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Untangling the tree of life: Which partitioning strategies improve phylogenetic
inference?

by Stella FELSINGER

The rate of evolution is known to vary greatly between morphological characters,
which complicates the inference of phylogeny. To accommodate this rate hetero-
geneity, we can group together characters that are expected to evolve at similar
rates. Partitioning by codon position is commonplace in molecular phylogenetics –
for morphological data, no such general rule exists.

Rosa, Melo, and Barbeitos (2019) advocate partitioning characters according to their
homoplasy index on a maximum parsimony tree. A possible concern with this
method is that the choice of tree may influence results in a manner that is not de-
tected by standard model-testing approaches. Such methods rely on a tree to infer
a tree – but what if that first tree is unreliable? I tested homoplasy partitioning
based on a spectrum of trees ranging from a published tree through to completely
random trees, and found that the topology on which homoplasy is calculated does
not affect the topology recovered by Bayesian analysis.

I compared homoplasy partitioning to other partitioning strategies, including
strategies informed by biological criteria: partitioning by character type (Sereno,
2007) and partitioning by anatomy. Using Steppingstone sampling (Xie et al., 2011)
to estimate the fit of each partitioned model, I found that homoplasy is the only
reliable approximator of evolutionary rate.

Partitioning has the capacity to significantly increase model fit, but only homoplasy
partitioning consistently produced better results than an unpartitioned model. No
link between mosaic evolution or character type and evolutionary rates could be
confirmed.

HTTP://WWW.DUR.AC.UK
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Chapter 1

Introduction

1.1 Introduction

The theory of evolution tells us that any two species of plant, animal, fungus, or
bacterium can be traced back to a common ancestor. Understanding how the mil-
lions of species alive on Earth today arose is the central challenge of phylogenetics,
the statistical framework of biology. Phylogenetic methods illuminate the relation-
ships between species and let us view a species in the context of its relatives. We can
compare molecular and morphological information from a group of organisms to
build a phylogenetic tree. Well-constrained phylogenies allow us to identify novel
pathogens (Lanciotti et al., 1999), discover better medicines by targeting known
medicinal plants’ closest relatives (Saslis-Lagoudakis et al., 2012; Rønsted et al.,
2012), target evolutionarily disparate groups of species for conservation (Polasky
et al., 2001), or even infer the behaviour of long-dead animals based on that of their
descendants (Field et al., 2018).

As an organism evolves, its appearance and genetic material change. But not
all characters change at the same rate. We can account for this rate heterogeneity
by partitioning characters into groups that are allowed to evolve under different
models of evolution. While molecular data are typically partitioned by gene or
by codon position, there is no consensus on which partitioning schemes to use for
morphological data. Phylogenetic studies often use only a single partitioning strat-
egy without testing whether it is most suitable for the dataset. The effects of the
partitioning strategy on the topology and branch lengths of the reconstructed tree
have not been studied on morphological datasets.

In order to find out how best to partition morphological datasets, I tested eight
partitioning strategies on five datasets of different animal groups, numbers of char-
acters and taxa, and proportions of fossil taxa. I investigated how variations in the
model affected the topology and branch lengths of the inferred tree as well as the
fit of the model.

Ultimately, partitioning sheds light on what drives morphological evolution —
whether characters that evolve at similar rates are topologically grouped or func-
tionally linked, or whether life stage or character novelty are more influential in
deciding optimal partitions.
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1.2 The evolution of phylogenetic methods

Phylogenetic trees used to be built by hand on the basis of morphology — the more
similar two species look, the more recently they diverged. Modern phylogenetic
methods often use molecular data. The steady accumulation of random mutations
in a DNA sequence can pinpoint divergence times and increase the resolution of
phylogenies at low taxonomic levels. Molecular data allows us to discover cryptic
species, who look identical but do not interbreed, or find that a number of very
different-looking individuals actually belong to a polymorphic species.

Computational methods for sequence analysis and phylogenetics were ioneered
by Margaret Dayhoff in the 1960’s and allowed higher throughput analyses to be
conducted (Felsenstein, 2001; Dayhoff, 1965), so that trees could incorporate more
taxa and more characters. Among the earliest tree selection criteria was Maximum
Parsimony, which aims to minimise the net amount of evolution on a tree. It op-
erates on the assumption that the tree requiring the fewest evolutionary changes is
the best one. When a character changes more often than necessary, this is attributed
to convergent evolution, or homoplasy.

Parsimony remains a popular method for inferring trees, but is today rivalled
by Bayesian phylogenetics. Bayesian methods take advantage of modern comput-
ing power by testing a large number of parameter combinations and finding the as-
sociated trees with the highest likelihood. Bayesian phylogenetics allow the incor-
poration of prior beliefs about evolution and hypotheses on evolutionary patterns.
The most popular program for Bayesian interference, MrBayes (Ronquist et al.,
2012), models morphological character evolution with the Mk model (Lewis, 2001).
This model effectively treats morphological characters like bases in a DNA se-
quence. This is an imperfect approximation of their actual evolutionary behaviour,
mainly due to the strong heterogeneity in evolutionary rates among morphological
characters. A popular approach to improving the Mk model’s fit is to partition the
characters into subsets thought to share similar evolutionary patterns.

1.3 Successful partitioning

1.3.1 Formulating morphological characters

Molecular characters all tend to follow the same statement scheme. For example,
DNA or RNA sequences consist of individual nucleotides. Each position in a se-
quence can be considered a character with four possible states corresponding to
the four bases A, T, C, and G. In contrast, morphological characters are much more
heterogeneous. It is challenging to condense an organism’s physiology into a col-
lection of statements on the presence, absence, or state of isolated features — to do
so in a way that can be generalised to a larger group of taxa is very difficult indeed.

Comprehensive frameworks exist to guide taxonomists in the process of charac-
ter selection and coding, and there is a need for more authors to follow them in the



1.3. Successful partitioning 23

interest of establishing best practice and simplifying collaboration. Brazeau (2011)
discusses the problematic consequences of several shortcomings of character cod-
ing methods and gives advice on recoding problematic characters. Sereno (2007)
provides a rigorous framework for defining characters to better illustrate charac-
ter dependencies and hierarchies, using a division of characters into two types —
neomorphic characters which have only presence and absence states, and transfor-
mational characters which describe quantitative or qualitative states of a present
feature. Brazeau, Guillerme, and Smith (2019) make recommendations on treating
inapplicable characters, which unavoidably arise when characters are formulated
rigorously according to Sereno (2007), and Vogt (2018) discusses the coding of on-
tologically dependent characters.

1.3.2 What makes a good partitioning strategy?

A number of strategies for partitioning morphological data have been proposed
and employed, including partitioning characters by anatomy (Clarke and Middle-
ton, 2008), by developmental stage (Tarasov and Génier, 2015), by character type
(Sun et al., 2018b; Moysiuk and Caron, 2019), and by homoplasy on a maximum
parsimony tree (Rosa, Melo, and Barbeitos, 2019).

Most of these partitioning strategies rely heavily on the author’s biological judge-
ment. The author must decide, usually by carefully surveying the character list or
based on a preformed hypothesis about the evolution of a group, which partitions
to establish, and then assign each character to a partition. Which partition a char-
acter suits best is often open to interpretation. Characters may have been defined
with a specific partitioning scheme in mind, and fitting them into a different scheme
can then be difficult. Aside from ensuring that partitions reflect biologically sensi-
ble groupings, the author must also take into account the size of each partition and
the overall number of partitions, as these will influence the success of parameter
estimation and the suitability of the model (Holder and Lewis, 2003).

A good partitioning strategy must be reproducible — two independent researchers
partitioning the same dataset should end up with the same partitions. Ideally, the
scheme should be applicable by someone without deep familiarity with the taxo-
nomic group. No specialist knowledge of their lifecycle or physiology should be
required, and where necessary an explanation of the character should be provided
by the author of the character list.

One solution is to compare results from as wide a range of partitioning schemes
as possible. The program PartitionFinder2 accomplishes this heuristic search for an
optimal partitioning strategy (Lanfear et al., 2012; Lanfear et al., 2016). Since there
are too many possible partitioning schemes to directly compare them all, PF2’s
search is based on mixing and matching user-defined blocks of characters into sub-
sets. The partitioning scheme comprising the most suitable subsets is then selected
by an information-theoretic approach using each model’s maximum likelihood.
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1.3.3 The effects of partitioning

Partitioning allows us to model differences in evolutionary behaviour across char-
acters more effectively. The estimated parameters include branch lengths, the rates
of changing character state, and the topology of the tree. If there are large dif-
ferences in evolutionary rate between characters, a single parameter estimate for
the rate could be insufficient. Estimating a rate distribution for each partition can
improve inference compared to an unpartitioned analysis. The partitioned model
should better emulate the real evolutionary processes and receive a higher mea-
sure of model fit (Marginal Likelihood, see section 3.1.3.1: the likelihood of the
data given the model averaged over all parameters), unless the added effort of es-
timating more parameters outweighs the benefit of improved inference.

Aside from potentially improving model fit, the further effects of partition-
ing have not been explored sufficiently. Most efforts have concerned molecular
datasets. Brown and Lemmon (2007) emphasized the importance of partitioning
large datasets and demonstrated that models with too few partitions lend support
to the wrong trees. Strugnell et al. (2005) showed that partitioning strategy choice
affects node support. Analyses by Duchêne et al. (2011) showed that six mitochon-
drial genes in various combinations inferred trees which differed in node support,
branch lengths, and topology. Poux et al. (2008) analysed a molecular dataset of
Malagasy tenrecs and found that models with more partitions estimated older node
ages. Standard deviations of node ages were highest for the minimum and maxi-
mum number of partitions, indicating that an intermediate number of partitions (in
their case 5 and 9) allowed node ages to be estimated with the highest confidence.
In contrast, some studies found no significant effects of partitioning strategy choice
on the inferred tree, e.g. Cameron et al. (2012). In a comparative study of 34 molec-
ular datasets, Kainer and Lanfear (2015) concluded that topology is highly affected
by partitioning strategy, as are node support and branch lengths to a lesser degree.
They suggest also that implementing too few partitions has a greater capacity to
lead to bad results than splitting the data over too many partitions, supporting the
results of Brown and Lemmon (2007).

Judging by the often strong effects of partitioning strategy on tree character-
istics in molecular datasets, it is likely that the same problems occur in morpho-
logical datasets. Mickevich (1978) found that estimates of topology were similar
when analysing data partitions separately using Wagner parsimony, but these anal-
yses included molecular as well as morphological data. Benson (2012) on the other
hand found that different anatomical partitions reflected different topologies in a
morphological analysis of basal synapsids.

To make accurate reconstructions of a clade’s history it is necessary to be aware
of the possible implications of choosing a suboptimal partitioning strategy. There is
currently a lack of knowledge about these implications as well as what might con-
stitute a suitable partitioning scheme. Thus it remains necessary to further study



1.4. My approach 25

the effects of partitioning scheme choice on aspects of the inferred tree, such as
branch lengths and topology.

1.4 My approach

I used Bayesian inference to estimate posterior trees along with associated param-
eter values and measures of model fit. Five datasets from the literature were par-
titioned according to eight different partitioning schemes. I also employed four
branch length priors including a relaxed morphological clock model.

By analysing five empirical datasets under a wide range of partitioning schemes,
I attempt to answer the following questions:

– How does the partitioning scheme influence tree topology and branch lengths?

– Which partitioning strategies and branch length priors produce the best-fitting
models?

– What can partitioning tell us about morphological evolution?

1.5 Roadmap

In the Background chapter I outline current methods in computational phylogenet-
ics and give an introduction to Bayesian inference methods.

In the Methods, I describe the datasets, branch length priors, and partitioning
strategies I compared. I give instructions for partitioning morphological data, ex-
plain how to set up and conduct phylogenetic analyses in MrBayes, reference rel-
evant scripts (provided online, see section 3.7.3) and software recommendations,
and detail how results were analysed.

In Results I, I present the effects of varying the partitioning tree (see section
3.1.2.2) on model fit, branch lengths and tree topology under homoplasy parti-
tioning. I also investigate the relationship between homoplasy and Information
Content of a character. Results II compares the model fit of analyses under eight
partitioning strategies and four branch length priors.

Finally I discuss which partitioning strategies show promise, and make recom-
mendations on the use of partitioning to other workers in phylogenetics. I also
suggest future avenues for research into partitioning morphological data.
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Chapter 2

Background

In this chapter, I first outline the philosophical underpinnings of phylogenetics
from ancient history of representing biological interrelationships in the form of
trees of descent. I discuss how the understanding of evolution and natural selec-
tion evolved and how the earliest phylogenetic studies were conducted. I then in-
troduce the beginnings of computational phylogenetics in the wake of the Modern
Synthesis. I follow on to talk about the advantages and disadvantages of molecu-
lar and morphological data. The last section introduces the principles of Bayesian
phylogenetics and discusses the origins of partitioning data.

2.1 A (very) short history of phylogenetics

2.1.1 The Tree of Life

Phylogenetic trees are the overarching organising principle in natural history. Dar-
win’s Origin of Species contains what is often considered the first phylogenetic tree,
but the connection of life and trees has much deeper roots — the world tree Yg-
gdrasil in Norse mythology for example, or the Tree of Knowledge in the Christian
creation myth, associating knowledge, order and logic with a tree. Creation myths
almost universally describe the beginning of our world as order emerging from
chaos, the divine entity being likened to the ordering principle. The idea that our
world is inherently one of order means that we should be able to find and describe
that order, and place everything in existence into this logically sound framework.
This is what early scholars attempted through the use of trees (Wilkins, 2009).

Ancient Greek scholars were particularly interested in the constancy of words
over matter. Their early attempts at classification included the observation that
matter changes over time and yet remains the same — humans age, but stay hu-
man. This branch of logic formulated the concepts of genus and species (Wilkins,
2009). These terms were originally used simply to group and distinguish objects
and ideas and did not refer to organisms in any evolutionary sense, as the Ancient
Greek view of nature did not foresee change in the essence of a thing; A lioness
would change throughout its lifecycle, but would never alter the substance of her
being sufficiently to become anything other than a lioness (Gontier, 2011).
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Ancient Greek philosophy furthermore laid the foundation of what we nowa-
days would refer to as characters. Aristotle defined species of animate as well as
inanimate objects by what he called ’differentia’: qualities which one species pos-
sessed and another lacked (Deverreux and Pellegrin, 1990). The possession of a
’soul’, that differentium which distinguishes living from lifeless matter, was of par-
ticular interest to Aristotle. He viewed plants as intermediate on the scale from
inanimate to animate, reasoning that they were less alive than animals but more
alive than, for example, rocks.

A very early tree diagram is the Arbor Porphyriana, or Tree of Porphyry, named
after the influential Neo-Platonist. This diagram placing the human species into the
context of all matter, animate and inanimate, dates back to the sixth century (Ver-
boon, 2014). The Tree of Porphyry was reproduced hundreds of times throughout
the Middle Ages and distributed across all of Europe, influencing logical thought
for millenia to come (Ragan, 2009; Gontier, 2011). Tree diagrams were used to vi-
sualise lines of descent in family trees, or degrees of relatedness among languages
in linguistic pedigrees (Schleicher, 1853). It follows that biologists attempted to or-
der the natural world using this well-established framework. The structure which
had served to organise everything from clerical hierarchies to racehorse pedigrees
was imposed on species relationships too. When the growth direction of the tree
came to represent time, the phylogenetic tree as we know it today was in existence
(Wilkins, 2009).

2.1.2 The beginnings of phylogenetics in actual fact

Advances in Geology and Palaeontology in the 18th century led to two discoveries:

1. The Earth was much older than previously believed.

2. Animals had existed in the past which showed significant morphological dif-
ferences to their living counterparts, or did not resemble any known creature.

Coupled with an immense time scale to operate on, these discoveries established
extinction as a fact of life and paved the way to understanding how origination
and extinction could operate as driving forces in an evolutionary process (Gontier,
2011; Ragan, 2009).

Early phylogeneticists placed taxa onto trees using the only data available to
them — physical features, or morphology. Similarities were used to group taxa
together and dissimilarities to distinguish groups, just as Aristotle had divided
the world into inanimate and animate substances by their differentia. This way
of ordering taxa was heavily based on structures with the same apparent build or
function indicating affinity among the organisms which possess them.

Early phylogenetic studies like Edwards and Cavalli-Sforza (1963) used the
principle of parsimony, the idea that evolutionary change would take the short-
est route or the least effort to happen. Trees with the fewest changes were favoured
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over those requiring more changes in a character. These early studies were limited
by the processing power of the available computers; Exhaustive pairwise compar-
ison of a group grew more complicated and time-intensive the larger the number
of taxa involved. As time went on, more computationally intensive methods be-
came available, notably Bayesian methods which require nontrivial integrations
over multidimensional parameter space.

2.1.3 The Molecular Revolution

In 1869, Friedrich Miescher discovered what would come to be known as DNA
(Dahm, 2008). This monumental discovery began a chain of studies into the func-
tion and structure of this new molecule crowned by Rosalind Franklin and Maurice
Wilkin’s work on X-ray crystallography, which led to the discovery of the double-
helix structure of DNA molecules in 1953 (Klug, 1968). Dayhoff’s work on compu-
tational protein sequencing and Sanger’s work on gene sequencing methods (Day-
hoff, 1965; Sanger and Coulson, 1975; Sanger, Nicklen, and Coulson, 1977) were
soon expanded upon to yield high-throughput massively parallel gene sequencing
technologies (Moorthie, Mattocks, and Wright, 2011).

Now, it was possible to reduce an organism, as complex as it might be, to a
string of letters. The similarity between the strings of two organisms was a direct,
inambiguous measure of their affinity. Once the genetic code of any organism could
be read with relative ease, this became the major avenue of phylogenetics, overtak-
ing morphological methods. With growing evidence that fossils contribute vital
data to phylogenies, however, morphological data is enjoying a renaissance, and
studies increasingly attempt to integrate insights from several data types (Arcila
et al., 2015).

