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Abstract

Polarised Raman Spectroscopy as a Quantitative Probe of Interfacial Molecu-

lar Orientation – by R.X. Rammeloo

Raman scattering is an ubiquitous phenomenon that can be used to great effect to study

molecules near interfaces. It has traditionally been used as an analytical tool to identify

materials, but by using polarised light, the degree of order within that material can be

assessed simultaneously. This thesis seeks to enhance this technique by accurately quan-

tifying interfacial molecular orientation from peak intensities in polarised Raman spectra.

This requires a joint modelling and experimental approach.

The experimental system, previously developed in our group, obtains surface selectivity

through total internal reflection (TIR) of an incident laser beam at the interface under

investigation. The evanescent wave generated by TIR causes Raman scattering by the

molecules of interest. This system enables investigation of molecular layers at solid-air,

solid-liquid and solid-solid interfaces.

A numerical model is constructed to predict Raman scattering intensities based on

a generalised experimental geometry, the Raman tensor of the vibrational mode under

investigation and the orientation of the scattering molecule. A local field correction is

implemented for incident as well as emitted radiation. The scattered intensity is calculated

with Lorentz reciprocity and integration over the microscope objective that collects the

Raman signal. The modelling outcomes are fitted to experimental Raman scattering

intensities to deduce molecular orientation. The electrodynamic model of the scattering

process is complemented with Raman tensors, polarisabilities and molecular radii obtained

by ab initio computation.

The novel methodology is validated with isotropic scatterers and a supported mono-

layer of zinc arachidate. Analysis of Raman spectra of zinc arachidate in a contact under

static load reveals a variation in alkyl chain tilt of (4.8±0.5)◦ per 100 MPa around (27±4)◦

at 500 MPa. The exact tilt angle depends on the intensity and fitting metrics used.

The model further allows quantitative interpretation of Raman spectra as well as opti-

misation of experimental design. Limitations as well as future applications of this approach

are discussed.
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Chapter 1

Introduction

This thesis is concerned with interfaces and with Raman spectroscopy as a tool to gain

insight into molecular behaviour at interfaces. Molecules often behave strikingly different

at an interface compared to their behaviour in the bulk of a material. Various techniques

have been developed to investigate interfaces, each probing certain characteristic of the

studied material. Raman scattering is particularly promising as an interfacial technique

to complement existing methods.

1.1 Interfaces

Interfaces form between two materials of disparate properties. This includes outer surfaces

of a macroscopic material, such as an aeroplane wing with the surrounding atmosphere,

as well as interactions between molecular structures, such as an anti-icing coating applied

to the airplane wing to prevent sublimation of water molecules at the interface. Other

highly relevant microscopic interfaces include proteins, in which biochemical functionality

is driven by surface binding characteristics of molecules, and heterogeneous catalysis,

where a solid catalyst facilitates chemical transformation at its surface.

In this work, tribological interfaces are presented. In the field of tribology, friction and

wear is studied [1, 2]. As two surfaces make contact, pressure is exerted on the mating

surfaces and any molecules in between, which gives rise to friction, deformation and possi-

bly damage. This is relevant for mechanical contacts as well as physiological, pathological

and artificial joints [3]. Understanding molecular structure and dynamics in such contacts

would greatly facilitate development of better lubricants and aid in developing therapies

for joint-related pathologies. However, studying material in a contact is challenging be-

cause these are generally buried between the two mating parts and most experimental

techniques can only be applied to open, accessible surfaces. A technique is desired that

provides access to such buried interfaces in situ, i.e. while undergoing pressure and shear

forces, and that provides time-resolved measurements of molecular behaviour without al-

tering the system to obtain this information.

Ideally, knowledge is desired of what molecular species are present in the contact

1
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and how these are distributed, what their order is or in what phases these occur, what

orientation these molecules posses with respect to the plane of the interface and how these

properties change with external stimuli, such as increased load and shear of the contact,

modifications of the mating surfaces and changing composition of the lubricant.

Reduction of friction and wear is an age-old problem. Molecular behaviour in a contact

has so far been studied by various techniques, most of which provide measurements of

mechanical characteristics such as forces, surface profiles, amount of wear and thickness

of the lubricant layer [1]. For a molecular understanding, chemical information is also

desired since these physical characteristics arise from surface forces generated by molecular

interactions [4].

Other fields in which detailed understanding of molecular mechanisms at interfaces is

desired include the study of functional interfaces, such as heterogeneous catalysis, absorp-

tion and release of active agents, coatings and (bio)sensors. In each of these applications,

a desired functional property arises from molecular characteristics. Elucidating structure-

function relations in these systems allows functionalisation by design.

1.2 Interface analytical techniques

Various techniques have been developed to study interfaces, a selection of which are briefly

discussed here. Raman scattering is also introduced and compared to existing methods.

1.2.1 Optical techniques

Optical microscopy provides access to surfaces and to interfaces bound by at least one

optically transparent medium. Lubricant film thickness can be determined via interfer-

ence fringes (Newton rings, also applied in chapter 7) as long as the interface remains

transparent [5]. However, imaging resolution is limited by the wavelength of light and

thus molecules cannot be observed nor their properties measured.

Higher resolution is obtained by (scanning) electron microscopy, which is however

limited to ex situ analysis and requires a conductive substrate. Great resolution can be

obtained at long exposure times but dynamic effects can not be measured at relevant time

scales. Combination with elemental analysis provides insight into the composition of wear

particles and thus which contact surface abrades [6].

In Brewster angle microscopy (BAM), a smooth surface is illuminated by polarised

light under the Brewster angle so that no reflection is detected (this effect is explained and

employed in section 3.3.1). At locations where the surface is covered by a (mono)layer,

the polarisation changes and reflections are detected. The method shows presence and

distribution of a layer but not its thickness or chemical composition.

Spatial distribution of molecules may be observed by fluorescence microscopy. It re-

quires labelling with a fluorophore, which may affect the behaviour of the materials in-

volved. Label-free techniques are therefore desirable. However, fluorescence generally
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gives a strong signal, thus allowing detection of minute quantities of a fluorescent ma-

terial. The technique may be made surface-selective by the application of supercritical

angle fluorescence (SAF) [7, 8], in which fluorescence is detected by an annulus of grazing

angles around the microscope focus. Velocity profiles in a contact under shear have been

measured by photobleaching the lubricant and observing the return of fluorescence at a

spatially removed location [9].

Ellipsometry employs the change in polarisation of laser light caused by a film to de-

termine its thickness in combination with in-plane and out-of-plane dielectric constants.

A second measurement is generally required to disentangle the two, such as X-ray diffrac-

tion. In stead, it is also possible to collect a series of measurements while varying the

dielectric constant of the liquid subphase [10]. No chemical information is obtained and

the technique is generally applied to exposed surfaces to obtain layer thickness on the

nanometer scale.

1.2.2 Force measurements

Interactions at interfaces are driven by surface forces, which arise from molecular attraction

and repulsion as well as macroscopically applied pressures. The response of an interface

to an applied force is a measure of the molecular interactions. Chemical specificity can

not be obtained.

The surface-force apparatus (SFA) [11] measures the response of a buried interface

formed between two mica surface to which pressure and shear are applied. Surface separa-

tion, contact area (typically in the order of 0.1 mm2) as well as static and dynamic forces

can be determined. The pressure range of the apparatus is limited by a mechanical spring,

which is relatively weak to allow accurate force measurements. Friction is generated in a

reciprocating manner at typically 1 µm s−1. This technique provides insight into lubricant

function, such as models for joint lubrication [12].

Forces are also measured in atomic force microscopy (AFM) at an atomic resolution.

Mounting a colloidal probe to the AFM cantilever allows an increased interaction area

of about 1 µm2. Attainable sliding speeds remain low while contact pressures are in the

order of 10 GPa. Buried interfaces can be produces between a substrate and the colloidal

probe. This technique has been applied succesfully to study lubricating properties of soft

matter [13, 14].

1.2.3 X-ray and neutron scattering

X-ray and neutron scattering techniques are the scientific workhorses of structure deter-

mination. These can equally be applied to interfaces. Scattering of X-ray and neutrons

arises from scattering length densities of the electron cloud and atomic nucleus, respec-

tively. These techniques are sensitive to atomic species and molecular properties are

inferred from the deduced distributions of atoms.

Small-angle scattering is used to obtain nanometer scale dimensions of a film, such as
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molecular spacing, film thickness and ordering length scales in crystalline domains of the

film. Reflectivity at grazing incidence can be used to infer an effective or average molecular

tilt from the layer thickness. Though small-angle X-ray scattering can be performed with

a laboratory-based instrument, neutron scattering experiments can only be performed in

dedicated facilities. All require relatively long exposure times due to the small amount of

material probed.

1.2.4 Spectroscopic techniques

Vibrational spectroscopy of interfaces provides direct access to information on what com-

pounds are present and in what configuration without disturbing the materials. In a

contact, at least one of the mating solids has to be transparent for the incident as well as

outgoing radiation.

Infra-red (IR) spectroscopy on interfaces generally uses Fourier-transform techniques

with broadband pulsed illumination. Surface sensitivity is obtained by multiple total

internal reflections through a crystal on which the interface is formed. The attenuated

total reflection (ATR) of the IR beam is evaluated. When using polarisation, the spectra

provide information on the conformation and orientation of the IR absorbing molecules,

which may be quantified [15].

With IR absorbing substrates, such as glass and water, spectra may be recorded at

multiple incidence angles to obtain a relatively neat spectrum of the film [16].

On various substrates, reflection-absorption infrared spectroscopy (RAIRS also known

as IRRAS) can be employed, in which the infrared beam is incident on the interfacial film

under a grazing angle [17]. The absorption of the molecule depends on its orientation with

respect to the polarisation of the incident IR beam. Polarised spectra or the ratio of their

absorbances (the dichroic ratio) can thus be linked to molecular order and orientation.

On metals, this technique only detects vibrational modes that result in a change of the

molecular dipole moment perpendicular to the metal surface. In this case, it is thus

intrinsically sensitive to molecular orientation. A tribological interface was studied ex situ

with this technique by Kahtri et al. [18].

All IR techniques are based on absorption and thus face the limitation that it mea-

sures a fluctuation in a signal on a high background, which is intrinsically less sensitive

then measuring a small fluctuation on a zero background as is the case in sum-frequency

generation or Raman scattering.

An alternative spectroscopic technique is vibrational sum-frequency spectroscopy (VSFS).

It is intrinsically surface selective as the sum-frequency effect only occurs in a non-

centrosymmetrical environment while ordered structures do not give a signal [19]. In

this technique, both a visible and IR pulsed laser beam are overlapped onto the interface

and light is emitted (as a beam) at the summed frequency, which is strongest when the IR

laser is resonant with an appropriate vibrational mode of the molecules as the interface.

The sum-frequency intensity also depends on the optical geometry [20]. The linear
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polarisations of each beam can be set to in-plane or out-of-plane, providing eight combi-

nations that allow analysis of the orientation of the molecule (or functional group) that

gives rise to the sum-frequency signal.

VSFS has been used to obtain molecular orientation [21, 22] though this knowledge

is restricted to those parts of the interface that are sum-frequency active. For example,

the orientation of terminal methyl groups of surfactants at the liquid-vapour interface

was determined [23] and order within the monolayer can be assessed by observation of

gauche defects in otherwise stretched alkyl chains. Water structure at interfaces has also

be assessed [24, 25]. Interpretation of sum-frequency spectra from interfaces is complicated

by non-resonant contributions [26] as well as interference effects in thin films [27–29].

This technique has also been applied to monolayers in a contact, starting with a publi-

cation from Bain et al. in 1998 [30] with details later published in [31, 32]. Later studies of

Ghalgaoui et al. [33] also included variation of load and shear on an octadecyltrichlorosi-

lane monolayer, showing irreversible changes in the order of the monolayer after shear was

applied. Meltzer et al. studied indentation of a octadecylphosphonic acid monolayer by a

glass sphere [34]. From both spectra and molecular dynamics simulations of the system,

the authors showed that gauche defects increase to a saturation value when pressure is

increased while the monolayer fully recovers after pressure again reduced.

Though VSFS has proven a fruitful technique in studied buried interface, the number

of published studies is still small, likely because its implementation requires significant

effort and experienced researchers to obtain good spectra.

1.2.5 Raman scattering

Raman spectroscopy is the use of Raman scattering for chemical analysis of a material.

Generally, continuous-wave lasers are used as a source of monochromatic light to illuminate

the sample under investigation. The incoherently scattered light is collected and analysed

in a spectrograph. Peaks in the spectrum are linked to specific molecular transitions

which allows identification of molecules and their constituent groups. Selective sampling

of an interfacial layer, as opposed to bulk material, can be achieved through total internal

reflection (TIR) of the laser beam [35, 36].

As infrared and sum-frequency spectroscopy, Raman spectroscopy probes molecular

vibrations. Raman spectra are presented as intensity versus Raman shift in wavenumbers

(cm−1) from the frequency of the incident laser light. The fundamental Raman lines in a

spectrum of a molecule are numbered ν1, ν2, . . . according to their shift and the symmetry

species of the vibrational mode from which they arise. Starting with the fully symmetric

modes, all bands are numbered from high to low frequency, before considering bands from

modes of increasingly lower symmetry. Normally degenerate modes receive an additional

label when they become distinguishable.

Selection rules apply, resulting in more distinct Raman bands compared to IR spec-

troscopy with weaker glass, carbon dioxide or water background features. Compared to
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VSFS, Raman spectra provide more peaks as the strict symmetry requirements of non-

linear sum-frequency effect do not apply. This means that all parts of the molecule and all

molecules contribute to the Raman spectrum in an additive way. A detailed explanation

of the Raman effect is given in chapter 2.

Raman scattering is sensitive to polarisation and can thus be used to assess molecular

orientation. This has been used in establishing molecular orientation of dyes in films [37]

and alignment of (parts of) peptides [38, 39], for example. At interfaces, polarised Raman

spectroscopy has long been used to assess order in surface films qualitatively and is a

subject of ongoing research as this thesis and references herein show.

To enhance spatial resolution in the sampled interface, a confocal arrangement can be

used of illumination and collection of scattered light in a microscope.

In order to overcome the intrinsically weak nature of the Raman effect, various schemes

have been developed to enhance its signal. These include a waveguide geometry [40],

the TIR configuration as well as generation of surface plasmons [41]. This last method

is surface-enhanced Raman scattering (SERS), in which plasmonic hot spots give rise

to extreme amplification of the local electric field between two nanoparticles through a

surface plasmon resonance at the wavelength of the incident laser. Due to this enhanced

field, the intensity of Raman scattering increases dramatically. SERS may be combined

with TIR illumination to further increase the Raman signal in addition to ensuring surface

selectivity [42]. Surface-plasmons can also be generated in metal coatings, such as gold,

to amplify Raman scattering from molecules absorbing to such interface [43].

Another method employing plasmon enhancement is tip-enhanced Raman scattering

(TERS), in which an AFM probe is combined with Raman spectroscopy. Combining

scanning probe microscopy with confocal microscopy, to deliver laser light and collect

Raman scattering, allows chemical mapping of even single molecules [44]. The polarisation

of the incident laser is set parallel to the AFM tip to excite a plasmon resonance that

strongly enhances the Raman scattering of molecules between tip and substrate. Moving

the sample below the tip and through the laser spot produces an image of the surface. A

spatial resolutions below 2 nm has been reported [45]. Such techniques can be used to

image static samples, including cell membranes [46].

In the above plasmon-resonance enhanced techniques, Raman scattering arises from

very few molecules that may be modified by the close proximity of the tip, colloid or surface

with which the plasmon is generated. A more expansive area of the interface can be probed

when illuminating the interface with a laser beam and collecting Raman scattering through

a microscopy objective as used in our research group (detailed in chapter 3). This also

allows variation of the angle of incidence, which determines the sampling depth in TIR.

Scanning the laser incidence angle can thus provide layer thickness and depths of layers in

a multilayered system, as experimentally demonstrated by Emily Smith’s group in a series

of papers [47–50]. Another recent application of this was Ota’s study of water structure

at hydrophobic and hydrophilic interfaces [51].

The TIR geometry thus ensures surface-selective Raman scattering. Another advan-
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tage of this geometry is the enhancement of the field at the interface over any background

signal from the substrate. For example, the TIR arrangment has been used to increase

sensitivity of a Raman detector of volatile organic compounds [52]. More information

can be obtained by using polarised TIR Raman scattering. Polarisations are well-defined

with respect to incoming laser beam and plane of the interface, thus in principle allowing

analysis of molecular orientation with respect to the interface.

TIR Raman spectroscopy has been applied to confined films in our research group for

over a decade [53, 54]. It proved a more versatile technique than VSFS, previously used,

as all material in the contact is probed and its application is generally less cumbersome.

In combination with a tribometer, TIR Raman spectra can be collected from lubricants as

these undergo load and shear forces [55, 56]. Molecular distribution, order and orientation

can then be assessed in situ and dynamically. However, interpretation of these spectra

has so far been qualitative.

In summary, a range of interface analytical techniques are currently available to inves-

tigate interfaces. Raman spectroscopy is particularly appealing as it provides a vibrational

spectrum that includes detailed chemical information, allows for polarisation control to

determine molecular orientation, can be made surface selective through TIR, can be em-

ployed with common substrates such as glass, water and air while providing signals that

are strong enough to perform sub-second time resolution experiments in situ and not re-

quiring labelling or other interference with the sample. However, like other spectroscopic

techniques, it requires an optically transparent substrate to access buried interfaces. Fur-

thermore, fluorescence of samples should be avoided, though choosing different lasers and

time-gating can minimise this. Finally, the experimental system is relatively inexpensive

compared to the other techniques and easy to use.

1.3 Research focus

We seek to quantitatively deduce molecular orientation from experimentally obtained Ra-

man scattering intensities. A numerical model based on the experimental geometry used

in our laboratory could provide (relative) intensities as a function of the orientation of the

scattering molecule and other parameters of the interface. The strategy is to fit the exper-

imental data with these modelling outcomes and extract the orientation of the scatterer,

having ruled out all other variables.

With such a model, peak intensities in Raman spectra can be predicted for various

linear polarisations. Quantitative analysis of experimental spectra would then be possible

to provide insight in the molecular response to externally applied stimuli, such as pressure

and shear in a tribological contact. It is believed that the current qualitative, limited

interpretations of available data may be improved to place Raman spectroscopy on a more

equal footing with some of the well-established techniques of interface analysis.

The focus of this thesis is on developing a consist framework for the interpretation of

Raman spectra, comprising a model to predict scattering intensities as a function of exper-
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imental and molecular parameters. It is further desired that these molecular parameters,

including Raman tensors, can be obtained by computation to predict Raman spectra. The

model should then be validated and applied to relevant interfaces to demonstrate its appli-

cability. In doing so, we aim to establish polarised Raman spectroscopy as a quantitative

probe for interfacial molecular orientation.

1.4 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 introduces and develops

theoretical aspects of Raman scattering. Experimental aspects are described in chapter 3.

These include the Raman systems and procedures for preparation of the experiments.

Material properties, in particular refractive indices, are also included.

Chapter 4 deals with the form of Raman tensors and derivation of its numerical values

by ab initio computation.

Theory and experiment are combined in the model developed in chapter 5. Detailed

electromagnetic considerations are presented as well as a discussion of its applicability,

limitations and assumptions.

The new model is applied to apparently simple interfaces in chapter 6 in order to

validate the model description of the Raman scattering process. Here, the ab intio com-

putations of chapter 4 are employed.

In chapter 7, the model is applied to Raman spectra of zinc arachidate monolayers in

a solid-solid contact under static pressure. This presents an application of the developed

approach to a system of tribological interest.

Chapter 8 concludes this thesis with a summary of conclusions from the preceding

chapters and suggestions for further work. Additional material is provided in appendices.

Parts of this work include rather rudimentary aspects. These are nevertheless included

to ensure a self-contained source of information that is accessible to the uninitiated coming

to the field of Raman spectroscopy from various scientific backgrounds, such as future

doctoral students in our research group or elsewhere. They form the primary audience I

have kept in mind while writing this thesis.

All data presented in this thesis is labelled with a chronological data key, with which it

may be traced in the digital data archive of Professor Bain’s research group. Every figure

where raw experimental data is first introduced, includes such a data key in its caption.



Chapter 2

Elements of Raman scattering

theory

This chapter brings together various theories relevant to the Raman effect. It is meant to

provide a complete and coherent framework for this thesis and seeks to spare the reader

from having to consult disparate sources that focus on particular aspects of theory only,

include hidden assumptions or contain inconsistent definitions. An effective modelling

approach needs a rigorous internal consistency built from a thorough understanding of its

elementary concepts.

2.1 Introduction

The Raman effect is named after Chandrasekhara Venkata Raman (1888-1970), who pub-

lished the discovery of a new kind of radiation from molecules in 1928 [57]. Light scattering

experiments on some 80 transparent liquids conducted with Kariamanickam Srinivasa Kr-

ishnan (1898-1961) at Calcutta University revealed that some of the scattered light was

of a wavelength different from the wavelengths of the incident light [58]. They demon-

strated that this radiation was not the same as fluorescence as its intensity was of an

“entirely different order” and it was as strongly polarised as ordinary light scattering,

whereas fluorescence from a bulk liquid was known to be unpolarised [59]. This effect had

not been observed before. Raman was awarded the 1930 Nobel prize in physics “for his

work on the scattering of light and for the discovery of the effect named after him” [60]

with nominations from Bohr, Rutherford, Stark and de Broglie, amongst others.

Due to the intrinsic weakness of the Raman effect, a strong light source is needed to

observe Raman scattering. The advent of lasers as stable monochromatic sources of light

has increased the ease of performing Raman spectroscopy. Raman himself demonstrated

the effect with a pure toluene sample, using a strong mercury arc lamp (or a focussed

beam of Southern Indian Summer sunlight in his first experiments) with a blue-violet

filter to illuminate the sample and a green filter to observe the ray traversing the liquid.

This can be replicated in a modern lab with ease, using a laser to illuminate a transparent

9
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sample and wearing the appropriate safety goggles to look at the opalescent track within

the liquid. Using a green laser and goggles that block this colour, an orange-red line is

observed where the laser beam traverses liquid toluene.

Molecular light scattering is distinct from scattering by particulate matter such as

dust in the atmosphere or colloidal particles in a suspension. The latter is known as Mie

scattering and arises from spherical particles in a medium of different refractive index.

Fluorescence and phosphorescence are two other effects that result in a scattered wave-

length different from that of the incident light. However, such photoluminescence has a

different molecular origin involving both electronic and vibrational transitions leading to

red-shifted emitted light whereas Raman scattering commonly involves vibrational tran-

sitions only and can result in both red and blue-shifted spectral lines. Raman scattering

occurs with any incident frequency, whereas photoluminescence only occurs at an elec-

tronic absorption band. Furthermore, the time delay and intensities at which these effects

occur is of a different order of magnitude. Fluorescence delays are typically on the order

of 1−10 ns and those in phosphorescence range from from ms to hours. Raman scattering

is instantaneous and much weaker.

2.2 Tensors, bases and transformations

The following mathematical definitions are used in the treatment of Raman scattering.

As multiple conventions exist, a full specification is necessary.

2.2.1 Tensor conventions

Light scattering by molecules, including the Raman effect, is generally described with

a combination of classical electrodynamics and quantum mechanics: the first is used to

describe the electromagnetic radiation, while the latter describes the molecular properties

of the scattering material [61, 62]. In the description that follows, extensive use will be

made of tensors of rank zero, one and two.

A tensor of rank zero is a scalar, a single number unrelated to any frame of reference.

A tensor of the first rank is specified by three components, each associated with one of

the axes of the frame of reference. It is represented as a column vector within a particular

frame of reference, such as

b = bxx̂+ byŷ + bz ẑ =
(
bx by bz

)x̂

ŷ

ẑ

 ≡

bxby
bz

 (2.1)

with vector b given in the basis {x̂, ŷ, ẑ}.
A second-rank tensor is specified by nine components, each of which is associated with

a pair of axes taken in a particular order. This forms a matrix represented as a square
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array of 3× 3 elements, for example

M = x̂Mxxx̂+ x̂Mxyŷ + x̂Mxzẑ

+ ŷMyxx̂+ ŷMyyŷ + ŷMyz ẑ+ ẑMzxx̂+ ẑMzyŷ + ẑMzz ẑ

=
(
x̂ ŷ ẑ

)Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


x̂

ŷ

ẑ



≡

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


(2.2)

in which each elementMkl is a scalar. The basis vectors are usually omitted in the notation

of tensors. These are implied in the matrices used throughout this work. Note that a

matrix is only an array of numbers, whereas a tensor is defined with respect to a complete,

orthonormal basis. A second-rank tensor has eigenvalues and can be diagonalised, while

this is not possible for all 3× 3 matrices.

Multiplication of two vectors follows three distinct types. First, the direct product,

without particular symbolism, results in a tensor of second rank

ab =

axay
az

(bx by bz

)
=

axbx axby axbz

aybx ayby aybz

azbx azby azbz

 (2.3)

Second, the dot product results in a scalar and is indicated by a centred dot · as in

a · b =
(
ax ay az

)bxby
bz

 = axbx + ayby + azbz (2.4)

Third, the cross product results in another vector, orthogonal to the original pair and is

indicated with a cross ×. In matrix notation, this follows

a× b =

axay
az

×

bxby
bz

 =

aybz − azby

azbx − axbz

axby − aybx

 (2.5)

Multiplication between tensors of second rank and multiplication of a second-rank and

a first-rank tensor are performed according to pre-multiplication (or left multiplication)

of matrices. This approach is used throughout this work and no multiplication symbols

are used when second-rank tensors are involved. Applying a tensor of second rank to one
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of first rank is represented in a matrix multiplication as

b = Mabxby
bz

 =

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


axay
az



=

Mxxax Mxyay Mxzaz

Myxax Myyay Myzaz

Mzxax Mzyay Mzzaz


(2.6)

where the matrix element Mkl relates component l of a to component k of b. The multi-

plication of two matrices LM gives a third matrix K as

K = LMKxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 =

Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz


Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 (2.7)

=

LxxMxx + LxyMyx + LxzMzx LxxMxy + LxyMyy + LxzMzy LxxMxz + LxyMyz + LxzMzz

LyxMxx + LyyMyx + LyzMzx LyxMxy + LyyMyy + LyzMzy LyxMxz + LyyMyz + LyzMzz

LzxMxx + LzyMyx + LzzMzx LzxMxy + LzyMyy + LzzMzy LzxMxz + LzyMyz + LzzMzz



and is generally not equal to the matrix product ML. If the order of multiplication

does not matter, the matrices are said to commute. Matrices and vectors are given in

bold typeface while tensor components, scalars and coordinates are given in italics. This

notation also holds for the norm of a vector

b = ||b|| =
√
bx

2 + by
2 + by

2 (2.8)

which is a scalar and gives the Euclidean length of a vector in three dimensions. Basis

vectors are of unit length and are given in bold type and carry a hat, e.g. x̂. A label

in superscript is used to indicate the frame of reference and basis in which a quantity is

given, while subscript labels are used for other specifications, such as vector components

or matrix elements as in equations 2.6 and 2.7. Except where noted, SI units are used.

2.2.2 Cartesian and spherical basis

The scattering process is described in a right-handed Cartesian coordinate basis {x̂, ŷ, ẑ}.
A spherical basis {ρ̂, θ̂, ϕ̂} is sometimes convenient to express the same vector or a point in

space. Figure 2.1 defines each basis (or coordinate system) in the same frame of reference.

The transformation from Cartesian to spherical coordinates for a point in space within
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a particular frame of reference is given by

ρ =
√
x2 + y2 + z2

θ = arccos

(
z√

x2 + y2 + z2

)
ϕ = arctan2

(y
x

) (2.9)

where the arctan2 function is the four-quadrant inverse tangent, which takes the signs of

the x and y coordinates into account to determine the angle ϕ in the interval 0◦ ≤ ϕ < 360◦.

As the angle θ only ranges from 0◦leqθ ≤ 180◦, the direct arccosine suffices to find that

angle. The radial distance ρ ≥ 0. Equations 2.10 are used to find the Cartesian coordinates

of a point, given its spherical coordinates in the same frame of reference.

x = ρ sin θ cosϕ

y = ρ sin θ sinϕ

z = ρ cos θ

(2.10)

These expressions can be deduced readily from the dashed line projections in figure 2.1.

 

Figure 2.1: A three-dimensional frame of reference in which the location of point P is
specified in coordinates of a Cartesian (x, y, z) (blue) as well as a spherical
(ρ, θ, ϕ) (red) basis.

2.2.3 Transformation matrices

If the matrix M in equation 2.6 represents a transformation matrix TA→B, it transforms

the Cartesian basis of vector aA with coordinates specified in frame of reference A to the

vector aB, which is the same vector fixed in space but now described in the Cartesian basis
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of frame of reference B. Equation 2.11 summarises this passive (or alias) transformation.

aB = TA→B aAaxB

ayB

azB

 =

TxAxB TxAyB TxAzB

TyAxB TyAyB TyAzB

TzAxB TzAyB TzAzB


axA

ayA

azA

 (2.11)

If a vector has to be transformed within a fixed frame of reference, an active (or alibi)

transformation is required. For rotations, this means that the inverse transformation

matrix should be applied, as is demonstrated below. This definition is not trivial, as the

rotation matrices to effect a rotation of the frame of reference for a vector fixed in space is

mathematically identical to the inverse rotation of a vector expressed in the original frame

of reference.

Transformations between several frames of reference are required to describe the scat-

tering process. By choosing a common origin, only rotations are needed to effect transfor-

mations between Cartesian frames of reference. Choosing axes conveniently can further

reduce the complexity of the transformations involved. A coordinate transformation is

then completed by sequentially performing no more than three elemental rotations, each

given by a 3×3 rotation matrix as presented in equations 2.12. Each rotation matrixRa(θ)

specifies a rotation of the frame of reference about one of the three Cartesian axes a over

angle θ in an anticlockwise direction looking down axis a from its positive end towards the

origin. This definition conforms to an anticlockwise rotation of a frame of reference with

a point or vector fixed in space (an alias transformation), as well as a clockwise rotation

of a vector within a fixed coordinate system (an alibi transformation).

Rx(θ) =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ



Ry(θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



Rz(θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1



(2.12)

The classical (or proper) Euler angles α, β and γ are used to rotate one frame of refer-

ence into another. These angles are defined in figure 2.2 for a general transformation from

frame of reference {x̂A, ŷA, ẑA} to {x̂B, ŷB, ẑB}. Rotation matrices in three dimensions

do not commute. The three elemental rotations must be performed in a particular order,

as the direction of two of the axes change at each step.

First, a rotation of angle 0 ≤ α < 360◦ about the ẑA axis (which is the original z
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Figure 2.2: The proper Euler angles α, β and γ give the rotation angles to transform
the frame of reference {x̂A, ŷA, ẑA} (red) to {x̂B, ŷB, ẑB} (black). The three
elemental rotations in the bottom row are subsequently executed from left to
right about the ẑA, x̂′ and ẑB axes following the right-hand rule to effect the
transformation summarised in the top figure. The two intermediate coordinate
systems are {x̂′, ŷ′, ẑ′} (blue) and {x̂′′, ŷ′′, ẑ′′} (green).
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axis);

second, a rotation of angle 0 ≤ β < 180◦ about the x̂′ axis (the line of intersection

between the xAyA and xByB planes, which is the x axis after the first rotation);

third, a rotation of angle 0 ≤ γ < 180◦ about the ẑB axis (which is the z axis after

the second rotation).

All rotations follow the right-hand rule: looking down the rotation axis towards the

origin, a positive angle describes an anticlockwise rotation of the two remaining axes. If

an angle is negative, the direction of the rotation is inverted. The angles α, β and γ

correspond to the azimuthal position from the xA axis, the tilt angle from the zA axis and

the negative twist angle from the xB axis, respectively. These have been chosen for their

straightforward physical interpretation. Note that other definitions of these Euler angles

are in use that result in different transformation matrices.

The general transformation matrix TA→B from equation 2.11 can now be specified

following the definitions given above as

TA→B = Rz(γ)Rx(β)Rz(α)

=

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1


1 0 0

0 cosβ sinβ

0 − sinβ cosβ


 cosα sinα 0

− sinα cosα 0

0 0 1



=

 cos γ cosα− sin γ cosβ sinα cos γ sinα+ sin γ cosβ cosα sin γ sinβ

− sin γ cosα− cos γ cosβ sinα cos γ cosβ cosα− sin γ sinα cos γ sinβ

sinβ sinα − sinβ cosα cosβ


(2.13)

It expresses a vector or the coordinates of a point fixed in space in the coordinates of

frame or reference B from the original coordinates specified in frame of reference A. The

opposite rotation is effected by performing the elementary rotations in inverse order and

rotating in the opposite direction, thus

TB→A = Rz(−α)Rx(−β)Rz(−γ) (2.14)

gives the transformation matrix TB→A which brings a vector specified in frame of reference

B into the coordinate system of frame of reference A. For the general form of equation 2.13,
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this results in

TB→A =

 cos(−α) sin(−α) 0

− sin(−α) cos(−α) 0

0 0 1


1 0 0

0 cos(−β) sin(−β)
0 − sin(−β) cos(−β)


 cos(−γ) sin(−γ) 0

− sin(−γ) cos(−γ) 0

0 0 1



=

cosα − sinα 0

sinα cosα 0

0 0 1


1 0 0

0 cosβ − sinβ

0 sinβ cosβ


cos γ − sin γ 0

sin γ cos γ 0

0 0 1



=

cos γ cosα− sin γ cosβ sinα − sin γ cosα− cos γ cosβ sinα sinβ sinα

cos γ sinα+ sin γ cosβ cosα cos γ cosβ cosα− sin γ sinα − sinβ cosα

sin γ sinβ cos γ sinβ cosβ


(2.15)

which is readily identified as the inverse of TA→B when comparing the result to equa-

tion 2.13. The identity

TB→A = TA→B
T = TA→B

−1 (2.16)

is a result of the orthogonal nature of the elementary rotation matrices. Their transpose

and inverse are identical, which thus also holds for the transformation matrices involving

subsequent elementary rotations.

2.3 Light scattering by molecules

Molecules scatter light through various processes. In classical physics, the scattered light is

treated as radiation from an induced electric dipole p, which is generated in the scattering

molecule by incident electromagnetic waves. This interaction is described by tensors and

can be linear or non-linear in the time-dependent electric field vector E at the location

of the scattering molecule. The induced dipole is the sum of these terms, which form a

rapidly converging series. The first three terms

p = p(1) + p(2) + p(3) + . . .

= αE+
1

2
β EE+

1

6
γ EEE+ . . .

(2.17)

contain the polarisability α (a second rank tensor), the hyperpolarisability β (a third rank

tensor) and the second hyperpolarisability tensor γ (a fourth rank tensor), respectively.

Multiple electric fields (e.g. lasers of different wavelengths) can be used to give rise to

the non-linear terms. The interaction between the incoming light and the molecule under

investigation thus depends on multiple elements of the appropriate tensors, which vary

with the wavelengths of the incoming light as dictated by the molecular properties. A

quantum mechanical treatment and symmetry arguments are required to explain how the

internal transitions of the scattering molecule affect the induced dipole and what selection
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rules apply to the scattering process.

A typical order of magnitude for the components of α is 10−40 C V−1 m2, while this

is 10−50 C V−2 m3 for components of β and 10−61 C V−3 m4 for components of γ [61].

Values for α are also given in units of volume (with a typical magnitude of 10−30 m3 or

1 Å
3
), in which case a multiplication by 4πϵ0 will correct the units.

The scattering process can be coherent or incoherent, depending on the experimental

system used. When one monochromatic light source is used that produces a single field,

the scattered light is incoherent: each molecule radiates independently. There is no phase

relation between the incoming and scattered light. This linear process is described by the

term p(1) of equation 2.17. The scattered light is emitted in all directions with varying

intensity. This includes Rayleigh and Raman scattering, treated in more detail below.

Non-linear effects occur in materials without inversion symmetry, such as at interfaces

or defects in an otherwise ordered system. These can be probed by a single intense laser

beam, leading to second harmonic generation, or by using two overlapping beams (one of

which is variable) for sum-frequency generation. In such cases, the scattered light is coher-

ent: scattering at particular combinations of the two wavelengths is enhanced and a fixed

phase relation exists between the incoming and scattered light, which will be emitted from

the sample in a particular direction. This process is contained in the non-linear term p(2)

of equation 2.17 with two different electric fields. Examples include coherent Stokes Ra-

man scattering (CSRS), its anti-Stokes variant CARS and sum-frequency spectroscopy. As

the scattered light is coherent, the radiation from multiple scattering molecules interferes

and a directional beam of light is emitted by the sample.

Three overlapping electric fields give rise to the second non-linear term p(3) and so on.

2.3.1 Rayleigh and Raman scattering

The linear term p(1) of equation 2.17 includes both Rayleigh and Raman scattering.

Rayleigh scattering is a ubiquitous phenomenon: the scattered light is of the same fre-

quency as the incident light, i.e. the light scatters elastically. Raman scattering is inelastic:

the frequencies of the scattered radiation are shifted from the incident frequency. The mag-

nitude of these shifts is characteristic of the internal transitions of the scattering molecule.

This work focusses on vibrational transitions in the molecules under investigation, which

serve as a signature of the presence of the scattering molecule and its spatial orientation.

Figure 2.3 presents a general energy diagram for the three linear scattering processes

that molecules can give rise to. For a single molecule, the incoming and scattered light

are coherent, but for an ensemble of molecules, the total scattering is incoherent because

of the random phases of the vibrational state of each molecule. Rayleigh scattering is

much stronger than Raman scattering and does not alter the energy of the scattered

photon. Raman scattering results in the transition from one internal molecular state to

another. If the scattered light is red-shifted with respect to the incoming light (i.e. it is of

lower frequency), part of the incoming light has been taken up by the molecule. This has
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Figure 2.3: Schematic energy diagram for linear scattering processes in a molecule with in-
ternal vibrational states v. The coloured arrows designate transitions between
molecular vibrational states, the colour representing the energy associated with
each transition.

increased its internal energy and it now occupies a higher quantum-mechanical state. This

process is called Stokes Raman scattering, because it follows Stokes’ law, which states that

the wavelength of fluorescence is always longer than that of absorbed light. (Even though

the Raman scattering process is entirely different from fluorescence, the same nomenclature

has traditionally been applied.) Anti-Stokes Raman scattering is the opposite effect: the

molecule loses internal energy in the scattering process by falling to a lower internal state.

The energy lost by the molecule is added to the scattering photon causing the scattered

radiation to be blue-shifted with respect to the incoming radiation. As the population of

high-energy states is usually lower than that of states with low internal energy (as described

by the Boltzmann distribution), anti-Stokes Raman scattering is weaker in general than

Stokes Raman scattering.

The virtual states in figure 2.3 are not actual energy levels of the molecule. These are

included to make a distinction between an apparently absorbed and emitted photon. In

normal vibrational Raman scattering, the energy of these virtual states is far below the

first electronic excited state. If the photon energy of the incident light is close to that

of an internal transition (i.e. the virtual states become real), resonant Raman scattering

occurs. This is stronger than normal Raman scattering and requires a quantum mechanical

description of the intermediate state as well as of the initial and final states. In this work,

normal vibrational Raman scattering is employed, though many of the concepts also apply

to other forms of Raman scattering.

The polarisability tensor α incorporates both Rayleigh and Raman scattering. It

can expanded in a Taylor series with respect to the vibrational normal coordinate Qv of

vibrational mode v as

α = α0 +

(
∂α

∂Qv

)
0

Qv +
1

2

(
∂2α

∂Qv
2

)
0

Qv
2 + ... (2.18)
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where α0 is a constant polarisability that is independent of the vibrational mode. The

subscript 0 at the derivative denotes the equilibrium configuration of the molecule, at

which Qv = 0 for all vibrational modes. The vibrational normal coordinate represents

the motion of the nuclei of the molecule in a pattern given by the vibrational mode.

As the nuclear positions oscillate, the polarisability changes due to the rearrangement

of the electron density. Taking only the first order term in Qv (known as the electrical

harmonicity approximation), equation 2.18 can be rewritten as

α = α0 +αv (2.19)

where

αv = Qv

(
δα

δQv

)
0

. (2.20)

The notation of the derivative is generally shortened to

α′
v ≡

(
δα

δQv

)
0

(2.21)

which the linear polarisability derivative at the equilibrium configuration of the molecule

for a vibrational normal mode v. Its unit is C V−1 m.

We now introduce the time-dependence of the scattering process. Assuming a harmonic

oscillation of the nuclei in the molecule, the time dependence of Qv can be given as

Qv(t) = Qv0 cos(ωvt+ δv) (2.22)

where Qv0 is the normal coordinate amplitude in m, ωv is the angular frequency of the

vibration and δv is the phase of the vibration at t = 0 for a particular molecule. The

electric field at the molecule that gives rise to the induced dipole is also time-dependent

with frequency ω

E(t) = E0 cos(ωt) . (2.23)

Introducing equations 2.22 and 2.23 into the linear expression for the induced dipole p(1)

from equation 2.17 results in

p(1)(t) = α(t) E(t)

=
(
α0 +α′

vQv(t)
)
E0 cos(ωt)

= α0E0 cos(ωt) +α′
vQv0 cos(ωvt+ δv)E0 cos(ωt)

= α0E0 cos(ωt) +
1

2
α′

vQv0E0 cos((ωv + ω)t+ δv) +
1

2
α′

vQv0E0 cos((ωv − ω)t+ δv)

(2.24)

where we used the trigonometric identity

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) . (2.25)
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The three terms of equation 2.24 represent three induced dipoles that give rise to

radiation of frequencies ω through Rayleigh scattering, (ω+ωv) through anti-Stokes Raman

scattering and (ω−ωv) through Stokes Raman scattering. Moreover, the Raman scattered

light suffers a phase shift of δv. It is also evident that Raman scattering can only occur

if the polarisability derivative with respect to the vibrational normal coordinate at the

equilibrium position (α′
v) is non-zero.

The Rayleigh and Raman polarisability tensors can now be defined as

αRayleigh ≡ α0 (2.26)

αRaman ≡ αv = Qv0α
′
v (2.27)

where αRaman is equally valid for Stokes as well as for anti-Stokes Raman scattering. In

the classical treatment, both Stokes and anti-Stokes Raman scattering are equally likely.

Quantum-mechanical considerations show that these are distinct processes and that Qv0

depends on the vibrational levels involved in the transition.

The Rayleigh polarisability tensor is a static molecular property, while the Raman

tensor additionally depends on the particular vibrational mode of the molecule. Note that

this definition excludes the time dependence in the Raman tensor that was introduced

through Qv(t) as our main interest is in time-averaged quantities. The Rayleigh as well

as Raman tensor is a polarisability tensor. These can be distinguished from each other

through the different frequencies of the dipole fields that the scattering processes generate.

The tensor α′
v is colloquially also known as ‘the Raman tensor’, though strictly speaking

it is the tensorial linear polarisability derivative with respect to the vibrational normal

coordinate at the equilibrium position, which explains why the short-hand is often used,

notwithstanding the potential for confusion with the Raman polarisability tensor.

2.3.2 A quantum mechanical description

So far, the linear scattering process has been treated classically. In a conventional quan-

tum mechanical description, the molecular system is described through wave functions

while only the electromagnetic radiation is described classically [61–63]. The quantum-

mechanical theory of Raman scattering was derived by Placzek in the 1930’s [64] and

is summarised in chapters 2 and 4 of Long’s work [61]. The incident light perturbs the

(vibrational) states of a molecule. The total transition electric dipole vector (p)fi is cal-

culated using the perturbed wave functions Ψ′ for the initial i and final f states of the

molecule through

(p)fi = ⟨Ψ′
f |p̂|Ψ′

i⟩ (2.28)

where Dirac notation is used. p̂ is the electric dipole moment operator and has a com-

ponent in each of the three spatial dimensions. It depends on the distribution of electric

charge within the molecule (due to both electrons and nuclei) around its centre of mass.

For a collection of point charges, the dipole moment is given by a sum over all electric
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charges c of charge ec located at rc relative to the location of the centre of mass rcm

p̂ =
∑
c

ec(rc − rcm) (2.29)

The choice of the origin affects the dipole moment in ionic species. It is conventional

to take the centre of mass as the origin for the molecular frame of reference, even if the

net charge is zero. The charge distribution within a molecule changes during vibrational

motion while the incident electric field also oscillates. p̂ thus depends on the quantum-

mechanical state of the molecule and on time.

The integral of equation 2.28 further includes time-dependent wavefunctions that are

perturbed by an incident electromagnetic field E of a certain angular frequency ω. The

perturbed wave functions of the system can be expressed as the unperturbed wave func-

tion plus a series of modifications that depend on increasing powers of E(ω). The wave

functions of the unperturbed and first order perturbed states

Ψ′ = Ψ(0) +Ψ(1) (2.30)

determine the first order transition electric dipole moment (p(1))fi that gives rise to

Rayleigh (i = f , which may be degenerate) and Raman (i ̸= f) scattering. The zeroth-

order dipole arises from transitions between unperturbed states, so does not involve light

scattering. Higher-order terms in the electric dipole moment give rise to hyper-Rayleigh

and hyper-Raman scattering. The first-order induced dipole moment can be written as

(p(1))fi = ⟨Ψ(0)
f |p̂|Ψ(1)

i ⟩+ ⟨Ψ(1)
f |p̂|Ψ(0)

i ⟩ (2.31)

where the first-order perturbed wavefunctions of the initial and final states may be ex-

pressed as a linear combination of all unperturbed wavefunctions of the molecule. The

coefficients are linear in E(ω) and so is (p(1))fi. The electric field can then be taken out

of the integrals of equation 2.31.

In addition to the electric dipole moment, the magnetic dipole moment and the electric

quadrupole moment are also linearly dependent on the electric field. Only p̂ is considered

here, assuming that the gradient of the electric field is zero over the extend of the wave-

functions. This approximation is known as the electric dipole approximation and is valid

as long as the size of the molecule is negligible compared to the wavelength of the electric

field. In the visible range, this approximation is usually justified.

The induced dipole contains more than one frequency component, which is the basis

of Rayleigh and Raman scattering. At these frequencies, time-independent unperturbed

wavefunctions ψ can be used to describe the system. The amplitudes of the electric

transition dipole moment (p(1))fi can then be expressed similar to the classical description

(equation 2.17) as

(p(1))fi = (α)fi E (2.32)
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with (α)fi the transition polarisability tensor. In time-independent perturbation theory,

the elements kl of the transition polarisability are a result of summing over all possible

transitions

(αkl)fi =
2π

h

∑
v ̸=i,f

(
⟨ψf |p̂k|ψv⟩⟨ψv|p̂l|ψi⟩
ωv − ωi − ω − jΓv

+
⟨ψf |p̂l|ψv⟩⟨ψv|p̂k|ψi⟩
ωv − ωf + ω + jΓv

)
(2.33)

which is a function of ω, the angular frequency of the incident field E. The wavefunctions

ψ are time-independent and angular frequency Γv is inversely proportional to the lifetime

of state v. For the initial and final states, these are assumed to be zero (i.e. stable states

with an infinite lifetime) and therefore do not appear in the equation. The differences

ωv − ωi and ωv − ωf are proportional to the energy differences between pairs of states. A

quantum-mechanical analysis of Raman scattering thus includes a sum over all internal

states of the scattering molecule and can predict the tensor elements involved based on the

molecular structure as described through unperturbed time-independent wavefunctions.

If the incident angular frequency ω matches an internal transition ωv−ωi, the denom-

inator of the first term in equation 2.33 depends on Γv only. This gives rise to resonance

Raman scattering and (αkl)fi increases dramatically. In normal Raman scattering, em-

ployed in this work, ω ≪ ωv −ωi and the intermediate state v is a non-stable virtual state

as illustrated in figure 2.3.

The numerators of equation 2.33 include two transition electric dipole moments: first

a transition from state i to v and next from v to f . This represents an absorption followed

by an emission (as ωv is greater than both ωi and ωf ). The scattering process from

a particular state i, via v to f thus only contributes to (αkl)fi if both transition electric

dipole moments involved are non-zero. This property gives rise to selection rules discussed

below.

Through (α)fi, the induced dipole contains multiple frequencies that follow from the

internal states of the scattering molecule. It can be shown that [61]

(p(1))ii(ω) = (α)ii E(ω) (2.34)

for Rayleigh scattering (explicitly including the frequency dependence) and

(p(1))fi(ω ± ωm) = (α)fi E(ω) (2.35)

for Raman scattering, with ωm = ωf − ωi matching a transition between internal states

of the scattering molecule. However, not all transitions result in Raman scattering. For

harmonic vibrational wave functions with quantum number v, the quantum-mechanically

allowed transitions are limited to ∆v = vf − vi = ±1. Anharmonicity of the vibrational

energy potential relaxes this selection rule. If the energy of the incoming photons matches

a specific transition in the molecule, absorption or resonances result in more intricate spec-

tral features not discussed here. Such effects generally obscure normal Raman scattering.
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2.4 Classical electrodynamics

The previous section described Rayleigh and Raman scattering mathematically as

p = α E (2.36)

both classically and quantum-mechanically. An incident electric field E induces an oscil-

lating dipole p and the relation is incorporated in the polarisability tensor α. We now

derive an electromagnetic description of E as a plane electromagnetic wave and of p as a

source of a dipole field.

2.4.1 Plane electromagnetic waves

A propagating ray of light can be described as a monochromatic harmonic plane elec-

tromagnetic wave. The wave is specified by a frequency, a direction of propagation, a

transverse amplitude in two orthogonal directions and a phase relation between these two.

We discuss each of those aspects before coming to a complete expression for a plane elec-

tromagnetic wave. We consider isotropic materials, in which the optical properties do not

vary with the propagation direction of the wave.

The angular frequency ω is the number of oscillations in 2π seconds

ω = 2πν (2.37)

which is related to the frequency ν that specifies the number of oscillations per second.

The period of oscillation T is its reciprocal

T =
1

ν
=

2π

ω
. (2.38)

The wavelength λ of the wave depends on the speed of the wave v (more correctly its

phase velocity) and its period as

λ = vT =
2πc

nω
(2.39)

where we have used equation 2.38 and introduced the refractive index n which is a property

of the material in which the wave is propagating

n ≡ c

v
(2.40)

with c the speed of light in vacuum (2.998 · 108 m s−1). The refractive index of a material

is a function of ω while it is unity in vacuum. Note that the frequency of the wave is the

same in different materials, but the wavelength is not: the latter is a manifestation of the

refractive index of the material, as

n(λ) =
c

v
=
cT

λ
=
λ0
λ

(2.41)
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where λ0 is the wavelength for a wave of the same frequency propagating in vacuum. n is

related to the relative permittivity (or dielectric constant) ϵr and the relative permeability

µr of the material through

n =
√
ϵrµr (2.42)

and is a complex refractive index ñ for materials and wavelengths at which absorption

takes place

ñ = n+ jκ (2.43)

where j is the complex number
√
−1 and κ is the extinction coefficient. For non-magnetic

materials µr = 1, while many materials exhibit µr ≈ 1 for optical frequencies and the

approximation

n ≈
√
ϵr (2.44)

is often used. The permittivity and permeability of vacuum are ϵ0 = 8.854·10−12 C2 N−1 m−2

and µ0 = 4π · 10−7 N A−2, respectively. These are also termed the electric and magnetic

constant and are related to c as

c =
1

√
ϵ0µ0

. (2.45)

The absolute permittivity ϵ and absolute permeability µ of a material are given through

ϵ = ϵrϵ0 (2.46)

and

µ = µrµ0 . (2.47)

The number of wavelengths per unit length is termed the wavenumber ν̄

ν̄ =
1

λ
(2.48)

which is usually given in units of cm−1 while λ is often specified in nm in the visible

range of the electromagnetic spectrum (400-700 nm in vacuum). The frequency of an

electromagnetic oscillation in a medium is thus specified through ω, ν, T , λ or ν̄, where n

has to be specified with the last two quantities.

The propagation direction of the wave is specified by the unit vector k̂. The wave

vector k is defined as

k =
2π

λ
k̂ (2.49)

and incorporates both the propagation direction of the plane electromagnetic wave as well

as its wavelength in the particular medium it is propagating through.

The wave oscillates in two mutually orthogonal transverse directions p̂ and ŝ. These

form the right-handed orthonormal Cartesian basis {p̂, ŝ, k̂}, related through

k̂ = p̂× ŝ . (2.50)
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The electric vector of a plane wave has a complex component Ep, Es along each of the

directions p̂ and ŝ while the third component along k̂ is zero. Ep and Es include real

amplitudes Ap, As and phases δp, δs in radians
Ep ∝ Apℜ{e−jδp}

Es ∝ Asℜ{e−jδs}

Ek = 0

(2.51)

where ℜ designates that the real part of the exponent should be taken. However, this is

generally implied without explicitly stating so. Euler’s formula

e jφ = cosφ+ j sinφ (2.52)

gives the real and imaginary parts as the cosine and sine of the phase angle φ. The

exponential notation simplifies the calculation of phases when dealing with multiple waves.

The phases δp and δs are the phase angles of each component at the origin at t = 0.

The time and space domains are also incorporated in exponential notation (imply-

ing cosine functions that satisfy the wave equation). These apply equally to all three

components of the electric vector E of the plane wave so that

E(t) ∝ e−jωt (2.53)

where t is the time. As the wave travels from the origin to a point in space r, it takes a

time interval of duration r/v seconds to arrive there. The retarded time t′ at location r

relative to time t at the origin is given as

t′ = t− r

v
(2.54)

which combines with equation 2.53 to yield

E(r, t) ∝ e−jωt′ = e−jωt+ω r
v = e−j(ωt−kr) (2.55)

where the exponent has been arranged using

k =
ω

v
(2.56)

derived from equations 2.38, 2.39 and 2.49. The product kr in the exponent of equa-

tion 2.55 holds if both k and r are parallel, but in general the dot product k · r is used to

give the distance from the origin projected onto the propagation direction of the wave.

Having derived the various factors, the electric field of a plane wave can now be given
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as

E(r, t) =

Ep

Es

Ek

 =

Ape
−jδp

Ase
−jδs

0

 e−j(ωt−k·r) (2.57)

in units of N C−1. A full specification of a plane wave thus includes ω (or one of its

equivalents) with n of the medium (these two provide k), as well as Ap, As, δp and δs.

Chapter 5 discusses how this description changes in a frame of reference that does not

conform to the {p̂, ŝ, k̂} basis as given here.

The magnetic field vector B associated with the electromagnetic plane wave is derived

from the relation

B =
1

v
k̂ ×E (2.58)

which results in

B =

Bp

Bs

Bk

 =
1

v

0

0

1

×

Ep

Es

0

 =
1

v

−Es

Ep

0

 =

−Ase
−jδs

Ape
−jδp

0

 e−j(ωt−k·r)

v
(2.59)

where the frame of reference {p̂, ŝ, k̂} is unchanged. It remains defined as for the electric

field vector. The magnetic field is given in units of N m−1 A−1.

Polarisation

The polarisation state of a plane wave is determined by the real amplitudes Ap and As

and the phase difference δ of the electric vector components Ep and Es, where

δ = δs − δp . (2.60)

In general, Ep and Es describe an ellipse(
Ep

Ap

)2

+

(
Es

As

)2

− 2
EpEs

ApAs
cos δ = sin2 δ (2.61)

that is inscribed in a rectangle of 2Ap by 2As along p̂ and ŝ, respectively. Figure 2.4

illustrates the orientation of this polarisation ellipse. Its major and minor axes â and b̂

do not necessarily coincide with the directions p̂ and ŝ as defined before. The angle ψ

between the two is the polarisation angle that can be computed from Ep and Es using

tan (2ψ) =
2ApAs

A2
p +A2

s

cos δ . (2.62)

(A derivation of the last two equations can be found in [65].) The electric vector com-

ponents along the axes of the ellipse Ea and Eb can then be expressed with this angle
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as Ea = Ep cosψ +Es sinψ

Eb = −Ep sinψ + Es cosψ .
(2.63)

The electric vector may describe the ellipse in two senses: clockwise or anticlockwise.

These directions are relative to the point of view and are specified for a viewer facing the

direction where the radiation is coming from. This is the case in figure 2.4 with k̂ coming

out of the page towards the reader. If the ratio

Es

Ep
=
As

Ap
e−jδ (2.64)

has a positive imaginary part, the polarisation direction is anticlockwise (also traditionally

termed left-handed polarisation or simply left-polarised, though it conforms to the right-

hand-rule). For clockwise or right-handed polarisation, the ratio has a negative imaginary

part.

Figure 2.4: The polarisation ellipse (in red) for the electric vector of a plane wave is given
in its basis {p̂, ŝ, k̂}. The major (â) and minor (b̂) axes of the ellipse are in
general rotated from this basis by ψ.

When the polarisation ellipse reduces to a circle, circular polarisation is achieved.

Equation 2.61 reduces to the expression of a circle

E2
p + E2

s = A2 (2.65)

if

A = Ap = As (2.66)

and if the phase difference is such that one of the components is zero when the other

reaches its extreme value. This is the case if

δ = ±π
2
+ 2mπ (m = 0,±1,±2, . . . ) (2.67)
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which results in right-handed polarised light when the + sign is used and in left-handed

polarised light when the − sign is used. The ratio Es/Ep is −j in the first case and j in

the latter.

Linear polarisation is achieved when the polarisation ellipse reduces to a straight line.

This is the case if

δ = mπ (m = 0,±1,±2, . . .) (2.68)

so that
Es

Ep
= (−1)m

As

Ap
. (2.69)

The general expression for a plane wave was given in equation 2.57. This reduces to

the following expressions for right and left-circularly polarised light

E = Ae−j(ωt−k·r)




e−jδp

e−j(δp+π
2 )

0

 for right-circular polarisation


e−jδp

e−j(δp−π
2 )

0

 for left-circular polarisation

(2.70)

while a linearly polarised wave is given through

E =

Ap

As

0

 e−j(ωt−k·r+δp) for linear polarisation (2.71)

where we have used m = 0 in both equations. As the current work is concerned with

time-averaged fields the absolute instantaneous phases of the fields are irrelevant. Only

the relative phase δ is of importance and the value of δp is chosen to be zero, simplifying

the above expressions.

Flow of electromagnetic energy

The instantaneous flow of energy per unit area per unit time is given by the Poynting

vector S as

S =
1

µ
E×B . (2.72)

Substitution of E and B from equations 2.57 and 2.59 gives the Poynting vector for a

plane electromagnetic wave propagating in an isotropic medium

S =
1

µv

(
Ep

2 + Es
2
)
k̂ (2.73)
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which is propagating along k. Note that S is a function of time. In practice, however,

this variation is not observed. For example, an optical wavelength of 500 nm in air has a

period of 1.67 · 10−15 s, which is orders of magnitude shorter than conventional detectors

can measure. Experiments therefore record a time-averaged energy flow.

The time average of the Poynting vector S follows from the time average of the squared

real parts of Ep and Es. Averaging these over one period (or many) results in

⟨Ep⟩ = ⟨ℜ{Ape
−j(ωt−k·r+δp)}2⟩ = Ap

2⟨cos2 (ωt− k · r+ δp)⟩ =
1

2
Ap

2 (2.74)

and a similar expression holds for ⟨Es⟩. Thus

⟨S⟩ = 1

2µv

(
Ap

2 +As
2
)
k̂ (2.75)

which is independent of δ and the exact nature of the polarisation. Its magnitude is called

the irradiance I, the average energy per unit area per unit time

I ≡ ||⟨S⟩|| (2.76)

in units of J s−1 m−2. For a plane wave, this results in

I =
nϵ0c

2µr

(
Ap

2 +As
2
)

(2.77)

where equations 2.40 and 2.45 have been used to rearrange the proportionality. The

irradiance refers to a unit area perpendicular to S which in turn is parallel to k. Approx-

imation 2.44 (µr = 1) can further simplify the equation.

Light detectors such as charge-coupled devices and photomultipliers do not record the

irradiance, but count the number of photons N arriving on each of its pixels. The photon

flux Φ is the number of photons arriving per unit time on detector area dA, which is

usually kept constant throughout an experiment. It is given through

Φ =
dN

dt
=
I dA

ε
(2.78)

where ε is the energy of a single photon, which is proportional to its frequency

ε = hν (2.79)

with Planck’s constant h = 6.626 · 10−34 J s. The photon count N is accumulated over

the exposure time, so that

N =

∫
exposure

Φ dt ∝ I

hν
. (2.80)

The lower the wavelength of the wave (towards blue colour in the visual range of the

electromagnetic spectrum), the higher the frequency and the higher the energy per photon.
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Less ‘blue’ photons are thus needed than ‘red’ ones to reach the same irradiance.

Finally, the power P of electromagnetic radiation (in J s−1) is the irradiance integrated

over an area A normal to the Poynting vector

P =

∫
I dA (2.81)

where I in general depends on the location of integration element dA. A projection

is needed if the area of interest is not normal to S. Equation 2.81 thus holds for any

surface and radiation profile shape. In particular, the optical power of a light beam is the

irradiance integrated over its cross-sectional area.

2.4.2 Dipole radiation

An oscillating electric dipole is a source of electromagnetic radiation. The Rayleigh or

Raman scattered light is modelled through computation of that dipole p as outlined above.

We employ the magnetic vector potential A (in part based on the suggestion in [66])

to deduce the magnetic field B due to an oscillating electric dipole and subsequently its

electric field E in a linear homogeneous non-absorbing medium. Standard electromagnetic

and optics texts (including [65, 67, 68]) only provide derivations of the dipole far-field in

vacuum, which does not apply in our system.

Oscillating infinitesimal dipole

Consider an oscillating infinitesimal dipole p of constant frequency ω (known as a Hertzian

or perfect dipole) positioned at the origin of a Cartesian basis and directed along the ẑ

axis

p(t) =

0

0

p

 e−jωt (2.82)

where p is the electric dipole moment in units of C m. As before, the real part of this

wave is implied so that p(t) = p cos(ωt)ẑ. The frequency ω depends on the frequency of

the incident radiation ωin and the energy associated with the vibrational transition hωm

as

ω = ωin ± ωm (2.83)

for Raman scattering (with + in case of anti-Stokes and − for Stokes), while ω = ωin for

Rayleigh scattering. This dipole can be described as a charge q at z = l/2 and a charge

−q at z = −l/2 that oscillate as

q(t) = q0e
−jωt (2.84)

so that the dipole moment is

p(t) =

(
q(t)

l

2
− q(t)

−l
2

)
ẑ = q(t)l ẑ = q0le

−jωt ẑ = pe−jωt ẑ (2.85)
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with p = q0l a constant. An oscillating current I(t) is then found at the centre of the

dipole

I(t) =
dq

dt
= −jωq0e

−jωt . (2.86)

Magnetic vector potential

In linear media, the electric E and magnetic B fields are related to the auxiliary fields D

(the electric displacement) and H through

D = ϵE (2.87)

and

H =
1

µ
B . (2.88)

The magnetic field B can be derived from the magnetic vector potential A though

B = ∇×A (2.89)

which in turn provides the electric field E through one of Maxwell’s equations in matter

∇×H = Jf +
∂D

∂t
(2.90)

which combines with equations 2.88 and 2.87 to form

1

ϵµ
∇×B =

∂E

∂t
(2.91)

where the free current Jf = 0, which holds for r > 0 as the dipole is located in the exact

origin (at r = 0) and no further currents exist in the dielectric medium.

The general solution for the magnetic vector potential of a localised line current (that

is, assuming that the current I(t) goes to zero at infinity) is given through [68]

A(r, t) =
µ

4π

∫
I(t′)ẑ

r
dl (2.92)

where t is the time at the origin and t′ is the retarded time at location r as given in

equation 2.54. The integral is taken over a single point only (namely the origin where all

current is located) with the current given in equation 2.86. This results in

A(r, t) =
µ

4π

(
−jωq0e

−jωt′ l
)
=

−jµωp

4πr
e−j(ωt−kr)ẑ (2.93)

where we assume that as l → 0, q0 increases to keep p constant. This vector potential only
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depends on r and is therefore conveniently described in spherical coordinates {ρ̂, θ̂, ϕ̂} by

A(r, t) =

Aρ

Aθ

Aϕ

 =

 Az cos θ

−Az sin θ

0

 (2.94)

with

Az =
−jµωp

4πr
e−j(ωt−kr) (2.95)

from equation 2.93 and with the radial component ρ = ||r|| = r. A is independent of the

azimuthal angle ϕ due to the rotational symmetry around the dipole axis chosen to be

along ẑ.

Magnetic and electric fields of a dipole

The magnetic field B due to the dipole can now be found in spherical coordinates through

equation 2.89, which provides

B(r, t) = ∇×A(r, t)

=

Bρ

Bθ

Bϕ

 =


1

r sin θ
∂Aϕ sin θ

∂θ − 1
r sin θ

∂Aθ
∂ϕ

1
r sin θ

∂Ar
∂ϕ − 1

r
∂Aϕr
∂r

1
r
∂Aθr
∂r − 1

r
∂Ar
∂θ

 (2.96)

where all Aϕ terms are zero through equation 2.94, as well as those involving partial

derivatives with respect to ϕ, as A is independent of ϕ for the dipole along ẑ. This causes

Bρ = 0 and Bθ = 0 while

Bϕ =
1

r

∂Aθr

∂r
− 1

r

∂Ar

∂θ

=
1

r

−µωpk sin θ
4π

e−j(ωt−kr) − 1

r

jµωp sin θ

4πr
e−j(ωt−kr)

=
−µωpk sin θ

4πr

(
1 +

j

kr

)
e−j(ωt−kr) .

(2.97)

The electric field due to the dipole is derived through equation 2.91, where the time-

dependence of E is given through e−jωt as with all quantities in this analysis, so that

∂E(r, t)

∂t
= −jωE(r, t) (2.98)

which results in

E =
j

ωϵµ
∇×B(r, t)

=

Eρ

Eθ

Eϕ

 =
j

ωϵµ


1

r sin θ
∂Bϕ sin θ

∂θ − 1
r sin θ

∂Bθ
∂ϕ

1
r sin θ

∂Br
∂ϕ − 1

r
∂Bϕr
∂r

1
r
∂Bθr
∂r − 1

r
∂Br
∂θ

 (2.99)
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in spherical coordinates. The terms involving Bρ, Bθ and ∂/∂ϕ are zero, so that Eϕ = 0

while Eρ and Eθ are derived as follows.

Eρ =
j

ωϵµ

1

r sin θ

∂Bϕ sin θ

∂θ

=
j

ωϵµ

1

r sin θ

−2µωpk sin θ cos θ

4πr

(
1 +

j

kr

)
e−j(ωt−kr)

=
−jpk cos θ

2πϵr2

(
1 +

j

kr

)
e−j(ωt−kr)

(2.100)

Eθ =
j

ωϵµ

−1

r

∂Bϕr

∂r

=
j

ωϵµ

−1

r

−µωpk sin θ
4π

(
jk − 1

r
− j

kr2

)
e−j(ωt−kr)

=
−pk2 sin θ

4πϵr

(
1 +

j

kr
− 1

k2r2

)
e−j(ωt−kr)

(2.101)

In summary, an infinitesimal oscillating electric dipole of magnitude p and angular

frequency ω is directed along ẑ and located at the origin. It produces an electromagnetic

field at location r = (r, θ, ϕ), with r > 0, given in spherical coordinates and at time t as

B(r, t) =
−µcpk3 sin θ

4πn

 0

0
1
kr +

j
k2r2

 e−j(ωt−kr) (2.102)

with

E(r, t) =
−pk3

4πϵ


2j cos θ

(
1

k2r2
+ j

k3r3

)
sin θ

(
1
kr +

j
k2r2

− 1
k3r3

)
0

 e−j(ωt−kr) (2.103)

where equation 2.56 was used to eliminate ω from the pre-factor in B and k has been

grouped with r throughout. The product

kr = 2π
r

λ
(2.104)

is a measure of the distance from the dipole that takes into account the refractive index of

the material in which it is embedded relative to the wavelength of the emitted radiation.

None of the field components depend on azimuthal coordinate ϕ due to the symmetry of

the system. The dipole field is symmetric around z but depends on the position (r, θ).

The terms of B and E are dependent on different powers of kr. At kr ≫ 1 increases, the

higher reciprocal powers become negligible, whereas these dominate at kr ≪ 1.
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Radiated energy

Before looking into limiting regimes of kr, we derive the instantaneous energy flux. The

real parts of the non-zero components of the dipole field are

ℜ{Bϕ} =
−µcpk3 sin θ

4πn

(
cos(ωt− kr)

kr
+

sin(ωt− kr)

k2r2

)
(2.105)

ℜ{Eρ} =
−pk3 cos θ

2πϵ

(
sin(ωt− kr)

k2r2
− cos(ωt− kr)

k3r3

)
(2.106)

ℜ{Eθ} =
−pk3 sin θ

4πϵ

(
cos(ωt− kr)

kr
+

sin(ωt− kr)

k2r2
− cos(ωt− kr)

k3r3

)
(2.107)

which are used in computing the Poynting vector S of the dipole field as function of place

and time. From equation 2.72 and using the real parts of the field components

S(r, t) =
1

µ
E×B

=
1

µ

Eρ

Eθ

Eϕ

×

Bρ

Bθ

Bϕ

 =
1

µ

Eρ

Eθ

0

×

 0

0

Bϕ



=
1

µ

 EθBϕ

−EρBϕ

0


(2.108)

which results in

Sρ =
cp2k6 sin2 θ

16π2ϵn

(
1

k2r2
cos2(ωt− kr) +

2

k3r3
cos(ωt− kr) sin(ωt− kr)

+
1

k4r4
(
sin2(ωt− kr)− cos2(ωt− kr)

)
− 1

k5r5
cos(ωt− kr) sin(ωt− kr)

)
=
cp2k4 sin2 θ

16π2ϵnr2

(
cos2(ωt− kr) +

1

kr
sin(2ωt− 2kr)

− 1

k2r2
cos(2ωt− 2kr)− 1

2k3r3
sin(2ωt− 2kr)

)
(2.109)

and

Sθ =
−cp2k6 cos θ sin θ

8π2ϵn

(
1

k3r3
sin(ωt− kr) cos(ωt− kr)

+
1

k4r4
(
sin2(ωt− kr)− cos2(ωt− kr)

)
− 1

k5r5
sin(ωt− kr) cos(ωt− kr)

)
=

−cp2k3 sin(2θ)
16π2ϵnr3

((
1

2
− 1

2k2r2

)
sin(2ωt− 2kr)− 1

kr
cos(2ωt− 2kr)

) (2.110)
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where the trigonometric identities

2 cosx sinx = sin(2x) (2.111)

and

cos2 x− sin2 x = cos(2x) (2.112)

have been employed.

The time-average of the sine and cosine terms is zero, while

⟨sin2(ωt− kr)⟩ = ⟨cos2(ωt− kr)⟩ = 1

2
(2.113)

so that ⟨S⟩ is found to be

⟨S⟩ =

SρSθ
Sϕ

 =

1

0

0

 cp2k4 sin2 θ

32π2ϵnr2
(2.114)

which demonstrates that the oscillating dipole is emitting radially outward only, even

though it generates an instantaneous energy flux Sθ along θ̂ through the radially fluctu-

ating electric field Eρ. The irradiance Idip(r, θ) from a dipole depends on the radial and

angular position relative to the orientation of the dipole. It is presented in figure 2.5 and

given through equation 2.76 as

Idip(r, θ) =
cp2k4 sin2 θ

32π2ϵnr2

=

√
ϵrµrµrπ

2p2ν4 sin2 θ

2c3ϵ0r2

(2.115)

where the latter expression is obtained by substitution of equations 2.56, 2.37 and 2.42.

In the approximation given as equation 2.44 (µr = 1 and thus n =
√
ϵr), this simplifies to

Idip(r, θ) =
nπ2p2ν4 sin2 θ

2c3ϵ0r2
(2.116)

which depends linearly on the refractive index of the material. A dipole in an optically

dense material thus radiates more energy than an identical dipole in vacuum. Conversely,

the energy required to induce a dipole increases with the refractive index of the surrounding

material at the frequency of the radiation.

The irradiance from a dipole depends on the distance r from the dipole as r−2. This

is a manifestation of the conservation of the total energy in the radiated field. The total

energy from a point source emitting radiation in all directions towards infinity is conserved.

This implies that the energy flux S as a function of the distance to the source r decreases

in the same proportion as the increase of the spherical surface area through which this

flux passes. The spherical surface area is given as 4πr2, so S ∝ r−2.
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0

max

Figure 2.5: The irradiance from a dipole directed along p̂ in a homogeneous linear di-
electric computed with equation 2.115 for a three-dimensional grid of angular
directions. No energy is transmitted along the dipole axis while the maximum
irradiance is perpendicular to it.

Furthermore, the irradiance from the dipole is directional. Due to the term sin2 θ, no

energy is emitted on average along the axis of the dipole (θ = 0◦ and 180◦) while the

maximum irradiance is found perpendicular to it at θ = 90◦. This implies that one can

discern the orientation of a dipole through measuring its irradiance at various angular

positions.

Total radiated power

The total power P radiated by a dipole can be found by integrating Idip(r, θ) over a sphere

around the origin, where the dipole is located. Starting from equations 2.81 and 2.115

and using spherical coordinates to integrate over a sphere of radius r

P =

∫
sphere

Idip(r, θ)dA =

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

√
ϵrµrµrπ

2p2ν4 sin2 θ

2c3ϵ0r2
r2 sin θdϕdθ

=

√
ϵrµrµrπ

2p2ν4

2c3ϵ0

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0
sin3 θdϕdθ =

√
ϵrµrµrπ

2p2ν4

2c3ϵ0

3

4
· 2π

=
3
√
ϵrµrµrπ

3p2ν4

4c3ϵ0

(2.117)

which is independent of r as expected from the conservation of energy. The total photon

count from the dipole is then given by

N =
P

hν
=

3
√
ϵrµrµrπ

3p2ν3

4c3ϵ0h
(2.118)

where hν is the energy carried by a single photon.

Both the total power of a dipole and its irradiance depend on the frequency of the
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dipole oscillation, and thus the frequency of the radiation, as ν4. In terms of the number

of photons, this factor reduces to ν3. This implies that energy is radiated much more

effectively at higher frequencies (or shorter wavelengths). A well-known example of this is

the blue colour of the sky: more blue than red light from the solar spectrum is Rayleigh

scattered to an earth-bound observer. This also holds for Raman scattering, which is

strongest for Raman bands at high frequency. Through equation 2.83, it is clear that this

is obtained by using high-frequency incident radiation with low Raman shift in Stokes

Raman scattering or high Raman shift in anti-Stokes Raman scattering. However, this

argument does not include the effective scattering cross-section of the molecule under

investigation (i.e. the absolute values of the Raman tensor elements and the vibrational

normal mode amplitude) nor the occupation of the initial vibrational state which may

overshadow the differences expected on the basis of frequency alone.

0 1 2 3 4 5

0

1

2

3

4

5

Figure 2.6: The functions f(kr) = (kr)−m with m = 1, 2, 3.

Dipole near and far-fields

We now return to the E and B fields due to the dipole and analyse their behaviour in the

near-field and far-field limits. The three non-zero field components Bϕ, Er and Eθ have

terms that depend on kr as (kr)−1, (kr)−2 and (kr)−3. Figure 2.6 presents these functions

to compare the relevance of each term as a function of kr. All are equal at kr = 1. Below

that value, the higher inverse powers of kr dominate. The lower inverse powers decay

slower with increasing kr and dominate at higher values of kr.

The near-field is defined as kr ≪ 1 which spans the range of r ≪ λ. All except the

highest inverse power of kr in E and B become negligible. In this case, the non-zero
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components of the magnetic and electric fields are

Bϕ,near =
−jµkcp sin θ

4πnr2
e−j(ωt−kr)

Eρ,near =
p cos θ

4πϵr3
e−j(ωt−kr)

Eθ,near =
p sin θ

4πϵr3
e−j(ωt−kr)

(2.119)

where the magnetic component is π/2 out of phase with the two electric components.

The frequency-dependence that is prominent in the energy flux is absent in the electric

near-field. Furthermore, the cos θ term in Eρ,near implies that this component is strongest

at θ = 0◦ and 180◦, which is in the direction of the dipole. This again contrasts with the

energy flux that is zero in those directions.

In the far-field region, defined as kr ≫ 1, the distance from the dipole r ≫ λ, the

(kr)−1 terms dominate equations 2.102 and 2.103 to give

Bϕ,far =
−µk2cp sin θ

4πnr
e−j(ωt−kr)

Eρ,far ≈ 0

Eθ,far =
−pk2 sin θ

4πϵr
e−j(ωt−kr)

(2.120)

in which Eρ has been approximated to zero as Eρ ≪ Eθ at large r. In this far-field region,

the electromagnetic field at each position (r, θ, ϕ) reduces to a plane wave as described in

the beginning of this section. It is a transverse wave, propagating along ρ̂ with its electric

and magnetic components in phase. This field is linearly polarised, with the direction of

polarisation along θ̂. In particular, it meets equation 2.58 and the ratio

Eθ

Bϕ
=

1
√
ϵµ

= v . (2.121)

The time-averaged energy flux of the far-field

⟨S⟩(r, θ) = 1

2µ
EθBϕρ̂ =

cp2k4 sin2 θ

32π2ϵnr2
ρ̂ (2.122)

is exactly what we found previously in equation 2.114 for the whole dipole field. It is

therefore clear that the near-field does not contribute to the energy flux. The field due to

a dipole can thus be regarded as the combination of an evanescent field localised around

the dipole and a propagative field that radiates outwards.

The dipole radiation as described in this section holds for a dipole embedded in a

homogeneous linear medium. This may no longer be valid for dipoles close to an interface

between two materials as the close-ranged terms of the dipole field come into play. In

addition to the proximity of such an interface, the radiation will depend on the orientation

of the dipole with respect to the plane of the interface. Emission of dipole radiation in
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the vicinity of a surface has indeed been shown to differ from that in bulk material [69].

Chapter 5 addresses how the distance from a planar dielectric and the orientation of a

dipole affect the detected Raman scattering intensities in our system.

2.5 The Raman tensor

We now focus on the properties of the Raman tensor. The Raman tensor αv was defined

in equation 2.27. The proportionality factor Qv0 can be dropped when relative values

suffice, which reduces the Raman tensor to α′
v, the polarisability derivative. The tensorial

properties of αv and α′
v are identical. Most mathematical arguments in this work hold

for the polarisability tensor as a whole as well as for the polarisability derivative tensor in

particular. The notation is simplified by using α in those cases while α′ is used for the

Raman tensor when it is discussed more exclusively.

2.5.1 Tensorial properties

The polarisability α is a second rank tensor and given in a Cartesian basis {x̂, ŷ, ẑ} as

α =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 (2.123)

which can generally be decomposed into a sum of three irreducible parts [61, 70] being a

diagonal isotropic tensor αiso, a symmetric traceless tensor αsym and an antisymmetric

traceless tensor αanti as

α = αiso +αsymm +αanti . (2.124)

These irreducible matrices are given by linear combinations of the original nine elements

in α through

αiso =

ᾱ 0 0

0 ᾱ 0

0 0 ᾱ



αsym =
1

2

2(αxx − ᾱ) αxy + αyx αxz + αzx

αxy + αyx 2(αyy − ᾱ) αyz + αzy

αxz + αzx αyz + αzy 2(αzz − ᾱ)



αanti =
1

2

 0 αxy − αyx αxz − αzx

αyx − αxy 0 αyz − αzy

αzx − αxz αzy − αyz 0



(2.125)

where ᾱ is defined as a third of the trace of the diagonal tensor. The decomposition

into tensors containing only symmetric or antisymmetric off-diagonal elements can be
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understood from the identity

αxyx̂ŷ + αyxŷx̂ =
1

2
(αxy + αyx) (x̂ŷ + ŷx̂) +

1

2
(αxy − αyx) (x̂ŷ − ŷx̂) (2.126)

with identical relations for the pair of xz, zx and of yz, zy elements.

The trace of a matrix is unaffected by a rotation of the coordinate system in which its

elements are defined. Thus, the trace is one of its rotational invariants. The polarisability

tensor has three rotational invariants: the mean polarisability ᾱ, the anisotropy γ and the

antisymmetric anisotropy δ. Their general definitions are

ᾱ =
1

3
(αxx + αyy + αzz) (2.127)

γ2 =
1

2

(
|αxx − αyy|2 + |αyy − αzz|2 + |αzz − αxx|2

)
+

3

4

(
|αxy + αyx|2 + |αyz + αzy|2 + |αzx + αxz|2

) (2.128)

δ2 =
3

4

(
|αxy − αyx|2 + |αyz − αzy|2 + |αzx − αxz|2

)
(2.129)

which reduce to simpler expressions if the tensor elements have some symmetry (for exam-

ple, if α is symmetric along its main diagonal, αanti vanishes and δ = 0). These definitions

also apply to the invariants of the polarisability derivative tensor ᾱ′, γ′ and δ′, keeping

in mind that these are a function of the frequency of the scattered light. The invariants

of the Raman tensor are relevant in traditional Raman scattering experiments on bulk

liquids and gases using a well-defined illumination-observation geometry. Such samples

are usually isotropic, including all possible orientations of the scattering moiety. The indi-

vidual components of the Raman tensor can not always be resolved in such experiments,

but its invariants can be deduced analytically from a set of polarised spectra [61].

The polarisability and Raman tensors have no meaning on their own but are specified

in a particular frame of reference within which they can be applied. This frame can be

relative to the illumination-observation geometry of the experiment or can be chosen along

symmetry axes within the scattering molecule, for example. Though Raman scattering

is always recorded with respect to a particular laboratory frame of reference, it is due

to a molecular property that is best described within a molecular frame of reference.

Analysis of how the latter affects the former (and vice versa) requires the use of coordinate

transformations. In this work, the emphasis is on molecular orientation with respect to

such a fixed laboratory frame. The relation between these frames of reference is fully

addressed in chapter5 and only a general introduction is given here.

As scattered light is recorded relative to the laboratory frame, the experimentalist

measures scattering due to an effective polarisability tensor αlab relative to that frame of

reference, which generally differs from the polarisability tensor given in a molecular frame

of reference αmol [61, 71]. The two tensors are related through the orientation of the

molecule in the laboratory frame, which is expressed through a coordinate transformation
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matrix Tmol→lab and applies as

αlab = Tmol→lab α
mol Tmol→lab

T (2.130)

where the superscript T stands for the transpose of the matrix. Writing out the compo-

nents of these tensors results inα
lab
xx αlab

xy αlab
xz

αlab
yx αlab

yy αlab
yz

αlab
zx αlab

zy αlab
zz

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33


α

mol
xx αmol

xy αmol
xz

αmol
yx αmol

yy αmol
yz

αmol
zx αmol

zy αmol
zz


T11 T21 T31

T12 T22 T32

T13 T23 T33


(2.131)

where, as an example, the element αlab
xx is given as

αlab
xx =

(
αmol
xx T11 + αmol

xy T12 + αmol
xz T13

)
T11

+
(
αmol
yx T11 + αmol

yy T12 + αmol
yz T13

)
T12

+
(
αmol
zx T11 + αmol

zy T12 + αmol
zz T13

)
T13

(2.132)

which is a combination of all nine elements of the Raman tensor in the molecular frame

of reference.

The polarisability tensor in the laboratory frame can thus be derived in a straight-

forward fashion from the molecular polarisability and the transformation matrix that

applies to its orientation. This is readily implemented in a modelling approach. However,

the inverse problem faced in an experiment does not yield unique solutions. It is clear

from equation 2.132 that multiple combinations of Tmol→lab and αmol may give rise to

the same αlab, which cannot be distinguished. Furthermore, the radiation pattern of a

dipole is symmetric upon inversion of its orientation, so that p appears identical to −p

in an experiment. Therefore, αlab and −αlab will give the same result. This means, for

instance, that a scattering molecule in a particular orientation and its exact opposite, e.g.

(x, y, z) = (1, 1, 1) and (x, y, z) = −(1, 1, 1), give rise to the same scattered intensity. This

is intrinsic to both Rayleigh and Raman scattering and explains why tensor invariants are

used to describe the effect. From an experimental point of view, it would be better not to

speak of the orientation of a scatter as no unique value for it can be deduced without prior

assumptions, but rather of its alignment or directionality relative to the laboratory frame.

However, in modelling efforts the exact orientation can be given as an input parameter.

The use of the word is therefore appropriate in that context.

2.5.2 Molecular ensembles

In an experiment, the observed light scattering arises from the collection of molecules in

the sampled volume. A dipole is induced in a number of these molecules and each gives

rise to scattered light. Following equation 2.24, the phase shift δv of this radiation relative

to the incident electric field is different for every molecule. Spatial spread of the scatterers
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further contributes to the random nature of their phase relation. Scattering from an

ensemble of molecules is therefore intrinsically incoherent. This implies that the total

intensity of scattered light Iscat(r, θ, ϕ) is the sum over the irradiance from each induced

dipole Idip(r, θ). The first is specified at a particular point of observation in the laboratory

frame, using spherical coordinates, while the latter is given relative to the induced dipole,

such as in equation 2.115. In the case of induced dipoles embedded in a homogeneous

non-absorbing medium, these expressions combine to form

I labscat(r, θ, ϕ) =
∑

scatterers

I labdip(r, θ) =
∑
p,θ

√
ϵrµrµrπ

2p2ν4 sin2 θ

2c3ϵ0r2
(2.133)

where only p2 and θ are different for each scatterer (θ now being the angular position in the

laboratory frame, differing from θ in equation 2.115, which is relative to the dipole axis).

All other quantities are constant, in particular ν when considering a single spectral line

and r for a given distant experimental point of observation (r ≫ extend of the scattering

ensemble). Using this and invoking equation 2.24 to substitute p = ||p|| gives

I labscat(θ, ϕ) =

√
ϵrµrµrπ

2ν4

2c3ϵ0r2

( ∑
orientations

||αlabElab||2 sin2 θ

)
(2.134)

in which the summation is over the orientations of the scattering molecules relative to

the laboratory frame of reference where the intensity measurement is conducted. The

quantities θ (arising from the relative orientation of p), Elab and αlab are all expressed

in that laboratory frame. αlab is obtained through transformations depending on the

orientation of the scattering molecule.

From equation 2.134, we can conclude that only the orientation distribution of the

scatterers and the incident field E affect the total scattered intensity for a particular

Raman transition. This transition is specified by a Raman tensor αmol in the molecular

frame of reference. Changing the incident electric vector E in either intensity, polarisation

or both, will also affect the total intensity Iscat(θ, ϕ) of the scattering.

As the irradiance scales with ||E||2 (see equation 2.73), the scattered intensity scales

linearly with the incident irradiance Iin. The proportionality is the differential scattering

cross-section σ′ for that particular frequency which depends on the angular position of

detection (θ, ϕ) as

σ′(θ, ϕ) =
Iscat(θ, ϕ) r

2

Iin
(2.135)

where the product Iscat(θ, ϕ) r
2 is the radiant intensity of the scattering, which is indepen-

dent of r. The total scattering cross-section σ is obtained by integrating the differential

cross-section over all θ and ϕ, which amounts to integrating Iscat(θ, ϕ) r
2 to give the total

scattering power Pscat

σ =
Pscat

Iin
(2.136)
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which is given in units of m2. This captures the effectiveness with which the molecules

remove energy from the incident beam through scattering and corresponds to the radi-

ation incident on an area σ. The values of σ and σ′ thus relate to the probability of

scattering occurring and thus to the strength of spectral lines. For normal vibrational

Raman scattering, σ is on the order of 10−34 m2 molecule−1 which is a factor 1016 smaller

than the physical size of a 1 nm2 molecule. One could therefore say that only one in ten

million billion photons undergoes Raman scattering and that the Raman effect is a weak

phenomenon.

Aligned scatterers

If all scattering molecules have the same orientation, the sum in equation 2.133 reduces

to the same expression for each scatterer, so that

Iscat(r, θ, ϕ) = NvIdip(r, θ) (2.137)

where Nv is the number of scatterers. This number relates to the number of scatterers in

the correct initial quantum state v, which is proportional to the total number of molecules

of the scattering species through the Boltzmann distribution, taking into account any

degeneracies. At constant temperature, the total intensity of the scattered light thus

scales linearly with the number of scatterers in the illuminated volume of the sample.

To compute the scattering intensity pattern on the detector, Idip(r, θ) has to be found

in laboratory frame coordinates. This comes down to finding

I labdip(θ) ∝ ||αlabElab||2 sin2 θ = ||Tmol→lab α
mol Tmol→lab

TElab||2 sin2 θ (2.138)

where Elab is computed from the experimental illumination geometry in the laboratory

frame, Tmol→lab includes the orientation of the scattering molecules with respect to the

laboratory frame, θ is the angle between p and ẑ in the laboratory frame while αmol is

deduced independently from the molecular properties.

As we have used the irradiance from a dipole in a homogeneous material, the expression

holds for scattering molecules in such system. If the sample is of a different structure,

appropriate expressions for Idip need to be derived.

Isotropic average

An isotropic orientation distribution holds for gases and many liquids. The scattering

molecules possess all possible angles (θ, ϕ) with respect to the laboratory frame of reference.

Equation 2.134 is then solved by taking an isotropic average of the Raman tensor ⟨αlab⟩,
given the illumination-observation geometry. The isotropic average of the sine term is

⟨sin2 θ⟩ = 1

2
(2.139)
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as we have seen before for the time-average of a squared cosine.

Figure 2.7: Illumination-observation geometry in traditional Raman spectroscopy on a
bulk liquid or gas sample. The incident laser light is linearly polarised along
x or y and the scattered light is collected in a spectrograph through another
linear polariser oriented along y or z.

In traditional Raman spectroscopy, bulk liquids or gases are illuminated with a linearly

polarised laser beam and their scattering is collected at an angle to the incident beam,

usually at right angles. Both directions span the scatter plane and each is chosen as one

of the laboratory frame axes as illustrated in figure 2.7. In that case, Elab simplifies to one

component only, say along ŷ. It interacts with three components of the laboratory-frame

Raman tensor as α
lab
xx αlab

xy αlab
xz

αlab
yx αlab

yy αlab
yz

αlab
zx αlab

zy αlab
zz


 0

Elab
y

0

 =

α
lab
xy

αlab
yy

αlab
zy

Elab
y (2.140)

The scattered light also passes through a linear polariser, allowing further selection of

the three vector components. By setting this observation polariser along ŷ, only light

scattered with polarisation along this direction reaches the detector. Such radiation is the

far-field of dipoles oriented along ŷ. Only the αlab
yy E

lab
y term of the above expression is

thus actually measured in the experiment.

The detected intensity for this experimental geometry is now given through the isotropic

average of αlab
yy E

lab
y and equation 2.134 reduces to

Iscat(polarised) ∝ ⟨αlab
yy

2⟩Elab
y

2
(2.141)

which is the intensity of polarised scattering (i.e. the direction of polarisation of illumi-

nation and observation is in the same plane). Alternatively, the observation polarisation
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is set along ẑ and the depolarised intensity is recorded

Iscat(depolarised) ∝ ⟨αlab
zy

2⟩Elab
y

2
(2.142)

which again reduces to a calculation of the isotropic average of a squared Raman tensor

element. Isotropic averages of squared polarisability tensor elements have been deduced

for various experimental geometries and are tabulated in [61, 62, 70, 72] amongst other

works. The isotropic averages turn out to be functions of the tensor invariants ᾱ, γ and δ

only. In our case

⟨αlab
yy

2⟩ = 45ᾱ2 + 4γ2

45

⟨αlab
zy

2⟩ = γ2

15

(2.143)

where the numerical values depend on the Raman tensor involved. Note that the super-

script lab can be dropped from the isotropic averages as these are given through invariants

that are not affected by rotations of the frame of reference. It is found that the isotropic

average of the squared Raman tensor elements are related by

⟨α′
xy

2⟩ = ⟨α′
yx

2⟩

⟨α′
yz

2⟩ = ⟨α′
zy

2⟩

⟨α′
zx

2⟩ = ⟨α′
xz

2⟩ .

(2.144)

Furthermore, in the normal vibrational Raman effect where all tensor elements are real,

the isotropic averages also satisfy

⟨α′
xx

2⟩ = ⟨α′
yy

2⟩ = ⟨α′
zz

2⟩

⟨α′
xy

2⟩ = ⟨α′
yz

2⟩ = ⟨α′
zx

2⟩

⟨|α′
xxα

′
yy|⟩ = ⟨|α′

yyα
′
zz|⟩ = ⟨|α′

zzα
′
xx|⟩

(2.145)

while all other averages are zero.

The ratio of the intensities recorded with the different polarisation combinations is a

measure of the symmetry properties of the Raman band in question. The depolarisation

ratio ρ is defined as

ρ =
Iscat(depolarised)

Iscat(polarised)
(2.146)

and for the case we have discussed above

ρ =
3γ′2

45ᾱ′2 + 4γ′2
(2.147)

which has a maximum of 3/4 when the mean polarisability derivative ᾱ′ and thus the

irreducible diagonal tensor α′
iso are zero. Such a Raman line is said to be depolarised. All
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other transitions have ρ < 3/4 in this case and are polarised to some extend. It is said to be

completely polarised if ρ = 0, which is the case if γ′ = 0. A depolarised Raman spectrum

thus only includes fully depolarised bands, while a polarised one includes both fully and

partly polarised bands. Whether a Raman band is polarised or depolarised depends on

the symmetry of the Raman tensor, which in turn depends on the symmetry properties of

the vibrational mode that gives rise to the scattering.

2.5.3 Symmetry

The isotropic averages of the Raman tensor elements demonstrate symmetry properties

arising from the nature of the averaging. The Raman tensor itself also shows symmetry,

which depends on the vibrational transition it relates to. We now consider its tensorial

symmetry and the molecular and vibrational symmetries it originates from.

Tensorial symmetry

The tensors α and α′ have intrinsic symmetry properties that derive from the Hermitian

nature of the operator Ĥ. For real and time-independent wave functions, the transition

dipole operator ensures that p is the same, whether a transitions is from state i to f or the

other way round. This implies that the polarisability and Raman tensors have symmetry

properties irrespective of the frame of reference used [61].

For Rayleigh scattering, f = i and the tensor elements kl are fully symmetric around

the main diagonal of the polarisability tensor

αRayleighkl = αRayleighlk (2.148)

while an antisymmetric part can be present for scattering from and to degenerate states.

The Raman tensor α′ is not symmetric in general and can be expressed similarly to

the three terms of equation 2.124 as

α′ = α′
iso +α′

sym +α′
anti (2.149)

which follow the definitions of equation 2.125. The diagonal and symmetric tensors have

α′
symkl

= α′
symlk

(2.150)

and the antisymmetric tensor has

α′
antikl = −α′

antilk (2.151)

which reduces the number of independent component in each tensor of equation 2.149.

The isotropic tensor has one such component (and could be reduced to a 1 × 1 matrix

representing a tensor of rank zero), while the symmetric tensor has five (the isotropic
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tensor specifying one of its diagonal elements) and the antisymmetric tensor has three. In

normal vibrational Raman scattering, the antisymmetric tensor vanishes and a maximum

of six independent tensor elements occur for each vibrational mode: three for the diagonal

and three for the off-diagonal. The general definition of the Raman tensor for normal

vibrational scattering can now be given in tensorial form as

α′ =

α
′
xx α′

xy α′
xz

α′
xy α′

yy α′
yz

α′
xz α′

yz α′
zz

 (2.152)

The values of the six elements α′
xx, α

′
yy, α

′
zz, α

′
xy, α

′
xz and α

′
yz depend on the vibrational

transition involved in the Raman scattering. As we will see below, the symmetry of the

vibrational transition dictates which elements are finite or zero and which are of equal

value. The level of symmetry in a Raman tensor is classified following the placement of

these elements. We now establish some of its nomenclature for use later on.

All Raman tensors in normal vibrational Raman scattering are symmetric, thus satisfy

equation 2.152 and contain real elements. The Raman tensor invariants ᾱ′, γ′ and δ′

(defined analogous to equations 2.127, 2.128 and 2.129) are given by

a′ =
1

3
(α′

xx + α′
yy + α′

zz) (2.153)

γ′
2
=

1

2

(
(αxx − αyy)

2 + (αyy − αzz)
2 + (αzz − αxx)

2
)
+ 3

(
αxy

2 + αyz
2 + αzx

2
)

(2.154)

δ′ = 0 (2.155)

If a symmetric tensor is traceless, i.e. α′
xx + α′

yy + α′
zz = 0, the invariant ᾱ′ = 0. The

antisymmetric anisotropy δ′ is always zero in symmetric tensors.

A diagonal tensor has non-zero elements on its main diagonal only, α′
kl = 0 for all

k ̸= l, so that

α′ =

α
′
xx 0 0

0 α′
yy 0

0 0 α′
zz

 (2.156)

which is termed an anisotropic tensor or a tensor of elliptical symmetry. The Raman

activity for such a tensor can be seen as describing an ellipsoid with its axes along x, y

and z. A 3 × 3 tensor that has a complete basis of eigenvectors can be rotated in three

dimensions to reduce to a diagonal tensor, though it is then defined relative to that frame,

which may not be the simplest one for a physical interpretation. Off-diagonal element are

therefore relevant and need not be avoided.

