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“Do you know what is interesting about caves, Leonard?” 

“What?” 

“Nothing” 
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Christopher James Ward 

Abstract 

 

 In the UK, the first well to be fracked onshore used a fracking fluid containing only two 

additives; an undisclosed salt and polyacrylamide (PAM). This type of simple, predominantly 

water-based fluid is known as a ‘slick-water’. PAM is used in nearly 100 % of slick-water fluids 

in the USA, and so it is likely to be a major constituent of UK fluids. The potential for extensive 

use means the interaction between the PAM and shale must be investigated. Therefore, the aim 

of this thesis was to investigate the interactions between a PAM slick-water fluid and relevant 

UK shale gas lithologies, alongside the analysis of associated flow-back fluids from these 

experiments.  

Batch reaction experiments were setup to quantify; 1) the sorption of PAM; and, 2) the 

composition of associated flow-back fluids. Experiments were conducted at both room 

temperature (RT) and subsurface conditions (HPHT).  

Maximum coverages showed shales to adsorb up to 15,365 mg/kg of PAM, increasing 

up to 22,972 mg/kg when subjected to increased pressures and temperatures indicative of the 

UK subsurface. Up to 98 % of the PAM in solution could be removed from solution by 

adsorption. Of the adsorbed PAM, a maximum of 1.4 % of will desorb during a freshwater flush 

(typical of the latter stages of a frack). Therefore, PAM is likely to remain downhole, open to 

degradation.  

The addition of PAM to water-based fluid increases the sodium content to ~500 mg/L, 

producing a slightly saline fluid. Analysis of flow-back fluids from experiments showed that 

concentrations of the majority of metals analysed, both in RT and HPHT conditions, increased 

relative to the fracking fluid. Under HPHT conditions, larger concentrations of most 

contaminants, including Al, Cu, Fe, Mg, Mn and Si, were observed compared to the RT fluids, 

suggesting subsurface conditions will aid the return of larger amounts of contaminants to the 

surface. 
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1. Introduction  
 

1.1. Project Context and Motivation 

Shale gas, in the UK, is proposed as a promising energy strategy in a context of steadily 

declining global natural gas reserves (Gibbons et al., 2016; Broderick et al., 2011). In theory, 

UK shale gas would offer energy security; a means to provide some support to the transition to 

a lower carbon economy; and also help public finances both in terms of investment and broader 

economic stimulus (Gibbons et al., 2016). The primary sponsors of this project, the 

Environment Agency, observed the potential future of a hydraulic fracturing industry within 

the UK and launched multiple projects to investigate the various implications that fracking may 

have upon the environment. This study, assessing the interactions between shales and fracking 

fluids, was one of them. Ultimately, the aim of this project for the Environment Agency was to 

assess the results and see how they could potentially influence the regulation of such activities, 

which may or may not start in earnest soon within the UK.  

As is relatively well known, the USA is a major market in terms of hydraulic fracturing 

with the industry surging in the mid-nineties (Montgomery and Smith, 2010). Rapid growth 

led to the very quick advancement of technologies associated with hydraulic fracturing (King, 

2010) and this led to a situation where no real environmental monitoring baseline was able to 

be established prior to the development of the industry. At the beginning of this PhD project in 

2016, only two wells in the UK onshore sector had been fracked for shale gas (Andrews, 2013): 

Elswick-1 (exploratory single production gas well which stimulated sandstones) and Preese 

Hall 1A. Cuadrilla’s Preese Hall 1A, was spudded on August 16th 2010 (De Pater and Baisch, 

2011), and fracked in 2011. The drilling of these wells went ahead after a long period of shale 

gas exploration and proprietary drilling that started with the 2008 release of the 13th Onshore 

Oil and Gas Licensing round, the first round to specifically mention shale gas exploration 

(Gibbons et al., 2016). Preese Hall 1A was subsequently halted in June 2011 after 2 seismic 

events (magnitude 2.3 and magnitude 1.5 (Green et al., 2012) were induced from hydraulic 

fracturing operations (Andrews, 2013) on the 1st April and 27th May, 2011 respectively. As a 

result the UK government brought in a moratorium on all fracking activities and no fracking 

occurred until 2018. At the time of writing, Cuadrilla had recently hydraulically fracked the 

Preston New Road site. Using the Cuadrilla ePortal 

(https://www.cuadrillaresourceseportal.com) operations are thought to have caused 3 + 

seismic events, the most notable being; ML 0.4 (23/10/2018), ML 0.3 (25/10/2018) and ML 

0.76 (26/10/2018) (Cuadrilla ePortal; BGS, 2018). Seismic data for the Preese Hall seismic 

events shown in Figure 1.1.   

https://www.cuadrillaresourceseportal.com/
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Figure 1.1: Image of the seismic activity following the Preese Hall 2011 hydraulic fracture operations 
through March to June 2011.The blue line represents the volume of injected fluid alongside the seismic 
activity (red circles) for the 6 stages of hydraulic fracturing that occurred (green numbers). Operations 
were ceased on the 27th May 2011 after the second earthquake of magnitude 1.5. Image adapted from “The 
Blackpool Earthquakes, 2011” (BGS, 2011). 

 

The hydraulic fracture of Cuadrillas Preston New Road site in Lancashire brought the 

moratorium on fracking activities to an end. It was this hiatus in operations between 2011 and 

2018 that gave the UK the perfect environmental baseline to measure the pre and post effects 

of any such operations. Cuadrilla resources have also recently set up a live update system called 

the ePortal (https://www.cuadrillaresourceseportal.com/), displaying monthly data on 

seismicity, traffic, noise, air quality, surface water and groundwater for the recently active 

Preston New Road site in Lancashire, UK (2018 to early 2019). This project stems from 

multiple projects offered at similar times to understand the effects of fracking in UK-based 

scenarios. Specifically, this project focuses on the additive Polyacrylamide (PAM) and how this 

interacts with the shales, adsorbing, and desorbing, degrading and influencing flow-back fluid 

compositions.  

There have been multiple reports, documentaries and films in the mainstream media 

regarding fracking and its environmental consequences. Arguably the greatest impact was 

achieved by a film called ‘Gasland’ by Josh Fox in 2010. The most important impacts that have 

been attributed to shale gas activities are generally accepted to be groundwater contamination, 

fugitive emissions and seismicity (Montcoudiol et al., 2017). One of the most notable studies 

into all aspects of the footprint of hydraulic fracturing was the SHeeR project 

(www.sheerproject.eu), focussing on the “understanding, preventing and mitigating the 

potential environmental impacts and risks of Shale Gas Exploration and Exploitation”.  This study 

has published multiple articles and conference proceedings on all aspects including but not 

exclusively; induced seismicity (Bommer et al., 2016), impacts on groundwater (Montcoudiol 

et al., 2017), the modelling of hydraulic fractures (López-Comino et al., 2017) and air quality 

(Jarosławski and Pawlak, 2018). Outside of the SHeeR project, multiple studies have also been 

https://www.cuadrillaresourceseportal.com/
http://www.sheerproject.eu/
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conducted on other potential environmental impacts from fracking operations that include as 

examples: emissions from increased traffic can increase NOx on operational days by up to 30 

% (Goodman et al., 2016; Reap, 2015); landscape disturbance assessing the placement of well 

pads (Clancy et al., 2017); air pollution (Cesur et al., 2017; Weinhold, 2012); as well as some 

that took a more general summarising approach to encompass a review of all toxicological 

matters relating to pollutants including water contamination, outdoor air pollutants and 

ground pollutants (Kovats et al., 2014).  

 

1.2. Principles of hydraulic fracturing 

Shale gas is classed as an ‘unconventional’ resource. Unconventional fossil fuels are 

classed as fuels or formations that are difficult to extract, usually requiring complex production 

and exploitation methods to do so (Chew., 2014). Hydraulic fracturing is an unconventional 

well stimulation technique whereby, in its simplest form, fluid and proppant (sand particles) 

are forced down a wellbore under high pressure to create fractures in the rock. The fracturing 

of the rock is achieved by making sure the fluid pressure exceeds the least principle and tensile 

stresses of the host rock (Davies et al., 2012). Fractures grow perpendicular to the direction of 

least principle stress (Fisher and Warpinski, 2012) and release adsorbed gases (Broderick et 

al., 2011; Zoback et al., 2010) from the low permeability source rock (Keshavarzi et al., 2012) 

into the fracturing fluid. Micro seismicity can be used to estimate fracture growth length 

(Maxwell et al., 2002) with fractures extending up to several hundred metres above or below 

the borehole (Fisher and Warpinski, 2012). The fracking fluid is then returned to surface 

during fluid flow-back events after the initial frack stages and can carry back with it new 

components from interaction with the shale at depth (Almond et al., 2014; Anderson et al., 

2010; Gregory et al., 2011). Produced waters, or flow-back fluids, are termed as waters that 

will return to the surface over the lifespan of a well (Mullins and Daugulis, 2018). Essentially, 

hydraulic fracturing makes use of a liquid to fracture reservoir rocks (Gandossi and Von Estorff, 

2015) to obtain adsorbed content of economic interest. This process is summarised in Figure 

1.2, a simplified cross section of how a fracking well operates.  

The recovery of the injected fluids is highly variable, with anything from 15 % to 80 % 

recovered in the flow-back fluids (Broderick et al., 2011). Recently and most notably, hydraulic 

fracturing has been in the spotlight due to its potential hazardous environmental effects, where 

the public are increasingly interested in understanding fluid compositions (EPA, 2015) of both 

the fracking fluids, and the flow-back fluids. Fracking’s drive of an economic boom, especially 

in the United States, the consequences of which are described as both “revolutionary” and 

“disastrous” (Jackson et al., 2014).  
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Figure 1.2: Basic schematic of how a hydraulic fracturing well works. Stage 1) A well is drilled, cased and 
cemented as normal into either a horizontal or vertical shale; stage 2) Perforations of the casing in the 
shale are made with explosives so the shale is exposed through the casing; stage 3) high pressure fluid is 
pumped in stages downhole to fracture the shale at the exposed points. Sand particles called proppant are 
carried within the fluid to hold open the fractures to allow the gas to flow; stage 4) fluid flows back into the 
wellbore containing gas and proppant, this is called flow-back fluid; stage 5) Fresh water is pumped 
downhole as a flush stage to flush out any excess particles, additives and proppant. Diagram is created from 
multiple sources (BBC, 2018; Broderick et al., 2011; Gandossi and Von Estorff, 2015; Gregory et al., 2011; 
ReFINE, 2018; Zoback et al., 2010) 
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1.3. A Short History of Hydraulic Fracturing 

Hydraulic fracturing is by no means a new tool in the oil and gas industry (King, 2012). 

Hydraulic fracturing is known as far back as 1821 when shale gas was produced from a natural 

seepage in the Appalachian Mountains (Selley, 2012). In 1857 when gunpowder was used to 

fracture rock at a well in Canadaway Creek, New York State (Morton, 2013). Canadaway Creek 

used a technique of lowering gunpowder downhole and creating an explosion with a red hot 

iron which resulted in the fracture of the rock and the increase in gas flow (Morton, 2013). 

Although the technique described above was rudimentary, in 1865 when Col. Robert Edwards 

and brother developed a method whereby water was used to dampen these explosions 

(Morton, 2013). Col. Edwards’ use of water is the first example of anything related to a 

“hydraulic” based fracturing operation. Hydraulic fracturing technology then developed 

largely over the next century to the more familiar method known today. The first fracturing 

experiment was successful in 1947 resulting in enhanced commercial production (Gandossi 

and Von Estorff, 2015; King, 2012). From the 1940’s until 2010, ~2.5 million operations have 

been performed worldwide with at least 1 million of these in the USA (EPA, 2015; King, 2012; 

Montgomery and Smith, 2010). The use of hydraulic fracturing rapidly increased in the USA in 

the mid 1990’s and was driven by the extraction of unconventional resources from tight 

resources such as sands, shales and other low permeability formations (Jackson et al., 2014).  

 

1.4. Hydraulic Fracturing Globally 

The USA is seen as the major player within the fracking industry, with fracking 

reasserting its mark on the global oil and gas production markets. Annual gas production in the 

US increased from 5.6 x 109 m3 in 1998 to approximately 1.39 x 1011 m3 in 2010, and is expected 

to grow threefold in the next decade (Gregory et al., 2011). Whilst there is an established 

industry, predominantly in the USA, hydraulic fracturing is also used in China, Australia (some 

states), Argentina, Denmark, Poland, South Africa. Unconventional gas is still in the early 

exploration phase in most of Europe (Lang, 2014). Some countries, including, France, Ireland, 

Germany, Bulgaria, New Zealand, Scotland, and alongside some American, Canadian and 

Australian states have banned the practice of hydraulic fracking. Moratoriums on fracking are 

in place in such countries as the Netherlands and Tunisia  (Sher and Wu, 2018; Thompson, 

2019).  
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1.5. Hydraulic Fracturing in the United Kingdom 

More than 2000 wells have been drilled onshore in the UK for oil and gas purposes, and 

about 200 of these have been hydraulically fractured to enhance production of oil and gas, 

(Mair et al., 2012). Many of these were drilled onshore vertically and then horizontally out to 

sea (Mair et al., 2012). The first UK well to encounter shale gas was drilled in 1875 (Mair et al., 

2012), however, it was not exploited for the purposes of shale gas but for the conventional 

resources that were present in far higher abundance (Figure 1.3). Within the UK, most of the 

exploration for what we now know as shale gas began in the 1980’s.  

 

Figure 1.3: Drawing of the 1875 Netherfield No.1 Well in Sussex. 
Drawing by E Cooke, Esq. Image taken from (Selley, 2012).  

 

 The next major catalyst for the fracking industry in the UK was in 2003 when the 

Petroleum Revenue Act was repealed, allowing companies’ production assets to not be counted 

under corporation tax (Selley, 2012). Technologies for extraction advanced and, in 2008, the 

UK government funded projects to review the UK’s shale gas potential (Harvey and Gray, 

2010). In the UK, large areas of onshore acreage were licensed to companies in 2006 for the 

purposes of shale gas exploration, and most notably, in 2010, Cuadrilla Resources embarked 

on a three well exploratory programme (Selley, 2012) that culminated in the drilling of the 

wells Elswick, Grange Hill and Preese Hall. Elswick and Grange Hill were exploratory wells 

whilst Preese Hall was an exploratory well with the specific purpose of testing a vertical 

hydraulic fracture at the same lateral formation as the aforementioned wells. After the 2011 

hiatus emplaced upon fracking in the UK due to the Blackpool Earthquakes, a further well was 

drilled, Preston New Road. Preston New Road was intended to exploit the same formations, 

but this time with a horizontal frack. At the time of writing, Preston New Road has completed 

the drilling phase and was actively hydraulically fracturing the rock (late 2018, early 2019). 
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Hydraulic fracturing at this site was paused numerous times due to seismic activity greater 

than magnitude 0.5.  

 

1.6. Hydraulic Fracturing Fluid Additives 

The additives used in the hydraulic fracturing fluids themselves are one of the key 

reasons fracking is highlighted as an environmental concern, particularly in terms of water 

contamination and safety (Vengosh et al., 2013). In theory, the additives must be safe to handle, 

environmentally friendly, non-damaging to fractures, inexpensive and able to control fluid loss 

(Montgomery, 2013). The additives used in fracking fluids can be of all manner of chemicals 

(Gregory et al., 2011) or natural ingredients and serve multiple purposes (Broderick et al., 

2011; Gregory et al., 2011; King, 2012). Globally, many different chemicals have been used as 

additives in hydraulic fracturing fluids. One of the most comprehensive lists compiled of all 

fracking fluids is from the United States Environmental Protection Agency (USEPA). In March 

2015 the USEPA complied 39000 fluid disclosures from operators between 1st January 2011 

and 28th February 2013 (EPA, 2015).  All of this data was compiled using the FracFocus 

Chemical Disclosure Registry (www.fracfocus.org). Some of the typical constituents of a 

fracking fluid are detailed in Table 1.1. 

 

Table 1.1: Typical frack fluid additive types and their functions. Which types are required are totally 
dependent on numerous factors to do with the frack. Data adapted from (Broderick et al., 2011; EPA, 2015; 
Gregory et al., 2011) 

ADDITIVE PURPOSE

Acid Dissolve minerals and initiate cracks

Corrosion Inhibitor Protect casing from corrosion

Biocide Eliminate bacteria that can cause corrosion

Base Carrier Fluid Create fracture geometry and suspend proppant

Breaker Delays the breakdown of gels

Clay Control Lock down clays in the shale structure (temporary or permanent)

Crosslinker Maintains viscosity with temperature increase

Friction Reducer Reduces friction effects of water in the pipe 

Gel Thickens water to suspend the proppant 

Iron Control Helps prevent precipitation of metal oxides

Non-Emulsifier Used to break/separate oil-water mixtures

pH Adjuster Maintains effectiveness of additives like crosslinkers

Proppant Keep fractures open allowing flow

Scale Inhibitor Prevent scale in pipe and formation

Surfactant Reduce surface tension of the treatment fluid and improve fluid recovery

http://www.fracfocus.org/


8 
 
 

 Typically fracking fluids consist of 90-99 % water, 0.4-9.99 % sand proppant and 0-2 

% additives (EPA, 2015; Gregory et al., 2011; Hammond et al., 2015; Mair et al., 2012). Figure 

1.4 shows a representation of the volume difference between carrier fluid and additives.  

 

 

Figure 1.4: Typical fracking fluid composition based on the use of typical multiple additives. Diagram 
adapted from (Broderick et al., 2011; Burton et al., 2014; Cox et al., 2013; Ferrer and Thurman, 2015; 
Gregory et al., 2011) 

 

 In recent years, more research has been undertaken into the effects and compositions 

of fracking fluids (Ferrer and Thurman, 2015; King, 2012; Xiong et al., 2018a, 2018b). Some 

studies have researched the effects of certain additives by producing their own synthetic 

fracking fluids (Drollette, 2014a, 2014b; Heybob and Mouser, 2015; Kekacs et al., 2015). Most 

of these studies have focussed on the risks to water, be it groundwater or flow-back waters.  

Some have concluded that fracking operations do not necessarily interfere with aquifers and it 

is more likely the topography and groundwater geochemistry that affects methane levels 

(Molofsky et al., 2018). By characterising brines Vengosh et al., (2013) assesses if there is an 

impact from such operations concluding that naturally occurring pathways have always been 

the source of high concentration brines or methane (Warner et al., 2012). Others cite that 

activities could provide levels of totals dissolved solids (TDS) that vary by orders of magnitude: 

TDS of 344 μg/L and selenium of 329 μg/L (Fontenot et al., 2013) and up to 12,000 mg/L of 

barium (Phan et al., 2015). Flow-back fluids have elevated concentrations of multiple minerals; 

studies show that Cl, Br, Ca, Na and Sr can be up to 6700 times higher than natural samples 

(Warner et al., 2013) and that U and As could be mobilized under certain conditions (Phan et 

al., 2015). 
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1.6.1. Additives used in the UK 

So far, there are very few additives that have been used in the UK, either for 

conventionals or unconventionals, and both onshore and offshore. Of additives that have been 

confirmed as used for the fracking of unconventionals in the UK, only two have been formally 

published, both for sites operated by Cuadrilla Resources. Two additives, a friction reducer and 

a chemical tracer (Broderick et al., 2011) were used at the Preese Hall and Preston New Road 

(Cuadrilla Resources, 2018a, 2018b) sites.  

 

 

Table 1.2: Composition of hydraulic fracturing fluid for the Preese Hall 1A well in Lancashire, UK. Table 
adapted from (Broderick et al., 2011). 

 

 

Table 1.3: Composition of hydraulic fracturing fluid for the Preston New Road site in Lancashire, UK. Table 
adapted from Preston New Road 1Z hydraulic Fracture Plan (Cuadrilla Resources, 2018a).  

 

 These types of very simple fluid outlined in Table 1.2 and Table 1.3 are known as slick-

water fluids (Kaufman et al., 2008), fluids that are predominantly composed of water and 1-2 

additives, usually a friction reducer and a chemical tracer (Palisch et al., 2010).  

 In terms of hydraulic fracturing additives that have been deemed non-hazardous for 

UK operations, the Environment Agency, with the Joint Agencies Groundwater Directive 

Advisory Group (JAGDAG) and Amec Foster Wheeler have conducted assessments into 

ADDITIVE TYPE QUANTITY % BY VOLUME

Water United Utilities Mains Water 8399 m
3 97.93

Proppant Congleton Sand 108.1 tonnes 0.473

Proppant Chelford Sand 354.6 tonnes 1.55

Friction Reducer Polyacrylamide Emulsion 3.7 m
3 0.043

Chemical Tracer Sodium Salt 0.425 kg 0.00043

ADDITIVE TYPE QUANTITY % BY VOLUME

Water United Utilities Mains Water <= 765 m
3 unknown

Proppant Congleton Sand <= 75 tonnes unknown

Proppant Chelford Sand <= 75 tonnes unknown

Friction Reducer Polyacrylamide unknown max 0.05 %

Chemical Tracer HCl <= 3 m3 < 10% 
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numerous potential additives (JAGDAG and UK Technical Advisory Group on the Water 

Framework Directive, 2018). In total, 462 chemicals were analysed for public consultation, and 

of these 462, 158 were classed as ‘non-hazardous pollutants’. Within this data, polyacrylamide 

was found to be a ‘non-hazardous pollutant’.  

 

1.6.2. Polyacrylamide 

Polyacrylamide, or PAM as it is referred to throughout this study, is a water soluble 

synthetic polymer (Smith et al., 1997; Yang et al., 2010) formed from the monomer acrylamide 

(Caulfield et al., 2002): it has the chemical formula (C3H5NO)n -  (Figure 1.5).  The PAM is 

generally prepared from free radical polymerisation of acrylamide using a variety of methods 

(Caulfield et al., 2002). Sometimes also referred to as 2-propenamide or homopolymer  (Acros 

Organics, 2009), PAM has a multitude of uses including clarification of drinking water, oil 

recovery, soil conditioning and biomedical applications (Caulfield et al., 2002; Xiong et al., 

2018b).  

 

 

Figure 1.5: General structure of Polyacrylamide. 
Diagram adapted from (Caulfield et al., 2002; 
Smith et al., 1997; SNF FLOEGER, n.d.; Xiong et al., 
2018b). 

 

PAM is classed as ‘non-volatile’ and is above GHS (Globally Harmonised System of 

Classification and Labelling of Chemicals) category 5 (Stringfellow et al., 2014). This GHS 

categorisation means it may be harmful if swallowed, inhaled or via dermal exposure. It is also 

a category 5 hazardous chemical based upon the EU/Swiss poison classification (Montgomery, 

2013) meaning that between 2000-5000 mg/kg may form a lethal dose. PAM’s have no 

reported herbicidal properties and are considered non-toxic due to their inability to pass 

biological membranes (Smith et al., 1997).  
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1.6.2.1. Polyacrylamide as an additive 

Traditionally, PAM has been largely used as a flocculant in the wastewater and agricultural 

industries (Smith et al., 1997; Xiong et al., 2018a). More recently it has been used as a viscosity 

modifier and a friction reducer in both enhanced oil recovery and hydraulic fracturing 

operations (Xiong et al., 2018a). Polyacrylamide is currently one of the most commonly used 

fracking additives in the United States (FracFocus, 2017). The PAM is added to fluids as a 

‘friction reducer’ (Xiong et al., 2018b), minimising the friction between the fluid and the pipe 

allowing higher pump rates (Ferrer and Thurman, 2015). The PAM is commonly used in the 

three forms, non-ionic, cationic and anionic and generally are thermally stable up to 400 °F 

(204 °C) (Kaufman et al., 2008).  

PAM is a very common friction reducer; data and literature suggest that it is now used 

in nearly 100 % of hydraulic fracturing operations (King, 2010). Of 100 randomly selected 

Pennsylvania wells from 2015 to present, 100 % of slick-water jobs used PAM as a friction 

reducer (Xiong et al., 2018b). However, as part of the study of Xiong et al. (2018b), 100 wells 

from the Bakken field (Montana and North Dakota) and 100 randomly selected wells from the 

Marcellus province (Pennsylvania, Washington and West Virginia) showed that PAM was not 

actually the most popular friction reducer. In these 200 wells, the most popular friction reducer 

was actually light petroleum distillates (Figure 1.6). Petroleum distillates took up 23 % and 37 

% respectively of the friction reducing agents found within the random wells in the Bakken 

and Marcellus shales. PAM was used in lots of wells, but only stated as a friction reducer in 13 

%. The remaining PAM was classed as an ‘other ingredient’. The USEPA reports that 61 % of all 

39,000 wells analysed used light petroleum distillates in some capacity (EPA, 2015). PAM, in 

any of its forms was used in 1.45 % of all wells analysed (EPA, 2015), however, some may have 

been missed in a general review due to the multiple naming conventions of PAM (2-

propenamide, acrylamide polymer, polymerised friction reducer) (FracFocus, 2018). A full list 

of the 200 wells analysed for this study can be found in Digital Appendix A.1.  
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a)  

b)  

c)       

Figure 1.6: Literature summary of 200 randomly selected wells in the Bakken (a) and Marcellus Shale (b) 
areas. Analysis sought the friction reducer used, and where not stated, if PAM was used as a non-specified 
‘other ingredient’. Collated results on the concentration of PAM used where present (c). 
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In terms of the adsorption of PAM in the context of the fracking industry, there is very 

minimal literature assessing specifically the adsorption properties of PAM to shales or relevant 

lithologies. One of the closest studies mentioning adsorption is that of Xiong et al., 2018b who 

suggests polymer loss due to adsorption at ~35 % of the total 85 % polymer loss. Result of ~35 

% polymer loss are similar to some of the results obtained within this study, from Chapter 3 

onwards.  The majority of PAM adsorption studies refer to interactions with either soils 

specifically. Examples of the interaction of PAM and soil can be found in Malik and Letey (1991) 

and Sojka and Entry (2000), concluding that high molecular weight PAMs can remve clay size 

sediment particles in flowing water and, effectively immobilising microorganisms – something 

which may prove useful in the subsurface in terms of solubised metals in redox conditions 

(discussed in Section 6.7). Another study by Sojka et al (2007) discusses PAMs more general 

use in agromany. The interactions between polymers, particularly PAM, are investigated in 

such studies, referring to interactions with clays or organic matter. Aside from PAM’s popular 

use in agriculture, some studies have investigated the use of PAM in the drilling industries, both 

conventional and unconventional. The polymer PAM mainly reacts with the clay minerals 

(Deng et al., 2006a) within the borehole or rock formations. Tekin et al, (2005) investigates the 

adsorption potential of positively charged PAM onto kaolinite, citing that with a decrease in pH 

the adsorption decreases, alongside increasing kaolinite surface areas, in temperatures up to 

600 °C (Tekin et al., 2005), temperatures and pH states that could be indicative of a deep, 

subsurface hydraulic fracturing environment. Volpert et al (1998) investigates the adsorption 

interactions between hydrophobically associating PAM’s on clays and silicates, citing affinity is 

much greater on the silicate surface (Volpert et al., 1998) making the lithology type and 

mineralogy to which fracking occurs (more often than not shale type lithologies) an important 

factor in terms of PAM adosbancy. In terms of drilling, a few studies have looked at the 

interactions of PAM. Examples of this include: Bailey et al, (1994) stating that the adsorption 

of such polymers on particular clays, such as montmorillonite, is strongly dependent on 

electrolyte concentration and that high adsorption levels of the polymer aid the stabilisation 

of weakened and eroding materials in the wellbore and Li et al., (2018) investigating how the 

adsorption of PAM into the wellbore can decrease reservoir permeability by up to ~ 72 %, but 

the use of urea can breakdown the hydrogen bonding holding the adsorption, to aid recovery 

(Li et al., 2018).  

1.7. Adsorption 

 

In the context of this study, adsorption is predominantly investigated in terms of much 

aqueous PAM, used as a slick-water additive, is removed from the solution by means of 

adsorption. In this study, the PAM is classed as the adsorbent and shale (or rock type) classed 
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as the adsorbate. Adsorption is classed as a surface phenomenon occurring at the interface of 

two phases (Srivastava and Eames, 1998), where a gas or a liquid mixture is attracted to a solid, 

forming attachments (Foo and Hameed, 2010). It is defined as the enrichment of material or 

increase in the density of the fluid in the vicinity of an interface (Rouquerol et al., 1999). In its 

simplest form, molecules of a substance are stuck to the surface of another substance by either 

physical or chemical means. In this study, this would refer to PAM molecules sticking 

(adsorbing) to the surface of the rock. In the wider world, adsorption is becoming increasingly 

popular in the water treatment industry because of its simplicity, cost effectiveness and 

regeneration capacity (Ahmaruzzaman, 2008; Kundu and Gupta, 2006). The adsorption of 

polymers can also be exploited in the drilling industries, where high adsorption levels can help 

stabilise materials against erosion and increase lifetime (Bailey et al., 1994). 

Primarily there are two types of adsorption, physical and chemical, otherwise known 

as physisorption and chemisorption, respectively.  Physisorption is caused by Van der Waals 

forces and electrostatic interactions (Ruthven, 1984) whereas chemisorption primarily 

involves valency forces between adsorbate and adsorbent (Srivastava and Eames, 1998). 

Physisorption is classified as a general phenomenon with a low degree of specificity. It can 

occur as multilayer, especially at higher pressures (Rouquerol et al., 1999) and is always 

exothermic although the heat loss is low. This type of adsorption is reversible, as no chemical 

bonds have formed, and so desorption is possible where the molecule keeps its identity at 

returns to the fluid phase in an unaltered form (Rouquerol et al., 1999). Chemisorption, on the 

other hand, is where the molecules are linked to the reactive parts of the surface, confined to 

monolayer type adsorption (Rouquerol et al., 1999). Chemisorption is often irreversible in 

normal or similar conditions to adsorption.  
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Figure 1.7: A graphical summary of how adsorption works compared to absorption, 
showing both monolayer and multilayer adsorption. In the context of this study, the 
adsorbent surface is clay/shale and the adsorbate is PAM.  

Isotherms are a way of expressing the amount adsorbed by an adsorbent under 

pressure and a constant temperature; they describe, in the case of this study, how pollutants 

interact with the adsorbent and are critical for the expression of surface properties and 

adsorbent capacities (Foo and Hameed, 2010). There are multiple types of isotherm that can 

be fitted to multiple types of experimental data, from the heavily favoured and simplistic linear, 

Freundlich and Langmuir isotherms to the far more complex Temkin, Polanyi-Manis and BET 

isotherms. There are multiple sources of literature that explain these types very well 

(Ahmaruzzaman, 2008; Foo and Hameed, 2010; Freundlich, 1906; Kinniburgh, 1986; Kundu 

and Gupta, 2006; Langmuir, 1917; Rouquerol et al., 1999). Within this study, the linear, 

Freundlich and Langmuir isotherms are used, predominantly because of their simplicity and 

their ability to fit a variety of adsorption data well (Kinniburgh, 1986). These three isotherms, 

linear, Freundlich and Langmuir, are described in more detail in Section 3.4. The Freundlich 

and Langmuir isotherms are two-parameter isotherms (Foo and Hameed, 2010). The 

Freundlich isotherm (Freundlich, 1906) is an empirical model and an exponential equation 

that can be applied to multilayer adsorption (Foo and Hameed, 2010), assuming that the 

adsorbate concentration increases, so too does the adsorbate on the adsorbent surface (Allen 

et al., 2003).  On the other hand, the Langmuir Isotherm (Langmuir, 1917) assumes that 

adsorption takes place at specific homogenous sites (Kundu and Gupta, 2006), i.e. once a 

sorbate molecule occupies a site, no further adsorption can take place, also known as 

monolayer adsorption (Allen et al., 2003). Langmuir isotherms are characterised, graphically, 

as plateauing out at a ‘maximum coverage’, a saturation point at which no further adsorption 
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can take place  as all sites are occupied and multilayer adsorption cannot occur (Allen et al., 

2003). At lower concentrations Langmuir theory follows Henrys Law (Linear isotherm) (Foo 

and Hameed, 2010; Kundu and Gupta, 2006; Rouquerol et al., 1999).  

Adsorption is principally controlled by temperature, time, concentration, pH and 

pressure (Guo et al., 2018), but this is dependent on whether the adsorption is physical or 

chemical. In terms of pH, if the system the polymer is in, in this case non-ionic PAM, is too alkali 

or acidic then the molecular structure of the polymer will be destroyed or altered (Guo et al., 

2018). For this study, slick-water systems are generally neutral to weak alkali. Adsorption of 

adsorbates (in this study both non-ionic PAM and some metals discussed in Chapter 6) onto 

surfaces tends to decrease with an increase in pH (towards more alkali solutions) (McGuire et 

al., 2006). Under neutral conditions, adsorption quantity is unaffected. The rise of pH causes 

an increase in negative charges and thus stronger electrostatic repulsions between 

disassociated carboxyl groups located within macromolecules that make up the surface 

(Wiśniewska et al., 2016). Temperature effects on adsorption can be variable, and are fairly 

infrequently reported upon in the worldwide literature (Wiśniewska, 2012). Initially, a 

temperature increase from 0 – 45 °C would increase the adsorption rate, due to the increase in 

the diffusion speed of polymer molecules, thus collisions at the interface of the adsorbate and 

adsorbent increase. At certain temperatures, varying depending on adsorbent and adsorbate,  

the desorption rate will increase as polymers will separate from the surfaces and literally melt 

back into solution, dependent on a critical temperature (Guo et al., 2018).  

For the purposes of this study, slick-water fluids produced are pH neutral and non-

ionic. Tests are conducted in both room temperature (Chapter 3) and elevated temperature 

environments (Chapter 4), indicative of the onshore UK shale gas basins (Andrews, 2014, 2013; 

Broderick et al., 2011). The pressures required for hydraulic fracturing at 2.5-3 km depth 

onshore cannot be met by the capability of available laboratory equipment.  

1.8. The Bowland Shale 

Within the UK, there are three major prospects for the exploration and exploitation of 

shale gas; the carboniferous potential of the Midland Valley in Scotland (Monaghan, 2014); the 

Jurassic Kimmeridge shales of the Weald Basin (Andrews, 2014; Mair et al., 2012); and the 

Bowland Shales of the North of England (Andrews, 2013; Gross et al., 2015). The Bowland Shale 

is quite possibly the most well-known shale gas resource in the UK and identified as the main 

potential resource (Newport et al., 2016) for UK onshore carboniferous deposits (Waters and 

Davies, 2006). Deposited during the late Visean and early Namurian periods of the 

Carboniferous (Andrews, 2013), approximately 347-318 Ma, the Bowland shale is a hemi-

pelagic mudstone located mostly in the NW of Lancashire (Waters et al., 2013). The deposition 



17 
 
 

of the shale occurred alongside deposition of limestones, during the syn- and post-rift stages 

of a back-arc basin (Gross et al., 2015).  

It is estimated that the Bowland Shale Group, inclusive of both the Upper and Lower 

Bowland shales, contains between 822 and 2281 trillion cubic feet (tcf) (2.33 x 1013 to 6.46 x 

1013 m3) of gas-in-place (Andrews, 2013; Mair et al., 2012; U.S. Energy Information 

Administration, 2015). The Bowland shale is a carbon rich shale of interest with multiple 

analyses undertaken on it over the last 40 years. Total organic carbon (TOC) values range from 

just above 0 % to ~ 14 % (Andrews, 2013; Armstrong et al., 1997; Gross et al., 2015; Kenomore 

et al., 2017; Konitzer et al., 2015; Maynard et al., 1991; Newport et al., 2016; Smith et al., 2010; 

Spears and Amin, 1981; U.S. Energy Information Administration, 2015) with the majority of 

data greater than the 2 % TOC viability cut off for UK Namurian black shales (Andrews, 2013; 

Charpentier and Cook, 2011) with the majority of data above the 2 % TOC cut-off for UK 

Namurian black shales, discussed in Chapter 2 (Figure 1.8).  
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Figure 1.8: All TOC values for the Bowland Shale from various locations and depths from a number of 
sources (Andrews, 2013; Armstrong et al., 1997; Gross et al., 2015; Kenomore et al., 2017; Konitzer et al., 
2015; Maynard et al., 1991; Newport et al., 2016; Smith et al., 2010; Spears and Amin, 1981; U.S. Energy 
Information Administration, 2015). Black dashed lines represent the range of TOC measurements observed 
on the relevant dataset, and red squares denote the average value, where presented. Red line denotes the > 
2 % cut off for UK Namurian Black shales.  

 

It has been discussed that the Bowland shale contains anomalously high levels of trace 

elements inclusive of selenium (Se), molybdenum (Mo) and arsenic (As) (Parnell et al., 2016). 

The concentrations can range from 20.5 ppm to 41.1 ppm (Parnell et al., 2016) which may have 

an effect on flow-back fluid composition.  

Only three wells have fracked for unconventionals to date in this country, Elswck-1, 

Preese Hall 1A and Preston New Road 1Z. Preese Hall 1A and Preston New Road 1Z both 

targeted the Lower Bowland Shale at subsurface depths of 8220 ft and 7500 ft, respectively. 

Preston New Road drilled a further 800 m for a horizontal fracking procedure (Cuadrilla 

Resources, 2018a; Hird et al., 2011).  



19 
 
 

1.9. Flow-back Fluids 

 Flow-back fluids, and metals concentrations are one of the biggest areas of interest 

within the hydraulic fracturing research. One of the most important, and largest, sources of 

information regarding flow-back fluid is the USGS Produced Waters database (Blondes et al., 

2017). The USGS Produced Waters database stores data for 114,943 wells that have been 

hydraulically fractured and have disclosed data of flow-back fluids (data ranges that are 

analysed in this study are shown in Figure 1.9). One of the limitations of the USGS Produced 

Waters study is that not all wells disclose all components and data can be sparse, amongst the 

multiple parameters.  

 

 

Figure 1.9: Data summary from the USGS produced waters database (Blondes et al., 2017) showing 
reported  data for metals analysed ONLY in this study, as seen in Chapter 6. High and low ranges are 
denoted by the black line, and average values are denoted by the red square. Data is sourced from 
114,943 wells.  

 

Another limitation of the database is the fact that with a database so large and 

sometimes sparse, numerical errors are highly likely, especially in terms of units in mg/L or 

μg/L. The database is, however, still useful, especially in terms of the size (number of wells) 

and the variability of data. On a smaller scale, within the UK, there is almost no flow-back data 

to call upon. One of the key flow-back data sources used in this study is summarised by 

Broderick et al., (2011) for the flow-back composition of Preese Hall 1A. A summary of data by 
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Broderick et al., (2011) (Table 1.4) may give pointers as to what to expect in future fracking 

operations using a relatively simple slick-water fluid, particularly from the Lower Bowland 

Shale. 

 

 

Table 1.4: Concentration of metals regulated by the EU in flowback fluids from Preese Hall 1A over five 
flowback events (Broderick et al., 2011). 

 

There have been multiple studies in the USA looking at the composition of flow-back 

waters. Studies into the shale geochemistry and trace data are summed up well by Chermak 

and Schreiber (2014) which links to most other studies of flow-back fluids, and is designed to 

be used as a “first step in using compiled datasets to examine large scale patterns”. Enomoto et 

al., 2015 is a more targeted look into the geochemistry and mineralogy of Devonian shales in 

the Appalachian Basin, suggesting rock types are more quartz and carbonate rich rather than 

clay rich. Lavergren et al (2009) analyses the same subject but with a broader ‘black shale’ 

perspective, assessing the mobility of certain metals stating that the shales are rich in 

hazardous metals such as cadmium (0.005-15.9 mg/kg), uranium (2.11-227 mg/kg) and 

Molybdenum (3-240 mg/kg), as examples. Metal concentrations within shales analysed across 

all literature, can vary substantially between, shales, basins, environments and sample type. In 

terms of flow-back fluids specifically, most studies show that the largest concentrations come 

in the form of sodium (49,400 mg/L) and calcium (20,800 mg/L) (Chapman et al., 2012; Shih 

et al., 2015) and occasionally potassium (17,043 mg/L) (Maguire et al 2014) but this is largely 

dependent on shale type, as these studies analyse predominantly the Marcellus shale, with 

Maguire-Boyle and  Barron, (2014) also accounting for the Eagle Ford and the Barnett shale 

formations. As mentioned previously, flow-back fluids do have elevated concentrations of 

multiple minerals. Few major studies have been conducted relating to the UK. The most notable 

UK studies focus around the impact in groundwater that Se could have (Parnell et al., 2016) 

and general groundwater impacts to the UK (Broderick et al., 2011; Stuart, 2012). In terms of 

a more general European summary of groundwater impact, M4 Shale Gas consortium have 

conducted assessments into the wider impact of groundwater quality (Jacobsen et al., 2015), 

EU Regulatory Flowback 1 Flowback 2 Flowback 3 Flowback 4 Flowback 5

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Arsenic (As) 0.01 0.0062 0.001 0.001 0.0012 0.0026

Cadmium (Cd) 0.005 0.00129 0.0005 0.0005 0.002 0.001

Chromium (Cr) 0.05 0.025 0.00403 0.003 0.0205 0.0539

Copper (Cu) 0.002 0.936 0.00804 0.005 0.0376 0.0344

Lead (Pb) 0.01 0.6 0.01 0.01 0.04 0.0449

Mercury Hg) 0.001 0.000024 0.00001 0.00001 0.00001 0.000012

Nickel (Ni) 0.02 0.0203 0.005 0.005 0.02 0.02
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alongside smaller sub projects focussing on the impact of water and soil, the impact on air 

quality, public perceptions and program management and popular science contributions. More 

details on these sub-projects can be found on their website: www.m4shalegas.eu.  

In terms of how metals are mobilised or adsorbed in soils (and the subsurface), thus 

determining what may or may not be present in flow-back fluids, the principle governing 

factors are pH, organic matter, clay content and redox potential, alongside other miscellaneous 

factors (Rieuwerts et al., 1998). Metals solubility generally increases at lower pH’s, and vice 

versa (Chuan et al., 1996; EPA, 2007; Rieuwerts et al., 1998). Overall, more acidic and reducing 

concentrations are more ideal for metal solubilisation, with  Chuan et al, (1996) suggesting that 

pH has a more significant effect than reducing conditions. Organic matter is another key 

component, either within soils or clay content. Organic matter is typically greater within shales 

than soils, due to clay content, but the general principles remain the same. Some soils may 

contain no clay and only organic matter Adsorption of metals by organic material is 

predominantly through ion exchange (Rieuwerts et al., 1998), through negatively charged 

functional groups such as phenol, carboxylate and amino groups (Eriksson, 1989; Rieuwerts et 

al., 1998). Typically, in deep groundwaters and moderate to high TOC shales, Eh (or redox 

potential) is low (Evans, 1989) and promotes metal solubility. The metal solubility is highly 

dependent on the metal type and the temperature, however, and some low Eh conditions do 

not favour metal solubility (Rieuwerts et al., 1998). In reducing environments, sulphates are 

typically reduced by bacteria to sulphides that are insoluble, however if the pH is <5, this does 

not occur (Bloomfield, 1981). From here, sulphides minerals are usually oxidised to sulphates 

at higher Eh levels (Evans, 1989). Throughout this study, the above can be speculated upon, 

however redox factors were not specifically measured for regarding the simulated flow-back 

fluids observed in Chapter 6.  

 

1.10. Thesis aims and objectives 

The aim of this thesis was to assess the interaction between certain samples of shale 

and the friction reducer polyacrylamide (PAM). Assessing the interactions focusses 

predominantly on both the adsorption and desorption properties of adsorbent and adsorbate. 

These interactions will be tested both at room temperature and in higher temperature and 

higher pressure (HPHT) environments. Fluids from all experiments will be analysed as ‘flow-

back’ fluids. The general aims and objectives of this study can by summarised as the following: 

• Characterise the Bowland Shale and other lithologies relevant to this study through 

XRD, XRF and carbon analyses. Results of these analyses can firstly be used to 

investigate potential factors in the adsorption, desorption and flow-back results 
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and secondly, be used in and compared to wider literature for the Bowland Shale 

and associated lithologies. 

• Quantify any PAM that is removed from the slick-water solution by means of 

adsorption, firstly at room temperature and pressure conditions. PAM is likely to 

adsorb to the shale lithologies when slick-water fluid and rock interact. Exact 

amounts of adsorption have not been well studied in the context of fracking.  

• In addition to room conditions, quantify any PAM removed from solution by 

adsorption under higher pressures and temperature conditions that are indicative 

of UK basins, in particular the Bowland Basin. 

• Quantify how much of any adsorbed PAM can be desorbed back into solution, 

stimulated by the ‘freshwater-flushing’ phase of hydraulic fracturing operations. 

Based upon literature, it is unlikely that any adsorbed PAM will desorb easily, or in 

quantities matching adsorption, thus leaving it open to depolymerisation or 

degradation downhole over longer time periods.  

• Assess the composition of all simulated flow-back fluids associated with the 

adsorption and desorption experiments. Fluids will be analysed for a specific set of 

contaminants to aid understanding of what flow-back fluids may result in the 

context of UK geology.  

• Investigate how the addition of 1 g of PAM to 1 L of mains tap water, creating a 

1000 mg/L solution of PAM slick-water fluid can alter the composition of a tap 

water solution, alongside creating a more viscous fluid. It will also particularly 

increase the salinity greatly, providing potential environmental issues at the point 

of flow-back and disposal.  

• Investigate how the addition of PAM is likely to influence other metals within the 

fluid, not just salinity.  

Ultimately, the results of this study will be used by the principle project funders, the 

Environment Agency, and other governing bodies to provide informed information about the 

regulation of fracking additives and such activities. Such data and results may have the 

potential to be incorporated into policy for the future safeguarding of the industry and the 

environment.  

 

 

 



23 
 
 

1.11. Thesis Outline 

The thesis is divided into the following: 

• Chapter 2: Sample Collection and Characterisation. This chapter explains how 

samples for use in this project were selected because of their relevance to a UK 

shale gas industry. Sample locations and type are outlined. Selected samples are 

characterised using various quantitative and qualitative methods so that data from 

these can be cross-referenced to any adsorption, desorption and metals data 

further on in the study.  

• Chapter 3: The Adsorption of Polyacrylamide at Room Temperature. This chapter 

compiles the results of the room temperature adsorption experiments. The 

purpose was to assess how much polyacrylamide could be removed from a 

synthetic lab produced slick-water fluid (PAM and water) of various 

concentrations. The results were then plotted on three main isotherms, Linear, 

Freundlich and Langmuir, to obtain adsorption capacities. The qualitative and 

quantitative data from Chapter 2 is statistically analysed against any adsorption 

data to understand what is controlling the adsorption capacity 

• Chapter 4: The Adsorption of Polyacrylamide in High Pressure High Temperature 

Environments. Similar to Chapter 3, this chapter assesses the adsorption on a 

smaller subset of samples at higher pressures and temperatures. Results are 

plotted onto isotherms and the same statistical analyses are undertaken on the 

results against sample characterisation data. This chapter addresses whether 

increases in pressure or temperature (to near subsurface conditions) will have 

other effects upon the adsorption of PAM.  

• Chapter 5: The Desorption Properties of Adsorbed Polyacrylamide. This chapter 

assesses the desorption properties of any PAM that has adsorbed to the rock 

surface. It is key to know the desorption properties of PAM, as much as the 

adsorption properties, as this is one key indicator of how PAM may degrade or 

mobilise in the subsurface.  

• Chapter 6: The Colloidal Behaviour of Polyacrylamide as a Hydraulic Fracturing 

Fluid Additive. To understand how PAM may alter the release of potential 

contaminants from fracking fluids, we need to test its behaviour as a colloid. This 

chapter will assess how the colloidal properties of PAM interactions with shale and 

Cadmium and how the two systems promote or inhibit movement across a dialysis 

membrane. All of these experiments are conducted at room temperature and 

further reveal how PAM may behave in the environment.  
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• Chapter 7: Metals Analysis of Flow-back Fluids. A large-scale composition analysis 

of all of the fluids from the room temperature and high-pressure high temperature 

adsorption experiments. Fluids are analysed for certain metals/analytes to 

establish the likely concentrations of flow-back fluids and how they may be affected 

by environment, lithology type and additive concentration.  

• Chapter 8: Conclusions. A synthesis of all results, discussions and findings for all 

chapters in this study. Further research onward from the project is explored.  
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2. Sample Collection and Characterisation  

2.1. Introduction 

For this project to fit into the context of the UK fracking industry, shales of interest needed 

to be sourced from the UK. Across the United Kingdom, there are 3 major areas of interest: 

Carboniferous shales across the north of England (Andrews, 2013); the Jurassic shales of the 

Weald Basin in southern England (Andrews, 2014); and the Carboniferous shales of the 

Midland Valley in central Scotland (Monaghan, 2014). As the Carboniferous Bowland shale is 

the only one of these shales to have received licenses for the development of commercial 

fracking, it is this shale that is focussed on for this study. The Bowland Shale unit is the largest 

shale gas unit in the UK (Andrews, 2013) and is also the main hydrocarbon source of UK 

onshore Carboniferous deposits (Waters and Davies, 2006).  

Deposited during the late Visean and early Namurian, the Bowland Shale unit is a hemi-

pelagic mudstone, approximately 2700 m at its thickest in the NW of Lancashire (Waters et al., 

2013). The Upper and Lower Bowland Shales sit at the top of the ‘Bowland-Hodder Group’ 

which incorporates the Hodderense and Pendleside limestone formations. Overlying the 

Bowland-Hodder Unit is the Millstone Grit group, of which the lowermost member is the 

Pendle Grit formation. The Pendle Grit was the first of a major set of deposits of medium to 

coarse grained siliclastic sediments into the post rift Craven Basin in the early Namurian (Kane 

et al., 2009). A summary of the aforementioned stratigraphy is shown in Figure 2.1. Outcrops 

of the Bowland Shales can be seen in various locations in the Forest of Bowland and the Ribble 

Valley, detailed in Figure 2.2, and including, but not exclusive to, the areas of Hazelhurst Fell, 

Wolf Fell, Sykes Quarry and Langden Brook (Figure 2.2 and Table 2.3).  
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Figure 2.1: A simplified stratigraphic section, edited from the BGS and Earp et al., 1961, showing the major 
units observed in the field. 
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Figure 2.2: Map showing the major outcrop areas for the Pendle Grit, Bowland Shale and Pendleside Limestone in the Forest of Bowland and 
Clitheroe area. Samples detailed in Table 2.1 are shown as red dots; OC 1-4 (Hazelhurst Fell); OC 5 (Nick O’Pendle); OC 6 (Sykes Quarry) and; OC 7 
(Wolf Fell).  
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2.2. Sample Collection and Preparation 

It was decided that samples for this study should come from: both borehole and 

outcrop; and, from lithologies both stratigraphically above and below the Carboniferous shales 

of interest, the Pendle Grit and Hodderense Limestone (Figure 2.1). This use of ‘non-shale’ 

samples (Pendle Grit and Hodderense Limestone) would account for either; any interbedded 

units near boundaries and; if any fractures and/or fluids were to migrate beyond exploited 

shales during fracking operations. The main reason for using samples from both outcrop and 

borehole was availability. Outcrop samples are essentially unlimited, purely depending on how 

much is sampled at any one time. Borehole samples on the other hand are strictly limited, 

however having actual samples of subsurface rock types that are likely to be frack, or have been 

fracked, is invaluable to the project. It should be noted that all samples adhere to the naming 

convention detailed in Table 2.1. 

In total, 13 samples were obtained for analysis. These 13 were a combination of both 

borehole and outcrop, and a mix of all relevant lithologies, not exclusively shales. The spread 

of all samples used is shown in Figure 2.3 and a summary table of all samples is given in Table 

2.1.  

 

 

Figure 2.3: Map of northern England showing all locations of outcrop and borehole samples. Outcrop 
samples are limited to the NW. The darker grey shaded area shows the extent of the subsurface Bowland 
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Shale and the blue outline denotes the extent of the DECC 2013 report on the Bowland shale, adapted from 
(Andrews, 2013).  

 

Table 2.1: Table showing a summary of all samples finalised for use in various experiments. ‘Lithology 
Sampled’ is based upon descriptions allocated to the rock in various references; for example, ‘Carboniferous 
Shale’ was not sub divided further in Lockton 3’s End of Well Report. XRF mineralogy, TOC, TC, TIC and XRD 
for all samples can be seen in Section 2.4.  

 

2.2.1. Borehole Samples 

Borehole samples were sourced from the BGS Core Store in Keyworth, Nottingham. 

Here, samples were in the form of core, cuttings or borehole specimens (larger blocks of cutting 

that are 5-20cm in size). Using cross sections, maps, drilling reports and the BGS open source 

borehole scan facility; wells were selected that penetrated the relevant shales. Using the BGS 

Core Store search facility, information was gathered on sample presence at depths relevant to 

the Carboniferous shales of interest. Cores were ordered and samples taken. Sample 

availability on certain samples was low, and thus only 1/3 of remaining samples could be taken. 

Core samples (samples that were blockier and boulder like) were the preferred type as cuttings 

often offered very small amounts of rock sample that may have also been contaminated due to 

washing at point of source, for example running through the mud shakers at wellhead. 