2.2 Molecular and morphological data

Morphological data has a reputation for being difficult to work with. Indeed there
are some challenges peculiar to morphological characters, but there are difficul-
ties with molecular data too: Alignment issues (Löytynoja and Goldman, 2008),
variability between individuals (Göker and Grimm, 2008), and single-site poly-
morphisms (Caccone et al., 1996) are common and can confound molecular phy-
logenetic analyses. Each type of data has its challenges and shortcomings, as well
as great potential (Wiens, 2000). There is phylogenetically informative and unin-
formative variability in molecular sequences, just as in morphological data. As
we will see, both types of data are valuable in the reconstruction of phylogenetic
relationships.
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2.2.1 Advantages of molecular data

Molecular sequencing offers a massive number of observable characters. The num-
ber of characters can go into the tens of thousands, e.g. Kawahara et al. (2017).
Shorter ’genetic barcodes’ are also often used, like the chloroplast gene rcbL (Janzen,
2009) or portions of the ribosomal subunits (Wu, Xiong, and Yu, 2015). A large
number of characters can help to successfully estimate parameters and improve ac-
curacy of the reconstructed tree, though not as effectively as the addition of taxa
(Graybeal, 1998).

In morphological data, there is a natural limit on the number of observable inde-
pendent characters. A massive mammal dataset of 4541 morphological characters
was compiled and analysed under parsimony by O’Leary et al. (2013). The result-
ing tree was subsequently found to be highly influenced by homoplasy, resolv-
ing functional groups rather than phylogenetic lineages and requiring unnaturally
fast rates of nucleotide substitution (Springer et al., 2013). This indicates that as
the number of morphological characters increases, the risk of sampling dependent
characters and characters with high homoplasy rises as well.

In the absence of gene linkage and polynucleotide substitutions, individual sites
of a molecular sequence behave as independent characters, which is a requirement
of most phylogenetic algorithms. Non-independence is usually detected when pro-
ducing a sequence alignment (for example in the case of polynucleotide deletions
or insertions), and can be accounted for by reducing the weights assigned to de-
pendent characters (Chippindale and Wiens, 1994).

Modern methods make collecting molecular data faster and easier than collect-
ing morphological data. The phylogeneticist must only choose a gene to sequence.
Protocols and sophisticated machines then simplify and automate the processes of
DNA extraction and amplification, and publicly available algorithms like BLAST
take care of aligning sequences.

Evolutionary patterns of molecular data are quite well known. The rate of
change for DNA is known to vary between genes and between regions of a gene
(e.g. protein-coding exons and non-coding introns). Changes to DNA accumulate
at a fairly constant rate and are not strongly influenced by selection, as long as they
are functionally neutral (Kimura, 1983). The number of base differences in a given
gene from two species can thus be considered proportional to the time since their
divergence (the "Molecular Clock", see Morgan (1998) and Dos Reis, Donoghue,
and Yang (2016)).

2.2.2 Advantages of morphological data

Molecular data is only available for extant taxa and the most recent of fossils. By
constrast, even heavily decayed fossils offer up some morphological data. Mor-
phology allows us to place fossils from deep time, museum specimens with dena-
tured DNA, and taxa from inaccessible localities, on trees.
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The inclusion of fossils can help to break up long branches between widely di-
verged clades, avoiding long branch attraction (Huelsenbeck, 1991). Long branches
can lead to wrong clades receiving strong support (Huelsenbeck, 1995; Felsenstein,
1978a; Huelsenbeck, 1997). Fossils can also provide a root for the tree and help
date interior nodes of the tree via earliest appearances, as with the Stratigraphic
Consistency Index (Huelsenbeck, 1994) or calibrating divergence times (Dos Reis,
Donoghue, and Yang, 2016). They can also help to resolve relationships between
extant taxa (Gauthier, Kluge, and Rowe, 1988).

Even incomplete fossils are worth including, as missing data does not necessar-
ily lead to poorly resolved trees (Kearney and Clark, 2003). Incomplete fossil taxa
can also contribute important information by showing which states were ancestral
(Huelsenbeck, 1991).

Morphological data collection is much cheaper than sequencing DNA for po-
tentially hundreds of taxa. Morphometric data collection can even be crowdsourced
without loss of efficacy (Chang and Alfaro, 2016). The coding of morphological
character data from images is usually performed by scientists, but crowdsourced
workers fulfilled the task similarly well. While not every type of character can be
coded from an image, this method of gathering data nevertheless has great po-
tential in allowing the size of morphological datasets to keep pace with molecular
datasets (Parins-Fukuchi, 2018).

If the cost of adding a new taxon is small, the dataset can include data on more
taxa. Graybeal (1998) showed that it is more beneficial to add taxa rather than
characters in order to resolve problematic phylogenies. She analysed a total of
40,000 nucleotides for groups of taxa ranging in number from 4 to 30, splitting the
nucleotides over the number of taxa evenly. Even as each taxon was represented
by fewer characters, the proportion of correctly reconstructed branches increased as
more taxa were incorporated into the tree, demonstrating the importance of broad
taxon coverage.

Morphological evolution is always the phenotypical expression of molecular
evolution, but there is rarely a one-to-one link between genotype and phenotype.
Several mutations can cause the same phenotype because most morphological char-
acters are linked to several genes (Manceau et al., 2010). On the flipside, complex
morphologies can be controlled by just a few genes (Schaap et al., 2006). While this
creates the possibility of mistaking several independent mutations for one shared
mutation, a morphological phylogeny cannot be misled by a strongly supported
gene phylogeny which does not reflect the true species phylogeny.

Morphological evidence can be used to verify a molecular phylogeny. If it is not
supported by morphology, it can be enlightening to find out why the two sources
of evidence disagree (Lee and Palci, 2015). Discord between palaeontological and
molecular evidence ("Rocks and Clocks") can be caused by non-independence of
morphological characters, inflating branch lengths and leading to significant ghost
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lineages through the estimation of divergence times that far predate first appear-
ances in the fossil record (’Deep Root Attraction’, Ronquist, Lartillot, and Phillips
(2016)). Deep Root Attraction can also be caused by vague or misspecified pri-
ors and unsuitable models. Reanalysis of the problematic supermatrix of O’Leary
et al. (2013) (recall section 2.2.1) in combination with molecular data by Ronquist,
Lartillot, and Phillips (2016) showed that inference was improved under more in-
formative priors and more appropriate evolutionary models for both data types.
Morphological characters also have irreplaceable value to phylogenetics because
only they offer insight into deepest time where DNA sequences are saturated with
changes — new mutations simply override previous mutations, so that the amount
of molecular evolution that has taken place is underestimated.

Finally, it is worth remembering that morphology remains our principal way of
recognizing species. Phylogeneticists sampling molecular diversity usually do so
on the basis of species identifications which were diagnosed with morphology.

2.3 Background on Bayesian Phylogenetics

Bayesian and other likelihood-based methods model evolution explicitly by esti-
mating the timing and frequency of changes of state in each character.

A Bayesian approach requires the setting of priors, which describe our beliefs
about the evolutionary history of a clade and allow us to incorporate this infor-
mation into the model. It is necessary to set a prior on any estimated parameter
including branch lengths, topology, and transition rates between character states.
This allows us to quantify the uncertainty both in our prior beliefs as well as in
the resulting parameter estimates (Holder and Lewis, 2003). The combined prior
is multiplied with a likelihood function approximated from the data to result in
the posterior probability distribution, which assigns each possible tree the like-
lihood that it reflects the true phylogeny. This is computationally intensive, but
tractable through techniques which approximate the posterior probability distribu-
tion through gradual exploration (e.g. hill-climbing algorithms) rather than analyt-
ically through computation.

Contrary to other likelihood-based methods, Bayesian models are usually com-
pared not by the likelihood of the best tree (Maximum Likelihood), but by the av-
erage fit of the model after all marginal parameters have been integrated out —
the Marginal Likelihood (see 2.3.2.1). The surface under the posterior probability
surface can be considered equivalent to the support of the data for the evolutionary
model, also referred to as model fit.

By varying the priors and parameter settings of a Bayesian model, we can em-
ulate different evolutionary hypotheses and directly compare their model fit. We
can tell which of hypothesis is most likely to reflect biological truth, but cannot pre-
dict whether another hypothesis might be more accurate. For example, we could
test the hypothesis that euarthropods and onychophorans (Arthropoda) are more
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closely related than euarthropods and tardigrades (Tactopoda). After specifying
a topology constraint enforcing the grouping of either Arthropoda or Tactopoda
and including it as the topology prior, we can estimate the marginal likelihood of
both models and get an indication of which hypothesis is more accurate. But this
model comparison cannot tell us if both of our initial hypotheses are wrong, and
onychophorans and tardigrades are actually more closely related to each other than
either is to arthropods.

Controversy surrounds the question whether Maximum Parsimony or Bayesian
methods best model morphological evolution. A detailed comparison is beyond
the scope of this thesis, so it shall suffice to say that parsimony can perform well as
long as branches are short and do not vary too much in length (Holder and Lewis,
2003). Parsimony and Bayesian methods are regularly used in the same study to
verify results (e.g. Potter et al. (2007), Tarasov and Génier (2015), and Sun et al.
(2018b)). Implied weights parsimony specifically has been identified as perform-
ing as well as Bayesian analysis on simulated datasets (Smith, 2019a). However,
Bayesian models can be used to test and compare different hypotheses of evolu-
tion, which is not possible using parsimony approaches.

2.3.1 The Mk model (Lewis, 2001)

The popular phylogenetics program MrBayes (Ronquist et al., 2012) uses the Mk
model (where "M" stands for a Markov chain modelling a character with k observed
states) as specified by Lewis (2001) to infer phylogenies from discrete morpholog-
ical characters. The Mk model is closely based on the Jukes and Cantor model
of protein evolution which uses Bayesian Markov chain Monte Carlo (Jukes and
Cantor, 1969). Markov chain Monte Carlo is a stochastic simulation method that
allows us to numerically approximate probability distributions which are too large
to be computationally evaluated (Geyer, 1992). It employs Markov chains which
traverse the probability distribution, moving from state to state and taking regular
samples which together form an estimate of the target distribution.

In a phylogenetic context, the Mk model is applied to estimate the posterior
distribution of phylogenetic trees with their associated probabilities of being the
true tree. The probability of whether or not the chain accepts a proposed state
depends on the likelihood of the current tree: a chain is more likely to change state
if the current tree is “bad”, i.e. unlikely to reflect the true phylogeny.

Bayesian phylogenetics offers many intractable problems due to the sheer num-
ber of phylogenetic trees that must be evaluated (Felsenstein, 1978b). Even just the
number of different tree topologies T(n)1 grows factorially with the number of taxa
(Felsenstein, 2001):

T(n) =
(2n− 3)!

2n−2(n− 2)!
(2.1)

1T(n) here represents the number of possible rooted bifurcating labelled trees with n terminals.
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In addition, branch lengths can vary considerably between different phylogenetic
trees. Branch lengths represent the passage of time between divergence events and
are tightly linked to the evolutionary rates, as they are proportional to the number
of changes of state along the branch (Ronquist, Huelsenbeck, and Teslenko, 2011).
Branch length is defined as (k− 1)αt, where k = the number of states of a character,
α = the instantaneous rate of a state transition (as defined in the rate transition ma-
trix), and t = the length of time represented by that branch. The instantaneous rate
matrix Q provides a mapping between states and holds the rates of transitioning
from one to the other in any given instant (Lewis, 2001):

Q = α


1− k 1 ... 1

1 1− k ... 1
... ... ... ...
1 1 ... 1− k

 (2.2)

2.3.1.1 Estimating the probability of a single tree (adapted from Huelsenbeck
and Ronquist (2001))

Calculating the posterior probability distribution for the whole of tree space is com-
putationally infeasible. The posterior probability of a single tree τi given the data
X can be expressed using Bayes’ theorem:

f (τi|D) =
f (D|τi) f (τi)

∑T(n)
j=1 f (D|τj) f (τj)

(2.3)

where

f (D|τi) =
∫

υ

∫
θ

f (D|τi, υ, θ) f (υ, θ)dυdθ. (2.4)

and

τi = the ith phylogenetic tree topology

D = the data

T(n) = the number of possible trees

θ = the substitution parameters

υ = the branch lengths

f (τi|D) depends on the sum of the probability of the data given the tree ( f (D|τi))
for all possible trees. This involves a computationally intractable double integral
over branch lengths υ and substitution parameters θ. D represents an alignment
of molecular or morphological character data. f (τi) designates the tree topology
prior, while the prior for branch lengths and substitution parameters is f (υ, θ).
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2.3.1.2 Exploring tree space

A Markovian sampler moves through tree space, collecting the current tree and its
location in parameter space at a given sampling frequency.

A basic MCMC algorithm consists of three repeated steps (Huelsenbeck and
Ronquist, 2001):

1. A new state for the chain is proposed. This can be a change in tree topology,
in a parameter, or in a branch length. These changes are accomplished via a
range of moves in MrBayes, which each have varying probabilities of being
proposed.

2. The probability with which this new state is accepted over the current state is
calculated. This acceptance probability is the product of 3 components:

the likelihood ratio the ratio between the likelihoods of the current and pro-
posed state, or 1, whichever is smaller

the prior ratio the ratio between the priors of the current and proposed
state

the proposal ratio the ratio between the probability of proposing the current
and proposed state

3. A random value between 0 and 1 is drawn. If this value is lower than the
acceptance probability of the new state, the chain accepts the new state.

Every iteration of these three steps constitutes a generation. If run for enough
generations, the samples drawn from the chain represent a valid sample of the tar-
get distribution of interest. When the sampler has explored tree space sufficiently,
the number of times a given tree is sampled is proportional to its posterior probabil-
ity. Using all sampled trees, we can calculate an estimate of the high-dimensional
integral and the posterior probability distribution from the beginning of this sec-
tion.

Depending on the size of the posterior distribution, it can be difficult for just one
Markov chain to reach all regions. Running multiple chains in parallel can improve
the estimate of the target distribution. But in rugged tree space, there are often local
peaks surrounded by areas of low likelihood which chains are unlikely to traverse
(Brown and Thomson, 2018). Metropolis-coupled MCMC or MC3 is a modifica-
tion of the standard Markov chain Monte Carlo algorithm which attenuates this
behaviour (Altekar et al., 2004). In addition to an unmodified “cold” chain, MC3

runs a number of "heated" chains which are able to traverse tree space more eas-
ily. Samples are drawn only from the cold chain, while each heated chain explores
a different transformation of the posterior distribution with flattened peaks and
shallower valleys. The heated chains regularly swap places with adjacent chains
of different temperatures. This lets the conservative cold chain jump between re-
gions of the posterior to produce a more comprehensive sample (Huelsenbeck and
Ronquist, 2001).
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The generalised Mk model makes no assumptions regarding plesiomorphy or
apomorphy of any character state. Changes occur during "instants", defined as
infinitesimal periods of time dt, and occur with symmetrical probability, meaning
that changing from state i to j is as probable as the reverse (Lewis, 2001). I modified
this in the case of neomorphic-transformational partitioning, where I specified a
higher likelihood of gaining the "present" state than losing it.

2.3.2 Steppingstone sampling (Xie et al., 2011)

The following section is heavily based on the methods section of Xie et al. (2011)
and on Fourment et al. (2019).

The aim of Steppingstone sampling is the approximation of a model’s marginal
likelihood, the central unit of Bayesian model comparison, via importance sam-
pling. The approach involves defining a path of distributions connecting the prior
and posterior. Each intermediate distribution is approximated using MC3 and step-
wise likelihood ratios are estimated, allowing the crossing of the gulf between prior
and posterior as though via stepping stones. The product of the intermediate like-
lihood ratios is equal to the marginal likelihood, as long as the priors are proper.

Steppingstone sampling approximates marginal likelihoods more accurately
than the harmonic mean method, which tends towards overestimation (Xie et al.,
2011). The harmonic mean of the marginal likelihood can be easily calculated af-
ter an MC3 analysis and is included in the standard output in MrBayes, but in my
experience these estimates show too much variability to compare multiple models,
some of which might not show large differences in performance.

2.3.2.1 The Marginal Likelihood

The marginal likelihood is the probability of the data given the model averaged
over the parameter space and taking into account the prior (adapted from (Oaks
et al., 2019)):

p(D|M) =
∫

p(D|θ, M)p(θ|M)dθ (2.5)

where

D = the data

θ = the parameter vector (θ1, θ2, ..., θN )

M = the model

p(θ|M) = the prior on θ

p(D|θ, M) = the probability of the data given the vector of parameters θ
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2.3.2.2 Importance sampling

Importance sampling can accelerate Monte Carlo processes by increasing sampling
of areas of parameter space that are thought to have the largest impact on the
marginal likelihood (Rubino and Tuffin, 2009). An importance distribution is used
which is similar to the target posterior distribution. To avoid biasing the result, each
sampled value is normalised by the probability of sampling that value from the im-
portance distribution, its importance weight. A definition of importance sampling
can be found in Oaks et al. (2019).

In Steppingstone sampling, the estimated posterior from the previous step serves
as the importance distribution for the current step.

2.3.2.3 Steppingstone sampling

Let us define a power posterior density function qβ(θ) that is normalised by the
power marginal likelihood cβ to yield pβ, the normalised power posterior density:

qβ = f (D|θ, M)β f (θ|M)

pβ =
qβ

cβ

(2.6)

qβ is the product of the likelihood function f (D|θ, M) and the prior f (θ|M).
When β = 1.0, the power posterior qβ is equivalent to the posterior distribution.

When β = 0.0, qβ is equivalent to the prior distribution.
If the prior is proper, c0.0 = 1.0 and the marginal likelihood is equivalent to the

ratio rss = c1.0
c0.0

= c1.0. This central ratio can be approximated as a product of K
stepwise ratios:

rSS =
c1.0

c0.0

=
K

∏
k=1

cβk

cβk−1

=
K

∏
k=1

rSS,k

(2.7)

where rSS,k =
cβk

cβk−1
for step k ∈ [1, K].

Each ratio
cβk

cβk−1
is estimated consecutively by importance sampling with pβk−1 ,

the power posterior estimated in the previous step, as the importance distribution.
This works because pβk−1 is only slightly closer to the prior, i.e. slightly more dis-
persed, than the power posterior distribution of the current step, and thus serves
as a good approximation.
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The kth ratio expressed using importance sampling is

r̂SS,k =
1
n

n

∑
i=1

p(D|θk−1,i)
βk

p(D|θk−1,i)
β
k−1

=
1
n

n

∑
i=1

p(D|θk−1,i)
bk−bk−1

(2.8)

where θk−1,i is a MCMC sample vector from pβk−1 , and f (D|θk−1,i) is the likeli-
hood of that sampled parameter vector.