The Raman activity ellipsoid reduces to a sphere if α′
xx = α′

yy = α′
zz in a diagonal

tensor. This is therefore termed spherical symmetry as the effect of applying the tensor is
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the same in all spatial directions. The two relevant tensor invariants reduce toᾱ′ = α′
xx

γ′ = 0
(2.157)

and the Raman tensor is α′ = α′
iso which is fully specified by the scalar ᾱ′. Such a

vibrational mode would present a completely polarised band in the Raman spectrum. If

only αxx = αyy and αzz has a different non-zero value, the tensor is said to be cylindrically

symmetric about the z axis. The tensor invariants then simplify toᾱ′ = 1
3(2α

′
xx + α′

zz)

γ′ = |α′
xx − α′

zz|
(2.158)

If αzz = 0 in addition, the tensorial symmetry is said to be planar and effectively reduces

the Raman tensor to two dimensions. Its invariants becomeᾱ′ = 2
3α

′
xx

γ′ = |α′
xx|

(2.159)

The molecular Cartesian axes are chosen with the symmetry of the molecule in mind,

the z-axis being the principal symmetry axis. Binary combinations of the molecular axes

form the basis

{x̂x̂, ŷŷ, ẑẑ, x̂ŷ, x̂ẑ, ŷẑ}

in which the elements of the Raman tensor are defined. Only six basis vectors are needed

for the six independent elements of the Raman tensor. However, this basis (and thus

the Raman tensor) do not always match the symmetry species of the vibrational modes

of the molecule. Linear combinations of the six basis vectors are therefore used as new

basis vectors that give rise to a decomposition of the Raman tensor into symmetry-adapted

tensors. These are still expressed in the molecular frame of reference and contain a reduced

number of independent elements. Only a limited number of tensor decompositions is

relevant, as the assignment of molecular axes follows strictly from the symmetry of the

molecular equilibrium structure.

The three diagonal elements of the tensor can be decomposed into three linear combi-

nations, using the identity

α′
xxx̂x̂+ α′

yyŷŷ + α′
zz ẑẑ =

1

3

(
α′
xx + α′

yy + α′
zz

)
(x̂x̂+ ŷŷ + ẑẑ)

+
1

6

(
2α′

zz − α′
xx − α′

yy

)
(2ẑẑ− x̂x̂− ŷŷ)

+
1

2

(
α′
xx − α′

yy

)
(x̂x̂− ŷŷ)

(2.160)

which decomposes the basis {x̂x̂, ŷŷ, ẑẑ} into a set of three symmetry-adapted linear



50 CHAPTER 2. ELEMENTS OF RAMAN SCATTERING THEORY

combinations 
1√
3
(x̂x̂+ ŷŷ + ẑẑ)

1√
6
(2ẑẑ− x̂x̂− ŷŷ)
1√
2
(x̂x̂− ŷŷ)


where the numerical factors ensure normalisation of the new basis vectors. In matrix

notation this decomposition is represented asα
′
xx · ·
· α′

yy ·
· · α′

zz

 =

a · ·
· a ·
· · a

+

−b · ·
· −b ·
· · 2b

+

c · ·
· −c ·
· · 0

 (2.161)

irrespective of the off-diagonal elements. Any diagonal tensor can thus be decomposed

into tensors of spherical, cylindrical and planar symmetry. The off-diagonal elements can

be decomposed trivially as · αxy αxz

αxy · αyz

αxz αyz ·

 =

 · d 0

d · 0

0 0 ·

+

 · 0 e

0 · 0

e 0 ·

+

 · 0 0

0 · f

0 f ·

 (2.162)

with the six independent tensor elements labelled a through f for the complete decompo-

sition of the Raman tensor. As the choice of axes is dictated by symmetry, the off-diagonal

elements do not require symmetry adaptation. We recognise the first matrix on the right-

hand-side of equation 2.161 as the isotropic Raman tensor α′
iso, while the second and

third term combine to form the diagonal of α′
sym.

For tensors of cylindrical and planar symmetry, a suitable decomposition of the diag-

onal results from the identity

α′
xxx̂x̂+ α′

yyŷŷ =
1

2

(
α′
xx + α′

yy

)
(x̂x̂+ ŷŷ) +

1

2

(
α′
xx − α′

yy

)
(x̂x̂− ŷŷ) (2.163)

which has the same form as equation 2.126. In matrix notation, the diagonal components

are α
′
xx · ·
· α′

yy ·
· · α′

zz

 =

a · ·
· a ·
· · 0

+

b · ·
· −b ·
· · 0

+

0 · ·
· 0 ·
· · c

 (2.164)

illustrating that it is essentially a two dimensional decomposition. The values of a, b and

c are different from those of equation 2.161. Decomposition of the Raman tensor does not

reduce the number of six unknowns per se, but in combination with symmetry arguments

(developed below), the number of unique non-zero elements can be reduced below that

number.

The elements of the Raman tensor mix upon multiplication by a vector as in equa-

tion 2.32 or through a transformation that includes off-diagonal elements, such as the

coordinate transformation of equation 2.132 or upon taking an isotropic average. The
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individual Raman tensor elements in the molecular frame of reference are therefore only

observed in crystalline samples using polarised intensity measurements. However, by de-

composing the Raman tensor, the number of unknown elements can be reduced and the

Raman tensors for individual vibrational transitions can be deduced. We will now consider

how this follows from the symmetry of the molecule.

Molecular symmetry

Symmetry in the Raman tensor arises from the symmetry properties of the vibrational

transition it describes. In turn, the vibrational modes and their symmetries depend on

the molecular structure. The symmetry of the molecule thus determines what vibrational

modes are Raman active.

Group theory is used to analyse the symmetry and vibrational modes of a molecule.

A limited number of relevant concepts is presented here, detailed texts can be found in

[72–74]. Starting from an assumed molecular structure, its point group is determined by

systematically testing what symmetry operations R project the molecule onto itself. These

include rotations, reflections, inversion and rotation-reflections, all performed with respect

to a set of symmetry elements in the molecular frame of reference. The effect of symmetry

operations is represented by square matrices that apply to a particular choice of basis

vectors. This basis is called a representation Γ. The trace of these matrices is invariant

(as we have seen for the polarisability tensor) and is the same for all symmetry operations

that constitute a class. It is therefore used to characterise the symmetry operations. In

this context, the trace is called the character χ(R) of operation R. Its value is listed in a

character table for each point group.

A representation Γ (such as a set of basis vectors to describe molecular vibrations) can

often be decomposed into a sum of irreducible representations P

Γ =
∑
P

aPP (2.165)

which each occur aP times. The character table for the point group of the molecule of

interest is used to deduce aP through the reduction formula

aP =
1

g

∑
classes

nRχΓ(R)χP(R) (2.166)

that gives the contribution of each irreducible representation P to the reducible represen-

tation Γ under consideration. Here, g is the order of the point group, which is the total

number of symmetry operations R in that point group, and nR is the number of symme-

try operators in each class. The number of irreducible representations in a point group is

equal to the number of classes of symmetry operations in that point group.

Each irreducible representation has a distinct pattern of behaviour with respect to

the symmetry operations of its point group. The base vectors of each irreducible repre-
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sentation only transform amongst themselves, i.e. they form a symmetry-adapted choice

of base vectors that are orthogonal to base vectors of other irreducible representations.

An irreducible representation is also called a symmetry species, to which the symmetry-

adapted vectors belong. The same is true for translations, rotations and vibrations of

the molecule. Each vibrational mode belongs to a particular symmetry species and the

symmetry-adapted basis in which it is described belongs exclusively to that symmetry

species. These facts are used to deduce the symmetry properties of the vibrational modes

of a molecule.

Vibrational normal modes

The polarisability tensor is generally given in a Cartesian basis {x̂, ŷ, ẑ}, with the choice of

axes following from the symmetry of the molecule as given in appendix A. The symmetry

species to which each of these basis vectors belong are listed in the character tables. These

describe the symmetry behaviour of translations. The three orthogonal rotations (two in

a linear molecule) are also included and describe the symmetry behaviour of molecular

rotations and angular momenta. This information permits an analysis of the vibrational

normal modes of a molecule or a molecular group on the basis of an assumed equilibrium

structure.

Considering a molecule consisting of N atoms, it has 3N degrees of freedom to move in

the three dimensions of space. This can be decoupled into a translation of the molecule as a

whole, which requires 3 degrees of freedom for a full description, a rotation of the molecule

about its three principal axes and the internal motions. The latter thus have (3N − 6)

degrees of freedom, which is the number of vibrational normal modes of the molecule (also

termed the fundamental vibrations). A linear molecule only has two distinct rotation axes,

so that the number of vibrational modes is (3N − 5) in such a case.

The symmetry species of each vibrational normal mode can be derived by assessing

the effect of the symmetry operations of the molecular point group on the reducible rep-

resentation Γ3N , that includes the x̂, ŷ and ẑ axes on each atom of the molecule. This

representation is the combination of the representation of translations Γtrans, rotations Γrot

and vibrations Γvib as

Γ3N = Γtrans + Γrot + Γvib (2.167)

in which each representation can be reduced to a sum of irreducible representations. Hav-

ing reduced Γ3N with equation 2.166, the irreducible representations that compose Γtrans

and Γrot can be taken from the relevant character table so that the remaining irreducible

representations can be assigned to Γvib. These irreducible representations form the vibra-

tional normal modes of the molecule. Not all vibrational normal modes are observed in

infrared or Raman spectra: only the active modes satisfy particular selection rules and

give rise to non-zero intensities.

Subsets of vibrational modes can be deduced by choosing basis vectors that describe

e.g. bond stretching or bending motions. Analysing the symmetry behaviour of such a
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basis gives rise to another representation, which can in turn be reduced to the irreducible

representations that give the number and symmetry species of the vibrational normal

modes in question. Examples of this procedure are given in group theory and spectroscopy

textbooks [62, 70, 72, 73] and is summarised in appendix A for molecules relevant to this

work.

2.5.4 Vibrational selection rules

All molecules are polarisable to some extend (α0 ̸= 0) as these contain electrons and

therefore give rise to Rayleigh scattering, however strong or weak. From the classical

description of the Raman effect (equation 2.27), it is clear that Raman scattering only

occurs for vibrational modes with

α′ =

(
∂α

∂Qv

)
0

̸= 0 (2.168)

which should hold for at least one of the elements of the polarisability tensor. (Equally

but trivially, Qv0 ̸= 0 as is the case for all vibrational modes or they would not exist.) A

vibrational mode is thus Raman active if the electric polarisability is changing when the

vibrational motion passes through the equilibrium configuration of the molecule.

From the quantum mechanical description presented in equation 2.28, it is evident that

Raman scattering only occurs if the expectation value for the transition dipole moment is

non-zero. In turn, component kl of the Raman tensor (α′
kl)fi is non-zero if the integrals

of equation 2.33 are non-zero. The selection rule for Raman scattering in a quantum-

mechanical description thus comes down to

(α′
kl)fi ∝ ⟨Ψf |kl|Ψi⟩ ̸= 0 (2.169)

where k and l are one of the three Cartesian components x, y or z. This integral is

zero if the functions |Ψf ⟩ and |kl|Ψi⟩ are orthogonal. This is the case if each belong

to a different irreducible representation of the point group, i.e. a different symmetry

species. The components of the polarisability tensor transform in the same way as binary

combinations of the Cartesian basis vectors, which means that the symmetry species of

kl is the same as that of α′
kl. Such binary combinations of the Cartesian axes in the

molecular frame of reference are included with the character tables. Similarly, the basis

vectors of a vibrational normal mode, as analysed in the preceding section, belong to the

symmetry species of the wavefunction that describes the normal mode. The selection rule

in equation 2.169 thus turns into a question of symmetry.

A transition is only Raman active if the direct product of the representations of Ψf ,

kl and Ψi includes the totally symmetric species A of the point group

A ⊂ ΓΨf
× Γkl × ΓΨi (2.170)
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which is the symmetry species with χ(R) = 1 for all symmetry operators R. If the product

is antisymmetric, the integral will reduce to zero. The direct product of representations is

computed by multiplying the characters for each and reducing the result into irreducible

representations as described above. This is simplified if the initial state is the vibrational

ground state of the molecule, which is always non-degenerate and symmetric. It then

suffices to assess whether ΓΨf
× Γkl includes the totally symmetric species, which is the

case if both representations contain the same symmetry species.

The form of the Raman tensor reflects the symmetry species of the vibrational motion

to which it belongs. The non-zero tensor elements are derived through symmetry analysis

of the fundamental vibrations and are included in the character table of the point group.

Every element listed with a particular symmetry species (α′
xx, α

′
xy, α

′
xz, α

′
yy, α

′
yz and α′

zz

or linear combinations thereof) is non-zero in the Raman tensor while all other elements

are zero. Chapter 4 develops this further. The tensor can then be classified as symmetric,

elliptical, cylindrical or spherical as discussed above. This determines the tensor invari-

ants and the expected depolarisation ratio. Totally symmetric vibrations result in highly

polarised Raman bands, whereas vibrational modes of lower symmetry give depolarised

bands.

Note that, even though a transition is classified as Raman active on the basis of

symmetry, it may not be visible in an experimental spectrum due to its low scattering

cross-section compared to the sensitivity of detection.

Overtones and combinations

Vibrational normal modes describe transitions from the vibrational ground state to an

excited state by gaining one photon. The quantum number v of a particular vibrational

mode thus changes from 0 to 1. Similarly, an excited state can fall back to the ground

state, emitting a photon. These two transitions, if allowed through the selection rule, give

the fundamental frequencies in a Raman spectrum that conform to Stokes and anti-Stokes

scattering, respectively. In addition to fundamental bands, overtone and combination

bands may appear that involve multiple photons and higher vibrational states. These

bands occur due to mechanical and electrical anharmonicity. Overtones and combinations

are weaker than the fundamental bands and may in turn interact with those fundamental

vibrations to give even higher order vibrational motions.

An overtone band arises from a vibrational transition in which the scattering molecule

acquires two (or more) energy quanta in the same vibrational mode, e.g. v changes from 0

to 2. The emitted scattering is double (or a multiple of) the frequency of the fundamental

for a harmonic vibration, which feature a parabolic energy potential. In practice, overtones

are observed at frequencies that deviate from the exact multiple due to anharmonicity.

An overtone may arise from a non-degenerate fundamental as well as from a single state

of a degenerate fundamental vibration or a combination of degenerate states.

Combination bands involve frequency sums and differences. A sum tone arises upon
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the simultaneous gain of two (or more) energy quanta in different vibrational modes.

The molecule then oscillates at the combined frequency. A difference tone arise from the

absorption of an energy quantum in one vibrational state and the loss from another. It

requires the scatterer to be in an excited state and therefore occurs less frequently than

the sum tone of the same states. The difference band is observed at the frequency of the

absorbed photon minus the frequency of the emitted photon.

Simple harmonic oscillatory motion of the vibrational normal coordinate (equation 2.22)

has been assumed so far. If this does not accurately describe the vibrational motion, addi-

tional frequency terms are needed, giving rise to mechanical anharmonicity. This leads to

overtones in the vibrational normal coordinate Qv that lead to scattering-induced dipoles

of frequencies (2ωv ± ωin), (3ωv ± ωin) and so forth. It will also lead to combination tones

with another mode w that can give rise to various frequencies (ωv±ωw±ωin) in the Raman

spectrum.

Electrical anharmonicity arises when higher order terms in α become relevant. Only

the first two terms of equation 2.18 have been considered so far, with Rayleigh scattering

being the first and Raman scattering the second order effect. If electrical harmonicity

does not apply, the Raman tensor includes a third term α′
vw that involves two vibrational

normal modes v and w (which may be the same to describe overtones as in equation 2.18)

α′
vw =

1

2

(
∂2αkl

∂Qv∂Qw

)
0

QvQw (2.171)

and possibly additional higher order terms that give rise to scattering irrespective of the

other terms of the polarisability tensor.

Not all overtones and combinations are Raman active. As with the fundamental tran-

sitions, symmetry determines which bands can appear in the spectrum. The same general

selection rule applies: a vibrational mode is Raman active if its symmetry species includes

one of the Raman tensor elements. A consequence of electrical anharmonicity is that over-

tones (w = v) and combinations involving a fundamental vibration can be Raman active,

even if the fundamental itself is not. The symmetry species of overtones and combinations

is derived as follows.

The representation Γover of an overtone of a non-degenerate level is obtained through

the direct product of the representation of the fundamental Γfund with itself

Γover = Γfund × Γfund × . . . = (Γfund)
n (2.172)

where n is the level of the overtone (n = 1 is the fundamental vibration, n = 2 is the

first overtone et cetera). This is computed by taking the characters of the irreducible

representation of the fundamental to the power n and reducing this representation into its

constituent symmetry species with equation 2.166. The computation is more complicated

for overtones of degenerate modes (such as those belonging to the E and F symmetry

species), as these may involve overtones of a single degenerate state as well as overtones
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arising from single excitations in multiple degenerate states. For an E mode of two-fold

degeneracy, the first overtone therefore has threefold degeneracy. The character χPn(R)

of the (n− 1) overtone is computed through

χPn(R) =
1

2
(χP (R)χPn−1(R) + χP (R

n)) (2.173)

which requires χP (R), the character of the fundamental as listed in its character table for

symmetry species P , as well as χPn−1(R) that of the tone below the overtone and χP (R
n)

that of performing symmetry operation R for n times. Examples of its application are

given in appendix A. The resulting set of characters defines Γover, which can be reduced

as usual to find the included symmetry species.

The representation of combination tones Γcomb is derived through the direct product

of the symmetry species of each vibrational mode involved

Γcomb = Γv × Γw (2.174)

where v and w represent any vibrational mode of the molecule. This holds for both sum

and difference tones. The combination may involve two fundamentals, an overtone and a

fundamental, a fundamental and a combination, or even two combinations. In each case,

the representation of the two components is worked out individually before taking their

direct product. Γcomb is then reduced to find its constituent symmetry species and assess

whether the combination is Raman active or not.

The symmetry species of the overtone or combination determines the non-zero elements

of the Raman tensor that can be looked up in character tables, just as for the fundamentals.

The representation of the vibrational mode thus has to include the symmetry species of one

of the tensor elements to be Raman active. Only those belonging to the totally symmetric

species result in polarised Raman bands, all other give rise to depolarised bands.

Fermi resonance

Wavefunctions of vibrational modes interact if

1. the modes are localised in the same part of the molecule,

2. their frequencies are close together and

3. their representations include the same symmetry species.

These conditions are met in degenerate modes and result in degenerate overtones. How-

ever, some vibrational modes are accidentally degenerate whilst including the same symme-

try species in their representation. This is often observed to occur between a fundamental

and an overtone or a combination band and is termed Fermi resonance. It leads to the

mixing of the wavefunctions of each vibrational state and thus a perturbation of the energy

levels. The better the frequency match, the larger the mixing of their wavefunctions. The
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fundamental mode that gives rise to the overtone or combination band which is engaged

in Fermi resonance, is not distorted by the coupling.

The result of this mixing is that the higher energy level of the two is displaced upwards,

while the lower is decreased in energy. In the spectrum, this results in an increase and

decrease of the frequencies, respectively, from the values obtained without Fermi resonance.

Moreover, the intensity of the two resonating bands is now shared and the overtone or

combination gains intensity at the cost of the fundamental. The effect shows up in the

Raman spectrum as overtones or combination bands of unexpectedly high intensity. These

appear as a doublet with the resonant fundamental.

The separation ∆res between the two resonant peaks of a Fermi doublet depends on

the unperturbed separation ∆unp between the same modes in the non-interacting approx-

imation and the coupling strength W as [75]

∆res =
√

∆unp
2 + 4W 2 (2.175)

with all quantities in cm−1. W is the matrix element of the perturbation function Ŵ from

the overlap integral between the two uncoupled wavefunctions Ψ0
1 and Ψ0

2

W =< Ψ0
1|Ŵ |Ψ0

2 > (2.176)

and can be seen as interaction energy of the Fermi resonance. The two wavefunctions

Ψ1 and Ψ2 that arise from the resonance are linear combinations of the non-interacting

wavefunctions Ψ0
1 and Ψ0

2 (reference [76], page 217)

Ψ1 = aΨ0
1 − bΨ0

2

Ψ2 = bΨ0
1 + aΨ0

2

(2.177)

where the weighing factors a and b are given by

a =

√
∆res +∆unp

2∆res
,

b =

√
∆res −∆unp

2∆res
.

(2.178)

If ∆unp = 0, there is perfect resonance and the wavefunctions are mixed equally. If ∆unp is

very large, Ψ1 and Ψ2 are identical to the unperturbed wavefunctions. The values of a and

b can be computed by combining ∆res from experimental and ∆unp from computational

data.

An alternative approximate formula is presented in the Encyclopedia of Spectroscopy

(reference [77], page 184). Working from an experimental spectrum, the wavenumber ν̄unp

of the overlapping unperturbed vibrations can be calculated from the wavenumbers ν̄1, ν̄2
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and intensities I1, I2 of the observed Fermi doublet through

ν̄unp =
ν̄1 + ν̄2

2
+
ν̄1 − ν̄2

2
· I1 − I2
I1 + I2

. (2.179)

Equations 2.175 and 2.179 are related through the definition ∆res ≡ |ν̄1− ν̄2|, which results

in [75]

I1
I2

=
∆res +

√
∆2

res − 4W 2

∆res −
√

∆2
res − 4W 2

. (2.180)

The coupling strength W may then be approximated from experimental data, rather than

from advanced ab-initio computation, if the doublet is resolved.

Molecular structure through vibrational spectroscopy

As we have seen, analysis of molecular symmetry provides insight into the number of

vibrational normal modes, their symmetry species and whether these are Raman active or

not (though group theory can not predict how strong the bands are). Conversely, given

the Raman bands and their degrees of depolarisation from an experimental spectrum, the

Raman tensor invariants, the symmetry species of the vibrational modes and hence the

structure of the scattering molecule may be determined. This is one of the triumphs of

spectroscopy and has been used to great effect in deducing molecular and crystal structure

for decades (see, for instance [62, 63, 70, 72, 78]).

Limitations are set by the experimental sensitivity in detecting weak bands and depo-

larisation levels close to the fully polarised limit. Infrared absorption spectroscopy often

provides additional information by probing the same vibrations through a different set

of selection rules (namely through the basis vectors x, y and z rather than their binary

combinations). Fundamental transitions are usually the most intense spectral features,

which give rise to weaker overtones and combination bands. Frequencies overlap in some

cases, reducing the number of expected bands and causing Fermi resonances if they belong

to the same symmetry species.

2.6 Summary

Raman scattering arises from the interaction of light with the electric transition polaris-

ability moment of molecular quantum-mechanical states. It is intrinsically incoherent for

an ensemble of molecules. The electromagnetic field incident on a scattering molecule is

absorbed and emitted at a frequency shifted by the energy taken up or released in the

molecular transition. This work is concerned with the vibrational modes of a molecule.

The scattering molecule is regarded as an oscillating electric dipole, radiating a po-

larised and directional electromagnetic field. In the far-field, it obeys the description of

a plane wave in all radial directions except along the dipole axis, where no radiation is

emitted. The intensity of the radiated dipole field scales with its frequency to the forth



2.6. SUMMARY 59

power.

The relation between the induced dipole and the incident electric field (both vectors)

is described by a tensor of second rank, the polarisability tensor. All three quantities

have to be given in the same frame of reference, which can be ensured by coordinate

transformations. The Raman tensor is the second term in a Taylor series expansion of

the polarisability with respect to vibrational normal coordinates. It is a symmetric tensor

that can be decomposed into a sum of tensors in various ways to account for the symmetry

properties of the molecule and the vibrational motion.

A vibrational transition is only Raman active if the first derivative of the polarisability

tensor with respect to the vibrational normal coordinate is non-zero. Symmetry arguments

are used to develop selection rules for Raman activity. Vibrational transitions are Raman

active if the transition moment has the symmetry properties of the totally symmetric

species of the molecular point group. For fundamental transitions from the ground state

to the first vibrational excited state, this implies that the symmetry species of at least one

of the six unique Raman tensor elements (or a linear combination thereof) has to match

the symmetry species of the vibrational excited state or the transition will not show up

in the spectrum of the molecule. It does not predict the absolute intensity, which may be

below the detection limit of an experiment.

The tensorial nature of the Raman effect and the orthogonality of vibrational modes

result in a spacial Raman scattering intensity distribution that depends on molecular

orientation. This can be probed by varying the incident electric field as well as changing

the collection of scattered light. Predicting the radiation pattern through modelling can

couple the experimentally accessible radiation pattern for various Raman bands to the

orientation of the scattering molecules.
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Chapter 3

Experimental

This chapter addresses experimental aspects of the project in three sections. The first

details the two setups used for polarised Raman spectroscopy, their optical components

and variables. The second section lists employed materials with relevant properties. The

third describes procedures for the preparation of samples and for the optical alignment

of the Raman setup. As well as providing the particulars of the experiments discussed in

this work, this chapter also includes more general experimental considerations to facilitate

further research.

3.1 Polarised interfacial Raman spectroscopy

Two Raman systems have been used for this work: the adapted Renishaw setup of our

group at Durham University and Dr Eric Tyrode’s system at Kungliga Tekniska Högskolan

(KTH) in Stockholm, Sweden. The latter is a further development of the former, sharing

its general design. A polarised laser beam is delivered into the interface under study

through a transparent, solid hemisphere that forms the top surface of the interface. The

scattered light is collected in a microscope, filtered and delivered to a spectrometer to

record the Raman spectrum.

In both Raman systems, the electromagnetic far-field approximation holds for both

the incident laser light as well as the Raman scattering. The dimension of the scatterer d,

the relevant wavelength in the medium λ and the distance of observation r relate as

d << λ << r (3.1)

These are on the order of 1 nm, 600 nm and 1 cm, respectively. It is therefore the far-field

Raman spectrum that is recorded in our experiments.

The sampled interface can be designed separately from the delivery and collection

optics. The medium making up the second half of the interface can be a gas, liquid or

solid, each requiring a different sample cell. Additional versatility is achieved by surface

modification of the hemisphere (see, for instance, reference [79]). The hemisphere joins

61
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the spectroscopic and interfacial aspects of the experiment. The resulting versatility is

one of the appealing features of TIR Raman spectroscopy.

3.1.1 Sampled interfaces

The interface under investigation is formed by the flat bottom surface of the hemispherical

prism through which the laser beam reaches the interface. The hemispherical shape of the

incident prism was chosen to minimise optical aberrations for the incident laser beam.

(Previously, trepezoid-shaped prisms were used [80].) The hemisphere is mounted in a

sample holder that incorporates the lower medium. This can be a gas, a liquid (flowing or

stationary) or a solid. These form the macroscopic interface that determines most of the

optical properties, such as the critical angle. TIR can only occur when the light impinges

from a medium of higher refractive index onto a medium of lower refractive index. The two

bulk materials are therefore chosen with the refractive indices in mind. In addition to the

macroscopic elements of the interface, it may contain interfacial species such as absorbed

material, surfactants, surface grafts, a thin film or a combination of these. These systems

can be prepared in solid-gas, solid-liquid as well as solid-solid macroscopic interfaces.

The hemisphere may be suspended in air, contained in a gas cell, mounted onto a

glass flow cell for liquids, pressed against a solid or be part of a tribometric rig for friction

experiments. Though the hemisphere is of a standardized size, each of these experiments

places different demands on the sample environment. The sample holders and sample

cells described below were constructed by the glass-blowing and mechanical workshops of

Durham University’s Department of Chemistry.

Solid-gas interface

In this work, only air was used as a gas-phase medium. The hemisphere is suspended

in air, supported around the perimeter of its base. A rotating hemisphere clamp of own

design was constructed to allow for rotation about the laboratory Y -axis, orthogonal to

the plane of incidence. Figure 3.1 provides schematic top and side views of the design.

A stainless steel beam carries the hemisphere, which is held in a circular recess by two

polytetrafluoroethylene (PTFE) slabs. One side of the recess is cut out of the beam

to allow optical access to hemisphere from the side. The beam is mounted on a dual

axis micropositioner (MDE258, Elliott Scientific Ltd., Harpenden, UK), which in turn is

bolted onto a precision rotation stage (MDE 282, Elliott Scientific Ltd., Harpenden, UK).

The translation stage is used to position the hemisphere centrally on the rotation axis.

The whole is mounted on the XY Z-microtranslation stage to bring the sample into the

microscope focus.

An enclosed gas-cell has to be used for gasses other than air at ambient conditions.

Such a cell was designed by Dr Laura Bingham and Dr Simon Beaumont of Durham

University for in-situ study of heterogeneous catalysis.
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Figure 3.1: Schematic side and top views of the hemisphere rotation clamp (not to scale).

Solid-liquid interface

A solid-liquid interface is produced by mounting the hemisphere on a glass flow cell de-

signed by Dr Eric Tyrode. For our purposes, it serves merely to confine a stationary

fluid. The glass inlet tube passes through the outer wall and ends about 2 mm below the

hemiphere bottom surface. The hemisphere sits on a viton O-ring under a PTFE clamp

that bolts onto a support holding the glass cell. Following assembly and alignment in

the setup, the cell is filled through PTFE tubing with a glass syringe. The cell is then

closed at the outlet before closing the inlet. The liquid can be replaced batch-wise, as in

this work, or gradually by using mechanical syringes and a continuous stirrer to obtain

concentration gradients.

The latest version of the cell is described by Woods [81]. A simpler and smaller design,

without the temperature-control jacket, has also been used. The volume is about 6 mL in

both cases.

Solid-solid interface

The solid-solid interface studied here was made by pressing a sphere against the bottom

surface of the hemisphere. This results in a ball-on-flat geometry, well-known in contact

mechanics. The pressure in the contact may be deduced from microscopy images of the

contact area. Other geometries could be used, but may not preserve the cylindrical sym-

metry of the contact, misdirect the force more readily and achieve lower pressures by an

increase of the contact area. The solid-solid interface is used to pressurise a surface layer

or fluid phase against the hemisphere to study confinement effects these materials.
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A pressure rig was constructed by Dr Kaustav Guha, described in his thesis (reference

[54], page 77). It combined manual and computer-controlled micromotion stages to align

hemisphere and sphere with the optics, for making contact and for exerting pressure.

3.1.2 Durham system

Several setups for Raman spectroscopy have been developed in the Bain group at Durham

University. The longest-serving one is based on a Renishaw system, which has seen various

improvements over the years. This system was used in my work and its layout is described

here. Other recent descriptions can be found in a review of Woods and Bain [35] and the

theses of Guha [54], Woods [81] and Churchwell [82].

Optical path

Figure 3.2 gives an overview of the apparatus. A solid-state continuous-wave laser produces

green light at 532 nm (Opus 532 of Laser Quantum, Stockport, UK). Its beam is linearly

polarised, the direction of which can be selected manually with a half-wave plate. A

telescope, consisting of a −25 mm and a +125 mm focal distance lens, then expands the

beam diameter for increased focussing by a convex gradient-index lens (focal length 120

mm) onto the sample interface. The angle of incidence is chosen above θc for the studied

interface (usually 73◦ for silica-to-water). The beam spot is aligned with the axis of the

microscope objective and the centre of the flat surface of the hemisphere. The latter is

usually of fused silica with low fluorescence at the laser wavelength used. The reflected

beam is collected in a non-reflective beam dump.

The evanescent wave generated by total internal reflection induces Rayleigh and Raman

scattering. The scattered light falling within the view of the microscope objective is

collected and collimated. Rayleigh scattering at 532 nm and anti-Stokes Raman scattering

are removed with two long-pass edge filters. The collection polarisation is selected by a

half-wave plate and a linear polariser. Stray light is removed by focussing the scattered

beam through a slit (set to about 200 µm) into the spectrograph. A spectrum of the

remaining Stokes Raman scattered light is produced by reflection off a prism, diffraction

from a grating with 1800 lines/mm and passing through a focussing lens before being

recorded on a charge-coupled device (CCD). Each pixel of the CCD represents a bandwidth

of about 1.1 cm−1 in the C−H stretch region of the collected Raman spectrum. The

microscope and spectrograph were originally part of a commercial Raman microscopy

system (Ramascope 1000 of Renishaw, Wotton-under-Edge, UK).

Laser beam

Properties of the laser beam, according to manufacturer specification, include the follow-

ing. Wavelength of 532 nm with a spectral bandwidth (45± 10) GHz, which corresponds

to (0.042 ± 0.009) nm. Its polarisation is horizontal, with a polarisation ratio > 100 : 1.



3.1. POLARISED INTERFACIAL RAMAN SPECTROSCOPY 65

Figure 3.2: Schematic of the Raman spectroscopy experiment using total internal reflec-
tion to obtain surface selectivity. The path of the laser beam (green) and the
edge of the collected scattered light are indicated. Mirror m6 (black) reflects
the scattered light to the spectrometer and is replaced by a partly-reflective
mirror (gray) when the sample is imaged with a lamp and camera. The CCD
is read by dedicated software and the collected data is exported to a computer
for analysis. See text for further details. [Abbreviations: CCD = charge-
coupled device, HW = half-wave plate, L = lens, LEF = long-pass edge filter,
LP = linear polariser, m = mirror.]

The Gaussian beam propagates in the fundamental spatial mode TEM00 (a single max-

imum centrally on the beam axis), has an ellipticity < 1 : 1.15, a coherence length of

7 mm and a divergence of < 0.5 mrad. The beam diameter, averaged over both elliptical

axes, is (1.85± 0.2) mm at e−2 = 0.135 of the maximum intensity (at the beam axis) and

measured at 25 cm from the laser exit port. The radial intensity distribution I(r) in such

a fundamental Gaussian beam is described as

I(r) = I0e
−2r2

w2 (3.2)

with r the radial distance from the beam axis, at which we find the maximum intensity

I0, while w is the beam radius at which the intensity falls to e−2I0 (or the amplitude to

e−1E0). Using 2w given in the laser specification as beam diameter, figure 3.3 presents

normalised radial intensity and ampitude distributions as well as the relative intensity and

amplitude contained within an annulus around the beam axis. This shows that most of

the laser power is carried in a ring at a radius of about 0.5 mm around the beam axis.

A telescope is used to increase the beam diameter so that it can be focussed down to

a smaller spot in the sample through the gradient-index lens L3. The position of this lens

is adjusted with a micropositioner to achieve the desired focus. Though this increases the

amplitude of the field and thus the Raman scattering, it also leads to an increase in the

spread of the angle of incidence. A typical spot size is about 100 µm2 with the telescope

in use and 2500 µm2 without it, as recorded with the microscope camera. The working of
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Figure 3.3: Normalised radial distribution of intensity I(r) and electric field amplitude
E(r) in a Gaussian laser beam following equation 3.2 with 2w = 1.85 mm. The
values multiplied by 2πr reflect the relative intensity or amplitude contained
within an annulus of radius r.

this telescope is explained in detail in Guha’s thesis [54] from page 80 onwards.

Microscopy

A modified Leica DM-LM microscope collects the scattered light and is used with a camera

to position the sample and align the laser beam. The centre of the objective focus is the

origin of the laboratory frame of reference. The laser spot as well as the sample are aligned

on it. The microscope image can be recorded on a digital camera. It is mounted on the

microscope and images the sample using white light shining on the sample through the

objective lens. A partially reflective mirror is engaged to facilitate both illumination of the

sample and collection of its image. Alternatively, if a mirror is engaged in the optical path

of the microscope (m6 in figure 3.2), the collected light is reflected into the spectrometer.

It is not possible in the current setup to simultaneously image and record spectra of the

sample.

Two objective lenses are available with the Durham system.

• A 5x magnification N Plan objective from Leica (Wetzlar, Germany) with a numer-
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ical aperture (NA) of 0.12, primarily used for positioning the sample cell, optical

alignment and imaging.

• A 50x ULWD MSPlan objective from Olympus (Tokyo, Japan) with NA= 0.55 and

working distance (WD) of 8 mm, primarily used to collect Raman scattering.

The parfocal distance of each lens is slightly different from the other, requiring adjustment

of the alignment when switching between objectives. An important characteristic for our

purposes is the numerical aperture, which determines the collected fraction of the scattered

light.

Polarisations

The polarisations are set as follows. The incident polarisation (as measured at the sample

position) is set manually by rotating a half-wave plate in the laser line (HW1 in figure 3.2).

The laser produces horizontally polarised light. This is turned to s-polarised light when

the half-wave plate is set at the 37◦ position and to p at 352◦. The accuracy of the

polarisation is discussed in chapter 6.

The collection polarisation is set along the x-axis (parallel to the plane of incidence of

the excitation laser) by engaging the linear polariser (LP2 in figure 3.2) in the spectrometer.

y-polarisation (perpendicular to the plane of incidence) is selected by adding a half-wave

plate (HW2) in front of this linear polariser. This configuration ensures that the light

reaches the diffraction grating at the same linear polarisation so that its effect on the

different polarisations need not be considered. If no collection polarisation is chosen, by

removing both the half-wave plate and linear polariser from the optical path, the latter

effect is not avoided, though it is mostly ignored in analyses.

Engaging the half-wave plate will reduce the intensity of the scattered light. Its trans-

mission should therefore be assessed before x and y-polarised spectra can be compared

quantitatively. A helium-neon laser, producing 632.8 nm light, was used to assess the

transmission of the half-wave plate in the spectrometer. This wavelength corresponds to

a Stokes Raman shift of 2990 cm−1 in our system. A Nova II Ophir power meter, set to

its 30.0 mW range without averaging and using its glass cover, was used to record the

laser power either with or without the half-wave plate in the laser path. The transmission

proved to be T = 0.89. The factor T−1 is applied to y-polarised spectra, that require the

use of this half-wave plate. The intensities are then brought to the same scale as those of

the x-polarisation recorded without it.

3.1.3 Stockholm system

The Stockholm setup is constructed and maintained by Dr Eric Tyrode at KTH, Stock-

holm, Sweden. It has been designed as a further development of the Durham setup, with

which Tyrode worked in the past. It is a home-built system, briefly described in [25], using

more advanced components while following the original in its optical layout.
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Optical path

A laser of the same model is used as in the Durham system, precisely controlling its

polarisation with an external polariser as well as a half-wave plate. The laser beam

passes through a telescope, consisting of a planar-concave and planar-convex lens, to

increase its diameter and is delivered to the sample via a periscope and focussing lens. The

scattered light is collected and collimated in a modified upright Axio microscope from Zeiss

(Oberkochen, Germany). It passes through a RazorEdge long pass filter from Semrock

(part of IDEX Health and Science, Rochester, NY, USA), an achromatic half wave plate

and a polariser, before being focused on the entrance slit of a Shamrock 303i spectrometer

from Andor Technology (Belfast, Ireland) where the spectrum is recorded with a CCD

camera (model Newton 940 of the same supplier). Using a grating of 1800 lines/mm,

a spectral range of 865 cm−1 is collected with a spectral resolution of 0.4 cm−1 in the

Stokes Raman shift region around 3000 cm−1 (corresponding to 0.02 nm around 633 nm).

A grating with 1200 lines/mm and one with 600 lines/mm are also available to collect

broader yet coarser spectra.

The angle of incidence is set with a stack of two rotating cylinders that contain a

Vernier scale. This facilitates accurate alignment as well as adjustment to the angle of

incidence without realignment being needed. The lens that focusses the laser beam onto

the sample is mounted on the outer rotor, while the mirror reflecting the light onto this

lens is mounted on the inner rotor. In turn, the rotors are jointly mounted on a vertical

micropositioner.

Microscopy

Two objective lenses have been used with the Stockholm system, both from the M Plan

Apo range of Mitutoyo (Kawasaki, Japan). These are long-working-distance objectives

for bright-field observation, all with the same parfocal distance. This latter feature en-

sures that the sample remains in focus when engaging another lens in the revolver of the

microscope.

• A 10x objective with NA = 0.28, WD = 34.0 mm and depth of field (DOF) is

±3.5 µm.

• A 50x objective with NA = 0.55, WD = 13.0 mm and DOF = ±0.9 µm.

Both objectives were used to collect Raman spectra.

Polarisations

In the Stockholm setup, both polarisers are controlled digitally with microstepper motors.

The collection polariser and half-wave plate are placed on the optical table, before the

spectrometer. Both are engaged in all measurements. The last polariser ensures that the

polarisation of the light entering the spectrograph is always vertical, while this is horizontal

in the Durham system.
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3.1.4 Comparison of Durham and Stockholm systems

Improvements of the Stockholm setup over the one in Durham include the following.

• The angle of incidence can be set readily with the coaxially rotating Vernier scales

to high precision.

• The spread of incident polarisation is minimal with a highly selective linear polariser

in the laser beam path.

• Control of the angular position of the linear polarisers is increase by use of mi-

crostepper motors. It avoids manual handling of the optics and increases precision

and reproducibility.

• The Stockholm spectrometer features three gratings: at 600, 1200 and 1799 lines/mm

while the Durham setup only has one at 1800 lines/mm. In the former, spectra can

be acquired of wider spectral window in shorter times.

• While the CCD in Durham is limited to a time resolution of 1 s, exposure times in

Stockholm can be 10 times shorter due to faster read-out.

• The half-wave plate used to set the collection polarisation is always in the optical

path, avoiding a scaling factor needed in the Durham setup to compensate for its

presence. All polarisations pass through the same optics, reducing experimental

uncertainty when comparing spectra of various polarisations.

• A wider range of objective lenses is available in Stockholm, in particular a set with

the same working distance so that repositioning is not needed between experiments

with different objectives.

• The Stockholm system features more space between the optical table and the mi-

croscope in which the sample cell has to be positioned.

Having worked with both systems, my experience is that the ease of use, adaptability, pre-

cision and signal-to-noise ratio at comparable acquisition times are substantially improved

in the Stockholm system.

3.1.5 Experimental variables

The experimental approach provides a range of variables and degrees of freedom that

effect the recorded Raman spectra. These include geometrical and optical variables, as

well as the spectral acquisition and laser power setting and any modulation of the sample

environment. A number of these are interdependent.
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Spectral acquisition

The range of the Raman spectrum is determined by the grating in the spectrograph.

The line density of the grating determines its dispersion power: more lines means more

datapoints per wavenumber but a smaller spectral range. The angular orientation of the

grating determines the region of the spectral window, i.e. around what absolute Raman

shift the spectrum is centred. The dispersed scattering is projected onto the CCD through

a focussing lens. Though the centre of the spectrum is usually well-focussed, aberrations

in the lens cause the outer parts of the spectrum to spread over the CCD. This is most

obvious along the vertical direction, but also affects the horizontal direction, the spectral

axis along which the light is dispersed.∗ The spectral resolution is therefore highest in the

centre of the spectrum and reduces towards its perimeter. The spectral region of interest

should therefore always be centred.

The control software includes various modes of data acquisition. In Durham, two

modes are available through Renishaw’s WiRE software package (version 2, service pack

9): static acquisition and extended range scan. In a static acquisition, the grating is

positioned, the CCD exposed for a predetermined amount of time and finally read out.

The exposure can be as short as 1 s. The spectral window is about 660 cm−1. In long static

exposures, the variation in sensitivity between CCD pixels becomes apparent. However,

this does not have a significant impact on the analysis of such spectra. In an extended

range scan, the spectral range is increased by smoothly tilting the motorised grating while

the CCD is exposed and the spectrum is recorded from high to low Raman shift. The

exposure time is 10 s for each scan and spectra ranging from 100 to 3000 cm−1 are readily

obtained. The pixel-to-pixel variation is not relevant in this case as the process averages

the contribution of each pixel. In both static and scan modes, multiple acquisitions may

be summed to improve the signal-to-noise ratio of the spectrum.

The Andor spectrometer in Stockholm has a number of CCD-readout options. Be-

cause multiple gratings are available that form wide-ranging spectra, a scanning option

is unnecessary. In our work, the options full vertical beam (FVB) and multi-track (MT)

were used. Both are static acquisitions similar to those in the Renishaw spectrometer.

Whichever setting is used on either Renishaw or Andor spectrometers, a rectangular sub-

set of CCD pixels is selected for read-out. This determines the spectral range within the

limits set by the grating and enhances the signal-to-noise by preventing unexposed pixels

from adding noise to the data. In the Andor FVB setting, the whole exposed spectrum is

read out, while in its MT setting, only a selected subset is processed.

Laser power

In setting the output laser power, care has to be taken to avoid damaging the sample. At

the same time, a high power is desired to increase the signal strength and thus achieve

∗Note that the spectrum is in fact dispersed in the vertical direction in the spectrometer but is presented
horizontally in the analysis software to match the way spectra are plotted.
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a better signal-to-noise ratio. A further limit is set by the CCD: saturation of its pixels

in the desired acquisition time should be avoided. Neutral optical density filters can be

used to reduce the laser power well below its stable operating regime. Another option to

reduce the power density is to increase the laser spot size. This is achieved by defocussing

the laser beam by moving the gradient index lens towards the hemisphere so that its focus

lies beyond the interface.

The laser power is generally quoted as the value set with its controls. After passing

through the delivery optics, about 2/3 of the original power is delivered to the hemisphere

(530 mW from a 800 mW output as presented in [82]).

Geometrical variables

The positioning of the sample within the optical arrangement has a number of geometrical

degrees of freedom that depend on the sample holder. Motion along various axes is required

to obtain alignment of the components and allow selective, reproducible investigation of

the interface. The geometry determines the illuminated part of the sample and what

section of its scattering is collected by the microscope.

Traditionally, the interface is aligned perpendicular to the axis of the microscope ob-

jective. In later chapters I will show that this may not be the most favourable condition

to collect scattering. Roll and pitch angles can be introduced to collect different sections

of the scattering, which may be more intense. The relative orientation of the interface

with respect to the objective lens is therefore treated as a variable in our analysis. The

rotating hemisphere clamp was designed with this purpose in mind. Note that adjusting

the sample orientation also affects the angle of incidence of the laser.

Optical variables

Once the sample is aligned, four optical experimental variables remain. Though the

Durham and Stockholm Raman systems vary in their technical detail, they both incorpo-

rate these variables.

• The angle of incidence θi of the laser beam.

• The linear polarisation of the incident laser beam, which is traditionally set to either

p or s but can take intermediate values.

• The collection polarisation, which is set either along x or y, or none at all in the

Durham system. In the Stockholm setup, it is always included and can take inter-

mediate values.

• The objective lens that collects the scattered light, in particular its NA.

Chapter 5 addressed these variables in detail. A few remarks suffice here.

The angle of incidence determines the penetration depth of the evanescent electric

field and its magnitude at the interface. At the critical angle, these are maximised. When
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the moiety of interest is only located at the interface and not in the bulk of the second

medium, the penetration depth is less relevant than for species that partition between

bulk and interface.

The p and s polarisation of the incident radiation allows for investigation of the di-

rectionality of the scattering moiety, in addition to assessing its presence near the inter-

face.The collection polarisation further adds to this orientational selectivity. It can be set

along either the x or y laboratory frame axis. Alternatively, no collection polarisation is

selected and all scattering for a given laser polarisation is collected. The combination of

linear incoming and collection polarisation results in four distinct spectra: px, py, sx and

sy. The incident polarisation can also take an intermediate value to probe a combination

of components. The same can be done with the collection polarisation in the Stockholm

system, though this feature has not been explored here.

The polarisation combinations are distinct from conventional polarised and depolarised

Raman scattering as introduced in section 2.5. In the conventional case, the Raman peak

intensity for a mode can be deduced analytically for a given orientational distribution of

the scattering moiety. It only depends on the rotational invariants of the Raman tensor.[61]

However, these can not be used in our case of total internal reflection. Linearly polarised

spectroscopy provides access to four experimental polarisation combinations, and thus four

Raman peak intensities for a particular mode. However, these four recorded intensities

are not independent, as they combine the elements of the laboratory frame Raman tensor

in more intricate ways on top of the (unknown) orientation distribution. Modelling efforts

are needed to disentangle the various contributions.

Environmental modulation

The sample cell may introduce further variables to test the response of a system to envi-

ronmental modulations or even chemical reactions. Changing the physical and chemical

environment at the interface can affect changes in the recorded spectrum. Such changes

may affect the Raman spectrum in various ways. It may affect

1. the relative abundance of species in the sampled volume, thus affecting peak inten-

sities,

2. the orientational distribution of a species, affecting the observable laboratory-frame

Raman tensor,

3. the intermolecular distances, leading to constrained or relaxed vibrations giving rise

to peaks at slightly shifted frequency, or it may

4. generate new moieties with Raman-active modes.

The Raman tensors of vibrational modes expressed in the frame of the scattering moiety

may not be affected, but the orientation of the moiety might, which results in a different

laboratory-frame Raman tensor. The effect of this can be detected as intensity changes of
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particular peaks in the recorded spectra. Changing the pH, temperature or composition of

the liquid medium can alter the composition or chemical state of surface species. Exerting

pressure on an interfacial layer or submitting it to shear forces can alter the composition

of lubricant mixtures and the orientation of molecules at the surface. Facing reagents in

gas phase, heterogeneous catalysts can form transients species and products that give rise

to additional Raman features in the spectrum.

3.2 Materials

3.2.1 Chemicals

Water was used from Milli-Q purification systems (Merck Millipore, Darmstadt, Germany)

with a resistivity of 18.2 MΩ cm at 25◦C and a total organic carbon (TOC) content of

≤ 5 ppb.

The following chemicals were used as supplied.

Carbon tetrachloride, CCl4, was obtained from Sigma Aldrich (now part of Merck,

Darmstadt, Germany) at ≥ 99.95% purity.

Chloroform, CHCl3, was obtained from Fisher Scientific (Loughborough, UK) at≥ 99%

purity.

Ammonium sulfate†, (NH4)2SO4, was obtained at ≥ 99% purity from Sigma Aldrich.

Zinc sulfate was obtained from Sigma Aldrich at 99.999% purity in the pentahydrate

form, ZnSO4.5H2O.

Arachidic acid was obtained from Aldrich Chemical Company (now Merck, Darmstadt,

Germany) at ≥ 99% purity. It is a saturated fatty acid with twenty carbon atoms of for-

mula C20H40O2 and is presented as a stretched chain in figure 3.4. In a fully stretched

chain, all C−C bonds are in the anti-conformation and the potential energy is minimized.

Upon rotation around a C−C bond, gauche-conformations are obtained, which represent

local minima of the potential energy surface. Newman projections of these two confor-

mational isomers are presented in figure 3.5. The intermediate eclipsed state presents

a barrier to the rotation. In solution, gauche butane lies 2.5 kJ mol−1 above its anti

conformation with a rotational barrier about the central C−C bond of 14 kJ mol−1 in

going from the anti to one of the gauche conformations.[83] In longer alkane chains, the

potential energy difference between the anti and gauche conformations as well as the ro-

tational barrier between the two is higher due to increased electron delocalisation in the

anti conformation.[84, 85]

Figure 3.4: Chemical structure of arachidic acid as a stretched chain.

†The IUPCA-recommended spelling for sulphate is used throughout this work.
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Figure 3.5: Newman projections of two conformational isomers of a C−C bond in an alkane
chain.

3.2.2 Isotopologues

The isotopic composition of a molecule has two important effects in vibrational spec-

troscopy. First, the occurrence of isotopes affects the molecular symmetry as different

isotopes of the same atom are not symmetry-equivalent. This leads to a different point

group and possibly a different choice of axes. The Raman tensors are affected and may

display different forms for each isotopologue.

Second, the reduced masses of vibrational modes that involve isotopes are affected,

causing a frequency shift in the vibrational spectrum. This can be understood readily

for simple harmonic motion, where the angular frequency ω is determined by the force

constant k and mass m through

ω =

√
k

m
(3.3)

As the force constant of the system remains unchanged (the electronic structure is not af-

fected in isotopologues), the increased mass due to a heavy isotope will slow the oscillation

down. Furthermore, heavier isotopes lower the amplitudes of the molecular vibrations in

which they are involved, including the zero-point amplitude of equation 4.52. This re-

duces the deformation of the electron cloud through the vibrational motion and thus the

polarisability derivative. The Raman effect for heavy isotopes is thus expected to be

weaker.

These effects should be born in mind when analysing Raman spectra quantitatively.

The relative abundance of an isotopologue in combination with the signal-to-noise ratio

determine whether or not the isotopologue can be detected in a spectroscopic experiment.

It is therefore prudent to assess the relative abundance of isotopologues in the materials

used in our Raman scattering experiments. Appendix B includes such analysis based on

the terrestrial abundance of isotopes. We build on that here to select relevant isotopologues

for use in our analyses.
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Toluene

In toluene, the most abundant isotopologue at 92.7% is 12C7
1H8. The seven forms

of 12C6
13C1H8 contribute 0.993% each, only four of which affect the symmetry of the

molecule. Moreover, the reduced mass is not likely to strongly affect the vibrational mode

of interest (the symmetric ring breathing mode that involves all atoms of the phenyl moi-

ety). The mass involved in this vibration only increases by a factor of 1/77. Only the

most abundant isotopologue is therefore taken into account.

Alkane

An alkane chain of arbitrary length is analysed in appendix B as a generalised model for

arachidic acid. As our interest lies with the C−H vibrations, the acid group is ignored.

The methyl moiety is assumed to be pure 12C1H3, as its abundance is 98.9%. In the

18 methylene moieties of arachidic acid, the occurrence of deuterium at 0.521% can be

ignored. The abundance of chains with one 13C is 15.9% in total; 0.884% at each of

the 18 carbon positions. The total mass of the methylene moieties only changes by a

factor of 1/252. Moreover, the symmetry of a stretched alkane is unaffected by carbon

isotopic impurities. It remains Cs. We assume that the combined vibrational features

of these isotopologues are not discernible from those of the most abundant isotopologue
12C20

16O2
1H40 and only the latter is used in our analysis.

CCl4

Carbon tetrachloride has 10 isotopologues and occurs in three point groups: 46.4% belongs

to C3v, 33.4% to Td and 20.2% to C2v. Contrary to the other species considered here,

the most abundant isotopes do not produce the most abundant isotopologue. The three

most abundant forms of carbon tetrachloride are considered: 12C35Cl3
37Cl (41.7%, C3v),

12C35Cl4 (32.7%, Td) and
12C35Cl2

37Cl2 (20.0%, C2v).

Sulfate

The sulfate anion has 60 isotopologues, but only two have an abundance of over 1%. These

are 32S16O2–
4 at 93.9% abundance and 34S16O2–

4 at 4.32%. Both species belong to the Td

point group. With the change of mass from 96 to 98 amu, spectral features are expected

to change only minimally. Jointly, these isotopologues account for 98.2% of all sulfate

anions. The most abundant isotopologue, with the most abundant isotopes, is therefore

used in the analysis of sulfate spectra.

3.2.3 Glass substrates

In the Raman experiments under total internal reflection, samples are probed at the flat

bottom surface of a solid, transparent hemisphere. Materials that have been used in our

group include fused silica (amorphous SiO2), borosilicate crown glass (trade name BK7),
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dense flint glass (trade name SF10), sapphire (Al2O3), cubic zirconia (ZrO2) and calcium as

well as magnesium fluoride. The hemisphere is usually selected for its optical, mechanical

and spectral properties. A specific material may be of interest as a solid substrate to

investigate particular interactions. Alternatively, thin coatings can be used to provide the

surface with the desired chemical functionality while retaining the optical properties of

the hemisphere bulk material.

The following are relevant characteristics in assessing a material for use in TIR Raman

spectroscopy.

Transparency. The hemisphere must be sufficiently transparent for the laser as well as

the Raman scattered light. Deeper layers of the sampled interface need not meet

this requirement.

Refractive index. The refractive index of the hemisphere at the laser wavelength (with

that of the material facing the it) determines the critical angle. The refractive index

at the wavelength of the Raman scattered light partly determines the signal strength.

As explained in chapter 5, a higher refractive index of the hemisphere decreases the

critical angle, increases the amplitude of the field that drives Raman scattering

and increases the coupling of the Raman-scattered field through the hemisphere for

detection.

Birefringence. Many crystalline materials exhibit birefringence, which complicates op-

tical alignment even when the crystal axis in the hemisphere is known. Both the

incoming laser as well as the Raman scattered light are affected, which should be

included in a complete model description of the process.

Fluorescence. The sample materials should exhibit minimal fluorescence at the laser

wavelength used. As fluorescence is generally much stronger than Raman scattering,

the first will obscure the latter. A higher frequency laser (shorter wavelength) can

avoid interference from fluorescence in many cases.

Raman spectrum. Ideally, the hemisphere has no strong Raman features in the region

of interest, so that it does not obstruct observation of sample features. Spectral

features of the hemisphere cannot be completely avoided as the laser passes through

the bulk of its material. Background subtraction is routinely used to remove any

spectral features of the hemisphere that overlap with the sample. However, as spectra

may strongly depend on the optical geometry, one background spectrum should be

recorded for every sampled geometry. Example spectra of fused silica, sapphire and

SF10 are included in figure 3.6.

Surface roughness Hemispheres should be optically smooth in all cases. Strong undu-

lations of the surface affect the local optical path and the angle at which molecules

orientate with respect to the averaged interfacial plane. Scratched or damaged areas

should not be sampled.
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Hardness. In solid-solid contact experiments (such as those presented in chapter 7),

material hardness affects the interfacial pressure distribution. Hard materials avoid

deformation and surface damage, while flattening of asperities is desired to obtain a

smooth contact area.

Reactivity. The hemisphere should be suitable for any desired surface treatment, such as

Langmuir-Blodgett deposition, plasma treatment, thin-film deposition and cleaning

routines. Furthermore, it should not exhibit undesired reactions (such as etching,

irreversible absorption and dissolution) when exposed to other materials in the sam-

ple.

Other considerations include availability and cost of hemispheres of the desired material.

This is not an issue with the materials used in this work. These are frequently used and

have the added benefit of being well-characterised and of being employed in published

studies that can be used for comparison. Further considerations are presented in the

chapters where they are employed.

In this work, fused silica, SF10 and sapphire have been used. Fused silica hemispheres

of 10 mm diameter as well as a fused silica sphere of 10 mm diameter were obtained from

Global Optics (Poole, UK) with a surface scratch/dig ratio of 40/20. Both the IR and

UV-grade silica are suitable for our application. The SF10 hemisphere with a diameter

of 10 mm was obtained from ISP Optics Corp. (Irvington, New York, USA). Sapphire

hemispheres, of 10 mm diameter and 40/20 surface finish, as well as a later batch of fused

silica hemispheres of the same standard were supplied by Knight Optical (Harrietsham,

UK).

In addition to meeting the material criteria listed above, fused silica is appealing as

a reference surface for its ubiquitous use in various spectroscopy and interface investiga-

tions. The advantage of fused silica over quartz (the crystalline form of pure SiO2) lies

in the random nature of its surface and lack of birefringence. Fused silica is produced by

pyrolysis of SiCl4 or by melting powdered quartz into a continuous solid form to obtain

a macroscopically amorphous and isotropic glass. Hemispheres of fused silica are used as

the standard solid substrate in our research group.

3.2.4 Refractive index

In a Raman experiment, optical properties are of paramount importance. The consid-

erations of transparency, low fluorescence and lack of Raman bands discussed above for

choosing a hemisphere are equally valid for the optical components that collect the Ra-

man scattered light. In TIR Raman, the refractive indices of the materials making up the

sampled interface are further critical parameters. These are therefore considered in detail

here.
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Figure 3.6: Stokes Raman spectra of hemispherical substrates collected from the solid-
air interface under total internal reflection of the laser beam. Spectra were
recorded as accumulated scans on the Durham system, employing S-polarised
laser light without polarisation selection of the collected light, the 50× objec-
tive lens and (a) 200 mW laser output power, angle of incidence θi = 73◦, 4
accumulations of 10 s scans [data 20140114/05], (b) 200 mW, θi = 73◦, 5×10 s
[data 20150326/007A], (c) 20 mW, θi = 44.2◦, 200 s [spectrum from Kaustav
Guha [54]].
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Sellmeier’s equation

The refractive index n of a material depends on the wavelength of the light propagating

through it. The Sellmeier equation describes the relationship on an empirical basis as

n2(λ0) = 1 +
A1λ0

2

λ0
2 −B1

+
A2λ0

2

λ0
2 −B2

+
A3λ0

2

λ0
2 −B3

(3.4)

with λ0 the wavelength of the light in vacuum, traditionally given in µm, and up to

six Sellmeier coefficients A1 through B3. The A parameters are dimensionless, while

the B are given in µm2 with
√
B corresponding to absorption bands. Alongside the

coefficients, a range of validity is always given. Here, we use data for the visible range

of the electromagnetic spectrum, which covers vacuum wavelengths from 400 to 700 nm.

Table 3.1 contains Sellmeier coefficients for materials used in this work. Note that sapphire

is birefringent and both its ordinary and extraordinary axes are listed. Uncertainty values,

where originally given in the references, have been omitted from the table. Figure 3.7

includes the refractive indices of the species included in table 3.1 as a function of vacuum

wavelength in the visible using equation 3.4.
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Carbon tetrachloride
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Figure 3.7: Refractive index as a function of wavelength in vacuum from equation 3.4 and
the data of table 3.1. A dashed vertical line at 532 nm indicates the laser
wavelength.

In sapphire, the refractive index for the o-ray varies no more than 0.5% from that of

the e-ray in the wavelength range of interest. Furthermore, the exact crystal orientation

of the sapphire hemisphere in our system is unknown. For these two reasons, mean values
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are used for its refractive index.

The refractive index of air varies from 1.00028276 at 400 nm to 1.00027580 at 700 nm

in the visible part of the electromagnetic spectrum, a dispersion of 7 parts in 106 [90].

Its variation with pressure, temperature and CO2 content is likewise deemed insignificant

for our purposes. The mean of nair = 1.000279 can therefore be used over the whole

wavelength range of interest. The approximation nair = n0 = 1 has been used frequently

in previous work of our group and is reasonable in our work as well. It is not expected to

limit the accuracy of our analysis.

Sulfate solutions

Solutes affect the refractive index of liquids. This fact invites a brief assessment of its

significance for the solutions of sulfate salts used in this work. Urréjola et al. [91] have

measured the refractive indices of ammonium sulfates in water at 589.3 nm (correspond-

ing to the sodium D-line reference wavelength). Assuming that the dispersion of these

solutions is similar to pure water in the wavelength range of interest (below 0.2% from

532 to 598 nm), their values are accurate enough for our purposes. Conversely, their data

permits determination of salt molal concentration using a refractometer.

In Durham, the refractive index of solutions could be determined with a RFM970

refractometer of Bellingham and Stanley Ltd. (Farnborough, UK), sampling at 20.0◦C

with a wavelength of 589 nm from a light emitting diode. Solutions were prepared by

weight of salt measured on an analytical balance and volume of water by micropipette. A

solution of 40 wt% ammonium sulfate in water showed a refractive index of 1.39339, while

at 18 wt%, the refractive index was found to be 1.36098. This is an increase over that of

pure water, recorded on the same refractometer as 1.33298, by 4.5 and 2.1%, respectively.

For reference, the CRC Handbook [92] was consulted, providing n40wt% = 1.3938 and

n18wt% = 1.3616 for the two solutions at standard temperature and pressure, confirming

our measurements.

For the experiments in Stockholm, a solution of ammonium sulfate in water was pre-

pared in a volumetric flask at a concentration of 0.2927 mol L−1. This corresponds to a

molality of 0.293 mol kg−1 (assuming that the density of the solution is that of water).

Using the polynomial in [91] for ammonium sulfate solutions at 25◦C, the refractive index

of this solution is predicted to be 1.3386, an increase of only 0.46% from that listed for

pure water (1.33248). Though our work is performed at 20◦C, the expected deviation due

to this lower temperature is insignificant at less than 0.07% according to data in [91].

Arachidic acid

Pure arachidic acid is a white crystalline solid at standard temperature and pressure.

Its lack of transparency in the visible precludes determination of a refractive index. A

comparable analogue is n-icosane (C20H42), which differs from arachidic acid in having a

methyl group at the position of the carboxyl group. n-Icosane forms a colourless, waxy
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solid in standard conditions and has a mean refractive index of 1.4425 at the sodium D-line

[92].

The optical properties of arachidic acid monolayers on glass have, to my knowledge, not

been published. However, studies on Langmuir-Blodgett films of fatty acids, alcohols and

other molecules incorporating alkane chains are numerous. These may be used to gauge

the refractive index of the alkane chain, which constitutes most of the molecule. The

optical properties of 1-dodecanol (C12H24O) monolayers on water have previously been

studied in our group by ellipsometry [10]. The relative permittivity along the two optical

axes were deduced to be ϵe = 2.23± 0.07 and ϵo = 2.12± 0.03 at 20◦C and 633 nm. The

material forms an ordered layer that exhibits birefringence. Using approximation 2.44, the

refractive indices are ne = 1.49 and no = 1.46. These values differ from the refractive index

of bulk 1-dodecanol, 1.4430, measured at the sodium D-line and standard temperature and

pressure [92] (near its melting point of 24◦C). The difference originates from dispersion,

the crystalline nature of the monolayer and the film density compared to the density of the

bulk material. The latter effect can be assessed through the Clausius-Mossotti relation

ϵr − 1

ϵr + 2
=
Nα

3ϵ0
(3.5)

with N the molecular number density in m−3 and α the isotropic molecular polarisability

in C m2 V−1. This equation facilitates computation of the refractive index for systems of

different surface densities. However, the effect of dispersion remains to be assessed before

the values provided by [10] can be used. Whether or not this 2% variation significantly

affects the experimental data is assessed in section 6.4.

Summary

Values used in our analyses are collected in table 3.2 for ease of reference. It lists the

refractive indices at the wavelength of the incident laser as well as a number of Raman

bands for each material. The dispersion is under 1% for all materials in this wavelength

range. The relevance of each band is addressed in the chapters presenting the results.

Conversion of a Raman shift ν̄R in units of cm−1, as recorded in a spectrometer in air, to

the wavelength of the Raman scattering in vacuum λ0,R in nm uses

λ0,R =
nair

λlaser
−1 − 10−7 ν̄R

(3.6)

with λlaser (in nm) the wavelength in air of the laser that induces the Raman scatter-

ing. ν̄R is positive for Stokes Raman scattering, which is employed in the current work.

Equation 3.6 is readily composed from equations 2.41 and 2.48.
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Table 3.2: Selected refractive indices

wavelength / nm 532 546 561 562 627
Raman shift / cm−1 0 460 980 1000 2870

Fused silica 1.4607 1.4594 1.4594 1.4572
SF10 1.7367 1.7236
Sapphire 1.7676 1.7667
Air 1.0003 1.0003 1.0003 1.0003 1.0003
Carbon tetrachloride 1.4629 1.4620
Toluene 1.5019 1.4989
Water 1.3355
Ammonium sulfate 40 wt% 1.3934 1.3934
Ammonium sulfate 18 wt% 1.3610 1.3610
Ammonium sulfate 0.3 mol L−1 1.3386 1.3386
Alkane chain 1.4425 1.4425

3.3 Procedures

This section describes procedures to prepare the Raman systems as well as the sample

for experiments. The latter includes cleaning of hemispheres and other components of the

flow cell and deposition of arachidic acid monolayers onto the hemisphere surface.

3.3.1 Optical

Careful positioning and alignment of the optical components is needed to record Raman

spectra. Once the position of the microscopy is assured, the laser and the optics guiding

the laser beam path are aligned. The spectrometer is then calibrated before the angle

of incidence and the linear polarisation directions are set. Finally, the sample holder is

mounted in such a way that the hemisphere is aligned correctly. Not all procedures need

be executed for every experiment. In Durham, re-alignment of the microscope and full

laser path as well as calibration of the polarisation directions were not attempted. Instead,

existing alignment marks were used. For the Stockholm system, all of the following steps

were taken.

Alignment of microscope and laser

The microscope and optical table are positioned vertically and horizontally with respect

to the earth’s gravitation. This is confirmed with a theodolite, which serves as an external

reference for these two orthogonal directions. The focal axis of the microscope objective,

parallel to the vertical, is the laboratory z axis. The point where this axis strikes the

optical table is confirmed with the lamp in the microscope. The origin of the laboratory

frame of reference is at the focus of the microscope objective lens.

The path of the laser beam is then aligned in the horizontal plane as the x axis,

orthogonal to the position of the microscope body along the y axis. A theodolite can be

used to indicate the xz or yz plane. The grating of holes in the optical table may also be
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used as a guide parallel to the x and y directions. The x axis, to become part of the plane

of incidence, is then marked on the optical table. The desired laser path is set parallel to

the optical table by two apertures, closed to a pin hole, at the same height along the x

axis. Two mirrors just after the laser source, m1 and m2 in figure 3.2, are used to align

the laser beam to this direction.

The beam is then deflected upwards, parallel to the z axis, by mirror m4. The new

direction is confirmed by the theodolite and marked on the laboratory ceiling as a reference

for easy re-alignment. Another mirror (m5) is then put in its path to deflect the laser beam

towards the sample position. This mirror is aligned by turning it so that the laser path

follows the x axis set out on the optical table. These last two mirrors form a periscope

that guide the laser beam onto the sample from above. When the angle of incidence is

adjusted (see below), the last mirror has to rotate about the y-direction and move along

the z-direction. The laser beam is made to pass through the focal point of the microscope

objective.

The lenses of the telescope can now be placed in the beam path between the established

apertures. The lenses are aligned centrally on the axis of the laser beam and perpendicular

to it using their back-reflections.

The gradient-index lens is mounted perpendicular to the beam axis (using its back-

reflections) at roughly its focal distance to the focal point of the objective lens. It is held

in a micropositioner to adjust its focus within about 1 cm.

Using a strongly scattering sample (such as a silicon wafer or a mirror), the mirrors

in the collection part of the systems can be set to guide the collimated scattering into the

spectrometer. The lens that focusses the collimated scattering through the slit (L4) into

the spectrometer is now aligned. Raman spectra are continuously acquired to optimize

the position of this lens and the width of the slit.

Angle of incidence

The angle of incidence of the laser is measured with respect to the z axis, the laboratory

vertical. The laser beam is guided through the focal point of the microscope objective lens,

which defines the origin of the laboratory frame of reference. This location will receive

the sample from which Raman scattering is to be measured.

The Durham and Stockholm systems follow different procedures to set the angle of

incidence. In Durham, the angle is determined by measuring the vertical and horizontal

position of the laser beam just before and after the laboratory frame origin. A vertical

ruler and graph paper are used for this purpose. The angle of incidence is computed

from these coordinates. Conversely, for a desired angle of incidence, the coordinates are

calculated geometrically and the beam is made to pass through these points by adjusting

the height and tilt of mirror m5. The gradient index lens is removed from the beam path

until the correct angle is achieved.

In Stockholm, the angle of incidence is set with two concentric rotors, each bearing a
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Vernier scale to measure the angular position. These are mounted on a vertical translation

stage. The inner rotor carries the top mirror of the periscope (m5) while the focussing lens

L3 is attached to the outer rotor. The position of the rotors is set to 0◦ and the mirror

is positioned to ensure its back-reflection overlaps the incoming laser beam. The desired

angle of incidence can then be set by turning the inner rotor to the θi/2 position on the

Vernier scale. The vertical position of the rotors is then adjusted to assure that the beam

path crosses the laboratory origin. Finally, the focussing lens is positioned in the laser

path at its focal distance from the sample.

In both Raman systems, a dish of water can provide a perfectly horizontal surface.

Positioned at the height of the sample, it reflects the laser beam as would be the case for

a perfectly aligned sample interface. Using the water surface, the path of the reflected

laser beam can also be used to assure the angle of incidence as θi = θr. The position of

the reflected beam is then marked on the vertical ruler (in Durham) or with a pin-hole

aperture (in Stockholm) to aid in positioning the sample cell along the horizontal plane.

Spectrometer calibration

Once the setup is properly aligned, a calibration is performed on the 520 cm−1 Raman

shift of a clean silicon wafer. An off-set correction is applied to the whole spectral range

using the spectrometer software. Figure 3.8 presents an example of such a calibration

spectrum. The calibration ensures the correct angular position of the diffraction grating

in the spectrometer and couples it to the CCD pixel locations. A single-point calibration

is sufficient to achieve this.

Polarisation direction

Setting the polarisation of the experiment involves two linear polarisers and two half-

wave plates (LP1, HW1, HW2 and LP2 in figure 3.2). These are set centrally in the beam

paths of the laser and collimated scattered light. The following procedure is used to

reassure or correct the linear polarisation directions given a correctly aligned system. It

sets to find the angular orientation of each component to comply with the p, s, x and y

conventions. It employs polarised reflection at the Brewster angle to calibrate the incident

polarisation (p and s) and polarised Raman scattering for the collection polarisation (x

and y). The procedure has been executed with the Stockholm system. The Durham

system does not easily allow for setting the collection polarisation as both half-wave plate

HW2 and linear polariser LP2 are fixed within the spectrometer and cannot be rotated

without disassembling the components.

The linear polariser at the laser source (LP1) is set to match the horizontal polarisation

of the laser light. This can be confirmed by measuring the transmitted power as a function

of the angular orientation of the polariser.

To calibrate half-wave plate HW1, a water sample is mounted and its surface aligned

with the laboratory frame origin. The angle is incidence is set to the Brewster angle for
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Figure 3.8: Raman spectrum of mono-crystalline silicon from the top surface of a wafer,
accumulation of 5 scans with the Durham system, 100 mW laser output, s-
polarised [data 20131112/028]. The peak at 520 cm−1 is used to calibrate
Raman spectra. At about 2330 cm−1, the Q-branch of nitrogen in observed.

the air-water interface, θB = 53.17◦. The angular position of HW1 is then adjusted until

a minimum is observed in the reflected intensity.‡ This corresponds to p-polarised light.

s-polarised light is obtain by increasing the angular setting of the half-wave plate by 45.0◦.

The Brewster angle is also known as the polarisation angle. Reflected light from an

unpolarised source incident under this angle is s-polarised. In other words, the reflection

coefficient for p-polarised light rp is zero at θi = θB. The reflection coefficient is the ratio

of the reflected to the incident amplitude of the electric field. It depends on the linear

polarisation direction of the light, its angle of incidence θi and the refractive indices of

the meeting materials. The relations are derived in chapter 5 and presented as part of the

Fresnel equations 5.28. From solving rp(θB) = 0 and using Snell’s Law (equation 5.10), it

is found that

θB = arctan

(
nt
ni

)
(3.7)

where ni is the refractive index of the incident medium and nt that of the transmitted

medium (in the present case, air and water, respectively). Figure 3.9 presents plots of

‡Multiple reflections may be observed if a transparent container is used for the water. Only the reflection
at the top should then be considered.



3.3. PROCEDURES 87

the reflection coefficients and its square (which is proportional to the observed intensity),

using refractive indices of table 3.2. Note that a polarisation angle is only observed for

light traversing from an optically less dense medium, i.e. if ni < nt.
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Figure 3.9: Reflection coefficient r for p and s-polarised visible light incident under angle θi
on the air-water interface. The angle of incidence at which rp has its minimum
value is known as the Brewster angle θB.

The incident polarisation needs to be determined before the collection polarisation

can be set. It is set to s and a toluene sample in a small glass vial is mounted with HW2

removed from the setup. The relation between the angular position of LP2 and the resulting

linear polarisation direction is established through the intensity minima and maxima of

the Raman bands observed in the spectrum. Polarised bands exhibit a maximum intensity

in traditional polarised Raman spectroscopy, which is similar (but not equivalent) to the

px and sy polarisation combinations in our system.

Toluene is used for its strong polarised band at about 1000 cm−1, which arises from the

ring breathing mode. This modes belongs to the A′ symmetry species, the fully symmetric

species of the Cs point group to which toluene belongs (see appendix A for details).

Setting the incident polarisation to s, LP2 is rotated until the maximum intensity of

the 1000 cm−1 is observed. This establishes the sy polarisation combination and thus the

angular position of LP2, which is held fixed. It should now be aligned along the slit of the

spectrometer (or orthogonal to it in the Durham system).
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The half-wave plate for the collection polarisation, HW2, is now properly aligned and

its rotational settings calibrated with the same toluene band. The minimum intensity is

sought, giving the angular position of HW2 conforming to the sx polarisation combination.

Turning this half-wave plate by 45◦ selects y-polarised scattering.

With the angular positions of the linear polarisers affirmed and the half-wave plates

calibrated, the four polarisation combinations can be summarized for reference. The values

for the Stockholm system are

HW1 HW2

px 33.5◦ 58.5◦

py 33.5◦ 13.5◦

sx 78.5◦ 58.5◦

sy 78.5◦ 13.5◦

which can be set reproducibly with the automated rotation stages.

Sample positioning

The sample is positioned once the laser beam is properly aligned in the xz-plane an its

focus coincides with the focus of the microscope objective. The sample holder is positioned

on the optical axis of the microscope by three orthogonal micro-translation stages, one

along each of the three laboratory frame axes x, y and z. The interface at the bottom

of the hemisphere is brought into focus using the translation stages while monitoring the

position with the microscope camera using white light illumination through the objective.

After focussing on the top of the hemisphere, the bottom is brought into focus. The dead

centre is then found by superimposing the out-of-focus back-reflection of the top surface

onto the in-focus image of the bottom surface.

If using the hemisphere rotation clamp, additional alignment is needed. The rotational

axis is aligned with the laboratory frame y-axis when the reflected laser beam follows the

xz plane at all tilt angles of the hemisphere. The centre of the hemisphere bottom surface

is in turn positioned onto the rotational axis of the clamp in an iterative fashion using the

microscope image as a guide. As the hemisphere is rotated, the bottom surface will come

in and out of focus until it is brought on the rotation axis by the dual axis micropositioner

on the clamp.

The pitch and roll angles of the interface are adjusted manually on the sample holder,

using the reflection of the laser beam as a guide. A dish of water was used as a perfectly

horizontal reference, spanning the laboratory xy plane, in setting the angle of incidence.

The reflected beam path, for a particular angle of incidence, can now be used to align the

sample interface to the xy plane.

Once the angle of incidence is set and the sample is positioned accurately, fine adjust-

ment of the laser focus to the dead centre of the hemisphere bottom surface is achieved in

the follow way. Along the x direction, positioning is achieved by z-translation of the last

mirror and gradient index lens, jointly mounted on a micropositioner. Small deviations
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along the y direction, perpendicular to the plane of incidence, are resolved by adjusting

the penultimate mirror, at the bottom of the periscope. The angle of the beam within the

plane of incidence is not changed. The laser is focussed to the desired degree by translating

the gradient-index lens along the beam path.

Some iteration in positioning the sample, adjusting its tilt and fine-tuning the position

and focus of the laser beam is usually needed.

3.3.2 Cleaning

Cleaning of the sample cell components serves to prevent contamination of the studied

interface by materials that affect the surface deposition of monolayers or interfere with

the desired Raman spectra. Established, and very similar, protocols were followed in both

laboratories. These involve cleaning with purified water, ethanol (purity ≤ 99%) and

chromic acid, abbreviated as BIC. The latter is a mixture of Na2Cr2O7 and concentrated

sulfuric acid, requiring appropriate safety precautions. Its was only used in PTFE beakers.

In Durham, cleaning of hemispheres involved 10 minute sonication in water, followed

by 15 minute sonication in ethanol, three rinses with water and immersion in BIC for

1.5 hour. It was then rinsed thrice with water, sonicated in water for 15 minutes and

immersed in BIC for another hour before rinsing with water four times (or until the water

runs clear) and immersing the hemisphere in water, covered, until use. This procedure

follows the one outlined by Kaustav Guha ([54] page 87-88) to facilitate comparison of

data.

Cleaning the hemisphere suffices for solid-air interfaces. In the solid-liquid experiments,

other equipment that could (indirectly) contaminate the surface was cleaned similarity to

the process outlined below.

In Stockholm, the cleaning and assembly protocol of Tyrode’s research group was

followed. After completing the following cleaning steps, the flow cell was assembled in a

laminar-flow cabinet to prevent dust getting in. Where sonication is mentioned, this was

for 15 minutes in an ultrasound water bath at 35◦C.

Fused silica hemispheres were sonicated separately in ethanol, rinsed with water, put

in a BIC solution for 45 minutes, rinsed fifteen times with water, sonicated in water, rinsed

five times with water and kept submerged in water until used.

The glass flow cell, PTFE tubing and connectors were cleaned by sonication in a

solution of 5% v/v Deconex laboratory glass cleaner in water, rinsed with water fifteen

times, sonicated in water, rinsed five times with water and kept submerged in water until

used.

O-rings were sonicated in ethanol, rinsed fifteen times with water, sonicated in water,

rinsed five times with water and kept submerged in water until used.

Tools reserved for assembly of the cell were wiped down with ethanol using lint-free

laboratory wipes, rinsed with water and blown dry with filtered air.

The glass syringe, only used for water and sulfate solutions, was rinsed with ethanol
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followed by rinsing with water fifteen times.

3.3.3 Monolayer production

Monolayers of zinc arachidate were formed on fused silica hemispheres through Langmuir-

Blodgett (LB) deposition. A monolayer of zinc arachidate is formed by adding arachidic

acid to the surface of an aqueous solution of zinc sulfate. Pulling the previously submerged

hemisphere through this surface, at a constant surface pressure, ensures transfer of the

floating monolayer onto the solid substrate. The procedure replicates the process described

in Guha’s thesis[54], using the same batch of arachidic acid though the LB trough and

hemisphere holder for the deposition were different.

The Langmuir-Blodgett trough, model KN2002 of KSV NIMA (Biolin Scientific, Gothen-

burg, Sweden), was placed a box to prevent flow of air over the liquid surface. The balance

records the surface pressure Π by means of a platinum Wilhelmy plate. Π is the change in

surface tension from a clean subphase to one with surfactant. As the total surface area is

decreased by two motorised barriers skimming the surface, the surface density of surfactant

species increase, reducing the surface tension and increasing the surface pressure.

The trough, its barriers and the Wilhelmy plate were cleaned with ethanol and water.

The balance was calibrated before use. Zinc sulfate in water at 1 10−4 mol L−1 (indica-

tor strips gave a pH of 7) was pored in the trough and the dipper with hemisphere was

submerged. The subphase surface was cleaned by aspiration of surface impurities, con-

centrated in the centre of the trough by closing the barriers. This process was repeated

until the change in Π was less than 0.25 mN m−1. After re-opening the barriers again, the

balance was set to zero. A solution of 1 mg mL−1 arachidic acid in chloroform was then

carefully spread on the surface of the subphase using a glass microsyringe (30 µL ensured

sufficient coverage). The chloroform was allowed to evaporate off in 15 minutes. The sur-

face is then compressed to Π = 35 mN m−1 at a constant barrier speed of 2.0 mm minute−1

and left to equilibrate for 5 minute before raising the dipper at 2.0 mm minute−1 from the

subphase. Once emerged from the subphase, the coated hemisphere is left to dry in air.

The surface pressure is held at 35 mNm−1 via feedback to the barriers. Their maximum

inward and outward speed were set to no more than 2.5 and 0.5 mm minute−1, respectively,

to reduce fluctuations in the surface pressure.

Compression isotherm

A compression isotherm (figure 3.10) was recorded at 20◦C and a constant-speed compres-

sion of 2.0 mm minute−1, without a hemisphere being submerged. It shows the surface

pressure versus the mean molecular area, which is computed from the surface area of

the subphase in the trough and the number of arachidic acid molecules brought onto

it. This metric assumes that all molecules collect at the surface, whereas that amount

varies between experiments. It should therefore not be taken as an absolute value and

the isotherm could be shifted along the horizontal axis. However, the features of the
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Figure 3.10: Surface compression isotherm of arachidic acid on water subphase with
10−4 mol L−1 zinc sulfate at 20◦C. The mean molecular area should be taken
as relative, rather than absolute. [data 20170303iso]

isotherm can be superimposed with repeat experiments. The surface pressure, rather

than the mean molecular area, characterises the surface layer. While decreasing the avail-

able surface area, the surface layer displays the characteristic behaviour of three phases:

a two-dimensional gas phase (Π close to zero), a liquid-expanded and liquid-condensed

phase (up to Π ≈ 22 mN m−1) and a solid phase until the maximum surface pressure of

52.5 mN m−1 is achieved. Valdes-Covarrubias et al. [93] reported a collapse pressure of

57 mN m−1 at a mean molecular area of 24 Å2 for arachidic acid on water at 24◦C. At lower

temperature, the collapse pressure increases while the mean molecular area decreases. Fur-

ther compression of the surface area leads to collapse of the monolayer into multilayers

and crystalline patches [93]. The mean molecular area is no longer an appropriate measure

in this regime.

The second-order phase transition at about 22 mN m−1 involves the reordering of the

alkane chains from tilted to an upright orientation as proven by X-ray diffraction and

reflection studies [94, 95]. The all-trans alkane chains form a centred orthorhombic (pseu-

dohexagonal) lattice with a uniform tilt towards their nearest neighbour with a positional

correlation length of about 150 Å [94]. The tilt angle is reduced on compression from 30◦

at a mean molecular area of 23.0 Å2 to 0◦ (fully upright) at 19.8 Å2 but the density in the
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hydrocarbon region remains constant [95].

The monolayer is deposited in the liquid-condensed phase at a constant surface pressure

of 35 mN m−1. The mean molecular area varied between measurements at that point but

22 Å2 was observed in three out of five experiments. Guha [54] obtained a value of 19 Å2

for the same material. Note that the structure of the monolayer on certain solid substrates

is known to deviate from that on a water subphase [96].

Dipper

The hemisphere holder used for the deposition is of own design (figure 3.11), produced

by three-dimensional extrusion from poly(methyl methacrylate) (PMMA) resin (Form 2

by Formlabs, Sommerville, MA, USA). Compared to the PTFE holders used by Guha,

PMMA features a rougher surface and lower resistance to solvents, raising the risk of

contamination. The extruded dippers were bathed in isopropanol for 1.5 minute to remove

unpolymerised resin, dried at 50◦C for an hour and left overnight to cure fully (hardening

under ultraviolet light was attempted but was not successful, likely due to the low power

of the lamp). An advantage of the current design over the previous dipper holder is that

it exposes the hemisphere bottom surface freely along the direction of deposition. The

previous model clamps the hemisphere on a circular cut-out all around. Moreover, the new

dipper facilitates manipulation of (coated) hemispheres§ and can be reproduced easily.

Transfer

The question arises whether the transferred monolayer has the same density on the solid

substrate as on the liquid subphase in the trough. This is characterised by the transfer

ration, which is unity if the exposed surface area of hemisphere and dipper are equal to

the compression of the trough surface area during the deposition. This was tested and the

transfer ratio was found to be 0.96¶ overall, though the different materials of hemisphere

and dipper may not have been coated equally.

§For example, a hemisphere lying on its curved face can be picked up by sliding the dipper vertically
over it and slotting it in the two notches of its legs. It can then be slotted out on its flat face onto the
sample cell for mounting.

¶The submerged surface area of the dipper was 6.50 cm2, that of the hemisphere 2.36 cm2 while the
change in surface area of the monolayer on the subphase was 8.47 cm2. [data 20170123]
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Figure 3.11: Drawing of the hemisphere holder for LB-deposition. The opening at the
bottom end allows the subphase to flow freely from the hemisphere surface.
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Chapter 4

Computation of Raman tensors

This chapter discusses procedures to establish the form of a Raman tensor for a given

vibrational transition as well as the numerical values of its components. The Raman tensor

forms the link between the molecular description and the macroscopically observed Raman

scattering. Insight into the Raman tensor and how it arises from molecular vibrations is

therefore fundamental to our approach.

Several strategies are available to deduce the form of the Raman tensor. With ‘form’

we mean the placement of zero and non-zero components in the second rank tensor and

which of the non-zero components share the same numerical value and have the same

or opposite sign. This information can be deduced through group theory and symmetry

arguments. In another approach, the Raman tensor is constructed from the appropriate

combination of individual bond polarisability derivatives. This last approach is demon-

strated for fundamental phenyl, methylene and methyl stretch modes. An overview of

all Raman active symmetry species for a range of point groups is given with literature

references.

Numerical values of Raman tensor components can be deduced from experimental

peak intensities in favourable cases. As discussed in the previous chapter, the experimen-

tal geometry has to be chosen appropriately with the expected form of the (isotropically

averaged) Raman tensor in mind. Individual components can only be deduced if the ex-

perimental geometry allows for their decoupling. A computational approach is therefore

presented here. Such methods are generally applied to one isolated molecule in vacuum

in its equilibrium geometry. A vibrational analysis is performed and Raman tensors are

deduced for all modes in the theoretical framework used, usually involving a set of ap-

proximations. The results of computations with Gaussian on the sulfate anion, carbon

tetrachloride and decanoic acid are presented in this chapter. These molecules are used

in the experiments to validate our model description of interfacial Raman spectroscopy

(chapter 6) and in its application on a boundary lubricant under static pressure (chap-

ter 7). Additionally, results for toluene are included in appendix G.1.

95
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4.1 Form of the Raman tensor

The form of the Raman tensor for a particular fundamental can be derived by combining

bond polarisabilities following the vibrational normal coordinate of that mode. Having

gained insight through some examples, a generalisation is presented for a range of point

groups. The use of an unambiguous definition of axes is emphasised.

4.1.1 The bond-polarisability model

An explicit formulation of the Raman tensor follows from the combination of polarisabil-

ities of individual bonds involved in the vibrational mode of the molecule. This is the

bond-polarisability model. It rests on the assumption that the values of the bond polaris-

ability tensor depend on the nature of the bond only, not on the molecular environment it

is in. The individual bond polarisabilities are transferable and may be combined accord-

ing to the vibrational motion under consideration to form a polarisability tensor for the

vibrational mode as a whole.

In this section, the bond-polarisability model is applied to selected fundamental tran-

sitions of phenyl, methylene and methyl to link known vibrational motions to their Raman

tensor in a chosen frame of reference. Although this approach can be used to obtain nu-

merical values, it is only used to obtain the form of the Raman tensor here. More advanced

computations are employed to deduce numerical values of Raman tensor elements in sec-

tion 4.3. The aim here is to provide an insight into why particular tensor elements are

zero or non-zero, from which bonds these arise and how these could therefore be affected

by a loss of symmetry or a distortion in the normal mode.

The procedure employed here is as follows. An alternative, including derivation of

numerical values, can be found in Appendix B of Le Ru and Etchegoin’s work [41].

The polarisability tensor of a bond in the bond frame of reference b can be given as

αb
bond =

α1 0 0

0 α2 0

0 0 α3

 (4.1)

describing a polarisability ellipsoid with its axes aligned with the axes of the frame of

reference of the bond. Before the bond polarisabilities can be combined, they have to be

brought in the same frame of reference such as the frame of the functional group, moiety or

molecule. Following the definitions presented in section 2.2.3, a coordinate transformation

is effected as

αg
bond = Tb→gα

b
bondTb→g

−1 (4.2)

where g indicates the group frame of reference.

The polarisability tensors of the bonds in the group frame are combined following the

vibrational normal coordinate Qv(t) that describes the combined motion of the bonds in
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vibrational mode v as a function of time t through

Qv(t) =
∑
bonds

qv,bond(t) (4.3)

where each q includes an amplitude and phase that describe the motion of one of the

bonds or bond angles. Both Q and q are dimensionless quantities, independent of frame

of reference. The amplitudes of q are such that the amplitude Qv of Qv(t) is normalised

Q2
v =

∑
bonds

q2v,bond = 1 . (4.4)

The polarisability tensor of the vibrational mode is then found through combining the

bond polarisabilities while taking their relative phases and amplitudes into account

αg
v =

∑
bonds

qv,bondα
g
bond (4.5)

which holds for any frame of reference. As the whole procedure is carried out in the

equilibrium geometry of the molecule, the derivative of αg
v with respect to the normal

coordinate

α′g
v =

∂αg
v

∂Qv
(4.6)

results in the form of the Raman tensor for the desired vibrational mode. Another coor-

dinate transformation may be needed to bring α′g into the molecular frame of reference

m, which is used in data interpretation and our modelling effort.

This approach is now demonstrated for selected vibrational modes of moieties used in

this work. Starting from the polarisability of individual C−H bond, the breathing mode

of a phenyl group (included as appended section G.1.1) as well as the stretch modes of

methylene and methyl are analysed.

H

C

H

C

H

H

C

HH

C

H H

C

H

Figure 4.1: The three vibrational normal modes of an isolated methylene moiety (open
arrows; sst symmetric stretch, ast antisymmetric stretch and be bend motion)
and the choice of axes (red) in the functional group and bond frames of refer-
ence.
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4.1.2 Methylene stretch modes

The axes of the methylene group are dictated through symmetry assignment, presented

in figure 4.1. The Cartesian axes in the C−H bond frame of reference are chosen such

that one elementary rotation can bring them into the group frame of reference. The

transformation from the axes of the group g to the bond b follows from an elementary

rotation about the x axis over angle β

Tg→b = Rx(β) (4.7)

so that the inverse transformation is given through

Tb→g = Tg→b
−1 = Rx(−β) =

1 0 0

0 cosβ − sinβ

0 sinβ cosβ

 (4.8)

where β is the second Euler angle, the other two being zero. The polarisability of the

bond in its own frame of reference can be given as

αb
C−H =

α⊥,oop 0 0

0 α⊥,ip 0

0 0 α∥

 (4.9)

which is transformed into the g frame by application of equation 4.2, here resulting in

αg
C−H = Rx(−β)αb

C−HRx(β)

=

1 0 0

0 cosβ − sinβ

0 sinβ cosβ


α⊥,oop 0 0

0 α⊥,ip 0

0 0 α∥


1 0 0

0 cosβ sinβ

0 − sinβ cosβ



=

α⊥,oop 0 0

0 α⊥,ip cos
2 β + α∥ sin

2 β (α⊥,ip − α∥) sinβ cosβ

0 (α⊥,ip − α∥) sinβ cosβ α⊥,ip sin
2 β + α∥ cos

2 β


(4.10)

The angle β for each bond is

β1 = −180◦ +
1

2
τ

β2 = 180◦ − 1

2
τ = −β1

(4.11)

where the numbers 1, 2 refer to the C−H bond labels of figure 4.1 and τ is the angle

between the two bonds. The equilibrium structure is assumed to be tetrahedral, so that

τ is the tetrahedral angle

τ = 2arctan
√
2 (4.12)
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which is about 109.5◦. The sine and cosine terms then become

sin(β1) = − sin(β2) = −
√

2

3

cos(β1) = cos(β2) =
−1√
3

(4.13)

The vibrational normal coordinates of the symmetric and antisymmetric stretch modes

are

Qsst(t) = q1(t) + q2(t)

Qast(t) = q1(t)− q2(t)
(4.14)

where the amplitudes of the individual bond coordinates are the same. This leads to the

amplitude normalisation

q =
Q√
2
. (4.15)

The normal coordinate for the bending motion Qbe belongs to the same symmetry species

as Qsst, namely A1 (see appendix A). This implies that the result of the analysis for the

latter can be applied to the former.

Combining the bond polarisabilities in the group frame of reference, the polarisability

tensor of the symmetric stretch mode is given through

αg
sst =

Q√
2

(
αg

1 +αg
2

)
=

2Q

3
√
2

α⊥,oop 0 0

0 α⊥,ip + 2α∥ 0

0 0 2α⊥,ip + α∥

 (4.16)

where the off-diagonal components are zero irrespective of the bond angle τ . For the

antisymmetric stretch mode, which belongs to the B2 symmetry species of the point group,

we find in a similar way

αg
ast =

Q√
2

(
αg

1 −αg
2

)
=

2Q

3
(α⊥,ip − α∥)

0 0 0

0 0 1

0 1 0

 (4.17)

which is independent of the out-of-plane bond polarisability component α⊥,oop.

The Raman tensors for the fundamental transitions from the vibrational ground state

to the first excited state in each of the three normal modes can now be given. For the
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symmetric stretch, we have

α′g
sst =

2

3
√
2


α′
⊥,oop 0 0

0 α′
⊥,ip + 2α′

∥ 0

0 0 2α′
⊥,ip + α′

∥

 (4.18)

with the same form for the bend mode Raman tensor α′g
be, while for the antisymmetric

stretch we have

α′g
ast =

2

3
(α′

⊥,ip − α′
∥)

0 0 0

0 0 1

0 1 0

 (4.19)

each tensor being the derivative of the polarisability tensor with respect to the vibrational

normal coordinate evaluated at the equilibrium geometry. The forms of the above Raman

tensors agree with those derived from symmetry considerations of the moiety discussed

below.

A further coordinate transformation is needed to express the Raman tensors in the

molecular frame of reference m. The choice of axes is presented in figure 4.2. Note that

this choice does not follow the symmetry prioritisation. The two-fold rotational symmetry

is ignored as it does not apply in stretched alkane chains with an odd number of carbon

atoms nor in molecules that include a head-group such as fatty acids. The present choice

is used so that the axes are the same for all molecules that contain a stretched alkane

chain.

R

H

H

R R

H

H

Figure 4.2: The molecule frame of reference (blue) for a stretched alkane chain and its
relation to the axes of the CH2 group (red) at two different positions. The
three sets of axes are parallel. The C−C bonds lay in the x̂mẑm and the C−H
bonds in the x̂mŷm plane. The positive unit vector ẑm is directed towards the
methyl end of the chain, with R representing an dissimilar head-group.
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The coordinate transformation from the group frame of reference g to the molecule

frame m only involves an exchange of axis labels. The transformation matrix is found to

be

Tg→m =




0 0 1

0 −1 0

1 0 0

 if ẑg = x̂m


0 0 1

0 1 0

−1 0 0

 if ẑg = −x̂m

(4.20)

which depends on the location of the CH2 group. This transformation matrix is applied

as in equation 4.2. This results in

α′m
sst,be =

2

3
√
2


2α′

⊥,ip + α′
∥ 0 0

0 α′
⊥,ip + 2α′

∥ 0

0 0 α′
⊥,oop

 (4.21)

for both forms of Tg→m, so irrespective of the side of the chain on which the CH2 group

is located. This is not the case for the antisymmetric stretch Raman tensor

α′m
ast = ±2

3
(α′

⊥,ip − α′
∥)

0 1 0

1 0 0

0 0 0

 (4.22)

which is positive if ẑg = x̂m and negative if ẑg = −x̂m.

The Raman tensor for all CH2 groups in an alkyl chain may be predicted by combining

the group Raman tensors taking their relative phases into account. This in effect further

extends the bond-polarisability model.

The combined Raman activity of the symmetric stretch as well as bend modes adds up

from group to group if these vibrate in phase. However, adding the antisymmetric stretch

Raman tensors in that way leads to a minimum in Raman activity. A phase difference

of half a cycle between neighbouring groups results in a strong Raman effect for this

mode. This effectively changes the sign of the Raman tensor alternately along the chain

so that the overall Raman tensor adds up to a non-zero tensor. The Raman activity of

the combined methylene groups is then described by a Raman tensor of the same form as

that of an individual methylene group.