Investigation of borehole data to ascertain what samples were available was highly 

variable and was dependent on the quality of the well metadata. More recent wells, examples 

being Preese Hall 1A (2010) and Becconsall 1Z (2011), provided comprehensive reports and 

logs in digital form. Older wells, such as Lockton 3 (1967), provided fewer comprehensive 

SAMPLE NAME SAMPLE LOCATION LITHOLOGY SAMPLED

OC 1 Hazelhurst Fell Pendle Grit

OC 2 Hazelhurst Fell Pendle Grit (shale rich)

OC 3 Hazelhurst Fell Upper Bowland Shale

OC 4 Hazelhurst Fell Upper Bowland Shale (sand rich)

OC 5 Sabden Quarry, Pendle Hill Pendle Grit

OC 6 Sykes Quarry Upper Bowland Shale/Pendleian Lst

OC 7 Wolf Fell Upper Bowland Shale

OC 8 Congleton Quarry Congleton Sandstone

BH 1 Becconsall 1Z 7030 ftTVD Upper Bowland Shale

BH 2 Becconsall 1Z 7420 ftTVD Lower Bowland Shale

BH 3 Grange Hill 7026 ftTVD Upper Bowland Shale

BH 4 Grange Hill 8134 ftTVD Upper Bowland Shale

BH 5 Preese Hall 1A 8885 ftTVD Lower Bowland Shale

BH 6 Lockton 3 7049 ftTVD Carboniferous Shale 
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reports usually in the form of scans. An example of the difference in data quality can be seen in 

Figure 2.4.  

 

Figure 2.4: Examples of the summary completion logs from Lockton 3 (left) and Becconsall 1Z (right). More 
modern logs are far more comprehensive and usually are less prone to mistakes. Images taken from BP 
Petroleum Development LTD, 1967 and  Hird et al., 2011.Completion logs sourced from IHS and not 
publically available.  

 

Multiple samples were taken from 12 different wells. Due to the sample nature and 

availability, only 4 of the 12 wells were deemed fit for purpose within all experiments 

throughout this study, predominantly due to sample quantity and preparation (Table 2.2).  
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Table 2.2: All borehole samples initially taken from the BGS. 
Those in green are the samples that were chosen for use in 
experiments and characterisation. 

 

The wells not used were not used because of poor quality samples, often due to minimal 

amounts of cuttings. Those wells that were used (highlighted in green in Table 2.2) typically 

contained large amounts of sample, enough for multiple experiments and testing. These 

samples were typically 1/3 of a 6 cm diameter core section. Some core sections were 11 cm in 

diameter (Lockton 3). Examples of the type of core sections provided are shown in Figure 2.5.  

 

 

Figure 2.5: Upper Bowland Shale borehole samples taken from BH 1 (Becconsall 1Z (left)) and BH 3 
(Grange Hill 1Z (right)). 

 

As shown in Figure 2.3, there is a distinct lack of borehole sampling from the northeast 

of England. At the time of sample gathering, the area around Kirby Misperton, in the Vale of 

Pickering, was highly active in shale gas exploration. The current activity made samples such 

WELL TYPE

Preese Hall 1A Cuttings & Core

Lockton 3 Core

Becconsall 1Z Cuttings & Core

Grange Hill 1Z Cuttings & Core

Thistleton 1 Core

Kirby Misperton 3 Cuttings

Boulsworth 1 Borehole Specimen

Duggleby 1 Cuttings

High Hutton 1 Cuttings

Wessenden 1 Cuttings

Weeton 1 Cuttings

Roddlesworth 1 Cuttings
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as the current Kirby Misperton wells (KM 8 as an example) very difficult to obtain for 

confidentiality reasons. Other older wells in the area had not penetrated gas bearing 

Carboniferous rocks and hence why only one sample from a borehole was taken from this 

region.   

2.2.2. Outcrop Samples 

Outcrop samples were sourced from Lancashire, in particular, the Forest of Bowland 

area, north of Blackburn and northwest of Clitheroe. The outcropping geology in this whole 

area is what is known as the ‘Bowland Series’,  consisting of Millstone grits, sandstones, 

limestones and shales (Lancashire County Council, 2015). Here, the relevant lithologies of the 

Pendle Grit, Upper Bowland Shale, Lower Bowland Shale and Hodderense Limestone are 

accessible at the surface.  

To accurately ascertain where certain outcrops of the aforementioned lithologies 

existed, a literature search was conducted. Using BGS Sheet 67 (British Geological Survey, 

1991) alongside the memoir for sheet 67 (Aitkenhead et al., 1992) and Lancashire County 

Councils Landscape Character Assessment of the Forest of Bowland (Chris Blandford 

Associates and Lancashire County Council, 2009) it was possible to pinpoint areas of interest 

to visit to obtain samples – as an example, Figure 2.6 shows locations OC 1 – 4 and OC 7.  

Fieldwork took place in January 2017. The aim was to spend 1 day at 1-2 outcrops per 

day collecting samples. The reality, however, was the weather prevented a few sites from being 

accessed. This said, adequate amounts of sample were obtained from a good proportion of the 

previously proposed sites. In total 7 sites were visited. Of these 7 sites, 5 provided adequate 

outcrop of which 4 were used in all experimentation and characterisation. Two sites did not 

provide adequate outcrop due to dangerous terrain coupled with outcrop buried beneath 

quaternary cover. The locations of these samples can be viewed in Table 2.3 and Figure 2.3. 
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Figure 2.6: Example of maps used to identify locations of interest for sample collection. Images are adapted from geological map and cross section seen in 1:50,000 BGS 
Memoir Sheet 67 Garstang (British Geological Survey, 1991). Upper Bowland Shale (UBS), Lower Bowland Shale (LBS), Pendle Grit (PG), Park Style Limestone (PkSL) and 
sandstones with mudstones, generally Pendleside Sandstones (PdS and S/M) 
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Table 2.3: Table showing the locations selected for outcrop investigation. Of the 7 sites viewed, 6 
provided available materials, 4 of which were used down the line.  

 

Multiple samples were taken from the Hazelhurst Fell outcrop area (denoted by ‘OC 1-

4’ in Figure 2.2 and Figure 2.6. Here, due to interbedding, 4 different lithologies were able to 

be taken: OC 1) Pendle Grit (Figure 2.8), OC 2) Pendle Grit silty, OC 4) Upper Bowland Shale 

Sandy and OC 3) Upper Bowland Shale. Figure 2.7 shows a cross sectional image of where the 

lithologies lay at the Hazelhurst Fell area.  

 

 

Figure 2.7: View of Hazelhurst Fell outcrop sampling site, facing NE. Upper Bowland Shale is annotated as 
‘OC 3’ at the base of the outcrop. From OC 3 to OC 1 (up the hill) the Upper Bowland Shale (UBS) becomes a 
siltier style of shale with siliclastics increasing until the Pendle Grid (OC 1) is reached. There is the 
occasional interbedded layer of pure shale or pure sandstone within these graded boundaries. The scale bar 
is drawn across a large continuous bed of Pendle Grit, the largest in this sequence at this location.  

LOCATION SAMPLE TYPE SAMPLE CODE X Y

Nick O' Pendle Pendle Grit OC 5 377243 438473

Langden Brook Upper Bowland Shale Not used 359883 449927

Disused Quarry Sykes (N) Lower Bowland Shale Innacessible 362788 451847

Wolf Fell Upper Bowland Shale OC 7 359839 444658

Disused Quarry Sykes (S) Hodderense Limestone OC 6 362756 451860

Hazelhurst Fell Pendle Grit & Upper Bowland Shale OC 1-4 357438 447705

Pendle Hill Upper Bowland Shale Innacessible 378684 441132

180cm 
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Some locations were inaccessible (Table 2.3). At Pendle Hill this inaccessibility was due 

to dangerous terrain and weather on location. At the disused quarry, just north of Sykes quarry, 

no outcrop was available due to full cover by quaternary succession.  

 

 

Figure 2.8: Outcrop samples of OC 1 (Hazelhurst Fell, Pendle Grit (left)) and OC 7 (Wolf Fell, Upper 
Bowland Shale (right)) before removal of any weathered surfaces.  

 

As with all outcrop samples, examples shown in Figure 2.8, all weathered edges were 

removed and only fresh unaltered parts of the rock were used in all analyses.  

2.2.3. Proppant Samples 

Usually sand or resin coated ceramic particles (Proppant - Mitchell, 2015) is added to 

the fluid to “prop” open fractures to allow gas and fluids to flow more freely into the wellbore 

(Broderick et al., 2011). The particles are pumped downhole in suspension by means of either 

1) a more viscous fluid or 2) higher pump and flow rates to keep particles energetic.  To make 

experiments relevant to the UK shale gas industry, sand proppant was sourced that was used 

in the Preese Hall 1A (BH 5) well. According to Broderick et al., 2011, Preese Hall 1A used a 

mixture of both Congleton and Chelford sands. These Pleistocene age sands are unusual for 

glacial deposits in the fact that they are generally homogenous in size and  largely free of 

impurities (BGS, 2009). The Cheshire deposits occur as irregular sheets which infill troughs in 

the underlying rocks, and they themselves are cut into by more impure and coarser sands (BGS 

et al., 2009). The Chelford sand is now thought to be highly limited and now usually earmarked 

for glass blowing but the Congleton Sand is much more abundant and used as foundry sand.   

Samples of the Congleton Sand were obtained from Eaton Hall quarry in Congleton, 

Cheshire, with thanks to Tarmac Ltd for providing free samples. At the Eaton Hall quarry, the 

sand is dredged from beneath a 16 m deep artificial lake at a rate of 250 tonnes/hour. Sand is 

then sieved and graded before being sorted into dry and wet sand. The dry sand is dried in 
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large ovens at 60 °C for a number of hours. The sand that had the closes properties to fracking 

sand was the foundry sand, also known as WR416. The properties of this sand are shown in 

Table 2.4. 

 

Table 2.4: Table showing the properties of Congleton Sand Aggregate, type WR416.  

 

The dry sand, WR416, was chosen as proppant for testing at Durham shown in Table 

2.4. This is a highly quartz rich clean sand with minimal calcite and a fairly uniform size (Figure 

2.9). Minimal losses are seen upon ignition which is expected due to the high quartz content.  

 

%

pH 9.1 BS 1377-3:1990 Iron oxide as Fe2O3 0.32

(clause 9) Calcium oxide as CaO 0.42

Silicon oxide as SiO2 96.14

PASSING (%) Magnesium oxide as MgO 0.12

100 Aluminium oxide Al2O3 1.3

99.9 Phosphorus oxide P2O5 0.05

99.5 Manganese oxide MnO <0.02

94.7 Sulphur oxide SO3 <0.01

50.2 Titanium oxide TiO2 0.04

25.8 Potassium oxide K2O 0.63

12.1 Sodium oxide Na2O 0.08

2.8 Loss on ignition at 1000
o
C 0.7

0.5

0 PETROLOGICAL DESCRIPTION:

0 Natural quartzose sand

0 Particle shale:

Sub-angular to well rounded

Surface texture:

Rough to smooth

(March 2016 revision) Tarmac

0.090

0.063

Pan

0.355

0.250

0.212

0.180

0.150

0.125

TYPICAL AGGREGATE PROPERTIES XRF CHEMICAL ANALYSIS 

SIEVE SIZE (mm)

1.000

0.710

0.500
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Figure 2.9: Thin sections of OC 8 (Congleton Sand Proppant). Right hand image is shown under XPL 
(cross polarised light). Particles are both angular and rounded at an approximate 50:50 ratio.  

2.2.4. Sample Summary 

Of all samples collected, 14 were deemed suitable for analysis and experimentation. 

Suitability depended on amount of sample available for replication, and type of sample. Of all 

samples deemed suitable, 6 were borehole samples while 8 were outcrop samples. All borehole 

samples used were core samples, this provided enough sample to grind down for various 

experimental analyses. Cuttings samples collected did not provide enough sample for multiple 

runs of experimentation. The majority of all samples were shale with 1 limestone and 3 

sandstones also obtained. 

2.2.5. Sample Preparation 

Borehole samples (prefixed with BH) were washed of drilling muds. No cutting was 

necessary to remove weathered surfaces from the borehole samples. The storage of all 

borehole samples was within the Core Store at the BGS in Nottingham and so samples, although 

covered, were exposed to normal room temperature dry conditions and atmospheric 

pressures. Some samples may have cracked due to this change in pressure but conditions are 

unknown.   

Outcrop samples had weathered surfaces removed using a rock saw to reveal fresh 

surfaces to provide sample with as little alteration or oxidation as possible.   

Both outcrop (OC) and borehole (BH) samples were prepared by grinding into a fine 

powder of > 150 μm using a gyromill rock smasher. This powder was then dried overnight at 

105 oC to remove excess moisture and volatiles. Samples were then rehydrated in a humid 

environment. After rehydration, between 60 g and 200 g of each sample was ready for use in 

multiple analyses. The preparation of powdered, drying and rehydrating shales conformed to 

American Society for Testing and Materials (ASTM) D1412-04 (2004) preparation of 

standards, methods that have been used in multiple studies, inclusive of, but not exclusive to, 

Ross and Bustin, (2009); Wiśniewska, (2012); Xiong et al, (2018) and (He et al., 2019).  Fine 
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powder was used in all characterisation analysis methods (XRD, XRF, TGA and EA) as this was 

the requirement for each individual analysis.    

RT and HPHT adsorption experiments, details in Section 3.3.1 and Section 4.5, used the 

fine powdered material. The use of the fine powder in these experiments was to ensure the 

most homogenous mass of rock available for reaction, inclusive of all minerals present in the 

rock itself. Using lumps, or cuttings of rock, for this type of experiment, especially over multiple 

individual experiments, may have meant that some samples were not ‘homogeneously typical’ 

– i.e. some samples of the same rock may have had higher proportions of certain minerals than 

others, such as veining or weathering.  Powdered samples provided a representative high 

surface area for the interaction with PAM, as would be downhole (Xiong et al., 2018b).  

Adsorb-desorb experiments used a different type of sample preparation. In the Ads-

Des experiments powdered samples were not used, but instead a 1 cm cubed sample was used. 

The use of a cubed sample in these experiments was to have as consistent a possible surface 

area available for adsorption sites. The use of a cube of rock also allowed for consistent air 

drying of samples as part of the Ads-Des experimental procedure. The use of an identical cube 

for each of the adsorb-desorb experiments proved easier over experimental timescales that a 

PAM saturated powder. Details for the adsorb-desorb experiments are mentioned in Section 

5.4. The powdering approach to the preparation of shale can alter the surface area by 

increasing it, alongside increasing the pore space available (He et al., 2019; Ross and Bustin, 

2009). Accounting for this, and due to the fact established literature and studies use this 

particular method and procedure, it was chosen for this study. Surface area was not tested as 

part of this study.   

2.3. Sample Characterisation 

Characterisation included the composition, mineralogy, carbon content and organic 

content using a combination of X-ray fluorescence (XRF), X-ray diffraction (XRD) and carbon 

analysis by means of both thermogravimetric analysis (TGA) and total carbon Analysis using 

the elemental analyser (EA). The reason for this characterisation was so that particular rock 

characteristics could be attributed to behaviour observed from the adsorption or flow-back 

experiments. This chapter will be centred on this mineralogical analysis. All samples were 

analysed using all techniques mentioned in this section. The information gained from the 

characterisation can therefore be used in conjunction with all other analyses detailed within 

this study; room temperature adsorption (Chapter 3), HP-HT adsorption (Chapter 4), Adsorb-

Desorb (Chapter 5), Colloid Analysis (Chapter 7) and finally, flow-back analysis (Chapter 6).  

In terms of lithological characterisations, various studies have already considered the 

geochemistry and mineralogy of the Bowland Shales (or stratigraphic or similar units).  

Starting with the BGS memoirs, Aitkenhead et al., 1992 looks at general major and minor XRF 
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analyses data where available. Gross et al. (2015) analysed the organic petrography and 

mineral presences of the Bowland shales within the UK using the Duffield borehole, of which 

the TOC analysis is useful to this study, showing TOC’s values ranged from between 1.25 % to 

7.55 %. The TOC content of the Bowland shale is discussed in depth by Gross et al. (2015) and 

Konitzer et al. (2015). Newport et al., (2016) discusses the geochemistry of the Holywell shale 

in Wales, part of the Bowland Shale Unit, stating that TOC values ranged from 0.12 % to 10.31 

% in the Upper Holywell Shale and between 0.63 % and 3.36 % in the Lower Holywell Shale 

across multiple sample locations. More general studies of shale gas in the UK have also been 

undertaken, encompassing all aspects from lithology, geochemistry, structure and exploitable 

potential. Such studies include the BGS & DECC’s report on the Geology and Resource 

Estimation of the Carboniferous Bowland Shale (Andrews, 2013) and the Tyndall Centres 

‘Shale Gas: An Updated Assessment of Environmental and Climate Change Impacts’ (Broderick 

et al., 2011). 

2.3.1. Carbon Analysis 

The carbon analysis for all samples was performed using a combination of data 

obtained from thermogravimetric analysis (TGA) and elemental analysis (EA). Losses upon 

ignition from the TGA (ambient to 1000 °C) were used to calculate organic carbon and inorganic 

carbon. Total loss on ignition was compared between both XRF data and losses observed from 

the TGA to verify all mass loss results (Digital Appendix B.2).  

2.3.1.1. Elemental Analysis (EA) 

To establish amounts of total carbon (TC) in each sample, CHN (carbon-hydrogen-

nitrogen) analysis was performed. Total organic carbon (TOC) and total inorganic carbon (TIC) 

was established alongside data from the TGA. This CHNO analysis was undertaken using a 

COSTECH ECS 4010 Elemental Combustion System via a pneumatic auto-sampler. The 

machinery was only set up for CHN analysis, not oxygen. The system used two reactors: 

chromium (III) oxide/silvered cobaltous-cobaltic oxide alongside high purity copper wires at 

a temperature of 1020 °C. Helium was used as a carrier gas with a flow rate of 120-140 cm3 

min-1.  

The calibration for the CHN analysis comprised of a suite of acetanilide (C8H9NO) 

standards that ranged from 0.5-2.5 mg in weight. The curves for this calibration were based on 

linear and quadratic relationships, all with an r2 >0.99.  

All samples were prepared in triplicate by measuring between 1.5 and 2.5 mg of each 

powdered sample in a tin capsule. All samples were triplicated. During the sample run, as a 

check for drift and to calibrate to the original standards, an acetanilide procedural blank 

triplicate was placed every 24 single samples.  
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To understand what the typical ranges for the Bowland Shale and relevant lithologies 

were, a simple literature search was undertaken from both outcrop and borehole sources over 

the last 20-30 years. For this, 11 different sources (full details in Digital Appendix B.1) 

(Andrews, 2013; Armstrong et al., 1997; Gross et al., 2015; Kenomore et al., 2017; Konitzer et 

al., 2015; Maynard et al., 1991; Newport et al., 2016; Smith et al., 2010; Spears and Amin, 1981; 

U.S. Energy Information Administration, 2015) were combined which took results from 29 

different boreholes, outcrops and horizons. Amongst them, TOC varied between 0 and 10 %, 

with an average of 3.97 %. Details of this compilation can be seen in Figure 2.10.  

 

Figure 2.10: Table which plots all the TOC values retrieved from a literature search of 
all available material regarding organic carbon within the UK Bowland Shales. Black 
lines and end markers denote highest and lowest values, with the red dots denoting the 
average published value. No values here have been calculated or averaged, all are only 
what was displayed in each relevant material, hence why some contain only averages, 
and other contain no averages. The red dashed line denotes the optimum 2 % TOC cut 
off for UK Namurian shales (Charpentier and Cook, 2011), explained in more detail in 
Section 2.4.4.1. 
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2.3.1.2. Thermogravimetric Analysis 

 Thermogravimetric analysis (TGA) was used to assess the mass of volatile matter, 

organic matter, clay content and carbonate material within each sample. The TGA was 

conducted using an SGA i TGH 1200 high mass analyser (Instrument Specialists Inc, Wisconsin, 

USA). The powdered samples were measured to weights varying between 200 and 250 mg and 

loaded into the platinum hanging dish within the instrument. When the furnace was fully 

closed the sample was heated from ambient temperature to 1000 °C at a rate of 20 °C/min with 

a constant feed of N2. Gas flow rate was set at 25 - 30 cc/min, purge flow rate 25 – 40 cc/min. 

Each sample took between 45 and 50 minutes to complete. Due to time constraints and limited 

sample availability no replicates were performed. A correlation of losses from XRF vs losses 

from TGA yielded an r2 value of 0.9964 and thus TGA losses observed in Durham were deemed 

reliable.  

 Loss characteristics and temperature ranges were calculated using observations across 

all the samples and typical temperature range data observed in (Wang et al., 2009) and (Sutcu, 

2007). This method cannot be used to account for individual minerals, just approximations 

based on recommended ranges. Example TGA thermal curves and derivatives can be observed 

in Appendix B and Digital Appendix B.2, data adapted from (Todor, 1976). 

 

 

Table 2.5: Table adapted using data from Wang et al. (2009), Sutcu (2007) and Todor (1976), showing the 
general temperature ranges attributed to mineral decomposition alongside the ranges chosen for this study 
based upon all first losses seen using the first derivative.  

 

It is unlikely that the decomposition of pyrite was a major factor towards mass loss of 

any samples tested. Pyrite concentrations were negligible in all samples, however, if pyrite was 

abundant in a particular sample, it could not form hematite as the TGA is run in an N2 

environment (Wang et al., 2009).  

GENERAL RANGE RANGE USED ATTRIBUTION
(for this study)

0-250
o
C 0-299

o
C Moisture, volatiles

Structural water release from clays

200-600oC 300-649oC Decomposition of kerogen & organic matter

Decomposition of pyrite (450-550
o
C)

600-950
o
C 650-980

o
C Decompostion of carbonate minerals

(Calcite, Dolomite, Aragonite)
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2.3.2. X-Ray Fluorescence Analysis 

X-Ray fluorescence (XRF) was performed by the University of Leicester. This analysis 

determines the weight percentage of major oxides and concentration (ppm or mg) of trace 

elements. The analysis was done on a PANalytical Axios Advanced X-Ray Fluorescence 

spectrometer that operates a 4Kw rhodium (Rh) anode end window super sharp ceramic X-

ray tube. For this method, major oxides are determined on fusion beads, and traces are 

determined on pellets. All samples used powder that is prepared in Durham to <150 µm. 

Results are returned in the form of an MS Excel spreadsheet detailing all majors, minors and 

losses. All samples used are retained at Leicester University in case repeats need running.  

2.3.3. X-Ray Diffraction Analysis 

 X-Ray diffraction (XRD) analysis was performed to assess mineral composition but 

primarily to qualitatively assess the clay types present in the samples. Again, the analysis 

required the same > 150µm powder as XRF. Each powdered sample was analysed using a 

Bruker D8 Advance diffractometer using a wavelength of 1.5406 nm and CuKα radiation. 

Samples were pressed into 1 mm deep resin discs with a radius of 1.25 mm to preserve a 

smooth surface for diffractions. An example of one of these resin discs is shown in Figure 2.11.  

 

 

 

Figure 2.11: Image of one resin disc for XRD analysis. The powders are pressed fully into the inset in the 
centre of the disc, ensuring a flush contact with the surrounding resin.  

 

All samples were measured with random orientations of grains. Samples were scanned 

from 2° to 90°2θ (Figure 2.12) with a time-step of 0.350 seconds and an increment of 0.02°. 

Each sample took approximately 28 minutes to complete.  
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Figure 2.12: Schematic of XRD resin disc shown in Figure 2.11 showing the incident and diffracted X-rays 
in terms of the θ (theta) and 2 θ angles.  

 

This study used both quartz and barite as internal standards both for the method of 

analysis in the Bruker D8 Advanced Diffractometer and each sample calibration. Quartz is not 

a clay mineral, but will often occur in the clay-size fraction of a sample (Moore and Reynolds 

Jr, 1997). Quartz has a distinctive and invariant signal pattern, with the principle 100 peak 

occurring at 26.65 °2 θ (d = 3.343 Å) (Å = angstrom) and can be readily observed when in 

quantities > 1 wt% (Brindley and Brown, 1984). This peak, and quartz’s secondary peak at 

20.85 °2 θ (d = 4.25 Å) can be used an internal standard for moderate accuracy. 

The second internal standard that was used to assess machine accuracy was the 

sulphate barite. A 1-5cm thick barite vein was encountered at fieldwork site OC 6 and sampled 

for adsorption experiments. This sample did not actually end up being used in the adsorption 

experiments, but was instead used as another good calibrator for the XRD results profiles. As 

this sample was almost pure Barite (BaSO4) there would not be much influence from other 

strong mixed layer peaks.   

Non-clay minerals analysed for were: Quartz, Calcite, Dolomite, Aragonite, Orthoclase, 

Microcline, Plagioclase, Pyrite, Anhydrite and Gypsum. Clay minerals analysed were Chlorite, 

Vermicullite, Smectite, Montmorillonite, Kaolinite, Dickite, Illite and Illite/Smectite mixed 

layer.   

 The degrees 2θ range was chosen to provide enough range to identify primary peaks 

for clay minerals. Clay minerals (as listed above) have their primary peaks in the lower end of 

the spectrum, often between 2 and 20° 2θ. The d spacing 060 values for clays which are used 

to distinguish between dioctahedral and trioctahedral types, were present  in most samples 

and using the various literatures listed below to cross reference, proved very useful for the 

identification of the certain desired clay types (Moore and Reynolds Jr, 1997). However, often 

in random oriented powders, these 060 spacing peaks are often hidden in the larger matrix 
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and can be very hard to identify. Clay peaks typically have weak intensity and large breadth 

and so can be difficult to identify alongside other more prominent minerals, i.e. quartz and 

calcite, in a mixed mineral aggregate (Moore and Reynolds Jr, 1997). Confirmation of each 

mineral phase was accomplished by using at least 2 major reflections and 2 minor reflections. 

Occasionally 1 minor reflection was used when peaks reflected by other minerals were 

suspected of obscuring the relevant peaks being searched. Peaks observed were cross 

referenced against five different reference databases: 1) diffracEVAL software database; 2) 

Moore and Reynolds Jr (1997), 3) Brindley and Brown (1984), 4) mindat.org mineralogy 

database; and 5) webmineral.com mineralogy database.  

 Using this range of sources for identification, results could be plotted on profiles using 

both degrees 2θ and ‘d spacings’.  Conversion between 2θ and ‘d spacings’ was completed using 

a method from the USGS with an adapted Bragg equation (Equation 2.1).  

 

𝒅 =  
𝝀

(𝟐.𝟎 ×𝐬𝐢𝐧(𝟎.𝟓 ×𝟐 𝜽 ×𝑫𝟐𝑹))
            Equation 2.1 

 

Equation 2.1 shows the adapted Braggs law equation to easily convert from 2θ to d. This 

method is adapted from the USGS (Poppe et al., 2002); λ is the wavelength of the rays (1.5406 

nm) and D2R is an abbreviation for the conversion factor between degrees and radians, used 

as the value 0.0174532925199433. The value must be exact to ensure no rounding offsets any 

identifiable peaks. Using this equation based on degrees 2 θ, numerical data is easily converted 

to d spacings. These d spacings values are also used to cross reference data amongst some of 

the multiple literature sources cited.  

 

2.4. Results 

Here all results from the elemental analysis, thermogravimetric analysis, XRF analysis 

and XRD analysis are presented. All results are shown where necessary and practical; however 

in some occurrences, due to the sheer number of data, some full suites of data are shown in the 

Appendices, with only examples selected here. Specific Appendices are referred to in the text 

where relevant.  

2.4.1. Carbon Analysis  

 The full suite of results from both the TGA and Elemental Analyser are combined in this 

section to give details of TC, TIC and TOC. Total Carbon was measured only on the elemental 
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analyser whilst losses on ignition we measured with TGA and both organic carbon and 

inorganic carbon calculated from here.  

2.4.1.1. Elemental Analysis 

For all the samples measured, total carbon varied between 0.07 wt % and 12.04 wt % 

(Table 2.7) 

 

 

Table 2.6: Total carbon data for all samples analysed with the elemental analyser. ‘SD’ denotes 
standard deviation and ‘RSD’ denotes relative standard deviation.  

 

Samples did not exceed about 12 % total carbon and most relative standard deviations 

(RSD) are low. RSD values for samples OC 1, OC 5 and OC 8 are the highest errors observed. 

The most likely reason for this error is the fact that these samples contained almost zero carbon 

and thus the standards used for the whole dataset were anomalous to this small cluster of 

samples. In short, the value of the lower acetanilide standard was still too high and so the 

machine would have struggled to constrain exact carbon values for these samples. These 

samples however, cross referenced with the other characterisation techniques used, are very 

silica rich based samples with almost no trace of hydrocarbons in the system (Table 2.6 and 

Table 2.9).  

SAMPLE NITROGEN CARBON HYDROGEN

wt% wt% wt% Mean wt% SD RSD

BH 1 0.17 4.33 0.65 4.33 0.19 4.30

BH 2 0.08 9.58 0.54 9.58 0.22 2.30

BH 2 0.25 3.94 0.99 3.94 0.07 1.69

BH 3 0.07 5.45 0.50 5.45 0.22 4.10

BH 4 0.08 4.54 0.57 4.54 0.05 1.09

BH 5 0.21 4.56 0.70 4.56 0.07 1.55

BH 6 0.15 1.60 0.91 1.60 0.03 1.91

OC 1 0.14 0.12 0.37 0.12 0.04 30.05

OC 2 0.05 0.14 0.57 0.14 0.01 7.14

OC 3 0.12 4.71 0.59 4.71 0.01 0.24

OC 4 0.12 1.51 0.83 1.51 0.12 7.81

OC 5 0.10 0.07 0.54 0.07 0.02 28.39

OC 6 0.08 12.04 0.45 12.04 0.03 0.21

OC 7 0.22 1.65 0.74 1.65 0.01 0.61

OC 8 0.12 0.07 0.40 0.07 0.02 24.74

CARBON
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Figure 2.13: Adapted version of Figure 2.10 this time showing all results from TOC 
analyses conducted on samples for this project here at Durham. Red line denotes the 2 
% minimum requirements ‘cut-off’ for TOC for a successfully viable shale gas 
exploitation. 

 

Total carbon values analysed for this study (Figure 2.13) are within the typical range 

of carbon that would produce TOC values similar to those seen in the literature e.g., Andrews, 

2014; Kenomore et al., 2017; Maynard et al., 1991; Spears and Amin, 1981.  The majority of all 
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shale type samples (BH 1, BH 3, BH 4, BH 5, OC 3 and OC 6)  have TOC values that sit above the 

2 % ‘minimum requirements’ cut off for Namurian shales (Charpentier and Cook, 2011). Most 

sandstone based samples (OC 1, OC 5 and OC 8) have negligible carbon both inorganic and 

organic. The 2 % TOC cut off is based Andrews, (2013) literature. Using data from Charpentier 

and Cook, (2011), Gilman and Robinson, (2011), well legacy data and a DECC commissioned 

study discussed 2 % TOC is concluded to be a viable minimum for well exploitation. Other 

studies, such as (Jarvie, 2012) state a 1 % cut off, but discuss average TOC values for the top 10 

shales in the USA, with their reported TOC values ranging between 0.93 % and 5.34 % 

(Andrews, 2014; Jarvie, 2012).  

 

2.4.1.2. Thermogravimetric Analysis (TGA) 

Using all data, average threshold values were selected for volatiles and residual water 

(0 - 300 °C) with water loss usually below 200 °C, organic matter (300 – 650 °C) and CaCO3 (650 

- 980 °C). Results from the TGA are shown in Table 2.7.   

 

 

Table 2.7: Mass losses from TGA shown in 200 °C intervals and organic matter (300-650 °C) and carbonate 
intervals (650-980 °C). Samples are ordered by sample name.  
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Figure 2.14: All losses for all samples based on wt % losses seen at sequential 200 oC intervals. 
Samples here have been ordered by total losses observed in the carbonate window. Bar 
columns refer to the black left hand y axis (weight %). Lines represent the sample losses in 
the organic and carbonate windows (300-350 and 650-980 °C respectively and refer to the 
red axis (right) 

 

 

Figure 2.15: All TGA curves, averaged over each individual temperature signature, for all 
samples. Example reference curves from Todor (1976) can be observed in Appendix B.  
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Nearly all samples lose the most mass between 650 and 980 °C – and this is taken as 

loss due to presence of carbonates.  Mass losses for organic matter between 300 and 650 °C 

range from 0.1 % to 10.9 % whereas for carbonate material between 650 and 980 °C mass 

losses range from 0.03 % to 41.6 %.  

Sample OC 6, carbonate rich shale, loses just over 41 % of its mass at temperatures 

greater than 650 °C. The same sample, OC 6, loses less than 1 % of its mass in the window for 

organic matter between 300 and 650 °C (Table 2.7). Sample BH 6 has the most organic matter 

mass loss at 10.9 % with a small carbonate loss of 1.3 %, however samples such as BH 5 have 

4.09 % of organic matter loss coupled with an even larger carbonate loss of 7.09 %.  

2.4.1.3. Carbon Analysis Conclusions 

The TOC values vary between 0.05 % and 7.04 % for all samples - all data is given in 

Table 2.9 and shown in Figure 2.16. Borehole samples generally have a higher TOC and TIC, but 

this is biased due to the fact that core was actually sampled; it was obviously in a zone of 

interest and of high TOC. A comparison of data obtained in Durham for the same samples 

analysed by operators is shown in Table 2.8. Most TOC values for all samples in the subset 

sampled in this study, in particular the shale samples, sit within the optimum organic carbon 

window which makes reservoirs feasible for exploration and exploitation. Andrews, (2013), 

suggests that the optimum cut off for UK Namurian shales is > 2 % using findings from 

Charpentier and Cook, 2011 and Gilman and Robinson, 2011.  

 

Figure 2.16: All carbon values for all samples using data derived from both elemental analysis (TC) and 
thermogravimetric analysis (TOC and TIC). The red line denotes the > 2 % cut off for Namurian UK shales.  
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Table 2.8: Comparison TOC data chart for 3 borehole samples. 
‘Durham Analysis’ represents data from both the TGA and EA whilst 
‘EOWR’ represents data taken from the representative wells End of 
Well Report Summaries. No average data was available from BH 5 
EOWR.  

 

 

Table 2.9: All carbon type values ( wt %) for all 
samples, derived from elemental analysis (TC) and 
TGA (TIC and TOC)  

 

2.4.2. X-Ray Fluorescence  

Both major and minor mineral oxides are displayed in Table 2.10. Only one 

measurement per sample was made and so no error was calculated in the analyses. The 

external technician who measured the samples at Leicester University assured us that error 

using this method was commonly low, and thus no replications of samples were undertaken: 

triplicates for each sample to get an average reading.  

 

WELL DURHAM ANALYSIS EOWR

Sample (TGA, EA) Average (Maximum)

BH 1 3.62 % 2.80 % (3.52 %)

BH 3 3.58 % 2.12 % (3.15 %)

BH 5 3.70 % (3.16 %)

SAMPLE TC TIC TOC

BH 1 4.32 0.711 3.615

BH 2 3.93 3.41 0.52

BH 3 5.45 1.86 3.58

BH 4 4.54 1.54 2.99

BH 5 4.56 0.85 3.7

BH 6 1.6 1.23 0.36

OC 1 0.12 0.01 0.1

OC 3 4.71 1.38 3.33

OC 4 1.51 0.1 1.4

OC 5 0.07 0.01 0.05

OC 6 12.04 4.99 7.04

OC 7 1.65 0.07 1.57

OC 8 0.07 0.004 0.06
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Table 2.10: All XRF data separated by sample name for both major and minor minerals. 

 

 

Table 2.11: Si/Al ratios calculated for all samples derived from SiO2 and Al2O3 XRF results. Results 
ordered by sample name in upper rows and by Si/Al ratio (low to high) in lower rows. 

 

As is typical with shales, samples contain large amounts of quartz, up to 89 %, except 

OC 8, clean glacial sand. The three major oxides, SiO2, Al2O3 and CaO were used as proxies for 

the three main mineral phases: quartz, clays and carbonates respectively (Ross and Bustin, 

2009). Using the Si/Al ratio as a proxy for clay content (Newport et al., 2016), samples 

containing the most clay can be estimated. Sample BH 1 exhibits the lowest Si/Al ratio of 2.44 

(22/9) indicating a higher clay content. Linking this data for BH 1 to the qualitative XRD results 

(Table 2.13) we see that BH 1 has one of the higher proportions of clays present; chlorite, 

kaolinite and illite. Samples OC 7 and OC 8 exhibit negligible amounts of clay, however sample 

OC 7 shows nearly seven times the amount of Al2O3 which XRD analysis has shown to be clays 

present in the form of kaolinite and illite (Table 2.13). OC 6, a calcite rich limestone-shale is 

estimated to have the lowest clay content of all samples less that a 1/0 ratio. The lack of clay 

content for sample OC 6 is backed up by XRD (diffractograms observed in Appendix B), with 

results showing no clays present. 

SAMPLE SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SO3

BH 1 67.18 0.28 7.85 3.27 0.04 1.08 7.12 0.36 1.470 0.084 2.281

BH 2 22.80 0.12 3.02 2.01 0.02 1.12 36.85 0.13 0.393 0.066 3.819

BH 3 54.75 0.17 3.11 2.52 0.03 2.55 17.20 0.42 0.421 0.073 0.880

BH 4 60.50 0.22 2.88 2.02 0.02 1.12 15.97 0.48 0.450 0.085 1.360

BH 5 59.46 0.42 8.75 2.64 0.01 0.77 10.72 0.60 1.452 0.995 2.827

BH 6 46.41 0.75 17.42 16.15 0.19 2.01 1.00 0.73 1.566 0.253 0.138

OC 1 90.79 0.14 4.90 0.55 0.00 0.08 0.01 0.17 1.307 0.023 0.005

OC 2 87.11 0.31 7.52 0.46 0.08 0.18 0.02 0.41 1.501 0.072 0.008

OC 3 56.69 0.31 5.70 2.72 0.08 2.59 13.04 0.17 1.073 0.136 2.632

OC 4 70.38 0.90 17.25 0.84 0.01 0.56 0.03 0.31 2.733 0.099 0.008

OC 5 89.76 0.28 5.19 0.99 0.01 0.13 0.02 0.63 1.083 0.023 0.004

OC 6 2.65 0.01 0.27 0.17 0.02 1.03 52.87 <0.004 0.019 0.004 0.289

OC 7 78.95 0.41 9.36 3.92 0.01 0.45 0.02 0.21 1.373 0.126 0.010

OC 8 98.72 0.04 1.41 0.21 <0.001 0.07 0.08 0.16 0.670 0.012 0.005

wt %

BH 1 BH 2 BH 3 BH 4 BH 5 BH 6 OC 1 OC 2 OC 3 OC 4 OC 5 OC 6 OC 7 OC 8

31/4 11/2 26/2 28/1 28/4 22/9 21/1 41/4 13/1 4/1 42/3 1/0 9/1 1/0

7.75 5.5 13 28 7 2.44 21 10.25 13 4 14 100 9 100

BH 6 OC 4 BH 2 BH 5 BH 1 OC 7 OC 2 BH 3 OC 3 OC 5 OC 1 BH 4 OC 6 OC 8

22/9 4/1 11/2 28/4 31/4 9/1 41/4 26/2 13/1 42/3 21/1 28/1 1/0 1/0

2.44 4 5.5 7 7.75 9 10.25 13 13 14 21 28 100 100

Si/Al

Si/Al
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2.4.3. X-Ray Diffraction  

All X-Ray diffractograms can be viewed in Appendix B and Digital Appendix B.4. Quartz 

was present in all samples, with primary and secondary peaks observed. Using samples OC 8, 

foundry sand proppant, a calibration was made (Figure 2.17).  

 

Table 2.12: Typical diffraction data for quartz and barite ordered by 
d spacing value. Data adapted from (Moore and Reynolds Jr, 1997). ‘I’ 
displays the intensity. All values <100 are taken as a ratio of 100, with 
100 being the strongest and most prominent peak.  

 

Peaks observed in the barite sample match those from reference material in both degrees 

2θ and intensity (I). Samples OC 8 and OC 6 contain the least amount of mixed minerals and 

display (Figure 2.17) the most prominent peaks for both quartz and barite (used as internal 

standards). All samples were measured twice, between 10 and 90 o 2 θ and between 2 and 90 

o2 θ. No erroneous peaks were measured between these two sets.  

 

 

 

 

  

d I 2 θ d I 2 θ

4.27 22 20.8 4.4 16 20.2

3.342 100 26.67 4.34 30 20.47

2.457 8 36.57 3.9 50 22.81

2.282 8 39.49 3.77 12 23.58

2.237 4 40.32 3.58 30 24.89

2.128 6 42.5 3.45 100 25.86

1.979 4 45.83 3.32 70 26.86

1.659 2 55.38 3.1 95 28.77

1.453 1 64.04 2.84 50 31.55

BARITEQUARTZ
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a)  

 

b)  

Figure 2.17: Diffractograms for sample OC 8 (a) and barite rich veining from OC 6 (b) displayed in 
cts/s (counts per second). For OC 8, only prominent quartz peaks are present with very minimal 
background interference suggesting a purer sample. The barite veining for OC 6 has slightly higher 
background interference, but still very low. Sample may be contaminated with other minerals, 
inclusive of clays and carbon; however, Barite peaks are still clearly visible in the correct positions and 
intensities as detailed in Table 2.12.The unbracketed value represent the degrees 2 θ value, whilst the 
bracketed value represents the peak intensity as a ratio of 100, i.e. (100) is the strongest peak, and 
(16) would represent an intensity of 16 % of 100.  
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Table 2.13 exhibits the qualitative analysis results for all samples in the order of the 

sample name and type. The differentiation detailed in the caption between ‘present’, ‘likely 

present’, ‘negligible presence’ and ‘not present’ is derived from the fact that some major peaks 

may obscure minor peaks of other minerals. Differentiation between the presence and absence 

of certain minerals is especially likely in mixed mineral aggregates, of which all samples are in 

this study.  

 

Figure 2.18: Typical common clay diffractogram patterns for chlorite, illite, kaolinite and quartz. 
Diffraction pattern lines adapted from (Moore and Reynolds Jr, 1997). The blue and green lines represent 
two different example sample diffraction patterns adapted from the reference.  

 

The 00l, or basal, reflections for the clays of interest are shown in Figure 2.18. These 

reflections are the most prominent peaks for the clays sought and the ones used in the main 

identification of the clay types where possible.
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Figure 2.19: Example XRD 
diffractogram of sample OC 2 
(Hazelhurst Fell Pendle Grit (Silty)). 
The full range from 2 – 90 °2 θ is shown 
on the main image whilst a subsection 
from 2 – 25 °2 θ is shown in the image 
top right. This subsection image shows 
the difference between a sample that 
contains clays (OC 2) and a sample that 
contains minimal clays ( OC 6). Please 
note the reduction in scale on the y axis 
from ~ 60,000 cts to 1400 cts in order 
to make clay peak intensities visible. 
Data from this can be cross referenced 
with reference patterns seen in Figure 
2.18 
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Table 2.13: Qualitative mineralogical compositional analysis for all samples included in this study. XXXX = present (dominant), XX = likely present (accessory), x = negligible 
presence (minor) and - = not present. Samples are named as per ‘naming convention’ seen in section XXX. ‘sst’ = sandstone lithology, ‘sh’ = shale lithology and ‘sst/sh’ or 
‘sh/sst’ = sandstone and shale mix with the former labelled being the dominant lithology type.  

SAMPLE OC 1 OC 2 OC 3 OC 4 OC 5 OC 6 OC 7 OC 8 BH 1 BH 2 BH 3 BH 4 BH 5 BH 6

sst sst/sh sh sh/sst sst lst sh sst sh sh sh sh sh sh

Silicas Quartz XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Calcite x - XXXX - XXXX XXXX - x XXXX XXXX XXXX XXXX XXXX XX

Dolomite x - XX - - XXXX - XX XXXX XX XX XX - XX

Aragonite - x XX - - - x XX - - - XX XX x

Orthoclase XX XX XX - XXXX XX - XXXX XXXX XXXX XXXX XX XX XX

Microcline x XX XX x XX x XX XXXX x x x x XXXX x

Plagioclase XXXX XXXX XX XX XXXX - XX x XX XXXX XXXX XXXX x XX

Sulphides Pyrite - x XXXX - - XX x - XXXX XXXX XXXX XXXX XXXX x

Anhydrite - - x - - - - - - - x XX - -

Gypsum - - - - - - - - - - - - - -

Chlorite - XX - - - XX - - XXXX XXXX - - - XXXX

Vermicullite - x - - - - - - XXXX XXXX - - x x

Smectite - - - - x - - - - - x - x x

Montmorillonite - x - XXXX XX - - - XX - - - - -

Kaolinite XXXX XXXX XXXX XXXX XXXX - XXXX - XXXX XX - x - XXXX

Dickite XX x - - - - - - XX - - XX - -

Illite - XXXX XXXX XXXX XXXX - XXXX - - - XXXX XXXX XXXX XXXX

Illite/Smectite - x x x XXXX - XX - - x x XXXX x x

Carbonates

Feldspars

Sulphates

Clays
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 Where present, quartz has the most dominant, sharp and intense peaks making it easy 

to identify. On the other hand, feldspars such as plagioclase and orthoclase are difficult to 

identify because they contain variable compositions and have small primary peaks (Moore and 

Reynolds Jr, 1997). The most prominent peaks for feldspar lie very close to the major quartz 

peak at 26.67 o 2 θ, obscuring its identification. Pyrite is another common mineral which can 

be difficult to identify. Pyrite (FeS2), if present, can produce higher background signals on the 

diffractogram due to the CuKα incident radiation that is ideal for exciting fluorescent radiation 

from iron (Moore and Reynolds Jr, 1997). 

Quartz is present in all samples analysed. The two most dominant quartz peaks were 

observed in all sample patterns. XRF data confirms this with samples ranging from 2.65 wt % 

(OC 6) SiO2 to 98.72 wt % SiO2 (OC 8). Calcite is confirmed across the majority of samples (OC 

3, OC 5, OC 6, BH 1, BH 2, BH 3, BH 4 and BH 5) and is commonly associated with clay minerals. 

Calcite presence was ubiquitous, but samples were cross referenced with XRF results to ensure 

that potential peaks close to far more intense quartz peaks, would have also been calcite. 

Unsurprisingly, OC 6, limestone rich shale, contains the largest amount of carbonate material. 

Prominent peaks between the two in degrees 2θ are Qtz 29.4 / Cal 29.43, Qtz 35.9/ Cal 39.43, 

Qtz 43.12 / Cal 43.18 and Qtz 48.5 / Cal 48.5. Feldspars, particularly orthoclase and plagioclase 

are found in most samples. All three types of feldspar sought in the analysis, inclusive of 

microcline, are more dominant in the sandier lithologies such as OC 2, OC 5 and OC 8. Sulfides, 

such as pyrite are most abundant in the borehole samples: BH 1, BH 2, BH 3, BH 4 and BH 5. 

Pyrite occurs commonly as the product of dissolved sulphates, decomposable organic matter 

and reactive detrital iron minerals (Berner, 1984) from the microbial reduction of seawater 

sulphates (Shawar et al., 2018). Iron content of predominantly terrigenous samples from depth 

can be seen by using hematite (Fe2O3) from XRF results. Sulphates such as anhydrite and 

gypsum are uncommon, only three samples potentially contained anhydrite (OC 3, BH 3 and 

BH 4), although this was very low probability for OC 3 and BH 3. No gypsum peaks were 

observed in any of the samples.  

 The most common clay minerals within shales include illite, illite/smectite, smectite, 

kaolinite and chlorite (Chermak and Schreiber, 2014), the most abundant for the Bowland 

shale are kaolinite and illite (Gross et al., 2015). Using the Si/Al ratio as a rule for an estimation 

of the clay content, clay presence can be anticipated in some samples. The most common types 

of clay present in the study samples are kaolinite, present in 9 of the samples, and illite, present 

in a different 9 samples. Dickite and smectite appear to be the least common clay types having 

potential occurrences in 4 samples each. Complete clay content could not be calculated due to 

the qualitative nature of this analysis; however, an estimation of clay content can be 

ascertained through the Si/Al ratio (Table 2.11). All types of clays detected are more prominent 

in the shale type lithologies, rather than the silica type ones such as OC 1 and OC 8.  



58 
 
 

2.5. Discussion 

Carbon analysis showed that samples contained up to 12.04 % of total carbon. When 

these figures were broken down into organic carbon and inorganic carbon amounts were up 

to 4.99 % and 7.04 %, respectively. Chiefly, organic carbon amongst all samples sat between 

0.05 % and 7.04 %, sitting within the range of a study from Gross et al., (2015) (1.25 % to 7.55 

%) and well within study results from Newport et al., (2016) which reported values ranging 

from 0.12 % to 10.31 % across the Upper and Lower Hollywell shales. Six samples sit above 

the suggested Namurian shale TOC cut off of > 2 % (Andrews, 2013; Charpentier and Cook, 

2011; Gilman and Robinson, 2011) for exploitable shale gas units. Of these six samples, five 

were purely shale lithologies with the one remaining a more calcite rich shale, or limestone. 

Inorganic carbon ranged from 0.004 % in OC 8 to 4.99 % in OC 6. As expected, from these 

values, OC 8 showed the least drop in wt % (only 0.03 wt %) on the TGA in the carbonate 

window between 650 and 980 oC. Sample OC 6 on the other hand showed the greatest mass 

reduction between 650 and 980 oC at 41.64 % loss. This was confirmed by carbonate content 

as shown in the XRF results for OC 6 showing a wt % of 52.87 % CaO, the highest of all samples. 

Overall, the more shale type samples (examples being BH 1, BH 3, BH 5 and OC 3) exhibit more 

TOC. Samples which are lesser shale and more sandstone or limestone (e.g. OC 1, OC 5 and BH 

6) exhibit much less TOC, but proportionally slightly higher TIC.  

In terms of mineralogy, all samples contained large amounts of quartz (22.8 % - 98.72 

%) apart from the limestone (OC 6) which contained only 2.65 % SiO2. In general the more 

shale type lithologies contained the higher concentrations of Al2O3 and MgO, a proxy for clay 

content. This data fell in line with Al/Si ratios calculated from the XRF data showing that the 

sandier lithologies exhibited lower concentrations of Al2O3 and MgO which was concluded 

further with the sandier lithologies generally exhibiting a higher Si/Al ratio (e.g. being OC 1, OC 

5 and OC 8).  

Clay type, alongside some common mineral types based upon the general lithologies of 

the samples is shown in the XRD results. Although only qualitative (XRD is usually only semi-

quantitative) it was useful to identify the types of clay present in each sample, and whether in 

fact there were multiple clays present, or none at all. As discussed, and in line with the 

literature (Gross et al., 2015), the most common types of clay present were kaolinite and illite 

with at least either or both types present in 11 samples. Again, sandier or more carbonate rich 

samples lacked clays. This was reflected in both the Si/Al ratios and the XRD results. For 

example, OC 6, OC 1 and BH 3 exhibit high Si/Al ratios showing low clay content and this is 

backed up by having negligible clays identified in the XRD diffractograms.  

Overall the samples chosen for this study, whilst selected for their suitability, have been also 

deemed typical of shale gas exploitable units when compared to available literature. Borehole 
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samples are typical of exploitable units, and have been drilled for that exact reason. Outcrop 

units are of use as analogues to the subsurface Bowland Shale, Pendle Grit and Hodderense 

Limestone.  

 

2.6. Conclusions 

Results and various data from this chapter, either quantitative or qualitative, will be 

used throughout the remainder of this study. Using statistical analyses, analytical (XRF and 

TOC etc) and categorical (XRD) values will be analysed in conjunction with adsorption, 

desorption and fluid analysis results shown further along in this study, Chapters 3, 4, 5 and 6. 

Ultimately, the aim of this is to be able to link adsorption, desorption, colloid and flow-back 

fluid data to particular characteristics of the samples. For example, statistical analysis will be 

able to show us if certain sample features promote or increase adsorption, or if certain samples 

with higher concentrations of a certain substance release more of that substance into a flow-

back fluid, or does the PAM inhibit this process. Furthermore, results from the characterisation 

within this study will be able to be used to inform the wider general understanding of the 

geochemistry and minerology of the Upper and Lower Shales, Hodderense Limestone and 

Pendle Grit. Data here would inform a more regional approach as samples are spread over a 

large geographical area, rather than over a depth interval, much like most of the available 

literature. 
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3. The Adsorption of Polyacrylamide at Room 

Temperature 
 

3.1. Introduction 

Chapter 2 developed the context of the samples and their relevance to the UK industry, 

and characterised their properties in terms of mineralogy and organic and inorganic carbon. 

Having a UK context for the study was key and in line with the project outline to accurately 

assess the baseline and effects before any major fracking operations began. The purpose of this 

chapter is to analyse how much non-ionic polyacrylamide (PAM), a common friction reducer 

(Blondes et al., 2017; Xiong et al., 2018b), is likely to be adsorbed to the shale surface. Based 

upon the results of the adsorption experiments, what environmental concerns are likely to 

arise because of this?  

All methods and results in this chapter were presented at EGU General Assembly 2018 

as part of a poster and at UDSIG UK (Use of the Deep Subsurface in the UK) conference at the 

Geological Society in 2018, as part of a presentation. Results were also summarised in poster 

form at an Environment Agency Knowledge Exchange event in Bristol, 2019. Posters can be 

viewed in the Digital Appendices. 

3.2. Aims and Objectives 

The aim of this chapter was to understand the behaviour of PAM in the presence of 

shale, and other rock types associated with the Bowland shale, particularly in terms of 

adsorption. Essentially, measuring how much aqueous PAM remained in solution, and how 

much was removed via means of adsorption. To be able to understand the adsorption 

behaviour of PAM in the presence of a shale, sandstone or limestone, it was deemed best to 

experiment with samples at room temperature and room pressure conditions first, before 

examining adsorption at conditions more akin to those that would be experienced at depth 

(Chapter 4). In these room temperature experiments (RT) the temperature ranged from 17 to 

25 °C with the pressure remaining at atmospheric (101 kPa). By using one of the two onshore 

wells fracked in the UK, Preese Hall 1A (using 430 mg/L of PAM) as a proxy to this entire study 

(Broderick et al., 2011), a range of PAM slick-water concentrations were produced. The range 

of slick-water concentrations (15.625 mg/L – 1000 mg/L)  encompassed the typical 

operational range of slick-water concentrations (30 – 2140 mg/L (Aften and Watson, 2009; 

Stringfellow et al., 2014)), and the Preese Hall 1A proxy.  