The product of these K ratios is a faithful estimate of the true marginal likeli-
hood of the target distribution:

p̂SS =
K

∏
k=1

r̂SS,k. (2.9)

2.3.3 Partitioning and weighting

Partitioning originated as a way of dealing with diverse datasets. As early as the
1970s, Mickevich (1978) used partitioning to compare trees from different subsets
of data. He separated types of morphology — such as male and female bee char-
acters in the Hoplites dataset of Sokal and Michener (1967)), morphological and al-
lelic data (kangaroo rats (Johnson and Selander, 1971; Schnell, Best, and Kennedy,
1978)), or types of molecular data (Amino acid sequence of primate Alpha and Beta
hemoglobin (Dayhoff, 1969) — into character subsets. Mickevich computed a tree
for each subset and built a consensus tree from the shared topological features in a
method he called ’Taxonomic Congruence’. It became apparent that different sets
of characters suggested different phylogenies (see also Rodrigo et al. (1993)). Tax-
onomic Congruence was also used by Bielecki et al. (2014), who compared trees of
leech phylogeny reconstructed from a set of 22 characters relating to female repro-
ductive and oocyte morphology, as well as from a more inclusive dataset including
these and 27 general morphological characters.

The approach of Mickevich (1978) was countered by Kluge (1989), who argued
for combined analysis of all available data (’Total Evidence’). Bull et al. (1993) and
De Queiroz (1993) suggested an intermediate method named ’Prior Agreement’
whereby each partition is analysed separately and trees are examined for agree-
ment. If partitions are found to disagree, the cause of the heterogeneity is identi-
fied. Once all partitions are in agreement, the data is reanalysed in combination.
Derome et al. (2002) state that they did not follow the Prior Agreement approach
of Bull et al. (1993), but they did perform separate phylogenetic analysis on each
subset (Cytochrome b gene, d loop region, and morphological characters) before
estimating a tree from the combined data. They note that despite the much greater
number of molecular to morphological characters (744:298:26), the combined tree
topology was most influenced by the morphological characters.
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Separate analysis is sometimes advocated when data types underlie different
evolutionary processes, such as morphological and molecular data. When the method
of reconstruction assumes a specific evolutionary model, lumping different types
together might not lead to the best results (Bull et al., 1993). Chippindale and Wiens
(1994) argue that these differences in evolutionary process can be accommodated
and accounted for using weighting. Weighting characters differently can even ac-
count for character dependence. Most weighting schemes weight characters by ho-
moplasy, a measure of how often a character changes on a tree. Assuming that
evolution would have taken the shortest path, characters with few changes are
afforded more weight and the weight of apparently homoplastic characters is re-
duced. Weighting functions are typically concave, so that extra steps on already
highly homoplastic characters decrease their weight by only a little, while extra
steps on characters without homoplasy drastically decrease their weight. Establish-
ing the homoplasy of a character requires a tree, so these methods often repeatedly
analyse the same data (e.g. Successive Weighting, Farris (1969)). Goloboff (2013)
proposed weighting entire partitions collectively in parsimony analyses, for ex-
ample weighting third codon positions by their average homoplasy. Because both
methods allow segregation of characters according to some criterion, weighting can
be considered the parsimony equivalent to partitioning in Bayesian analyses.

Nylander et al. (2004) used partitioning for the first time in a Bayesian approach,
referencing the work of Yang (1996) on accommodating rate variation under Maxi-
mum Likelihood. Partitioning has become an integral part of many Bayesian phy-
logenetic studies (e.g. Brandley, Schmitz, and Reeder (2005), McGuire et al. (2007),
and Lee and Worthy (2012); see also section 2.3.3.2). This method can be considered
a type of total evidence approach. Partitioning is not a step prior to analysis, but
rather is a part of the analytical process and the model. It provides information
to the model about the expected parameters governing the evolutionary process of
each set of characters. Branch lengths can estimated separately for each partition,
but typically only a single topology is inferred based on the entire dataset (Rosa,
Melo, and Barbeitos, 2019). Ronquist, Lartillot, and Phillips (2016) advocate a To-
tal Evidence approach to estimating divergence times and explain why molecular,
morphological, and palaeontological evidence may disagree.

2.3.3.1 Examples of molecular partitioning

The genetic code is redundant, meaning that several three-base codons code for
the same amino acid. Often the difference between these synonymous codons lies
in the third base. A mutation in this position is functionally neutral as it does not
change the amino acid the codon is translated into. Mutations in this "wobbly"
third base (Crick, 1966) are thus less likely to have a phenotypic expression which
natural selection could act on. This suggests that third codon positions are less
strictly conserved than the others.
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In a study by Hillis, Huelsenbeck, and Swofford (1994), parsimony performed
better than some model-based alternatives when characters with high frequencies
of change are downweighted. Buckley (2002) emphasised the importance of parti-
tioning in allowing for rate heterogeneity among characters. He implicated overly
simplistic models in generating overconfident estimates of posterior probabilities
and stressed the importance of correctly specifying evolutionary models for maxi-
mum likelihood and Bayesian analysis. Brandley, Schmitz, and Reeder (2005) anal-
ysed a 2200 base sequence of mitochondrial DNA under a range of partitioning
strategies using Bayesian inference. They found that the success of a partitioning
strategy relied not on the number of partitions, but more on the partitioning cri-
terion. Bofkin and Goldman (2007) tested a model with three partitions based on
codon position using maximum likelihood and found significant differences in the
preferred evolutionary models for each position. Evolutionary rates in the third
codon position were significantly higher and differently distributed than rates in
the second position. But faster rates of change in third positions do not mean they
are without value for molecular phylogenetics. Källersjö, Albert, and Farris (1999)
demonstrated that the exclusion of third positions decreased the support a num-
ber of widely accepted monophyletic groups received. Rather than excluding these
characters, it is sufficient to account for their peculiarity by assigning them dif-
ferent weights than the other characters. In an analysis by Goloboff et al. (2008),
downweighting rather than exclusion of third positions increased support for sev-
eral groups and produced phylogenies that were stable under addition of further
characters and taxa. Strugnell et al. (2005) also found that partitioning by codon po-
sition significantly improved results of a Bayesian phylogenetic analysis compared
to not partitioning the data.

2.3.3.2 Examples of morphological partitioning

Anatomy Gaubert et al. (2005) used partitioning by anatomy to study pat-
terns of adaptive convergence in feliformian mammals. Clarke and
Middleton (2008) found that anatomical partitioning improved in-
ference of phylogenetic relationships between crown-group birds
in the study of the early evolution of flight. The same partition-
ing method was also employed by Tarasov and Génier (2015), who
called it anatomy ontology.

Character type Sun et al. (2018b) partitioned their data according to whether a char-
acter described an evolutionary novelty or loss of a feature, or the
transformation of a pre-existing feature (see electronic supplemen-
tary material (Sun et al., 2018a)). Moysiuk and Caron (2019) fol-
lowed the same partitioning strategy, which is based on Sereno (2007)
who proposed a fundamental distinction of two different types of
morphological characters — neomorphic and transformational.
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Homoplasy Homoplastic characters are thought to show more random varia-
tion and thus carry less information about the evolutionary history
of a clade (Farris, 1969). Limiting the weight given to them can in-
crease the stability of phylogenetic inference in parsimony analyses
(Goloboff et al., 2008). Rosa, Melo, and Barbeitos (2019) found that
partitioning by homoplasy on a maximum parsimony tree outper-
formed alternatives in a Bayesian analysis.
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Chapter 3

Methods

The aim of this thesis is to evaluate the performance of different partitioning strate-
gies in phylogenetic inference. Secondarily I tested the effect of varying the branch
length prior, which affects a large number of parameters in Bayesian phylogenetic
models.

My approach centered on estimating the marginal likelihood of each combina-
tion of partitioning strategy and branch length prior using the techniques MC3 and
Steppingstones sampling in MrBayes. I also assessed relationships between model
fit, branch lengths, and tree topologies, and investigated a connection between ho-
moplasy and other measures of character structure.

3.1 Terms and definitions

3.1.1 Features of a phylogenetic tree

A phylogenetic tree is a graph expressing an evolutionary hypothesis. The taxa of
interest sit at the tips of the tree. Branches represent the putative lineages connect-
ing them to each other. Two branches diverge at an interior node, which represents
the hypothetical last common ancestor (LCA) of its two descendant lineages. The
root represents the LCA of all taxa on the tree.

3.1.2 Types of trees

3.1.2.1 Preferred tree

Each matrix was taken from a publication that contained a phylogenetic tree cal-
culated from that matrix. This tree was designated the author’s preferred tree and
used as a starting point for several analyses. It performs a similar function as the
true tree in a simulation study by providing a reference point to which all recon-
structed trees can be compared.

3.1.2.2 Partitioning tree

The number of changes in a character on a tree contains information about its re-
liability for phylogenetic reconstruction. If it shows many more changes than the
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minimum required, it is considered less reliable than characters that change state
less often. A homoplasy index quantifies the amount of unnecessary change in
a character, allowing us to rank and partition characters. To do this, we need to
provide a tree topology on which to measure homoplasy. This tree is here called
the partitioning tree. Each homoplasy-partitioned model uses a unique partition-
ing tree, ranging from the preferred tree for a dataset to a random tree, and trees
generated by perturbing the preferred tree to various degrees (see Moves, section
3.1.2.4).

3.1.2.3 Reconstructed tree

A reconstructed tree here designates a tree recovered by Bayesian analysis. In the
context of tree perturbations (see section 3.5 and chapter 4) this is the consensus
tree found in a .con.tre file. The 50% majority consensus tree summarises the
clades resolved in at least 50% of trees sampled by a MrBayes MC3 analysis. By
combining the most frequent clades and retaining polytomies where the topology
is less reliably reconstructed, it balances precision and accuracy (Smith, 2019a) and
represents a conservative estimate of the true topology.

3.1.2.4 Moves

Moves are rearrangements that transform one tree topology into another. I used
the moves listed below to generate trees at various distances from the preferred
tree topology:

Nearest Neighbour Interchange (NNI) A tree is divided into four subtrees connected
by one interior branch. This branch and its
connections are erased. The subtrees can
then be reconnected in two alternative ways
to create a neighbour tree. This perturba-
tion move creates the least amount of topo-
logical change because the topology of the
subtrees remains stable and only their rela-
tionship is changed.

Subtree Pruning and Regrafting (SPR) The tree is divided into two subtrees by break-
ing an interior branch. The broken branch
of one tree is held onto. That subtree is grafted
to the other by the broken branch to any
branch. The topology of the first subtree re-
mains unchanged but is moved into a new
position on the second subtree.
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Tree Bisection and Reconnection (TBR) The tree is divided into two subtrees by break-
ing an interior branch. One subtree is re-
connected to the other by the middle of any
branch to any branch. This move changes
the topology more strongly than an SPR move
because the topology of each subtree can be
’shuffled’ before reconnection.

3.1.2.5 Comparing tree topologies

A phylogenetic tree can be viewed as a collection of four-taxon subtrees, or quar-
tets. Similarity between two given trees can be expressed based on the numbers
of unique and shared quartets. I calculated tree similarity using Quartet Similar-
ity (QS), the complement of the Quartet Divergence (QD) as implemented in the
Quartet R package (Smith, 2019d). The QD is calculated as Robinson & Foulds’ dis-
tance metric applied to quartets (Robinson and Foulds (1981) developed the metric
for bipartition splits), normalised against the number of quartets that would be
resolved if two trees were identical:

RF = 2d + r1 + r2

QD = RF/2Q

QS = 1−QD

where

d = number of quartets resolved in both trees

r1 = number of quartets resolved in tree 1 but not in tree 2

r2 = number of quartets resolved in tree 2 but not in tree 1

N = number of species

Q = total number of quartets = (N
4 ).

3.1.2.6 Calculating tree length

The length of a tree is defined as the sum of all branch lengths. It can be calculated
in R as the sum of the elements in the component $edge.length of a tree object of
class "phylo".

3.1.3 Model fit

To compare phylogenetic models with different priors and parameters, we need a
measure of how well they model real-world evolutionary processes. As we usu-
ally cannot observe the evolutionary history of a group of taxa directly, we rely on
statistical measures of model fit.
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3.1.3.1 Marginal Likelihood (ML)

A likelihood is a measure of the support that the data lend to a particular set of
parameter values. The Marginal Likelihood of a Bayesian model is the likelihood
of the data given that model, averaged over the whole parameter space (Fourment
et al. (2019), and see section 2.3.2.1).

Each parameter addition adds a dimension to parameter space. If a model with
20 parameters estimates a phylogeny just as well as a model with 10 parameters,
the more parameter-rich model receives a lower marginal likelihood because the
likelihood is averaged over a larger space. Thus the marginal likelihood penalises
over-parameterisation — the inclusion of parameters which do not markedly im-
prove inference (Oaks et al., 2019).

Calculating the marginal likelihood directly involves a high-dimensional inte-
gral which is almost universally intractable in phylogenetic applications due to the
number of parameters. It is usually estimated indirectly by sampling from the pos-
terior distribution. Fourment et al. (2019) benchmark 19 methods of computing
MLs on tree topologies. Here, the Steppingstones sampling method by Xie et al.
(2011) was used. Marginal likelihoods in phylogenetics are very small and usually
expressed in natural log units (logML).

3.1.3.2 Bayes Factor

To directly compare two models, the difference between their log Marginal Like-
lihoods is calculated. The resultant quantity, the ratio between their MLs, is the
Bayes factor (BF). It quantifies the strength of evidence for one model over the
other. Bayes factors have been confirmed to be a suitable method for choosing
between competing partitioning strategies (Brown and Lemmon, 2007). Being a
ratio of likelihoods, the Bayes factor is expressed in decibel (dB). Kass and Raftery
(1995) provide guidelines for interpreting Bayes factors (see Table 3.1).

Every unit BF corresponds to a factor 10 difference in likelihood between two
models. For example, a BF of 5 dB signifies that the fit of one model to the data is
105 times better than another.

TABLE 3.1: Interpreting Bayes factors according to Kass and Raftery
(1995). They suggest taking double the natural logarithm of the BF.
I have reported BFs as natural logarithm and have modified their

suggested BF values.

2*BF BF Interpretation

0− 2 0− 1 Not worth more than a bare mention
2− 6 1− 3 Positive
6− 10 3− 5 Strong
> 10 > 5 Very strong
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3.2 Bayesian analysis

Bayesian phylogenetic analyses using Metropolis-Coupled Monte Carlo Markov
Chains (MCMCMC or MC3) (see section 2.3.1.2) and Steppingstone sampling (Xie
et al. (2011), and see section 2.3.2) were run in MrBayes v3.2.6 x64 (Ronquist et
al., 2012). Examples of all types of files, including MrBayes files in NEXUS format
(Maddison, Swofford, and Maddison, 1997), can be found online (see link in section
3.7.3)

3.2.1 Parameter settings in MrBayes

MrBayes receives data and instructions from files written in NEXUS format (Mad-
dison, Swofford, and Maddison, 1997). They are made up of blocks variably con-
taining character matrices, trees, parameters, and programmed instructions. The
following subsection discusses the parameter settings used in the different types of
analyses and references the MrBayes Manual throughout (Ronquist, Huelsenbeck,
and Teslenko, 2011).

3.2.1.1 Ascertainment bias

Ascertainment bias or coding bias describes the bias introduced by coding only
variable characters. Variable characters are those which are present in at least two
states among the taxa of interest.

In molecular datasets, invariable characters are common and necessary for proper
alignment of genetic sequences. When assembling morphological matrices on the
other hand, often only characters showing variation within the surveyed group are
included. Therefore the Mk model, being originally designed for molecular data,
expects a proportion of invariable characters. MrBayes allows us to correct this bias
by specifying whether a matrix contains any variable characters. When analysing
discrete morphological character data, this is the default setting.

When only variable characters are coded, the underlying model is referred to as
an Mkv model — an Mk model with only variable data.

datatype=standard;

lset coding=variable;

3.2.1.2 Rate variation

Morphological characters can vary considerably in their evolutionary rate of change.
The evolutionary rate affects how likely they are to change state along a branch of
a given length. On a short branch, we might expect to see a change of state in a
character with a fast rate of change, but would assign a lower probability to seeing
a change in a slowly evolving character. This diversity of evolutionary rates can be
modelled through Among-character rate variation (ACRV).
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I enforced gamma-shaped ACRV. This lets the rate of change of each character
vary under a Γ-distribution with a single shape parameter α. MrBayes optimises
ACRV by sampling values for the shape parameter α from a flat prior over the
interval (0.5, 50).

lset rates=gamma;

In partitioned analyses, I additionally modeled Among-partition rate variation
(APRV). ACRV is estimated for each individual partition. Rate multipliers link
partitions so that the average rate of change among partitions remains 1. By default,
the rate multipliers are drawn from a flat Dirichlet prior where all values are 1.0.
APRV is accommodated by setting:

prset applyto=(all) ratepr=variable;

In partitioned models, I allowed ACRV to vary from partition to partition by un-
linking the shape parameter α. Rates of change and therefore branch lengths are
drawn from a unique Γ-distribution for each partition, a per-partition Γ.

unlink shape=(all);

3.2.1.3 Branch lengths

Rannala, Zhu, and Yang (2012) implicate misspecified branch length priors in caus-
ing convergence problems in the tail of the posterior distribution. As branch lengths
increase, the posterior flattens out and the likelihood approaches a constant. Chains
may become stuck in this flat “tail” of the posterior, thus leading to insufficient
convergence. Ekman and Blaalid (2011) also argue for the importance of the branch
length prior in affecting clade support as well as posterior probabilities. They advo-
cated for the use of gamma dirichlet priors favouring short branch lengths, which
for their data resulted in trees with strongly supported clades and short, consistent
tree topologies.

A meaningful branch length prior should reflect the expected mean number of
character changes per branch. We can obtain an estimate of this value by dividing
the parsimony score of the most parsimonious tree for a data set by the number
of characters. The prior is then parameterised with the inverse of this value (Sun
et al., 2018a).

λ = (
Length of Maximum Parsimony tree

number of characters
)
−1

To evaluate the effects of partitioning under different branch length priors, I tested
four different model specifications:

Default The default branch length prior in MrBayes v3.2.6 is a gamma
dirichlet distribution with shape parameter αT = 1.

