt 
- 

- 
- 

(+) 
+ 

+ 
(+) 

- 
- 

- 
- 

- 

C
a

rex sp
. 

D
am

p
/w

et gro
u

n
d

 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

C
en

ta
u

rea
 sp

. 
A

rab
le

 
A

n
n

u
al 

In
ter. 

M
ed

iu
m

 
- 

- 
- 

- 
+ 

+ 
+ 

+ 
+ 

- 
- 

- 

C
h

en
o

p
o

d
iu

m
 a

lb
u

m
 typ

e
 

R
u

d
eral 

A
n

n
u

al 
Early/In

ter. 
Lo

n
g 

- 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
(+) 

C
o

n
vo

lvu
lu

s a
rven

sis 
R

u
d

eral 
P

eren
n

ial 
In

ter. 
M

ed
iu

m
 

- 
- 

- 
+ 

+ 
+ 

+ 
+ 

+ 
- 

- 
- 

Fu
m

a
ria

 sp
. 

R
u

d
eral 

A
n

n
u

al 
Early/In

ter. 
Lo

n
g 

- 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

- 
- 

G
a

liu
m

 a
p

a
rin

e 
R

u
d

eral 
A

n
n

u
al 

In
ter. 

Sh
o

rt 
- 

- 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
- 

- 

G
la

u
ciu

m
 co

rn
icu

la
tu

m
 

A
rab

le/R
u

d
eral 

A
n

n
u

al 
In

ter. 
Sh

o
rt 

- 
- 

- 
+ 

+ 
+ 

- 
- 

- 
- 

- 
- 

H
yo

scya
m

u
s n

ig
er 

R
u

d
eral 

A
n

n
u

al 
In

ter. 
M

ed
iu

m
 

- 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
- 

- 
- 

Lith
o

sp
erm

u
m

 sp
. 

A
rab

le/W
id

e n
ich

e
 

A
n

n
u

al 
Early/In

ter. 
Lo

n
g 

- 
- 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
- 

- 
- 

M
a

lva
 n

eg
lecta

 typ
e

 
R

u
d

eral 
A

n
n

u
al 

Early/In
ter. 

Lo
n

g 
- 

- 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
- 

- 

M
ed

ica
g

o
 a

ra
b

ica
/p

o
lym

o
rp

h
a

 
R

u
d

eral 
A

n
n

u
al 

Early/In
ter. 

M
ed

iu
m

 
- 

- 
+ 

+ 
+ 

+ 
+ 

- 
- 

- 
- 

- 

N
eslia

 a
p

icu
la

ta
/p

a
n

icu
la

ta
 

A
rab

le/R
u

d
eral 

A
n

n
u

al 
In

ter. 
Sh

o
rt 

- 
- 

- 
+ 

+ 
+ 

- 
- 

- 
- 

- 
- 

P
la

n
ta

g
o

 la
n

ceo
la

ta
 

G
rasslan

d
/R

u
d

eral 
A

n
n

u
al 

In
ter. 

M
ed

iu
m

 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
+ 

- 
- 

- 

P
o

lyg
o

n
u

m
 a

vicu
la

re 
R

u
d

eral 
A

n
n

u
al 

Early/In
ter. 

Lo
n

g 
- 

- 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
- 

- 

P
o

lyg
o

n
u

m
 co

n
vo

lvu
lu

s 
A

rab
le/R

u
d

eral 
A

n
n

u
al 

In
ter. 

M
ed

iu
m

 
- 

- 
- 

- 
+ 

+ 
+ 

+ 
- 

- 
- 

- 

P
o

rtu
la

ca
 o

lera
cea

 
R

u
d

eral 
A

n
n

u
al 

Early/In
ter. 

Lo
n

g 
- 

- 
(+) 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
(+) 

- 

R
a

p
h

a
n

u
s ra

p
h

a
n

istru
m

 
A

rab
le

 
A

n
n

u
al 

In
ter. 

M
ed

iu
m

 
- 

- 
(+) 

+ 
+ 

+ 
+ 

- 
- 

- 
- 

- 

Seta
ria

 cf. verticilla
ta

/virid
is 

R
u

d
eral 

A
n

n
u

al 
Late

 
M

ed
iu

m
 

- 
- 

- 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
- 

So
la

n
u

m
 n

ig
ru

m
 

R
u

d
eral 

A
n

n
u

al 
In

ter. 
M

ed
iu

m
 

- 
- 

- 
- 

+ 
+ 

+ 
+ 

+ 
+ 

- 
- 

U
rtica

 p
ilu

lifera
 

R
u

d
eral 

A
n

n
u

al 
Early/In

ter. 
Lo

n
g 

- 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
- 

- 
- 

V
a

cca
ria

 p
yra

m
id

a
ta

 
A

rab
le

 
A

n
n

u
al 

In
ter. 

Sh
o

rt 
- 

- 
(+) 

+ 
+ 

+ 
(+) 

- 
- 

- 
- 

- 

 Tab
le 2.4

: Eco
lo

gical in
fo

rm
atio

n
 fo

r w
ild

/w
eed

 taxa (id
en

tified
 to

 sp
e

cies), classified
 acco

rd
in

g to
 h

ab
itat, an

n
u

al/p
eren

n
ial life fo

rm
, flo

w
erin

g o
n

set 

p
e

rio
d

, d
u

ratio
n

 o
f flo

w
erin

g p
erio

d
 (ad

ap
ted

 fro
m

 B
o

gaard
 e

t al. 2
0

0
1

) an
d

 flo
w

erin
g m

o
n

th
s. ‘(+)’ d

en
o

tes less typ
ical flo

w
erin

g p
erio

d
. ‘In

ter’ refers 

to
 ‘in

term
ed

iate’. See text fo
r referen

ces. 

  



 
 

215 
  

 
Araus et 

al. (1997) 
Wallace et 
al. (2013) 

Riehl et 
al. (2014) 

Flohr et al. 
(2019) 

This PhD 

      
Free-threshing wheat      

Well-watered >17.5‰ >17‰ n/a >17.5-18‰ >17‰ (16.8-19.5‰) 

Moderately watered n/a 16-17‰ n/a n/a n/a 

Poorly watered n/a <16‰ n/a c.<15‰ <17‰ (15.1-16.8‰) 

      
Hulled barley      

Well-watered >18‰ 18.5‰ n/a >18.5-19‰ >18.5‰ (18.0-19.7‰) 

Moderately watered n/a 17-18.5‰ n/a n/a n/a 

Poorly watered n/a <17‰ <16-17‰ <16.5‰ <17‰ (15.2-19.2‰) 
      

 

Table 2.5: Summary of interpretative models used to identify irrigation/drought stress based on 

cereal grain ∆13C values. Data for free-threshing wheat grains, 2-row/6-row hulled barley grains. 

For simplicity, ‘well-watered is used to refer to ‘irrigated’ defined by Araus et al. (1997), and 

‘poorly watered’ is used to ‘drought stress’ defined by Riehl et al. (2014). Approximate water-

status bands used in this PhD research, with numbers in parentheses indicating the range of 

values, see Figure 2.2 for details.  

  



 
 

216 
  

Studies 
Broad bean Lentil 

Rainfed Irrigated Rainfed Irrigated 

Araus et al. (1997a) 14.9‰ 
 

16.7 ‰ 
(16.0-17.9‰) 

- - 

     

Wallace et al. (2013) 16.1 ± 1.1‰ 17.7 ± 1.5‰ 14.8 ± 0.8‰ 14.9 ± 0.4‰ 

   16.0 ± 0.3‰ 16.3 ± 0.3‰ 

    16.6 ± 0.6‰ 

    18.6 ± 0.5‰ 

     

Bogaard et al. (2018) - 18.6 ± 0.2‰* - 17.3 ± 0.2* 

     
This PhD <17‰ >17‰ <17‰ >17‰ 
     

 

Table 2.6: Relationship between ∆13C values and irrigation for broad beans and lentils. Data within 

parenthesis indicates range. *Comparative data from Bogaard et al. (2018) for a sub-humid 

environment with high rainfall (703mm) in northern Morocco is also included to indicate ∆13C 

values for well-watered broad beans and lentils. Approximate water-status bands used in this PhD 

research also indicated. 
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 Huecha Valley Teruel 

Site Bureta 
La Mora 

Encantada 
Palacio de 
Bulbuente 

El Quemao 

Period Early medieval 
(6th-8th) 

Islamic 
(10th-12th) 

Later medieval 
(14th) 

Islamic 
(10th-12th) 

Cereal grains     

Free-threshing wheat 5 19 35 25 
Hulled barley 6 41 50 20 
Rye 5 5 10 5 
Emmer wheat - - 5 - 

Cereal rachis segments     

Durum wheat - 15 - - 
Bread wheat - 9 - - 

Pulse seeds     

Broad beans - - 20 - 
Lentils - 5 - 10 

Total 16 94 120 60 

 

Table 2.7: Samples analysed in this PhD research for stable carbon isotope analysis. Note that 

only sites with large and well preserved assemblages have been selected for analysis. 
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Scale Description 
Charring 

temperature (oC): 
Cereal grains 

Charring 
temperature (oC): 

Pulse seeds 

P1 Perfect, no noticeable distortion 200-210oC 215oC 

P2 
Epidermis/testa virtually intact. Slight puffing 
noticeable. 

220-240oC 215-260oC 

P3 Epidermis/testa incomplete. Some distortion. 250oC >260oC 

P4-P6 
Epidermis/testa incomplete. Clear/gross 
distortion. Clinkered. 