Aqueous PAM was measured before and after the experiments and PAM removal was 

calculated by means of plotting data on three types of isotherm; Linear, Freundlich and 
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Langmuir. Isotherms were then chosen based upon the best statistical fits and then these were 

subsequently statistically analysed against quantitative data from the shale characterisation 

seen in Chapter 2 to see which factors were the major influencers of adsorption.  

3.3. Room Temperature Adsorption Experiments 

To be able to provide a range of PAM concentrations that are typical of the 

concentrations used in the shale gas industry (typically between 30 and 2140 mg/L for 

cationic, anionic and non-ionic forms (Aften and Watson, 2009; Stringfellow et al., 2014) a 

series of 8 concentrations were produced via the serial dilution of a single 1000 mg/L solution 

of a non-ionic PAM slick-water. The most useful proxy for this study was the Preese Hall 1A 

fracking fluid that used a concentration of 430 mg/L, which also used the non-ionic form of 

PAM (Broderick et al., 2011).  

 For the purposes of all adsorption experiments detailed in this thesis, a single sample 

of rock is referred to as a “rock sample”; a series of 8 slick-water dilutions containing the same 

rock sample is referred to as a “Sample Batch” and an individual vial of any dilution containing 

any sample of rock is referred to as a “Sample”.  

 Initially a 1000 mg/L PAM solution was produced by adding 1000 mg of non-ionic 

granular PAM to 1 L of mains tap water, taken from the laboratory cold tap (Northumbrian 

Water supplied). Tap water, and PAM tap water (slick-water), were analysed for metals later 

in this study in Section 6.6.1. This solution was agitated at 400 rpm and left to fully mix 

overnight at room temperature. At least 40-60 minutes was required for full dissolution of a 

powdered or beaded form of Polyacrylamide (SNF FLOEGER), however an overnight period 

was selected to ensure full dissolution as some particles of granular PAM were observed after 

this 60 minute timescale. 

From this 1000 mg/L solution (0.1 %), serial dilutions were taken with solutions 

halved each time to produce to the initial concentrations for adsorption seen in Figure 3.1. 

These 40 ml volume dilutions were prepared in 50 ml glass vials with snap plastic caps. At least 

one hour was needed for both water and PAM fluids to mix thoroughly to produce the 1000 

mg/L non-ionic PAM solution.  
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Figure 3.1: All concentrations of 40 ml PAM fluids as shown as a dilution of a 1000 mg/L (0.1 %) solution. 
The set shown is a full set used for a sample batch, or standard batch. For standards, no sample is added, 
for samples, 1 g of powder of the same sample is added to each glass vial.  

 

In a sample batch, 1 g of powdered rock sample was placed into each glass vial, leaving 

8 PAM dilutions each containing 1 g of the same sample of rock. One set of 8 dilutions (Figure 

3.1) contains no rock sample as these were used as the standards for the experiment. Every 

time a new 1000 mg/L slick-water solution was made, a new set of standards was run with the 

new fluid. Using a new set of standards for each 1000 mg/L fluid produced limited the 

degradation or storage issues with a colloidal viscous fluid such as a PAM emulsion. 

For each experimental run, one sample batch of standards was required alongside two 

sample batches of 1 rock type (these act as duplicates). So, in simple terms, for one rock sample 

to be analysed there needed to be 8 concentrations containing no rock sample that acted as 

standards and then at least 8 concentrations containing a sample, which were then duplicated 

(Figure 3.2). As many sample batches as was possible were run against one sample batch of 

standards. The adsorption procedure for this analysis, and the preparation of fluids for the N-

Bromination method, takes place over a three-day period in total from initial submergence in 

the PAM rich fluid to analysis on the spectrophotometer. Each sample run contained a blank 

with 0 mg/L PAM that was 100 % tap water from Durham. This blank accounted for dissolved 

organic matter (DOM) within the sample. No exact quantities of DOM or TOC were measured 

within the tap water samples themselves as quantities of PAM, the lowest PAM concentration 

being 15.625 mg/L, would outweigh the effects from DOM or TOC. Typical UK untreated values 

of DOC range between 0.056 and 15 mgC/L (Worrall and Burt, 2007) and treated values 

ranging between 0.50 and 4 mg/L (Anglian Water, 2018; Northumbrian Water Ltd, 2017).  

The addition of 1000 mg of granular non-ionic PAM (after 24 hours mixing) to a 1 L tap 

water (TW) solution produces a near-neutral solution at 7.46 pH and conductivity of 1215 

μS/cm, measured at 20.1 °C. To compare, adding the same amount of PAM to 1 L of DI water 

solution produced a solution with a pH of 7.84 with conductivity of 1095 μS/cm. After two 
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weeks at room temperature both solutions the DI PAM fluid had a pH of 7.52 and a conductivity 

of 1098 μS/cm and the TW PAM solution had a pH of 7.29 and a conductivity of 1228 μS/cm.  

 

3.3.1. Experimental Procedure 

Day 1: 1000 mg of non-ionic granular polyacrylamide (Acros Organics CAS 9003-05-8) 

is mixed with 1 L of mains tap water. This mixture is placed on a shaker table for 1 hour at 400 

rpm and left overnight to fully mix. 

Day 2: This 1000 mg/L solution is placed briefly on the shaker table again at 400 rpm 

to ensure full mixing. From here, the solution is serially diluted, halving each time, with mains 

tap water to produce 8 varying concentrations of PAM slick-water ranging from 1000 mg/L to 

15.625 mg/L and then a 0 mg/L blank, as shown in Figure 3.2. These new dilutions are placed 

on the shaker table for 1 hour at 400 rpm to ensure both liquids are fully mixed. After this, 1 g 

of powdered rock material is placed into each dilution producing a run of “sample batches”. 

This rock and fluid mixture is placed again onto the shaker table for 1 hour at 400 rpm and left 

overnight for adsorption to occur. The agitation allows as much of the shale surface adsorption 

sites to be available to adsorb aqueous PAM, in the most consistent way for all fluid 

concentrations.  

Day 3: In the morning, samples are briefly agitated again on the shaker table at 400 

rpm to account for overnight settling. Sample fluids are then syphoned off from the shale 

mixture and filtered into a centrifuge tube using 30 ml disposable syringes and luer lock 

compatible syringe filters with a 0.45 µm cellulose acetate membrane. This filtration ensures 

no shale particles enter the fluid. Of this filtered fluid, 2 ml is then added to 18 ml of mains tap 

water to dilute the concentrations tenfold. This tenfold dilution brings the fluids into a range 

that can be competently measured on the spectrophotometer. Fluid dilutions are again left 

overnight to ensure a full mix between the soluble granular non–ionic PAM and the water. The 

remaining filtered fluid is kept in the centrifuge tube and frozen in storage to be used in the ICP 

“flowback” analysis, methods and results shown in Section 6.6.2 of this thesis.  

Day 4: After full dilutions of both standards and sample batches, the N-Bromination 

method is undertaken – detailed in the next section. Any waste fluids deemed hazardous, 

containing substances like cadmium and bromine for example, were stored for specialist 

disposal.  
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Figure 3.2: The dilution process for each batch of standards and each sample batch. A) the initial range of 
concentrations produced from the 1000 mg/L PAM slick-water solution as standards; B) The tenfold 
dilution of the initial concentrations to bring them into a measurable range for the spectrophotometer; C) 
the exact same dilutions for ‘A’ as a “sample batch”, all samples seen in  ‘C’ (one run) will be one rock type; 
D) the same tenfold dilution factor as ‘B’, just filtered away from samples. Rows ‘B’ and ‘D’ are the dilutions 
of which 2 ml is sampled and mixed for measurement during the N-Bromination method.  
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Figure 3.3: One room temperature sample batch for sample BH 5. From left to right samples range from 
1000 mg/L PAM to 0 mg/L PAM in the concentration ranges observed in Figure 3.2.  
 

 

 

Figure 3.4: A sample of BH 5 duplicate run. From left to right concentrations are 1000 mg/L PAM, 125 
mg/L PAM and 0 mg/L PAM. The effect of higher concentrations of PAM are both acting to increase the 
hydrophobicity of the shale, preventing maximum surface coverage available, but also to bind the shale 
together into larger particles allowing material to settle quicker.  

 

Figure 3.3 shows a sample batch for BH 5 after some of the fluid has been decanted and 

filtered for analysis. From both Figure 3.3 and Figure 3.4 the hydrophobicity of the powdered 

rock can be observed in the higher concentration PAM fluids (far left on the images). The lower 

the PAM concentration within the slick-water fluid, the less the impact of the hydrophobicity 

of the shale; however, the suspension of particles is prolonged as they are not able to bind into 

larger particles that sink more easily, which is exactly the role PAM was initially designed for 
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in irrigation and agricultural applications. Figure 3.4 shows three concentrations of a PAM rich 

fluid after five minutes of agitation on a shaker table at 400 rpm, illustrating the hydrophobicity 

at larger PAM concentrations, and the particle binding issues faced in lower PAM 

concentrations.  

 

3.3.2. The Analysis of Aqueous Polyacrylamide (PAM) – N-Bromination Method  

Aqueous polyacrylamide was measured frequently throughout this study in all room 

temperature, HPHT, colloid and adsorb-desorb experiments. The method used in this study is 

one derived from Lu and Wu (2001), a method that determines aqueous polyacrylamide 

present in samples that contain dissolved organic matter. The particular method is called the 

N-Bromination method (N-Bromo). This method was derived and adapted from 3 previous 

studies; Scoggins and Miller (1979); Taylor (1993); Taylor et al (1998). Lu and Wu (2001) is 

one of the most recent studies looking at the analysis of PAM using this method. Furthermore, 

the fluid volumes being dealt with by Lu and Wu (2008) are similar to the fluid volumes used 

in this study, thus ideally suited. 

Due to the concentrations of all samples in this study (1000 mg/L to 15.625 mg/L PAM 

fluids) all samples containing aqueous PAM were diluted tenfold before N-Bromo analysis to 

sit within the necessary analytical range of the spectrophotometer used. The method detailed 

here will be referred back to throughout the remaining chapters of this thesis, as explained 

above.  

 

3.3.3. Reagents and chemicals used 

All waters used in the production of the reagents were taken from a Milli-Q DI system. 

The Polyacrylamide used in all experiments was granular non-ionic poly(acrylamide) provided 

by Acros Organics (CAS 9003-05-8). Bromine used was Sigma Aldrich EMSURE®. Acros 

Organics supplied the Sodium Formate (99%) and Oxamide (98%). BDH Chemicals®, via 

VWR®, supplied the Sodium Hydroxide (99%), potato starch and glacial acetic acid (100%). 

Cadmium Iodide used was 98 % strength supplied by Alfa Aesar®. Filter paper used was 

Whatman No.5 qualitative 185 mm diameter circles.   

 

3.3.4. Reagent Production 

The N-Bromo method specified uses a series of 6 different fluids, 4 that are reagents, 

used in a certain order to determine the total concentration of amide groups at a wavelength 
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of 570 nm on the spectrophotometer. Four different reagents are used in this method. Reagent 

preparations below are re-written from Lu and Wu (2001); Scoggins and Miller (1979).  

 

3.3.4.1. 1 M HOAC-NaOAc (Acetic Acid Buffer Solution) 

A glass beaker is filled with 300 ml DI water, to which 28.9 ml of glacial acetic acid is 

added. The pH of this solution is then adjusted (increased) to 3.5 by the addition of a variable 

amount of 1 % NaOH solution. A 6 ml oxamide solution of 50 mg/L is then added, before 

bringing the whole solution total to 500 ml with the addition of more DI water.  

3.3.4.2. 0.04 M Bromine Water Solution 

Bromine water solution is produced by adding 3.20 g of liquid Br2 to 300 ml of DI water. 

Once there is complete dissolution of the Bromine, the whole solution is topped up to 500ml 

with the addition of more DI water.  

3.3.4.3. 0.08 M Sodium Formate Solution 

Sodium Formate solution is produced by adding 2.72 g of sodium formate to 500 ml of 

DI water and mixing thoroughly.  

 

3.3.4.4. 0.25 % starch – 0.03 M Cadmium Iodide Solution 

The preparation for the starch-cadmium iodide solution is done by bringing 300 ml of 

DI to the boil. Whilst boiling, add 1.25 g of water-soluble linear starch that has been wetted 

with 5 ml of DI water. Stir this DI water and starch solution until clear and at the same time 

remove from the heat. The solution is then allowed to cool to room temperature. When cool, 

5.49 g of Cadmium Iodide (CdI2) is added and stirred until fully dissolved. The volume is then 

brought to 500 ml by the addition of more DI water. The mixture is then filtered through fine 

filter paper (Whatman No.42) to remove any insoluble particles. The solution is then stored in 

a brown glass bottle to protect light sensitive elements.  

 

3.3.5. N-Bromination Analysis Procedure 

Before the analysis procedure could start, all raw samples needed to be diluted tenfold 

to be within the working range of the spectrophotometer due to the concentrations used in this 

experiment. 

Two millilitres of each diluted water sample (thought to contain aqueous PAM) was 

pipetted into a 20 ml glass test tube and allowed to settle. Once settled, 1 ml of HOAC-NaOAc 
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buffer solution was added, mixed and then followed by 1 ml of bromine water solution. The 

solution was then thoroughly mixed and left to react at room temperature for 40 minutes. After 

40 minutes, 1 ml of sodium formate solution is added to the mixture and allowed to mix for 5 

minutes. Finally, 1 ml of starch-CDI2 solution was added, mixed, and the sample left for 10 

minutes to fully react. Upon the addition of the starch reagent, if PAM was present, the solution 

will develop a blue complex dependent on the amount of PAM present. This final blue mixture 

remains stable for ~ 90 minutes which is more than enough time for sample analysis (Lu and 

Wu, 2001).  

Each mixed solution was then measured on a Jenway 6505 UV/Vis spectrophotometer 

at a wavelength of 570 nm (Lu and Wu, 2001) in quartz cuvettes with a 1 cm length light path. 

Diluted samples exhibited adsorption values (unitless) of no more than 2.5, in the higher end 

of the working capability of the spectrophotometer. All samples were duplicated and all 

duplicates were measured twice with an average absorbance reading used as the final result.  

3.3.6. How does N-Bromination work? 

The N-Bromination method works by the formation of an N-Bromo amide which then 

converts iodide to iodine. The N-Bromo amide is in turn then measured as a starch-tri-iodide 

complex (Taylor, 1993). Reaction mechanisms for each step of the N-Bromination method are 

outlined in Equation 3.1 through 3.5 (below).  

The amide groups of PAM are converted to N-Bromo amides via a reaction with the 

0.04 M Bromine solution (Equation 3.1). Any excess bromine that remains from this is removed 

via the addition of the sodium formate solution (Equation 3.2). These N-Bromo amides then 

convert iodide to iodine when the starch-CdI2 reagent is added (Equation 3.3 and 3.4). This 

iodine is what is then measured as the starch-triiodide complex (Equation 3.5) (Lu and Wu, 

2001; Scoggins and Miller, 1979; Taylor, 1993).  

 

         Equation 3.1 

            Equation 3.2 

            Equation 3.3 
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            Equation 3.4 

            Equation 3.5 

 

As a general rule, when the N-Bromination process is complete, the bluer the fluid 

sample, the more aqueous PAM it contains. This can be viewed in Figure 3.5, an image that 

shows standards and a sample batch waiting to be analysed in the spectrophotometer after N-

Bromination mixing has been performed.  

 

 

Figure 3.5: An example of the blue complex developed by the conversion of iodide to iodine when a starch 
reagent is introduced. Each of these cuvettes contains 4 ml of sample and reagents that have reacted with 
aqueous PAM. The samples in the upper row are a batch of standards that have contained no rock type. The 
sample row below is an example of a sample batch. Each cuvette on the far right of each row contains 0 % 
PAM, hence the completely translucent matrix.  

 

3.4. Adsorption Isotherm Methodology 

To understand the results of the aforementioned tests fully, in terms of amounts 

adsorbed and amounts of PAM removed, all data was plotted on three isotherms: linear, 

Freundlich and Langmuir.  

The simplest of the three isotherms considered was the linear isotherm, also equivalent 

to Henry’s adsorption isotherm; 

𝑪𝒔 =  𝑲𝒅 𝑪𝒂             Equation 3.6 
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For the linear isotherm (Equation 3.6), Cs is the adsorbed concentration of the 

adsorbate (mg/kg); Kd is the adsorption coefficient, and Ca the original aqueous concentration 

of the adsorbate (mg/L). The linear isotherm is typically associated with the initial parts of 

many of the two to three term isotherms (e.g. Freundlich and Langmuir isotherms). Typically, 

a linear isotherm is valid for adsorption where there are low surface coverages. The adsorption 

energy is independent of the coverage. 

The Freundlich isotherm, developed in 1906, is an empirical model that can be applied 

to non-ideal sorption on heterogeneous surfaces, as well as multilayer adsorption (Ho et al., 

2002). It is not restricted to monolayer adsorption and accounts for heterogeneity of 

adsorption sites (Foo and Hameed, 2010). It was historically developed for adsorption to 

activated charcoal and demonstrated how the ratio of the adsorbate onto a given mass of 

adsorbent to the solute was not constant with varying concentrations of solutions 

(Ahmaruzzaman, 2008; Foo and Hameed, 2010).  

𝑪𝒔 =  𝑲𝒇𝑪𝒂

𝟏

𝒏                                                               Equation 3.7 

For the Freundlich isotherm (Equation 3.7), Kf is the Freundlich coefficient; and n is the 

Freundlich constant. The Freundlich isotherm assumes heterogeneous sites and multiple 

layers of adsorption. 

The Langmuir isotherm is the third isotherm used in this study. It was originally 

developed to describe gas-solid-phase adsorption onto activated carbon (Foo and Hameed, 

2010). This isotherm assumes monolayer adsorption where the adsorption layer is only one 

molecule in thickness (Foo and Hameed, 2010). At low sorbate concentrations the Langmuir 

effectively reduces to a linear isotherm (Kundu and Gupta, 2006).  

 

𝑪𝒂

𝑪𝒔
=  

𝟏

𝒃𝒌
+  

𝑪𝒂

𝒃
                                                         Equation 3.8 

For the Langmuir isotherm (Equation 3.8) all nomenclature remains the same as for 

the Freundlich isotherm with k being the Langmuir coefficient and the addition of b which 

represents the concentration at maximum coverage (mg/kg). This ‘maximum coverage’ can 

sometimes be referred to as the adsorption capacity and is the amount of PAM in mg that can 

be adsorbed per kg of available rock at equilibrium. Using the linear form of the Langmuir 

isotherm, 1/gradient is used to calculate this maximum coverage. The maximum coverage is 

however the averaged value for all the data on the isotherm, not the capacity at the maximum 

value.  
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These three isotherms were selected because of the range of adsorption types they can 

represent. All data was plotted against these three different isotherms with variability in fits 

due to the type of adsorption occurring.  

 

3.5. Statistical Analysis 

Due to the relatively small datasets for each sample and their relevant duplicates, 

statistical analysis was conducted on the results of all adsorption isotherms plotted. Isotherms 

were fitted to the results from all adsorption measurements by using equations 3.6 to 3.8 and 

the calculated aqueous and adsorbed PAM concentrations shown in Table 3.3. Stepwise linear 

regression was performed on all isotherm data (K values and maximum coverages) against all 

available quantitative data from the shale characterisation (XRF and carbon analysis (Section 

2.3). The adsorption coefficient (K) is used as the statistical response value for both the Linear 

and Freundlich isotherms while both the concentrations at maximum coverage (maximum 

coverage) and the adsorption coefficient (K) were used as statistical response values in 

regression for the Langmuir isotherm. The predictors for the regression runs were the 

numerical values from the characterisation techniques; XRF oxides, TOC, TIC, TC and Si/Al 

ratios. The resulting regression was tested for significance (P-value) and the VIF (Variance 

Inflation Factor). The VIF predicts multicollinearity, the phenomenon whereby one predictor 

can be used to predict another, resulting in redundant data. Here, values range from between 

1 and 5, with 1 moderately correlated and 5 + highly correlated. Ultimately a VIF greater than 

10 usually indicates high correlation and thus cause for concern.  

Analysis of variance (ANOVA) was used with the XRD data as it was not a continuous 

variable, only the four presence categories explained in Chapter 2 were used.  

 

3.6. Adsorption Calibration 

As mentioned previously, the analysis of aqueous PAM still present in the slick-water 

fluid after 24 hours of overnight adsorption was done by means of the N-Bromination method 

(Lu and Wu, 2001; Scoggins and Miller, 1979). As discussed in Section 4.3.1 the original PAM 

supernatants were diluted tenfold (i.e. 2 ml of a 1000 mg/L solution is added to 18 ml of blank 

matrix tap water to produce a 100 mg/L solution) to bring them to within the analytical range 

of the spectrophotometer.  

For each run of experiments, essentially each time a new 1000 mg/L PAM slick-water 

fluid was made, a new set of standards were analysed using that fluid. This analysis produced 

8 quantitative results for a range of PAM concentrations up to 1000 mg/L that are measured 
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at 570 nm on a Jenway 6505 UV/Vis spectrophotometer. The results of a typical set of 

standards are seen in Figure 3.6. Results for all standards for each experiment run, inclusive of 

the 0-250 mg/L and 0-1000 mg/L curves, are given in Digital Appendix C.1.  

 

 

 

Figure 3.6: Calibration curve of PAM standards taken from the batch 
experiment which analysed samples OC 2 and OC 4. The x axis is the value read 
on the spectrophotometer at a wavelength of 570 nm. Absorbency values for 
PAM concentrations that are higher than 250 mg/L deviate from the linear 
portion seen at concentrations up to 250 mg/L. To account for this, three 
calibrations were used; linear, polynomial (c = 0) and polynomial (c ≠ 0). 
Significance of these fits was tested via a t-test. Values of adsorbancy on the 
spectrophotometer are unitless. 

 

Results of the sample batches were calibrated against three calibrations from the 

standards. One linear calibration accounted for all data between 0 mg/L and 250 mg/L; and 

two polynomial fits accounted for all data from 0 mg/L to 1000 mg/L. Using these two 

calibration ranges would remove non-linearity between 250 mg/L and 1000 mg/L. Using only 

one of these calibrations may ignore large portions of data at either end of the concentration 

range (Figure 3.6). Using solely the 0-1000 mg/L calibration may underestimate a large 

amount of data in the lower concentration range, whereas using solely a linear calibration 

would underestimate data in concentration ranges above 250 mg/L. Logarithmic and 

exponential calibration curves were avoided as they provided highly variable, sometimes 

sigmoidal trends, which were very sensitive to the concentrations of the standards used.  

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2

P
A

M
 C

o
n

ce
n

tr
at

io
n

 (
m

g/
L

)

570 nm

0-250 mg/L

0-1000 mg/L



74 
 
 

To check the statistical difference in results between all three approaches to 

calibration, a simple two sample t-test was performed on a subset of the standards calibrated 

for all room temperature adsorption runs. Details of this t-test can be seen in Table 3.1.  

 

Table 3.1: Table showing the statistical t-test for calibration lines used to determine aqueous and 
adsorbed PAM concentrations. Each column refers to the mg/L of aqueous PAM found in the fluid 
depending on the calibration line it was derived from. Italics indicate where the calculated concentration 
is larger than the initial concentration, indicating calibration error.  

 

 The t-test estimates the difference between both sets of means. Using a significance 

level (or alpha (α)) of 0.05, as is typical for this test, isotherms are tested as; 1) linear vs 

polynomial (c = 0), 2) linear vs polynomial (c ≠ 0) and 3) polynomial (c = 0) vs polynomial (c ≠ 

0). If the P-value is ≤ 0.05 then the difference between these means is statistically significant 

and it rejects the null hypothesis (the hypothesis that there is no significant difference between 

specified populations). The reverse is also true, if the P-value > 0.05 then the difference 

between means is no statistically significant and so it fails to reject the null hypothesis. The t-

value on the other hand measures the size of the difference relative to the variation in data. 

The greater the magnitude of this t-value, the larger the evidence is against the null hypothesis. 

Based upon this, the data we see in Table 3.1 suggests no significant statistical difference 

between either of the calibration lines used, but in order to not lose large portions of data from 

the analysis, both types of calibrations were used, linear and polynomial. All data for all 

CONCENTRATION Linear mg/L Polynomial c = 0 (mg/L) Polynomial c ≠ 0 (mg/L)

250 mg/L 236.74 239.5 239.19

125 mg/L 147.78 145.7 146.07

62.5 mg/L 60.04 57.54 58.65

31.25 mg/L 30.59 28.92 30.29

15.625 mg/L 8.91 8.15 9.73

0 mg/L 0 0 0

Linear vs Polynomial (c = 0) Linear vs Polynomial (c ≠ 0) Polynomial (c = 0) vs Polynomial (c ≠ 0)

T-VALUE 0.01 0 -0.01

P-VALUE 0.99 1 0.99

CONCENTRATION Linear mg/L Polynomial c = 0 (mg/L) Polynomial c ≠ 0 (mg/L)

250 mg/L 246.22 242.13 233.29

125 mg/L 133.15 85.92 87.92

62.5 mg/L 60.08 25.71 39.89

31.25 mg/L 31.71 10.96 30.95

15.625 mg/L 13.93 4.17 28.12

0 mg/L 0 0 0

Linear vs Polynomial (c = 0) Linear vs Polynomial (c ≠ 0) Polynomial (c = 0) vs Polynomial (c ≠ 0)

T-VALUE 0.36 0.21 -0.17

P-VALUE 0.729 0.839 0.872

EXAMPLE 1

EXAMPLE 2



75 
 
 

adsorption runs were used in all three isotherms and the best fitting isotherm selected for each 

run based on the available data.  

 Once calibration data was complete, regressions were performed on all three 

calibration lines to give aqueous concentrations of PAM. Using the same calibration data used 

in Figure 3.6, data in Table 3.2 shows the minor differences in the data obtained using the 

regression equations.  

 

Table 3.2: One set of aqueous concentrations derived from each calibration line based upon the standards 
and data seen in Figure 3.6 for sample OC 2 (1). Where the calibration has failed, i.e aqueous concentration 
is greater than initial concentration of < 0, data has been rejected (grey and highlighted). All values at 0 
mg/L concentration were overridden to a zero value as this was a known value of aqueous PAM.  

 

 For each set of standards run, the calibration was made from the best fitting curve for 

the relevant sample and initial PAM concentration. Adsorbed concentration was calculated by 

subtracting initial concentration from aqueous concentration. The process of converting the 

raw aqueous and adsorbed data into Linear, Freundlich and Langmuir isotherms is 

summarised in Table 3.3.  

PAM Conc (mg/L) 570nm avg Linear Linear

1000 2.0145 812.247 908.023 904.360

500 1.5375 602.420 532.198 541.010

250 0.9445 241.364 242.191 242.097 355.448 222.957 231.457

125 0.512 124.108 118.244 119.149 157.118 78.830 75.341

62.5 0.2325 56.919 53.266 52.971 43.471 38.076 23.006

31.25 0.124 20.971 20.311 18.843 -17.332 28.788 6.111

15.625 0.056 6.330 7.250 5.199 -42.096 27.505 1.449

0 0 0.709 2.292 0.000 -51.603 27.397 0.000

0-250 mg/L CALIBRATION 0-1000 mg/L CALIBRATION

AQUEOUS CONCENTRATIONS (mg/L)

Polynomial (c 
= 0)

Polynomial 
(c ≠ 0)

Polynomial 
(c = 0)

Polynomial 
(c ≠ 0)
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Table 3.3: Example step by step isotherm calculation guide for sample BH 5 (2). 

 

 Raw data was plotted directly onto the isotherms. Erroneous data, as shown in red in 

Table 3.3, was highlighted by cross referencing with sample duplicates where data was 

available. This data was then removed before statistical analyses such as regression or t-testing 

was performed thus to not invalidate or skew the final results.  

 

3.7. Results 

Isotherms were grouped into two main sets; a set of the three isotherm types explained 

previously for the 0-250 mg/L calibration, and a set of the same three isotherm types for the 

0-1000 mg/L calibration. Erroneous data, which did not match between sample duplicates, 

was removed before fitting of the isotherms. Erroneous data was counted as data points that 

showed results off the trend by a large margin, or away from the main bulk of data that was 

present in both duplicates. Where no data was available to cross reference with, potential 

erroneous data was left as it could not be 100 % confirmed this data was due to random error 

or adsorption behaviour.  

In total, using all calibrated samples and their duplicates, 162 isotherms were produced.  

One of the major issues faced was the calculated final concentrations that were greater than 

the initial aqueous concentration of PAM. These results, either > PAM initial concentrations or 

< 0 mg/L were removed from the final isotherms. 𝑅𝑎𝑑𝑗
2  values were used for all fit calculations, 

due to the small dataset within each isotherm (up to 7 data points as a maximum). The adjusted 

𝑅𝑎𝑑𝑗
2  value is essentially an R2 value which accounts for the number of predictors within the 
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model, something which the regular R2 does not include. The 𝑅𝑎𝑑𝑗
2  value within these models 

will never be greater than the normal R2 value as we are dealing with such a small dataset per 

sample. All samples were treated separately throughout the results section.
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Table 3.4: Summary table of the statistical analysis performed on all room temperature adsorption samples. It is divided up by calibration type (0-250 mg/L (left) and 0-1000 mg/L (right)) and then by isotherm type 
(Linear, Freundlich and Langmuir from left to right for each calibration). The 𝑹𝒂𝒅𝒋

𝟐  is a measure of the fit of the isotherm and the P-value represents the significant in relation to a 0.05 margin of error.  

Aq r
2 

adj P-value Log (Ads) r
2 

adj P-value Aq/Ads r
2 

adj P-value Aq r
2 

adj P-value Log (Ads) r
2 

adj P-value Aq/Ads r
2 

adj P-Value

Regression Equation - 2.706 - 0.009  Log (aq) - 3008 + 12.15 Aq  3.0481 + 0.3480 Log (aq) 0.0077 + 0.0 Aq

Coef (const)      SE Coef -          0.224         0.124 -      622             1.67        0.0607              0.031                   0.0047             0.0

- 2.499 + 0.127  Log (aq) - -873  + 65.3 Aq  2.945 + 0.418 Log (aq) 0.0174  + 0.0 Aq

-          0.518           0.301 -         3334         12.9           0.339             0.187                   0.0185            0.0

534 - 0.315  Aq  2.706 - 0.009  Log (aq)  -0.0058 +0.0022 Aq 2619 + 4.92 Aq  3.148 + 0.199 Log (aq) 0.0211 + 0.0001 Aq

       109         0.868         0.224          0.124     0        .0272             0.0002         894             2.29            0.241            0.13              0.0253            0.0001

438 + 1.62 Aq  2.499 + 0.127  Log (aq)  0.0639 +0.0010 Aq 2788 + 1.31  Aq  3.212 + 0.1424 Log (aq) 0.0077 + 0.0002 Aq

         192          1.54         0.518           0.301               0.0718          0.0006            652           1.61          0.163           0.0872              0.0101                0.0

828.7 - 6.642 Aq  3.155 - 0.273 Log (aq) -0.0166 + 0.0025 Aq 2083 + 6.98 Aq  3.200 + 0.097  Log (aq) 0.127 + 0.0001  Aq
      35.7          0.973          0.185           0.132                0.0125            0.0003        1066           2.76           0.496           0.266               0.176            0.0005

794 - 1.06  Aq  3.057 - 0.1429 Log (aq) 0.0003 + 0.0017 Aq 2936 - 2.53 Aq  3.531 - 0.164  Log (aq) -0.1315  + 0.0026 Aq

         202          1.4          0.14           0.0791             0.0060                  0.0        712              1.7           0.342           0.182              0.0963              0.0002

135.7 + 3.266 Aq  1.405 + 0.6550 Log (aq) 0.1072+0.0006 Aq 1189 + 9.85 Aq  3.124 + 0.153  Log (aq) 0.0591 + 0.0001 Aq
            -                -           -                      -               -                      -        1061          2.72             0.33            0.164              0.0497            0.0001

245.6 + 0.3804 Aq  2.283 + 0.1034 Log (aq) 0.0145+0.0029 Aq 2100 + 10.087 Aq  3.098 + 0.2770 Log (aq) 0.0087 + 0.0001 Aq
       -                      -           -                      -                      -                      -      282             0.705            0.12             0.0679              0.0059                 0.0

942 + 28.90 Aq  2.512 + 0.531 Log (aq) 0.0075 + 0.0002 Aq 432  + 16.92 Aq  3.110 + 0.086  Log (aq) 0.248  + 0.0002 Aq

      288           5.76         0.182           0.124               0.0021                0.0      1257           3.48           0.531            0.276                  0.351           0.0009

1528 + 13.56 Aq  2.612 + 0.455 Log (aq) 0.0078 + 0.0002 Aq 967  + 12.67 Aq  3.063 + 0.202 Log (aq) 0.0369  + 0.0002 Aq
      518               4.99         0.239           0.144               0.0032                0.0      1541          4.04           0.302            0.149                0.066              0.0002

1402 + 12.93 Aq  2.536 + 0.4813 Log (aq) 0.0075 + 0.0002 Aq 3869 + 2.58  Aq  2.650 + 0.436 Log (aq) 0.0156 + 0.0002 Aq
       498            4.74        0.12              0.0717              0.0012               0.0        1543          3.59            0.73               0.353              0.0138                0.0

1609 + 12.01 Aq  2.482 + 0.521 Log (aq) 0.0070 + 0.0002 Aq 3034 + 15.69 Aq  2.246 + 0.693 Log (aq) 0.0238 + 0.0 Aq
      710              6.79         0.237           0.142             0.0028                0.0      1392            3.61            0.694             0.34                     0.013             0.0

-4476 + 324.4 Aq  -9.153 + 9.799 Log (aq) 0.4428 - 0.0240 Aq -5052 + 348.5 Aq  -12.93 + 12.72 Log (aq) 0.8213 - 0.0443 Aq
       -                     -               -                  -                      -                       -           -                       -                   -                       -                     -                           -

-4003 + 349.4 Aq  -4.372 + 6.297 Log (aq) 0.1377 - 0.0080 Aq -4623 + 375.4 Aq  -6.208 + 7.741 Log (aq) 0.2035 - 0.0118 Aq

       -                     -               -                  -                      -                       -          -                       -                   -                      -                     -                            -

943.4 - 0.919 Aq  3.043 - 0.0676 Log (aq) -0.0029 + 0.0013 Aq 2531 + 7.31 Aq  3.189 + 0.206 Log (aq) 0.0189  + 0.0001 Aq
     96.6            0.784         0.112            0.064               0.0094                0.0          847            2.21            0.195            0.106               0.0217            0.0001

953.1 + 0.1315 Aq  2.953 + 0.0167 Log (aq) 0.0018 + 0.001 Aq 1738 + 12.07 Aq  2.884 + 0.345 Log (aq) 0.0212 + 0.0001 Aq
       -                       -           -                      -                    -                         -        789             2.13            0.25               0.132              0.0185             0.0001

559  + 39.68 Aq  1.12  + 1.273 Log (aq) 0.1037 - 0.0006 Aq 1290 + 22.09 Aq  2.394 + 0.614 Log (aq) 0.0200 + 0.0 Aq

      858           9.63           1.16           0.694                 0.076           0.0009        757              2.16            0.267            0.132                     0.0079           0.0

- - - - - -
- - - - - -

895 + 19.84 Aq  2.733 + 0.354 Log (aq) 0.0127  + 0.0002 Aq 2738  + 18.45 Aq  3.334 + 0.138  Log (aq) 0.043  + 0.0007 Aq
       661             6.48         0.257           0.154              0.0152           0.0001      2976             8.48            0.439           0.229                  0.23            0.0007

791 + 9.660 Aq  2.5178 + 0.4034 Log (aq) 0.0102+ 0.0003 Aq 2286 + 13.65 Aq  3.0758 + 0.3236 Log (aq) 0.0099 + 0.0001 Aq
       111            0.865       0.0124          0.0076               0.0024              0.0       402               1.01           0.097           0.0508              0.0068                 0.0

582 + 1.97 Aq  2.663 + 0.118  Log (aq) 0.0363 + 0.0008 Aq 2987 + 3.70 Aq  3.136 + 0.2293 Log (aq) 0.0084 + 0.0002Aq

        189           1.39         0.335             0.18            0.0343             0.0003         829             2.11           0.15             0.0808              0.0084                  0.0

485 + 3.33 Aq  2.374 + 0.261  Log (aq) 0.0605 + 0.0006 Aq 3066 + 4.44 Aq  3.143 + 0.2417 Log (aq) 0.0078 + 0.0001 Aq

        187          1.54         0.517             0.29              0.0367             0.0003         819              2.1         0.138            0.0748              0.0076                  0.0

749.2 + 0.303 Aq  2.748 + 0.0805 Log (aq) -0.0049  + 0.0013 Aq 2944 + 5.03 Aq  3.160 + 0.2274 Log (aq) 0.0116 + 0.0001 Aq

     85.9            0.698        0.101            0.0571           0.0084                   0.0         862            2.22          0.176          0.0955              0.0127                  0.0

611.0 - 4.25 Aq  3.403 - 0.598 Log (aq) -0.168  + 0.0092 Aq 2795 + 0.83  Aq  3.239 + 0.089  Log (aq) 0.0354  + 0.0003 Aq
        90.2          1.13         0.288           0.171            0.206                0.0026        1100           2.47          0.356            0.177               0.0497            0.0001

782.5 + 9.115 Aq  2.817 + 0.1302 Log (aq) 0.0017 + 0.0009 Aq - - -
        -                     -            -                       -                   -                           - - - -

1718 + 0.10  Aq  3.185 + 0.0362  Log (aq) 0.0001  + 0.0006 Aq 1042 + 2.82 Aq  1.470 + 0.746 Log (aq) 0.231 + 0.0  Aq
       290            4.94        0.104           0.0737           0.0010                   0.0          581           1.43           0.958           0.475                       0.153      0.0004

734 + 0.66  Aq  2.746 + 0.083  Log (aq) -0.0030  + 0.0014 Aq 734 + 0.66 Aq  2.746 + 0.083  Log (aq) -0.0030 + 0.0014 Aq
        213           3.24        0.255              0.16             0.0139              0.0002         213          3.24          0.255             0.16              0.0139              0.0002

691  + 63.58 Aq  2.647 + 0.577 Log (aq) 0.0069 + 0.0001 Aq 893  + 49.19 Aq  2.550 + 0.6521 Log (aq) 0.0103 + 0.0 Aq
      708            9.36         0.158            0.101            0.0031                0.0     1478            5.13          0.138           0.0707                    0.0033            0.0

506 + 9.60 Aq 2.137 + 0.536 Log (aq) 0.0270 + 0.0 Aq 0.004 2751 + 6.54 Aq 3.094 + 0.274 Log (aq) 0.008+ 0.0 Aq
         170           1.47        0.233           0.138                  0.009           0.0        504          1.31        0.087               0.047                   0.004        0.0

 

0.008 86.87% 0.004 0.07594.86%OC 8 (1)

93.33% 0.000 30.11% 0.117

93.29% 0.023 82.42% 0.006 78.34% 82.69%

0.023

OC 7C* (2) 91.86% 0.007 88.78% 0.011 33.26% 0.182 93.81% 0.000

0.023 0 0.857 0% 0.657 93.32%

22.69% 0.943 0.00% 0.191

OC 7C* (1) 0.00% 0.857 0.00% 0.657 93.32%

-

OC 7 (2) 0.00% 0.985 0.00% 0.672 99.74% 0.001 36.79% 0.119

- - - - - -

0% 0.651 50.44% 0.110

OC 7 (1) - - - - -

0.017

OC 6 (2) 86.67% 0.166 84.85% 0.177 85.38% 0.174 0% 0.759

0.000 45.38% 0.086 48.26% 0.076 74.17%

65.40% 0.032 90.83% 0.002

OC 6 (1) 0.00% 0.693 19.87% 0.253 98.94%

0.002

OC 5 (2) 47.77% 0.120 0.00% 0.434 36.99% 0.165 41.09% 0.102

0.081 29.35% 0.154 58.51% 0.047 90.96%

90.82% 0.008 76.80% 0.033

OC 5 (1) 25.34% 0.291 0.00% 0.578 76.82%

0.332

OC 4 (2) 98.41% 0.057 99.93% 0.012 99.18% 0.041 97.84% 0.001

0.251 38.37% 0.081 0% 0.573 2.48%

- - - -

OC 4 (1) 67.64% 0.055 51.77% 0.105 20.20%

0.166

OC 3 (2) - - - - - - - -

0.546 94.52% 0.000 77.60% 0.005 21.32%

53.86% 0.059 18.67% 0.217

OC 3 (1) 79.98% 0.026 37.14% 0.164 0

0.138

OC 2 (2) - - 100% - 100% - 86.12% 0.005

0.000
66.47% 0.030 35.72% 0.124 32.58%

- - - -

OC 2 (1) 8.53% 0.326 2.87% 0.368

-

OC 1 (2) - - 100% - 100% - - -

- - - - - -

44.14% 0.134 0% 0.394

OC 1 (1) - - 100% - 100%

0.018

BH 6 (2) 34.72% 0.175 75.78% 0.035 94.93% 0.003 81.76% 0.022

0.000 0% 0.052 11.63% 0.305 83.98%

12.22% 0.234 3.08% 0.325

BH 6 (1) 61.72% 0.072 91.68% 0.007 98.97%

0.872

BH 5 (2) 61.45% 0.073 69.27% 0.051 91.83% 0.007 59.53% 0.026

0.037 81.88% 0.008 0% 0.772 0%

79.66% 0.027 88.32% 0.011

BH 5 (1) 88.96% 0.038 85.13% 0.051 88.97%

0.504

BH 4 (2) - - 100% - 100% - 98.07% 0.001

- 66.90% 0.015 0% 0.394 0%

0% 0.419 96.21% 0.000

BH 4 (1) - - 100% - 100%

0.760

BH 3 (2) 0.00% 0.586 53.11% 0.322 99.89% 0.015 19.43% 0.212

0.087 51.87% 0.065 0% 0.734 0.00%

25.02% 0.178 94.99% 0.001

BH 3 (1) 95.80% 0.093 62.00% 0.287 96.29%

0.107

BH 2 (2) 3.43% 0.403 0.00% 0.714 38.72% 0.231 0 0.462

0.002 42.01% 0.098 21.29% 0.200 39.59%

44.37% 0.089 0.00% 0.644

BH 2 (1) 0.00% 0.741 0.00% 0.946 96.33%

0.000

BH 1 (2) - - 0.00% - - 83.09% 0.007

89.63% 0.001 95.43% 0.000 85.47%BH 1 (1) - - 0.00% - -

SAMPLE
0 - 250 mg/L 0 - 1000 mg/L 

Linear Freundlich Langmuir Linear Freundlich Langmuir
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  Table 3.4: Statistical Analysis summary for all room temperature 
 
        adsorption experiments. 
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A summary of the statistical analysis for all room temperature samples can be viewed in Table 

3.4. Here, for each sample, the equation for the line, the 𝑅𝑎𝑑𝑗
2  fit and the significance are all 

present. For the purposes of this study, all fits that were classified as good displayed a > 60 

% 𝑅𝑎𝑑𝑗
2 . 
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Figure 3.7: All three types of isotherm for the statistically significant data for the 0-250 mg/L PAM 
concentrations. From top down; A is Linear, B is Freundlich and D is Langmuir. Charts B and D respectively 
are the non-linearised forms of both Freundlich and Langmuir. C is the linearised form of the Freundlich 
and E is the linearised form of the Langmuir isotherm. It is shown like this to help understand the profile of 
the raw data. The fits used for charts B and D are a logarithmic fit for Freundlich (B/C) and a Power-law 
fit for Langmuir (D/E).   
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Figure 3.8: All three types of isotherm for the statistically significant data for the 0-1000 mg/L PAM 
concentrations. From top down; A is Linear, B is Freundlich and D is Langmuir. Charts B and D respectively 
are the non-linearised forms of both Freundlich and Langmuir. C is the linearised form of the Freundlich 
and E is the linearised form of the Langmuir isotherm. It is shown like this to help understand the profile of 
the raw data. The fits used for charts B and D are a logarithmic fit for Freundlich (B) and a Power-law fit 
for Langmuir (D).   
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Using the 0-250 mg/L calibration line, the linearised Langmuir isotherm offers the 

greatest number of rock samples with 𝑅𝑎𝑑𝑗
2  values both good and excellent, 13 and 10 samples, 

respectively. The Langmuir isotherm also gave the most number of statistically significant fits, 

11 in total. All of these statistically significant Langmuir isotherms, apart from two (OC 8 (1) 

and BH 5 (1) had excellent 𝑅𝑎𝑑𝑗
2  fits. The linear isotherm for the 0-250 mg/L calibration offers 

far fewer statistically significant isotherms, only 4 in total out of 29. In terms of 𝑅𝑎𝑑𝑗
2  only 12 

have fits > 60 % and only 3 of these are > 90 %. The Freundlich isotherm for the same 

calibration shows only 1 𝑅𝑎𝑑𝑗
2  fit > 90 %, with only 8 as > 60 %. Of these, only 5 are statistically 

significant. Using the most linear calibration (0-250 mg/L), the Linear and Freundlich 

isotherms offer the poorest fits to the data, whereas the Langmuir offers a much better fit to 

the models.  

Using the other calibration, the full suite of data between 0 and 1000 mg/L, there were 

more good and excellent fits, and much more statistically significant fits throughout, perhaps 

due to the larger number of data available for the analysis. The Linear and Langmuir isotherms 

resulted in the greatest number of statistically significant isotherms with 14 and 10 

respectively. For the linear isotherm, 11 of these produced an 𝑅𝑎𝑑𝑗
2  > 60 % with 4 of these > 90 

%. For the Langmuir isotherm, 10 samples produced an 𝑅𝑎𝑑𝑗
2  > 60 % whilst 5 were > 90 %. The 

Freundlich isotherm produced the lowest significance of all samples, with only 8 of significance 

and only 6 samples with an 𝑅𝑎𝑑𝑗
2  > 60 %, with 3 of these > 90 %.  

During regression analysis, the 95 % confidence interval (CI) was calculated. This 

offers an ‘error bar’ for the spread of data for each isotherm (Figure 3.9). The 95 % CI takes 

into account all the data and plots it to a range where at least 95 % of the data will lie.  

 

 

Figure 3.9: 0-250 mg/L Langmuir isotherm for sample BH6 (1) displaying the 95 
% CI for the isotherm.  
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Based upon this data, it is proposed that the Langmuir isotherm provides the best 

overall applicability to the type of adsorption, and the Freundlich the least applicable. The good 

performance of the Langmuir isotherm would imply that the predominant type of adsorption 

occurring is monolayer and to homogeneous available adsorption sites. Due to the fact it is 

monolayer on a finite amount of this homogenous material, a maximum coverage of this 

material is likely to exist, something that can be calculated from the Langmuir isotherm. The 

maximum coverage is, however, subject to a margin of error. When conducting a statistical 

analysis of the data, the 95 % confidence interval encompasses the value where 95 % of the 

data will fit. Maximum coverages observed in Table 3.5 use the gradient value, which is the 

average of all points on the isotherm. The values for the 95 % CI for isotherms, and the 

maximum coverages associated with these are viewed in Digital Appendices C.2 and C.3.   

3.7.1. Concentration at Maximum Coverage (Adsorption Capacity) 

The concentration at maximum coverage of the adsorptive material can be calculated 

by using the Langmuir isotherm. The maximum coverage is calculated from the gradient of the 

linearized form of the relevant Langmuir isotherm (Equation 3.3). The concentration at 

maximum coverage, sometimes referred to as the adsorption capacity, is the amount of 

adsorbate (PAM in this case) in mg that can be adsorbed per kg of available rock at equilibrium. 

Using the fits of the Langmuir isotherms, across both calibrations and only using the 

statistically significant data, maximum coverages range from 394 mg/kg to a maximum of 

15,365 mg/kg.   

 

Table 3.5: All maximum coverages (or adsorption capacities) for samples that 
exhibit ‘good’ statistical significance. Where there is a range, this means that 
both sample duplicates were classed as ‘good’ data. Lower Bowland Shale (LBS), 
Upper Bowland Shale (UBS), Limestone (Lst). 

LITHOLOGY TYPE SAMPLE
CONCENTRATION AT 

MAXIMUM COVERAGE 
(mg/kg)

(Room Temperature)

LBS BH 2 (1) 441

UBS BH 3 (2) 574

UBS OC 7 (2) 1723

Sand OC 8 3769

LBS BH 2 (2) 4079

LBS BH 5 (1 & 2) 4686 - 4754

Carboniferous Shale BH 6 (1 & 2) 4287 - 6654

Pendle Grit OC 5 (1 & 2) 6518 - 7276

UBS/Lst OC 6 (1) 7818

UBS BH 4 (2) 12126

UBS (silty) OC 4 (2) 3365 - 15365



85 
 
 

Table 3.5 shows all calculated maximum coverages. There is large variation both 

between all samples and samples of the same type. Some sample duplicates were ruled out as 

they were not statistically significant, with errors > 0.05. Only 5 samples, inclusive of their 

duplicates, showed statistical significance in both duplicates and thus could be used in the 

calculation, BH 5, BH 6 and OC 5. Here, maximum coverages ranged from 4686 mg/kg to 7276 

mg/kg. The majority of the significant data with high maximum coverages were shales, either 

designated as Upper Bowland Shales (UBS), Lower Bowland Shales (LBS) or Carboniferous 

Shales. Two samples were sand rich (OC 5 and OC 8) with OC 4 exhibiting the highest coverage 

of all samples and being a silty version of the Upper Bowland Shale.  

 

3.7.2. Percentage Removal of Aqueous PAM 

To further place the amount of PAM that has been adsorbed onto the surface of the rock 

samples into context, the removal of PAM as a percentage of the amount present was 

calculated. This was simply calculated across all individual samples and concentrations, 

regardless of statistical significance or fit.  

a)  

b)  

Figure 3.10: Box and whisker plots showing the percentage removal of 
PAM from all samples using both calibration techniques (0-250 mg/L (a) 
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and 0-1000 mg/L (b)). The mean for each concentration subset is 
denoted by an ‘x’ and all outliers from the general model by a dot.  

Figure 3.10 shows that up to 97 % of aqueous PAM can be removed from the fluid by 

means of adsorption. Overall, there is a pattern observed in the bulk amount of data for each 

fluid concentration, higher at lower concentrations and substantially smaller at higher 

concentrations of PAM. These data do, however, contain large ranges between samples at the 

same concentration, and some outliers. Some samples of the same concentration may sit at 10 

% removal, whilst others may sit at 80 % removal, but it is the bulk of the data that is important. 

The overall reduction in percentage removal with increasing concentration, seen in Figure 3.10 

suggests monolayer adsorption. At lower concentrations, such as 15.625 mg/L and 31.25 

mg/L, the adsorbent is able to remove most of the aqueous PAM. At higher and more viscous 

concentrations of PAM, all available adsorption sites become full and so no other aqueous PAM 

can be removed, providing monolayer adsorption is occurring, and so a lower proportion of 

the original PAM is removed.  

 

3.7.3. Statistical Analysis 

To see if the quantitative characteristics of the shales affected the adsorption behaviour 

and capacity (maximum coverage) of the samples, statistical analysis of adsorption results was 

conducted against all numerical values from the shale characterisation methods.  

Stepwise linear regression was performed using both sets of results from the differing 

calibrations (0-250 mg/L and 0-1000 mg/L) and only performed where there were 𝑅𝑎𝑑𝑗
2  fits. 

The Linear and Freundlich isotherms used the adsorption coefficient, K, as the response 

whereas the Langmuir isotherm used the K value alongside the maximum coverage value as its 

response. These data were analysed against all numerical values from the XRF, TGA and carbon 

analyses.  
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Table 3.6: Stepwise Linear regression results for all room temperatures using data with ‘good’ fits from 

𝑹𝒂𝒅𝒋
𝟐 values. ‘+’ and ‘-‘ symbols denote whether the gradient is positive or negative towards increasing K or 

maximum coverage.  

 

 All results using the stepwise linear regression method are shown in Table 3.6. Organic 

matter and carbon, inclusive of that which is found in CaCO3, influences the adsorptive capacity 

of the rock samples (Table 3.6). MgO appears twice for Linear and Freundlich isotherms with 

low VIF (Variance Inflation Factor) and significance (P-value) less than the limit of 0.05. With 

the exception of TiO2 for a 0-250 mg/L Langmuir isotherm, VIF’s are typically < 10 showing 

that the majority of all data displayed shows low multicollinearity. Example plots for some of 

this data can be found in Figure 3.11 and Figure 3.12.  

 

 

 

 

CALIBRATION ISOTHERM RESPONSE PREDICTOR P-VALUE VIF r2 adj SLOPE

Linear K

Freundlich K

K

TiO2 0.027 12.41 +
Na2O 0 1.5 +
SO3 0.001 2.52 +
Loss 300-650

o
C 0 7.69 +

Total Carbon 0.004 2.41 -

SiO2 0.011 2.25 -
MgO 0.001 2.08 +
CaO 0.001 3.44 +
Loss 300-650oC 0 3.5 +

MgO 0.002 2.35 -
Total Carbon 0.025 2.35 -

K

Maximum Coverage

96.40%

n/a

n/a

0
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0
0

0
 m

g/
L

0
-2

5
0

 m
g/

L

Maximum Coverage

K

K

99.87%

99.72%
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n/a
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Langmuir
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Figure 3.11: Example linear regression patterns for 300-650 oC losses (a) and TiO2 (b) for the 0-250 
mg/L Langmuir isotherm data, displayed in Table 3.6.  