Fitted Gamma I tested a variation of this model where αT is fitted to the data set
based on the number of characters and the length of a Maximum
Parsimony tree (λ, see equation 3.2.1.3).
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prset applyto=(all)

brlenspr=unconstrained:gammadir(1,λ,1,1)

Fitted Exponential I also employed an exponential distribution parameterised by λ.

prset applyto=(all) brlenspr=unconstrained:exp(λ);

Relaxed Clock I tested a morphological clock model as introduced by Lee et
al. (2014). I followed the parameter settings of those authors
in using a relaxed clock model with independent gamma rates
(IGR). Rate variation across lineages is independent, but the rate
at which the expected variance of the branch lengths increases
over time is restricted by the parameter Igrvarpr. The prior on
Igrvarpr was set to an exponential distribution with rate λ. The
prior for the clock rate was set as a normal distribution with a
mean of 0.01 and a standard deviation of 0.1. This distribution is
quite wide and flat, so only weakly constrains the posterior.

PRSET applytp=(all) brlenspr=clock:uniform;

PRSET applytp=(all) clockvarpr=igr;

PRSET applytp=(all) igrvarpr=exp(λ);

PRSET applytp=(all) clockratepr=normal(0.01,0.1);

TABLE 3.2: All datasets were tested under the default gamma dirich-
let prior with shape parameter βT = 0.1. I also tested a gamma
dirichlet prior using λ as the shape parameter βT , an exponen-
tial prior with rate λ, and a relaxed clock model with independent

gamma rates (IGR).

Branch Length Model HYO CEA OZL SCO THER

IGR relaxed clock X X X X
unconstrained:gammadir(1,0.1,1,1) (default) X X X X X
unconstrained:gammadir(1,λ,1,1) X X X
unconstrained:exp(λ) X X X

3.2.1.4 Topology

The outgroup command lets us specify a root by providing the outgroup taxon.

outgroup Plumariidae;

Topology priors fragment the posterior because they severely depress the likeli-
hood of certain clade groupings that do not conform to the constraint. This rugged
posterior can make it more difficult to achieve proper mixing and convergence. It
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is possible to set a prior on topology by enforcing the grouping of certain taxa, as
was done for dataset OZL following Lee et al. (2014):

constraint root = 1-. ;

constraint birds = 2-. ;

constraint Avebrevicauda = 3-. ; [ingroup]

PRSET topologypr = constraints(root, birds, Avebrevicauda);

Ages of terminals for OZL were calibrated to their earliest stratigraphic ages
(see Lee et al. (2014) Supplementary Information 1).

CALIBRATE Dromaeosauridae = fixed(111);

CALIBRATE Archaeopteryx = fixed(150);

CALIBRATE Ambiortus = fixed(130);

...

CALIBRATE Zhongornis = fixed(122);

The age of the root divergence was calibrated using a uniform prior spanning
150.1–200 Mya.

CALIBRATE root=uniform(150.1,200);

Finally, I enforced the calibrations of all node ages.

PRSET nodeagepr = calibrated;

3.2.1.5 State frequencies

In the overarching model used by MrBayes for morphological data, state frequen-
cies are assumed to be equal. Thus for a binary character, the model would assume
an equal probability for a state to be 0 or 1. In the case of a neomorphic partition
where one state is the ancestral condition, this may not be a proper prior.

MrBayes allows us to specify an unequal state frequency prior using a symmet-
ric Dirichlet distribution. It takes a single shape parameter αsymdir which specifies
the degree of asymmetry across sites. I set αsymdir to 1.0 for the neomorphic parti-
tion, which applies a uniform prior across the different state frequency proportions.

prset applyto=(neomorphic partition) symdirihyperpr=fixed(1.0);

Relaxing the equal state frequency constraint adds a parameter. The model is
penalised unless the addition improves inference.

3.2.1.6 Ordered characters

Several matrices contained characters with specified state orders. In unordered
characters, the transition rate is the same no matter which state changes into which
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other. A transition matrix for an unordered character with three states (after Lewis
(2001)):

Qunordered = α

− 1 1
1 − 1
1 1 −


For ordered characters, transitions are only possible between adjacent states:

Qordered = α

− 1 0
1 − 1
0 1 −


To effect a change from state 1 to state 3, the lineage must traverse state 2. Thus a
transition from 1 to 3 requires one extra step.

3.2.1.7 Parameters for MC3

The number of generations was set to 5,000,000 with a tree sampled every 200
generations. 8 parallel runs were executed and each run contained 8 metropolis-
coupled Markov chains. The first 25% of generated trees were discarded as burnin
and not considered during parameter estimation.

mcmcp ngen=5000000 samplefreq=200 nruns=8 nchains=8 burninfrac=0.25

append=no temp=0.05;

mcmc;

Summary files of all tree and parameter estimates were requested.

sumt;

sump;

3.2.1.8 Parameters for Steppingstones sampling (Xie et al., 2011)

The number of generations was set to 5,000,000 with a tree sampled every 100 gen-
erations. 8 parallel runs with 8 chains each were used. The first 25% of generated
trees were discarded as burnin.

mcmcp ngen=5000000 samplefreq=100 nruns=8 nchains=8 burninfrac=0.25

append=no;

Tree space was sampled moving from the prior towards the posterior, gradually
providing the model with more data. I chose to do so because convergence prob-
lems arose when moving from the posterior towards the prior as is the default in
MrBayes. These problems are discussed below in section 3.2.2.

ss burninss=-1 nsteps=40 fromprior=yes;

All other model parameters were held constant across data sets and partitioning
strategies, except where chain and run behaviour induced us to lower the temper-
ature parameter to improve convergence (see section 3.2.2 below).
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3.2.2 Convergence

When running Steppingstone analyses from posterior to prior, between 50–75% of
runs returned positive log marginal likelihoods. These equate to likelihoods much
larger than 1. Likelihoods greater than 1 are technically possible, but these values
were much higher than any of the marginal likelihoods estimated by MC3. MC3

tends to estimate higher marginal likelihoods than Steppingstone sampling and
thus served as a useful reference point against which to check these inflated results.
Runs with high likelihoods usually showed poor chain mixing behaviour, indicat-
ing that these runs hadn’t converged properly. It appears most likely that all of the
run’s chains were stuck in an isolated area of the posterior distribution for several
steps. As the analysis moved one stepping stone closer to the prior and found a flat-
ter power posterior, the chains could now move out of their region and discover the
rest of the distribution. Recall that in steppingstone sampling the marginal model
likelihood is calculated as the product of the ratios of power marginal likelihoods of
subsequent steps (see equation 2.7). Once the previously isolated run can access the
entire power posterior, it calculates a much larger power marginal likelihood than
on the previous step, resulting in a ratio considerably greater than 1. To ensure
that runs discover the entire power posterior from the beginning, the final Step-
pingstone analyses were run from the prior to the posterior, which significantly
reduced the number of positive logMLs encountered. Any remaining positive runs
were discarded before calculating mean marginal likelihoods.

I monitored acceptance rates for moves in the cold chain of each run. Accep-
tance rates were generally within acceptable limits of 20–60% (Ronquist, Huelsen-
beck, and Teslenko, 2011). In addition, I checked chain swap rates to ensure proper
mixing of the individual chains within each run. In several instances where chain
swap rates were lower than 0.1, the temperature to which chains are heated was
decreased to temp=0.05 from the default of 0.10. This increased the proportion of
accepted chain swaps and improved mixing of the cold chain.

I used the average standard deviation of split frequencies (split) printed to .ss

and .out files to diagnose whether independent runs had converged. Values be-
low 0.01 are generally accepted as a sign of very good convergence, and values up
to 0.05 are acceptable (Ronquist, Huelsenbeck, and Teslenko, 2011). In some Step-
pingstone analyses, split values exceeded these limits. To test whether the analyses
had nevertheless converged sufficiently, I reran several analyses with high split val-
ues under two schemes with changed settings. Under one scheme, models had a
higher burnin proportion (HB), while models under the second scheme were run
for more generations (MG). Under the HB scheme, I increased the burnin propor-
tion at the beginning of each step from 25% to 50%. The number of generations
was also increased so that the same number of samples was collected during each
step as before. Under the MG scheme, analyses were run for 10,000,000 genera-
tions rather than 5,000,000 as before. The script ConvergenceTesting.R was used
to extract split values and calculate marginal likelihoods from the result files.
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Both types of models showed improved convergence (see Table B.1), but the
marginal likelihoods of most MG and HB models did not differ strongly from
those of the standard models. This strongly suggests that the standard settings
of a burnin proportion of 25% and 5,000,000 generations were sufficient for most
models to converge. Furthermore, results should be comparable at least among
analyses of the same dataset and branch length prior since split values were quite
similar within these groupings.

3.3 Datasets

I chose five morphological character matrices that were published in the context of
a phylogenetic analysis. The studies had different foci. Some investigated certain
evolutionary hypotheses, such as mosaic evolution (Clarke and Middleton, 2008)
or morphological clocks (Lee et al., 2014), while others simply had the aim of cal-
culating a phylogeny.

The aim of this thesis was to provide simple rules for partitioning morphologi-
cal data that may be applied to any dataset, regardless of its structure or character
selection strategy, to improve phylogenetic inference. Numbers of taxa ranged from
16 to 65 and numbers of characters from 27 to 242. Most datasets included a high
proportion of fossil taxa as these are most commonly analysed using morphological
data.

3.3.1 Character coding

Flaws in character selection and formulation were present in several of the datasets
used. Compound characters posed the most common character coding problem.
These characters collapse character states which share a hierarchical relationship
into one character (Brazeau, 2011).

Example of a compound character (from Yates (2007)):

TABLE 3.3: The datasets included in this study. Column "NT" gives
the number of taxa, "NC" the number of characters. The ratio of taxa
to characters is a proxy for a dataset’s signal strength and is given in

column "Signal".

Abbr. Group NT NC Signal Reference

HYO Lophotrochozoans 56 225 0.249 Sun et al. (2018b)
CEA Birds 25 205 0.122 Clarke and Middleton (2008)
OZL Birds 65 247 0.263 Lee et al. (2014)
SCO Scolebythid Wasps 16 27 0.593 Engel, Ortega-Blanco, and

McKellar (2013)
THER Theridiid Spiders 64 242 0.264 Agnarsson (2006)
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Splenial foramen: absent (0), present and enclosed (1), or present and open
anteriorly (2).

For a human reader, this formulation makes intuitive sense, but in computa-
tional analyses of morphological data, compound characters pose a problem be-
cause the grouping of the two ’present’ states is lost (Brazeau, 2011). Applying a
3-state model to the above character assumes equal probabilities of transitioning
from state 0 ⇐⇒ 1, from 1 ⇐⇒ 2, and from 0 ⇐⇒ 2. But is losing an anteriorly
open splenial foramen really as likely as transitioning from an enclosed foramen to
an open one?

An improved formulation of the splenial foramen character separates it into a
neomorphic and a transformational character:

Splenial foramen: absent (0), present (1). (neomorphic)
Splenial foramen, degree of enclosure: enclosed (0), open anteriorly (1),
inapplicable (-). (transformational)

Brazeau (2011) provides a comprehensive review of character formulation prob-
lems, their impacts on phylogenetic inference, and advice on improving character
statements. The transformational character is inapplicable where the splenial fora-
men is absent. For recommendations on handling inapplicable characters in phy-
logenetic analysis of morphology, refer to Brazeau, Guillerme, and Smith (2019).

For this analysis, most character coding flaws were not corrected due to time
constraints.

3.3.2 HYO (Sun et al., 2018b)

Sun et al. (2018b) assembled a character matrix to illuminate the placement of a
novel orthothecid hyolith fossil. The dataset broadly samples Lophotrochozoan
taxa, including molluscs, brachiopods, phoronids, and sipunculans. The authors
followed Brazeau, Guillerme, and Smith (2019) in using reductive coding (sensu
Wilkinson (1995)), where inapplicability of a character is coded via a distinct state.
Where a neomorphic character was inapplicable as a result of ontological depen-
dence (sensu Vogt (2018)), this was coded as absence.

I deviated from the coding procedure of Sun et al. (2018b) in coding neomorphic
as well as transformational character states starting from 0. When modelling the
evolution of discrete morphological characters, MrBayes determines the number of
states by finding the largest state code. If a character’s states are not coded starting
from 0, MrBayes will wrongly choose the model for a character with one more state
than appropriate for that character.

The matrix contains 54 taxa which were coded for 225 morphological characters.
The shape parameter for the branch length prior was calculated to be λ = 0.3.

All characters were unordered. The preferred tree was drawn after Figure 4 of
Sun et al. (2018b), the consensus of trees constructed using Maximum Parsimony.
Bayesian analysis recovered a compatible tree topology.
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3.3.3 CEA (Clarke and Middleton, 2008)

This bird dataset was assembled by Clarke and Norell (2002) and extended by
Clarke, Zhou, and Zhang (2006). Clarke and Middleton (2008) investigated the
role of anatomical mosaicism in Avian evolution by reanalysing the matrix using
anatomical partitioning.

25 taxa were scored for 205 characters. 20 of the 25 included taxa were scored
based on fossil evidence. The 205 characters include 38 ordered characters (see
Appendix A.1.2).

The authors of the matrix did not distinguish between missing data and inappli-
cable characters. The fitted branch length priors were parameterised with λ = 0.5
(see equation 3.2.1.3). The preferred tree is in Figure 3b of Clarke and Middleton
(2008). It was inferred by anatomically partitioned Bayesian analysis.

3.3.4 OZL (Lee et al., 2014)

This second bird dataset is unique among my selection of matrices in that it uses
earliest fossil appearances to date fossil terminals and infer ages for interior nodes
of the tree. They used a relaxed morphological clock in MrBayes to constrain the
timing of the radiation of crown Aves.

65 taxa were scored for 247 characters. 22 of them were also included in the
dataset CEA. 60 out of 65 taxa were fossils.

31 characters were ordered (see section A.1.3). O’Connor and Zhou (2013) or-
dered 32 characters which included character 64. However, this character has more
than six states and cannot be ordered in MrBayes. Thus it was treated as unordered
here. No distinction was made between missing data and inapplicable characters.

I enforced a topology prior following the original authors. Lee et al. (2014) spec-
ified the topology at the root, outgrouping Dromeosauridae, placing Archaeopteryx
at the root of the bird clade, and constraining the remaining taxa to form the in-
group. The minimum ages of terminal taxa were calibrated using first appearances
in the fossil record. For details on node dating, refer to section 3.2.1.4. The nexus
files contain more detailed information and are found online.

The branch length prior was fitted to the dataset with the shape parameter λ =

0.3. The preferred tree was drawn after Figure 2 of Lee et al. (2014), which was
inferred using Bayesian analysis.

3.3.5 SCO (Engel, Ortega-Blanco, and McKellar, 2013)

Engel, Ortega-Blanco, and McKellar (2013) focused on reconstructing the relation-
ships within a comparatively small family of wasps. Scolebythiidae comprises just
five recent species, but a number of fossils in amber from the Early Cretaceous and
Eocene have been assigned to it as well. The matrix used here is an extension of a
dataset assembled by Engel and Grimaldi (2007).
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10 out of 16 taxa are known only from the fossil record. Taxa were scored for
27 characters. The coding of characters 9 and 21 for the outgroup Plumariidae
was corrected from (0123) to (01) as these two characters only have two states. All
characters were left unordered. Character inapplicability was treated like missing
data.

The branch length prior was parameterised with λ = 0.4. The preferred tree
is shown in Figure 6 in Engel, Ortega-Blanco, and McKellar (2013). It is the strict
consensus between three most parsimonious trees.

3.3.6 THER (Agnarsson, 2006)

This study placed a novel genus into the wider phylogeny of Theriidid spiders.
It extended the character matrix of Agnarsson (2004) by 2 species. This matrix is
the only one studied here which does not include any fossil taxa, and is further
unique for routinely including several species from the same genus. It is the most
fine-grained matrix of all those covered here, setting a counterpoint to the hyolith
matrix of Sun et al. (2018b) which samples broadly from the Lophotrochozoan clade
including brachiopods, molluscs, and worms.

64 extant taxa were scored for 242 characters. There were no unordered charac-
ters. The authors distinguished between inapplicable characters and missing data
(reductive coding sensu Wilkinson (1995)).

The shape parameter of the branch length prior was λ = 0.3. Figure 11 in
Agnarsson (2006) shows the Maximum Parsimony tree which was used as the pre-
ferred tree.

3.4 Partitioning Strategies

Table 3.4 lists the types partitioning strategies that were tested on the five morpho-
logical character matrices described above.

TABLE 3.4: Partitioning strategies tested using Steppingstones Anal-
ysis Xie et al. (2011).

Partitioning Strategy Partitions Example of usage

Homoplasy 3 — Low, mid, high fi Rosa, Melo, and Barbeitos (2019)
Character type 2 — Neomorphic, Trans-

formational
Sereno (2007)

Anatomy 3–8 — e.g. head, trunk,
limbs

Clarke and Middleton (2008)

Information Content 3 — low, mid, high IC —
random 3 —
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3.4.1 Unpartitioned analysis

Each matrix was first analysed without partitioning the characters. The result of
the unpartitioned analysis served as the baseline against which partitioned models
were compared (see section 3.1.3.2).

3.4.2 Homoplasy partitioning

Under this partitioning scheme, characters were ranked by their homoplasy on a
given tree. Homoplasy indices quantify the amount of "unnecessary" evolutionary
change a character goes through. The more times the same character state evolves
independently or reverts to the ancestral state, the more homoplastic a character is.
A character with no homoplasy shows exactly as many changes of state as neces-
sary given a tree topology and the terminal character states. If a character changes
state more often than required, it is deemed homoplastic and considered to evolve
at a higher rate.

The homoplasy index used here is Goloboff’s unbiased measure of homoplasy,
fi for a character i (Goloboff, 1993):

fi =
k + 1

si + k + 1−mi

where

k = concavity constant

s = observed number of changes of state, or steps, on a tree

m = minimum number of steps required on a tree.

The concavity constant k was set to 5. Observed steps (s) and minimum steps
(m) are computed using the Fitch algorithm (function Fitch()) and the function
MinimumSteps() in the R package TreeSearch. The Fitch algorithm for parsimony
allows for reversals and assumes symmetric change among character states (Wag-
ner Parsimony, see Felsenstein (2001)). It calculates the number of changes of state
(steps) in each character on a tree via post-order tree traversal. Node numbers refer
to Figure 3.1.