>250oC >260oC 

 

Table 2.8: Scale used to record the preservation level for cereal grains, cereal rachis segments 

and pulse seeds for stable carbon isotope analysis. Most samples analysed fall into the ‘P1-P2’ 

category, none of the samples analysed are within the ‘P4-P6’ category. Adapted from Hubbard 

and al-Azm (1990), with approximate charring temperatures taken from Braadbaart et al. (2004), 

Braadbaart and van Bergen (2005), Charles et al. (2015), Nitsch et al. (2015). Comparative data 

for cereal rachis segments is not available and they are assumed to follow a similar pattern to 

cereal grains, though they are likely to be more sensitive to temperature changes (cf. Boardman 

and Jones 1990). 
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Figure 2.1: Excavation, sampling and flotation at La Mora Encantada, a 10th-12th century Islamic 

settlement near Bulbuente, Huecha Valley. Photographs by the author.   
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Figure 2.2: Box plots of ∆13C values for free-threshing wheat and hulled barley cultivated under 

rainfed and irrigated conditions across the Mediterranean in semi-arid environments (NE Spain, 

SE Spain, Morocco, Syria, Jordan). Hulled barley n=130, with irrigated (n=32) and rainfed (n=98). 

Free-threshing wheat n=72, with irrigated (n=32) and rainfed (n=40). The whiskers reflect the 

minimum and maximum values, the grey/blue box reflects the interquartile range and the vertical 

black line reflects the median. Data compiled from: Craufurd et al. (1991), Araus et al. (1997a, 

1997b, 2003), Merah et al. (1999), Voltas et al. (1999), Monneveux et al. (2006), Wallace et al. 

(2013), Fiorentino et al. (2012), Riehl et al. (2014), Bogaard et al. (2018), Flohr et al. (2019). 
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Sample Trench Context Period Centuries Context type Vol. (L) 

1, 5 1 8 Islamic 11th-12th Occupation deposit 16 

2, 4 1 8 Islamic 11th-12th Occupation deposit 17 

3 1 3 Islamic 11th-12th Occupation deposit 11 

6 1 8 Islamic 11th-12th Occupation deposit 15 

7 1 3 Islamic 11th-12th Occupation deposit 7 

8 1 8 Islamic 11th-12th Occupation deposit 14 

9 3 18 Islamic 11th-12th Occupation deposit 8 

10 3 18 Islamic 11th-12th Occupation deposit 5 

11 3 18 Islamic 11th-12th Occupation deposit 13 

12 3 18 Islamic 11th-12th Occupation deposit 6 

13 3 25 Islamic 11th-12th Occupation deposit 6 

14 3 18 Islamic 11th-12th Occupation deposit 12 

15 3 25 Islamic 11th-12th Occupation deposit 6 

16 3 18 Islamic 11th-12th Occupation deposit 13 

17 3 18 Islamic 11th-12th Occupation deposit 8 

Total Sample Vol. (L)       157 

 

Table 3.1: Details of the features/contexts sampled, Cabezo de la Cisterna. Compare with Figures 

3.3-3.4. 
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    Sum 

Cereal Grain   

Indet. grain 49 
Oat grain 1 
Barley grain 5 
Hulled barley grain 4 
Wheat grain 3 
Free-threshing wheat* grain 10 
Rye grain 5 
Cereal Chaff   

Indet culm node 10 
Indet. rachis 2 
Barley* rachis 7 
Free-threshing wheat rachis 1 
Rye rachis 6 
Millets   

cf. Foxtail millet grain 1 
Pulses   

Indeterminate seed 1 
Lentil* seed 4 
Bitter vetch seed 1 
Fruits/nuts   

Fig seed 3 
Mulberry fruitstone 1 
cf. Grape pedicle 1 
Other crops   

Flax capsule (fg.) 3 
Wild/weed taxa   

Asperula/Galium sp. seed 7 
Chenopodium album type seed 1 
Chenopodium sp. seed 18 
Fabaceae (<2mm) seed 1 
Galium sp. seed 1 
Medicago sp. seed 1 
Plantago sp. seed 1 
Poaceae spp. (>1mm) caryopsis 13 
Polygonaceae spp. nutlet 1 
Polygonum convolvulus nutlet 1 
Portulaca oleracea seed 1 
Rumex sp. nutlet 1 
Silene sp. seed 1 

Total count (charred)   166 

 

Table 3.2: Summary of archaeobotanical evidence, Cabezo de la Cisterna. The symbol ‘*’ indicates 

that plant remain includes ‘cf.’ identifications. Key to semi-quantitative scale: (+) = Trace, 1-5 

items; + = Rare, 5-20 items; ++ = Occasional, 20-50; +++ = Common, 50-100; ++++ = Abundant, 

>100 items; +++++ = Extremely abundant, >500 items.  
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Table 3.3: Ratio calculations of chaff, weed seeds and grain, Cabezo de la Cisterna. Samples have 

been combined together for Areas 1 and 3, to ensure that the ratio calculations contain Ratios 

have only been calculated for samples containing >30 plant remains. There are too few 

grains/rachises of each cereal species to calculate separate ratios. Note the low ratios of chaff to 

grain, whilst the ratios of weed seeds to grain are slightly higher in area 1. Calculations based on 

van der Veen (2007). 

  

Sample Area 1 Area 3 

Contexts 3, 8 18, 25 

Culm node: Grain 0.03 0.24 

Rachis: Grain 0.13 0.29 

Weed seeds: Grain 0.92 0.37 
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Table 3.4: Direct AMS 14C dates obtained for this PhD. The location of SUERC-88605 is referred to 

in Figure 3.7. The location of SUERC-88606 is not visible in Figure 3.7.  

Context Sample  Sample Submitted 
Uncalibrated 

Date (BP) 
Calibrated 

Date (cal CE) 
δ13C 
‰ 

Lab Number 

       

(17-23) 4 Hulled barley grain 1095 ± 24 890-1000 -22.3 
SUERC-
88605 

(18-11) 10 
Free-threshing wheat 

grain 
976 ± 24 1010-1160 -24.1 

SUERC-
88606 
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Sample Trench Context Period Centuries Context type 
Vol. 
(L) 

       

1 1 17-19 Islamic 10th-12th Rubble/mixed occupation, fill of silo 
[17-18] 

43 

2 1 17-20 Islamic 10th-12th Ash-rich deposit, fill of silo [17-18] 30 

3 1 17-10 Islamic 10th-12th Ash-rich occupation deposit 65 

4 1 17-23 Islamic 10th-12th Thick ash-rich deposit, fill of silo 
[17-18] 

165 

5 1 17-24 Islamic 10th-12th Ash-rich deposit, fill of silo [17-18] 38 

6 1 17-25 Islamic 10th-12th Basal fill of silo [17-18] 31 

7 1 17-21 Islamic 10th-12th Ash-rich deposit, below floor 
surface 

25 

8 1 17-13 Islamic 10th-12th Occupation deposit 40 

9 1 17-8 Islamic 10th-12th Ash-rich occupation deposit 42 

10 1 18-19 Islamic 10th-12th Ash-rich deposit 40 

11 1 18-16 Islamic 10th-12th Ash-rich (occupation?) deposit, NE 
of patio 

20 

12 5 18-16 Islamic 10th-12th Ash-rich (occupation?) deposit, NW 
of patio 

10 

13 5 18-19 Islamic 10th-12th Small ash-rich deposit 11 

14 5 18-20 Islamic 10th-12th Occupation/refuse deposit 21 

17 5 18-23 Islamic 10th-12th Small ash-rich deposit 5 

18 5 18-25 Islamic 10th-12th Floor/occupation surface 12 

19 5 18-24 Islamic 10th-12th Ash-rich deposit 10 

20 5 18-34 Islamic 10th-12th Ash-rich deposit, filling drain in 
patio 

10 

21 5 18-36 Islamic 10th-12th Occupation/refuse deposit below 
floor surface (18-25) 

17 

22 5 18-37 Islamic 10th-12th Occupation/floor surface below 
(18-36) 

6 

23 5 18-19 Islamic 10th-12th Ash-rich deposit 3 

Total Sample Vol. (L)        644 

 

Table 3.5: Details of the features/contexts sampled, El Quemao. Compare with Figures 3.7-3.9. 
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    Sum     Sum 
Cereal Grain   

   
Indet. grain 1297 Chenopodium album type seed 421 

Barley* grain 358 Chenopodium sp.  seed 18 

Hulled barley* grain 203 Fabaceae (<2mm) seed 3 

Wheat* grain 59 Fumaria sp.  seed 1 

Free-threshing wheat* grain 321 Galium sp.  seed 52 

Rye* grain 64 cf. Glaucium corniculatum  seed 1 

Emmer/Einkorn wheat grain 2 cf. Lamiaceae nutlet 164 

Cereal Chaff   Lithospermum sp. seed 27 

Indet. culm node 23 Malva sp. seed 12 

Indet. rachis 42 Medicago sp. seed 6 

Barley rachis 39 Medicago/Meliotus seed 2 

6-row hulled barley* rachis 8 Meliotus sp. seed 1 

Free-threshing wheat rachis 14 Papaver sp. seed 5 

cf. Bread wheat rachis 1 cf. Plantago sp. seed 4 

Durum wheat* rachis 12 Poaceae spp. fl. base 2 

Rye rachis 119 Poaceae spp. tw. awn  1 

Wheat spikelet fork 1 Poaceae spp. (<1mm) caryopsis 138 

Millets  252 Poaceae spp. (>1mm) caryopsis 120 

Broomcorn millet grain 250 Polygonaceae spp.  nutlet 8 

Broomcorn/Foxtail millet grain 2 Polygonum aviculare  nutlet 1 

Pulses   Polygonum convolvulus nutlet 22 

Indet. seed 105 Portulaca oleracea seed 8 

cf. Red pea* seed 18 Rubiaceae seed 1 

Lentil* seed 164 Setaria caryopsis 159 

Pea (Type A)* seed 54 verticillata/viridis   

Pea (Type B)* seed 18 cf. Setaria sp. caryopsis 26 

Bitter vetch* seed 13 Silene sp. seed 41 

Fruits/nuts   Vicia sp. (<2mm) seed 7 

Hackberry fruitstone 3 Mineralised remains  
 

Fig* seed 198 Fig seed 37 

Fig* fruit (fg.) 13 Gold-of-pleasure seed 2 

Mulberry fruitstone 3 Wheat grain 3 

Grape pedicel 2 Indet. cereal grain (fg.) 1 

Grape pip 6 Grape seed/pip 4 

Indet. fruitstone/nutshell fg. 26 Agrostemma githago L. seed 1 

Other crops  3 cf. Chenopodium sp. seed 1 

Flax seed 1 Cirsium sp. achene 1 

Flax capsule (fg.) 1 Indeterminate/Unidentified  + 

Garlic clove 1 Glaucium corniculatum seed 2 

Wild/weed taxa   Papaver sp. seed 10 

Boraginaceae seed 1 Poaceae spp. (<1mm) caryopsis 1 

Apiaceae fruit 2 Silene sp. seed 132 

Apserula/Galium sp.  seed 1 Silene sp. seed 132 

Asperula sp. seed 2 Total count (charred)  4700 

Avena sp. <2mm) caryopsis 2 Total count (mineralised)   195 

 

Table 3.6: Summary of archaeobotanical evidence, El Quemao. The symbol ‘*’ indicates that plant 

remain includes ‘cf.’ identifications. Key to semi-quantitative scale: (+) = Trace, 1-5 items; + = 

Rare, 5-20 items; ++ = Occasional, 20-50; +++ = Common, 50-100; ++++ = Abundant, >100 items; 

+++++ = Extremely abundant, >500 items.  
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Table 3.7: Stable isotope results, El Quemao, displaying the mean, minimum and maximum 

values. The symbol ‘*’ denotes that samples come from closely related contexts within the same 

feature. ‘n’ refers to number of single entity grain/seed samples analysed. Data plotted in Figure 

3.11. 