 

 

Figure 3.12: Example linear regression patterns for MgO (a) and SiO2 (b) for the 0-1000 mg/L linear 
isotherm data, displayed in Table 3.6. 

 

To show how the presence or absence of certain minerals had an influence on the 

adsorption, a different method of statistical analysis was used for the qualitative XRD data. 

Here, categorical stepwise analysis of variance (ANOVA) was used. This technique used the 

four categories shown in Table 2.13 from Chapter 2, the XRD data: ‘present’, ‘likely present’, 

‘negligible presence’ and ‘not present’ and plotted them against the responses of K and 

maximum coverage (Table 3.7).  
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Table 3.7: Results for categorical stepwise ANOVA for all qualitative XRD data. Responses used were from 

all ranges of isotherm where the 𝑹𝒂𝒅𝒋
𝟐 values were ‘good’ or greater. Results only show the categories with 

significant fits either for the presence or absence of the minerals stated.  

 

Factors used in the model were based upon the quantitative results for each of the 

minerals sought (Table 2.13). One potential major contributor related to adsorption is the 

presence or potential presence of illite/smectite using the 0-250 mg/L calibrated Langmuir 

isotherm.  

 

3.8. Discussion 

Overall, of the lithologies analysed, shales are especially good adsorbents of the non-

ionic PAM. The removal of PAM from solution is highly dependent on the concentration at 

maximum coverage of each individual shale or sandstone sample, and also the type of PAM. 

This study used non-ionic PAM, but cationic and anionic PAM may yield different adsorption 

CALIBRATION ISOTHERM RESPONSE FACTOR PRESENCE P-VALUE VIF r2 ADJUSTED

Linear K Kaolinite Not Present 0.033 1.85 74.68%

Plagioclase Likely 0 2.06

Not Present 0.005 2.78

Present 0.001 4.58

Anhydrite Not Present 0.044 2

Anhydrite Not Present 0.035 1.1

Illite/Smectite Likely 0.001 3.55

Present 0.15 3.55

Orthoclase Likely 0.014 3.69

Plagioclase Likely 0 3.61

Not Present 0.003 10.78

Present 0.001 9.8

Illite/Smectite Likely 0.004 7.75

Present 0.003 5.03

Anhydrite Likely 0.039 1.03

Not Present 0.03 1.12

Smectite Not Present 0.032 1.12

Anhydrite Likely 0.007 1.17

Not Present 0.005 1.24

K

Maximum 

Coverage

Langmuir

0
-1

0
0

0
 m

g/
L

K

n/a

n/a

68.71%

65.53%

98.61%

95.42%

KFreundlich 96.69%
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results. Even at relatively low maximum coverages ranging from 0 -1000 mg/kg (detailed in 

Table 3.5), relatively low concentrations of non-ionic PAM slick-water concentrations do not 

require a large amount of rock to potentially be almost fully adsorbed.  

Results at room temperature show that, using the Langmuir isotherm, concentration at 

maximum coverage ranged between 441 mg/kg (BH 2) and 15,365 mg/kg (OC 4) (Table 3.5).  

Based on the statistical results, the most significant controls on the amount adsorbed and the 

concentration at maximum coverage are, predominantly, the carbon (inclusive of organic and 

inorganic carbon), and clay content, in particular the amount of illite/smectite. Other controls 

upon the adsorption, which have not been measured in this study, are the pH and salinity of 

the fluids. Higher salinities and lower pH’s suppress electrostatic interactions (Xiong et al., 

2018b). The NaCl content however can affect different types of PAM in different ways. For non-

ionic PAM, adsorption is thought to be independent of NaCl content, but adsorption of anionic 

PAM increases with NaCl content due to the formation of ion pairs between cations and 

negative sites on the clay surface (Lee et al., 1991). The pH measured in this study was near 

neutral, at 7.46 measured within 24 hours of mixing 1000 mg of non-ionic PAM, so the pH 

would have had minimal effect upon the adsorption (Wiśniewska et al., 2016) as no ionisation 

had occurred. If the pH of the fluids had been varied through the stages of the experiments it 

would have been expected that in more acidic solutions, increases in adsorption would have 

been observed (Wiśniewska et al., 2016) whereas in more alkali conditions, less adsorption 

would have occurred. This phenomenon, whereby less adsorption occurs with and increasing 

pH is because the rise of pH causes an increase in negative charge of the polymeric chains and 

thus stronger electrostatic repulsion between the carboxyl groups, particularly with anionic 

PAM (Wiśniewska et al., 2016). The result of the increased negative charge is that 

polyacrylamide chains with the solution become more expanded and cannot adsorb. The above 

characteristics can of course vary, dependent on shale mineralogy and clay content. The 

reverse is true however for the use of cationic PAM with reference to adsorption on kaolinite. 

Tekin et al (2005) explains that cationic PAM adsorption increases with increases in pH from 

5.5 to 10.5, alongside temperature from 25 to 55 °C. Adsorption of cationic PAM increases as 

when the pH increases, PAM cations can associate more with negatively charged kaolinite 

surface because of increasing SiO- groups (Tekin et al., 2005). Alongside this, for anionic and 

cationic PAM, the isoelectric point (the pH at where a particular molecule carriers no net 

electrical charge (Kozlowski, 2017) is crucial in determining how much adsorption can occur, 

and throughout which mechanisms it may occur. For anionic PAM, the isoelectric point is pH 

8.5 and above or below primary mechanisms are chelation and hydrogen bonding (McGuire et 

al., 2006), whereas for a cationic PAM solution of 200 mg/L, the isoelectric point of kaolinite is 

~ pH 8. Using a cationic PAM polymer as the friction reducer in this setting may have seen 
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increased levels of adsorption at moderate, room temperatures (19-25 °C) in a pH neutral 

setting.  

The amount of shale required (in kilograms) to remove almost all of the aqueous PAM 

from solution can be estimated based upon these results. Typical shale has a density between 

1.9 g/cm3 and 2.7 g/cm3. Below (Equation 3.9) is an example calculation detailing how much 

shale is required to remove all PAM from a desired concentration slick-water solution. 

 
(𝐶𝑜𝑛𝑐 𝑜𝑓 𝑃𝐴𝑀)×(𝐹𝑙𝑢𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠ℎ𝑎𝑙𝑒 
=  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠ℎ𝑎𝑙𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑘𝑔) 

Equation 3.9 

 

Using a case study example, a slick-water fluid of 430 mg/L PAM and 8399 m3 in volume 

(Broderick et al., 2011) with an average maximum coverage of 4000 mg/kg (based upon an 

ideal homogenous shale-PAM interaction) would require nearly 903,000 kg of rock to remove 

all PAM from solution, as (Equation 3.4). A fracture volume between 8,000-10,000 m3 would 

contain between 16 × 106 kg and 27 × 106 kg of rock, using typical shale densities (ref) in the 

range between 1.9 g/cm3 and 2.7 g/cm3 respectively. This amount is a significantly greater 

mass of rock than the mass needed for total adsorption. Particularly at lower PAM 

concentrations, not much shale is required to adsorb all PAM from solution, even at relatively 

low shale densities. 
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Figure 3.13: A visual depiction of the estimated amounts of rock needed to remove 100 % of PAM from the 
fracking solution. The curved lines represent the different concentrations of a PAM slick-water fluid in mg/L 
at 100 % removal. The adsorption capacity on the x axis is the amount of PAM in mg that can be adsorbed 
per kilogram of available shale surface. The shaded grey area is an example of the amount of shale available 
in two relatively small fracks at both the lower and upper ends of typical shale densities (1.9 – 2.8 g/cc). 

   

In terms of percentage removal, results show that up to 97 % of any aqueous PAM can 

be removed from the solution by means of adsorption (Figure 3.11). Other studies, such as 

(Xiong et al., 2018b), state similar results such as 85 % PAM removed from solution by either 

adsorption or degradation. Furthermore, the lower the initial concentration of PAM within 

fluid, the greater the average percentage removal. The adsorption capacity is lower at higher 

concentrations, this result is similar to that of Guo et al. (1993) who stated that a maximum 

adsorption concentration was reached at 800 mg/L of PAM. This reduction in percentage 

removal from low concentrations to high concentrations is consistent with monolayer 

adsorption, and is governed by the adsorption sites on the shale becoming completely occupied 

by the adsorbate (Guo et al., 1993).   

If all PAM has the potential to be removed from the fluid itself, how ‘slick’ does this 

water become over the timescale of a hydraulic fracture and during multiple frack stages? 

Waters that are returned to the surface are likely to contain nowhere near as much PAM as was 

initially added to the fracking fluid before it would have been pumped downhole. Therefore, a 

lot of PAM remains downhole with the potential to degrade chemically or physically. 

Degradation is likely to produce two products: acrylic and ammonium (Xiong et al., 2018b). 

Whilst it is important to understand the highly adsorbative nature of PAM, it should be noted 

that no kinetics were measured for the room temperature experiments, this study is based 

entirely upon overnight adsorption. These results demonstrate that large quantities of PAM 
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can be adsorbed per available kilogram of rock type, be it shale, sandstone or limestone, over 

a 24 hour period. In a real world situation, hydraulic fracturing does not just occur over 24 

hours with fluid returning as flow-back over this period. In reality, hydraulic fracturing fluid 

can remain downhole for much more prolonged time periods undergoing further adsorption 

and/or other chemical reactions due to temperature, salinity, mineral type, pressure and 

decomposition.  

 Upon the flow-back and flushing stages of a frack, initial fluid input downhole can 

become more dilute and desorption could either be promoted or inhibited by the type of flush 

or geological situation. Adsorption rates of PAM as well as adsorption type could change due 

to the geological settings and time allowed for interaction.  

 

3.9. Conclusions 

Here PAM has been shown to be highly adsorptive on shale lithologies. The Langmuir 

isotherm performed the best of the isotherms used and at the conditions used in this 

experiment (room temperature and pressure) up to 15,365 mg/kg of PAM can be adsorbed per 

kilogram of available rock over a period of 16-17 hours (overnight). The most consistently 

adsorptive material was shale, potentially due to the generally higher clay and carbon content 

of this lithology type. On the whole, more shale samples exhibited much higher maximum 

coverages than other lithology types.  

 Overall, a higher maximum coverage within the sample seems to be controlled by a 

mixture of Al2O3 content, MgO content, Na2O content and mass losses observed between 300 

and 650 °C. It is likely that the clay content is also a primary control on the amount of PAM 

adsorbed by each sample; however, this cannot be pinpointed to an exact clay type due to the 

qualitative nature of the XRD and high error involved in the categorical stepwise regression of 

a non-numeric value.  

The results show that, when fracking, it is overwhelmingly expected that PAM will be 

adsorbed in large quantities from slick-water fracking fluids. Due to adsorption and potential 

failure to desorb and return to the surface (discussed in Section 5.10 of this study), the PAM 

has the potential to degrade, desorb and ultimately over time migrate through strata or 

wellbores, active or historic.  

The use of a different type of polymer friction reducer, primarily cationic or anionic PAM 

may have a distinct difference on the quantities of PAM adsorbed. Another major factor, one 

that can be known and estimated is the temperature of the shale gas basins within the UK. The 

effect of increasing temperatures, alongside pressures, on adsorption is investigated in the next 

chapter of this study.  
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4. The Adsorption of PAM in High Pressure High 

Temperature (HPHT) Environments 
 

4.1. Introduction 

The real conditions under which PAM will interact with shale rocks are quite distinct 

from those in the room temperature experiments with both higher pressures and higher 

temperatures present. To measure adsorption in conditions that had higher temperatures and 

higher pressures, a similar methodology was used to that applied in the room temperature 

experiments. Samples were prepared and diluted in the same way, and aqueous PAM was 

measured using the same N-Bromination method. The only major difference was that 

adsorption would occur overnight in a closed environment at higher pressures and higher 

temperatures than previously used with the conditions achieved using a batch reactor. The aim 

of this study was to assess whether these new conditions change the type of adsorption; or 

increase or decrease the adsorption capacity. 

Throughout this chapter, room temperature experiments will be referred to as ‘RT’ and 

the high pressure high temperature experiment will be referred to as ‘HPHT’. One experiment 

was run at 65 °C and 30 bar (3 MPa) as the HPHT experiment due to equipment problems 

towards the end of the project. The use of ‘HPHT’ is to distinguish between the RT experiments 

seen in Chapter 3, in terms of an oilfield definition (HPHT referring to temperatures > 177 °C 

and pressures > 103 MPa), this is not.  

Results seen in this chapter were presented as part of a presentations at UDSIG UK (Use 

of the Deep Subsurface in the UK) conference at the Geological Society in 2018 as part of a 

presentation, and in poster form at an Environment Agency Knowledge Exchange event in 

Bristol, 2019. Posters can be viewed in the Digital Appendices. 

 

4.2. Aims and Objectives 

The aim of this chapter was to observe the adsorptive behaviour of the PAM in geological 

realistic conditions more realistic of the fracking environments that were considered in 

Chapter 3. These ‘geologically realistic’ conditions in the subsurface have higher pressures that 

are up to 69 MPa (un-fracked) and temperatures up to ~110 °C than the room 

temperature/atmospheric conditions used in the previous adsorption experiments. All of the 

four samples used in these experiments had already undergone RT adsorption tests (Chapter 

3). It is important to understand that while these results are useful, they are still not the sorts 

of pressure conditions that the slick-water fracking fluids will experience when it is pumped 
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into rock at 3 – 5 km depths. On the UK continental shelf, subsurface pressures would be 

between 7000 and 10000 psi lithostatic pressure (48 – 103 MPa) and temperatures would 

range from 60 °C to 120 °C (Busby, 2010; Hird et al., 2011, 2012a).   

4.3. Pressure Vessel Equipment 

For the HPHT experiments, a custom made 3800 ml batch reactor was used. The setup 

was custom built by SciMED UK and comprised of Parr, Swagelok and SciMED components. The 

maximum capacity was 16 samples using 50 ml test tubes.  

4.3.1. Batch reactor overview 

The batch reactor mentioned above has a pressure tolerance of 13.1 MPa, and maximum 

operating pressure of 13.7 MPa. Laboratory restrictions meant the vessel could only be 

operated at a maximum of 80 % of its tolerance, approximately 10.95 MPa (1589 psiA). The 

system is setup to run using CO2 as the pressurising gas. The vessel is surrounded by a heater 

with a maximum temperature of 450 °C. Due to the thickness of the steel casing on the vessel, 

approximately 1 inch thick, auto-calibration of the temperature for the vessel took at least 6 

hours. The vessel has 1 inlet and 1 outlet valve. CO2 is pumped in via the inlet, with the outlet 

shut, pressurising the vessel to the desired pressure. Once at pressure, pressure can be held 

within the vessel using a back pressure regulator (BPR) or by closing the system (inlets and 

outlets) completely. To de-pressurise, pressure is bled through the outlet valve using the BPR 

until it reaches atmospheric pressure. Once calibrated, when CO2 is added and it reaches past 

the sublimation point, the heat reduces the risk of ice when CO2 is added to the vessel at lower 

pressures, and also during rapid decompression at the end of an experiment.  
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Figure 4.1: Image of the 3800 ml batch reactor vessel (left) and the control unit and 
back pressure regulator (right). Vessel is pressurised by CO2 and temperature 
controlled automatically by a thermocouple and heater unit surrounding the vessel.  

 

4.3.2. Reactor Vessel Limitations 

The batch reactor is a large capacity vessel capable of ideally holding between 12 and 14 

samples in 50 ml glass test tubes, but with the potential of up to 16. Based on this capacity, 

inclusive of blanks and duplicates necessary for calibration, the sample selection could only 

contain 4 samples containing rock - 8 test tubes – then with the 4 blanks this made up 12 glass 

test tubes inside the vessel. The primary limitation of the vessel is the pressure capacity 

compared to actual geological formation pressures.  A comparison of the geological 

temperatures expected within the Bowland Basin, Northwest England and Northeast England 

can be viewed in Table 4.1. Typical subsurface pressures due to overburden (the compaction 

of the rock above the area of interest) (> ~ 8000 psi or ~ 55 mPa) could not be achieved using 

the hardware, but typical temperatures (50-110 °C) could be easily met. The reactor vessel 

system is setup for use with CO2 as the pressurising gas. Using this gas may lead to a reduction 

in pH as any additional CO2 within the fluid as increased CO2 levels increase the amount of 

hydrogen ions within the water system (Turley et al., 2006). With this particular experimental 

rig, using nitrogen was not an option.  

4.4. Samples Selected for HPHT Adsorption 

Only 4 samples were selected for adsorption analysis in these experiments; OC 5, OC 7, 

BH 5 and BH 6. The reason for the selection of these samples was a combination of the results 
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from the RT experiments (Chapter 3), sample type and amount of sample available. Samples 

for these are listed below with characterisation data taken from Chapter 2.  

• OC 5: A Pendle Grit silica rich sample containing low TOC (0.05 %) and 5.19 wt 

% Al2O3. Clays present are kaolinite, illite and illite/smectite. The sample 

exhibits good fits and statistical significance for all isotherms apart from the 

linear and has a high adsorption capacity at room temperature compared to the 

majority of other samples (6518 – 7276 mg/kg). 

• OC 7: Upper Bowland Shale sample containing 1.57 % TOC and high levels of 

Al2O3 (9.36 wt%). Kaolinite and Illite are present with a lower Si/Al ratio 

suggesting high clay content. Sample OC 7 only has one good fit and significance 

for the 0-250 mg/L Langmuir isotherm. The sample exhibits low RT adsorption 

capacity (1723mg/kg) compared to the other samples in this study despite 

having higher TOC content and more clay type present.  

• BH 5: Borehole sample of exploration strata (LBS). Sample contains moderate 

TOC (3.7 %), but the highest TOC of all samples used in the HPHT experiments, 

and high levels of Al2O3 (8.75 wt%). Illite is the only clay type present with a low 

Si/Al ratio. Sample exhibits good and significant fits for all isotherms using a 0-

250 mg/L calibration, but only samples for the linear using a 0-1000 mg/L 

calibration. For the samples selected for HPHT analysis it has a moderate RT 

adsorption capacity of between 4686 and 4754 mg/kg.  

• BH 6: Carboniferous shale borehole sample containing low TOC values (0.36 

%) but the highest levels of Al2O3 (17.42 wt%). Multiple clays are present, 

foremost chlorite, kaolinite and illite, helping to maintain a very low Si/AL ratio 

of 2.44. Statistical analysis of the sample of the isotherms shows good fits and 

significance for at least one sample duplicate using each of the two calibrations 

and three isotherm types. RT adsorption capacities for this sample are 

moderate at between 4287 and 6654 mg/kg.   

As in previous adsorption experiments in this study (Section 3.3), the respective 

sample was a 1 g powdered amount for each test tube.  

 

4.5. HPHT Approach and Methodology 

The method of sample preparation, sample dilution and spectrophotometric analysis 

remained exactly the same as the RT experiments, methods detailed in Chapter 3, Section 3.3. 

The only difference from the RT adsorption experiments throughout this whole process is the 
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addition of the batch reactor vessel for the 16 hours overnight adsorption in conditions that 

were not indicative of room temperatures and pressures. This addition ensured that the 

samples were pressurised and heated overnight in a closed environment, rather than being left 

at room temperature.  

 

4.5.1. Temperature 

Temperatures for the experiments were set to 65 °C. This temperature was seen as a 

reasonable proxy based upon temperature data seen directly from well reports used in the 

study and a literature citing data for England, particularly the Cheshire, Bowland and NE Basins 

(Table 4.1). To arrive at 65 °C, temperature data was collected from End of Well Reports, 

utilising wireline measurements, completion logs and ‘TOGIP’ analysis (Total Gas in Place) 

(Hird et al., 2012a, 2012b, 2011).  

 

 

Table 4.1: Subsurface temperature ranges for depth intervals and basins in the NW 
Lancashire and NE England areas, based upon well data used in this study (Dowell and 
Schlumberger, 1966; Hird et al., 2012a, 2012b, 2011) and data relating to the UK 
geothermal gradient in general, and the Cheshire basin and NE England Basin (Busby, 
2010; Downing and Gray, 1986) 

 

4.5.2. Pressure 

Pressures needed to fracture rocks are dependent on the stress regimes and 

parameters surrounding the well bore, however pressure must exceed the fracture pressure 

of the surrounding rock. The pressure required to fracture rocks deep within the subsurface 

(> 2km vertical depth) cannot be matched using the batch reactor used in these experiments. 

WIRELINE TOGIP ANALYSIS

UBS 7175 ft 9580 ft 93 61.1 - 77.7

LBS 9580 ft 10775 ft at TD 93 77.7 - 83.3

UBS 7005 ft 7283 ft 86.7 58.8 - 63.8

LBS 7283 ft 7827 ft 86.7 63.8 - 68.8

Ince Marshes 1 Millstone Grit 3062 ft 4154 ft 42.2 n/a 

UBS 6540 ft 8220 ft 70 n/a 

LBS 8220 ft 9100 ft at TD 70 n/a 

Lockton 3 Carboniferous 6293 ft 7244 ft at TD 60 n/a 

Top Base

Cheshire Basin 27 o 
C / km 51 88

NE England Basin 31.9 o 
C / km 60 70

UK Average 26 o 
C / km 49 85

Bowland Basin 20 o C / km 38 65

NE England 17.1-20 o C / km 33 44

TEMPERATURE oC 

(based upon top and base depths seen above)

Busby 2010

TEMPERATURE oC

Grange Hill 1Z

Becconsall 1Z

END DEPTHSTART DEPTHBOWLAND SHALEWELL NAME

Downing and Gray 

(1986)

LITERATURE BASIN / AREA GEOTHERMAL GRADIENTS

Preese Hall 1A
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Preese Hall was fractured under a pressure of 55 MPa (~8000 psi or 551 bar (Gilbert, 2012)), 

with a fracture extension pressure of 56.33 MPa (8171 psi). Borehole pressures of between 49 

MPa (7250 psi ) and 60 MPa (8800 psi ) from Preese Hall at depths between 2337 m and 2697 

m are reported by De Pater and Baisch, (2011). Preston New Road wellsite actual fracture 

pressures are unavailable, but hydraulic fracture plan documents indicate an estimated 

maximum surface pumping pressure of 65.5 MPa (9500 psi) (Cuadrilla Resources, 2018a). Due 

to the unavailability to reach these pressure, 3 MPa was set as a starting pressure to further 

investigate how pressure may affect adsorption in comparison to the RT experiments. The 

initial aim was to further investigate pressure increases as the study progressed. 

Unfortunately, due to long delays in the setting up of the pressure rig, only one temperature 

and pressure could be tested. Future work would be ideally suited to testing increased 

temperatures and pressures.  

 

4.5.3. Step by Step Method 

 

In this step by step methodology, as per detailed in Chapter 3, Section 3.3.1, the 1000 

mg/L PAM solution has already been diluted down into the relevant concentrations for each 

sample batch. For this analysis each sample batch contains samples that are run in the same 

PAM fluid concentrations. For example, 1 overnight batch would contain 4 samples and 2 

blanks, with all fluids being the same concentrations (i.e. 250 mg/L). The reason behind this is 

that all samples will be closed into a sealed atmosphere. To accurately measure PAM 

concentrations, or any which may have transferred in a PAM rich vapour inside the vessel, all 

samples need to have a known consistent concentration. 

 In each run, four blanks were run alongside the samples (Figure 4.2): 

• In vessel blanks: 40 ml of tap water with no PAM or sample & 40 ml of identical 

concentration PAM fluid (as is outside the vessel) with no sample.  

• Outside vessel blanks: 40 ml of tap water with no PAM or sample & 40 ml of 

same concentration PAM fluid with no sample (run for the same period as the 

pressure vessel).  
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Figure 4.2: Batch reactor vessel diagram. Heater is turned on to heat all vessel walls and 
components to the required temperature before CO2 is added. Samples are place into the vessel, 
the vessel is sealed, and then CO2 is pumped in to pressurise vessel. After 24 hours the pressure 
is bled off via an automated back pressure regulator (BPR) and samples removed.  

Day 1: Batch reactor temperature control is set to 65 °C and left to auto tune to the 

desired temperature. A 1000 mg/l PAM standard is diluted to the concentration needed for the 

batch being undertaken 10 times, 2 for each of the 4 samples and twice for each of the PAM 

blanks. 

Day 2: 1g of powdered sample is placed into each of the 50 ml glass test tubes filled 

with 40 ml of PAM slick-water fluid, apart from the blanks. All samples and the two blanks are 

placed into the heated vessel and sealed in by screwing the lid down ensuring the seal is 

competent. CO2 is pumped in to the desired pressure and the inlet is sealed, shutting in the 

vessel. This is left overnight. The two room temperature blanks are left outside the vessel 

overnight, much like for the RT experiment conditions.  

Day 3: After 24 hours the pressure is bled off from the vessel using the BPR and vented 

into the fume cupboard. Using an ABEK 1 face mask filter system, primarily filtering for 

Ammonia gas, the vessel is unsealed, and the samples removed and placed into the fume 

cupboard. Immediately, the fluid is poured into separate glass vials away from shale present to 

prevent further room temperature adsorption from occurring. Samples are allowed to degas 

for at least 12 hours before filtering off sub-samples for analysis with 2 ml frozen for ICP 

analysis and 2 ml for PAM N-Bromination analysis.  
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Day 4: The 2 ml fluid sub-samples for PAM analyses are diluted to the relevant 

concentration and are analysed using the N-Bromination method. Fluids post analysis are 

disposed of into plastic bottles and kept in the fume cupboard until safe disposal.  

4.6. HPHT Adsorption Isotherms 

All results from the HPHT experiments were fitted to the same three isotherms as 

described in Section 3.4, i.e. linear, Freundlich and Langmuir isotherms. 

4.7. HPHT Statistical Analysis Methodology 

As per Section 3.5, linear regression was conducted on all isotherm results against all 

quantitative and qualitative data from the shale characterisation in Chapter 2. No categorical 

stepwise ANOVA could be conducted on the qualitative XRD results due to such a low sample 

size. Much like in the RT adsorption experiments (Section 3.5) statistical analysis was 

performed to see if quantitative and qualitative characteristics of the samples had a bearing on 

the adsorptive behaviour, this time at higher temperatures and pressures.  

4.8. HPHT Adsorption Calibration 

Calibration of the adsorption data from the standards used the same format as per 

Section 3.6. Two calibrations were made between 0 and 250 mg/L and 0 and 1000 mg/L.  

For the HPHT experiments, multiple standards were used as it was discovered that 

PAM analysis was highly variable in these fluids. Prepared controls and standards included: 

• 1 full suite of RT standards at the start of each experiment run – to calibrate a 

normal calibration line based on behaviour not influenced by temperature or 

pressure.  

• 2 room temperature controls of the same concentration of those in the vessel, 

each run – to measure any differences between these standards and the ones in 

the vessel. 

• 2 vessel controls with no sample within of the same concentration of those with 

samples, each run – to measure in comparison to the RT standards and 

primarily to account for aqueous PAM that may have transferred between 

vessels as a vapour when under pressure.  

• 1 full suite of standards at the end of each experiment run – to calibrate again 

to all standards measured throughout the experiment as PAM can be highly 

unpredictable fluid in terms of full dissolution within a liquid.  
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Data was checked and erroneous measurements, data that strayed uncharacteristically 

away from the main trends seen in the duplicates, were removed. An average of the main data, 

ignoring erroneous data, was taken to produce a full suite of standards from 0-1000 mg/L 

(Figure 4.3).  

a)  

b)  

Figure 4.3: Example of the standard calibrations for the 65 °C / 30 bar HPHT 
adsorption experiment. Variation can be seen between the different standards run. 
Erroneous data, predominantly seen between PAM concentrations of 0.025 % and 
0.05 % (250 mg/L and 500 mg/L respectively), has been removed where deemed to 
be over saturated. The average of the remaining data was then taken to provide one 
set of values to be used as standards, seen here as red diamonds on both graphs. Lines 
of best fits used for demonstrations are linear (a) and polynomial (c ≠ 0) (b).  
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Table 4.2: Table showing the results of the t-test for similarity for both calibrations based 
upon standards data from the 65 °C / 30 bar HPHT experiment.  

 

Similar to Section 3.7.3, using an alpha (α) of 0.05 the results of the standards were 

tested for similarity using a t-test (Table 4.2). Data in Table 4.2 adheres to the null hypothesis 

rule, with the worst similarity in data between both calibrations using a polynomial fit with a 

set intercept of 0. The linear and polynomial (c ≠ 0) fits have no significant difference between 

them. There is little significant difference between the calibration fits, and so the best one can 

be chosen for the approach, dependent on sample. 

The standards and blanks used throughout the duration of the experiment were used 

to calibrate small variances seen in each of the experiments. The same 1000 mg/L fluid was 

used for all the experiments, however the storage of PAM is difficult, the polymer may vary 

over time in different temperatures and light settings, and thus multiple 1000 mg/L batches 

were made for each experiment run. Blanks within the vessel were used to calibrate to aqueous 

PAM that may have been in a vapour form within the vessel.  

 

4.9. HPHT Adsorption Results 

Results in this section refer to the HPHT experiment conducted at 30 bar and 65 °C. 

Analysis refers to similar quantifiable data as in Chapter 3, such as maximum coverages, 

percentage of aqueous PAM removed from solution and the statistical analyses run.  

CONCENTRATION

Linear mg/L Polynomial (c=0) Polynomial (c≠0)

250 mg/L 0.02418 0.02499 0.02496

125 mg/L 0.01356 0.01984 0.01243

62.5 mg/L 0.00734 0.01812 0.00643

31.25 mg/L 0.00241 0.01743 0.00238

15.625 mg/L 0.00200 0.01740 0.00207

0 mg/L 0 0 0

250 mg/L 0.03627 0.02327 0.02217

125 mg/L 0.01809 0.00821 0.00818

62.5 mg/L 0.00744 0.00293 0.00405

31.25 mg/L -0.00101 0.00062 0.00292

15.625 mg/L -0.00171 0.00050 0.00291

0 mg/L 0 0 0

Linear 0-250 mg/L Polynomial (c=0) 0-250 mg/L Polynomial (c≠0) 0-250 mg/L

vs vs vs

Linear 0-1000 mg/L Polynomial (c=0) 0-1000 mg/L Polynomial (c≠0) 0-1000 mg/L

T-VALUE -0.22 2.05 0.27

P-VALUE 0.829 0.07 0.796

0-250 mg/L calibration lines

0-1000 mg/L calibration lines

EXAMPLE
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In total, 48 isotherms were produced based on the four samples in duplicate, three 

isotherm types and two calibration methods. Under these conditions, both 𝑅𝑎𝑑𝑗
2  fits and 

statistical significance favoured the 0-1000 mg/L calibration in the majority (Table 4.3).   

 

Table 4.3: Summary table of the statistical analysis performed on all room temperature adsorption 
samples. The table is divided into calibration type (0-250 mg/L and 0-1000 mg/L) and then into isotherm 

type. 𝑹𝒂𝒅𝒋
𝟐  represents the fits of the isotherm and the P-value represents the significance in relation to a 0.05 

margin of error.  

 

All isotherm fits that were statistically significant at least at a probability of 0.05 and 

then those isotherms fits with  𝑅𝑎𝑑𝑗
2 > 60 % were classified as ‘good fits’ and all fits where 𝑅𝑎𝑑𝑗

2  

> 90 % were classified as ‘excellent’. The 0-1000 mg/L calibration had the most data linked by 

both good and excellent 𝑅𝑎𝑑𝑗
2  fits to statistical significance (< 0.05). Out of 8 samples in total for 

each, the linear isotherm produced 7 of statistical significance and 4 each for both the 

Freundlich and Langmuir isotherms. Using a 0-250 mg/L calibration, there were far fewer 

statistically significant fits. Only 1 Langmuir isotherm offered significance of < 0.05 while 

𝑅𝑎𝑑𝑗
2 values were slightly better across all isotherms. The linear and Freundlich isotherms 

showed good fits for two samples each, whilst the Langmuir only showed good fits for 4 of the 

8. Data from Table 4.3 has been plotted for all samples on Figure 4.4 and Figure 4.5.  

Aq r
2 

adj P-value Log (Ads) r
2 

adj P-value Aq/Ads r
2 

adj P-value

Regression Equation 1201 - 7.0  Aq  2.97 - 0.024  Log (aq) -0.0  + 0.001 Aq
Coef (const)      SE Coef                896            27.1           1.01          0.758                    0.012           0.0

1486 - 2.23 Aq  3.398 - 0.175 Log (aq) -0.009  + 0.001 Aq
               167           1.18           0.038          0.021                   0.003               0.0

982 - 3.8  Aq  2.43 + 0.27 Log (aq) 0.032 + 0.0  Aq
                1074       31.8            1.92             1.4                      0.048        0.001

1284 - 2.706 Aq  3.185 - 0.074 Log (aq) -0.002 + 0.001 Aq
                *                   *          *                          *                      *                       *

-1334  + 78.5 Aq 2.14 + 0.65  Log (aq) 0.153 - 0.001  Aq
               2655           30.8            2.29            1.29                    0.231          0.003

-452 + 65.6 Aq 1.869 + 0.933 Log (aq) 0.0  - 0.0 Aq
                 993          10.7           0.598           0.344                       0.009     0.0

1383 - 12.7  Aq  3.16 - 0.197 Log (aq) 0.005  + 0.001 Aq
             1123          33.8            1.26            0.95                    0.019           0.001

1435 + 17.1  Aq  2.890 + 0.284  Log (aq) 0.003 + 0.0 Aq
               877            35.5         0.543            0.461                       0.003          0.0

Aq r2 adj P-value Log (Ads) r2 adj P-value Aq/Ads r2 adj P-value

Regression Equation 1687 + 16.81 Aq 3.186 + 0.207 Log (aq) 0.035  + 0.0 Aq

Coef (const)      SE Coef         1300            3.66        0.314            0.172                      0.044        0.0

2306 + 11.94 Aq 3.106 + 0.278 Log (aq) 0.014 + 0.0 Aq

          722               1.96        0.205            0.112                     0.012        0.0

2767 + 8.86 Aq  3.142 + 0.271 Log (aq) 0.008 + 0.0 Aq

           531            1.41        0.13               0.071                     0.005        0.0

2475 + 12.98 Aq  3.025 + 0.356 Log (aq) 0.007 + 0.0 Aq

         610               1.57         0.177            0.102                      0.005      0.0

6542 + 19.39 Aq  3.225 + 0.396 Log (aq) 0.003 + 0.0 Aq

        2602              7.3       0.188             0.101                      0.001        0.0

2563 + 57.72 Aq  2.872 + 0.564 Log (aq) 0.007 + 0.0 Aq

       1553             5.98        0.228           0.132                     0.004        0.0

2362 + 16.37 Aq  3.156 + 0.306 Log (aq) 0.007 + 0.0 Aq

         554              1.47         0.18             0.105                    0.005         0.0

1793 + 54.32 Aq 3.211 + 0.383 Log (aq) 0.007 + 0.0 Aq

        1258             4.39          0.22            0.136                    0.006         0.0

SAMPLE Linear LangmuirFreundlich

0 - 250 mg/L

0%

BH 6 (2)

BH 6 (1) 0% 0.00%

100% 100% 100%-

0.924

OC 5 (2)

OC 5 (1) 64.68% 0% 0.00%

94.79% 76.05% 0.00%0.103

0.126

OC 7 (2)

OC 7 (1) 0% 0% 71.94%

0% 0% 83.18%0.714

0.771

0.649

0.870

0.225

0.662

-

0.880

0.076

0.980

0.187

0.244

0.914

0.856

-

0.694

9.12%

BH 5 (2)

BH 5 (1)

56.36%

0%

0.309

0.839

97.18%

0% 0.182

0.01499.90%

84.13%

94.86% 0.001 77.64% 0.013

97.43% 0.001

94.38% 0.004 73.54% 0.040

0 - 1000 mg/L 

Linear Freundlich

80.07% 0.010 8.22% 0.295 0% 0.604

78.08% 0.030 97.52% 0.001

0.086

88.49% 0.003 73.08% 0.019 91.21% 0.002

87.80% 0.004 50.91% 0.068 45.27%

88.15%

63.37% 0.067 0% 0.405

SAMPLE

BH 5 (1)

BH 5 (2)

BH 6 (1)

BH 6 (2)

OC 5 (1)

OC 5 (2)

OC 7 (1)

OC 7 (2)

Langmuir

0.288

96.86% 0.002 64.90% 0.063 75% 0.037

0.012

60.20% 0.077
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Figure 4.4: All samples of HPHT #1 shown on the three different types of isotherm for the 0-250 
mg/L calibration. Linear isotherm, B: Freundlich Isotherm, C: Linearised Fruendlich Isotherm, D: 
Langmuir Isotherm, E: Linearised Langmuir isotherm 
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Figure 4.5: All samples of HPHT #1 shown on the three different types of isotherm for the 0-1000 
mg/L calibration. Linear isotherm, B: Freundlich Isotherm, C: Linearised Freundlich Isotherm, D: 
Langmuir Isotherm, E: Linearised Langmuir isotherm 

 

The 0-250 mg/L calibration line had the fewest 𝑅𝑎𝑑𝑗
2 fits and the fewest significant fits 

for all isotherms. Linear and Freundlich isotherms have only 2 fits that are classified as good 

and 1 each that is excellent. Neither linear or Freundlich produce fits that were significant. 

Using the 0-250 mg/L calibration, the Langmuir has slightly more ‘good’ fits, four in total, but 

still only one of these is classified as excellent. Only 1 Langmuir fit is statistically significant, 

that of BH5 (2).  

Overall, the 0-1000 mg/L calibration has a higher proportion of good, excellent and 

statistically significant fits than the 0-250 mg/L calibration (Table 4.3). Starting with the 

Freundlich isotherm, this exhibits the worst of the 3 isotherms in terms of excellent and 

significant fits, only 6 good fits with no excellent fits, there were four significant Freundlich 
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isotherm fits. The Langmuir isotherms offers 4 with good fits, 2 of these being excellent whilst 

the linear isotherm offers 8 good fits with 4 excellent fits. In terms of statistical significance for 

the linear and Langmuir isotherms, the Linear performs the best with 7 significant fits to the 

Langmuirs’ 4.  

As per Section 3.7, the 95 % CI is calculated for the Langmuir isotherms. Data for these 

calculations are present in Digital Appendices D.2 and D.3. Maximum coverages calculated 

from these values are located in Digital Appendix D.1.  

Based upon this data, it is proposed that the 0-1000 mg/L calibration is the best fit to 

the initial standard data.  Any one of the three isotherms used for this calibration could be most 

applicable to the type of adsorption. The Freundlich is likely the least applicable due to the 

lower amount of good and excellent 𝑅𝑎𝑑𝑗
2  fits or lack of statistical significance compared to 

Linear and Langmuir. As with the RT experiments (Section 3.8) the Langmuir isotherm is the 

best overall description of the adsorption. 

 

4.9.1. Concentration at Maximum Coverage (Adsorption Capacity) 

As learnt earlier in this study, the Langmuir isotherm can be used to calculate the 

concentration at maximum coverage (adsorption capacity) – maximum coverages for HPHT #1 

are shown in Table 4.4 and Figure 4.6.  

 

Table 4.4: All concentrations at maximum coverage (adsorption capacities) for all HPHT #1 
samples (right) that exhibit statistical significance. These are compared against the 
maximum coverages observed in the same samples during the room temperature experiments 
(greyed out values). All values are shown in mg/kg.  

 

LITHOLOGY TYPE SAMPLE
CONCENTRATION AT 

MAXIMUM COVERAGE

CONCENTRATION AT 

MAXIMUM COVERAGE

(Room Temperature) (HPHT #1)

UBS OC 7 (2) 1723 18062

LBS BH 5 (1 & 2) 4686 - 4754 940-14442

Carboniferous Shale BH 6 (1 & 2) 4287 - 6654 11163 - 14983

Pendle Grit OC 5 (1 & 2) 6518 - 7276 22972
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Figure 4.6: HPHT concentration at maximum coverage for samples BH6, 
OC5 and OC7, alongside the comparative result for the room temperature 
experiment.  

 

Maximum coverages range from 940 mg/kg to 22972 mg/kg. The lowest value of 

maximum coverage (940 mg/kg) was sample BH 5 (2) for 0-250 mg/L calibration data. The 

BH5(2) samples was the only significant fit for 0-250 mg/L calibration: and this data may 

potentially be erroneous. Using only statistically significant data derived from the 0-1000 mg/L 

calibration, maximum coverage range was between 11163 mg/kg to 22972 mg/kg. In 

comparison to the same samples during room temperature examples, these values are between 

two and ten times larger than the values seen in the room temperature experiments (Figure 

4.6). Based on the range of samples tested, this time the most silica rich sample (OC 5) exhibits 

the highest maximum coverage. Maximum coverages calculated using the 95 % CI can be 

viewed in Digital Appendices D.2 and D.3. The maximum coverage for the HPHT #1 samples 

are significantly larger than those of the room temperature experiments. Graphically, this is 

shown on Figure 4.7.   
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Figure 4.7: Plot of the non linearised data for various samples using 0-1000 mg/L 
calibration Langmuir isotherm. The data is fitted using a power function to illustrate 
maximum coverage for the Langmuir isotherm. Comparison is made between the room 
temperature (RT) experiments and the HPHT#1 samples (HPHT).  

 

Fitting a power-law, best-fit to non linearised Langmuir isotherm data, the curves fitted 

(Figure 4.7) show that the HPHT #1 fits shown in red have consistently higher endpoints on 

the y axis, meaning that samples subjected to greater pressure and higher temperatures, than 

the RT samples, have higher concentrations at maximum coverages (or adsorbed 

concentrations).  
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a)  

b)  

Figure 4.8: Non linearised Freundlich isotherms for both RT and HPHT #1 results. ’b’ is 
a magnified section of the upper graph (a), as delineated by the blue highlighted box on 
the upper graph.  

 

Using Figure 4.8, Freundlich isotherms can be seen to favour lower concentrations. The 

uptake of the adsorbate, PAM, onto the rock surface seems to have not been largely affected by 

either increases in pressure or temperature (Table 4.5).  
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Table 4.5: ‘Good’ (𝑹𝒂𝒅𝒋
𝟐 > 𝟔𝟎 %) data from 

the Freundlich isotherm showing the 1/n 
value, indicative of adsorption 
favourability, for the respective samples.  

 

The 1/n value (dimensionless) for the Freundlich adsorption isotherm (the gradient) 

assesses the degree of curvature of each individual isotherm. Values of 1/n typically range 

between 0 and 1. The gradient (1/n) value depends on adsorption intensity or surface 

heterogeneity (Foo and Hameed, 2010). On Freundlich isotherms, 1/n values are typically < 1, 

suggesting an L-type isotherm, indicative of both Freundlich and Langmuir (examples seen in 

Figure 4.8 and Figure 4.9), rather than what is classed as a C-type isotherm (completely linear 

and limitless). In summary, the higher the value of 1/n, calculated from the slope of the 

Freundlich isotherm (Figure 4.4 and Figure 4.5), the quicker the uptake of the adsorbate onto 

the adsorbent, at least in term of monolayer adsorption. Using Table 4.5, there was no 

observable statistical difference between the range of values for RT experiments and the HPHT 

experiments. Conducting a paired t-test on results from Table 4.5 display a p-value of 0.38, 

greater than the alpha level of 0.05, showing weak evidence against the null hypothesis and 

thus both datasets were not significantly different from each other.  

 

4.9.2. Percentage Removal of Aqueous PAM 

Percentage removal was plotted for all samples for data of the same concentration 

regardless of sample or significance (Figure 4.9).  

SAMPLE RT HPHT

BH 1 (1) 0.348

BH 1 (2) 0.418

BH 4 (2) 0.277

BH 5 (1) 0.243 0.452

BH 5 (2) 0.241 0.564

BH 6 (1) 0.436 0.270

BH 6 (2) 0.524 0.355

OC 3 (1) 1.272 0.614

OC 4 (1) 0.353

OC 4 (2) 0.403 0.323

OC 5 (2) 0.241

OC 7 (2) 0.576

OC 8 0.536 0.274
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a)  

b)  

Figure 4.9: Box and whisker plots showing the percentage removal of 
PAM for all samples in HPHT #1 using both calibration types. The mean 
concentration is denoted by an ‘x’ symbol and all outliers from the 
general model by a dot. A- 0-250 mg/L calibration, ‘b’ – 0-1000 mg/L 
calibration. 

 

Figure 4.9 shows that up to 95 % of aqueous PAM can be removed by means of 

adsorption at the elevated pressure and temperature used in this experiment. No pattern in 

percentage removal is observed using the 0-250mg/L calibration; however this is the data with 

the lowest number of statistically significant results (Table 4.3). The lack of pattern shown in 

Figure 4.9 is in comparison to data in 0-250 mg/L RT adsorption experiments where there was 

a pattern of reducing percentage removal with an increase in PAM concentration (Section 

3.7.2). Data using the 0-1000 mg/L exhibits a similar pattern to that seen in Figure 3.10 

(Section 3.7.2) with the RT adsorption results. The RT experiments, have a lower percentage 

of removal where higher concentrations of PAM are present and a higher percentage removal 

with the lower concentrations of PAM.  
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4.9.3. Statistical Analysis of Results 

 

Sample size, the amount of samples used in experimentation, is a limitation for analysis 

of the HPHT results. By design, and hardware limitations, the sample size was small for this 

type of experiment, yielding fewer results. The size of the sample, the amount of data available 

for analysis, dictates the precision or confidence level of the analysis, and thus the smaller the 

size, the lower the confidence the user would have in the results of the analysis. Sometimes 

analyses do not work due to lack of responses or predictors.  

 Stepwise Linear regression was performed using both sets of results from the two 

different calibrations (0-250 mg/L and 0-1000 mg/L) ad only performed where 𝑅𝑎𝑑𝑗
2  fits were 

present. All fits were used in these analyses, whether or not they were classed as ‘good’ or 

‘excellent’. The Linear and Freundlich isotherms used the adsorption coefficient, the K value, 

as the response whereas the Langmuir isotherm used the K value alongside the maximum 

coverage value as its response. These data were analysed against all numerical values from the 

XRF, TGA and carbon analyses. 

 

 

Table 4.6: Stepwise Linear regression results for all HPHT experiments using data with 

all fits (not including 0 % 𝑹𝒂𝒅𝒋
𝟐 fits). ‘+’ and ‘-‘ symbols denote the gradient either as positive 

or negative towards increasing K or maximum coverage.  

 

 All results using this stepwise linear regression analysis are shown in Table 4.6. The 

VIF values of 1 suggest no multicollinearity between predictors. Table 4.6 exhibits predictors 

that influence the K or maximum coverage responses as loss data in temperature windows of 

300-650 °C or 650-980 °C, or TOC. Losses attributed to temperatures between 300-650 °C 

appear twice, both using the 0-250 mg/L calibration. TOC appears once with the 0-250 mg/L 

calibration, also showing the lowest P-value, 0.029, for the whole dataset. TOC appears once 

using the 0-1000 mg/L (P-value 0.141) using the Langmuir isotherm, alongside losses seen 

CALIBRATION ISOTHERM RESPONSE PREDICTOR P-VALUE VIF r
2 

adj SLOPE

Linear K Loss 300-650oC 0 1 91.51% -

Freundlich K TOC 0.029 1 57.76% +

K SO3 0.112 1 31.10% -

Maximum Coverage Loss 300-650oC 0.1 1 33.69% +
Linear K Loss 650-980

o
C 0.075 1 34.16% +

Freundlich K

K TOC 0.141 1 21.06% -
Maximum Coverage Total Losses 0.051 1 41.15% -

Langmuir

0
-2

5
0

 m
g/

L

Langmuir

0
-1

0
0

0
 m

g/
L

n/a
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between 650 and 980 oC (P-value 0.075) using the linear isotherm, and total losses (P-value 

0.051), also using the Langmuir isotherm. Example plots of the data shown in Table 4.6, can be 

seen in Figure 4.10 to 4.12.  

 

 

 

Figure 4.10: Linear regression pattern for the 0-250 mg/L 
Freundlich isotherm displaying TOC against K from Table 4.6. 

 

 

Figure 4.11: Linear regression pattern for the 0-1000 mg/L 
linear isotherm displaying losses between 650 and 980 oC and K 
from Table 4.6. 
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a)  

b)  

Figure 4.12: Example linear regression patterns for the 0-1000 mg/L 
Langmuir isotherm displaying wt % for TOC against K (a) and total losses 
against maximum coverage (b).  

 

 To understand if the presence or absence of certain minerals influenced the adsorption 

at higher pressures and temperatures to that of the RT experiments, ideally a categorical 

stepwise analysis of variance (ANOVA) would have been conducted on the quantitative XRD 

data. Unfortunately the dataset for the HPHT experiments was so small this analysis could not 

be conducted.  

Using the Freundlich constant (1/n), no statistical relationship was found between the 

1/n value or the quantitative or qualitative data.  
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4.10. Discussion 

As for the RT adsorption experiments, both sand and shale rock samples exhibit highly 

adsorptive properties. The concentration at maximum coverage, calculated from these samples 

that have undergone adsorption in higher pressure and higher temperature conditions, can be 

up to 10 times the amount observed in the RT experiments (Figure 4.6). These data were 

collected using geologically realistic temperatures, but not geologically realistic pressures, thus 

showing that adsorption in large quantities (up to 22,000 mg/kg concentration at maximum 

coverage) is highly likely in the subsurface environments typical of gas shales in the UK such 

as the Lower Bowland Shale, based on the increase observed between the RT and HPHT results. 

The increase in concentration at maximum coverage, up to 22,972 mg/kg (Figure 4.6), shows 

us that even less rock would now be required to remove almost all aqueous PAM from the slick-

water fluid by means of adsorption.  

 The limited sample size within the HPHT experiments, the total results, did hinder 

rigorous statistical analysis but in general, as with the RT experiments; losses and carbon 

percentages appear to be key factors in influencing adsorption. Statistical analysis of the XRD 

mineralogy produced no statistically significant relationships between the presence or 

absence of certain mineral types, in this case with 4 samples, this lack of any relationship is 

highly likely due to sample size. Regression analysis produced some results, albeit with limited 

statistically significant results, showing that potentially the main controls on the adsorption at 

these higher pressures and temperatures are the controlling factors of the mass losses 

observed both between 300 and 650 °C and 650 and 980 °C, i.e. TOC and carbonates (Table 4.6). 

The TOC data also provided two relationships using the Freundlich and Langmuir isotherms 

(Table 4.6). Using this data and linking it to the statistical analysis conducted on the RT 

experiments (Section 3.7.3), it is possible to conclude that similar controls may be accountable 

such as carbon content, inclusive of both organic and inorganic carbon. Clay type, likely to be 

another major factor, could not be checked due to the sample size being under the necessary 

amount for a useful analysis. The decrease in percentage PAM removed as the PAM 

concentration increases again suggests monolayer adsorption. Up to 95 % of aqueous PAM is 

removed from solution at the lowest PAM concentrations of 15.625 mg/L and 31.25 mg/L 

(Figure 4.9). Despite the HPHT experiments having fewer data, the trend in reduction of 

percentage removal from lower to higher initial PAM concentrations is similar to those 

observed in the RT adsorption results (Figure 3.11 Chapter 3, and Figure 4.9 Chapter 4). An 

increase in initial aqueous PAM slick-water concentration has the least PAM removed by 

adsorption, or from the other perspective, there is so much PAM in solution, all adsorption sites 

fill up quickly meaning no more PAM can adsorb, thus with larger initial PAM quantities in the 

fluid, larger amounts are left in solution after all adsorption sites have been filled.  
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Using Equation 3.9 (Section 3.8), the amount of shale required to remove all the 

aqueous PAM can be estimated at equilibrium. Taking the same 430 mg/L fluid used in Section 

3.8, we can apply it to these more geologically realistic conditions with elevated temperatures 

and pressures. Using a frack volume the same as the volume of water used (8,399,000 L) 

against a rock type with a maximum coverage of 12,000 mg/kg (Table 4.4), only 301,000 kg of 

rock would be needed to remove all PAM from solution. If the maximum coverage is increased 

to the highest value seen in Table 4.4, 22,972 mg/kg, then the amount of rock required is a very 

small, 157,216 kg.  

 

 

Figure 4.13: An enhanced visualisation (from Figure 3.13) depicting the estimated amounts of rock needed 
to remove 100 % of all PAM from the fracking solution in the HPHT experiment. The curved lines represent 
the different concentrations of a PAM slick-water fluid in mg/L at 100 % removal. The adsorption capacity 
on the x axis is the amount of PAM in mg that can be adsorbed per kilogram of available shale surface. The 
shaded grey area is an example of the amount of shale available in two relatively small fracks at both the 
lower and upper ends of typical shale densities (1.9 – 2.8 g/cc). The black arrowed lines represent the 
amount of rock surface available to remove all PAM from solution at the specific adsorption capacity 
(maximum coverage based on Langmuir).  

 

 Using Figure 4.13, it is easily shown that the higher maximum coverages found in the 

HPHT experiments require far less rock than in the RT experiments to remove nearly all 

aqueous PAM from solution. The arrows depicted on Figure 4.13 represent a rock type with a 

maximum coverage of 22,972 mg/kg, the highest maximum coverage observed in the results 

(Table 4.4). The amount of rock needed to remove all PAM at equilibrium is depicted as far 

lower than the shale window lower limit. This shale limit is a 500 m3 frack with a low density 
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of 1.9 g/cm3, an almost unrealistically small hydraulic fracture that would, based on data 

shown, be able to remove nearly all aqueous PAM easily at equilibrium. Subsurface conditions, 

most likely higher pressures that are forcing more PAM onto the surface of the shales and 

potentially into pore spaces, are promoting this adsorption even further than at conditions 

indicative of room temperature. As observed in the RT experiments, the slick-water fluid will 

become less ‘slick’ overall, and certainly if it is re-used over multiple frack stages. Waters are 

again likely to contain considerably less PAM upon return to the surface and thus a lot is 

remaining downhole with the potential to degrade or migrate over time. Due to the adsorption 

ability of the PAM, results show, alongside literature, that its migration is highly likely limited 

within the subsurface environment (Guezennec et al., 2015).  