1. We assign to each tip the set of character states observed in that taxon. Node 1
shows state A, so its set is {A}. Node 2 is polymorphic and shows both states
A and B, so the set is {AB}.

2. We move rootwards to the first interior nodes and compare the sets of the
two descendent tips. These parent nodes are assigned the intersection of the
descendent sets. The descendent sets of node 5 are {A} and {AB}, therefore
the parent node is assigned set {A}. If the intersection is empty, the parent
node is assigned the union of the descendent sets and we count one change
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of state. Node 6 is assigned the set {AC} since its descendents 3 and 4 have
sets {C} and {A}.

3. We traverse the entire tree in this manner, counting a change of state every
time we encounter an empty intersection and assign the union of the descen-
dent sets to the parent node.

{A}     {AB}  {C}     {B}  

{A}            {CB}*  

{ABC}*

   1               2           3             4

    5                        6  

7

FIGURE 3.1: The Fitch algorithm for counting steps in a character
on a topology by post-order tree traversal. A step (marked with *) is
counted at every node whose two descendent nodes do not share a

character state.

Minimum steps on a given tree can be calculated based on the number of states
in a character. If a character has two states, at least one change of state must occur,
from the ancestral to the derived state. For a character with 5 observed states,
there must be a minimum of 4 changes. Thus, where j = the number of states of a
character the formula for minimum steps is simply

m = j− 1

Goloboff’s f is favoured here over Farris’ consistency index (CI) (Farris, 1969).
When calculating the CI, extra changes in binary characters carry more weight com-
pared to extra changes in multistate characters. In contrast, f treats binary and
multistate characters identically and confers no more or less weight on changes of
state in either type.

To facilitate comparison among characters, I normalised each character’s homo-
plasy index against the maximum possible number of steps. The number of states
in a character and the number of taxa put a limit on the number of steps that can
be attributed to homoplasy, thus placing an upper bound on a homoplasy index
(Hoyal Cuthill, Braddy, and Donoghue, 2010):
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"The highest number of steps possible for a character is then
g = t − F, where F is the number of taxa with any one most frequent
state (Steel and Penny, 2006). The total number of taxa with a minority
state will be maximal for the most even distribution of states possible.
Under this most even state distribution, t− F is equal to the maximum
possible number of steps that the character may show on any tree (gmax).

gmax(t; n) = t− [t/n]

where
[t/n] = the smallest integer ≥ t/n

[[t/n] is] equal to the lowest possible number of taxa with any one most
frequent state (Fmin)."

— from Hoyal Cuthill, Braddy, and Donoghue (2010)
For each character, the observed homoplasy index fobs was calculated using

the observed number of steps si and the minimum number of steps mi. Using the
maximum number of steps gmax, the upper bound of the homoplasy index fmax was
calculated. fobs was divided by fmax to arrive at a measure of homoplasy normalised
to the number of states and taxa:

fi = fobs/ fmax

3.4.2.1 . . . based on preferred tree

I calculated fi for each character on the preferred tree (see section 3.1.2.1). The
characters were ranked from high to low homoplasy index and sorted into three
partitions of equal size using the script Workflow.R.

3.4.2.2 . . . based on random tree sample

Partitioning by homoplasy on single tree might bias the model towards similar
trees. Furthermore, it seems circular to use a tree to estimate a tree. A group of
random trees could contain the same information on character reliability without
potentially favouring a certain phylogeny and distorting the posterior sample. To
investigate whether the success of homoplasy partitioning (Rosa, Melo, and Bar-
beitos, 2019) is caused by this circularity, I tested a model partitioned by homoplasy
on a sample of random trees.

Random trees were generated by recursive random splitting of edges using the
function rtree() in the R package ape. I calculated fi on 300 random trees and the
took the arithmetic mean Fi. All characters were ranked by their Fi and divided up
into three equal partitions with the script fPartitioning.R.
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3.4.3 Neomorphic-Transformational partitioning

Sereno (2007) posits that there are two fundamentally different patterns of morpho-
logical evolutionary change — the arisal of novel structures, and the modification
of existing features. This distinction is reflected in the structure of character state-
ments. A neomorphic character describes whether a structure is present or not —
the de novo appearance or loss of a morphological trait. Such characters only have
the states absent and present. The numeric code 0 is assigned to that state which is
inferred to be the ancestral condition.

In contrast, a transformational character describes a change in an existing struc-
ture. This change may be quantitative, for example a change in size, or qualitative,
such as a change in shape, appearance, or composition.

Any morphological character can be stated according to the schema laid out
by Sereno (2007), allowing the division of any data set into two partitions. These
contrasting character types are thought to evolve at different rates: it is easier to
change the shape of a vertebra than to evolve a spinal column.

3.4.3.1 . . . with asymmetric transition rates

Neomorphic characters might be expected to change preferentially from the ances-
tral to the derived condition while reversals are rare (see for example Sun et al.
(2018a)). This inequality can be modelled by setting an asymmetric hyperprior on
the transition rate for the neomorphic partition (see section 3.2.1.5).

3.4.3.2 . . . with symmetric transition rates

On the other hand, reversals may be equally common as transitions from ancestral
to derived states. I also tested a version of neomorphic-transformational partition-
ing where both partitions were modelled under a symmetric transition rate prior.

3.4.4 Anatomical partitioning

Anatomy-based partitioning can be employed to better model mosaic evolution
where change is localised to a region of the body and related characters evolve
in concert (Felice and Goswami, 2018). This concept is related to morphological
integration, the functional linkage of characters where a change in one character
accompanies or leads to a change in another. Such characters would have similar
evolutionary rates (Miller and Olson, 1960). Partitioning by anatomy has been used
in several phylogenetic studies using Bayesian methods, for example Gaubert et al.
(2005) and Clarke and Middleton (2008).

Characters were sorted into partitions manually. After gaining an overview of
the dataset and different characters, I attempted to sort them into as few partitions
as was possible while maintaining sensible anatomical divisions. This was more
or less straightforward depending on the character selection criteria used by the
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authors of the original publications my datasets were drawn from. Characters de-
scribing ratios or relationships between features were allocated to the partition of
the principal structure. The dataset THER included behavioural characters, which
were allocated to a partition of their own under this scheme. I also tried to group
characters in a way that would leave no partitions with fewer than 6 characters so
that parameters were estimated on the basis of enough data. The list of character
partitions for all datasets can be found in Appendix A.

The number of partitions under this scheme is variable and highly dependent
on character selection criteria. In this study, it ranged from 3 for SCO to 8 for HYO.
Because the number of partitions is often arbitrary and higher than for other parti-
tioning strategies, I also tested the two datasets with the most anatomical partitions
with fewer partitions (OZL with 6 instead of 7 and HYO with 4 instead of 8 parti-
tions).

3.4.5 Partitioning by Information Content

The Information Content (IC) of a character is measured as the number of tree
topologies which are perfectly compatible with that character. A character is said
to be compatible if it shows no unnecessary changes on a tree, that is, if the number
of observed steps equals the minimum required number of steps j− 1 (Felsenstein,
2001). The reader will recall that any steps in addition to the minimum steps are
homoplastic steps.

A character with k states is compatible with a tree if it shows j− 1 changes of
state on that tree. A character that is compatible with only a small number of tree
topologies restricts the possible tree topology more than a broadly compatible char-
acter. A character’s information content can then be expressed as the proportion of
compatible trees to all possible tree topologies (Smith, 2019. Personal communi-
cation). This measure is similar to Faith and Trueman (2001)’s central quantity of
Profile Parsimony, where a character’s number of steps on a tree are compared to
the number of steps on a random tree.

I calculated each character’s IC using the function CharacterInformation() in
the TreeSearch R package (Smith, 2019c). The function calculates the difference
between the number of unrooted trees compatible with a character and the total
number of unrooted trees with N terminals where N is the number of taxa. I or-
dered characters by their IC and divided them into three partitions of equal size
using the script InformationContent.

3.4.6 Random partitioning

Characters were put into a random sequence and divided into three equally sized
partitions with the script randomPartitions.R.
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3.5 Tree perturbation experiments

This experiment tested how the topology of the partitioning tree influences the
performance of homoplasy partitioning. I used Metropolis-Coupled Monte Carlo
Markov Chains (see section 2.3.1.2) to collect a large sample of trees from the pos-
terior distribution. The consensus tree of this sample was designated the recon-
structed tree (see section 3.1.2.3). I tested three datasets — HYO, SCO, and THER
— and generated 400 partitioning trees for each, totalling 1200 Bayesian analyses.
CEA and OZL were not tested here due to time constraints.

3.5.1 Tree generation and perturbation

The preferred tree for a dataset was coded into NEXUS format if there was no tree
file provided in the supplementary information or uploaded on TreeBase.

Starting from this tree, perturbed trees were generated using different rear-
rangement moves (see section 3.1.2.4) implemented in the TreeSearch R package
(Smith, 2019c). 100 random bifurcating trees were generated using the function
rtree() from the R package ape. rtree() generates trees by random recursive
splitting of edges (Paradis et al., 2019). The sample of trees is drawn from a uniform
distribution. The perturbed trees also included three chains of 100 trees perturbed
with NNI, SPR, and TBR moves respectively.

To create a chain of trees, the partitioning tree is perturbed once to create the
first tree in the chain. This tree is then rearranged again using the same move in a
new random location to generate the second tree in the chain. This is repeated until
the chain contains 100 trees.

The R script perturb_trees.R contains the code to generate the different types
of partitioning trees.

3.5.2 MC3 analysis

Each perturbed tree served as the partitioning tree for a homoplasy-partitioned
Bayesian analysis using MC3. Characters were ordered by fi as described in sec-
tion 3.4.2 and allocated to four partitions. A NEXUS template specific to each data
set was modified using the script workflow.R to implement these partitions in the
MrBayes block. The parameter settings for MC3 are detailed in section 3.2.1.7.

Partitioned MC3 analyses were run using the parallel version of MrBayes (Al-
tekar et al., 2004) on Hamilton, Durham’s High Performance Computing cluster.

3.5.3 Comparing model fit

Each MC3 analysis generated several output files, among them a .lstat file to
which the estimated log marginal likelihoods for all parallel runs are printed, and
a .con.tre file which contains the consensus tree in NEXUS format.
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To compare model fit, the arithmetic mean of the logMLs, which is equivalent to
the harmonic mean of the MLs, was calculated for each analysis. The partitioning
tree files (located in the subfolder SingleStartTrees within each dataset folder)
and the .con.tre files were used to calculate Quartet Similarity between these and
the preferred tree (see section 3.1.2.5). Model fit, tree similarity, and tree length
were calculated and plotted using the script TreePerturbationsResults.R. The
script Correlation_TreeSim.R checks whether the topologies of partitioning trees,
preferred trees, and reconstructed trees are correlated.

3.6 Character structure

Character Information Content (see section 3.4.5) was used as a tree-independent
way to quantify the amount of phylogenetic information contained within each
character’s state distribution over all taxa. The relationship with homoplasy was
plotted with the script CharacterStructure.R.

3.7 Testing model fit under different partitioning strategies

I calculated model fit for a range of partitioned models and compared their perfor-
mance to an unpartitioned model. Each dataset was partitioned according to eight
strategies (including no partitioning) which are described in detail in section 3.4.

I used Steppingstone sampling (Xie et al., 2011) to estimate marginal likelihoods
as accurately as possible. During preliminary experiments, MLs generated using
the Steppingstones method were found to be much more accurate than the MLs
calculated as part of a standard MC3 analysis (see also Fourment et al. (2019)).

3.7.1 File preparation

A template specific to each dataset was modified to contain a block of code im-
plementing partitions. For the neomorphic-transformational and anatomical par-
titioning strategies, characters were partitioned manually in an excel spreadsheet.
The vectors of the character numbers in each partition were then copied into the
template. For the other partitioning strategies, the template was modified using an
R script (see each subsection within 3.4).

The MrBayes blocks of the files contained the parameters for Steppingstone
sampling as detailed in section 3.2.1.8. Steppingstone analyses were run on the
parallelised version of MrBayes on the Hamilton cluster.

3.7.2 Comparing model fit

Results were analysed and plotted using the scripts partstratsCompare.R and
partstratsCompareDefault.R. For each partitioned analysis, the Bayes factor rel-
ative to the unpartitioned analysis of that dataset was calculated. The arithmetic
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means of the ln marginal likelihoods, Bayes factors, and associated statistics were
written to a summary file for each dataset (e.g. "HYO_MLsBFs.csv") with the script
partstratsCompare.R. Pairwise comparisons of the average ranks of all partition-
ing strategies were plotted with the script ranksHeatmap.R. Model fit for each par-
titioning strategy was compared across datasets and branch length priors using the
script brlensCompare.R.

3.7.3 Scripts

All relevant scripts, NEXUS templates, and summary filed for each dataset can be
downloaded from GitHub at https://github.com/smf541/ThesisSupplements.

https://github.com/smf541/ThesisSupplements
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Chapter 4

Results I — Tree perturbations and
character structure

4.1 Results of tree perturbations

Partitioning by homoplasy on a parsimony tree was named the best partitioning
strategy in a comparative study by Rosa, Melo, and Barbeitos (2019). This type
of partitioning scheme always relies on a partitioning tree (see section 3.1.2.2) on
which the homoplasy score of every character is calculated. But what if that tree
is unreliable? The chosen partitioning tree could be quite dissimilar from the true
tree. How does this affect the tree inferred by Bayesian analysis?

I analysed three character matrices under homoplasy partitioning based on par-
titioning trees progressively further removed from the preferred tree (see section
3.1.2.1). Results from 1200 analyses across the three datasets are summarised be-
low.

4.1.1 Evolution of the partitioning tree

Repeatedly perturbing the preferred tree for a dataset produces chains of more and
more dissimilar partitioning trees. These trees range from identical to the preferred
tree (Quartet Similarity = 100%) to effectively random (QS ≈ 33%). Any two ran-
dom trees are expected to share a third of quartets because a quartet of any four
taxa can be resolved in three equally likely ways (Smith, 2019b).

Depending on the perturbation move used (see section 3.1.2.4), a chain of per-
turbed trees reaches effective randomness at different speeds. NNI moves only
make minor changes to the tree, so the 100th NNI tree for the HYO dataset still
shares 80% of quartets with the preferred tree. 60 sequential SPR moves perturb
the same preferred tree into an effectively random tree, and using TBR moves, it
only takes 40 moves. The same holds true for the large THER tree. The SCO pre-
ferred tree is much smaller and reaches randomness within a handful of moves of
any type.
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4.1.2 Model fit is dependent on partitioning tree similarity

My results demonstrate that the fit of a homoplasy-partitioned model worsens as
the partitioning tree grows more dissimilar to the preferred tree.

Fig. 4.1 shows the relationship between model fit and tree similarity (see 3.1.2.5)
between the partitioning tree and the preferred tree as well as between the recon-
structed tree and the preferred tree. The Bayes factor between the best-fitting and
worst-fitting models is in the region of 70 dB for HYO, 10 dB for SCO, and 80 dB
for THER. The models with poorest model fit are consistently based on partition-
ing trees that are quite dissimilar to the preferred tree — dissimilar enough to be
effectively random.

Even models based on completely random trees still show considerable varia-
tion in model fit. For dataset THER, the fits of models based on random trees vary
within a range of 30 dB though their partitioning and reconstructed trees do not
vary in similarity to the preferred tree (see 4.1c). According to Kass and Raftery
(1995), a Bayes factor of 30 dB suggests unequivocally to favour one model over
another — but these models were created according to the same rules based on su-
perficially identical trees. The question is then, what makes one model based on a
random tree better than another?

4.1.2.1 Interpretation

Model fit reflects whether a partitioning strategy successfully discriminates charac-
ters by their evolutionary rates, or whether they are sorted more or less randomly. If
successful, partitioning aids inference by modelling variation in evolutionary rates,
and the correct tree is arrived at readily. If character partitions do not reflect real
rate categories, separately estimating the rate distribution for each partition is an
unnecessary computational burden. This is penalised during marginal likelihood
calculation, leading to worse model fit.

Any random tree shares a third of quartets with the true tree. While all quartets
are equally informative in terms of topology, they clearly vary in how informative
they are for partitioning. As trees get more and more dissimilar from the preferred
tree, model fit (here a proxy for the suitability of the tree for partitioning) continues
to decrease even though quartet similarity remains at 33%. Although new correct
quartets are created by progressive changes to the tree, the overall order of tips and
the sequences of branching events are disturbed. But it is exactly this order that
is critical to the correct calculation of the number of steps on the tree and thus the
calculation of accurate homoplasy values. Random trees in which the order of tips
and the sequence of divergence events happen to be similar to the true tree thus
lend themselves better to homoplasy partitioning.
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(A) Effects of partitioning tree perturbation on topology in dataset HYO.
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(B) Effects of partitioning tree perturbation on topology in dataset SCO.
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(C) Effects of partitioning tree perturbation on topology in dataset THER.

FIGURE 4.1: Caption on next page.
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(Previous page) Each homoplasy-partitioned model contributes two
points to this figure displaying the relationship between the model’s
fit, the proximity of the partitioning tree to the preferred tree for a
dataset, and the proximity of a reconstructed tree to the same pre-
ferred tree. Distance between trees is measured as quartet similarity
(see section 3.1.2.5). Models based on a partitioning tree very simi-
lar to the preferred tree tend to show high marginal likelihoods, and
model fit decreases as the partitioning tree becomes closer to ran-
dom trees. In contrast, the reconstructed tree of a model remains

quite similar to the preferred tree even when model fit is low.

4.1.3 Reconstructed and partitioning tree are independent

The accuracy of the reconstructed tree is not dependent on the accuracy of the par-
titioning tree. Bayesian analysis recovers a tree close to the preferred tree even
when the partitioning tree is dissimilar (see Fig. 4.1). The quartet similarity of the
reconstructed tree to the preferred tree is not correlated with the similarity of the
partitioning tree to the preferred tree (Pearson’s correlation coefficient r = 0.232).

The Bayesian reconstructed tree does not change much from analysis to analysis
even as model fit decreases. Similarity to the preferred tree hovers around 95–100%
for THER (Fig. 4.1c), 70–95% for SCO (Fig. 4.1b), and 90% for HYO (Fig. 4.1a). Even
models partitioned on random partitioning trees infer reconstructed trees that are
very similar to the preferred tree, sharing up to 95% of quartets.