In a stretched alkane chain, like vibrations of individual methylene groups are known

to couple and the resulting modes span one-dimensional irreducible representations that

correspond one-to-one to those of the point group [97] (C2v or C2h for an odd or even

number of carbon atoms). Each vibrational mode of the chain features a distinct phase

relation between the atomic motion of neighbouring CH2 groups. For an infinite methylene
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Figure 4.3: The vibrational normal modes of an isolated methyl group (atomic motion
indicated with open arrows) and the choice of axes (red) in the group g and
bond b frames of reference. The point group symmetry species are indicated
and the modes are labelled sst for symmetric stretch, dst for degenerate stretch,
um for umbrella and def for degenerate deformation.

chain, only the in-phase mode is Raman active, while only the fully out-of-phased mode

(a phase shift of π radians between each methylene group) is infrared active with all other

modes neither Raman nor IR active. Since the IR and Raman-active modes are at opposite

extremes of the Brillouin Zone, the frequencies can be markedly different [98]. In finite

chains, multiple Raman-active modes arise with non-zero phase relations between adjacent

methylene groups, occurring at different frequencies and with varying spectral intensities.

However, all these are each expected to have a Raman tensor of the same form as that of

the elemental vibration of the constituent methylene groups. We will encounter examples

of this in section D.5.

4.1.3 Methyl stretch modes

The polarisability of an individual C−H methyl bond in its own Cartesian frame of refer-

ence (see figure 4.3) is given as

αb
C−H =

α⊥,v 0 0

0 α⊥,h 0

0 0 α∥

 (4.23)

where the subscript ⊥, v stands for the component perpendicular to the bond axis which is

in the vertical plane spanned by the bond (along ẑb) and the ẑg axis of the methyl group.

The horizontal component ⊥, h is parallel to the x̂gŷg plane. The axes of the bond frame

are chosen to simply the analysis.

The transformation from bond frame b to group frame g is given by two subsequent
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elemental rotations

Tb→g = Rz(−ϕ)Ry(−θ)

=

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



=

 cosϕ cos θ sinϕ − cosϕ sin θ

− sinϕ cos θ cosϕ sinϕ sin θ

sin θ 0 cos θ


(4.24)

where rotation matrices are given through equation 2.12. The negative angles effect an

anticlockwise active rotation of the tensor to which it is applied. These angles do not

conform to the Euler angles. Using the latter requires three rotations rather than the two

presented here.

The bond polarisability in the group frame of reference g can now be given through

αg
C−H = Tb→gα

b
C−HTb→g

−1

=

 cosϕ cos θ sinϕ − cosϕ sin θ

− sinϕ cos θ cosϕ sinϕ sin θ

sin θ 0 cos θ

α⊥,v 0 0

0 α⊥,h 0

0 0 α∥

 cosϕ cos θ − sinϕ cos θ sin θ

sinϕ cosϕ 0

− cosϕ sin θ sinϕ sin θ cos θ


=

α⊥,vc
2ϕc2θ + α⊥,hs

2ϕ+ α∥c
2ϕs2θ sϕcϕ

(
α⊥,h − α⊥,vc

2θ − α∥s
2θ
)

cϕsθcθ
(
α⊥,v − α∥

)
sϕcϕ

(
α⊥,h − α⊥,vc

2θ − α∥s
2θ
)

α⊥,vs
2ϕc2θ + α⊥,hc

2ϕ+ α∥s
2ϕs2θ −sϕsθcθ

(
α⊥,v − α∥

)
cϕsθcθ

(
α⊥,v − α∥

)
−sϕsθcθ

(
α⊥,v − α∥

)
α⊥,vs

2θ + α∥c
2θ


(4.25)

where s and c stand for sin and cos, respectively. The tensor is symmetric, as expected.

The equilibrium structure of the methylene group is assumed tetrahedral. The angle

θ is identical for all C−H bonds in the methyl group

θ1 = θ2 = θ3 = τ (4.26)

with the bond labels 1, 2, 3 following figure 4.3 and τ the tetrahedral angle (defined in

equation 4.12). The sine and cosine terms of θ then become

sin τ =
2
√
2

3

cos τ =
−1

3

(4.27)

The angle ϕ is given in the equilibrium configuration as ϕ1 = 0◦, ϕ2 = 120◦ and ϕ3 = 240◦.

The polarisability tensors of the three bonds in the group frame of reference can now be
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given as

αg
1 =


1
9α⊥,v +

8
9α∥ 0 −2

√
2

9 (α⊥,v − α∥)

0 α⊥,h 0
−2

√
2

9 (α⊥,v − α∥) 0 8
9α⊥,v +

1
9α∥



αg
2 =


1
36α⊥,v +

3
4α⊥,h +

2
9α∥

1
12

√
3
α⊥,v −

√
3
4 α⊥,h +

2
3
√
3
α∥

√
2
9 (α⊥,v − α∥)

1
12

√
3
α⊥,v −

√
3
4 α⊥,h +

2
3
√
3
α∥

1
12α⊥,v +

1
4α⊥,h +

2
3α∥

√
2

3
√
3
(α⊥,v − α∥)√

2
9 (α⊥,v − α∥)

√
2

3
√
3
(α⊥,v − α∥)

8
9α⊥,v +

1
9α∥



αg
3 =


1
36α⊥,v +

3
4α⊥,h +

2
9α∥

−1
12

√
3
α⊥,v +

√
3
4 α⊥,h − 2

3
√
3
α∥

√
2
9 (α⊥,v − α∥)

−1
12

√
3
α⊥,v +

√
3
4 α⊥,h − 2

3
√
3
α∥

1
12α⊥,v +

1
4α⊥,h +

2
3α∥

−
√
2

3
√
3
(α⊥,v − α∥)√

2
9 (α⊥,v − α∥)

−
√
2

3
√
3
(α⊥,v − α∥)

8
9α⊥,v +

1
9α∥


(4.28)

The polarisability tensors of the vibrational modes are found by combining the bond

polarisabilities for the six vibrational normal modes listed in appendix A. These belong to

two symmetry species: A1 and E, both occurring as a stretch and a deformation mode.

Our choice follows [78] and is illustrated in figure 4.3. The internal coordinate Q for the

totally symmetric species A1 is

QA1 =
1√
3
(q1 + q2 + q3) (4.29)

while appropriate bases for the degenerate mode E are

QE =


1√
6
(2q1 − q2 − q3)

1√
2
(q2 − q3)

(4.30)

where q stands for a stretch of one of the three C−H bonds or an angular coordinate

related to that bond. Other degenerate bases can be chosen. This form is appropriate

even when the methyl group is attached to an alkyl chain, which reduces its point group

symmetry. We derive the form of the Raman tensor using the stretch modes, knowing

that the result applies equally to the deformation modes of the same symmetry species.

The symmetric C−H stretch sst belongs to the A1 symmetry species. Its normal

coordinate is

Qsst(t) = q1(t) + q2(t) + q3(t) (4.31)

with amplitude normalised so that

q1 = q2 = q3 =
Qsst√

3
(4.32)
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as all bonds oscillate in phase. The polarisability tensor for this mode is

αg
sst =

Qsst√
3
(αm

1 +αm
2 +αm

3 )

=
Qsst√

3


1
6α⊥,v +

3
2α⊥,h +

4
3α∥ 0 0

0 1
6α⊥,v +

3
2α⊥,h +

4
3α∥ 0

0 0 8
3α⊥,v +

1
3α∥

 (4.33)

which has two non-zero unique components and is a tensor of cylindrical symmetry. This

form applies equally to the umbrella motion um, also belonging to the A1 symmetry

species. The Raman tensor for these modes are thus

α′g
A1

=

a 0 0

0 a 0

0 0 b

 (4.34)

with the components

a =
1

6
√
3
α′
⊥,v +

√
3

2
α′
⊥,h +

4

3
√
3
α′
∥

b =
8

3
√
3
α′
⊥,v +

1

3
√
3
α′
∥

(4.35)

for the symmetric stretch mode. This conforms to the basis vectors xx+ yy and zz that

belong to the A1 symmetry species for the C3v point group as listed in its character table

in appendix A.

The two degenerate asymmetric stretch modes dst as well as the two degenerate defor-

mation or scissoring modes def belong to the E symmetry species. To distinguish the two,

these are labelled (1) and (2), using brackets to avoid confusion with Mulliken symbols.

The polarisability tensors for these modes are found to be

αg
E(1)

=
Q√
6
(2αm

1 −αm
2 −αm

3 )

=
Q√
6

 1
6α⊥,v − 3

2α⊥,h + 4
3α∥ 0 − 2

√
2

3 (α⊥,v − α∥)

0 − 1
6α⊥,v +

3
2α⊥,h − 4

3α∥ 0

−2
√
2

3 (α⊥,v − α∥) 0 0

 (4.36)

and

αg
E(2)

=
Q√
2
(αm

2 −αm
3 )

=
Q√
2

 0 1
6
√
3
α⊥,v −

√
3
2 α⊥,h + 4

3
√
3
α∥ 0

1
6
√
3
α⊥,v −

√
3
2 α⊥,h + 4

3
√
3
α∥ 0 −2

√
2

3
√
3
(α∥ − α⊥,v)

0 − 2
√
2

3
√
3
(α∥ − α⊥,v) 0


(4.37)
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The form of Raman tensor for the degenerate E mode of the C3v point group can therefore

be written as

α′g
E =




c 0 −d

0 −c 0

−d 0 0

 (1)


0 c 0

c 0 d

0 d 0

 (2)

(4.38)

where each Raman tensor of this degenerate mode has four non-zero components of which

two are unique. Its elements c and d are given as

c =
1

6
√
6
α′
⊥,v −

3

2
√
6
α′
⊥,h +

4

3
√
6
α′
∥

d =
2

3
√
3
(α′

⊥,v − α′
∥)

(4.39)

based on the polarisability derivatives of the individual C−H bonds involved.

R R

H

H

H

Figure 4.4: The molecule frame of reference (m, blue) for a stretched alkane chain and its
relation to the axes of the CH3 group (g, red). The unit vector ŷg ∥ ŷm.

Molecular frame of reference

These Raman tensors are now expressed in the molecule frame of reference m, which is

defined in figure 4.2 and is again shown in figure 4.4 to relate it to the methyl group frame

of reference g. The methyl group is located at one end of a stretched alkane chain in

an orientated determined by the equilibrium geometry of the molecule. The appropriate
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coordinate transformation involves one elemental rotation only

Tg→m = Ry(−θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (4.40)

where θ is the angle from ẑg to ẑm about the ŷg = ẑm axis. Assuming a tetrahedral

geometry around each carbon atom, geometrical reasoning readily results in

θ = 90◦ +
1

2
τ (4.41)

where τ is the tetrahedral angle of equation 4.12. The numerical values of the sine and

cosine of θ are

cos(90◦ +
1

2
τ) =

−1

2

√
6

sin(90◦ +
1

2
τ) =

1

3

√
3

(4.42)

The Raman tensor of the A1 methyl modes in the molecule frame of reference can now

be given by combining equations 4.34, 4.40 and 4.42 as

α′m
A1

= Tg→mα
′g
A1

Tg→m
−1

=

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


a 0 0

0 a 0

0 0 b


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



=
1

3

 2a+ b 0
√
2(b− a)

0 a 0√
2(b− a) 0 a+ 2b


(4.43)

which is a symmetric tensor with four non-zero, unequal but dependent, components. The

form of the Raman tensors of two-fold degenerate E modes are derived in a similar way,

using equations 4.38 to yield

α′m
E =



1
3


2c− 2

√
2d 0 −

√
2c− d

0 −c 0

−
√
2c− d 0 −c+ 2

√
2d

 (1)

−
√
3

3


0

√
2c+ d 0

√
2c+ d 0

√
2d− c

0
√
2d− c 0

 (2)

(4.44)

in the molecule frame of reference as used in our modelling effort.

In addition to having different symmetry axes, the molecule of which the methyl group
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is a part may have a lower symmetry. In the case of an alkane chain, the C3v point group

symmetry of an isolated methyl group is reduced to C2v for an even number and C2h for

an odd number of carbon atoms or to Cs for a differing group at the opposite end of the

chain. This lifts the degeneracy of the E modes analysed here and transforms rotational

motion of the methyl group into vibrations. All vibrational modes of these molecules

belong to one-dimensional symmetry species. Section 4.3 derives the Raman tensors from

an analysis of the whole molecule.

Choice of symmetry axes

There is ambiguity in the choice of Cartesian axes for the methyl group frame of reference.

The assignment follows the symmetry operators of the C3v point group: the z-axis along

the C3 axis with the x and y axis forming a right-handed system. Here, we choose ẑg to

point from the carbon atom to the vacant tetrahedral corner at which the methyl group

is connected to the rest of the molecule and x̂g is along one of the C−H bonds with the

positive direction towards the hydrogen atom (figure 4.3). Many authors do not fully

specify their choice of axes nor the prioritisation that gives rise to it (for example [78],

[73] and the references that follow below). Our method of assigning the axes is specified

in appendix A.

Given that the z-axis is along the C3 axis, eight Cartesian axis systems remain possible

that satisfy the C3v point group symmetry. ẑg may be chosen ‘up’ or ‘down’ while the

x-axis can be parallel or perpendicular to one of the mirror planes, with x̂g pointing in

two possible directions in each case. These axes can be transformed into one another

by symmetry operations: mirroring in the xy-plane, C4 rotation about the z-axis and

inversion. However, none of these operations are part of the C3v point group so the

different sets of axes are not equivalent. This means that the choice of axis will affect the

form of the Raman tensor for various modes.

The Raman tensor for the fully symmetric mode αg
A1

is the same in all systems.

However, the forms of the Raman tensors for the degenerate modes αg
E is affected by

the choice of axes. Their forms have been derived following the process of the previous

section using appropriate angles θ and ϕ for the three C−H bonds in each of the eight

different sets of axes labelled (I) through (VIII). The results are presented in table 4.1.

The values of c and d are the same in each and are given in equations 4.39 above. Axes

set (I) conforms to our choice.

The axes (II) and (VI) give rise to an identical pair of Raman tensors for the degenerate

E mode, while all other axes result in a different pair of tensors. However, this does not

mean that these tensors can be distinguished in an experiment. The radiation due to the

Raman-induced dipole p is the same as from a dipole −p that is oriented antiparallel

to the original. This implies that the Raman tensor may be multiplied by −1 without

consequence, as this only inverts the induced dipole while still giving rise to the same time-

averaged dipole radiation field. In addition, the definitions of c and d may be changed
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Table 4.1: Choice of axes determines the form of the Raman tensor for the degenerate
vibrational modes of the C3v point group.

Choice of axes in g frame α′g
E(1)

α′g
E(2) c 0 −d

0 −c 0
−d 0 0

 0 c 0
c 0 d
0 d 0


−c 0 0

0 c −d
0 −d 0

  0 −c −d
−c 0 0
−d 0 0


c 0 d
0 −c 0
d 0 0

  0 −c 0
−c 0 −d
0 −d 0


−c 0 0

0 c d
0 d 0

  0 −c d
−c 0 0
d 0 0


c 0 d
0 −c 0
d 0 0

 0 c 0
c 0 −d
0 −d 0


−c 0 0

0 c −d
0 −d 0

  0 −c −d
−c 0 0
−d 0 0


 c 0 −d

0 −c 0
−d 0 0

  0 −c 0
−c 0 −d
0 −d 0


−c 0 0

0 c d
0 d 0

  0 c −d
c 0 0
−d 0 0
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to −c and/or −d, as long as this is done on both sides of the equations that define these

variables (such as equations 4.39 in the case of methyl). We can therefore conclude that

only the relative signs of the Raman tensor components matter. Setting the signs aside,

there are only two more fundamental forms of α′g
E : on the one hand those resulting from

axes (I), (III), (V) and (VII) in which x̂g passes through a mirror plane, and on the other

(II), (IV), (VI) and (VIII) in which ŷg passes through one of the mirror planes.

4.1.4 Symmetry arguments

The forms of the Raman tensors for all point groups can be deduced from symmetry

considerations once a coherent procedure is established to set the Cartesian axes. A

limited number of authors have taken the effort to do this, though none provide their

axis choice explicitly. The variation in the forms of Raman tensors presented by various

authors can be fully explained by different choices of basis vectors. This section briefly

reviews their work, starting from the various tensor forms derived for the C3v point group.

The forms of the Raman tensors deduced for the methyl vibrations conform to various

literature sources, revealing the hidden choice of axes that their authors made. Our choice

conforms to the set of axes and directions presented as (I) in table 4.1. This agrees with the

result presented by Cardona [99], apart from the inclusion of antisymmetric components

by that author to account for resonant effects. The overview presented there is taken from

a book by Hayes and Loudon [100] which is rather difficult to obtain. Their work deviates

from an earlier publication by Loudon [101], which presents Raman tensors that conform

to those obtained by axes set (VIII) with −c substituted for c. The choice of axes in

this reference in turn is based on Nye’s book on crystals [102], which was consulted and

confirmed our conclusion that Loudon took the y-axis in the C3v mirror plane.

The Raman tensors in the Bilbao Crystallographic Server [103] (BCS, accessible through

http://www.cryst.ehu.es/) conform to our results obtained for axes (IV) with c changed

to −c. This is the same as multiplying the pair of Raman tensors from either (II) or (VI)

by −1. None of these operations affect the radiated dipole field.

Mortensen [104] gives the symmetry species of the intermediate states, which is relevant

in resonant Raman scattering, but gives the same forms as those in the BCS though it is

unclear on which source the latter is based. The choice of axes also remains unspecified.

The discrepancy between the various literature sources emphasized here for the C3v

point group is observed in a limited number of other point groups as well. If a symmetry

operation of the point group can produce different but equally valid choices of axes, the

axes choice will not affect the form of the Raman tensor. This is the case with most

point groups, such as those including a C4 axis. Comparing the crystallographic sources

discussed above, we find that the point groups D3, C3v, D3d, T and Th give rise to

discrepancies.

A further source of variation is the ambiguous prioritisation of the x, y and z axes in

the some low-symmetry point groups. For the C1 point group, any orientation of axes will

http://www.cryst.ehu.es/
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produce the same form of Raman tensor, though the numerical values will change upon

rotation of the axes. In the Cs point group, either the y or z axis is taken as unique. This

implies that the plane of symmetry is either xz or xy, with most character tables following

the latter. The choice affects the form of the Raman tensor: the α′
xy and α′

yz components

are interchanged with the α′
xz and α′

zx.

Loudon [101] used the results of symmetry analysis to determine the form of the

Raman tensors. This approach comes down to inspecting the appropriate character table

and taking the binary products listed with the symmetry species of the vibration under

consideration as the only non-zero Raman tensor components, ensuring that the tensor

is symmetric. In most cases, the correct form of the Raman tensor for fundamental

transitions is readily constructed in this way. However, one can only read off the form of

the Raman tensor from the character tables if (1) the choice of axes used to construct these

tables followed an unambiguous assignment based on the molecular point group symmetry,

and (2) that the researcher wishing to use the character tables follows the identical set of

axes. This is complicated by a lack of standardization. Though the International Tables

for Crystallography [105] provide some guidance, they leave ambiguity in the assignment

of axes in a number of point groups. In other cases, one might wish to use a set of axes

that coincides with a physical meaning rather than symmetry.

Most character tables list the Raman tensor components separated by commas or

parenthesis. Though text books do not appear to explain it, the meaning of these is to

be understood as follows. Components grouped in brackets indicate that these are basis

vectors which can be transformed into one-another using the symmetry operations of the

point group. Such bases are equivalent. Commas indicate basis vectors that belong to the

same symmetry species but cannot be transformed into each other using the symmetry

operations of the point group. The matrix elements separated by commas are taken as

independent variables and those grouped in parentheses are interchangeable. The latter

only occur in degenerate modes (E and F symmetry species) and because of their equiv-

alence have the same numerical value. Normalisation of the matrix elements has to be

taken into account for these modes as each basis vector is normalised.

Loudon apparently changed his choice of axes for a later publication with Hayes [100],

which has been used by Cardona [99] and differs from the original version as illustrated

for the E species of the C3v point group in the previous section. Though Loudon’s first

overview includes some errors (notably in the form of the degenerate modes of the tetra-

hedral point groups) it has been reproduced relatively recently in [106] without further

comment.

Mortensen [104] used commutation relations of symmetry operators to deduce the

symmetry species of intermediate quantum states in resonant Raman scattering. Their

analysis resulted in identification of the non-zero Raman tensor elements for Raman-active

transitions, appropriate normalisation factors as well as whether the tensor components are

of equal value. The intermediate state is relevant in resonance Raman scattering, whereas

it remains virtual in normal Raman scattering considered in this work. However, the
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form of the Raman tensor deduced for resonance scattering also applies to non-resonance

scattering if the antisymmetric terms are ignored. The results of Mortensen are also

included in Long’s book [61] from page 255 onwards.

By critical comparison of our results and the cited literature, the form of the Raman

tensor for each Raman active symmetry species can be derived. We have undertaken such

analysis for a number of point groups using our particular choice of axes. The results are

included as appendix C.

In concluding, let me stress that it is paramount to specify the choice of axes and work

with it consistently before orientational analysis can be done in a meaningful way. This

has not been an important issue for most researchers to date due to the nature of the

experiments. On the one hand, a focus by chemists on normal Raman scattering of gases

and liquids only requires dealing with isotropic averages, while on the other hand a focus

by physicists on resonant Raman scattering by phonons in solids is limited to only one

well-defined orientation of a particular crystal face. In our work, Raman tensors have to

be specified in an unambiguous molecular frame of reference so that the orientation of this

frame with respect to the laboratory-fixed environment can be analysed.

4.2 Numerical values through computation

Predicting Raman spectra through computation is a specialised field within quantum

chemistry. This section provides a summary of the basic concepts behind such calcula-

tions. It serves as introduction and theoretical background to the next section, in which

the Gaussian software package is applied to molecules studied in this work at currently

acceptable levels of theory. Literature is presented to establish what that level involves.

4.2.1 Calculation of Raman spectra

Computations of the Raman effect focus on obtaining a Raman spectrum that matches

experimentally obtained spectra. This requires the calculation of all vibrational modes of

the molecule and the polarisability derivatives with respect to the atomic motions in these

modes as an intermediate step. The Raman tensors of the modes are thus intrinsically

part of the calculation. However, the computational output may not show the tensors in

a convenient way as this has not traditionally been its focus.

A Raman calculation is performed on an optimized molecular geometry. Depending on

the capabilities of the computational package employed, computations may be performed

on an isolated molecule to mimic the gas phase, a molecule in an effective solvent field

or with explicit inclusion of surrounding molecules. The optimized geometry includes

the positions of the nuclei and the wave-functions of all electrons in the molecule. It is

found in a minimization process of the total potential energy. At standard temperature

and pressure, this is usually the electronic and vibrational ground state of the molecule.

Physical properties can be computed directly from the ground state or as a perturbation



4.2. NUMERICAL VALUES THROUGH COMPUTATION 113

to it.

For the Raman effect, polarisability derivatives need to be computed in an applied

electric field. If the frequency is taken as zero, the static polarisability derivatives are

found. These are a valid approximation in normal Raman scattering. The frequency of the

field has to be specified in resonant conditions, which provides the dynamic polarisability

derivatives. In both cases, these tensor components are third order derivatives of the

potential energy.

The potential energy of a molecular system is found by solving the Schrödinger equation

ĤΨ(r) = ϵΨ(r) (4.45)

where Ĥ is the Hamiltonian, Ψ(r) is the wave-function of the system at each point r in

space and ϵ is its (quantized) energy. The Hamiltonian includes internal energy terms

and the interaction with the applied electric field. The latter describes light scattering

and includes the electric dipole, magnetic dipole and electric quadrupole operators for

the lower and higher order effects summarised classically by equation 2.17. For Rayleigh

and Raman scattering, the interaction between the molecule and the applied electric field

only involves the electric dipole operator as introduced in equation 2.29. The interaction

energy is then found through

ϵ = −p ·E (4.46)

which is the energy of the electric dipole moment pe of the scattering molecule in the

applied electric field E. The components of the dipole moment may thus be computed as

a derivative of the potential energy with respect to the applied field

pj ∝
∂ϵ

∂Ej
(4.47)

while the polarisability tensor is the derivative of the dipole moment with respect to the

applied electric field

αij ∝
∂

∂Ei

∂ϵ

∂Ej
(4.48)

Finally, the Raman tensor of vibrational mode v is proportional to the polarisability deriva-

tive with respect to the normal coordinate Qv at the equilibrium geometry so that

αvij ∝
(

∂

∂Qv

∂

∂Ei

∂ϵ

∂Ej

)
0

(4.49)

Thus, the components of the Raman tensor are a third derivative of the potential energy

of the molecule at its equilibrium geometry. Only methods that include solutions to these

derivatives can be used for Raman calculations.
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4.2.2 Density-functional theory

A particular elegant way to solve the Schrödinger equation 4.45 is via density-functional

theory (DFT) [107]. This method is more efficient in computing the electronic structure of

larger molecules or clusters then conventional ab-initio computations such as the Hartree-

Fock method. DFT is a first-principles method but not strictly speaking fully ab intitio.

Though it fundamentally solves the Schrödinger equation for a system of coupled electrons,

some parts of the problem are addressed through semi-empirical parametrization of the

interactions in terms of the electronic density.

The DFT approach to solving the Schrödinger equation and finding the ground state

of a molecule consists in expressing it in terms of an electronic density functional. This

modified form is the Kohn-Sham equation(
−~2

2m
∇2 + VKS(n(r), r)

)
Ψ(r) = EΨ(r) (4.50)

which includes the Kohn-Sham potential VKS(n(r), r) that depends on the electronic den-

sity n(r). The latter, in turn, depends on the wave-function at each position

n(r) = |Ψ(r)|2 (4.51)

so that the potential function depends on the electronic density which in turn is a function

of position. Hence the name density functional.

All electronic interactions are included in the Kohn-Sham potential as a function of r

and n(r): the Coulomb interaction of the electrons with the nuclei (which only depends on

r), the Coulomb repulsion among electrons and the exchange potential. DFT essentially

replaces the many-body problem of solving the Schrödinger equation for all electrons (a

completely ab-initio approach) by the problem of finding a one-electron solution in a

non-linear potential that depends on the electronic density.

Implementation of a DFT calculation follows an iterative approach for each set of nu-

clear coordinates. At the start, the wave-function Ψ(r) is expressed as a linear combination

of basis functions ψi(r) that make up the basis set. From an initial guess of the ground

state, the electron density n(r) is computed from which the Kohn-Sham potential follows.

Using this fixed potential, equation 4.50 is solved and the ground state Ψ(r) is found as

a new linear combination of the basis set. At the end of one iteration, n(r) is again com-

puted and compared to the one at the start of the iteration. The process is repeated with

the new electron density. If convergence has been achieved (i.e. an energy minimum is

found), a self-consistent solution has been found and the problem is solved. Another point

in the potential energy surface is then computed by varying the nuclear coordinates. Once

a global minimum is found, calculations of the desired physical properties may follow.

Crucial specifications in DFT are the method and the basis set. The method specifies

the exact form of the Kohn-Sham potential and thus how it depends on n(r). The basis

set specifies the type and nature of the wave-functions used in the calculation of the
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self-consistent electronic field. Any computations on an optimized geometry have to be

performed with the same method and basis set that was used in the optimization.

4.2.3 Computational approaches

Several computational packages are available that can predict Raman spectra. A selection

is presented here to highlight theoretical features, limitations and some applications.

The general approach for a Raman calculation is to first compute an equilibrium struc-

ture by finding a potential energy minimum for the molecular geometry. Once this elec-

tronic structure is known, the force constants between the atom are computed and the

normal modes obtained. The linear polarisability tensor is computed from the electronic

structure in an applied field. The polarisability derivatives are computed from deformed

structures that each follow one of the vibrational patterns. A recent review including a

more detailed discussion can be found in reference [108].

The geometry optimization and the Raman analysis are distinct steps and each in-

volves specialised computational solutions that not all packages can perform. General

computational packages include Gaussian of Gaussian Inc. (Wallingford CT, USA) and

GAMESS of Professor Mark Gordon at Iowa State University. Both are updated and

expanded regularly. Some authors develop their own software with a particular applica-

tion in mind and to decrease the computational resources needed for increasingly larger

molecules such as buckminsterfullerene [109]. The Raman problem can be reduced by lim-

iting the computation to selected vibrational modes (so-called procedure for investigating

categories of vibrations, see [110]), treating modes as localised to a subset of atoms in the

molecule [111] or by partitioning the electronic density [112]. Some of these methods can

be generalised to molecular and periodic systems. In most cases, these require numerical

rather than analytical derivatives, as in the case of buckminsterfullerene [109].

The predicted Raman frequencies and intensities depend on the level of detail in the

theory. All frequencies should be positive and real for an optimized structure. If some are

negative, the structure is unstable, if imaginary, it is at a saddle point in the potential

energy surface (i.e. a transition state) [41]. Vibrational frequencies are usually overes-

timated in a computation. This is corrected by an empirical scaling factor derived from

a set of experimental reference spectra. The factors vary between molecules as well as

between vibrational modes of an individual molecule. A large collection of scaling factors

is included in the Computational Chemistry Comparison and Benchmark Database of the

United States National Institute of Technology (NIST) [113].

The predicted Raman intensity is an averaged property over all orientations of the

molecule. The total scattering cross section is usually given in addition to the depolari-

sation ratio. These can only be compared to conventional Raman spectroscopy on bulk

liquids or gasses. In ordered materials, we have to work with Raman tensors which should

therefore be included in the computational output.

The intensity further depends on the amplitude of the vibrational normal mode Qv0,
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which in turn depends on the frequency of the mode and whether the scattering is Stokes

or anti-Stokes [41]. Computations at zero Kelvin return the zero-point amplitude of the

vibrational motion. For Stokes Raman scattering from the ground state to the first vibra-

tionally excited state (relevant to the present work) we have

Qv0 =

√
~

2µvωv
=

√
h

8π2cµvν̄v
(4.52)

for a harmonic oscillation at angular frequency ωv or wavenumber ν̄v and reduced mass

µv. In an ensemble, the temperature affects the relative intensities of all Raman active

transition through the population of the vibrational state. This effect can be ignored at

standard temperature.

Any surrounding molecules in condensed phases may further affect the predicted fre-

quencies and intensities through coupling of the vibrational motion or constraining its

amplitude. However, such computations are stretching the current capabilities of theoret-

ical chemistry which tend to be aimed at one of constituent challenges such as improving

the anharmonic description of gas-phase molecules or at efficiently computing selected

vibrations of molecular systems.

Harmonicity of the vibrational potential and electrical harmonicity (neglecting higher

order terms in the expansion of the polarisability) may or may not be assumed in the

computation. The double harmonic approximation is the default approach though anhar-

monicity has been addressed for decades and methods are continuously being developed

(see, for instance, [114, 115]). A comprehensive approach with generalised second-order

vibrational perturbation theory including both mechanical and electric/magnetic anhar-

monicity has so far been performed on gas-phase molecules of about 10 atoms [116].

Analytical solutions are proven for nitromethane [117].

Raman computations are performed at a specific frequency of the incident electric field.

In a static approach, this frequency is taken to be zero to mimic the situation of a field

that is constant over the extent of the molecule. Static polarisability derivates are then

obtained which may be used in non-resonant (i.e. normal) Raman scattering [41]. In a

dynamic analysis, the frequency is specified and a more involved computation is needed

[118]. Such analysis is needed to find agreement with resonant and near-resonant Raman

spectra [119].

The ideal computation would give a full anharmonic analysis of the dynamic polaris-

ability tensor and its derivatives for a collection of more than 20 atoms. However, this

appears to be beyond the current frontier of theoretical chemistry (see e.g. [118]).

4.2.4 Method and basis set

Finally, I would like to stress the importance of selecting an appropriate method and basis

set. The computational method should allow analytical derivatives of the potential energy

surface (3rd-order in the harmonic approximation and 5th-order if anharmonicity is taken
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into account) or numerical solutions if the former are not available [117].

At present, the B3LYP functional is widely used within the theoretical chemistry

community for analyses, for example in references [114, 117–119]. This method is also

used in our computations. B3LYP stands for Becke’s three-parameter hybrid functional

with Lee-Yang-Parr non-local electron correlation [120, 121]. This specifies the exchange

functional as a mixture of Hartree-Fock and DFT exchange correlation functionals.

A basis set is chosen with the purpose of the computation in mind. For organic

molecules, Gaussian-like orbitals are commonly used. The number of functions and their

complexity depends on the properties of interest and the computational power at hand.

Computed vibrational Raman spectra depend strongly on the choice of basis set for the

computation [122]. For accurate Raman spectra, the basis set should include large basis

sets with diffuse and polarisation functions [114]. Examples in the literature cited here

include aug-cc-pVTZ [114, 122], SNSD [115, 116] and 6-311++G(d,p) [119]. Cheeseman

and Frisch [122] suggest that although Raman tensor computations require basis sets with

diffuse functions, geometry optimizations and force field calculations do not, so that a two-

step approach can be more efficient than using the extended basis set for all calculations.

The basis set chosen for our computations is 6-311++G(d,p). This is the 6-311G

basis set of Gaussian functions augmented with diffuse functions (indicated by ++) and

polarisations functions, in this case one set of d-type functions on atoms from helium

onwards and one set of p-type functions on hydrogen atoms. These latter functions take

account of distortions to the atomic orbitals that arise from nearby nuclei.

The 6-311G basis is a so-called split-valence triple-zeta basis set due to John Pople

and makes a distinction between core and valence electrons. It employs six Gaussian-type

primitive orbitals to describe each atomic core orbital basis function. Each valence orbital

is composed of three basis functions, the first one formed by linear combination of three

primitive Gaussian-type orbitals, the other two are a single Gaussian-type orbital. Com-

bining the Gaussian-type orbitals in this way, rather than using these directly, increases

the accuracy of the modelled anisotropic electron distribution in molecules.

Diffuse functions correct for the electronic density at large distance from the nuclei,

which is underestimated in primitive Gaussians. A higher electronic density far away from

the nuclei affects the dipole moment operator (given through equation 2.29) and thus the

computed polarisability and its derivatives. The diffuse functions added to the basis set

are s-functions for hydrogen and p-functions for helium onwards.

The level of theory chosen is thus summarised as B3LYP/6-311++G(d,p). This follows,

amongst many others, the suggestion in [41] and the recent use by Fischer et al. [119] in

their detailed IR and Raman study of dimethyl sulfoxide.

4.3 Computations in Gaussian

In this work, the computational package Gaussian 09 (revision A.02) [123] is used to

derive Raman tensors. Although other computational packaged are available, its ease
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of use, universality, continuous improvements and the availability of technical expertise

prevail for our purposes.

An accesible introduction to the implementation of DFT calculations within Gaus-

sian for Raman spectroscopy can be found in appendix A of Le Ru and Etchegoin’s book

on SERS (reference [41]). This was the only source that I could find to outline the com-

putational process. Though their method was originally followed, it proved problematic

for the following reasons. In the Raman computation, it includes the keyword NoSymm

to ensures that no rotations of the frame of reference are performed. Though this may

seem advantageous, it has two important drawbacks. First, avoiding symmetry consid-

erations prevents Gaussian from assigning symmetry species to the vibrational modes.

Second, it creates false non-degenerate modes that should be degenerate on the basis of

symmetry. A further problem in their method is the construction of Raman tensors from

the printed output using atomic linear polarisability derivatives and atomic motions in

each vibrational mode. The inaccuracy of the latter, given in two decimal places only,

introduces significant rounding errors in the resulting Raman tensors. Components that

should cancel on the basis of symmetry were not zero, but were found to be up to a tenth

of the numerical value of the components that were correctly computed as finite values.

Finally, Le Ru and Etchegoin’s instruction includes an error where it explains the frames

of reference used in Gaussian. The atomic linear polarisability derivatives are given with

respect to the original input coordinates used to specify the atomic positions (the so-called

Z-matrix) and the normalized atomic displacement of the vibrational modes are given in

the computational orientation set by Gaussian, termed the standard orientation. The

authors mixed this up.

Le Ru and Etchegoin’s method was therefore only used as a starting point in the

development of a consistent method. The documentation supplied by Gaussian was

another important source of information, though on its own does not provide adequate

instruction to obtain Raman tensors. For instance, the internal options I came to use

are not listed in its documentation. Instead, these were found on personal webpages of

theoretical chemists.

The computation is divided into two steps. A geometry optimization is performed

first. The Raman calculation is then performed on the optimized geometry. Both steps

using the same method and basis set. The B3LYP method is used, for which third order

derivatives are implemented in Gaussian. The basis set is 6-311++G(d,p). The default

temperature and pressure of 298.15 K and 1 atm are used. Appendix D includes relevant

sections of the computational output files and Matlab scripts to process the results.

4.3.1 Geometry optimization

The input file for a Gaussian computation, the so-called Gaussian Job File (GJF), follows

a strict format. Full details can be found in the online documentation of the program at

www.gaussian.com. The GJF for a geometry optimization includes the following in its

www.gaussian.com
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route section

#T B3LYP/6-311++G(d,p) Opt

which lists the method, basis set and keyword Opt for the geometry optimization. The

route section is initiated by the #-symbol, with #T indicating that output is reduced to

essential information and results. The charge of the molecule and its spin multiplicity

follow between white lines. The atoms are then listed, using their chemical symbols, with

tentative positions in units of Å within a Cartesian coordinate system at an arbitrary

origin. This list of coordinates is known as the Z-matrix.∗ A blank line completes the

GJF.

The output of the computation, called a log file, repeats the information provided in

the GJF and lists iterations of the computation in a fixed format. In each iteration, the

program attempts to identify the point group of the molecule. Once found, the molecule is

translated and rotated to a different coordinate system, called the standard orientation, on

which the calculation is performed. The origin of the standard orientation is placed at the

centre of charge of the molecule† and the axes are chosen to match its symmetry properties.

Use of these symmetry-adapted Cartesian coordinates accelerates the computation. In

many cases, the standard orientation conforms to the Cartesian axes assigned on the basis

of molecular symmetry. As discussed above, this may involve ambiguities. The directions

of axes are arbitrary and the assignment of the x and y axes vary by author. Furthermore,

changing the input orientation may change the standard orientation that Gaussian finds.

The atomic positions are varied until a minimum in the potential energy of the molecule

is found. Each iteration is presented in the log file. Once convergence is achieved, the

final values are computed and printed after the line

-- Stationary point found.

The optimized molecular geometry is printed in the coordinate system of the standard

orientation. The Raman computation is now performed on this structure.

4.3.2 Raman calculation

The atomic positions obtained through geometry optimization are taken from the opti-

mization log file and formatted to a new GJF for the Raman calculation. The route section

of this GJF is

#T B3LYP/6-311++G(d,p) Freq=Raman IOp(2/33=1) IOp(7/33=3)

where the keyword Freq=Raman requests a vibrational analysis of the molecule as well as

computation of linear polarisability derivatives at each atom. Relevant isotopologues of

∗The relative atomic positions may also be specified as distances and angles or through interdependent
symbolic variables.

†This is the default, set by the COC option. The centre of mass can be set as the origin of the standard
orientation with the option COM, though it has not been used here because the exact location of the origin
was deemed unimportant.
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a molecule are computed from a single geometry optimization. Though isotopes do not

effect the electronic structure of a compound, they can change the molecular symmetry and

distort vibrational motion (see section 3.2.2 for details). The most abundant isotopes are

used as default. Other isotopes can be specified as Cl(Iso=37) in the Z-matrix of atomic

coordinates. In deriving the standard orientation, Gaussian does not take isotopes into

account as it is based on the charge rather than the mass distribution within the molecule.

The optimized molecular geometry is specified in the standard orientation as input for

the Raman computation to avoid any further coordinate transformations. If the molecule is

not specified in the standard orientation, Gaussian performs rotations and translation to

obtain it in that orientation, complicating the analysis. The internal option IOp(2/33=1)

provides the translation vector and rotation matrix that specify the transformation from

the input orientation to the standard orientation. If these are the zero vector and identity

matrix, respectively, no transformation is executed in the program.

The log of the Raman computation contains an overview of the vibrational normal

modes in the following format (taken from the sulfate computation).

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

E E T2

Frequencies -- 398.5956 398.5956 561.5002

Red. masses -- 15.9949 15.9949 17.5820

Frc consts -- 1.4973 1.4973 3.2660

IR Inten -- 0.0000 0.0000 23.3316

Raman Activ -- 2.2422 2.2422 2.3038

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 -0.22

2 8 -0.15 -0.26 0.40 -0.38 0.32 0.06 0.01 -0.33 0.34

3 8 0.15 0.26 0.40 0.38 -0.32 0.06 0.45 0.10 -0.12

4 8 0.15 -0.26 -0.40 0.38 0.32 -0.06 -0.45 0.11 -0.12

5 8 -0.15 0.26 -0.40 -0.38 -0.32 -0.06 -0.01 -0.33 0.34

Amongst other quantities, it lists the frequency (in cm−1), reduced mass (in amu) and

Raman activity (in Å4 amu−1) as well as the normalised displacements of each atom along

the Cartesian axes XYZ of the standard orientation for each vibrational mode. The Raman

scattering activity S (also simply Raman activity or scattering factor) depends on the

invariants of the polarisability derivative tensor and is computed through [109]

S = 45ᾱ′2 + 7γ′
2

(4.53)
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where ᾱ′ and γ′ are the mean of the diagonal and the anisotropy defined analogous to

equations 2.127 and 2.128. The Raman activity is one of the factors that determine the

intensity of a Raman band in the spectrum. Experimental factors such as the incident

wavelength and the geometry of illumination and observation also play a role. Notwith-

standing these limitations, the scattering factor is used to assess what vibrational modes

are Raman active and to plot computational Raman spectra.

Spectra are produced by taking the Raman activity as the peak intensity and the com-

puted frequency as the location of a Raman band. Convolution with a broadening-function

produces a coarse reference spectrum that can aid in identifying bands in the experimen-

tal spectra. However, the computed frequencies are known to deviate from experimental

observation. Reasons for this include a lack of anharmonic effects in the computation

and its limitation to the gas phase whereas the experimental sample is a liquid. A scal-

ing factor is usually applied that is derived from a set of experimental reference spectra

[113, 124]. These factors depend on the basis set used for the computation. Andersson and

Uvdal [125] found that an average factor of 0.9679 would apply for vibrational frequencies

computed at our level of theory with 1.0100 for low-frequency vibrations and 0.9877 for

zero-point vibrational energies. These values were computed from a set of small molecules

within which there is significant variation (compare, for instance, CCl4 with hexane in the

NIST database [113]). The principal result of our computations are the Raman tensors

whereas the computational spectra serve to aid in peak assignment through qualitative

comparison. Though differences with experimental frequencies are noted, no scaling factor

is employed in our analysis.

The internal option IOp(7/33=3) is used to obtain the linear polarisability derivatives

with respect to the vibrational modes in tensor format. These can be computed manually

from the atomic polarisability derivatives and the atomic motions in each vibrational mode.

The former are listed at the end of the log file after PolarDeriv and have been rotated

back to the original input orientation. Their format is explained in appendix D. However,

this process results in significant rounding errors. The option IOp(7/33=3) ensures that

the desired calculation is performed as part of the computation. The results are printed

in the format

Polarizability derivatives wrt mode 1

1 2 3

1 -0.136329D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 -0.236520D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.372849D+00

where D indicates a power of base 10. The components are given in units of Å2 amu−1/2,

with 1, 2 and 3 designating the three Cartesian axes of the standard orientation. The

option also provides the normalised atomic motion in each vibrational mode with respect

to these axes to five decimal places. The default output of the vibrational analysis of

Freq=Raman, limited to two decimal places, is retained.

The polarisability derivative tensor Ps
v for a particular vibrational mode v in the com-

putational frame of reference s (the standard orientation) is constructed from linear polar-
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isability derivatives with respect to the real atomic displacements ∂α
∂xn

, ∂α
∂yn

and ∂α
∂zn

for each

atom n. The displacements are given in the standard orientation in units of B, the Bohr

radius. For each vibrational mode, these derivatives are multiplied by their normalised

atomic displacement along each of the three Cartesian axes ∂xn
∂qvn

, ∂yn
∂qvn

and ∂zn
∂qvn

. The sum

of the resulting three derivative tensors results in the polarisability derivative ∂αn
∂qvn

with

respect to the motion of atom n as part of vibrational normal motion v. All N atomic

contributions are then summed to obtain the polarisability derivative ∂α
∂Qv

with respect to

the vibrational mode, which is the familiar tensor α′
v proportional to the Raman tensor.

Gaussian multiplies this tensor by the inverse square root of the reduced mass of the

vibrational mode µv to account for (part of) the zero-point amplitude Qv0 as well as for

the Bohr radius in Å. In summary,

Ps
v =

0.5292
√
µv

N∑
n=1

(
∂xn
∂qvn

∂α

∂xn
+
∂yn
∂qvn

∂α

∂yn
+

∂zn
∂qvn

∂α

∂zn

)
(4.54)

given in units of Å2 amu−1/2 through the factor 0.529 Å B−1 and µ in amu.

The process used in Gaussian to obtain α′
v appears similar to the bond-polarisability

model. It sums atomic contributions according to their displacement in the vibrational

motion. However, it takes the whole electron distribution of the molecule into account

rather than individual bonds. For Raman inactive modes, the Raman scattering activity

given in the log file is zero and the resulting tensor is found to be zero through cancellation

of the atomic contributions.

4.3.3 Obtaining the Raman tensor

The Raman computation has returned vibrational normal modes with their frequencies as

well as polarisability derivatives with respect to these modes in tensor format. The Raman

tensors αm
v in the desired molecular frame of reference m are computed from the linear

polarisability derivative tensors Ps
v. Correction for the units is needed as well as inclusion

of the zero-point amplitude Qv0 for Stokes Raman scattering as given in equation 4.52,

of which only the reduced mass has been taken into account so far. Working from the

definition of the Raman tensor in equation 2.27, we have

αm
v = Qv0α

′m
v

=

√
h

8π2cµvν̄v
α′m

v

=

√
h

8π2cν̄v

4πϵ0 · 10−20

√
1.660539 · 10−27

Ts→m Ps
v Ts→m

T

= 4.5683 · 10−40

√
1

ν̄v
Ts→m Ps

v Ts→m
T

(4.55)
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where correction factors have been introduced to ensure that the Raman tensor is expressed

in units of C V−1 m2. This includes 1.660539 · 10−27 kg amu−1 for the mass unit and the

speed of light c given in cm s−1 with the wavenumber ν̄ of the vibrational mode v given

cm−1. The coordinate transformation Ts→m rotates the frame of reference of the standard

orientation used by theGaussian computation to the desired molecular frame of reference.

4.4 Results and discussion

Geometry optimizations and Raman computations were performed on the sulfate anion,

three isotopologues of carbon tetrachloride, toluene and decanoic acid. The latter stands

as a model for arachidic acid, which could not be computed at the desired level of theory

with the available resources. I would like to acknowledge and thank Dr Mark Fox for

performing the computations on the Hamilton cluster of Durham University.

Results presented here include computational Raman spectra and Raman tensors for

selected fundamentals. Relevant sections of the Gaussian log files are included in ap-

pendix D. The quantities are extracted manually for ordering into matrices and processed

in Matlab using three scripts: (1) to produce a three-dimensional plot of the molecule in

Gaussian’s standard orientation to deduce the Euler angles needed for any transforma-

tion to the molecular frame of reference, (2) to plot Raman spectra and (3) to compute

the Raman tensors. These scripts can also be found in appendix D.

The results obtained with Gaussian are compared to the forms of the Raman tensors

derived with the bond-polarisability model and to those found through symmetry consid-

erations, tabulated in appendix C.1. See appendix A for more details on the symmetry

and vibrations of relevant moieties. Our results are also compared to published literature.

Raman spectra are produced by placing a Lorentzian distribution at each of the com-

puted wavenumbers with a representative full width at half maximum (fwhm) of 10 cm−1.

The Lorentzian function is used to model the collision broadening observed in liquids. The

integrated intensity Iv of the peak from vibrational normal mode v is scaled to its Raman

activity Sv and to its frequency νv as

Iv ∝ Svνv
3 (4.56)

so that the relative intensities in the spectrum account for both the magnitude of the Ra-

man tensor components (through Sv) as well as the photon count at the Raman frequency

(through νv) as developed in equation 2.118. Note that the frequency is the absolute

frequency in Hz of the scattered radiation, not the value presented in the log file, which

is labelled as frequency though it is in fact a wavenumber. The frequency of the scatter-

ing depends on the wavelength of the laser that caused it. With a laser of 532 nm, the

intensity scales according to

Iv ∝ Sv

(
1

532 nm
− 10−7 ν̄v

)3

(4.57)
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while all geometrical affects are ignored for now. Though known to deviate from experi-

mental observations, the computed wavenumbers of the modes are used without correction.

Intensities are computed on the same scale of arbitrary units. These are therefore com-

parable between the computed spectra as long as these are convoluted with the same

function. The spectra are drawn with a data point at every 0.1 cm−1. The computed

spectrum represents a Raman spectrum obtain from the isotropic fluid without the use of

polarisation in the incident nor scattered light paths as described in section 2.5.2.

Values are generally rounded to 3 significant figures in the results presented below. In

the Raman tensors, components of low values are rounded to the last decimal place of the

larger three-digit significant figures for clarity. Occasionally, this leads to rounding to 0.

In further calculations, the original, unrounded values are used.

4.4.1 Sulfate

The computational Raman spectrum of sulfate, given in figure 4.5, includes four bands.

The symmetric stretch mode is predicted at 865 cm−1 as the strongest peak in the spectrum

and the only one of A1 symmetry. It is a polarised Raman line. The remaining lines are

depolarised: one twofold degenerate E mode and two threefold degenerate F2 modes.

Assignment of the modes follows reference [126], though the computed wavenumbers are

lower than their experimental values. The v1 mode is the symmetric stretch of S−O bonds

while v2 is the pair-wise bending of O−S−O which is two-fold degenerate. v3 and v4 are

triply degenerate modes, the first a set of stretching modes involving umbrella-like motions

and the second a set of deformations in which the central sulfur atom moves relative to

the surrounding oxygen atoms. See section A.5 for a mathematical expression of these

modes.

Early Raman studies on sulfate solutions by Hester et al. [127] revealed that the sulfate

anion is dissolved freely with a range of cations except for indium. Rull and Ohtaki [128]

later showed that the position and width of the ν1 band of sulfate is only marginally

affected by the choice of alkali cation, speculating that this variation arised from hydration

fluctuations. Matsumoto and co-workers [129] demonstrated that the cation only becomes

relevant at 350◦C and 25 MPa. A more recent study by Mabrouk et al. [126] confirmed

the dependence of ν1(SO
2−
4 ) on the hydration state. In aqueous solution, this band could

be fitted with a Voigt profile and they demonstrated linearity of its integrated intensity

with the salt concentration independent of the common Na+, K+ or NH+
4 cations.

The Raman tensors found for the four modes are tabulated in table 4.2. The form of

the computed tensors is now compared to those derived by symmetry considerations (as

summarised in table C.1). For the fully symmetric mode v1, we havea 0 0

0 a 0

0 0 a

 =

−16.1 0 0

0 −16.1 0

0 0 −16.1

 (4.58)
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Table 4.2: Vibrational modes of the sulfate anion and Raman tensors in its molecular
frame of reference at B3LYP/6-311++G(d,p) theory level.

Mode Species ν̄ S αm
v

/ cm−1 / Å4 amu−1 / 10−42 C V−1 m2

v2 E 399 2.24



−3.12 0 0

0 −5.41 0

0 0 8.53


−8.05 0 0

0 6.73 0

0 0 1.32



v4 F2 562 2.30



 0 −4.43 4.60

−4.43 0 −0.02

4.60 −0.02 0


 0 4.30 4.13

4.30 0 −2.28

4.13 −2.28 0


 0 1.63 1.60

1.63 0 5.96

1.60 5.96 0


v1 A1 865 48.6

−16.1 0 0
0 −16.1 0
0 0 −16.1



v3 F2 995 13.7



 0 −7.39 −7.35

−7.39 0 −5.27

−7.35 −5.27 0


 0 6.81 −9.00

6.81 0 3.01

−9.00 3.01 0


 0 5.96 1.17

5.96 0 −9.98

1.17 −9.98 0
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Figure 4.5: Computed Raman spectrum of sulfate in the gas phase at B3LYP/6-
311++G(d,p) theory and convoluted with a Lorentzian of 10 cm−1 full width
at half maximum.

where a = −16.1 ·10−42 C V−1 m2 is read from the identity. The computed Raman tensor

obeys the expected form. The remaining modes, all degenerate E and F2 modes, do not

appear to match our expectations. However, these Raman tensors are linear combinations

of the orthogonal tensors of table C.1. We will now prove this for the v2 mode of E-

symmetry, and for the v3 mode of F2 symmetry. The Raman tensors of the v4 mode can

be decomposed in a similar fashion.

The squared sum of the symmetry-derived symbolic Raman tensors for the E mode of

the Td point group is equated to the squared sum of the computed, numerical tensors of

the v2 modeb 0 0

0 b 0

0 0 −2b


2

+ 3

−b 0 0

0 b 0

0 0 0


2

=

−3.12 0 0

0 −5.41 0

0 0 8.53


2

+

−8.05 0 0

0 6.73 0

0 0 1.32


2

(4.59)
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which is given in 10−42 C V−1 m2 and results in4b2 0 0

0 4b2 0

0 0 4b2

 =

74.5 0 0

0 74.5 0

0 0 74.5

 (4.60)

in units of 10−84 C2 V−2 m4. We solve for b to find

b = ±4.32 · 10−42 C V−1 m2 (4.61)

where both the positive and negative solution are acceptable. This is a manifestation

of multiplying the whole tensor by −1, which is of no consequence to the time-averaged

Raman-scattered field. The first Raman tensor of the v2 mode, αm
v2(1)

, can be reconstructed

from the orthogonal basis by a weighted sum

w1

b 0 0

0 b 0

0 0 −2b

+ w2

√
3

−b 0 0

0 b 0

0 0 0

 =

−3.12 0 0

0 −5.41 0

0 0 8.53

 · 10−42 C V−1 m2

(4.62)

which represents the three dependent equations

bw1 −
√
3bw2 = −3.12 · 10−42 C V−1 m2

bw1 +
√
3bw2 = −5.48 · 10−42 C V−1 m2

−2bw1 = 8.53 · 10−42 C V−1 m2

(4.63)

Solving for the weighting factors w1 and w2 of the symmetry-adapted tensors, using the

positive value for b just found, results in

for v2(1)

w1 = −0.988

w2 = −0.153
(4.64)

For the second tensor of the E-mode, αm
v2(2)

, we find

for v2(2)

w1 = 0.153

w2 = 0.988
(4.65)

which is exactly the opposite of the previous solution. The weights are normalized: w1
2+

w2
2 = 1 for each of the degenerate modes (1) and (2). Furthermore, each symmetry-

adapted tensor contributes equally to the set of computed tensors, i.e. w1(1)
2 +w1(2)

2 =

w2(1)
2 + w2(2)

2 = 1. This demonstrates that the computed Raman tensors for the two-

fold degenerate mode are linear combinations of the two orthogonal tensors expressed in

a symmetry-adapted basis.

The three-fold degenerate modes v3 and v4 similarly consist of linear combinations of
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symmetry-adapted orthogonal solutions to the vibrational problem. Only the off-diagonal

elements of the Raman tensors are non-zero. Squaring the components and summing the

tensors of the v3 band provides

0 c 0

c 0 0

0 0 0


2

+

0 0 c

0 0 0

c 0 0


2

+

0 0 0

0 0 c

0 c 0


2

=

 0 40.8 40.8

40.8 0 40.8

40.8 40.8 0

 · 10−84 C2 V−2 m4

(4.66)

from which we obtain

c = ±6.39 · 10−42 C V−1 m2 . (4.67)

Deconstruction of the three computational Raman tensors αm
v3(1)

, αm
v3(2)

and αm
v3(3)

pro-

vides the weighting factors. These are readily found to be

for v3(1)


w1 = −0.6934

w2 = 0.7205

w3 = −0.0038

(4.68)

for v3(2)


w1 = 0.6739

w2 = 0.6467

w3 = −0.3572

(4.69)

for v3(3)


w1 = 0.2549

w2 = 0.2502

w3 = 0.9340

(4.70)

which are all normalised in two ways. The weights that form one linear combination are

normalised (w1
2 + w2

2 + w3
2 = 1) as well as the contribution of each symmetry-adapted

basis tensor to the three computational linear combinations (w1(1)
2 + w1(2)

2 + w1(3)
2 =

1). Our computational result thus carries the same information as the symmetry-derived

Raman tensors whilst being expressed in a different and equally valid orthogonal basis of

vibrational patterns.

4.4.2 Carbon tetrachloride

Computations were performed on the three most abundant isotopologues of carbon tetra-

chloride: 12C35Cl4,
12C35Cl3

37Cl and 12C35Cl2
37Cl2. Nine vibrational normal modes occur

in each. As the point group symmetry of the isotopologues varies, so do the symmetry

species of the normal modes and their Raman tensors.

The Raman spectra of the three isotopologues are presented in figure 4.6 with a com-

bined spectrum based on the natural abundance of each isotope. Similar frequencies have

recently been published by Wallington et al. [130] for the infrared spectrum of CCl4 using
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different basis sets though ignoring isotope effects. The 12C35Cl4 isotopologue, which has

Td point group symmetry, exhibits the same four vibrational modes as the sulfate an-

ion. The degeneracy of its E and F2 modes is successively lifted by the 12C35Cl3
37Cl and

12C35Cl2
37Cl2 isotopologues, which conform to the C3v and C2v point group, respectively.

This can be observed in the bottom row of figure 4.6, where each peak is resolved into

its constituent modes. The correlation between the modes is presented in table A.6 and

discussed in section A.5.

The Raman tensors obtained for the three isotopologues are included in tables 4.3 to

4.5. The Gaussian output is specified within the standard orientation it assigns to the

Td point group: the oxygen atoms at four corners of a cube which has its sides paral-

lel to the three Cartesian axes. This orientation is retained for all isotopologues as the

program considers charge rather than mass in assigning point group symmetry. However,

this standard orientation is only appropriate for the Td isotopologue. The others require

a transformation of the axes through a transformation matrix as in equation 2.13. Sec-

tion D.3 illustrates the geometries in the computational and molecular frames of reference.

The Raman tensors of the C3v isotopologue 12C35Cl3
37Cl have been transformed to the

symmetry-based molecular coordinates by three successive passive rotations over the Euler

angles

(α, β, γ) = (45◦,
1

2
τ, 90◦) (4.71)

with τ the tetrahedral angle defined in equation 4.12. For the C2v isotopologue
12C35Cl2

37Cl2,

the transformation involves only one rotation with

(α, β, γ) = (45◦, 0, 0) . (4.72)

As with sulfate, the computational Raman tensors for the degenerate modes are linear

combinations of the symmetry-derived Raman tensors of table C.1. The forms of the

Raman tensors thus obtained are in agreement with those predicted on the grounds of

symmetry.

Anharmonic modes

Experimental Raman spectra of carbon tetrachloride include anharmonic features in ad-

dition to the four peaks predicted in our harmonic computation. These include overtones,

combination bands and Fermi resonances arising from the four fundamental bands. In

discussing these modes below, the fundamental bands observed in Raman spectra of an

isotopic mixture are labelled ν1 to ν4 as for the Td species, implying all correlated modes

in the various isotopologues. This assignment follows the literature consensus.

The strongest anharmonic feature is the ν1+ ν4 ≈ ν3 Fermi doublet. The combination

band ν1 + ν4 resonates with the ν3 fundamental as both belong to the same symmetry

species‡, have the same frequency and involve the same atoms. Though the frequencies in

‡F2 in the Td point group, the A1 or E species in the C3v point group and the A1, B1 or B2 species
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Figure 4.6: Computed Raman spectra of the three most abundant isotopologues of car-
bon tetrachloride in the gas phase from B3LYP/6-311++G(d,p) theory. The
spectra are convoluted with a Lorentzian of 10 cm−1 (top) and 1 cm−1 (bot-
tom) full width at half maximum. The total spectrum is the sum of the three
spectra, each scaled to its natural abundance.
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our computation do not match exactly, this Fermi resonance is well-known and features

in many textbooks and reference works, including [63, 73, 77].

The occurrence of the Fermi doublet suggests that the two difference bands ν3 − ν4

and ν3−ν1 might also be in resonance with the ν1 and ν4 fundamentals. Both are allowed

by symmetry, though ν3 − ν4 ≈ ν1 only in a selection of modes. The contribution of

this combination band to the overall ν1 profile was quantified by Gaynor et al. in [131].

He also reported on thermally populated vibrational states (so-called hot bands) that

contribute to the observed ν1 band at room temperature [132]. These appear at slightly

lower wavenumber than the fundamental transitions from the ground to the first excited

state of the vibrational mode.

Another Fermi resonance is expected from 2ν2 ≈ ν1, the first overtone of the ν2 mode

with the ν1 fundamental. The overtone includes the A1 species to which the fundamental

belongs (in all three point groups of the isotopologues). In a detailed experimental study

of the carbon tetrachloride spectrum by Chakraborty [133], it was not reported as a

distinguishable feature. Various other first overtones, including 2ν4, were observed as

distinct peaks in the spectrum.

How does this anharmonicity affect the predicted Raman tensors? For an overtone, the

Raman tensor is expected to be similar to the Raman tensor of its fundamental transition.

In the harmonic approximation, the frequency of the vibrational motion is doubled while

the motion of the atoms follows an identical path to that of the fundamental, i.e. the

vibrational normal coordinate Qv(t) is replaced by Qv(t/2) for a first overtone.

In a combination band, the vibration is a linear combination of the two interacting

modes. The Raman tensor of the resulting mode can thus also be described as a linear

combination of the Raman tensors of the coupled fundamentals. The same holds for

resonances in which three fundamentals are coupled. Our harmonic computations do not

provide information on the relative contribution of each of these modes. However, the

major spectral features arise from harmonic effects and anharmonic effects can be ignored

in many cases. In our work, the significance of anharmonicity is assessed in the analysis

of our experimental spectra and in comparing these to the computed predictions.

in the C2v point group. This follows from correlation table A.6 and the multiplication rules of symmetry
species.
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Table 4.3: Vibrational modes of 12C35Cl4 (point group Td) and Raman tensors in its molec-
ular frame of reference at B3LYP/6-311++G(d,p) theory level.

Mode Species ν̄ S αm
v

/ cm−1 / Å4 amu−1 / 10−42 C V−1 m2

v2 E 220 3.08



−12.8 0 0

0 2.3 0

0 0 10.5


−4.8 0 0

0 13.4 0

0 0 −8.7



v4 F2 314 5.52



 0 12.8 0.4

12.8 0 3.3

0.4 3.3 0


 0 −3.3 −0.9

−3.3 0 12.8

−0.9 12.8 0


 0 −0.6 13.2

−0.6 0 0.8

3.2 0.8 0


v1 A1 447 20.5

−14.6 0 0
0 −14.6 0
0 0 −14.6



v3 F2 733 3.85



 0 −2.98 −6.56

−2.98 0 0.52

−6.56 0.52 0


 0 −2.25 0.48

−2.25 0 −6.85

0.48 −6.85 0


 0 −6.18 2.98

−6.18 0 2.24

2.98 2.24 0
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Table 4.4: Vibrational modes of 12C35Cl3
37Cl (point group C3v) and Raman tensors in its

molecular frame of reference at B3LYP/6-311++G(d,p) theory level.

Mode Species ν̄ S αm
v

/ cm−1 / Å4 amu−1 / 10−42 C V−1 m2

v6 E 218 3.04



5.18 4.20 7.53

4.20 −5.18 −6.11

7.53 −6.11 0


−4.20 5.18 −6.11

5.18 4.20 −7.53

−6.11 −7.53 0


v3 A1 310 5.41

−7.3 0 0
0 −7.3 0
0 0 15.5



v5 E 313 5.48



−9.50 −5.31 6.51

−5.31 9.50 −3.64

6.51 −3.64 0


−5.31 9.50 3.64

9.50 5.31 6.51

3.64 6.51 0


v2 A1 444 20.2

−14.7 0 0
0 −14.7 0
0 0 −14.1


v1 A1 732 3.72

4.24 0 0
0 4.24 0
0 0 −8.07



v4 E 733 3.86



 0.23 5.90 −0.16

5.90 −0.23 4.18

−0.16 4.18 0


−5.90 0.23 4.18

0.23 5.90 0.16

4.18 0.16 0
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Table 4.5: Vibrational modes of 12C35Cl2
37Cl2 (point group C2v) and Raman tensors in

its molecular frame of reference at B3LYP/6-311++G(d,p) theory level.

Mode Species ν̄ S αm
v

/ cm−1 / Å4 amu−1 / 10−42 C V−1 m2

v4 A1 217 3.00

−6.5 0 0
0 −7.0 0
0 0 13.5


v5 A2 217 3.00

 0 −11.7 0
−11.7 0 0

0 0 0


v9 B2 308 5.34

0 0 0
0 0 13.1
0 13.1 0


v3 A1 310 5.39

−13.0 0 0
0 13.3 0
0 0 0.7


v7 B1 312 5.43

 0 0 13.2
0 0 0

13.2 0 0


v2 A1 441 20.0

−14.9 0 0
0 −14.1 0
0 0 −14.5


v8 B2 731 3.69

0 0 0
0 0 −7.08
0 −7.08 0


v1 A1 732 3.79

7.31 0 0
0 −7.02 0
0 0 0.18


v6 B1 733 3.89

 0 0 7.25
0 0 0

7.25 0 0
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4.4.3 Decanoic acid

Decanoic acid serves as a model for arachidic acid and more generally as a model for a

material with a stretched alkane chain. The computational Raman spectrum is given in

figure 4.7 with a selection of modes and their Raman tensors listed in table 4.7. Our focus

is on the C−H stretching region, which is the strongest part of the spectrum.

The computational results are included in section D.5 with the atomic positions pre-

sented in both the standard orientation s and molecular frame m. The transformation

from the computational to the molecular frame of reference is effected by two successive

rotations over Euler angles

(α, β, γ) = (−48.39◦, 90◦, 0) . (4.73)

The first rotation brings the chain of carbon atoms along the positive y axis. A further

rotation about the x-axis is needed to bring the chain of carbon atoms parallel to ẑm

and in the xmzm plane. The first Euler angle is found through the inner product (see

equation 5.102) of a vector giving the direction of the carbon chain and ŷs, both in the

original computational frame of reference. The first vector is obtained by a linear fit

through the carbon positions.

Decanoic acid has 90 vibrational normal modes, all of which are Raman active. Its Ra-

man spectrum, appropriately broadened as in figure 4.7, only shows 11 bands. Overlapping

Raman bands are grouped in distinct frequency ranges due to the repetitive structure of

the molecule. These are described collectively and include the following vibrational modes:

• ω(CH2), wagging of CH2 groups around 1060 cm−1,

• τ(CH2), twisting of CH2 groups near 1320 cm−1 ,

• δ(CH2), scissoring or bending of the H−C−H bond angles around 1490 cm−1,

• ν(C−−O) and ν(OH), distinct bond stretching modes of the carboxylic acid group at

1812 and 3759 cm−1, respectively, and

• ν(CH), the C−H stretch region of the spectrum ranging from 2991 to 3082 cm−1.

These computed frequencies are an overestimate of what has been observed experimentally

in molecules with an alkane chain (amongst many others [98, 134, 135] and this work).

In our experiments, the fatty acid is bound to the hemisphere surface through its COOH

group. This affects the ν(C−−O) and ν(OH) modes and their Raman tensors. These modes

are therefore not considered in our analysis. Our focus is on the ν(CH) region which has

the advantage of strong Raman scattering. It accounts for 80% of the Raman scattering

activity computed for decanoic acid and is expected to be even higher for molecules with

longer alkane chains. The five strongest modes in this region, numbered 73, 76, 80, 81

and 89, account for 60% of the computed total Raman scattering. These form 75% of the

activity of the C−H stretch region.
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Figure 4.7: Computed Raman spectra of decanoic acid in the gas phase from B3LYP/6-
311++G(d,p) theory, convoluted with a Lorentzian of 10 cm−1 full width at
half maximum.

The C−H stretch region

Table 4.7 presents selected Raman tensors of decanoic acid, including all modes of the

ν(CH) band along with the strongest bending mode δ(CH2). The computed ν(CH) Raman

band is presented in figure 4.8. The overall Raman scattering activity in the ν(CH) band

is split between 70.6% A′ and 29.4% A′′ modes. The methylene modes give rise to 78.8%

of the ν(CH) band (of which 51.4% in A′ and 27.4% in A′′ modes), while modes localised

to the single methyl group represent 21.2% (of which 19.2% in A′ and 2.1% in A′′ modes)

of the scattering activity.

The Raman scattering activity is clearly not proportional to the number of hydrogen

or carbon atoms involved in each mode. This is consistent with ab-initio computations

of Kathleen M. Gough and colleagues reported in a series of publications briefly reviewed

in [114]. Their work focussed on the polarisability of hydrocarbons and its change upon

stretching an individual bond in the molecule. They concluded that there is no single

tensor for the polarisability nor its derivative that describes the C−H bond in general. It

has to be considered as part of the molecule. Only the CH2 and CH3 group polarisabilities

were found to be transferable [136, 137]. The polarisability derivatives are not.

Most of their work was limited to the computation of the trace of the polarisability
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Figure 4.8: Computed harmonic Raman spectrum of the C−H stretch region of decanoic
acid in the gas phase from B3LYP/6-311++G(d,p) theory, convoluted with
a Lorentzian of 10 cm−1 full width at half maximum. The spectrum is split
into modes belonging to the A′ and A′′ symmetry species. The first overtone
bands are predicted by doubling the frequency of the harmonic fundamental
modes, which also doubles their bandwidth. Central frequencies of individual
modes are indicated at the top of the spectrum.

tensor (αxx, αyy and αzz) and the mean polarisability derivative with respect to bond

elongation ∂ᾱ/∂r. Their choice of axes was such that the polarisability is ellipsoidal (i.e.

the tensor has no off-diagonal components), though this is not necessarily the case for

the polarisability derivatives. However, off-diagonal elements of the polarisability deriva-

tive tensor were not computed by Gough’s team. Their results therefore only apply to

Raman scattering from fully symmetric CH stretch modes (what they term trace Raman

scattering).

Table 4.6 summarises the polarisability derivative tensors as published by Gough in

[136] for short alkane chains. This is her only publication in which she includes the

diagonal components ∂αxx/∂r, ∂αyy/∂r and ∂αzz/∂r of the polarisability derivative in

addition the their mean value. These were estimated numerically by displacing the hy-

drogen atoms from their equilibrium geometry and computing the polarisability of the

molecule in Gaussian86 using HF/D95** theory. The omission of electron correlation

in the near-Hartree-Fock method appeared to be cancelled by the static nature of the

calculation (as opposed to a dynamic calculation in which the laser frequency is included).

The choice of axis by Gough requires a rotation Rz(90
◦) to agree with our definition for
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Table 4.6: Polarisability derivatives of alkanes with respect to stretching of individual
C−H bonds from K.M. Gough’s computations [136] given in our molecular
frame of reference.

Molecule C−H bond location α′m
C−H

/ 10−30 C V−1 m

methane

1.057 0 0
0 1.057 0
0 0 1.057


ethane

1.258 0 0
0 1.258 0
0 0 0.799


propane methylene

1.448 0 0
0 1.639 0
0 0 0.314


propane methyl, in plane

0.797 0 0
0 0.240 0
0 0 2.485


propane methyl, out of plane

1.141 0 0
0 1.655 0
0 0 0.362


trans-butane methylene

1.272 0 0
0 1.508 0
0 0 0.407


trans-butane methyl, in plane

1.194 0 0
0 0.251 0
0 0 2.176


trans-butane methyl, out of plane

0.993 0 0
0 1.608 0
0 0 0.519


trans-pentane methyl, in plane

0.770 0 0
0 0.256 0
0 0 2.773



the alkane chain. This comes down to swapping the xx and yy components of each tensor.

A number of observations can be made from Gough’s work on C−H bonds in stretched

alkane chains.

1. All polarisability derivatives are positive: longer bonds increase the polarisability of

the molecule [136, 138, 139].

2. The highest polarisabilities, as well as polarisability derivatives, were found for C−H

bonds oriented along the direction of the carbon skeleton of the chain [136].

3. The polarisability derivative increases non-linearly towards the ends of the chain

[136].

4. The length of the C−H bond does not affect its polarisability derivative [138].
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5. For the in-plane C−H bond in the methyl group, the mean polarisability derivative

∂ᾱ/∂r increases steadily with increasing chain length before plateauing from about

dodecane [136, 138].

6. For the C−H bonds in the methylene groups, ∂ᾱ/∂r reduces with increased chain

length and stabilises at nonane [138].

An atoms-in-molecules analysis by Gough et al. [140] showed that the polarisability deriva-

tive arises from charge transfer across the molecule and changes in the atomic dipoles

involved in the stretched bond. Both effects are greater towards the ends of the chain and

for bonds in the plane of the carbon atoms. Stretching the in-plane methyl C−H bond

therefore produces the greatest change in molecular polarisability. All other distinct C−H

bonds are oriented out of the carbon plane and stretching these results in lower polaris-

ability derivatives. This explains why the methyl modes in our analysis of decanoic acid

are disproportionately strong.

We now wish to compare Gough’s results to our own. As all of her results only apply

to symmetric stretch modes, we must compare them with a Raman tensor of such a mode.

Using her values for the polarisability derivative of the central C−H bonds in trans-butane

[136] (table 4.6) we come to a normalised polarisability derivative tensor for the methylene

C−H stretch

α′m
C−H =

0.631 0 0

0 0.749 0

0 0 0.202


which is not that different from the normalized Raman tensor of the in-phase symmetric

CH2 stretch (mode 73) in our computation of decanoic acid

αm
73 =

0.624 0 0.001

0 0.714 0

0.001 0 0.316

 .

The zz components of the latter is larger, mainly at the cost of the yy component. As

shown in Gough’s work, this is due to the longer chain. Other vibrational modes can-

not be compared as easily, since the polarisability derivatives with respect to stretching

of individual C−H bonds cannot be combined to find the polarisability derivative of a

vibrational pattern.

Let us now return to discussing the features of the computed spectrum (figure 4.8)

and the computed Raman tensors (table 4.7) in more detail. The vibrational modes in

the ν(CH) band arise from collective as well as localised motion of the C−H bonds in

the methyl and methylene groups. The symmetry of the isolated groups is reduced to Cs

when these form part of a stretched, linear alkane and transforms rotational motion into

molecular vibrations. It also lifts the degeneracy of the E modes in methyl. The Raman

tensors are unaffected if the molecular vibrational motion closely resembles that of the
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isolated moiety. Vibrations that involve collective motion of groups in the molecule give

rise to Raman tensors of lower symmetry forms.

Modes 80, 88 and 89 mainly arise from the methyl group at the end of the molecule. A

limited number of methylene groups is weakly involved in these vibrations. Mode 80 is the

strongest mode arising from the CH3 group. It is the symmetric methyl stretch, νs(CH3),

of A′ symmetry at 3017 cm−1. Modes 88 and 89 arise from the splitting of the degenerate

asymmetric E mode of an isolated methyl group belonging to the C3v point group. Mode

88, at 3078 cm−1 and of A′′ symmetry, is the antisymmetric stretching of the two C−H

bonds that are out of the molecular plane. It is therefore labelled νa(CH3), though it is

similar to a methylene antisymmetric stretch and the normal mode weakly involves such

motion throughout the chain. Mode 89, at 3082 cm−1 and of A′ symmetry, is another

methyl symmetric stretch νs(CH3) and mainly involves its in-plane C−H bond. As shown

by Gough, stretching of this bond results in a relatively large change in the polarisability

derivative and thus a large scattering factor. In concluding our discussion of the methyl

modes, we compare equation 4.44 to table 4.7 and note that the Raman tensors of the

methyl modes have the same form in the molecular frame of reference, irrespective of the

point group symmetry. This is due to our choice of axes and a matching definition of the

degenerate normal mode.

The methylene modes fall into two categories: symmetric stretches, νs(CH2), belong-

ing to the A′ symmetry species, and antisymmetric stretches, νa(CH2), of the A
′′ species.

The Raman tensors obtained through computation in Gaussian (table 4.7) agree with the

forms expected for the Cs point group (table C.1). The Raman tensors for isolated methy-

lene were derived with the bond-polarisability model in section 4.1.2. The computational

A′-mode tensors have small, but non-zero xz and zx components while these are zero for

an isolated methylene group in the bond-polarisability model, given in equation 4.21. For

the A′′ modes, this is the case with the yz and zy components, which are zero in the

Raman tensor for the antisymmetric stretch mode of methylene given in equation 4.22.

Though the vibrational modes and their Raman tensors follow the molecular point group

symmetry, they retain the features of isolated methylene moieties.

The atomic motion in the νs(CH2) modes displays particular phase relations between

the CH2 groups. Modes 73 and 81 are in-phase symmetric stretches and produce strong

Raman scattering. The first involves motion of the methylene groups in the centre of the

chain while the latter is localised near the carboxylic acid end of the molecule.

Mode 73, at 2994 cm−1, is predicted to be the strongest mode in the whole spectrum.

It is the equivalent of the only Raman active mode in an infinite methylene chain: the in-

phase stretch of all C−H bonds. In the finite chain, the amplitude of the atomic motion

dampens towards the ends of the chain. The other modes involve a limited number of

localised CH2 groups, oscillating with a distinct phase relation. In longer chains, the in-

phase symmetric mode (73 in our case) increases in strength whereas the localised modes

only increase in number.

Mode 81 can be seen as complementary to mode 80, each being localised at opposite
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ends of the chain. Though the scattering activity is similar, their Raman tensors differ.

This is mainly due to the participation of an in-plane C−H bond in the methyl mode

which contributes strongly to the zz component of αm
80. The atoms of the carboxylic acid

group do not participate in the C−H stretch modes at all. Various out-of-phase symmetric

stretch modes, including 71, 72, 74, 75 and 77, give rise to weaker scattering, though most

of these are still stronger than modes in any other region of the spectrum.

The antisymmetric stretch modes, νa(CH2), similarly display phase relations and lo-

calisation of the atomic motion in its vibrational normal modes of the ν(CH) band. Mode

76 is the strongest antisymmetric stretch mode, localised in the centre of the chain and

appears at 3007 cm−1. Mode 79, at 3017 cm−1, involves the methylene groups of the whole

chain, but is weaker. The five remaining νa(CH2) modes have various phase relations and

are localised in different parts of the chain (i.e. the phase as well as amplitude of the

atomic motion varies over the length of the chain). These modes are even weaker and

appear at higher Raman shift.

The Raman tensors of decanoic acid are compared in figure 4.9. The zero-valued com-

ponents are omitted from the plots. The non-zero, unique components of each tensor

are normalised (i.e. divided by the square root of the summed squared components) and

brought on a positive scale by multiplication by −1 if the sum of the components is neg-

ative. This facilitates comparison of the relative values of the Raman tensor components.

The A′ and A′′ modes are readily discriminated. Further divisions into sets of modes can

be made, based in this plot only. Five sets can be identified in the ν(CH) band, which

agree with the following assignments:

• modes 71 to 75 and 81, all νs(CH2) modes of the A′ species,

• modes 76, 78, 79, 82, 84, 85 and 86, all νa(CH2) modes of A′′ symmetry,

• mode 80, a νs(CH3) mode of the A′ species,

• modes 87 and 88, a νa(CH2) and νa(CH3) mode of A′′ symmetry, and finally

• mode 89, another νs(CH3) mode belonging to the A′ species.

The Raman tensors group according to their vibrational mode. These are similar, irre-

spective or their scattering activity. This suggests that a representative Raman tensor

could be used for a set of modes in a modelling approach, rather then computing every

mode individually.

Fermi resonance of A′ modes

Experimental spectra of hydrocarbons are more complicated then the computational spec-

trum in the harmonic approximation presented here. The C−H stretch band is of con-

tinued interest to researchers as it provides information on the structure of alkane chains

and their environment. This band is a convolution of fundamental modes and resonances

that cannot readily be distinguished at room temperature.
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Figure 4.9: Normalised Raman tensor components of decanoic acid modes (top) and of its
ν(CH) band separately (bottom). Round symbols indicate A′ and square A′′

modes. Some tensors have been multiplied by −1 to bring their components
on a primarily positive scale.
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The methylene bending modes, δ(CH2), form multiple Raman active transitions that

belong to the A′ species, the strongest of which is mode 63 at 1487 cm−1. The first overtone

of this band comes into the ν(CH) region and couples to the νs(CH2) modes, which are also

of A′ symmetry.§ This gives rise to Fermi resonance: the 2δ(CH2) overtone is intensified

at the cost of νs(CH2) fundamentals and the frequencies are shifted away from each other.

None of this is incorporated in our Gaussian computation. The first harmonic overtone

of the bending region 2δ(CH2) is plotted with the C−H stretch fundamentals in figure 4.8

to illustrate the overlap of the vibrational wavenumbers.

Fermi resonance occurs in a single CH2 group and was first observed and described

by Lavalley and Sheppard [141] by deuterium-isolation of the methylene in propane (i.e.

by recording the infrared spectrum of gas-phase CD3CH2CD3). The resonance between

ν(CH2) and 2δ(CH2) gives rise to a Fermi doublet of approximately equal intensity at 2942

and 2876 cm1 in the infrared spectrum. More recently, Jordanov et al. [134] explained

another overlapping band at about 2900 cm1 as the result of the splitting of two Fermi

doublets of neighbouring methylene groups. These would give rise to four infrared lines

at about 2855, 2900, 2930 and 2955 cm1.

Robert G. Snyder et al. systematically investigated the Raman spectrum of saturated

hydrocarbon chains by experimental and theoretical approaches. They concluded that the

complex band structure of the C−H stretch region is primarily a result of a redistribution

of the symmetric stretch fundamental over a sharp band at about 2850 cm−1 and a broad

band around 2898 cm−1 via Fermi resonance interaction in which “a continuum of bending

mode binary combinations is involved” [98, 142]. The dispersion of the bending modes

arises from intermolecular coupling of the bending vibrations as well as intramolecular

coupling, which is sensitive to the crystallinity of the material [142]. Raman spectra of

longer chains therefore show an increased spreading of the symmetric stretch mode inten-

sity to higher wavenumbers. The intensity decreases from its maximum near 2885 cm−1

towards higher wavenumbers as both the density of states of the bending modes decreases

and the coupling reduces from the increasing frequency mismatch. The dispersion of the

νs(CH2) fundamental on its own is much smaller. The dispersion of δ(CH2) modes is fur-

ther increased by interaction with CH2 rocking overtones and through lateral interaction

in crystalline phases, the details of which depends on the crystal structure. These broaden

and shift the overtones of the bending modes which in turn asymmetrically broaden the

νs(CH2) band at 2885 cm−1 towards higher wavenumbers through resonance [142, 143].

As the bending overtone and symmetric stretch modes couple into Fermi resonance,

the Raman tensor of the resonant mode will be of an intermediate form. The normalised

Raman tensor for the strongest scattering bending vibration of decanoic acid in our com-

§Section A.3 discusses the symmetry species of the methylene vibrations in more detail.
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putation (mode 63 at 1487 cm−1) is

α63 =

−0.529 0 −0.002

0 0.321 0

−0.002 0 0.785


which differs from the Raman tensor of the in-phase symmetric CH2 stretch that gives rise

to the strongest νs(CH) band (mode 73 predicted at 2994 cm−1 with its normalised tensor

given in equation 4.4.3). Their xx components are of opposing signs while the relative

magnitudes of their yy and zz elements are interchanged.

As discussed in section 2.5.4, the coupling strength can be deduced by combining ab

initio computation and experimental data. Snyder and Scherer [98] obtainedW = 29 cm−1

for an isolated methylene group and an unperturbed frequency of 2879 cm−1 by comparing

a zero-order calculation of the Fermi resonance interaction to polyethylene Raman spectra.

Using equation 2.175 with ∆unp = ν73 − 2ν63 = 20 cm−1 from our Gaussian computation,

we find ∆res = 35 cm−1. The contributions of the wavefunctions to the resonant mode

(weighing factors in equation 2.177) are a = 0.89 and b = 0.46 for the symmetric stretch

fundamental and the bending overtone, respectively.

Fitting the ν(CH) band

From counting the main features in figure 4.8, it appears that nine functions are needed to

fit the ν(CH) band. This has been confirmed by polarised Raman scattering experiments

of Harrand [144, 145] in the 1980’s. Previous work by Guha in our group [54] suggests that

six components suffice for an acceptable fit (in which he followed [146]). In both cases,

however, the number of fitted peaks is lower than the actual number of vibrational modes

in the band (19 for decanoic acid in the harmonic approximation). Some of the modes

and resonances have similar frequencies and can be taken together for a phenomenological

fit. However, the contribution of the underlying vibrations may vary between polarised

Raman spectra as these depend on their Raman tensors, which may have components

of varying magnitude or be of different forms altogether. In such cases, the intensities

obtained through fitting do not relate directly to the Raman intensities for the individual

vibrational modes. Where the frequencies as well as the Raman tensors are alike, one

function could be used to fit these modes to obtain a physical meaningful intensity. This

is further complicated by the Fermi resonances between the A′ modes. In section 6.4,

we further address the issue of extracting meaningful Raman intensities from the C−H

stretch region of alkanes.
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Table 4.7: Selected Raman fundamentals of decanoic acid and their Raman tensors in
the molecular frame of reference at B3LYP/6-311++G(d,p) theory level. The
modes are numbered from low to high wavenumber following the Gaussian
log.

Mode Species Assignment ν̄ S αm
v

# / cm−1 / Å4 amu−1 / 10−42 C V−1 m2

63 A′ δ(CH2) 1487 57.1

−14.29 0 −0.04
0 8.66 0

−0.04 0 21.20


71 A′ νs(CH2) 2991 21.3

 6.67 0 −0.19
0 7.50 0

−0.19 0 1.77


72 A′ νs(CH2) 2991 14.9

 5.64 0 −0.23
0 5.99 0

−0.23 0 2.12


73 A′ νs(CH2) 2994 407

27.5 0 0.05
0 31.5 0

0.05 0 13.9


74 A′ νs(CH2) 2997 37.9

−8.96 0 0.40
0 −9.90 0

0.40 0 −2.60


75 A′ νs(CH2) 3005 52.9

−10.4 0 −0.2
0 −11.9 0

−0.2 0 −3.0


76 A′′ νa(CH2) 3007 246

 0 −28.5 0
−28.5 0 −0.02

0 −0.02 0


77 A′ νs(CH2) 3010 53.2

−10.3 0 −0.5
0 −11.6 0

−0.5 0 −3.7


78 A′′ νa(CH2) 3010 16.3

 0 −7.32 0
−7.32 0 −0.22

0 −0.22 0


79 A′′ νa(CH2) 3017 55.6

 0 13.5 0
13.5 0 0.02

0 0.02 0


(continued on next page)
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Table 4.7 (continued)

Mode Species Assignment ν̄ S αm
v

# / cm−1 / Å4 amu−1 / 10−42 C V−1 m2

80 A′ νs(CH3) 3017 185

14.5 0 0.5
0 16.7 0

0.5 0 19.1


81 A′ νs(CH2) 3027 197

 19.9 0 −0.3
0 21.2 0

−0.3 0 9.4


82 A′′ νa(CH2) 3029 4.93

 0 −4.00 0
−4.00 0 0.47

0 0.47 0


83 A′ νs(CH2) 3036 4.75

 1.83 0 −0.41
0 4.17 0

−0.41 0 1.45


84 A′′ νa(CH2) 3041 41.1

 0 11.6 0
11.6 0 0.05

0 0.05 0


85 A′′ νa(CH2) 3050 23.4

 0 8.73 0
8.72 0 0.37

0 0.37 0


86 A′′ νa(CH2) 3053 32.9

 0 10.3 0
10.3 0 0.2

0 0.2 0


87 A′′ νa(CH2) 3076 2.82

 0 −2.53 0
−2.53 0 1.64

0 1.64 0


88 A′′ νa(CH3) 3078 28.9

 0 8.16 0
8.16 0 −5.16

0 −5.16 0


89 A′ νs(CH3) 3082 109

 0.4 0 10.6
0 −6.0 0

10.6 0 20.2
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4.5 Summary and critique

This chapter presented three methods to derive Raman tensors for vibrational modes: (1)

by combining bond-polarisabilities in a known vibrational pattern, (2) by considering the

symmetry of a vibrational modes and (3) through ab-initio computation in Gaussian.

The bond-polarisability model provides an approximate empirical method to evaluate

the polarisability derivative tensor for a known normal mode. It illustrates the microscopic

link between the form of the Raman tensor and the vibrational pattern and shows how

selection rules arise from symmetry. Combining the contribution of each bond reveals

which ones add up or cancel out. A central assumption in this model is that the total

polarisability derivative of the mode can be obtained by summing the changes in linear

polarisability of the individual bonds participating in the oscillation. Furthermore, there

are no local field corrections for a given bond due to the presence of others and the

amplitude and phase of the electric field that drives the Raman scattering is assumed to

be the same for all bonds.

The forms of Raman tensors are generalised in a symmetry-based approach. This

can be seen as a generalisation of the insights gained with the bond-polarisability model.

All Raman modes belonging to the same symmetry species of the molecular point group

have the same form. This form is simplified by an appropriate choice of axes based on the

symmetry of the molecule. Care must be taken with a consistent use of the axial directions

since there is no consensus on this in the scientific literature.

Numerical values for Raman tensors were obtained through harmonic computations in

Gaussian at the B3LYP/6-311++G(d,p) theory level. The procedure for the calculation

had to be developed for a lack of accurate literature and was applied to the sulfate anion,

three isotopologues of carbon tetrachloride, toluene (see appended section G.1.2) and

decanoic acid. The Raman tensors obtained through computation can be used as input

parameters in our model to aid interpretation of the experimental spectra.

Raman computations resulted in a spectrum of each compound and Raman tensors

for each of their fundamental vibrational modes. Coordinate transformations were applied

to bring these from the computational to the molecular frame of reference.¶ The forms

of the computed Raman tensors generally agreed with those predicted on the grounds of

symmetry and those derived in the bond-polarisability model. Minor differences arose

from small non-zero off-diagonal components in the computed Raman tensors for toluene

and decanoic acid. This indicates the limitations of the bond-polarisability model and de-

viations of the vibrational patterns from the expected symmetries. The computed Raman

tensors of the degenerate modes of sulfate and carbon tetrachloride were linear combi-

nations of the symmetry-based tensors. Some vibrational patterns were found to be of

higher symmetry than the molecule, giving rise to Raman tensors of a form belonging to a

¶Coordinate transformations are not relevant for species investigated in a liquid as these undergo ori-
entational averaging. In such cases (as with sulfate salt solutions and carbon tetrachloride in this work),
any frame of reference suffices. If orientational analysis is desired, such as for decanoic acid studied here,
the Raman tensors have to be expressed in a properly defined molecular frame of reference.
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species of higher symmetry. This was the case with most normal modes of decanoic acid.

Limitations of the Gaussian computations include the harmonic approximation and

the omission of coupling interactions between the vibrational modes, most notably the

Fermi resonances. Literature was consulted to complement our results with the anhar-

monic features of the spectra. This was found to be particularly relevant for carbon

tetrachloride and decanoic acid. The C−H stretch band of the latter was found to con-

tain the strongest Raman modes of its spectrum. In addition to overlapping fundamentals,

Fermi resonances of symmetric stretch modes with the first overtone of methylene bending

modes complicates this part of the spectrum.

Comparison with Gough’s results [136] confirmed our computations for the in-phase

methylene symmetric stretch. Her work further explains why the methylene vibrations

results in disproportionately strong Raman bands. The Raman tensor for symmetric

methylene stretch modes in alkanes is expected to stabilise from dodecane, while that of

the in-plane methyl mode stabilises from nonane [136, 138]. This suggests transferability

of polarisability derivatives for long stretched alkanes.

In concluding, we note that the strongest Raman active vibrations involve atomic

motion of hydrogen atoms. The extended electron distribution in these atoms give rise to

a high polarisability. Combined with a large displacement in vibrational modes, due to

their low mass, this results in a high polarisability derivative.



Chapter 5

Modelling Raman intensities

This chapter presents in detail the model constructed to calculate the detected Raman

scattered intensity from a single scatterer near an interface. After defining the frames of

reference used throughout the calculations, the chapter focusses on the electrodynamics

of the Raman scattering process. The model is outlined in four steps:

1. Propagation of incoming laser light into the location of the scatterer,

2. Generation of an induced dipole in the scatterer by the local electric field,

3. Computation of the scattered light as the far-field radiation of the induced dipole,

and

4. Collimation and detection of the scattered light within the field of view of the mi-

croscope objective,

after which a description of its implementation in Matlab is given. The chapter concludes

with a summary and critique of the model.

Step 1 and 3 centre on the excitation of a dipole near an interface and its emission in all

directions. The electromagnetic description of these two apparently distinct processes are

connected by reciprocity. Various authors have addressed either or both of these. Lukosz

[147] first derived analytic expressions for the power distribution of light emitted by an

electric or magnetic dipole near a planar dielectric interface. The emission depends on the

orientation of the dipole, its distance from the interface and the ratio of refractive indices

of the two materials. Reed et al. [148] later analysed radiation from a dipole embedded in a

multilayer stack of dielectric media through a transfer matrix method. The use of Green’s

functions was only needed for the near-field, with the far-field derived by the notably

simpler Lorentz reciprocity theorem. This theorem facilitates computation of the emitted

electric field in a particular direction of observation by considering the field that would

be generated at the location of the scatterer by plane waves incident from that direction.

Reciprocity was also used by Crawford [149] to derive the radiation from a dipole embedded

in a layered system, generalising for number of layers and layer thickness. He formulated

amplitude coupling functions, derived from considering the field due to an incident plane

149
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wave. Though he hinted at the applicability to Raman scattering, he considered emission

only. Courtois, Courty and Mertz [150] discussed dipole radiation patterns for atoms

near a vacuum-dielectric interface, again drawing heavily from reciprocity relations. Their

approach was later unified by Mertz [151] for both incident as well as emitted radiation for

a dipole near a loss-less interface. Both incoming and emitted light were also considered

by Itoh and Hasegawa [152] for Raman scattering, drawing from [148] and [149] to address

steps 1 to 3 of the process for scattering from a thin film on a substrate in air. Their

work also aimed to obtain molecular orientation through polarised Raman scattering. It

is discussed in more detail in section 6.4.

The papers cited above each employ particular definitions (including choice of axes,

polarisation directions and angles measured with respect to the plane or its normal), with

the dipole located under, within or above the interface and light entering or leaving from

one side or the other in addition to various layered geometries. Most authors concerned

themselves with intensities only, though vectorial amplitudes are the focus of our work as

these carry information on the orientation of the scatterer. We therefore present our own

derivation appropriate to the conventions introduced so far.

The model has been developed with our experimental lay-out in mind, but is not

limited to its geometry. Without these restrictions, the model is of wider applicability and

can be used for experimental design as well as data interpretation. A single run of the

model computes the detected linearly-polarised intensities for a given optical geometry

with the scattering molecule at a fixed orientation in space and using a specified Raman

tensor. It employs a complex, vectorial description of the electric field amplitude to reach

that goal.

5.1 Frames of reference

Four frames of reference are used in the model as detailed below. These have been defined

to simplify the model as much as possible without losing general applicability. As all

frames of reference are right handed, it suffices to specify two orthogonal unit vectors and

an origin. The length of unit vectors is immaterial: the model provides relative intensities

for a Raman mode of a particular moiety given the variable experimental geometry and

orientation of the scatterer.

5.1.1 Laser frame

The laser frame of reference {x̂L, ŷL, ẑL} is given by the plane of incidence of the laser

beam. Its origin is where the beam strikes the interface. As shown in figure 5.1, the

directions of the basis vectors are chosen such that the surface normal n̂ ∥ ẑL and that

the propagation direction of the laser k̂ is in the xLzL plane, with its xL component in the

positive x̂L direction for all non-zero angles of incidence θi. This frame is independent of

the zL component of k̂; it is the same whether the laser is incident from above or below
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Figure 5.1: The laser frame of reference {x̂L, ŷL, ẑL} with the plane of incidence as the
xLzL plane (shaded in green) and the interface between two media as the
xLyL plane (shaded in grey). ẑL is directed from the first into the second
medium, specified by refractive indices n1 and n2, respectively, with n2 < n1.
In our experiments, the first medium is the hemisphere in which total internal
reflection can occur. Here, reflection and refraction of the incident laser beam
at a single interface are shown with θi < θc. For layered systems, the plane
zL = 0 remains at the surface of the first medium.

the interface. A further specification is needed for θi = 0, when x̂L and ŷL are chosen to

be consistent with non-zero angles of incidence.

In the L-frame, the wave vector k is expressed in the Cartesian basis. Its specification

in the spherical coordinates ρk, θk and ϕk is more convenient in our model as it relates the

polar angle θk to the angles of incidence, reflection and refraction. Using equation 2.10 we

obtain

kL =

kxky
kz

 =

ρk sin θk cosϕkρk sin θk sinϕk

ρk cos θk

 =
2πn

λ0

sin θk

0

cos θk

 (5.1)

where the azimuthal component ϕk = 0 follows from our definition of the L-frame, which

spans the plane of incidence. The length of the vector ||k|| = k (equal to ρk at the origin

of the L-frame) is given by equation 2.49 with n the refractive index of the medium in

which the wave propagates. Figure 5.2 presents how θk is defined and includes the linear

polarisation directions p (or transverse magnetic, TM), which is parallel to the plane

of incidence, and s (or transverse electric, TE), which is perpendicular to the plane of

incidence. The definition of the L-frame given above specifies that s ∥ ŷL. Note that θk

can be understood as the propagation direction of the light relative to the orientation of

the l-frame. It is not necessarily restricted to the range of the polar spherical coordinate

0◦ to 180◦.