  

Context Centuries Sample Type n 
Mean  

(∆13C ‰) 
Min. 

 (∆13C ‰) 
Max.  

(∆13C ‰) 

17-23/24* 10th  6-row hulled barley grain 10 17.0 ± 0.5 16.5 17.8 

  Free-threshing wheat grain 10 15.9 ± 0.6 14.5 16.6 

  Rye grain 5 16.3 ± 0.8 15.3 17.8 

18-11 11th-12th  6-row hulled barley grain 10 17.7 ± 0.8 16.7 18.8 

  Free-threshing wheat grain 10 16.4 ± 0.8 15.3 17.6 

  Lentil seed 10 17.8 ± 0.8 16.4 18.9 
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Table 3.8: Ratio calculations of chaff and weed seeds to grain, El Quemao. Ratios have only been 

calculated for samples containing >30 charred remains. Note the high ratios of rye rachises in 

three samples. Compare with Figure 3.12.  

Sample 3 4 5 10 11 14 19 20 

Context 17-10 17-23 17-24 18-11 18-16 18-20 18-24 18-34 

Barley rachis: grain 1.6 0 0 0.1 1 0.3 0 0 

Rye rachis: grain 30 0.3 - 8 6.8 - - - 

Free-threshing wheat 
rachis: grain 

0 0 0 0.1 6 0 0.1 - 
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Figure 3.1: Map showing the location of the sites in the Teruel study area.  
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Figure 3.2: Aerial photograph showing the location of Cabezo de la Cisterna. (Google Earth 2019, 

base map). 
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Figure 3.3: Site and Trench Plan, Cabezo de la Cisterna, indicating the houses excavated. 

Illustration by the author, adapted from Ortega Ortega (2008) and Villargordo Ros (2016).  
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Figure 3.4: Photographs of Area/House 3, Cabezo de la Cisterna. © C. Villargordo Ros. 
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Figure 3.5: Aerial photograph showing location of El Quemao. (Google Earth 2019, base map). 
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Figure 3.6: Site plan, El Quemao, indicating the courtyard houses and location of trenches where 

samples have been analysed. Illustration by the author, adapted from Villargordo Ros (2018).  
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Figure 3.7: Trench 1 plan, El Quemao, indicated some of the contexts/features sampled. The fill 

of silo [17-18] is directly AMS 14C dated to 890-1000 cal CE (SUERC-88605). Illustration by the 

author, adapted from Villargordo Ros (2018). 
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Figure 3.8: Trench 1 photographs, El Quemao, showing silo [17-18]. © C. Villargordo Ros.  
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Figure 3.9: General photograph of Trench 5, El Quemao, showing central courtyard with drain 

and associated rooms. Photograph by the author.  
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Figure 3.10: Photograph of charred garlic clove from context (11), sample 10. Photograph by the 

author. 
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Figure 3.11: Stable isotope results, El Quemao. Samples with >5 items are represented by box-

plots. The whiskers reflect the minimum and maximum values, the grey reflects the interquartile 

range and the vertical black line reflects the median. The dashed vertical line reflects ‘well-

watered’ (irrigated) hulled barley, the dotted vertical line reflects ‘well-watered’ (irrigated) free-

threshing wheat and lentil (see Wallace et al. 2013, Figure 2.2 and Tables 2.5-2.6). Mean, 

minimum and maximum values presented in Table 3.7. 
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Figure 3.12: Ratios of weed seeds to grain, and rachis to grain, El Quemao. Ratios have only been 

calculated for samples containing >30 weed seeds/rachises/grains, calculated following van der 

Veen (2007). The clustering of samples in the bottom left reflect grain-rich samples, whilst the 

two samples (3, 11) separated on the X axis contain higher rations of rachises and the one sample 

(4) separated out on the Y axis contains a higher proportion of weed seeds. Compare with Table 

3.8 for crop-specific ratios which are presented per sample. 
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Table 4.1: Direct AMS 14C dates, Bureta, obtained for this PhD. The locations of the samples are 

also referred to in Figures 4.7-4.9.  

  

Context Sample  Sample Submitted 
Uncalibrated 

Date (BP) 
Calibrated 

Date (cal CE) 
δ13C ‰ Lab Number 

       

(C5c) 6 Peach fruitstone 1481 ± 24 540-640 -28.0 SUERC-81225 

(C27) 14 Wheat grain 1459 ± 21 560-650 -21.8 SUERC-81226 

(P11) 27 
Free-threshing wheat 

grain 
1346 ± 29 640-770 -21.0 SUERC-80216 

(P29/30) 42 
Free-threshing wheat 

grain 
1474 ± 24 550-640 -23.8 SUERC-81227 
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Sample Trench Context Period Centuries Context type Vol. (L) 

1 C C4A Early med. 6th-7th Fill of pit [C6] 32 

2 C C5A Early med. 6th-7th Fill of pit [C6] 31 

5 C C4C Early med. 6th-7th Fill of pit [C6] 18 

6 C C5C Early med. 6th-7th Fill of pit [C6] 57 

9 C C11 Early med. 6th-7th Levelling deposit, below floor 
[C9] 

57 

10 C C14 Early med. 6th-7th Clay edge of pit [C6] 12 

11 C C15 Early med. 6th-7th Occupation deposit 4 

12 C C18 Early med. 6th-7th Burnt base of pit [C6] 39 

13 C C25 Early med. 6th-7th Occupation deposit, below floor 
[C9] 

60 

14 C C27 Early med. 6th-7th Levelling deposit, below floor 
[C26] 

58 

15 C C32 Early med. 6th-7th Ash-rich fill of robber trench 
[C7] 

44 

16 C C33 Early med. 6th-7th Ash-rich fill of robber trench 
[C7] 

58 

17 C C34 Early med. 6th-7th Ash-rich fill of robber trench 
[C7] 

42 

18 C C9 Early med. 6th-7th Plaster floor 3 

19 C C52 Early med. 6th-7th Ash-rich fill of pit [C61] 34 

20 C C53 Early med. 6th-7th Ash-rich fill of pit [C61] 43 

21 C C54 Early med. 6th-7th Ash-rich fill of pit [C61] 38 

23 C C59 Early med. 6th-7th Clay floor surface? 5 

24 C C24 Early med. 6th-7th Fill of plaster-lined pit [C22] 20 

25 C C8 Early med. 6th-7th Plaster floor 14 

26 C C40 Early med. 6th-7th Ash-rich fill of robber trench 
[C7] 

45 

27 P P11 Early med. 7th-8th Occupation deposit, next to wall 
[P10] 

200 

28 P P15 Early med. 6th-7th Charcoal-rich clay deposit, fill of 
pit [P37] 

10 

29 P P43 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 0.2 

30 P P18 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 25 

31 P P19 Early med. 6th-7th Clay/marl deposit, fill of pit 
[P37] 

20 

32 P P20 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 35 

33 P P22 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 20 

34 P P23 Early med. 6th-7th Clay/marl deposit, fill of pit 
[P37] 

10 

35 P P24 Early med. 6th-7th Charcoal flecked deposit, 
fill of pit [P37] 

2 

36 P P25 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 2 

37 P P26 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 30 

38 P P28 Early med. 6th-7th Sandy deposit, fill of pit [P37] 3 
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Sample Trench Context Period Centuries Context type Vol. (L) 

39 P P29 Early med. 6th-7th Laminated sandy deposit, 
fill of pit [P37] 

3 

40 P P27 Early med. 6th-7th Laminated sandy deposit, 
fill of pit [P37] 

4 

41 P P30 Early med. 6th-7th Sandy deposit, fill of pit [P37] 5 

42 P P29/30 Early med. 6th-7th Ash-rich deposit, fill of pit [P37] 2 

43 P P32 Early med. 6th-7th Sandy charcoal-rich deposit, fill 
of pit [P37] 

20 

44 P P33 Early med. 6th-7th Sandy deposit, fill of pit [P37] 2 

45 P P12 Early med. 6th-7th Fill of pit [P38], cut into pit [P37] 20 

46 P P16 Early med. 6th-7th Sandy deposit, fill of pit [P37] 2 

47 P P14 Early med. 6th-7th Fill of pit [P45], cut into pit [P37] 5 

Total Sample Vol. (L)       1134 

 

Table 4.2: Details of the features/contexts sampled, Bureta. Compare with Figures 4.6-4.7 for 

Trench C and Figures 4.8-4.9 for Trench P.   
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    Sum     Sum 