The temperature, albeit relatively low still (< 100 °C) is indicative of UK onshore 

subsurface basins is likely to have had an impact upon the adsorption of the PAM, or at least 

the temperature change from room temperature seen in Chapter 3, to the 65 °C used in this 

part of the study. As is already known (Section 1.7), the effect of temperature on adsorption 

can be variable (Wiśniewska, 2012). With particular reference to shales, where clays are a 

principle component, swelling clays such as montmorillonites or smectites may increase in 

internal structure with temperatures up to 55 °C (Tekin et al., 2005). The same is true for 

kaolinite, enabling any PAM to penetrate further into the structure (Tekin et al., 2005). 

Temperature swelling may have occurred to the 4 samples analysed here, thus providing some 

explanation as to why concentrations at maximum coverage were observed as high as 22,972 

mg/kg (Figure 4.6).  

As mentioned earlier in this chapter, the addition of CO2 into the system as a 

pressurising gas to produce near subsurface conditions may have led to a reduction in pH as 

increased CO2 levels will increase the amount of hydrogen ions within the system (Turley et al., 

2006).  
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Table 4.7: Recorded pH values post experiment for PAM fluids (250 mg/L) and fluids 
containing no PAM (0 mg/L) located both inside and outside the pressure vessel during 
the 250 mg/L PAM HPHT experiment.  

 

Under the particular conditions used in these HPHT experiments, 30 bar and 65 °C, and the 

non-ionic nature of the PAM, no acidic values were recorded, and fluids remained pH neutral. 

If fluids had become more acidic in nature then it would have been expected that potentially 

more adsorption would have occurred (Wiśniewska et al., 2016).  

The degradation of PAM is thought to be generally temperature dependent and 

pressure/salinity independent (Xiong et al., 2018b). In the subsurface, any polymer 

degradation is likely to only mechanical (from operational pumping pressures), chemical, 

thermal or from biological degradation and not photo-degradation (Guezennec et al., 2015), 

and with salinity, higher in the deep subsurface (2-5 km depth), having little effect on the 

degradation of the PAM in terms of reducing its molecular weight (Xiong et al., 2018b). In an 

aqueous solution, such as a slick-water fracking fluid, polymers can be degraded both 

thermally and biologically (Rho et al., 1996), and PAM can degrade to acrylamide (AMD) under 

the right conditions. Typically, PAM does not degrade thermally until temperatures of ~200-

250 °C are reached, and then degradation increases considerably with temperature increases 

(Xiong et al., 2018b; Yang, 1998). It is unlikely that any thermal degradation will have occurred 

in the HPHT experiments of this study as in shale gas environments in the UK the subsurface  

temperatures are unlikely to ever reach temperatures close to 200 °C. Studies have shown that 

also under the relatively low temperatures used in this study (~65 °C), acrylamide (a product 

of degradation) will not be present in detectable quantities. Caulfield et al., (2003) reported the 

Result 1 Result 2

7.74 7.76

7.56 7.51

7.65 7.63

7.54 7.51

7.61 7.6

7.42 7.4

7.55 7.58

7.8 7.8

pH at 22.8 
o
C

FLUID

DI Water (no PAM)

Tap Water (no PAM)

250 mg/L PAM standard NOT in vessel

0 mg/L PAM standard NOT in vessel

250 mg/L PAM standard in vessel

0 mg/L PAM standard in vessel

250 mg/L PAM in vessel

0 mg/L PAM in vessel



121 
 
 

lack of acrylamide present in ‘hot aqueous solutions at 95 °C, temperatures not unreasonable 

to subsurface basins of the onshore UK. Mechanical degradation of PAM, independent of 

adsorption, may likely occur due to the typically higher pump rates for slick-water fluids 

(Ferrer and Thurman, 2015). Mechanical degradation is caused by a shearing hydrodynamic 

field, which in turn leads to induced chain scissions which in turn leads to a decrease in the 

molecular weight of the PAM (Guezennec et al., 2015; Nguyen and Boger, 1998). While 

mechanical degradation could not be tested as part of these HPHT experiments, it is a potential 

degradation method in real-world operations; in turn this could affect the amounts of PAM 

adsorbed if some PAM had already degraded prior interacting with the shale surface. PAM 

adsorption may also reduce with increased flow (Lee and Fuller, 1985) and desorption 

increasing with an increasing flow velocity, neither of which could be tested within the remit 

of this study.  

Biological degradation is entirely plausible within the geological setting of shale gas, 

and the use of mains tap water as the carrier fluid, for this study, Northumbrian Water mains 

fluid, as it would come into contact with microorganisms, however PAM is generally resistant 

to biodegradation as they are of high molecular weight (Guezennec et al., 2015). Having a 

higher molecular weight means that the PAM requires the presence of enzymes such as 

amidases to degrade the carbon chains, thus limiting biodegradation in low temperature, 

neutral settings (Caulfield et al., 2002; Guezennec et al., 2015). Although the degradation of the 

PAM to acrylamide could not be investigated, based upon the literature and geological setting 

for UK shale gas, it is unlikely that any hazardous amounts of AMD would be produced from 

slick-water concentrations of PAM. In terms of a hydraulic fracturing operation, mechanical 

degradation, due to the high pump rates, and thermal degradation would be the principal 

controls in this particular geological setting (neutral pH, low temperature, moderate salinity).  

 

4.11. Conclusions 

The HPHT experiments show that the aqueous PAM that makes up the friction reducer 

in the slick-water fluid is highly adsorptive to shale lithologies. At the conditions of the 

experiment, up to 22,972 mg/kg of aqueous PAM can be adsorbed per kg of rock available. No 

statistical analysis could however be conducted on the 1/n value due to limited sample size 

and this was also the case with the qualitative XRD data. No clay type could be pinpointed to 

adsorption.  

Results here, at more geologically reasonable conditions, show that PAM once again 

would be adsorbed in large quantities. This data also suggests that due to the increase of PAM 

that is adsorbed, more PAM is likely to remain downhole. The potential for degradation to 
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acrylamide is limited, due to the relatively low temperature and neutral environment of the UK 

subsurface, and the experimentation methods.  
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5. The Desorption Properties of Adsorbed 

Polyacrylamide 
 

5.1. Introduction 

Alongside the previously outlined adsorption capacities of some of the shales, another 

key issue is how the adsorbed PAM may desorb off the shales and return in flow-back or 

produced fluids. This desorption could occur over day or weeklong timescales as a result of the 

flushing stages of a frack, or could occur over longer timescales such as years or decades. 

Typically, particularly in the United States, a hydraulic fracture consists of four main stages; 1) 

an acid stage consisting of water and usually HCl to clear the wellbore of debris; 2) the pad 

stage which initially open up the well bore to fluids before the frack; 3) the ‘prop sequence 

stage’ which is where fluid and proppant are pumped downhole under high pressure (the main 

frack stage); and  4) the flush stage (Holloway and Rudd, 2013; Speight, 2016). This flushing 

stage of a hydraulic fracture is commonly referred to as the final stage of a frack and is used to 

clean remaining aggregate, proppant or residual additives from the fractures (Al-Tailji et al., 

2014; FracFocus, 2018; Holloway and Rudd, 2013; RigZone, 2019; Speight, 2016). Usually 

during this flushing stage freshwater, free from additives, is pumped down to remove these 

residuals. In this chapter this flushing stage is simulated in laboratory conditions so that 

adsorbed PAM that may desorb can be quantified. If amounts of desorbed PAM are minimal, 

this means that the adsorbed PAM is remaining on the surface of the samples and thus has the 

potential to degrade or de-polymerise to acrylic, acrylamide or ammonium.  The experiments 

in this chapter were conducted at room temperature and at equilibrium. No rates of adsorption 

or desorption were measured. Adsorption and desorption experiments are referred to using 

‘Ads-Des’. 

Results from this chapter were used in a project summary poster presented at an 

Environment Agency Knowledge Exchange event in Bristol, 2019. Posters can be viewed in the 

Digital Appendices.  

 

5.2. Aims and Objectives 

The aim of this chapter was to investigate whether adsorbed PAM can be desorbed off 

the shale surface if flushed using freshwater, as is typical in the industry (Al-Tailji et al., 2014). 

This flushing phase was simulated by soaking rock samples, that had aqueous PAM adsorbed 

to them, in freshwater and agitated over a similar time period to the adsorption experiments 

(see Section 3.3). Understanding the desorption behaviour of PAM to some of the same samples 
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used in the RT experiments will be key in understanding the potential polluting effects of PAM 

in the subsurface and potentially if this adsorbed PAM may affect reservoir permeability (Yang 

et al., 2018).  

 In this chapter, a subset of samples from the room temperature adsorption 

experiments were tested using a more constrained concentration range of PAM. A small range 

of lithology types were tested by using some of the same samples used in both the RT and HPHT 

adsorption experiments; OC 2, OC 6 and OC 7.  

 

5.3. The study of PAM desorption 

Due to the primary use of PAM in the agricultural and water treatment industries; there 

have been multiple studies on the PAM interactions with soil and clay type. Results generally 

conclude that little to no PAM can desorb either when kept wet or dry, and PAM can become 

irreversibly bonded (Nadler et al., 1992). The drying of samples producing irreversibly 

adsorbed PAM is something that is backed up by Green and Stott (2001). PAM can adsorb so 

well to soil samples that chemical solvents are needed for adequate desorption (Langenhoff, 

2011).  More recently there have been studies focussing on how PAM is used as a slick-water 

fluid fracking additive. Yang et al. (2018) discusses that adsorption and desorption capacities 

of PAM can vary with the addition of certain additives, particularly urea. The addition of urea 

can help against the  decreasing of the permeability in the reservoir which the adsorbed PAM 

contributes to. Guo et al. (2018) states how adsorption capacities of PAM are high, and 

desorption can be aided by an increase in temperature, as would be the case in subsurface 

environments.   

 

5.4. Adsorb-Desorb Sample Preparation and Methodology 

The methodology for the “adsorb-desorb” experiments was conducted in a very similar 

way to the previous adsorption methods mentioned in both the RT and HPHT adsorption 

experiments (Sections 3.3.1 and 4.5). One major change in the methodology was to the sample 

type, in this experiment a 1 x 1 x 1 cm cube of the rock sample rather than 1 g of powder was 

used. Using a powdered 1 g sample in this type of experiment would have made it difficult to 

constrain the hydrophobicity and surface area. To best mitigate against the hydrophobic 

properties of a rock powder entering a viscous solution, and the necessary drying associated 

with the desorption experiments, cubes of rock were used. Cubed rock samples of equal size 

also mitigate against variation in the amount of surface area available for adsorption within 

each experiment whilst being inclusive of natural porosity or permeability of the shale that 
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would not be the case for powdered samples. Only 3 samples were selected for the full adsorb-

desorb tests. Two samples were tested initially, OC 1 and OC 3, to ensure the method was 

robust. The samples selected were; OC 2, OC 6 and OC 7. Only outcrop samples could be used 

for this analysis based on the preparation of the 1 cm3 rock cubes and the amount of sample 

availability.  

 There were some changes to the methodology from previous adsorption experiments. 

Firstly, in the room temperature and HPHT adsorption experiments, 1 g of a fine rock powder 

was used. In these desorption experiments 1 cm x 1 cm x 1 cm cube of rock was used. The use 

of this type of cube was to ensure, as best possible, the same amount of surface area for each 

sample. If a powder was used for this type of experiment there would be no means of obtaining 

how hydrophobic each 1 g of powder had become upon entering the fluid. Furthermore, it 

would be almost impossible to dry a consistent amount of powder to rehydrate and measure 

aqueous desorbed PAM that may be present.  

Secondly, the desorption stage: after a sample was removed from a PAM slick-water 

fluid and any remaining aqueous PAM measured for adsorption, the sample was allowed to air 

dry. Air drying the rock sample mitigates against the transference of any aqueous PAM 

remaining on a wet sample into the new freshwater fluid, i.e not measuring abundant PAM that 

was not adsorbed in the first place. It is of course, highly unlikely that the subsurface would 

become dry, and any PAM that has not adsorbed, will return to the surface during a flushing or 

flowback stage. Once dry, this sample was then placed in to fresh water, agitated and left for 

the same time period that had been allowed for adsorption. After 12 hours the sample was 

removed and the fluid was analysed using the N-Bromination method, as detailed in Section 

3.3.5 to assess for aqueous PAM that was desorbed.   

Thirdly, to gain only an insight into the desorption properties of adsorbed PAM, only 

three concentrations of a PAM slick-water fluid were used; 15.625 mg/L, 62.5 mg/L and 250 

mg/L. This would mean that samples can be calibrated to the 0-250 mg/L linear calibration.  

 

5.4.1. Experimental Procedure 

Step by step guidance below is linked to Figure 5.1 and Figure 5.2. 

Day 1: The relevant PAM slick-water concentrations (15.625, 62.5, and 250 mg/L) 

were diluted down from an original 1000 mg/L PAM solution. A total of 40 ml of each diluted 

fluid was placed into a 50 ml glass vial. For each single sample there were 4 rock cubes, one 

placed into each respective concentration including a 0 mg/L blank.  Samples were agitated on 

the shaker table at 400 rpm and left overnight for adsorption to occur, similar to the RT 

adsorption experiments.  
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Day 2: Cubed samples were removed from the slick-water fluids and left to air dry, 

ensuring no fluid was forcibly removed from the samples themselves. Once samples were fully 

dry, they were re-submerged in 40 ml of fresh water, agitated for 1 hour at 400 rpm and then 

left overnight to allow desorption to occur. Meanwhile, fluids from the adsorption stage of the 

experiment were diluted tenfold with 18 ml of fresh water to 2 ml of sample water and left to 

mix overnight.  

Day 3: Original adsorption fluids that have been diluted were then analysed using the 

N-Bromination method providing adsorption results. Samples in the desorption phase of the 

experiment were removed from the fresh water glass vials. This freshwater fluid was diluted 

tenfold, to maintain consistency in the dilution of fluids measured on the spectrophotometer, 

and mixed.  

Day 4: Diluted freshwater fluids from the desorption phase were analysed using the N-

Bromination method to measure for aqueous PAM that would be present due to desorption.  

 

 

Figure 5.1: A summarised diagram of the desorption experiment setup. 1) Aqueous PAM (white 
circles) is mixed into the relevant concentrations; 2) rock sample cube is added to the fluid and 
left overnight for adsorption to occur; 3) the rock sample is removed from the fluid and air dried 
and; 4) the sample is placed into a freshwater fluid, simulating the ‘flush’ stage and allowing for 
PAM to desorb back into solution.  
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Figure 5.2: Graphical diagram of the adsorb-desorb methodology as explained in Section 5.4.1.  
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Figure 5.3: Example 1 cm cubes used in the experiments for 
OC 7 (left) and OC 2 (right).  

 

Figure 5.4: Example of an OC 7 sample saturated in 40 
ml of a PAM rich fluid. From here, the sample is 
removed and air dried before being placed into 40 ml 
of freshwater in a similar setup to the one displayed.  
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5.5. Adsorb-Desorb Isotherms 

All the results from adsorb-desorb experiments were plotted on the same three isotherms 

as per the RT and HPHT experiments: linear, Freundlich and Langmuir. To plot these correctly, 

as samples were divided by size and not mass, sample weights needed to be accounted for. 

Instead of 1 g mass per sample, samples cube weights were averaged. Weight results are shown 

in Table 5.1. 

 

Table 5.1: Average weights of all samples 
as 1 cm cubes used in the adsorb-desorb 
experiments. 

 

Upon creating the isotherms and results for adsorbed PAM in mg/kg, the weight values 

shown in Table 5.1 had to be used. Samples OC 1 and OC 3 are not included in these results 

here as they were used as test samples when refining the method.  

 

5.6. Adsorb-Desorb Statistical Analysis Methodology  

As per previous chapters, linear regression and ANOVA were conducted on all isotherm 

results. Unfortunately, statistical analysis could not be conducted against the quantitative and 

qualitative shale characterisation data due to limited number of samples used. An 

ANOVA was also conducted on value for percentage removal and amount adsorbed (mg/kg 

from a linear isotherm) for all types of experiment using the samples used in this chapter (OC 

2, OC 6 and OC 7). Factor used for ANOVA analyses were: 

1) Percentage Removal 

a. Sample Name (OC 2, OC 6 and OC 7 and duplicates thereof).  

b. Experiment Type (RT, HPHT and ADS-DES) 

c. Initial PAM concentration (15.625, 62.5 and 250 mg/L)  

WEIGHT

(g/cc)

OC 1 2.44

OC 2 2.87

OC 3 3.08

OC 6 4.12

OC 7 3.84

SAMPLE
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2) Adsorbed Concentration (mg/kg) 

a. Sample Name (OC 2, OC 6 and OC 7 and duplicates thereof).  

b. Experiment Type (RT, HPHT and ADS-DES) 

c. Initial PAM concentration (15.625, 62.5 and 250 mg/L)  

 

Two ANOVA analyses were run. One run accounted for all experiment types, the other 

removed HPHT as there was only one sample (OC 7) that was used in both the HPHT and Ads-

Des experiments. In the second analysis, Ads-Des samples were compared to the comparative 

RT sample.  

 

5.7. Adsorb-Desorb Calibration 

Due to the limited range of concentrations used in the adsorb-desorb experiments, a 

maximum concentration of 250 mg/L, only one linear calibration was used between 0 and 250 

mg/L. One set of standards between 0 and 1000 mg/L was calibrated against in the 

spectrophotometer, maintaining consistency to all other experiments (Figure 5.5).  

 

Figure 5.5: Linear calibration used for the adsorb-desorb experiments. Standards were only 
calibrated between 0 and 250 mg/L as the highest concentration used in these experiments was 
250 mg/L.  
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The linear calibration was used as there was no statistically significant difference 

between data for either the linear, polynomial (c = 0) or polynomial (c ≠ 0) fits between 0 and 

250 mg/L.  

 

5.8. Adsorption Results 

In total, after testing and method refinement, 3 samples and their duplicates were 

measured alongside a duplicated blank: there was a total of 18 isotherms to plot. Sample OC 7 

(1) produced an anomalous data point, grossly off trend with the respect to the remaining 

sample and sample duplicate points, and so this was removed from the analysis (Figure 5.6) 

Least squares regression was performed on all isotherms (Table 5.2). 

 

 

Table 5.2: Summary table of the statistical analysis performed on all the adsorb-desorb isotherm 
results. PAM concentrations used are displayed: 0.00156 %, 0.00625 % and 0.025 % PAM. Only one 
calibration type is used, the 0-250 mg/L for all isotherms; linear, Freundlich and Langmuir. 
Significance was tested with a 0.05 margin of error.  

 

Aq r2 adj P-VALUE Log (Ads) r2 adj P-VALUE Aq/Ads r2 adj P-VALUE

221 + 6.20 Aq  1.320 + 0.829 Log (aq) 0.069 + 0.0 Aq
             209          1.71              0.386          0.221                    0.021          0.0

199.8 + 6.520 Aq  1.658 + 0.660 Log (aq) 0.052 + 0.0 Aq
            78.3            0.641             0.004           0.003                   0.011           0.0

690 + 1.46  Aq  2.338 + 0.288  Log (aq) 0.029  + 0.0 Aq
             589          4.87             0.958           0.611                    0.031          0.0

75.51 + 8.1194 Aq  1.390 + 0.787 Log (aq) 0.073 + 0.0 Aq
         1.75              0.0159              0.104            0.061                   0.018           0.0  

-14.7  + 4.728 Aq  -0.344  + 1.483 Log (aq) 0.594 - 0.002  Aq
             50.9           0.402               0.657          0.365                  0.333        0.003

71.0 + 7.728 Aq  1.551 + 0.690 Log (aq) 0.074 + 0.0 Aq
           56.7               0.5              0.271           0.157                    0.038          0.0

0.58

OC 7 (2) 99.17% 0.041 90.14% 0.143 0.00% 0.541

OC 7 (1) 98.56% 0.054 88.57% 0.154 0.00%

0.182

OC 6 (2) 100.00% 0.001 98.81% 0.049 41.09% 0.365

OC 6 (1) 0.00% 0.814 0.00% 0.719 84.02%

0.31

OC 2 (2) 98.08% 0.062 100.00% 0.002 91.61% 0.131

OC 2 (1) 85.95% 0.171 86.75% 0.166 56.25%

SAMPLE
0.0015625, 0.00625, 0.025 % PAM

LINEAR FREUNDLICH LANGMUIR
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Figure 5.6: All three types of isotherm for the adsorb-desorb data using a 0-250 mg/L calibration. 
From top down; A is linear, B and C are Freundlich and linearised Freundlich respectively and D and 
E are Langmuir and linearised Langmuir respectively.  

 

From the data (Table 5.2), the Langmuir isotherm offered the worst number of fits, 2 

classified as good, and 1 of these as excellent. No fit for the Langmuir isotherm was found to be 

statistically significant. For both the linear and Freundlich isotherms, two isotherms showed 

significant fits and for both five isotherms were classified as having good 𝑅𝑎𝑑𝑗
2  fits. From this 

the linear isotherm produced 4 isotherms with excellent 𝑅𝑎𝑑𝑗
2  fits and Freundlich 3.   

Although, not integral to the desorption analysis, maximum coverages can be estimated 

from the Langmuir isotherms (Table 5.4). Results here should be only treated as estimations 

due to the small size of the dataset and the lack of significant fit for this isotherm (Table 5.2).  



133 
 
 

 

Table 5.3: Maximum coverages calculated from the Langmuir isotherms for the adsorb-desorb 
experiments. Results are estimates based upon the small statistical dataset input.  

 

Dependent on initial aqueous PAM concentration, 15.625, 62.5 or 250 mg/L, up to 83 % 

can be removed by means of adsorption (Figure 5.7).  

 

 

 

Figure 5.7: Percentage removals for the concentrations used in the adsorb-
desorb experiments. The mean percentage removal is denoted by an ‘x’ symbol 
and all outliers from the general model by a dot.  

 

It may be possible to conclude that percentage removal decreases with an increase in 

the initial aqueous PAM concentration, similar to observed results in the RT and HPHT 

adsorption experiments (Section 3.7.2 and 4.9.2). If true, the decrease in percentage removal 

with an increase in PAM concentration would suggest monolayer adsorption see discussion. 

LITHOLOGY TYPE SAMPLE MAXIMUM COVERAGE MAXIMUM COVERAGE MAXIMUM COVERAGE

(Room Temperature) (HPHT #1) (Adsorb-Desorb)

LBS BH 2 (1) 441

UBS BH 3 (2) 574

UBS OC 7 (2) 1723 18062 3373

Pendle Grit (silty) OC 2 (1 & 2) 2429 - 3026

Sand OC 8 3769

LBS BH 2 (2) 4079

LBS BH 5 (1 & 2) 4686 - 4754 940-14442

Carboniferous Shale BH 6 (1 & 2) 4287 - 6654 11163 - 14983

Pendle Grit OC 5 (1 & 2) 6518 - 7276 22972

UBS/Lst OC 6 (1) 7818 1151 - 3917

UBS BH 4 (2) 12126

UBS (silty) OC 4 (2) 3365 - 15365
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Comparison of the adsorbed concentrations (mg/kg) amongst all samples used in the 

ads-des, RT and HPHT experiments shows that there is no statistical significance between 

experiment type and adsorbed concentration (mg/kg) apart from with the ‘initial PAM 

concentration (mg/L)’. Including and excluding the HPHT experiment as a factor the P-value 

for PAM concentration is 0.004 (including the HPHT factor) and 0.031 (excluding the HPHT 

factor) (Table 5.4). An increase in the amount adsorbed to the shale (mg/kg) would be 

expected alongside an increase in initial PAM concentration, simply because there is more 

available to adsorb before a maximum coverage is reached.  

Comparing the percentage removal of the samples (OC 2, OC 6 and OC 7) to the same 

samples used in both the RT and HPHT experiments using ANOVA (Table 5.5) there is no 

statistically significant difference (at the 95 % probability of being zero) between experiment 

type and the percentage removed.  

 

 

Table 5.4: ANOVA results for the comparison of adsorbed concentration across all experiments 
involving samples OC2, OC 6 and OC 7 (left) and experiments removing the HPHT elements, where 
only one sample of the Ads-Des samples was used (right). 

 

Table 5.5: ANOVA results for the comparison of percentage removal across all experiments 
involving samples OC2, OC 6 and OC 7 (left) and experiments removing the HPHT elements, where 
only one sample of the Ads-Des samples was used (right).  

 

Detailed versions of Table 5.4 and Table 5.5 are available in Digital Appendices E.2 and 

E.3 showing fitted means for all factors in the ANOVA models for each test.  

 

ANOVA F-VALUE P-VALUE ANOVA F-VALUE P-VALUE

  SAMPLE 0.16 0.952   SAMPLE 0.68 0.641
  EXPT 0.33 0.726   EXPT 0.41 0.556

  PAM (mg/L) 9.83 0.004   PAM (mg/L) 9.28 0.031

  SAMPLE x PAM (mg/L) 0.94 0.525   SAMPLE x EXPT 0.48 0.755
  SAMPLE x PAM (mg/L) 1.35 0.41

  EXPT x PAM(mg/L) 7.98 0.04

MODEL SUMMARY MODEL SUMMARY

R2 Adj R2 R2 Adj R2

71.58 30.23 95.8 73.77

RT, HPHT & ADS-DES RT & ADS-DES

ANOVA F-VALUE P-VALUE ANOVA F-VALUE P-VALUE

  SAMPLE 0.33 0.853   SAMPLE 0.41 0.793

  EXPT 0.39 0.686   EXPT 0.31 0.605

  PAM (mg/L) 2.41 0.135   PAM (mg/L) 4.08 0.108
  SAMPLE x PAM (mg/L) 0.28 0.958   SAMPLE x EXPT 1.37 0.383

  SAMPLE x PAM (mg/L) 0.69 0.694

  EXPT x PAM (mg/L) 4.3 0.101

MODEL SUMMARY MODEL SUMMARY

R2 Adj R2 R2 Adj R2

48.9 0 91.02 43.85

RT & ADS-DESRT, HPHT & ADS-DES
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5.9. Desorption Results 

Using the 0-250 mg/L calibration, aqueous PAM that may be present in the fluid from 

the desorption phase will have been desorbed from the samples. In summary, for all samples, 

desorbed PAM was minimal; with some aqueous PAM being so negligible it was undetectable 

on the spectrophotometer. A full suite of results can be viewed in Table 5.6.   

 

Table 5.6: Results for amounts both adsorbed and desorbed for samples OC 2, OC 6 and OC 7. ‘Adsorbed’ 
denotes the concentration of adsorbed PAM to that sample, the difference between ‘initial’ and ‘remaining 
aqueous’ concentrations. ’% removed’ denotes the % of the original aqueous PAM concentration that has 
been removed from solution via adsorption.  ‘Desorbed’ denotes the amount of adsorbed PAM that desorbs 
into the fresh-water fluid. ‘Percentage desorbed’ denotes the percentage of the adsorbed PAM that desorbs 
over the course of the experiment.  

INITIAL REMAINING AQUEOUS ADSORBED % REMOVED DESORBED % DESORBED

(mg/L) (mg/L) (mg/L) (%) (mg/L) (mg/L)

OC 2 (1) 15.625 11.800 3.825 24.482 n/a (0) -

OC 2 (2) 15.625 9.738 5.887 37.676 n/a (0) -

OC 6 (1) 15.625 9.624 6.001 38.409 2.752 45.851

OC 6 (2) 15.625 9.395 6.230 39.875 n/a (0) -

OC 7 (2) 15.625 8.707 6.918 44.273 0.003 0.042

OC 2 (1) 62.5 42.953 19.547 31.276 n/a (0) -

OC 2 (2) 62.5 46.045 16.455 26.328 n/a (0) -

OC 6 (1) 62.5 10.311 52.189 83.503 n/a (0) -

OC 6 (2) 62.5 44.441 18.059 28.894 0.690 3.821

OC 7 (2) 62.5 47.648 14.852 23.763 n/a (0) -

OC 2 (1) 250 207.536 42.464 16.986 0.232 0.546

OC 2 (2) 250 206.047 43.953 17.581 n/a (0) -

OC 6 (1) 250 209.025 40.975 16.390 n/a (0) -

OC 6 (2) 250 184.973 65.027 26.011 0.919 1.413

OC 7 (2) 250 190.356 59.644 23.858 0.461 0.773

SAMPLE
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Figure 5.8: Adsorption and desorption results in terms of remaining aqueous PAM initially, 
after adsorption, and after desorption (flushing). ‘Original’ denotes the initial aqueous PAM 
concentration; ‘Remaining’ denotes the aqueous PAM left in solution after quantities have been 
removed by adsorption and; ‘Desorbed’ denotes aqueous PAM that has been desorbed from the 
samples.  
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In terms of desorption, after results were calibrated, negligible PAM is desorbed from 

these samples during the simulated flushing stages (Figure 5.8 and Table 5.6). After calibration, 

if some samples showed negative amounts desorbed, these were zeroed to account for 

unrealistic values. The maximum amount of PAM that was desorbed back into solution was 

2.75 mg/L for sample OC 6 (1). This sample adsorbed ~ 6 mg/L of aqueous PAM after being 

submerged in a 15.625 mg/L PAM slick-water solution. This particular desorption result for 

OC 6 (1) was much higher than the typical results for all other samples. In general, between 

0.919 and 0.002 mg/L of PAM were desorbed back into solution during the simulated flushing 

stages, irrespective of initial PAM concentration adsorbed. This equated to values between 

0.042 % and 3.8 % of adsorbed PAM desorbed back into solution (Table 5.6). Results show no 

relationship between initial concentration of PAM and amount of PAM desorbed after flushing.  

 

5.10. Discussion 

Using 1 cm cubes to mitigate the problem of consistent surface area as best possible, 

the adsorption of aqueous PAM occurs as ‘normal’, similar to what has already been observed 

throughout this study so far. The uptake of PAM by the samples varies from 44 % removal in 

slick-water concentrations of 15.625 mg/L PAM to 26 % removal in slick-water concentrations 

of 250 mg/L PAM. Statistical analysis of the percentages removed show that there is no 

statistical difference between the types of experiment. A decrease in percentage removal 

occurring alongside an increase in initial PAM concentration is observed in RT. HPHT and Ads-

Des experiments.  

The more important result in this chapter is that the overwhelming proportion of 

adsorbed PAM did not desorb. PAM is unlikely to desorb in large quantities due to the large 

molecular sizes, long chained, flexible nature of PAM, making it unlikely that all segments can 

be detached from the adsorbate surface into the fluid (Stuart et al., 1980). Results in this study 

show that in the absolute highest case 45 % could be desorbed from a sample that has been 

saturated in a 15.625 mg/L fluid. Desorption ranges between 0.042 % and 3.8 % in the most 

likely cases. One result shows desorption of 45.81 %, but this is considerably larger than the 

remaining data. These data show that minimal PAM is desorbed from the rock during the 

flushing stages of a hydraulic fracture, and is likely to remain downhole. Data observed here 

matches conclusions met in other studies both on soil and shale stating that large scale 

desorption is unlikely, and potentially difficult without the aid of other additives.  A study on 

soil, conducted by (Nadler et al., 1992), showed that a maximum of 10 % of adsorbed polymers 

desorbed back into solution, slightly greater yet similar amounts to this study (maximums of 
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3.8 % adsorbed PAM desorbed), and Nadler et al also observed that little to no desorption 

occurred if the soil was kept wet. Desorption in larger quantities, up to 10 % of adsorbed 

quantities, is more likely in lower polymer concentrations (Nadler et al., 1992). In the deep 

subsurface, a fluid rich environment, it can be proposed that minimal amounts of adsorbed 

PAM would desorbed back into solution based on data from this study, and cited studies such 

as Nadler et al,  (1992). This result may be indicative of very low temperature environments 

(experiments in this chapter tested at room temperature) that PAM will remain adsorbed to 

the available rock surface and potentially desorb or degrade over much longer timescales. 

However, in higher temperatures up to 70 °C, similar to UK subsurface temperatures at 2-5km 

depth (Busby, 2010), PAM may be more likely to desorb. In temperatures greater than 70 °C, 

Guo et al., (2018) suggested that adsorption and desorption of the polymer interactions would 

reach dynamic equilibrium where no further adsorption would occur, reportedly stabilising at 

approximately 2.7 mg/g. Statistical analysis could not be conducted on the results due to the 

sample size and so no sample characteristics can be attributed to the amount both adsorbed 

and desorbed. However, due to the range of the sample type, shale (OC 7), limestone rich shale 

(OC 6) and ‘shaley’ sand (OC 2), it can loosely be concluded that there is no particular 

characteristic that can be attributed to the lack of desorption, particularly within the samples 

of interest in the UK shale gas industry; the Bowland Shale, Pendle or Millstone Grit and the 

Hodderense Limestone. Future work on the desorption of PAM in a hydraulic fracturing 

context could focus on how temperatures affect the desorption of the PAM from shale surface, 

and if desorption is minimal, how certain additives, such as urea (Yang et al., 2018), may be 

used to promote desorption if required.  

 

5.11. Conclusions 

In this part of the study, PAM continues to show high levels of adsorptivity to all samples 

used but this time with the linear and Freundlich isotherms performing the best of all 

isotherms. Estimated concentrations at maximum coverage sit within the ranges observed in 

the other room temperature experiments, (Section 3.7.1), up to 3917 mg/kg. Upon simulating 

the flushing stage of a frack at room temperature, negligible amounts of PAM desorb. A 

maximum of 0.919 mg/L PAM was desorbed from an adsorbed amount of 65 mg/L, equating 

to a 1.4 % desorption.  

 

6. Metals Analysis of Flow-back Fluids 
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The data within this chapter was presented as part of a poster presentation at the BGS’s 

UDSIG (“Use of the Deep Subsurface in the UK: What are the implications for groundwater?”) 

conference at Burlington House, 11th-12th July 2018.  

 

6.1. Introduction 

This part of this study focusses primarily on the composition of the flow-back water from 

the samples of the room temperature (RT) (Chapter 3) and high-pressure high temperature 

(HPHT) (Chapter 4) adsorption experiments. As discussed in Section 3.3.1, some fluid was 

taken from the adsorption fluids and stored frozen to be analysed for metals. It is these fluids 

that are analysed in this section.  

One of the most studied impacts of fracking is the potential for contamination from flow-

back waters. Flow-back waters have the potential to contain multiple contaminants including: 

heavy metals, salinity and dissolved organic matter, and in general these increases are 

attributed to human activities (Alloway and Ayres, 1997; Wingenfelder et al., 2005). 

Contaminants, such as the aforementioned, are of key interest in the scientific community and 

for government and policy as they have the potential to endanger ecosystems, wildlife, 

agriculture and humans; and contaminate drinking water, even at trace levels (Mouser et al., 

2016; Wang et al., 1999; Zhang et al., 2018). Multiple journal articles, reports and databases 

have been compiled studying flow-back water contamination, with the majority using 

examples in the USA  (e.g., Chapman et al., 2012). Vengosh et al. (2013) used geochemical 

fingerprinting to delineate the impact of shale gas fluids on the environment, reviewing the 

majority of tight gas shales in the USA, and Warner et al (2013), explored how the discharge of 

wastewater has discernible impact upon local waterbodies, citing, for example, that chloride 

levels 1.7 km downstream were 2-10 times higher than recorded background levels. One of the 

largest databases for flow-back fluids is the USGS Produced Waters Database (Blondes et al., 

2017) citing flow-back data for 114,943 wells located onshore, divided up by multiple factors 

including state, county, basin and geological period. Within this USGS database, full and 

thorough data is sparse as multiple wells do not show any data. Furthermore, not all 

parameters are reported for each well. Data within this study ranges from, but is not 

exclusively, conductivity, total dissolved solids, individual metals, nitrates and dissolved 

oxygen. A summary of USGS data that is relevant to this particular study can be viewed in Table 

6.1. Multiple studies have looked at the compositions of fluids from US shales (Chapman et al., 

2012;  Maguire-Boyle & Barron, 2014; Kresse et al., 2012; and Shih et al., 2015) with other 

literature discussing the chemical composition of these US shales and how this may impact the 

returned fluids (Chermak and Schreiber, 2014; Phan et al., 2015). There is substantially less 
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literature regarding shale chemistry and produced waters specific to the UK. Multiple studies 

have looked at shale gas potential in the UK (eg. Andrews, 2013; Broderick et al., 2011; Jackson 

et al., 2014) some have considered the water quality implications. Parnell et al. (2016) studied 

how selenium enrichment in UK shales could impact ground waters, whilst Stuart (2012) 

assess groundwater impact from these type of operations specific to the UK. The M4 shale gas 

project assessed the wider implications for groundwater quality from a more European 

regulatory perspective (Jacobsen et al., 2015).  

 To date, only one source of UK specific flow-back water has been published: Preese Hall 

flow-back fluid data from 2011 can be found in (Broderick et al., 2011) and is summarised in 

Table 6.1.  

 

Table 6.1: Data from USGS produced waters database 
(Blondes et al., 2017) displaying  reported minimum and 
maximum values, alongside the arithmetic average values for 
the analytes tested in this study. Data is displayed in mg/L. 

 

 The majority of the determinant concentrations reported for the flow-back water from 

Preese Hall 1A lies above the tap water average (Table 7.2), suggesting a need for treatment 

before reuse.  

 

MAX MIN AVG

Al 5290 0.0013 48.347

Ca 193359 0.01 5360.696

Cd 24 0.0001 0.216

Cu 130 0.0001 0.555

Fe 81800 0.00219 70.957

K 78196 0.03 811.171

Mg 137110 0.003 990.149

Mn 440.48 0.000101 6.81

Na 434403 0.1 26953.005

Pb 8187 0.00012 29.586

Si 5555 0.18 54.874

Zn 575 0.0001 11.479

CONCENTRATION (mg/L)
ANALYTE
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Table 6.2: Environment Agency analysis of dissolved salts analysis from Cuadrilla rig Preese Hall 
1A. Data adapted from Environment Agency, 2011 and (Broderick et al., 2011). Metals highlighted 
in green are the ones analysed in this study ‘-‘denotes no data. 

 

 Data from the USGS shows many orders of variation in concentration (Table 7.1 - only 

data for the metals analysed in this study are shown), for example salinity based on sodium 

content can vary from between 0.1 mg/L to 434,403 mg/L, a substantially briny fluid. Very 

hazardous contaminants such as cadmium, lead and copper can reach maximum 

concentrations of 24, 8187 and 130 mg/L, respectively, all above the threshold limits for the 

United States Safe Drinking Water Act (EPA, 1974).  

 The composition of flow-back fluids may also be influenced by other variables within 

the subsurface, such as pH and redox state (Manju et al., 2002). Waters downhole and in the 

subsurface are generally less oxic than the waters being injected as part of fracking fluids 

(Manju et al., 2002). Typically, redox active metals such as Pb, Cd, Cu and Zn (analysed within 

this study) are more likely to mobilise in slightly acidic conditions, pH 5-6 and in slightly less 

oxic conditions (Chuan et al., 1996; Manju et al., 2002). Fluids used in this study were pH 

neutral, and remained neutral after HPHT experiments which used CO2 as a pressurising gas. 

 Based upon some of the data seen in Table 6.1 and Table 6.2, concentrations of some 

metals return in great quantities, far above provided regulatory advice from multiple sources, 

it is of critical importance to fully mitigate and understand this risk for the future of fracking 

to continue safely and with greater support.  

DATE 07/04/2011 14/04/2011 28/04/2011 18/05/2011 14/06/2011 01/08/2011 17/08/2011

Time 13:20 13:30 11:10 14:00 09:55 11:00 09:30

-

-

pH - - - 6.35 7.06 6.33 - 7.54

Acrylamide μg/L - - - - - - 0.05 -

Lead as Pb μg/L 600 <10 <10 <40 <44.9 80.5 <100 <0.417

Mercury Hg μg/L 0.024 <0.01 <0.01 <0.01 0.012 0.09 0.038 <0.013

Cadmium Cd μg/L 1.29 <0.5 <0.5 <2 <1 6.02 <5 <0.04

Bromide mg/L - - 242 854 608 673 1020 <0.444

Chloride Ion mg/L 15400 34400 22200 75000 64300 58000 92800 13.5

Sodium Na μg/L - 15100 9380 28400 23600 21700 34800 22.9

Potassium K mg/L 28.8 52.3 40.6 - - - - -

Magnesium mg/L - 586 401 14770 1350 1370 2170 9.21

Phosphorus P mg/L 1.28 0.0771 <0.02 <0.1 <0.5 0.532 <0.2 -

Chromium Cr μg/L 25 4.03 <3 20.5 53.9 222 42.9 <0.349

Zinc Zn μg/L 565 51.5 <30 173 435 385 <300 -

Nickel Ni μg/L 20.3 <5 <5 <20 <20 <20 <50 1.2

Silver μg/L - - <1 <20 <10 <20 99.4 -

Aluminium Al μg/L 596 <50 <50 <200 <100 1590 <500 <8.04

Arsenic As μg/L 6.2 <1 <1 <1 <1 2.3 <1 -

Iron Fe μg/L 66600 80700 51800 78600 112000 137000 88200 <7.62

Cobalt Co μg/L - - 4.96 <20 <50 <20 <50 -

Copper Cu μg/L 27.5 <10 12.4 36 <20 13.3 <50 -

Nitrogen N mg/L 10.7 52.5 33.4 98.8 77.8 47.9 121 -

Vanadium V μg/L <4 <10 <2 <40 <100 <40 <100 -

Mains Water 

Concentration (avg)

Conductivity 25 
o
C 

μs/cm
-176000133730150614---
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6.2. Aims and Objectives 
 

The purpose of this chapter was to assess the potential contaminant concentrations that 

could return to the surface in flow-back fluid. The composition of flow-back fluids are 

scrutinized in the scientific community, and in the eyes of the government and the public. 

Policy is often shaped around the impact various contaminants may have on the wider 

environment. Assessing the concentrations of these contaminants could be considered in two 

ways, firstly, as direct results of metals increasing in fluids and returning immediately to the 

surface, and secondly, if metals are lost from the fracking fluid to the target formations. This 

study predominantly assesses the former but also assesses losses of contaminants. It must be 

noted that no other timescales, other than the time taken for the adsorption experiments 

discussed in Chapters 3 and 4, were measured, thus it was impossible to conclude if certain 

timescales would influence contamination or adsorbed contaminants would eventually return 

to the surface.  

This chapter analyses all fluids taken from the RT adsorption and HPHT adsorption 

experiments (Chapters 3 and 4) to understand how PAM, and the rock types, influence the 

composition of the flow-back fluid. Fluids are analysed using ICP-OES (Inductively Coupled 

Optical Emission Spectroscopy). Results are then compared to multiple databases to see if 

certain concentrations should be of concern.  

 

6.3. ICP-OES Theory  

To measure environmental fluid samples for metals, there are typically two options 

available; ICP-MS and ICP-OES. The preferred method for this project was the ICP-OES method. 

The reason for this choice was simply because ICP-OES is a more robust against high values of 

TDS, typically ICP-OES can handle up to 30 % contamination whilst ICP-MS, can generally only 

handle TDS contamination to maximum limits of 0.2 % (Tyler, 1995). Typically, ICP-MS 

detection limits are up to 3 orders of magnitude higher than those of ICP-OES (Olesik, 1991), 

however, the contamination offered from tap water samples that have PAM and geological 

substances in could be high, making ICP-OES the preferred choice for this study.   
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Figure 6.1: An example diagram of a ICP-OES setup from sample to measured result. Diagram 
adapted from (Caruso et al., 2017).  
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The basic principle of ICP-OES is as follows:  

1) The sample is pumped via a peristaltic pump to the nebuliser.  

2) The sample is nebulised and the resulting aerosol is then put through a spray chamber. 

Here, heavier or sticky clumps can fall into the waste chamber (denoted by the red *). 

3) The spray is then sent through argon plasma that is generated by the argon gas passing 

through a high frequency electric current supplied by a coil at the end of the torch. The 

argon gas is here ionised and plasma is created. The plasma is then supplied at very 

high temperatures of 10000K.  

4) When the sample spray is sent through the torch, desolvation, atomisation and 

ionisations of each sample take place. The electrons within the samples reach and 

‘excited’ state. 

5) When the electrons return to a lower energy position photons are emitted. The 

wavelengths of the photons are measured and then the result attached to the 

corresponding wavelengths of the analytes of interest.  

For this full analysis to occur, samples needed to be at least 6 ml in quantity and would 

be run for 3 minutes per sample.  

 

6.4. Adsorption Fluid Sample Preparation and Methodology 

Fluids used in the ICP-OES analysis were taken from all adsorption experiments, both 

RT and HPHT reported in Chapters 3 and 4. The method described here for analysing metals 

using the ICP-OES is the identical method as was utilised for the colloid analysis of cadmium 

and sodium (Section 7). As previously mentioned, at least 1 ml of fluid from every single 

adsorption sample and stored frozen until it could be analysed by ICP. Freezing the sample 

would ensure no degradation or biological reactions would take place within the tap water 

samples. Samples were fully defrosted overnight before preparation and dilution with a ~7 % 

HNO3 solution (nitric acid). Weak analytical nitric acid solution is normally used to stabilise the 

sample and the dissolution of metals present (Pappas, 2012).  

 

6.4.1. Stock Preparation 

Using a mixture of references, inclusive of the USGS flow back database (Blondes et al., 

2017; Maguire-Boyle and Barron, 2014; Parnell et al., 2016; Shih et al., 2015), twelve major and 

trace metal contaminants were chosen for analysis within the flow-back fluids. These metals 
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were; aluminium, cadmium, calcium, copper, iron, lead, magnesium, manganese, potassium, 

silica, sodium and zinc.  

The metals chosen would be present within the fluid and the rock within different 

concentration ranges, i.e, calcium or magnesium would be present in generally much larger 

concentrations than cadmium. To account for the likely ranges like the contaminants were 

divided into four different groups; “high case”, “mid case”, “low case” and “lowest case”. Due to 

the large range in sample type (shale, limestone and sandstone) a broad range needed to be 

covered so that low concentrations of the same analyte would be as detectable as higher 

concentrations of the same analytes but from a different sample. 

For the purposes of this chapter, “stock” refers to the bulk fluid containing multiple 

analytes that has been produced with a mix of dilute 7 % HNO3 and major stock solutions 

(Table 6.3). A “standard” is the calibration fluid produced in numerous concentration ranges 

derived from diluting down varying measurements of the “stock” solution (Table 6.4).  

All bulk stock solutions were provided by the ICP laboratory at Durham University 

which were in turn sourced from manufacturers ROMIL Ltd. To produce the main stock 

solution, multiple measurements of pure stocks in high concentrations were added to a 7 % 

HNO3 matrix, thus diluting them down into a matrix that could be easily diluted further for the 

production of standards. The bulk stock solution consisted of the aforementioned high, middle, 

low and lowest cases. The correct amount of manufacturer stock solution to be used in the bulk 

stock was calculated by using;  

 

                                𝑪𝟏 × 𝑽𝟏 =  𝑪𝟐 × 𝑽𝟐       Equation 6.1 

 

For Equation 6.1; C1 is the concentration of the pure manufacturer stock solution, V1 is 

the volume to be taken from the manufacturer stock solution, C2 is the final concentration of 

the diluted made stock and V2 is the final volume of the stock solution being produced. Using 

this approach, a 40 ml stock solution was created (Table 6.3).  
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Table 6.3: Stock solution created to be diluted further for the standards. 100 mg/L for Ca, K, Mg and 
Na; 25 mg/L for Al, Fe and Si; 5 mg/L for Cu, Mn, Pb and Zn and; 1mg/L for Cd.  

 

Using the measurements depicted in Table 6.3, a 40 ml bulk stock solution was 

produced containing 12 analytes in concentrations ranging from 1 to 100 mg/L. This solution 

would be diluted down to produce multiple standards for the purposes of creating a calibration 

line for ICP-OES analysis.  

 

6.4.2. Standard Preparation 

From the completed bulk stock solution, six standard solutions and a blank were 

produced for each run on the ICP. These standards and their concentrations can be viewed in 

Table 6.4. Each standard was made up as a dilution of 40 ml in a 50 ml polypropylene centrifuge 

tube with the addition of ~7 % nitric acid.  

 

ELEMENT STOCK VOL (ml)
STOCK SOLUTION 

(mg/L)
DILUTED STOCK 

VOL (ml)
VOL NEEDED FROM 

STOCK ml (μl)
CONC OF NEW 
STOCK (mg/L)

C1 V2 V1 C2

Calcium (Ca) 100 10000 40 0.4 100

Potassium (K) 100 10000 40 0.4 100

Magnesium (Mg) 100 10000 40 0.4 100

Sodium (Na) 100 10000 40 0.4 100

Aluminium (Al) 100 10000 40 0.1 25

Iron (Fe) 100 10000 40 0.1 25

Silicon (Si) 100 1000 40 1 25

Copper (Cu) 100 1000 40 0.2 5

Manganese (Mn) 100 1000 40 0.2 5

Lead (Pb) 100 1000 40 0.2 5

Zinc (Zn) 100 1000 40 0.2 5

Lowest Cadmium (Cd) 100 1000 40 0.04 1

STOCK SOLUTION

High

Mid

Low



147 
 
 

 

Table 6.4: The concentration range of the ICP standards. High, mid, low and lowest are equivalent 
to the same labels in Table 6.3. For example, Calcium in the “40” standard would have a 
concentration of 40 mg/L, whereas Copper in the “40 mg/L” standard would have a concentration 
of 2 mg/L. ‘Vol from stock’ refers to the amount taken from the bulk stock solution and placed into 
the 50 ml centrifuge tube for dilution to 40 ml volume.  

 

 

Figure 6.2: Stock and standard preparation diagram, using Magnesium as an example fluid. To 
produce the stock solution, 40 ml (or 400 μl) of 10,000 mg/L stock Magnesium are added into the 50 
ml centrifuge tube. The remaining analytes are added in their respective quantities and then the fluid 
is diluted to 40 ml with 7 % nitric acid, this is the stock solution.  

 

 Using magnesium as an example, the production of a standard from stock to standard 

is shown in Figure 6.2. From the 10000 mg/L stock of magnesium, 400 μl was added to a 50 ml 

centrifuge tube. Other analytes were then added in their respective amounts and the fluid is 

then brought to 40 ml with the addition of HNO3. No yttrium was added to the bulk stock 

solution. The stock was then diluted down, and as per the example in Figure 6.2, 4 ml of bulk 

stock solution was added to 36 ml of HNO3 to produce the standard solution named “20” in 

Name of Standard High Mid Low Lowest Vol from stock (ml)

mg/L mg/L mg/L mg/L decanted to produce 20 ml

"40" 40 10 2 0.4 8

"20" 20 5 1 0.2 4

"10" 10 2.5 0.5 0.1 2

"5" 5 1.25 0.25 0.05 1

"1" 1 0.25 0.05 0.01 0.2

"0.05" 0.05 0.0125 0.0025 0.0005 0.025 (in 50ml)

"Blank" 0 0 0 0 0

STANDARDS
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Table 6.4. The example fluid in Table 6.4 contains 20 mg/L of Ca, K, Mg and Na; 5 mg/L of Al, 

Fe and Si; 1 mg/L of Cu, Mn, Pb and Zn and; 0.2 mg/L of Cd.  

 

6.4.3. Sample Preparation  

For all samples that were to be analysed on the ICP-OES, 1 ml of flow-back sample, 

stored from the adsorption experiments, was pipetted into a 15 ml polypropylene centrifuge 

tube. This 1 ml sample was then diluted with 10 ml of ~7 % HNO3 to produce an 11-fold dilution 

of every fluid sample. The 11-fold dilution was used to dilute out potential signal suppression 

that may have derived from the fluids with the higher PAM concentrations, due to the 

saturation of carbon from the PAM and the viscosity of the material. The use of the 11-fold 

dilution was also small enough as to not dilute out the analysis of analytes that would return 

in very small quantities, such as Cd. All samples were then spiked with 2 mg/L of yttrium used 

as an internal standard. In a fluid ‘sample’ of 11 ml, only 22 μl of a 1000 mg/L yttrium stock 

was needed for this spike in the samples, but in a standard of 40 ml, 40 μl of yttrium stock is 

needed for the same 2 mg/L  concentration. Once all fluids and analytes were added, sample 

must be sealed and shaken well before analysis.  

In addition to the samples of flow-back fluid from the relevant experiments in Chapters 

3 and 4, eight tap waters from multiple locations around the UK were analysed for their 

compositions. Alongside the tap water, a simple 1000 mg/L PAM slick-water fluid is also 

analysed, identical to the fluids used in the experiments. Testing the tap water and slick-water 

fluids helps understand the variation in different mains tap waters around the country that are 

likely to be used by operators in shale exploitation. 

 The same dilution procedure is used in Chapter 7 of this thesis, when analysing fluids 

from the colloid experiments.  

 

6.4.4. Yttrium Spike 

To ensure that the ICP-OES was working correctly for all samples, and so that sample 

suppression could be accounted for, yttrium was used as a spike in all standards and samples. 

Yttrium is a lithophile trace element and in very rare abundance on Earth, therefore making 

contamination in detectable quantities both within rock and fluid samples highly unlikely. 

yttrium never occurs in nature as a free element, but is found in almost all rare earth minerals 

and uranium ores (Lenntech., 2017). Multiple literature sources using an ICP-OES analysis 

technique cite the use of yttrium as an internal standard (eg. Marucco et al., 1999; Zachariadis 

and Vogiatzis, 2010). In this study the equivalent measurement for 2 mg/L of yttrium was 
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pipetted into each sample and standard after the preparation. No yttrium spike is added to the 

stock solution.  