The complex vectorial amplitudes E and B in the L-frame both depend on θk. The

electric field is expressed in equation 2.57 as a plane wave in the {p̂, ŝ, k̂} basis. It is
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Figure 5.2: The direction of wave vector k is specified in the L-frame of reference by angle
θk, the spherical polar coordinate from ẑL to k about ŷL. The orthogonal
polarisation directions p and s are perpendicular to k for a transverse wave.
The directions are chosen such that the two sets of axes are parallel at θk = 0.

transformed to basis {x̂L, ŷL, ẑL} by applying the rotation Ry(−θk) (a passive rotation

about y as given in equations 2.12) to obtain

EL(r) =

Ex

Ey

Ez

 = Ry
T(θk)

Ep

Es

0

 =

 Ep cos θk

Es

−Ep sin θk

 e jk·r (5.2)

where j2 = −1 with j the imaginary unit. The time-dependence of the field has been

dropped as we are concerned with time-averaged quantities only which are proportional

to the field at t = 0. The magnetic field is derived from equation 2.59 in a similar way

and found to be

BL(r) =

−Es cos θk

Ep

Es sin θk

 n

c
e jk·r (5.3)

where equation 2.40 was used to substitute v = c/n. Any plane wave in the L-frame is

expressed with equations 5.2 and 5.3.

5.1.2 Molecular frame

The axes {x̂m, ŷm, ẑm} of the molecular frame of reference m are chosen along physically

relevant axes of the scattering molecule. In many cases, these will align with the symmetry

axes of the molecule. The scatterer is treated as infinitesimal and is located at the origin

of its own frame. Its distance from the interface is specified as a position z along zL. This

does not affect any coordinate transformations, which have to do with axial directions

only. Figure 5.3 presents an example of the m-frame as used in this work: a stretched
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alkane chain with its long axis oriented along ẑm and its carbon atoms in the xmzm plane.

Figure 5.3: The molecular frame of reference {x̂m, ŷm, ẑm} in red with a dodecane ball-
and-stick model illustrating a possible orientation of the frame with respect to
the scattering moiety (black is carbon, white is hydrogen). The choice of axes
is based on the symmetry of the fully stretched chain: its long axis along ẑm,
with all carbon atoms in the xmzm plane and all CH2 groups parallel to the
xmym plane.

5.1.3 Observation frame

The observation frame of reference O with basis {x̂O, ŷO, ẑO} is determined by the optical

axis of the microscope objective and the orientation of the linear polariser in the spectrom-

eter (LP2 in figure 3.2). As specified in figure 5.4, ẑO is directed from the origin into the

microscope objective. Its entrance is positioned at zO = WD. The origin of the O-frame is

located at the objective focus and coincides with the L-frame origin. The directionality of

x̂O and ŷO is unimportant as long as it conforms to the definitions of the linear collection

polarisation with the Raman system in use (sections 3.1.2 and 3.1.3).

Coordinates given in the O-frame are expressed in the L-frame through transformation

TL→O = Rz(γO)Rx(βO)Rz(αO) (5.4)

where the Euler angles (αO, βO, γO) specify the orientation of objective axes relative to

the laser frame axes in the experimental geometry. Standard practice in our research

group has the objective positioned on the hemisphere side of the interface and normal

to the interface with the plane of incidence perpendicular to the collection polarisation.

This ensures that x̂O = x̂L, ŷO = −ŷL and ẑO = −ẑL so that the Euler angles for the

transformation are (αO, βO, γO) = (0◦, 180◦, 0◦).

5.1.4 Frame of point Q

A variable frame of reference Q = {x̂Q, ŷQ, ẑQ} is used to compute the far-field complex

amplitude of Raman scattering at a point Q on a plane at the microscope objective en-

trance. This point is initially specified as part of a grid of points in the O-frame, before

being transformed into the L-frame in both Cartesian and spherical coordinates. A plane
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Figure 5.4: The observation frame of reference {x̂O, ŷO, ẑO} is specified with the optical
axis of the microscope objective along ẑO, directed from the sample side into
the objective. The entrance to the objective is positioned at zO = WD, its
working distance. The origin thus represents the focus of the objective, which
coincides with the origin of the L-frame. ŷO is set parallel to the transmission
axis of the linear polariser in the spectrometer, represented by the dashed line.

Figure 5.5: The Q-frame of reference {x̂Q, ŷQ, ẑQ} (blue) is defined through the spherical
coordinates of point Q = [ρQ, θQ, ϕQ] in the L-frame (red). Its origin is at Q.
The L-frame is presented in the same orientation as in figure 5.1 for consistency.
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of incidence is defined that includes ẑL and Q as the xQzQ plane. This plane is used in

the application of the Lorentz reciprocity theorem to deduce the p and s components of

the dipole far-field at Q.

The point Q itself is the origin of its own frame. The directions of the Cartesian

Q-frame unit vectors follow from the directions of the spherical basis vectors of Q in the

L-frame with 
x̂Q ∥ θ̂

L
Q

ŷQ ∥ ϕ̂
L
Q

ẑQ ∥ ρ̂L
Q

(5.5)

as illustrated in figure 5.5. Note that the directions (relative to the L-frame) change with

the location of Q. The transformations from the Q-frame also depend on Q and are

specified in section 5.4.

5.2 Incident light

In this section, we derive expressions for the applied macroscopic electric field Eapp at

the location of a scattering molecule in the L-frame. It is obtained by propagating the

laser beam onto and through the interface with Maxwell’s equations. The applied field is

expressed as a linear function of the known incident field as

Eapp
L = F Ei =

Fx 0

0 Fy

Fz 0

(Ei,p

Ei,s

)
=

FxEi,p

FyEi,s

FzEi,p

 (5.6)

with coupling matrix F that contains a factor for each of the Cartesian axes of the L-frame.

The complex polarised amplitude Ei,p has x̂L and ẑL components and Ei,s is along ŷL.

The coupling factors depend on the layer structure of the material and the illumination

geometry. In this section, the electric field near and at a planar dielectric interface is

analysed as well as the field in a thin film between two dielectrics. In each case, the laser

beam may be directed onto the interface from either side and under any angle.

Propagative fields are described as plane electromagnetic waves as introduced in sec-

tion 2.4. Though the laser beam as a whole is better described by a Gaussian wave front

(see section 3.1.2), it can be treated as a plane wave when considering an individual ray

within the beam. The divergence of the beam when focussed on the sample location in air

has a half-angle of < 0.5◦ (equivalent to NA < 0.009) and < 2◦ (NA < 0.035) when the

telescope is used. Use of a plane-wave description implies that the divergence is assumed

to be negligible. This is not ignoring the spread in the angle of incidence, the effect of

which can still be assessed using a range of values in the model calculations (see 6).
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5.2.1 Reflection and refraction

Incident plane wave

Raman scattering experiments are performed with the collimated monochromatic beam

of a laser. Its electric field is described as a plane wave of vacuum-wavelength λ0 that

propagates in direction k̂i. In the L-frame, the incident field is given as

Ei
L(r) =

 Ei,p cos θk,i

Ei,s

−Ei,p sin θk,i

 e jki·r (5.7)

which is merely adding subscripts to equation 5.2. The complex amplitudes Ei,p and Ei,s

are given in section 2.4 for elliptically polarised light. Here, the field is linearly polarised,

so that the phase factor δp = δs. These are chosen to be zero. The polarisation angle ψ is

used to specify the direction of the polarisation plane. This angle ranges from ψ = 0◦ for

a p-polarised wave to ψ = 90◦ for s polarisation as illustrated in figure 5.6. Ei,p and Ei,s

of equation 5.7 are then specified by ψ as

Ei,p = Ai cosψ

Ei,s = Ai sinψ
(5.8)

where Ai is the real amplitude of the wave. It works through as a scaling factor in all

modelling results and is therefore set at Ai = 1 for convenience.

Figure 5.6: The angle of linear polarisation ψ of the incident field amplitude Ei.

The vectorial magnetic field amplitude Bi
L of the incident plane wave at location r is

given as

Bi
L(r) =

ni
c

−Ei,s cos θk,i

Ei,p

Ei,s sin θk,i

 e jki·r (5.9)
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where ni is the refractive index of the incident medium. This expression is readily obtained

from equation 5.3.

The incident laser beam is fully specified in the model by two quantities: the direction

of propagation θk,i (i.e. the polar angle of ki) and the linear polarisation angle ψ. The laser

wavelength is taken into account implicitly by using refractive indices at this wavelength.

This suffices to describe the applied field in an infinite dielectric medium. The effect of an

interface between two dielectric half-spaces is analysed next.

Snell’s law and total internal reflection

A plane electromagnetic wave propagating through a medium with index of refraction ni is

incident on a medium with index of refraction nt. The angle of incidence θi is the smaller

arc between the path of the ray and the interface normal. For specular reflection, the

reflected ray propagates from the interface under the same angle in the plane of incidence:

θi = θr. If the second medium is transparent for the wavelength in question, the ray can

be transmitted into the second medium and refraction takes place (figure 5.7). The angle

of refraction θt at which the beam is transmitted through the second medium is given by

Snell’s law of refraction

ni sin θi = nt sin θt . (5.10)

This relation is plotted in figure 5.8 for the silica-air and silica-water interfaces for the

incident ray coming from either side of the interface.

If ni > nt, the angle of refraction θt is a complex number rather than a real angle

for values that exceed θt = 90◦ at which the transmitted ray propagates parallel to the

interface. The particular angle of incidence at which this change occurs is termed the

critical angle θc, which follows from equation 5.10 by substituting θt = 90◦ as

θc = arcsin

(
nt
ni

)
for ni > nt (5.11)

 

Figure 5.7: The angles of incidence θi, reflection θr and transmission θt are defined in
the plane of incidence, which includes all rays and the interface normal. The
interface is normal to the plane of the page (compare figure 5.1). In this sketch,
θt > θi which is the case if ni < nt.
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Figure 5.8: The real (top plots) and imaginary (bottom plots) parts of the angle of refrac-
tion θt as a function of the angle of incidence θi for a silica-air and silica-water
interface (refractive indices at λ = 532 nm from table 3.2). With the light in-
cident from the silica side (left plots), total internal reflection occurs if θi ≥ θc
and θt becomes complex. This indicates an amplitude phase shift of the field.
The critical angle θc is shown by dashed lines (43.22◦ and 66.10◦ for the silica-
air and silica-water interface, respectively). A ray passing from water or air
to silica (right plots) only undergoes real refraction.
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If θi ≥ θc, there is no transmitted ray propagating into the second medium and this is

termed total internal reflection (TIR). The larger the difference in optical density between

the two materials, the lower θc. Note that if the second medium is optically denser than

the first (ni ≤ nt), no total internal reflection can occur.

Radiation zones

Three zones are defined in θk,i within the range of 0◦ ≤ θk,i ≤ 180◦ as illustrated in

figure 5.9.

Zone I spans 0◦ ≤ θk,i < θc where the laser is incident through the hemisphere at an

angle lower than the critical angle. The transmitted angle is real.

Zone II spans θc ≤ θk,i ≤ 90◦ where the laser is incident through the hemisphere at or

above the critical angle. The transmitted angle is complex.

Zone III spans 90◦ < θk,i ≤ 180◦ where the laser is incident on the interface from the

lower medium. The transmitted light enters the hemisphere under a real angle.

These zones were suggested by Lukosz [147] and used by Mertz [150, 151] as refraction

is distinct in each zone. However, our numbering does not follow theirs. Table 5.1 sum-

marises our definitions. It also includes the propagation angles θk,r and θk,t of the reflected

and transmitted fields (following figure 5.2) as well as their relation to the angle of reflec-

tion θr and the angle of transmission θt through equation 5.10. These values are continuous

over the zone boundaries. For computational purposes, the borders θk,i = θc and θk,i = 90◦

are assigned to zone II.

Figure 5.9: The three zones of θk,i, which specifies the propagation angle of the incident
plane wave in the L-frame, in the range 0◦ ≤ θk,i ≤ 180◦. This angle is defined
from the ẑL to the ẑL axis. Three incident rays (green arrows) are illustrated,
each being incident under an angle falling within one of the three zones I, II
or III. This definition of the propagation angle θk,i thus implies a propagation
direction of the incident beam.
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Table 5.1: Propagation angles in the L-frame and refraction angles with the radiation
zones for incident light in the range 0◦ ≤ θk,i ≤ 180◦.

Zone I Zone II Zone III

0◦ ≤ θk,i < θc θc ≤ θk,i ≤ 90◦ 90◦ < θk,i ≤ 180◦

ni = n1 ni = n2
nt = n2 nt = n1
θk,i = θi θk,i = 180◦ − θi

θk,r = 180◦ − θr = 180◦ − θk,i θk,r = θr = 180◦ − θk,i

θk,t = θt = arcsin
(
n1
n2

sin θk,i

)
θk,t = 180◦ − θt = 180◦ − arcsin

(
n2
n1

sin θk,i

)

5.2.2 Fresnel amplitude coefficients

The propagation directions of incident, reflected and transmitted fields were derived in

the previous section. We now deduce the field amplitudes at the interface by solving the

electromagnetic boundary conditions.

Boundary conditions

The field amplitudes of the reflected and transmitted fields can be found through the four

boundary conditions 

ϵ1E
⊥
1 = ϵ2E

⊥
2 (i)

B⊥
1 = B⊥

2 (ii)

E
∥
1 = E

∥
2 (iii)

1
µ1
B

∥
1 =

1
µ2
B

∥
2 (iv)

(5.12)

where subscripts 1, 2 denote the half spaces at each side of the interface. These conditions

apply to the total fields in each medium at z = 0. If the light is incident through medium

1, the field E1 consists of both the incident and reflected fields while E2 is the transmitted

field only. In our definition of axes in the L-frame, equations 5.13 become

ϵi (Ei,z + Er,z) = ϵtEt,z (i)

Bi,z +Br,z = Bt,z (ii)

Ei,(x,y) + Er,(x,y) = Et,(x,y) (iii)

1
µi

(
Bi,(x,y) +Br,(x,y)

)
= 1

µt
Bt,(x,y) (iv)

(5.13)

where subscripts i, r, t stand for incident, reflected and transmitted as before. Though

conditions (iii) and (iv) each include a pair of equations, only one component is relevant

in the polarised analysis that follows. The reflected and transmitted fields will be deduced

given the incident field as an s or p-polarised wave. Any polarisation can then be found

by taking a combination of the two with an appropriate phase relation.

The solution to the boundary conditions depends on the choice of axes and assumed

directionalities of the vectorial amplitudes [67, 68]. We therefore include a derivation
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Figure 5.10: Definition of linear polarisation directions p and s for incident, reflected and
transmitted waves in the L-frame. The propagation direction of the incident
wave is given through its polar coordinate θk,i.

of the solution strictly valid for the present set of definitions. The L-frame is used as

defined above with figure 5.10 providing all directions explicitly. Note that angle kθ is

always taken from the positive ẑL direction and describes the propagation direction k for

incident, reflected and transmitted plane waves.

Once ki,θ has been chosen for the incident wave, the values of kr,θ, kt,θ, θi, θr, θt follow

from the equations in table 5.1 using the appropriate refractive indices. The vectorial

amplitudes of the three fields at the interface are then expressed with equations 5.2 and

5.3. These are substituted in the boundary conditions to find the relation between the

three fields.

Solving the boundary conditions

Having specified the vectorial amplitudes at the interface, their relationships are derived

by meeting the boundary conditions of equations 5.13 for each polarisation.

For a p-polarised incident wave, condition (i) provides

−ϵiEi,p sin θi − ϵiEr,p sin θi = −ϵtEt,p sin θt

Ei,p + Er,p = Et,p
ϵt sin θt
ϵi sin θi

(5.14)

where we have used that θi = θr, while condition (ii) and the y-components in condition
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(iii) result in 0 = 0. The x-components in the latter condition provide the relation

Ei,p cos θi − Er,p cos θi = Et,p cos θt

Ei,p − Er,p =
cos θt
cos θi

Et,p

(5.15)

where the minus sign comes from our choice of directions as follows. For ni = n1, θk,i = θi

while θk,r = 180◦ − θi and vice versa if ni = n2. This leads to the minus sign through

cos(180◦ − θi) = − cos θi, whereas sin(180
◦ − θi) = sin θi. Condition (iv) provides

Ei,p

µivi
+
Er,p

µivi
=
Et,p

µtvt

Ei,p + Er,p =
µivi
µtvt

Et,p

(5.16)

which turns out to be the same as the expression obtained from boundary condition (i),

given in equation 5.14. The fractions on the right-hand side of the two equations are

identical:

ϵt sin θt
ϵi sin θi

=
ϵtni
ϵint

=
ϵt
√
µiϵi

ϵi
√
µtϵt

=

√
µiϵt√
µtϵi

µivi
µtvt

=
µint
µtni

=
µi
√
µtϵt

µt
√
µiϵi

=

√
µiϵt√
µtϵi

(5.17)

which is derived with Snell’s law (equation 5.10) as well as equations 2.42 and 2.40.∗

The boundary conditions for p-polarised waves thus reduce toEi,p + Er,p = AEt,p

Ei,p − Er,p = BEt,p

(5.18)

where we have substituted

A =

√
µiϵt√
µtϵi

B =
cos θt
cos θi

(5.19)

for clarity. Solving for Er,p and Et,p results in

Er,p =
A−B

A+B
Ei,p (5.20)

and

Et,p =
2

A+B
Ei,p . (5.21)

In the case of an s-polarised incident wave, boundary conditions (i), the x component

∗The equality can be demonstrated in many different ways. This form holds for real values of θt and
real refractive indices, i.e. refraction below the critical angle with negligible absorption.
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in (iii) and the y component in (iv) all result in 0 = 0. Condition (ii) provides

Ei,s

vi
sin θi +

Er,s

vi
sin θi =

Et,s

vt
sin θt

Ei,s + Er,s = Et,s
vi sin θt
vt sin θi

Ei,s + Er,s = Et,s

(5.22)

which is simplified using equations 5.10 and 2.40 that prove vi sin θt = vt sin θi. Condition

(iii) immediately results in the same expression. Condition (iv) is met if

−Ei,s cos θi
µivi

+
Er,s cos θi
µivi

=
−Et,s cos θt

µtvt

Ei,s − Er,s = Et,s
µivi
µtvt

cos θt
cos θi

(5.23)

where the minus sign accounts for the choice of direction. Thus, the boundary conditions

for s-polarised waves are summarised to beEi,s + Er,s = Et,s

Ei,s − Er,s = ABEt,s

(5.24)

with the substitutions of equations 5.19. Solving for Er,s and Et,s results in

Er,s =
1−AB

1 +AB
Ei,s (5.25)

and

Et,s =
2

1 +AB
Ei,s . (5.26)

The solutions found for Er(z = 0) and Et(z = 0) hold for an interface between any two

linear, isotropic, homogeneous media. Substituting A and B from equations 5.19 back in

equations 5.20, 5.21, 5.25 and 5.26 leads to

Er,p =

√
µiϵt cos θi −

√
µtϵi cos θt√

µiϵt cos θi +
√
µtϵi cos θt

Ei,p

Er,s =

√
µtϵi cos θi −

√
µiϵt cos θt√

µtϵi cos θi +
√
µiϵt cos θt

Ei,s

Et,p =
2
√
µtϵi cos θi√

µiϵt cos θi +
√
µtϵi cos θt

Ei,p

Et,s =
2
√
µtϵi cos θi√

µtϵi cos θi +
√
µiϵt cos θt

Ei,s

(5.27)

following some rearrangement. In dielectrics at optical frequencies, µi ≈ µt ≈ µ0 so that

the refractive index can be used to replace the square root of the relative permittivity

(approximation 2.44), the absolute vacuum permittivity dropping out of the ratio. Equa-

tions 5.27 then reduce to the four Fresnel equations that define the Fresnel amplitude
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coefficients

rp ≡
Er,p

Ei,p
=
nt cos θi − ni cos θt
nt cos θi + ni cos θt

rs ≡
Er,s

Ei,s
=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

tp ≡
Et,p

Ei,p
=

2ni cos θi
nt cos θi + ni cos θt

ts ≡
Et,s

Ei,s
=

2ni cos θi
ni cos θi + nt cos θt

(5.28)

which are particular to the choice of axes and directions used in this work. The above

coefficients are also known as Fresnel factors and should not be confused with reflectance

and transmittance which relate to intensities rather than amplitudes. Equations 5.28 are

valid for all angles 0◦ ≤ θk,i ≤ 360◦ that specify the directionality of the incident wave as

long as the expressions of the electromagnetic fields strictly follow equations 5.2 and 5.3.

The incident wave may come from either side of the interface under any angle.

The amplitude coefficients for a neat silica-water interface are given in figure 5.11 as

a function of the angle of incidence from either side of the interface. The real maximum

values lie at the critical angle, with rp(θc) = rs(θc) = 1, tp(θc) = 2 and ts(θc) =
ni
nt
. Above

the critical angle, the amplitude coefficients are complex numbers as θt becomes complex

in that range.

5.2.3 Applied field near a neat interface

We deduce the field applied to a scatterer located away from the interface in medium 2

at rL = (0, 0, z). Only locations within the focal depth of the objective lens are relevant

to our analysis. The value of z should therefore be limited in computations according to

the objective being modelled. The retardation exponent in the expression for the electric

field (equation 5.2) is

e jk·r = e
j
2πn2
λ0

z cos θk = e jk2z cos θk (5.29)

where θk (as given in equation 5.1) depends on the wave under consideration and where

the wavenumber k2 is

k2 =
2πn2
λ0

(5.30)

for medium 2 in which the scattering molecule is located.

Zones I and II

We can now express the amplitude of the macroscopic electric field Eapp(z) at the location

of the scatterer as a function of the incident plane wave Ei in the laser frame of reference.

Throughout our model, the scatterer is located at z ≥ 0, in the medium of refractive index

n2 < n1. For light incident through the hemisphere, zones I and II with ni = n1, the

applied field Eapp(z, ni = n1) is the transmitted electric field Et(z, ni = n1). This last
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Figure 5.11: Fresnel amplitude coefficients f = rp, rs, tp, ts for the silica-water interface
(nsilica = 1.4607 and nwater = 1.3355 at 532 nm) as a function of the angle of
incidence θi. The real and imaginary parts of the coefficients as well as their
phase shift ∆φ are shown. With the light incident from the silica side (left
plots), total internal reflection occurs if θi ≥ θc = 66.10◦ (dashed vertical
line). This indicates a phase shift of the reflected and transmitted fields
relative to the incident field. The reflected fields also undergo a phase shift
at other angles of incidence, which relate to the sign of rp and rs that gives
their directionality. In rp, a further phase change is observed at Brewster
angles θB = 44.4◦ and 47.6◦. A ray passing from water to silica (right plots)
only undergoes real refraction (compare figure 5.8).
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field is first expressed in the L-frame through equation 5.2. The angle θk,t = θt as well as

the amplitudes Et,p = tpEi,p and Et,s = tsEi,s are then substituted to obtain

Eapp
L(z, ni = n1) = Et

L(z, ni = n1) =

 tpEi,p cos θt

tsEi,s

−tpEi,p sin θt

 e jk2z cos θt (5.31)

which implicitly depends on θk,i through the amplitude coefficients and θt as given in the

equations of table 5.1.

Zone III

The applied field at the scatterer for incident light from zone III, ni = n2, is derived as

follows. The scatterer is located in the incident medium so that both the incident field

and the reflected field contribute to the applied field at its location. This gives rise to

interference as a function of the angle of incidence and of the depth position z. Both

Ei and Er are first expressed through equation 5.2, their propagation angles substituted

according to table 5.1 and the reflected amplitudes replaced with the Fresnel coefficients

of equations 5.28. The result is

Eapp
L(z, ni = n2) = Ei

L(z, ni = n2) +Er
L(z, ni = n2)

=


(
−e−jk2z cos θi + rp e

jk2z cos θi
)
Ei,p cos θi(

e−jk2z cos θi + rs e
jk2z cos θi

)
Ei,s(

−e−jk2z cos θi − rp e
jk2z cos θi

)
Ei,p sin θi

 (5.32)

For arbitrary linear polarisations of the incident field, the relation between the three

Cartesian components of the applied field is determined by the polarisation angle ψ

through equations 5.8. The sine and cosine terms in equation 5.31 and 5.32 introduce

a constant phase shift of π/2 between the x and z components, making them orthogonal

in phase. Additional phase shifts in each of the components of the incident and reflected

fields arise from retardation. As Eapp undergoes further manipulation, its three spatial

components are projected onto different axes. Their phase-relations then become impor-

tant, hence the use of complex amplitudes throughout the model. Only the limiting cases

of pure p or s polarisation prevent interaction between the three components as all are

orthogonal in phase. At intermediate polarisations, the amplitude components interact to

an extent determined by their phase differences.
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Coupling factors

The results of this section can now be summarised in the form of the coupling factors

(defined through equation 5.6) as

F1→2(z) =


Fx = tp cos θt e

jk2z cos θt

Fy = ts e
jk2z cos θt

Fz = −tp sin θt e jk2z cos θt
(5.33)

F2→1(z) =


Fx =

(
−e−jk2z cos θi + rp e

jk2z cos θi
)
cos θi

Fy = e−jk2z cos θi + rs e
jk2z cos θi

Fz =
(
−e−jk2z cos θi − rp e

jk2z cos θi
)
sin θi

(5.34)

In computing these coupling factors, care should be taken to use the correct values for

ni, nt, θi and θt according to the propagation direction of the incident field (as given in

table 5.1).

Figure 5.12 presents the coupling factors as a function of the relative distance z/λ0

from the interface for a wave incident on the silica-water interface from both sides. The

three radiation zones are clearly distinguishable. In zone I, the propagative incident field

produces a propagative transmitted field that does not depend on z. In zone II, a short-

ranging evanescent field is generated in medium 2 that falls off with increasing z. For

fields incident from zone III, interference with the reflected field produces undulations at

shallow angles of incidence. The coupling factors Fy and Fz show a maximum at the

critical angle, on the boundary between zones I and II. This arises from the maximum

in the Fresnel factors at that angle (compare figure 5.11). The applied field may thus be

higher than the incident field, a fact that can be exploited in an experiment to enhance

the Raman signal. However, Fx is zero for light incident at θc as cos θt = 0 in that case.

The maximum in Fx is observed at normal incidence, where it is equal to Fy.

Evanescent field

The evanescent field generated with the incident field in zone II drops off with z through

the exponential factor of F1→2(z) as

e jk2z cos θt = e−z/dp (5.35)
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Figure 5.12: Complex modulus of the coupling factors Fx, Fy and Fz for the silica-air
interface (refractive indices of table 3.2 at 532 nm) for 0◦ ≤ θk,i ≤ 180◦ and
as a function of z/λ0 following equations 5.33 and 5.34.
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where dp is the penetration depth of the transmitted field. We can express dp as a function

of the angle of incidence, as this angle is set by the experimentalist, in the following way

1

dp
= −j

2πn2
λ0

cos θt

=
√
−1

2πn2
λ0

√
1− sin2 θt

=
2πn2
λ0

√(
n1
n2

)2

sin2 θi − 1

=
2πn1
λ0

√
sin2 θi −

(
n2
n1

)2

(5.36)

where we used the equality sin2 θt +cos2 θt = 1 and Snell’s law (equation 5.10). The signs

are chosen such that dp is positive.

The last expression of equation 5.36 is the conventional form given for the penetration

depth of the evanescent field. For θi ≤ θc, we obtain 1/dp = 0 and the transmitted field is

propagative. For θi > θc, θt is complex and dp has a finite positive value. The amplitude

of the transmitted field drops off exponentially with increasing distance from the interface

to a minimum value at θi = 90◦ that depends on the refractive indices of the media and

the wavelength used. The surface sensitivity of TIR Raman spectroscopy arises from the

limited penetration depth associated with angles of incidence above the critical angle. A

large difference in indices and a low wavelength reduce the penetration depth. Figure 5.13

presents dp for the silica-air and silica-water interfaces for a 532-nm laser incident under

TIR. For these interfaces, minimum penetration depth is 79.5 and 143 nm, respectively.

40 50 60 70 80 90
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Figure 5.13: The penetration depth of the evanescent wave into air and water from a
fused silica medium for incident light of 532 nm as a function of the angle
of incidence θi ≥ θc (refractive indices of table 3.2). The critical angle is
indicated with a dashed vertical line for each interface.
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Although there is no transmitted ray propagating across the interface upon TIR, an

evanescent wave arises near the interface which meets the electromagnetic boundary con-

ditions. This evanescent wave penetrates the second medium but its amplitude decays

exponentially from the interface. No energy is transferred over the interface, unless ab-

sorption or scattering takes place in the second medium. In such cases, the evanescent

field is perturbed. This can be detected through the attenuation of the reflected field

and through the detection of scattered light. There is, however, a non-zero net energy

flux in the evanescent field along the x-direction [69]. For s-polarised incident light, the

evanescent field is a transverse wave, linearly polarised along y. A p-polarised incident

field generates x and z components of different complex amplitudes, rotating through the

plane of incidence. Intermediate polarisations give rise to an evanescent wave of partly

transverse and partly longitudinal character.

5.2.4 Applied field at the interface

For a scatterer located at the interface in medium 2, z = 0 and the coupling factors derived

above (equations 5.33 and 5.34) simplify to

F1→2(0) =


Fx = tp cos θt

Fy = ts

Fz = −tp sin θt

(5.37)

F2→1(0) =


Fx = (−1 + rp) cos θi

Fy = 1 + rs

Fz = − (1 + rp) sin θi

(5.38)

These expressions differ in the sign of a number of components from those presented

previously by our research group where the amplitude directions of the fields were left

ambiguous (including references [35, 36, 54]). Strict adherence to the chosen definitions is

needed to obtain meaningful modelling results.

5.2.5 Applied field in a thin film

In a thin film between two dielectric media with a layer thickness much smaller than the

wavelength of the incident light as well as of the Raman scattering, the electric field is

constant over the layer at any moment in time. The boundary conditions for this situation

become 

ϵ1E
⊥
1 = ϵ2E

⊥
2 = ϵ3E

⊥
3 (i)

B⊥
1 = B⊥

2 = B⊥
3 (ii)

E
∥
1 = E

∥
2 = E

∥
3 (iii)

1
µ1
B

∥
1 =

1
µ2
B

∥
2 =

1
µ3
B

∥
3 (iv)

(5.39)
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where 1, 2 and 3 denote the fields in the hemisphere, thin film and lower medium, respec-

tively. Conditions (i) and (iv) provide

E2,z =
ϵ3
ϵ2
E3,z (5.40)

whereas the remaining conditions state that the x and y components of the field in the

thin film are equal to those in medium 3 at the interface. The amplitude transmission

coefficient tp,1→2 for light passing from the first to the second medium can then be given

as

tp,1→2 ≡
E2,z

E1,z
=

ϵ3
ϵ2
E3,z

E1,z
=
ϵ3
ϵ2
tp,1→3 =

(
n3
n2

)2

tp,1→3 (5.41)

where tp,1→3 is the result of a single dielectric interface given in equation 5.28 with ni = n1

and nt = n3 and the angle of incidence and transmission in these media. The remaining

boundary conditions for this situation result in the Fresnel coefficients for the bare dielec-

tric interface at z = 0. The interface is too thin to affect the macroscopic reflection and

refraction properties of the bounding dielectrics. Only the z-component of the macroscopic

field within the film is affected by the refractive index of the film. The coupling factors

can thus be given as

F2,1→3 =


Fx = tp cos θt

Fy = ts

Fz = −
(
n3
n2

)2
tp sin θt

(5.42)

F2,3→1 =


Fx = (−1 + rp) cos θi

Fy = 1 + rs

Fz = −
(
n3
n2

)2
(1 + rp) sin θi

(5.43)

where the Fresnel factors and angles are computed for a clean interface between media 1

and 3.

5.3 Induced dipole

Calculation of the Raman-induced dipole p starts with the applied field as developed in

the previous section. Four variables are given as input: the orientation of the molecule

relative to the laser frame L, the Raman tensor of the vibrational mode of interest in the

molecular frame m, the polarisability and the semi-axes of the molecular ellipsoid. The

last two are used for the local field correction. The applied field is first projected onto

the molecular axes. This field also acts on the medium and gives rise to a macroscopic

polarisation that affects the field experienced by the scattering molecule. The applied

field is modified by local field correction factors to take this effect into account. These

also effect the induced dipole, that produces a field in the medium acting back on itself.

Finally, the resulting effective induced dipole is rotated back to the L-frame.



172 CHAPTER 5. MODELLING RAMAN INTENSITIES

5.3.1 Orientation of the scattering molecule

The Raman tensor αv
m is specified in the molecular frame of reference m as detailed in

chapter 4. The orientation of the molecule relative to the L-frame is fully given through

the three Euler angles (αm, βm, γm) as defined in figure 2.2. To span the entire range of

orientations uniquely, the angles are limited to the following ranges: 0◦ ≤ αm, γm < 360◦

and 0◦ ≤ βm ≤ 180◦. These angles are physically relevant when the molecular axes have

been chosen appropriately.

αm gives the azimuthal orientation of the scatterer with respect to x̂L about ẑL, i.e. it

gives the orientation of the scatterer relative to the plane of incidence. At αm = 0◦

or 180◦, the scatterer is oriented parallel to this plane.

βm gives the tilt of the scatterer with respect to ẑL. At βm = 0◦ or 180◦, the scatterer is

perpendicular to the interface, while it is parallel to it at βm = 90◦.

γm specifies the twist of the scatterer about its own primary axis ẑm. For tilt angles

βm = 0◦ and 180◦, both the azimuthal angle αm and the twist angle γm describe the

same orientation.

The specified angles define the transformation matrix

TL→m = Rz(γm)Rx(βm)Rz(αm) (5.44)

and its transform TL→m
T = Tm→L according to equations 2.13 and 2.15. Though the

Raman tensor can be expressed in the L-frame as

αv
L = TL→m

T αv
m TL→m (5.45)

we choose to transform the electric field in our model rather than the Raman tensor. The

model can thus calculate the effect of any particular scatterer orientation by specifying a

unique set of angles as input.

5.3.2 Local field correction

The Raman polarisability tensor of the molecule αv
m is computed for an isolated molecule

in an external electric field. If the scattering molecule is embedded in a dielectric medium,

the effect of its surroundings on the local field at the location of the molecule should be

taken into account. This has been theorised by Lorentz, Onsager, Böttcher and Scholte,

amongst others [153]. From the various models, the Onsager-Scholte model of the local

field was proven to be most appropriate to account for experimental Rayleigh scattering

intensities [153].

Light scattering is understood as absorption followed by emission, so that a local field

correction has to be applied in both processes. In Rayleigh scattering, these corrections



5.3. INDUCED DIPOLE 173

are identical as the frequency of the light is not altered. In Raman scattering, the mathe-

matical description is identical but the frequency changes. This decouples the absorption

from the emission process. Wortmann and Bishop [154] described the application of this

model to nonlinear optical experiments in condensed media, from which we formulate a

local-field correction for our situation.

Note that with this attempt at incorporating (an)isotropic local field corrections in a

quantitative way, we accept that a hybrid model, which involves both a molecular and a

continuum approach, captures the essential features of our systems correctly. Moreover, we

assume that the interface between these two perspectives is taken into account adequately.

We will see in the below analysis that there is room for both theoretical elaboration,

especially when it comes to anisotropic properties, as well as for practical evidence related

to the correctness of the local field correction in various experimental situations. However,

it is our present aim to build a consistent model for interpretation of Raman intensities

rather than advancing general solutions to the local field problem. Notwithstanding this

limited ambition, references to more advanced treatments are included.

Onsager-Scholte model of the local field

In Onsager’s reaction field model, a solute molecule is considered within a hypothetical

cavity in a homogeneous solvent. The electric properties of the molecule are described

through its polarisability α and the solvent through its electric permittivity ϵ (or its re-

fractive index n =
√
ϵr, in a non-magnetic substance). In a pure liquid, where the molecule

in the cavity is the same as the solvent, the polarisability and refractive index are related

through equation 3.5, the Clausius-Mossotti relation. Scholte extended Onsager’s model

by a generalisation of the cavity from a spherical to an ellipsoidal shape and considering

polarisation anisotropy in the molecule [153]. The local field is treated as the superposition

of a cavity field and a reaction field†

Elocal = Ecavity +Ereaction (5.46)

which holds for all Fourier components of the field (i.e. for each frequency).

The cavity field is the electric field generated by the surrounding material at the

centre of the ellipsoidal void. It arises from the applied field, modified by the macroscopic

polarisation of the medium, as

Ecavity = C Eapp (5.47)

with C a tensor of factors that depend on the shape of the cavity and the relative permit-

tivity of the surrounding medium.

The reaction field originates from the dipole moment of the molecule in the cavity.

This dipole induces polarisation in the surrounding medium, which in turn gives rise to

†Note that nomenclature differs in various treatments of the local field correction.



174 CHAPTER 5. MODELLING RAMAN INTENSITIES

an electric field. This is the reaction field

Ereaction = R pind = R α Elocal (5.48)

which acts back on the molecule through reaction field tensor R in units of reciprocal

polarisability, V C−1 m−2. This field is produced by the molecular dipole, which generally

consists of the permanent dipole moment plus all terms of equation 2.17. At optical

frequencies in the linear approximation used here, only the induced dipole moment at the

frequency of the incident light contributes. Thus, pind arises from the local field acting on

the molecule and the linear polarisability α of the molecule.

Substitution of equations 5.47 and 5.48 into 5.46 gives an expression for the local field

as a function of the applied field

Elocal =
C

I−R α
Eapp (5.49)

where I is a 3× 3 identity matrix. The proportionality between the local and applied field

is the local field correction L of dimensionless numbers. It is generally tensorial in nature.

If the axes of the cavity align with the polarisability axes of the molecule, C and R are

diagonal tensors in the same frame of reference. Expressing the electric fields in this frame

ensures that the cross-terms in L disappear. The diagonal elements of L then contain the

three local field correction factors

Lii =
Elocal,i

Eapp,i
(5.50)

with i = x, y, z.

Cavity and reaction field tensors

We now express the components of the cavity and reaction field tensors in the molecular

frame of reference. In our analysis, we assume that the m-frame is aligned along the major

axes of the polarisability and that these coincide with the ellipsoid axes that capture the

overall shape of the molecule. This is a reasonable assumption as polarisability arises from

electron density which depends on the geometry of the molecule. Anisotropy of molecular

shape thus correlates with its anisotropy in polarisability. The tensors C and R are then

given in the molecular frame as

Cm =

Cxx 0 0

0 Cyy 0

0 0 Czz

 (5.51)

and

Rm =

Rxx 0 0

0 Ryy 0

0 0 Rzz

 (5.52)
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These tensors are applied to Eapp expressed in molecular frame of reference to obtain

Elocal
m. If the m-frame is not parallel to the axes of the polarisability or the molecular

ellipsoid, additional rotations are required.

In the Onsager-Scholte model of the local field, the diagonal components of C and R

are given through [154]

Cii =
ϵr

ϵr − Si(ϵr − 1)
(5.53)

and

Rii =
3Si(1− Si)(ϵr − 1)

4πϵ0rxryrz (ϵr − Si(ϵr − 1))
(5.54)

with i = x, y, z and ϵr = n2 of the medium surrounding the cavity. The semi-axes of the

ellipsoidal cavity are rx, ry and rz specified in the m-frame. The reaction field depends

on the size as well as the shape of the cavity, whereas the cavity field only depends on its

shape. The numerical factor Si is the shape parameter that depends on the ellipsoid radii

as explained in the next paragraph. The local field correction factor has the form

Lii =
Cii

1−Rii αii
=

1

1− ϵr−1
ϵr
Si (1 + 3(1− Si))

αii
4πϵ0rxryrz

(5.55)

with all quantities in the m-frame of reference. It depends on two molecular properties:

its ellipsoidal shape and the diagonal polarisability αii.

Before we continue to address the effect of each parameter, note that the Onsager-

Scholte description of the local field breaks down when

αii

4πϵ0rxryrz
=

ϵr
(ϵr − 1)Si (1 + 3(1− Si))

(5.56)

as Lii → ∞. Higher order correction terms have been suggested to correct for the occurence

of this resonance through correlations between dipoles in the liquid [155] and through

taking microscopic fluctuations of the local field into account [156], using a first layer of

discrete molecules around the cavity and a continuum description of the dielectric beyond

that layer.

Shape parameter

The form of the cavity is an ellipsoid with semi-axes rx, ry and rz in the molecular frame

of reference. The Van der Waals radius of the molecule is most appropriate to describe its

shape along each dimension [153]. The volume of the molecular ellipsoid is

V =
4

3
πrxryrz (5.57)

which is related to the number density N used in the Clausius-Mossotti relation (equa-

tion 3.5) as

N =
1

V
(5.58)
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Figure 5.14: Shape parameters for a spheroid.

when considering a pure liquid, i.e. a cavity molecule surrounded by a medium consisting

of the same molecules with equal polarisability volumes.

The shape parameter Si along axis i (also known as the demagnetisation factor and

depolarisation factor) is computed through [153]

Si =

∫ ∞

0

rxryrzdu

2(u+ ri2)
√

(u+ rx2)(u+ ry2)(u+ rz2)
(5.59)

with i = x, y, z. It is a dimensionless number ranging from 0 to 1 and the sum of the three

components satisfies

Sx + Sy + Sz = 1 . (5.60)

For larger ri, the shape factor Si reduces as the sum of the three remains constant. Shape

parameters can be computed from the cavity semi-axes specified as either absolute or

relative values. The computation has been implemented numerically in the Matlab

function shapefactor (included as appendix E.1).

The shape factors for a spheroid (an ellipsoid of revolution along z where rx = ry) are

presented in figure 5.14. As the relative value of rz increases, five cases are noted:

rx/rz = 0 is a long, thin needle-shaped cavity with Sx = Sy = 1
2 and Sz = 0,

0 < rx/rz < 1 is a prolate spheroid, elongated along z, with Sx = Sy > Sz,

rx/rz = 1 denotes a sphere with Sx = Sy = Sz =
1
3 ,

rx/rz > 1 forms an oblate spheroid, flattened along its z-axis with Sx = Sy < Sz,

rx/rz → ∞ is the limit of a thin disk in the xy plane with Sx = Sy = 0 and Sz = 1.

To assess the effect of the shape parameter on the local field correction, we assume

a molecule with an isotropic polarisability αxx = αyy = αzz = α in a cavity surrounded

by a medium of the same material. Its polarisability and electric permittivity are then
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related through the Clausius-Mossotti relation, which is used with equations 5.57 and 5.58

to substitute
α

4πϵ0rxryrz
=
ϵr − 1

ϵr + 2
(5.61)

in the local field factor of equation 5.55. We then obtain

Lii =
1

1− (ϵr−1)2

ϵr(ϵr+2)Si (1 + 3(1− Si))
(5.62)

which only depends on the anisotropy of the molecular ellipsoid. Equation 5.62 is plotted

against Si in figure 5.15 for a number of refractive indices n =
√
ϵr. In vacuum, the local

field is equal to the applied field in all directions, Lii = 1, as expected. As n increases, the

local field is amplified depending on the shape of the cavity. The maximum in Lii occurs

at shape parameter Si = 2/3. The same value for Lii is obtained with both Si = 1/3 and

Si = 1, implying that the local field along a particular axis is the same for a sphere as for

a disk perpendicular to this axis.

The effect of shape anisotropy of the molecular ellipsoid is to amplify the local field

along the smaller axes of the ellipsoid. If, for instance, rx < ry < rz, the shape parameters

are Sx > Sy > Sz (assumed that each Si ≤ 2/3). The local field is increased along all

directions, but more along the small axis. The applied field is thus rotated towards the

smaller axis of the ellipsoid. This decreases the observed anisotropy of the molecule.

Polarisability of the scattering molecule

The effect of polarisability on the local field correction is assessed by assuming a spherical

cavity, rx = ry = rz = r resulting in Si = 1/3. The local field factor of equation 5.55 is

then given by

Lii =
1

1− ϵr−1
ϵr

αii
4πϵ0r3

(5.63)

which only depends on the anisotropy of the polarisability. This relation is presented in

figure 5.16 as a function of the ratio αii
4πϵ0r3

for a range of refractive indices n =
√
ϵr. As

Lii > 1, the local field is stronger than the applied field. The higher the polarisability, the

stronger the local field along this axis. The local field correction thus disproportionately

amplifies the anisotropy of the polarisability of the molecules.

For a spherical molecule with an isotropic polarisability, we have αxx = αyy = αzz so

that the local field correction factors along each axis are equal: Lxx = Lyy = Lzz. In this

case, the vectorial amplitude of the local field is strictly proportional to the applied field

without rotation. The local field factor of a spherical molecule of isotropic polarisablity

in a pure liquid further simplifies to

Liso =
1

1− (ϵr−1)2

ϵr(ϵr+2)

=
ϵr

2 + 2ϵr
4ϵr + 1

(5.64)
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Figure 5.15: Local field factor Lii for an isotropically polarisable molecule in its own pure
liquid of refractive index n =

√
ϵr (equation 5.62) as a function of the shape

parameter Si.
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Figure 5.16: Local field factor Lii for a spherical cavity (equation 5.63) in a medium of
refractive index n =

√
ϵr as a function of the relative polarisability of the

molecule at the centre of the cavity.
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which applies along any axis of the system and only depends on the refractive index of

the medium. This expression results from equations 5.63 and 5.61.

The fully isotropic local field factor simply scales the applied field and does not alter

its directionality. This correction is only of consequence in our model when comparing

materials of different refractive indices. In all other cases, it is merely a scaling factor.

For ellipsoidal cavities and anisotropic polarisabilities, the local field correction has an

unequal effect on the amplitude components of the applied electric field. It thus affects

the computed intensities through the orientation of the scattering molecule.

Remarks

In the above treatment of the local field correction, the surrounding medium was assumed

to fully enclose the cavity of the scattering molecule. This is not strictly the case for

molecules at an interface or in a monolayer.

In their computations of the Lorentz local field, Lekner and Castle found that the local

field deviates at most a few percent at the surface of a crystalline solid from the value in

its bulk [157]. Further computations at a liquid-vapour interface with an inhomogeneous

non-polar fluid give rise to similar results [158]. In a more advanced version of our current

model, these effects could be taken into account though the molecular systems of this work

are more complex than those assessed by Lekner and Castle.

Here, the dimensions of the cavity are taken to be the molecular Van der Waals radii.

The cavity is thus the size of the molecule. Since only the effects from the surrounding

medium are taken into account, effects from other parts of the molecule would be ignored.

These should therefore be included with the polarisability and Raman polarisability tensors

employed with the local field correction. This is the case for the computationally-derived

tensors from Gaussian used in this work (see section 4.3).

5.3.3 The effective Raman dipole

The local electric field Elocal at the molecule drives Raman scattering. This field oscillates

at the laser frequency ωl and induces a dipole pind, which oscillates at a shifted Raman

frequency ωR, through the Raman polarisability tensor αv
m of vibrational mode v with

vectorial dipole moment

pind
m(ωR) = αv

m Elocal
m(ωl) (5.65)

that in turn produces an electric field oscillating at ωR and polarising the surrounding

medium at this frequency. The polarisation of the surrounding medium results in a reaction

field (introduced in equation 5.48) at the location of the originally induced Raman dipole

given by

Ereaction
m(ωR) = Rm(ωR) pind

m(ωR) (5.66)

with the reaction field tensor Rm as defined in equations 5.52 and 5.54 with ϵr = n2 of the

medium at the Raman-shifted wavelength. The reaction field can be seen as originating
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from a reaction dipole preaction at the centre of the cavity that modifies the originally

induced dipole pind. An effective Raman dipole peff generated in the molecule can thus

be given as

peff
m = pind

m + preaction
m

= pind
m +αm Ereaction

m

= pind
m +αm Rm pind

m

= (I+αm Rm) pind
m

(5.67)

where all quantities are implicitly taken at the Raman frequency ωR.

Note that this treatment is similar to the local field correction presented above. How-

ever, there is no cavity field with the effective Raman dipole as there is no externally

applied field at the Raman frequency. The local field for the dipole emission process is

thus equal to the reaction field only. A cavity field does come into play for the emission

process when considering the far-field of the effective Raman dipole through reciprocity

(section 5.4.2).

We will term D the dipole reaction tensor and define it as

Dm = I+αm Rm (5.68)

which is specified in the molecular frame of reference. For a diagonal polarisability tensor,

D is diagonal as all constituent tensors are diagonal in the Onsager-Scholte formalism.

Using equation 5.54 to substitute Rii, we then have

Dii = 1 +
αii

4πϵ0rxryrz

3Si(1− Si)(ϵr − 1)

ϵr − Si(ϵr − 1)
(5.69)

which is even further simplified if αm is isotropic.

The relation between Dii and ϵr as well as Si is presented in figure 5.17 for αii =

4πϵ0rxryrz. We observe that the effect of the shape parameter on the dipole reaction

factor is similar to its effect on the local field factor (figure 5.15) but the maximum of Dii

does not occur at a fixed value of Si. The higher the refractive index of the medium, the

stronger the effect of the anisotropy of the molecular cavity. The dipole moment along

the short axis of the molecule (high shape parameter) is affected more strongly by the

reaction field than its moment along the longer axes. The dipole reaction tensor (through

the reaction field) thus rotates the induced dipole moment towards the smaller axis of the

molecule.

Summarising the results of the current and previous sections through subsequent sub-

stitution of our intermediate results, we may express the effective induced dipole in the
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Figure 5.17: Dipole reaction factor Dii (equation 5.69) as a function of shape parameter
Si and refractive index n =

√
ϵr of the medium for αii = 4πϵ0rxryrz.

L-frame as

peff
L(ωR) = TL→m

T pm
eff(ωR)

= TL→m
T (I+αm Rm(ωR)) pind

m(ωR)

= TL→m
T (I+αm Rm(ωR)) αv

m Elocal
m(ωl)

= TL→m
T (I+αm Rm(ωR)) αv

m Cm(ωl)

I−Rm(ωl) αm
Eapp

m(ωl)

= TL→m
T (I+αm Rm(ωR)) αv

m Cm(ωl)

I−Rm(ωl) αm
TL→m Eapp

L(ωl)

(5.70)

where the frequencies of Raman scattering ωR and incident laser ωl are included to em-

phasise the distinct absorption and emission processes. This also accounts for any optical

dispersion in the C and R tensors (through ϵr) while the molecular polarisability α is

assumed to be equal at both frequencies. From the above expression, an effective Raman

polarisability tensor may be defined in the molecular frame of reference as

αv,eff
m = (I+αm Rm(ωR)) αv

m Cm(ωl)

I−Rm(ωl) αm
(5.71)

which depends on molecular properties and the relative permittivity ϵr of the embedding

medium.
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5.4 Dipole radiation field

The effective dipole peff
L induced by the local field generates a radiation field propagating

outward in all directions. The vectorial amplitude of this field depends on its propagation

direction relative to the orientation of the dipole and is modulated by the vicinity of the

interface. This section develops the computation of the field Edip
L(Q) due to the dipole

in the L-frame at a point Q (figure 5.5) at the entrance to the microscope objective. This

far-field is derived through Lorentz reciprocity.

5.4.1 Field of view

The microscope objective collects a cone of the scattered light. The portion falling within

view of the objective depends on its numerical aperture (NA) and is modelled as a square

grid of discrete points Q.

Microscope objective

In the O-frame of reference, the collected portion of the scattering forms a cone of light

around the zO-axis. The size of this cone is given through the numerical aperture (NA)

of the objective lens, which is given as input to the model. The numerical aperture of a

lens is given by

NA = n sin θobj (5.72)

with n the refractive index of the immersion material, which is air in the present case, and

θobj half the angle of the maximum cone of light that can enter the objective.

The objective can further be specified with a working distance (WD) measured from

the outer lens of the objective to the interface (disregarding any effects of the hemisphere),

and a radius Robj. These are geometrically linked through

tan θobj =
Robj

WD
(5.73)

as can be seen in figure 5.18. The objective is axially aligned with the laboratory frame

zO-axis (in fact, it defines this axis) and the front of its first lens is positioned at zO =WD,

parallel to the xOyO-plane. The radius of the objective entrance is than given through

Robj = WD tan

(
arcsin

NA

nair

)
(5.74)

To simplify the analysis, the length of the unit vector is scaled to WD so that WD = 1

in the O-frame. Only the NA of the objective is then needed to specify the size of the

collection cone in the model.
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Figure 5.18: The cone of light collected by the microscope objective is characterised with
working distance WD (chosen as the unit length in the O-frame of reference)
and radius Robj, which are linked through the maximum half-angle of the
cone θobj that is specified through the numerical aperture of the lens.

Grid of rays

A square grid models the part of the scattered light that is collected by the microscope

objective. It is defined parallel to the xOyO-plane and represents the aperture of the

objective as illustrated in figure 5.18. Each node of this grid is a point Q at which the

vectorial amplitude of a light ray that originates from the induced dipole is computed.

As long as enough points are sampled, a square grid accurately represents the circular

aperture of the objective field of view.

The position of the modelling grid along the zO-axis is arbitrary. The actual working

distance need not be taken as only relative amplitudes and intensities are modelled. The

profile of the electric field over the grid remains the same, whatever its numerical vertical

position. This can be shown as follows. The far-field of a dipole drops off with distance

r as 1/r (equation 2.120) so that the ratio of the electric field at the centre of the grid to

the field at the edge can be expressed as

Edip(edge)

Edip(centre)
∝

1/redge
1/rcentre

=

1
WD/ cos θobj

1
WD

= cos θobj (5.75)

which depends on θobj only for any given orientation of the dipole. The same holds for all

grid nodes between the centre and the edge of the grid. Specification of θobj through the

NA is therefore sufficient to model the collected cone of the scattered radiation.

For simplicity, the grid is positioned at zO = 1 with the WD as unit of measurement.

This unit of length holds in all frames of reference. The diameter of the laser spot is much

smaller than WD in our experiments (several µm compared to about 1 cm). Combined

with the assumption that the objective faithfully images all scatterers in the focal plane,
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this permits the simplification that the scatterer is in the exact origin of the laboratory

frame, even when calculating multiple scatterers subsequently.

All grid nodes QO = (QO
x , Q

O
y , 1) fall in a circle in the QO

z = 1 plane. The grid can be

defined with any arbitrary inter-nodal distance, as long as it includes the variation of Edip

within the field of view. The grid size g if specified as the number of nodes along each of

the axes. The inter-nodal distance along one axis (for example the x-axis) is then given

by

QO
x (k)−QO

x (k + 1) =
2Robj

g − 1
(5.76)

for g > 1 where Robj is the radius of the grid disc given by equation 5.74. The grid

coordinates QO
x (k) and Q

O
y (l) of grid node k, l = 1, 2, 3, ..., g are then given through

QO
x (k) = −Robj +

2Robj

g − 1
(k − 1) = Robj

(
2(k − 1)

g − 1
− 1

)
QO

y (l) = −Robj +
2Robj

g − 1
(l − 1) = Robj

(
2(l − 1)

g − 1
− 1

)
QO

z = 1

(5.77)

where both QO
x and QO

y range from −Robj to +Robj. Only those nodes that satisfy

(QO
x )

2 + (QO
y )

2 ≤ Robj
2 (5.78)

are used, the others fall outside the view of the objective. If g = 1, there is only one point

and QO = (0, 0, 1).

Coordinate transformations

The grid nodes Q are specified as Cartesian coordinates in the O-frame. Its L-frame

coordinates are obtained by transformationQ
L
x

QL
y

QL
z

 = TO→L

Q
O
x

QO
y

QO
z

 (5.79)

where TO→L = TL→O
T is given by equation 5.4 through the orientation of the objective

relative to the laser frame of reference. This is given as input to the model in the form

of three Euler angles (αO, βO, γO). The coordinates of QL = (ρLQ, θ
L
Q, ϕ

L
Q) in the spherical

basis are obtained with equations 2.9.

The transformations from Q to L frame and vice versa depend on the location of Q. It

is given through its azimuthal and polar coordinates in the L-frame. These angles specify

the orientation of the Q-frame relative to the L-frame so that the transformation is given

by

TL→Q = Ry(θ
L
Q) Rz(ϕ

L
Q) (5.80)
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and the inverse transformation is

TQ→L = Rz(−ϕLQ)Ry(−θLQ) (5.81)

where the rotation matrices of equations 2.12 are used.

5.4.2 Dipole far-field through reciprocity

It now remains to find an expression for the electric field Edip
L(Q) due to the dipole at each

grid node Q falling within view of the microscope objective and express this in L-frame

coordinates. The total of these vectors constitute the collected Raman scattering in the

model.

With the location of Q specified in the L-frame of reference, the field amplitude

Edip
L(Q) at this point due to the dipole is given as

Edip
L(Q) = TQ→L Edip

Q(Q) (5.82)

with the field in the Q-frame

Edip
Q(Q) =

E
Q
x

EQ
y

EQ
z

 =

E
Q
p

EQ
s

0

 (5.83)

where the component along the x̂Q direction is the p-component relative to the plane

of incidence xQzQ and the ŷQ-component is its s-polarised component. The p and s

polarisations are parallel to the spherical basis vectors θ̂
L
Q and ϕ̂

L
Q, respectively, that

specify the position of Q in spherical coordinates of the L-frame (figure 5.5). We now

derive expressions for EQ
p and EQ

s using reciprocity.

Reciprocity of dipole fields

Lorentz reciprocity is a general theorem in electrodynamics that states that the volume

integral over two current sources J and their electric fields E obey [148]∫
V
(J1(r, ω) ·E2(r, ω)− J2(r, ω) ·E1(r, ω)) d

3r = 0 (5.84)

which is valid if the magnetic permeability and electric permittivity tensors are symmetric,

though these may vary in space. Equation 5.84 holds for a particular frequency ω. Discus-

sions of this theorem and its application to dipole radiation near interfaces are presented

in [148–152] in various forms. In our case, the current sources reduce to point dipoles and

the integral involves two points only. Lorentz reciprocity then takes the form

p1
T(ω) ·E2(r1, ω)− p2

T(ω) ·E1(r2, ω) = 0 (5.85)
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where E1(r2) is the field due to dipole p1 at the location r2 of dipole p2 and vice versa

for E2(r1). Both the fields and the dipole moments are column vectors. The transpose of

the dipole moments is taken to effect the inner product on a row and a column vector. In

the following treatment, the frequency ω is left out and implicitly assumed throughout.

In our system, we desire to know the radiation field Edip at location Q arising from

the effective induced dipole peff located at (0, 0, z) in the L-frame. This field is derived

by considering a test dipole ptest at location Q and its field Etest at the location of peff .

Formulating equation 5.85 with these quantities, we obtain

ptest
T ·Edip(Q) = peff

T ·Etest(0, 0, z) (5.86)

where the dipoles and fields are understood to oscillate at the Raman-shifted frequency

ωR and all quantities are expressed in the same frame of reference.

Equation 5.86 is solved for Edip(Q) in the q-frame (figure 5.19), which is obtained by

rotating the L-frame by angle ϕQ about the zL axis as

TL→q = Rz(ϕ
L
Q) . (5.87)

The q-frame is intermediate between the L and Q frames, involving only half the trans-

formation TL→Q of equation 5.80. The x̂q and ẑq axes span a plane of incidence for light

coming into the origin from point Q. The radiation field Edip(Q) due to ptest is also ex-

pressed in this plane and its p and s components are parallel to x̂Q and ŷQ, respectively,

propagating outward. Note that the direction of p depends on the propagation angle of

the field, consistent with figure 5.2, whereas s is along ŷq in all cases.

Figure 5.19: The q-frame of reference in which the reciprocity problem is solved.
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The reciprocity problem is expressed in the q-frame as

(
ptest,p ptest,s

)
·

(
EQ

p

EQ
s

)
= (peff

q)T ·Etest
q(0, 0, z) (5.88)

where peff
q is the projection of peff

L onto q-frame given through

pq
eff = Rz(ϕ

L
Q) peff

L (5.89)

in Cartesian coordinates. Etest
q is equally expressed along the three Cartesian axes. How-

ever, the left-hand side of equation 5.88 has two components only: along the p and s-

directions at Q.

The field Etest
q(0, 0, z) is the far-field radiating from ptest, propagating to the location

(0, 0, z) and generating a local field there in the empty molecular cavity. It is an incident

field approximated as a plane wave propagating from Q to the location of the scattering

molecule. This is in fact the problem addressed in section 5.2. Furthermore, the local

field correction has also been addressed (section 5.3.2). Here, the applied field Eapp due

only to ptest gives rise to a cavity field. No reaction field should be considered for the

local field caused by the test dipole because there is no dipole located within the cavity

for the purpose of deducing the test field. Similarly, the field due to the Raman dipole

is considered in absence of the test dipole. We have already accounted for the reaction

field due to the Raman dipole by taking this to be the effective dipole peff rather than the

induced dipole pind in section 5.3.3.‡

The test field Etest at (0, 0, z), the location of peff , can thus readily be given in the

q-frame as

Etest
q(0, 0, z) = Cq(ωR) Eapp

q(0, 0, z) = Cq(ωR) F
q Etest

q(0, 0, 0)

= Cq(ωR)

Fx 0

0 Fy

Fz 0

(Etest,p

Etest,s

)
(5.90)

with the coupling factors yet to be derived. The cavity tensor C is computed at the

Raman-shifted frequency ωR conform equations 5.51 and 5.53. This tensor is required in

the q-frame though it is specified in the molecular m-frame, necessitating the following

coordinate transformations

Cq(ωR) = TL→q Tm→L Cm(ωR) TL→m Tq→L

= Rz(ϕ
L
Q) TL→m

T Cm(ωR) TL→m Rz(−ϕLQ)
(5.91)

where transformation between the q and m frames is effected via the L-frame with TL→q

specified in equation 5.87 and TL→m = Tm→L
T given by equation 5.44 through specifica-

‡The same result is obtained if the reaction field is taken into account in deducing the reciprocity
relation at this stage rather than in deriving the effective dipole before considering reciprocity.
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tion of the molecular orientation as input to the model. These coordinate transformations

results in mixing of molecular-frame components of the cavity tensor as the orientation of

the molecule and thus its cavity may not align with the axes of the q-frame. For spherical

cavities, this mixing is of no consequence.

The incident test field Etest
q(0, 0, 0) is further specified by expressing Etest,p and Etest,s

as the amplitudes of a polarised dipole far-field with equation 2.120. It is obtained from

that equation using the fact that the propagation direction of the test field is orthogonal

to the test dipole moment for both p and s polarisations (so that sin θ = 1) and by

substituting k = ωc/n as well as r = ρQ. The result is

Etest
q(0, 0, 0) =

(
Etest,p

Etest,s

)
=

1

4πϵ0

(ωR

c

)2 1

ρQ

(
−ptest,p
ptest,s

)
(5.92)

in which the components are parallel to the dipole moment at Q. For ptest along p at

Q, the field Etest,p is antiparallel to the dipole moment as the p-direction at the origin is

opposite from that at Q. In contrast, all s-directions are parallel (figure 5.19).

The desired amplitudes EQ
p and EQ

s along the p and s directions of the q-frame at

point Q can now be derived. We start by substituting equation 5.92 into equation 5.90

and substituting the result in equation 5.88 to obtain

ptest,p E
Q
p + ptest,s E

Q
s =

1

4πϵ0ρQ

(ωR

c

)2
(
peff,x peff,y peff,z

)
·


Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz


Fx 0

0 Fy

Fz 0

(−ptest,p
ptest,s

) (5.93)

where all elements are specified in the q-frame. Writing out all terms, separating variables

and noting that the dipole moments ptest,p and ptest,s drop out of the above equations, we

obtain EQ
p and EQ

s in the q-frame of reference.

EQ
p =

−1

4πϵ0ρQ

(ωR

c

)2
[(FxCxx + FzCxz)peff,x + (FxCyx + FzCyz)peff,y + (FxCzx + FzCzz)peff,z]

(5.94)

EQ
s =

1

4πϵ0ρQ

(ωR

c

)2
[FxCxypeff,x + FyCyypeff,y + FyCzypeff,z] (5.95)

These may be rewritten in matrix notation as(
EQ

p

EQ
s

)
=

1

4πϵ0ρQ

(ωR

c

)2(−Fx 0 −Fz

0 Fy 0

)
CqT peff

q (5.96)

where the inner product has been rearranged so that our expression confirms to the form

presented in [151, 152]. However, our expression differs from these publications by in-
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cluding a the (transform of the) cavity tensor for the local field correction. Furthermore,

it additionally has a minus sign with the p-polarised component due to the antiparallel

nature of the direction of this component at the origin relative to point Q. These two

effects appear not to have been considered in the consulted literature.

Finally, the field Edip
L(Q) due to peff

L at Q is expressed in the L-frame by substitution

of equation 5.89 in equation 5.96 and subsequent application of equations 5.83 and 5.82

with 5.81 to express the effective Raman dipole and its far-field in the appropriate frames

of reference.

The frequency of the Raman scattering ωR is computed from the Raman shift ν̄R in

cm−1 and the laser wavelength λlaser given as input to the model. From ν̄R, the vacuum

wavelength of the Raman scattering λ0,R is computed with equation 3.6 and ωR follows

from equation 2.39. λ0,R is also needed for the depth-dependence of the coupling factors

if the scattering molecule is located at a distance z > 0 from the interface.

Coupling factors

The coupling matrix F of equation 5.90 is obtained through the same process as outlined in

section 5.2. Their form depends on the layer structure of the interface and the propagation

direction of the incident field. The numerical values of Fx, Fy and Fz are computed with

the Fresnel coefficients and angles specified for an incident ray coming from Q onto the

dipole. The polar coordinate θLQ specifies the propagation direction of the incident field

with θk,i = 180◦+θLQ so that 180◦ ≤ θk,i ≤ 360◦ in the present case. This range differs from

that of the incident laser beam as the propagation direction is reversed in the reciprocity

problem: the field is incident from a particular polar direction rather than propagating

towards that direction.

Table 5.2: Propagation angles in the L-frame and refraction angles with the radiation
zones of Q.

Zone I Zone II Zone III

90◦ + θc < θLQ ≤ 180◦ 90◦ ≤ θLQ ≤ 90◦ + θc 0◦ ≤ θLQ < 90◦

270◦ ≤ θk,i ≤ 360◦ 180◦ ≤ θk,i < 270◦

ni = n1 ni = n2
nt = n2 nt = n1

θk,i = 360◦ − θi θk,i = 180◦ + θi
θk,t = 360◦ − θt θk,r = 360◦ − θi

The angle of incidence θi for each grid node Q is therefore given as

θi =

180◦ − θLQ for zones I and II, 90◦ ≤ θLQ ≤ 180◦

θLQ for zone III, 0◦ ≤ θLQ < 90◦
(5.97)

with the zones defined as above in figures 5.9 and 5.19. That is: radiation incident from

zones I and II arrives through medium 1 and is transmitted through the interface to



190 CHAPTER 5. MODELLING RAMAN INTENSITIES

reach the molecule; zone III involves radiation incident on the molecule directly and after

reflection from the interface. As the field directions strictly follow our definitions outlined

in the previous sections, the Fresnel amplitude coefficients of equation 5.28 apply with the

appropriate refractive indices ni, nt and angles θi, θt as presented in table 5.2. Following

the procedure of section 5.2 for this situation results in the following coupling factors.

F1→2(z) =


Fx = tp cos θt e

jk2z cos θt

Fy = ts e
jk2z cos θt

Fz = tp sin θt e
jk2z cos θt

(5.98)

F2→1(z) =


Fx =

(
−e−jk2z cos θi + rp e

jk2z cos θi
)
cos θi

Fy = e−jk2z cos θi + rs e
jk2z cos θi

Fz =
(
e−jk2z cos θi + rp e

jk2z cos θi
)
sin θi

(5.99)

These differ from those derived for the incident laser beam (equations 5.33 and 5.34) by

the minus sign for the Fz components as the propagation angle θk,i spans a different range

here. Note that the field obtained through reciprocity reduces to the far-field of a dipole

in a homogeneous dielectric (equation 2.120) in the absence of an interface, i.e. when the

refractive indices are all the same.

5.5 Detected intensities

In this section, we compute Ecol
O(Q), the collimated field due to the induced dipole at

each point Q on the objective. Collimation by the objective involves the rotation of the

propagation direction of each ray to align with ẑO so that the amplitude components are

given as

Ecol
O(Q) =

E
O
x

EO
y

0

 (5.100)

where xO and yO conform to the collection polarisation axes set in the experiment. The

modelled total intensity is then given by the sum of the squared amplitudes at each grid

node Q along each of the orthogonal polarisation directions.

5.5.1 Collimation

The lens function of the objective is to collimate the cone of light, which is assumed to work

perfectly. Furthermore, the objective transmission function is assumed to be constant over

Robj. Collimation of the cone of scattered light is obtained by rotating the propagation

direction of the individual rays of the modelling grid into the ẑO direction. The vectorial

amplitude of the electric field then lies in the xOyO-plane.
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The dipole radiation field is first expressed in the observation frame of reference through

Edip
O(QO) = TL→O Edip

L(Q) (5.101)

where the positions QO are the original specified coordinates of the grid nodes defined

through equations 5.77 and the transformation TL→O = TO→L
T given by equation 5.4.

Collimation is implemented in the model as a rotation of Edip
O(Q) over collimation

angle θcol about axis acol, both of which depend on the location of Q. The inner product

and cross product§ are used to obtain this angle and axis from ẑO and QO, the Cartesian

unit vector along the z-axis and the vector from the origin to point Q both expressed in

the Cartesian coordinates of the O-frame. These are given as the normalised vectors

ẑO =

0

0

1

 (5.104)

and

Q̂O =
1√

QO
x
2
+QO

y
2
+QO

z
2

Q
O
x

QO
y

QO
z

 (5.105)

that span a plane in which Q̂O has to be rotated to ẑO to effect collimation. As Q̂O varies

for each grid node, the procedure is completed by considering each point separately.

The angle 0◦ ≤ θcol ≤ 180◦ is the collimation angle by which the field direction and thus

its vectorial amplitude are rotated. It is computed through their inner product between

ẑO and Q̂O as

θcol = arccos
(
ẑO · Q̂O

)
(5.106)

where normalisation is not needed as both are unit vectors. The axis acol is found through

the cross product

acol =
Q̂O × ẑO

sin θcol
(5.107)

where the order is important to obtain the correct sense of the rotation. Rodrigues’ formula

is now used to implement the rotation to obtain the collimated dipole field at each grid

node through

Ecol
O = Edip

O cos θcol +
(
acol ×Edip

O
)
sin θcol + acol

(
acol ·Edip

L
)
(1− cos θcol) (5.108)

§ The smallest angle φ between two three-dimensional vectors a and b in the plane defined by these
vectors is given through the inner product

a · b = ∥a∥ ∥b∥ cosφ (5.102)

while the cross product of these vectors provides a third, orthogonal vector n as

a× b = n ∥a∥ ∥b∥ sinφ (5.103)

where the angle φ is taken from a to b about n.



192 CHAPTER 5. MODELLING RAMAN INTENSITIES

O

dip
O

O

O

O

col
O

O
O

Figure 5.20: Collimation of the dipole field is effected in the model for each grid node Q
(black dots) by a rotation that brings the propagation directions (blue) of
the dipole field Edip

Q(Q) parallel to ẑO. The vectorial absolute amplitudes
(red) of the collimated field Ecol

Q(Q) are parallel to the xOyO-plane.

where the dependence on Q of each quantity in this equation is implicit. Figure 5.20

presents an example of the collimation as implemented in our model.

5.5.2 Total linearly-polarised intensities

In an experiment, the collimated beam is passed through a linear polariser, set along either

the x or y direction of the O-frame of reference. Both are computed simultaneously in

our model. The polarising effect is assumed to work perfectly: the selected component of

the electric field is transmitted without loss while the orthogonal component is blocked

completely.

The collimated field at each grid node Q is of the form

Ecol
O(Q) =

E
O
x

EO
y

0

 (5.109)

which contributes to the total intensity along both x and y polarisation directions of the

dipole field sent to the detector. The polarised irradiance at each grid node is given

through equation 2.77 as

Ix(Q) =
nair ϵ0 c

2

(
Ex

O(Q)
)2

Iy(Q) =
nair ϵ0 c

2

(
Ey

O(Q)
)2 (5.110)

where the square denotes the complex modulus for complex amplitude components. These
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form an intensity map over the field of view of the objective, looking down its ẑO axis

(figure 5.21 includes an example). The total linearly-polarised intensities are the sum over

all grid nodes Q

Ix =
1

NQ

NQ∑
1

Ix(Q)

Iy =
1

NQ

NQ∑
1

Iy(Q)

(5.111)

which are scaled to the number of grid nodes NQ on the objective to facilitate comparison

between runs of the model with different grid sizes. The summation runs over all rays in

the modelled beam, assuming that all rays end up at the detector. The total scattering

intensity is simply the sum of the orthogonal components

S = Ix + Iy . (5.112)

Note that all the above are irradiance values and not radiant intensities as no integration

over a surface area is performed. The spatial variation in the field of view, modelled

by the grid of rays, is lost in the spectrograph: the rays are focussed onto the detector

according to their wavelength. No amplitude is lost and all of the modelled radiation thus

contributes to the total detected intensity. Figure 5.21 presents the modelled intensities

for the collimated field of figure 5.20.

The summation in equation 5.111 is appropriate as Raman scattering is incoherent,

for an individual as well as an ensemble of molecules. Considering a single molecule,

subsequent scattering events are spaced in time and individual photons are detected. In

molecular ensembles, there is no phase relation between the vibrational modes of the

individual molecules. This is not the case in all optical techniques. In sum-frequency

generation, for example, the radiation from each scatterer is coherent. In modelling, this

would mean that the amplitudes of the generated electric fields have to be summed before

O

O

0

1

2

3

4

10-72

Figure 5.21: Linearly-polarised intensity maps for the modelled collimated field of fig-
ure 5.20 showing the total intensities Ix, Iy and their sum at each grid node
Q in the field of view.
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being squared to obtain the appropriate intensity (i.e. these interfere). Here, we square

before summing.

5.6 Implementation in Matlab

The model outlined is this chapter is implemented in Matlab as a function with the

name pirs, which stands for ‘polarised interfacial Raman scattering’. The code is given

in appendix E.2. It is rather heavily annotated to be self-explanatory with the derivations

and other details described in this text and employs the same or similar variable labels as

used here.

5.6.1 Output and input

The output of the pirs function consists of the following for the Raman-active feature of

interest:

1. the total intensity Ix polarised along xO in the field of view divided with the number

of grid nodes NQ,

2. the total intensity Iy polarised along yO in the field of view scaled with the number

of grid nodes NQ,

3. the xO-polarised irradiance Ix(Q) at each node Q on the square modelling grid,

4. the yO-polarised irradiance Iy(Q) at each node Q on the square modelling grid,

5. optionally, a figure with the polarised irradiance distributions Ix(Q), Iy(Q) and their

sum presented as an intensity map in the field of view.

The intensities are relative values in an arbitrary unit as these are obtained by a sum

over discrete points rather than through an integral over an analytical solution. Moreover,

a number of input parameters may be given as relative rather than absolute values in SI

units. An overview of all input variables is given in table 5.3 in the same order as required

by the Matlab function. All input parameters need specification in the specified array

format for the code to run. The refractive indices of the three materials n1, n2, n3

are for the hemisphere, thin surface layer and the rarer medium below the hemisphere,

respectively. Values may be included at both the incident laser wavelength and the Raman-

shifted wavelength to account for dispersion effects. Variables that may be entered as

relative values are listed with the designation a.u. (arbitrary unit) and those without unit

are ratios or other dimensionless quantities. Note that all angles are defined within a

limited range only, as specified in this chapter.
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Table 5.3: Input variables of Matlab function pirs.

variable(s) / unit symbol and format

refractive indices

n1(λ0,laser) n1(λ0,R)
n2(λ0,laser) n2(λ0,R)
n3(λ0,laser) n3(λ0,R)


laser propagation angle / ◦ θk,i

laser linear polarisation angle / ◦ ψ

laser vacuum wavelength / nm λ0,laser

depth of molecule / nm z

molecular orientation in L-frame / ◦ (
αm βm γm

)
Stokes Raman shift / cm−1 ν̄R

Raman tensor in m-frame / a.u. αv
m =

αv,xx αv,xx αv,xx

αv,xx αv,xx αv,xx

αv,xx αv,xx αv,xx


semi-axes of molecular ellipsoid in m-frame / nm

(
rmx rmy rmz

)
polarisability tensor in m-frame / a.u. αm =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


numerical aperture NA

objective orientation in L-frame / ◦ (
αO βO γO

)
grid nodes along xO and yO axes g

to produce output figure 1
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5.6.2 Method of calculation

The calculations within the pirs function follow the order presented in this chapter. The

steps are implemented with matrices that obey the conventions outlined in section 2.2.

The model is compatible with the use of complex numbers. A complex vectorial amplitude

in Matlab thus consists of a 3 × 1 array (rows × columns) with a complex number at

each entry that carries amplitude as well as phase information.

The thin-film approximation as well as the depth-dependence for a single interface are

coded in the function. These cases do not apply simultaneously but may be combined to

form hybrid coupling factors from equations 5.33, 5.34, 5.42 and 5.43 of the form

F1→3(z) =


Fx = tp cos θt e

jk3z cos θt

Fy = ts e
jk3z cos θt

Fz = −
(
n3
n2

)2
tp sin θt e

jk3z cos θt

(5.113)

F3→1(z) =


Fx =

(
−e−jk3z cos θi + rp e

jk3z cos θi
)
cos θi

Fy = e−jk3z cos θi + rs e
jk3z cos θi

Fz = −
(
n3
n2

)2 (
e−jk3z cos θi + rp e

jk3z cos θi
)
sin θi

(5.114)

which can be used with the appropriate combination of input variables. As long as z = 0

(the scattering molecule is located at the interface), any combination of refractive indices

n1, n2 and n3 can be used and the hybrid coupling factors reduce to these of the thin-film

approximation. However, for z > 0, we must have n2 = n3 so that the factor n3/n2

disappears and the hybrid coupling factors reduce to those of a single interface.

Using this hybrid form facilitates computation of both cases with the same code, though

care must be taken to specify the input correctly. Error messages are presented if this

is not the case. Other input variables that could give rise to invalid results are equally

checked before the computation starts.

A numerical loop over the grid nodes Q is used to compute the dipole field at each

node. The coupling factors for the outgoing radiation towards Q are again the hybrid

factors of equations 5.113 and 5.114 but with Fz multiplied by −1. Once the radiated field

is known in the O-frame of reference, another loop over Q is executed to effect collimation

at each grid node. The components along xO and yO of the collimated field are then

squared. For complex values, the complex modulus is taken. This result is stored in an

intensity map, that is presented as if looking down the objective towards the scatterer.

The sum over these intensity maps provides the linearly-polarised intensities Ix and Iy of

the modelled Raman band, scaling for the number of grid nodes as in equations 5.111.

The total intensity is affected by the spacing of the grid nodes, especially for a strongly

fluctuating field. This is the case around the critical angle, the boundary between zones

I and II. For intensities radiated purely into one of the zones, stable intensity values are

reached more readily. In most cases presented in this thesis, stability has been observed
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from about g = 15, resulting in 176 modelling grid nodes.

The modelled intensity distribution reduces to the dipole far-field in a homogeneous

dielectric in the absence of an interface, i.e. when n1 = n2 = n3, the field deduced

through reciprocity is that of equation 2.120. Figure 5.22 presents the result of such a

computation in our model with induced dipoles along the xO, yO or zO axis. The first

results from incident light along ẑL (θk,i = 0◦) with p-polarisation as this field has a non-

zero component along the x̂L-axis only. The second arises from s-polarised light incident

under any angle θk,i, as the amplitude of the incident field as purely along ŷL. The induced

dipole along ẑL arises from p-polarised light incident at θk,i = 90◦. The intensity maps

of figure 5.22 represent a wide-angled observation (NA = 0.8) of a radiating dipole from

three orthogonal directions through a linear polariser. The total intensities Ix + Iy are

cross-sections of the far-field dipole irradiance of figure 2.5.

5.6.3 Molecular ensembles

A single run of the pirs function provides Raman intensities for a very specific set of

input variables. Many samples require modelling as ensembles, involving a distribution of

orientations and multiple Raman modes. Moreover, experimental variables, such as the

laser angle of incidence, may contain an inherent spread. These systems are modelled with

a computational algorithm (or script) that repeatedly executes the function pirs in a loop

and sums the resulting intensities, possibly weighted for non-uniform distributions of the

input variables. As Raman scattering is an incoherent process, (weighted) summation of

the computed intensities is appropriate.

Another important use of these scripts is to probe a range of input variables so that

a match between modelled intensities and experimental observation can be found. This

involves an additional fitting routine to interpret the spectra. The pirs model thus serves

both to predict intensities for experimental optimisation as well as to interpret Raman

spectra and assign molecular orientations or other properties to the scattering molecules.

5.7 Summary and critique

The purpose of the model outlined in this chapter is to predict polarised Raman scattering

intensities arising from molecules near a planar dielectric interface. It employs a complex

vectorial description of the electric field amplitudes to capture the macroscopic electrody-

namics of the process. In its development, several assumptions and approximations have

been made. The model can be used to aid in the design of experiments, for example by

testing a range of experimental geometries for a particular system of interest, or to inter-

pret observed Raman scattering intensities given the experimental geometry in terms of

the molecular properties, including its orientation.

This chapter is concluded by a summary of the electrodynamics of the model, a list

of its limitations, assumptions and approximations as well as a brief review of how our
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Figure 5.22: In the absence of an interface, the pirs function returns the field of a dipole in
a homogeneous medium. In these computations, NA = 0.8 and the objective
is aligned with the L-frame, i.e. looking down the z-axis from its positive
side towards the origin. For p-polarised incident light at θk,i = 0◦ (top), a
dipole is induced along the xO-axis, while it is along zO if θk,i = 90◦ (centre).
With s-polarised incident light (bottom), the dipole is along yO irrespective
of θk,i. The intensity values result from an electric field incident amplitude
of 1 (with g = 151, αv

m = I · 10−42, αm = I · 10−40, λ = 532 nm and
n1 = n2 = n3 = 1.4607) and are taken from the model output without
further scaling.
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approach goes beyond previously published efforts.

5.7.1 Electrodynamic description

The amplitude of the electric field is treated as a relative, time-averaged quantity. No vec-

tors are scaled to actual physically relevant units, but numerical values are used through-

out. This is appropriate when fitting the modelling result to experimental spectra and

when optimising experimental design. Absolute intensities cannot be reproduced. Many

factors are still included in the model to conform to the equations in this text.

The model starts with a specification of the incoming radiation as a plane wave through

its propagation angle θk,i and linear polarisation angle ψ, both given in the L-frame of

reference. The angle θk,i determines the incident medium and thus the coupling factors

Fx, Fy, Fz that relate the incident field to the field at the location of the scattering molecule

in medium 3. This relation depends on the refractive indices n1, n2, n3 of the media and

the thin film in between (with n2 = n3 if the molecule is located away from the interface,

i.e. z > 0). The applied electric field is then computed and projected onto the molecular

axes using the specified molecular azimuthal, tilt and twist angles (αm, βm, γm).

If the laser is incident from zone I, the field at the molecule is the propagative transmit-

ted field of the laser. If incident from zone II, the laser undergoes total internal reflection

and an evanescent wave is present at the location of the scattering molecule. Each of

the three components of this evanescent field has a distinct phase. For zone III, the laser

is incident through medium 3 and reaches the molecule directly and through a reflected

field that interferes with the incident field. For zones II and III, the applied field depends

strongly on the position of the molecule along z.

The field experienced by the molecule, and that thus induces the Raman dipole, is

the local field. The Onsager-Scholte model is applied here and approximates a solute

molecule as a polarisable point dipole located in an ellipsoidal cavity of its own shape

in a solvent that is treated as an isotropic homogeneous dielectric continuum. The local

field then consists of the cavity field (the field inside the empty cavity due to the applied

field and the polarisation of the surrounding medium) and the reaction field (due to the

macroscopic polarisation of the surrounding medium induced by the dipole moment in the

cavity). These fields are expressed in terms of the applied field, the ellipsoidal shape of the

molecule, its polarisability and the refractive index of the surrounding medium. The local

field disproportionately amplifies the anisotropy arising from the molecular polarisability.

However, it decreases the observed anisotropy arising from the molecular shape as the field

along short axes is enhanced more than along long axes of the molecule.

The induced Raman-dipole is computed by applying the Raman tensor of the mode

of interest to the local field. Again, a local field correction applies to the emitted field

now oscillating at the Raman-shifted frequency. The Raman-induced dipole polarises the

surrounding medium which acts back on the emitting molecule and enhances the induced

dipole. It acts back on the induced dipole more strongly along the small molecular axis
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then along the long axis. The reaction field is in incorporated in the model as an effective

dipole peff in the molecular frame of reference.

The radiation emitted by peff , expressed in the laser frame of reference, is now cal-

culated on each point Q on a grid at the entrance to the microscope objective. Lorentz

reciprocity is used the obtain the p and s-polarised components of the dipole far-field Edip

at each point Q. The reciprocity relation includes a further local field correction in the

form of the cavity tensor which modifies the field due to the test dipole at the location

of the Raman scattering molecule inside the cavity. Similar coupling factors apply to the

incident field due to the test dipole in the reciprocity relation as to the analysis of the

incident laser field.

The dipole far-field is then transformed into the objective frame of reference and col-

limated by rotating Edip so that its propagation direction aligns with the objective axis.

Finally, the linearly-polarised intensities Ix(Q) and Iy(Q) at each grid node Q are

obtained by taking the complex modulus of the x and y components of the collimated

dipole field Ecol. Ix(Q) and Iy(Q) can be used to produce intensity maps of the field of

view. The total linearly-polarised intensities Ix and Iy are then obtained by summing

over all points in these maps, dividing the result by the number of grid nodes in the field

of view to facilitate comparison between modelling runs of different grid sizes. These

intensity values constitute the core output of the model.

5.7.2 Applicability

The applicability of the model is limited by some of its hard-coded elements in addition

to approximations and assumptions of the electrodynamic description. These include the

items listed below. Most of these do not restrict the validity of our approach applied to

Raman scattering at optical frequencies, for which the model is intended. Suggestions are

presented to extend the applicability beyond the current capabilities.

1. The dipole polarisability is linear and its decay mechanism is radiative only. Fur-

thermore, no interference arises between the incident and output fields. This is the

case with Raman scattering.

2. Frequency shifts of the dipole field due to the proximity of a dielectric interface are

neglected. The internal energy levels of a molecule near an interface are displaced

from those in vacuum [150]. However, the shift has been predicted to be practically

undetectable [159].

3. All media are non-magnetic. For most media at optical frequencies, µr = 1 so that

n ≈ √
ϵr is an appropriate assumption.

4. Chemical interactions between the scattering molecule and the surrounding material

are ignored. This is central to our use of the gas-phase polarisability and Raman

tensors. If interactions occur, these should be included in the ab-initio computation

so that it is reflected in the molecular properties used as input to the model.
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5. The computed intensities are relative and therefore only comparable between com-

putations with the same molecule and Raman tensor. These could be made absolute

by considering the differential cross-section (equation 2.135) arising from the laser

intensity, the number of illuminated molecules and the solid arc at each grid node.

6. Only linear incident polarisations are used. A generalised phase relation between

the two components would allow for elliptically-polarised light, which requires a

reformulation of the Raman scattering problem [61]. Using circularly polarised light

(known as Raman optical activity [160]) probes the structure of chiral molecules and

conformational dynamics not accessible through linear polarisations.

7. The far-field approximation is used the calculate the radiation of the Raman-induced

dipole through reciprocity. This is appropriate at the dimensions of our experiment

as the (kr)−1 term in the expression of the dipole field (equation 2.103) dominates

for ρQ >> λ0,R.

8. The scattered light is only collected through linear polarisation along the observation

frame x or y directions. The option of selecting an arbitrary orientation is available

in the Stockholm system, though it is fixed in Durham. This can be included in the

model by adjusting the azimuthal angle αO of the O-frame relative to the L-frame.

The xO component of Ecol
O is then along the selected axis.

9. The Onsager-Scholte model of the local field correction is assumed to be valid in

our system. This implies that the applied field is assumed to be constant over

the extent of the molecule (which is reasonable) and that the surrounding medium

is homogeneous and isotropic (i.e. a single dielectric constant suffices to capture

its electric properties). This assumption is actually used for all media (see the

next item), notwithstanding the use of an anisotropic polarisability tensor for the

scattering molecule in the application of the local field correction.¶

10. The media are taken to be isotropic, modelled with one refractive index for all

propagation directions of the light. Optical anisotropy affects the Maxwell fields as

well as the local field correction. The refractive index is then expressed as a tensor

n of rank two, which is diagonal in the medium frame of reference (i.e. along the

axes of birefringence). This tensor is projected onto the L-frame to compute the

Maxwell field, so the optical orientation of the medium must be known. The effect

of anisotropy of the medium on the local field is addressed in [161] and [162].

¶At first sight, this might not seem consistent. However, refractive indices have so far been treated
as scalars while (Raman) polarisabilities were taken as tensors. The same approach is used here with
the local field correction. Consistent incorporation of optical anisotropy would require adapting both the
Maxwellian description of the model as well as the local field correction. For thin films, an intermediate
solution could involve the use of in-plane and out-of-plane permittivity values for two directions within the
thin film, e.g. one value for Fz and another for Fx and Fy that might also be used in computing diagonal
elements of cavity and/or reaction field tensors. An ellipsometric method of measuring such permittivities
was given by Casson and Bain [10].
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11. The interface consist of either a thin-film at a dielectric interface or a clean dielectric

interface. This limitation is readily overcome by using coupling factors appropriate

to the layered system under consideration. With the refractive index and thickness

of each layer specified, the coupling factors can be formulated to depend on the same

variables as in the current model. These are given for a generalised layered system

by Crawford [149], including an explicit formulation for a three-layered system. The

latter is also addressed in [152] with a transfer-matrix formalism.

12. The location of the scatterer in the model is along the ẑL axis. It is therefore

assumed that molecules at off-axis locations produce the same scattering field at

the microscope objective as those located at (0, 0, z). This is appropriate as the

displacement along xL and yL is on the order of micrometers, much smaller than

WD and Robj of the objective lens that collects nearly identical cones of scattered

light for all molecular positions in its focal volume.

13. The laterial displacement of the beam is neglected. When a linearly polarised beam

of limited extent is reflected totally, the incident and reflected beam interfere with

each other. This results in a lateral displacement of the beam [163] known as the

Goos-Hänchen shift. Following the definitions of our coordinate system, this shift

is in the x̂L-direction. (A transverse shift occurs for a circularly polarised beam.)

Several methods exist to calculate this displacement. Using the argument of energy

conservation, the shift is directly proportional to the intensity of the evanescent

field [69]. It thus varies with the angle of incidence and the polarisation of the

incoming beam. Experiments to measure the Goos-Hänchen shift involved multiple

total internal reflections to increase the displacement to make it easily measurable

[164]. The effect for a single reflection is smaller than the wavelength used [165] and

is therefore ignored here.

14. The optical components of the system are assumed to work perfectly, in particular

the microscope objective lens. This includes that no losses are incurred due to

birefringence or partial transmission, that the objective collimates perfectly, that

linear polarisers completely transmit the selected component only and that there

is no sensitivity to polarisation. Any known imperfections of components could be

taken into account by using transmission functions that may vary over the modelling

grid and with the polarisation of the field at each point. Furthermore, all Raman

scattering falling in the view of our microscope objective is collected and adds to

the total detected intensity. If the beam path is truncated anywhere in the system

(by design or otherwise), the relevant fraction of grid nodes can be removed readily

from the modelled intensity map.

15. For comparison to experimental data, we assume perfect optical alignment of the

optical components. If deviations are known, these can be included in the model as
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long as it concerns the orientation of the objective to the laser frame of reference

(αO, βO, γO) or the laser propagation angle θk,i.

The model is not limited to our experimental method. A generalisation to other

experimental geometries is included through the relative position of objective and interface

and the laser incident from either side of the interface under any angle. The mathematical

description may also be employed for other processes. In addition to Raman spectroscopy,

the model is readily applicable to Rayleigh scattering, in which case the polarisability

tensor replaces the Raman tensor throughout. With more significant alterations of the

code, fluorescence intensities could be modelled. It shares the principle of absorption

followed by emission. The absorption cross-section is then used for the absorption step

and the emitting dipole is strictly linked to the molecular orientation. Infrared absorption

could also be modelled when the emission process is omitted altogether. The static dipole

moment derivative with respect to the vibrational normal coordinate is then used. It is

a vector in the molecular frame of reference and Lorentz reciprocity can be employed to

obtain the coupling factors into all directions to describe the absorption of an incident

field. This lead to an effective absorption cross-section tensor that depends on molecular

orientation as well as incident angle and polarisation of the applied field.

5.7.3 Improvement on existing models

Several authors have published work touching on the aims of our model to predict and

interpret (linearly-polarised) intensities. Some of this work has already been discussed and

cited above in the elementary components of our model. In roughly chronological order,

additional papers are discussed now that relate directly to modelling linearly- polarised

intensities from molecules near an interface in either fluorescence or Raman scattering. The

model outlined in this chapter goes beyond publish work on predicting these intensities by

incorporating a more complete and versatile description of the electrodynamic problem.

Luan et al. studied the radiation pattern of fluorescent molecules embedded in a

spin-coated polymethylmethacrylate (PMMA) film on glass [166] and on a thin silver film

[167]. Using a spin-coated resin to encapsulate the dye molecules ensured that these were

fixed in a uniform orientation distribution. Excitation of the dye was at normal incidence

and the emission was detected in photo-multiplier tube with a collection half-angle of

0.15◦. This resulted in an accurate radiation profile over nearly the full range of the polar

angle 0◦ ≤ θ ≤ 180◦. The intensity profile I(θ) was accurately described by the far-

field intensity distribution of an emitting dipole in a three-layer system obtained through

Lorentz reciprocity, integrating over the depth of the PMMA/dye film. The fluorescent

emission into the glass side of the interface was clearly enhanced over that of the air side,

especially around the critical angle.

In another paper, a selection of the same authors computed the dipole near- and far-

fields [168] from which they obtained a ratio of the total intensity emitted into each medium

for each polarisation (though it appears that they only involved the polar angle as in their
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previous study). To obtain the strongest intensities, one should collect the emitted light

through the optically denser side of the interface and the refractive index difference should

be as large as possible. However, as the emitting dipole is located further away from the

interface, this advantage reduces. The evanescent part of the dipole near-field (zone II in

our framework) no longer couples into the high-index material at larger distances. Though

the authors discuss these factors in obtaining high-intensity emission, they did not apply

their conclusions to the excitation light, keeping the laser beam at normal incidence from

the air-side of their system [167].

Pristinski et al. [42] use the evanescent field to enhance both the applied field and

the emitted dipole field of a surface-enhanced Raman scattering (SERS) probe in water

on glass. The Raman signal at about 2105 cm−1 arose from SCN– absorbed on silver

nanoparticle clusters placed at the interface between a borosilicate glass prism and water.

The Raman scattering was induced by a polarised laser incident through the prism above

the critical angle. Scattered light was collected in a collimating lens with an effective

θobj ranging from 0.4◦ to 1.1◦ in the prism at polar angles ranging from 62◦ to 81◦ in the

direction of the reflected laser beam. In this geometry, the authors recorded the evanescent

field of the induced dipoles, emitting into zone II.

The dependence of the SERS signal on collection angle and polarisation was modelled

by taking both the incident and emission radiation into account. The authors derived

the field for each scattering direction through reciprocity, scaling the detected intensity

with the solid angle collected at that position. As θobj was small in their experiments,

this did not limit the accuracy of their interpretation.∥ The relatively simple model of

Pristinski and co-workers could explain most of the observed variation of the Raman

peak intensity with the scattering angle, assuming that the scattering hot-spots were

randomly oriented in space and located at the interface. The variation of the signal with

orientation of the hot-spots was not investigated. The authors recognised the potential for

enhancement and increased surface sensitivity of the Raman signal by exciting the Raman

dipoles with an evanescent field and collecting the evanescent part of the induced dipole

field by illuminating and collecting through zone II. Moreover, they showed a successful

application of the reciprocity principle to Raman scattering.

The limited modelling efforts to date on interfacial Raman intensities were also recog-

nised by Itoh and Hasagawa [152]. They stated that “the analytical theory does not catch

up with the technical improvements and it does not meet the demands of experimental

spectroscopists” and presented a model to account for incident and emitted light, using

transfer matrices and Lorentz reciprocity. They applied this model in the thin-film limit

to the analysis of Raman spectra of cadmium stearate Langmuir-Blodgett films on a glass

microscope slide. From the four polarised spectra of the CH-stretch band they collected,

∥Note that in our experiments, in the absence of SERS enhancement, objective lenses with larger NA
are used to ensure sufficient signal. This requires integration of the intensity over the field of view. As the
field can vary strongly with angular position, recalculation of the field at various points on the objective
entrance is needed.
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they only used the intensity ratio Isp/Ips of the antisymmetric CH2 stretch mode to assign

a molecular tilt angle to their system. The Raman tensor was averaged over all azimuthal

and twist angles so that the absolute value of its non-zero elements dropped out of the

ratio. Their experimental geometry did not take advantage of the suggestions of other

authors to increase the signal, but was limited to a laser incident onto the sample through

air with collection at 90◦ in the plane of incidence. The lens that collected the scattered

light was not mentioned nor included in their computation. Unfortunately, their model

remains strictly limited to the chosen experimental geometry.