Cereal Grain      

Indet. grain 154 Chenopodium album type  seed 131 
Oat grain 2 Chenopodium sp.  seed 184 
Barley* grain 34 Fabaceae (<2mm) seed 4 
Hulled barley* grain 25 Galium aparine seed 1 
Wheat* grain 10 Galium sp. seed 9 
Free-threshing wheat* grain 55 Glaucium corniculatum seed 2 
Rye* grain 20 Hippocrepsis sp.  seed 4 
Cereal Chaff   Hyoscyamus niger seed 3 
Indet culm node 17 Lamiaceae nutlet 2 
Indet. rachis 29 Lithospermum sp. seed 2 
Barley rachis 34 Malva neglecta type seed 5 
2-row hulled barley* rachis 8 Malva sp. seed 3 
6-row hulled barley rachis 5 Malvaceae seed 1 
Free-threshing wheat rachis 14 Medicago sp.* seed 53 
Bread wheat* rachis 34 Medicago/Meliotus  seed 7 
Rye rachis 5 Neslia apiculata/paniculata fruit 2 
Emmer wheat glume base 1 cf. Plantago sp.  seed 2 
Millets   Plantago lanceolata seed 2 
Broomcorn millet grain 2 Poaceae spp. (>1mm) caryopsis 25 
cf. Foxtail millet grain 8 Poaceae spp. (<1mm) caryopsis 90 
Pulses   Polygonaceae spp.  nutlet 17 
Indet. seed 3 Polygonum aviculare nutlet 5 
cf. Lentil seed 1 Polygonum convolvulus nutlet 5 
Grass pea seed 8 Portulaca oleracea seed 1 
Bitter vetch seed 1 Raphanus raphanistrum pod 1 
Fruits/nuts   Rubiaceae seed 14 
Indet. fruitstone/nutshell fg. 2 Rumex sp.* nutlet 8 
Fig seed 63 Setaria sp. grain 3 
Mulberry fruitstone 1 Silene sp.  seed 9 
Grape  pip 337 Solanaceae  seed 3 
Grape  pedicel 71 Stellaria sp.  achene 1 
Olive fruitstone 7 Urtica pilulifera achene 1 
Peach fruitstone 1 Viola sp. seed 4 
Wild/sour cherry fruistone (fg.) 7 Vicia sp. (<2mm) seed 3 
Other crops   cf. Viola sp. seed 1 
cf. Flax seed 1 Other   

Coriander fruit/seed 1 Sheep/goat dung pellets ++ 
Wild/weed taxa   Mineralised remains   

Agrostemma githago seed 6 Gold-of-pleasure seed 5 
Amaranthaceae seed 1 Wild cherry fruitstone 1 
Apiaceae fruit 1 Grape pip 7 
Arctostaphylos uva-ursi fruitstone 2 Chenopodium sp. seed 18 
Asperula/Galium sp. seed 1 Indet./Unid. (inc. roots)  ++ 
Asteraceae achene 1 Lamiaceae nutlet 1 
Avena fatua floret base 1 Papaver sp. seed 1 
Boraginaceae  seed 11 Poaceae (<1mm) caryopsis 1 

Carex spp.  nutlet 5 Total count (charred)  1599 
Caryophyllaceae seed 1 Total count (mineralised)   31 

 

Table 4.3: Summary of the archaeobotanical evidence for Trench C and P, Bureta. The symbol ‘*’ 

indicates that plant remain includes ‘cf.’ identifications. Key to semi-quantitative scale: (+) = 

Trace, 1-5 items; + = Rare, 5-20 items; ++ = Occasional, 20-50; +++ = Common, 50-100; ++++ = 

Abundant, >100 items; +++++ = Extremely abundant, >500 items.  
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Sample   15 16 17 19 20 21 

Context   C32 C33 C34 C52 C53 C54 

Trench/Area   C C C C C C 

Context Type   
Ash-rich fill of robber 

trench [C7] 
Ash-rich fill of pit 

[C61] 

Sample vol. (l)   44 58 42 34 43 38 

Flot vol. (ml)   450 550 400 800 750 700 

Charcoal ≥4mm   ++++ ++++ ++++ ++++ ++++ ++++ 

Charred Plant Remains         

Cereal Grain 
       

Indet. Cereal grain 14 7 5 7 8 5 
Barley* grain 1 4 3 3 2 - 
Hulled Barley grain - - - 1 1 - 
Rye grain - - - 1 - - 
Wheat grain 1 - - 1 - - 
Free-threshing Wheat* grain 5 3 3 5 - - 
Cereal Chaff 

       

Indet. Cereal culm node 1 - - 1 2 2 
Indet. Cereal rachis 1 - - - 2 7 
Indet. Cereal rachis (sub-)/basal - - - - 3 1 
Barley rachis - - - 4 3 - 
2-row Hulled Barley* rachis - - - - 3 5 
6-row Hulled Barley rachis 2 - - - - - 
Rye rachis (sub-)/basal - - - 1 - - 
Free-threshing Wheat rachis 2 1 1 - - - 
Free-threshing Wheat rachis (sub-)/basal 1 - - - - - 
Bread-type Wheat* rachis 8 3 - 3 2 5 
Millets 

       

cf. Foxtail Millet) grain 2 - 1 2 - - 
Fruits/Nuts 

       

Hazel nuthsell (fg.) 1 - - - - - 
Fig seed - 2 - - 1 - 
Mulberry fruitstone - - - 1 - - 
Indeterminate fleshy fruit (fg.) - (+) - - - - 
Olive fruitstone (fg.) - 1 - - - - 
Wild/Sour Cherry fruitstone (fg.) - - 1 - - 2 
Grape seed/pip 8 13 5 5 2 1 
Grape pedicel 1 8 3 24 6 3 
Pulses 

       

cf. Lentil seed 1 - - - - - 
Wild/weed taxa 

       

Agrostemma githago  seed 2 2 2 - - - 
Amaranthaceae seed - - 1 - - - 
Apiaceae fruit - - - - - 1 
Avena fatua floret base - 1 - - - - 
Boraginaceae seed 2 9 - - - - 
Chenopodium album type seed 4 6 8 - 12 4 
Chenopodium sp. seed 50 18 4 9 - - 
Fabaceae (small <2mm) seed - 1 - - - 1 
Galium sp.  seed - 2 3 - - - 
Glaucium corniculatum  seed - - - 2 - - 
Hippocrepsis sp. seed 2 1 - - - - 
Hyoscyamus niger seed 2 - - - 1 - 
Lithospermum sp. seed 1 1 - - - - 
Malva sp.  seed - 1 - - - - 
Malvaceae  seed - - - 1 - - 
Medicago sp. seed 11 2 3 4 1 - 
cf. Medicago sp. seed - 2 - - - - 
Medicago/Meliotus  seed 2 - 1 - 1 - 
Neslia apiculata/paniculata  fruit 1 1 - - - - 
cf. Plantago sp.  seed - 1 - - - - 
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Sample   15 16 17 19 20 21 

Context   C32 C33 C34 C52 C53 C54 

Plantago lanceolata  seed - - 1 - - - 
Poaceae spp. (large >1mm) caryopsis - - 2 - - 2 
Poaceae spp. (small <1mm) caryopsis - - 19 6 14 4 
Polygonaceae spp. nutlet 2 1 1 - - - 
Polygonum aviculare nutlet - 1 - - - - 
Polygonum convolvulus nutlet 2 1 1 - - - 
Portulaca oleracea seed - - - - - 1 
Rubiaceae  seed 5 - - 4 3 - 
Rumex sp. nutlet - - 1 - - - 
cf. Rumex sp. nutlet - 2 - - - - 
Silene sp. seed 3 - 1 - - 2 
Solanaceae seed - 1 - - - - 
Urtica pilulifera achene 1 - - - - - 
Vaccaria pyramidata  seed 1 3 - - - - 
Vicia sp. (small <2mm) seed - - 2 - - - 
Viola sp. seed - 1 - - - - 
Mineralised Remains 

       

Gold-of-pleasure seed - - - 3 2 - 
Indet. Cereal grain (fg.) - 1 - - - - 
cf. Chenopodium sp. seed - - - - - 1 
Chenopodium sp. seed - 1 - 4 12 - 
Indet./Unid. (inc. roots) 

 
- - + (+) - - 

Papaver sp. seed - - - 1 - - 
Grape seed/pip - 2 - - - - 
Bio-mineralised Remains 

       

Boraginaceae seed 2 1 - - - 1 
Other Charred Plant Remains 

       

Fused charred material (conglomerations) 
 

- ++ - +++ +++ ++ 
Indeterminate small <4mm leaves 

 
- - - (+) - - 

Indeterminate/Unidentified 
 

++ + + + + - 
Monocotyledon stems (small <2mm) culm node/base + - - (+) - - 
Other Charred Non-Plant Remains 

       

Sheep/Goat dung (fg.) + + (+) - - - 
Other Mineralised Non-Plant Remains 

       

cf. Dog coprolite (fg.) - - - (+) - - 

 

Table 4.4: Summary of samples rich in crop processing debris and weeds, Bureta. Note that 

samples also include mineralised remains, sheep/goat dung and a probable dog coprolite. The 

symbol ‘*’ indicates that plant remain includes ‘cf.’ identifications. Key to semi-quantitative scale: 

(+) = Trace, 1-5 items; + = Rare, 5-20 items; ++ = Occasional, 20-50; +++ = Common, 50-100; ++++ 

= Abundant, >100 items; +++++ = Extremely abundant, >500 items.  

 

 

 

 

 

 

 

 



 
 

247 
  

Context 
Period/ 

Centuries 
Sample Type n 

Mean 
(∆13C ‰) 

Min. 
 (∆13C ‰) 

Max. 
(∆13C ‰) 

P11 7th-8th   6-row hulled barley grain 6 17.0 ± 0.9 16.0 18.4 

P18/24/26* 6th-7th  Free-threshing wheat grain 5 15.0 ± 1.2 13.4 16.37 

P26 6th-7th Rye grain 5 15.0 ± 2.6 12.6 18.5 

 

Table 4.5: Stable isotope results, Bureta, displaying the mean, minimum and maximum values. 

The symbol ‘*’ denotes that samples come from closely related contexts within the same feature. 