In the results, yttrium was measured with a wavelength of 3710 nm displayed as 

Y3710. The intensity of all analytes, including yttrium, is measured in counts per second (ct/s). 

When analysis is in progress, checks on results every so often will help you know if the internal 

standard is working or not. A working internal standard means that all samples have the 

correct and same amount of yttrium in and that you have correctly pipetted and mixed the 

samples. If correct, yttrium will generally have very similar ct/s across all standards and 

samples. If not, yttrium counts will vary. Standards were run every so often in between the 

samples to ensure the machine is consistently working and no major measurement drift has 

occurred. For example, if a standard was measured at the start of the analysis with 250,000 cts 

of yttrium and then measured again in the middle of the sample run, the yttrium should still 

return approximately 250,000 cts.  

 

6.4.5. Sample Run Order 

Samples were run in batches of ~60 – 80 samples per batch as the machine could not 

be run overnight. Each run consisted of one set of ICP standards containing all analytes (ICP 

STDs) and one set of adsorption standards (PAM STDs) related to each adsorption experiment 

run. If two adsorption runs managed to be run in one ICP batch, the corresponding two sets of 

PAM standards would be run too, samples and some procedural standards (Procedural/P 

STDs).  
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Table 6.5: Table showing the run order for all the flow-back 
fluids from both the RT and HPHT adsorption experiments. 
Multiple tests were run to test and analyse suppression from a 
PAM rich fluid. Run #4 for RT adsorption failed due to an ICP 
machine failure. 

 

 Multiple tests were run at the start of the study to obtain the right dilution for the PAM 

fluid, and thus an 11 fold dilution was settled on. A flow-back fluid sample of 1 ml was diluted 

with 10 ml of ~7 % analytical grade HNO3. Results were then corrected for at the end of the 

analysis process. Sample run #4, highlighted in red in Table 6.5, failed on the ICP.  

All samples were tested for the 12 analytes displayed in Table 6.3. Of these analytes, 

multiple wavelengths were analysed to ensure no analytes were using the same or similar 

wavelengths for analysis (Table 6.6).  

RUN No. Samples RUN No. Samples

1 Tests

2 Tests

3 Tests

BH 5

OC 3

OC 1

BH 4

BH 1

BH 6

Rock sample tests

BH 2

BH 3

8 Tests

OC 5

OC 6

OC 8

OC 2

OC 4

OC 7

10

ROOM TEMPERATURE HPHT

1

125 mg/L  - 1000 

mg/L PAM
2

0 mg/L - 62.5 mg/L 

PAM

4

5

6

7

9
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Table 6.6: Analytes selected for measurements on the ICP and their respective wavelengths. 

 

6.4.6. Results Analysis and Quality Control 

Immediately after analysis, each yttrium signal was checked for suppression. Samples 

that exhibited major problems were investigated. Final output results were then subtracted 

from their respective PAM experiment standards in two ways. This subtraction was used to 

understand two things: 

1) What is the composition of the whole fluid that would be returning to 

surface, inclusive of metal additions made by adding the PAM?  

• Metal additions were processed by subtracting the 0 mg/L PAM 

standard from every sample processed, thus giving a result 

indicative of the whole fluid that is returned. 

2) What have the rock samples added to the composition of the flow-back 

fluid, i.e. minus the original frack fluid concentration?  

• The addition from the samples is processed by subtracting the 

relevant PAM standard concentration from the sample with the 

same concentration. This would give a result indicative of 

contaminants that may have been added (or in some cases been 

subtracted) from the bulk fluid by the sample. For example, the 

results for the 62.5 mg/L OC 7 (2) sample would have the 62.5 

ANALYTE WL 1 WL 2 WL 3 WL 4 WL 5 WL 6

Al 1670 2204 3961

Ca 3158 3179 3736 3933

Cd 2144 2265 2288

Cu 2135 2199 3247

Fe 2343 2382 2395 2599 2730

K 4044 7664

Mg 2025 2790 2795 2802 2852

Mn 2576 2605 2939 3482 4030 4033

Na 3302 5688 5889 8183

Pb 2169 2203 2833

Si 1988 2124 2506 2516

Zn 2062 2138 3302

Y 3242 3710
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mg/L PAM standard of that adsorption run subtracted from it 

to observe increases of decreases per analyte.  

Negative values in this process are useful. Negative values represent uptake of these 

contaminants by the shale as there will be less in solution than at the beginning of the 

experiment.  

Once all data has been processed, accounting for ‘1’ and ‘2’ above, all values were 

multiplied by 11 to account for the sample dilution. This final result is the observed 

concentration of the analyte from each 40 ml experiment detailed in both Chapters 3 and 4.   

Ratios of the losses and gains of certain metals are then calculated using concentration 

range and comparing it to the original standard fluid. These values were compared to 1, where 

> 1 is a gain (increase into the original fluid) and < 1 is a loss (decrease from the original fluid). 

For this analysis, PAM concentration ranges were amalgamated and results based purely on 

sample type. A paired sample t-test was conducted on all results from the loss or gain ratio data 

based upon factors of metal type, experiment type, and sample type.  

Line graphs were plotted by analyte type and concentration range for each sample. 

These graphs aided analysis into how PAM concentration could affect the composition of the 

flow-back fluid, both in total returned fluid concentration range, and the concentration range 

of anything ‘added’ by the rock type.  

Tap water (or mains water), as the predominant carrier fluid in hydraulic fracturing 

fluids, is also analysed as part of this study. Mains water will vary in concentrations of certain 

metals (albeit below regulatory values) and this will depend on factors such as aquifers, piping, 

sampling sites and infrastructure. The mains water used in this study as the carrier fluid comes 

from the Department of Earth Sciences Environmental Laboratory taps. An analysis of Durham 

University tap water is compared to various tap waters across the country, and both United 

Utilities water composition (as used in Preese Hall (Broderick et al., 2011)) and Northumbrian 

Water sample testing (the water from Durham but at the point of sample for NWL) were 

included.  

A three factor ANOVA was undertaken to assess the difference between the overall values. 

The three factor ANOVA would assess if there was a significant difference between the losses 

and gains, to the ratio of 1, of the RT and HPHT datasets. The three factors included were;  

1) Experiment: Either RT or HPHT. 

2) Sample: Samples BH 6, OC 5 and OC 7 were used in this analysis. A comparison between 

BH 5 RT and BH 5 HPHT was not possible as fluid data from BH 5 RT was unavailable 

due to machine failure (Figure 6.4). 

3) Metal: Ratio values for each individual metal were available for all data. 
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6.5. Suppression associated with PAM in the matrix 

If the internal standard was suppressed, then analytes in the sample could also be 

suppressed. With a matrix fluid that was rich in PAM and sodium, in quantities between 20 and 

100 mg/L, signal suppression becomes an issue. With the addition of PAM to the matrix, the 

fluid is more viscous or ‘stickier’, the full analyte is not being homogeneously distributed either 

in the fluid mixture or in the machine components.  

The main problem of the PAM-rich fluids used in this study is the viscosity of these 

fluids. The viscosity of these PAM-rich fluids is highly dependent on the concentration of the 

solution, shear rate and temperature (Jung et al., 2016). Higher concentration PAM fluids are 

more viscous than fresh or DI water. When samples were analysed in the ICP-OES, no fluids 

were heated until they reached the plasma torch. All fluids were initially sampled at room 

temperature (15 – 20 oC) after either RT or HPHT experimentation. Heating may have caused 

subtle changes to the viscosity of the fluid which may have varied amongst runs.  

 

6.5.1. Suppression on Room Temperature Flow-back Samples 

Yttrium was consistently measured in all samples and sample runs at the same 2 mg/L 

concentration. Data from this can be plotted to observe drift or suppression that may be 

present in each sample.  The following plots (Figure 6.3 through Figure 6.9) demonstrate this 

for the flow-back fluids from the room temperature adsorption experiments. Each plot is one 

run on the machine, and the different samples analysed per respective run are colour coded, 

as per the legend. In summary, the legend refers to: 

• ICP STDs: Analyte standards run to calibrate machine 

• PAM STDs: Standards used in the respective adsorption experiment 

• P STDs: Procedural Standards. These are ‘ICP STDs’ placed in the sample run for 

second or third measurement  if a different results is provided from the first, there 

is an issue.  

All plots display the same y axis to show variability in machine sensitivity between 

different sets of runs. All samples here have been diluted 11-fold, so the actual ICP-OES 

measured concentration range of PAM is between 1.42 mg/L and 90.9 mg/L. 
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Figure 6.3: Intensities of Yttrium 3710 for the 4th run of room temperature flow-back fluids. Note 
the consistent curve of each sample when the sample concentration of PAM increases.  

 

An example of how PAM concentration supresses the yttrium 3710 intensity is shown 

in Figure 6.3. At the top left of each coloured curve, annotated in Figure 6.3,  is the 0 mg/L and 

15.625 mg/L (14.42 mg/L PAM after dilution) with the base of each coloured curve (bottom 

right) having the greatest concentration of PAM (1000 mg/L).  

Procedural standards, re-runs of the ICP standards that are used to calibrate the 

machine, are run throughout each sample run on the ICP. These procedural standards should 

exhibit the same results as the ICP STDs tested at the beginning of the run. If the procedural 

standards (P STDs) do not match the ICP-STDs then the sample run must be paused whilst 

issues are rectified. As shown in both Figure 6.3 and Figure 6.4, procedural standards (P STDs) 

exhibit very similar intensities to the ‘ICP STDs’. Results were plotted to show similarities, or 

differences, between standards, samples and procedural standards.  
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Figure 6.4: Intensities of Yttrium 3710 for the 5th run of room temperature adsorption flowback 
fluids. As seen above, the suppression observed here is a lot more random in comparison to that 
shown in Figure 6.3. 

 

The samples shown in Figure 6.4 (ICP 5th run) were rendered unusable due to the 

scattering of suppression. This scattering was not consistent with the typical curve pattern of 

yttrium for the PAM concentration ranges (Figure 6.3). The starting intensity of Y3710 (ICP 

STDs) (Figure 6.4) is similar to that seen in the 4th run (Figure 6.3). Counts range between 

250,000 and 270,000 ct/s. 
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Figure 6.5: Intensities of Yttrium 3710 for the 9th run of room temperature adsorption flow-back 
fluids. As seen above the suppression is less random than those observed in Figure 6.4 but a lot 
more random than those observed in Figure 6.3. 

 

Comparing run #5 against run #9, a more consistent pattern of suppression is observed 

in run #9 (Figure 6.5), however the patterns of suppression are still not as uniform or 

consistent as the suppression pattern seen in Figure 6.3 (run #4). The signal intensities 

observed in Figure 6.5 are in the region of 350,000 ct/s to 400,000 ct/s, higher than those in 

both Figure 6.3 and Figure 6.4. Procedural standards in Figure 6.5 still follow a pattern 

consistent with the respective initial ICP standards.  
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Figure 6.6: Standard intensities summarised for all room temperature adsorption flow-back 
sample runs and sample tests. This depiction shows the intensity variation per operational run of 
the machine, independent of sample or sample type.  

 

The variability in machine sensitivity across all runs for flow-back fluids taken from the 

RT adsorption experiments can be viewed in Figure 6.6. Sensitivity (signal intensity measured 

in ct/s) varies amongst all runs, despite containing the same concentration and amount of 

yttrium in each run.  Run #1 (478,210 ct/s) exhibits over twice the ct/s for yttrium 3710 than 

run #10 (195,240 ct/s) despite all containing the same 2 mg/L.  

 

6.5.2. Suppression on HPHT Flow-Back Samples 

Only two sample runs on the ICP were needed for the full suite of HPHT flow-back 

fluids. Due to the nature of how the HPHT experiment was undertaken, ordered by PAM 

concentration rather than ordered by sample as per the RT experiments, runs on the ICP 

machine were based upon this premise. Run #1 would account for PAM concentrations 

between 0 and 62.5 mg/L PAM, and run #2 would account for the remaining 125 to 1000 mg/L 

PAM concentrations.  
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Figure 6.7: Intensities of standards for all HPHT adsorption flow-back sample runs. 

 

 Yttrium intensities of the standards in both runs #1 and #2 varied but stable, as shown 

in Figure 6.7. No notable deviations from either line were observed.  Intensities shown in 

Figure 6.7 replicate the intensities of the samples seen in Figure 6.8 for run #1 and Figure 6.9 

for run #2. Sample values for HPHT run #1 sat at intensity values of ~ 350,000, as do the 

standards. Only higher PAM concentrations from the ‘PAM STD’s’ show deviation from the 

value of 350,000 ct/s (Figure 6.8). More deviation was observed in HPHT run #2 (Figure 6.9) 

with the higher PAM concentrations.  
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Figure 6.8: Intensities of Yttrium 3710 for run #1 of HPHT adsorption flow-back fluids. Due to 
the nature of the HPHT adsorption experiments, same concentration but different samples per 
batch, sample runs were based on PAM concentration rather than samples.  

 

 

Figure 6.9: Intensities of Yttrium 3710 for run #2 of HPHT adsorption flow-back fluids.  
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been failed by the internal standard. Procedural blanks in both runs maintained consistent ct/s 

with the ICP STDs and the samples.  

 Suppression, when necessary, could be multiplied out to produce corrected values. This 

could not be undertaken on sample run #5 where values were unsystematic.  

 

6.6. Fluid Analysis Results 

This section of the study is divided into three sub-sections. The first sub-section 

analyses the typical compositions of tap water, used as a base fluid in fracking operations and 

a 1000 mg/L PAM slick-water fluid. The second sub-section exhibits the results for the flow-

back fluid from the room temperature adsorption experiments. The final and third sub-section 

exhibits the results of the flow-back fluids for the HPHT adsorption experiments.  

6.6.1. Tap Water and Slick-Water Standards 

Mains tap water is predominantly used as the main carrier fluid in hydraulic fracturing 

operations. It is the base carrier fluid that contains all other additives and proppant. Slick-

water fracking fluids usually range between 90-99 % water (EPA, 2015; Gregory et al., 2011; 

Hammond et al., 2015) with the remaining as additives and proppant. Mains tap water 

compositions could vary hugely due to multiple reasons including piping, storage, and aquifer 

location. Here, a range of mains tap waters from around the UK have been sampled to examine 

this difference (Figure 6.10).  
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Figure 6.10: The variation in tap water compositions from various locations in the UK. Note the logarithmic scale.  
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A compositional analysis of the mains tap water used in the aforementioned 

experiments (Durham university tap water) is displayed alongside the typical composition 

of the relevant Northumbrian Water sampling site (Northumbrian Water Ltd, 2017) (Table 

6.7 and Figure 6.11). Results of the compositional analysis of the 1000 mg/L PAM solution 

are displayed in Figure 6.12.   

 

Table 6.7: Composition of tap water at Durham University and from the Northumbrian 
water sampling site. Concentrations are displayed in mg/L. Gaps denote where no data 
was available.  A tap water blank was measured with each sample blank, results above 
are the averaged results for all data.  

 

 

 

Max Min Avg Max Min Avg

Al 0.829 0.003 0.126 0.24 0.018 0.036

Ca 24.277 15.521 18.688

Cd 0.001 0.001 0.001 0.000017 0.000009 0.0000128

Cu 0.301 0.022 0.119 0.069 0.002 0.020

Fe 0.167 0.003 0.028 0.150 0.002 0.014

K 1.192 0.985 1.083

Mg 4.616 2.555 3.389

Mn 0.036 0.001 0.006 0.01 0.00022 0.0008338

Na 8.818 1.059 6.685 8.8 7.6 8.238

Pb 0.186 0.013 0.051 0.002 0.000033 0.0003133

Si 1.301 0.261 0.735

Zn 0.768 0.032 0.450

NORTHUMBRIAN WATERDURHAM UNIVERSITY



163 
 
 

 

Figure 6.11: Scatter plot of data exhibited in Table 6.7. Additionally, approximate 
maximum values for United Utilities mains water (the supplier for Preese Hall 1A) are 
also plotted for reference. Note logarithmic scale. Some data are missing due to limited 
datasets of differing water company sampling procedures. 

 

 The mains tap water used in all of the experiments in this study is typical of the type 

of carrier fluid used in fracks, particularly in the UK. Values between Durham tap water and 

the NWL (Northumbrian Water) sampling site do vary (Table 6.7), Data in Table 6.7 shows 

the variation between the water used in this study (Durham University), the water used at 

Preese Hall (United Utilities) and the closest to sampled water for Durham University, 

independent of infrastructure influences (Northumbrian Water). Durham university tap 

water shows a greater range across max, min and average values and overall, maximum 

concentrations observed are higher with Durham University tap water. Copper is 4.3 times 

greater, cadmium 64.7 times and lead 103 times in Durham university tap water than at the 

NWL sampling site. This difference, or increase, may be due to piping and workings between 

sampling site and the point of source at Durham University.  
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Figure 6.12: Composition of a 1000 mg/L non-ionic PAM solution (the slickwater fluid used in 
all the aforementioned experiments) compared to the mains tap water at Durham University 
with no PAM added. 

 

 

 When 1000 mg of non-ionic powdered PAM is added to 1 L of mains tap water, the 

composition changes (Error! Reference source not found.). The addition of the PAM to a 

freshwater fluid increases the pH to 7.16 from 6.61 and the conductivity from 211 μS/cm to 

1369 μS/cm (calibrated to 1999.99 μS/cm). In total, 9 out of the 12 metals tested increase 

in concentration with only three decreasing (calcium, magnesium and silicon). The largest 

increase is that of cadmium, up by 392 times to 0.432 mg/L. Once the PAM solution is made 

the element with the highest concentration is now sodium, up 48 times to a maximum of 

431 mg/L. Adding 1000 mg of PAM to 1 L of water produces a slightly saline fluid initially 

which will be pumped downhole.  

 

6.6.2. Room Temperature Flow-back Results 

In this section, results for 11 of the 14 room temperature adsorption samples are 

exhibited. The lack of data for the three remaining samples, OC 1, OC 3 and BH 5, was due to 

the ICP-OES failure for run #5, as discussed in Section 6.5.1 . Results in this section are 

divided into two main sections: 

1) Bulk Flow-back Results: Testing the ratio of concentrations in flow-back to that 

of the original input water (increases to decreases from original composition) 

of the metals dependent on sample. Data in this section is depicted as a ratio of 

1. Values > 1 depict an increase of that metal from the original quantity in the 

starting 1000 mg/L PAM solution, and values < 1 represent a decrease in 

solution concentration from the original 1000 mg/L PAM solution.  
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2) Individual Flow-back results: Analysing the results per sample and displaying 

the actual concentrations returned in flow-back fluids.  

 

6.6.2.1. Bulk Flow-back Results 

In this section, the whole fluid is analysed, irrespective of initial PAM 

concentrations. Here, data is expressed as the ratio of the observed concentration to that in 

respective sample of the PAM concentration standard. These results are then plotted to see 

the overall mean increases and decreases per sample (Figure 6.13). 

Results show that across all samples, all but one metal showed an average increase 

into the flow-back fluid (Figure 6.14). Copper is the only exception where the concentration 

is consistently lower than the original fluid in all but one of the produced water samples (OC 

8) (Figure 6.13).  
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Figure 6.13: The increase ratio of the various analytes coloured by sample name. Values > 1 represent an increase into the fluid, whilst < 1 represent a decrease. 
Data plotted here utilises all PAM concentrations to show a maximum total per sample.  
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Figure 6.14: Average increase ratio to 1 for all metals irrespective of PAM concentration or sample 
type.  

 

   

Figure 6.15: Average increase ratio to 1 for all metals irrespective of PAM concentration but plotted 
by sample type; sandstone, shale or limestone.  

 

 Manganese (Mn) had the highest average increase across the all the samples: up to 

24 times the initial amount in the slick-water fluid (Figure 6.14). Iron (Fe) had the second 

largest increase with an average of 14 times the amount injected.  

 Dividing the samples by lithology, sandstone, shale and limestone (Figure 6.15), the 

large increases in the manganese and iron are from sandstone dominated lithologies. All 

sample types show decreases in copper and only limestone and shale showing decreases in 
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cadmium; albeit in concentrations that are so small they are negligible. Overall, shale 

samples show decreases in only two elements, cadmium and copper. Sandstone samples 

show decreases in solution with three elements (calcium, copper and sodium) and 

limestone samples show a decrease for six elements, aluminium, cadmium, copper, iron, 

manganese and lead. Whilst sandstone samples exhibit the greatest increases (57 times 

greater for manganese and 47 times greater for iron), shale samples produce the lowest 

number of decreases. Shale samples have the greatest influence on increases in 

concentrations of the metals analysed.   

6.6.2.2. Metal Results per Sample 

This section exhibits results for the room temperature adsorption experiments 

flow-back fluids using two approaches:  

1) Accounting for all metal concentrations that have increased or 

decreased from the original pre-experiment fluid by the ‘fracking of a 

rock’ (Figure 6.16). This method subtracts the compositional 

concentrations of certain metals already in the fluid, before adsorption 

experimentation occurs. 

2) Accounting for the total concentration of metals within the fluid (Figure 

6.17). This method subtracts only the zero standards containing no PAM 

and accounts for the total amounts of all metals, irrespective of 

composition pre-experiment – essentially subtracting the concentration 

of tap water and being the final fluid that would be returned to surface.  

The results of this are displayed on two A3 foldouts. Full tables of data can be found in 

Digital Appendix F.2.  
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Figure 6.16: All sample data plotted per analyte showing composition of increases in metals from the shale. Analysis here has subtracted metals within the initial concentrations of the PAM slick-water fluid. Data on all graphs is plotted for 
PAM concentrations of 15.625, 31.25, 62.5, 125, 250, 500 and 1000 mg/L PAM - denoted by the red vertical lines shown on aluminium (top left).  
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Figure 6.17: All samples accounting for total concentration of flow-back fluid, inclusive of concentrations of metals in the initial slick-water fluid. Data on all graphs is plotted for PAM concentrations of 15.625, 31.25, 62.5, 125, 250, 500 and 
1000 mg/L PAM: denoted by the red vertical lines shown on aluminium (top left).Sample BH 2 (2) displayed erroneous results at 125 mg/L PAM.  
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 Data displayed on the multiple plots of Figure 6.16 and Figure 6.17 show trends 

generally based upon PAM concentration, i.e.ata from both these sets of figures exhibits the 

trends associated with an increase in PAM concentration.   

 

Aluminium 

 Ignoring the composition of the PAM slick-water fluid (Figure 6.16), there is a 

general increase in Al concentration amongst the majority of the samples. The maximum Al 

concentration observed was 0.17 mg/L with a concentration of 62.5 mg/L PAM for BH 4 (2). 

Al concentrations at 1000 mg/L PAM range between 0 and 0.08 mg/L. Four samples show 

decreases of Al, none of which are shale lithologies (OC 6 1 & 2 and OC 5 1 & 2). Analysing 

the whole fluid, inclusive of the dilutions of a 1000 mg/L PAM solution (Figure 6.17), there 

was a notable increase from 0 mg/L Al for samples BH 4, OC 6, BH 1 and OC 5. The samples 

that showed an increase had Al concentrations ranging from 0.47 mg/L to 0.32 mg/L at a 

PAM concentration of 1000 mg/L. The remaining samples showed more constant values of 

Al between 0 and 0.04 mg/L whilst PAM concentrations increased to 1000 mg/L. Sample 

OC 4 showed an increase up to 0.13 mg/L at 1000 mg/L PAM from 0.006 mg/L at 500 mg/L 

PAM.  

 

Calcium 

 Calcium remains, in general, constant and unchanged with an increase in PAM 

concentration. Some samples clearly favour adsorbing calcium (BH 6, OC 4, OC 5, OC 7 and 

OC 8) whilst in the remaining samples the PAM favours binding released calcium. The 

highest concentration of calcium at 1000 mg/L was 33.6 mg/L with sample BH 2, 

unsurprisingly containing the second highest TIC and the second highest amount of Ca 

(Section 2.4.1). The lowest concentration of calcium at 1000 mg/L PAM was -7 mg/L with 

sample BH 6 (2), alongside BH 6 (1). Analysing the total fluid, the same trend was observed, 

concentrations ranged between 19.6 and -5.1 mg/L. No increase or decrease in calcium 

concentration appears to be related to an increase in PAM concentration.  

 

Cadmium 

 Cadmium was present in nearly all samples in small concentrations, sometimes 

negligible and below the detection limit of this analysis. Results show that cadmium present 

is generally adsorbed to the sample rather than being bound in the PAM-rich fluid. A 

maximum concentration of  0.005 mg/L of cadmium was released into the fluid for BH 4 (1) 



174 
 
 

but the majority of samples show negligible release into the fluid, primarily adsorbing to 

the samples. Inclusive of the PAM slick-water, the total fluid, up to 0.02 mg/L was returned 

to the surface.  

 

Copper 

 Copper exhibits very similar results to cadmium, based on an increasing PAM 

concentration. In all samples, copper concentrations were less than 0 mg/L. The maximum 

concentration of copper observed was 0.01 mg/L for sample OC 7 (2) at 1000 mg/L PAM, 

and the same sample (OC 7 (2)) exhibits a maximum concentration of 0.006 mg/L when the 

total fluid is accounted for. Between all samples, copper in solution ranges from -0.08 mg/L 

to 0.0066 mg/L in fluids returned to surface.  

 

Iron 

 Returned iron concentrations were higher in sample OC 7 than the remaining 

samples. The highest concentrations observed are between 0.07 and 0.05 mg/L for sample 

OC 7. The remaining samples concentrations range between 0.0044 and -0.01 mg/L, 

increasing to 0.01 and -0.01 mg/L analysing the total fluid returning to surface. There was 

no obvious increase or decrease in iron concentrations across all samples that were 

associated with an increase in PAM concentration. Using the composition of all fluids 

returned from all samples, iron may be removed from solution or returned to surface. 

Removal is sample dependent, but concentrations would be generally considered low with 

0.01 mg/L as a general high, excluding the 0.07 mg/L observed with sample OC 7.  

 

Potassium 

 Potassium was the only metal that exhibits an increase across all samples both in 

the metals added to the fluid, and the total fluid analysis. A trend of increasing potassium in 

relation to an increase in PAM concentration was also observed for all samples. Sample OC 

8 had the lowest potassium content observed, at 0.43 mg/L The remaining concentration in 

the remaining samples ranged from 0.68 to 4.41 mg/L, increasing to between 0.43 and 4.89 

mg/L when analysing the total fluid returned. The highest values of potassium were linked 

to the sandstone based samples, OC 2 and OC 5, with values of 4.89 and 4.34 mg/L 
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respectively at a PAM concentration of 1000 mg/L. The increase in concentration as PAM 

concentration increases suggests that potassium is being bound by the aqueous PAM.  

 

Magnesium 

 Magnesium remains relatively stable with an increase in PAM concentration, 

showing no particular increase or decrease in concentrations across all samples. Sample BH 

4 exhibits the highest increase in magnesium concentration with a maximum of 5.13 mg/L 

in the total fluid. The remaining samples showed no increase alongside an increasing PAM 

concentration. Samples range from -1.07 mg/L to 0.9 mg/L, increasing from -1.09 mg/L to 

1.5 mg/L when analysing the total fluid. An increase in magnesium concentration may be 

present when PAM concentration increases. 

 

Manganese 

 Three samples, samples OC 4, OC 5 and OC 7, showed an increase in manganese 

concentrations when observing concentrations increased after adsorption. Between these 

three samples, concentrations at 1000 mg/L PAM ranged from 0.05 mg/L to 0.18 mg/L. The 

remaining samples were close to 0 mg/L with both additions to fluid and removal from fluid 

occurring. The three samples with the highest increases, OC 4, OC 5 and OC 7, show 

concentrations of 0.05 mg/L (OC 7), 0.09 mg/L (OC 5) and 0.18 mg/L (OC 4) respectively at 

PAM concentrations of 1000 mg/L. All other samples were between values of -0.005 mg/L 

and 0.02 mg/L.  

 

Sodium 

 Sodium is the metal that is returned in the largest concentrations for all samples. 

The addition of 1000 mg of PAM powder to a tap water solution increases the sodium 

concentration from an average concentration of 6 mg/L to 114 mg/L, with the observed 

maximum concentration being 434 mg/L. This increase in sodium turns the water from a 

‘freshwater’ to a low concentration ‘slightly saline’ fluid. Sodium again shows no 

relationship between the metals increased from the samples associated with an increase in 

PAM. Fluid concentrations range from -22 mg/L (OC 5) to 65 mg/L (BH 2), with some 

sodium being removed from the fluid. There is however a relationship between sodium 

concentration and an increase in PAM concentration when analysing the total returned 
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fluid. The relationship is one of an increasing sodium concentration alongside an increasing 

PAM concentration. The total composition of fluids returning to surface across all samples 

ranges from 129.5 mg/L (OC 8) to 307 mg/L (BH 6) sodium. 

 

Lead 

 Lead, similar to manganese, magnesium, calcium and iron, showed both increases 

and decreases in concentration between the samples. Lead correlation did not increase with 

increased PAM concentration. Across all samples, concentrations of lead were more 

variable (higher or lower) in lower concentrations of PAM (sub 250 mg/L PAM). 

Concentrations that increase after adsorption, range from -0.34 mg/L (OC 5) to 0.12 mg/L 

(BH 4). As a total fluid, samples BH 1, BH 4, OC 6, and OC 5 exhibited an increase with PAM 

concentrations, ranging from 0.93 (OC 5) to 1.71 mg/L (BH 4) at 1000 mg/L PAM. The 

remaining samples that do not show increases at 1000 mg/L PAM return negligible amounts 

of lead in the simulated flow-back fluid.   

 

Silicon 

 Silicon concentrations across all samples exhibit varying concentration ranges. The 

highest silica concentration returned was observed with sample OC 7 p, with maximums of 

1.1 and 1.18 mg/L using respective sample duplicates in the total fluid returned. Silicon 

increases after adsorption ranged from 0.06 mg/L (BH 4) and 1.10 mg/L (OC 6). There was 

no observable relationship between increases or decreases of silicon and an increase in 

PAM concentration, however, as was the case with magnesium, there was larger variation 

in concentrations lost or gained with samples with lower PAM concentration (sub 250 

mg/L).  

 

Zinc 

 Zinc concentrations exhibited large variations across all samples. Observing the 

total fluid returned, zinc was both removed from and added to the flow-back fluid. Only four 

samples (OC 7, OC 2, BH 3 and BH 4) show increases of zinc into the fluid, and three of these 

are negligible, OC 2, BH 3 and BH 4 only exhibiting up to a 0.01 mg/L increase in 

concentration at 1000 mg/L PAM. Sample OC 7 exhibited the greatest quantities of zinc at a 

maximum of 0.5852 mg/L in a 1000 mg/L PAM solution. The majority of zinc however does 
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not return to the surface in the flow-back waters as the remaining samples show negative 

results.  

 

6.6.3. HPHT Flow-back Results 

In this section, four samples (OC 5, OC 7, BH 5 and BH 6) are analysed for flow-back 

returns of the metals analysed in Section 6.6.2. As seen in the room temperature flow-back 

analysis, concentration ranges of returned metals varied between analyte, with some 

differing by magnitudes. As per Section 6.6.2, results in this section are divided into two 

main sections: 

1) Bulk Flow-back Results: Testing the ratio of increases and decreases of the 

metals dependent on sample 

2) Individual Flow-back results: Analysing the results per sample and displaying 

the actual concentrations returned in flow-back fluids.  

 

6.6.3.1. Bulk Flow-Back Results 

As per Section 6.6.2.1, the ‘bulk flow-back results’ analyse the whole fluid, 

irrespective of PAM concentration. Data was calculated as a ratio by dividing the observed 

result of the respective sample by the standard of the same PAM concentration. Ratios for 

all concentrations are then combined and a mean calculated ratio (increase >1 and decrease 

< 1). General increases and decreases of the relevant metals can be determined.  

Results show that across all samples, on average no metals decreased (Figure 6.19). 

Dividing the results up by sample (Table 6.8), six of the metals analysed showed increases 

for every sample; iron, potassium, magnesium, manganese, sodium and silicon. The 

remaining metals exhibited both increases and decreases. Cadmium exhibited the largest 

decrease in concentration within the flow-back fluid. Samples BH 5 and BH 6 showed the 

greatest average decrease in metal concentrations. BH 5 exhibited a decrease in aluminium, 

cadmium, copper and zinc whilst BH 6 exhibited decreases in cadmium, copper, lead and 

zinc.   
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Table 6.8: Loss/gain ratio data for the flow-back fluids 
associated with the HPHT adsorption experiments. Data linked to 
Figure 6.18. 

 

ANALYTE OC 7 OC 5 BH 5 BH 6

Al 13.25 15.05 0.587 4.25

Ca 0.812 1.349 5.617 2.097

Cd 8.143 0.143 0.571 0.286

Cu 1.88 7.36 0.32 0.434

Fe 93.2 5.04 2.79 5.55

K 4.47 10.06 5.668 6.764

Mg 1.101 2.413 2.608 3.499

Mn 52.68 442.0 12.65 79.8

Na 1.067 2.686 2.182 2.777

Pb 1.464 3.5 1.113 0.375

Si 3.669 10.8 6.286 4.937

Zn 49.01 4.08 0.702 0.671



1 7 9  

 

 

 

Figure 6.18: The increase ratio of the various metals in the HPHT adsorption experiments. Data is coloured by sample name and displays maximums per sample.
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Figure 6.19: Average increase ratio for all metals irrespective of PAM concentrations of sample type 
for all samples involved in the HPHT adsorption experiments.  

 

  

Figure 6.20: Average increase ratio for all metals irrespective of PAM concentration for all the HPHT 
adsorption experiments. Data is plotted by sample type.  

  

 By metal, Manganese showed the largest increase, amounts up to 146 times from 

the initial slick-water fluid (Figure 6.19). Iron showed the second largest increase at up to 

26 times the initial amount, an identical result to the room temperature results (Figure 

6.14). The majority of the samples, OC 5, BH5 and BH 6, exhibited a decrease in cadmium 
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content (Figure 6.18). Sample OC 7 exhibited considerable increases in cadmium and 

brought it to exhibit an average gain across all samples.   

 Dividing the samples into sample type (sandstone and shale) (Figure 6.20) there 

was no obvious relationship between sample type and concentration of metals that were 

increased or decreased. Shales showed an average increase across all metals apart from 

copper, whilst the one sandstone sample (OC 5) showed increases in concentration of all 

metals apart from cadmium. Dividing up by sample type, shale samples showed decreases 

for two metals, copper and lead, whereas the sandstone sample showed a decrease for only 

cadmium. Sample breadth was limited however, with only four samples tested, three of 

which are shales.  

 

6.6.3.2. Metal Results per Sample 

This section displays results from the HPHT adsorption experiments conducted at 

65 oC and 30 bar (3 MPa). Like in Section 6.6.2.2, two sets of results are displayed: 

1) Accounting for all metal concentrations increased into the bulk fluid by 

the ‘fracking of a rock’ (Figure 6.16). This method subtracts the 

compositional concentrations of certain metals already in the fluid, 

before adsorption experimentation occurs. 

2) Accounting for the total concentration of metals within the fluid (Figure 

6.17). This subtracts only the zero standard containing no PAM – 

essentially subtracting the concentration of tap water.  

The results of this are displayed on two A3 foldouts. Full data tables can be found in 

Digital Appendix F.4.  
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Figure 6.21: All sample data plotted per analyte showing the composition of increased metal concentrations from the shale. Analysis here has subtracted concentrations within the initial PAM slick-water fluid. Data on all graphs is plotted for PAM 
concentrations of 15.625, 31.25, 62.5, 125, 250, 500 and 1000 mg/L PAM. This is denoted by the red vertical lines shown on aluminium (top left). 
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Figure 6.22: All samples accounting for the total concentration of flow-back fluid, inclusive of concentrations of metals in the initial slick-water fluid.  
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Data displayed on Figure 6.21 and Figure 6.22 show results associated with the PAM 

concentrations used (15.625, 31.25, 62.5, 125, 250, 500 and 1000 mg/L PAM).  

 

Aluminium 

 Concentrations of aluminium varied between both samples and the PAM 

concentration. Sample OC 5 released the most aluminium into the flow-back fluid, with 0.31 

mg/L at maximum, at a PAM concentration of 125 mg/L. At 1000 mg/L PAM, maximum 

concentrations of 0.14 and 0.07 mg/L were observed for the respective duplicates of sample 

OC 5. There was no observable link between increasing PAM concentrations and increasing, 

or decreasing, aluminium content across all samples. Sample OC 7 exhibited an increase 

with higher PAM concentrations to concentrations of 0.14 and 0.11 mg/L with respective 

sample duplicates in the whole fluid returned. Samples BH 5 and BH 6 exhibited negligible 

increases.   

 

Calcium 

 Sample BH 5 exhibited the largest increase in calcium with 188 mg/L at a PAM 

concentration of 500 mg/L analysing the total fluid. Sample BH 6 exhibited the next highest 

increase of calcium within the fluid at a maximum of 53.9 mg/L at 62.5 mg/L PAM 

concentration. Samples OC 5 and OC 7 exhibited negligible increases or decreases of 

aluminium across all sample concentrations of PAM. Overall no relationship was observed 

between an increasing PAM concentration and increases or decreases in calcium 

concentration.  

 

Cadmium 

 As per the room temperature flow-back fluids (Section 6.6.2), cadmium was present 

in very small quantities, up to 0.01 mg/L with sample OC 7. On some occasions a zero value 

was measured as the concentration was too low for the machine to properly calibrate. 

Analysing the total flow-back fluid there was an observable increase in cadmium 

concentration for sample OC 7 with an increase of overall PAM concentration of 0.012 mg/L. 

The remaining samples, OC 5, BH 5 and BH 6, showed minimal increases into the fluid, with 

a maximum concentration of 0.004 mg/L for sample BH 5 (2) at 500 mg/L PAM. At 1000 

mg/L PAM sample BH 5 (1) exhibits a maximum cadmium value of 0.001 mg/L. Cadmium 
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observed at 1000 mg/L PAM lies in the range of -0.0005 mg/L and 0.001 mg/L for samples 

OC 5, BH 5 and BH 6, with only sample OC 7 showing even greater amounts between 0.004 

mg/L and 0.007 mg/L at 1000 mg/L PAM.  

 

Copper 

 Copper exhibited no relationship between concentrations lost or increasing with an 

increase in PAM concentration, across all samples. The largest increase in copper is 

observed with sample OC 7 at 0.242 mg/L at 125 mg/L PAM. Taking the total fluid returned, 

only samples OC5 and OC 7 showed consistent increases in copper content across all 

concentrations of PAM. Sample OC 7 concentrations ranged from 0.006 mg/L to 0.244 mg/L 

across all PAM concentrations. The remaining samples, BH 5 and BH 6 exhibited negligible 

increases of copper.  

 

Iron 

 Iron concentrations fluctuated across all samples. All samples showed an increase 

in concentration, but this increase varied between samples. At 1000 mg/L PAM iron ranged 

from 0.022 mg/L (OC 5) to 0.35 mg/L (OC 7) as concentrations increased. Analysing the 

total concentration of fluid returned, iron increased to a maximum of 1.38 mg/L for sample 

OC 7 (1). Shale type lithologies, particularly OC 7 and BH 6, exhibited the largest increases 

of iron content, sandstone lithologies (OC 5) showed negligible increases.  Only sample OC 

7 exhibited a relationship between the concentrations of PAM, increasing steadily as the 

PAM concentration increased. 

 

Potassium 

 Overall, much like in the RT metals analysis (Section 6.6.2), potassium showed an 

increase in concentration with an increase in PAM concentration, across all samples tested. 

Analysing the total fluid returned, 1000 mg/L sample concentrations ranged from 6.173 

mg/L (OC 7) to 10.34 mg/L (BH 6). Results using the whole fluid that returned to surface 

show an increase in concentration alongside an increase in PAM concentration. Using 

sample OC 7 (1) as an example, a minimum increase of 2.59 mg/L was observed at a PAM 

concentration of 31.25 mg/L, increasing to 6.173 ,g/L at 1000 mg/L PAM. No decreases 

occurred with potassium and there was no distinct difference between shale and sandstone 
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type lithologies, apart from the fact the sandstone sample (OC 5) showed lower values of 

increases for the four samples, but similar to shale sample OC 7.  

Magnesium 

 Magnesium across all samples showed increases into the flow-back fluids. Only one 

sample duplicate (OC 7 (2)) showed a decrease throughout, based upon the amount of 

magnesium released from the shale, not the total fluid composition. The largest increase in 

magnesium was from sample BH 6 with increases of up to 10.74 mg/L at 500 mg/L PAM 

and 10.06 mg/L at 1000 mg/L PAM. Between PAM concentrations of 125 and 1000 mg/L 

sample BH 6 ranged between 9.2 to 10.784 mg/L. Sample BH 5 exhibited the second largest 

increase of between 3.47 and 4.42mg/L at 1000 mg/L PAM whilst the sandstone lithology, 

sample OC 5, exhibited the smallest increase, between 0.35 and 0.78mg/L at 1000 mg/L 

PAM. Sample OC 5 showed maximum magnesium concentrations of 2.18 mg/L at 500 mg/L 

PAM. An increase in magnesium was observed with an increase in PAM concentration. This 

increase in magnesium with PAM concentration was only apparent with all samples 

showing vastly lesser concentrations when in a sample that had < 125 mg/L PAM. 

 

Manganese 

 Sample OC 5 exhibited the largest increase in manganese, up to 0.70 mg/L at 1000 

mg/L PAM. All other samples showed increases, but not of the nature of sample OC 5. The 

remaining samples were similar in trend, showing increases of between 0.02 (BH 5) and 

0.17 mg/L (BH 6) at 1000 mg/L PAM. Incorporating the whole fluid shows that OC 5 has the 

largest increase at 0.70 mg/L while the remaining samples (OC 5, OC 7 and BH 6) exhibit 

concentrations between 0.02 and 0.17 mg/L. No relationship between PAM concentration 

and either concentration increases or decreases were observed across all samples. 

 

Sodium 

Sodium was increased in the majority of samples. The largest increase was from 

sample BH 6 exhibiting highs of 90.7 mg/L at 500 mg/L PAM and 77.8 mg/L at 1000 mg/L 

PAM. When accounting for the total fluid returned, sample BH 6 exhibited highs of 322 mg/L 

at 1000 mg/L PAM.  The smallest increase was observed with sandstone sample OC 5, highs 

of 56.2 mg/L and 500 mg/L PAM and 39 mg/L at 1000 mg/L PAM. Analysing the total fluid, 

sodium increased for all samples with an increase in PAM concentration. Returned fluids 
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accounting for all fluid put downhole returned between 258 and 332 mg/L sodium using a 

1000 mg/L PAM fluid, producing a slightly briny solution. 

Lead 

 Lead was variable in both increases and decreases across all samples. 

Measurements were negligible. The largest increases in lead were seen at 62.5 mg/L PAM 

for sample BH 5 (0.05 mg/L). Lead was removed from solution in the lower concentrations 

of PAM fluid, up to -0.09 for BH 5 at 31.25 mg/L PAM. Utilising the total fluid, no relationship 

was observed between PAM concentration and lead concentration. 

 

Silicon 

 Silicon showed varying increases across all samples, and all concentrations of PAM. 

Sample duplicate OC 7 (1) showed the least increase at 1000 mg/L PAM with only 0.28 mg/L 

present alongside a decrease in silicon at 500 mg/L PAM. Sample BH 5 exhibited the largest 

increase of silicon at 1000 mg/L PAM with 6.07 and 7.34 mg/L of the respective sample 

duplicates. No relationship between concentration increase or decrease was observed with 

an increase in PAM concentration. 

 

Zinc 

 Much like in the room temperature flow-back fluids (Section 6.6.2), zinc showed 

negligible increases across all samples, apart from OC 7. Sample OC 7 showed the largest 

increase in zinc concentration, consistently between 0.8 mg/L at 0 mg/L PAM and 1.4 mg/L 

at 1000 mg/L PAM. The remaining samples (OC 5, BH 5 and BH 6) showed negligible 

fluctuations between increases and decreases throughout all concentrations of PAM.  Only 

sample OC 7, when accounting for the total fluid concentrations, exhibited an increase in 

concentration of zinc with an increase in PAM concentration.  

 

6.6.4. RT and HPHT Increase/Decrease Results Summary 
 

Ultimately, with the wealth of data available from the RT and HPHT adsorption flow-

back fluids, many different types of analyses can be undertaken, with multiple varied 

factors. Ratio values, used in this analysis, did not have a normal distribution (Figure 6.23), 
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and so ratio values for all the data were log base 10 transformed. Transforming the values 

produces a much more normal distribution (Figure 6.23).  

 

  

Figure 6.23: Normality plots for all ratio data from both the RT and HPHT experiments. Normal data 
is located on the left, whilst logged data is shown on the right.  
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Table 6.9: ANOVA results for metal increase ratios between identical RT and HPHT samples 

MEANS EXPERIMENT
FITTED MEAN 

(log10)
SE MEAN

FITTED MEAN 
(anti-log)

ANOVA F-VALUE P VALUE

  HPHT 0.620 0.0538 4.172 Experiment 62.36 0
  RT -0.007 0.0583 0.985 Sample 21.86 0
  BH 6 0.038 0.0659 1.091 Metal 9.38 0
  OC 5 0.220 0.0703 1.658 Experiment x Sample 8.74 0.002

  OC 7 0.663 0.0703 4.604 Experiment x Metals 3.48 0.008
  Al 0.730 0.132 5.370 Sample x Metal 3.48 0.003
  Ca -0.066 0.132 0.859

  Cd -0.112 0.164 0.773
  Cu -0.155 0.132 0.700
  Fe 0.547 0.132 3.524 R2 Adj R2

  K 0.543 0.132 3.491 94.62% 81.42%
  Mg 0.023 0.132 1.054

  Mn 1.201 0.132 15.885
  Na 0.238 0.132 1.730
  Pb 0.000 0.132
  Si 0.533 0.132 3.412
  Zn 0.198 0.164 1.578
  HPHT BH 6 0.384 0.0933 2.418
  HPHT OC 5 0.723 0.0933 5.288
  HPHT OC 7 0.754 0.0933 5.675

  RT BH 6 -0.308 0.0933 0.492
  RT OC 5 -0.284 0.105 0.520
  RT OC 7 0.572 0.105 3.733
  HPHT Al 0.976 0.187 9.462
  HPHT Ca 0.120 0.187 1.318
  HPHT Cd -0.159 0.187 0.693
  HPHT Cu 0.260 0.187 1.820
  HPHT Fe 1.139 0.187 13.772
  HPHT K 0.828 0.187 6.730
  HPHT Mg 0.323 0.187 2.104
  HPHT Mn 2.090 0.187 123.027
  HPHT Na 0.300 0.187 1.995
  HPHT Pb 0.095 0.187 1.245
  HPHT Si 0.764 0.187 5.808
  HPHT Zn 0.709 0.187 5.117
  RT Al 0.484 0.187 3.048

  RT Ca -0.252 0.187 0.560
  RT Cd -0.064 0.27 0.863
  RT Cu -0.570 0.187 0.269
  RT Fe -0.045 0.187 0.902
  RT K 0.259 0.187 1.816
  RT Mg -0.276 0.187 0.530
  RT Mn 0.313 0.187 2.056
  RT Na 0.175 0.187 1.496
  RT Pb -0.094 0.187 0.805
  RT Si 0.302 0.187 2.004
  RT Zn -0.312 0.27 0.488
  BH 6 Al 0.513 0.228 3.258
  BH 6 Ca -0.087 0.228 0.818
  BH 6 Cd -0.723 0.228 0.189
  BH 6 Cu -0.537 0.228 0.290
  BH 6 Fe 0.060 0.228 1.148

  BH 6 K 0.470 0.228 2.951
  BH 6 Mg 0.032 0.228 1.076
  BH 6 Mn 0.705 0.228 5.070
  BH 6 Na 0.493 0.228 3.112
  BH 6 Pb -0.301 0.228 0.500
  BH 6 Si 0.505 0.228 3.199
  BH 6 Zn -0.678 0.228 0.210
  OC 5 Al 0.519 0.228 3.304
  OC 5 Ca 0.017 0.228 1.040
  OC 5 Cd -0.792 0.228 0.161
  OC 5 Cu 0.026 0.228 1.062
  OC 5 Fe 0.082 0.228 1.208
  OC 5 K 0.611 0.228 4.083
  OC 5 Mg 0.068 0.228 1.169
  OC 5 Mn 1.345 0.228 22.131
  OC 5 Na 0.190 0.228 1.549

  OC 5 Pb 0.077 0.228 1.194
  OC 5 Si 0.584 0.228 3.837
  OC 5 Zn -0.090 0.371 0.813
  OC 7 Al 1.159 0.228 14.421
  OC 7 Ca -0.127 0.228 0.746
  OC 7 Cd 1.181 0.371 15.171
  OC 7 Cu 0.045 0.228 1.109

  OC 7 Fe 1.499 0.228 31.550
  OC 7 K 0.549 0.228 3.540

  OC 7 Mg -0.031 0.228 0.931
  OC 7 Mn 1.554 0.228 35.810
  OC 7 Na 0.030 0.228 1.072

  OC 7 Pb 0.226 0.228 1.683
  OC 7 Si 0.510 0.228 3.236

  OC 7 Zn 1.364 0.228 23.121
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Figure 6.24: ANOVA ratio fitted means for individual metals fromTable 6.10. Data is 
referenced from all samples per metal, not per sample. Overall, fluids tested in HPHT 
conditions show a higher increase ratio than those tested at RT.  

 

 

Figure 6.25: ANOVA ratio of fitted means for individual metal per sample, and not based 
on experiment type.  

 

 Using a three factor ANOVA test, the ratios of increases/decreases from the HPHT 

resultant fluids were significantly different from those flow-back fluids analysed from the 

RT experiments (Table 6.9). All three factors were shown significant to at least at a 

probability of 95%, being different from zero. Using the fitted means for the same ratio data, 

based on experiment type (RT or HPHT) and ignoring differences in sample type, means for 
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HPHT experiments are higher. These higher values showed greater increases of most of the 

metals in question into the fluid (Figure 6.24). In terms of samples (Figure 6.25), sample OC 

7 exhibited the most amount of metal increases, with 10 of 12 showing this increase. Sample 

OC 7 also exhibited the most amount of metals that increased in quantities 10 + times 

greater than concentrations observed in the initial fluid. Sample BH 6 exhibited the most 

removal from the fluid, with 5 of 12 metals removed in some capacity. Under RT conditions, 

9 metals (Ca, Cd, Cu, Fe, Mg, Pb and Zn) exhibited average decreases with the remaining (Al, 

K, Mn, Na and Si) exhibiting increases. Of the metals which showed decreases for the RT 

fluids, under HPHT conditions all but cadmium had increased to show an average increase.  

 

6.7. Discussion 

The majority of metals analysed showed an increase in concentration in both the RT 

and HPHT adsorption experiments, from the original non-reacted slick-water fluids to the 

flow-back fluids post experimentation (saturation with 1 g of rock sample). One of the most 

notable differences in the fluids in both types of experiment was the sodium content. Adding 

1000 mg/L of PAM increased the sodium concentrations up to ~ 430 mg/L from the 

standard mains tap water sodium concentration of between 1 and 8 mg/L. The highest 

concentration of sodium observed in a flow-back fluid was 514 mg/L, in the RT experiment 

for sample OC 6 (Table 6.10). All samples analysed in the RT flow-back fluids exhibited 

higher than the EU regulation of 200 mg/L sodium (European Union, 1998). Three out of 

four samples in the HPHT flow-back fluids exhibited the same higher than regulation values 

(Table 6.10). Saline waters injected into rock for hydraulic fracturing purposes have the 

potential to mobilise salts and mineral ions bound within the connate waters of the rock 

itself (Boyle and Barron, 2014), potentially leading to increased concentrations of most 

metals within most flow-back fluids. Returned brackish, or saline fluids, would need intense 

treatment before reuse (O’Donnell et al., 2018). Lead is another metal where in all of the 

fluids analysed from the room temperature experiments, concentrations were above its EU 

regulation limit of 0.01 mg/L, whereas 3 out of 4 in the HPHT fluid exceeded 0.01 mg/L 

(Table 6.10). Manganese was also commonly present in tested flow-back waters at higher 

than the regulation guide of 0.05 mg/L with 8 out of 11 in the room temperature fluids and 

all fluids in the HPHT experiments (Table 6.10). For all fluids returned to the surface, 

specialist treatment is required for the removal of such contaminants before re-use or the 

safe disposal of the fluid. Often, as would be the case here, fluids will have to be treated in 

different ways for the removal of different contaminants (O’Donnell et al., 2018).  
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Table 6.10: Table displaying the maximum concentrations of metals returning to surface for each sample compared to various literature including basic tap water compositions, flow-
back waters and the EU regulatory legislation directives. Data taken from USGS produced waters database (Blondes et al., 2017), EU water regulatory directive (European Union, 1998), 
Northumbrian water sample site data (Northumbrian Water Ltd, 2017) and Preese Hall flow-back data (Broderick et al., 2011).  