Another relevant publication is of Chen et al. [40], in which the far-field radiation

profile of a Raman dipole near or in a four-layer waveguide structure is theorised. Their

calculations predict highly directional radiation depending on the layer thickness, the

vicinity of the dipole to the interface and its orientation along either x, y or z. With the

appropriate structure, the coupling of the dipole field into the waveguide, i.e. the detection

depth of a potential Raman sensor, could be limited to a quarter of the evanescent field

penetration depth. The authors suggested the use of such structure to analyse molecular

orientation at an interface, harnessing the additional enhancement from the waveguide-

coupled modes. However, their model considered the three orthogonal directions only and

employed absolute values of coupling factors, appropriate for intensity values but not for

field amplitudes. Moreover, their study did not consider how the scattering was induced

or how it was detected, both of which affect the linearly-polarised intensities obtained at

a particular molecular orientation.

The models discussed so far omit the direct use of molecular properties, choosing to

assume averages in stead. Including these requires appropriate transformations between

molecular and experimental frames of reference. This last point was recognised by Roy

et al. [71], who emphasised accurate rotational operations and a consistent framework

of coordinate systems when using computed molecular properties in the interpretation of

vibrational spectra. Their definitions, however, differ from ours.

In summary, we note that most papers are limited to a description of dipole emis-

sion patterns. A combination of excitation and emission effects was included in [42] and

[152], though the angular spread was at most rudimentary incorporated in their models.

Assessing the available literature, we conclude that our electrodynamic model of Raman

scattering at interfaces goes beyond the published literature. It incorporates multiple fac-

tors that modify the relative values of linearly-polarised intensities, most of which have

not been addressed before in this context, let alone combined in a coherent description.

These include the following.

1. The incident laser beam, under any angle with respect to the interface and any linear

polarisation direction.

2. The far-field emitted by the induced dipole fields into any direction, derived through

Lorentz reciprocity.
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3. Position of the scattering molecule at or near the interface and in either of the

bounding media.∗∗

4. A local field correction for the incident field as well as for the induced dipole moment

at the Raman-shifted frequency and for the emitted field derived by reciprocity.††

5. The integration of the linearly-polarised intensities over the field of view collected

of the objective lens, taking field directions at each point into account through

appropriate transformations.

6. Free positioning of the objective in space and with it the collection polarisation

directions.

7. Specific molecular orientations and molecular properties, including Raman tensors,

specified in the molecular axes with appropriate transformations of this frame to

other frames of reference in the model.

Only the elements numbered 1 to 3 have been included in models before, while the other

aspects are introduced with this work. Though the model presented in this chapter is

more advanced than what has been available so far, its accuracy has to be established

with experimental data. This is the focus of the next chapter.

∗∗The depth z ≥ 0 is specified into medium 3. By interchanging the values assigned to n1 and n3 in the
model and adjusting the propagation direction of the incident beam ki,θ, the molecule can be placed on
either side of the interface.

††If it is desired to omit the local field correction from the computation, the input variables may be
specified with rmx = rmy = rmz and αm = 0. The local field correction then results in a mere scaling of the
computational result (through the cavity field tensor) rather than affecting relative intensities between the
various polarisation combinations.



Chapter 6

Validation of the model

This chapter presents experimental and modelling results to assess the accuracy of the

model description developed in the previous chapter. Systems of increasing complexity

were studied on the Raman systems of Durham and Stockholm in order to assess validity

of (components of) the model. The chapter starts with an outline of the methodology

developed to test our model with selected interfaces. Presented next are the experimental

and modelling results for each of the three studied interfaces. The model calculations are

extended beyond the experimental scope to advance our insight into the dependence of

the Raman intensities on experimental variables. The chapter concludes with a summary.

6.1 Methodology

Polarised Raman scattering experiments provide highly multivariate data. Our model

likewise includes many input variables (listed in table 5.3), each of which affects the

modelled scattering intensities to a particular extend. Using a limited number of selected

molecular systems, the effect of various input variables may be separated so that these

can be studied and validated individually. Furthermore, limiting or simplifying cases may

be explored.

6.1.1 Interfaces of increasing complexity

The simplest interface involves an isotropic Raman scattering mode of an isotropic molecule

in a homogeneous medium, with all materials being optically isotropic. A number of spher-

ically symmetric molecules exist, belonging to the Td point group, that include vibrational

modes of its A1 species of which the Raman tensors are isotropic (compare table C.1). A

number of such molecules exist, though some exhibit resonances between the Raman-active

modes.

This leads us to the second level of complexity, which involves anisotropic Raman

tensor in an isotropic molecule with an isotropic orientation distribution.

A third level of complexity is obtained with a molecular layer at the sampled interface

of a known orientation.

207
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The following molecules were selected for each level of complexity.

1. Sulfate anion, from ammonium sulfate salt dissolved in water, representing a fully

isotropic molecular system with an isotropic v1 mode against an optically isotropic

fused silica hemisphere.

2. Carbon tetrachloride as a pure liquid, being randomly oriented and including isotropic

as well as anisotropic Raman tensors in its various isotopologues and involving Fermi

resonances. A sapphire hemisphere is chosen to increase the optical mismatch be-

tween the two materials.

3. A monolayer of zinc arachidate on fused silica, being an oriented system of which

the molecular orientation is (roughly) known. The lower medium is air.

Preparation of these samples as well as the Raman systems was detailed in chapter 3.

The aqueous sulfate solution at the silica surface represents the most isotropic system in

that it comprises isotropic optical media, the scattering molecule features a fully symmet-

ric mode with an isotropic Raman tensor as well as an isotropic polarisability tensor and

isotropic molecular shape, i.e. the molecule is essentially spherical. The effective Raman

tensor for the v1 mode of the sulfate anion isotropic and the induced dipole is along the

applied electric field in the L-frame. With this system, the material and molecular prop-

erties are isotropic. Any variation between the measured and modelled Raman intensities

for the various polarisation combinations should thus relate purely to the macroscopic

optical properties of the interface. These experiments thus test the validity of the optical

description in the model and sampling parameters such as g, z and spread in the angle of

laser incidence.

Sulfate spectra were recorded on both the Durham and Stockholm Raman systems.

Allowing a comparison between the two.

Carbon tetrachloride incorporates anisotropic Raman tensors, though still in a random

(i.e. isotropic) distribution of molecular orientations. This molecule further includes de-

generate modes, isotopologues and Fermi resonances in some of its modes. The sapphire

hemisphere used with this material also introduces a small degree of birefringence. This

sample allows testing of orientational averaging with anisotropic Raman tensors in the

model and how many angular positions require sampling before convergence is achieved.

Furthermore, it may be used to assess its sensitivity to the local field correction. Isotopo-

logical abundances and Fermi resonances are also considered.

The zinc arachidate monolayer on fused silica provides a sample with anisotropic Ra-

man modes in an molecule at a roughly known orientation. Monolayers of fatty acids and

their salts are well-studied samples of scientific and applied interest [96]. The CH-stretch

region of the molecule has our primary focus. This region includes overlapping modes

of various symmetries and Fermi resonances. The monolayer may be modelled in the

thin-film limit.
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In short, these samples provide Raman tensors of various forms, testing of experimental

variables and optimisation of model sampling parameters. A modelling script is employed

for each calculation. This modelling script (which calls the pirs.m function) depends on

the specific system and variables being modelled. An example of such scripts is included

as appendix E.3 (sulfate v1 band intensity as a function of collection polarisation and

incident polarisation angle ψ).

6.1.2 Fitting experimental spectra

Raman intensities have to be extracted from experimental spectra in order to compare

these with the model predictions. For each of the sampled systems, a method of extract-

ing relevant peak intensities from the experimental spectra is presented. Various methods

are used, including baseline subtraction, background subtraction and fitting of individual

bands. These have been kept as straightforward as possible to aid in the physical inter-

pretation of the Raman spectra. A black-box fitting algorithm for a whole spectrum may

be advantageous once it is validated with our model.

Baseline subtraction involves removing a linear or curved intensity profile from (part

of) a spectrum. This baseline is adjusted to the spectrum itself without requiring an

external reference. Here, we fit a polynomial through regions of the spectrum from which

Raman features are absent to obtain neat peak intensities for the remaining parts of the

spectrum.

Background subtraction involves recording a background spectrum, preferably at very

similar conditions to the sample spectrum from which it is to be subtraction to obtain

neat peak intensities.

Fitting individual bands or overlapping spectral features is generally performed with

Gaussian and/or Lorentzian profiles. These profiles find a physical basis in line-broadening

mechanisms. Broadening of (Raman) peaks results from a number of factors, including

the following.

• The lifetime of the quantum state involved (through the uncertainty principle).

• Intermolecular coupling of modes (such as in resonances) and phase relations between

modes of the same molecule.

• Coupling with other molecules (i.e. intramolecular coupling), which may be inho-

mogeneous, in that the coupling involves different average environments, or homoge-

neous, in that the coupling results from fluctuations in the same average environment

(such as dephasing of vibrations over the lifetime of the state and frequency changes

due to variations in the quantum state).

• Collision broadening, involving perturbations of outer electrons due to molecular

collisions and thus changes in the vibrational/rotational energy levels.
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• Doppler broadening, arising from random motion of molecules which includes various

relative velocities causes broadening of the Raman band.

Various software packages are available to perform fitting of spectra. Here, Matlab and

Fytik [169] are used.

Once the experimental intensities are known, modelled intensities may be fitted to

these as a function of model input parameters. Generally, least-squares algorithms are

followed. Sample-specific methods may also be developed. For example, principal compo-

nent analysis (PCA) has been used to study interfacial water with TIR Raman [51]. In

our group, target-factor analysis (TFA) has been used for samples that include at least

two different types of molecules for which a pure spectrum is known. TFA may be applied

to deduce surface excess of competing absorption by multiple surfactants [81]. In both of

these examples, a relatively high number of spectra may be analysed in an automated,

statistical manner.

6.1.3 Cavity shape and polarisability tensors

Application of the local field correction in our model requires a polarisability tensor α and

a cavity shape (rx, ry, rz) as input, both specified in the m-frame.

Burnham et al. [153] studied various local field theories with Rayleigh scattering. For

the Onsager-Scholte model of the local field correction, they found that the experimental

intensities were best described when the van der Waals radii of the molecules were used

for the dimensions of the cavity. As the electromagnetic description of Rayleigh scattering

is equivalent to that of Raman scattering, we also choose to employ molecular van der

Waals radii to specify the cavity shape.

For both molecular polarisability and molecular ellipsoid, we employ the computational

results from Gaussian presented in chapter 4 which should be consistent with the Raman

tensors. The polarisability tensor and semi-axes of the molecule may need rotation into the

m-frame just like the Raman tensors. The polarisability tensor is computed in Gaussian

for an electric field of zero frequency, the so-called static polarisability of the molecule. It

is included in the final section of the log file after \Polar= as six tensor elements αxx, αxy,

αyy, αxz, αyz and αzz in units of B3, which can be converted to the appropriate SI unit

C V−1 m2 by multiplication with 1.649 · 10−41.

The atomic coordinates in the m-fame are used to find outer dimensions of the molecu-

lar shape. The van der Waals radius of relevant outer atoms are added to these coordinates

to obtain the molecular dimension. This provides a molecular ellipsoid diameter along each

axis, which are halved to obtain radii. The resulting parameters are given in table 6.1 with

all relevant Gaussian output included in appendix D. The atomic radii are taken from a

recent study by Alvarez [170]. The van der Waals radii given by this author correspond

to the most frequent intermolecular non-bonded contact distance found in vast collections

of crystallographic databases. The values include 1.20 Å for hydrogen, 1.50 Å for oxygen

and 1.82 Å for chlorine.
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Table 6.1: Molecular polarisabilities and molecular ellipsoid radii

molecule αm / 10−40C V−1 m2 rx
m / Å ry

m / Å rz
m / Å

SO2–
4 8.01 · I 3.03 3.03 3.03

CCl4 10.2 · I 3.61 3.61 3.61

Decanoic acid

 20.1 0 −0.28
0 17.1 0

−0.28 0 27.7

 2.54 2.08 8.34

Arachidate

35.6 0 0
0 31.9 0
0 0 48.2

 2.54 2.08 14.5

The polarisability of decanoic acid includes an off-diagonal element (xy and yx in the

standard axes) which results in small residual polarisabilities for the xz and zx elements in

the m-frame tensor. This is a consequence of the coordinate transformation, which is based

on atomic positions, not centre of charge or mass. For decanoic acid, rx > ry because the

xmzm plane contains the chain of carbon atoms. Its shape parameters (equation 5.59) are

Sx = 0.409, Sy = 0.506 and Sz = 0.0850.

The parameters for arachidate are estimated as follows. As explained in chapter 4, no

computations could be performed to obtain these directly.

The molecular radii of arachidate are only expected to differ from those of decanoic

acid along its long axis. A value for rz is estimated from decanoic acid by discounting the

hydrogen atom from its acid group, adding twice the length of its C3-C8 carbon atoms

and adding both the oxygen and hydrogen van der Waals radius. The resulting shape

parameters are Sx = 0.431, Sy = 0.530 and Sz = 0.0395.

The mean molecular polarisability of n-alkanes is known to increase linearly with chain

length (see, for example, [171], [172] and the cited studies by Gough et al.). We therefore

estimate a polarisability tensor for eicosane by linear extrapolation of those computed by

Gough [136]. This provides αxx, αyy and αzz values. To these diagonal tensor elements,

we add the effect of the carboxylic acid group, estimated from the difference between

the polarisability computed with Gaussian for decanoic acid and that extrapolated for

decane from Gough’s data. This approach is supported by the empirical fact that group

polarisabilities are transferable (section 4.4.3). Figure 6.1 shows the diagonal polarisabil-

ity tensor elements and linear fits. Off-diagonal elements are assumed to be negligible

throughout this process.∗

∗The mean molecular polarisability of arachidic acid ᾱ is thus estimated to be 38.6 · 10−40 C V−1 m2.
This value leads to underestimation of the molecular volume with the Clausius-Mossotti equation (equa-
tion 3.5 with refractive index of table 3.2) by a factor of up to 585, depending on molecular packing,
compared to the molecular volume given by its molecular ellipsoid. For decanoic acid, however, the dis-
crepancy in molecular volume from both calculations is a factor 600 and thus to be expected.
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Figure 6.1: The diagonal polarisability tensor elements for stretched n-alkanes computed
by Gough [136] (circles) are linearly extrapolated (lines) up to 20 carbon atoms.
The computed values for decanoic acid (crosses) and an estimate for arachidic
acid (diamonds) are also indicated. The latter values are obtained from the
linear extrapolation plus the difference between the polarisabilities of decanoic
acid and the extrapolation at 10 carbon atoms.

6.2 Ammonium sulfate solutions on silica

The goal of our studies on sulfate salt solutions were to establish the validity of the optical

description of the scattering process in our model. The molecule and its Raman-active

mode were chosen for this particular purpose. The sulfate v1 Raman band is the symmetric

stretch mode associated with the transition from the ground state to the first vibrationally

excited state of the sulfate anion and belongs to the fully symmetric species of its Td point

group. The Raman tensor of this mode is therefore diagonal and results in a polarised

peak in the spectrum. It appears at about 980 cm−1 in solution [126], a higher shift than

predicted by our ab-initio computation (chapter 4). As its Raman tensor is isotropic, the

molecular orientation has no effect on the orientation of the Raman-induced dipole and the

observed intensities are identical. Furthermore, the local field correction is isotropic due

to the spherical shape of the molecule and its isotropic polarisability. Comparing modelled

to experimental scattering intensities thus only involves the applied and scattered fields as

modulated by the macroscopic optical components in the chosen experimental geometry.

Ammonium sulfate was chosen from the numerous sulfate salts for its high solubility

in water (74.4 g per 100 mL at 20.0◦C [92]) and immediate availability at high purity.

Experiments were conducted on the interface formed by fused silica and a solution of

ammonium sulfate. The v1 band proved distinguishable from the strong and broad silica
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Raman signal in that range. As is shown below, the background could readily be fitted

and removed to obtain intensities due to sulfate only.

Experiments were conducted in Durham as well as Stockholm. Raman spectra were

collected for a selection of linear polarisation angles of the laser, laser incident angles,

sulfate salt concentrations (which affect the refractive index of the solution), objective

lenses and collection polarisations. More extensive modelling results are presented to

show how these parameters affect the polarised Raman intensities of the sulfate v1 band.

The observed linearly-polarised intensities are compared to the model predictions. In turn,

components of the experimental systems can be evaluated once the effect of each is known

through an accurate model description.

6.2.1 Experimental results from Stockholm

Thirty polarised Raman spectra of the interface between a fused silica hemisphere and an

ammonium sulfate solution are presented here. These were acquired on the Stockholm

system using a flow cell to hold the sample. The spectra were recorded with the grating

of 1200 lines mm−1 set to centre the spectrum around 560 nm on the CCD, recording

in multi-track mode. The position of the objective remained in its standard position,

i.e. observing through the hemisphere with its axes (anti)parallel to the plane of laser

incidence.

Five experimental variables were explored:

1. the collection polarisation, set to either x or y,

2. the linear incident polarisation, set in the range 0◦ ≤ ψ ≤ 90◦,

3. the numerical aperture of the objective, either NA = 0.28 or NA = 0.55,

4. the laser propagation angle θk,i, under which the laser is incident on the interface,

set to 70◦, 73◦ or 75◦.

The range of incident angles was restricted by the device holding the hemisphere towards

the upper end and by the objective towards the lower end of the range. The two objec-

tives have the same parfocal distance, so that these can be exchanged without having to

reposition the sample or incident laser beam.

The diameter of the laser beam was estimated to be 9 mm before focussing it over

a distance of 80 mm onto the sample, giving an approximate spread of ±3.2◦ about the

central angle of incidence. The critical angle of the silica-solution interface is 66.4◦ at the

laser wavelength and 66.5◦ at a Stokes Raman shift of 980 cm−1.

Spectra were acquired with 15 accumulations of 8 s exposures with the small-NA

objective and with 12 accumulations of 5 s exposures with the large-NA objective. The

number of accumulations was set to ensure a smooth spectrum and the exposure time was

chosen to reach about three-quarters of the detector saturation, all to obtain a satisfactory

signal-to-noise ratio in the shortest time.
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Our analysis is limited to the v1 band of the sulfate anion, observed at about 980 cm−1.

The other sulfate bands can not be distinguished from the strong silica-water background

signal in the recorded spectra.

Linear polarisation angle

A set of spectra were recorded with NA = 0.55, θk,i = 75◦ and ψ varying from 0◦ to 90◦ in

steps of 15◦ with the collection polarisation set to x or y. The linear polarisation angle ψ

was defined in figure 5.6 with ψ = 0◦ conforming to p and ψ = 90◦ to s-polarised incident

light. The spectral region around the sulfate v1 Raman band is presented in figure 6.2 for

all polarisation combinations.
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Figure 6.2: Raman spectra of ammonium sulfate solution at the fused silica interface
for linear incident polarisations ranging from p-polarisation (ψ = 0◦) to s-
polarisation (ψ = 90◦) at θk,i = 75◦ and NA = 0.55. A limited spectral region
is shown. The band at 980 cm−1 is the v1 mode of the sulfate anion, silica and
water contribute to the smooth baseline. [data: 20170324/022-035]

The silica-water background signal is fitted with a seventh-order polynomial and sub-

tracted from the recorded intensity to obtain the intensity due to the sulfate v1 band

(examples of this are given in figure 6.3). The use of a polynomial to fit the background

profile, rather then subtracting a separately collected silica-water background spectrum,

is appropriate as the v1 band can be distinguished from its smoothly varying baseline.
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The spectral ranges 920–960 cm−1 and 1000–1040 cm−1 are used to fit the background.

The v1 intensity is the sum of the background-subtracted intensities at each data point

between 960 and 1000 cm−1, divided by the exposure time of the detector. Figure 6.4

presents the obtained values for each combination of incident and collection polarisation.

For x-polarised collection of the scattered light, the intensity reduces with ψ, while it in-

creases for collection of y-polarised scattering. At ψ ≈ 20◦, the intensities are equal. The

outer values of the data range relate to the standard px, py, sx and sy polarisation com-

binations as indicated in figure 6.4. Their intensities are in the order sy > px > py > sx.

The Raman band is strongest in the polarised spectra, as expected for a Raman mode of

this symmetry species.

Incident angle and numerical aperture

The effect of the numerical aperture as well as the angle of incidence on the polarised

Raman spectra was assessed in a series of spectra recorded with the four standard po-

larisation combinations. The v1 region of these spectra is presented in figure 6.5. This

includes the cases ψ = 0◦ and 90◦ from the dataset presented in the previous paragraph.

The intensities are markedly lower with the smaller aperture, as less scattered light is

collected into the objective. The intensities are increased for angles of incidence nearer

the critical angle (66.4◦ with this interface), as expected from the Fresnel amplitude co-

efficients. The intensity of the sulfate v1 band in each spectrum is obtained through the

same background subtraction process as outlined above. The results are summarised in

table 6.2.

6.2.2 Experimental results from Durham

Three sets of polarised spectra were recorded on the Durham Raman system with the

laser (set to a 200 mW output) incident at θk,i = 73◦ while collecting scattered light in the

NA = 0.55 objective. The diameter of the laser beam on the focus lens L3 (f = 120 mm)

was measured to be 4 mm, giving an estimated spread in the incident angle θi of 1
◦.

Sulfate solutions of two different concentrations were pumped in the flow-cell under a

fused silica hemisphere. The concentration affects the refractive index and thus the critical

angle of the interface. Spectra were recorded in the standard polarisation combinations

px, py, sx and sy in the static collection mode of the CCD software, centred at a Stokes

Raman shift of 800 cm−1 (covering a spectral range of about 380—1240 cm−1).

The following sets of polarised Raman spectra were collected:

B a 40 wt% ammonium sulfate solution, acquired by accumulation of four spectra of

5 s exposure each,

C the same sample recorded a day later, allowing for crystallisation of the near-

saturated solution (accumulating 8 acquisitions of 5 s exposure),
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Figure 6.3: The v1 sulfate band (black) is obtained by subtracting the silica-water back-
ground intensity, fitted by a seventh-order polynomial (blue) to the surround-
ing spectral region, from the recorded Raman spectrum (red). The four po-
larised spectra are from the dataset of figure 6.2.
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Figure 6.4: Intensity of the v1 sulfate band as a function of the linear polarisation angle ψ
of the incident laser for the x and y collection polarisations. The data points
conforming to the standard polarisation combinations px, py, sx and sy are
indicated.
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Figure 6.5: Raw Raman spectra of ammonium sulfate solution at the fused silica interface
with different numerical aperture (NA) and laser propagation angle θk,i col-
lected with the Stockholm system. A limited spectral region is shown. The
band at 980 cm−1 is the v1 mode of the sulfate anion, silica and water con-
tribute to the smooth baseline. The px and sx spectra overlap in the plots on
the left. [data: 20170324/022,028,029,035,042-045,047-050,053-056,067-070]

Table 6.2: Experimental intensities (in counts s−1 cm−1) of the sulfate v1 Raman band in
the four polarisation combinations with varying numerical aperture (NA) and
laser propagation angle θk,i for the data obtained with the Stockholm Raman
system (figure 6.5).

NA θk,i /
◦ Ipx Ipy Isx Isy

0.28 70 62.30 12.33 14.25 705.0
0.28 75 58.70 0.9758 18.01 293.6
0.55 70 650.7 491.6 5.685 4359
0.55 73 419.1 226.9 7.215 2093
0.55 75 374.9 197.0 267.2 1846
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Figure 6.6: Raman spectra of ammonium sulfate solution at the fused silica interface col-
lected with the Durham system. The spectral region around the sulfate v1
band is shown. Silica and water contribute to a relatively smooth baseline.
[data: 20150505/026-029,037-040,044-047]

Table 6.3: Experimental intensities (in counts s−1 cm−1) of the sulfate v1 Raman band
in the four polarisation combinations recorded on the Durham system with
different salt concentrations (spectra of figure 6.6).

dataset concentration / wt% Ipx Ipy Isx Isy
B 40 542.9 1111 580.9 4729
C 40 1171 2096 786.5 8729
D 18 282.6 399.7 165.8 1364
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D a 18 wt% ammonium sulfate solution, pumped into the flow cell after rinsing (accu-

mulating 8 acquisitions of 5 s exposure).

The region of the Raman spectra around the sulfate v1 band is presented in figure 6.6.

Dataset B was recorded at high concentration, near the maximum solubility, to achieve

strong Raman scattering. The increased intensities in spectra C are attributed to overnight

crystallisation at the silica surface. This process increased the number or Raman scatterers

in the probed volume of the sample. Crystallisation was confirmed by optical microscopy

of the interface, which showed a speckle pattern not seen previously, indicating reflections

of the laser beam off crystal faces. Crystallisation does not affect the relative intensities

observed in zone I, as is the case here, because the Raman tensor of the v1 mode is

isotropic. The double peak, most clearly seen in the px spectra, contains the v1 Raman

mode of both freely solvated sulfate anions and its crystalline form at a slightly higher

shift [126]. The net effect of crystallisation at the silica surface is an overall increase of

the Raman intensity that does not affect our model interpretation.

The lower concentration of dataset D results in less intense sulfate bands, though these

spectra still benefit from some crystals at the surface. The change in refractive index also

reduced the intensities, which can be seen from the reduced silica-water baseline. This last

effect is explained through the Fresnel factors. The electric field at the interface is reduced

because the angle of incidence is further from the critical angle for dataset D (θc = 68.7◦)

than for datasets B and C (θc = 72.5◦).

The polarised sulfate v1 band intensities were obtained through the same process as

with the Raman spectra collected in Stockholm. The fitting interval was 900–960 cm−1

and 1000–1060 cm−1 for the baseline subtraction. A wider spectral range was used to fit

the background profile for the Durham data as these spectra include less data points per

wavenumber and their noise level is higher. Table 6.3 includes the obtained intensities.

6.2.3 Modelled v1-band intensities

The sulfate Raman spectra are used to test the optical description of the scattering pro-

cess. We first assess the impact of the model grid size g and sampling depth z before

computing intensities as a function of the laser linear polarisation angle ψ, the laser prop-

agation angle θk,i, numerical aperture (NA) and refractive index of the solution n3. For

each computation, we use the experimental settings as input variables while scanning the

free variable over an appropriate range. The refractive indices of silica and the sulfate

solutions were given in table 3.2 and the Raman tensor of the sulfate v1 mode in table 4.2.

The following hold for all computations presented in this section: λ0,laser = 532 nm,

(αm, βm, γm) = (0◦, 0◦, 0◦) and ν̄R = 980 cm−1 as well as the semi-axes of the molecu-

lar ellipsoid and the polarisability tensor of the sulfate anion (presented in section 6.1.3

from computations in Gaussian). Finally, the objective orientation in the L-frame is
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(αO, βO, γO) = (0◦, 180◦, 0◦) as with all experiments, though αO and βO are varied in some

of the computations presented here.

Grid size

The grid size of the model should be large for an accurate representation of the Raman-

scattered field yet it should be as small as possible to reduce the time required for the

computation. An appropriate grid size retains all significant variation in a reasonable

computation time. To find this balance, the intensities were computed as a function of

grid size parameter g, using z = 0, θk,i = 75◦, NA = 0.55 and the refractive index of the

0.3 mol L−1 ammonium sulfate solution. The results are presented in figure 6.7 and show

that the intensities converge with increasing g. The computation with g = 1 conforms to

NA → 0 and differs significantly from the intensities obtained at large g. This indicates

the importance of modelling the actual spread of collection angles for the radiation field.

The input g = 2 does not provide a relevant result in our model as it positions four grid

nodes on the corners of a square around the circular field of view, all of which are thus

ignored in the computation and NQ = 0. For the remaining computations in this section,

we choose to use g = 15.

The intensities in figure 6.7 are expressed as relative values, i.e. Ipx+Ipy+Isx+Isy = 1

for each value of g. The order of the modelled intensities agrees with the experimental

observation (top right spectra in figure 6.5) in which Isy > Ipx > Ipy > Isx. Moreover, we

observe quantitative agreement with the experimental relative intensities in the converged

region.

Sampling of depth position

The depth-dependence of the scattered intensities is computed for the above experimental

parameters, using the optimised grid parameter g = 15. Figure 6.8 presents both absolute

and relative linearly-polarised intensities with the microscope objective positioned to col-

lected radiation into zone I, II or III. In the experiments presented here, the objective was

positioned in its standard orientation above the hemisphere, perpendicular to the inter-

face, thus collecting radiation into zone I only as the NA is too low (θobj < θc) to capture

any other radiation.

In zone I, the modelled intensities decay exponentially with z, as expected. The inci-

dent coupling factors F3→1 share an identical z-dependence through the exponential factor

while the outgoing coupling factors F1→3 involve a propagative wave only and thus do not

depend on z. Integration of the intensity over z is not needed in this system as the relative

intensities are independent of z. Moreover, it implies that the modelled intensities are not

affected by the concentration profile of the Raman scatterer. If this would be the case,

summation over I(z) for a number of modelled points can be implemented.

The constant relative intensities in z as computed for radiation into zone I are not

seen for modelled radiation into zones II and III. Scattering into zone II originates from
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Figure 6.7: Relative modelled (markers) and experimental (lines) intensities for polarised
Raman scattering of the sulfate v1 band as a function of the modelling grid
size parameter g. The experimental intensities are derived from the top-right
spectra in figure 6.5 and the model input follows the experimental parameters.

the evanescent near-field of the dipole, which depends on the vectorial dipole moment and

decays exponentially with z. The scattered intensities thus depend on a double exponential

with different decays rates: one for the evanescent incident field and one for the evanescent

dipole radiation field. The relative intensities change monotonically and stabilise from

z ≈ λ0,scat. Note that the order of intensities is Ipy > Isy > Ipx > Isx, different from that

in zone I. The depolarised components of the dipole moment couple more strongly into

the hemisphere in zone II than in zone I and therefore lead to enhanced intensities Ipy and

Isx.

For scattering into zone III, i.e. observing the interface through medium 3, the double-

exponential nature of the I(z) curves is more pronounced. Interference in the F1→3 terms

gives rise to an oscillatory z-dependence of the relative intensities with a periodicity de-

termined by both incident and scattered wavelengths. The order of the intensities for zone

III is the same as for zone I: Isy > Ipx > Ipy > Isx. In both zones I and III, the radiation

field arises from a propagative dipole field.

Incident linear polarisation angle

Figure 6.9 presents the intensities obtained by modelling the experiment with varying

incident polarisation angle ψ ranging from 0◦ (p-polarised) to 90◦ (s-polarised). Relative

intensities are presented, i.e. Ix + Iy = 1 at each ψ. The relative intensities derived from

the Raman spectra of figure 6.2 are closely followed by the model.
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Figure 6.8: Absolute (left) and relative (right) intensities modelled for Raman scattering
of the sulfate v1 band near a fused silica surface as a function of the distance
z of the scattering molecule from the interface. The objective of NA = 0.55
is tilted at βO = 180◦ (top) to collect radiation into zone I, at βO = 130◦

(centre) for zone II and at βO = 0◦ (bottom) for zone III. The laser is incident
at θk,i = 73◦, above the critical angle.
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The model predicts that Ix = Iy at ψ = 18◦. This cross-over point depends on the

laser angle of incidence: it decreases from ψ = 45◦ at θk,i = 0◦ and 180◦ to ψ = 0◦ at

θk,i = θc. This holds for radiation into zone I (modelled here) as well as for zone III. For

scattered light into zone II, the cross-over point is at ψ ≈ 64◦ for θk,i = 0◦, 180◦ while

the condition Ix = Iy is not met for any 0◦ ≤ ψ ≤ 90◦ at a range of incident angles from

roughly θk,i = 42◦ to 133◦ in the system modelled here.
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Figure 6.9: Modelled and experimental relative intensities for polarised Raman scattering
of the v1 band from a 0.3 mol L−1 sulfate solution at a fused silica surface as
a function of ψ, the incident linear polarisation angle at θk,i = 75◦.

Angle of laser incidence

The experimental data collected with the Stockholm Raman system at various angles

of incidence is now modelled. Using NA = 0.55, θk,i was varied in its full range from

0◦ to 180◦. The results are presented as absolute intensities for the four polarisation

combinations in figure 6.10. At θk,i = 0◦ and 90◦, the px and sy intensities are equal. The

order of the intensities is Isy > Ipx > Ipy > Isx for all other values of θk,i. The intensity for

the sx polarisation combination is negligible over the full range in the current depolarised

geometry. Practically no Raman scattering of the polarised v1 band is collected. The py

geometry is only fully depolarised at normal incidence, hence Ipy(0
◦) = Ipy(180

◦) = 0.

At other angles, the zL component of the applied field induces a dipole moment along

that axis. Though radiation from this component is zero along this direction (into the

centre of the objective in this geometry), its radiation also reaches the perimeter of the

objective field of view and contributes to the detected Ipy intensity. As θk,i increases from

0◦, p-polarised incident radiation induces an increasingly stronger dipole moment along

zL at the coast of its xL component. Ipx reduces and Ipy increases up to the critical angle,

where these are equal: Ipx(θc) = Ipy(θc). With θk,i > 90◦, i.e. the laser beam is incident
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through the optically rarer medium, these intensities do not equalise at all and Ipx > Ipy.

The maximum intensity for the py and sy polarisation combinations is obtained at the

critical angle and the range just beyond this value. All intensities reduce to zero at grazing

incidence, i.e. at θk,i = 90◦.

So far, the propagation angle of the laser θk,i has been treated as an infinitely precise

quantity. The modelling results so far fit the experimental data well with this assumption.

In practice, the laser produces a beam with a Gaussian intensity distribution which is

expanded in a telescope before being focussed onto the interface. The incident light is more

accurately described as a cone of light around a central θk,i value with an angular Gaussian

intensity profile. This can be implemented in our model by running the calculation for

a range of θk,i and αO around their respective central values and weighting the obtained

intensities according to the Gaussian distribution of the incident laser intensity at the

particular combination of θk,i and αO used with each run of the model. Working from

equation 3.2, the incident intensity distribution may be given as a weighting factor G of a

two-dimensional Gaussian function scaled to unity

G(∆θi,∆αO) = e
−2 tan2

√
∆θi

2+∆αO
2

tan2 θw (6.1)

where ∆θi and ∆αO the deviation from their central values with θi specified through θk,i

as in table 5.1. θw is the conical half-angle of the focussed beam computed geometrically

through

θw = arctan

(
w

f

)
(6.2)

with w the waist radius of the laser beam (measured in the experiment or taken as a

modelling parameter) and f the focal distance of the lens (L3 in figure 3.2) that focusses

the laser beam onto the sample.

The variation in θk,i represents the spread of the laser beam in the plane of incidence

and αO the angular spread along the yL direction. Considered in isolation, the effect of θk,i

on the modelled intensities was presented in figure 6.10 for the four standard polarisation

combinations with αO = 0◦. The dependence of these intensities on αO is given in fig-

ure 6.11 for the same experimental geometry with θk,i = 75◦. As αO increases from 0◦ to

45◦, the strong polarisation combinations px and sy decrease in intensity while the weak

polarisation combinations py and sx increase until Ipx = Ipy and Ipx = Ipy at αO = 45◦.

Here, the dipole field at the objective projects equally onto its xO and yO axes. As αO

increases further, the intensities swap over until the yO axis runs parallel to the xL axis at

αO = 90◦. The sy intensity now represents depolarised Raman scattering, while it refers

to fully polarised scattering at αO = 0◦.

We now quantify the effect of the beam waist w on the relative scattering intensities

for the four standard polarisation combinations, using the experimental conditions of the

Stockholm data (table 6.2). The relative intensities computed with NA = 0.55 as a func-

tion of θk,i and αO are presented as false-colour intensity maps in figure 6.12. A strong
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Figure 6.10: Modelled intensities for polarised Raman scattering of the v1 band from a
0.3 mol L−1 sulfate solution at a fused silica surface as a function of θk,i, the
laser incident angle. The critical angle is indicated with a dashed and the
interface with a solid vertical line. The scattered light is collected normal to
the interface through the hemisphere with an objective of NA = 0.55.
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Figure 6.11: Modelled relative intensities for polarised Raman scattering of the v1 band
from a 0.3 mol L−1 sulfate solution at a fused silica surface as a function of
αO, the azimuthal orientation of the microscope objective, at θk,i = 75◦ and
NA = 0.55. At αO = 0◦, the x and y axes of the laser plane of incidence are
(anti)parallel to the collection polarisation directions.
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variation is seen around θk,i = 66.4◦, the critical angle, except in the sx plot. Isx varies

more strongly with αO than with θk,i, also apparent from figures 6.10 and 6.11. The

intensities at each coordinate (θk,i, αO) are weighted with the two-dimensional Gaussian

incident intensity distribution of equation 6.1 with the experimentally determined beam

diameter 2w = 9 mm. This distribution is plotted in figure 6.13. The Gaussian-weighted

intensities I(θk,i, αO)×G(∆θi,∆αO) are then summed and scaled to obtain relative total

intensity values for each set of four polarisation combinations. These relative total inten-

sities are presented in the left-hand plot of figure 6.14 as a deviation from the intensities

as function of w from the intensity computed at w = 0.

On the basis of this analysis, no summation over the beam shape appears necessary for

this experimental geometry as the deviation in the relative intensities at the experimental

beam width from those at w = 0 is less than 0.5%. This is insignificant compared to

the precision of the experimental variables. The assumption of no spread in the angle of

incidence is appropriate for this dataset.

A comparison of modelled to experimental relative intensities is given in the left-hand

plot of figure 6.15 (NA = 0.55) and shows agreement between the two within ±0.009, the

standard deviation on the relative intensity scale. The mean of the deviations between

experiment and model is zero because the sum of the four intensities is set to unity at

each set of experimental or modelling parameters. A deviation in one of the intensities is

thus compensated by a shift in the opposite direction for the other relative intensities.

Numerical aperture

The final experiment with sulfate in Stockholm involved the exchange of the microscope

objective, from NA = 0.55 to NA = 0.28, reducing the magnification from 50× to 10×.

The field of view is narrowed and the working distance is increased, factors that decrease

the amount of scattered radiation collected in the objective. The depth of field increases,

meaning that the a thicker slab of the interface is in focus of the low-NA objective. More

material contributes to the detected Raman scattering, with increased intensity levels from

the bulk material located further away from the interface. A lower numerical aperture is

thus expected to provide worse data for interface-selective measurements. These objections

are mitigated by the fact that the laser spot only illuminates a section of the total focal

volume and that the scattered radiation passes through a slit before reaching the detector.

This produces a quasi-confocal arrangement. Comparing the spectra in figure 6.5, we note

that the intensity from the silica-water background is less reduced than the sulfate band

at NA = 0.28 compared to NA = 0.55. The v1 band can hardly be discerned, except in

the sy spectra. A larger NA is clearly advantageous.

Modelling results for NA = 0.28 demonstrate the following. First, the intensities vary

slightly stronger with the laser beam diameter (right-hand plot of figure 6.14) than for an

objective with NA = 0.55, though this remains insignificant. The stronger variation with

beam waist arises from the second observation, namely that the intensities vary stronger
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Figure 6.12: Modelled relative intensities for polarised Raman scattering of the v1 band
from a 0.3 mol L−1 sulfate solution at a fused silica surface as a function of
αO, the azimuthal orientation of the microscope objective, and the angle of
laser incidence θk,i with NA = 0.55. The sum of the four linearly-polarised
intensities at each coordinate (θk,i, αO) is scaled to 1.
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Figure 6.13: Distribution of intensity in a Gaussian beam of 9 mm diameter in the angular
coordinates (θk,i, αO) that specify its incident propagation direction relative
to the plane of incidence and collection polarisation direction.
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Figure 6.14: Deviation in the relative Raman intensities as a function of the waist of the
incident laser beam w for θk,i = 75◦ (solid lines) and θk,i = 70◦ (dashed lines)
for the two objectives employed in the Stockholm experiments. This model
describes the v1 band of a 0.3 mol L−1 sulfate solution at a fused silica surface
with the microscope objective at (αO, βO, γO) = (0◦, 180◦, 0◦).
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Figure 6.15: Modelled (lines) and experimental (markers) relative intensities for polarised
Raman scattering of the v1 band from a 0.3 mol L−1 sulfate solution at a
fused silica surface as a function of θk,i, the laser incident angle, and the
numerical aperture (NA) of the objective lens. The critical angle is indicated
with a dashed line.
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Figure 6.16: Modelled (lines) and experimental (markers) relative intensities for polarised
Raman scattering of the v1 band from a 0.3 mol L−1 sulfate solution at a
fused silica surface as a function of the numerical aperture (NA).

with laser propagation angle θk,i. The low-NA objective is more sensitive to angle of

incidence. Modelling and experimental data are shown in the right-hand plot of figure 6.15.

The deviation between model and experiment with the low-NA objective (NA = 0.28) is

±0.04, larger than the deviation for the data collected with NA = 0.55, presented in the

previous paragraph. Reasons for this are discussed below. Third, the relative intensities, in

the present geometry, depend on the NA as given in figure 6.16. As the NA increases, more

depolarised Raman scattering falls within the field of view and contributes to the detected

intensities. The relative intensities of the py of sx polarisation combinations therefore

increase with NA. Ipx also increases with NA as the zL component of the induced dipole

contributes more near the edge of the objective field of view than at its centre. The inverse

is true for Isy, which decreases with angular position from the objective axis. Note that

these arguments apply to the present case because the experimental geometry involves

illumination under a non-zero angle and collection of Raman scattering normal to the

interface.

Refractive index of the sulfate solution

Raman spectra were collected from ammonium sulfate solutions at three concentrations:

0.3 mol L−1 with the Stockholm system and 40 wt% as well as 18 wt% with the Durham

system, all at θk,i = 73◦ and with an objective of NA = 0.55 positioned at (αO, βO, γO) =

(0◦, 180◦, 0◦). This effectively changed the refractive index of the lower medium n3 while

keeping the experimental geometry constant. The data also allows for a comparison be-
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tween the two Raman systems.†

The modelling results with varying n3 are presented in figure 6.17 on an absolute and

relative intensity scale. The experimental intensities are plotted with the latter. The

curves are reminiscent of figure 6.10 with a clear maximum at a critical refractive index,

rather than at a critical angle. The critical refractive index is the value of n3 at which the

angle of incidence is equal to the critical angle, in this case θc = arcsin(n3/1.4607) = 73◦.

At n3 = 1, θk,i is far from the critical angle for this interface and the Fresnel amplitude

coefficients for the transmitted light are low. As the refractive index of the lower medium

increases, θk,i approaches the critical angle. The applied field near the interface increases

until the critical refractive index is reached and drops off quickly beyond this value.
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Figure 6.17: Modelled absolute (left) and relative (right) intensities for polarised Raman
scattering of the v1 band from sulfate solutions at various concentrations at
a fused silica surface for θk,i = 73◦. The refractive index of the solution
(n3) varies with concentration. For n3 = 1.397 (dashed line), θk,i = θc. The
experimental relative intensities are indicated with markers.

The relative intensities of the spectra collected with the Stockholm system (at n3 =

1.3368) are closely met by the model, whereas the Durham data (at n3 = 1.3610 and

n3 = 1.3934) clearly differ from our modelling results. In the latter data sets, the relative

intensities in the (partly) depolarised py and sx spectra are higher than the model calcu-

lation at the expense of the relative intensity of the polarised sy spectrum. The relative

intensity in the px spectrum appears unaffected, probably fortuitous. Likely causes for

this aberration are discussed in the next section. The relative intensities for datasets B

†A small shift of the v1 band is known to occur as a function of concentration [128]. However, this is
irrelevant in our current discussion.
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and C are similar, as anticipated. Crystallisation of the sulfate salt at the silica surface

merely enhances the Raman signal.

6.2.4 Discussion

Agreement between model and experiment

Our analysis of the Stockholm data collected with the NA = 0.55 objective demonstrates

agreement between the relative intensities obtained from experiment and those computed

with our model. This indicates that the optical description of the scattering process in our

model is essentially correct. This experimental data has thus validated the pirs function

for isotropic Raman tensors in a spherical molecular ellipsoid to an accuracy of about 1%

in the relative intensity values Ipx, Ipy, Isx and Isy.

The effect of the variation of experimental parameters was predicted and proven to

be correct for at least the range probed in the experiments. Collection of scattering was

limited to zone I, where the relative intensities are independent of z, the distance of the

scattering molecule from the interface. Illumination was limited to zone II with θk,i = 70◦,

73◦ and 75◦, incident angles just above the critical angle. The relative intensities were in

the order Isy > Ipx > Ipy > Isx for the whole dataset. This order as well as the variation of

the intensities with the experimental geometry is explained by the coupling factors for the

incident and radiated fields. These in turn depend on polarisation directions, propagation

angles and refractive indices. The effect of the angular spread in the incident laser beam

proved insignificant, whereas the numerical aperture of the objective strongly affects the

relative intensities. With the objective positioned above the hemisphere, normal to the

interface, a larger NA collects increased amounts of depolarised scattering. This also

depends strongly on the angle of laser incidence with a maximum at the critical angle.

The order of the intensities is understood from this effect. The intensities depend on

θk,i and n3 in a very similar way because both refer to the angle of incidence relative

to the critical angle for the interface. The variables ψ and αO also have a similar effect

on the relative intensities as both affect the relative orientation of the plane of incident

polarisation with respect to the plane of collection polarisation. These observations are

general for isotropic Raman tensors. The relative intensities carry no information on

molecular orientation, as this is intrinsically absent with an isotropic Raman tensor.

These insights may be useful in the design of experiments to optimise the amount

of Raman scattering. In general, maximum Raman scattering is observed for the sy

polarisation combination, illumination of the sample at an angle as close as possible to the

critical angle (informed by the desired sampling depth), collection of scattered light around

the critical angle on the hemisphere side of the interface, using a large aperture and by

adjusting the refractive indices of the media and the laser wavelength where possible. The

geometrical arrangement of positioning both the laser and the objective near the critical

angle has not been employed so far. It requires positioning of the objective out of the path

of the reflected laser beam to prevent damage to optical components of the spectrometer.
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This geometry can be achieved by rotating the sample over the xL axis, for instance.

The model may also be employed to improve the assignment of intensities to Raman

bands. An example is this is the fit of the experimental Ix(ψ) and Iy(ψ) to the modelled

data in figure 6.9. The modelled intensity curves may be used as a reference to optimise

the fit with the experimental intensities by adjusting the spectral windows used to fit the

background and integrate the v1 Raman band intensity. However, this process should not

be driven to an extreme. The residual intensities should reflect the noise level fluctuating

around zero and the Raman bands should not be distorted. Both scaled absolute intensities

as well as relative intensities may be used for this, though the latter require two measure-

ments at each ψ (as employed here). Scanning the incident polarisation and recording

either the Ix(ψ) or Iy(ψ) Raman spectrum would then provide a sufficient dataset to as-

sign the fully polarised Raman bands and determine their intensities. The obtained peak

specifications may then be employed with the analysis of other spectra without further

optimisation. This process was used here and reduces the risk of tuning the modelling or

fitting parameters beyond the reasonable to obtain a satisfactory fit.

Deviations of modelled from experimental intensities

We have also presented data that does not agree well with the model calculations. These

are the experimental results from Stockholm obtained with the NA = 0.28 objective and

the results from the Durham system. Assuming that the model is essentially correct, we

will now use it to evaluate potential sources of experimental error.

For the Stockholm data with NA = 0.28 (figure 6.15), the observed deviation is an

increased Isx compared to the model prediction. This appears hardly significant at θk,i =

70◦ but it is clearly not matching the modelled relative intensities at θk,i = 75◦, where Ipx

is higher while Ipy and Isy are lower than their modelled values. The intensity order is

changed as Ipy > Isx rather than the other way round as predicted for this geometry.

Looking at the raw spectra in figure 6.5, we note that the sulfate bands are weak on

a strong background, especially at the higher angle of incidence. The py and sx spectra

are practically superimposed. The variation in the obtained v1 band intensities in these

spectra is a reflection of the uncertainty in the spectra. As the intensities are lower overall,

the relative noise level is higher for this dataset. The v1 band intensity in the sy spectra is

6 and 8 times lower in the NA = 0.28 spectra compared to those collected with NA = 0.55

at the same angles of incidence. The standard deviation of the difference between modelled

and experimental intensities is correspondingly higher, indicating that at least part of the

discrepancy is due to the uncertainties in the background-subtracted spectrum.

The deviation might also arise from use of a different objective lens in a system aligned

and calibrated for another. None of the objective lenses used in this study were manu-

factured specifically for use in polarised microscopy. Such objectives (marked P, PO or

Pol) are produced without strain in the optical glass components that could introduce

birefringence and with cement layers that transmit all radiation without altering its plane
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of polarisation. The employed objectives do not strictly meet this standard. Calibration

of the collection polarisation directions should therefore be performed for each objective

lens separately, unless these are of the quality used in polarised microscopy. However, any

defects in the NA = 0.55 objective do not significantly effect our model interpretation of

the detected intensities. This is likely the same with the NA = 0.28 objective of the same

supplier and standard.
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Figure 6.18: Modelled (solid line) and experimental (dashed line) relative intensities for
polarised Raman scattering of the v1 band from a 0.3 mol L−1 sulfate solution
at a fused silica surface as a function of αO, the azimuthal orientation of the
microscope objective, at θk,i = 75◦ and NA = 0.28. At αO = 0◦, the x and y
axes of the laser plane of incidence are parallel to the collection polarisation
directions.

We use our model to investigate this deviation further. Figure 6.18 presents relative

intensities computed for the four standard polarisation combinations as a function of αO,

the off-set between L-frame and O-frame that could account for an error in the calibration

of the collection polarisation. The curves are steeper than those for NA = 0.55 (fig-

ure 6.11). The order of the experimental intensities, Isy > Ipx > Isx > Ipy, is predicted

for αO between about 10◦ and 20◦. However, the model does not match the experimental

relative intensities at any point. We may therefore conclude that the experimental errors

in the measured intensities are too large to be explained purely by an error in polarisation

directions. A new calibration of the collection polarisation direction for this objective

would not substantially increase the accuracy of the experiment. Errors introduced by the

low signal and background subtraction appear to limit the interpretation of this data.

The experimental error could be quantified further at αO = 45◦, collecting a number of

spectra and assessing the statistical variation in the similarity of Ipx ≈ Ipy and Isx ≈ Isy.
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In a perfect objective, these are expected to be equal pairwise and with the same settings

for the incident and collection polarisers. A bias in any of these pairs indicates an undesired

polarisation sensitivity along xO or yO in the objective.

We now turn to the disagreement between the modelled intensities and the data col-

lected with the Durham Raman system. The intensities were given in the right-hand plot

of figure 6.17, at n3 = 1.3610 and 1.3934 for the 18 and 40 wt% solution, respectively.

The experimental relative intensity Isy is lower than the model expectation while Ipy and

Isx are higher. The latter in particular is striking, as it is expected at near-zero intensity.

However, in the sx spectra collected with the Durham system (the black spectra in fig-

ure 6.6), the v1 band appears as a rather distinct feature. The measured Isx is therefore

not likely to be a result of uncertainty introduced by the background subtraction.

What experimental factors could contribute to such high depolarised intensities? We

can draw from our analysis so far to suggest causes. An error in the refractive index of

the solution is unlikely to effect the observed difference. The order of the intensities is

predicted to be Isy > Ipx > Ipy > Isx with Isx ≈ 0 in the relevant range of n3 (figure 6.17)

but it is measured as Isy > Ipy > Ipx > Isx ̸= 0. An inaccuracy in the laser propagation

angle θk,i would also change the relative intensities (in a way very similar to figure 6.10),

but not their order. The finite beam waist causes an angular spread of incident angles

around the central propagation direction. Its effect on the relative intensities is negligible

(see figure 6.19). This leaves the linear polarisation angle of the laser ψ and the angle αO

that specifies the collection polarisation direction x̂O as an anticlockwise rotation from x̂L

about ẑL. These are determined by the half-wave plates and linear polarisers as well as

any other unintentionally polarisation-sensitive components.

The effect of ψ and αO on the relative intensities is now analysed. Figure 6.20 presents

contour maps of Ix/(Ix + Iy) as a function of ψ and αO for both the 40 wt% and 18 wt%

solution. The four standard polarisation combinations are related to incident polarisation

angle ψ and collection polarisation direction angle αO as

px→ (ψ, αO) = (0◦, 0◦)

py → (ψ, αO) = (0◦, 90◦)

sx→ (ψ, αO) = (90◦, 0◦)

sy → (ψ, αO) = (90◦, 90◦)

(6.3)

which specify the four corners of the contour maps in figure 6.20. These maps are symmet-

ric around the ψ and αO axes and periodic in each so that these only require specification

in the range 0◦ ≤ ψ, αO ≤ 90◦. Its horizontal cross-section gives Ix(αO), which is simi-

lar to the relative intensity curves in figure 6.18, while the vertical cross-section is Ix(ψ)

which behaves as in figure 6.9. The refractive index is higher in the present case with θk,i

nearer the critical angle so that Ix at low ψ is near 0.5. This implies that Ipx ≈ Ipy. The

minimum of Ix is at (ψ, αO) = (90◦, 0◦) and its maximum at (ψ, αO) = (90◦, 90◦). These

conform to the sx and sy polarisation combinations, respectively.
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Figure 6.19: Deviation in the relative Raman intensities as a function of the waist of
the incident laser beam w for θk,i = 73◦ for the two sulfate concentrations
employed in the Durham experiments at a fused silica surface. The model
describes the sulfate v1 band intensity with the objective at (αO, βO, γO) =
(0◦, 180◦, 0◦).

Looking at the contour lines in figure 6.20, we note that the derivative with respect to

the angles (ψ, αO) is lowest at the four corners of the map. The impact of an experimental

error in the calibration of the polarisation angles is thus minimal when using either of the

four standard polarisation combinations. The standard polarisation combinations are the

best choice following this argument. However, the uncertainty introduced with near-zero

intensities reduces this advantage as seen with the Stockholm data discussed above. We

further observe that the derivative of Ix with respect to ψ is zero at αO = 45◦, but as

Ix = Iy in this case, any information on the orientation of the scattering molecule is lost.

The difference between the model prediction and the experimental relative intensities in

this case centres on two discrepancies: Isx ̸= 0 and Ipx ̸= Ipy. If the collection polarisation

is not exactly along xL, the high-intensity sy spectrum contributes to the low-intensity

sx. These spectra may be said to mix. The px and py intensities also mix if αO is off-set

and are increasingly different for larger ψ. The cause of the discrepancy may thus lay in

an off-set of the polarisation angles, which we will now derive.

The relative intensity from the px Raman spectra Ipx/(Ipx + Ipy) is computed and

plotted as a yellow contour line in the intensity maps of figure 6.20. On these lines, the

relative modelled intensities match those obtained from the Raman spectra. The fit is
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Figure 6.20: Analysis of polarisation off-set in the Durham Raman system analysed with
scattering from the sulfate v1 band. (a) Contour plots of the modelled rel-
ative Ix intensities for polarised Raman scattering as a function of αO, the
azimuthal orientation of the microscope objective, and ψ, the incident linear
polarisation angle. The left-hand plot contains the experimental relative Ipx
for dataset B (solid yellow line) and dataset C (dashed yellow line), with
dataset D in the right-hand plot. Diagram (b) presents angles (αO, ψ) that
fall on the yellow contour lines and provide the best fit with the relative
experimental intensities. The obtained angles are similar and their averages
are used to recompute scattering intensities, given in (c) as the difference
between relative modelling and experimental intensities.
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further optimised by computing Isx/(Isx + Isy) for each (ψ, αO) on the contour line. The

best fit is found by equating the relative intensities from the experiment to the model

Ix value. The deduced polarisation angles fall within a range of 3.6◦ (diagram (b) in

figure 6.20), indicating that a systematic off-set is likely. Their average values are ψ = 21◦

and αO = 17◦. The experimental intensities are best described by modelled intensities

computed with these polarisation angles.

The average fitted values (ψ, αO) = (21◦, 17◦) are now used to recompute the relative

intensities Ipx, Ipy, Isx and Isy. These are then compared to the experimental relative

intensities. Their difference (modelled minus experimental) is shown in diagram (c) of

figure 6.20. We find that the relative intensities differ less than 0.025 with a standard

deviation of 0.012 (on the relative intensity scale from 0 to 1). The mismatch between

model and experiment can thus be explained by an effective rotation of the polarisation

plane. The remaining uncertainty of about 1% reflects that found for the Stockholm data

with the NA = 0.55 objective and calibrated polarisation angles.

We may conclude from this analysis that though the experiment is not as perfect as

the model assumes, it may still be modelled as such by adjusting input parameters that

capture the same net effect. In this case, the off-set can be taken as an error in the

angular position of the half-wave plates, for which the positioning is half the off-set in ψ

or αO, giving HW1 at 10◦ and HW2 at 8.5◦, respectively. The rotation may also be caused

by polarisation upon reflection from the mirrors in the optical system or polarisation

sensitivity in the objective. Whatever the exact origin of the deviation, from a modelling

point of view, these effects appear best incorporated as an off-set in the angular orientation

of the polarisation planes.

The foregoing illustrates the use of the model to assess experimental imperfections. It

may be used to analyse what factors could contribute to experimentally observed intensity

variations. Working from a known molecular system and having validated the model for

this system with a calibrated experimental setup, as is the case here, a correction may be

applied to experimental results from another (less-well calibrated) experiment by adjusting

model input parameters to account for the experimentally-induced intensity variation.

However, care must be taken to avoid adjusting the model input to such extend that it

results in fitting towards an experimental result without physical basis.

6.2.5 Conclusion

The isotropic Raman tensor of the sulfate v1 mode was used to validate the optical descrip-

tion of our model. This mode is particularly useful because it comprises a fully symmetric

Raman mode in a spherical molecule. Thus, averaging over molecular orientations and

local field correction are irrelevant. Furthermore, it favourably lacks anharmonicities. Fi-

nally, the depth position of the sulfate molecule with respect to a silica surface is not

expected to affect the relative intensities.

The model provides relative intensities for the four standard polarisation combinations
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that agree with those obtained with the Stockholm Raman system, as long as the polar-

isation directions are calibrated for the specific objective being used. The agreement is

characterised by a standard deviation of 0.01 on a scale from 0 to 1. A square grid of 15

nodes along each direction ensured convergence of the modelling result.

However, data collected by the Durham system differed. The difference can be ex-

plained by imperfections in the (settings of the) optical components. These are best

modelled as an off-set in the polarisation directions. The effect of such an off-set can be

seen as causing mixing of polarised with depolarised spectra, notably giving rise to clear

non-zero intensities with the sx polarisation combination though this was predicted to be

zero. This explanation illustrates use of the model to test experimental components or ex-

plain deviations that these might cause. Errors in background subtraction also contributed

to the observed differences.

The dependence on incident polarisation direction closely followed the experimentally

determined relative intensities. The same was the case for the incident angle, though a

significant deviation again occurred with the objective for which the polarisation directions

were not calibrated. According to model calculations, the spread in the angle of incidence

does not significantly affect the Raman intensities.

Increasing the concentration of the sulfate anion in its aqueous solution results in an

increased refractive index. This alters the critical angle of the studied interface. The effect

on the scattering intensities is similar to that of a change in the angle of incidence.

A smaller numerical aperture enlarges the variation between the intensities, reducing

especially those collected with px and py polarisation combinations. This presents an

example of using the model to increase contrast between polarisation combinations or

peaks in a spectrum.

The experiments and modelling of the v1 Raman band of the sulfate anion presented in

this section thus lead us to conclude that the optical description of our model is essentially

correct. We now proceed to apply the model to increasingly complex systems to explore

its limits.

6.3 Carbon tetrachloride on sapphire

The sapphire-CCl4 interface was produced by mounting a sapphire hemisphere on the

flow cell and filling it with liquid carbon tetrachloride. It was studied in the Durham

Raman system. Sapphire was used with carbon tetrachloride as it has sharper peaks than

fused silica in the low-shift spectral range where the CCl4 bands appear. Moreover, the

refractive index of CCl4 is similar to that of fused silica but differs substantially from that

of sapphire (see figure 3.7). This contrast has two advantages. First, the sapphire-CCl4
interface is more readily observed in the microscope and can thus be positioned more

accurately than the silica-CCl4 interface. Second, the critical angle is lower so that the

field near the interface is stronger for sapphire-CCl4 than for silica-CCl4 at the same angle

of incidence, thus enhancing the Raman signal. However, sapphire is birefringent, which
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may introduce errors in our analysis.

6.3.1 Experimental results

Raman spectra were recorded with the four standard polarisation combinations of the

Durham system: px, py, sx and sy with the laser polarisation p or s set through HW1

and the collection polarisation x or y set by introducing HW2 into the beam path. Po-

larised spectra were recorded for both the sapphire-air interface background as well as

the sapphire-CCl4 interface signal. Subtracting the former from the latter provides the

interfacial CCl4 spectrum.

The laser was set to an output power of 200 mW and was incident through zone II at

θk,i = 73◦. The critical angle is 34.5◦ for the sapphire-air interface and 55.9◦ for sapphire-

CCl4 at the laser wavelength and throughout the spectral range of interest. Scattering

was collected in the NA = 0.55 objective positioned in its standard orientation orthogonal

to the interface above the sapphire hemisphere with polarisation directions parallel to the

plane of laser incidence. Spectra were acquired by accumulation of five spectra of 5 s each,

centred at a Raman shift of 460 cm−1.

Raman spectra

The recorded Raman spectra (figure 6.21) show partially overlapping features in the range

200-800 cm−1. Five features can be attributed to sapphire. Due to its crystalline form,

these bands are narrow and sensitive to polarisation. The CCl4 modes arise from the

various isotopologues of the molecule and are labelled according to the Td point group

symmetry (see section 4.4.2). The locations of these four CCl4 bands are indicated in

the sapphire-CCl4 spectra. The sapphire band around 750 cm−1 obscures the v3 mode

of CCl4 in all four polarisation combinations. The symmetric v1 mode of CCl4 appears

as a shoulder to the sapphire band around 430 cm−1 while the v4 and v2 bands are fully

resolved.

Peak intensities

Four polarised CCl4 Raman spectra are obtained by subtracting each polarised sapphire-

air spectrum from its sapphire-CCl4 complement (see figure 6.22). A single background

spectrum for all polarisation combinations is inappropriate here as the sapphire spectrum

changes qualitatively with the employed polarisations. Furthermore, a match between

background and signal is not expected because of variation in the critical angle and slight

realignment after filling the flow cell with the toxic sample in a fume hood away from the

Raman system. The background spectra can thus not be matched to the signal. Parts of

the spectrum without any features are therefore used to scale the background relative to

the signal, if needed.

The sapphire-air background intensities were multiplied by 0.75 for the py and sy spec-

tra before subtraction to ensure that the residual baseline flattens out at zero intensity
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Figure 6.21: Raw Raman spectra of the sapphire-air and sapphire-CCl4 interfaces for the
four polarisation combinations collected with the Durham system. [data:
20150326/009,010,018,019]

near the CCl4 features. For the px and sx spectra, no multiplication was needed. The

intensities of the v2, v4 and v1 modes of CCl4 can then be obtained by numerical integra-

tion over each peak, i.e. summing the background-subtracted intensities over a specified

spectral range. The integrated intensities obtained from the Raman spectra with y collec-

tion polarisation have been divided by 0.89 to correct for the transmittance of HW2, which

was added to the beam path for the py and sy spectra but absent with the px and sx

spectra. Table 6.4 lists the spectral range and intensity obtained for each band. Though

the integrated intensities are strictly in units of counts s−1 cm−1, their relative values only

are required for interpretation with our model.

6.3.2 Modelled band intensities

The carbon tetrachloride Raman spectra are used to evaluate the model description with

computational Raman tensors in the harmonic approximation. The Raman tensors found

for CCl4 are not isotropic (see section 4.4.2) contrary to the v1 mode of the sulfate anion

treated in section 6.2. There, we concluded that the grid size parameter g = 15 ensures



6.3. CARBON TETRACHLORIDE ON SAPPHIRE 241

-50

0

50

100

200 400 600 800
-50

0

50

100

200 400 600 800

Figure 6.22: Each polarised CCl4 spectrum (black) is obtained by subtracting the back-
ground sapphire-air spectrum (blue) from the sapphire-CCl4 spectrum (red).
For the py and sy polarisation combinations, the background is multiplied
by 0.75 before subtraction to ensure a flat baseline around zero intensity.

Table 6.4: Experimental Raman intensities (in counts s−1 cm−1) of the CCl4 bands in
the four polarisation combinations. Relative intensities are listed in red below
corresponding absolute values. The v3 band is obscured by the sapphire signal.

band range / cm−1 Ipx Ipy Isx Isy
v2 190—286 103.7 102.0 594.7 595.3

0.0743 0.0730 0.4261 0.4266
v4 286—346 123.6 111.2 719.9 691.4

0.0751 0.0676 0.4373 0.4200
v1 445—500 150.4 261.5 773.5 1685

0.0524 0.0911 0.2695 0.5870
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convergence of the modelling result, which was confirmed to be the case for the carbon

tetrachloride intensities as well.

The scattered light is collected in zone I so that the relative intensities are expected to

be independent of the distance z of the scatterer from the interface. We therefore set z = 0

to model the full depth of the probed layer of liquid carbon tetrachloride. Further, ν̄R =

248, 316 and 473 cm−1 for the v2, v4 and v1 modes, respectively, and λ0,laser = 532 nm.‡

The refractive indices of the sapphire hemisphere and the carbon tetrachloride liquid were

given in table 3.2 and the Raman tensors of the three CCl4 isotopologues in tables 4.3

to 4.5. The radius of the molecular sphere and the polarisability tensor of the carbon

tetrachloride molecule were presented in section 6.1.3 from computations in Gaussian.

These last quantities are independent of the isotopic composition of the molecule.

We further ignore the spread of the laser incident angle as it is of negligible consequence

to the relative intensities. This was found to be the case with the ammonium sulfate

solutions as well. Birefringence of the sapphire hemisphere as well as dispersion in the

materials are also ignored. The change in relative intensities is insignificant, especially

when illuminating the sample far from the critical angle, as is the case here.

The objective orientation in the L-frame is (αO, βO, γO) = (0◦, 180◦, 0◦) in all calcu-

lations. The off-set in the polarisation directions as determined for the Durham Raman

system with the sulfate solution in section 6.2.4 is not included here.

For each computation, we use the experimental settings as input parameters while

summing the intensities over all molecular orientations (αm, βm, γm) for each of the four

standard polarisation combinations. To do this efficiently, we first investigate what angular

interval is sufficient to sample the azimuthal, tilt and twist angles. We then investigate

the sensitivity of the relative intensities on the local field correction through the molecular

radius and the molecular polarisability. Finally, the relative intensities are computed for

the three most abundant isotopologues in the isotropic orientational average. This last

modelling result is compared to the experimental intensities.

Sampling of molecular orientations

Carbon tetrachloride exhibits random molecular orientations in its liquid state. For an

individual molecule, every three-dimensional orientation is equally likely, i.e. the distribu-

tion of orientations is uniform. The Raman intensity arising from this ensemble is due to

its isotropic average. In our modelling approach, we have to pick discrete orientations and

ensure the full range of Euler angles (αm, βm, γm) is sampled. The isotropic average is then

given by the sum of the intensities computed for each orientation. This sum approaches

the isotropic average as more angles are sampled, though at a computational cost.

In computing the Raman intensity for the isotropic average, the intensity for each

particular orientation I(αm, βm, γm) is multiplied by the factor sinβm. This ensures equal

‡The Raman shifts are taken from the experimental spectra. Note however, that Raman shifts are
irrelevant for relative intensity values obtained by the model when z = 0. The laser wavelength is likewise
of no consequence here, though its value has to be non-zero to prevent computational errors.
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sampling of all directions as (the polar regions of the sphere describing the molecular

orientations are oversampled compared to its equatorial regions as the three angles are

sampled with equal intervals). The βm-weighted intensities are then summed to obtain

the isotropic average.
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Figure 6.23: Modelled relative intensities for the isotropic average of the v2(1) mode of
12C35Cl4 obtained by a summation of intensities computed for specific molec-
ular orientations, sampled with a varying interval in orientation angles. Below
an interval of about 30◦, the relative intensities stabilise to the values for the
isotropic average.

How coarse can we sample the orientations in our model? Figure 6.23 presents the

relative intensities in the four standard polarisation combinations obtained by modelling

scattering from the v2(1) mode of 12C35Cl4 (the first of its degenerate E modes given in

table 4.3). As the interval, or step size, in αm, βm and γm is reduced from 60◦ to 15◦, the

relative intensities settle on a stable value, conforming to the isotropic average.

The remaining modelling of this section employs an angular interval of 20◦. As β = 0◦

results in zero intensity due to the sinβm weighting factor, the angular range is taken from

half the angular step size and ranges up to the upper limit minus half this interval. That

is, the computation starts at 10◦ for each Euler angle, taking steps of 20◦ towards a final

value of 350◦ for αm and γm and of 170◦ for βm. All combinations of these angles are

sampled. The isotropic average thus comprises 2916 molecular orientations.

Individual Raman tensor elements

The individual diagonal and paired off-diagonal Raman tensor elements contribute to the

intensity of the isotropic average in possibly different ways. Figure 6.24 presented relative

intensities for the isotropic average due to these tensor elements. This modelling result

is obtained by setting one of the diagonal elements or one symmetric pair of off-diagonal
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elements to 1 with the remaining elements at zero. It is specific to the experimental

geometry investigated here.

From figure 6.24 we conclude that the relative intensities for the isotropic average

of the three diagonal elements xx, yy and zz are practically identical. This is also the

case for the pairs of off-diagonal elements xy, xz and yz (where the symmetric com-

plements are implied). However, the relative intensities arising from diagonal and off-

diagonal elements differ in that the diagonal elements produce stronger relative intensities

in the sy polarisation combination while the off-diagonal elements contribute more to

py, sx and px spectra though at a reduced extend for the latter. The order of the in-

tensities is Isy > Ipx > Ipy > Isx for the diagonal Raman tensor elements while this is

Ipx > Ipy > Isy > Isx for the off-diagonal elements.

The observed differences in relative intensities can be understood from the depolarising

effect of the off-diagonal elements while the diagonal elements mainly result in polarised

Raman scattering. In the present experimental geometry, polarised and depolarised scat-

tering are mixed so that off-diagonal elements also contribute substantially to polarised

(px and sy) and diagonal elements to depolarised scattering (py and sx). In experimental

geometries such as this, polarised and depolarised terminology no longer applies in its

strict sense though these represent illustrative limiting cases within the currently available

experimental options.
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Figure 6.24: Modelled relative intensities arising from each of the six Raman tensor el-
ements computed for an isotropic orientation distribution of the scattering
molecule in the experimental geometry employed with the CCl4 spectra. For
off-diagonal elements (blue), the Raman tensor is symmetrised (i.e. elements
xy and yx are equal).

In the fully isotropic orientation distribution, the Raman tensor is rotated onto all

possible molecular axes. The result is an isotropic averaging of the Raman tensor, usually

expressed in the laboratory frame of reference. The Raman-scattering intensity may be

computed in one step using such an isotropically averaged Raman tensor. This approach

can be used in traditional Raman experiments on liquids as described in section 2.5.2. (Ref-
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erences to isotropic averages of the Raman tensor for illumination-observation geometries

along the laboratory frame axes are included there.) However, there is no straight-forward

approach to compute the isotropic average of the Raman tensor in the laboratory frame

of reference for our geometry, taking into account the angular spread of the incident and

scattered light cones. Our discrete modelling approach offers an alternative way to com-

pute the effect of the orientation distribution on the Raman scattering intensities, with the

additional benefit that any distribution and any experimental geometry can be modelled.

Local field correction

To what extend does the local field correction affect the intensities for a spherical molecule

with non-isotropic Raman tensors? We answer this question by modelling the intensities

for the four standard polarisation combinations while varying the local field parameters

by ±20%. These parameters are the radius of the spherical molecule and the isotropic

polarisability. The modelling is performed on the isotropic orientation distribution with

the experimental parameters described above. Two CCl4 Raman tensors are used:

• mode v3 of
12C35Cl3

37Cl, a diagonal Raman tensor given in table 4.4, with modelling

results presented in figure 6.25,

• mode v4(1) of
12C35Cl4, a Raman tensor given in table 4.3 with off-diagonal elements

only, modelling results presented in figure 6.26.

These modes represent equivalent modes in two different isotopologues of carbon tetra-

chloride both appearing in the v4 band around 316 cm−1. The computational results may

therefore be compared directly.

In figure 6.25, we note that the absolute intensities decrease with increasing molecular

radius while these increase (roughly linearly) with the polarisability of the molecule. Simi-

lar behaviour is observed with the off-diagonal Raman tensor in figure 6.26. The similarity

is to be expected because both modes are essentially the same vibration expressed in two

different molecular frames, each dictated by the symmetry of the isotopologue. Their dif-

ferences average out in the isotropic orientation distribution mimicked here. The absolute

scattering intensities arising from the off-diagonal Raman tensor (figure 6.26) are at most

2% higher than those from the diagonal Raman tensor (figure 6.25). However, the relative

intensities differ no more than 0.002 while the strength of the Raman polarisability in both

modes, assessed through the Euclidean norm of the respective Raman tensors, only differs

by about 0.3%. This slight difference is thus amplified through the scattering process.

The relative intensities are practically constant for each tensor, whatever the molecular

radius or polarisability. Smaller molecular radius enhances the local field and thus results

in increased Raman intensities. The cavity field tensor is unaffected as the shape factor

stays the same. However, the diagonal elements of the reaction field tensor R decrease

conform equation 5.54 as the molecular radius r = rx = ry = rz increases. The local field is

thus enhanced through the reduced denominator in equation 5.49 but the effective Raman
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Figure 6.25: Modelled absolute (left) and relative (right) Raman intensities for the v3 mode
of 12C35Cl3

37Cl as a function of the radius of the molecular ellipsoid (top) and
the molecular polarisability (bottom). The values computed in Gaussian for
CCl4 are indicated with dashed vertical lines. The solid horizontal lines in
the right-hand plot indicated the relative intensities computed without local
field correction.
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Figure 6.26: Modelled absolute (left) and relative (right) Raman intensities for the v4(1)
mode of 12C35Cl4 as a function of the radius of the molecular ellipsoid (top)
and the molecular polarisability (bottom). The values computed in Gaus-
sian for CCl4 are indicated with dashed vertical lines. The solid horizontal
lines in the right-hand plot indicated the relative intensities computed with-
out local field correction.
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dipole is increased through the dipole reaction factor of equation 5.67. Both expressions

are summarised in equation 5.70. On the basis of the same equations, a higher isotropic

molecular polarisability α is expected to result in a lower local field as well as in an

enhanced Raman dipole, thus lowering and increasing scattering intensities. In this case,

the effective Raman polarisability tensor (equation 5.71) may be expressed as

αv4,eff
m =

1 + αR

3(1− αR)
αv4

m (6.4)

because C, R and α are diagonal, with Cii = 1/3 due to the spherical cavity, and optical

anisotropy is negligible. Within the presently modelled range, the scattered intensity thus

increases with R ∝ 1/r3 and with α.

In the absence of the local field correction, identical relative intensities are computed.

The local field correction is removed from the model by deleting part IV from the pirs.m

code, except the definition of ϵ0, and replacing this part with the line

p_eff_L = T_L_to_m’*RAMANTENSOR_m*E_app_m;

Furthermore, in step (4) of part VI of the code, C_scat_m as well as C_scat_q are removed.

The thus obtained absolute intensities are indicated by the horizontal lines in figures 6.25

and 6.26. However, the absolute intensities are reduced to 0.7 10−73 C V−1 m2 with

px and to 0.5 10−73 C V−1 m2 with sx when the local field correction is not applied.

This does not correspond to a simple extrapolation of the modelled intensities to zero

polarisability and infinite molecular radius. The local field correction in the model leads

to a threefold enhancement of the predicted Raman scattering intensity, which may be

seen as an effective increase of the Raman polarisability.

We conclude that the isotropic average for a spherical molecule with isotropic po-

larisability provides identical relative intensities whatever the Onsager-Scholte local field

correction factors, at least in this experimental geometry. The experiments are thus not

sensitive to the molecular ellipsoids or polarisability tensors from our Gaussian compu-

tations. This may be advantageous, as it reduces the number of unknowns, but it equally

does not provide us with a test of the local field correction or its parameters.

Harmonic band intensities

We now model the intensities of the v2, v4 and v1 Raman bands arising from the vibrational

modes of the three most abundant CCl4 isotopologues. Relative intensities are obtained

from a combination of absolute intensities computed for each of the degenerate modes

with the terrestrial abundance of each isotopologue. The modelling results are included

in figure 6.27 along with the experimental relative intensities. Along with the results for

the v1 mode, relative intensities arising from an isotropic Raman tensor are shown for

comparison.

For the v2 band, we observe that the modelled relative intensities range from 0.20

to 0.28 in the order Ipx > Ipy > Isy > Isx. All six Raman tensors used to model this
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Figure 6.27: Experimental and modelled relative intensities for the v2, v4 and v1 Raman
bands of CCl4. The three most abundant isotopologues are modelled sep-
arately and their combined intensity is obtained according to their natural
abundance. For the v1 band, the relative intensities modelled for the three
isotopological modes conform to those arising from an isotropic Raman tensor
and are all just below 0.002 in the sx polarisation combination.
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band result in the same relative intensities which are thus also seen with the combined

isotopologues. The px and py polarisation combinations result in roughly similar intensi-

ties, while sx and sy clearly deviate. This contrast the experimental data, for which the

relative intensities are in the order Isx ≈ Isy > Ipx ≈ Ipy.

The modelled intensities of the v4 band (middle plot in figure 6.27) are practically

identical to those of the v2 band. Again, the modelled vibrational modes (nine in this case)

provide very similar relative intensities for each of the four polarisation combinations due

to the orientational averaging. The experimental relative intensities are somewhat different

from those of the v2 band, though differing no more than about 0.01 on that scale, and

share the same order. The modelled relative intensities thus again differ substantially

from relative intensities derived from the experimental Raman spectra. Potential causes

for this mismatch are discussed below.

Finally, the modelling results for the v1 band are in the order Isy > Ipx > Ipy > Isx,

different from the previous two bands. This order conforms to that of the v1 mode of the

sulfate anion (as given in figure 6.15, for example). The modes contributing to this band

in carbon tetrachloride are non-degenerate in each isotopologue and have diagonal Raman

tensors. Their relative intensities are identical to those obtained by an isotropic Raman

tensor (bottom plot in figure 6.27): isotropic averaging of the molecular orientation turns

the v1 band diagonal Raman tensors into apparently isotropic ones.§ The model suggests

predominant polarised Raman scattering with the sy polarisation combination and to a

lesser extend with px in contrast to low depolarised intensities at just over 9% with py

and hardly any with sx. However, the relative intensities of the v1 band derived from the

experimental Raman spectra are in the order Isy > Isx > Ipy > Ipx, which differs from

that of the modelled relative intensities in that the px and sx are interchanged.

The modelled relative intensities deviate from the experimentally determined values

in all three bands. This deviation appears to more than a matter of statistical error or

uncertainty. The order of the relative intensity differs to such an extend, that the relative

intensities are qualitatively different. This mismatch may arise from experimental factors

as well as oversimplifications in the model or combinations of these. This is now discussed.

6.3.3 Discussion

The modelled relative intensities presented in figure 6.27 do not compare favourably to

those derived from the experimental CCl4 spectra. What experimental and modelling

errors could have contributed to this mismatch?

§In contrast, the v2 band includes modes with diagonal Raman tensors that have substantially differing
tensor elements (see tables 4.3-4.5). The discriminating factor is that all elements of the v1-band Raman
tensors have the same sign.



6.3. CARBON TETRACHLORIDE ON SAPPHIRE 251

Background subtraction

The experimental intensities were derived after subtracting sapphire-air background spec-

tra. Background subtraction appears to be a major cause for error in the experimental

intensities of the v1 band (figure 6.22). Analysis of this band was nevertheless attempted

and shown to explore how far our current methodology could take us. This band is partly

obscured by sapphire features that are polarisation sensitive and that differ between back-

ground and signal measurements.

The v2 and v4 bands appear less prone to error from background subtraction. As

with the sulfate spectra, a fitted background could have been employed though without

substantial improvement to the analysis.

Optical effects

The raw data of figure 6.21 strongly suggest that background subtraction is problematic

for the sapphire-CCl4 interface as the Raman intensities deviate both quantitatively and

qualitatively from the sapphire-air interface. Due to the difference in refractive index

between air and carbon tetrachloride, the laboratory-fixed angle of incidence results in

substantially different refraction at the interface. The Fresnel factors thus differ for each

and give rise to different fields at and near the interface that, combined with the birefrin-

gence of sapphire, cause polarisation effects in the sapphire Raman spectra. Birefringence

of the sapphire hemisphere also affects the optical path of the scattered Raman light, al-

tering polarisation sensitivity. No birefringence is included in the model. Incorporation of

it would require knowledge of the orientation of the optical axes of sapphire with respect

to the laser frame of reference.

The incident laser beam may split in e and o-rays upon passing through the sapphire

hemisphere. These rays may interfere at the laser focus, i.e. the location from which

Raman scattering is collected. As the beam is incident perpendicular to the outer, curved

hemisphere surface, no refraction takes place. The phase shift ∆ϕ between the two rays

depends on the refractive indices ne, no along the optical axes of the sapphire crystal, the

vacuum wavelength λ0 of the light in question and the path length d (here, the 5 mm

radius of the hemisphere) as

∆ϕ =

(
2πd

λ0
|no − ne|

)
mod 2π (6.5)

which is defined as a positive quantity in all cases. The modulus is taken to ensure ∆ϕ

ranges from 0 to 2π.

No birefringence occurs when the laser is incident along the optical axis of sapphire.

In all other cases, some degree of interference will occur depending on the polarisation

angle, which determines the amplitudes along e and o-rays, and the phase shift between

the two. For the incident laser beam, ∆ϕ = 68◦.

Interference only arises if the laser beam is substantially coherent over its optical path
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through the hemisphere. The coherence length of the laser is 7 mm in air and reduces to

4 mm in sapphire, below the 5 mm radius of its hemisphere. It is thus realistic to assume

that birefringence takes place and that this affects the vectorial electric field amplitude at

the location of the Raman scatterer to some extend. The manufacturing tolerance of the

hemisphere and inaccuracies in alignment of the laser are ignored here.

Interference between e and o-rays may also arise in the Raman-scattered light. Each

individual scatterer emits a coherent wave-packet of Raman scattering, propagating along

both e and o axes of sapphire to interfere once these reach air. For the Raman-wavelengths

of 539, 541 and 545 nm for the v2, v4 and v1 bands, respectively, we find ∆ϕ = 76◦, 337◦

and 142◦. This phase shifts comes on top of any phase differences between the Cartesian

components of the electric field amplitude tensors derived by the coupling factors. The

resultant fields may destructively interfere to suppress certain components of the field

while enhancing others. It is thus plausible that birefringence affects the observed Raman

intensities though this is not quantified with the current model.

The phase shift of the light effectuates a rotation of its plane of polarisation. This

process may correspond to the observation of higher relative py and sx intensities (that

is, depolarised Raman scattering) than the model anticipates. The strengthening of de-

polarised scattering is especially pronounced in the v1 band. This observation may be

congruent with the estimated phase shift which would lead to destructive interference.

Another optical factor that could erroneously affect the modelled relative intensities is

an off-set in the polarisation directions. This argument was considered for the sulfate data

collected with the Durham system (see section 6.2.4). An off-set of (ψ, αO) = (21◦, 17◦)

was deduced there. Applying this off-set to the current CCl4 calculations results in the

following relative intensities.

• With the v1 band: 0.2336, 0.1588, 0.0719 and 0.5358 for the px, py, sx and sy

polarisation combinations, respectively. The depolarised intensities are increased at

the cost of the polarised intensities, mainly Isy. However, this result is qualitative

similar to the previous.

• With the v2 band: 0.2727, 0.2659, 0.2098 and 0.2516 for the px, py, sx and sy

polarisation combinations, respectively. Including the off-set in polarisation angles

results in a slight shift of the relative intensities towards a common 0.25 value. Again,

this does not offer basis for a qualitatively different interpretation.

A final optical factor is the local field correction. Recomputing relative intensities

without the local field correction in our model leads to practically identical results. The

local field correction cannot explain the observed experimental intensities.

Raman tensors

The Raman tensors computed with Gaussian are harmonic. As discussed in section 4.4.2,

several combination bands, overtones and Fermi resonances are known to arise in the CCl4
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spectrum. Such anharmonicities are enhanced in the liquid phase compared to the gas

phase due to increased intermolecular coupling interactions.¶ To what extend would these

alter our model predictions?

In our Raman spectra, the following anharmonic features may be relevant (labelling

modes according to the Td point group and implying corresponding modes in the other

point groups).

(1) The difference v3 − v1 may be in resonance with the v4 fundamental. However, no

distinct spectral feature is observed that could embody this Fermi resonance.

(2) The overtone 2v2 may be in resonance with the v1 fundamental, leading to a tentative

doublet observed in the experimental spectra.

(3) The difference v3−v4 may be in resonance with the v1 fundamental, again potentially

contributing to the tentative v1 doublet.

Feature (1) is concluded to be insignificant because the relative intensities of the v4

band are practically identical to those of the fundamental v2 band which is not affected

by any combinations or resonances. Furthermore, feature (1) does not significantly affect

the appearance of the v4 band, as it is similar to that of the v2 band. Even if a resonance

were contributing significantly to the observed intensity, it may not be separable from the

overall band intensity.

Features (2) and (3) relate to the v1 band, which is perceived as a doublet in some

of the experimental spectra. This doublet may arise from strengthening of the weaker

overtone 2v2 and/or difference band v3−v4 at the expense of the stronger v1 fundamental.

These resonances occur only between modes of one isotopologue that meet the resonance

conditions (see section 2.5.4).

We now estimate the contribution of the 2v1 overtone to the v1 band intensity. A

reasonable maximum estimate of the effect of the interaction in the Raman spectrum

is computed by taking an equally-weighted average of the modelled absolute intensities.

Alternatively, we combine the Raman tensors of the interacting fundamentals to predict

relative intensities. Note that both procedures only provide estimates, as the Raman tensor

should normally be computed from the anharmonic vibrational motion of the atoms which

is currently unavailable to us.

The modelled absolute intensities for the v1 fundamental are of the same magnitude

as those for the v2. We estimate the relative intensities for the 2v2 ≈ v1 doublet by

taking the direct sum for each polarisation combination and normalising this estimate to

find relative intensities of 0.2703, 0.1516, 0.0677 and 0.5104 for the px, py, sx and sy

polarisation combinations, respectively. This result is practically identical for all modes

of the isotopologues in the v2 band.

¶This implies that even if fully anharmonic computations were performed in Gaussian on a single
molecule, the computational results would not be directly applicable to the liquid phase because the
interaction strengths between the various modes would differ.
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As an alternative to the above averaging, we now combine the Raman tensors of the

constituent mode. The Raman tensor for this particular resonance may be approximated

as a linear combination of v2 and v1 band Raman tensors. A number of combinations is

possible with the various isotopologues. Taking 12C35Cl4 as example, we opt for its v2(1)

and v1 Raman tensors in a linear combination with the same weight factors for each. This

provides

α2v2(1)≈v1(
12C35Cl4) =

1√
2
αv2(1) +

1√
2
αv1 =

1√
2

−27.4 0 0

0 −12.3 0

0 0 −4.1

 (6.6)

in units of 10−42 C V−1 m2. Using this Raman tensor as input to the model (while all

other parameters conform to the previous computation), we obtain the relative intensities

0.2699, 0.1491, 0.0653 and 0.5157 for the px, py, sx and sy polarisation combinations,

respectively.

Repeating the computation for the three isotopologues and two Raman modes in each

provides means and standard deviations of 0.2702±0.0003, 0.1497±0.0005, 0.0655±0.0003

and 0.515±0.001. Surprisingly, this result is highly similar to the previously derived result

that was based on a coarse sum of intensities. A likely cause for this similarity is the

isotropic averaging.

In the v1 band intensities of CCl4, Ipx and Ipy are interchanged in the intensity order

compared to the experimental order. The same was observed with the sulfate v1 band

intensities measured in Durham. The CCl4 data furthermore show an increase of Isx to

a level well above both p-polarised intensities. Combinations of Raman tensors can not

fully account for this observation.

Feature (3) arises from resonances between the v3−v4 ≈ v1 bands. With the 12C35Cl2
37Cl2

isotopologue, this resonance may involve the modes v1 − v3 ≈ v2, which is symmetry-

allowed as all involved modes belong to the A1 species of its C2v point group. The Raman

tensor for the difference tone is estimated as

αv1−v3(
12C35Cl2

37Cl2) =
1√
2
αv1 −

1√
2
αv3 =

1√
2

20.3 0 0

0 −20.3 0

0 0 −0.55

 (6.7)

in units of 10−42 C V−1 m2. This Raman tensor results in relative intensities of 0.2830,

0.2677, 0.1962 and 0.2531 for the px, py, sx and sy polarisation combinations, respectively.

These are nearly identical to those for the v2 and v4 fundamental bands. The fundamental

v3 band, not separately modelled here, may thus be expected to feature the same relative

intensities as well.

The above difference tone mixes with a v1 band fundamental through Fermi resonance

as their frequencies are similar. We may estimate the resulting Raman tensor for the C2v
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isotopologues as

αv1−v3≈v2(
12C35Cl2

37Cl2) =
1√
3
αv1 −

1√
3
αv3 +

1√
3
αv2 =

1√
3

5.04 0 0

0 −34.4 0

0 0 −15.0


(6.8)

in units of 10−42 C V−1 m2. By application of the model, this tensor results in relative

intensities of 0.2748, 0.1935, 0.1143 and 0.4174 for the px, py, sx and sy polarisation com-

binations, respectively. These values are somewhat reminiscent of the relative intensities

estimated for the 2v2 ≈ v1 resonance. However, the relative sy intensity is significantly

lower while the remainder are increased. We must thus again conclude that the experimen-

tal intensities are not fully explained by the Fermi resonance as estimated by combinations

of Raman tensors. Using particular weight factors for each tensor would not alter this con-

clusion because a qualitative difference in the order of the Raman scattering intensities as

a function of the polarisation combination remains in all cases.

6.3.4 Conclusion

Polarised Raman spectra from the CCl4-sapphire interface comprise features from all iso-

topologues involved, their (degenerate) vibrational modes and anharmonicities as well as

birefringence in the sapphire hemisphere. The v2, v4 and v1 bands could be observed,

though the latter is distorted by the sapphire signal. An error due to background subtrac-

tion is therefore expected for its (relative) intensity.

The v1 band is composed of fundamentals from each isotopologue, as well as v3 − v4

combination bands and thermally populated vibrational states. The overtone 2v1 also

comes into its range. The v2 and v4 bands appear undistorted by background subtraction

and not engaged in significant anharmonic effects.

The relative intensities of the v2 and v4 bands are substantially identical while differing

from those of the v1 band in both experimental spectra and the modelled intensities. This

likely arises from a qualitative difference between the highly isotropic Raman tensors

involved in the v1 band compared to the symmetries of those in the v2 and v4 bands.

Considering the similarity between the observed v2 and v4 bands, it is likely that the v4

is not significantly affected by anharmonic effects.

Our modelled relative intensities are qualitatively different from those derived from

experiment. The model overestimates the relative px and py intensities and/or underes-

timates those of sx and sy. The experimental intensities of the v2 and v4 band show no

difference between polarised and depolarised scattering, though these are predicted by our

model. Furthermore, the s-polarisations are strongly favoured. In the v1 band of CCl4,

a trend similar to that observed in sulfate is observed, wherein depolarised scattering

is much higher than anticipated by our model and the sx intensity even surpasses the

p-polarised intensities. Potential causes for these differences were investigated.

Our model only involves Raman tensors of harmonic vibrations and uses a single
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refractive index for sapphire, ignoring its birefringence. These approximations contribute

to the difference of the relative intensities derived with our model to those of experimental

spectra. Furthermore, any experimental errors with the Durham Raman system may

contribute. One such error was assessed for the sulfate spectra in section 6.2 and a similar

error may also apply to the CCl4 data. However, none of these contributing factors taken

on its own could account for the observed difference. An aggregate effect is therefore to

be expected.

To take such aggregate effect into account would require incorporating birefringence of

the hemisphere into the model description, obtain anharmonic Raman tensors by anhar-

monic vibrational computations for each isotopologue and calibration of the polarisation

directions as suggested in our analysis of the sulfate data.

Modelling of CCl4 scattering intensities further leads us to conclude that the isotropic

average of molecular orientations ensures that the local field correction does not affect

relative intensities, though absolute intensities are affected by the molecular radius as well

as the molecular polarisability. The spherical shape of the molecule probably also supports

this effect. Sufficient precision was obtained with steps of 20◦ in the molecular orientation

angles, at which interval the modelled intensities were fully converged.

The orientational average also ensures that degenerate modes result in the same inten-

sities, which may be understood from the contribution of individual Raman tensor element

in the isotropic average. This is also the case for corresponding modes in the three most

abundant isotopologues, which all provide practically the same relative intensities for each

mode within a band. Differences between tensors are thus smeared out by the local field

correction until these are no longer distinguishable. This effect likely also causes the

strong similarity between the relative intensities obtained from summing intensities due

to individual Raman tensors and the relative intensities obtained from combined Raman

tensors.

From the above analysis, it is not obvious what Raman tensor would give rise to the

experimental intensities in the isotropic average. It is plausible that these intensities are

affected by all factors investigated, including their cooperative effects. This may be as-

sessed further by investigating the v2 mode to avoid anharmonicity as much as possible.

No background spectrum is needed for this mode as its peak sits on a smooth line un-

obstructed by sapphire features. Further experiments should include calibration of the

polarisation directions with the objective to be used and assessment of the birefringence

of sapphire, possibly establishing its optical axis. This would allow investigation of the

effect of birefringence alone on the scattering intensities. Currently, this can not be mod-

elled. The sapphire-CCl4 interface appears to involve too many unknowns for unambiguous

interpretation with our model.
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6.4 Zinc arachidate monolayer on silica in air

A monolayer of zinc arachidate was arranged on the flat side of a fused silica hemisphere by

Langmuir-Blodgett deposition according to section 3.3.3 and suspended in air in the Stock-

holm Raman system. Raman scattering was recorded in the four polarisation combinations

centred on the C−H stretch region around a Raman shift of 2900 cm−1, corresponding to

a wavelength in air of about 625 nm.

In the arachidate molecule, both shape anisotropy as well as polarisability anisotropy

play a role. These affect the local field correction, for which this molecular system presents

a test case. The molecular tilt angle is roughly known from other techniques, with which

our outcomes are compared.

It should be noted that the presence of a monolayer is assumed based on the established

procedure that was followed. Zinc cations are expected to bridge the negatively charged

silica surface and the acid group of arachidate, with the alkyl chain branching away from

the surface. Confirmation by, for example, atomic force microscopy can be performed

to check that the deposit was in fact a monolayer. Although blobs appeared locally

under optical microscopy (see figure 6.28), spectra were collected from smooth surface

areas. Blobs may arise from disordered zinc arachidate patches that have been caused by

too high a surface pressure during Langmuir-Blodgett deposition and/or contamination-

induced aggregation.

6.4.1 Experimental results

Spectra were collected with the Stockholm Raman system after full calibration of the

polarisation directions, using the NA = 0.55 microscope objective lens. The laser beam

was incident under θk,i = 75◦ (above the critical angle) and set to 150 mW output power

while also employing an OD1 filter to avoid any sample damage during the data acquisition

series. Grating 2 of 1200 lines mm−1 was used to disperse the Raman spectrum onto the

CCD detector, collecting five acquisitions of 60 s each in the MT mode with the slit of

the spectrometer at 100 µm. A spectrum was recorded for each of the four standard

polarisation combinations.

Figure 6.29 presents the four spectra as raw data and after subtracting a linear baseline,

fitted through the data in the ranges 2760-2800 and 3050-3150 cm−1 where no features

of arachidate can be distinguished. The resulting baseline-subtracted spectra are shown

superimposed in figure 6.30 for comparison.

Comparing the experimental spectra to the computational spectrum of the C−H

stretch region obtained by Gaussian for gas-phase decanoic acid (figure 4.8), we note

that the frequencies of the experimental spectrum are lower than the computational fre-

quencies by about 140 cm−1 at the low-frequency end of the band. Symmetric methylene

stretch modes are observed as a peak at about 2845 cm−1, while anti-symmetric methylene

stretch occurs around 2881 cm−1. The methyl modes, distinctly predicted for decanoic

acid at the high-frequency end of this spectral region, are not resolved in the experimen-
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Figure 6.28: Microscopy image (10× objective) of the zinc arachidate layer on fused silica,
showing patches on an otherwise optically smooth surface. The green laser
spot causes Raman scattering. [data: 20170321/30]
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Figure 6.29: Raman spectra of a Langmuir-Blodgett monolayer of zinc arachidate on fused
silica in the C−H stretch region, collected with the Stockholm Raman system
in the four standard polarisation combinations. Raw data (red) is subtracted
by a linear baseline (black) to obtain net intensities (blue). Note the smaller
horizontal axis in the bottom plots. [data: 20170321/30-33]
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Figure 6.30: Combined plot of the baseline-subtacted spectra of figure 6.29. The d+ peak
occurs around 2845 cm−1 and the d− peak around 2880 cm−1. The broad
shoulder between 2900-2950 cm−1 comprises both Fermi resonant A′ as well
as fundamental A′′ modes of the alkane chain. The methyl r+ and r− peaks
lie at the high frequency end of the C−H stretch band.

tal spectra of arachidate. Further comparing the four polarisations to our computational

spectrum, we may assume at this stage that the px and sy spectra primarily arise from

A′ modes of arachidate while the sx and py spectra arise from its A′′ modes. The range

from about 2900 to 2950 cm−1 is expected to primarily include further A′ modes. As the

arachidate alkane chain is longer than the computed decanoic acid, it is likely that an

increased number of CH2 stretching modes fills this part of the C−H stretch region.