‘n’ refers to number of single entity grains analysed. Data plotted in Figure 4.11. 
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Context Sample  Sample Submitted 
Uncalibrated 

Date (BP) 
Calibrated 

Date (cal CE) 
δ13C ‰ Lab Number 

       

(4004) 1 Hulled barley grain 969 ± 28 1010-1160 -23.0 SUERC-74722 

(1013) 7 Hulled barley grain 977 ± 28 990-1160 -21.9 SUERC-74723 

 

Table 4.6: Direct AMS 14C dates, La Mora Encantada, obtained as part of the Moncayo 

Archaeological Survey. The locations of the samples are indicated in Figures 4.14-4.15.  
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Sample Trench Context Period Centuries Context type 
Vol. 
(L) 

1 4 4004 Islamic 10th-12th Refuse deposit, base of silo 4 120 

2 1 1003 Islamic 10th-12th Ash-rich deposit, NW edge, top 6 

3 1 1004 Islamic 10th-12th Ash-rich deposit, NW edge, base 55 

4 1 1007 Islamic 10th-12th Ash-rich deposit, top 63 

5 1 1011 Islamic 10th-12th Ash-rich deposit, middle I 60 

6 1 1012 Islamic 10th-12th Ash-rich deposit, middle II 59 

7/12 1 1013 Islamic 10th-12th Ash-rich deposit, base 79 

8 1 1015 Islamic 10th-12th Floor/Occupation surface 27 

9 1 1016 Islamic 10th-12th Building/levelling deposit 36 

10 3 3005 Islamic 10th-12th Ash-rich deposit 40 

11 5 5008 
Later 

medieval? 
14th? Base of silo [5008] 20 

Total Sample Vol. (L)       570 

 

Table 4.7: Details of the features/contexts sampled, La Mora Encantada. Compare with Figures 

4.14 and 4.16.  
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(Overleaf). Table 4.8: Summary of the charred archaeobotanical evidence, La Mora Encantada 

(excluding mineralised plant remains). The symbol ‘*’ indicates that plant remain includes ‘cf.’ 

identifications. Key to semi-quantitative scale: (+) = Trace, 1-5 items; + = Rare, 5-20 items; ++ = 

Occasional, 20-50; +++ = Common, 50-100; ++++ = Abundant, >100 items; +++++ = Extremely 

abundant, >500 items.  
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    Sum     Sum 

Cereal Grain  
 

   
Indet. grain 108 Avena sp. fl. base 2 
Oat grain 5 Boraginaceae seed 2 
Barley grain 45 Carex spp. nutlet 16 
Hulled barley grain 182 Caryophyllaceae seed 2 
cf. Naked barley grain 3 Centaurea sp. achene 2 
Wheat grain 26 Chenopodium album type seed 57 
Free-threshing wheat grain 59 Chenopodium sp.  seed 143 
Rye grain 22 Cirsium sp. achene 1 
Cereal Chaff  

 Convolvulus arvensis nutlet 1 
Indet. culm node 126 Cyperaceae  nutlet 2 
Indet culm/straw (fg.) +++ Fabaceae (small <2mm) seed 3 
Indet. lemma/palaea 17 Fumaria sp. seed 2 
Indet. rachis 115 Galium aparine seed 1 
Barley rachis 105 Galium sp.  seed 2 
6-row hulled barley rachis 113 Hyoscyamus niger* seed 6 
Free-threshing wheat rachis 81 cf. Lamiaceae nutlet 2 
Bread wheat rachis 49 Lamiaceae  nutlet 1 
Durum wheat rachis 74 Wild Linum sp. capsule (fg.) 1 
Rye rachis 79 Lithospermum sp. seed 1 
Millets  

 Malva sp. seed 6 
Broomcorn millet grain 250 Malvaceae  seed 4 
Broomcorn/Foxtail millet grain 29 Medicago sp.* fruit/pod 5 
Foxtail millet grain 15 Medicago sp.* seed 13 
Pulses  

 Medicago/Meliotus sp. seed 1 
Indet. seed 6 Meliotus sp. seed 3 
Lentil seed 10 Papaver sp. seed 1 
Pea seed 1 Poaceae spp. Fl. base 20 
Grass/Red pea seed 6 Poaceae spp. tw. awn 7 
Bitter vetch seed 4 Poaceae spp. (<1mm) caryopsis 31 
Fruits/nuts  

 Poaceae spp. (>1mm) caryopsis 313 
Blackberry fruitstone 206 Polygonaceae spp. nutlet 5 
cf. Pomegranate seed 1 Polygonum aviculare nutlet 1 
Fig* seed 435 Polygonum convolvulus nutlet 2 
Fig fruit fg. 1 Portulaca oleracea  seed 1 
Grape fruit/skin berry/skin 35 Raphanus raphanistrum  pod/fruit 1 
Grape pedicel pedicel 185 cf. Reseda sp. seed 51 
Grape pip pip 153 Rubiaceae seed 4 
Indet. fruitstone/nuts. fg. 32 Rumex sp. nutlet 5 
Mulberry fruitstone 22 Sambucus sp. fruitstone 152 
Olive fruitstone 1 cf. Sambucus sp.  rachis ++ 
Walnut nutshell (fg.) 201 Silene sp.  seed 14 
Wild cherry fruitstone 2 Solanaceae seed 2 
Wild/sour cherry fruitstone (fg.) 14 Solanum nigrum  seed 2 
Other crops  

 Stellaria sp. achene 1 
Flax seed 65 cf. Thalictrum sp.  achene 4 
Wild/weed taxa  

 Vaccaria pyramidata* seed 13 
Agrostemma githago  seed 1 Verbena officianalis seed 1 
Amaranthaceae seed 7 Vicia sp. (<2mm) seed 2 
Apiaceae fruit 1 Other   
Apserula/Galium sp.  seed 1 Insect  + 
Asteraceae spp. achene 67 Textile fg. ++ 
Atriplex sp. seed 2    

Avena fatua floret base 1 Total count (charred)   3879 
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Table 4.9: Summary of the mineralised archaeobotanical evidence, La Mora Encantada (excluding 

charred plant remains).  

  

Mineralised remains     

Fig seed 1 
Grape pip 4 
Broomcorn millet grain 1 
Wild cherry fruitstone 1 

Total count (mineralised) 7 
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Table 4.10: Stable isotope results, La Mora Encantada, displaying the mean, minimum and 

maximum values. The symbol ‘*’ denotes that samples come from closely related contexts within 

the same feature. ‘n’ refers to number of single entity grain/seed/rachis samples analysed. Data 

plotted in Figure 4.19. 

  

Context 
Period/ 

Centuries 
Sample Type n 

Mean 
(∆13C ‰) 

Min. 
 (∆13C ‰) 

Max. 
(∆13C ‰) 

1013* 10th-12th  6-row hulled barley grain 21 15.6 ± 1.5 13.3 18.2 

  Free-threshing wheat grain 14 16.9 ± 0.9 15.3 18.1 

  Rye grain 5 15.1 ± 1.0 13.6 16.3 

  Bread wheat rachis 9 17.9 ± 1.9 15.0 20.2 

  Durum wheat rachis 10 17.6 ± 1.5 15.7 20.0 

  Lentil seed 5 16.1 ± 0.5 15.4 16.8 

3005 10th-12th 6-row hulled barley grain 5 15.3 ± 1.1 13.8 16.5 

  Free-threshing wheat grain 5 17.4 ± 1.1 15.9 18.5 

  Durum wheat rachis 5 19.7 ± 0.5 19.2 20.7 

4004 10th-12th 6-row hulled barley grain 15 15.8 ± 1.9 13.8 19.1 
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Table 4.11: Ratio calculations of chaff and weed seeds to grain, La Mora Encantada. Ratios have 

only been calculated for samples containing >30 charred remains. Note the high ratios of rachises 

to grains and weed seeds to grains in samples 7/12 and 10 compared to sample 1. Calculations 

based on van der Veen (2007). 

  

Sample 1 7/12 10 

Context 4004 1013 3005 

Culm node: Grain 0.01 0.82 0.27 

Rachis: Grain 0.15 3.23 3.71 

Weed seeds: Grain 0.41 3.83 4.56 

Hulled Barley rachis: Grain 0.22 1.89 1.38 

Rye rachis: Grain - 3.55 3.00 

Free-threshing wheat rachis: grain 0.06 5.75 4.64 
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Table 4.12: Details of the features/contexts sampled, Iglesia de San Miguel de Ambel. 

 

 

 

 

 

 

 

 

Sample Trench Context Period Centuries Context type Vol. (L) 

1 - S2 I Islamic 12th Fill of silo [S2], base 5 

2 - S2 II Islamic 12th Fill of silo [S2] 3 

3 - S9 I Islamic 12th Fill of silo [S9], base 1 

4 - S9 II Islamic 12th Fill of silo [S9] 1 

5 - C1 Islamic? - Fill of tank [C1] 2 

6 - H1 Islamic? - Hearth 0.1 

7 - H2 Islamic? - Area around hearth 2 

Total Sample Vol. (L)       14.1 
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Table 4.13: Summary of archaeobotanical evidence, Iglesia de San Miguel de Ambel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Sum 

Cereal Grain   

Indet. grain 1 
Free-threshing wheat grain 1 
Rye grain 1 
Cereal Chaff   

Culm nodes/bases  1 
6-row hulled barley rachis 1 
Millets   

Broomcorn/Foxtail millet grain 1 
Fruits/nuts   

Indet. fleshy fruit fg. 1 
Grape pedicel pedicel 1 
Wild/weed taxa   

Chenopodium sp. seed 1 
Fabaceae (<2mm) seed 1 
Galium sp. seed 4 
Lithospermum sp. seed 1 
Malva sp. seed 1 
Papaver sp. seed 2 
Poaceae sp. floret base 1 
Mineralised remains   

Broomcorn millet grain 1 
Lamiaceae nutlet 1 

Total count (charred)  19 
Total count (mineralised)   2 



 
 

257 
  

Context Sample  Sample Submitted 
Uncalibrated 

Date (BP) 
Calibrated 

Date (cal CE) 
δ13C ‰ Lab Number 

       

(B38) 12 Emmer wheat grain 704 ± 28 1260-1385 -20.7 SUERC-74721 

(H104) 9 Oat grain 597 ± 34 1290-1420 -25.2 SUERC-68398 

(H104) 9 Barley grain 708 ± 36 1220-1390 -26.4 SUERC-68397 

(B500) - 
Elm roundwood 

charcoal 
626 ± 34 1280-1400 -23.7 SUERC-68396 

 

Table 4.14: Direct AMS 14C dates, Palacio de Bulbuente, from different areas of the 

destruction/conflagration deposit. Obtained as part of the Moncayo Archaeological Survey. 