 

REGULATORY SLICK-WATER

EU NWL Durham TW PREESE HALL USGS 1000 mg/L PAM OC 2 OC 4 OC 5 OC 6 OC 7 OC 8 BH 1 BH 2 BH 3 BH 4 BH 5 BH 6

mg/L avg mg/L avg mg/L Max (mg/L) Avg mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

Al 0.2 0.036 0.829 1.59 48.34 5.321 0.111 0.142 0.338 0.479 0.18 2.464 0.459 0.014 0.022 0.475 0.11

Ca 24.28 5360 9.581 -3.278 -2.42 -1.856 18.075 -5.005 1.441 20.513 37.818 19.602 9.717 0

Cd 0.005 0.0000128 0.001 0.00602 0.215 0.432 -0.003 0.001 0.013 0.023 0.009 0.107 0.023 0.002 0.002 0.026 0.001

Cu 0.002 0.0196 0.301 0.036 0.554 0.900 -0.052 0.008 -0.07 -0.046 0.007 0.521 -0.011 -0.029 -0.029 -0.009 0

Fe 0.2 0.014 0.167 137 - 3.284 0.014 0.011 -0.421 -0.48 0.191 3.05 -2.075 0.004 0.053 -2.073 0.046

K 1.192 52.3 811.17 1.580 4.892 3.864 4.525 2.111 3.314 7.655 2.62 2.635 3.383 1.929 1.736

Mg 4.616 1470 990.15 1.878 0.215 0.155 0.291 1.513 -0.272 9.544 0.9 4.083 5.133 1.253 0

Mn 0.05 0.000834 0.036 6.809 2.215 0.568 0.208 0.176 0.087 0.075 0.625 0.099 0 0.001 0.089 0.001

Na 200 8.238 8.818 28400 26953 431.47 277.12 268.87 269.16 514.67 222.51 277.12 326.41 255.90 301.55 331.87 307.76

Pb 0.01 0.000313 0.186 0.6 29.59 1.279 0.111 0.121 0.998 1.399 0.097 0.569 1.608 0.132 0.132 1.743 0.102

Si 1.301 54.87 0.817 0.608 0.877 0.518 0.499 1.332 1.637 0.107 0.485 0.653 0.085 0.889

Zn 0.768 0.565 11.48 7.368 -0.001 0.007 -0.077 -0.085 0.81 0.481 -0.026 0.087 0.03 -0.03 0.000

Al 0.2 0.036 0.829 1.59 48.34 5.321 0.311 0.184 0.046 0.141

Ca 24.277 5360 9.581 75.70 -2.855 188.93 61.76

Cd 0.005 0.0000128 0.001 0.00602 0.215 0.432 0.001 0.013 0.005 0.002

Cu 0.002 0.0196 0.301 0.036 0.554 0.900 0.244 0.097 0.014 0.013

Fe 0.2 0.014 0.167 137 - 3.284 0.119 1.381 0.22 0.351

K 1.192 34800 811.17 1.580 7.107 6.569 8.763 9.926

Mg 4.616 14770 990.15 1.878 8.324 1.74 7.18 10.742

Mn 0.05 0.000834 0.036 6.809 2.215 0.704 0.19 0.1 0.482

Na 200 8.238 8.818 92800 26953 431.47 129.39 266.86 286.55 325.93

Pb 0.01 0.000313 0.186 0.6 29.59 1.279 0.042 0.074 0.053 0.009

Si 1.301 54.87 0.817 5.437 5.374 7.343 4.739

Zn 0.768 0.565 11.48 7.368 0.071 1.36 0.057 0

ANALYTE

TAP WATER FLOWBACK SAMPLE (maximum concentration)
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 In terms of overall increase and decrease, copper was predominantly removed in most 

fluids in the room temperature experiments (Figure 6.16 (D)). Data showed a loss ratio of 0.53 

(Figure 6.14) potentially adsorbing to the shale over the experiment timescale, however 

crucially still returning in flow-back in quantities enough to be above regulation guidelines.  In 

both experiment types (RT and HPHT), manganese was by far the metal with the greatest 

increases into the flow-back fluid (Figure 6.24 and Figure 6.25), with most samples by the end 

of experimentation reading above the regulation 0.05 mg/L. Manganese showed an increase of 

between 12 and 442 times in the HPHT experiments and increases between 1.1 and 145 times 

in the room temperature fluids, however it must be noted that decreases in manganese were 

observed in fluids from the RT experiments. Iron is another metal that is returned in increased 

concentrations considerably larger than those of other metals, from that of the initial slick-

water fluid concentration. Between 2 and 93 times the amount of iron is returned in fluids from 

the HPHT experiments (Figure 6.19), and between 1 and 141 times in the room temperature 

experiments (Figure 6.15). Some decreases with iron were observed for some samples, but 

these were not significant enough to alter the average increase-decrease ratio for Fe.  

 

Temperature 

 Higher temperatures are a controlling variable in metal release. Overall, fewer metals 

were removed from the fluids associated with the HPHT experiments. Fluids saw more of a rise 

in metal concentrations under HPHT conditions with only 20 % of results showing decreases 

in comparison water from the RT experiments where decreases are observed in 42 % of all 

samples tested. An ANOVA on the loss/gain ratios for all metals in both RT and HPHT 

experiments shows that there was a significant difference in values between the RT and HPHT 

datasets (Figure 6.24). The majority of these decreases occur with copper, cadmium, lead and 

iron. In the HPHT experiments, the majority of these decreases occur with cadmium and 

copper, with iron showing no loss. Using the loss/gain ratio data, manganese, a transition 

metal, increases in the largest quantities over both RT and HPHT experiments. The next three 

metals to increase in the largest quantities are iron, zinc and aluminium, good reducing agents. 

A hydraulic fracture, in a non-laboratory and experimental setting, is an oxidative environment 

by means of the addition of much larger quantities of oxygen to the subsurface through the 

means of oxygen rich carrier fluid, water. Transition metals such as copper and cadmium are 

mostly removed from all solutions, both in the RT and HPHT experiments.  
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Table 6.11: Percentage increases observed in the RT and HPHT fluids using the concentrations of Cu, Pb 
and Zn from the XRF data (<LLD denotes values lower than the limit of detection).  

 

 Percentage release of minerals was calculated by using the XRF data for Cu, Pb and Zn 

(Table 6.11 – data shown in ppm). These analytes were the only analytes that were measured 

in both the XRF and the ICP-OES analysis. Overall, the majority of mineral release is < 5 %, 

however some samples produce more than 50 % release. The Pb shows the overall largest 

release, with RT sample OC 6 releasing 69.89 % (equating to 1.39 ppm) and the next largest 

being RT sample BH 4 which released 52.59 % (equating to 1.73 ppm) (Table 6.10). Under 

HPHT conditions, for these particular metals, mineral release was less than the for the RT 

samples. For example, HPHT sample OC 5 showed only a 0.62 % release of Pb compared to the 

RT sample releasing 12.16 %. This substantial release of Pb within some samples agrees with 

literature citing the affinity of lead to PAM in solution, or grafted to materials such as 

attapulgite (Zhou et al., 2011) or tin (Shubha et al., 2001).  

 

Acidity (pH) 

 The pH is a key factor in affecting the solubility of metals within fluids, and the 

subsurface (Chuan et al., 1996; Zhang et al., 2018). There is a considerable body of literature 

investigating pH effects on the impact of leaching of metals, particularly common ones of 

XRF (ppm) % leached XRF (ppm) % leached XRF (ppm) % leached

BH 1 46.5 0.52 12.9 12.46 93.6 -0.03

BH 2 10.4 0.35 2.3 6.76 28.7 0.34

BH 3 3.1 0.97 3.4 3.9 13.5 0.3

BH 4 5.5 4.78 3.3 52.59 20.7 -0.14

BH 5 32.8 NO DATA 11.2 NO DATA 58.5 NO DATA

BH 6 25.9 0 21.2 0.61 64.3 0

OC 1 <0.3 <  LLD 4.1 NO DATA 4.2 NO DATA

OC 2 3.4 0.55 11.0 1.51 18.7 0.13

OC 3 16.2 0.05 45.1 0.27 580.2 0

OC 4 15.7 NO DATA 17.3 NO DATA 21.6 NO DATA

OC 5 <0.3 <  LLD 8.2 12.16 5.9 108.18

OC 6 <0.7 <  LLD 2.0 69.89 22.5 39.25

OC 7 16.3 0.11 72.3 0.01 341.3 0.25

OC 8 <0.3 <  LLD 4.6 13.23 4.0 12.45

XRF (ppm) % leached XRF (ppm) % leached XRF (ppm) % leached

BH 5 32.8 0.06 11.2 0.53 58.5 0.15

BH 6 25.9 0.09 21.2 0.21 64.3 0.05

OC 5 <0.3 <  LLD 8.2 0.62 5.9 1.73

OC 7 16.3 0.62 72.3 0.06 341.3 0.41

ZnPbCu

HPHT FLUIDS

RT FLUIDS

ZnPbCu
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interest to human, animal and environmental health such as Cd, Cu, Zn, Ni, Co and Pb. Different 

metals behave in different ways, but in general, under more acidic conditions (pH 5.5 or less), 

metals are more soluble. Metal cations are more soluble under low-pH conditions (McAlister 

et al., 2003). Studies of mine-waters and river sediments show that transition metals such as 

Zn, Cu and Mn are mobilised under acidic conditions (Bowell and Bruce, 1995; Johansson et al., 

1995; Wingenfelder et al., 2005; Zhang et al., 2018). In this study, Cu and Cd are mostly 

removed from solution, suggesting no acidic environment. Other metals such as lead and 

cadmium remain largely unchanged when varying the acidity of waters (pH 1-6) (Wingenfelder 

et al., 2005) but may be linked more to the DOM content of certain fluids (Johansson et al., 

1995). The pH of the fluids used and analysed in this study, inclusive of all RT and HPHT fluids, 

and their respective samples was in the range of pH 7.0 to 7.9, i.e. circum-neutral. Based upon 

this data, it is difficult to tell if acidification of these fluids would have had an impact upon the 

compositions of the fluids observed for all samples, both RT or HPHT. The addition of CO2 

saturation during the HPHT experiments within the pressure vessel in theory would have 

acidified the solution (to an unknown degree) (Turley et al., 2006), however negligible pH 

change was observed and no acidification took place with fluids remaining neutral (see Section 

4.10). TGA and XRF analysis confirms that calcium carbonate is present in samples in quantities 

of 0.03 (OC 8) – 41.64 (OC 6) wt% (Section 2.4.1). The presence of carbonate within the samples 

would act as a buffer in the presence of any acidity (Andersson et al., 2003) that may be brought 

on by pipe conditions, contact with rock or additive addition during the hydraulic fracturing 

process.  Conducting a very simple literature review on two studies, Preese Hall flow-back fluid 

data (Broderick et al., 2011) and all data observed in the USGS Produced Waters database 

(Blondes et al., 2017), the majority of data suggest circum-neutral flow-back waters (Figure 

6.26). In the USGS Produced Waters database, 94 % of 86,623 wells that display data for pH 

are between pH 5 and pH 9, with 68 % of these between pH 6 and pH 8 (Figure 6.26). The mean 

pH is 7.12.  
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Figure 6.26: Histogram depicting pH of flowback fluids from the USGS Produced Waters database 
(Blondes et al., 2017). Orange lines denote the neutral range of the fluids and samples used in this 
study, fitting within the majority of data reported in the USGS produced waters database.   

 

From data shown in Figure 6.26, it can be reasonably assumed that little acidification takes 

place within the subsurface from injected hydraulic fracturing fluids, unlikely mobilising large 

extra concentrations of Cu, Cd, Zn and Fe. 

The use of multi-additives, i.e more than 3 additives, in a fracking fluid is not 

necessarily an issue for the UK based on previously used fluids (Preese Hall, Preston New Road, 

Grange Hill) containing 1-3 additives, however, historically many (> 3) additives have been 

added to fluids in countries such as the USA. If the addition of multiple additives results in an 

acidic solution, often a pH adjuster is added, such as sodium or potassium carbonate 

(FracFocus, 2018; Tasker et al., 2016). The pH adjusters are normally added to the fluid to 

“maintain the effectiveness of other additives” (FracFocus, 2018) but may have the 

unintentional effect of actually mobilising less minerals into flow-back fluids. Unfortunately, 

no data was available for the pH values of the hydraulic fracturing fluids pumped downhole, 

either for Preese Hall 1A or the subset of American wells used in Section 1.6.2.1 of this study. 

Acid washes may occur as part of the pre-frack preparations, for tubular and formation 

cleaning, dissolving scale, rust and other formation/pipe debris (American Petroleum Institute, 

2014). These acid washes would typically use HCl of HF acids, usually in a weak form of < 10 

wt%, and would be low in volume with pH values of 0-1 (strong acids). Acid washing with 

strong acids (pH 0-3), even in low volumes (3 m3 per frack stage is an example of what would 
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be used in the UK Preston New Road site (Cuadrilla Resources, 2018a) would likely solubise 

metals initially. Any solubised metals may remain in aqueous form in residual fluid downhole 

until the main frack stage starts, and more fluid is pumped downhole and then returned to 

surface as flow-back. If the fluids used in this study were more acidic in nature, there would 

have been the potential of more zinc, copper, iron, cadmium and lead returning in solution. 

Acidic fracking fluids were not part of this study (Table 6.12 and Figure 6.26), utilising Preese 

Hall 1A as a proxy (Broderick et al., 2011) and observing results from the USGS flow-back 

database (Figure 6.26) (Blondes et al., 2017) and Preese Hall flow-back (Broderick et al., 2011).  

 

Table 6.12: Example pH values from fluids used 
throughout this study. ‘Suppliers’ are reported from Water 
Quality reports from Northumbrian Water (2019) and 
United Utilities (2019). ‘RT Samples’ refer to pH of a 1000 
mg/L PAM tap water and DI water solutions. ‘HPHT 
Samples’ refer to blanks (0 mg/L) and PAM waters (250 
mg/L) that were either pressurised and heated inside the 
vessel, or remained as controls outside of the vessel 
throughout the duration of a HPHT run (in vessel/NOT in 
vessel), observing no change with the addition of CO2. 
‘Preese Hall Flowback’ refers to reported pH values from 
(Broderick et al., 2011).  

 

WATER TYPE pH

1000 mg/L PAM Tap Water 7.46

1000 mg/L PAM DI Water 7.84

7.74

7.76

7.56

7.51

7.65

7.63

7.54

7.51

7.61

7.6

7.42

7.4

Tap water (no PAM) 7.55

DI Water (no PAM) 7.8

18/05/2011 6.35

14/06/2011 7.06

01/08/2011 6.33

United Utilities Mains Avg 7.54

0 mg/L Standard in vessel

250 mg/L PAM in vessel

0 mg/L PAM in vessel
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Oxygen 

Although pH is a primary control in the mobilisation of certain metals into a fluid 

(Chuan et al., 1996; Pinto et al., 2014), the addition of oxic waters to a predominantly anoxic 

subsurface environment by the injection of fracking fluids (Charlet et al., 2013) can also affect 

the mobilisation of many metals. Of the metals analysed within this study, the most commonly 

redox active are Fe, Mn and Pb. Within this study, no experiments, sample handling or storage 

were conducted under oxygen depleted conditions, therefore all experiments and samples are, 

or were in, constant contact with oxygen of some form. No information on the redox conditions 

of the fluids or shale were taken during these experiments. Oxidation is likely to be occurring 

between fluid and sample in the batch reactions in both the RT and HPHT experiments, simple 

by the addition of the simulated H2O carrier fluid and the open air nature of sample preparation 

and storage. The HPHT experiments used CO2 as a pressurising gas and so, temporarily, for the 

HPHT experiments, samples and fluids would have been exposed to less oxygen.  

 Large increases in manganese are observed in the RT experiments (Figure 6.13) and 

in the HPHT experiments, iron,  and manganese are consistently increased in the flow-back 

fluid (Figure 6.18).  In both the RT and HPHT experiments, Mn and Fe have the largest increases 

in solution. In the RT experiments, the majority of samples show increases in Fe and Mn (14 

and 24 times increases, respectively), whereas in the HPHT experiments, all samples show 

increases of Fe and Mn (26 and 146 times increases respectively). Shale minerals, due to the 

reducing nature of formation, will contain reduced iron (Fe2+), and the oxidation of this would 

form Fe3+. However, Fe3+ is typically not very soluble, unless under specific conditions (Stumm 

and Morgan, 1996). In deep aquifers, or deep subsurface regions indicative of 2-5 km deep gas 

shales, dissolved oxygen is low and the decomposition of any organic matter depletes oxygen 

further – any iron would dissolve as Fe2+ (Oregon Health Authority, 2018) and is often 

accompanied by Mn. These oxic fluids that have been mixed with a sample that has undergone 

long alteration in a deep reducing environment, leading to increased efflux of Fe and Mn that 

are a lot more commonly mobile in reduced form. It is already observed that the fluids are not 

acidic in nature, and so any Fe3+ is unlikely to be aqueous (Lenntech, 2019; Stumm and Morgan, 

1996), however no precipitates were observed at any stage of the experimentation. Under 

these mildly reducing conditions, it may be sensible to assume that the aqueous PAM within 

the fluid could be stabilising any aqueous Fe. Literature already states that PAM can be used to 

remove transition metals metals such as Pb, Cu, Cd, Co and Hg (Manju et al., 2002; Shubha et 

al., 2001; Zhou et al., 2011) from solution. The stabilisation/removal of metals from the fluid 

using PAM is discussed below, and is investigated using Cd in Chapter 7 of this study. In an 

operational fracking aspect, to prevent the build-up of any precipitates, citric acid is often used 

to counter this Fe precipitation (Batley and Kookana, 2012), and thus would be a reason why 

Fe and Mn are observed in flow-back fluids from various sources (Batley and Kookana, 2012; 



203 
 
 

Wood and Patterson, 2011), rather than as immobile precipitates. The precipitation of iron 

hydroxides may also lead to co-precipitation of other metals coincidentally limiting other 

dissolved metals in the solution if the pH increases from acid to neutral (Bowell and Bruce, 

1995).  

It is likely that the conditions of the experiments are, in part, indicative of 

concentrations that may be returned, when accounting for scaling up from a sample to full frack 

volumes. Moreover, during the initial stage of a hydraulic fracture, initial oxidisation would 

occur on the fracture surfaces within the shale. Redox reactions in this environment would be 

slow as there is a difference between surfaces immediately in contact with oxygen, and deeper 

layers of sediments (shales in this case) (Stumm and Morgan, 1996). Over a prolonged period 

of time, potential oxidation reactions would occur beyond the shale surface and so flow-back 

returning over longer periods, months for examples, may differ in composition.  

So it is unlikely that it would be expected that the oxic fluids injected in to the reduced 

environment of these shale samples would lead to increased efflux from the samples of 

elements that are more commonly mobile in reduced form, in this case Fe and Mn. It should be 

noted that the use of the ratio of the increase between initial and final fluids could be 

misleading as it does not reflect the magnitude of the concentrations. The average 

concentration in Fe before and after were 0.77 mg/L and 0.494 mg/L respectively, i.e. these 

are close to the solubility of Fe expected in circum-neutral natural waters. Therefore, the 

increase is misleading for Fe and Mn and perhaps it is not necessary to invoke changes in pH 

or redox.  

To fully understand certain metal mobility and solubility with regards to oxidation 

states, more would need to be understood regarding the microbial activity in the context of 

dissolution, transportation and precipitation as microorganisms could form soluble metal 

complexes that would have the ability to adsorb (McAlister et al., 2003).  

 

Polyacrylamide 

The concentration of PAM within the slick-water fluid does appear to have some effect 

on the increase or decrease of certain metals in solution, and PAM is used in the water 

treatment industry to remove certain heavy metals from solution by means of adsorption, in 

particular Pb, Hg, Co and Cd (Shubha et al., 2001; Zhou et al., 2011). Starting with room 

temperature flow-back fluids, notable increases in concentrations linking to an increase in 

PAM concentration up to 1000 mg/L are observed with potassium and manganese (Figure 6.17 

(F & H)). Potassium shows increases of between 1 and 4 mg/L with a PAM concentration 

increase. Manganese shows increases of between 0.06 and 0.2 mg/L. Some samples exhibit 

increases in calcium content of up to 0.03 mg/L whilst other samples show no change. Sodium 

increases with an increase in PAM concentration amongst every sample tested, RT or HPHT 



204 
 
 

(Figure 6.16 (I) and Figure 6.22 (I)). Magnesium, silicon, iron and zinc remain largely 

unchanged by effects of an increasing PAM concentration. Copper and cadmium are removed 

from fluids, particularly in the lower concentrations of PAM, with decreases in concentrations 

becoming lesser when the PAM concentration increases. Sodium exhibits increases of up to 

400 mg/L, likely due to residual sodium from the manufacturing process of PAM using sodium 

polyacrylate (Kalra and Gross, 2002). Iron, manganese, silicon, zinc and cadmium, in some 

samples also show a slight increase, although this is not the case for the whole sample suite. 

Magnesium, calcium, aluminium, copper and lead remain fairly consistent in increases across 

the PAM concentration range.  

The adsorption, or removal by adsorption, of metals from solutions has been studied in 

the literature, predominantly for the heavy metals of Pb(II), Hg(II), Cd(II), Cu(II) and Co(II) (Ma 

et al., 2017; Manju et al., 2002; Shubha et al., 2001; Zhou et al., 2011) – some of which were not 

analysed in this study, however conclusions of which can still be drawn upon. Typically, PAM 

is used in this capacity by grafting it onto various gels or metal gels such as tin, iron oxide, 

chitosan/PAM hydrogel and PAM/attapulgite. Typically, pH is the driving factor in adsorption 

in this context (Manju et al., 2002; Rouquerol et al., 1999). Studies show that optimum 

adsorption is observed between pH values of 5 and 6 (Manju et al., 2002) or between 4 and 7 

(Zhou et al., 2011), but this is metal dependent. An optimal average pH of 4.5 is suggested by 

Ma et al (2017) for Pb, Cu and Cd. Adsorption efficiency at lower pH’s (specifically > 2.5) is 

reduced due to the large competition with H+ ions in solution (Ma et al., 2017). The majority of 

literature suggests that lead has the highest bonding affinity, compared to other typical metals 

analysed such as Hg, Cd, Cu and Co. Of the metals suggested above, Cu, Cd and Pb are the metals 

analysed within this study. Based upon results, Pb, Cd and Cu display negligible to no increase 

in concentration in solution with regard to PAM concentrations used in this study (up to 1000 

mg/L). To start to investigate the adsorbance, or affinity to any PAM in solution of any 

transition metals, Cd was further studied in Chapter 7 as a basis for future work.  

Importantly however, results show that fewer metals decrease in concentration within 

these HPHT conditions than in the RT conditions (comparison between Figure 6.14 and Figure 

6.19), ultimately suggesting that in more geologically realistic settings (i.e. not the room 

temperature settings) higher concentrations of metals are likely to return to surface. It is not 

known if there is a further link between even higher temperatures and pressure and even 

higher metal concentrations as this experiment was only conducted at one setting.  It is 

impossible to tell of any acidification of fluids or rocks at particular points that may have aided 

the solubility of some metals within the solution, due to the neutral nature of all PAM fluids 

used within this study. Literature would indicate that, in general, oxidising environments that 

are acidic would mobilise the most amount of metals into flow-back solutions in a hydraulic 

fracturing setting. Geological conditions simulated in these experiments, particularly 
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temperature (Table 4.1) are reasonably low. Is an increase on both temperature and pressure 

likely to have an impact on concentrations and, will higher temperatures or changes in PAM 

concentration bind more metals in solution and return them to surface in even greater 

quantities?  

6.8. Conclusions 

The majority of metals analysed are present in the flow-back fluid in greater quantities 

than were originally ‘injected’ via the slick-water PAM fluid.  Varying PAM concentrations 

occasionally impacted upon the hardware and affected measurement clarity. Adding 1000 mg 

of powdered non-ionic PAM to the mains water solution increased the sodium content to 

concentrations up to ~500 mg/L, producing a briny type fluid. The addition of PAM also 

increased levels of other trace metals, but in quantities far less than observed for sodium.   

At room temperature, copper, cadmium and lead were removed from solution.  The 

removal of copper and cadmium appears to decrease with an increase in PAM concentration. 

Metals such as aluminium, calcium, magnesium, lead and zinc do not exhibit large increases or 

decreases (unlike potassium or sodium for example) alongside increases in the PAM 

concentration.  

Under HPHT conditions, the concentrations of the metals being added to the flow-back 

solution increases for the majority per sample. Consequently, based upon the overall increases 

in metal concentration, lower concentrations of all metals, across all samples, are being 

removed or adsorbed from the flow-back solution. The most decreases in solution were 

observed are with cadmium and copper, although not all samples exhibit decreases of these. 

PAM concentration does affect some metals, showing an increase in potassium, sodium and 

potentially iron with an increase in PAM concentration. Other metals, particularly potassium 

and sodium, show consistent increases in concentration alongside an increase in PAM 

concentration.  

HPHT conditions inhibit the removal of certain metals to the sample in comparison to 

the RT conditions. It is not clear whether either temperature, pressure, or both are the primary 

factor for this behaviour– future work is needed to investigate this phenomenon (see Section 

8.5.4). Due to the neutrality of the fluids used in the batch experiments, and the neutrality of 

the flow-back water from literature, it is unlikely that acidification is a major influence on the 

variance of metals returned in flow-back waters. More geologically indicative conditions, as 

simulated by the HPHT experiments, may favour increases in metals leaching from the sample 

and returning to the surface rather than the RT conditions. Based upon this, it would be 

expected that in a real-world situation, metals are more likely to return than be adsorbed based 

upon UK geothermal temperatures and fluid pH.  
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As discussed, literature suggests that PAM does have the capacity to adsorb or bind 

certain metals in certain conditions where pH is a major factor. Chapter 7, investigates the 

initial affects it has upon cadmium in a pH neutral environment, giving insight into how it 

would interact with a toxic metal of peak environmental importance.  

Future work would be able to assess if pressure is another factor, and whether 

fluctuations in temperature can influence the concentrations of metals returning to surface in 

flow-back fluids.  Future work would also assess the necessity for sequential extraction to 

analyse how the increase or decrease of certain metals will be affected over time, and 

potentially with the effects of pressure, temperature and pH running alongside this.  
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7. The Colloidal Behaviour of Polyacrylamide as a 

Hydraulic Fracturing Fluid Additive 
 

7.1. Introduction 

PAM is commonly used as a flocculent and coagulant in the water treatment and soil 

conditioning industries (Deng et al., 2006b). It is now fast becoming very popular in the 

fracking industry for its use as a friction reducer (Xiong et al., 2018b). As a colloid, the 

behaviour of PAM is of interest to the shale gas industry as it may have the ability to interact 

and bind aqueous metals released, or that were in equilibrium with the connate waters within 

the shale (Maguire-Boyle and Barron, 2014). To summarise, the presence of PAM in a fracking 

fluid may influence the composition of the flow-back waters, particularly with certain metals. 

The results of behaviour of this kind would be just as important as how much PAM could be 

removed from solution by means of adsorption. Does the PAM act as a colloid towards any of 

the metals released by the shale upon fracture, binding them and bringing them to surface in 

potentially dangerous and polluting concentrations? The opposite may also be true; certain 

metals may adsorb (chemically or physically) to the shale surface rather than remain in 

suspension within the fluid.  

To test the hypothesis that PAM could influence certain metals within the flow-back 

fluid, two analytes were measured; cadmium and sodium. Cadmium was used as the primary 

tracer to see how either PAM or the shale would influence it in aqueous form. Cadmium is 

present in minor amounts in the natural world (Morrow, 2010) and in shales, often measured 

in parts per billion (1 mg/kg = 1000 ppb) (Gong et al., 1977). Cadmium is classified as a priority 

pollutant by the USEPA (Shubha et al., 2001) due to its toxicity, threat to human life and the 

environment, and the fact no effective treatment for over-exposure exists (Tucker, 2008). 

Examples of the threats cadmium poses include: effects on reproduction rates on humans and 

animals; renal damage in humans, decreased enzyme activity on plants; and nervous system 

mutations in both humans and animals (de Vries et al., 2007).  With the danger and toxicity of 

cadmium high, EU regulatory limits set it at 0.005 mg/L (European Union, 1998). Sodium was 

measured as the second analyte for ease as PAM contains large quantities of residual sodium 

from its production process, utilising sodium polyacrylate, hence sodium values of ~ 500 mg/L 

observed in Chapter 6 of this study.  

The results of this analysis ultimately let us understand if PAM has the potential to 

influence the composition of flow-back fluid with regard to cadmium and other heavy metals. 

Building upon the results of this test, similar slick-water fluids would have their role assessed 
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in relation to other analytes, potentially others that are likely present in greater quantities and 

more harmful to humans and the environment.  

 

7.2. Aims and Objectives 

This chapter assessed how non-ionic PAM behaves as a colloid within a fracking fluid. 

The behaviour of both PAM and metal transference in the presence and absence of shale will 

be analysed. Varying concentrations of PAM will be used to see if low or high concentrations 

show specific behaviours. This analysis was used to understand if the aqueous cadmium 

favours adsorption to the shale or the PAM, whether that PAM is behaving colliodally or not. 

Using a PAM-rich fluid contained within a semi-permeable membrane (dialysis tubing), that is 

submerged in a freshwater fluid containing the metal cadmium and sometimes shale, this 

favourability was tested. If the metal favours the PAM then more than expected cadmium will 

cross the semi-permeable membrane. If the metal favours the shale then more cadmium than 

expected will remain in the beaker with the shale.  

Ultimately, the results of this chapter will allow us to understand how the use of PAM 

as an additive may influence the composition of flow-back waters. The PAM and the shale will 

compete to adsorb and bind metals in the fluid that were either present initially or have been 

released by the shale. The behaviour, and potential to bind metals in the aqueous fluid, may 

have important influence on certain trace elements returning to surface or being able to 

migrate through strata.  

 

7.3. Colloid Experiment Method 

For this experiment there are two main methodologies, each analysing a different 

outcome. The first methodology analyses aqueous PAM that may or may not have travelled 

through a semi-permeable membrane (dialysis tubing) into a higher volume matrix fluid. 

Aqueous PAM concentration was measured to see how much may have transferred across the 

membrane using the N-Bromination method previously mentioned (Section 3.3.5). The second 

methodology utilises ICP-OES (Inductively Coupled Plasma – Optical Emission Spectroscopy) 

to measure concentrations of cadmium (Cd) and sodium (Na) that may have transferred across 

the dialysis membrane due to competing adsorption between aqueous PAM and shale (Figure 

7.1). The PAM manufacture uses large amounts of sodium polyacrylate in its manufacturing 

process and so sodium was measured as proxy for PAM.  
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Figure 7.1: Experiment setup for the colloid analysis. In order to understand 
the competition between PAM and the shale interface the same concentration 
of PAM and the same concentration of Cadmium will be measured against a 
beaker containing shale and one not containing shale.  

 

To statistically test the colloidal behaviour of PAM, and how this alters the behaviour 

of cadmium in the presence or absence of shale, there needed to be multiple concentrations of 

PAM and cadmium measured. Essentially, the experiment is multi factor: 

1. The concentration of cadmium is measured in the bag at the end of the 

experiment to determine how much cadmium can transfer across the 

membrane with no shale present. 

2. The concentration of cadmium is measured in the bag at the end of the 

experiment to determine how much cadmium can transfer across the 

membrane when there is shale present – does the cadmium favour PAM or the 

shale? 

3. Differing concentrations of PAM and cadmium were used to see if either has an 

effect on the transference, in the presence or absence of shale.  

Each specific cadmium concentration needed to be tested against the presence or 

absence of a shale competitor. The experiment breadth in terms of numbers of experiments 

run can be viewed in Table 7.1. 
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Table 7.1: Experimental setup for the colloid experiment. There were four 
differing PAM concentrations that each contained a range of cadmium 
concentrations in the beaker. Of these four PAM ranges, one contained shale and 
the other no shale.  

 

Each experiment consisted of 4 dialysis bags containing 20 ml of identical PAM slick-

water concentrations submerged in 4 glass beakers full of 400 ml of solution of differing 

cadmium concentrations. Each row in Table 7.1 represents one experiment run, and thus 8 

experiment runs were completed. Four runs were completed with no shale in the cadmium 

matrix fluid and an identical four runs were completed with shale in the cadmium matrix fluid 

(Figure 7.2).  

 

Figure 7.2: Colloid setup runs in terms of cadmium concentrations spiked into the beakers. Row 1 
represents the four beakers for a run of a certain concentration of PAM in the dialysis bag – in total there 
would have been four runs of these, each with a differing concentration of PAM. Row 2 represents the four 
beakers for a similar run, but this time with the addition of shale to the cadmium matrix fluid – in total four 

SHALE
PAM Conc 

(mg/L)

EXPERIMENT 

NUMBER

0 1 5 10 20 #1

15.625 1 5 10 20 #2

62.5 1 5 10 20 #3

500 1 5 10 20 #4

0 1 5 10 20 #5

15.625 1 5 10 20 #6

62.5 1 5 10 20 #7

500 1 5 10 20 #8

CADMIUM CONC (mg/L)

YES

NO
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of these would have been run for the four different concentrations of PAM necessary. Shaded grey mass in 
line ‘2’ refers to the presence of shale.  

 Overall, 32 experiments were run to test these ranges of both PAM and cadmium 

concentrations (Table 7.1). For each experiment, aqueous polyacrylamide concentration was 

measured both in the dialysis bag and the beaker at the start and end of the experiment. Fluid 

from the both the bag and beaker before and after the experiment was syphoned off for ICP 

analysis. ICP-OES analysis tested for cadmium and sodium to see the concentration transfer in 

the presence or absence of shale.  

7.3.1. Sample Preparation 

Only one shale sample was used for this experiment, OC 3 (Hazelhurst Fell, Upper 

Bowland Shale). Sample availability resulted in the use of this sample. Shale used in this 

experiment used the same powdered material as used in the RT and HPHT adsorption 

experiments (Sections 3.3 and 4.5). Sample OC 3 was chosen as a very ‘typical’ shale. The OC 3 

shale contains mainly kaolinite and illite type clays, typical of the Bowland Shale (Gross et al., 

2015), has very typical organic shale carbon and TOC values; 4.71 wt% and 3.33 wt% 

respectively, and contains reasonable clay content based on the Si/Al ratio (Table 2.11, Section 

2.4.2).  

7.3.2. Cadmium Solution Preparation  

A 2000 mg/L cadmium solution was made by mixing 4.063 g of cadmium chloride with 

1 L of DI water, thus producing a solution that could be diluted down into 400 ml volumes for 

the desired concentrations of 1, 5, 10 and 20 mg/L (Table 7.2).  

 

Table 7.2: Dilution calculations for diluting down the 
2000 mg/L cadmium stock solution into workable 
concentrations within a 400 ml matrix fluid. For 
example, 4 ml of 2000 mg/L cadmium in 400 ml of water 
produces a 20 mg/L cadmium solution.  

 

Desired mg/L ml in 400 ml 

20 4

10 2

5 1

1 0.2

2000 mg/L CADMIUM SOLUTION
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Cadmium chloride was found to be the best compound for dissolution in the matrix 

water. It offered very little interference at a 570 nm wavelength on the spectrophotometer 

making it easier to analyse aqueous PAM using the N-Bromination method (Section 3.3.5). 

Other compounds initially tested for inclusion in this study were: magnesium sulphate, 

manganese sulphate and copper (II) chloride. All were tested and deemed unsuitable.   

7.3.3. PAM Adsorbancy method overview 

As detailed in the full N-Bromination method, Section 3.3.5, an aqueous sample thought 

to contain PAM was taken from both inside and outside the dialysis bag, before the experiment 

started, and after overnight completion. This aqueous PAM solution was diluted tenfold to 

bring aqueous PAM into an analytical range for the spectrophotometer. All samples were 

diluted, regardless of whether they contained a known negligible amount of PAM or not. 

Despite using only 3 concentrations containing PAM; 15.625 mg/L, 62.5 mg/L and 500 mg/L, 

the same full suite of calibration standards, between 0 and 1000 mg/L PAM, was used. Using 

the same calibration standards maintained consistency across all experiments which 

measured for aqueous PAM content.  

7.3.4. ICP-OES Analysis setup overview 

As is standard throughout this study for ICP-OES analysis, explained in more detail in 

Section 6.4.3, each 1 ml sample of fluid was diluted eleven fold with 10 ml of ~ 7 % ANALR 

grade Nitric Acid (HNO3). This dilution ensured there was enough sample for the machine to 

use at least once, and potentially twice if necessary. The dilution also ensured that any 

suppression effects on the internal standard (Yttrium), because of the presence of PAM in the 

analyte, were at a minimum. Equally, dilutions had to minimised to avoid lowering 

concentrations of analyte below detection. This dilution procedure was adhered to on all ICP 

samples, whether or not they were suspected of containing aqueous PAM. The cadmium was 

measured using three wavelengths; 2144 nm, 2265 nm and 2288 nm. Sodium was measured 

on four different wavelengths; 3302 nm, 5688 nm, 5889 nm and 8183 nm. All wavelengths 

were used in the data analysis as none produced any erroneous results. All samples were 

spiked with 2 mg/L yttrium 3710 as an internal standard – this spiking would aid the discovery 

of signal suppression, where present. 

7.3.5. Step by step method 

A depiction of how the experiment works is given in Figure 7.3.  

Day 1: A 1000 mg/L PAM solution was produced by adding 1 g of non-ionic PAM 

powder to 1 L of mains tap water. Four 500 ml glass beakers were filled with 400 ml of a tap 
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water matrix fluid. From here the relevant amount of tap water was removed as per Table 7.2, 

and the desired amount of 2000 mg/L cadmium solution was added to obtain the desired 

cadmium concentration. 1 ml of fluid was removed from the overall now cadmium rich matrix 

fluid and stored for ICP analysis. Alongside this, 10 cm of SnakeSkin ® 3.5 kDa MWCO 

(molecular weight cut-off) dialysis tubing (Thermo Scientific) was cut and sealed at one end. 

20 ml of the relevant PAM fluid was pipetted into the dialysis bag and 1 ml removed for ICP 

analysis. The dialysis bag was then sealed. Shale sample was then added (if experiment 

required it) to the 400 ml matrix fluid in the beaker and thoroughly mixed. Once mixed the 

dialysis bag containing the 20 ml of PAM slick-water fluid was then fully submerged within the 

400 ml matrix fluid in the beaker. The top of the beaker was then sealed with parafilm and left 

overnight for 16 hours to allow for any fluid transfer to take place.  

Day 2: Parafilm was removed from the sealed beakers and the dialysis bags were 

removed from the matrix fluid. 1 ml of each fluid was syringed off from the respective vessels 

and stored frozen for ICP analysis. The remaining fluid was then tested for the presence of 

aqueous PAM using the N-Bromination method detailed in Section 3.3.5.  

 

 Fluid samples were taken from each vessel before and after the reaction had taken 

place: this was to measure the change in concentrations across the membrane.  
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Figure 7.3: Graphical depiction of the working of the colloid analysis. Stage 
1) Before the experiment has started, fluids are syphoned away from both 
the PAM fluid within the dialysis bag, and the cadmium rich matrix fluid. 
Both fluids are tested for cadmium and Na content on the ICP, and aqueous 
PAM content on the spectrophotometer. Stage 2) The dialysis bag is sealed 
and placed into the 400 ml of cadmium rich matrix fluid. Dependent on 
experiment, shale may or may not have been added to the fluid. Sample is 
left to soak overnight and allow any transfer to occur. Stage 3) Dialysis bag 
is removed from the cadmium rich fluid. Samples of both fluids are tested for 
cadmium and sodium on the ICP, and aqueous PAM on the 
spectrophotometer, as per stage 1.  
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7.3.6. Data Analysis Method 

Raw data outputted from the ICP-OES was immediately checked for any erroneous data 

and erroneous suppression values (Figure 7.7). Once erroneous data was rectified or removed, 

all values were multiplied by 11 to correct for the dilution via the 10 ml addition of HNO3 to 

each sample.  

To measure the amount that will have migrated across the dialysis tubing’s semi-

permeable membrane, the level of fractionation needed to be calculated in terms of the dilution 

between the dialysis bag of 20 ml and the glass beaker of 400 ml. The fractionation value was 

determined by dividing the diluted value (the cadmium concentration with the additional 20 

ml of PAM fluid to the 400 ml cadmium matrix) by the observed concentration of cadmium in 

the bag after submerging. This value was calculated from the control experiment, #1, where no 

PAM was present in the bag, and no shale present in the beaker. The cadmium here is not 

influenced by anything and the concentration remaining in the bag classed as the normal 

transference concentration based upon no additional factors.  

The loss/gain ratios for sodium within the beaker were analysed using t-tests, based 

upon fractionation results and the measurement of aqueous PAM. A four factor ANOVA 

(analysis of variance) was performed on the final results to observe any relationships between 

the factors in the experiment. Factors were classed as the PAM concentration, the cadmium 

concentration, the presence or absence of shale and the wavelength of the cadmium tested. The 

responses were based on the calculated and observed results from the experiments. The 

responses were; observed cadmium concentration (mg/L); the colloid fraction (the difference 

between the observed and the expected concentration (based upon the colloid fraction)); the 

concentration on colloid (the difference between the expected concentration (based on the 

colloid fraction) and the observed concentration; and finally the K value (the result when 

dividing the concentration on colloid by the observed concentration). The K value for each 

experiment shows how the cadmium behaves. A lower K value, for this experiment, 

demonstrates that cadmium prefers the substance (rock type) in the beaker, and higher K 

values prefer the PAM contained within the dialysis bag.  

 

7.4. PAM Colloid Results 

For this study, it was not necessary to plot Freundlich or Langmuir isotherms to 

determine adsorbed and aqueous PAM. Aqueous PAM concentration was measured in both the 

bag and the beaker at the start and end of each experiment. The addition of cadmium chloride 

to the matrix fluid provided minimal effect upon the absorbance of light in the 

spectrophotometer, an average of 0.013 absorbance units which was subtracted from all 
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adsorption results to account for the aqueous PAM. Results for all both experiments, shale or 

no shale, can be seen in Table 7.3. Results showing the concentration of aqueous PAM can be 

seen in Figure 7.5 for no shale presence and Figure 7.6 where the shale was present.  

 

Table 7.3: Results of the colloid experiment runs in terms of aqueous PAM. ‘Initial Bag’ refers 
to the PAM concentration inside the dialysis bag at the start. ‘Predicted’ refers to the 
detectable concentration range using the fractionation value. ‘Actual’ refers to the measured 
concentration of PAM detected in the beakers after fluid transfer has taken place.  

 

Multiple measurements from the beaker measured 0, showing that either zero PAM, or 

amounts of PAM that are so small they are undetectable by the method (Table 7.3). The 

detection limit, using the lowest PAM concentration of 15.625 mg/L was 0.74 mg/L. Out of all 

Cd

CADMIUM 

(mg/L)

INITIAL BAG 

(mg/L)

PREDICTED 

(mg/L)

ACTUAL 

(mg/L)

RATIO 

(loss/gain)

1 15.6 0.743 0

5 15.6 0.743 0

10 15.6 0.743 4.443 5.980

20 15.6 0.743 1.008 1.356

1 62.5 2.976 0

5 62.5 2.976 1.008 0.339

10 62.5 2.976 0

20 62.5 2.976 0

1 500 23.810 0

5 500 23.810 0

10 500 23.810 1.580 0.066

20 500 23.810 0

1 15.6 0.743 0

5 15.6 0.743 0

10 15.6 0.743 0

20 15.6 0.743 0

1 62.5 2.976 0

5 62.5 2.976 0

10 62.5 2.976 4.214 1.416

20 62.5 2.976 0.664 0.223

1 500 23.810 0

5 500 23.810 0

10 500 23.810 0

20 500 23.810 6.504 0.273

N
O

 S
H

A
L

E
SH

A
L

E

POLYACRYLAMIDE



217 
 
 

8 results for the lowest concentration of PAM, aqueous PAM in the beaker after dissolution was 

so low it was undetectable in most samples. The highest concentration was at 4.4 mg/L. 

Knowing that the minimum detectable limit was 0.74 mg/L, results show that for the most part, 

aqueous PAM is present in a concentration lower than this, hence why zero values have been 

measured for 17 out of the 24 samples (Figure 7.4).  

 

 

Figure 7.4: Histograms displaying the distribution of the measured aqueous PAM in the 400 ml beaker 
full of cadmium matrix fluid after the experiment had finished. A) without shale, B) with shale. 

 

The majority of the ratios, for the loss or gain above or below the ‘predicted’ value 

(Table 7.3), are below 1 showing a lack of transference of PAM over the semi-permeable 

membrane, either with or without the presence of shale. Values that are greater than 1 are in 

the minority for each set of results, being either completely undetectable lower concentrations 

of aqueous PAM with the hypothetical full fluid dilution. These ratios that are > 1 may be 

erroneous results as only 2/24 exhibited values such as these.  
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Figure 7.5: PAM transference from dialysis bag to beaker over 12 hour period without shale present within 
the beaker. ‘Predicted conc (beaker & bag)’ refers to the concentration of PAM across the full volume of 
both bag and beaker if there was total equilibrium between the two (420 ml). ‘Actual Conc (beaker & bag)’ 
refers to the actual measured concentration of PAM in the 420 ml. ‘Ratio dilution’ refers to whether the 
conc of PAM measured in the beaker at the end of the experiment is greater or lesser than the expected 
concentration if the initial 20 ml of PAM is diluted with 400 ml of water.  

 

 

Figure 7.6: PAM transference from dialysis bag to beaker over 12 hour period with shale present within 
the beaker. ‘Predicted conc (beaker & bag)’ refers to the concentration of PAM across the full volume of 
both bag and beaker if there was total equilibrium between the two (420 ml). ‘Actual Conc (beaker & bag’) 
refers to the actual measured concentration of PAM in the 420 ml. ‘Ratio dilution’ refers to whether the 
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conc of PAM measured in the beaker at the end of the experiment is greater or lesser than the expected 
concentration if the initial 20 ml of PAM is diluted with 400 ml of water. 

 Overall, results exhibited here show that PAM does not pass through the pores of the 

semi-permeable membrane of the dialysis tubing. This behaviour is unaffected by the presence 

or absence of shale. The presence of shale does not bring any PAM through the membrane.  

7.5. Cadmium and Sodium Colloid Results 

Cadmium was analysed as the primary cation for the transfer between the semi-

permeable membranes. Sodium was initially measured as a proxy for the amount of aqueous 

PAM that may have also transferred across this membrane. Yttrium 3710 was run as an 

internal standard when measuring samples on the ICP-OES machine. This standard failed on 

one attempt, run #3, and so result set number 6 was not used due to erroneous measurement 

on the ICP (Figure 7.7). Set number 6 was the analysis of colloid at a PAM concentration of 

15.625 mg/L in the presence of shale (Figure 7.1). The remaining runs (1, 2 and 4) analysed all 

remaining samples with no large errors on the internal standard. 

 

 

Figure 7.7: The suppression of the Yttrium 3710 spike for the four runs that were needed to analyse all 
samples for cadmium and Na. Run 1 analysed experiment #1, run 2 analysed experiments 2, 3 and 4, run 
#3 analysed experiment #6 and run 4 analysed experiments 5, 7 and 8. The difference in intensity counts 
exhibits the sensitivity of the machine at different time periods. Run #3 completely failed to provide any 
results for experiment number 6.  
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The differing intensity between the different runs is normal, so long as the samples 

follow a similar intensity pattern as the spike is the same. Run #4 (Figure 7.7) exhibits slight 

drift throughout the whole sequence. Experiment #4 starts the analysis at ~ 25,000 ct/s and 

ends on ~ 20,000 ct/s, but does level out as the sample number increases. Runs #1 and #2 

exhibit the least amount of drift or suppression for the internal standard. PAM offers some level 

of suppression in the machine itself (full details of this suppression itself detailed in Section 

6.5), with higher concentrations producing more suppression – this can be accounted for by 

using the internal standard. Runs #2 and #4 show the most amount of suppression due to the 

higher PAM concentration present (labelled on Figure 7.7). These ten points respectively 

represent an initial PAM concentration of 500 mg/L that has been diluted with 10 ml of ANALR 

HNO3. The value observed represents the Yttrium suppression for a 45.45 mg/L PAM solution. 

Experiment #5 failed to measure concentrations of cadmium for an unknown reason. Sodium 

readings were present for experiment #5 and were used in the sodium analysis, but not the 

cadmium analysis. Based on the results from other experiments, it is unlikely that the lack of 

cadmium is due to the cadmium being a) all adsorbed to the shale, or b) having precipitated 

out of solution. It is more likely to be due to instrument failure.  

7.5.1. Sodium 

Sodium was initially utilised in the ICP analysis as a proxy for PAM, however, as has 

already been mentioned, negligible amounts of PAM were transferred through the semi-

permeable membrane (3.5 kDa MWCO). There is an increase in sodium concentration when 

the PAM concentration is increased (8). This transference of sodium across the semi-

permeable is likely to just be residual sodium, not directly associated to the colloid behaviour 

itself.  
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Figure 7.8: Sodium concentrations shown for the four concentration of PAM fluids used in the dialysis 
bags before the bags had been submerged in the cadmium rich matrix fluid. Values are shown in terms 
of the highest and lowest sodium values observed for each concentration of PAM.  

 

 Results show that this residual sodium related to PAM is able to pass through the semi-

permeable membrane of the dialysis tubing. Sodium quantities for the PAM used were 

unavailable from the manufacturer. A full results table for all concentrations measured for 

Sodium can be viewed in Digital Appendix G.1. Dilution factors were calculated to obtain the 

concentration value of the sodium in the beaker if the original concentration of 20 ml is diluted 

with a further 400 ml of cadmium rich matrix fluid – if the sodium had equilibrated across the 

membrane.  

 

                                      
( 𝟒𝟎𝟎 ×𝒂+𝟐𝟎 ×𝒃)

𝟒𝟐𝟎
                                                                 Equation 7.1 

 

The dilution calculation used to calculate the dissolution concentration of the sodium 

in a 420 ml fluid (400 ml beaker and 20 ml dialysis bag) is shown in Equation 7.1. ‘400’ refers 

to the original volume of the cadmium-rich fluid in the beaker containing no additional sodium 

from PAM; ‘a’ is the concentration of sodium in the beaker before the addition of the PAM filled 

dialysis bag; ‘20’ refers to the volume of PAM fluid in the dialysis bag; ‘b’ is the concentration 

of sodium in the 20 ml dialysis bag before submersion and; ‘420’ is the total volume of the 

beaker and the bag combined. A full set of results can be observed in Appendix G.1.  
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When the concentration is calculated, to confirm total transference over the 

membrane, this calculated concentration must be a very similar, if not the same value to the 

actual measured concentration. Ratios between the calculated and actual concentration were 

calculated, the t-test of these results are shown in Table 7.4.  

 

Table 7.4: t-test results of the ratio results for all combinations of fluid and 
shale present. ‘Only PAM’ refers to all concentrations of PAM grouped 
together. ‘No PAM’ refers to ratios calculated from experiments that 
contained no concentration of PAM at any stage of the experiment.  

 

 Overall, all the average ratios for the differing parameters are not significantly different 

from 1.0 for any parameter (Figure 7.4). The most deviation is seen in samples that contained 

no shale or PAM, the smallest dataset for the t-test (”No Shale Present, No PAM” in Figure 7.4), 

exhibiting a negative t-value. The P-value for all datasets is greater than the error margin used 

(0.05) showing that there is weak evidence against the null hypothesis (no significant 

difference between the populations) for all samples. The fact that there is no significant 

deviation from the mean of 1, and no significant difference in populations shows us that none 

of the three experiment factors; PAM concentration, cadmium concentration or the presence 

or absence of shale, have any influence on the sodium content in any part of the system. 

 

 

PARAMETERS 95 % CI for μ MEAN T-VALUE P-VALUE

All data 0.9746 - 1.0807 1.0276 1.03 0.303

Shale Present

Any PAM

No Shale Present

Any PAM

Shale Present

No PAM

Shale Present 

Only PAM

No shale Present

No PAM

No Shale Present

Only PAM

0.7350.351.0280.8531 - 1.2029

0.2931.081.01780.9835 - 1.0522

0.18-1.420.8810.7168 - 1.0594

0.1211.581.06750.9816 - 1.1534

0.490.71.02160.9589 - 1.0843

0.9533 - 1.1095 0.4240.81.0314
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Figure 7.9: Normality tests and histograms for the key parameters of the sodium tests. The majority of 
distributions stick to a ratio of approximately 1, showing minimal migration from the calculated diluted 
value and thus a general complete equal distribution in the finishing fluid of 420 ml.  

 

 Histograms show that the majority of ratio results are between 1.0 and 1.1 (Figure 7.9). 

Results between 1.0 and 1.1 are true for all data tested together, and data tested with PAM and 

without PAM. Statistically there was no change in the sodium concentration across all parts of 

the system, even with differing experimental factor, i.e. sodium passes freely through the 

membrane and appears to be controlled by its source and by its solubility. 
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7.5.2. Cadmium 

 Due to the method of producing the 2000 mg/L cadmium chloride solution, slight 

inaccuracies were present in the exact initial starting concentrations for the experiment. These 

inaccuracies however, were not an issue as the starting concentrations in each beaker were 

known values. Percentage migration and colloid fraction can be calculated by the start and end 

values being both known concentrations.  Planned concentrations (i.e. 20, 10, 5 and 1 mg/L) 

vs observed concentrations can be viewed in Figure 7.10.  

 

 

Figure 7.10: Initial starting concentrations of cadmium for each 400 ml beaker before dialysis bags or 
shale were added, depending on the experiment being run. The four columns of data represent each of the 
four beakers used per experiment, from highest cadmium concentration to lowest. Experiment #5, shown 
as zeroes on the figure, measured no cadmium due to machine error.  

 

  

Despite the range observed in the starting concentrations of cadmium (Figure 7.10), all 

data was within the correct ratio for each individual experiment. All fits for all data seen in 

Table 7.5 are > 90 % r2, showing consistent steps in concentration for each experiment run.  
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Table 7.5: r2 fits for all starting 
concentration ranges seen in Figure 7.10  

 

 This confirmation of the fits for each cadmium concentration range ensured that the 

initial concentrations are correct and linear for each experiment. From this, the fractionation 

value could be estimated for each experiment.  

 

 

Table 7.6: Table of results for a subset of experiment #1, the blank, containing no PAM in the dialysis bag 
and no shale sample in the beaker. ‘Initial concentration’ is the concentration of cadmium in the beaker 
before the experiment has begun; ‘diluted concentration’ is the concentration in the beaker if the 20 ml bag 
transfers at equilibrium producing a 420 ml solution; ‘observed concentration’ is the concentration 
measured in the bag after the experiment has finished and; ‘fractionation’ is the amount gained or lost over 
the semi permeable membrane.  