4.1.3.1 Interpretation

Uninformative partitioning does not appear to be sufficient to derail Bayesian in-
ference of topology. After all, partitioning characters badly does not take away data
from the model. The model is not told to expect certain evolutionary rates of each
partition, merely to estimate their rates on separate distributions. If these distribu-
tions have the same shape, the partitions do not reflect different rate categories. In
that case, the rate distributions will all look similar to the single distribution of an
unpartitioned model, and between-partition rate multipliers will be close to 1. A
badly partitioned model is thus able to infer the tree topology just as well as if there
was no partitioning, but does so using more parameters and is penalised for this
relative to more naïve models.

4.1.4 Estimation of branch lengths

If topology is inferred consistently and, as far as is verifiable, correctly, trees may
still differ in their branch lengths. Branch lengths make up a large proportion of the
parameters that have to be estimated in the course of a Bayesian analysis (Ronquist,
Huelsenbeck, and Teslenko (2011), p.61). Problems with branch length inference,
whether caused by a difficult dataset or a misspecified model, may therefore have
an impact on whether a "good" tree is inferred (Ekman and Blaalid, 2011; Rannala,
Zhu, and Yang, 2012).
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The dataset HYO exhibits a strong trend towards poorly-fitting models infer-
ring shorter longest branch lengths (see Fig. 4.2a and caption). But this seems in-
consistent with studies that relate short branch lengths as a criterion for well-fitting
models (Rannala, Zhu, and Yang, 2012; Ekman and Blaalid, 2011).

Minimum branch lengths also show a trend, but the relationship is reversed:
better models infer shorter shortest branches, though the differences in length are
miniscule (Linear regression for HYO: F = 1443.0, df= 398, r2 = 0.78, p < 0.001,
data not figured). This trend is uniform across datasets, though it is weak for THER
(r2 = 0.13). The variance in branch lengths is smallest when longest branches are
short. This indicates that the best models infer branches that are quite similar to
each other in length and (usually) short.
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FIGURE 4.2: Scatterplot of the lengths of the longest branch of each
result tree of a homoplasy-partitioned model (gamma-distributed
branch length prior) versus model fit. The trendline is a line of best
fit with 95% confidence interval in gray. Subfigure captions con-
tain test statistics of linear regressions. Points are coloured by the
sample variance of branch lengths. Shorter branches are associated
with lower variance in all datasets. In HYO, the maximum branch
length is strongly correlated with model fit: poorly-fitting models
infer shorter branch lengths. In THER and SCO the trend is reversed

and quite weak (r2 < 0.2).

4.1.4.1 Interpretation

The effect of partitioning on branch length inference may be larger when branches
are longer and span more evolutionarily disparate groups, leading to more changes
along each branch. This would explain why branch lengths and model fit are cor-
related so strongly for HYO, but do not show a particularly strong relationship in
SCO and THER, which are more limited in taxonomic scope.

It might make a difference whether branch lengths are estimated for each parti-
tion separately or from all character data in combination. Rosa, Melo, and Barbeitos
(2019) reported best results when branch lengths remained linked as per default in
MrBayes and my analyses followed their precedent in this regard.
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4.2 Character Structure

When characters are partitioned by homoplasy, some consistently receive high ho-
moplasy values and are sorted into the partition containing unreliable characters.
Others show few or no superfluous steps even across large samples of random
trees. It appears likely that there are inherent differences in character structure be-
tween these groups.

While a tree can only be built by combining information from several characters,
it is possible to quantify the amount of phylogenetic information contained in a
single character by studying its state distribution across taxa. I tested whether the
tree-independent measure of Character Information Content (see section 3.4.5) is a
suitable proxy for tree-dependent measures of homoplasy.

Fig. 4.3 shows mean values of Goloboff’s f (see section 3.4.2) plotted against
Information Content. High Information Content correlates weakly with low ho-
moplasy for the majority of datasets (tested with linear regression, see captions in
Fig. 4.3). While all tests were statistically significant, only in THER is this rela-
tionship statistically relevant (r2 = 0.30). In HYO, the trend is reversed and the
characters with the highest Information Content are most homoplastic.

4.2.1 Interpretation

Each dataset contains characters with an Information Content of 0%. These charac-
ters are compatible with all possible trees and therefore carry no information that
helps to discern the true tree topology (parsimony uninformative characters). Often
they range greatly in homoplasy, especially for HYO (Fig. 4.3c). Other characters
with identical Information Content are also variably homoplastic, especially for
THER and OZL (Fig. 4.3). Characters that are expected to be equally informative
according to their IC thus show very different behaviours on trees.

It appears that Information Content and Goloboff’s f do not capture the same
information about a character. While there is some evidence that IC is picking up on
an aspect of character structure, it is clear that there remains more to be discovered
about how character state distributions relate to distributions of changes on a tree.
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FIGURE 4.3: Relationship between homoplasy and Character Infor-
mation Content. All datasets but HYO exhibit lower homoplasy
values for characters with high Information Content. Homoplasy
was measured using Goloboff’s f and averaged over 300 randomly
sampled trees. Character Information Content was measured as the
proportion of tree topologies compatible with a character out of all
possible trees. The size of each marker corresponds to the standard
error — smaller markers denote smaller errors. Trendline indicates

line of best fit with shaded 95% confidence interval.
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4.3 Synthesis

This chapter explored the effects of partitioning on tree topology and branch lengths.
I demonstrated that inference of topology is not hindered by uninformative par-

titioning, even though it depresses model fit (see section 4.1.3). If we are interested
mainly in the relationships between different taxa and clades, it does not matter
much whether the choice of partitioning tree is less than optimal — even a random
tree can be sufficient.

The inference of branch lengths is more dependent on accurate estimates of
evolutionary rates, and branch lengths did show dependence on how the model
was partitioned (see section 4.1.4). The effect may be stronger for large datasets
with cross-phylum taxon coverage like HYO (Fig. 4.2a). Thus if we are mainly
interested in dating divergence times and key evolutionary events, it is more critical
that the partitioning tree be reasonably close to the true tree.

We can never be entirely certain how accurately a tree represents the true evolu-
tionary history of a clade. A tree-independent proxy for homoplasy could eliminate
this source of uncertainty. The measure of Character Information Content aims to
extract the relevant phylogenetic information from a character’s state distribution.
While Information Content and the homoplasy index Goloboff’s f are weakly cor-
related, the link is not strong enough to make IC a viable tree-independent alterna-
tive to a homoplasy index.
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Chapter 5

Results II — Partitioning strategies

This section presents the results of testing eight different partitioning strategies on
five datasets. I briefly describe and visualise the data on the relative performance of
the different strategies under the default branch length prior in MrBayes. Follow-
ing on, I discuss what differences arise when partitioned analyses are run under
other branch length priors.

5.1 Performance of different partitioning strategies

Models were ranked by their Bayes factor relative to the unpartitioned analysis
within each dataset. I then took the arithmetic mean of the ranks of the eight parti-
tioning strategies across analyses under the default branch length prior for all five
datasets. The average ranks are:

1. Homoplasy partitioning based on preferred tree

2. Unpartitioned analysis

3. Homoplasy partitioning based on 300 random trees

4. Neomorphic-transformational partitioning with symmetric character state tran-
sition rates

5. tied:
Partitioning by Information Content
Neomorphic-transformational partitioning with asymmetric transition rates
in the neomorphic partition

7. Randomly sorting characters into partitions

8. Partitioning by anatomy

The order of the partitioning strategies that received intermediate ranks is quite
variable from dataset to dataset. The highest- and lowest-ranked strategies how-
ever are almost always the same. Homoplasy partitioning generally gives good
results and includes the only partitioning strategy that consistently was preferable
to not partitioning the data.



74 Chapter 5. Results II — Partitioning strategies

Fig. 5.1a summarises the model fit of different partitioning strategies under the
default branch length prior for all five datasets. The range of marginal likelihoods
varies strongly between datasets, with differences of up to 130 dB between the
worst- and best-fitting models. This range is positively correlated with the number
of taxa in each dataset, being largest for THER and OZL (130dB) and smallest for
SCO (< 10dB).

Figure 5.1b shows clearly that partitioning by anatomy and random partition-
ing give the worst results. They are outperformed by other strategies in almost all
cases. Partitioning by homoplasy on the optimal tree is overall the most successful
strategy, though it is in isolated cases outperformed by neomorphic-transforma-
tional partitioning or simply by an unpartitioned analysis (Fig. 5.1a). The unparti-
tioned model usually performs better than neomorphic-transformational partition-
ing, and partitioning by mean homoplasy over a sample of random trees is almost
always preferable to partitioning by Information Content (Fig. 5.1b, see also section
4.2).

5.1.1 Neomorphic-transformational partitioning — symmetric or asym-
metric transition rates?

Neomorphic-transformational partitioning operates on the premise that neomor-
phic and transformational characters evolve in fundamentally different ways (see
section 3.4.3 and Sereno (2007) for definitions of character types). Neomorphic
characters have a clear ancestral state and transitions from ancestral to derived
states are more likely than reversals, leading to asymmetry in the initial state fre-
quencies and the probabilities of transitioning between states.

Neomorphic-transformational partitioning was tested twice with varied model
settings. In neotrans analyses, I allowed state frequencies and transition rates to be
asymmetric for characters in the neomorphic partition, while in neotrans2 models
they were symmetric for both transformational and neomorphic characters. Equal
state frequencies performs slightly better in three cases, for datasets CEA, OZL, and
SCO (see Table 5.2). Allowing for asymmetric transition rates in THER and HYO
improved results by 13 and 1 dB respectively.

Neotrans models favour changes from ancestral to derived states and discour-
age reversals. State frequencies are estimated as a gamma dirichlet distribution
with a single shape parameter that dictates the degree of asymmetry. If state fre-
quencies and the linked transition rates are not fixed to be symmetric a priori, this
shape parameter must be estimated, increasing the number of parameters that must
be averaged over. If modifying the transition rates does not strongly improve in-
ference, the model receives a lower marginal likelihood.

Neomorphic-transformational partitioning relies on correct assignment of the
ancestral state in neomorphic characters. Errors in character formulation can easily
prevent the success of this partitioning strategy.
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FIGURE 5.1: (A): Modified bumps chart of Bayes factors for all par-
titioning strategies across datasets. Point size and transparency are
correlated with the size of the standard error — the larger the error,
the more transparent and larger the point. (B): Heatmap showing
pairwise comparisons of all eight partitioning strategies. This graph
combines data from 5 datasets under the default branch length prior.
Blue squares indicate that strategy a (row) tended to give better re-
sults than strategy b (column). Red quares indicate that strategy
b was better on average. Partitioning strategy labels: opt = homo-
plasy partitioning (preferred tree); neo2 = neomorphic-transforma-
tional part. (symmetric transition rates); IC = part. by Information
Content; unpart = unpartitioned analysis; neo = neomorphic-trans-
formational part. (asymmetric transition rates in neomorphic parti-
tion); F = homoplasy part. (300 random trees); ran = random part.;

ana = part. by anatomy.
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TABLE 5.1: Summary table of all partitioned models under the de-
fault gamma prior on branch lengths. Marginal likelihoods are pre-
sented in log units along with the model’s Bayes factor relative to
the unpartitioned model. Models are ranked within each dataset by

their Bayes factor.

Dataset Partitioning Strategy ML [ln units] BF [dB] Rank

Unpartitioned −2572.08 0 3
Neomorphic-transformational −2548.43 23.65 1
Neomorphic-transformational 2 −2549.78 22.30 2
Anatomy −2603.99 −31.91 6
Information Content −2606.52 −34.45 8
Homoplasy — random trees −2598.88 −26.81 5
Random partitions −2605.21 −33.13 7

HYO

Homoplasy — preferred tree −2576.09 −4.01 4

Unpartitioned −1596.83 0 4
Neomorphic-transformational −1597.25 −0.43 5
Neomorphic-transformational 2 −1593.59 3.23 2
Anatomy −1608.51 −11.69 8
Information Content −1595.12 1.71 3
Homoplasy — random trees −1602.45 −5.62 6
Random partitions −1607.49 −10.67 7

CEA

Homoplasy — preferred tree −1502.40 94.42 1

Unpartitioned −3742.16 0 2
Neomorphic-transformational −3789.31 −47.16 5
Neomorphic-transformational 2 −3778.17 −36.01 4
Anatomy −3807.58 −65.42 7
Information Content −3793.97 −51.81 5
Homoplasy — random trees −3772.06 −29.90 3
Random partitions −3807.58 −65.42 7

OZL

Homoplasy — preferred tree −3678.36 63.80 1

Unpartitioned −259.46 0 5
Neomorphic-transformational −260.96 −1.50 8
Neomorphic-transformational 2 −259.59 −0.13 6
Anatomy −259.76 −0.29 7
Information Content −259.41 0.05 4
Homoplasy — random trees −259.09 0.37 3
Random partitions −258.71 0.76 2

SCO

Homoplasy — preferred tree −253.65 5.82 1

Unpartitioned −3700.92 0 4
Neomorphic-transformational −3761.72 −60.80 5
Neomorphic-transformational 2 −3774.47 −73.55 6
Anatomy −3779.76 −78.83 7
Information Content −3698.06 2.87 3
Homoplasy — random trees −3651.45 49.48 2
Random partitions −3781.71 −80.79 8

THER

Homoplasy — preferred tree −3646.65 54.28 1
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TABLE 5.2: Effect of implementing symmetric or asymmetric
state frequencies and transition rates under neomorphic-transfor-
mational partitioning. Negative Bayes factors indicate that model

neotrans2 (symmetric transition rates) performed better.

Dataset Branch length prior lnML [ln units] BF [dB]
neotrans neotrans2

default −2548.43 −2549.78 1.35
exponential −2974.29 −2855.98 −118.31HYO
clock −2581.41 −2580.62 −0.79

default −1597.25 −1593.59 −3.66
exponential −1809.23 −1773.88 −35.35CEA
clock −1617.92 −1614.75 −3.17

default −3789.31 −3778.17 −11.14
gamma −3788.94 −3778.48 −10.46OZL
clock −3837.81 −3821.56 −16.25

default −260.96 −259.59 −1.37
exponential −278.01 −280.88 2.87SCO
gamma −259.94 −259.27 −0.67

default −3761.72 −3774.47 12.75
gamma −3760.45 −3774.16 13.71THER
clock −3756.89 −3770.35 13.46

5.1.2 Number of partitions in anatomy partitioning

With every added partition, the number of parameters to be estimated increases.
Partitioning by anatomy is especially prone to producing a large number of parti-
tions. To test whether overparameterisation limited the performance of anatomy
partitioning, I divided the datasets HYO and OZL first into eight and seven, then
into four and six partitions.

Reducing the number of partitions improved model fit in all cases. The models
with fewer partitions received higher marginal likelihoods, but typically only by
a small margin (see Table 5.3). Halving the number of partitions for HYO led to a
marked increase in model fit (BF=4 under the default branch length prior, higher
under alternative priors). The effect for OZL was more modest (BF=1) since the
number of partitions decreased less strongly. In several instances the relative order
of partitioning strategies changed, with models partitioned by anatomy now per-
forming better than randomly partitioned models, but this did not affect the overall
mean ranks.

These results indicate that it is better to form fewer partitions when partitioning
by anatomy. The added partitions do not aid inference sufficiently to warrant the
estimation of so many added parameters.
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TABLE 5.3: Effect of lowering the number of partitions in anatomy
partitioning for datasets OZL and HYO. Positive Bayes factors indi-

cate that the model with fewer partitions performed better.

(A) HYO

Prior lnML [ln units] BF [dB]
8 Partitions 4 Partitions

default −2607.48 −2603.66 3.82
exponential −2668.20 −2637.26 30.94
clock −2636.61 −2631.50 5.11

(B) OZL

Prior lnML [ln units] BF [dB]
7 Partitions 6 Partitions

default −3807.42 −3806.42 1.00
gamma −3810.53 −3808.10 2.43
clock −3853.87 −3849.73 4.14

5.1.3 Circularity in partitioning

The leading principle of Bayesian analysis is the separation of prior beliefs from
evidence, so a prior should be in no way influenced by the data. Some of the parti-
tioning strategies tested here violate this paradigm by estimating some property of
the data before feeding that result into the model. To partition by homoplasy or by
Information Content, we first need to calculate the homoplasy index or IC of each
character using the character data. Homoplasy partitioning additionally requires a
tree topology for this step. PartitionFinder2’s strategy for choosing a partitioning
scheme is also informed by the data since it calculates the maximum likelihood of
each competing scheme given a tree topology. These methods all present modi-
fications to the standard Bayesian paradigm, perhaps aligning them more closely
with Empirical Bayes procedures where priors can be influenced by the data or
even estimated directly from the data (Casella, 1985). Empirical Bayes approaches
have been widely used (Carlin and Louis, 2000), for example in crop yield models
(Green, Strawderman, and Thomas, 1992), to detect incorrect electricity meter read-
ings (Rodrigues et al., 2019), and in the estimation of extinction times from the fossil
record (see Hayes et al. (2020) and Alroy (2014), and discussion in Solow (2016) and
Alroy (2016)).

The poor performance of partitioning by Information Content shows that sim-
ply incorporating some information from the data into the prior doesn’t magically
improve the model. Partitioning by homoplasy on the other hand produces mod-
els with consistently high fit to the data, creating the suspicion that model fit might
be inflated. It appears possible that this circularity could be used to artificially im-
prove the fit of such a model, whether inadvertently or purposefully.
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To investigate whether a model partitioned by homoplasy on a preferred tree
always fits the data better than the model which generated the preferred tree, I com-
pared the marginal likelihoods of both models (see Table 5.4). The preferred trees
for CEA and OZL were estimated with Bayesian models, with the CEA model using
anatomy partitioning. The SCO, HYO, and THER preferred trees were constructed
under maximum parsimony analysis, though the HYO paper also included node
support values from a Bayesian analysis partitioned into neomorphic and transfor-
mational characters.