Contexts (H104) and (B500) date the mid-14th century destruction/conflagration deposit. 
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Sample Trench Context Period Centuries Context type 
Vol. 
(L) 

8 H H88 Later med. 14th-16th Mixed deposit, terrace 15 

9 H H104 Later med. 14th Burnt occupation layer 15 

10 B B38 Later med? pre-14th? Iron slag deposit, pit [B35/45] 0.5 

11 B B38 Later med? pre-14th? Iron slag deposit, pit [B35/45] 0.6 

12/13 B B38 Later med? pre-14th? Iron slag deposit, pit [B35/45] 0.7 

14 B B44 Later med? pre-14th? Iron slag deposit, pit [B35/45] 0.2 

15 B B34 Later med? pre-14th? Sand deposit, pit [B35/45] 1.5 

16 B B32 Later med? pre-14th? Charcoal layer, pit [B35/45] 1.5 

17 B B29 Later med? pre-14th? Iron slag deposit, pit [B35/45] 4 

18 B B51 Later med? pre-14th? Mixed deposit, pit [B35/45] 4 

19 B B53 Later med. 14th Conflagration deposit 40 

20 B B57 Later med. 14th Burnt occupation layer 30 

21 Z Z22 C-3 Later med. 14th Burnt occupation layer 3 

22 Z Z22 D-2 Later med. 14th Burnt occupation layer 10 

23 Z Z22 D-3 Later med. 14th Burnt occupation layer 20 

24 Z Z22 D-4 Later med. 14th Burnt occupation layer 11 

25 Z Z22 E-2 Later med. 14th Burnt occupation layer 11 

26 Z Z22 E-3 Later med. 14th Burnt occupation layer 13 

27 Z Z22 E-4 Later med. 14th Burnt occupation layer 10 

28 Z Z22 D-5 Later med. 14th Burnt occupation layer 3 

29 Z Z22 E-5 Later med. 14th Burnt occupation layer 3 

30 Z Z7 D-2 III Later med. 14th Conflagration deposit, base 5 

31 Z Z7 D-3 III Later med. 14th Conflagration deposit, base 10 

33 Z Z7 E-5 III Later med. 14th Conflagration deposit, base 3 

35 Z Z7 E-3 III Later med. 14th Conflagration deposit, base 6 

36 Z Z7 E-2 III Later med. 14th Conflagration deposit, base 7 

37 Z Z7 E-1 III Later med. 14th Conflagration deposit, base 11 

38 Z Z7 D-5 III Later med. 14th Conflagration deposit, base 2 

39 Z Z7 C-3 II Later med. 14th Conflagration deposit, middle 5 

40 Z Z7 E-3 II Later med. 14th Conflagration deposit, middle 12 

41 Z Z7 E-2 II Later med. 14th Conflagration deposit, middle 10 

42 Z Z7 D-3 II Later med. 14th Conflagration deposit, middle 12 

44 Z Z7 E-2 II Later med. 14th Conflagration deposit, middle 11 

45 Z Z7 D-2 II Later med. 14th Conflagration deposit, middle 2 

46 Z Z7 E-1 II Later med. 14th Conflagration deposit, middle 14 

47 Z Z7 D-4 III Later med. 14th Conflagration deposit, base 14 

48 Z Z7 E-4 II Later med. 14th Conflagration deposit, middle 11 

49 Z Z7 E-5 II Later med. 14th Conflagration deposit, middle 5 

50 Z Z7 D-5 II Later med. 14th Conflagration deposit, middle 4 
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Sample Trench Context Period Centuries Context type 
Vol. 
(L) 

51 Z Z7 C-3 II Later med. 14th Conflagration deposit, middle 4 

63 Z Z7 D-4 II Later med. 14th Conflagration deposit, middle 13 

64 Z Z7 E-4 II Later med. 14th Conflagration deposit, middle 10 

66 Z Z7 E-2 II Later med. 14th Conflagration deposit, middle 9 

67 Z Z7 E-3 II Later med. 14th Conflagration deposit, middle 13 

68 Z Z7 D-3 II Later med. 14th Conflagration deposit, middle 10 

74 Z Z22 E-1 Later med. 14th Burnt occupation layer 10 

75 Z Z7 C-3 II Later med. 14th Conflagration deposit, middle 10 

76 Z Z 7 E-1 II Later med. 14th Conflagration deposit, middle 10 

77 Z Z7 D-2 II Later med. 14th Conflagration deposit, middle 14 

78 Z Z7 E-4 III Later med. 14th Conflagration deposit, base 14 

79 Z Z7 E-4 II Later med. 14th Conflagration deposit, middle 10 

80 Z Z7 D-4 II Later med. 14th Conflagration deposit, middle 13 

Total Sample Vol. (L)       481 

 

Table 4.15: Details of the features/contexts sampled, Palacio de Bulbuente. Compare with Figure 

4.24. 
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    Sum     Sum 

Cereal Grain      

Indet. grain 2115 Plum family fruitstone (fg.) 1 
Oat* grain 197 Walnut nutshell (fg.) 47 
Barley grain 146 Wild cherry fruitstone 2 
Hulled barley* grain 810 Wild/sour cherry fruistone (fg.) 47 
cf. Naked barley grain 2 Other crops   

Wheat grain 260 Flax seed 1 
Free-threshing wheat* grain 887 Wild/weed taxa   

Rye* grain 1045 Agrostemma githago seed 3 
Emmer wheat* grain 78 Amaranthaceae  seed 2 
cf. Emmer/Einkorn  grain 14 Avena fatua* floret base 3 
Cereal Chaff   Avena sp. floret base 1 
Culm nodes/bases  59 Avena sp. (<2mm) caryopsis 16 
Culm/straw frag.  +++ Chenopodium sp. seed 34 
Indet rachis 22 Fabaceae (<2mm) seed 3 
Barley rachis 8 Fumaria sp. seed 4 
6-row hulled barley rachis 13 Galium aparine seed 1 
Free-threshing wheat rachis 10 Galium sp.  seed 9 
Bread wheat rachis 7 Malva neglecta type seed 40 
Durum wheat rachis 9 Malva sp.  seed 19 
Rye rachis 368 Malvaceae seed 10 
Millets   Medicago sp.* seed 20 
Broomcorn millet grain 116 Papaver sp. seed 4 
Broomcorn/Foxtail millet grain 2 Plantago lanceolata seed 2 
Foxtail millet grain 1 Poaceae spp.  tw. awn 2 
Pulses   Poaceae spp. (>1mm) caryopsis 15 
Indeterminate seed 48 Poaceae spp. (<1mm) caryopsis 10 
Lentil seed 22 Polygonaceae spp. nutlet 5 
Pea seed 14 Polygonum convolvulus nutlet 2 
Broad bean seed 104 Rubiaceae seed 1 
Fruits/nuts   Rumex sp. nutlet 2 
Almond nutshell (fg.) 1 Sambucus sp. fruitstone 13 
Blackberry fruitstone 4 Silene sp. seed 3 
Fig seed 34 Vicia sp. (<2mm) seed 29 
Grape fruit/skin berry 8 Other   
Grape* berry (fg.) 11 Sheep/goat dung pellets (+) 
Grape pressed skin 1 Insects  + 
Grape pedicel 31 Textile fg. (+) 
Grape pip 182 Mineralised remains   
Indet. fruitstone/nuts. fg. 50 Olive fruitstone (fg.) 2 
Mulberry fruitstone 2 Grape pip 6 
Olive fruitstone 2    

Peach fruitstone 3 Total count (mineralised) 8 
Peach  fruitstone (fg.) 3 Total count (charred)   7040 

 

Table 4.16: Summary of archaeobotanical evidence, Palacio de Bulbuente. The symbol ‘*’ 

indicates that plant remain includes ‘cf.’ identifications. Key to semi-quantitative scale: (+) = 

Trace, 1-5 items; + = Rare, 5-20 items; ++ = Occasional, 20-50; +++ = Common, 50-100; ++++ = 

Abundant, >100 items; +++++ = Extremely abundant, >500 items. 
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Table 4.17: Stable isotope results, Palacio de Bulbuente, displaying the mean, minimum and 

maximum values. The symbol ‘*’ denotes that samples from multiple areas of the 

destruction/conflagration deposit have been combined. ‘n’ refers to number of single entity 

grain/seed samples analysed. Data plotted in Figure 4.26. 

 

 

  

Context 
Period/ 

Centuries 
Sample Type n 

Mean  
(∆13C ‰) 

Min. 
 (∆13C ‰) 

Max.  
(∆13C ‰) 

Z7/22/B53/57* Mid-14th   6-row hulled barley grain 50 17.8 ± 1.0 15.1 19.4 

  Free-threshing wheat grain 35 17.0 ± 1.2 14.6 19.4 

  Emmer wheat grain 5 17.0 ± 0.8 16.1 17.8 

  Rye grain 10 17.0 ± 1.5 15.2 20.1 

  Broad bean seed 20 18.4 ± 1.0 16.7 20.6 



 
 

262 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.18: Ratio calculations of chaff, weed seeds and grain, Palacio de Bulbuente. Ratios have 

only been calculated for samples containing >30 rachises/grains. Compare with Figure 4.27. Note 

the high ratios of rye rachises to grains, particularly in samples 39 and 51. Calculations based on 

van der Veen (2007). 