 

 Results for the blank displayed in Figure 7.11 show that in the absence of PAM slick-

water fluid or shale to influence substance transfer, an average of 25.9 % extra cadmium is 

observed within the bag, accounting for only the volume of the bag (20 ml) and not the whole 

420 ml system inclusive of the bag and beaker. This fractionation figure, ranging from 1.247 to 

1.267 is used as a calibration as the ‘normal’ behaviour, and all other results are calibrated 

from these values, respective to the wavelength measured.  

EXPT NO. Cd STARTING R
2

1 0.9854

2 0.9139

3 0.9993

4 0.9941

5 N/A

6 N/A

7 0.9877

8 0.988

Cd WAVELENGTH
INITIAL CONC 

(mg/L)

DILUTED CONC 

(mg/L)

OBSERVED CONC 

(mg/L)
FRACTIONATION % GAIN

2144 10.860 10.342 13.079 1.265 26.45

2265 9.990 9.514 11.869 1.247 24.7

2288 10.253 9.764 12.375 1.267 26.7

Average 10.368 9.873 12.441 1.260 25.950

BLANK - NO PAM IN BAG
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 Experiment #1 is treated as the overall blank having no shale or PAM present to 

influence the migration of the cadmium in either the dialysis bag or the beaker. The other 

experiments (#2 through to #8) all link to each other. For example, #2 to #6 without and with 

shale respectively, #1 to #5, #3 to #7 and #4 to #8. In this instance, experiments #5 and #6 

failed on ICP analysis due to both hardware and internal standard issues. Useable data is 

present in #1, #2, #3, #4, #7 and #8. Direct comparisons between the presence and absence of 

shale can only be calculated in #3 and #7 and #4 and #8 respectively, measurements for 62.5 

mg/L PAM and 500 mg/L PAM. Results for all samples using the fractionation value stated 

above can be seen in Table 7.7. A full table of results can be viewed in Digital Appendix G.1.  
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Table 7.7: Full suite of results for cadmium transference across the semi permeable membrane at 
different concentrations of PAM present and the presence or absence of shale. Data is calculated 
using the colloid fraction values observed in Table 7.6. 

BLANK

EXPT No. #1 #2 #3 #4 #5 #6 #7 #8

PAM Conc (mg/L) 0 15.625 62.5 500 0 15.625 62.5 500

Cd Wavelength

2144 13.079 15.921 15.765 20.076 24.760 23.713

2265 11.869 14.637 14.611 18.714 20.074 19.133

2288 12.375 15.215 15.255 19.516 22.145 21.203

2144 13.079 11.880 10.310 14.311 19.635 25.652

2265 11.869 11.132 9.678 13.442 16.082 20.658

2288 12.375 11.396 9.933 13.684 17.501 22.462

2144 0.000 0.254 0.346 0.287 0.207 0.000

2265 0.000 0.239 0.338 0.282 0.199 0.000

2288 0.000 0.251 0.349 0.299 0.210 0.000

2144 0.000 4.041 5.455 5.765 5.125 0.000

2265 0.000 3.505 4.933 5.272 3.992 0.000

2288 0.000 3.819 5.322 5.832 4.644 0.000

2144 0.000 0.340 0.529 0.403 0.261 0.000

2265 0.000 0.315 0.510 0.392 0.248 0.000

2288 0.000 0.335 0.536 0.426 0.265 0.000

2144 7.035 3.407 7.198 9.152 11.669 12.776

2265 6.369 3.112 6.636 8.484 9.456 10.294

2288 6.640 3.242 6.943 8.864 10.409 11.427

2144 7.035 5.597 4.828 8.313 10.794 12.771

2265 6.369 5.240 4.523 7.810 8.857 10.282

2288 6.640 5.363 4.643 7.951 9.624 11.187

2144 0.000 0.000 0.329 0.092 0.075 0.000

2265 0.000 0.000 0.318 0.079 0.063 0.001

2288 0.000 0.000 0.331 0.103 0.075 0.021

2144 0.000 0.000 2.370 0.839 0.875 0.005

2265 0.000 0.000 2.113 0.674 0.599 0.012

2288 0.000 0.000 2.300 0.913 0.785 0.240

2144 0.000 0.000 0.491 0.101 0.081 0.000

2265 0.000 0.000 0.467 0.086 0.068 0.001

2288 0.000 0.000 0.495 0.115 0.082 0.021

2144 2.877 3.299 3.043 2.765 7.445 6.292

2265 2.611 3.032 2.817 2.564 6.066 5.097

2288 2.714 3.154 2.946 2.682 6.664 5.654

2144 2.877 1.989 2.318 2.270 6.333 6.736

2265 2.611 1.854 2.170 2.130 5.196 5.437

2288 2.714 1.898 2.226 2.167 5.652 5.907

2144 0.000 0.397 0.238 0.179 0.149 0.000

2265 0.000 0.389 0.230 0.170 0.143 0.000

2288 0.000 0.398 0.244 0.192 0.152 0.000

2144 0.000 1.310 0.725 0.495 1.112 0.000

2265 0.000 1.179 0.647 0.435 0.869 0.000

2288 0.000 1.256 0.719 0.515 1.013 0.000

2144 0.000 0.659 0.313 0.218 0.176 0.000

2265 0.000 0.636 0.298 0.204 0.167 0.000

2288 0.000 0.662 0.323 0.238 0.179 0.000

2144 0.180 0.126 0.132 0.140 0.769 0.726

2265 0.163 0.115 0.122 0.129 0.626 0.586

2288 0.169 0.119 0.127 0.135 0.683 0.646

2144 0.180 0.086 0.091 0.095 1.304 1.286

2265 0.163 0.079 0.085 0.089 1.069 1.035

2288 0.169 0.081 0.088 0.091 1.161 1.122

2144 0.000 0.319 0.309 0.322 0.000 0.000

2265 0.000 0.310 0.306 0.308 0.000 0.000

2288 0.000 0.315 0.307 0.323 0.000 0.000

2144 0.000 0.040 0.041 0.045 0.000 0.000

2265 0.000 0.036 0.037 0.040 0.000 0.000

2288 0.000 0.037 0.039 0.044 0.000 0.000

2144 0.000 0.469 0.448 0.476 0.000 0.000

2265 0.000 0.450 0.442 0.445 0.000 0.000

2288 0.000 0.461 0.442 0.478 0.000 0.000

Conc on Colloid

NO SHALE PRESENT SHALE PRESENT

Expected Conc (mg/L)

Colloid Fraction

Observed (mg/L)

K Value

Expected Conc (mg/L)

Observed (mg/L)

Colloid Fraction

Conc on Colloid

K Value

Expected Conc (mg/L)

Observed (mg/L)

Colloid Fraction

Conc on Colloid

K Value

K Value

Expected Conc (mg/L)

Observed (mg/L)

Colloid Fraction

Conc on Colloid
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Table 7.8: Analysis of variance (ANOVA) table for cadmium concentration using all the four parameters 
specified in Section 7.3.6. Data is shown for experiments #3 and #7, and #4 and #8 respectively.  

 

The ANOVA shows that the presence of a shale effects the behaviour of aqueous 

cadmium, regardless of the concentration of PAM within the dialysis bag (Table 7.8). ‘Fitted 

means’, present in Table 7.8, predict the mean response values, useful for observing responses 

that are caused by changes in levels of the same factor, rather than unbalanced scenarios. Fitted 

means in the presence of shale are consistently lower than when the shale is not present. The 

K value fitted mean sits at 0.06 when there is shale present in the sample, rather than 0.36 

when there is no shale present. A difference of 0.3052 between the two factors shows a vastly 

reduced concentration on colloid. This reduced concentration on colloid shows that the 

presence of shale is affecting the ability of cadmium to cross the membrane of the dialysis 

tubing. Using the data for comparable samples (#3 and #7 for 62.5 mg/L PAM and #4 and #8 

for 500 mg/L PAM) and calculating the fractionation constants between the samples with and 

without shales, linear isotherms can be produced by plotting the K value (details in 7.3.6) 

against the concentration of cadmium on the colloid.  

 

  

PARAMETER Model R
2 SOURCE P-VALUE

Cd (mg/L) x Cd WL (nm) 0.013 No 5.135

Shale Presence x Cd WL (nm) 0.001 Yes 9.489

Cd (mg/L) 0.001 No 0.262

PAM (mg/L) x Cd (mg/L) 0.001 Yes 0.054

PAM (mg/L) 0.001 No 1.889

PAM (mg/L) x Cd (mg/L) 0.029 Yes 0.803

PAM (mg/L) x Shale Presence 0.014

No 0.3698

Yes 0.0646

Concentration on 

Colloid
91.50%

Shale

ShaleK 94.72% PAM (mg/L) x Cd (mg/L) 0.001

Observed Conc 

(mg/L)
Shale

FITTED MEANS

99.65%

94.58%Colloid Fraction Shale
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Figure 7.11: Linear isotherm plotting the K value against the concentration of cadmium on colloid (mg/L) 
for a dialysis bag PAM concentration of 62.5 mg/L. Data is divided up between initial cadmium 
concentration and whether shale was present or absent within the beaker. The further to the right the data, 
the higher the initial starting cadmium concentration within the beaker.  

 

 When a PAM concentration of 62.5 mg/L was used as the slick-water fluid within the 

bag, there is a clear difference between samples where there was a shale present, and samples 

where there was not. This presence or absence of the shale influences where the cadmium 

travels presence and absence of a shale influencing the cadmium (Figure 7.11). As observed, 

the K value reduces when a shale sample is involved rather than removed altogether. The K 

value is the calculated ratio between the observed concentration in the bag at the end of the 

experiment and the concentration on the colloid. The reduction observed here tells us that less 

cadmium than was predicted is present within the bag where there is shale present, 

particularly at PAM concentrations of 62.5 mg/L (Figure 7.11). Shale is significantly influencing 

the behaviour of cadmium more than the PAM is, providing the cadmium is freely available to 

travel across this semi-permeable membrane. Results shown here imply that due to this, 

cadmium is more likely to be adsorbed by the shale rather than bound by the aqueous PAM in 

fluid, and thus less likely to return to the surface in large quantities.  
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Figure 7.12: Linear isotherm plotting the K value against the concentration of cadmium on colloid (mg/L) 
for a dialysis bag PAM concentration of 500 mg/L. Data is divided up between initial cadmium 
concentration and whether shale was present or absent within the beaker. The further to the right of the 
graph the data, the higher the initial starting cadmium concentration within the beaker. A high proportion 
of the K values seen within this data are zero, this is due to the overwhelming concentration of PAM that 
now seems to be out competing the shale for the cadmium.  

  

 Using an initial PAM concentration of 500 mg/L in the dialysis bag, again another clear 

pattern is defined between the presence and absence of the shale in the beaker. The presence 

of shale, as denoted by squares in Figure 7.12, is having an overwhelming effect upon the 

adsorption of cadmium. K values of zero, shown in Table 7.7 and Figure 7.12, show that the 

shale has outcompeted the PAM significantly. In this scenario, cadmium is actively being drawn 

through the semi-permeable membrane of the dialysis tubing due to the influence of sample 

OC 3. 

 Experiments using a PAM concentration of 62.5 mg/L saw a reduction in K value when 

shale was added to the matrix fluid. This reduction in K value denotes that more cadmium is 

present in the beaker than the bag. Where the shale was present, Figure 7.11, all data sits at a 

lower K value than in the experiments where the shale was not present. Using an initial PAM 

concentration of 500 mg/L, the K values of the samples where shale was present were 

calculated at negative or zero values. These negative and zero values show that with an 

increase in PAM concentration, and with the shale present in the matrix fluid, the presence of 

shale outcompeted the colloid binding any cadmium present.  Using a PAM concentration of 

62.5 mg/L in Figure 7.11 shows that the shale still out competed the PAM. It would appear that 

increases in PAM concentration would promote the adsorption of cadmium to the shale, 

further intensifying the already strong forces binding cadmium and shale together, without the 
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need for PAM. ANOVA demonstrates this with consistently lower values for each parameter 

whenever there is shale present in the beaker (Table 7.8).  

 

7.6. Discussion 

 It can be concluded from these experiments that PAM is acting as a colloid. Negligible 

amounts of PAM are able to transfer through the 3.5 kDa semi-permeable membrane of the 

dialysis tubing, with maximum concentrations of 4.4 mg/L and 6.5 mg/L present in the beaker 

after submersion of bags full of a 15.6 mg/L and 500 mg/L PAM fluid, respectively. Of the 

results where a PAM concentration was detected, 7/24 tests, three of the seven displayed 

greater amounts of PAM than predicted according to fractionation based upon the 20 ml bag 

diluted with a 400 ml beaker fluid. As learnt from Chapters 3, 4 and 5, PAM can readily adsorb 

onto shale (or other lithologies) and so if no barrier was present between the shale and the 

PAM-rich fluid, it is likely that adsorption would have occurred. However, due to the molecule 

size of the PAM within the fluid, this was unable to pass through the 3.5 kDa membrane and 

adsorb to the shale present, irrespective of concentration. 

Cadmium, however, was able to successfully transfer across this membrane 

uninfluenced into the whole 420 ml fluid, as results from the blank (Expt #1 in Table 7.7) show. 

Based upon literature that cadmium adsorbs well to shales or treated materials (Shubha et al., 

(2001) investigating heavy metal removal using polyacrylamide grafted hydrous tin and Ma et 

al (2017) investigating the removal of heavy metal ions using a functionalised polyacrylamide 

hydrogel), it was expected that some cadmium would adsorb to the shale, but would the PAM 

be a competitor to the shale? From experiments, seen in Section 6.6, no cadmium is released 

from this particular shale sample, and negligible amounts from others.  

If PAM had been a greater competitor to the shale then in this case, cadmium would 

have favoured adsorption to the colloid (PAM). Cadmium would have crossed the membrane 

leaving greater concentrations of cadmium in the PAM rich fluid than there would have been 

with just the 20 ml dilution from the addition of the bag to the beaker. In a more geologically 

realistic scenario, this may have meant that more cadmium would have been returned in flow-

back waters, however evidence shown is that cadmium favours adsorption to the shale. Much 

of this cadmium may have been released by the shale. Expt #2 used a PAM concentration of 

15.625 mg/L. Results show that using the fractionation value from the blank, between 12 and 

15 mg/L was expected in the bag after dissolution, however only concentrations between 11.1 

and 11.8 mg/L were observed, showing that more cadmium had remained in the matrix fluid 

within the beaker, than crossing the membrane. The cadmium concentrations that were dealt 

with here, up to 20 mg/L, are far higher than geologically likely to be contained or released 
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from shales. Cadmium content of shale ranges between 0.20 and 36 mg/kg, typically seen in 

black shales in China and Korea (Liu et al., 2017) and 04-46 mg/kg in Swedish shales 

(Lavergren et al., 2009). A study by Tuttle et al., (2003) for the Huron Shale, SW of the Marcellus 

in the USA states that cadmium concentrations ranges from 0.12 mg/kg to 26 mg/kg, with an 

average of 1.2 mg/kg. Flow back water data suggests that minimal amounts of cadmium will 

be returned to surface with cadmium being probed but not detected in flow-back data for the 

Marcellus, Eagle Ford and Barnett in (Maguire-Boyle and Barron, 2014). Flow-back events 

from Preese Hall 1A over a period of 4 months showed that the maximum cadmium measured 

was 6.02 μg/L, with a maximum of < 2 μg/L of filtered (full data can be seen in Table 6.2) 

(Broderick et al., 2011). The USGS flow-back database (Blondes et al., 2017) states that 

cadmium is returned in quantities ranging from 0.0001 mg/L to 24 mg/L, but with an average 

of 0.216 mg/L, across thousands of samples of flow-back fluid.  

If cadmium is favouring adsorption to the selected shales in this study, it is unlikely it 

will become much of an issue in the contamination of groundwater and or drinking water. The 

EU limit for cadmium in drinking water is 5 μg/L (European Union, 1998) and this is followed 

by England and Wales (“The Water Supply (Water Quality) Regulations 2016,” 2016). 

Cadmium released by the rock, according to literature, is generally very low. This is further 

investigated in relation to this study in Chapter 6 by analysing flow-back style waters from the 

adsorption experiments in Chapter 3 and Chapter 4 of this study.  

On the other hand, the other analyte measured was sodium, initially to be a proxy for 

PAM content, however as very little to no PAM makes it across the semi-permeable membrane, 

the sodium is present as residual sodium and not PAM. Results show that sodium did not favour 

either shale or the PAM, and just equilibrated across a 420 ml solution when the 20 ml bag was 

added to the 400 ml of matrix solution.  

A 500 mg/L PAM solution contains up to 138 mg/L of sodium, drastically increasing 

the salinity of the water from that of regular tap water (tap water compositions used in all 

experiments in this study are viewable in Digital Appendix F.3) with a mean value of 8.2375 

mg/L (Northumbrian Water Ltd, 2017). Fluids being put downhole are already saline and these 

fluids are entering deep shales that are likely situated in saline or brackish style environments. 

This addition of saline waters, with multiple other additives is likely to mobilise salts and other 

mineral ions within the connate waters of the rock (Maguire-Boyle and Barron, 2014). This 

behaviour would potentially mean that fluids returning to the surface are very saline, leading 

to them having to be treated by means such as distillation or reverse osmosis (O’Donnell et al., 

2018). Flow-back fluids for the Marcellus, Eagle Ford and Barnett Shales as shown in (Maguire-

Boyle and Barron, 2014) show that Na in produced waters ranges from 45.9 mg/L to 5548.9 

mg/L, a huge range. The USGS flow-back water database states that sodium is returned in 

ranges from 0.1 to 434403 mg/L, with an average of 26953 mg/L.  
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7.7. Conclusions 

Using only two elements, cadmium and sodium, it has been shown that PAM and shale 

have an effect on cadmium. Cadmium that will have entered the system, either through the 

fracking fluid or by being released from the shale during fracturing, is likely to be adsorbed by 

the shale. Using a blank containing no PAM in the bag and no shale in the matrix fluid, 

approximately 25 % extra cadmium makes it into the bag. When a competitor is added, i.e. the 

PAM or the shale, significantly more cadmium is retained within the matrix fluid, with or 

without PAM.  

Sodium, being the residual in the PAM fluid, on the other hand seemed to favour neither 

the shale or the colloid. Calculating the dilution factor when 20 ml of Na rich fluid is added to 

400 ml of non Na rich fluid gave results of an average ratio of 1 showing that no more sodium 

was present either in the matrix fluid or the bag after dissolution. The results of t-tests results 

showed that there was no significant deviation from a ratio of 1, showing that no significant 

transference of sodium across the membrane.  

The main implications of this show how either the shale or the PAM as an additive may 

be able to slightly influence the composition of the flow-back water dependent on the nature 

of the sample. A limited range of PAM concentrations were used, only one type of sample was 

used, and only two analytes measured. Future work would principally consider a larger array 

of analytes released by the shales using a range of differing PAM concentrations.  
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8. Conclusions 
 

8.1. Introduction 

The additives in hydraulic fracturing fluids and the potential environmental effects of 

these fluids are of critical importance. Due to safety legislation and potential environmental 

harm, numerous nations and individual US states have banned the practice of hydraulic 

fracturing. With global energy demand increasing, and green alternatives not matching this 

trend, understanding how to make existing non-renewable sources safer and cleaner is 

paramount to guarantee energy demands in the near future. Hydraulically fractured natural 

gas is one such way. With hydraulic fracturing in the UK having not yet started on a large scale, 

the scientific community is at a critical point in being able to understand these effects in a 

context that is relevant to the UK, before and after.  

PAM has already been suggested as a key additive to fracking fluids. It has already been 

used multiple times in the USA (Blondes et al., 2017; King, 2012), with data seen in Section 

1.6.2.1 and Digital Appendix A.1, and in the proxy for this study, Preese Hall 1A (Broderick et 

al., 2011). It is seen to be a key future additive, especially for any onshore UK operations. 

Because of the concentrations ranges of PAM in cited fluids (Aften and Watson, 2009; 

Stringfellow et al., 2014), a range of PAM concentrations were tested for adsorption, ranging 

from 15.625 mg/L to 1000 mg/L (Chapters 3 and 4).  

 

8.2. Thesis Objectives 

The objectives of this study were: 

1. To characterise the samples chosen for this study, predominantly the Bowland 

Shale but also the overlying Pendle Grit and underlying Hodderense Limestone.  

2. To assess if any PAM would likely be removed from the slick-water fluid and 

adsorb to the samples present (UK relevant samples such as the Bowland Shale 

and Pendle Grit). 

3. If the PAM does adsorb, does it desorb easily? For example, during the flushing 

stages of a frack.  

4. What is the likely composition of flow-back fluid associated with a simple slick-

water based fluid, and the relevant associated shales? 
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5. Does PAM behave like a colloid? Is the addition of PAM into a fluid able to 

influence certain metals in solution, or would the shale and/or PAM act as 

competitors? 

8.2.1. Chapter 2: Sample Collection and Characterisation 

Chapter 2 focussed on the collection and characterisation of the UK relevant lithology 

types, focussing on objective 1. Samples were characterised to ascertain carbon content (TOC, 

TIC and TC) (Section 2.4.1) and mineralogy through the means of TGA (Section 2.4.1), XRF 

(Section 2.4.2) and XRD (Section 2.4.3). The samples analysed, both borehole and outcrop 

samples, were taken from the Bowland Shale (Upper and Lower), the Pendle Grit and the 

Hodderense Limestone. Results from this chapter were used, where possible, in statistical 

analyses in the adsorption chapters (Chapters 3, 4 and 5) to assess if the compositions had any 

influence on the adsorptive properties of the samples.  

8.2.2. Chapter 3: The Adsorption of Polyacrylamide at Room Temperature 

Chapter 3 assessed how this simple PAM rich slick-water fluid (based upon typical 

slick-water fluids and the Preese Hall 1A proxy) would interact with the samples used in this 

study. It focussed in particular on objective 2, how much PAM would be removed from the slick-

water fluid by means of adsorption to the shale surface? Samples of 1 g were submerged in 

varying concentrations of a PAM rich fluid overnight. Equilibrium aqueous PAM was measured, 

and adsorbed amounts calculated. Three isotherm types were considered (Section 3.4) and 

results were statistically analysed against the characterisation data to see if there were any 

mineralogical or carbon based controls on amounts of adsorption. Using Langmuir isotherms, 

it was shown that up to 15,365 mg/kg of PAM could be adsorbed (Table 3.5), and up to 98 % 

of aqueous PAM removed from solution by means of adsorption (Figure 3.10).  

8.2.3. Chapter 4: The Adsorption of Polyacrylamide in High Pressure High Temperature 

Environments 

Chapter 4 considered a subset of the samples from Chapter 3. It stuck with objective 2, 

but this time samples were tested in a different environment; a closed system at 65 °C and 30 

bar (3 MPa) to closer replicate sub surface (geologically realistic) conditions. These more 

realistic conditions were run at temperatures close to those observed between 3-5 km in the 

Bowland and Cleveland Basins (Table 4.1). Again, data was plotted on three main isotherms 

and results were statistically analysed alongside the sample characterisation data. Using the 

Langmuir isotherm, it was shown that a higher amount is adsorbed compared to the RT 

samples, up to 22,972 mg/kg adsorbed (Table 4.4). Percentage removals were also shown to 

be high, at up to 95 % of aqueous PAM removed from solution (Figure 4.9). Results for objective 
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2 were higher here in Chapter 4 (the largest concentrations at maximum coverage reaching 

22,972 mg/kg), than in Chapter 3 (largest concentrations at maximum coverage reaching 

15,365 mg/kg). 

 

8.2.4. Chapter 5: The Desorption Properties of Adsorbed Polyacrylamide 

Chapter 5 investigated desorption, and objective number 3. Results obtained in 

Chapters 3 and 4, for objective number 2 showed that PAM was highly adsorbative. But, would 

this PAM remain? To investigate this, PAM was adsorbed to 1 cm cubed shale samples and then 

flushed with fresh water (Figure 5.2). This flushing simulated the ‘flushing’ stages towards the 

end of a frack, designed to remove any remaining additives and proppant. Results showed that 

very small amounts of adsorbed PAM did desorb back into solution. A maximum of 0.919 mg/L 

(from 65.02 mg of adsorbed PAM) was desorbed, equating to a 1.4 % desorption (Table 5.6). 

8.2.5. Chapter 6: Metals Analysis of Flow-back Fluids 

This chapter combined the fluids taken from the RT and HPHT adsorption experiments 

and analysed the concentrations based on a set of metals for objective 4. Results were 

compared to literature and real-world examples (Table 6.11). Results also gave insight into 

what some flow-back fluid may be comprised of. The two main objectives of this chapter were 

objectives 4 and 5. It was concluded that the use of PAM slick-water fluids has an influence on 

the concentration of particular metals in the flow-back fluid, and that higher pressure and 

temperatures did inhibit the adsorption to the rock of the majority of the metals analysed 

(Figure 6.18). It is likely that the elevated temperatures and pressures help increase 

concentrations.  

8.2.6. Chapter 7: The Colloidal Behaviour of Polyacrylamide as a Hydraulic Fracturing 

Additive  

PAM is commonly used in the agricultural and water treatment industries as flocculent, 

binding together solids within the fluid. Chapter 6 investigated objective number 5, whether 

this behaviour can be attributed to shale and metals, interacting with the shales and/or any 

contaminants released (Figure 7.1). It was established that cadmium favoured being adsorbed 

to any shale present rather than being bound in the PAM rich fluids (Table 7.3). PAM could not 

pass through the semi-permeable membrane of the dialysis tubing, even with the presence of 

shale as an adsorbant on the opposite side of the dialysis membrane.  
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8.3. Principal Findings and Conclusions 

Based upon the project aims, specified in Section 1.10 and above, the principle findings 

can be summarised below.  

• At room temperature and pressure, all rock samples were highly adsorptive of 

the aqueous PAM in solution. Using maximum coverages calculated from the 

Langmuir isotherm, up to 15,365 mg PAM can be adsorbed per kilogram of rock 

available (Table 3.5). Simple calculations show that, with a 430 mg/L PAM fluid 

released into a shale with a 4000 mg/kg maximum coverage (or adsorption 

capacity), only ~903,000 kg of shale is required to remove all from solution at 

equilibrium (Figure 3.13). This amount of shale is a vastly small amount 

compared to the volumes involved in a typical fracture. Statistical analysis 

shows that concentrations at maximum coverage seem to be controlled by 

Al2O3, MgO, Na2O and losses between 300 and 650 °C (Table 3.6). With respect 

to fracking in the UK, it is evident that PAM is highly likely to adsorb to the 

Upper or Lower Bowland Shales in large quantities.  

• Under more geologically reasonable conditions, in-particular temperature, 

simulated in the HPHT batch reactor vessel, it was observed that PAM remains 

highly adsorptive to the rock samples. Here, the quantities have increased and, 

using the Langmuir isotherm, maximum coverages can be up to 10 times higher 

than in the RT adsorption experiments (Table 4.4). With temperatures of 65 °C 

and pressures of 30 bar (3 MPa) the greatest concentration at maximum 

coverage observed was 22,972 mg/kg (Table 4.4). Using this value in a similar 

calculation used in the RT discussion (Equation 3.9) above, only 157,216 kg of 

rock surface would be needed to remove all PAM at equilibrium.  

• Percentage removal by adsorption, in both RT and HPHT adsorption 

experiments, decreased while PAM concentration increased (Figure 3.10 and 

Figure 4.9). In the RT adsorption, up to 98 % was removed at the lowest PAM 

concentration of 15.625 mg/L, whilst 95 % was removed from the same PAM 

concentration in under HPHT conditions. Increasing the PAM concentration to 

1000 mg/L showed a reduction to an average of 11 % in RT, and 16 % in HPHT. 

This decrease suggests monolayer adsorption is the principle adsorption type 

occurring.  

• Very little desorption occurs when samples adsorbed with large quantities of 

PAM are flushed with a freshwater solution. A maximum of 1.4 % of adsorbed 

PAM was desorbed back into solution, but the majority of results read zero 
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values, implying no PAM present after flushing (Table 5.6 and Figure 5.8). Any 

PAM that remains downhole has the potential to degrade, depolymerise or 

migrate over time. A study of this type, assessing the degradation over certain 

realistic weeks to months flow-back time periods (Brownlow et al., 2018; 

Harrison et al., 2017), may be the focus of some key future work.  

• The room temperature samples showed variation between losses and gains for 

some metals (Figure 6.13). Copper and cadmium showed the greatest loss from 

fluid and favoured adsorption to the sample. Manganese and iron were 

returned in quantities up to 24 times (0.625 mg/L) the original slick-water 

concentration. Further analyses of fluids from the HPHT adsorption 

experiments showed overall less reduction across all samples than those in the 

RT experiments (Figure 6.18). An overall decrease was only observed for 

cadmium in the HPHT fluids and a higher gain ratio was observed in HPHT 

fluids for all metals apart from cadmium. Calcium, copper, iron, magnesium, 

lead and zinc all exhibited an average gain under HPHT conditions, when under 

RT conditions they exhibited an average loss. Under HPHT conditions, again 

manganese and iron are returned in the highest quantities, up to 146 times the 

original slick-water concentration (0.704 mg/L).  Metals that have returned are 

largely in quantities above the regulation data, and thus will need special types 

of treatment after flow-back events (O’Donnell et al., 2018).  

• Using the ratios from the increases and decreases in metal concentrations, 

there is significant difference between the RT and HPHT flow-back fluids. Data 

from the two subsets of experiment type reject the null hypothesis (Table 6.10 

and Figure 6.24). Mean increase values for HPHT are higher than those 

observed in the RT fluids. Samples under higher pressure and higher 

temperature conditions release more metals into solution, or at least far fewer 

metals seem to favour adsorbing to the shale but rather be bound into the PAM 

fluid matrix and returned to surface.   

• Fluids used in the RT and HPHT experiments, and those commonly used in 

hydraulic fracturing activities are near pH neutral, as are those returning to 

surface (Blondes et al., 2017; Broderick et al., 2011) and so it is unlikely any 

metal solubility is promoted by the acidification of the fluids. Carbonates 

present within lithologies may act as buffers for any acidification.   

• The initial PAM concentration does appear to influence the uptake of certain 

metals. In particular, metals such as potassium, sodium and iron exhibit 

increases. Cadmium and copper show the largest decreases, but with decreases 

reducing with an increase in PAM concentration.  
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• PAM slick-water fluids, in the concentrations used in this study, were of a 

freshwater to briny composition, showing up to 500 mg/L sodium (Figure 

6.12). Saline fluids are more likely to mobilise potential salts and minerals. 

Fluids, dependent on rock type exploited, may also return to surface highly 

saline and require specialist cleaning.  

• Experiments with colloids undertaken in Chapter 7 of this study, show that 

PAM has an effect on cadmium. Any cadmium that enters the subsurface fluid 

system through fracking fluid, or the release from rock, will likely be adsorbed 

by the present of PAM in the fluid. When a competitor is added to a freshwater 

and cadmium system (i.e. shale or PAM), significantly more cadmium is 

retained within the matrix fluid (Table 7.7 and Table 7.8). Future work in this 

area would look more closely at multiple analytes and how they may or may 

not influence the metals within the flow-back fluid.  

Based upon the premise that any hydraulic fracturing fluids in the UK are likely to be 

very simple (JAGDAG, 2018), predominantly slick-water based fluids, environmental impact is 

likely to be low. Polyacrylamide does adsorb to samples in vast quantities and is very unlikely 

to desorb throughout the fracking process. The lack of desorption leads to questions about how 

a non-hazardous PAM may depolymerise or degrade over large timescale (up to decade long 

time-scales) in the subsurface, somewhat already assessed by literature such as Nyyssölä and 

Ahlgren (2019) and Xiong et al (2018). The amount of adsorption does increase under the 

HPHT conditions used in this study (Section 4.5) and thus more PAM is likely to be adsorbed 

in the subsurface, especially at typical subsurface basin temperatures of the onshore UK linked 

to this study (Table 4.1). Future work would assess how crucial a role either temperature and 

pressure influence this that could be applied to other basins globally. PAM fluids produced are 

briny in solution and can contain up to 300 mg/L more sodium than the EU regulation (Table 

6.11), having the potential for flow-back fluids to be > ~500 mg/L, dependent on the lithology 

exploited. Certain metals, examples being Al, Cd, Cu, Fe, Mn, Na and Pb,  do return to the 

subsurface in quantities greater than the EU regulations (sample dependent), and PAM 

concentration does impact upon some of these increases. Further work on PAM concentrations 

would investigate how compositions of flow-back fluid could have the ability to be 

manipulated, thus reducing environmental harm and the necessity for specialist water 

treatment.  

The results from this study would likely aid the Environment Agency, and other 

regulatory bodies or investigative consultancies, understand and regulate (if necessary) the 

usage of PAM in the deep subsurface.  Because large quantities of PAM do not desorb over short 

timescales easily with a ‘flush’ of freshwater, simulated in Chapter 5 of this study, they are likely 
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to stay in the subsurface longer term. Over the longer term in the subsurface, they may have 

the chance to depolymerise or degrade, and even migrate over larger distances over much 

longer timescales, if it is proven to desorb over longer time periods. The results of simulated 

flow-back fluids, and the metals they contain, give an insight into how companies that would 

use PAM slick-water fluids may have to think about safe disposal of returned, slightly saline 

fluids and how the different relative lithologies in the UK may influence the fluids in different 

ways. Furthermore, this study could aid the geothermal industry. Over time, shale gas basins 

may be subsequently used for geothermal activities and certain fluid information will be useful 

in determining the compositions or presence of any degraded PAM contaminants that may be 

encountered, or returned to surface in geothermal waters.  

8.4. Data Limitations 

The following is a summary of limitations that have affected data and analysis across 

this study.  

• Sample type was limited. Samples from the BGS Corestore in Keyworth were 

strictly limited for sampling, especially from wells of scientific and media 

interest (i.e. Preese Hall 1A and Becconsall 1Z). This limitation meant that 

samples had to be carefully used and may not have been used for all analyses 

where it was preferred. Outcrop samples, whilst almost unlimited, did have 

potential problems attributed to weathering. The issues of weathering were 

mitigated as best as possible with the removal of all weathered surfaces before 

any preparation or analysis (Section 2.2.5).  

• Analysing adsorption at ‘geologically realistic’ temperatures and pressures was 

limited by the pressures the hardware could achieve. Whilst typical UK 

subsurface temperatures were achievable, the batch reactor used in the 

experiments could only reach pressures of 10.9 MPa (109 bar or 1580 psi). 

These pressures are lower than the typical pressures at depths of 3-5 km in the 

onshore UK basins. Typical lithostatic pressures here would be between 34 

MPa and 55 MPa.  

• The presence of PAM in the typical slick-water fluid produced for this study, in 

concentrations up to 1000 mg/L, meant that in some cases there was 

suppression of analyte signals when analysed using ICP-OES. The problem was 

mitigated as best possible with the 11-fold dilution of fluids with 7 % nitric acid. 

Further dilution may have diluted out the analyte, but less dilution may have 

increased the chance of suppression issues.  
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• The sample size throughout the whole study is small, 14 samples and their 

duplicates as a maximum. This small sample size significantly inhibits rigorous 

statistical analysis, and increases the chance of random or unusual data 

influencing the outcome.  

8.5. Future Work 

Future work has been discussed in the individual chapters. This Section will focus on a 

summary of future work that has the potential to be funded, over the wider context of the 

whole thesis.  

 

8.5.1. RT and HPHT Adsorption Future Work 

One of the key conclusions of this project is the fact that nearly all aqueous PAM, up to 

98 % (Figure 3.10 and Figure 4.9), can be removed from the fluid by means of adsorption. This 

adsorption increases, as concentrations at maximum coverage show, when the pressure and 

temperatures are brought to more geologically realistic conditions. The conditions tested in 

this thesis are however only one pressure and temperature setting, and this pressure setting 

at a low geological pressure. It is unknown whether pressure or temperature is the principle 

factor in increasing the adsorption capacity (or concentration at maximum coverage). To 

establish this further, more of the same experiments would be needed to be run varying both 

temperature and pressure parameters. In addition, the use of machinery that could reach more 

geologically reasonable pressures (> 550 bar) would be required to fully simulate these 

conditions.  

 

8.5.2. Ads-Des Future Work 

This study was conducted at room temperature, just to understand the initial desorption 

behaviour of any adsorbed PAM. Ideally, future work would look at: 

• Increasing the temperature of the Ads-Des experiments to temperatures more in 

line with subsurface temperatures seen in the Bowland Basin (60-110 °C) (Table 

4.1). This increase in temperature would mimic work conducted by Guo et al., 2018 

but in a more relevant setting to the UK shale gas basins and industry.  

• Test desorption over time. Realistically, flow-back and flushing events occur over 

days and weeks, rather than hours - as tested here. Under agitated conditions, fluids 

could be sampled every 24 hours over much longer timescales to see if desorption 

increases, and at what point does any increase in desorption or change, take place.  
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• Based on the fact that desorption of PAM is very minimal (Section 5.9), certain 

additives could be added, such as urea (Yang et al., 2018) to the flushing stages to 

see if desorption could be promoted if required. 

 

8.5.3. Colloid Future Work 

• As noted in Chapter 7, cadmium was the only metal tested for, and in this case, shale 

out competed the PAM for the adsorption of cadmium. The logical progression from 

using only cadmium is to test different analytes to see if PAM or shale favours 

certain metals differently. One next step would be to test the metals based on the 

results observed in Chapter 6, and focus on the most environmentally relevant, eg. 

lead.  

• A further step would be to test the full range of PAM concentrations ranging from 

15.625 mg/L to 1000 mg/L and potentially further.  

• Testing different samples would establish if certain mineral constituents or organic 

content promoted adsorption to the sample, or binding to the colloid.  

The main output of future work would be tailoring this experiment to understanding 

the contaminant output of the differing shales and dependent of the additives involved. Lots of 

fine tuning could help develop fluid types that specifically promote or inhibit the binding of 

metals to different colloidal additives.  

 

8.5.4. Metals Flow-Back Future Work 

There is lots of future scope for an experiment of this type based upon methods used 

here.  

• As this work was conducted at only one pressure and temperature setting, 

change in either variable could not be measured. The next stages here would 

be to keep one variable the same, either pressure or temperature, while 

changing the other (30 bar and > 65 °C or 65 °C and > 30 bar). A factorial 

designed experiment like this would help understand if pressure or 

temperature is the key component in either metal release or removal on these 

relatively pH neutral fluids.  

• Pressures and temperatures could be changed to simulate other geological 

settings, not just related to the UK. Further future work would look more in 

depth at the fluid additive. Is PAM in quantities greater than 1000 mg/L helping 

to bind more metals into the fluid, or promote adsorption of these metals to the 
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shale surface? As discussed, PAM can be used in quantities that range between 

30 and 2140 mg/L in slick-water fluids, globally (Aften and Watson, 2009; 

Stringfellow et al., 2014).  

• Linking to the above, flow-back fluid would also be sampled off from extra 

HPHT experiments in the same way. As specified in chapter 6, there were fewer 

metals lost from solution in the HPHT experiment resultant fluids compared to 

the RT resultant fluids. More geologically reasonable settings promote the 

release of a higher proportion of metals into the flow-back fluid, but is it 

pressure or temperature that is the primary factor? Conducting at least two 

more experiments, one increasing temperature and one increasing pressure, 

conclusions could be drawn. Further experimentation could fine tune 

pressures and temperatures to test the geological settings of differing basins 

worldwide, in countries where fracking is possible such as Poland, Argentina, 

Australia, USA and Russia. In terms of rates or mechanisms of loss or gain of 

certain metals, sample fluids would benefit from a sequential extraction 

technique to better understand over time which metals are first to be released. 

The variables in this could be temperature and pressure, as well as taking it 

further and altering the additive composition.  

• Testing the composition of flow-back waters could be further investigated by 

changing the additives within the fracking fluid, or by making a more complex 

style fracking fluid with more than one additive, unlike this study. Do other 

additives, that are used to perform other jobs, affect compositions in different 

ways? 

 

 

To conclude, the key findings of this study are the fact that 1; PAM will adsorb in large 

quantities to rock surfaces, particularly shales, and 2; once adsorbed, PAM does not desorb 

readily in typical freshwater flushes used in post-frack operations. The conclusion that PAM 

adsorbs in large quantities and does not desorb readily poses the critical question of PAM 

degradation over time. Future work and funding should target and focus on the degradation of 

adsorbed PAM, particularly under subsurface conditions of higher temperatures and 

pressures.  An assessment of how PAM degrades over time, particularly in time-scales 

observed in flow-back operations (weeks to months), would help inform regulatory bodies of 

the risks that adsorbed non-toxic PAM may pose if it degrades to more toxic substances. In 

addition, the use of other additives to promote desorption could be investigated alongside the 

degradation. Finally, flow-back fluids will likely return contaminants in quantities that are 

above regulation for multiple metals, and this is unavoidable. PAM may be able to help 
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manipulate, to a degree, concentrations of certain metals such as cadmium, iron, manganese 

and lead, more work in this area is needed to confirm any facts.  
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Appendices  
Appendices are provided as both printed and digitally accessed, provided on the CD 

supplied with this study. A brief outline of each Appendix is supplied below.  

Appendix A  

Supplied in digital form providing the analysis for the 200 US wells, analysed in Section 

1.6.2.1, for their use of PAM and friction reducers.  

Appendix B  

Supplied both in digital and printed format displaying all results relating to the shale 

characterisation data from Chapter 2. TOC literature overview for Figure 2.10 is supplied in 

digital appendix B.1. Full TGA data from Section 2.3.1.2 is supplied in Digital Appendix B.2. Full 

XRF numerical data for Section 2.4.2 is supplied in Digital Appendix B.3. Full XRD numerical 

data and curves for Section 2.4.3 are supplied in Digital Appendix B.4 and diffractograms are 

printed in Appendix B.  

Appendix C  

Supplied in digital format for all RT adsorption results, isotherms and calculations 

(C.1). Langmuir isotherm confidence intervals and calculations are supplied in Appendices C.2 

(0-250 mg/L calibration) and C.3 (0-1000 mg/L calibrations).  

Appendix D  

Supplied in digital format for all HPHT adsorption results, isotherms and calculations 

(D.1). Langmuir isotherm confidence intervals and calculations are supplied in Appendices D.2 

(0-250 mg/L calibration) and D.3 (0-1000 mg/L calibrations).  

Appendix E  

Supplied in digital format for all Ads-Des experiments, Chapter 5. Calculations and 

isotherms are observed in digital Appendix E.1. Appendix E.2 supplies results for ANOVA on 

percentage removal from Table 5.5. Appendix E.3 supplies results for ANOVA on adsorbed 

concentrations from Table 5.4. 220  

Appendix F  

Supplied in digital format for all ICP metals results. Digital Appendix F.1 refers to all 

tap water data used in Section 6.6.1. Digital Appendix F.2 displays all data for RT fluids and 

samples measured in 6.6.2. Digital Appendix F.3 refers to all tap water data displayed in Section 

6.6.1. Digital Appendix F.4 displays all data for HPHT fluids and samples measured in 6.6.3.  

Appendix G  

Supplied in digital format for all colloid results and calculations for Chapter 7(G.1) 
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Appendix B – Non digital  
Thermogravimetric Analysis Curves (TGA) – Section 2.4.1.2 

 

Figure 0.1: TGA curve for OC 1 (Hazelhurst Fell Pendle Grit) 
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Figure B.2: TGA curve for OC 3 (Hazelhurst Fell, Upper Bowland Shale) 

 

Figure B.3: TGA curve for OC 4 (Hazelhurst Fell, Upper Bowland Shale, Sandy) 

 

Figure B.4: TGA curve for OC 5 (Sabden, Nick O’Pendle, Pendle Grit) 
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Figure B.5: TGA curve for OC 6 (Sykes Quarry, Limestone based shale) 

 

Figure B.6: TGA curve for OC 7 (Wolf Fell, Upper Bowland Shale) 
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Figure B.7: TGA curve for OC 8 (Congleton Sand, Proppant) 

 

Figure B.8: TGA curve for BH 1 (Becconsall 1Z, 7030 ft, Upper Bowland Shale) 
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Figure B.9: TGA curve for BH 2 (Becconsall 1Z, 7420 ft, Lower Bowland Shale) 

 

Figure B.10: TGA curve for BH 3 (Grange Hill 1, 7026 ft, Upper Bowland Shale) 
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Figure B.11: TGA curve for BH 4 (Grange Hill 1, 8134 ft, Upper Bowland Shale) 

 

Figure B.12: TGA curve for BH 5 (Preese Hall 1A, 8885 ft, Lower Bowland Shale) 
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Figure B.13: TGA curve for BH 6 (Lockton 3, 7049 ft, Carboniferous Shale) 
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a)        b)  

Figure B.14: “a” –thermal curves of A: kaolinite, B: dickite and, C: nickrite. “b” – derivative curves for 
varying illite and kaolinite mixtures; A: 95 % illite, B: 90 % illite, C:  75 % illite, D: 50 % illite, E: 25 % illite, 
F: 10 % illite. Adapted from (Todor, 1976).  

 

a)    b) c)  

Figure B.15: “a” – thermal curves for a natural mixture of CaCO3 + SrCO3 + BaCO3. “b” – thermal curves of 
a typical calcite lattice. “c” – thermal curves for calcite containing finely dispersed sulphides. Adapted 
from (Todor, 1976).  
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XRF Tables – Section 2.4.2 

 

Table B.0.15: XRF majors and trace mineralogy for all samples 

 

Table B.16: Trace elements As – Mo (units in mg/L) 

SAMPLE SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SO3

BH 1 67.18 0.28 7.85 3.27 0.04 1.08 7.12 0.36 1.470 0.084 2.281

BH 2 22.80 0.12 3.02 2.01 0.02 1.12 36.85 0.13 0.393 0.066 3.819

BH 3 54.75 0.17 3.11 2.52 0.03 2.55 17.20 0.42 0.421 0.073 0.880

BH 4 60.50 0.22 2.88 2.02 0.02 1.12 15.97 0.48 0.450 0.085 1.360

BH 5 59.46 0.42 8.75 2.64 0.01 0.77 10.72 0.60 1.452 0.995 2.827

BH 6 46.41 0.75 17.42 16.15 0.19 2.01 1.00 0.73 1.566 0.253 0.138

OC 1 90.79 0.14 4.90 0.55 0.00 0.08 0.01 0.17 1.307 0.023 0.005

OC 2 87.11 0.31 7.52 0.46 0.08 0.18 0.02 0.41 1.501 0.072 0.008

OC 3 56.69 0.31 5.70 2.72 0.08 2.59 13.04 0.17 1.073 0.136 2.632

OC 4 70.38 0.90 17.25 0.84 0.01 0.56 0.03 0.31 2.733 0.099 0.008

OC 5 89.76 0.28 5.19 0.99 0.01 0.13 0.02 0.63 1.083 0.023 0.004

OC 6 2.65 0.01 0.27 0.17 0.02 1.03 52.87 <0.004 0.019 0.004 0.289

OC 7 78.95 0.41 9.36 3.92 0.01 0.45 0.02 0.21 1.373 0.126 0.010

OC 8 98.72 0.04 1.41 0.21 <0.001 0.07 0.08 0.16 0.670 0.012 0.005

wt %

As Ba Ce Co Cr Cs Cu Ga La Mo

BH 1 22.0 214.2 37.2 11.4 63.8 6.7 46.5 8.0 24.7 19.1

BH 2 18.1 73.5 30.9 3.9 9.3 1.2 10.4 4.6 12.8 10.5

BH 3 3.1 97.4 16.6 2.1 16.6 <1.9 3.1 3.3 12.5 2.4

BH 4 5.4 328.9 24.6 2.4 25.9 <1.9 5.5 3.7 14.2 3.5

BH 5 14.0 161.9 38.5 9.0 309.2 7.1 32.8 10.2 30.8 16.2

BH 6 7.3 376.6 104.3 22.7 178.4 5.2 25.9 23.7 48.0 1.9

OC 1 0.3 353.3 28.1 <1.0 43.2 <1.5 <0.3 4.4 16.3 1.8

OC 2 3.8 305.6 46.3 11.9 53.6 0.5 3.4 7.6 22.3 1.4

OC 3 9.1 1207.5 37.3 7.0 42.5 3.7 16.2 7.0 22.1 10.2

OC 4 3.6 445.6 117.9 3.3 339.2 9.2 15.7 20.6 57.7 2.0

OC 5 <0.4 265.9 46.9 1.4 58.5 <1.5 <0.3 5.1 24.0 1.4

OC 6 2.7 104.9 9.3 <1.6 -5.4 <3.0 <0.7 1.6 5.5 2.6

OC 7 41.1 155.7 40.9 5.1 51.7 8.8 16.3 10.8 24.6 15.0

OC 8 <0.4 146.4 4.3 <1.0 19.5 <1.4 <0.3 1.4 3.5 0.4
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Table B.17: Trace elements Nb – Sr (units in mg/L) 

 

Table B.18: Trace elements Th – Zr (units in mg/L) 

 

 

 

 

 

Nb Nd Ni Pb Rb Sb Sc Se Sn Sr

BH 1 6.3 21.1 79.2 12.9 55.5 2.8 12.5 16.6 <0.9 179.0

BH 2 3.6 15.2 20.8 2.3 16.8 5.9 38.6 4.2 <1.0 1058.2

BH 3 3.1 12.1 5.2 3.4 17.1 1.1 14.5 <0.6 <0.9 516.8

BH 4 3.6 17.0 7.8 3.3 18.5 1.1 13.5 0.7 <0.9 630.8

BH 5 7.8 23.0 78.2 11.2 77.9 6.2 16.0 25.5 <0.9 486.2

BH 6 13.7 43.7 51.4 21.2 83.5 <1.1 16.9 0.8 2.1 145.3

OC 1 1.0 14.2 0.7 4.1 32.7 <0.8 3.7 <0.5 <0.7 54.5

OC 2 4.5 21.5 25.5 11.0 46.8 <0.8 8.1 <0.5 <0.7 40.6

OC 3 6.0 21.6 35.9 45.1 50.2 1.8 14.6 6.6 <0.9 286.6

OC 4 13.2 58.7 20.3 17.3 90.0 <0.8 15.1 <0.5 2.4 83.9

OC 5 3.3 21.2 3.6 8.2 30.6 1.5 4.0 <0.5 <0.7 48.5

OC 6 0.6 9.4 2.5 2.0 2.9 <1.2 65.7 0.5 <1.1 443.3

OC 7 7.7 18.6 31.1 72.3 70.6 3.2 7.9 1.3 <0.8 104.3

OC 8 0.9 5.1 0.4 4.6 27.2 <0.8 1.2 <0.4 <0.7 22.5

Th U V W Y Zn Zr

BH 1 3.7 7.9 378.8 <1.0 19.6 93.6 60.7

BH 2 0.8 3.7 55.3 <1.2 11.7 28.7 40.1

BH 3 1.9 1.9 25.0 <1.0 11.3 13.5 127.7

BH 4 2.0 1.4 27.5 <1.0 18.7 20.7 204.8

BH 5 4.7 6.8 561.3 <1.0 30.2 58.5 91.1

BH 6 11.8 3.0 103.5 <1.4 34.0 64.3 176.3

OC 1 1.7 0.9 18.8 <0.8 3.0 4.2 532.3

OC 2 3.6 1.2 37.9 <0.8 11.2 18.7 308.7

OC 3 3.8 4.8 94.7 <1.0 24.0 580.2 119.4

OC 4 9.9 2.9 109.9 <0.8 23.1 21.6 395.7

OC 5 5.2 0.9 26.1 <0.8 5.3 5.9 480.8

OC 6 <0.6 1.4 13.1 <1.3 8.1 22.5 8.1

OC 7 6.6 5.2 73.3 <0.9 17.3 341.3 99.5

OC 8 <0.4 0.7 4.5 <0.7 3.3 4.0 48.1
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XRD Diffractograms – Section 2.4.3 
 

 

Figure B.19: XRD pattern for OC 1 (Hazelhurst Fell, Pendle Grit) 

 

Figure B.20: XRD pattern for OC 2 (Hazelhurst Fell, Pendle Grit, Silty) 
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Figure B.21: XRD pattern for OC 3 (Hazelhurst Fell, Upper Bowland Shale) 

 

Figure B.22: XRD pattern for OC 4 (Hazelhurst Fell, Upper Bowland Shale, Sandy) 
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Figure B.23: XRD pattern for OC 5 (Sabden, Nick O’Pendle, Pendle Grit) 

 

Figure B.24: XRD pattern of OC 6 (Sykes Quarry Limestone based shale) 
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Figure B.25: XRD Pattern for OC 7 (Wolf Fell, Upper Bowland Shale) 

 

Figure B.26: XRD pattern for OC 8 (Congleton Sand, Proppant) 

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90

In
te

n
si

ty

2 θ o

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70 80 90

In
te

n
si

ty

2 θ o



261 
 
 

 

Figure B.27: XRD pattern for BH 1 (Becconsall 1Z, 7030 ft, Upper Bowland Shale) 

 

Figure B.28: XRD pattern for BH 2 (Becconsall 1Z, 7420 ft, Lower Bowland Shale) 
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Figure B.29: XRD pattern for BH 3 (Grange Hill 1Z, 7026 ft, Upper Bowland Shale) 

 

Figure B.30: XRD pattern for BH 4 (Grange Hill 1Z, 8134 ft, Upper Bowland Shale) 
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Figure B.31: XRD pattern for BH 5 (Preese Hall 1A, 8885 ft, Lower Bowland Shale) 

 

Figure B.32: XRD pattern for BH 6 (Lockton 3, 7049 ft, Carboniferous Shale) 
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