Only the CEA paper provided model fit values, so I modified the nexus files
provided in the electronic supplementary material for HYO and OZL from the orig-
inal MC3 analyses to Steppingstone analyses and ran them in MrBayes to obtain
marginal likelihoods. At first I increased the number of generations to the num-
ber of steps plus an additional burnin step times the number of generations in the
original MC3 analysis. However, these analyses would have exceeded Hamilton’s
maximum runtime of 72 hours, so for OZL I decreased the number of generations
again by a factor of 10 from 1,640,000,000 to 164,000,000, while also increasing the
sampling frequency by a factor of 10 from 4000 to 400 so that the same number
of samples would be drawn. For HYO the number of generations of the modified
analysis was 150,000,000. I also increased the burnin proportion from 10% to 30%
and decreased the number of chains per run from 8 to 6, but kept the sampling
frequency at 500. The OZL analysis showed good convergence, but unfortunately
the HYO analysis repeatedly failed to converge and its results are not included in
Table 5.4.

SCO, CEA, and OZL were also analysed by Rosa, Melo, and Barbeitos (2019)
under partitioning by anatomy, homoplasy, and PartitionFinder2. The best model
for each dataset used homoplasy partitioning on a maximum parsimony tree. The
marginal likelihoods of these three models are included in Table 5.4.

From the limited data available, it appears that whether the homoplasy-partitioned
model performs better than the original model is dependent on the dataset. The

TABLE 5.4: Bayes factor comparison of the fit of a model partitioned
by homoplasy on a preferred tree (homoplasy model), versus the
best Bayesian model from the paper that published that preferred
tree (original model). Fit values are also compared to the best mod-
els from Rosa, Melo, and Barbeitos (2019), which were partitioned

by homoplasy on a maximum parsimony tree.

Data Original model Homoplasy model Rosa et al. (2019)
ML [ln units] ML [ln units] BF [dB] ML [ln units] BF [dB]

CEA −1489.2 −1502.40 −13.2 −1562.01 −72.81
OZL −3758.86 −3678.36 80.50 −3672.74 86.12
SCO — −253.65 — −271.65 —
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original anatomy-partitioned model for CEA shows better fit to the data than ei-
ther homoplasy-partitioned model. It is worth mentioning that Rosa, Melo, and
Barbeitos (2019) were unable to reproduce the success of CEA’s anatomy partition-
ing, perhaps due to differences in parameter settings.

Another possible concern with homoplasy partitioning is the effect of the parti-
tioning tree on the reconstructed tree. In Chapter 4 I tested homoplasy-partitioned
model based on not just the preferred tree, which is presumed to be largely true,
but also further removed perturbed trees and completely random trees. I demon-
strated that homoplasy-partitioned models reconstruct tree topologies that closely
resemble the preferred tree for a dataset, and not the partitioning tree on which
homoplasy values were calculated. Any hidden influence that the preferred tree
could have upon the reconstructed topologies gets “lost in translation” when char-
acters are sorted into their homoplasy categories. Thus I consider partitioning by
homoplasy to be no more circular than other data-conscious approaches to parti-
tioning.

5.1.4 Interpretation

Partitioning by homoplasy emerged as the best partitioning strategy overall. It
requires a partitioning tree reasonably close to the true tree, but as demonstrated
in section 4.1 this tree does not need to be highly accurate. Conceived as a tree-
independent alternative to homoplasy partitioning on a preferred tree, partition-
ing by Information Content was unable to extract the necessary information about
evolutionary rates from the raw character data. The method of calculating mean
homoplasy over a large sample of random trees was similarly unsuccessful.

Neomorphic-transformational partitioning, or partitioning by character type,
gave only mediocre performance. Modelling the asymmetry in transition rates and
state frequencies expected in neomorphic characters can improve model fit, but
this is highly dependent on the correct assignment of ancestral states (see section
5.1.1). Since ancestral state reconstruction is always dependent on a phylogenetic
tree, this polarity poses a problem when using ancestral states for phylogenetic
inference. Pagel and Lutzoni (2002) suggest reconstructing ancestral states on each
tree from an MCMC sample of trees and accepting the consensus as the evolution
of that character. This method is indeed tree-independent, however it still relies on
the correct specification of the Bayesian model used to collect the MCMC sample.
The challenges to accurate ancestral state reconstruction are thus very much the
same as to reconstruction of phylogenies in general, and correct ancestral states
should not be a critical requirement for phylogenetic inference.

Random partitioning of characters was included to provide a benchmark of
minimum performance; the other partitioning strategies were definitely expected
to beat this bar. Surprisingly, this was not the case for partitioning by anatomy
which received worse model fit values than random partitioning in several cases.
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This provides positive evidence against morpho-functional correlation among char-
acters, at least at the scales of the datasets studied here. However, previous studies
did find evidence of mosaic evolution. Felice and Goswami (2018) found that re-
gions of the avian cranium discriminated by different developmental origins evolved
at varying rates. Being exclusively based on morphometric scans of bird skulls,
their dataset was more limited in the range of characters than the avian datasets
used in this study, OZL and CEA. Linkage between characters caused by mosaicism
may readily occur at such small spatial scales, especially if characters are not inde-
pendent as is likely with morphometric data.

The original CEA model as well as the best anatomy-partitioned models of
Rosa, Melo, and Barbeitos (2019) had unlinked branch lengths, whereas I kept
branch lengths linked across partitions. If anatomical partitioning always works
better when branch lengths are estimated independently for each partition, this
would explain why my anatomy-partitioned models always performed more poorly
than their unpartitioned counterparts. It is also possible that partitioning by func-
tion rather than anatomical region (as in the original study of the dataset CEA
(Clarke and Middleton, 2008)) would have been more successful.

In general, it appears favourable to limit the number of partitions (see section
5.1.2). Thus, partitioning off only one or two functional groups of interest and
grouping the remaining characters together also might have yielded better results.

5.2 Relative performance of branch length priors

In addition to the different partitioning strategies, I also tested various methods
of inferring branch lengths. Apart from the default gamma dirichlet prior with
shape parameter αT = 1, I tested a gamma dirichlet prior with fitted αT, a fitted
exponential prior and a relaxed clock model (see section 3.2.1.3).

Figure 5.2a compares the relative performance of all partitioning strategies in
pairs. The overall result remains the same when incorporating data from all branch
length priors, not just the default prior (cf. Fig. 5.1b). Homoplasy partitioning
based on the optimal tree still performs best, followed by unpartitioned analyses.
Partitioning by anatomy and random partitioning give the worst results.

Figure 5.2 compares results for each datasets under the different branch length
priors. The Bayes factor for a dataset-prior combination varies by up to 300 dB
between partitioning strategies (compare e.g. HYO under the exponential prior in
Figures 5.2b and 5.2c). Nevertheless, the overall pattern is remarkably consistent
over different partitioning strategies.

The exponential prior produces by far the poorest models for every dataset
it was tested on, and under every partitioning strategy. For dataset HYO par-
titioned into neomorphic and transformational characters, using an exponential
branch length prior is over 400 dB worse than using the default prior. It was
the only prior to introduce substantial variation in the relative ranks of different
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(C) Fit of neomorphic-transformational
models

FIGURE 5.2: Comparison of model fit under different branch length
priors. (A) Heatmap showing pairwise comparisons of all eight par-
titioning strategies. Includes 15 data points for each comparison as
this graph combines data from 5 datasets and 3 branch length priors.
(B, C) Graphs of unpartitioned model and model with neomorphic-
transformational partitioning. Each plot shows Bayes factors for a
single partitioning strategy, separated along the x-axis by dataset
and colour-coded according to the branch length prior. Bayes factors
were calculated relative to the default prior. Branch length prior key:
default = default gamma dirichlet prior; exp = fitted exponential
prior; gamma = fitted gamma dirichlet prior; clock = relaxed clock

model. Prior specifications are found in section 3.2.1.3.
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partitioning strategies. For HYO, it made the anatomy partitioned model per-
form much better than usual, but not better than the unpartitioned model which
was the highest-ranked model overall. Neomorphic-transformational partitioning
ranks highest under the default prior, and lowest under the exponential prior.

For CEA, neomorphic-transformational partitioning performed much more poorly,
while the models partitioned by information content and homoplasy on random
trees were ranked higher than under the other priors.

For SCO, the unpartitioned model was ranked first, and neomorphic-transfor-
mational partitioning performed better than under alternative priors.

The clock model generally performed slightly worse than the default prior. The
only exception is the dataset THER, where the clock model yields the best results,
sometimes by a margin of several dB (see Fig. 5.2b).

The fitted gamma dirichlet prior performs very similarly to the default static
gamma dirichlet prior. However, the Bayes factors between these models are too
small to carry much significance under Bayesian model testing.

5.2.1 Interpretation

According to the MrBayes manual (Ronquist, Huelsenbeck, and Teslenko, 2011),
clock models can be expected to win out over non-clock models in a Bayes factor
test. Clock models are a special case of non-clock models and are therefore ex-
pected to infer just as good estimates of phylogeny. Since Bayesian model compar-
ison takes into account the number of estimated parameters when assessing model
fit, a model with more parameters that gives just as good results as another will
receive lower model fit, because the added complexity of the model does not trans-
late to an increase in inferential power (see section 2.3.2.1). In a strict clock model
for n taxa, n independent node times are estimated, whereas in a non-clock model
the number of estimated branch lengths is closer to 2n. A relaxed clock model em-
ploys an intermediate number of parameters: Specifically, the relaxed clock with
independent gamma rates that was used in this study estimates n node times plus
one additional parameter per partition. Thus, if the clock model succeeds in esti-
mating the phylogeny just as well as the more parameter-rich non-clock model, the
clock model has a higher marginal likelihood. Considering this natural advantage
of clock models, it is surprising that my models using a relaxed clock did not give
better results than those with the default prior.

Exponential models show by far the worst model fit. As unconstrained branch
length models, they are expected to be worse than clock models due to the addi-
tional parameters, but they also perform much more poorly than the default and
gamma models. The exponential distribution with λ = 1 was the default branch
length prior until MrBayes v3.2.2 (Ronquist, Huelsenbeck, and Teslenko, 2011). Af-
ter Rannala, Zhu, and Yang (2012) and Zhang, Rannala, and Yang (2012) reported
that a gamma dirichlet prior gave much better results, the default was changed to
a gamma dirichlet distribution with shape parameter αT = 1. Gamma dirichlet
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priors are less prone to inferring overly long branches, thus avoiding long branch
attraction and clustering of extant tips on trees combining fossil and living taxa
(Ronquist, Lartillot, and Phillips, 2016).

Fitting the prior to each dataset posed no significant improvement to model fit
compared to using the default prior. It may have an impact on branch lengths,
however this was not tested here. Strictly based on model fit there is no evidence
that fitting the prior leads to better inference of phylogeny.

5.3 Synthesis

The aim of this chapter was to establish which partitioning strategy and which
branch length prior are most suitable for morphological characters. I presented ev-
idence relating to their performance in Bayesian inference and discussed challenges
to each strategy’s implementation.

In most cases, the relative performance of a partitioning strategy does not change
depending on the branch length prior — only the absolute fit of the combined
model is affected. Partitioning by homoplasy on a reasonably accurate tree is the
best partitioning strategy overall, while partitioning by anatomy performs poorly
and cannot be recommended. Neomorphic-transformational partitioning has the
potential to perform well given the right conditions, but requires knowledge of an-
cestral states and is thus unsuitable unless character polarity can be clearly estab-
lished. No alternative branch length prior tested here presented an improvement
over the default setting. Fitting the prior to the dataset does no harm, but may be
unnecessary and can be safely omitted.
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Chapter 6

Discussion

6.1 What is the best partitioning strategy . . .

The idea behind partitioning is that it allows us to provide the model with infor-
mation about the variation in evolutionary rates in a dataset. Phylogenetic datasets
inevitably contain some rate variation, and in some cases it is straightforward to
predict — for example, coding DNA sequences are under stricter mutation control
and evolve more slowly than non-coding sequences. It is much more difficult to
predict the evolutionary rate of a morphological character.

6.1.1 . . . for model fit?

After testing a range of new and previously proposed partitioning criteria on sev-
eral published datasets, partitioning by homoplasy on a reasonably well-fitting tree
emerges as the best strategy.

Weighting by homoplasy has been employed in Maximum Parsimony analy-
ses for decades and is — while not entirely uncontroversial, see e.g. Kluge (1997)
— generally accepted to work well, if the concavity constant k suits the dataset.
Weighting and partitioning by homoplasy operate on the premise that we should
divide characters according to their evolutionary rate. This seems to work very
well using the measures of homoplasy at our disposal, such as Goloboff’s f .

Rosa, Melo, and Barbeitos (2019) tested homoplasy-based partitioning against
anatomical partitioning and partitioning using PartitionFinder2 (Lanfear et al., 2016).
PartitionFinder2 mainly includes an algorithm designed to compare all possible
ways of partitioning a dataset by forming partitions from user-defined groups of
characters. It uses a single tree on which the likelihoods of all possible partitions
are calculated. For each partitioning scheme, the likelihoods of the constituting
partitions are summed and the best scheme is chosen via AIC, AICc, or BIC.

Partitioning by homoplasy produced better models than PartitionFinder2, sug-
gesting that the algorithm was unable to identify the best-fitting partitioning strat-
egy. The best partitioning scheme is chosen by information criterion, not by the
Bayes factor. Perhaps this caused models with higher maximum likelihoods, rather
than highest marginal likelihoods, to be selected. Rosa, Melo, and Barbeitos (2019)
state that the scheme selected by PartitionFinder2 did not depend on which tree
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was used, further confirming the disconnect between partitioning and tree topol-
ogy.

I observed that lowering the number of partitions improved model fit under
anatomy partitioning, but an increased number of partitions may be tenable if
enough partitions are set up to eliminate the need for estimating within-partition
ACRV (Among-Character Rate Variation). I limited the number of partitions under
homoplasy-based partitioning to 3, while Rosa, Melo, and Barbeitos (2019) allowed
as many partitions as the number of discrete homoplasy values. As many as 14
partitions were implemented for OZL. Rosa, Melo, and Barbeitos (2019) found that
their highly partitioned homoplasy models performed best when branch lengths
were linked and rates were assumed to be equal for all characters within a partition.
They concluded that partitioning by homoplasy accounted for all the variation in
evolutionary rates, eliminating the need for modelling within-partition variation.

Rosa, Melo, and Barbeitos (2019) used an exponential prior to estimate branch
lengths, which has not been the recommended setting since 2013 (Ronquist, Huelsen-
beck, and Teslenko, 2011; Zhang, Rannala, and Yang, 2012; Rannala, Zhu, and Yang,
2012). Despite the suboptimal prior, their best model for OZL showed higher model
fit than mine, by a significant margin of 6 dB. But for CEA and OZL, my models
with the default gamma dirichlet prior on branch lengths, 3 partitions, and gamma-
distributed rate variation within partitions beat their by 60 dB and 18 dB.

Rosa, Melo, and Barbeitos (2019)’s results show that homoplasy is indeed a very
accurate proxy for evolutionary rate, but in terms of model fit it is preferable to
limit the number of partitions and model rate variation within partitions as well as
between partitions.

6.1.2 . . . for inferring topology?

In my experiments, tree topology was largely unaffected by changes to the par-
titioning tree which drastically lowered model fit (see section 4.1.3). This is cor-
roborated by Kainer and Lanfear (2015), who point out that large differences in
model fit are not necessarily accompanied by substantial changes to tree topology.
Kainer and Lanfear (2015) caution against indiscriminate application of partition-
ing, stating that while the partitioning scheme rarely has an influence on topology,
for some datasets it did change the tree topology. However, the mean difference
between topologies stated by them do not exceed the values that one might get by
moving a single tip by a short distance (cf. section 1.4 of Smith (2019e)).

While it is known that reconstructed topologies differ between data partitions
(Duchêne et al., 2011), if the topology is reconstructed from all data in combination
there does not appear to be much variation. In reverse, Posada and Crandall (2001)
also showed that model selection algorithms prefer the same models whether they
are conditioned on several trees or a single topology. I therefore argue that tree
topology is largely independent of partitioning. Broad taxon coverage and the in-
clusion of fossils, preventing long branch attraction (Graybeal, 1998), and a large
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set of independent characters which have been formulated and coded following
recommended best practice, preventing deep root attraction (Ronquist, Lartillot,
and Phillips, 2016), are likely much more influential in ensuring that topology is
inferred correctly.

6.1.3 . . . for inferring branch lengths?

Branch lengths are closely tied to evolutionary rates, since the length of a branch is
typically measured in the number of changes expected along it. I found minor but
significant variation in branch lengths depending on the fit of the model, i.e. the
suitability of the partitioning method.

Marshall, Simon, and Buckley (2006) emphasise the importance of modelling
between-partition rate variation through either unlinking branch lengths or a rate
multiplier, because failing to account for this variation can cause overly long branches.

Upon varying the branch length prior, I found that this rarely has an effect on
the relative performance of different partitioning strategies. The only prior where
ranks regularly varied was the exponential prior. This prior has been shown to in-
fer suboptimal branch lengths (Rannala, Zhu, and Yang, 2012; Zhang, Rannala, and
Yang, 2012) and has been replaced by the more versatile gamma dirichlet prior. It
seems likely that the limitations of the ill-fitting prior interfered with proper infer-
ence. The default gamma prior, the fitted gamma prior and the relaxed clock prior
all largely agree that homoplasy partitioning performs best. The gamma priors
achieve the highest model fits.

6.2 What can partitioning tell us about evolution?

With a little bit of biological knowledge, is it possible to predict the evolutionary
behaviour of a character from its character formulation? If we can approximate
evolutionary rates by homoplasy, it should also be possible to use other criteria for
this. For example, it seems intuitive that transformational characters like plumage
colouration, tooth length, or beak shape can change more quickly than two bones
can fuse or a rodent can lose its tail in a more complex neomorphic evolutionary
novelty. Similarly, when an ecological driver acts on an organism, it probably will
effect change in a suite of characters related by function, not one single character.
Characters in each suite may then evolve at the same rate since they are under the
same selective influence.

Two of the partitioning strategies tested here incorporated these macroevolu-
tionary hypothesis into their design. Partitioning by character type allowed neo-
morphic characters to evolve more slowly than transformational characters, and
anatomy partitioning tested whether characters evolve at similar rates within mor-
phofunctional groups. If these models with their additional parameters more closely
resembled true evolutionary processes, we would expect to see the fit of the model
improve in comparison to a more restrictive model of evolutionary rates.
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6.2.1 Mosaic evolution

If anatomical partitioning were often successful, it would indicate that the evolu-
tionary rates of characters are linked within morphofunctional groups. Such mo-
saic evolution has been oft-proposed and observed in several empirical datasets,
but its utility in partitioning could not be confirmed here.