  

 
  Rachis:Grain  

Sample 
Number 

Context 
Hulled Barley Rye 

Free-threshing 
wheat 

19 B53 0.00 0.03 0.01 

20 B57 0.00 0.04 0.01 

22 Z22 D-2 0.18 0.92 0.07 

23 Z22 D-3 0.20 1.25 0.11 

24 Z22 D-4 0.00 0.38 0.00 

25 Z22 E-2 0.03 0.10 0.10 

27 Z22 E-4 0.11 0.64 0.00 

31 Z7 D-2 III 0.00 1.18 0.04 

36 Z7 E-2 III 0.00 0.35 0.00 

37 Z7 E-1 III 0.00 0.25 0.00 

39 Z7 C-3 II 0.10 5.40 0.06 

40 Z7 E-3 II 0.00 0.00 0.00 

44 Z7 E-2 II 0.00 1.11 0.00 

46 Z7 E-1 II 0.00 0.17 0.00 

47 Z7 D-4 III 0.00 0.00 0.00 

48 Z7 E-4 II 0.00 0.00 0.00 

51 Z7 C-3 II 0.00 3.75 1.00 

63 Z7 D-4 II 0.00 1.67 0.00 

67 Z7 E-3 II 0.00 0.00 0.00 

68 Z7 D-3 II 0.00 0.20 0.00 

75 Z7 C-3 II 0.00 0.28 0.06 

77 Z7 D-2 II 0.00 0.29 0.00 
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Sample Trench Context Period Centuries Context type 
Vol. 
(L) 

1 Tank 1 1003 Later medieval 14th Refuse deposit (upper) 86 

2 Tank 2 1004 Later medieval 14th Refuse deposit (lower) 36 

Total Sample Vol. (L)       122 

 

Table 4.19: Details of the features/contexts sampled, Castillo de Grisel. Compare with Figure 4.29. 
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Table 4.20: Summary of archaeobotanical evidence, Castillo de Grisel. The symbol ‘*’ indicates 

that plant remain includes ‘cf.’ identifications.  

  

    Sum 

Cereal Grain   

Indet. grain 5 
Free-threshing wheat grain 2 
Oat grain 1 
Barley grain 3 
Hulled barley grain 2 
Wheat grain 4 
Free-threshing wheat grain 2 
Cereal Chaff   

Free-threshing wheat rachis 2 
Indet. rachis 2 
Millets   

Broomcorn millet* grain 3 
Pulses   

Indet. seed 3 
Pea seed 1 
Fruits/nuts   

Fig seed 2 
Grape pedicel 1 
Grape pip 1 
Grape berry 6 
Grape* berry (fg.)  

Indet. fleshy fruit fg. 1 
Indet. fruitstone/nutshell  fg. 3 
Walnut nutshell (fg.) 6 
Other crops   

Flax* seed 24 
Wild/weed taxa   

Agrostemma githago  seed 1 
Chenopodium sp.  seed 1 
Poaceae sp. twisted awn  8 
Poaceae spp. (>1mm) caryopsis 2 
Rumex sp. nutlet 1 
Thalictrum cf. flavum  achene 1 
Mineralised remains   

Fig seed 1 
Grape pip 3 
Indet.   (+) 

Total count (mineralised)  4 
Total count (charred)   86 
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Sample Trench Context Period Centuries Context type Vol. (L) 

1 - 42 Later medieval 15th Fill of silo/cistern 150 

2 - 44 Later medieval 15th Fill of silo/cistern 80 

3 - 46 Later medieval 15th Fill of silo/cistern 65 

4 - 47 Later medieval 15th Fill of silo/cistern 80 

Total Sample Vol. (L)       375 

 

Table 4.21: Details of the features/contexts sampled, Casa Conventual de Ambel. 
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    Sum 

Cereal Grain   

Indet. grain 3 
Wheat grain 1 
Hulled barley grain 1 
Rye grain 1 
Cereal Chaff   

Culm node  1 
Millets   

Broomcorn/Foxtail millet grain 1 
Pulses   

Indet. seed 1 
Pea seed 1 
Other crops   

Flax seed 2 
Fruits/nuts   

Indet. fleshy fruit fg. 1 
Walnut nutshell (fg.) 1 
Olive nutshell (fg.) 1 
Grape pip 4 
Grape berry  

Grape* berry (fg) 17 
Mineralised remains   

Indet.  (+) 
Grape pip 3 

Total count (mineralised)  3 
Total count (charred)   36 

 

Table 4.22: Summary of archaeobotanical evidence, Casa Conventual de Ambel. The symbol ‘*’ 

indicates that plant remain includes ‘cf.’ identifications. Key to semi-quantitative scale: (+) = 

Trace, 1-5. 
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Figure 4.1: Map showing the location of the sites in the Huecha Valley (Zaragoza) study area.  
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Figure 4.2: Photograph showing Huecha Valley study area. Monacyo is visible in the background, 

whilst the foreground shows vines, almonds, and rainfed cereal fields. Photograph by the author. 
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Figure 4.3: Photograph showing Huecha Valley study area, looking towards Borja. The foreground 

shows olive groves. Photograph by the author. 
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Figure 4.4: Aerial photograph showing the location of Bureta. (Google Earth 2019, base map). 
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Figure 4.5. Drone photograph of Bureta during excavation. Trench C is located at the top of the 

photograph, whilst Trench P is in the foreground. Photograph © C. Gerrard. 
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Figure 4.6: Drone photograph of Trench C, Bureta. The scale bars are positioned over pit [C6] 

which cuts through a plaster floor surface. The linear feature running diagonally across the 

bottom of the trench is wall-cut/robber trench C7, which also cuts through earlier plaster floor 

surfaces. Photograph © C. Gerrard. 
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Figure 4.7: Photographs of features/contexts sampled in Trench C, Bureta. A: Pit [C6] directly AMS 
14C dated to 540-640 cal CE (SUERC-81225), B: Wall-cut/robber trench [C7], C: Pit [C61], and D: 

Detail of earlier floor surfaces and occupation deposits visible the section of wall-cut [C7], 

including a plaster floor surface building/levelling deposit (C11) below a plaster floor, ash-rich 

occupation deposit (C25), plaster floor surface (C26), building/levelling deposit (C27) directly AMS 
14C dated to 560-650 cal CE (SUERC-81226) and natural geology (C28). Photographs A, B, D by the 

author, photograph C © C. Gerrard. 
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Figure 4.8: Photographs of features/contexts sampled in Trench P, Bureta. A: charcoal-rich 

occupation deposit (P11) directly AMS 14C dated to 640-770 cal CE (SUERC-80216); B; pit [P37]; 

C: detail of ash-rich deposits between clay/marl lenses in pit [P37], directly AMS 14C dated to 550-

640 cal CE (SUERC-81227). Compare with Table 4.1. Photograph A by the author, photographs B 

and C © C. Gerrard. 
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Figure 4.9: Simplified section drawing of pit [P37] in Trench P, Bureta. Basal fill directly AMS 14C 

dated to 550-640 cal CE (SUERC-81227). Compare with Table 4.1. Illustration by the author, 

adapted from Gutiérrez and Gerrard (2019). 
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Figure 4.10: Relationship between Chenopodium sp. (items/L) and sheep/goat dung. Each bar 

represents an individual sample, with ‘X’ indicating that Chenopodium sp. seeds are absent. 

A=samples where sheep/goat dung is absent (light grey bars). B = samples where possible 

dung?/conglomerations (white bars) and definite sheep/goat dung (black bars). It should be 

noted that no charred plant remains were present in 6 samples.   
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Figure 4.11: Stable isotope results, Bureta. The dashed vertical line reflects ‘well-watered’ 

(irrigated) hulled barley, the dotted vertical line reflects ‘well-watered’ (irrigated) free-threshing 

wheat (see Wallace et al. 2013, Figure 2.2 and Table 2.5). For mean, minimum and maximum 

values see Table 4.5.  
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Figure 4.12: Aerial photograph showing the location of La Mora Encantada. (Google Earth 2019, 

base map). 
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Figure 4.13: Drone photographs showing trench locations, La Mora Encantada. Photograph © C. 

Gerrard. 
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Figure 4.14: Plan and section of Trench 1, La Mora Encantada. Base of ash-rich deposit directly 

AMS 14C dated to 990-1160 cal CE (SUERC-74723). Compare with Table 4.6. Illustration by the 

author, adapted from (Gerrard and Gutiérrez 2018b). 
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Figure 4.15: Plan and section of Trench/Silo 4, La Mora Encantada. Basal fill of silo directly AMS 
14C dated to 1010-1160 cal CE (SUERC-74722). Compare with Table 4.6. Illustration by the author, 

adapted from Gerrard and Gutiérrez (2018b). 
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Figure 4.16: Photograph of Trench/Silo 4, La Mora Encantada, during excavation. Photograph by 

the author. 
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Figure 4.17: Rachis segments of 6-row hulled barley (left), durum wheat (centre) and bread 

wheat (right). All recovered from context (1013), sample 7. Photographs by the author.  
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Figure 4.18: Probable grape-pressings. ‘Pressed’ grape skin (A), whole and fragmented seeds/pips 

and pedicles (B), immature whole grape (C), ‘pressed’ grape skin (D) All recovered from context 

(1013), sample 7. Photographs by the author.  
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Figure 4.19: Stable isotope results, La Mora Encantada. Samples with >5 items are represented 

by box-plots. The whiskers reflect the minimum and maximum values, the grey reflects the 

interquartile range and the vertical black line reflects the median. The dashed vertical line reflects 

‘well-watered’ (irrigated) hulled barley, the dotted vertical line reflects ‘well-watered’ (irrigated) 

free-threshing wheat and lentil (see Wallace et al. 2013, Figure 2.2 and Tables 2.5-2.6). For mean, 

minimum and maximum values see Table 4.10. 
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4.20: Aerial photograph showing the location of Iglesia de San Miguel de Ambel. The Casa 

Conventual de Ambel is also plotted for reference. (Google Earth 2019, base map). 