The main symmetric CH2 stretch band at about 2845 cm1 is generally termed the d+

band with the main antisymmetric methylene stretch feature at about 2880 cm1 being

the d− band. The primary methyl features (tentatively assigned at about 2970 cm−1) are

likewise conventionally labelled as r+ and r−. Note that the d+, d−, r+ and d− peaks

are empirical features of the spectrum, arising from multiple Raman-active modes. The

intensities of these peaks therefore -in principle- do not directly correspond to a particular

vibrational mode of a finite alkane chain.

Qualitative interpretation of the C-H stretch region

For a better understanding of the collected zinc arachidate spectra, we briefly review lit-

erature on experimental Raman spectra of alkane chains before extracting peak intensities
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from our experimental spectra. A recent summary of C−H stretch band features is also

given by Ahmed et al. [135] in their Raman study of curvature effects on lipid bilayers

supported on nanoparticles, some of which is paraphrased here.

Section 4.4.3 introduced the Fermi resonances between CH2 bending overtones and the

symmetric CH2 stretch modes. In the crystalline phase, as studied here, lateral interac-

tion between the alkane chains of neighbouring molecules broadens the overtones of the

bending modes observed between 2900—2940 cm−1 [98, 142, 173]. This strengthens its

Fermi resonance with the νs(CH2) modes. In an isotopically isolated all-trans chain, these

Fermi resonances result in a strong 2845 cm−1 band and two broader bands at 2890 cm−1

(underlying the antisymmetric CH2 stretch fundamental) and a less intense band at about

2930 cm1. Most of the intensity of the symmetric stretch is in these broad bands [142].

The intensities of these three bands is affected by the order within the material. In going

from a crystal to a liquid, the frequency separation between the symmetric methylene

peaks at 2930 and 2845 cm−1 decreases and the first gains intensity over the latter [143].

In our px and sy spectra, a shoulder is observed at about 2936 cm−1, indicating one of

the Fermi resonant νs(CH2) modes.

The width of the antisymmetric fundamental decreases with chain length and increases

with temperature [143]. A higher temperature leads to an increase of gauche conformers

at the slightly shifted frequency of 2920 cm−1 with the trans form remaining at 2890 cm−1

[174]. The bandwidth of the trans conformer is sensitive to chain mobility. Temperature-

dependent broadening of the d− peak arises from rotational broadening [175], which is less

of an issue in our case as the molecules are surface-bound. The antisymmetric modes are

less sensitive to environmental changes of the extended alkane chain than the symmetric

modes. In all of our four spectra, the νa(CH2) fundamental is distinctly observed at about

2880 cm−1.

The methyl modes are not resolved in our spectra and thus underly the Fermi resonant

symmetric methylene as well as the antisymmetric methylene modes. In highly oriented

polyethylene with few methyl groups or in CD3 terminated alkanes, the Fermi resonances

were found to occur near 2850, 2900, and 2925 cm−1 and at similar frequencies in the melt,

though with different intensity ratios [143]. We may conclude that the broad shoulder

around 2935 cm−1 has contributions from Fermi resonances of a symmetric methylene

stretch near 2922 cm−1, which is affected by chain conformation [176], and from the

methyl stretch near 2938 cm−1 which remains unaffacted [143, 176].

The appearance of the C−H stretch band thus depends on the structure of the alkane

and its environment. The A′ methylene modes are affected by Fermi resonance, the inter-

actions of which are increased with molecular order. This gives rise to an apparent filling

of the spectral range from the d+ peak towards the methyl modes. The A′′ methylene

modes as well as the methyl modes reside on top of these resonances.

Conventionally, the C−H stretch band of alkanes is interpreted using the recorded peak

intensities, possibly with curve fitting, attributed to the d+, d−, r+ and r− features (such

as in [31, 54, 173]). In most Raman experiments, only the d+ and d− peaks are resolved.
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The peak intensities I(d+) and I(d−) may thus be obtained from the baseline subtracted

spectrum at each polarisation combination. The ratio between the two, particularly in

conventional polarised scattering, provides a measure of the degree of order within the

material [177, 178] (other order/disorder metrics of alkyl chains are reviewed in [179]). As

Isy(d
−)/Isy(d

+) increases for an alkane-chain comprising monolayer, its molecular order

increases. That is, the chains are more in their all-trans conformation, closely packed and

well-aligned, particularly for Isy(d
−)/Isy(d

+) > 1. This arises in part because of increased

Fermi resonances that underlie the d− feature and thus increase its height. Intensities for

our experiments are given in table 6.5. In our spectra, we find Isy(d
−)/Isy(d

+) = 1.01 when

taking the peak maxima at 2881 and 2848 cm−1, indicating a partly ordered liquid-like

layer. Integrated intensities of the whole ν(CH) region are also obtained.

Table 6.5: Experimental Raman intensities from the zinc arachidate C−H stretch band in
the four polarisation combinations. Relative intensities are listed in red below
corresponding absolute intensities, given in counts s−1 for a single wavenumber
or in counts s−1 cm−1 for intensities obtained by integration over a spectral
range.

feature spectral range / cm−1 Ipx Ipy Isx Isy
d+ peak 2848 0.685 0.044 0.041 1.250

0.339 0.022 0.020 0.619
d− peak 2881 0.686 0.375 0.711 1.268

0.226 0.123 0.234 0.417
ν(CH) band 2800–3000 0.317 0.068 0.126 0.605

0.284 0.061 0.113 0.542
νs(CH2) mode 2830–2846 0.424 0.021 0.046 0.753

0.341 0.017 0.037 0.605
νa(CH2) mode 2870–2892 0.178 0.200 0.370 0.334

0.164 0.185 0.342 0.309

Mode intensities

Intensities of individual modes can not be obviously derived from our experimental Raman

spectra. We thus opt for a metric that is proportional to one of the stronger modes in the

spectrum, allowing extraction of a physically relevant parameter that can be modelled.

For the A′ methylene modes, we note that most of the C−H stretch band is complicated

by Fermi resonances, which may not be deconvoluted unambiguously. However, these

resonances occur primarily at frequencies above the d+ peak. The low-frequency side of

this peak is only minimally distorted. It therefore appears a reasonable approximation to

assume that the integrated intensity of the low-shift half of the d+ peak is proportional

the Raman scattering intensity arising from the strongest νs(CH2) fundamental. (In our

decanoic acid computations, this is mode 71.)

The A′′ methylene modes can be said to reside on top of a Fermi resonant A′ back-

ground. In our spectra, the major d− peak is distinctly observed. A clean intensity metric



262 CHAPTER 6. VALIDATION OF THE MODEL

may thus be obtained by subtracting the A′ background (possibly after fitting with a

polynomial) from the recorded spectrum to obtain a residual intensity that is propor-

tional to the scattered intensity from the νa(CH2) fundamental (mode 76 in our decanoic

acid computations).

The above metrics are now applied to our experimental spectra. Intensities for the

νs(CH2) mode are obtained by summing the intensities of the baseline-subtracted spec-

tra in the range of 2830–2846 cm1. For the νa(CH2) mode, intensities are obtained by

fitting a third-order polynomial through the 2850–2870 and 2892–2912 cm1 ranges of the

baseline-subtracted spectra. This polynomial is then subtracted from the interval 2870–

2892 cm1, which comprises scattering from the νa(CH2) mode, and the obtained intensities

are summed and divided by the spectral range. Table 6.5 provides the obtained intensi-

ties as absolute as well as relative values. The relative intensities are scaled to the sum

Ipx + Ipy + Isx + Isy for each mode.

Errors in the experimental intensities arise from noise in the spectrum (roughly within

0.05 counts s−1) and the accuracy of the background subtraction routine. Peak heights

(especially when near-zero) are particularly affected by these uncertainties. The integrated

intensities are less affected. Other errors arise in assigning experimental intensities to par-

ticular Raman bands, especially where these can not be fully deconvoluted. For example,

the νa(CH2) feature may include scattering from symmetric stretch modes. However, the

current method is relatively insensitive to changes of ±10 cm−1 in the selected spectral

ranges, which suggests that optimisation of the routine will not significantly affect the

results.

A fitting routine to obtain mode-specific Raman intensities was also attempted, but

proved problematic with near-zero intensities, such as the d+ peak in the px and sy spectra,

and for distinguishing A′ from A′′ intensities.

The d+ peak and νs(CH2) mode intensities are near-zero in the py and sx spectra while

the sy intensity is nearly twice that of the px spectrum. The d− peak intensity is about

equal in the px and sx spectra, though the νa(CH2) intensities are nearly equal pairwise.

The pair of px and py νa(CH2) intensities are similar, as are the sx and sy pair, though

the latter are just under twice the intensity of the former. We now investigate whether

our model also predicts this behaviour.

6.4.2 Modelling Raman intensities

In order to further analyse the arachidate spectra, we first compare these to computational

Raman spectra for decanoic acid, using the Gaussian results combined with our model

description of the scattering process. From these, we try to establish what Raman modes

predominantly contribute (in the harmonic approximation) to the d+ and d− features

in the experimental geometry employed at Stockholm. For these νs(CH2) and νa(CH2)

modes, sensitivity of the modelled intensities with respect to variation of model input

parameters is assessed. In the next section, intensities for arachidate are estimated and



6.4. ZINC ARACHIDATE MONOLAYER ON SILICA IN AIR 263

compared to the experimental results to assess orientation of its alkane chain.

Computational spectrum of decanoic acid

Figure 6.31 presents computed Raman spectra of an upright decanoic acid molecule at

the silica-air interface for the four standard polarisation combinations. The molecular

orientation is βm = 0◦ while the intensities are summed over the full range of the azimuthal

angle αm in steps of 20◦. The molecular twist angle γm is redundant in this case. The

intensity with each polarisation combination is modelled for the Raman modes 71–89, using

the Raman tensors as computed with Gaussian (table 4.7) and the parameters of the zinc

arachidate experiment. All Raman lines in this computational spectrum are convoluted

with a Lorentzian (fwhm of 10 cm−1) to obtain spectra that may be qualitatively compared

to the experimental ones.

A likewise computation is performed for a flat orientation of decanoic acid, i.e. with

βm = 90◦. The alkane chain is thus oriented along the silica-air interface. Figure 6.32

presented the modelled intensities for this case, in which the azimuthal as well as twist

angles are sampled at an interval of 20◦ (as determined to result in converged intensities

with the carbon tetrachloride calculations of section 6.3.2).

These two sets of modelled spectra may be compared to that of figure 4.8, which

was obtained only from the Gaussian computation without considering experimental

geometry. The intensities presented there arise from the scattering activity S, which

can be seen as an isotropically averaged intensity in a conventional unpolarised Raman

experiment. Such a spectrum has the features of a combination of all presently modelled

spectra. In a random distribution of molecular orientations, the sinβm weighting factor

ensures that orientations around βm = 90◦ are more prevalent. The d+ peak is thus

stronger than the d− peak in such unpolarised spectrum.

An upright alkane chain (figure 6.31), modelled by decanoic acid in the present exper-

imental geometry, is thus predicted to give rise to A′ features exclusively in the px and

sy spectra while A′′ features appear in all four polarisation combinations. Furthermore,

intensities arising from modes belonging to the A′′ species have Ipx ≈ Ipy and Isx ≈ Isy

while the symmetric modes (of the A′ species) are clearly stronger in the sy than in the

px spectrum.

For alkane chains parallel to the interface (figure 6.32), the A′ modes contribute to

the spectra in all four polarisation combinations in the order Isy > Ipx > Isx > Ipy.

The A′′ modes are no longer pairwise equal, but are manifested as Isy > Ipx > Ipy > Isx.

Furthermore, the methyl modes appear clearly in all four spectra, while these are distinctly

weaker for an upright chain.

We now compare the above modelled spectra to the baseline-subtracted experimental

spectra of figure 6.30 and readily conclude that the experimental spectra are most similar

to the upright chain. However, the d+ and d− peaks reach a similar intensity, which is

not observed in the modelled spectra at either tilt angle. This may be explained from the
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Figure 6.31: Modelled Raman scattering intensities for upright decanoic acid (βm = 0◦)
at the interface between fused silica and air. The Raman modes result from
Gaussian computations at the B3LYP/6-311++G(d,p) theory level while
our model is used to compute the scattering intensities with input variables
according to the experiments presented in figure 6.30.

increased number of CH2 stretch modes in the longer arachidate chain compared to those

in decanoic acid and from the occurrence of Fermi resonances, which are not included in

the harmonic modelled spectra. Both would increase the scattering intensity around the

wavelengths of the d− peak (around 2880 cm−1 in the experimental and at 3007 cm−1 in

the modelled spectra). Notwithstanding this simplification, the modelled spectra provide

at least a qualitatively useful comparison.

A more precise tilt angle for the zinc arachidate monolayer is yet to be derived, prefer-

ably based on individual modes. A fit of the experimental C−H stretch band intensities

using modelled spectra for this band is inappropriate since the modelled spectra lack C−H

stretch modes and Fermi resonances which account for a significant part of the observed

features. Moreover, computing all possible orientations at a sufficiently narrow interval to

allow fitting is computationally expensive. If a limited number of harmonic fundamental
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Figure 6.32: As figure 6.31 but with decanoic acid at βm = 90◦, i.e. parallel to the inter-
face. Both azimuthal (αm) and twist (γm) angles of the molecular orientation
are isotropically averaged.

modes could be used in our model to capture the essential behaviour of (features of) the

ν(CH) band, this would greatly simplify our current analysis. This is therefore further

investigated.

Starting with the A′′ fundamentals, we note that the ratio of intensities arising from

these modes is constant, irrespective of the polarisation combination. This is suggested by

the band shapes in the modelled spectra and confirmed by computing intensities relative

to the strongest mode. This constant-ratio relationship was found to hold for all methylene

modes at both tilt angles (though not for the methyl mode at βm = 90◦). This implies that

it is sufficient to use one of the νa(CH2) mode to represent the intensity arising all CH2

antisymmetric stretch modes in our modelling efforts. This is further supported by the fact

that these modes (belonging to the A′′ species) are not affected by Fermi resonances. We

opt for mode 76 of decanoic acid, its strongest νa(CH2) mode. As the form of this tensor

remains unaffected by chain length and it only sports one pair of off-diagonal elements

that is substantially non-zero (namely the xy, yx elements), we assume that this mode is
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also representative of like vibrations in arachidate.

The A′ fundamentals do not show as strong a fixed intensity relation between them-

selves. However, the variation between the modes comprised by the d+ peak (modes 71-75

and 77) is below 5% of the strongest νs(CH2) mode (mode 73). The modes surrounding

mode 73 are at most 18% of the intensity due to mode 73 so that the variation of the

intensity contribution to the d+ peak is no more than 1% for each mode in this experi-

mental geometry. On the low-frequency side, this is even further reduced to below 0.2%.

In the harmonic approximation, mode 73 may thus be employed to represent the νs(CH2)

modes as well as the d+ peak in our modelling. Fermi resonances mainly occur at the high-

frequency side of this peak, so that their impact is minimised by using its low-frequency

side. Furthermore, it is reasonable to assume that the Raman tensor of a Fermi-resonant

mode in the orientational average over the azimuthal angles (as modelled here), results in

Raman intensities that are proportional to those observed for the fundamental affected by

that resonance.

Proportionality between mode 73 and the νs(CH2) modes and d+ peak intensities as

well as between mode 76 and νs(CH2) mode intensity in decanoic acid is thus assumed and

by extension also applied for our modelling of arachidate. As this proportionality holds

to an approximation within 0.2% (for Lorentzian peaks with a fwhm of 10 cm−1) at both

extremes of the tilt angle, it should apply to the full range of βm from upright to flat.

Sensitivity analysis

We now model Raman scattering intensities as a function of various model input vari-

ables. This analysis is used to assess the sensitivity of the model outcome with respect to

these variables, thus providing an estimate of its uncertainty, and to explore variations or

improvements to the experiment. The test case is an upright alkane chain at the silica-air

interface and its primary symmetric and antisymmetric CH2 stretch modes, determined

to be modes 73 and 76 in our decanoic acid computation.

To assess the effects of the local field correction, we vary the molecular polarisability

and the molecular shape.

Variation of element αzz of the molecular polarisability tensor αm in the range from 0

to 80 C V−1 m2 has no effect on the modelled intensities. These remain constant at the

previously modelled level.

Scaling of the molecular polarisability tensor as a whole by a multiplication factor

ranging from 0.1 to 1000∗ results in the intensities of figure 6.33. Note the logarithmic

axes to accommodate the wide range. A broad asymptotic resonance is observed around

a multiplication factor of 5.5 while a narrower resonance occurs at about 14. Such res-

onances were anticipated in section 5.3.2, arising from a division by near-zero values in

the reaction field correction, which depends on the molecular polarisability. Though these

∗Such high factors are taken to check whether a gross underestimation of α would affect the modelling
results. An underestimated value may be feared from applying the Clausius-Mossotti equation with the
optical refractive index (section 6.1.3).
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asymptotes affect the modelled intensities by several orders of magnitude, the relative

intensities are affected in a much narrower range of multiplication factors. This suggests

that the precision of the absolute values of the polarisability tensor are less critical when

considering those relative intensities, as long as the values are sufficiently far removed from

any of the asymptotes.

Next, the molecular cavity shape is varied by adjusting rz, its ellipsoidal radius along

the alkane chain of the molecule. Sensitivity with respect to chain length is especially

relevant as we aim to employ properties computed for decanoic acid for interpretation of

arachidate data.

In figure 6.34, the modelled Raman scattering intensities reduce as rz increases before

reaching a steady value from about rz ≈ 4 nm. However, the relative intensities already

stabilise before a value of rz = 0.4 nm is reached, which amounts to an alkane chain of

about five carbon atoms. We may thus conclude that the difference in chain length between

decanoic acid and arachidate does not affect the modelled relative intensities significantly.

The local field correction thus affects the modelled intensities but results in the same

relative intensities around the computational values used as input to our model. This

suggests that, at least for an upright alkane chain in the present experimental geometry,

the relative intensities of its Raman scattering are unaffected by the local field correction.

The insignificance of the local field correction may (in part) arise from averaging over

the azimuthal molecular orientation employed here. However, as the absolute intensities

are clearly affected, the cavity and reaction field tensors give rise to an effective Raman

tensor which significantly differs from that of the uncorrected Raman tensor. It is therefore

not obvious that the local field correction should not be applied with molecular tilt angles

other than βm = 0◦. For specific cases, such as the present conformation, it may be argued

that the local field correction can be omitted.

Next, the angle of laser incidence θk,i is varied from 0◦ to 180◦. Modelling results for

mode 73 and 76 are presented in figure 6.35 and 6.36, respectively. The intensity profiles

presented here share their overall features with those modelled for the sulfate v1 band

(figure 6.10). In the symmetric CH2 stretch mode 73, polarisation combinations py and

sx lead to low levels of Raman intensities at all angles of incidence. In the antisymmetric

CH2 stretch mode 76, px and py result in identical intensities, as do sx and sy. When

θk,i = θc = 43.2◦, the critical angle for the silica-air interface at the laser frequency,

scattering is strongest in the sy polarisation combination for both modes. Illumination

from the air side of the interface, that is with θk,i > 90◦, results in lower levels of scattering

being collected by the microscope objective.

In the experiment, θk,i = 75◦ was employed. This angle was chosen to ensure that

appreciable levels of Ipx would be detected within an experimentally accessible range.

However, this angle can be seen to result in sub-optimal levels of scattering. The present

modelling indicates that for θk,i = 53◦, a maximum arises in Ipx while Isy is also elevated.

In the antisymmetric modes, this also leads to increased py and sx intensities. Appropriate

modelling may thus ensure optimisation of the experimental geometry to improve signal
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Figure 6.33: Modelled absolute and relative intensities for modes 73 (νs(CH2), top plots)
and 76 (νa(CH2), bottom plots) of decanoic acid at the silica-air interface
as a function of multiples of the molecular polarisability tensor, αm, which
affects the local field correction. The other model input parameters conform
to the Stockholm arachidate experiments. Around a factor of 1, the rela-
tive intensities are constant. Two asymptotes are observed at multiplication
factors of about 5.5 and 14.
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Figure 6.34: Modelled absolute and relative intensities for modes 73 (symmetric CH2

stretch, top plots) and 76 (antisymmetric CH2 stretch, bottom plots) of
decanoic acid at the silica-air interface as a function of rz, the molecular
ellipsoidal radius along the length of the alkane chain. The other model in-
put parameters conform to the Stockholm arachidate experiments. The rz
values used for decanoic acid and arachidate are indicate with dashed vertical
lines. The relative intensities are constant in this range. In the bottom plots,
the sx and sy curves overlap as well as those of the px and py polarisation
combinations.
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strength over noise in the collected Raman spectra.

We further vary the position of the microscope objective lens relative to the interface

by sampling βO in the range from 0◦ to 180◦ (figures 6.37 and 6.38). These angles conform

to observation of the interface in the plane of laser incidence xLzL.† At βO = 0◦, the

objective collects Raman scattering from the air side of the interface, perpendicular to said

interface. This geometry provides low Raman intensities. At βO = 180◦, the geometry

employed in the arachidate experiments, Raman scattering is collected through the fused

silica hemisphere, which results in enhanced intensities. At about βO = 140◦, maxima are

observed. These arise from collection around the critical angle, at which Raman scattering

couples strongly into the hemisphere. Undulations in this region arise from the discrete

nature of positioning grid nodes at which local scattering intensity is computed.

Figure 6.39 presents modelled (relative) intensities for a pinhole aperture, that is as

NA → 0. This is readily implemented in the model by setting g = 1 to ensure that Raman

scattering is computed at only one point at the centre of the objective lens, irrespective

of specified NA. The maximum Raman scattering intensity is predicted for βm = 136◦,

which is near the critical angle θc = 44◦ on the hemisphere side of the interface.‡ It is

not identical to the critical angle because the refractive index of the interfacial layer (n2

different from n1 and n3) modifies coupling of the Raman scattering into the hemisphere.

This slightly increases the angle at which the maximum is predicted.

At the lower NA limit, the symmetric mode does not produce appreciable py and sx

intensities at any angular position of the objective within the laser plane of incidence. At

the larger NA of 0.55, significant intensities are observed for such depolarised scattering

since this larger objective also collects Raman scattering away from the plane of laser

incidence where the x and y directions of each point Q project differently onto the O-

frame axes. For the symmetric mode, the intensities at larger NA (figure 6.38) appear

to be more of a convolution over the intensities obtained at NA → 0 (bottom plots of

figure 6.39).

For upright alkanes, we may gather that the highest intensities for a single polarisation

combination are obtained with βO = 180◦ while collecting Isy only. Alternatively, if various

polarisation combinations are to be collect, each with substantially non-zero intensities, a

collection angle of 120◦ is opportune. This value holds for an objective with NA = 0.55.

With smaller NAs, this optimum lies closer to βO = 136◦ ≈ θc + 90◦. Such experimental

geometries may be achieved by tilting the sample under a fixed microscope, for instance

by means of the rotation clamp described in section 3.1.1.

We now assess the effect of the thin-film refractive index n2 on the modelled intensities.

†Note that the direct laser reflection off the interface is not included in the model, though it limits the
feasibility of corresponding experiments.

‡Similar directional radiation was observed and modelled by Luan et al. [166] for isotropically aver-
aged, fluorescent rhodamine B molecules embedded in a thin film of polymethyl-methacrylate on an SF11
substrate using a pinhole aperture. However, their study did not include the geometry of excitation. Fur-
thermore, pinhole apertures generally reduce intensities to below detection thresholds in Raman scattering
experiments.
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Figure 6.35: Modelled absolute and relative intensities for mode 73 of decanoic acid, its
strongest CH2 symmetric stretch, as a function of laser incidence angle θk,i.
The other model input parameters conform to the Stockholm arachidate ex-
periments. The experimental value of θk,i = 75◦ is indicated with a dashed
vertical line.
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Figure 6.36: As figure 6.35 but with mode 76 of decanoic acid, its strongest CH2 antisym-
metric stretch.
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Figure 6.37: Modelled absolute and relative intensities for mode 73 of decanoic acid, its
strongest CH2 symmetric stretch, as a function of microscope objective tilt
angle βO. The other model input parameters conform to the Stockholm
arachidate experiment.
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Figure 6.38: As figure 6.37 but with mode 76 of decanoic acid, its strongest CH2 antisym-
metric stretch.
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Figure 6.39: Modelled absolute and relative intensities for mode 73 (top) and 76 (bottom)
of decanoic acid as a function of microscope objective tilt angle βO as NA →
0. The other model input parameters conform to the Stockholm arachidate
experiments.
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The accuracy of refractive indices was discussed in section 3.2.4 and it is here checked

whether this might significantly alter our interpretation of the arachidate data in the

thin-film limit.

The modelled intensities from both the symmetric and antisymmetric CH2 stretch

modes increases with increasing n2. However, the relative intensities are constant for the

antisymmetric stretch (not shown) and plateau for the symmetric stretch (figure 6.40).

The relative intensities of the latter converge at about n2 = 1.2. This value is lower than

any refractive index considered for the alkane interfacial layer. It is thus not required to

specify this refractive index with great precision for upright alkanes in this experimental

geometry as it does not affect the modelling outcome.

Finally, we assess the impact on the modelled intensities of variations within the Raman

tensor. In νs(CH2) mode 73, the zz component αm
73,zz is varied in the range of 0–2 ·

10−40 C V−1 m2 (figure 6.41). Its xx and yy components mix due to orientational averaging

over αm at βm = 0◦, so that additional variation of these two components would lead to

redundant results. The modelled px and py intensities increase with increasing αm
73,zz.

This increase becomes noticeable when its value exceeds that of the αm
73,xx and αm

73,yy

components (from roughly 40 · 10−42 C V−1 m2), leading to an increase in the relative py

intensity at the expense of the relative sy intensity. However, even if the zz component of

the Raman tensor for arachidate were to be twofold that of decanoic acid (relative to its

xx and yy components), this would only affect the modelled intensities within 0.004 on

their relative scale. This is deemed to be insignificant with respect to other errors in our

analysis.

For antisymmetric CH2 stretch mode 76, as similar analysis is performed on the yz

component, which is equal to its symmetric counterpart zy. Modelling results are pre-

sented in figure 6.42 for the range from −0.3 to 0.3 · 10−42 C V−1 m2. A positive as well

as negative range of αm
76,yz is sampled because its remaining non-zero element at xy, yx

was computed to be negative (table 4.7). However, the sign turns out to be irrelevant

here, as the plots are symmetric around αm
76,yz = 0. As the yz component increases, the

scattering intensities increase, though Ipx = Ipy increase more than Isx = Isy. The relative

intensities of the latter thus decrease with increasing αm
76,yz.

The computed value for αm
76,yz is near zero and variation around this value does not pro-

vide significant changes in absolute nor relative intensities. Scattering is here dominated

by the xy = yx component of the Raman tensor. This only changes when the additional

yz = zy component is of a significant magnitude relative to the xy = yx component.

Similar behaviour is expected for the Raman tensors of the other νa(CH2) modes, all of

which have a relatively small component in addition to a clearly dominant component.

The only exception is mode 87, which is the weakest Raman scattering mode in the C−H

stretch band. The same considerations are expected to hold for the antisymmetric CH2

stretch modes of longer alkane chains. In an infinite chain, the A′′ modes are not Raman

active as all polarisability changes in the vibrational normal mode then cancel each other.

From this sensitivity analysis, we may conclude that reasonable variation in the model
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Figure 6.40: Modelled absolute and relative intensities arising from mode 73 of decanoic
acid (the dominant νs(CH2) mode) at the silica-air interface as a function of
n2, the refractive index of the interfacial alkane layer. The estimated value
used in other calculations is indicated with a dashed line. Other model input
parameters conform to the Stockholm arachidate experiments.
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Figure 6.41: Modelled absolute and relative intensities for the dominant νs(CH2) (mode
73) of decanoic acid at the silica-air interface as a function of αm

73,zz. The esti-
mated value used in other calculations is indicated with a dashed line. Other
model input parameters conform to the Stockholm arachidate experiments.
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Figure 6.42: Modelled absolute and relative intensities for the dominant νa(CH2) (mode
76) of decanoic acid at the silica-air interface as a function of αm

76,yz = αm
76,zy.

The estimated value used in other calculations is indicated with a dashed
line. Other model input parameters conform to the Stockholm arachidate
experiments.
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input parameters does not significantly affect the resulting relative intensities around the

parameters of the arachidate Raman experiment. The modelling results further show that

there is room for experimental optimisation, in particular by lowering the angle of laser

incidence towards the critical angle and/or by collecting Raman scattering around this

angle.

Table 6.6: Modelled relative intensities arising from νs(CH2) mode 73 and νa(CH2) mode
76 of decanoic acid, modelled in this molecule and in arachidate at a silica-air
interface according to the Stockholm experiment.

βm mode model px py sx sy

0◦ νs(CH2) arachidate 0.3352 0.0049 0.0091 0.6509
νs(CH2) decanoic acid 0.3355 0.0049 0.0087 0.6509
νa(CH2) arachidate 0.1699 0.1699 0.3301 0.3301
νa(CH2) decanoic acid 0.1699 0.1699 0.3301 0.3301

90◦ νs(CH2) arachidate 0.2860 0.0753 0.1147 0.5240
νs(CH2) decanoic acid 0.2973 0.0632 0.0923 0.5471
νa(CH2) arachidate 0.3071 0.1913 0.1383 0.3633
νa(CH2) decanoic acid 0.3071 0.1913 0.1383 0.3633

The relative intensities as modelled for decanoic acid are listed in table 6.6 for both

βm = 0◦ and 90◦, using the Raman tensors computed for decanoic acid and the experimen-

tal parameters of the zinc arachidate Raman experiments. Similar computations have been

performed with the estimated molecular polarisability and shape parameters of arachidate

(relevant for the local field correction), keeping the other input parameters identical. The

values are found to agree with those computed for decanoic acid up to at least three dec-

imals when βm = 0◦. This is in line with our findings that the local field correction does

not significantly affect the relative intensities. Furthermore, the same values would be

obtained for any stretched alkane of at least ten carbon atoms. These relative intensities

approach the experimentally derived relative intensities of table 6.5, suggesting a roughly

upright orientation of the alkane chains.

If the alkane chain is oriented parallel to the interface (βm = 90◦), slightly different

relatives intensities are found for arachidate compared to decanoic acid with the symmetric

stretch mode. This difference remains small, with a maximum of ±0.023 on a scale from 0

to 1. We may thus conclude that variation of the parameters for a flat chain has a larger

effect on the modelled relative intensities, though still to an arguably insignificant level.

6.4.3 Molecular tilt of the arachidate monolayer

As observed from a comparison to the modelled spectra of figures 6.31 and 6.32, the

experimental spectra of figure 6.30 conform better to the modelled spectra for an upright

alkane chain than to those for a chain oriented parallel to the interface. We now investigate

further the intensity variation as a function of βm, aiming to quantify the tilt of the zinc
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arachidate monolayer from the Stockholm experiments. We first compute the arachidate

Raman spectrum in the ν(CH) band as a function of its molecular tilt angle. This provides

us with modelled (relative) intensities for the whole band as well as d+ and d− peak

intensities at the four standard polarisation combinations. Intensities are next computed

for the dominant νs(CH2) and νa(CH2) modes to see whether these can be used to avoid

computation of the whole band. Various methods of fitting the modelled intensities to the

experimental intensities are presented.

The C-H stretch band

Modelled spectra of the C−H stretch region in the harmonic approximation are presented

in figure 6.43 for each polarisation combination in the employed experimental geometry

using various molecular tilt angles. These spectra arise from the Raman tensors of de-

canoic acid (modes 71-89) and the molecular parameters estimated for arachidate and thus

resemble the spectra of figures 6.31 and 6.32. The computed intensities for each Raman

line is convoluted with a Lorentzian profile of 10 cm−1 fwhm to generate the spectrum.

βm was sampled in steps of 2◦, though shown at larger intervals in figure 6.43 for clarity.

The modelled spectra indicate that the scattering intensity detected in the px and

sy polarisation combination reduces with increasing tilt of the molecule. However, when

employing the py or sx polarisation combination, the d− peak decreases while the d+

peak increases with increasing βm. The ν(CH) spectrum thus changes qualitatively in

these cases. The methyl modes (around 3080 cm−1) hardly change with molecular tilt

angle and thus do not form a probe of alkane chain tilt.

We further observe that the heights of the d+ and d− peaks approach each other as

βm increases towards 90◦. Changes in the spectra are most prominent around βm ≈ 45◦

and smallest around 0◦ and 90◦. This indicates a comparison between experimental data

and modelled spectra is most sensitive to small changes in βm in its central range (at least

in this Raman scattering geometry). However, the fractional reduction of the d− peak

intensity is not the same for each polarisation combination. This suggests that relative

intensities (that is, a peak intensity recorded at a particular polarisation combination

relative to those recorded at other polarisation combinations) are a useful measure in

analysing the spectrum. For example, the d− intensity in the modelled sx spectrum is

increased by a factor of about four at βm = 0◦ compared to βm = 90◦ while in the px

spectrum, this increase is distinctly lower at a factor of about two. In this example, the

ratio Ipx(d
−)/Isx(d

−) might thus be an indicator for βm.

The experimental spectra of figure 6.30 present peaks at frequencies different to those

of the modelled spectrum. This arises from a known off-set between quantum-mechanical

computations and actual Raman spectra (addressed in section 4.3) and from the presence of

Fermi resonances in the experimental spectrum, which shifts interacting peak frequencies

away from each other. These resonances also account for a significant intensity below

the d− peak in the experimental spectra, which is most prominent with the px and sy
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Figure 6.43: Modelled harmonic Raman spectra of the ν(CH) band for arachidate at the
silica-air interface for various molecular tilt angles βm with respect to the
interface normal. The spectral intensities are summed over the full full range
of molecular azimuthal and twist angles. Modelling parameters conform to
the arachidate Raman experiment while employing computational Raman
tensors of decanoic acid (modes 71-89). Each modelled Raman line is convo-
luted with a Lorentzian of 10 cm−1 fwhm to generate the spectra.
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polarisation combinations. In absolute terms, the d+ and d− peaks are at equal intensities

in the experimental spectrum. Such behaviour is only seen in the modelled harmonic

spectra near βm = 90◦ which is however based on an unrelated effect because the latter

omit Fermi resonances.§ The py and sx spectra of the experiment show hardly any d+

intensity as well as a broadening of the d− peak towards higher Raman shift. Both features

conform to the modelled intensities, in particular to those at low molecular tilt angles.

Intensities are now derived from the modelled spectra of figure 6.43 to quantify their

variation with respect to βm. Figure 6.44 shows values obtained for the total intensity

of the C−H stretch band I(ν(CH)), the peak intensities I(d+) and I(d−) for each of

the four polarisation combinations while intensities attributed to the dominant νs(CH2)

and νa(CH2) modes are shown in figure 6.45. Both absolute and relative intensities are

shown and compared to the experimentally obtained relative intensities of table 6.5. Mod-

elled intensities are obtained similarly to the experimental intensities explained above,

though the frequency ranges differ as follows. The ν(CH) band is integrated from 2950

to 3100 cm−1, the d+ peak is located at 2995 cm−1 and d− at 3008 cm−1. The νa(CH2)

mode intensities are obtained by integrating the low-frequency side of the d+ peak between

2950–2995 cm−1 while the νa(CH2) mode intensities are obtained by integration over the

range 3002–3014 cm−1 after removing a third-order polynomial baseline, fitted to spectral

windows of 4 cm−1 on either side of this range.

Though the amount of Lorentzian broadening of the modelled Raman lines is arbitrary,

picking a realistic value should reduce erratic effects in integrated intensities derived from

the modelled spectra. Here, the choice of a fwhm of 10 cm−1 results in a half-width of

the d+ peak at its low-frequency side of about 35 cm−1 from top to baseline, which is

similar to that observed in the experimental spectra. It is thus expected that the essential

features due to line broadening are captured with this fwhm value.

Agreement with the experimental relative intensities is seen for the intensity metrics

based on the full ν(CH) band, the d+ and d− peak heights and the νs(CH2) intensity,

assessed by integration over the low-frequency half of the d+ peak. However, the νa(CH2)

intensities do not agree well. A difference in the order of the intensities is most striking.

Whereas Isx > Isy > Ipy > Ipx is obtained from the experimental spectra, the order is

Isy > Isx > Ipx > Ipy for the modelled spectra. A likely cause for this difference lies in the

removal of the A′ background, which introduces error in deriving the νa(CH2) intensities.

If the model is assumed essentially correct, based on the agreement found with the other

intensity metrics, we may conclude that the A′ background is overestimated in the px and

sy spectra. This results in decreased Ipx(νa(CH2)) and Isy(νa(CH2)) values relative to

Ipy(νa(CH2)) and Isx(νa(CH2)), which are less prone to error in the subtraction routine

because the background is much weaker.

As previously observed, the modelled and experimental intensities match best at low

βm in our current plots as well. This is quite surprising for the d− peak height, which

§The Fermi resonances could be quantified based on observed differences between the harmonic modelled
spectra and the anharmonic experimental spectra.
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Figure 6.44: Absolute and relative harmonic intensities modelled for the ν(CH) band
(top), the d+ peak (centre) and the d− peak (bottom) of arachidate at the
silica-air interface as a function of molecular tilt angle βm (derived from the
modelled spectra presented in figure 6.43). Corresponding experimental rel-
ative total intensities are indicated by dashed horizontal lines.
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Figure 6.45: Absolute and relative νs(CH2) (top) and νa(CH2) (bottom) mode intensities
obtained from modelled harmonic spectra of the ν(CH) band of arachidate
at the silica-air interface at various molecular tilt angles βm (derived from
the modelled spectra presented in figure 6.43). Corresponding experimental
relative total intensities are indicated by dashed horizontal lines.
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includes Fermi resonances and additional stretch modes in the experimental but not in the

modelled spectra. These effects might scale roughly proportionally with the height of the

d− peak, resulting in the fortuitous agreement between relative intensities observed here.

Best fit metrics

Where the experimental and modelled (relative) intensities match (or at least agree most

closely), a ‘best fit’ is found for the molecular tilt angle. However, the best fit value does

not result in the same value for βm for each polarisation combination. Moreover, some of

the modelled intensity curves do not cross the corresponding experimentally determined

line. A metric is thus required to provide a best fit using the whole dataset or selected

parts thereof. The absolute or relative intensities may be compared within a set of four

values, arising from the four polarisation combinations. At a perfect fit, all modelled rel-

ative intensities match those observed in the experiment. Likewise, a ratio of absolute

intensities from model and experiment should provide the same value for all four polarisa-

tion combinations when the model accurately describes the experimental observation. We

may also compare multiple features in a spectrum simultaneously, enlarging the dataset.

We first determine a best fit for each of the five intensity metrics of figures 6.44 and 6.45

using all four (relative) intensities indiscriminately. This results in best-fit values ranging

between βm = 0◦ and 46◦ (table 6.7) using the three fitting metrics shown in figure 6.50.

These metrics are all normalised for mutual comparison and involve the following.

• var(Imod/Iexp), the variance arising from the ratios of the modelled intensity to the

experimental intensity at each polarisation combination. If the variance is low, the

ratios are similar for all polarisation combinations (and all peaks, where applica-

ble), which thus indicates that the modelling result conform to the experimental

observation.

• var(Imod,rel/Iexp,rel), the variance arising from the ratios of the modelling relative

intensity to the experimental relative intensity at each polarisation combination.

The best fit for the molecular tilt angle βm is here obtained from the minimum of

the model-to-experiment relative intensity ratio variance.

• Σ(Imod,rel − Iexp,rel)
2, the sum of the squared differences between the modelled and

experimental relative intensities. This metric provides a least-squares fit of the

modelled to the experimental relative intensity.

The variance is calculated here as the square of the standard deviation, that is as

var(f) =
1

N − 1

N∑
i=1

(fi − f̄)2 (6.9)

where f is a vector of N elements, each with a value fi, having a mean of f̄ . Each of the

above fitting metrics is computed based on four intensity values (N = 4), i.e. one for each
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Figure 6.46: Metrics comparing modelled intensities to experimental intensities as a func-
tion of molecular tilt angle βm. The intensity metrics of figures 6.44 and
6.45 are compared to corresponding experimental intensities. Each curve is
normalised to bring it to the same scale. In the left-hand plot, the variance
of the model-to-experiment intensity ratio is used, while in the centre plot,
the variance is similarly computed with relative intensities. In the right-hand
plot, the sum of the squared residuals is shown for the modelled minus ex-
perimental relative intensities. The minima represent ‘best fit’ values for βm
(table 6.7), indicated as a vertical dashed line with each curve.

Table 6.7: Best fit molecular tilt angles of arachidate at the silica-air interface for various
intensities of the modelled harmonic ν(C−H) band (figures 6.44, 6.45 and 6.47).

metric I(ν(CH)) I(d+) I(d−) I(νs(CH2)) I(νa(CH2))

var(Imod/Iexp) 0.0◦ 22.1◦ 16.6◦ 0.0◦ 46.0◦

var(Imod,rel/Iexp,rel) 0.0◦ 15.0◦ 16.0◦ 0.0◦ 21.2◦

Σ(Imod,rel − Iexp,rel)
2 0.0◦ 3.7◦ 18.2◦ 6.0◦ 22.6◦

Ipx/Isy - 35.4◦ - 44.6◦ -
Ipy/Isx - - 11.1◦ - 17.6◦
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of the four polarisation combinations. As a function of βm, a global minimum is observed

in each of these metrics, indicating the best fit of the model to the experimental data at

a particular value of βm.

Figure 6.50 shows the fitting metrics as a function of βm. The best fit varies between

intensity metrics. For the νa(CH2) intensity, right-hand bottom plot in figure 6.45 already

showed general disagreement between modelled and experimental intensities. A minimum

in best-fit metric can still be found (at the highest βm value in each metric), though this

is not indicative of a physical parameter that describes the monolayer. The other metrics

provide a molecular tilt ranging from 0− 22◦.

The lowest best-fit metrics are obtained with the d− intensities with minima in the

relative narrow range of 16.0− 18.2◦. This is a consequence of the relatively close match

between modelled and experimental relative intensities (bottom right-hand plot of fig-

ure 6.44). The choice of fitting metric is less relevant in this case. In contrast, the

νs(CH2) and d
+ intensities provide more disparate tilt angles.

With the ν(CH) intensities, the monolayer is determined to comprise fully upright

chains. This is also found with the νs(CH2) intensities with the variance-based fitting

metrics. However, it contrasts with the other tilt angles which are all non-zero. This

arises from an underestimate of the modelling intensities for the px and sy spectra while

overestimating the py and sx relative intensities (top right-hand plot in figure 6.44). Sim-

ilar behaviour is observed with the νs(CH2) and d+ intensities. This may be caused by

absence of anharmonic effects as well as additional modes (due to the longer arachidate

chain) in the modelled spectra. The px and sy experimental spectra contain these Fermi

resonances and additional modes that enhance the total intensity in the C−H stretch band.

The relative px and sy intensities are thus increased at the cost of those in the py and sx

spectra. The limiting value of βm = 0◦ then provides the best fit, though the modelled

intensities still deviate from the experimental intensities. In these cases, comparison of all

four polarisation combinations at once results in skewing the fit towards low tilt angles.

Intensity ratios

From the above considerations, we may wish to omit the more error-prone intensities

from our analysis in order to improve the fit of our model to the experimental intensities.

Intensity ratios may be used to this end. Note that the often employed empirical ratio

I(d−)/I(d+) should be avoided in our analysis, as the modelled spectra do not include the

anharmonic effects known to significantly alter scattering intensities in this Raman band.

First, we omit the near-zero d+ peaks in the py and sx polarisation combinations from

our analysis. These near-zero intensities vary greatly due to noise and thus contribute to

a large error in the extracted intensity values. The d+ feature is then analysed based on

Ipx and Isy, which resemble polarised conventional Raman scattering. As only two values

are involved, these may be characterised by their ratio Ipx(d
+)/Isy(d

+).

Contrarily, the px and sy spectra are omitted for the d− analysis because these include
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errors introduces by subtraction of the fitted intensity arising from modes of the A′ species.

The py and sx polarisation combinations are clearly less obscured and resemble depolarised

conventional Raman scattering spectra. Again, a ratio may be used to characterise the

d− feature, in this case Ipy(d
−)/Isx(d

−).

Both of the above ratios are plotted in figure 6.47 versus the molecular tilt angle.

Similar ratios based on the integrated νs(CH2) and νa(CH2) intensities are also presented.

A ‘best fit’ between model and experiment may be estimated from these plots by inter-

polating the modelled data points. We find that the modelled ratio coincides with the

experimentally derived ratio at molecular tilt angles of 11.1 and 17.6◦ from the d− and

νa(CH2) ratios, respectively. This is consistent with the best-fit obtained above from

comparison of the I(d−) in the ν(CH) band.

The d+ and νs(CH2) intensity ratios vary less strongly with βm and provide a best fit

at βm ≈ 35◦ and 45◦. However, these values are inconsistent with the observation that

the symmetric stretch modes are hardly visible in the experimental spectra. The absence

of these peaks is stronger evidence. The disparate βm values arise from variation in

experimentally derived ratios, which are higher with the νs(CH2) and νa(CH2) integrated

intensities than with the d+ and d− peak heights. The modelled intensity ratios are more

consistent. From the analysis so far, we tentatively conclude a molecular tilt angle in the

zinc arachidate monolayer in the range 11− 18◦.
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Figure 6.47: Ratios of modelled intensities at various molecular tilt angles βm. Ratios from
experimental intensities are presented as horizontal dashed lines, matching
the colours of the modelled ratios.
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We may quantify the combined contribution of the anharmonicities and additional

symmetric stretch modes by analysing the mismatch between modelled and experimental

relative intensities (the ν(CH) intensity metric of figure 6.44). This mismatch is evaluated

at a tilt angle of 12◦, found from the best fit of the d− peak ratio which is least affected

by the additional scattering intensity in the symmetric modes. Figure 6.48 shows the

relative intensities for the whole ν(CH) band in which the modelled absolute px and py

intensities have been multiplied by a factor ranging from 1 to 2. At 1.34, agreement

is observed between the multiplied modelled intensities and the experimental intensities.

This indicates that the modelled intensities for the px and sy polarisation combinations is

underestimated. Additional symmetric modes and resonances between symmetric modes

are thus expected to make up about 34% of the observed intensity. This value is an upper

limit, as the py and sx spectra also contain additional intensity unaccounted for by the

model. This includes both antisymmetric stretch modes as well as symmetric contributions

that arise at the slightly tilted molecular orientation.
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Figure 6.48: Modelled relative intensities for the ν(CH) band of arachidate at the silca-air
interface at βm = 12◦. The px and sy intensities have been multiplied by a
factor from 1− 2 to assess the impact of additional symmetric stretch modes
as well as resonances that are not included in the model. Corresponding
intensities of the experimental spectra are indicated as dashed horizontal
lines.

Individual modes

It would reduce computational expense if single modes were to capture to behaviour of

relevant spectral features, at least sufficiently to assess a molecular tilt angle. We therefore
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also investigate the dependence of scattering intensities on βm for individual modes. The

strongest symmetric and antisymmetric CH2 stretch modes (modes 73 and 76 in decanoic

acid) are employed as these were found to give rise to representative scattering intensities

for all νs(CH2) and νa(CH2) modes, respectively, in the harmonic approximation for a

stretched alkane chain. Mode 73 is the dominant νs(CH2) mode, with in-phase symmetric

stretch motion, and mode 76 is the dominant νa(CH2) mode, having all methylene moieties

vibrate with a phase shift of π relative to their nearest neighbours. Figure 6.49 shows

the modelled intensities for each standard polarisation combination as a function of βm.

Experimentally derived relative intensities are also indicated as horizontal lines. We now

further analyse these results.

For mode 73 of decanoic acid, Ipx and Isy decrease while Ipy and Isx increase when

the molecular tilt increases. The intensities of this mode in the py and sx spectrum

cross twice, though these are similar in intensity up to roughly βm = 60◦, beyond which

Isx > Ipy. However, Isy > Ipx at all tilt angles. Comparing these modelling results to

the experimental intensities, we note that all fall within the range obtained by modelling.

Further, knowing that low tilt angles are applicable, the d+ experimental values agree best

with the modelling results for mode 73 with lower (relative) and equal intensities in the

py and sx spectra.

The modelling results for mode 76 show that its Raman intensity decreases from a

maximum value at βm = 0◦, where Ipx = Ipy < Isx = Isy, to a minimum at βm = 90◦,

where the intensities are no longer equal but in the order Isy > Ipx > Ipy > Isx. As the

p-polarised intensities increase less than those of s-polarisation, the relative px and py

intensities increase with molecular tilt angle. The experimental νa(CH2) intensities are

nearest the modelled values, though fall outside the predicted range by up to 0.012 for the

sx polarisation combination. The experimental d− intensities do not match at all since

these include intensity arising from additional A′ modes in the arachidate chain and their

Fermi resonances.

From our analysis so far, it is clear that the modelled intensities for mode 73 is best

compared with the experimental d+ peak height and those for mode 76 with the integrated

νa(CH2) intensity taken from the d− peak of the experimental spectra. When all relative

intensity data of figure 6.49 is used indiscriminately, we find best-fit values ranging between

βm = 15◦ and 41◦ (table 6.8) using the three metrics discussed above and shown in

figure 6.50 for the current intensity metrics. Each of the fitting metrics is computed with

eight intensity values (N = 8), i.e. one for each of the four polarisation combinations for

each of the two peaks, as well as for each peak separately (N = 4). A single minimum is

observed in each of these metrics.

The best-fit βm varies between fitting metrics and intensity metrics. The variance and

sum of squares are negatively affected by the worst fitting of the four (or eight) curves.

A subset may be chosen to decrease their spread. The variance of the relative intensity

ratios is particularly sensitive as an error in one of the absolute intensities will affect all

relative intensities in the set of four values. For example, Isy dominates in mode 73 at all
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Figure 6.49: Modelled absolute and relative intensities for mode 73, the in-phase νs(CH2)
mode, (top) and mode 76, the π phase-shifted νa(CH2) mode, (bottom) for
arachidic acid at the silica-air interface as a function of molecular tilt angle
βm with respect to the surface normal. The experimentally derived relative
intensities are indicated as horizontal lines for the d+ and d− peak heights
(dotted) and for the integrated νs(CH2) and νa(CH2) intensities (dashed).
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tilt angles (top right plot of figure 6.49) while the remaining relative intensities show a

relatively flat curve, skewing the fitting result towards the best fit that would be found for

the sy curve on its own. This makes the fitting procedure highly sensitive to what exact

intensity was obtained from the experimental spectrum in the first place. For ratios of

absolute intensities, there is no such ‘cross-contamination’ of error. The issue is also likely

to arise in fitting procedures based on the sum of squared errors, though it appears less

of a problem in that case as the best-fit value of the combined modes lies between those

found for the individual modes.

As suggested by our analysis of the modelled ν(C−H) band, ratios of the substan-

tially non-zero intensities may also be employed. This removes the near-zero, error-prone

intensities from the analysis. Figure 6.51 presents the appropriate intensity ratios as a

function of βm. For mode 73, this is Ipx(v73)/Isy(v73) which is compared to the ratio

Ipx(d
+)/Isy(d

+) of experimental peak heights. For mode 76, we have Ipy(v76)/Isx(v76) for

our modelling result as a function of βm which is compared to Ipy(νa(CH2))/Isx(νa(CH2))

from our experimental spectra. A best fit in this case simply arises from matching ratios,

arising at βm = 38.8◦ and 18.6◦, respectively (included in table 6.8). The precision of this

value is given by the sampling of the curve and does not reflect the error arising from the

method, which is influenced by the gradient of the modelled curve, amongst many other

factors.

Though the molecular tilt angles derived from intensity ratios are higher than those

obtained from the individual modes 73 and 76, the former lie within the shallow minimum

observed in the best-fit metrics of the latter (figure 6.50). The shallow minimum arises

from small variation in both absolute and relative intensities in the range 0◦ ≤ βm ≤ 40◦

predicted by our model.

In our previous analysis of similar ratios for intensities derived from modelling the

ν(CH) band, a best fit was found at 11.1◦ and 17.6◦ for the Ipy/Isx ratios of antisymmetric

stretch intensities compared to 18.6◦ here. Similarly, the Ipx/Isy ratio of symmetric stretch

intensities produced a best fit at 35.4◦ and 44.6◦ which here lies is at 38.8◦. This suggests

that the analysis based on individual modes rather than the whole band leads to similar

results. There is consistency between the various approaches, at least at the selected

degree of line broadening involved in producing the model spectra.

6.4.4 Discussion

In this section, a summarising discussion of the employed methodology is given as well as a

comparison between the molecular tilt angle of zinc arachidate monolayer at the silica-air

interface deduced here to those found for similar interfaces in literature.

Methodology

Experimental Raman spectra of zinc arachidate present a convoluted C−H stretch band.

Total band intensities can readily be obtain after subtraction of the silica signal, which
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Figure 6.50: Metrics comparing modelled intensities to experimental intensities as a func-
tion of molecular tilt angle βm. Intensities for mode 73 are compared to the
experimental d+ peak height and mode 76 to the integrated νa(CH2) intensity
of the d− peak. Each curve is normalised to bring them to the same scale.
In the left-hand plot, the variance of the model-to-experiment intensity ratio
is used, while in the centre plot, the variance is similarly computed but for
relative intensities. In the right-hand plot, the sum of the squared residuals is
shown for the modelled minus experimental relative intensities. The minima
represent ‘best fit’ values for βm (table 6.8), indicated as a vertical dashed
line with each curve.

Table 6.8: Best fit molecular tilt angles of arachidate at the silica-air interface for individ-
ual modes of figure 6.50 and for intensity ratios of figure 6.51.

metric mode 73 mode 76 combined

var(Imod/Iexp) 31.7◦ 18.2◦ 40.9◦

var(Imod,rel/Iexp,rel) 31.5◦ 14.7◦ 31.6◦

Σ(Imod,rel − Iexp,rel)
2 33.2◦ 15.1◦ 25.1◦

Ipx/Isy 38.8◦ - -
Ipy/Isx - 18.6◦ -
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Figure 6.51: Ratio of modelled intensities for mode 73 (Ipx(v73)/Isy(v73)) and mode 76
(Ipy(v76)/Isx(v76)) as a function of molecular tilt angles βm. Horizontal lines
indicate corresponding experimental ratios Ipx(d

+)/Isy(d
+) (dotted red) and

Ipy(νa(CH2))/Isx(νa(CH2)) (dashed black). A ‘best fit’ for βm is given in
table 6.8.

may be approximated as a linear baseline in this region of the spectrum. It is more difficult

to extract intensities that correspond to individual Raman modes. The d+ and d− peak

heights are conventionally used. From our analysis, d+ peak height is representative of

intensities arising from harmonic νs(CH2) modes while d− peak heights do not correspond

to any individual mode. The latter is a superposition of fundamental modes from both A′

and A′′ symmetries as well as Fermi resonances arising from interacting A′ fundamentals.

Notwithstanding these complexities, fully harmonic computational spectra may be

used to interpret experimental spectra and come to an estimate of the molecular tilt angle

based on the presence or absence of a distinguishable d+ feature. In the current case,

absence of the d+ peak in py and sx spectra is indicative of low βm, that is, roughly

upright alkyl chains.

The harmonic spectra are obtained by applying Raman tensors, found by ab initio

computation for an isolated molecule, in our model. The model accounts for the optical

geometry of the experiment while the Raman tensor (and molecular polarisability and

ellipsoid radii) account for the molecular properties. Modelling for zinc arachidate was

based on estimated molecular properties, using Raman tensors found for decanoic acid and

extrapolating α and rz from this molecule and short alkane chains. Using these parameters

was not found to provide significantly different modelled relative intensities compared to

those modelled for decanoic acid.
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The molecular orientation is used as an input variable to the model. As the orientations

are averaged over all azimuthal (and twist) orientations, the local field correction applied

by the model is only significantly affecting absolute modelled intensities, while relative

values are not affected to a significant level. The local field correction may thus be omitted

to accelerate computations in such a case.

The sensitivity of the modelled intensities with respect to changes in other input pa-

rameters was also assessed. Given the Raman tensor, the length of the alkane chain rz

appears irrelevant (beyond 0.4 nm). The same was found to be the case for the refractive

index of the thin film and for Raman tensor elements. This implies that both parame-

ters may be estimated without seeking to optimise their precision. This also hints at a

more universal applicability of the modelling results (given the experimental geometry),

as the modelled intensities vary little with chain length. Results obtained for a molecule

with a particular alkyl moiety may thus be applied to Raman spectra of comparable other

molecules collected in similar experimental geometries.

The model may also be used to optimise or design an experimental geometry. For ex-

ample, the intensities of the zinc arachidate spectra could have been amplified by choosing

a lower angle of laser incidence and/or by tilting the microscope objective with respect

to the interface. In both cases, advantage is taken from the high coupling factors around

the critical angle of the silica-air interface. This would also increase the intensities from

symmetric modes in the py and sx spectra, which may be desired to obtain substantially

non-zero scattering intensities.

Zinc arachidate tilt angle

Our model serves to account for the optical geometry, polarisation of the electric fields and

the tensorial nature of the Raman effect while assuming a single molecular orientation.

In determining a single molecular tilt angle for the zinc arachidate monolayer, we assume

that the physical distribution of molecular orientations may be modelled by a single tilt

and a uniform distribution over azimuth and twist angles.

The effect of a distribution of βm values can be assessed by convoluting the absolute

intensities with a βm-distribution function. The I(βm) curves (such as in figure 6.49) would

then show more linear behaviour. Such analysis would introduce another variable which

may be derived but which also further complicates analysis.

The assumption that αm and γm are randomly distributed is supported by experimental

findings of the domain size of fatty acid chains and their salts. In condensed phases, these

molecules pack in domains of 104 − 106 Å
2
in which bond orientation is conserved [96].

These domains are much smaller than the area of the laser spot and microscope focus

employed in our experiments. An abundance of domains is thus probed, all of which are

independently orientated.

Tilt angles were derived from a variety of intensity metrics. First, the whole ν(CH)

band was modelled as a function of βm, using Raman tensors computed for decanoic acid
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in the harmonic approximation with an arbitrary though realistic degree of Lorentzian line

broadening. This spectrum was used to quantify molecular tilt, though the comparison

to experimental spectra is hampered by lack of Fermi resonances in the A′ modes and

additional symmetric and antisymmetric CH2 stretch modes in the modelled spectrum.

These features mainly contribute to the central region of the C−H stretch band but also

alter the d+ peak position and height.

Various intensity metrics were derived from the experimental as well as the modelled

spectra: overall intensity, d+ and d− peak heights and integrated νs(CH2) as well as

νa(CH2) intensities. The last metric proved inadequate because a clean subtraction of

the A′ background is not presently possible. The other intensity metrics gave relative

intensities that roughly agreed with the experimental ones, especially at low tilt angles.

Best-fits were found in the range 0− 22◦. The d− in particular showed consistent best fit

at βm = 17.0◦.

The comparison between modelled and experimental intensities was found to be most

sensitive to changes in βm around βm = 45◦. In this experimental geometry, it is hard to

distinguish between tilt angles below about 30◦ as the intensities vary little in this range.

Small variations, including errors in intensities extracted from experimental spectra, thus

have a large effect on the derived molecular tilt angle. A promising metric is the variance

between model-to-experiment intensity ratios. When using relative intensities, error in

one of the four intensities impacts all others, thus skewing the best fit towards the most

deviating relative intensity. This results in a shallower best-fit minimum.

Intensity ratios of the least error-prone features were also used. Ipx/Isy for the main

symmetric stretch feature proved less sensitive to molecular tilt angle than the antisym-

metric stretch ratio Ipy/Isx. Furthermore, the latter provided lower βm values (11.1◦ and

17.6◦) while the former came up to a value of about 45◦, which disagrees with the absence

of the d+ feature in the experimental spectra. Based on the modelled C−H stretch band,

this absence indicates βm < 30◦.

Scattering intensities from the dominant νs(CH2) modes was also modelled. It es-

sentially captures behaviour of the d+ peak as a function of tilt angle. However, its sy

intensity is higher at βm = 0◦ than that found for the d+ peak as part of the C−H stretch

band. This leads to a higher estimate of the molecular tilt angle.

The dominant antisymmetric mode provides relative intensities that do not match to

order of the experimental relative intensities. At βm = 0◦, modelling predicts Isx(v76) =

Isy(v76), while the experimental νa(CH2) integrated intensities show a difference of 0.04

on the relative intensity scale. This indicates the error with which the A′ background

signal is removed from the spectra, which apparently leads to an underestimation of the

intensities in the px and sy spectra.

The px and sy spectra provide no clean intensities for the antisymmetric mode, so that

the ratio Ipy(v76)/Isx(v76) was used for comparison to the experimental intensities found

for the dominant νa(CH2) mode. This resulted in a matching ratios at βm = 18.6◦, which

compares favourably to 17.6◦ deduced with the same ratio for the whole C−H stretch
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band. We thus conclude that the alkyl chains of the zinc arachidate monolayer are on

averaged oriented at an angle of βm = 18◦ from the surface normal.

For the following reasons, this value is deemed to be the most reliable of all best-fits

presented here. First, uncertainty in the experimentally derived intensities is reduced

when using a ratio, because an over- or underestimate of the absolute intensity will occur

in both numerator and denominator intensities, thus at least partly cancelling out. This is

not the case when comparing absolute intensities directly. Second, only substantial non-

zero intensities are used. The error-prone near-zero intensities of the symmetric stretch

modes in the py and sx spectra are avoided. Subtraction of the A′ spectral background

is performed to remove these intensities. Third, the ratio Ipy(v76)/Isx(v76) varies more

strongly with βm than its symmetric stretch counterpart Ipx(73)/Isy(73), which spans a

relatively narrow range of ratios. This again reduces the effect of uncertainty in the ex-

perimental ratio on the assessed molecular tilt angle. Finally, the modelled antisymmetric

stretch mode is harmonic and has a Raman tensor of well-known form with only one pair

of non-zero components, the numerical value of which does not affect the intensity ratio.

Literature comparison

Fatty acids on a substrate have been studied before, including assessments of their overall

alkyl chain tilt angle. A summary is provided in a review by Peng, Barnes and Gentle

[96], from which table 6.9 is compiled. The tilt angle ranges from 0− 33◦ in these studies.

Only arachidate salts are included here, deposited via the Langmuir-Blodgett method.

The traditionally preferred cation for this is cadmium. No studies of the tilt angle of a

monolayer of zinc arachidate were found. A study by Dhanabalan et al. [180] using X-

ray diffraction on Langmuir-Blodgett deposited zinc arachidate multilayers revealed that

multilayer packing strongly varies with subphase pH. Zinc salts were found to form from

pH 6.6.¶ Three types of packing arrangements were identified, corresponding to tilt angles

of 0◦, 19◦ and 31◦ which coexisted in certain ranges of subphase pH. However, monolayers

were not assessed and the structure of multilayers does not necessarily correspond to that

of monolayers [96].

Table 6.9 presents the derived chain tilt values in chronological order to highlight its

spread. The surface film need not be homogeneous and the various techniques probe

different aspects of it. In Fourier-transform infra-red spectroscopy (FTIR), molecular

vibrational modes are probed, as with Raman. Scattering techniques, such as near edge X-

ray absorption fine structure (NEXAFS) and grazing-incidence X-ray diffraction (GIXD),

probe atomic scattering length densities. Ordered regions in the surface film give rise to

diffraction patterns from which crystal parameters may be derived. While vibrations arise

from all molecules in the film, diffraction only arises from ordered parts of the film. The

molecular tilt angle thus depends on the technique employed to derive it. The molecular

tilt angles derived for our system (tables 6.7 and 6.8) generally agree with this range,

¶In our experiments, the monolayer was formed on a subphase of pH 7.
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Table 6.9: Chain tilt angles for archidate salt monolayers on a solid substrate in air.

Cation Substrate Technique βm/
◦ Reference

Cd silver GIR-FTIR < 8 [181]
Cd Gold GIR-FTIR > 0 or disordered [182]
Cd silver gratings SERS > 0 or disordered [183]
Ca oxidised silicon NEXAFS 33± 5 [184]
Cd oxidised silicon NEXAFS < 15 [184]
Cd glass photoacoustic FTIR ≈ 0 [185]
Cd silicon wafer NEXAFS ≈ 0 [186]
Ca silicon wafer NEXAFS ≈ 0 [186]
Cd silicon wafer NEXAFS 33 [187]
Ca Silicon NEXAFS 29 [187]
Cd CaF2 FTIR-RAS ≈ 0 [188]
Pb Silicon in-plane GIXD 20 [189]

though some less reliable metrics result in tilt angles beyond the literature range.

More recently, Itoh and Hasegawa employed a Raman spectroscopy approach in their

analysis of Langmuir-Blodgett cadmium stearate film on a glass microscope slide [152].

For a single monolayer deposited at Π = 30 mN m−1, a molecular tilt angle of 29◦ was

deduced∥ based on the ratio Isx(d
−)/Ipy(d

−) (using our definitions, the authors term it

RSP/PS). They employed a 90◦ Raman scattering configuration, illuminating and collecting

light from the air side of the interface. Based on a similar metric, we have found this to

be 18◦ for zinc arachidate deposited at Π = 35 mN m−1. This may be explained by the

slightly longer chains (twenty versus eighteen carbon atoms), by the different cation and

by the higher surface pressure, at which alkane chains are known to come to an increasingly

upright orientation [96].

The model employed by Itoh and Hasegawa is specific to the intensity ratio they used

and includes incident and scattering coupling factors in the thin-film approximation. For

the interfacial layer of cadmium stearate, a refractive index orthogonal to the interface of

1.56 was used. This is said to account for optical anisotropy. However, just like in our

model, the value of n2 only affects the Fz coupling factors in the thin-film limit. Their

model does not take into account the depth of the molecule, local field corrections nor the

numerical aperture of the lens that collects the Raman scattering. The latter in particular

might lead to error, as seen in the modelled intensities presented in this work. Though the

authors seem to suggest a finite aperture in their publication (lens L2 in figure 3 of [152]),

its NA is not specified. To assess its relevance, we apply our model to their experimental

configuration with the Raman tensor

αas =

0 1 0

1 0 0

0 0 0

 (6.10)

∥In a previous study, Hasegawa et al. also investigated this system by multiple-angle infrared absorption
spectroscopy [16]. There, a tilt angle of 25◦ was found.
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which applies to the antisymmetric CH2 stretch mode. Using our model, intensities are

predicted for a pinhole aperture and for NA = 0.55 in the thin-film limit. Scattering

is collected at (αO, βO, γO) = (0◦, 0◦, 0◦). Other model input parameters are likewise

taken from their publication as: n1 = 1.52, n2 = 1.56, n3 = 1.00, θk,i = 158.6◦, λ0,laser =

532 nm, z = 0, ν̄R = 2879 cm−1 with molecular ellipsoid and polarisability as estimated for

arachidate. Figure 6.52 presents these modelling results as absolute and relative intensities.

Intensity ratios are also shown.

Comparing the top and bottom plots of figure 6.52, a small effect due to the numerical

aperture of the objective is seen. The absolute intensities are reduced for NA = 0.55

compared to NA → 0 because the intensity is scaled to the number of grid nodes in the

model. At larger NA, scattering intensities nearer the edges of the objective are reduced,

thus leading to an overall lower modelled intensity. Relative intensities are hardly affected

by the increased NA. There is no difference at βm = 0◦ and at βm = 90◦, a decrease by

0.007 of the relative px and sy intensities is observed with a corresponding increase of the

py and sx intensities. This results in a slightly higher Isx(d
−)/Ipy(d

−) at this tilt angle.

The experimental geometry of Itoh and Hasegawa has thus been chosen appropriately to

ensure that a finite aperture of the objective may be disregarded.

In their experiments, Itoh and Hasegawa obtained Isx(d
−)/Ipy(d

−) = 1.0, which ac-

cording to their interpretation meant a tilt angle of 25◦. However, our modelling results of

their experiments suggest βm = 47◦. When using our estimate of the thin-film refractive

index of n2 = 1.4425, a tilt angle of 41◦ is obtained. This difference is not explained by

the local field correction, which was found to have no significant effect on the relative

intensities nor on the intensity ratios.

A substantial difference that remains standing after discounting the previous consid-

erations is the way in which our model computes intensities compared to that of Itoh and

Hasegawa. They use squared Raman tensor elements that are averaged over the azimuthal

and twist angles of the molecular orientation in the laboratory frame of reference and com-

bine these with squared coupling factors to compute intensities. Contrarily, our model uses

a complex vectorial description of the scattering process. It computes amplitudes of Ra-

man scattering for each molecular orientation as it arises from the complete Raman tensor,

before squaring the scattered amplitude to obtain intensities and finally summing over all

orientations. As the various Raman tensor elements simultaneously effect Raman scatter-

ing, it appears inappropriate to separate these elements, effectively omitting cross-terms

in the amplitudes along the three Cartesian axes in which the scattering is modelled.

However, looking at the modelling outcomes, molecular tilt angles of 41 − 47◦ for

a monolayer of cadmium stearate on glass are quite removed from tilt angles found by

other authors. These are comparable to the values for arachidatic acid salts, in the range

0− 30◦ [96]. This divergence is likely aggrevated by low experimental signal over a strong

and noisy background (figure 5 of [152]) in Itoh and Hasegawa’s Raman spectra of the

monolayer. Adjusting the experimental geometry could readily improve the quality of

their Raman spectra.
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Figure 6.52: Intensities (left), relative intensities (centre) and intensity ratios (right) mod-
elled for the antisymmetric CH2 stretch of stearate at the air-glass interface
as a function of molecular tilt angles βm. The experimental parameters con-
form to those of [152]. The top plots are computed for a pinhole aperture
while NA = 0.55 for the bottom plots.
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The main cause of the discrepancy between the two models is likely to be the following.

As the ratio obtained by our model spans a nearly four times narrower range (from 1.043

down to 0.855) than that of Itoh and Hasegawa (compare figure 6 of [152]), our model is

more sensitive to experimental errors. A molecular tilt angle of 25◦ would be predicted

from a ratio of 1.03, rather than 1.0 as currently used. Within the significance interval

of this ratio (0.95 − 1.05), our model predicts a tilt angle in the range 0 − 65◦ (with a

maximum ratio of 1.043), whereas their model provides a range of about 22 − 35◦. A

similar sensitivity was observed in the analysis of our own experimental spectra with the

symmetric CH2 stretch mode (figure 6.51). Such behaviour should be taken into account

when designing experiments to ensure that appropriate metrics are in fact reasonably

sensitive to molecular orientation. Our model may be employed to explore experimental

variables because it includes such variables as computational input.

6.4.5 Conclusion

A monolayer of zinc arachidate at the silca-air interface provides a multi-faceted test

case of our model. Its alkyl chain gives rise to a convoluted C−H stretch band that is

encountered in numerous soft-matter interfaces of interest. Insight in this band is provided

by modelling harmonic spectra, using ab initio Raman tensors and the optical description

of our model. Intensities in these spectra, relative to those of all four standard polarisation

combinations, do not significantly change with variation of the molecular parameters. The

modelling results may thus be extended from decanoic acid to longer alkyl chains, such as

contained in arachidate. However, the longer chain of the latter gives rise to additional

fundamental modes which contribute to integrated band intensities.

Various intensity metrics may be employed to assess molecular tilt from experimental

spectra. Absence of the d+ feature in polarised Raman spectra (the px and sy polarisation

combinations) is a strong indicator of low molecular tilt βm. However, this should be es-

tablished with spectra of sufficient signal-to-noise. This may be improved by experimental

geometry, in particular by illuminating the sample through the high-index material near

the critical angle and collecting Raman scattered light around the same angle (though

avoiding the reflected laser beam).

When comparing experimental to modelled intensities, a metric must be chosen that

corresponds to the situation. Errors in experimentally derived intensities may skew the

fitting result. Variance within a set intensity ratios as a function of βm form a suitable

metric if all spectra can be used. If this is not the case, ratios may be employed. For

the monolayer of zinc arachidate, deposited at a surface pressure of 35 mN m−1, we find

a molecular tilt angle of 18.6◦ based on the ratio of antisymmetric CH2 stretch intensities

recorded at the py and sx polarisation combinations. The symmetric stretch intensities

prove rather indiscriminate with respect to molecular tilt in the employed experimental

geometry. When using all four intensities, minimal variance in the model-to-experimental

ratio is obtained at βm = 18.2◦ for the main antisymmetric and at 31.7◦ for the main
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symmetric stretch mode intensities. These are in line with published values for similar

systems, though there is presently no literature consensus on tilt angles, which depend on

the technique used for their determination.

6.5 Summary

In this chapter, our model was tested with three interfaces. A solution of ammonium

sulfate on a fused silica hemisphere was used to assess the optical description of the model.

As sulfate anions have an isotropic polarisability as well as shape, there is no anisotropic

effect from the local field correction. Furthermore, sulfate has a fully symmetric vibrational

mode (v1) with an isotropic Raman tensor. Its Raman scattering does not depend on

molecular orientation.

Sulfate Raman scattering from its v1 mode was recorded at various polarisation com-

binations. The numerical aperture, incidence angle and concentration of the solution

(affecting its refractive index) were varied in the experiments, conducted with both the

Stockholm and Durham Raman systems. These parameters were also varied (over a wider

range) in our model.

Taking the spread of the laser incidence angle into account in the model, proved in-

significant to the modelled intensities. The same was found to apply to the depth z of the

molecule, though undulating relative intensities were computed for Raman scattering into

the hemisphere above the critical angle.

The model matched the Stockholm data well, which was judged to validate the optical

description of the model. However, deviations were observed when using the objective

of smaller NA because it provided Raman intensities that proved too low for accurate

interpretation. The general trends predicted by the model were still seen in the spectra.

The Durham system provided noisier spectra that were less well described by the

model. This could be explained by modelling intensities with an off-set in the polarisation

directions, providing an example how the model could be used to assess experimental

parameters and their uncertainties.

Carbon tetrachloride provides a spherical molecule with an isotropic polarisability

though isotropic as well as anisotropic Raman tensors. Isotopologues are also relevant for

this molecule. Liquid CCl4 was combined with a sapphire hemisphere. Spectra showed

distinct v2 and v4 bands, while its v1 mode was affected by strong sapphire features. Bire-

fringence of sapphire further complicated the spectra, including a problematic subtraction

of background sapphire-air spectra which all proved polarisation sensitive to different de-

grees.

With non-isotropic Raman tensors, averaging of the molecular orientation becomes

relevant. A step size of 20◦ was found to be sufficient to achieve converged modelled

intensities that represent the isotropic average. In this average, diagonal and off-diagonal

Raman tensor elements each contribute to the modelled intensities in the same way. In

the isotropic average, the local field correction does not affect modelled relative intensities,
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though the absolute intensities decrease with increasing molecular radius and increase with

molecular polarisability as anticipated.

Modelled intensities for CCl4 did not agree with its experimental spectra. Several

potential sources for this difference were assessed. Birefringence of sapphire, rotations in

the plane of polarisation and anharmonicities affecting the Raman tensors were tested.

None of the effects could individually explain the observed intensities, leading us to con-

clude that combined effects are likely causing the observed intensities and that our model

currently faces too many unknowns in the sapphire-CCl4 interface, thus preventing unam-

biguous interpretation with our model. Additional experiments were suggested to rule out

at least the polarisation uncertainties. The v2 band of CCl4, likely to be the least affected

by anharmonicity, can then be used to assess the inaccuracies of the model arising from

its omission of birefringence in the hemisphere.

A zinc arachidate monolayer at the silica-air interface proved a further interesting

sample to test our model. It is known to form a hexagonally packed monolayer in orienta-

tionally ordered domains at tilt angles in the range 0− 33◦, according to previous studies

of Langmuir-Blodgett deposited arachidate salts [96]. Its convoluted C−H stretch band

was investigated. This band contains symmetric methylene stretch modes that engage in

Fermi resonance with a bending overtone. These features underlie antisymmetric methy-

lene stretch modes while relatively weak methyl stretches appear near the high-frequency

side of the band.

Harmonic Raman spectra were generated with our model using computational Raman

tensors of decanoic acid. The azimuthal and twist angles of the molecules were isotropically

averaged as these are randomly distributed in the monolayer. A qualitative comparison

with the experimental spectra pointed to roughly upright chains with βm < 30◦, indicated

by the absence of symmetric stretch modes in the py and sx spectra. The spectra are

most sensitive to molecular tilt around βm = 45◦, indicating that an assessment at the

expected near-upright orientation is of relatively low accuracy.

The local field correction was again found not to affect the modelled relative intensities

within reasonable variation of the molecular polarisability or shape. Its influence was

largest for molecular orientations parallel to the interface. At high tilt angles, or in an

azimuthally oriented material, it should not be ignored.

Furthermore, the Raman tensors do not strongly affect the relative intensities. This

suggests that the model provides the same results, whatever long-chain alkane is employed

(at least for relatively upright chains). Generalised conclusions may thus be drawn for alkyl

chains above about ten carbon atoms. Corollary, these similarities allow use of generalised

‘long-chain’ properties (Raman tensor, molecular polarisability, molecular ellipsoid radii)

when assessing chain tilt angle with respect to the interface. This finding supports our

use of decanoic acid Raman tensors in analysing arachidate spectra.

The angle of laser incidence, objective position and refractive index of the surface film

were also assessed. For the silica-air interface, n2 results in the same relative intensities

over a range of 1.2 − 2.0 in the current experimental geometry. Exceedingly accurate
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assessments of n2 can thus be avoided, including that of any anisoptropy of the thin

film at the interface. The model predicts highly directional far-field Raman scattering

(conforming to other derivations, such as by Luan et al. [168]), which may be employed

to enhance Raman signals at desired polarisations.

Various intensity metrics as well as fitting metrics were tested to arrive at a consistent

interpretation of the experimental spectra based on a single molecular tilt angle. Different

values for βm were found with metrics based on the whole ν(CH) band, parts of it or the

main symmetric or antisymmetric methylene stretch modes. Overall, the most reliable

metric is concluded to be the intensity ratio Ipy/Isx for the integrated νa(CH2) intensity

(obtained from modelling the harmonic ν(CH) band) and main antisymmetric stretch

mode, which were judged to be least error-prone in this dataset. These provided βm =

17.6◦ and 18.6◦, respectively, in line with other studies of fatty acid salts.

In our case, the ratio of symmetric stretch intensities proved insensitive to molecular

tilt. Exceedingly small variations in the experimental intensities here resulted in large

differences in the obtained tilt angle. This problem also arose in the application of our

model to experiments on a cadmium stearate monolayer performed by Itoh and Hasegawa

[152], who used a similar ratio. Our ratio resulted in a tilt angle somewhere between 0◦ and

65◦ based on the precision of the experimentally determined ratio. This again emphasised

the importance of sufficient signal-to-noise in the collected spectra.

In all analyses presented in this chapter, proper background subtraction proved crucial.

Experimental intensities should be assigned to features that are at least proportional to the

actual Raman scattering mode being investigated. Errors introduced through background

subtraction restricted the interpretation of spectra as well as the fit between modelled and

experimental intensity metrics. Further limitations in applying the model were encoun-

tered with low-intensity spectra, where deviations from zero intensity significantly affect

the relative intensities.

In addition to comparing the modelled intensities to experimental intensities, insight

was gained into why and how intensities increase or decrease upon variation of model

input parameters, most of which correspond to experimental choices. The model may

thus be used to design experiments to achieve optimal intensities in particular desired

Raman lines or increase sensitivity to a particular parameter, such as molecular tilt angle.

For example, near-zero intensities may be avoided by an appropriate choice of linear

polarisation directions.

The model itself is restricted to optically isotropic refractive indices, though n2 can

take the value of nz, the refractive index of the interfacial layer perpendicular to the

interface, in the thin-film limit. However, modelled intensities are not always sensitive to

particular values of n2, as observed in the arachidate analysis. Strong variation is affected

by variation of the experimental geometry, including angle of laser incidence, objective

position and polarisations. The effect on (relative) intensities from the form of the Raman

tensor is mitigated in cases where isotropic averaging applies.
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Chapter 7

Boundary lubricant under static

pressure

This chapter presents an application of the approach developed so far to a system of

applied relevance. Interfacial Raman spectroscopy allows access to buried interfaces, such

as encountered in the field of tribology.

The experiments presented in this chapter were performed by Kaustav Guha on 8−10

September 2008 during his doctoral studentship in our research group. The results are

included in his thesis [54] with a qualitative analysis. Materials and methods are also given

in chapter 3 of the present work for convenience. In brief, a static solid-solid interface was

constructed from an SF10 hemisphere and a fused silica sphere, which were both coated

with a zinc arachidate monolayer. Various static loads were applied to the contact and

Raman spectra were collected at the four standard polarisation combinations alongside

optical microscopy images of the contact area.

This experiment combines optical and Raman observation of boundary lubrication to

relate macroscopic changes in pressure to changes in molecular orientation. The analysis

presented here, has been performed afresh on the raw data. Mechanics of the contact,

measured by optical microscopy, are first discussed, after which the experimental Raman

spectra are presented. Modelling is then performed for this system before fitting modelled

intensities to the experimentally derived intensities as a function of molecular tilt angle.

A summary of the approach is presented in figure 7.1, including experimental geometry,

polarisation directions and molecular orientation.

7.1 Contact mechanics

The static pressure exerted on the interface is deduced from its microscopy image using

classical contact mechanics. The contact area between the two surfaces increases as the

load increases while interference fringes appear around the edges of the contact.
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Figure 7.1: Schematic overview of experimental layout and geometry definitions. A 5 mm
flint glass glass hemisphere contacts a 10 mm fused silica ball, both coated
with a zinc arachidate monolayer by Langmuir-Blodgett deposition. Pressure
is exerted by manual and micromotion stages holding these element. Incident
laser beam is linearly polarised. The collection polarisation is set along the
yO ∥ yL or xO ∥ xL axis. When modelling the spectra in this geometry,
the thin-film approximation is used with the confined alkyl chains in a single
orientation specified through Euler angles (azimuthal angle αm, tilt angle βm
and twist angle γm) as defined in section 2.2.3.

7.1.1 Hertzian contact theory

Deformation and pressure in a non-adhesive, frictionless contact between two elastic solids

is described by Hertzian contact mechanics. For the sphere-on-flat geometry employed

here, the radius of the circular contact area a is given through [1]

a =

(
3FR

4E∗

)1/3

(7.1)

with F the normal force exerted on the contact, R the radius of the spherical surface and

E∗ the composite modulus defined as

1

E∗ =
1− ν1

2

E1
+

1− ν2
2

E2
(7.2)
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where E1, E2 and ν1, ν2 are Young’s modulus and the Poisson ratio of the materials in

contact. The mean contact pressure Pm is then computed through

Pm =
F

πa2
=

4E∗a

3πR
(7.3)

where equation 7.1 is used to substitute F . The local normal pressure in the circular

contact depends on the radial position r as

P (r) = Pc

√
1− r2

a2
(7.4)

where Pc is the pressure at the centre of the contact, from which Raman spectra have

been recorded. It is the maximum pressure in the contact and is given by [1]

Pc =
3

2
Pm = 2a

E∗

πR
(7.5)

which can be computed from the diameter of the contact spot 2a, measured by microscopy

of the contact area. The properties of the mating fused silica sphere and the flat surface

of the SF10 hemisphere are given in table 7.1. The mechanical properties are taken from

specifications of glass manufacturer Schott AG (Mainz, Germany) [87]. These result in

E∗ = 34.5 GPa for the composite modulus.

Table 7.1: Properties of the materials in contact.

Material E / GPa ν R / mm

Fused silica 72 0.17 5.0
SF10 60.8 0.235 -

7.1.2 Microscopy of the contact area

Microscopy images of the contact area through the 5× objective are presented in figure 7.2

in order of data acquisition, numbered 1 to 7. The sphere was first brought in the correct

position and aligned with the microscope focus after which the hemisphere was brought

down on top. Pressure was exerted by the micro-motion stages that held the mating solids.

It is assumed that no shear forces arose in this process.

The pressure rig was aligned on the microscope focus before collecting Raman scatter-

ing from the centre of the contact spot. The load was increased in steps with an overnight

break between measurements 3 and 4. Mechanical relaxation of the pressure rig explains

the slightly reduced contact area observed in the latter.

The illuminating white light undergoes interference in the gap between the two surfaces,

which gives rise to bright and dark fringes known as Newton rings. The central dark area

is the contact area of the elastically-deformed sphere and planar surface. The radius of

the contact area is extracted from the microscope images with a Matlab routine. The

script is included in appendix F and its working is explained there. The results of this
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analysis are given in table 7.2. As the load on the contact is increased from measurement

1 to 7, the contact area enlarges and Pc scales linearly with its diameter (equation 7.5).

Table 7.2: Diameter 2a of the contact area and its central pressure Pc for the seven mea-
surements.

# 2a / µm Pc / MPa

1 141 309
2 175 384
3 213 467
4 202 442
5 233 512
6 262 575
7 386 628

Surface adhesion forces are assumed to be zero in the Hertzian description of a contact.

In our experiments, the exerted pressure is much larger than the adhesive surface forces,

which we estimate at no more than 2 MPa based on surface forces on the order of 10 mN/m

as reported by Ruths et al. [190] from surface-force-apparatus measurements.

The Hertzian contact pressure as a function of radial position is presented in figure 7.3,

using equation 7.4 and the values of Pc and a obtained from analysis of the microscopy

images. As the ellipsoidal axes of the laser beam are about 10 − 30 µm, practically all

laser light falls within the substantially flat range of the pressure curves. This ensures

that Raman spectra are collected from molecules that experience a similar load.

The pressure range investigated here mimics local pressures at asperity contacts in

macroscopic applications [1, 2]. Bearing surfaces are generally designed to make contact

over a large surface area in order to reduce pressure and thereby prevent wear. Hydrody-

namic lubrication is usually desired in which a lubricating film is dragged into the contact

to keep the mating surfaces apart. However, when insufficient hydrodynamic forces are

generated, molecular layers absorbed to the surfaces come into contact. This is the bound-

ary lubrication regime. In this regime, asperities of mating surfaces experience much higher

local pressures, such as those generated in the present experiments. It is then down to the

boundary lubricant to prevent wear.

7.2 Experimental Raman spectra

SF10 and fused silica form a transparent and optically isotropic interface on which the

laser was incident under 57.6◦ from the surface normal. This is just above the critical

angle of 57.3◦ at the laser frequency, while θc = 57.7◦ at the Raman-shifted frequency

of the C−H stretch band. Raman scattering was collected through the SF10 hemisphere

by the NA = 0.55 microscope objective positioned perpendicular to the interface. The

acquisition time for each spectrum was 600 seconds.

Figure 7.4 presents the spectra for the seven contact pressures recorded with the px,
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Figure 7.2: Microscope images of the contact area collected through the 5x objective lens.
The approximate size of the laser spot is indicated as a green ellipsoid. The
images are about 460 µm across. [data KG080908/spot1-7]
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Figure 7.3: Hertzian pressure as a function of radial position in the circular contact derived
from each microscopy image 1 − 7 of the contact area. Note that spot 4
experienced a lower load than spot 3.

py, sx and sy polarisation combinations. A linear baseline (fitted to the spectral ranges

of 2580− 2620 and 3160− 3200 cm−1) has been subtracted from each spectrum.

7.2.1 Conventional interpretation

Interpretation of Raman spectra of alkyl chains traditionally focusses on three aspects of

the d+ and d− peaks:

(1) presence and absence of peaks,

(2) shifts of peak locations and

(3) the d−/d+ intensity ratio.

Figure 7.5 presents peak heights extracted from the baseline-subtracted spectra. In-

tensities of the y collection polarisation have been divided by 0.89 to correct for the

transmission of the additional half-wave plate in the path of the scattered light.

As discussed with the zinc arachidate monolayer in air (section 6.4), absence of the d+

peak in depolarised spectra (here: py and sx) indicates uprights chains. In the current

spectra, substantially non-zero intensities are observed in all polarisations, leading us to

conclude that the chains are in fact tilted from the surface normal. As the contact pressure

is increased, the d+ peak grows in the p-polarised spectra but decreases in the s-polarised

spectra.
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Figure 7.4: Baseline-subtracted Raman spectra of the SF10-silica ball-on-flat contact un-
der various levels of static load with zinc arachidate monolayers on both sur-
faces. The laser was incident just over the critical angle. [data KG080908]
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Figure 7.5: Heights of the d+ peak (left) and d− peak (right) at about 2849 and 2883 cm−1,
respectively, from the experimental spectra of figure 7.4. The py and sy inten-
sities are corrected for the transmission of the half-wave plate used to change
the collection polarisation from x to y.
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Figure 7.6: Metrics for conventional interpretation of alkyl chain Raman spectra from
the py spectrum of figure 7.4 based on peak height ratio (left) and Raman
shift change (right) relative to peak location at 300 MPa. Their increase with
contact pressure indicates increased order and chain interactions at higher
pressures.
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Figure 7.6 shows (2) and (3) of the above metrics using peak heights and peak locations

from the py spectra, which show a clear relationship to the contact pressure. Peak locations

were deduced by a fitting routine to improve accuracy of its estimate. The d+ peak location

was found from fitting a Lorentzian to its low-frequency half (i.e. the tail extending to

lower Raman shift from the peak maximum). The location of the d− peak was deduced by

removing background A′ intensity (estimated by a spline function fitted through adjacent

features) from the spectrum to obtain a neat d− feature that was described well by a

Gaussian profile.

An increase in chain order is understood to occur from the higher d−/d+ intensity

ratios [142, 191] with increasing contact pressure. Furthermore, the d+ and d− peak

maxima are positioned at higher Raman shift as the contact pressure increases. This is

indicative of increasing interchain coupling [191]. From a conventional interpretation of

the Raman spectra, we may thus conclude that the alkyl chains in the boundary lubricant

film are compacting laterally while increasing in order as the load on the contact increases.

The chains are tilted away from the surface normal in the whole pressure range. However,

these observations do not form a basis for quantification of this tilt angle or its change

with pressure.

7.2.2 Band and peak intensities

Peak heights for the d+ and d− features in the experimental spectra were presented in

figure 7.5, varying around 2849 and 2883 cm−1, respectively. The peaks are strongest in

the sy polarisation combination and reduce with pressure in both the sy and sx spectrum.

However, an increase is seen with the p-polarised spectra. The peak heights in the px

and py spectra are about equal throughout the pressure range. This makes sense because

the laser beam is incident near the critical angle, inducing a Raman dipole along zL with

practically no xL component. This induced dipole generates a rotationally symmetric

field at the microscope objective, which is transmitted equally by the x and y polarisers.∗

This contrasts with the spectra of the zinc arachidate monolayer at the silica-air interface

(section 6.4.1), collected with the laser incident far from the critical angle.

Similar behaviour is observed for the integrated intensities of the ν(CH) band, obtained

by integrating over the baseline-subtracted spectra from 2750 to 3050 cm−1 (figure 7.7).

The sx intensity reduces to below that of the px and py spectra at the two highest contact

pressures.

Errors in the data of figures 7.5, 7.6 and 7.7 arise from uncertainties in the deduced

pressures and spectral intensities. In deducing contact pressure, applicability of Hertzian

contact mechanics was assumed. Errors in the contact area and material parameters are

assumed insignificant. The spectral intensities are hardly affected by spectral noise and

baseline subtraction, though the peak intensity is in principle more sensitive to noise and

the integrated band intensity more sensitive to choice of baseline. Near-zero intensities do

∗This effect is similar to the central plots of figure 5.22 for a free dipole oriented along the zL axis.
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Figure 7.7: Absolute (left) and relative (right) experimental intensities for the ν(CH) band
of arachidate in the SF10-silica contact versus the contact pressure (from the
experimental spectra presented in figure 7.4 and corrected for the half-wave
plate in the y collection polarisation).

not arise in this dataset. The assignment of Raman intensity to a particular mode is of

importance when comparing the experimental intensities to modelled intensities. Due to

the increased convolution of the spectra at all polarisation combinations, only the overall

intensity ν(CH) is used here.

7.3 Modelling results

Raman intensities are modelled with parameters corresponding to the experiment and

to material properties as described previously. The thin-film limit is applied and g =

15 is used for the modelling grid size. The whole C−H stretch band is modelled as a

function of molecular tilt angle βm in steps of 2◦. For comparison, the main symmetric

and antisymmetric stretch modes are also modelled separately.

The present sample includes two monolayers, each in contact to one of the mating

surfaces via its headgroup. The molecules are thus positioned in opposite directions with

respect to the surface. However, modelling the full range of βm from 0◦ to 180◦ is not

required. The range 0◦ ≤ βm ≤ 90◦ fully specifies the intensities; modelling over 90◦ <
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βm ≤ 180◦ is redundant (see appended figure G.3). This implies that the position of the

headgroup or absolute orientation can not be deduced from this analysis.

7.3.1 The C-H stretch band

Figure 7.8 provides the modelled, harmonic ν(CH) band at various molecular tilt an-

gles. The px and py spectra are identical at βm = 90◦ and slightly differ at low tilt

angle. This difference arises from the local field correction, which rotates the induced

dipole towards the shorter molecular axis. For p-polarised incident radiation, a small x-

component is induced which gives rise to Raman scattering polarised along this direction,

thus contributing to the px spectrum. This scattering does not reach the detector when

the collection polarisation is set along y. The difference between the px and py spectra is

thus indicative of the effect of the local field correction applied in the model. When the

local field correction is omitted from the model computation, these spectra are identical

as shown in appended figure G.4. Without the local field correction, the methyl stretches

are predicted to be much stronger, decreasing with molecular tilt in the px and py spectra,

which is not observed in the experimental spectra.

As βm increases, the intensities of the px and py spectra shown an overall increase

in intensities. In contrast, the sx and sy spectra show a decrease. This conforms to the

experimental observation with increasing contact pressure, thus suggesting an increase

in the molecular tilt angle of the arachidate layer. However, a slight increase in the

d+ peak is predicted with increasing tilt angle for the sx spectra. This is prominent

from βm ≈ 45◦, though this value is affected by the (somewhat arbitrary) degree of line

broadening chosen in computing the spectrum. This last effect is not observed in the

experimental sx spectra, which feature an overall decrease in intensity with increasing

contact pressure. The molecular tilt angle is thus expected to remain lower than about

45◦ for all contact pressures.

The modelled spectra provide the integrated ν(CH) intensities as well as d+ and d−

peaks heights of figure 7.9, which are used for quantitative comparison below.

7.3.2 The main methylene stretch modes

Scattering intensities for the main symmetric and antisymmetric methylene stretch modes

(v73 and v76 of decanoic acid, respectively) are also modelled as a function of βm. The

results are presented in figure 7.10. For v73, only the sy spectrum is predicted to show

significant intensity at βm = 0◦. As βm increases, the symmetric stretch appears in the

px and py spectra and later in the sx spectrum when the molecule is approaching a flat

orientation. The sy intensity is strongest at all tilt angles.

For v76, the intensity variation is stronger in that the px and py intensities increase to

a level above that of sx and sy from about 45◦ onwards. The sx intensity is equal to the

sy intensity for low tilt angles but decreases with increasing βm and provides the weakest

scattering intensities when βm > 45◦.
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Figure 7.8: Modelled harmonic Raman spectra of the ν(CH) band for zinc arachidate in
the SF10-silica contact for various molecular tilt angles βm with respect to the
interface normal. The spectral intensities are summed over the full full range
of molecular azimuthal and twist angles. Modelling parameters conform to the
contact Raman experiment while employing computational Raman tensors of
decanoic acid (modes 71-89). Each modelled Raman line is convoluted with a
Lorentzian of 10 cm−1 fwhm to generate the spectra.
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Figure 7.9: Absolute and relative intensities of the ν(CH) band (top), the d+ peak (centre)
and d− peak (bottom) of the modelled Raman spectra (figure 7.8) of zinc
arachidate in the SF10-silica contact as a function of molecular tilt angle βm
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Figure 7.10: Modelled absolute and relative intensities for the symmetric CH2 stretch (v73,
top) and the antisymmetric CH2 stretch (v76, bottom) of decanoic acid rep-
resenting zinc arachidate in the SF10-silica contact as a function of molecular
tilt angle βm with respect to the surface normal.
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For both modes, the px and py intensities are practically equal because the laser is

incident under an angle very close to the critical angle for the SF10-silica interface. Only

in the symmetric stretch mode with a low molecular tilt angle, is the px spectrum slightly

stronger than py. This is caused by anisotropic effects of the local field correction.

The intensity curves for the individual modes differ from those of the ν(CH) band.

Due to line broadening in the modelled spectra, the d+ and d− peak heights (figure 7.9)

show behaviour that is a combination of the v73 and v76 curves with respect to βm. In the

modelled band, Isx is therefore significantly non-zero at all molecular tilt angles and for

both spectral features. This model prediction conforms to the experimental observation.

The cross-over point of Isy and Ipx = Ipy also varies: from 45◦ with the v76 modes taken

separately, to 40◦ in the d− feature and 33◦ in the integrated ν(CH) intensity. The

antisymmetric lines also contribute to the d+ peak height, exemplified by the presence

of similar cross-over at βm = 18◦. This contrasts with the zinc arachidate monolayer at

the silica-air interface discussed in section 6.4, where the symmetric stretch modes clearly

dominated the band intensities (compare figures 6.44 and 6.45). In that case, the angle of

laser incidence was far above the critical angle for the probed interface, contrasting with

our present case where symmetric and antisymmetric intensities mix more profusely.

7.4 Comparison and discussion

The modelled intensities are now compared to the experimental intensities to assess molec-

ular tilt of the zinc arachidate monolayers in the contact.

7.4.1 C-H stretch band intensities

From inspection of the ν(CH) intensity curves (figures 7.7 and 7.9, top), the trends of the

intensities as a function of contact pressure conform to an increase in βm predicted by the

model. The cross-over points at about 550 MPa and 33◦, respectively, may correspond,

thus indicating a molecular tilt angle around that value.