Mosaic evolution plays a role at small anatomical scales, such as in morphome-
tric datasets like that of the avian skull in Felice and Goswami (2018), and could
be used as a partitioning criterion here. To partition datasets describing the whole
body, anatomy seems less suitable. Krause et al. (2014) also describe evidence of
mosaicism in a Gondwanatherian skull which has both ancestral and highly de-
rived features, but these do not appear to be grouped to distinct regions of the skull.
Anatomical partitioning would thus be unable to assign these characters correctly.

Diogo, Molnar, and Wood (2017) report mosaicism in the internal anatomy of
chimpanzees, bonobos, and humans, but the differences between the taxa are re-
stricted to seven characters over three distinct regions. While the differences are
clearly segregated by anatomical region, it is unlikely that the presence of these
few characters would affect the average rate of evolution of anatomical partitions.
Gaubert et al. (2005) found that anatomical partitions of data lend support to differ-
ent clades on a parsimony tree of feliformian viverrids. This suggests punctuated
rapid evolution in certain groups of characters, but not necessarily that rates differ
consistently through time between the groups.

In contrast to my analyses, for Rosa, Melo, and Barbeitos (2019) anatomical
partitioning with unlinked branch lengths was preferable to not partitioning the
data. Their results indicate that anatomical partitioning works better when branch
lengths are unlinked and thus estimated independently for each partition. If branch
lengths are very disparate between anatomical partitions, keeping branch lengths
linked would not allow the model to sufficiently account for this. Furthermore,
Wright (2015) found that the anatomical partitions of Clarke and Middleton (2008)
with linked branch lengths performed vastly better than any partitioning scheme
suggested by PartitionFinder2 by. Though my comparisons did not include par-
titioning with PartitionFinder2, this stands in stark contrast with my observation
that anatomical partitioning was equivalent to sorting characters into partitions
randomly.

Indeed, Goloboff et al. (2018) argued that there is no logical connection between
mosaicism and variation in evolutionary rate at all — mosaics of plesiomorphic and
derived characters can just as well arise under uniform rates. A group of characters
may evolve more quickly than another at one point in time, but at another time or
in another lineage the rate in the other group may be higher. Averaged across the
whole evolutionary time range covered by the phylogenetic tree the rates between
different groups would be similar.

While mosaic evolution is a widespread pattern in diversification processes, its
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connection to evolutionary rates and its utility in partitioning cannot be corrobo-
rated here.

6.2.2 Character type

While contingent coding (Sereno, 2007) is employed more and more in dataset re-
coding or assembly (Bielecki et al., 2014; Thompson et al., 2012), there is very little
precedent for partitioning into neomorphic and transformational characters. To
my knowledge, only Sun et al. (2018b) and Moysiuk and Caron (2019) have thus
far employed neomorphic-transformational partitioning.

In my analyses, partitioning by character type generally presented no improve-
ment over not partitioning the data. Furthermore, equal transition rates were prefer-
able to allowing more frequent transition absent⇒ present than reversals. This is
corroborated by Gamble et al. (2012), who showed that counterintuitively, adhesive
toepads of geckos were gained as frequently as they were lost. Swenson, Richard-
son, and Bartish (2008) also demonstrated repeated gains and losses of neomorphic
characters on a plant phylogeny.

Even with equal transition rates, partitioning by character type is only success-
ful in isolated cases. The HYO dataset assembled by Sun et al. (2018b) obeyed by
the rules of contingent coding, which may explain the strategy’s success here. The
CEA dataset was not assembled with Sereno’s instructions for character formula-
tion in mind and contains several characters unsuited to this partitioning strategy,
but nevertheless model fit improves when it is partitioned into these two character
types. However, these isolated instances of success are not sufficient to recommend
neomorphic-transformational partitioning for every dataset.

6.2.3 Verdict

In general, homoplasy appears to be the only reliable estimator of evolutionary rate
for morphological data available to us currently. Morphological evolution remains
unpredictable and spurious. While mosaic evolution demonstrably occurs, it does
not aid in phylogenetic inference. The distinction by character type into neomor-
phic and transformational characters similarly does not seem to have implications
for the evolutionary rates of different characters.

One shortcoming of homoplasy as a partitioning criterion, the dependency on
a partitioning tree, may be circumvented in the future with the invention of a tree-
independent proxy for homoplasy. Such a proxy might be calculated directly from
the character data, possibly by looking for correlations of character states between
taxa, character state proportions, or some more derived method. Information Con-
tent (IC) attempts to capture information about homoplasy in a character by cal-
culating the proportion of topologies on which it is compatible (see section 3.4.5),
but models partitioned by IC perform much worse than those partitioned by ho-
moplasy. However, the topology of the partitioning tree does not appear to have a
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substantial influence on the tree reconstructed by the partitioned model, and model
fit is not impacted much as long as the tree is non-random.

Partitioning by homoplasy fulfills my criteria for a good partitioning strategy:

Equal partitions It allows control over the number of partitions and the
size of each partition, preventing partitions from becom-
ing so small that parameters cannot be estimated based
on too little data.

No specialist knowledge It can be applied to a dataset without having specialist
anatomical knowledge of a clade.

Partitions are reproducible Characters are not assigned to partitions based on a crite-
rion that must be interpreted by the taxonomist, but sim-
ply by a value.

Partitioning by homoplasy on a reasonable tree is therefore the only partitioning
strategy that I can recommend to other workers in phylogenetics.



91

Chapter 7

Conclusions and suggestions for
further work

7.1 Conclusions

I demonstrated that homoplasy-based partitioning is a good proxy for evolutionary
rates and is not misled by mismatches between the partitioning tree and the true
tree. Partitioning does not have a major effect on topological inference, but does
influence branch lengths. An optimal topology can thus be inferred without par-
titioning. Homoplasy partitioning on this reconstructed tree topology should then
be able to infer accurate branch lengths. Under linked branch lengths, the branch
length prior implemented as the default in MrBayes v3.2.6 was found to perform
as well as or better than the alternative priors tested.

I further showed that neither anatomical location nor character type allow us
to predict the evolutionary rate of a character. Evolutionary rates of morphological
characters are linked neither within suites of characters evolving in tandem, nor to
the complexity or novelty of the character. While mosaic evolution demonstrably
occurs, it cannot predict rates of change over evolutionary timescales.

7.2 Further work

7.2.1 Neomorphic-transformational partitioning

The partitioning strategies I tested included two variations of neomorphic-trans-
formational partitioning. Any properly formulated character can be classified as
neomorphic or transformational, depending on whether it describes the evolution
of a new feature or a change in an existing trait. However, the majority of datasets
used here, and indeed most published character lists, include combination char-
acters. They state the absence or presence along with transformational states of a
character. I assigned such characters to the transformational partition.

Future analyses could instead recode combination characters into a neomor-
phic and a transformational character. This would constitute an improvement
to the accuracy of partitioning through the elimination of neomorphic aspects in
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characters in the transformational partition, and may improve the performance of
neomorphic-transformational partitioning.

7.2.2 Ontological partitioning

Partitioning characters based on developmental stage is particularly applicable to
organisms with clearly demarcated life stages, such as many arthropods. The justi-
fication of ontology partitioning lies in the fact that different life stages of the same
animal are subject to completely different ecological pressures. Since evolution oc-
curs under the constraints of ecological drivers, characters of the larval stage could
evolve at different rates to those of the adult animal. Partitioning by developmen-
tal stage was not applicable to all datasets used in this study and thus was omitted,
but could be tested in the future.

7.2.3 The number of partitions

The number of partitions varied between partitioning strategies, but was arbitrar-
ily limited to three for most, including homoplasy partitioning. I found that de-
creasing the number of partitions improved model fit for partitioning by anatomy,
indicating that lower numbers of partitions are favourable under ill-fitting criteria.
I did not explore the effect of varying the number of partitions under a strategy that
reliably predicts evolutionary rate, such as homoplasy partitioning.

7.2.4 A future model of morphological evolution

The development of a novel model of morphological evolution is inevitable in the
near future. This model will be able to accommodate directional evolution, account
for interdependence between morphological characters due to a shared genetic ba-
sis, and recognise convergence due to common ecological pressures (Ronquist, Lar-
tillot, and Phillips, 2016). It will model correlation between morphological and
molecular clocks and accommodate rate variation among characters.

I hope that this thesis can play a small part in furthering our understanding of
morphological evolution and aiding the development of this new model.
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Appendix A

Partitions and Character Ordering

A.1 Partitions

A.1.1 HYO

Neomorphic-transformational partitions:

neomorphic - 129 1 6 7 9 10 15 18 19 20 21 22 24 26 29 30 34 35 37 38 40

43 44 45 48 49 53 54 55 56 57 58 59 60 61 65 66 68 69

71 76 78 79 80 81 83 86 87 88 91 92 93 94 97 98 99 100

101 102 106 108 109 111 118 119 121 122 125 126 129 136

137 138 139 140 142 143 144 145 148 150 151 153 154 155

156 157 158 160 164 168 170 174 175 176 177 179 180 181

182 183 184 185 186 187 188 190 192 193 196 199 202 203

204 205 206 207 209 210 211 212 214 215 216 217 218 219

220 222 225;

transformational - 96 2 3 4 5 8 11 12 13 14 16 17 23 25 27 28 31 32 33 36 39

41 42 46 47 50 51 52 62 63 64 67 70 72 73 74 75 77 82

84 85 89 90 95 96 103 104 105 107 110 112 113 114 115

116 117 120 123 124 127 128 130 131 132 133 134 135 141

146 147 149 152 159 161 162 163 165 166 167 169 171 172

173 178 189 191 194 195 197 198 200 201 208 213 221 223

224;

4 anatomical partitions:

Soft exterior - 42 207 208 209 210 211 212 35 36 37 38 39 20 21 22

23 24 25 162 163 164 165 166 167 168 172 173 176

177 213 214 26 27 28 29 30 31 32 33 34 174 175 215;

Feeding and Digestion - 55 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 178 179 180 181 182 183

184 185 186 187 188 189 190 191 192 193 194 195

196 197 198 199 200 201 202 203 204 205 206 216;
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Reproductive & Sensory - 44 141 142 143 144 145 146 147 148 149 150 151 152

153 154 155 156 157 158 159 160 161 9 10 11 12 13

14 15 16 17 18 19 169 170 171 217 218 219 220 221

222 223 224 225;

Shell - 84 1 2 3 4 5 6 7 8 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117

118 119 120 121 122 123 124 125 126 127 128 129

130 131 132 133 134 135 136 137 138 139 140;

A.1.2 CEA

Neomorphic-transformational partitions:

neomorphic - 68 2 3 4 5 6 8 11 14 18 19 20 25 26 29 34 39 40 41 42 46

50 51 52 54 60 61 65 68 71 74 75 78 80 83 88 92 94 95

98 109 111 112 117 120 125 126 129 130 131 132 133 136

138 147 148 154 156 165 166 167 172 175 177 181 184 192

194 204;

transformational - 137 1 7 9 10 12 13 15 16 17 21 22 23 24 27 28 30 31 32 33

35 36 37 38 43 44 45 47 48 49 53 55 56 57 58 59 62 63

64 66 67 69 70 72 73 76 77 79 81 82 84 85 86 87 89 90

91 93 96 97 99 100 101 102 103 104 105 106 107 108 110

113 114 115 116 118 119 121 122 123 124 127 128 134 135

137 139 140 141 142 143 144 145 146 149 150 151 152 153

155 157 158 159 160 161 162 163 164 168 169 170 171 173

174 176 178 179 180 182 183 185 186 187 188 189 190 191

193 195 196 197 198 199 200 201 202 203 205;

5 anatomical partitions:

Skull - 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52;

Anterior trunk - 45 53 54 55 56 57 58 59 60 61 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

99 100 101 102 103 104 105;

Posterior trunk - 25 62 63 64 65 66 67 68 69 155 156 157 158 159 160 161 162

163 164 165 166 167 168 169 170 171;

Forelimbs - 49 106 107 108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133
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134 135 136 137 138 139 140 141 142 143 144 145 146 147

148 149 150 151 152 153 154;

Hindlimbs - 34 172 173 174 175 176 177 178 179 180 181 182 183 184 185

186 187 188 189 190 191 192 193 194 195 196 197 198 199

200 201 202 203 204 205;

Ordered characters:

ctype ordered 1 9 12 24 32 53 55 62 63 67 69-70 72 77 79 82 106 114 119 141

144 151 155 160 162 173 178 180 183 185 188 191 195-199 205;

A.1.3 OZL

Neomorphic-transformational partitions:

neomorphic - 100 7 13 15 16 17 18 20 21 22 26 33 34 35 37 40 41 42 45

46 47 48 50 52 54 55 59 63 65 68 71 76 77 78 81 88 89

90 91 93 98 101 102 113 114 116 119 120 123 124 125 126

127 130 133 135 136 137 138 147 149 150 151 157 158 164

167 170 172 173 174 175 179 180 182 184 186 187 189 190

191 192 195 196 198 199 200 206 207 208 210 220 224 230

231 238 240 242 244 245 246;

transformational - 147 1 2 3 4 5 6 8 9 10 11 12 14 19 23 24 25 27 28 29 30 31

32 36 38 39 43 44 49 51 53 56 57 58 60 61 62 64 66 67

69 70 72 73 74 75 79 80 82 83 84 85 86 87 92 94 95 96

97 99 100 103 104 105 106 107 108 109 110 111 112 115

117 118 121 122 128 129 131 132 134 139 140 141 142 143

144 145 146 148 152 153 154 155 156 159 160 161 162 163

165 166 168 169 171 176 177 178 181 183 185 188 193 194

197 201 202 203 204 205 209 211 212 213 214 215 216 217

218 219 221 222 223 225 226 227 228 229 232 233 234 235

236 237 239 241 243 247;

6 anatomical partitions:

Skull & Mandible - 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 246 247;

Vertebrae & Ribs - 33 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81;

Thorax & Sternum - 39 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120;
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Forelimbs - 57 121 122 123 124 125 126 127 128 129 130 131 132 133

134 135 136 137 138 139 140 141 142 143 144 145 146

147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172

173 174 175 176 177;

Pelvic girdle - 23 178 179 180 181 182 183 184 185 186 187 188 189 190

191 192 193 194 195 196 197 198 244 245;

Hindlimbs - 45 199 200 201 202 203 204 205 206 207 208 209 210 211

212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237

238 239 240 241 242 243;

Ordered characters:

ctype ordered 1 3 8 28 31 43 51 56 67 69-70 72 74 92 107 117 159 168 176 183 193 197
205 213-214 216 219 222 229 233-234;

A.1.4 SCO

Neomorphic-transformational partitions:

neomorphic - 7 4 7 9 16 18 21 24;

transformational - 20 1 2 3 5 6 8 10 11 12 13 14 15 17 19 20 22 23 25 26 27;

3 anatomical partitions:

Extremities - 11 1 2 12 13 15 16 17 18 19 22 24;

Face - 7 3 4 5 6 7 8 20;

Body - 9 9 10 11 14 21 23 25 26 27;

A.1.5 THER

Neomorphic-transformational partitions:

neomorphic - 72 2 12 20 28 29 31 36 47 48 49 51 54 57 58 59 62 71 77

80 81 99 101 116 122 138 149 150 153 156 162 163 164

168 174 176 181 183 190 191 192 202 212 219 220 221 224

226 228 229 236 240 241;

transformational - 190 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 21 22 23 24

25 26 27 30 32 33 34 35 37 38 39 40 41 42 43 44 45 46

50 52 53 55 56 60 61 63 64 65 66 67 68 69 70 72 73 74

75 76 78 79 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 100 102 103 104 105 106 107 108 109 110 111
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112 113 114 115 117 118 119 120 121 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 139 140 141 142

143 144 145 146 147 148 151 152 154 155 157 158 159 160

161 165 166 167 169 170 171 172 173 175 177 178 179 180

182 184 185 186 187 188 189 193 194 195 196 197 198 199

200 201 203 204 205 206 207 208 209 210 211 213 214 215

216 217 218 222 223 225 227 230 231 232 233 234 235 237

238 239 242;

5 anatomical partitions for THER:

Reproductive (female) - 13 1 2 3 4 5 6 7 8 9 10 11 12 13;

Reproductive (male) - 88 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

99 100 101;

Somatic - 99 102 103 104 105 106 107 108 109 110 111 112 113 114

115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153

154 155 156 157 158 159 160 161 162 163 164 165 166

167 168 169 170 171 172 173 174 175 176 177 178 179

180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200;

Spinnerets - 23 201 202 203 204 205 206 207 208 209 210 211 212 213

214 215 216 217 218 219 220 221 222 223;

Behaviour - 19 224 225 226 227 228 229 230 231 232 233 234 235 236

237 238 239 240 241 242;
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Appendix B

Convergence Testing

B.1 Convergence Testing

As discussed in section 3.2.2, several models with a high average standard de-
viation of split frequencies, indicating incomplete convergence, were rerun un-
der changed settings. Table B.1 contains data on the effects of longer burnin and
higher numbers of generations on the average standard deviation of split frequen-
cies (split) and model fit (ML). Model fit usually did not change significantly upon
increasing the burnin proportion or the number of generations, though split values
are lower. This suggests that the standard models were run for enough generations
to obtain reliable marginal likelihoods.

TABLE B.1: Marginal likelihoods (ML) and maximum stepwise av-
erage standard deviations of split frequencies (split) of a selection of
models. Models were run with the standard burnin proportion and
number of generations (25%; 5,000,000), with a higher burnin (HB
scheme: 50%; 7,510,000), and with a higher number of generations
(MG scheme: 25%; 10,000,000). Both schemes improve convergence
but the marginal likelihood remains similar to that of the standard

model.

Model Standard Model Higher Burnin More Generations
split ML split ML split ML

CEAexp -
neotrans2

0.0742 −1773.88 0.0695 −1780.71 0.0664 −1774.46

OZLclock -
anatomy

0.0900 −3852.92 0.0919 −3849.77 0.0835 −3851.00

THERgamma -
IC

0.1463 −3694.09 0.0419 −3697.50 0.0307 −3696.97

CEA -
anatomy

0.1003 −1608.51 0.0265 −1608.39 0.0177 −1608.35

HYO -
neotrans

0.1233 −2548.43 0.0532 −2548.87 0.0458 −2548.12

SCO -
anatomy

0.0940 −259.76 0.0202 −257.92 0.0139 −259.70
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