 

 

 

 

 

 

 

 

 

 



 
 

287 
  

 

Figure 4.21: Simplified plan of trench excavated within Iglesia de San Miguel de Ambel. The two 

silos sampled are denoted by an ‘*’. Illustration by the author, adapted from Blanco Morte (2007). 
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Figure 4.22: Aerial photograph showing the location of Palacio de Bulbuente. The River Huecha is 

also plotted for reference. (Google Earth 2019, base map). 
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Figure 4.23: General photograph of the building complex, Palacio de Bulbuente. The samples 

were collected from excavations undertaken in the brick/tapial palace, adjoining the tower. Photo 

© C. Gerrard.   
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Figure 4.24: Photographs of mid-14th century conflagration/destruction deposit, Palacio de 

Bulbuente. A: General photo during excavation, with exposed burnt adobes on the left, the 

charred door frame in the centre and burnt roofing tile on the right. The deposit has been cut by 

a later storage container in the top right. B: Detail of the charred door frame; C: detail of burnt 

and smashed pottery vessel. Photographs by the author. 
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Figure 4.25: Pie charts displaying proportions of hulled barley, free-threshing wheat and rye 

displayed by grid. Note that samples from Trench B are not depicted, although the same pattern 

is repeated with similar proportions of all three crops. Grid C-2 has not yet been excavated in the 

photograph.
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Figure 4.26: Stable isotope results, Palacio de Bulbuente. Samples with >5 items are represented 

by box-plots. The whiskers reflect the minimum and maximum values, the grey reflects the 

interquartile range and the vertical black line reflects the median. The dashed vertical line reflects 

‘well-watered’ (irrigated) hulled barley, the dotted vertical line reflects ‘well-watered’ (irrigated) 

free-threshing wheat and lentil (see Wallace et al. 2013, Figure 2.2 and Tables 2.5-2.6). Mean, 

minimum and maximum values are presented in Table 4.17. 
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Figure 4.27: Ratios of weed seeds to grain, and rachis to grain, Palacio de Bulbuente. Ratios have 

only been calculated for samples containing >30 weed seeds/rachises/grains, calculated following 

van der Veen (2007). The clustering of samples in the bottom left reflect grain-rich samples, whilst 

the three samples separated on the right contain higher rations of rachises and/or weed seeds. 

Compare with Table 4.18 for crop-specific ratios which are presented per sample. 
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Figure 4.28: Aerial photograph showing the location of Castillo de Grisel. (Google Earth 2019, base 

map). 
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Figure 4.29: Site and trench plan of Castillo de Grisel. The bottom image is section through the fill 

of Tank 1. Illustration by the author.  



 
 

296 
  

 

Figure 4.30: Aerial photograph showing location of Casa Conventual de Ambel. The Iglesia de San 

Miguel de Ambel is also plotted for reference. (Google Earth 2019, base map). 
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Table 5.1: Comparison between archaeobotanical evidence analysed in this PhD and previous 

archaeobotanical studies in the north-east (Roman and early medieval). See Appendices 13 and 

14 for the full dataset.? = (cf.) identification; + = rare; ++ = occasional; +++ = common. 

 

  

 Roman Early Medieval Early Medieval 

 Previous studies Previous studies This PhD 

Cereals    
Oat + + +? 
Hulled Barley +++ +++ +++ 
Naked Barley + + - 
Rye + ++ + 
Free-threshing Wheat +++ +++ +++ 
Bread-type Wheat + - ++ 
Durum-type Wheat +? - - 
Emmer Wheat + + +? 
Millets    
Broomcorn Millet + + + 
Foxtail Millet - + + 
Oil/Fibre Crops    
Gold-of-pleasure - - + 
Flax - ++ +? 
Pulses    
Grass Pea/Red Pea + + + 
Lentil ++ + + 
Pea ++ + - 
Bitter Vetch + + + 
Broad Bean + + - 
Vetches + + - 
Fruits/Nuts    
Hackberry - + - 
Acorn - + - 
Hazelnut ++ + + 
Melon - +? - 
Fig +++ +++ +++ 
Walnut + + - 
Apple/Pear + - - 
Mulberry - + + 
Olive ++ + + 
Almond + + - 
Sweet Cherry ++ + + 
Sour/Sweet Cherry ++ + + 
Plum ++ +  
Peach ++ - + 
Sloe + + - 
Pomegranate +? - - 
Blackberries + + - 
Grape +++ +++ +++ 
Stone Pine ++ - - 
Herbs, Spices and Other    
Coriander - - + 
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Cereals              

Wheat - X - - - - - X - - - X X 

Oil/Fibre Crops              

Flax - - - - - - X - - - - - - 

Fruits/nuts              

‘Fruit’ X - X - X - X X - X - X X 

Apple - - - - - X - - - - - - X 

Cherry - - - - - - - - - - - - X 

Fig - - - - - - - - - - - - X 

Grape X - X X X - - - - - - - X 

Hazelnut - - - - - - - - - X - - - 

Medlar* - - - - - X - - - - - - - 

Olive - - - - X -  - - - - - - 

Peach - - - - - - - - - - - - X 

Pear - - - - - X - - X - - - X 

Pistachio - - - - - - - - - X - - - 

Service* - - - - - X - - - - - - - 

Sweet chestnut* - - - - - - - - - X - - - 

Walnut - - - - - - - - - X - - - 

Other              

Saffron* - - - - X - - - - - X - - 

 

Table 5.2: Crops recorded in documentary sources for the Islamic period in the north-east. 

Compiled using data from Ortega Ortega (2010), Bramon (2000), Martin Duque (1957) and Cuchí 

Oterino (2005). Crops denoted with an ‘*’ have not been recorded in the archaeobotanical 

record.  
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 Islamic Islamic 

 Previous studies This PhD 

Cereals   
Oat +? +? 
Hulled Barley +++ +++ 
Naked Barley - +? 
Rye + ++ 
Free-threshing Wheat +++ +++ 
Bread-type Wheat + +++ 
Durum-type Wheat - +++ 
Emmer Wheat + - 
Einkorn Wheat  + 
Millets   
Broomcorn Millet - ++ 
Foxtail Millet + + 
Oil/Fibre Crops   
Gold-of-pleasure + - 
Flax + ++ 
Pulses   
Grass Pea/Red Pea - + 
Lentil + + 
Pea - + 
Bitter Vetch + + 
Fruits/Nuts   
Hackberry - + 
Carob + - 
Melon/Cucumber ++ - 
Fig +++ +++ 
Walnut + +++ 
Apple + - 
Apple/Pear + - 
Mulberry - ++ 
Olive + + 
Almond + - 
Sweet Cherry - + 
Sour/Sweet Cherry - + 
Peach + - 
Pomegranate + - 
Blackberries + ++ 
Grape +++ +++ 
Stone Pine + - 
Herbs, Spices and Other   
Celery + - 
Fennel + - 
Garlic - + 
Nigella + - 

 

Table 5.3: Comparison between archaeobotanical evidence analysed in this PhD and previous 

archaeobotanical studies in the north-east (Islamic). See Appendices 13 and 14 for the full 

dataset.? = (cf.) identification; + = rare; ++ = occasional; +++ = common. 
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Cereals Later medieval Later medieval 
 Previous studies This PhD 

Oat + ++ 
Hulled Barley +++ +++ 
Naked Barley + +? 
Rye ++ +++ 
Free-threshing Wheat +++ +++ 
Bread-type Wheat +? + 
Durum-type Wheat +? + 
Emmer Wheat ++ + 
Einkorn Wheat + +? 
Millets   
Broomcorn Millet + ++ 
Foxtail Millet + + 
Sorghum + - 
Oil/Fibre Crops   
Gold-of-pleasure - - 
Flax + + 
Pulses   
Chickpea + - 
Lentil + + 
Pea + + 
Bitter Vetch + + 
Broad Bean + ++ 
Vetches + - 
Fruits/Nuts   
Hackberry + - 
Acorn + - 
Carob + - 
Hazelnut - + 
Melon + - 
Fig +++ ++ 
Walnut + +++ 
Apple/Pear + - 
Mulberry - + 
Olive + + 
Almond + + 
Sweet Cherry - + 
Sour/Sweet Cherry + + 
Plum + +? 
Peach + + 
Blackberries + + 
Grape +++ +++ 

   

Table 5.4: Comparison between archaeobotanical evidence analysed in this PhD and previous 

archaeobotanical studies in the north-east (later medieval). See Appendices 13 and 14 for the full 

dataset.? = (cf.) identification; + = rare; ++ = occasional; +++ = common. 
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Figure 5.1: Maps showing the location of previous archaeobotanical studies undertaken in the 

Iberian Peninsula. Top: Roman sites (black circles), early medieval sites (red diamonds). Bottom: 

Islamic sites (green squares), later medieval/medieval Christian sites (orange triangles). See 

Appendix 13 for information on the sites, and Appendix 14 for the archaeobotanical data. The 

location of the study areas analysed for this PhD are also plotted as stars. 
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Figure 5.2: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on Roman sites (black circles) and early medieval sites (red 

diamonds). See Appendix 13 for information on the sites, and Appendix 14 for the 

archaeobotanical data. The location of the early medieval archaeobotanical evidence analysed 

for this PhD in the Huecha Valley is also plotted as a star. 
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Figure 5.3: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on Islamic sites (green squares). Locations of areas referred 

to the text are also indicated. See Appendix 13 for information on the sites, and Appendix 14 for 

the archaeobotanical data. The location of the Islamic archaeobotanical evidence analysed for 

this PhD in the Huecha Valley, Cabezo de la Cisterna and at El Quemao are also plotted as stars. 
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Figure 5.4: Maps showing the location of previous archaeobotanical studies undertaken in the 

north-east of the Iberian Peninsula on later medieval/medieval Christian sites (orange diamonds). 

Locations of areas referred to the text are also indicated. See Appendix 13 for information on the 

sites, and Appendix 14 for the archaeobotanical data. The location of the later medieval 

archaeobotanical evidence analysed for this PhD in the Huecha Valley is also plotted as a star. 

 