Similar observations may be made with the d+ and d− peak heights (figures 7.5 and

7.9). However, the cross-over of the sx and px intensities of the d+ peak lies at lower

pressure and tilt angle of about 440 MPa and 18◦, respectively. For the d− peak, the

trends in intensities conform to the previous observations, though no cross-over is seen in

the experimental peak heights. Following our modelled peak heights, this indicates tilt

angles below 40◦.

The tilt angle is now quantified with the methodology developed in section 6.4. The

variance of the model-to-experiment intensity ratios is used for each of the three intensity

metrics of the ν(CH) band: its integrated intensity, its d+ peak height and its d− peak

height. Figure 7.11 shows the normalised variance for each contact pressure and intensity

metric. These provide global minima that indicate the molecular tilt angle as a function of

contact pressure (figure 7.12). As the contact pressure is increased, the molecular chains
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Figure 7.12: Best fit βm from variance in figure 7.11 for each of the total intensity of the
C−H stretch band as well as its d+ and d− peak heights. The dotted lines
indicate linear fits (parameters given in table 7.3).
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Table 7.3: Linear regression parameters for βm(P ) = a · P + b derived from variance min-
imum as a function of contact pressure (figure 7.12). Regression uncertainties
are included at one standard deviation.

Intensity metric a / ◦ per 100 MPa b / ◦ βm at 500 MPa / ◦

integrated ν(CH) 4.8± 0.5 3± 3 27± 4
d+ height 3.5± 0.5 4± 2 21± 3
d− height 4.8± 0.3 3± 2 27± 3

the above combined 4.4± 0.6 3± 3 25± 4

tilt towards the surface normal. This was anticipated based on a quantitative comparison

and can now be quantified by linear regression of the variance minima versus contact

pressure. Table 7.3 provides the regression results.

The tilt angles derived from the total ν(CH) band intensity and the d− peak height

agree well. They range from 17.6◦ at the lowest to 33.0◦ at the highest contact pressure

and result in linear regressions that are identical within error. The d+ peak heights

provides lower tilt angles (ranging from 14.5◦ to 25.8◦) at a lower gradient with respect to

the contact pressure.† The difference between the regression results indicates uncertainty

in our methodology. By using decanoic acid in the harmonic approximation, additional

methylene stretch modes as well as Fermi resonances between the A′ modes are omitted.

These additional modes affect the d+ and d− peak heights in different ways, for example by

increasing the symmetric stretch intensity around the centre of the band, thus contributing

to the observed difference. The effect of experimental errors, further reduced by linear

regression, is assumed to be much smaller.

7.4.2 Main symmetric stretch mode

Intensities modelled for the main symmetric methylene stretch mode (v73 of decanoic acid)

are now used to asses molecular tilt angle by comparison to the d+ peak height in selected

experimental spectra. The main antisymmetric methylene stretch mode (v76 of decanoic

acid) is not used here, since it is strongly affected by intensities from A′ modes in all

spectra. For the present analysis, we employ the ratio Ipy(d
+)/Isy(d

+) while omitting the

px and sx spectra. The px and py spectra are the same, so one of these can be used as

no additional information is comprised in the other. Furthermore, the d+ feature in the

sx spectrum is strongly affected by a dominating d− feature. We thus only employ the

py and sy spectra in an attempt to enhance precision. The modelled Ipy(v73)/Isy(v73)

ratio is presented in the left-hand plot of figure 7.13 as a function of βm along with the

experimental Ipy(d
+)/Isy(d

+) ratios for each contact pressure. The intersections of these

†Extrapolated to zero pressure, the zinc arachidate monolayer could be said to have a chain tilt angle
of 3◦ ± 3◦. However, such extrapolation bears no physical meaning as the linearity of the tilt-pressure
relation is not ascertained here. Furthermore, our analysis of the zinc arachidate monolayer at the silica-
air interface provides a distinctly higher tilt angle. A stabilisation of the tilt angle is expected when the
contact pressure is lowered below the range tested here. A minimum practically feasible contact pressure
is expected to arise due to surfaces forces, i.e. when bringing the surfaces in close proximity, these snap
into contact at a non-zero contact pressure even without an external force being applied.



324 CHAPTER 7. BOUNDARY LUBRICANT UNDER STATIC PRESSURE

0 15 30 45 60 75 90

m

0

0.1

0.2

0.3

0.4

0.5

300 400 500 600
15

20

25

30

m

Figure 7.13: Molecular tilt angle βm derived from the modelled py-to-sy symmetric stretch
intensity ratio (black curve) compared to corresponding experimental d+

peak height ratios (coloured horizontal lines). The right-hand plot shows
the matching points (markers) and a regression line with a gradient of
0.025◦ MPa−1.

lines provide the ‘best-fit’ molecular tilt angles, presented in the right-hand plot of said

figure. Linear regression through these points provides a gradient of 2.5±0.5◦ per 100 MPa

in this range and extrapolates to 11± 2◦ at 0 MPa. The gradient is lower than that of the

previous analysis with the modelled spectrum rather than with an individual mode used

here. The molecular tilt angle ranges from 18.5◦ to 26.5◦, which is in line with our earlier

analysis. The difference lies in omitting contributions of antisymmetric stretch modes

to the modelled intensities in the present analysis. These increase the py intensity more

than the sy intensities, thus increasing the Ipy/Isy ratio and leading to higher tilt angles.

In contrast to our analysis of the zinc arachidate monolayer at the silica-air interface

(section 6.4), we may conclude that individual modes do not provide a good intensity

metric for the spectral features of the ν(CH) band. Symmetric and antisymmetric modes

are too convoluted in the present case because the laser is incident near the critical angle.

7.4.3 Layer stiffness

The stiffness of the zinc arachidate layer in the contact can be quantified with Young’s

modulus, computed from

E =
∆P

∆d / d
(7.6)
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where d is the layer thickness in the contact and ∆d is its change upon increasing the

contact pressure by ∆P . The exact length of the molecule drops out of the equation, only

tilt angles and pressures remain after substitution. The linear regressions of the derived

molecular tilt angles for the ν(CH) and d− intensities provide a modulus of 3.0 GPa for

deformation caused by pressure applied orthogonal to the interface in the 300− 600 MPa

range. For the d+ peak height, a modulus of 5.0 GPa is found while the intensity ratio

results in 6.4 GPa. These values allow comparison with other experimental techniques,

such as the surface force apparatus or colloidal-probe atomic force microscopy, which

measure forces rather than tilt angles.

7.5 Concluding summary

Zinc arachidate monolayers were confined in a solid-solid contact of SF10 and fused silica.

Static load was applied to the contact from 309 − 628 MPa, as determined by optical

microscopy of the contact area and Hertzian contact theory. Raman spectra were collected

at the four standard polarisation combinations at seven distinct contact pressures. This

previously collected dataset formed a case study for our present model and presented an

application of Raman spectroscopy to boundary lubrication by fatty acids. Qualitative

analysis suggested an increase in packing order and lateral chain interaction with increasing

contact pressure. A quantitative analysis proved possible with our modelling approach.

Spectra were modelled with our model description of the scattering process using

Raman tensors from Gaussian computations of decanoic acid in the harmonic approxi-

mation. These modelled spectra provided integrated band intensities as well as d+ and d−

peak intensities that were compared to the corresponding experimentally observed intensi-

ties. A qualitative comparison suggested tilt angles below 40◦. The variance of model-to-

experiment intensity ratios showed a global minimum, from which a best-fit βm value was

extracted, ranging from 17.6◦ at the lowest to 33.0◦ at the highest contact pressure for the

total ν(CH) band intensity and the d− peak height. The d+ peak height provided lower

tilt angles ranging from 14.5◦ to 25.8◦. This corresponded to a layer stiffness of 3.0 GPa

and 5.0 GPa, respectively, in the tested pressure range.

Here, scattering from individual Raman-active modes does not represent the ν(CH)

band well. This contrasts with our analysis of the zinc arachidate monolayer at the silica-

air interface (section 6.4). A likely cause for this is the incidence angle of the laser beam,

which is very near the critical angle in the present experiments, resulting in convolution

of the symmetric and antisymmetric methylene modes in spectra of all four standard

polarisation combinations.
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Chapter 8

Concluding remarks

This chapter summarises the conclusions of the foregoing chapters and suggests routes for

further development of the methodology and its application.

8.1 Summary of conclusions

Raman scattering is a tensorial effect and thus intrinsically affected by orientation of

the scattering molecule with respect to the electric field that causes it. In this work, a

consistent framework is developed to use this tensorial dependence to obtain knowledge

of scatterer orientation, in particular at an interface. It combines experiment with theory

in a consistent modelling framework.

The experimental approach uses laser Raman spectroscopy combined combined with

collection of the scattered light through a microscope objective lens. The incident laser

beam is preferably incident above the critical angle for the interface under study, thus

causing total internal reflection, to achieve surface sensitivity and to amplify scattering

from molecules near the interface. The position of the microscope objective also affects the

collected amount of Raman scattering. Incident as well as collection linear polarisation

directions may be adjusted. Calibration of all experimental variables is essential to obtain

spectra that can be compared quantitatively to modelling results.

In addition to the experimental considerations, the material under study determines

the spatial distribution of Raman scattering. Here, molecular vibrations are probed. Tran-

sitions between fundamental and first excited vibrational modes of the studied molecule

give rise to Raman scattering when the transition dipole moment includes the fully sym-

metric species of the point group to which the molecule belongs. At least one of the six

Raman tensor elements is then non-zero. The symmetry of the vibrational mode involved

determines the form of the Raman tensor. Examples of its derivation are presented and

the form of Raman tensors is tabulated for practically all relevant symmetry species using

a consistent definition of molecular axes.

In a classical description, the strength of Raman scattering is given by the first deriva-

tive of the molecular dipole moment with respect to the vibrational normal coordinate
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of the (first) excited state to which the molecule is excited by the incident light. It may

be assessed by the bond-polarisability model, symmetry considerations as well as by ab

intitio electronic structure computations. A method for computation of Raman tensors

in the commercial software package Gaussian is developed. Currently, the B3LYP/6-

311++G(d,p) theory level is available to provide harmonic vibrational normal modes and

their Raman tensors.

A model description incorporating the above experimental parameters and molecular

properties is developed. Starting from an incident linearly polarised laser beam, classical

electrodynamics is used to derive the field at the location of the scattering molecule. The

scattering molecule is located beyond or in front of an interface or is embedded in a thin

film between two dielectrics. At this location, a formulation of the local field correction is

developed to account for cavity and reaction fields. An effective Raman dipole is induced

by the local field via the Raman polarisability tensor. The emitted Raman scattering is

computed at the entrance to the microscope objective via a grid of nodes which spans it

aperture. At each node, Lorentz reciprocity is employed to derive the far-field due to the

Raman-induced dipole, again involving a cavity field correction. The field is collimated

and summed along x and y polarisation directions to obtain total Raman intensities.

The model is implemented in Matlab using vectorial, complex electric field amplitudes.

Appropriate coordinate transformations are applied throughout.

The model presents a consistent method to compute Raman scattering intensities tak-

ing into account the experimental geometry, material properties, molecular orientation and

Raman tensor. A model spectrum of a chosen polarisation combination can be generated

by computing the Raman intensities for all relevant modes with the appropriate Raman

tensors and broadening the obtained lines with an appropriate function. The dependence

of the Raman intensity on experimental parameters as well as molecular properties may

thus be assessed. This can be used in analysis or interpretation of Raman spectra as well

as in designing experiments for optimised scattering intensities.

The model is tested with three systems: sulfate salt solutions at a fused silica sur-

face, carbon tetrachloride at a sapphire surface and a Langmuir-Blodgett monolayer of

zinc arachidate on fused silica in air. The v1 mode of the sulfate anion provides a test

of the optical description of the model, which proved to correctly predict the v1 intensity

as a function of linear polarisation angles, angle of laser incidence and numerical aper-

ture. The accuracy of the match between model and experimental relative intensities is

limited by calibration of the experimental components. The model may be used to assess

experimental error with such known Raman scatterer.

The Raman spectra of liquid carbon tetrachloride on a sapphire hemisphere are not

correctly predicted with our current model. No individual parameter explains to observed

intensities, suggesting a combination of experimental error in polarisation directions and

birefringence of sapphire, which is not included in the model and which affects both signal

and background intensities in different ways.

For both sulfate and CCl4, relative intensities were not affected by the local field
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correction. Furthermore, averaging of the molecular orientation ensures that all diagonal

Raman tensors result in the same relative intensities as do the off-diagonal Raman tensors.

This implies that total scattering intensities, such as arising from various isotopologues,

scale with the number of similar modes involved while their relative intensities are equal

to that arising from one of the involved modes.

The monolayer of zinc arachidate on silica produces a convoluted ν(CH) stretch band,

including symmetric and antisymmetric methylene stretch modes. The symmetric modes

engage in Fermi resonances which alter line intensities within the band. This is compared

to modelled Raman spectra using harmonic electronic structure computations of decanoic

acid to represent the modes of the alkyl chain. The py-to-sx intensity ratio of the main

antisymmetric methylene stretch feature is judged to be most reliable and provides a

molecular tilt angle of 18◦, in line with other studies of condensed monolayers of fatty acid

salts. Other metrics prove relatively insensitive to molecular orientation, mainly because

of the experimental geometry and the omission of anharmonic effects in modelling the

spectra.

Raman scattering intensities thus depend on a combination of optical geometry, refrac-

tive indices of the materials involved, orientation (distribution) of the Raman scattering

molecule and the Raman tensor of the vibrational mode of interest. These parameters can

be isolated with our model to investigate their effect. This allows optimisation of Raman

experiments where, for example, high intensities in a single polarisation combination or

a high sensitivity with respect to molecular orientation is desired. It is also possible to

compute Raman spectra by modelling multiple Raman lines and applying an appropriate

line broadening function.

Finally, the approach is applied to interpret Raman spectra of a two-monolayer thick

film of zinc arachidate in a SF10-silica contact under static load, increasing from roughly

300 to 600 MPa. The molecular tilt angle is found to increase with increasing load, the

extend of which depends on the intensity and best-fit metrics used in analysing the spectra.

For the integrated ν(CH) band intensity, the molecular tilt βm can be expressed in degrees

as a function of contact pressure P in units of 100 MPa as

βm(P ) = (4.8± 0.5) · P + (3± 3) (8.1)

over the sampled range. This example demonstrates to application of Raman spectroscopy

to the tribological investigation of a buried, lubricated interface. The molecular response

is measured in situ as a function of macroscopic modulations of the interface with quan-

titative interpretation of the observed changes in the Raman spectra.

8.2 Further work

The current work forms a starting point for further research. Ideas are briefly presented

for Raman theory, the developed model and Raman scattering experiments.
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8.2.1 Theory

In some cases, exact knowledge of the Raman tensor is not needed. These include fully

symmetric modes, such as v1 of sulfate, or antisymmetric modes with only one non-zero

off-diagonal tensor element, such as v76 of decanoic acid. In these cases, modelled in-

tensities are simply scaled with the actual numerical value of the Raman tensor element.

However, interpretation of Raman scattering intensities is currently limited for modes that

are difficult to predict on the basis of symmetry considerations alone.

Computational Raman tensors provide the needed information. A lack of accurate

Raman tensors for molecular spectra that involve significant anharmonic contributions

currently limits the accuracy of interpretation of such spectra. It is further desired that

ab intitio computations are made possible for increasingly larger molecules. Convoluted

bands such as the C−H stretch band in long alkyl chains can then be interpreted more

reliably by fitting the experimental spectrum as a whole with a modelled spectrum. The

field of computational chemistry is continuously advancing and it is hoped that the current

work encourages developments in Raman calculations.

The present methodology in principle lends itself to evaluation of Raman tensors. For

a molecule of known orientation, a well-calibrated experimental system provides scatter-

ing intensities that can be linked directly to its Raman-active mode. By modelling the

intensities as a function of the Raman tensor elements, a best-fit may be found just like

any other unknown variable. In the current implementation, this would lead to relative

values for the Raman tensor elements as no absolute scattering intensities are computed.

8.2.2 Model

The model developed in this work was tested with a limited number of samples. Other

tests of the model can include calculations for a traditional Raman experimental setup, in

which the laser beam is incident on a bulk liquid sample under 90◦ relative to the direction

of observation. For a given Raman tensor, the intensity ratio is then expected to conform

to the depolarisation ratio ρ, which depends on the tensor invariants. Toluene presents

another interesting test case with multiple Raman modes in close proximity.

The model can be extended and improved in various ways, a number of which were

addressed in section 5.7.2.

Currently, modelled intensities are relative quantities only, requiring at least two spec-

tra for mutual comparison. If only one spectrum was needed, acquisition times would be

halved and dynamic measurements would be made much more accessible. This may be

achieved with materials that present two Raman peaks in the same spectral region, where

these could be used as an internal calibration. For example, the symmetric v2 feature

of the CCl4 spectra could be employed for comparison with the antisymmetric v4 mode.

Such situations are not at all universal, so that quantitative calculation of intensities would

increase the applicability of the model.

At present, an incident amplitude of unity results in discrete intensities at individual



8.2. FURTHER WORK 331

grid nodes, which are averaged for the final intensity. Identical grids should be used when

comparing modelling outcomes. Proper physical constants and units are used throughout

the pirs.m function, resulting in modelled intensities in an order of magnitude of roughly

10−70. Physical units of irradiance can be obtained by taking the actual dimensions of

the objective entrance into account. Quantitative intensities may be achieved by using

the actual incident laser irradiance in the model and by implementing physical distance

measures, including the size of the objective lens. Transmission coefficients of various

optical components may also need to be included for collimated parts of the light trajectory

where physical distances are less critical.

Furthermore, the model may be extended to layered materials and thick films (i.e.

thickness on the scale of the employed wavelength or larger). Currently, the model is re-

stricted to a single interface between two infinite half-spaces with the scatterer located at a

distance from this interface and to a thin film of scatterers between such half-spaces. More

complex interfaces may readily be implemented in the model by adjusting the coupling

factors to those appropriate for the interface.

Coupling factors for a dipole embedded in a thick film may be found in [148] and

[149], including a generalisation for a stack of layers. The transfer-matrix method can be

used to derive coupling factors in other geometries, described in [192, 193] for intensities

(squared amplitudes) and summarised in appendix A of [152]. More advanced treatments

are developed for amplitudes [194, 195], where coherent as well as incoherent interference

may play a role.

Furthermore, fields inside a layered structure including optical anisotropy can be com-

puted in software packages, some of which are freely available, including LayerOptics

[196].

The model was used in this work to explore variation of the Raman intensities with

respect to various input parameters in different experimental settings. A number of other

dependencies may be of interest, including the following.

• What is the effect of experimental geometry, including laser angle of incidence as

well as NA and position of the objective, on the sensitivity of the orientational

analysis for a given system (i.e. known Raman tensor and refractive indices)? This

sensitivity depends on the molecular orientation. If this orientation is roughly known,

the experimental geometry may be optimised to provide strongest variation in that

range.

• Can intermediate incident polarisations be used to improve spectra and/or their

analysis? A mix of p- and s-polarised incident laser radiation may be used to probe

all Raman modes in a single spectrum.

• What if the refractive index of the hemisphere varies significantly between the in-

cident laser radiation and the wavelength of the Raman scattering? If dispersion

increases to significant levels, for any material in the sample, the incident laser and
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the Raman scattering propagate differently through the interface and give rise to an

additional complexity in the radiation pattern that can be exploited. For example, if

the refractive index of the hemisphere is larger at the Raman-shifted frequency, the

critical angle of the interface reduces, so that more of the dipole near-field couples

into the hemisphere, enhancing the signal.

• To what extend can the model be applied to Raman microscopy? Both laser illumi-

nation and collection of scattered light take place through the microscope objective.

The incident field thus spreads over an appreciable cone of angles and its polarisation

depends on the position within said cone. How sensitive is the modelled intensity to

molecular orientation in this case?

8.2.3 Experiment

For an experimental point of view, it is strongly suggested to perform a calibration of the

polarisers with each of the objective lenses. The telescope may be used without hesitation

to reduce the laser spot size when θk,i is sufficiently far removed from the critical angle.

The spread in angle of incidence was not found to result in significantly different Raman

intensities.

The angle of laser incidence may be set at the critical angle to maximise Raman

scattering from interfacial molecules. At this angle, the px and py spectra are equal for

isotropically averaged molecules. A difference between these spectra (for a non-symmetric

mode) indicates a preferred azimuthal orientation in the plane of the interface. The model

may be applied to deduce this information without requiring additional measurements

at various azimuthal orientations of the sample. A tribological interface can thus be

investigated as it undergoes both load and shear, possibly aligning lubricant molecules.

Above the critical angle, the evanescent field that drives the dipole has a strong z-

dependence. Similarly, the dipole near-field is evanescent and couples back into the hemi-

sphere with an equally strong dependence on the depth of the molecule. The Raman

scattered intensity thus depends on z via two exponentials in an experimental geometry

where θk,i > θc and the objective collects Raman scattering in radiation zone II. This ge-

ometry may be employed to probe interfacial molecules with an increased selectivity and

perform depth-profiling with increases sensitivity. The collection system designed by Ste-

fan Seeger and co-workers for supercritical angle fluorescence [7, 8] could also be applied

in current Raman systems. In 2017, his research group published a proof-of-principle of

what they termed supercritical angle Raman microscopy [197].

The NA and position of the objective can be used effectively to enhance the Raman

signal. Though a larger NA results in higher intensities, tilting the object so that it detects

the intensity spike around the critical angle is more effective. This configuration can be

implemented with the developed rotation clamp (section 3.1.1) and a relatively small NA

would suffice in this case. Care should be taken that the laser beam reflection does not

fall into the objective lens.
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Using all four standard polarisation combinations is not required when seeking to

derive one molecular parameter only, such as βm. Polarisation combinations with highest

signal-to-noise should be chosen without comprising redundant information. Duplicate

spectra can thus be avoided.

The linear polarisation direction of the laser and of collection can be adjusted for

optimal scattering intensities. The incident polarisation can be set to a value between p and

s to excite all Raman-active modes in a single spectrum. Both polarised and depolarised

Raman modes are then observed. A reduced number of spectra may then be collected to

capture all relevant spectral information from the sample. This reduces acquisition time.

Analysis of molecular orientation as a function of an external modification is still possible

with the current model after establishing the molecular orientation once with a full dataset

(i.e. at least two spectra of different polarisation combinations) and then collecting only

spectra of one of the polarisation combinations. The relation between the intensities in the

latter then directly relate to changes in molecular orientation as predicted by the model.

Alternatively, selection of polarisations may be automated in time. For example, spec-

tra of at least two different polarisation combinations may be collected in a gated fashion

continuously while, for example, adjusting an external parameter slowly in order to inves-

tigate the effect of this parameter of the molecular orientation.

8.2.4 Areas of application

The method of interpreting Raman spectra with our model is applicable to all interfacial

Raman scattering. As usual, fluorescence or obscuring background Raman lines are to be

avoided. Furthermore, it may be extended readily to other scattering-based phenomena.

For each application, an appropriate intensity metric and fitting metric has to be

established. If whole spectra are modelled, these may be fitted to the experimental spectra

with a least-squares procedure after baseline subtraction.

When multiple isotopologues are present, the total recorded intensities may be split

according to their abundance. Modes may thus be isolated. Alternatively, fitting the

experimental spectra may also provide isotopological abundance of a sample where this is

unknown.

Our approach may also be applied to study interactions between materials. The ori-

entation of molecules bound to a surface by adsorption from bulk, by (covalent) bonds or

by polymerisation from a graft may all be established. Interactions with various materials

may be assessed by variation of the surface by exchanging hemispheres or by treatment of

its bottom surface.

Materials to consider include surfactants [79, 81], phospholipids [54] (bilayers of which

have recently been simulated as a function of pressure [198, 199]), liquid crystals, poly-

mers [200] and fatty acids. Raman spectroscopy of such materials has previously been

demonstrated successfully in our research group. Other materials preferably include small

well-characterised molecules of which Raman tensors can be computed with high accuracy.



334 CHAPTER 8. CONCLUDING REMARKS

The model may further be applied to study (model) membranes at surfaces. The

distribution of molecular orientations differs in various membrane conformations. Different

Raman intensities are thus expected to arise from a bilayer structure as opposed to vesicles

or tubes. Furthermore, pollutants, active agents [201] or (drug) cargo molecules [200] may

be investigated. These may bind to membranes with a preferred orientation, possibly

illuminating their mechanism of action. Other ‘doped’ materials may be investigated as

well, preferably with strong Raman bands for the dopant in an unobstructed part of the

Raman spectrum. Deuteration can also be used to isolate otherwise obstructed spectral

features.

A further extension of the approach involves mapping of the interface, recently devel-

oped in our group [200]. It involves collecting total scattering intensities for a selected

spectral region and mapping this onto the spectrometer detector. A graphical represen-

tation of the integrated Raman intensity is thus obtained. When combining this with

selection of linear polarisation, intensity maps can be obtained that are sensitive to molec-

ular orientation. Our model may then be used to compute intensities integrated over the

selected spectral range and deduce molecular orientation at each location on the sampled

interface. This approach may be of particularly interest to lubrication and wear in a

contact spot of non-uniform pressure and/or shear.

To what other techniques can the developed methodology be applied? The mathe-

matical description of Raman scattering is similar to that of other phenomena in which

absorption is followed by emission, such a Rayleigh scattering and fluorescence.

The model may be amended for application to Rayleigh scattering by substituting the

molecular polarisability tensor for the Raman polarisability tensor, removing the frequency

shift and adjusting various equations. Intensities of interfacial Rayleigh scattering may

then be analysed quantitatively. However, chemical specificity is lost.

Fluorescence may also be modelled, though the molecular orientation may change in

the time-frame between absorption and emission processes. The delay between excitation

of the fluorophore and emission of the fluorescent light limits the application of the current

model description to cases where there is no (appreciable) movement of the molecule on the

interval between excitation and emission. A tensorial absorption cross-section should be

used while the ‘Raman-induced dipole’ is now replaced by the fluorophore dipole moment,

which is also linked to the molecular orientation.

In the above suggested applications, detection of emitted light could follow the cur-

rently developed routine of computing far-field dipole radiation at the entrance to the

microscope objective.

8.3 A final word

The main impact of this research lies in providing a coherent electromagnetic description

of the Raman scattering process in combination with computational Raman tensors to

enhance understanding of Raman spectra of molecules at interfaces. In combining experi-
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ment, theory and modelling into one consistent description, a great number of variables can

be assessed quantitatively. Molecular orientation is one of these properties of appreciable

historic and current interest.

The approach is complementary to other spectroscopic (infrared, sum-frequency), op-

tical (ellipsometry) and structural techniques (X-ray or neutron scattering) that can be

applied to buried interfaces. For many of these, advanced theories and models exist. With

the current work, it is hoped that the field of Raman spectroscopy is further advanced with

a modelling framework for quantitative interpretation of Raman spectra. The ubiquitous

nature of Raman scattering, its access to direct molecular information without altering the

system under observation lends itself to wildly varying applications that become increas-

ingly realistic as technological developments in lasers and detectors progress. It would

be a shame if data interpretation would be hampered by a lack of understanding how

the Raman intensities arise, what factors contribute to its spectra and how measurements

could be optimised.

It is hoped that this thesis provides the reader with insights as well as ideas to encour-

age and advance their application of Raman spectroscopy.

finis
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Appendix A

Symmetry and vibrational analysis

A.1 Introduction

Schönflies nomenclature is used for all point groups and conventional symbols are used

for the symmetry operators with I the identity operator (which is sometimes listed as E),

C a rotation, σ a reflection, i the inversion and S a rotation-reflection operation. The

irreducible representation or symmetry species A is one-dimensional, as is B, while E is

two-dimensional and F is three-dimensional (the symbol T is sometimes used for the last

species). Accents and subscripts have their usual meaning as part of Mulliken symbols,

see e.g. [73, 78] for details.

The equilibrium structures of the molecules considered here are given in figure A.1.

The choice of Cartesian axes is indicated and follows conventional assignment as far as this

is unambiguously defined. There is no convention for the x and y axes in a number of point

groups. An arbitrary choice has therefore been made. This is also the case for the positive

directions of all three axes. The procedure of assigning axes follows the prioritisation as

follows.

1. The z-axis is chosen

(a) along the unique axis of highest rotational order (the principal axis), or

(b) along the two-fold axis that passes through most atoms, or

(c) in a mirror plane,∗ or

(d) along the axis which cuts most bonds in the molecule.

2. The x-axis is subsequently assigned

(a) for planar molecules,

i. with the z-axis in the molecular plane, the x-axis is normal to that plane,

or

∗In the Cs pointgroup, this priority ensures that the xz plane is the mirror plane. This choice is not
uniform. Most character tables seem to assume that the mirror plane is the xy plane.
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ii. if the z-axis is normal to the molecular plane, the x-axis passes through

the most atoms;

(b) for non-planar molecules, the x-axis is

i. along the C ′
2 axis that passes through the most atoms, or

ii. in the σv plane that passes through the most atoms, or

iii. chosen to pass through most atoms.

3. The y-axis and its positive direction ŷ follow from the arbitrary choice of positive

directions x̂ and ẑ for the x and z axes through the right hand rule.

The origin follows from the intersection of the axes, which is usually at the centre of mass.
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HH

H

H

HH

H

H

C

H
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H

H
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Figure A.1: Molecular equilibrium structures with choice of Cartesian axes.

A convenient overview of the symmetry species of translation, rotation and polarizabil-

ity tensor elements is given in [61] from page 145 onwards for all molecular point groups.

However, it lacks the symmetry operators and the characters of the irreducible represen-

tations which allow the computation of the number of vibrational fundamentals and their

symmetry species. The analysis presented here builds from low to high symmetry. Only

first overtones and combinations of two vibrational modes are considered as these are most

relevant in spectral analysis.

Vibrational normal modes and their internal coorinates are described in several ref-

erence works, including Nakamoto [63] and Herzberg [76]. The internal coordinates ∆r

stands for a change in bond length and ∆θ for a change in bond angle from their respec-

tive values in the equilibrium geometry of the molecule. A numerical subscript is used to

differentiate the various bonds and angles.
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Vibrational normal modes are numbered in a specific pattern. Fundamental bands are

indicated with symbol vn with n = 1 for the totally symmetric mode of highest frequency

(highest wavenumber), then numbering the modes in descending frequency within each

symmetry species. The order of the symmetry species follows the character tables.

For modes that are mainly localised, the following symbols can be used to represent the

atomic motion: ν for bond stretching, δ for deformation or angle bending, τ for twisting

or torsional motion, ω for wagging and ρ for rocking. The notation is used as in ν(CH3),

which stands for the bond stretching mode(s) in a methyl group.

Table A.1: Contribution to character of Γ3N per unshifted atom

R χ(R)

I +3
i −3
σ +1
C2 −1
C1
3 , C

2
3 0

C1
4 , C

3
4 +1

C1
6 , C

5
6 +2

S1
3 , S

5
3 −2

S1
4 , S

3
4 −1

S1
6 , S

5
6 0

A.2 Toluene

Toluene consist of a benzene ring with one H-atom substituted by a methyl group (fig-

ure A.1). It contains 15 atoms, so that 3 · 15 − 6 = 39 vibrational normal modes are

expected. The point group of its equilibrium structure is Cs, a symmetry group of order

two. Its character table is presented in table A.2.

Table A.2: Character table for the Cs point group.

Cs I σh
A′ 1 1 Tx, Ty, Rz xx, yy, zz, xy + yx
A′′ 1 -1 Tz, Rx, Ry xz + zx, yz + zy

The representation Γ3N incorporates the three-dimensional motion of all atoms. It is

derived by counting the number of unshifted atoms when applying a typical symmetry op-

erator R of each symmetry class on the molecular equilibrium structure. This contributes

to the character χ(R) of the representation through table A.1. And results in

Cs I σh

unshifted atoms 15 13

Γ3N 45 13
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which is reduced into irreducible representations with the reduction formula of equa-

tion 2.166.

Γ3N = aA′A′ + aA′′A′′

=
1

2

(
(1 · 1 · 45 + 1 · 1 · 13)A′ + (1 · 1 · 45 + 1 · −1 · 13)A′′)

= 29A′ + 16A′′

(A.1)

This representation is the combination of translation, rotation and vibrational representa-

tions. Table A.2 provides the symmetry species of the translations (Tx, Ty and Tz) and

of the rotations (Rx, Ry and Rz), so that

Γtrans = 2A′ +A′′ (A.2)

Γrot = A′ + 2A′′ (A.3)

which are removed from Γ3N to obtain the representation of the vibrational fundamental

modes.

Γvib = Γ3N − Γtrans − Γrot

= 26A′ + 13A′′
(A.4)

The vibrational representation includes 39 one-dimensional symmetry species. This agrees

with the expected number of vibrational degrees of freedom.

There are 26 fully symmetrical modes, to which the binary elements xx, yy, zz and

xy+yx belong and thus the Raman tensor components α′
xx, α

′
yy, α

′
zz and α

′
xy = α′

yx. This

indicates that all A′ modes are Raman active. These give rise to polarised Raman bands

in the spectrum because A′ is the totally symmetric symmetry species of the point group.

The Raman tensors of these modes can be given in the symmetry axes in the general form

α′(A′) =

a d 0

d b 0

0 0 c

 (A.5)

consisting of at most four unique non-zero elements. Each of the 26 modes has a distinct

set of numerical values for a, b, c and d. As xz + zx and yz + zy belong to A′′, the 13

modes of this symmetry species are Raman active too but give rise to depolarised peaks

in the Raman spectrum. The Raman tensor for these modes is of the general form

α′(A′′) =

0 0 e

0 0 f

e f 0

 (A.6)

with different d and e for each of the 13 non-degenerate normal modes. In our molecular

frame of reference (figure A.1), the x and z axes are interchanged from the symmetry
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assignment in the point group table, altering the form of the above tensor to those listed

in table C.1.

Ring breathing mode

We will not present a full analysis of all normal modes, but address the ring breathing

mode only. This mode is the simultaneous stretching of the five C−H bonds in the phenyl

ring. Its normal coordinate Qbr can be expressed as

Qbr(t) = ∆r1(t) + ∆r2(t) + ∆r3(t) + ∆r4(t) + ∆r5(t) (A.7)

where ∆r1 is the change length of bond 1 from its value in the equilibrium geometry. This

mode belongs to A′, the fully symmetric symmetry species of the point group.

The phenyl group on its own, belongs to the C2v point group. It has 39 vibrational

normal modes that display a higher symmetry than those of the Cs point group. The

Raman tensor for the ring breathing mode will therefore have a higher symmetry. The

form of equation A.12 presented in the next section will apply, rather than the one of

equation A.5 derived here. This separation of vibrational modes between moieties of

the same molecule arises when the force constant of the bonds differ sufficiently to give

rise to non-resonant frequencies. In the case of toluene, the C−H bonds in the methyl

group differ from those in the aromatic ring. This can be investigated computationally or

experimentally as outlined in chapter 4.

Overtones, combinations and resonances

The symmetry species of the first overtones are found through the direct product of the

symmetry species of the fundamentals with themselves, as none of the modes are degen-

erate

Γover =

A′2 = A′ ×A′ = A′

A′′2 = A′′ ×A′′ = A′
(A.8)

and for combination bands

Γcomb =


A′ ×A′ = A′

A′′ ×A′′ = A′

A′ ×A′′ = A′′

(A.9)

which are all found by multiplication of the characters and reduction of the resulting

representation (or by using look-up tables that summarise the multiplication results, for

example from [73]). All overtones and combinations are Raman-allowed and have Raman

tensors of the same structure as presented for the fundamental modes. The first overtones

have A′ symmetry and could therefore interact amongst themselves as well as with the

fundamental A′ modes to give rise to Fermi resonance if the frequencies are sufficiently
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close. Combinations belong to either the A′ or A′′ symmetry species and could also interact

with other vibrational modes.

Isotopoloques

Toluene isotopologues with a 13C at the 1, 2 or 5 position will not affect the symmetry

assignment of the Cs point group as these atoms lie in the mirror plane. If at any other

position, the symmetry of the molecule reduces to C1. Considering the phenyl group in

isolation, the mirror plane changes to the plane of the carbon atoms. Only its two-fold

rotational symmetry is affected by isotopes. However, its point group will not reduce to

lower symmetry than Cs.

Summary

In summary, toluene has 39 fundamental vibrational modes, all of which are Raman active

according to symmetry. These belong to the A′ (26 polarised bands, including the ring

breathing mode) and A′′ symmetry species and can produce overtones and combination

bands without symmetry restrictions, resulting in Fermi resonances if the frequencies

match.

A.3 Methylene

The methylene group (−CH2), considered in isolation, is of C2v symmetry (character

table A.3). It has three atoms, providing 3 · 3 − 6 = 3 degrees of freedom for vibrational

motion. The representation of the atomic motion Γ3N is found to be

C2v I C2 σv(xz) σ′v(yz)

unshifted atoms 3 1 1 3

Γ3N 9 -1 1 3

which is reduced into a combination of irreducible presentations with the reduction formula

(equation 2.166) to yield

Γ3N = 3A1 +A2 + 2B1 + 3B2 . (A.10)

Removing the symmetry species of the three translations and three rotations returns the

vibrational representation

Γvib = 2A1 +B2 (A.11)

that has two fully symmetric modes and one antisymmetric mode. Inspection of the

character table reveals that the symmetric modes involves all diagonal tensor elements
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xx, yy and zz, giving rise to a diagonal Raman tensors

α′(A1) =

a 0 0

0 b 0

0 0 c

 (A.12)

while the antisymmetric mode involves the yz + yz basis only and gives rise to a Raman

tensor

α′(B2) =

0 0 0

0 0 d

0 d 0

 (A.13)

with only one unique non-zero element. Both tensors are specified with reference to the

axes given in figure A.1. The basis vectors x̂ŷ + ŷx̂ and x̂ẑ + ẑx̂ do not form a suitable

basis for any of the vibrational normal modes of methylene.

Normal modes

Wanting to deduce what molecular motion relates to which fundamental vibration, we

establish a representation of the C−H bond stretch vectors Γstretch. These two vectors

point from C to H atom and transform as

C2v I C2 σv(xz) σ′v(yz)

Γstretch 2 0 0 2

under the symmetry operators of the point group. This can be reduced to

Γstretch = A1 +B2 (A.14)

which leaves one vibrational mode of A1 symmetry unaccounted for. Through

Γvib = Γstretch + Γdeform (A.15)

this is assigned to a deformation of the bond angles. The only bond angle that cannot be

described as a translation or a rotation of the molecule as a whole is the H−C−H angle.

This vibrational motion must therefore belong to the left-over fully symmetric species A1

Γdeform = Γvib − Γstretch = A1 (A.16)

Table A.3: Character table for the C2v point group.

C2v I C2 σv(xz) σ′v(yz)

A1 1 1 1 1 Tz xx, yy, zz
A2 1 1 -1 -1 Rz xy + yx
B1 1 -1 1 -1 Tx, Ry xz + zx
B2 1 -1 -1 1 Ty, Rx yz + zy
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and gives a polarised Raman band in the spectrum of the moiety. The stretch modes

result in one polarised and one depolarised Raman band.

The normal coordinates of the vibrationsQsst, Qast andQbe describe symmetric stretch-

ing of the two bonds, antisymmetric stretching and bending motions through

Qsst(t) = ∆r1(t) + ∆r2(t)

Qast(t) = ∆r1(t)−∆r2(t)

Qbe(t) = ∆θ12(t)

(A.17)

where ∆r1 is the change in length of bond 1, as before, and ∆θ12 is the change in the

H−C−H bond angle from its value in the equilibrium geometry.

Note that the three rotations of the methylene group become vibrations when the

moiety is part of a molecule. In addition to the stretch and bending modes, wagging,

rocking and twisting modes then arise.

Overtones, combinations and resonances

Analysing the symmetry species of any overtones and combinations gives

Γover =

A1
2 = A1 ×A1 = A1

B2
2 = B2 ×B2 = A1

(A.18)

Γcomb =

A1 ×A1 = A1

A1 ×B2 = B2

(A.19)

(note that a combination of two B2 modes can only be achieved through the second, fourth,

sixth,. . . overtone of the B2 fundamental, which is outside the scope of our analysis). We

conclude that an overtone of the antisymmetric mode could interact with the symmetric

fundamental vibrations (and their overtones or combinations) on the grounds of symmetry.

The result of such an interaction necessarily belongs to the fully symmetric species A1, is

Raman active and polarised. The symmetric modes and their overtones and combinations

can interact amongst themselves and the result is similarly Raman active and polarised.

The strengths of this interaction depends on the frequencies of the modes involved and

cannot be predicted on the grounds of symmetry considerations alone.

Isotopologues

Carbon isotopes do not affect the symmetry of an isolated methylene group. One hydrogen

isotope reduces it from C2v to Cs. The Raman tensor for these isotopologues have the

forms deduced above for toluene.
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Summary

In summary, isolated methylene has three Raman active fundamental bands: a symmetric

CH2 stretch, an antisymmetric CH2 stretch and a symmetric H−C−H bending mode.

The symmetric modes give polarised Raman peaks and can interact to give overtones and

combinations as well as Fermi resonances if the vibrational frequencies are close.

A.4 Methyl

The geometry of an isolated methyl group (−CH3) belongs to the C3v point group (char-

acter table A.4). The four atoms give rise to 3 · 4− 6 = 6 vibrational degrees of freedom.

The representation of the atomic motion is found to be

C3v I 2C3 3σv

unshifted atoms 4 1 2

Γ3N 12 0 2

and can be reduced to

Γ3N = 3A1 +A2 + 4E (A.20)

showing that it consists of four one-dimensional and four two-dimensional irreducible rep-

resentations. The vibrations of E symmetry represent two-fold degenerate every levels.

The vibrational representation is obtained by removing the symmetry species of transla-

tions and rotations. This gives

Γvib = 2A1 + 2E (A.21)

which shows that all fundamental modes are Raman active. The element xx+yy, belonging

to A1, is a linear combination of two binary elements. Its opposite is xx − yy and with

xy + yx forms a basis for E (as it is a two-dimensional irreducible representation, it

requires two basis vectors). The only undisturbed binary combination is zz. The individual

elements xx and yy are not resolved in this case, indicating cylindrical symmetry in the

Raman tensor for the fully symmetry modes

α′(A1) =

a 0 0

0 a 0

0 0 b

 (A.22)

Table A.4: Character table for the C3v point group.

C3v I 2C3 3σv
A1 1 1 1 Tz xx+ yy, zz
A2 1 1 -1 Rz

E 2 -1 0 (Tx, Ty), (Rx, Ry) (xx− yy, xy + yx), (xz + zx, yz + zy)



364 APPENDIX A. SYMMETRY AND VIBRATIONAL ANALYSIS

while the general form of the Raman tensor for the degenerate modes is

α′(E) = w1

 c 0 −d
0 −c 0

−d 0 0

+ w2

0 c 0

c 0 d

0 d 0

 (A.23)

with two unique non-zero elements c and d. Two bases are appropriate for the E species

so that α′(E) can be written as a linear combination of two Raman tensors pertinent to

each of these bases with normalised weights w1 and w2. In an unperturbed molecule, the

frequencies of the degenerate vibrational modes are equal and any linear combination of

solutions also satisfies the symmetry requirements.

Normal modes

The vibrational representation is composed of a representation of the stretch and defor-

mation modes. Analysing the symmetry behaviour Γstretch gives

C3v I 2C3 3σv

Γstretch 3 0 1

which is reduced in symmetry species. This results in

Γstretch = A1 +E (A.24)

Γdeform = A1 +E (A.25)

indicating that each representation is composed of a fully symmetric mode (polarised in

the Raman spectrum) and a degenerate mode, also Raman active and giving depolarised

bands in the spectrum. The A1 stretch mode is the symmetrically stretching of all C−H

bonds, while the A1 deformation mode is the bending of these in unison. In the E modes,

the bonds stretch or bend out of synchrony. The vibrational normal coordinates pertaining

to these modes are [78]

Qsst =
1√
3
(∆r1 +∆r2 +∆r3)

Qdst =


1√
6
(2∆r1 −∆r2 −∆r3)

1√
2
(∆r2 −∆r3)

Qum =
1√
3
(∆θ12 +∆θ23 +∆θ31)

Qdef =


1√
6
(2∆θ23 −∆θ12 −∆θ31)

1√
2
(∆θ12 −∆θ31)

(A.26)

where sst stand for symmetric stretch, dst for degenerate stretch, um for the symmetric

bending umbrella motion and dbe for degenerate bend. Qsst and Qum belong to the A1

symmetry species while the remainder belong to the E species. The bond angles θ relate
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to the bonds in subscript, with 0 denoting the bond along the z-axis that connects the

methyl group to its molecule and 1, 2, 3 denote the three C−H bonds.

Isotopologues

As quantified in appendix B, isotope effects are negligible for methyl.

Overtones, combinations and resonances

An overtone or combination of the symmetric modes belongs to A1 as we have seen before.

For overtones of the degenerate modes, a distinction has to be made between overtones

of the same degenerate state (denoted E2) and of a single excitation in each of the two

degenerate states (denoted E × E, as for a combination band). The characters for each

are different and found through equation 2.173 and the direct product, respectively. For

the first overtone of interest here, equation 2.173 simplifies to

χP 2(R) =
1

2

(
χP (R)

2 + χP (R
2)
)

(A.27)

which is given in the following overview for the E species of the C3v point group.

R I C3 σv

R2 I2 = I (C3)
2 = C2

3 (σv)
2 = I

χE(R) 2 -1 0

χE(R
2) 2 -1 2

χE2(R) 3 0 1

The representation for the overtone E2 is then reduced as usual. The symmetry species

for the overtones of methyl can now be listed as

Γover =


A1

2 = A1 ×A1 = A1

E2 = A1 + E

E × E = A1 +A2 + E

(A.28)

in which the A2 species is not Raman active. The following combination tones, involving

fundamentals and first overtones only, are possible

Γcomb =



A1 ×A1 = A1

A1 ×A2 = A2

A1 × E = E

A2 × E = E

E ×E = A1 +A2 + E

(A.29)

from which only the A1 and E species are Raman active. Several overtones and combina-

tion bands might mix with fundamental modes to produce Fermi resonances.
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Summary

The methyl group has six vibrational normal modes: two fully symmetric modes (the sym-

metric stretch and the umbrella mode) and two two-fold degenerate modes (asymmetric

stretches and deformations). The first two belong to the fully symmetric species of the

C3v point group, to which all relevant isotopologues belong.

A.5 Sulfate and carbon tetrachloride

The equilibrium structure of the sulfate anion (SO2–
4 ) and carbon tetrachloride (CCl4) both

have a tetrahedral geometry and each contain five atoms (figure A.1). The vibrational

properties of its 3 · 5− 6 = 9 fundamental modes are thus identical, as far as a symmetry

analysis is concerned. Their point group is Td, presented in table A.5.

The symmetry properties of the representation of atomic motions are

Td I 8C3 3C2 6S4 6σd

Γ3N 15 0 -1 -1 3

which is reduced to

Γ3N = A1 + E + F1 + 3F2 . (A.30)

It includes the vibrational motions

Γvib = A1 +E + 2F2 (A.31)

consisting of a fully symmetric mode, a two-fold degenerate mode and two triple degenerate

modes, totalling nine normal modes as predicted. All of these are Raman active, as

confirmed through the character table. The basis vector xx + yy + zz that belongs the

A1 species, the fully symmetric mode of this point group, is a linear combination of all

diagonal elements of the Raman tensor. It represents a spherical Raman tensor with one

unique non-zero element

α′(A1) =

a 0 0

0 a 0

0 0 a

 (A.32)

There are two degenerate bases for the E species that contain one unique non-zero element

Table A.5: Character table for the Td point group.

Td I 8C3 3C2 6S4 6σd
A1 1 1 1 1 1 xx+ yy + zz
A2 1 1 1 -1 -1
E 2 -1 2 0 0 (2zz − xx− yy, xx− yy)
F1 3 0 -1 1 -1 (Rx, Ry, Rz)
F2 3 0 -1 -1 1 (Tx, Ty, Tz) (xy + yx, xz + zx, yz + zy)
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on the diagonal conforming to tensors of cylindrical and planar symmetry

α′(E) = w1

b 0 0

0 b 0

0 0 −2b

+ w2

−b 0 0

0 b 0

0 0 0

 (A.33)

though a linear combination of the two can result in a tensor of elliptical symmetry.

Here, the two bases contribute to the same tensor elements, contrary to the E species in

methylene discussed above. The general form of the Raman tensor for a vibrational mode

of the F2 species involves off-diagonal elements only and one non-zero unique tensor value

α′(F2) = w1

0 c 0

c 0 0

0 0 0

+ w2

0 0 c

0 0 0

c 0 0

+ w3

0 0 0

0 0 c

0 c 0

 (A.34)

involving up to three normalised weighing factors, one for each of the three degenerate

modes.

Normal modes

Analysing the symmetry properties of bond stretching vectors results in

Td I 8C3 3C2 6S4 6σd

Γstretch 4 1 0 0 2

which is reduced to give the symmetry species of the fundamental bond stretching modes,

while the remainder is made up of deformations, so that

Γstretch = A1 + F2 (A.35)

Γdeform = E + F2 (A.36)

which shows that the totally symmetric mode is a synchronous stretching of all S−O or

C−Cl bonds. The triply-degenerate modes involve asynchronous stretching and bending

of bonds whereas the two-fold degenerate mode is a deformation mode.

The normal coordinates Q of the vibrations are as follows, where sst stands for sym-

metric stretch, dst for degenerate stretch, 2dd for two-fold degenerate deformation and
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3dd for three-fold degenerate deformation.

Qsst =
1√
4
(∆r1 +∆r2 +∆r3 +∆r4)

Qdst =
1√
4


∆r1 −∆r2 +∆r3 −∆r4

∆r1 −∆r2 −∆r3 +∆r4

∆r1 +∆r2 −∆r3 −∆r4

Q2dd =


1√
12

(2∆θ14 + 2∆θ23 −∆θ12 −∆θ34 −∆θ13 −∆θ24)

1√
4
(∆θ12 +∆θ34 −∆θ13 −∆θ24)

Q3dd =
1√
2


∆θ12 −∆θ34

∆θ13 −∆θ24

∆θ14 −∆θ23

(A.37)

Isotopologues

The most abundant isotopologue of carbon tetrachloride is 12C35Cl3
37Cl, which belongs

to the C3v point group. The analysis presented on the basis of tetrahedral symmetry only

applies to 33.4% of the molecules, while 46.4% and 20.2% belong to the C3v and C2v point

groups, respectively.

This isotope effect is less dramatic for sulfate, with 99.0% of the ions expected to be of

Td symmetry and the balance belonging to C3v. Only a negligible fraction belongs to C2v.

The isotopes of sulfur and oxygen are less abundant than the chloride isotope, even though

the former feature multiple stable isotopes that allow for a higher number of isotopological

combinations.

Symmetry analysis of C3v and C2v moieties is presented above. The results presented

there are not directly applicable to carbon tetrachloride and sulfate due to the different

number of atoms in the molecule. We will briefly present the analysis for a generalised

molecule XY3Z, belonging to the C3v point group (character table A.4).

Five atoms in a non-linear molecule imply that there are 9 vibrational normal modes.

The reducible representation Γ3N including all atomic motions is

C3v I 2C3 3σv

unshifted atoms 5 2 3

Γ3N 15 0 3

and can be reduced to

Γ3N = 4A1 +A2 + 5E (A.38)

which includes the rotational and translational motions. Removing these returns the

vibrational representation

Γvib = 3A1 + 3E (A.39)
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which one additional A1 and E mode compared to the methyl group analysed above. The

two F2 triply-degenerate modes in XY4 are now reduced to an A1 and E mode each,

keeping the total number of modes constant, but reducing the number of degeneracies and

thus increasing the number of spectral lines.

The vibrations can be broken down into stretch and deformation modes. The symmetry

behaviour of the four bond vectors is

C3v I 2C3 3σv

Γstretch 4 1 2

which is reduced into symmetry species. The balance of the species in Γvib are the defor-

mation modes. This results in

Γstretch = 2A1 + E (A.40)

Γdeform = A1 + 2E (A.41)

which again differs from the methyl case as well as from the pure tetrahedral geometry of

the isotopic pure species. This gradual reduction of symmetry is summarised in correlation

tables (see e.g. [73] and [63]). In going from the Td point group to C3v, a point group

of lower symmetry with all its symmetry operations part of Td, the symmetry species of

the vibrational normal modes are partly preserved. The original A1 and E species of Td

become A1 and E species of C3v while the F2 species of Td become A1 and E in the C3v

point group. The Raman tensors of the modes for the XY3Z isotopes thus all have the

forms of equations A.22 or A.23.

The normal coordinates adjust accordingly. The normal coordinates Qsst and Q2dd

stay the same, noting that bond 1 now refers to the unique X−Z bond. The normal

coordinates Qdst and Q3dd, originally describing F2 modes, now split into a stretch of the

X−Z bond, an umbrella mode of the three X−Y bonds, both belonging to the A1 species,

as well as two degenerate deformations belonging to the E species of the C3v point group.

The correlation table A.6 summarises the relations between the symmetry species as the

symmetry of the molecule changes from Td to C3v or C2v.

Table A.6: Correlation of the symmetry species of the Td point group to the symmetry
species of its subgroups C3v and C2v [73].

Td C3v C2v

A1 A1 A1

A2 A2 A2

E E A1 +A2

F1 A2 + E A2 +B1 +B2

F2 A1 + E A1 +B1 +B2

Analysing the nine normal modes of the C2v isotopologue XY2Z2, we obtain the rep-

resentations Γ3N for the atomic and Γstretch for the bond stretch motion as
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C2v I C2 σv(xz) σ′v(yz)

unshifted atoms 5 1 3 3

Γ3N 15 -1 3 3

Γstretch 4 0 2 2

which are reduced to

Γ3N = 5A1 + 2A2 + 4B1 + 4B2

Γrot = A1 +B1 +B2

Γtrans = A2 +B1 +B2

Γvib = 4A1 + 2A2 + 4B1 + 4B2

Γstretch = 2A1 +B1 +B2

Γdeform = 2A1 +A2 +B1 +B2

(A.42)

where Γrot and Γtrans are read off the character table A.3 to deduce the symmetry species

of the vibrational modes Γvib and the deformation motions Γdeform. All normal modes of

the C2v isotopologues are Raman active. Table A.6 presents the correlation between these

symmetry species to those of the higher symmetry Td isotopologues. The Raman tensors

for the C2v modes have the forms presented in table C.1. A description of all vibrational

motions in the isotopologues of reduced symmetry can be found in [63].

Overtones, combinations and resonances

The Td symmetry species of overtones of degenerate modes is derived following the overview

below, obtained through equation A.27, and using the reduction formula (equation 2.166).

R I C3 C2 S4 σd

R2 I2 = I (C3)
2 = C2

3 (C2)
2 = I (S4)

2 = C2 (σd)
2 = I

χE(R) 2 -1 2 0 0

χE(R
2) 2 -1 2 2 2

χE2(R) 3 0 3 1 1

χF2(R) 3 0 -1 -1 1

χF2(R
2) 3 0 3 -1 3

χF2
2(R) 6 0 2 0 2

The symmetry properties of the various overtones are

Γover =



A1
2 = A1 ×A1 = A1

E2 = A1 + E

E × E = A1 +A2 + E

F2
2 = A1 + E

F2 × F2 = A1 + E + F1 + F2

(A.43)
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in which the modes of A2 and F1 symmetry are not Raman active. The remainder may

interact with the fundamental vibrational modes of the same symmetry. In particular,

overtones of the degenerate E mode can interact with the A1 fundamental and its over-

tones.

The possible combinations of two fundamentals and of a fundamental with a first

overtone include all symmetry species of the point group

Γcomb =



A1 ×A2 = A2

A1 ×E = E

A1 × F1 = F1

A1 × F2 = F2

A2 ×E = E

A2 × F1 = F2

A2 × F2 = F1

E × E = A1 +A2

E × F1 = F1 + F2

E × F2 = F1 + F2

F1 × F2 = A2 + E + F1 + F2

(A.44)

some of which are Raman active and may interact with other modes. In contrast to the

overtones, most combinations cannot mix with the fully symmetric stretch mode on the

basis of symmetry. The degenerate modes can give rise to Fermi resonances in multiple

ways if there is sufficient frequency overlap between their vibrations.

The most abundant isotopologue of carbon tetrachloride belongs to the C3v point

group. Analysis of its overtones, combinations and resonances follows the same procedure

as for the methyl group described above.

The overtones of C2v fundamentals all belong to its A1 symmetry species. The combi-

nation mode of an overtone with one of the fundamentals thus belongs to the symmetry

species of the fundamental. None of the six combinations of fundamentals belongs to the

fully symmetric species.

Γcomb =



A1 ×A2 = A2

A1 ×B1 = B1

A1 ×B2 = B2

A2 ×B1 = B2

A2 ×B2 = B1

B1 ×B2 = A2

(A.45)

On the grounds of symmetry alone, Fermi resonances are therefore possible between any

first overtones with an A1 fundamental mode or between a combination and a fundamental
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where there is no involvement of an A1 mode.

Summary

Tetrahedral molecules containing five atoms possess 9 vibrational modes: a symmetric

stretch, a three-fold degenerate asymmetric stretch and a two-fold as well as three-fold

degenerate deformation. Isotopologues of carbon tetrachloride are abundant and reduce

the molecular symmetry from Td to C3v or C2v and affect the form of the Raman tensor.

This is not the case with sulfate as it is naturally of a higher isotopic purity.



Appendix B

Isotopologues

Vibrational analysis is generally performed on a molecule containing the most abundant

isotopes only. The symmetry of such a molecule is reduced when isotopes are considered.

Table B.1 lists the abundance of relevant isotopes, based on the latest values of the Com-

mission on Isotopic Abundances and Atomic Weights of IUPAC [202]. Presented are the

mean values of the uncertainty intervals given for representative isotopic abundance of

terrestrial samples.

A combinatorial analysis can be used to predict the abundance of isotopologues from

the isotopic abundance. However, the isotopic abundance in laboratory materials may

differ from the average terrestrial distribution quoted by IUPAC. Mass spectroscopy can

be employed to verify the isotope and isotopologue abundance in individual samples.

Table B.1: Stable isotopes of selected elements and their average abundance from the
latest representative values of the IUPAC [202].

Atomic number Element Isotopic weight Isotopic abundance

1 H 1 0.999855
2 0.000145

6 C 12 0.9894
13 0.0106

8 O 16 0.99757
17 0.0003835
18 0.002045

16 S 32 0.9485
33 0.00763
34 0.04365
36 0.000158

17 Cl 35 0.758
37 0.242

373
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B.1 Toluene

The most abundant isotopologue of toluene is 12C7
1H8 at 92.7%, followed by 12C6

13C1H8

at 6.95% which occurs in seven forms. If the methyl group is freely rotating, as argued in

[203], toluene sports C2v symmetry. Assignment to this point group is retained in forms

of 12C6
13C1H8 that contain the 13C isotope in the methyl group or at the 1 or 3 position

of the phenyl ring. For the four remaining positions, symmetry is reduced to Cs.

In this work, the relevant spectral features of toluene arise from its phenyl ring only.

The phenyl ring, C6H5, has 2048 isotopologues, as each carbon and hydrogen atom can

be one of two stable isotopes. However, a number of these are symmetrically equivalent.

Based on the terrestrial abundance of the isotopes given in table B.1, the most abundant

isotopologue is expected to be 12C6
1H5 at 93.7%, followed by 12C5

13C1H5 at 6.03%. The

atoms of the latter can be arranged in six distinct ways, which contributes to the abundance

of this isotopologue. All others occur at less than 1% mole fraction.

Considered in isolation, the phenyl group displays C2v symmetry. Two of its 12C5
13C1H5

isotopologues, having the 13C atom at the 1 or 3 position, still belong to this point group.

If the 13C atom is at any other position in the phenyl ring, its symmetry is reduced to

that of the Cs point group. The abundance of these species is 4.02%.

B.2 Alkane chains

B.2.1 Methylene

The 12C1H2 isotopologue of methylene, containing the most abundant isotopes, is the most

abundant. It is expected to occur in 98.9% of the moieties, based on the terrestrial isotopic

abundance (table B.1). The second most abundant isotopologue is 13C1H2 at 1.06% and

equally belongs to the C2v point group. If the hydrogen atoms are of different isotopes,

the symmetry is reduced to that of the Cs point group. Such isotopologues can be ignored

safely for spectroscopy applications, as the most abundant of these, 12C1H2H, only occurs

in 0.0287% of the moieties.

In alkane chains, the probability of isotopic purity decreases with chain length. The

abundance of the three most abundant isotopologues is presented in figure B.1, again based

on the terrestrial isotopic abundances. The chance of at least one isotopic impurity in a

chain is more than half when it contains more than 63 methylene groups. The presence of

deuterium only raises above 1% in chains containing more than 68 hydrogen atoms, i.e.

in a saturated alkane chain of 31 carbon atoms. Chains of such length are not considered

in this work.

B.2.2 Methyl

The isotopological distribution of methyl does not deviate greatly from that of methylene

as presented in figure B.1. The abundance of 1H over 2H reduces the effect of a third
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Figure B.1: Abundance of three methylene isotopologues in an alkane chain containing n
methylene moieties.

hydrogen atom. The most abundant methyl isotopologue is 12C1H3 at 98.9%, followed by
13C1H3 at 1.06%, both of which belong to the C3v point group. The remaining isotopo-

logues are of negligible abundance. This also holds for unbranched alkane chains treated

here, as methyl groups occur no more than twice in such molecules.

B.3 Carbon tetrachloride

The abundance of an isotopologue is predicted from the isotopic abundances presented in

table B.1 and the number of combinations that are possible for each chosen set of isotopes.

Table B.2 presents the results of such an analysis for CCl4, which has ten stable distinct

isotopologues with a total of 32 combinatorial conformations.

B.4 Sulfate anion

The sulfate anion has 60 distinct isotopologues, giving rise to 324 combinatorial confor-

mations. Table B.3 lists the most abundant sulfate isotopologues and their point groups.
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Table B.2: Stable isotopologues of CCl4 and their abundance predicted from terrestrial
isotopic abundances.

Isotopologue Combinations Abundance Point group
12C35Cl3

37Cl 4 0.417 C3v
12C35Cl4 1 0.327 Td
12C35Cl2

37Cl2 6 0.200 C2v
12C35Cl37Cl3 4 0.0424 C3v
13C35Cl3

37Cl 4 0.00447 C3v
13C35Cl4 1 0.00350 Td
12C37Cl4 1 0.00339 Td
13C35Cl2

37Cl2 6 0.00214 C2v
13C35Cl37Cl3 4 0.000456 C3v
13C37Cl4 1 0.0000364 Td

Table B.3: The most abundant stable isotopologues of SO2–
4 predicted from terrestrial

isotopic abundances.

Isotopologue Combinations Abundance Point group
32S16O2–

4 1 0.939 Td
34S16O2–

4 1 0.0432 Td
32S16O3

18O2– 4 0.00770 C3v
33S16O2–

4 1 0.00756 Td
32S16O3

17O2– 4 0.00144 C3v
34S16O3

18O2– 4 0.000354 C3v
36S16O2–

4 1 0.000156 Td
33S16O3

18O2– 4 0.0000620 C3v
34S16O3

17O2– 4 0.0000665 C3v
32S16O2

18O2–
2 6 0.0000237 C2v

33S16O3
17O2– 4 0.0000116 C3v



Appendix C

Forms of the Raman tensor

Table C.1 on the following two pages presents an overview of Raman tensor forms for all

Raman active symmetry species in a number of point groups. The tensor forms are taken

from [99] with those for the icosahedral point groups taken from [106] and additional

point groups (with five-fold rotation axes and the linear groups C∞v and D∞h) from

[104] by comparison. Antisymmetric components, listed in some of the cited sources, are

ignored. The tensors therefore only apply to normal (i.e. non-resonant) Raman scattering.

Furthermore, the tensors of the Cs point group are corrected for our prioritisation of the

symmetry axes (i.e. the plane of symmetry is xz here rather than xy). The form of the

tensor follows from the choice of axes used. In the present work, the assignment of these

follows from symmetry considerations as outlined in appendix A. Section 4.1.4 further

discusses this topic.

377
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Table C.1: Form of the normal vibrational Raman scattering tensor for Raman active sym-
metry species of various molecular point groups. The symbol −1× indicates a
change of sign for one tensor of a degenerate mode.

C1 A
Ci Aga d e

d b f
e f c


Cs A′ A′′a 0 d

0 b 0
d 0 c

 0 e 0
e 0 f
0 f 0


C2 A B
C2h Ag Bga d 0

d b 0
0 0 c

 0 0 e
0 0 f
e f 0


D2 A B1 B2 B3

C2v A1 A2 B1 B2

D2h Ag B1g B2g B3ga 0 0
0 b 0
0 0 c

 0 d 0
d 0 0
0 0 0

 0 0 e
0 0 0
e 0 0

 0 0 0
0 0 f
0 f 0


C4 A B E
S4 A B E −1×
C4h Ag Bg Ega 0 0

0 a 0
0 0 b

 c d 0
d −c 0
0 0 0

 0 0 e
0 0 f
e f 0

  0 0 −f
0 0 e
−f e 0


D2d A1 B1 B2 E
D4 A1 B1 B2 E −1×
C4v A1 B1 B2 E
D4h A1g B1g B2g Eg −1×a 0 0

0 a 0
0 0 b

 c 0 0
0 −c 0
0 0 0

 0 d 0
d 0 0
0 0 0

 0 0 e
0 0 0
e 0 0

 0 0 0
0 0 e
0 e 0


C3 A E
C3i Ag Ega 0 0

0 a 0
0 0 b

 c d e
d −c f
e f 0

  d −c −f
−c −d e
−f e 0


(continued on next page)
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Table C.1 (continued)

D3 A1 E −1×
C3v A1 E
D3d A1g Eg −1×a 0 0

0 a 0
0 0 b

  c 0 −d
0 −c 0
−d 0 0

0 c 0
c 0 d
0 d 0


C3h A′ E′′ E′

C5 A E1 E2

C6 A E1 E2

C6h Ag E1g E2ga 0 0
0 a 0
0 0 b

 0 0 c
0 0 d
c d 0

  0 0 −d
0 0 c
−d c 0

 e f 0
f −e 0
0 0 0

  f −e 0
−e −f 0
0 0 0


D3h A′

1 E′′ −1× E′

C5v A1 E1 E2

C5h A′ E′′
1 E′

2

D5 A1 E1 −1× E2

D5h A′
1 E′′

1 −1× E′
2

D6 A1 E1 −1× E2

C6v A1 E1 E2

D6h A1g E1g −1× E2g

C∞v A1 = Σ+ E1 = Π E2 = ∆
D∞h Σ+

g Πg ∆ga 0 0
0 a 0
0 0 b

 0 0 c
0 0 0
c 0 0

 0 0 0
0 0 c
0 c 0

 d 0 0
0 −d 0
0 0 0

 0 d 0
d 0 0
0 0 0


Td A1 E F2

Oh A1g Eg F2ga 0 0
0 a 0
0 0 a

 b 0 0
0 b 0
0 0 −2b

 √
3

−b 0 0
0 b 0
0 0 0

 0 c 0
c 0 0
0 0 0


0 0 c
0 0 0
c 0 0

 0 0 0
0 0 c
0 c 0


Ih Ag Hga 0 0

0 a 0
0 0 a

 b 0 0
0 b 0
0 0 −2b

 √
3

−b 0 0
0 b 0
0 0 0


√
3

0 b 0
b 0 0
0 0 0

 −
√
3

0 0 b
0 0 0
b 0 0

 √
3

0 0 0
0 0 b
0 b 0
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Appendix D

Computations in Gaussian

This appendix includes relevant sections of Gaussian [123] Raman computation log files

as well as Matlab scripts to process these results. The following quantities are extracted

from the log files:

1. atomic coordinates of the optimised molecular geometry in the computational stan-

dard orientation,

2. normalized atomic motion in the vibrational normal modes,

3. the frequency of each mode (given as wavenumbers),

4. the Raman scattering activity of each mode,

5. the tensorial polarizability derivative with respect to each vibrational mode.

The first is used to obtain the transformation, if any, required to bring the output quanti-

ties into the desired molecular frame of reference. The optimised atomic coordinates are

presented in figures. The second relevant output gives insight into what atoms are involved

in each mode and whether these are localised. Together with the frequencies, these aid in

assigning the modes. The frequencies and Raman scattering activities are used to produce

computational Raman spectra. The last quantity, the polarisability derivative tensors,

are the main purpose of our Raman calculations. The deduced transformation matrix is

applied to obtain the Raman tensor in the molecular frame of reference.

This appendix allows full calculation of the results presented in section 4.4. Where

lines are left out from the original log files, this is indicated with [...]. The logs of

the sulfate computations are given more fully with additional explanation while only a

minimum is shown for the other molecules.

A secondary use of the computational results is to estimate local field corrections from

the molecular shape and its static polarisability tensor as outlined in section 5.3. The

semi-axes of the molecular ellipsoid are listed in the output as

polarisability tensor quantities can be found n addition to the results for the Raman
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D.1 Processing of Gaussian output in Matlab

The purpose of the following threeMatlab functions is (1) to plot the atomic positions of a

molecule in its the optimized geometry, (2) to produce a computational Raman spectrum

and (3) to compute the Raman tensors of the vibrational normal modes according to

equation 4.55. The input and output quantities of each function are detailed at the

beginning of each script.

D.1.1 Molecular structure

function plotmolecule(atom,position)

%OUTPUT

%A 3D plot of the molecule with a letter at each of the atomic positions

%

%INPUT

%atom = Nx1 character array of atomic species

%position = Nx3 array of XYZ position of each eatom

%

% Raymond Rammeloo - 27 August 2018

figure; hold on

for N = 1:length(atom)

text(position(N,1),position(N,2),position(N,3),atom(N,:),...

’HorizontalAlignment’,’center’,’FontWeight’,’bold’)

end

axislength = 1.2*max(max(abs(position)));

axis([-axislength axislength -axislength axislength -axislength axislength])

hold on

plot3([0 axislength],[0 0],[0 0],’-r’)

text(1.05*axislength,0,0,’$\mathbf{\hat{x}}^\mathsf{s}$’,’color’,’r’,...

’interpreter’,’latex’,’fontsize’,12,’horizontalalignment’,’center’)

plot3([0 0],[0 axislength],[0 0],’-r’)

text(0,1.05*axislength,0,’$\mathbf{\hat{y}}^\mathsf{s}$’,’color’,’r’,...

’interpreter’,’latex’,’fontsize’,12,’horizontalalignment’,’center’)

plot3([0 0],[0 0],[0 axislength],’-r’)

text(0,0,1.05*axislength,’$\mathbf{\hat{z}}^\mathsf{s}$’,’color’,’r’,...

’interpreter’,’latex’,’fontsize’,12,’horizontalalignment’,’center’)

view([120,45])

axis equal; grid off; axis off

D.1.2 Raman spectra

function plotRS(F,RA,Fmin,Fmax,Fstep,FWHM)

%Plot Raman spectra from Gaussian output

%OUTPUT

%Computational Raman spectrum convoluted with a Lorentzian function of

%specified full width at half maximum (FWHM)

%

%INPUT

%F = linear array of frequencies of the vibrational modes in cm^-1

%RA = Raman activitity (or scattering factor) in arbitrary units

%Fmin = lower boundary of the spectral range to be plotted in cm^-1

%Fmax = upper boundary of the spectral range to be plotted in cm^-1

%Fstep = step size of the computation of the spectrum in cm^-1

%FWHM = full width at half maximum of the Lorentzian broadening
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%

% Raymond Rammeloo - 23 August 2018

range = Fmin:Fstep:Fmax;

lorentzian = zeros(length(range),length(F));

%weight peak intensities with their frequencies^-3 and scale to ensure

%equal integrated intensities for varying spectral step size

f_weight = (10^10)*(.1/Fstep)*(1/532 - F*10^-7 ).^3;

for mode = 1:length(F)

raman_band = 1./( 1 + ( (F(mode) - range)/(FWHM/2)).^2 );

lorentzian(:,mode) = f_weight(mode)*RA(mode)*raman_band./sum(raman_band);

%Lorentzian lineshape, integrated intensity is the Raman activity

%scaled by f^3

end

spectrum = sum(lorentzian,2);

figure; hold on

plot(range,spectrum,’-r’)

axis([min(range) max(range) 0 1.05*max(spectrum)])

box on

ylabel(’Intensity / a.u.’,’interpreter’,’latex’,’fontsize’,12)

xlabel(’Raman shift / cm$^{-1}$’,’interpreter’,’latex’,’fontsize’,12)

D.1.3 Raman tensors

function RT = GaussianRT(PD,F,Euler)

%Compute Raman tensors from Gaussian output

%OUTPUT

%RT = array of Raman tensors of the vibrational modes, 3x3xNV in C V^-1 m^2

%

%INPUT

%PD = linear polarizability derivatives with respect to vibrational

% normal modes in a 3x3xNV matrix in units of A^2 amu^-1/2

%F = array of frequencies of the vibrational modes, NVx1 in cm^-1

%Euler = vector of three Euler angles [alpha, beta, gamma] in degrees that

% define a passive transformation from the frame of reference of the

% polarizability derivatives to that of the desired output tensors

% using anticlockwise rotations of the axes

%

% Raymond Rammeloo - 15 August 2018

%Units and constants

c = 299792458*100; %speed of light in cm, as F is given in cm^-1

h = 6.626070040*10^(-34); %Planck constant in m^2 kg s^-1

ep = 8.854187817*10^(-12); %vacuum permittivity in C V^-1 m^-1

amu = 1.660539*10^(-27); %atomic mass unit in kg amu^-1

% Transformation matrix from anti-clockwise rotations of the axes

alpha = Euler(1);

beta = Euler(2);

gamma = Euler(3);

Rz1 = [ cosd(alpha) -sind(alpha) 0

sind(alpha) cosd(alpha) 0

0 0 1 ];

Rx = [ 1 0 0

0 cosd(beta) -sind(beta)

0 sind(beta) cosd(beta)];
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Rz2 = [ cosd(gamma) -sind(gamma) 0

sind(gamma) cosd(gamma) 0

0 0 1 ];

T = Rz2*Rx*Rz1;

%Pre-define arrays

NV = size(F,1); %number of vibrational modes

RT = nan(3,3,NV); %pre-define output array

%Construct Raman tensor for each mode

for v = 1:NV %loop over vibrational modes

RT(:,:,v) = 4*pi*ep*sqrt(h/(8*pi^2*c*F(v)*amu))*(10^(-10))^2*...

(T*PD(:,:,v)*T’); %prefactor to correct units into SI

%transformation matrix T is applied to change the frame of reference

%in which the Raman tensor is expressed

end

D.2 Sulfate

D.2.1 Geometry optimization

The geometry is optimized from an initial guess until convergence is achieved, i.e. the

internal energy of the structure is minimized. The initial geometry is specified in the

Z-matrix and copied with other instructions from the .gjf input file. The optimized

atomic positions are given in a standard orientation determined by the program and are

plotted in figure D.1. At the end of the log file (the last excerpt given below), the output

is summarised in a long row of data, all of which given in the coordinate system of the

original input Z-matrix. This includes the optimized atomic x, y, z-position in units of Å,

listed as

\S,-0.2321981383,0.3560371483,-0.0000000017\

and the point group assigned to the structure. Relevant parts of the Gaussian log file

are shown below.

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Mar-2018

******************************************

%chk=/ddn/data/dch1maf/sulfateopt.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

--------------------------

#T b3lyp 6-311++G(d,p) opt

--------------------------

-------------------

Title Card Required

-------------------

Symbolic Z-matrix:

Charge = -2 Multiplicity = 1

S -0.2322 0.35604 0.
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Figure D.1: Optimized geometry of the sulfate anion in Gaussian’s computational stan-
dard orientation.

O -0.89137 1.7859 -0.55667

O 1.33569 0.21197 -0.55667

O -0.2322 0.35604 1.67

O -1.14091 -0.92976 -0.55667

[...]

Item Value Threshold Converged?

Maximum Force 0.000007 0.000450 YES

RMS Force 0.000003 0.000300 YES

Maximum Displacement 0.000014 0.001800 YES

RMS Displacement 0.000008 0.001200 YES

Optimization completed.

-- Stationary point found.

----------------------------

! Optimized Parameters !

! (Angstroms and Degrees) !

-------------------------- --------------------------

! Name Definition Value Derivative Info. !

--------------------------------------------------------------------------------

! R1 R(1,2) 1.5268 -DE/DX = 0.0 !

! R2 R(1,3) 1.5268 -DE/DX = 0.0 !

! R3 R(1,4) 1.5268 -DE/DX = 0.0 !

! R4 R(1,5) 1.5268 -DE/DX = 0.0 !

! A1 A(2,1,3) 109.4712 -DE/DX = 0.0 !

! A2 A(2,1,4) 109.4712 -DE/DX = 0.0 !

! A3 A(2,1,5) 109.4712 -DE/DX = 0.0 !

! A4 A(3,1,4) 109.4712 -DE/DX = 0.0 !

! A5 A(3,1,5) 109.4712 -DE/DX = 0.0 !

! A6 A(4,1,5) 109.4712 -DE/DX = 0.0 !

! D1 D(2,1,4,3) -120.0 -DE/DX = 0.0 !

! D2 D(2,1,5,3) 120.0 -DE/DX = 0.0 !

! D3 D(2,1,5,4) -120.0 -DE/DX = 0.0 !

! D4 D(3,1,5,4) 120.0 -DE/DX = 0.0 !

--------------------------------------------------------------------------------

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Distance matrix (angstroms):
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1 2 3 4 5

1 S 0.000000

2 O 1.526773 0.000000

3 O 1.526773 2.493209 0.000000

4 O 1.526773 2.493209 2.493209 0.000000

5 O 1.526773 2.493209 2.493209 2.493209 0.000000

Framework group TD[O(S),4C3(O)]

Deg. of freedom 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 16 0 0.000000 0.000000 0.000000

2 8 0 0.881483 0.881483 0.881483

3 8 0 -0.881483 -0.881483 0.881483

4 8 0 -0.881483 0.881483 -0.881483

5 8 0 0.881483 -0.881483 -0.881483

---------------------------------------------------------------------

Rotational constants (GHZ): 5.0829732 5.0829732 5.0829732

[...]

1\1\GINC-CN7001\FOpt\RB3LYP\6-311++G(d,p)\O4S1(2-)\DCH1MAF\15-Mar-2018

\0\\#T b3lyp 6-311++G(d,p) opt\\Title Card Required\\-2,1\S,-0.2321981

383,0.3560371483,-0.0000000017\O,-0.8348399967,1.6632683994,-0.5089242

098\O,1.2012182645,0.2243246788,-0.5089242045\O,-0.2321981384,0.356037

1538,1.5267726084\O,-1.0629726828,-0.8194816387,-0.5089242008\\Version

=EM64L-G09RevA.02\State=1-A1\HF=-699.1159026\RMSD=6.708e-09\RMSF=3.370

e-06\Dipole=0.,0.,0.\Quadrupole=0.,0.,0.,0.,0.,0.\PG=TD [O(S1),4C3(O1)

]\\@

[...]

D.2.2 Raman computation

The Raman computation is performed on the optimized geometry of the molecule and

using the same level of theory. It repeats the electronic structure calculation before tak-

ing second derivatives of the energy to obtain polarizability derivatives with respect to

the vibrational modes. These modes are found by Wilson’s matrix method as described

in [72]. The keyword IOp(2/33=1) is used to obtain the translation vector and rotation

matrix, which in this case confirm that the input geometry is left unchanged in the calcu-

lation. Using the keyword IOp(7/33=3) ensures that the linear polarizability derivatives

are given with respect to the vibrational modes in matrix format. The symmetry species,

frequencies, Raman scattering activities and normalized atomic displacements (amongst

other quantities) are given for each vibrational motion.

The keyword IOp(2/33=1) is used to obtain the translation vector and rotation matrix,

which in this case confirm that the input geometry is left unchanged in the calculation.

Using the keyword IOp(7/33=3) ensures that the linear polarizability derivatives are given

with respect to the vibrational modes in matrix format. These are specified in the coor-

dinate system of the standard orientation.

The linear polarizability derivatives with respect to the real atomic displacement are

included at the end of the output file after PolarDeriv= in one long row of scalars. The
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polarizability derivative tensors are computed from these values. Their unit is B2, with

1 B = 0.529 Å, the Bohr radius. These are found in the same output section as presented

with the geometry optimization calculation above. Here, it includes additional detail on

the computed dipole and polarizability as well as their derivatives.

The polarizability derivatives are listed in order of the atoms as specified in the GJF.

Within the set of values for each atom, the derivatives with respect to the x, y and z axis

are given, in that order. For each atom and axis, the six components of the symmetric

polarizability derivative tensor are listed in the order xx, xy, yy, yz, xz, yz and zz. The

total number of polarizability derivatives is thus N × 3× 6, with N the number of atoms.

The output for the sulfate computation features ninety linear polarizability derivatives as

seen below. The first set of six values

\PolarDeriv=0.,0.,0.,0.,-8.5166009,0.

are the linear polarizability derivatives with respect to displacement of the first atom

(sulfur, in this case) along the x-direction. These form the symmetric tensor

∂α1

∂x1
=

0 0 0

0 0 −8.5166009

0 −8.5166009 0

 (D.1)

in units of (0.529 Å)2. The remaining tensors are formed in the same way.
Relevant parts of the Gaussian log file are shown below.

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Aug-2018

******************************************

%chk=/ddn/data/dch1maf/SulfateRaman180815.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

-------------

Sulfate anion

-------------

Symbolic Z-matrix:

Charge = -2 Multiplicity = 1

S 0. 0. 0.

O 0.88148 0.88148 0.88148

O -0.88148 -0.88148 0.88148

O -0.88148 0.88148 -0.88148

O 0.88148 -0.88148 -0.88148

[...]

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------



388 APPENDIX D. COMPUTATIONS IN GAUSSIAN

1 16 0 0.000000 0.000000 0.000000

2 8 0 0.881480 0.881480 0.881480

3 8 0 -0.881480 -0.881480 0.881480

4 8 0 -0.881480 0.881480 -0.881480

5 8 0 0.881480 -0.881480 -0.881480

---------------------------------------------------------------------

Translation vector:

1

1 0.000000D+00

2 0.000000D+00

3 0.000000D+00

Rotation Matrix:

1 2 3

1 0.100000D+01 0.000000D+00 0.000000D+00

2 0.000000D+00 0.100000D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.100000D+01

[...]

Dipole derivatives wrt mode 1: -3.16701D-09 -5.15866D-09 8.52832D-09

Polarizability derivatives wrt mode 1

1 2 3

1 -0.136329D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 -0.236520D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.372849D+00

Vibrational polarizability contributions from mode 1 0.0000000 0.0000000 0.0000000

IFr= 0 A012= 0.83D-16 0.19D+01 0.32D+00 Act= 0.22D+01 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 2: -8.19027D-09 6.52856D-09 1.86098D-09

Polarizability derivatives wrt mode 2

1 2 3

1 -0.351819D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 0.293974D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.578449D-01

Vibrational polarizability contributions from mode 2 0.0000000 0.0000000 0.0000000

IFr= 0 A012= 0.56D-16 0.19D+01 0.32D+00 Act= 0.22D+01 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 3: -1.81218D-02 3.48019D+00 -3.34955D+00

Polarizability derivatives wrt mode 3

1 2 3

1 0.000000D+00 -0.229680D+00 0.238638D+00

2 -0.229680D+00 0.000000D+00 -0.124262D-02

3 0.238638D+00 -0.124262D-02 0.000000D+00

Vibrational polarizability contributions from mode 3 0.0000280 1.0338072 0.9576495

IFr= 0 A012= 0.49D-18 0.20D+01 0.33D+00 Act= 0.23D+01 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 4: -1.72545D+00 3.12391D+00 3.25508D+00

Polarizability derivatives wrt mode 4

1 2 3

1 0.000000D+00 0.223203D+00 0.214208D+00

2 0.223203D+00 0.000000D+00 -0.118315D+00

3 0.214208D+00 -0.118315D+00 0.000000D+00

Vibrational polarizability contributions from mode 4 0.2541192 0.8329716 0.9043940

IFr= 0 A012= 0.34D-17 0.20D+01 0.33D+00 Act= 0.23D+01 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 5: 4.51155D+00 1.20872D+00 1.23146D+00

Polarizability derivatives wrt mode 5

1 2 3

1 0.000000D+00 0.844417D-01 0.828828D-01

2 0.844417D-01 0.000000D+00 0.309359D+00

3 0.828828D-01 0.309359D+00 0.000000D+00

Vibrational polarizability contributions from mode 5 1.7373376 0.1247060 0.1294412

IFr= 0 A012= 0.46D-17 0.20D+01 0.33D+00 Act= 0.23D+01 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 6: 2.83632D-08 2.91468D-08 2.86087D-08
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Polarizability derivatives wrt mode 6

1 2 3

1 -0.103763D+01 0.000000D+00 0.000000D+00

2 0.000000D+00 -0.103763D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.103763D+01

Vibrational polarizability contributions from mode 6 0.0000000 0.0000000 0.0000000

IFr= 0 A012= 0.15D+02 0.29D+02 0.48D+01 Act= 0.48D+02 DepolP= 0.18D-16 DepolU= 0.37D-16

Dipole derivatives wrt mode 7: 1.00543D+01 1.40136D+01 1.40912D+01

Polarizability derivatives wrt mode 7

1 2 3

1 0.000000D+00 -0.510462D+00 -0.507652D+00

2 -0.510462D+00 0.000000D+00 -0.364223D+00

3 -0.507652D+00 -0.364223D+00 0.000000D+00

Vibrational polarizability contributions from mode 7 2.7450753 5.3327554 5.3919511

IFr= 0 A012= 0.93D-16 0.12D+02 0.20D+01 Act= 0.14D+02 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 8: -5.73198D+00 1.71657D+01 -1.29813D+01

Polarizability derivatives wrt mode 8

1 2 3

1 0.000000D+00 0.470257D+00 -0.621838D+00

2 0.470257D+00 0.000000D+00 0.207644D+00

3 -0.621838D+00 0.207644D+00 0.000000D+00

Vibrational polarizability contributions from mode 8 0.8921957 8.0015416 4.5760446

IFr= 0 A012= 0.26D-18 0.12D+02 0.20D+01 Act= 0.14D+02 DepolP= 0.75D+00 DepolU= 0.86D+00

Dipole derivatives wrt mode 9: 1.90286D+01 -2.23367D+00 -1.13558D+01

Polarizability derivatives wrt mode 9

1 2 3

1 0.000000D+00 0.411372D+00 0.809162D-01

2 0.411372D+00 0.000000D+00 -0.689322D+00

3 0.809162D-01 -0.689322D+00 0.000000D+00

Vibrational polarizability contributions from mode 9 9.8325108 0.1354849 3.5017861

IFr= 0 A012= 0.53D-17 0.12D+02 0.20D+01 Act= 0.14D+02 DepolP= 0.75D+00 DepolU= 0.86D+00

Diagonal vibrational polarizability:

15.4612667 15.4612666 15.4612667

Diagonal vibrational hyperpolarizability:

0.0000002 0.0000004 0.0000003

NorSel: MapVib= 1 2 3 4 5 6 7 8 9

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3 4 5

E E T2 T2 T2

Frequencies --- 398.5956 398.5956 561.5002 561.5002 561.5002

Reduced masses --- 15.9949 15.9949 17.5820 17.5820 17.5820

Force constants --- 1.4973 1.4973 3.2660 3.2660 3.2660

IR Intensities --- 0.0000 0.0000 23.3316 23.3316 23.3316

Raman Activities --- 2.2422 2.2422 2.3038 2.3038 2.3038

Depol. (Plane) --- 0.7500 0.7500 0.7500 0.7500 0.7500

Depol. (Unpol) --- 0.8571 0.8571 0.8571 0.8571 0.8571

Coord Atom Element:

1 1 16 0.00000 0.00000 -0.00118 -0.11258 0.29438

2 1 16 0.00000 0.00000 0.22708 0.20383 0.07887

3 1 16 0.00000 0.00000 -0.21856 0.21239 0.08035

1 2 8 -0.14751 -0.38067 0.00915 0.47426 0.01279

2 2 8 -0.25591 0.31808 -0.33415 -0.00163 0.33691

3 2 8 0.40342 0.06259 0.33608 -0.01450 0.33468

1 3 8 0.14751 0.38067 0.44812 0.04767 -0.14860

2 3 8 0.25591 -0.31808 0.10482 -0.42822 0.17552
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3 3 8 0.40342 0.06259 -0.11764 -0.19777 -0.41499

1 4 8 0.14751 0.38067 -0.44694 0.06486 -0.14562

2 4 8 -0.25591 0.31808 0.10720 -0.20209 -0.41573

3 4 8 -0.40342 -0.06259 -0.12002 -0.42390 0.17627

1 5 8 -0.14751 -0.38067 -0.00797 -0.36173 -0.30700

2 5 8 0.25591 -0.31808 -0.33178 0.22450 -0.25435

3 5 8 -0.40342 -0.06259 0.33845 0.21163 -0.25658

6 7 8 9

A1 T2 T2 T2

Frequencies --- 864.8256 995.4996 995.4996 995.4996

Reduced masses --- 15.9949 21.1278 21.1278 21.1278

Force constants --- 7.0484 12.3363 12.3363 12.3363

IR Intensities --- 0.0000 496.0319 496.0319 496.0319

Raman Activities --- 48.4508 13.6697 13.6697 13.6697

Depol. (Plane) --- 0.0000 0.7500 0.7500 0.7500

Depol. (Unpol) --- 0.0000 0.8571 0.8571 0.8571

Coord Atom Element:

1 1 16 0.00000 0.25587 -0.14587 0.48426

2 1 16 0.00000 0.35664 0.43685 -0.05685

3 1 16 0.00000 0.35861 -0.33037 -0.28900

1 2 8 -0.28868 -0.39475 0.03316 -0.11295

2 2 8 -0.28868 -0.40750 -0.04060 -0.04445

3 2 8 -0.28868 -0.40775 0.05652 -0.01507

1 3 8 0.28868 -0.12713 -0.21338 -0.32862

2 3 8 0.28868 -0.13988 -0.28715 -0.26012

3 3 8 -0.28868 0.04934 0.27367 0.30390

1 4 8 0.28868 -0.12860 0.35917 -0.15537

2 4 8 -0.28868 0.05107 -0.39601 0.10127

3 4 8 0.28868 -0.14161 0.38253 -0.05749

1 5 8 -0.28868 0.13902 0.11263 -0.37104

2 5 8 0.28868 -0.21655 -0.14947 0.31694

3 5 8 0.28868 -0.21680 -0.05235 0.34632

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

E E T2

Frequencies -- 398.5956 398.5956 561.5002

Red. masses -- 15.9949 15.9949 17.5820

Frc consts -- 1.4973 1.4973 3.2660

IR Inten -- 0.0000 0.0000 23.3316

Raman Activ -- 2.2422 2.2422 2.3038

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 -0.22

2 8 -0.15 -0.26 0.40 -0.38 0.32 0.06 0.01 -0.33 0.34

3 8 0.15 0.26 0.40 0.38 -0.32 0.06 0.45 0.10 -0.12

4 8 0.15 -0.26 -0.40 0.38 0.32 -0.06 -0.45 0.11 -0.12

5 8 -0.15 0.26 -0.40 -0.38 -0.32 -0.06 -0.01 -0.33 0.34

4 5 6

T2 T2 A1

Frequencies -- 561.5002 561.5002 864.8256

Red. masses -- 17.5820 17.5820 15.9949

Frc consts -- 3.2660 3.2660 7.0484

IR Inten -- 23.3316 23.3316 0.0000

Raman Activ -- 2.3038 2.3038 48.4508
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Depolar (P) -- 0.7500 0.7500 0.0000

Depolar (U) -- 0.8571 0.8571 0.0000

Atom AN X Y Z X Y Z X Y Z

1 16 -0.11 0.20 0.21 0.29 0.08 0.08 0.00 0.00 0.00

2 8 0.47 0.00 -0.01 0.01 0.34 0.33 -0.29 -0.29 -0.29

3 8 0.05 -0.43 -0.20 -0.15 0.18 -0.41 0.29 0.29 -0.29

4 8 0.06 -0.20 -0.42 -0.15 -0.42 0.18 0.29 -0.29 0.29

5 8 -0.36 0.22 0.21 -0.31 -0.25 -0.26 -0.29 0.29 0.29

7 8 9

T2 T2 T2

Frequencies -- 995.4996 995.4996 995.4996

Red. masses -- 21.1278 21.1278 21.1278

Frc consts -- 12.3363 12.3363 12.3363

IR Inten -- 496.0319 496.0319 496.0319

Raman Activ -- 13.6697 13.6697 13.6697

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 16 0.26 0.36 0.36 -0.15 0.44 -0.33 0.48 -0.06 -0.29

2 8 -0.39 -0.41 -0.41 0.03 -0.04 0.06 -0.11 -0.04 -0.02

3 8 -0.13 -0.14 0.05 -0.21 -0.29 0.27 -0.33 -0.26 0.30

4 8 -0.13 0.05 -0.14 0.36 -0.40 0.38 -0.16 0.10 -0.06

5 8 0.14 -0.22 -0.22 0.11 -0.15 -0.05 -0.37 0.32 0.35

[...]

1\1\GINC-CN7103\Freq\RB3LYP\6-311++G(d,p)\O4S1(2-)\DCH1MAF\15-Aug-2018

\0\\#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)\\Sulfate

anion\\-2,1\S,0.,0.,0.\O,0.88148,0.88148,0.88148\O,-0.88148,-0.88148,

0.88148\O,-0.88148,0.88148,-0.88148\O,0.88148,-0.88148,-0.88148\\Versi

on=EM64L-G09RevA.02\State=1-A1\HF=-699.1159026\RMSD=6.134e-09\RMSF=1.3

91e-06\ZeroPoint=0.0144277\Thermal=0.0186031\Dipole=0.,0.,0.\DipoleDer

iv=2.5175972,0.,0.,0.,2.5175972,0.,0.,0.,2.5175972,-1.1293993,-0.33818

19,-0.3381819,-0.3381819,-1.1293993,-0.3381819,-0.3381819,-0.3381819,-

1.1293993,-1.1293993,-0.3381819,0.3381819,-0.3381819,-1.1293993,0.3381

819,0.3381819,0.3381819,-1.1293993,-1.1293993,0.3381819,-0.3381819,0.3

381819,-1.1293993,0.3381819,-0.3381819,0.3381819,-1.1293993,-1.1293993

,0.3381819,0.3381819,0.3381819,-1.1293993,-0.3381819,0.3381819,-0.3381

819,-1.1293993\Polar=48.5490159,0.,48.5490159,0.,0.,48.5490159\PolarDe

riv=0.,0.,0.,0.,-8.5166009,0.,0.,0.,0.0000001,-8.5166009,0.,0.,0.,-8.5

166009,0.,0.,0.,0.0000001,6.4779517,3.5484643,3.1780441,3.5484643,2.12

91502,3.1780441,3.1780441,3.5484643,6.4779517,2.1291502,3.5484642,3.17

80441,3.1780441,2.1291502,3.1780441,3.5484643,3.5484642,6.4779517,-6.4

779517,-3.5484643,-3.1780441,3.5484643,2.1291502,-3.1780441,-3.1780441

,-3.5484643,-6.4779517,2.1291502,3.5484642,-3.1780441,3.1780441,2.1291

502,3.1780441,-3.5484643,-3.5484642,6.4779517,-6.4779517,3.5484643,-3.

1780441,-3.5484643,2.1291502,-3.1780441,3.1780441,-3.5484643,6.4779517

,2.1291502,-3.5484642,3.1780441,-3.1780441,2.1291502,-3.1780441,-3.548

4643,3.5484642,-6.4779517,6.4779517,-3.5484643,3.1780441,-3.5484643,2.

1291502,3.1780441,-3.1780441,3.5484643,-6.4779517,2.1291502,-3.5484642

,-3.1780441,-3.1780441,2.1291502,-3.1780441,3.5484643,-3.5484642,-6.47

79517\HyperPolar=0.,0.,0.,0.,0.,-63.1964848,0.,0.,0.,0.\PG=TD [O(S1),4

C3(O1)]\NImag=0\\0.65184207,0.,0.65184207,0.,0.,0.65184207,-0.16296052

[...]
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D.3 Carbon tetrachloride

Raman computations have been performed on the three most abundant isotopologues of

carbon tetrachloride. Relevant sections from logs are shown below. A single geometry

optimization was performed. Figure D.2 indicates the position of the chlorine isotopes for

each of the Raman computations.
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Figure D.2: Optimised geometry of carbon tetrachloride in the computational standard
orientation s (top row) and the molecular frame of reference m for the studied
isotopologues. The 37Cl isotopes are indicated as *Cl. For 12C35Cl4, the
computational and molecular frames of reference are identical.
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D.3.1 12C35Cl4

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Aug-2018

******************************************

%chk=/ddn/data/dch1maf/Carbontetrachloride12C35Cl4Raman180815.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

-----------------------------

Carbon tetrachloride 12C35Cl4

-----------------------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C(iso=12) 0. 0. 0.

Cl(iso=35) 1.03436 1.03436 1.03436

Cl(iso=35) -1.03436 -1.03436 1.03436

Cl(iso=35) -1.03436 1.03436 -1.03436

Cl(iso=35) 1.03436 -1.03436 -1.03436

[...]

Polarizability derivatives wrt mode 1

1 2 3

1 -0.414461D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 0.732712D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.341190D+00

[...]

Polarizability derivatives wrt mode 2

1 2 3

1 -0.154683D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 0.436276D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.281593D+00

[...]

Polarizability derivatives wrt mode 3

1 2 3

1 0.000000D+00 0.496438D+00 0.142373D-01

2 0.496438D+00 0.000000D+00 0.128026D+00

3 0.142373D-01 0.128026D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 4

1 2 3

1 0.000000D+00 -0.126763D+00 -0.366344D-01

2 -0.126763D+00 0.000000D+00 0.495614D+00

3 -0.366344D-01 0.495614D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 5

1 2 3

1 0.000000D+00 -0.229028D-01 0.511370D+00

2 -0.229028D-01 0.000000D+00 0.319412D-01

3 0.511370D+00 0.319412D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 6

1 2 3

1 -0.675438D+00 0.000000D+00 0.000000D+00
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2 0.000000D+00 -0.675438D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.675438D+00

[...]

Polarizability derivatives wrt mode 7

1 2 3

1 0.000000D+00 -0.176584D+00 -0.388731D+00

2 -0.176584D+00 0.000000D+00 0.305786D-01

3 -0.388731D+00 0.305786D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 8

1 2 3

1 0.000000D+00 -0.133111D+00 0.285432D-01

2 -0.133111D+00 0.000000D+00 -0.405828D+00

3 0.285432D-01 -0.405828D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 9

1 2 3

1 0.000000D+00 -0.366509D+00 0.176925D+00

2 -0.366509D+00 0.000000D+00 0.132658D+00

3 0.176925D+00 0.132658D+00 0.000000D+00

[...]

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

E E T2

Frequencies -- 219.5912 219.5912 314.3246

Red. masses -- 34.9689 34.9689 32.6275

Frc consts -- 0.9935 0.9935 1.8993

IR Inten -- 0.0000 0.0000 0.5013

Raman Activ -- 3.0824 3.0824 5.5239

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.01 0.31

2 17 -0.38 0.07 0.31 -0.14 0.40 -0.26 0.33 0.41 0.07

3 17 0.38 -0.07 0.31 0.14 -0.40 -0.26 -0.32 -0.24 -0.12

4 17 0.38 0.07 -0.31 0.14 0.40 0.26 0.31 -0.41 0.05

5 17 -0.38 -0.07 -0.31 -0.14 -0.40 0.26 -0.34 0.24 -0.10

4 5 6

T2 T2 A1

Frequencies -- 314.3246 314.3246 447.4040

Red. masses -- 32.6275 32.6275 34.9689

Frc consts -- 1.8993 1.8993 4.1241

IR Inten -- 0.5013 0.5013 0.0000

Raman Activ -- 5.5239 5.5239 20.5297

Depolar (P) -- 0.7500 0.7500 0.0000

Depolar (U) -- 0.8571 0.8571 0.0000

Atom AN X Y Z X Y Z X Y Z

1 6 0.31 -0.02 -0.08 0.02 0.32 -0.01 0.00 0.00 0.00

2 17 -0.13 0.24 0.31 0.32 -0.02 0.36 -0.29 -0.29 -0.29

3 17 0.03 0.41 -0.29 0.35 0.01 -0.35 0.29 0.29 -0.29

4 17 -0.09 -0.24 0.35 -0.35 -0.03 -0.31 0.29 -0.29 0.29

5 17 0.08 -0.40 -0.34 -0.32 -0.06 0.31 -0.29 0.29 0.29

7 8 9

T2 T2 T2

Frequencies -- 733.4105 733.4105 733.4105



D.3. CARBON TETRACHLORIDE 395

Red. masses -- 12.9944 12.9944 12.9944

Frc consts -- 4.1181 4.1181 4.1181

IR Inten -- 195.0500 195.0500 195.0500

Raman Activ -- 3.8478 3.8478 3.8478

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 -0.07 0.89 0.40 0.93 -0.07 0.30 -0.30 -0.40 0.84

2 17 -0.05 -0.09 -0.07 -0.09 -0.05 -0.06 0.01 0.01 -0.04

3 17 -0.02 -0.06 0.00 -0.06 -0.02 0.01 0.08 0.09 -0.10

4 17 0.03 -0.06 0.01 -0.10 0.06 -0.07 -0.03 0.06 -0.08

5 17 0.06 -0.10 -0.08 -0.07 0.03 0.02 0.05 -0.02 -0.07

[...]

D.3.2 12C35Cl373 Cl

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Aug-2018

******************************************

%chk=/ddn/data/dch1maf/Carbontetrachloride12C35Cl337ClRaman180815.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

-----------------------------------

Carbon tetrachloride 12C 35Cl3 37Cl

-----------------------------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C(iso=12) 0. 0. 0.

Cl(iso=37) 1.03436 1.03436 1.03436

Cl(iso=35) -1.03436 -1.03436 1.03436

Cl(iso=35) -1.03436 1.03436 -1.03436

Cl(iso=35) 1.03436 -1.03436 -1.03436

[...]

Polarizability derivatives wrt mode 1

1 2 3

1 -0.410254D+00 -0.307446D-02 -0.622561D-03

2 -0.307446D-02 0.690849D-01 0.369702D-02

3 -0.622561D-03 0.369702D-02 0.341169D+00

[...]

Polarizability derivatives wrt mode 2

1 2 3

1 -0.157088D+00 0.249391D-02 -0.390951D-02

2 0.249391D-02 0.433834D+00 0.141560D-02

3 -0.390951D-02 0.141560D-02 -0.276746D+00

[...]

Polarizability derivatives wrt mode 3

1 2 3

1 0.117550D-01 0.292916D+00 0.292916D+00

2 0.292916D+00 0.117550D-01 0.292916D+00

3 0.292916D+00 0.292916D+00 0.117550D-01

[...]

Polarizability derivatives wrt mode 4
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1 2 3

1 0.749840D-02 -0.364062D+00 0.584380D-02

2 -0.364062D+00 0.122328D-03 0.358218D+00

3 0.584380D-02 0.358218D+00 -0.762072D-02

[...]

Polarizability derivatives wrt mode 5

1 2 3

1 -0.447045D-02 -0.203443D+00 0.417008D+00

2 -0.203443D+00 0.872902D-02 -0.213565D+00

3 0.417008D+00 -0.213565D+00 -0.425858D-02

[...]

Polarizability derivatives wrt mode 6

1 2 3

1 -0.670710D+00 0.944306D-02 0.944306D-02

2 0.944306D-02 -0.670710D+00 0.944306D-02

3 0.944306D-02 0.944306D-02 -0.670710D+00

[...]

Polarizability derivatives wrt mode 7

1 2 3

1 0.807438D-02 -0.242997D+00 -0.242997D+00

2 -0.242997D+00 0.807441D-02 -0.242997D+00

3 -0.242997D+00 -0.242997D+00 0.807443D-02

[...]

Polarizability derivatives wrt mode 8

1 2 3

1 0.767869D-03 0.134155D-01 0.296307D+00

2 0.134155D-01 -0.734587D-03 -0.309723D+00

3 0.296307D+00 -0.309723D+00 -0.332356D-04

[...]

Polarizability derivatives wrt mode 9

1 2 3

1 -0.404918D-03 -0.349892D+00 0.186564D+00

2 -0.349892D+00 -0.462532D-03 0.163328D+00

3 0.186564D+00 0.163328D+00 0.867444D-03

[...]

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

?A ?A ?A

Frequencies -- 218.0804 218.0804 310.4340

Red. masses -- 35.4396 35.4396 33.6189

Frc consts -- 0.9931 0.9931 1.9088

IR Inten -- 0.0000 0.0000 0.5345

Raman Activ -- 3.0400 3.0400 5.4116

Depolar (P) -- 0.7500 0.7500 0.7485

Depolar (U) -- 0.8571 0.8571 0.8562

Atom AN X Y Z X Y Z X Y Z

1 6 0.01 0.00 -0.01 0.00 -0.01 0.01 0.18 0.18 0.18

2 17 -0.37 0.06 0.31 -0.14 0.39 -0.25 0.37 0.37 0.37

3 17 0.39 -0.06 0.32 0.14 -0.41 -0.26 -0.03 -0.03 -0.40

4 17 0.38 0.06 -0.31 0.16 0.40 0.27 -0.03 -0.40 -0.03

5 17 -0.38 -0.07 -0.33 -0.15 -0.41 0.25 -0.40 -0.03 -0.03

4 5 6

?A ?A ?A

Frequencies -- 313.1456 313.1456 444.4237

Red. masses -- 32.7920 32.7920 35.3972
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Frc consts -- 1.8946 1.8946 4.1192

IR Inten -- 0.4916 0.4916 0.0013

Raman Activ -- 5.4800 5.4800 20.2489

Depolar (P) -- 0.7500 0.7500 0.0001

Depolar (U) -- 0.8571 0.8571 0.0002

Atom AN X Y Z X Y Z X Y Z

1 6 0.23 0.00 -0.23 -0.14 0.26 -0.13 0.01 0.01 0.01

2 17 -0.24 0.00 0.24 0.14 -0.28 0.14 -0.27 -0.27 -0.27

3 17 0.22 0.48 -0.22 0.42 -0.03 -0.12 0.29 0.29 -0.30

4 17 -0.27 0.00 0.26 -0.40 0.26 -0.40 0.29 -0.30 0.29

5 17 0.22 -0.48 -0.21 -0.13 -0.02 0.43 -0.30 0.29 0.29

7 8 9

?A ?A ?A

Frequencies -- 731.8728 733.3236 733.3236

Red. masses -- 12.9721 12.9945 12.9945

Frc consts -- 4.0938 4.1172 4.1172

IR Inten -- 193.9767 195.0360 195.0360

Raman Activ -- 3.7229 3.8620 3.8620

Depolar (P) -- 0.7490 0.7500 0.7500

Depolar (U) -- 0.8565 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.57 0.57 0.57 0.71 -0.68 -0.03 -0.37 -0.43 0.80

2 17 -0.09 -0.09 -0.09 -0.03 0.03 0.00 0.01 0.02 -0.03

3 17 -0.05 -0.05 0.00 -0.03 0.03 0.00 0.09 0.09 -0.10

4 17 -0.05 0.00 -0.05 -0.09 0.09 -0.06 -0.02 0.06 -0.07

5 17 0.00 -0.05 -0.05 -0.09 0.09 0.06 0.05 -0.02 -0.07

[...]

D.3.3 12C35Cl372 Cl2

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Aug-2018

******************************************

%chk=/ddn/data/dch1maf/Carbontetrachloride12C35Cl237Cl2Raman180815.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

------------------------------------

Carbon tetrachloride 12C 35Cl2 37Cl2

------------------------------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C(iso=12) 0. 0. 0.

Cl(iso=37) 1.03436 1.03436 1.03436

Cl(iso=37) -1.03436 -1.03436 1.03436

Cl(iso=35) -1.03436 1.03436 -1.03436

Cl(iso=35) 1.03436 -1.03436 -1.03436

[...]

Polarizability derivatives wrt mode 1

1 2 3

1 -0.218208D+00 -0.805324D-02 0.000000D+00

2 -0.805324D-02 -0.218206D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.435985D+00
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[...]

Polarizability derivatives wrt mode 2

1 2 3

1 -0.377907D+00 0.000000D+00 0.000000D+00

2 0.000000D+00 0.377908D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.103937D-05

[...]

Polarizability derivatives wrt mode 3

1 2 3

1 0.000000D+00 0.000000D+00 0.356710D+00

2 0.000000D+00 0.000000D+00 0.356710D+00

3 0.356710D+00 0.356710D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 4

1 2 3

1 0.664138D-02 0.506147D+00 0.000000D+00

2 0.506147D+00 0.664139D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 0.283046D-01

[...]

Polarizability derivatives wrt mode 5

1 2 3

1 0.000000D+00 0.000000D+00 0.359716D+00

2 0.000000D+00 0.000000D+00 -0.359716D+00

3 0.359716D+00 -0.359716D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 6

1 2 3

1 -0.666158D+00 0.192043D-01 0.000000D+00

2 0.192043D-01 -0.666158D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.665818D+00

[...]

Polarizability derivatives wrt mode 7

1 2 3

1 0.000000D+00 0.000000D+00 -0.296258D+00

2 0.000000D+00 0.000000D+00 -0.296258D+00

3 -0.296258D+00 -0.296258D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 8

1 2 3

1 0.854976D-02 -0.424359D+00 0.000000D+00

2 -0.424359D+00 0.854977D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 0.106935D-01

[...]

Polarizability derivatives wrt mode 9

1 2 3

1 0.000000D+00 0.000000D+00 0.303796D+00

2 0.000000D+00 0.000000D+00 -0.303796D+00

3 0.303796D+00 -0.303796D+00 0.000000D+00

[...]

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

?A ?A ?A

Frequencies -- 216.5432 216.6042 308.4505

Red. masses -- 35.9467 35.9120 34.0400

Frc consts -- 0.9931 0.9927 1.9081
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IR Inten -- 0.0001 0.0000 0.5378

Raman Activ -- 2.9971 2.9991 5.3442

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.02 0.00 0.00 0.00 0.22 0.22 0.00

2 17 -0.21 -0.21 0.40 -0.34 0.34 0.00 0.22 0.22 0.47

3 17 0.21 0.21 0.40 0.34 -0.34 0.00 0.22 0.22 -0.47

4 17 0.20 -0.20 -0.42 0.36 0.36 0.00 -0.27 -0.27 0.00

5 17 -0.20 0.20 -0.42 -0.36 -0.36 0.00 -0.27 -0.27 0.00

4 5 6

?A ?A ?A

Frequencies -- 310.1098 311.9305 441.3909

Red. masses -- 33.5432 32.9702 35.8682

Frc consts -- 1.9006 1.8901 4.1172

IR Inten -- 0.5105 0.4820 0.0016

Raman Activ -- 5.3918 5.4346 19.9704

Depolar (P) -- 0.7479 0.7500 0.0002

Depolar (U) -- 0.8558 0.8571 0.0003

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.32 -0.23 0.23 0.00 0.00 0.00 0.03

2 17 0.33 0.33 -0.01 0.25 -0.25 0.00 -0.27 -0.27 -0.28

3 17 -0.33 -0.33 -0.01 0.25 -0.25 0.00 0.27 0.27 -0.28

4 17 0.34 -0.34 -0.05 -0.22 0.22 -0.48 0.30 -0.30 0.29

5 17 -0.34 0.34 -0.05 -0.22 0.22 0.48 -0.30 0.30 0.29

7 8 9

?A ?A ?A

Frequencies -- 731.2866 732.2742 733.2368

Red. masses -- 12.9642 12.9800 12.9947

Frc consts -- 4.0848 4.1008 4.1163

IR Inten -- 193.6126 194.3150 195.0220

Raman Activ -- 3.6863 3.7856 3.8763

Depolar (P) -- 0.7500 0.7487 0.7500

Depolar (U) -- 0.8571 0.8563 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.69 0.69 0.00 0.00 0.00 0.98 0.69 -0.69 0.00

2 17 -0.08 -0.08 -0.06 -0.04 -0.04 -0.08 -0.03 0.03 0.00

3 17 -0.08 -0.08 0.06 0.04 0.04 -0.08 -0.03 0.03 0.00

4 17 -0.03 -0.03 0.00 -0.04 0.04 -0.08 -0.09 0.09 -0.06

5 17 -0.03 -0.03 0.00 0.04 -0.04 -0.08 -0.09 0.09 0.06

[...]

D.4 Toluene

The optimized geometry found for toluene is presented in figure D.3. Relevant output

from the Raman computation is given below, which includes the atomic coordinates, po-

larizability derivatives and normal modes. Though the molecule appears to meet the Cs

point group symmetry, Gaussian assigns it to the C1 point group of lower symmetry.

[...]

******************************************

Gaussian 09: EM64L-G09RevA.02 11-Jun-2009

15-Aug-2018

******************************************

%chk=/ddn/data/dch1maf/TolueneRaman180815.chk
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%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=400MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

-------

Toluene

-------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C -0.19404 1.20058 -0.00915

C 1.1998 1.20334 0.00216

C 1.90278 -0.00013 0.00857

C 1.19945 -1.20353 0.00216

C -0.19427 -1.20045 -0.00915

C -0.91314 0.0002 -0.01177

H -0.73155 2.14369 -0.01835

H 1.73637 2.14586 0.00187

H 2.9869 -0.0003 0.01436

H 1.73586 -2.14614 0.00186

H -0.73202 -2.14344 -0.01834

C -2.42325 0.00008 0.00961

H -2.82945 -0.87886 -0.49686

H -2.80083 -0.01135 1.03819

H -2.82928 0.88997 -0.47739

[...]

Polarizability derivatives wrt mode 1

1 2 3

1 -0.364940D-02 0.187136D+00 0.323784D-02

2 0.187136D+00 -0.118319D-02 -0.108876D+00

3 0.323784D-02 -0.108876D+00 -0.897013D-03

[...]

Polarizability derivatives wrt mode 2

1 2 3

1 0.232095D-01 -0.970472D-03 -0.281142D+00

2 -0.970472D-03 -0.115904D-01 0.777774D-03

3 -0.281142D+00 0.777774D-03 -0.250156D-01

[...]

Polarizability derivatives wrt mode 3

1 2 3

1 -0.314333D-02 0.849523D-01 -0.338693D-03

2 0.849523D-01 0.175190D-02 -0.285302D-01

3 -0.338693D-03 -0.285302D-01 -0.227030D-03

[...]

Polarizability derivatives wrt mode 4

1 2 3

1 0.284071D-02 -0.500696D-01 -0.758978D-03

2 -0.500696D-01 0.987691D-03 -0.197740D-02

3 -0.758978D-03 -0.197740D-02 0.525357D-03

[...]

Polarizability derivatives wrt mode 5

1 2 3

1 0.159008D+00 -0.694265D-03 -0.119721D+00

2 -0.694265D-03 -0.668425D-02 -0.122564D-03

3 -0.119721D+00 -0.122564D-03 -0.214392D-02

[...]

Polarizability derivatives wrt mode 6
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1 2 3

1 0.710503D+00 -0.744485D-03 0.377970D-01

2 -0.744485D-03 -0.116210D+00 -0.905754D-05

3 0.377970D-01 -0.905754D-05 0.106980D+00

[...]

Polarizability derivatives wrt mode 7

1 2 3

1 0.922098D-03 0.483211D+00 -0.181119D-04

2 0.483211D+00 0.464493D-04 0.212890D-02

3 -0.181119D-04 0.212890D-02 0.557599D-04

[...]

Polarizability derivatives wrt mode 8

1 2 3

1 0.116577D+00 -0.940957D-03 -0.318950D-03

2 -0.940957D-03 0.593692D-01 0.298392D-03

3 -0.318950D-03 0.298392D-03 -0.525668D-02

[...]

Polarizability derivatives wrt mode 9

1 2 3

1 -0.159599D+00 0.131453D-02 0.146825D+00

2 0.131453D-02 -0.917633D-01 0.494033D-03

3 0.146825D+00 0.494033D-03 -0.154120D-01

[...]

Polarizability derivatives wrt mode 10

1 2 3

1 0.632918D+00 -0.637923D-03 0.462385D-01

2 -0.637923D-03 0.826358D+00 0.775602D-04

3 0.462385D-01 0.775602D-04 0.265886D+00

[...]

Polarizability derivatives wrt mode 11

1 2 3

1 -0.873351D-03 0.378134D-01 0.100989D-02

2 0.378134D-01 -0.369721D-03 -0.835471D-01

3 0.100989D-02 -0.835471D-01 -0.102446D-03

[...]

Polarizability derivatives wrt mode 12

1 2 3

1 0.101825D+00 -0.740195D-03 0.195882D-01

2 -0.740195D-03 -0.144141D-01 -0.260679D-03

3 0.195882D-01 -0.260679D-03 -0.113443D-01

[...]

Polarizability derivatives wrt mode 13

1 2 3

1 -0.307749D-02 0.663382D-01 0.542697D-03

2 0.663382D-01 -0.140578D-02 0.912076D-02

3 0.542697D-03 0.912076D-02 -0.527629D-03

[...]

Polarizability derivatives wrt mode 14

1 2 3

1 -0.253264D-01 0.573740D-03 0.304082D-01

2 0.573740D-03 -0.982555D-02 -0.308796D-03

3 0.304082D-01 -0.308796D-03 -0.146754D-02

[...]

Polarizability derivatives wrt mode 15

1 2 3

1 -0.599853D-02 0.884398D-01 0.340919D-03

2 0.884398D-01 -0.114294D-01 0.237877D-01

3 0.340919D-03 0.237877D-01 -0.496270D-02
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[...]

Polarizability derivatives wrt mode 16

1 2 3

1 0.115432D+01 0.120144D-02 -0.762434D-02

2 0.120144D-02 0.961934D+00 0.158833D-03

3 -0.762434D-02 0.158833D-03 0.419026D+00

[...]

Polarizability derivatives wrt mode 17

1 2 3

1 0.656987D+00 0.589921D-04 -0.648005D-02

2 0.589921D-04 0.645786D+00 -0.462942D-05

3 -0.648005D-02 -0.462942D-05 0.294752D+00

[...]

Polarizability derivatives wrt mode 18

1 2 3

1 -0.323814D+00 0.713476D-03 -0.265413D-01

2 0.713476D-03 -0.495400D-01 -0.230766D-03

3 -0.265413D-01 -0.230766D-03 -0.165321D-01

[...]

Polarizability derivatives wrt mode 19

1 2 3

1 0.154830D-02 0.170058D+00 0.899264D-04

2 0.170058D+00 -0.790251D-03 0.922157D-02

3 0.899264D-04 0.922157D-02 -0.398195D-03

[...]

Polarizability derivatives wrt mode 20

1 2 3

1 0.120841D-02 0.379308D+00 -0.913682D-04

2 0.379308D+00 0.512557D-04 -0.394528D-02

3 -0.913682D-04 -0.394528D-02 0.176191D-03

[...]

Polarizability derivatives wrt mode 21

1 2 3

1 -0.333306D+00 0.378409D-03 -0.159226D-01

2 0.378409D-03 0.470249D+00 0.162610D-04

3 -0.159226D-01 0.162610D-04 -0.912821D-02

[...]

Polarizability derivatives wrt mode 22

1 2 3

1 -0.556282D+00 -0.233464D-02 0.736688D-01

2 -0.233464D-02 -0.726808D+00 -0.946254D-04

3 0.736688D-01 -0.946254D-04 -0.232008D+00

[...]

Polarizability derivatives wrt mode 23

1 2 3

1 -0.241915D-02 -0.482805D-01 0.287610D-03

2 -0.482805D-01 -0.284757D-02 -0.139078D-02

3 0.287610D-03 -0.139078D-02 -0.909016D-03

[...]

Polarizability derivatives wrt mode 24

1 2 3

1 0.947851D-03 -0.226929D+00 0.236282D-04

2 -0.226929D+00 0.173360D-03 0.132850D-01

3 0.236282D-04 0.132850D-01 0.892845D-04

[...]

Polarizability derivatives wrt mode 25

1 2 3

1 0.113091D+01 0.707917D-02 -0.187621D+00
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2 0.707917D-02 0.311176D-01 -0.984162D-04

3 -0.187621D+00 -0.984162D-04 -0.541784D-01

[...]

Polarizability derivatives wrt mode 26

1 2 3

1 -0.269098D-02 -0.445631D+00 -0.209092D-02

2 -0.445631D+00 -0.189024D-02 0.124528D+00

3 -0.209092D-02 0.124528D+00 0.277904D-02

[...]

Polarizability derivatives wrt mode 27

1 2 3

1 -0.445956D+00 0.205262D-02 0.589462D+00

2 0.205262D-02 -0.148343D+00 -0.919539D-02

3 0.589462D+00 -0.919539D-02 0.258741D+00

[...]

Polarizability derivatives wrt mode 28

1 2 3

1 0.132568D-01 0.311575D+00 -0.329946D-02

2 0.311575D+00 0.347666D-02 -0.183287D+00

3 -0.329946D-02 -0.183287D+00 -0.819053D-02

[...]

Polarizability derivatives wrt mode 29

1 2 3

1 -0.138321D+00 0.156057D-02 -0.295264D-02

2 0.156057D-02 0.117287D+00 -0.206534D-03

3 -0.295264D-02 -0.206534D-03 -0.465742D-01

[...]

Polarizability derivatives wrt mode 30

1 2 3

1 -0.203581D-02 -0.648919D+00 -0.389675D-04

2 -0.648919D+00 -0.428774D-04 0.273402D-01

3 -0.389675D-04 0.273402D-01 0.184226D-02

[...]

Polarizability derivatives wrt mode 31

1 2 3

1 0.122084D+01 -0.682797D-03 -0.149078D-01

2 -0.682797D-03 -0.771325D+00 -0.819331D-04

3 -0.149078D-01 -0.819331D-04 -0.596759D-01

[...]

Polarizability derivatives wrt mode 32

1 2 3

1 -0.313666D+01 -0.145695D-01 0.712145D+00

2 -0.145695D-01 -0.119601D+01 0.463444D-02

3 0.712145D+00 0.463444D-02 -0.206124D+01

[...]

Polarizability derivatives wrt mode 33

1 2 3

1 0.372423D+00 0.624517D-02 0.166307D+01

2 0.624517D-02 0.130898D+01 0.342489D-01

3 0.166307D+01 0.342489D-01 -0.537912D+00

[...]

Polarizability derivatives wrt mode 34

1 2 3

1 0.206608D-02 0.142952D+01 -0.118568D-02

2 0.142952D+01 -0.383001D-01 0.936296D+00

3 -0.118568D-02 0.936296D+00 0.257789D-01

[...]

Polarizability derivatives wrt mode 35
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1 2 3

1 0.954793D+00 0.667910D-01 0.354171D-01

2 0.667910D-01 0.592169D+00 0.164686D-02

3 0.354171D-01 0.164686D-02 0.522936D-01

[...]

Polarizability derivatives wrt mode 36

1 2 3

1 -0.292491D-01 0.225836D+01 -0.982155D-03

2 0.225836D+01 -0.949704D-02 0.543187D-01

3 -0.982155D-03 0.543187D-01 0.103612D-04

[...]

Polarizability derivatives wrt mode 37

1 2 3

1 0.771121D+00 0.795962D-02 -0.147358D-01

2 0.795962D-02 -0.335133D+01 0.786906D-04

3 -0.147358D-01 0.786906D-04 -0.745804D-01

[...]

Polarizability derivatives wrt mode 38

1 2 3

1 0.465215D-02 -0.110428D+01 -0.155639D-04

2 -0.110428D+01 -0.434488D-02 0.210402D-01

3 -0.155639D-04 0.210402D-01 0.273766D-03

[...]

Polarizability derivatives wrt mode 39

1 2 3

1 0.348791D+01 0.244119D-03 0.238303D-01

2 0.244119D-03 0.306932D+01 -0.168067D-04

3 0.238303D-01 -0.168067D-04 0.998807D-01

[...]

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

A A A

Frequencies -- 38.6747 208.5408 343.4871

Red. masses -- 1.0347 3.0131 2.5038

Frc consts -- 0.0009 0.0772 0.1740

IR Inten -- 0.2468 2.3783 0.3770

Raman Activ -- 0.9848 1.6738 0.1688

Depolar (P) -- 0.7498 0.7493 0.7499

Depolar (U) -- 0.8570 0.8567 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.02 0.00 0.00 0.19 0.06 0.13 0.01

2 6 0.00 0.00 -0.02 0.00 0.00 -0.01 0.08 -0.01 -0.01

3 6 0.00 0.00 0.00 0.00 0.00 -0.20 0.00 -0.07 0.00

4 6 0.00 0.00 0.02 0.00 0.00 -0.01 -0.08 -0.01 0.01

5 6 0.00 0.00 0.02 0.00 0.00 0.19 -0.06 0.13 -0.01

6 6 0.00 0.01 0.00 0.00 0.00 0.15 0.00 0.15 0.00

7 1 0.00 0.00 -0.04 0.00 0.00 0.25 0.15 0.18 0.02

8 1 0.00 0.00 -0.04 0.00 0.00 -0.07 0.17 -0.06 -0.02

9 1 0.00 0.00 0.00 0.01 0.00 -0.45 0.00 -0.14 0.00

10 1 0.00 0.00 0.04 0.00 0.00 -0.08 -0.17 -0.06 0.02

11 1 0.00 0.00 0.04 0.00 0.00 0.25 -0.15 0.18 -0.02

12 6 0.00 -0.01 0.00 -0.01 0.00 -0.21 0.00 -0.23 0.00

13 1 0.00 0.28 -0.49 0.14 0.00 -0.34 0.33 -0.40 0.03

14 1 0.00 -0.59 -0.01 -0.32 0.01 -0.33 0.00 -0.35 0.00

15 1 0.00 0.27 0.50 0.14 -0.01 -0.35 -0.33 -0.40 -0.03
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4 5 6

A A A

Frequencies -- 412.5835 475.3186 528.6652

Red. masses -- 2.9022 2.6971 5.0148

Frc consts -- 0.2911 0.3590 0.8258

IR Inten -- 0.0070 9.8559 0.5886

Raman Activ -- 0.0529 0.6008 6.3302

Depolar (P) -- 0.7477 0.5341 0.3552

Depolar (U) -- 0.8556 0.6963 0.5242

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 -0.01 0.21 0.01 -0.01 -0.04 0.05 -0.13 0.00

2 6 0.00 0.00 -0.21 0.01 -0.01 -0.13 0.11 -0.12 0.02

3 6 0.00 0.00 0.00 0.02 0.00 0.19 0.29 0.00 -0.02

4 6 0.00 0.00 0.21 0.01 0.01 -0.13 0.11 0.12 0.02

5 6 0.00 -0.01 -0.21 0.01 0.01 -0.04 0.05 0.13 0.00

6 6 0.00 -0.01 0.00 -0.01 0.00 0.28 -0.22 0.00 -0.04

7 1 -0.01 -0.01 0.45 0.02 0.00 -0.32 0.24 -0.02 0.05

8 1 -0.01 0.00 -0.46 0.00 0.00 -0.40 -0.04 -0.03 0.07

9 1 0.00 0.01 0.00 0.02 0.00 0.32 0.30 0.00 -0.02

10 1 0.01 0.00 0.45 0.00 0.00 -0.40 -0.05 0.03 0.07

11 1 0.01 -0.01 -0.45 0.02 0.00 -0.32 0.24 0.02 0.05

12 6 0.00 0.01 0.00 -0.03 0.00 -0.01 -0.37 0.00 0.01

13 1 -0.01 0.02 0.00 0.13 0.00 -0.15 -0.39 0.00 0.02

14 1 0.00 0.01 0.00 -0.36 0.00 -0.14 -0.33 0.00 0.02

15 1 0.01 0.02 0.00 0.12 -0.01 -0.15 -0.39 0.00 0.02

7 8 9

A A A

Frequencies -- 636.7566 710.7226 744.7162

Red. masses -- 6.3711 1.9866 1.5077

Frc consts -- 1.5220 0.5912 0.4927

IR Inten -- 0.0980 32.0539 49.1912

Raman Activ -- 4.9034 0.2237 0.9179

Depolar (P) -- 0.7500 0.1758 0.3558

Depolar (U) -- 0.8571 0.2990 0.5248

Atom AN X Y Z X Y Z X Y Z

1 6 0.24 -0.20 0.00 0.00 0.00 -0.09 0.00 -0.01 0.09

2 6 0.26 0.24 0.00 0.00 0.00 0.16 0.00 -0.01 0.00

3 6 0.00 0.14 0.00 0.00 0.00 -0.10 0.01 0.00 0.11

4 6 -0.26 0.24 0.00 0.00 0.00 0.16 0.00 0.01 0.00

5 6 -0.24 -0.20 0.00 0.00 0.00 -0.09 0.00 0.01 0.09

6 6 0.00 -0.14 0.00 0.00 0.00 0.11 -0.01 0.00 -0.12

7 1 0.10 -0.28 0.00 0.00 0.00 -0.52 0.01 0.00 -0.16

8 1 0.12 0.32 0.00 0.00 0.00 -0.10 -0.01 -0.01 -0.54

9 1 0.00 -0.30 0.00 0.00 0.00 -0.58 0.01 0.00 -0.46

10 1 -0.12 0.32 0.00 0.00 0.00 -0.10 -0.01 0.01 -0.54

11 1 -0.10 -0.28 0.00 0.00 0.00 -0.52 0.01 0.00 -0.16

12 6 0.00 -0.05 0.00 0.00 0.00 0.02 0.01 0.00 -0.03

13 1 0.02 -0.07 0.01 0.04 0.00 -0.01 -0.11 -0.01 0.09

14 1 0.00 -0.06 0.00 -0.09 0.00 -0.02 0.26 0.00 0.07

15 1 -0.02 -0.07 -0.01 0.04 0.00 -0.01 -0.10 0.01 0.09

10 11 12

A A A

Frequencies -- 798.2265 852.7399 910.0940

Red. masses -- 4.5133 1.2497 1.3097

Frc consts -- 1.6943 0.5354 0.6391

IR Inten -- 0.8306 0.0264 0.6840

Raman Activ -- 16.6277 0.1766 0.1292

Depolar (P) -- 0.0471 0.7499 0.4983
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Depolar (U) -- 0.0900 0.8571 0.6651

Atom AN X Y Z X Y Z X Y Z

1 6 0.08 0.18 0.01 0.00 0.00 -0.08 0.00 -0.01 -0.09

2 6 0.13 0.22 0.00 0.00 0.00 -0.07 0.00 0.00 0.01

3 6 -0.17 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.10

4 6 0.13 -0.22 0.00 0.00 0.00 0.07 0.00 0.00 0.01

5 6 0.08 -0.18 0.01 0.00 0.00 0.08 0.00 0.01 -0.09

6 6 0.05 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.02

7 1 -0.01 0.14 0.00 -0.01 0.00 0.51 -0.01 0.00 0.52

8 1 0.40 0.07 -0.07 -0.01 0.00 0.48 -0.01 0.00 -0.08

9 1 -0.16 0.00 -0.08 0.00 0.00 0.00 0.00 0.00 -0.59

10 1 0.40 -0.07 -0.07 0.01 0.00 -0.48 -0.01 0.00 -0.08

11 1 -0.01 -0.14 0.00 0.01 0.00 -0.51 -0.01 0.00 0.52

12 6 -0.28 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03

13 1 -0.31 0.01 0.00 0.01 0.00 0.00 0.10 0.02 -0.08

14 1 -0.29 0.00 0.00 0.00 -0.01 0.00 -0.20 0.00 -0.05

15 1 -0.31 -0.01 0.00 -0.01 -0.01 0.00 0.10 -0.02 -0.08

13 14 15

A A A

Frequencies -- 975.6044 994.0231 999.6828

Red. masses -- 1.3685 1.2762 1.4366

Frc consts -- 0.7674 0.7429 0.8459

IR Inten -- 0.0008 0.0537 0.1552

Raman Activ -- 0.0943 0.0292 0.1789

Depolar (P) -- 0.7483 0.4930 0.7318

Depolar (U) -- 0.8560 0.6604 0.8451

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.09 0.00 0.00 0.03 -0.02 0.07 0.00

2 6 0.00 0.00 0.09 0.00 0.00 -0.08 0.03 0.03 0.00

3 6 0.00 0.00 0.00 0.00 0.00 0.09 0.00 -0.04 0.00

4 6 0.00 0.00 -0.09 0.00 0.00 -0.08 -0.03 0.03 0.00

5 6 0.00 0.00 0.09 0.00 0.00 0.03 0.02 0.07 0.00

6 6 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.06 0.00

7 1 0.00 0.00 0.48 0.00 0.00 -0.25 -0.04 0.06 0.03

8 1 0.00 0.00 -0.51 0.00 0.00 0.51 0.14 -0.03 0.00

9 1 0.00 0.00 0.00 0.01 0.00 -0.57 0.00 -0.18 0.00

10 1 0.00 0.00 0.51 0.00 0.00 0.51 -0.14 -0.03 0.00

11 1 0.01 0.00 -0.48 0.00 0.00 -0.25 0.04 0.07 -0.03

12 6 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.14 0.00

13 1 0.01 -0.01 0.00 -0.03 -0.01 0.03 -0.60 0.18 -0.06

14 1 0.00 -0.01 0.00 0.06 0.00 0.01 -0.01 0.28 0.00

15 1 -0.01 -0.01 0.00 -0.03 0.01 0.03 0.61 0.17 0.05

16 17 18

A A A

Frequencies -- 1017.1611 1050.3199 1062.9379

Red. masses -- 6.1984 2.2230 1.5586

Frc consts -- 3.7784 1.4449 1.0375

IR Inten -- 0.0818 3.7265 8.2792

Raman Activ -- 35.1930 13.6523 1.3724

Depolar (P) -- 0.0386 0.0288 0.2364

Depolar (U) -- 0.0744 0.0560 0.3825

Atom AN X Y Z X Y Z X Y Z

1 6 -0.20 0.34 -0.01 -0.05 -0.08 0.00 0.01 -0.02 -0.04

2 6 -0.02 -0.04 0.00 0.03 0.19 0.00 0.00 0.01 0.00

3 6 0.39 0.00 0.00 0.13 0.00 0.00 -0.01 0.00 0.00

4 6 -0.02 0.04 0.00 0.03 -0.19 0.00 0.00 -0.01 0.00

5 6 -0.19 -0.34 -0.01 -0.05 0.08 0.00 0.01 0.02 -0.04

6 6 0.02 0.00 0.03 -0.03 0.00 -0.01 0.00 0.00 0.15
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7 1 -0.18 0.37 0.05 -0.35 -0.24 -0.01 0.00 -0.02 0.17

8 1 -0.02 -0.03 -0.02 -0.31 0.39 0.00 -0.01 0.02 0.00

9 1 0.41 0.00 0.01 0.15 0.00 0.01 -0.01 0.00 -0.02

10 1 -0.02 0.02 -0.02 -0.31 -0.39 0.00 -0.01 -0.02 0.00

11 1 -0.17 -0.37 0.05 -0.35 0.24 -0.01 0.00 0.02 0.17

12 6 0.02 0.00 -0.02 0.02 0.00 0.01 -0.01 0.00 -0.15

13 1 -0.05 0.00 0.04 0.05 0.00 -0.02 -0.34 -0.09 0.28

14 1 0.11 0.01 0.01 -0.01 0.00 0.00 0.70 0.00 0.12

15 1 -0.03 0.01 0.04 0.05 0.00 -0.02 -0.33 0.08 0.28

19 20 21

A A A

Frequencies -- 1110.1664 1180.8952 1202.9527

Red. masses -- 1.4658 1.1105 1.1408

Frc consts -- 1.0644 0.9124 0.9727

IR Inten -- 6.2938 0.0536 0.4440

Raman Activ -- 0.6091 3.0217 3.5191

Depolar (P) -- 0.7500 0.7500 0.7201

Depolar (U) -- 0.8571 0.8571 0.8372

Atom AN X Y Z X Y Z X Y Z

1 6 0.10 -0.02 0.00 -0.01 -0.01 0.00 0.05 0.03 0.00

2 6 -0.05 -0.05 0.00 0.04 -0.02 0.00 -0.05 0.02 0.00

3 6 0.00 0.07 0.00 0.00 0.07 0.00 -0.01 0.00 0.00

4 6 0.05 -0.05 0.00 -0.04 -0.02 0.00 -0.05 -0.02 0.00

5 6 -0.10 -0.02 0.00 0.01 -0.01 0.00 0.05 -0.03 0.00

6 6 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00

7 1 0.46 0.18 0.01 -0.14 -0.09 0.00 0.43 0.24 0.00

8 1 -0.23 0.05 0.00 0.42 -0.24 0.00 -0.44 0.25 -0.01

9 1 0.00 0.52 0.00 0.00 0.68 0.00 -0.01 0.00 0.00

10 1 0.23 0.05 0.00 -0.42 -0.24 0.00 -0.44 -0.25 -0.01

11 1 -0.46 0.18 -0.01 0.14 -0.09 0.00 0.43 -0.24 0.00

12 6 0.00 -0.06 0.00 0.00 0.00 0.00 -0.01 0.00 0.00

13 1 -0.19 0.05 -0.03 -0.01 0.00 0.00 0.00 -0.01 0.01

14 1 0.00 0.10 0.00 0.00 0.01 0.00 -0.01 0.00 0.00

15 1 0.19 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.01

22 23 24

A A A

Frequencies -- 1227.7948 1328.4489 1355.6884

Red. masses -- 2.9933 4.9861 1.3985

Frc consts -- 2.6586 5.1845 1.5144

IR Inten -- 1.0216 0.0409 0.0015

Raman Activ -- 12.9184 0.0492 1.0852

Depolar (P) -- 0.0502 0.7449 0.7500

Depolar (U) -- 0.0956 0.8538 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.05 0.00 0.00 -0.17 -0.12 0.00 0.10 0.03 0.00

2 6 -0.09 -0.08 0.00 0.20 -0.13 0.00 -0.01 -0.01 0.00

3 6 0.03 0.00 0.00 0.00 0.20 0.00 0.00 -0.10 0.00

4 6 -0.09 0.08 0.00 -0.20 -0.13 0.00 0.01 -0.01 0.00

5 6 0.05 0.00 0.00 0.17 -0.12 0.00 -0.10 0.03 0.00

6 6 0.36 0.00 0.00 0.00 0.34 0.00 0.00 0.07 0.00

7 1 -0.38 -0.26 -0.01 -0.13 -0.10 0.00 -0.48 -0.30 0.00

8 1 -0.32 0.04 -0.01 -0.38 0.19 -0.01 -0.28 0.14 0.00

9 1 0.02 0.00 0.00 0.00 -0.19 0.00 0.00 0.33 0.00

10 1 -0.32 -0.05 -0.01 0.38 0.19 0.01 0.28 0.14 0.00

11 1 -0.37 0.26 -0.01 0.13 -0.10 0.00 0.48 -0.30 0.00

12 6 -0.14 0.00 0.00 0.00 -0.08 0.00 0.00 -0.03 0.00

13 1 -0.27 0.05 0.00 -0.20 0.08 -0.09 -0.05 0.02 -0.04

14 1 -0.21 0.00 -0.02 0.00 0.28 0.00 0.00 0.09 0.00
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15 1 -0.27 -0.05 0.00 0.20 0.07 0.09 0.05 0.02 0.04

25 26 27

A A A

Frequencies -- 1414.0376 1468.2520 1490.1416

Red. masses -- 1.2482 1.5993 1.0494

Frc consts -- 1.4705 2.0313 1.3730

IR Inten -- 1.1922 0.0071 7.2707

Raman Activ -- 16.0514 4.4963 10.4897

Depolar (P) -- 0.3600 0.7500 0.6823

Depolar (U) -- 0.5294 0.8571 0.8111

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.06 -0.04 0.00 0.00 0.00 0.00

2 6 0.01 0.00 0.00 -0.11 0.01 0.00 0.00 0.00 0.00

3 6 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00

4 6 0.00 0.00 0.00 0.11 0.01 0.00 0.00 0.00 0.00

5 6 0.00 0.00 0.00 -0.06 -0.04 0.00 -0.01 0.00 0.00

6 6 -0.03 0.00 0.00 0.00 0.10 0.00 -0.01 0.00 0.02

7 1 0.02 0.01 0.00 -0.06 -0.12 0.01 0.03 0.01 0.00

8 1 0.01 0.00 0.00 0.25 -0.21 0.00 0.01 0.00 0.00

9 1 0.00 0.00 0.00 0.00 -0.44 0.00 0.00 0.00 0.00

10 1 0.01 0.00 0.00 -0.25 -0.21 0.00 0.00 0.00 0.00

11 1 0.02 -0.01 0.00 0.06 -0.12 -0.01 0.03 -0.01 0.00

12 6 0.14 0.00 -0.01 0.00 -0.06 0.00 0.02 0.00 0.05

13 1 -0.49 0.14 0.21 0.14 0.06 -0.29 -0.26 0.41 -0.45

14 1 -0.56 0.00 -0.25 0.00 0.54 0.01 0.30 -0.01 0.13

15 1 -0.48 -0.15 0.21 -0.15 0.05 0.29 -0.25 -0.40 -0.48

28 29 30

A A A

Frequencies -- 1502.3096 1527.3007 1623.2737

Red. masses -- 1.2828 2.2564 5.2807

Frc consts -- 1.7058 3.1011 8.1984

IR Inten -- 13.2855 13.6049 0.2529

Raman Activ -- 2.7472 0.3752 8.8588

Depolar (P) -- 0.7498 0.6735 0.7500

Depolar (U) -- 0.8570 0.8049 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.05 -0.01 0.00 0.07 0.10 0.00 0.09 0.18 0.00

2 6 -0.05 -0.02 0.00 0.12 -0.11 0.00 0.07 -0.20 0.00

3 6 0.00 0.08 0.00 -0.11 0.00 0.00 0.00 0.35 0.00

4 6 0.05 -0.02 0.00 0.12 0.11 0.00 -0.07 -0.20 0.00

5 6 -0.05 -0.01 0.00 0.07 -0.10 0.00 -0.09 0.18 0.00

6 6 0.00 0.08 0.00 -0.15 0.00 0.00 0.00 -0.30 0.00

7 1 -0.10 -0.11 -0.01 -0.41 -0.16 0.00 -0.28 -0.02 0.00

8 1 0.09 -0.11 0.00 -0.44 0.20 0.00 -0.24 -0.04 0.00

9 1 0.00 -0.29 0.00 -0.13 0.00 0.00 0.00 -0.46 0.00

10 1 -0.09 -0.11 0.00 -0.44 -0.20 0.00 0.24 -0.04 0.00

11 1 0.09 -0.10 0.01 -0.41 0.16 0.00 0.28 -0.02 0.00

12 6 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.02 0.00

13 1 -0.31 -0.05 0.35 0.03 0.01 -0.01 0.19 -0.01 -0.10

14 1 0.00 -0.61 -0.01 0.04 0.00 0.01 0.00 0.14 0.00

15 1 0.32 -0.03 -0.34 0.03 -0.01 -0.02 -0.19 -0.01 0.09

31 32 33

A A A

Frequencies -- 1644.8333 3019.5167 3073.2698

Red. masses -- 5.6193 1.0405 1.0946

Frc consts -- 8.9574 5.5894 6.0910

IR Inten -- 9.1017 29.1713 19.4660

Raman Activ -- 22.1666 234.9149 82.5544
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Depolar (P) -- 0.7061 0.0589 0.6519

Depolar (U) -- 0.8278 0.1113 0.7893

Atom AN X Y Z X Y Z X Y Z

1 6 0.30 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 6 -0.27 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 6 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 6 -0.27 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 6 0.30 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 6 -0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 1 -0.31 -0.26 0.00 -0.01 0.01 0.00 0.01 -0.01 0.00

8 1 0.24 -0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 1 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1 0.24 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 1 -0.31 0.26 0.00 -0.01 -0.01 0.00 0.01 0.01 0.00

12 6 0.03 0.00 0.00 -0.05 0.00 0.03 0.02 0.00 0.09

13 1 0.02 0.03 -0.03 0.15 0.35 0.21 -0.21 -0.47 -0.25

14 1 0.06 0.00 0.02 0.26 0.01 -0.74 0.21 0.01 -0.56

15 1 0.01 -0.03 -0.03 0.15 -0.35 0.20 -0.20 0.46 -0.23

34 35 36

A A A

Frequencies -- 3099.2331 3152.9598 3154.6036

Red. masses -- 1.1023 1.0859 1.0876

Frc consts -- 6.2381 6.3604 6.3772

IR Inten -- 16.7656 8.7464 5.7989

Raman Activ -- 61.3465 17.2393 107.1782

Depolar (P) -- 0.7500 0.1244 0.7499

Depolar (U) -- 0.8571 0.2213 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.02 -0.04 0.00 -0.03 0.05 0.00

2 6 0.00 0.00 0.00 0.02 0.03 0.00 -0.01 -0.02 0.00

3 6 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00

4 6 0.00 0.00 0.00 0.02 -0.03 0.00 0.01 -0.02 0.00

5 6 0.00 0.00 0.00 0.02 0.04 0.00 0.03 0.05 0.00

6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 1 -0.02 0.02 0.00 -0.26 0.45 0.00 0.32 -0.57 0.01

8 1 0.00 0.00 0.00 -0.19 -0.34 0.00 0.15 0.27 0.00

9 1 0.00 0.00 0.00 0.29 0.00 0.00 -0.01 0.00 0.00

10 1 0.00 0.00 0.00 -0.20 0.36 0.00 -0.14 0.25 0.00

11 1 0.02 0.02 0.00 -0.28 -0.49 -0.01 -0.31 -0.54 -0.01

12 6 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 1 -0.25 -0.55 -0.33 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01

14 1 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

15 1 0.26 -0.58 0.33 -0.01 0.01 -0.01 0.01 -0.02 0.01

37 38 39

A A A

Frequencies -- 3167.1936 3175.4530 3187.9875

Red. masses -- 1.0899 1.0938 1.0979

Frc consts -- 6.4416 6.4984 6.5743

IR Inten -- 7.2107 36.0828 14.0259

Raman Activ -- 134.8092 25.6179 293.2483

Depolar (P) -- 0.4631 0.7500 0.1170

Depolar (U) -- 0.6331 0.8571 0.2095

Atom AN X Y Z X Y Z X Y Z

1 6 -0.02 0.03 0.00 -0.01 0.02 0.00 0.01 -0.01 0.00

2 6 0.02 0.02 0.00 0.03 0.05 0.00 -0.02 -0.04 0.00

3 6 -0.06 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00

4 6 0.02 -0.02 0.00 -0.03 0.05 0.00 -0.02 0.04 0.00

5 6 -0.02 -0.03 0.00 0.01 0.02 0.00 0.01 0.01 0.00
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6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 1 0.21 -0.36 0.00 0.15 -0.26 0.00 -0.08 0.14 0.00

8 1 -0.17 -0.29 0.00 -0.32 -0.56 0.00 0.23 0.41 0.00

9 1 0.65 0.00 0.00 0.00 0.01 0.00 0.70 0.00 0.00

10 1 -0.17 0.29 0.00 0.32 -0.56 0.00 0.23 -0.41 0.00

11 1 0.21 0.36 0.00 -0.15 -0.25 0.00 -0.08 -0.14 0.00

12 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 1 0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

14 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 1 0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

[...]

D.5 Decanoic acid

The optimized geometry found for decanoic acid is presented in figure D.4. Relevant output

from the Raman computation is given below, which includes the atomic coordinates in

the standard orientation, polarizability derivatives and ninety normal modes. The atomic

coordinates in the molecular frame of reference are included in table D.1. Note that the

first hydrogen atom of the chain, part of the methyl group, is listed as the last atom in

the computational output.
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Table D.1: Atomic positions of dodecanoic acid in its optimised geometry, specified in the
molecular frame of reference m in which the chain of carbon atoms is in the
xmzm plane and parallel to ẑm. Values are rounded to four decimal places.

Atom xm / Å ym / Å zm / Å

C -0.4995 0 6.7102
C 0.3436 0 5.4315
H -1.1449 -0.8829 6.7590
H -1.1449 0.8829 6.7590
C -0.4972 0 4.1502
H 1.0033 0.8763 5.4296
H 1.0033 -0.8763 5.4296
H -1.1580 -0.8769 4.1528
H -1.1580 0.8769 4.1528
C 0.3390 0 2.8653
C -0.5011 0 1.5835
H 0.9996 -0.8768 2.8641
H 0.9996 0.8768 2.8641
C 0.3387 0 0.3008
H -1.1615 -0.8769 1.5841
H -1.1615 0.8769 1.5841
C -0.4993 0 -0.9822
H 0.9990 0.8766 0.3002
H 0.9990 -0.8766 0.3002
H -1.1597 -0.8770 -0.9825
H -1.1597 0.8770 -0.9825
C 0.3503 0 -2.2581
C -0.4985 0 -3.5288
H 1.0100 -0.8735 -2.2655
H 1.0100 0.8735 -2.2655
H -1.1624 -0.8715 -3.5639
H -1.1624 0.8715 -3.5639
C 0.3124 0 -4.8027
O -0.4898 0 -5.9005
O 1.5147 0 -4.8871
H 0.0905 0 -6.6766
H 0.1299 0 7.6046
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Figure D.3: Optimized geometry of toluene in Gaussian’s standard orientation, which
matches the desired molecular orientation with the directions of the x and z
axes inverted.
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Figure D.4: Optimized geometry of decanoic acid in Gaussian’s standard orientation, the
computational frame of reference s, (left) and the molecular frame of reference
m used in our analysis.
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[...]

******************************************

%chk=/ddn/data/dch1maf/DecanoicacidRaman180815.chk

%nprocshared=4

Will use up to 4 processors via shared memory.

%mem=450MW

---------------------------------------------------------

#T b3lyp/6-311++g(d,p) freq=Raman IOp(2/33=1) IOp(7/33=3)

---------------------------------------------------------

-------------

Decanoic acid

-------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C -5.3486 4.08273 0.

C -3.8327 3.86392 0.

H -5.81372 3.63264 0.88289

H -5.81372 3.63264 -0.88289

C -3.43309 2.38433 0.

H -3.39319 4.3559 -0.87628

H -3.39319 4.3559 0.87628

H -3.87389 1.89208 0.87687

H -3.87389 1.89208 -0.87687

C -1.91707 2.15627 0.

C -1.51674 0.67693 0.

H -1.47751 2.64932 0.87675

H -1.47751 2.64932 -0.87675

C 0. 0.45296 0.

H -1.95569 0.18355 0.87693

H -1.95569 0.18355 -0.87693

C 0.40279 -1.02558 0.

H 0.43897 0.94629 -0.8766

H 0.43897 0.94629 0.8766

H -0.03555 -1.51953 0.87704

H -0.03555 -1.51953 -0.87704

C 1.92094 -1.23769 0.

C 2.30726 -2.71616 0.

H 2.36456 -0.74939 0.87352

H 2.36456 -0.74939 -0.87352

H 1.89258 -3.23581 0.87145

H 1.89258 -3.23581 -0.87145

C 3.7982 -2.9559 0.

O 4.08624 -4.28473 0.

O 4.65981 -2.11301 0.

H 5.05185 -4.36626 0.

H -5.5993 5.14723 0.

[...]

Polarizability derivatives wrt mode 1

1 2 3

1 0.000000D+00 0.000000D+00 0.241826D-01

2 0.000000D+00 0.000000D+00 -0.999846D-01

3 0.241826D-01 -0.999846D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 2

1 2 3

1 0.000000D+00 0.000000D+00 0.140246D-02

2 0.000000D+00 0.000000D+00 -0.472032D-02

3 0.140246D-02 -0.472032D-02 0.000000D+00
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[...]

Polarizability derivatives wrt mode 3

1 2 3

1 -0.481068D-01 -0.159180D-01 0.000000D+00

2 -0.159180D-01 0.433698D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.335079D-03

[...]

Polarizability derivatives wrt mode 4

1 2 3

1 0.000000D+00 0.000000D+00 -0.866384D-01

2 0.000000D+00 0.000000D+00 0.392495D-01

3 -0.866384D-01 0.392495D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 5

1 2 3

1 0.000000D+00 0.000000D+00 -0.680776D-01

2 0.000000D+00 0.000000D+00 0.571277D-01

3 -0.680776D-01 0.571277D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 6

1 2 3

1 0.000000D+00 0.000000D+00 -0.580321D-01

2 0.000000D+00 0.000000D+00 0.183003D-01

3 -0.580321D-01 0.183003D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 7

1 2 3

1 0.582496D-01 -0.389480D-01 0.000000D+00

2 -0.389480D-01 0.176709D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.577627D-02

[...]

Polarizability derivatives wrt mode 8

1 2 3

1 0.000000D+00 0.000000D+00 -0.270938D-01

2 0.000000D+00 0.000000D+00 0.110883D-01

3 -0.270938D-01 0.110883D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 9

1 2 3

1 0.000000D+00 0.000000D+00 0.371448D-01

2 0.000000D+00 0.000000D+00 -0.231577D-02

3 0.371448D-01 -0.231577D-02 0.000000D+00

[...]

Polarizability derivatives wrt mode 10

1 2 3

1 0.000000D+00 0.000000D+00 -0.239615D-01

2 0.000000D+00 0.000000D+00 0.140633D-01

3 -0.239615D-01 0.140633D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 11

1 2 3

1 0.374014D+00 -0.215413D+00 0.000000D+00

2 -0.215413D+00 0.249267D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.678762D-01

[...]

Polarizability derivatives wrt mode 12

1 2 3

1 0.178846D+00 -0.195045D+00 0.000000D+00



D.5. DECANOIC ACID 415

2 -0.195045D+00 0.194483D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.547802D-01

[...]

Polarizability derivatives wrt mode 13

1 2 3

1 0.000000D+00 0.000000D+00 -0.411927D-02

2 0.000000D+00 0.000000D+00 0.201212D-01

3 -0.411927D-02 0.201212D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 14

1 2 3

1 0.331712D-01 -0.890953D-01 0.000000D+00

2 -0.890953D-01 0.111212D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.160561D-01

[...]

Polarizability derivatives wrt mode 15

1 2 3

1 -0.978904D-01 0.754796D-01 0.000000D+00

2 0.754796D-01 -0.112191D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.391894D-01

[...]

Polarizability derivatives wrt mode 16

1 2 3

1 -0.196290D-01 -0.640885D-01 0.000000D+00

2 -0.640885D-01 -0.226245D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.221196D-02

[...]

Polarizability derivatives wrt mode 17

1 2 3

1 -0.138441D+00 0.407876D-01 0.000000D+00

2 0.407876D-01 0.144544D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.281745D-01

[...]

Polarizability derivatives wrt mode 18

1 2 3

1 0.000000D+00 0.000000D+00 -0.279450D+00

2 0.000000D+00 0.000000D+00 0.120436D+00

3 -0.279450D+00 0.120436D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 19

1 2 3

1 0.609782D-01 -0.958423D-01 -0.136737D-05

2 -0.958423D-01 -0.328657D-01 0.000000D+00

3 -0.136737D-05 0.000000D+00 -0.289684D-01

[...]

Polarizability derivatives wrt mode 20

1 2 3

1 0.462605D-01 0.173115D+00 0.000000D+00

2 0.173115D+00 -0.547923D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.669549D-01

[...]

Polarizability derivatives wrt mode 21

1 2 3

1 0.000000D+00 0.000000D+00 -0.116852D+00

2 0.000000D+00 0.000000D+00 0.102120D+00

3 -0.116852D+00 0.102120D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 22
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1 2 3

1 0.000000D+00 0.000000D+00 0.160536D-02

2 0.000000D+00 0.000000D+00 0.218371D-02

3 0.160536D-02 0.218371D-02 0.000000D+00

[...]

Polarizability derivatives wrt mode 23

1 2 3

1 0.000000D+00 0.000000D+00 0.560957D-02

2 0.000000D+00 0.000000D+00 0.203084D-01

3 0.560957D-02 0.203084D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 24

1 2 3

1 0.000000D+00 0.000000D+00 -0.140855D-02

2 0.000000D+00 0.000000D+00 0.849875D-02

3 -0.140855D-02 0.849875D-02 0.000000D+00

[...]

Polarizability derivatives wrt mode 25

1 2 3

1 0.000000D+00 0.000000D+00 -0.391952D-01

2 0.000000D+00 0.000000D+00 -0.409427D-01

3 -0.391952D-01 -0.409427D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 26

1 2 3

1 0.000000D+00 0.000000D+00 0.208506D-01

2 0.000000D+00 0.000000D+00 -0.333464D-01

3 0.208506D-01 -0.333464D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 27

1 2 3

1 -0.548196D+00 0.204475D+00 0.000000D+00

2 0.204475D+00 -0.543167D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.123747D+00

[...]

Polarizability derivatives wrt mode 28

1 2 3

1 -0.406592D+00 0.281231D+00 0.000000D+00

2 0.281231D+00 -0.221999D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.428307D-01

[...]

Polarizability derivatives wrt mode 29

1 2 3

1 0.150570D-05 -0.113978D-05 -0.423020D-01

2 -0.113978D-05 0.000000D+00 -0.738574D-01

3 -0.423020D-01 -0.738574D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 30

1 2 3

1 0.000000D+00 0.000000D+00 -0.542367D-02

2 0.000000D+00 0.000000D+00 -0.490132D-01

3 -0.542367D-02 -0.490132D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 31

1 2 3

1 0.315629D+00 -0.194535D-01 0.000000D+00

2 -0.194535D-01 0.262418D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.555811D-01
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[...]

Polarizability derivatives wrt mode 32

1 2 3

1 -0.856388D-01 0.130327D+00 0.000000D+00

2 0.130327D+00 -0.116522D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.296134D-01

[...]

Polarizability derivatives wrt mode 33

1 2 3

1 -0.706940D-01 -0.722500D-01 0.000000D+00

2 -0.722500D-01 0.101558D+00 0.114478D-05

3 0.000000D+00 0.114478D-05 -0.396099D-01

[...]

Polarizability derivatives wrt mode 34

1 2 3

1 0.113409D-05 0.118515D-05 0.180972D-01

2 0.118515D-05 -0.154971D-05 0.713324D-01

3 0.180972D-01 0.713324D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 35

1 2 3

1 -0.665723D+00 0.158719D+00 0.000000D+00

2 0.158719D+00 0.736692D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.346326D-01

[...]

Polarizability derivatives wrt mode 36

1 2 3

1 0.138311D+00 -0.351753D-01 0.000000D+00

2 -0.351753D-01 0.380093D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.150434D-01

[...]

Polarizability derivatives wrt mode 37

1 2 3

1 -0.865614D+00 -0.569818D-01 0.000000D+00

2 -0.569818D-01 0.733663D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.130325D-03

[...]

Polarizability derivatives wrt mode 38

1 2 3

1 0.434643D+00 -0.238866D+00 0.000000D+00

2 -0.238866D+00 0.360440D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.519203D-01

[...]

Polarizability derivatives wrt mode 39

1 2 3

1 -0.528340D+00 0.219587D+00 0.000000D+00

2 0.219587D+00 -0.348696D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.761313D-01

[...]

Polarizability derivatives wrt mode 40

1 2 3

1 0.000000D+00 0.000000D+00 -0.359009D-02

2 0.000000D+00 0.000000D+00 0.222897D+00

3 -0.359009D-02 0.222897D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 41

1 2 3

1 0.375101D+00 -0.575345D-01 0.000000D+00
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2 -0.575345D-01 0.671242D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.121206D+00

[...]

Polarizability derivatives wrt mode 42

1 2 3

1 0.000000D+00 0.000000D+00 0.184108D+00

2 0.000000D+00 0.000000D+00 0.149820D+00

3 0.184108D+00 0.149820D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 43

1 2 3

1 0.714908D-02 -0.901380D-01 0.000000D+00

2 -0.901380D-01 0.432581D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.342551D-01

[...]

Polarizability derivatives wrt mode 44

1 2 3

1 0.000000D+00 0.000000D+00 -0.135778D+00

2 0.000000D+00 0.000000D+00 0.448564D-01

3 -0.135778D+00 0.448564D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 45

1 2 3

1 -0.654157D-01 -0.151483D+00 0.000000D+00

2 -0.151483D+00 0.599119D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.334630D-01

[...]

Polarizability derivatives wrt mode 46

1 2 3

1 0.000000D+00 0.000000D+00 0.425795D-01

2 0.000000D+00 0.000000D+00 -0.473609D-01

3 0.425795D-01 -0.473609D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 47

1 2 3

1 -0.170882D+00 -0.256019D+00 0.000000D+00

2 -0.256019D+00 0.131231D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.286671D-01

[...]

Polarizability derivatives wrt mode 48

1 2 3

1 0.000000D+00 0.000000D+00 -0.407467D+00

2 0.000000D+00 0.000000D+00 0.357125D+00

3 -0.407467D+00 0.357125D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 49

1 2 3

1 0.000000D+00 0.000000D+00 0.886725D+00

2 0.000000D+00 0.000000D+00 -0.795746D+00

3 0.886725D+00 -0.795746D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 50

1 2 3

1 -0.163136D+00 -0.114607D+00 0.000000D+00

2 -0.114607D+00 0.636764D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.827727D-02

[...]

Polarizability derivatives wrt mode 51
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1 2 3

1 0.000000D+00 0.000000D+00 -0.201049D+00

2 0.000000D+00 0.000000D+00 0.114587D+00

3 -0.201049D+00 0.114587D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 52

1 2 3

1 0.000000D+00 0.000000D+00 -0.641560D-01

2 0.000000D+00 0.000000D+00 0.447670D-01

3 -0.641560D-01 0.447670D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 53

1 2 3

1 0.000000D+00 0.000000D+00 0.166290D+00

2 0.000000D+00 0.000000D+00 -0.144302D+00

3 0.166290D+00 -0.144302D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 54

1 2 3

1 -0.165076D+00 -0.100462D+00 0.000000D+00

2 -0.100462D+00 0.925106D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.872313D-02

[...]

Polarizability derivatives wrt mode 55

1 2 3

1 -0.616641D-01 0.155050D-02 0.000000D+00

2 0.155050D-02 -0.151815D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.179739D-01

[...]

Polarizability derivatives wrt mode 56

1 2 3

1 0.165638D+00 0.358998D-01 0.000000D+00

2 0.358998D-01 -0.995262D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.106164D-02

[...]

Polarizability derivatives wrt mode 57

1 2 3

1 -0.303664D-01 -0.311138D-02 0.000000D+00

2 -0.311138D-02 -0.786330D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.695337D-02

[...]

Polarizability derivatives wrt mode 58

1 2 3

1 0.840212D-01 -0.233686D-01 0.000000D+00

2 -0.233686D-01 -0.136072D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.352710D-01

[...]

Polarizability derivatives wrt mode 59

1 2 3

1 -0.119125D+00 0.950649D-02 0.000000D+00

2 0.950649D-02 0.651089D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.547742D-01

[...]

Polarizability derivatives wrt mode 60

1 2 3

1 -0.136701D+00 -0.513161D+00 0.000000D+00

2 -0.513161D+00 -0.110164D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.242310D+00
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[...]

Polarizability derivatives wrt mode 61

1 2 3

1 0.759042D-01 -0.146365D+00 0.000000D+00

2 -0.146365D+00 0.922664D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 0.890771D-01

[...]

Polarizability derivatives wrt mode 62

1 2 3

1 0.124919D+00 -0.154104D+00 0.000000D+00

2 -0.154104D+00 0.901951D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.663002D-01

[...]

Polarizability derivatives wrt mode 63

1 2 3

1 0.471986D+00 -0.148728D+01 0.000000D+00

2 -0.148728D+01 0.111435D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.731068D+00

[...]

Polarizability derivatives wrt mode 64

1 2 3

1 -0.286246D-01 0.279416D+00 0.000000D+00

2 0.279416D+00 0.438028D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.150908D+00

[...]

Polarizability derivatives wrt mode 65

1 2 3

1 0.675929D-01 -0.536285D+00 0.000000D+00

2 -0.536285D+00 -0.280868D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 0.270061D+00

[...]

Polarizability derivatives wrt mode 66

1 2 3

1 0.000000D+00 0.000000D+00 -0.473629D+00

2 0.000000D+00 0.000000D+00 0.389060D+00

3 -0.473629D+00 0.389060D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 67

1 2 3

1 -0.958950D-01 -0.105078D+00 0.000000D+00

2 -0.105078D+00 -0.666339D-02 0.000000D+00

3 0.000000D+00 0.000000D+00 0.647958D-01

[...]

Polarizability derivatives wrt mode 68

1 2 3

1 -0.675686D-01 -0.139087D+00 0.000000D+00

2 -0.139087D+00 0.792216D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.774916D-01

[...]

Polarizability derivatives wrt mode 69

1 2 3

1 -0.925505D-01 0.493249D-02 0.000000D+00

2 0.493249D-02 0.234154D-01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.451469D-02

[...]

Polarizability derivatives wrt mode 70

1 2 3

1 -0.550323D+00 -0.345708D+00 0.000000D+00



D.5. DECANOIC ACID 421

2 -0.345708D+00 -0.358023D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.120920D+00

[...]

Polarizability derivatives wrt mode 71

1 2 3

1 0.497282D+00 0.298260D+00 0.000000D+00

2 0.298260D+00 0.521764D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.897702D+00

[...]

Polarizability derivatives wrt mode 72

1 2 3

1 0.466735D+00 0.212491D+00 0.000000D+00

2 0.212491D+00 0.461433D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.717504D+00

[...]

Polarizability derivatives wrt mode 73

1 2 3

1 0.237800D+01 0.807267D+00 0.000000D+00

2 0.807267D+00 0.258244D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.376882D+01

[...]

Polarizability derivatives wrt mode 74

1 2 3

1 -0.695255D+00 -0.383880D+00 0.000000D+00

2 -0.383880D+00 -0.690620D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.118633D+01

[...]

Polarizability derivatives wrt mode 75

1 2 3

1 -0.727981D+00 -0.433114D+00 0.000000D+00

2 -0.433114D+00 -0.878021D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.142910D+01

[...]

Polarizability derivatives wrt mode 76

1 2 3

1 0.000000D+00 0.000000D+00 0.227074D+01

2 0.000000D+00 0.000000D+00 0.256044D+01

3 0.227074D+01 0.256044D+01 0.000000D+00

[...]

Polarizability derivatives wrt mode 77

1 2 3

1 -0.741939D+00 -0.388883D+00 0.000000D+00

2 -0.388883D+00 -0.946266D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.139800D+01

[...]

Polarizability derivatives wrt mode 78

1 2 3

1 0.000000D+00 0.000000D+00 0.564114D+00

2 0.000000D+00 0.000000D+00 0.675042D+00

3 0.564114D+00 0.675042D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 79

1 2 3

1 -0.515660D-05 0.000000D+00 -0.107933D+01

2 0.000000D+00 -0.539417D-05 -0.121815D+01

3 -0.107933D+01 -0.121815D+01 -0.513783D-05

[...]

Polarizability derivatives wrt mode 80
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1 2 3

1 0.199880D+01 -0.281462D+00 -0.260531D-05

2 -0.281462D+00 0.205055D+01 -0.284003D-05

3 -0.260531D-05 -0.284003D-05 0.201032D+01

[...]

Polarizability derivatives wrt mode 81

1 2 3

1 0.172199D+01 0.631467D+00 0.000000D+00

2 0.631467D+00 0.179876D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 0.255458D+01

[...]

Polarizability derivatives wrt mode 82

1 2 3

1 0.000000D+00 0.000000D+00 0.361525D+00

2 0.000000D+00 0.000000D+00 0.322630D+00

3 0.361525D+00 0.322630D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 83

1 2 3

1 0.244606D+00 0.284012D-01 0.000000D+00

2 0.284012D-01 0.150563D+00 0.000000D+00

3 0.000000D+00 0.000000D+00 0.502947D+00

[...]

Polarizability derivatives wrt mode 84

1 2 3

1 0.000000D+00 0.000000D+00 -0.933247D+00

2 0.000000D+00 0.000000D+00 -0.104207D+01

3 -0.933247D+00 -0.104207D+01 0.000000D+00

[...]

Polarizability derivatives wrt mode 85

1 2 3

1 0.000000D+00 0.000000D+00 -0.666381D+00

2 0.000000D+00 0.000000D+00 -0.817722D+00

3 -0.666381D+00 -0.817722D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 86

1 2 3

1 0.000000D+00 0.000000D+00 -0.813887D+00

2 0.000000D+00 0.000000D+00 -0.950654D+00

3 -0.813887D+00 -0.950654D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 87

1 2 3

1 0.000000D+00 0.000000D+00 0.353097D+00

2 0.000000D+00 0.000000D+00 0.979859D-01

3 0.353097D+00 0.979859D-01 0.000000D+00

[...]

Polarizability derivatives wrt mode 88

1 2 3

1 0.000000D+00 0.000000D+00 -0.112709D+01

2 0.000000D+00 0.000000D+00 -0.324758D+00

3 -0.112709D+01 -0.324758D+00 0.000000D+00

[...]

Polarizability derivatives wrt mode 89

1 2 3

1 0.114431D+00 -0.134893D+01 0.000000D+00

2 -0.134893D+01 0.239062D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.726023D+00
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[...]

Polarizability derivatives wrt mode 90

1 2 3

1 -0.279234D+01 0.147746D+01 0.000000D+00

2 0.147746D+01 -0.129312D+01 0.000000D+00

3 0.000000D+00 0.000000D+00 -0.165322D+00

[...]

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

A" A" A’

Frequencies -- 15.9958 24.5456 39.8087

Red. masses -- 2.9835 4.0414 4.4165

Frc consts -- 0.0004 0.0014 0.0041

IR Inten -- 0.6735 0.0598 0.2478

Raman Activ -- 0.2222 0.0005 0.0494

Depolar (P) -- 0.7500 0.7500 0.7474

Depolar (U) -- 0.8571 0.8571 0.8555

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.03 0.00 0.00 0.26 0.14 0.21 0.00

2 6 0.00 0.00 0.12 0.00 0.00 0.09 0.12 0.05 0.00

3 1 -0.11 -0.15 -0.17 0.10 -0.02 0.30 0.10 0.26 0.00

4 1 0.11 0.15 -0.17 -0.10 0.02 0.30 0.10 0.26 0.00

5 6 0.00 0.00 -0.07 0.00 0.00 0.01 -0.02 0.01 0.00

6 1 0.11 0.14 0.26 -0.09 0.02 0.06 0.17 0.01 0.00

7 1 -0.11 -0.14 0.26 0.09 -0.02 0.06 0.17 0.01 0.00

8 1 -0.10 -0.14 -0.20 0.08 -0.02 0.04 -0.06 0.05 0.00

9 1 0.10 0.14 -0.20 -0.08 0.02 0.04 -0.06 0.05 0.00

10 6 0.00 0.00 0.07 0.00 0.00 -0.13 -0.04 -0.11 0.00

11 6 0.00 0.00 -0.08 0.00 0.00 -0.16 -0.12 -0.13 0.00

12 1 -0.10 -0.12 0.19 0.08 0.00 -0.16 0.00 -0.14 0.00

13 1 0.10 0.12 0.19 -0.08 0.00 -0.16 0.00 -0.14 0.00

14 6 0.00 0.00 0.03 0.00 0.00 -0.21 -0.12 -0.16 0.00

15 1 -0.08 -0.11 -0.19 0.04 0.00 -0.14 -0.13 -0.11 0.00

16 1 0.08 0.11 -0.19 -0.04 0.00 -0.14 -0.13 -0.11 0.00

17 6 0.00 0.00 -0.06 0.00 0.00 -0.17 -0.10 -0.15 0.00

18 1 0.08 0.08 0.12 -0.03 -0.03 -0.25 -0.12 -0.16 0.00

19 1 -0.08 -0.08 0.12 0.03 0.03 -0.25 -0.12 -0.16 0.00

20 1 -0.06 -0.07 -0.13 -0.01 0.03 -0.15 -0.08 -0.17 0.00

21 1 0.06 0.07 -0.13 0.01 -0.03 -0.15 -0.08 -0.17 0.00

22 6 0.00 0.00 0.02 0.00 0.00 -0.13 -0.09 -0.08 0.00

23 6 0.00 0.00 0.00 0.00 0.00 -0.03 0.02 -0.05 0.00

24 1 -0.05 -0.03 0.06 -0.02 0.05 -0.15 -0.12 -0.05 0.00

25 1 0.05 0.03 0.06 0.02 -0.05 -0.15 -0.12 -0.05 0.00

26 1 -0.01 -0.02 -0.02 -0.06 0.05 -0.03 0.06 -0.08 0.00

27 1 0.01 0.02 -0.02 0.06 -0.05 -0.03 0.06 -0.08 0.00

28 6 0.00 0.00 -0.02 0.00 0.00 0.10 0.04 0.08 0.00

29 8 0.00 0.00 0.23 0.00 0.00 0.16 0.16 0.11 0.00

30 8 0.00 0.00 -0.23 0.00 0.00 0.14 -0.04 0.16 0.00

31 1 0.00 0.00 0.18 0.00 0.00 0.24 0.17 0.19 0.00

32 1 0.00 0.00 0.12 0.00 0.00 0.32 0.26 0.24 0.00

4 5 6

A" A" A"

Frequencies -- 54.1540 67.3893 106.3226

Red. masses -- 1.7417 2.8629 1.7668

Frc consts -- 0.0030 0.0077 0.0118
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IR Inten -- 0.0669 0.0114 0.0869

Raman Activ -- 0.1900 0.1659 0.0778

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.02 0.00 0.00 0.17 0.00 0.00 0.00

2 6 0.00 0.00 0.11 0.00 0.00 -0.05 0.00 0.00 -0.07

3 1 -0.09 -0.16 -0.15 0.13 0.00 0.24 0.06 0.16 0.12

4 1 0.09 0.16 -0.15 -0.13 0.00 0.24 -0.06 -0.16 0.12

5 6 0.00 0.00 -0.08 0.00 0.00 -0.12 0.00 0.00 0.07

6 1 0.09 0.14 0.23 -0.12 0.01 -0.10 -0.06 -0.11 -0.16

7 1 -0.09 -0.14 0.23 0.12 -0.01 -0.10 0.06 0.11 -0.16

8 1 -0.05 -0.12 -0.17 0.02 -0.03 -0.13 -0.02 0.07 0.10

9 1 0.05 0.12 -0.17 -0.02 0.03 -0.13 0.02 -0.07 0.10

10 6 0.00 0.00 -0.02 0.00 0.00 -0.15 0.00 0.00 0.12

11 6 0.00 0.00 -0.04 0.00 0.00 -0.13 0.00 0.00 -0.10

12 1 -0.04 -0.03 0.02 0.00 0.00 -0.15 -0.05 -0.14 0.22

13 1 0.04 0.03 0.02 0.00 0.00 -0.15 0.05 0.14 0.22

14 6 0.00 0.00 -0.07 0.00 0.00 0.07 0.00 0.00 0.02

15 1 0.02 0.00 -0.03 -0.11 -0.02 -0.20 -0.09 -0.16 -0.23

16 1 -0.02 0.00 -0.03 0.11 0.02 -0.20 0.09 0.16 -0.23

17 6 0.00 0.00 0.08 0.00 0.00 0.06 0.00 0.00 -0.10

18 1 -0.03 -0.09 -0.14 0.12 0.03 0.15 0.08 0.10 0.12

19 1 0.03 0.09 -0.14 -0.12 -0.03 0.15 -0.08 -0.10 0.12

20 1 0.09 0.11 0.18 -0.10 -0.03 -0.01 -0.04 -0.07 -0.16

21 1 -0.09 -0.11 0.18 0.10 0.03 -0.01 0.04 0.07 -0.16

22 6 0.00 0.00 -0.04 0.00 0.00 0.22 0.00 0.00 -0.05

23 6 0.00 0.00 0.15 0.00 0.00 0.10 0.00 0.00 0.14

24 1 0.09 0.14 -0.17 -0.10 -0.09 0.33 -0.01 0.11 -0.11

25 1 -0.09 -0.14 -0.17 0.10 0.09 0.33 0.01 -0.11 -0.11

26 1 0.11 0.15 0.29 0.04 -0.07 0.07 0.10 0.15 0.27

27 1 -0.11 -0.15 0.29 -0.04 0.07 0.07 -0.10 -0.15 0.27

28 6 0.00 0.00 0.02 0.00 0.00 -0.02 0.00 0.00 0.02

29 8 0.00 0.00 -0.09 0.00 0.00 -0.08 0.00 0.00 -0.04

30 8 0.00 0.00 0.02 0.00 0.00 -0.06 0.00 0.00 -0.01

31 1 0.00 0.00 -0.15 0.00 0.00 -0.16 0.00 0.00 -0.09

32 1 0.00 0.00 0.15 0.00 0.00 0.21 0.00 0.00 -0.18

7 8 9

A’ A" A"

Frequencies -- 107.5782 118.7883 152.6984

Red. masses -- 4.2319 2.3168 1.8530

Frc consts -- 0.0289 0.0193 0.0255

IR Inten -- 0.7792 0.0068 0.0413

Raman Activ -- 0.0811 0.0180 0.0291

Depolar (P) -- 0.3374 0.7500 0.7500

Depolar (U) -- 0.5045 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.05 0.20 0.00 0.00 0.00 -0.11 0.00 0.00 0.01

2 6 0.01 -0.03 0.00 0.00 0.00 0.09 0.00 0.00 -0.04

3 1 -0.03 0.27 0.00 -0.13 -0.01 -0.18 0.04 0.12 0.09

4 1 -0.03 0.27 0.00 0.13 0.01 -0.18 -0.04 -0.12 0.09

5 6 -0.15 -0.08 0.00 0.00 0.00 0.17 0.00 0.00 0.01

6 1 0.08 -0.09 0.00 0.10 -0.03 0.13 -0.03 -0.05 -0.08

7 1 0.08 -0.09 0.00 -0.10 0.03 0.13 0.03 0.05 -0.08

8 1 -0.18 -0.05 0.00 0.12 0.07 0.27 -0.07 0.00 -0.02

9 1 -0.18 -0.05 0.00 -0.12 -0.07 0.27 0.07 0.00 -0.02

10 6 -0.15 -0.14 0.00 0.00 0.00 -0.04 0.00 0.00 0.13

11 6 -0.08 -0.12 0.00 0.00 0.00 -0.04 0.00 0.00 -0.10
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12 1 -0.15 -0.13 0.00 0.13 0.03 -0.12 -0.09 -0.16 0.26

13 1 -0.15 -0.13 0.00 -0.13 -0.03 -0.12 0.09 0.16 0.26

14 6 -0.05 0.03 0.00 0.00 0.00 -0.15 0.00 0.00 -0.14

15 1 -0.04 -0.15 0.00 0.08 0.02 0.01 0.00 -0.13 -0.18

16 1 -0.04 -0.15 0.00 -0.08 -0.02 0.01 0.00 0.13 -0.18

17 6 0.10 0.07 0.00 0.00 0.00 -0.09 0.00 0.00 0.14

18 1 -0.11 0.08 0.00 -0.06 -0.05 -0.20 -0.05 -0.17 -0.26

19 1 -0.11 0.08 0.00 0.06 0.05 -0.20 0.05 0.17 -0.26

20 1 0.14 0.03 0.00 -0.14 0.00 -0.16 0.07 0.18 0.27

21 1 0.14 0.03 0.00 0.14 0.00 -0.16 -0.07 -0.18 0.27

22 6 0.11 0.15 0.00 0.00 0.00 0.17 0.00 0.00 0.07

23 6 0.08 0.14 0.00 0.00 0.00 0.08 0.00 0.00 -0.07

24 1 0.10 0.15 0.00 -0.16 -0.08 0.29 0.03 -0.06 0.09

25 1 0.10 0.15 0.00 0.16 0.08 0.29 -0.03 0.06 0.09

26 1 0.04 0.16 0.00 0.02 -0.06 0.05 -0.06 -0.11 -0.16

27 1 0.04 0.16 0.00 -0.02 0.06 0.05 0.06 0.11 -0.16

28 6 0.05 -0.02 0.00 0.00 0.00 0.01 0.00 0.00 -0.02

29 8 -0.12 -0.06 0.00 0.00 0.00 -0.03 0.00 0.00 0.01

30 8 0.16 -0.13 0.00 0.00 0.00 -0.03 0.00 0.00 0.00

31 1 -0.13 -0.18 0.00 0.00 0.00 -0.10 0.00 0.00 0.04

32 1 0.22 0.24 0.00 0.00 0.00 -0.14 0.00 0.00 -0.13

10 11 12

A" A’ A’

Frequencies -- 160.2403 185.7486 204.1295

Red. masses -- 2.1135 5.2097 3.9172

Frc consts -- 0.0320 0.1059 0.0962

IR Inten -- 0.0006 0.8840 0.6185

Raman Activ -- 0.0162 3.8606 1.8383

Depolar (P) -- 0.7500 0.1953 0.2738

Depolar (U) -- 0.8571 0.3268 0.4299

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.05 -0.18 0.04 0.00 -0.07 0.20 0.00

2 6 0.00 0.00 -0.06 -0.15 0.19 0.00 -0.10 -0.05 0.00

3 1 0.08 -0.01 0.09 -0.14 -0.01 0.00 -0.16 0.29 0.00

4 1 -0.08 0.01 0.09 -0.14 -0.01 0.00 -0.16 0.29 0.00

5 6 0.00 0.00 -0.13 -0.04 0.20 0.00 -0.15 -0.07 0.00

6 1 -0.05 0.03 -0.07 -0.20 0.23 0.00 -0.05 -0.09 0.00

7 1 0.05 -0.03 -0.07 -0.20 0.23 0.00 -0.05 -0.09 0.00

8 1 -0.15 -0.08 -0.25 -0.04 0.19 0.00 -0.13 -0.08 0.00

9 1 0.15 0.08 -0.25 -0.04 0.19 0.00 -0.13 -0.08 0.00

10 6 0.00 0.00 0.11 -0.03 0.13 0.00 -0.11 0.02 0.00

11 6 0.00 0.00 0.16 -0.11 0.07 0.00 0.10 0.07 0.00

12 1 -0.14 0.00 0.18 0.00 0.10 0.00 -0.17 0.08 0.00

13 1 0.14 0.00 0.18 0.00 0.10 0.00 -0.17 0.08 0.00

14 6 0.00 0.00 -0.11 -0.10 -0.08 0.00 0.13 0.12 0.00

15 1 0.16 0.07 0.29 -0.15 0.11 0.00 0.15 0.02 0.00

16 1 -0.16 -0.07 0.29 -0.15 0.11 0.00 0.15 0.02 0.00

17 6 0.00 0.00 -0.13 -0.05 -0.11 0.00 0.07 0.08 0.00

18 1 -0.16 -0.03 -0.21 -0.07 -0.10 0.00 0.13 0.11 0.00

19 1 0.16 0.03 -0.21 -0.07 -0.10 0.00 0.13 0.11 0.00

20 1 -0.11 -0.03 -0.20 -0.03 -0.12 0.00 0.01 0.12 0.00

21 1 0.11 0.03 -0.20 -0.03 -0.12 0.00 0.01 0.12 0.00

22 6 0.00 0.00 0.06 0.00 -0.07 0.00 0.05 -0.12 0.00

23 6 0.00 0.00 0.06 0.14 -0.05 0.00 -0.02 -0.16 0.00

24 1 -0.12 -0.03 0.14 -0.04 -0.03 0.00 0.11 -0.17 0.00

25 1 0.12 0.03 0.14 -0.04 -0.03 0.00 0.11 -0.17 0.00

26 1 0.02 0.00 0.06 0.17 -0.08 0.00 -0.02 -0.16 0.00

27 1 -0.02 0.00 0.06 0.17 -0.08 0.00 -0.02 -0.16 0.00
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28 6 0.00 0.00 0.01 0.17 -0.07 0.00 0.00 -0.09 0.00

29 8 0.00 0.00 -0.02 0.12 -0.09 0.00 0.18 -0.05 0.00

30 8 0.00 0.00 -0.01 0.22 -0.13 0.00 -0.10 0.02 0.00

31 1 0.00 0.00 -0.05 0.12 -0.12 0.00 0.19 0.10 0.00

32 1 0.00 0.00 0.08 -0.29 0.01 0.00 0.14 0.25 0.00

13 14 15

A" A’ A’

Frequencies -- 238.6402 309.6927 362.4443

Red. masses -- 1.1251 3.5959 3.9686

Frc consts -- 0.0378 0.2032 0.3072

IR Inten -- 0.0000 0.8213 3.5669

Raman Activ -- 0.0089 0.3494 0.4617

Depolar (P) -- 0.7500 0.3712 0.1631

Depolar (U) -- 0.8571 0.5414 0.2804

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.01 -0.01 -0.09 0.00 0.18 -0.14 0.00

2 6 0.00 0.00 0.09 0.03 0.17 0.00 0.15 -0.03 0.00

3 1 0.00 0.47 0.22 0.10 -0.20 0.00 0.24 -0.21 0.00

4 1 0.00 -0.47 0.22 0.10 -0.20 0.00 0.24 -0.21 0.00

5 6 0.00 0.00 -0.04 0.00 0.15 0.00 -0.05 -0.03 0.00

6 1 0.06 0.07 0.15 -0.02 0.20 -0.01 0.18 -0.07 -0.01

7 1 -0.06 -0.07 0.15 -0.02 0.20 0.01 0.18 -0.07 0.01

8 1 -0.02 -0.10 -0.11 -0.08 0.21 0.00 -0.08 0.00 0.00

9 1 0.02 0.10 -0.11 -0.08 0.21 0.00 -0.08 0.00 0.00

10 6 0.00 0.00 -0.04 -0.05 -0.10 0.00 -0.11 0.02 0.00

11 6 0.00 0.00 0.01 -0.11 -0.14 0.00 -0.10 0.08 0.00

12 1 0.00 0.02 -0.05 0.03 -0.16 0.00 -0.13 0.04 0.00

13 1 0.00 -0.02 -0.05 0.03 -0.16 0.00 -0.13 0.04 0.00

14 6 0.00 0.00 0.01 -0.05 0.03 0.00 -0.10 0.20 0.00

15 1 0.01 0.03 0.03 -0.08 -0.15 0.01 -0.08 0.06 0.00

16 1 -0.01 -0.03 0.03 -0.08 -0.15 -0.01 -0.08 0.06 0.00

17 6 0.00 0.00 0.00 0.17 0.09 0.00 -0.14 0.17 0.00

18 1 0.00 0.01 0.01 -0.14 0.11 0.00 -0.13 0.22 0.00

19 1 0.00 -0.01 0.01 -0.14 0.11 0.00 -0.13 0.22 0.00

20 1 0.00 -0.01 -0.01 0.20 0.05 -0.01 -0.20 0.22 0.00

21 1 0.00 0.01 -0.01 0.20 0.05 0.01 -0.20 0.22 0.00

22 6 0.00 0.00 0.00 0.17 0.04 0.00 -0.13 -0.01 0.00

23 6 0.00 0.00 0.00 -0.04 -0.04 0.00 -0.01 -0.04 0.00

24 1 0.00 0.00 0.00 0.23 -0.03 0.00 -0.11 -0.02 -0.01

25 1 0.00 0.00 0.00 0.23 -0.03 0.00 -0.11 -0.02 0.01

26 1 0.00 0.00 0.00 -0.10 0.02 0.00 0.02 -0.07 0.00

27 1 0.00 0.00 0.00 -0.10 0.02 0.00 0.02 -0.07 0.00

28 6 0.00 0.00 0.00 -0.06 -0.08 0.00 0.05 -0.05 0.00

29 8 0.00 0.00 0.00 0.10 -0.04 0.00 0.14 -0.05 0.00

30 8 0.00 0.00 0.00 -0.15 0.02 0.00 0.08 -0.08 0.00

31 1 0.00 0.00 0.00 0.11 0.09 0.00 0.15 0.05 0.00

32 1 0.00 0.00 -0.58 -0.26 -0.15 0.00 0.02 -0.17 0.00

16 17 18

A’ A’ A"

Frequencies -- 428.6241 485.9920 518.4622

Red. masses -- 3.4200 3.1803 1.4842

Frc consts -- 0.3702 0.4426 0.2351

IR Inten -- 2.9665 2.6294 28.7468

Raman Activ -- 0.0981 0.2814 1.9445

Depolar (P) -- 0.6490 0.3374 0.7500

Depolar (U) -- 0.7871 0.5046 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 -0.01 0.04 0.00 0.13 -0.07 0.00 0.00 0.00 0.00
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2 6 -0.04 -0.15 0.00 0.08 0.00 0.00 0.00 0.00 0.00

3 1 -0.10 0.15 0.00 0.19 -0.15 0.00 0.00 0.00 0.00

4 1 -0.10 0.15 0.00 0.19 -0.15 0.00 0.00 0.00 0.00

5 6 0.10 -0.08 0.00 -0.16 -0.02 0.00 0.00 0.00 0.00

6 1 -0.02 -0.15 0.01 0.13 -0.06 -0.01 0.00 0.00 0.00

7 1 -0.02 -0.15 -0.01 0.13 -0.06 0.01 0.00 0.00 0.00

8 1 0.21 -0.17 0.00 -0.19 0.02 0.01 0.00 0.00 0.00

9 1 0.21 -0.17 0.00 -0.19 0.02 -0.01 0.00 0.00 0.00

10 6 0.11 0.13 0.00 -0.16 0.15 0.00 0.00 0.00 0.00

11 6 -0.13 0.09 0.00 -0.01 0.17 0.00 0.00 0.00 0.00

12 1 0.11 0.11 0.01 -0.26 0.24 0.00 0.00 0.00 0.00

13 1 0.11 0.11 -0.01 -0.26 0.24 0.00 0.00 0.00 0.00

14 6 -0.17 -0.06 0.00 0.00 -0.11 0.00 0.00 0.00 0.00

15 1 -0.24 0.18 0.00 -0.06 0.19 -0.01 0.00 0.00 0.00

16 1 -0.24 0.18 0.00 -0.06 0.19 0.01 0.00 0.00 0.00

17 6 0.03 0.00 0.00 0.09 -0.14 0.00 0.00 0.00 -0.01

18 1 -0.19 -0.03 0.01 0.07 -0.16 0.01 0.00 0.01 0.01

19 1 -0.19 -0.03 -0.01 0.07 -0.16 -0.01 0.00 -0.01 0.01

20 1 0.11 -0.07 0.00 0.16 -0.20 0.00 0.03 0.01 0.01

21 1 0.11 -0.07 0.00 0.16 -0.20 0.00 -0.03 -0.01 0.01

22 6 0.08 0.14 0.00 0.12 -0.01 0.00 0.00 0.00 -0.03

23 6 -0.01 0.07 0.00 0.05 0.00 0.00 0.00 0.00 0.03

24 1 0.07 0.13 0.01 0.11 -0.01 0.00 0.02 0.08 -0.08

25 1 0.07 0.13 -0.01 0.11 -0.01 0.00 -0.02 -0.08 -0.08

26 1 -0.10 0.13 0.00 0.03 0.01 0.00 -0.34 -0.16 -0.23

27 1 -0.10 0.13 0.00 0.03 0.01 0.00 0.34 0.16 -0.23

28 6 -0.03 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.19

29 8 0.13 -0.07 0.00 -0.06 0.00 0.00 0.00 0.00 -0.01

30 8 -0.09 -0.04 0.00 -0.05 0.05 0.00 0.00 0.00 -0.05

31 1 0.15 0.12 0.00 -0.07 -0.09 0.00 0.00 0.00 -0.74

32 1 0.22 0.10 0.00 -0.03 -0.11 0.00 0.00 0.00 0.00

19 20 21

A’ A’ A"

Frequencies -- 519.9835 636.0402 648.7543

Red. masses -- 3.3745 4.4139 1.3822

Frc consts -- 0.5376 1.0521 0.3427

IR Inten -- 15.0744 24.7927 86.2928

Raman Activ -- 0.2521 4.3362 0.5057

Depolar (P) -- 0.7500 0.3676 0.7500

Depolar (U) -- 0.8571 0.5376 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

2 6 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1 0.05 -0.06 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

4 1 0.05 -0.06 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

5 6 -0.07 0.02 0.00 -0.02 0.00 0.00 0.00 0.00 0.00

6 1 0.01 0.06 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

7 1 0.01 0.06 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

8 1 -0.12 0.06 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

9 1 -0.12 0.06 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

10 6 -0.05 -0.05 0.00 -0.01 0.03 0.00 0.00 0.00 0.00

11 6 0.15 -0.01 0.00 -0.01 0.01 0.00 0.00 0.00 0.00

12 1 -0.08 -0.01 -0.01 -0.02 0.04 0.00 0.00 0.00 0.00

13 1 -0.08 -0.01 0.01 -0.02 0.04 0.00 0.00 0.00 0.00

14 6 0.12 -0.07 0.00 0.00 -0.05 0.00 0.00 0.00 0.00

15 1 0.19 -0.06 -0.01 -0.04 0.03 0.00 -0.01 0.00 0.00

16 1 0.19 -0.06 0.01 -0.04 0.03 0.00 0.01 0.00 0.00

17 6 -0.10 -0.09 0.00 0.10 -0.01 0.00 0.00 0.00 0.00
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18 1 0.21 -0.16 0.00 -0.01 -0.04 0.00 -0.01 -0.01 -0.01

19 1 0.21 -0.16 0.00 -0.01 -0.04 0.00 0.01 0.01 -0.01

20 1 -0.08 -0.09 0.01 0.13 -0.06 0.00 0.01 0.00 0.01

21 1 -0.08 -0.09 -0.01 0.13 -0.06 0.00 -0.01 0.00 0.01

22 6 -0.09 0.19 0.00 0.04 -0.05 0.00 0.00 0.00 0.00

23 6 -0.04 0.18 0.00 -0.23 -0.05 0.00 0.00 0.00 -0.06

24 1 -0.20 0.27 0.01 0.13 -0.15 0.00 -0.03 -0.11 0.08

25 1 -0.20 0.27 -0.01 0.13 -0.15 0.00 0.03 0.11 0.08

26 1 -0.14 0.25 -0.01 -0.22 -0.02 0.02 0.23 0.15 0.14

27 1 -0.14 0.25 0.01 -0.22 -0.02 -0.02 -0.23 -0.15 0.14

28 6 -0.06 -0.08 0.00 -0.16 0.07 0.00 0.00 0.00 -0.11

29 8 0.16 -0.06 0.00 0.05 0.26 0.00 0.00 0.00 0.10

30 8 -0.05 -0.10 0.00 0.16 -0.23 0.00 0.00 0.00 0.06

31 1 0.18 0.24 0.00 0.09 0.71 0.00 0.00 0.00 -0.86

32 1 -0.10 -0.03 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

22 23 24

A" A" A"

Frequencies -- 729.7543 731.4299 744.1485

Red. masses -- 1.0617 1.0833 1.1386

Frc consts -- 0.3331 0.3415 0.3715

IR Inten -- 7.8708 0.1799 4.6597

Raman Activ -- 0.0002 0.0093 0.0016

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01

2 6 0.00 0.00 -0.01 0.00 0.00 -0.03 0.00 0.00 -0.05

3 1 0.03 0.01 0.02 0.10 0.01 0.05 0.16 0.00 0.08

4 1 -0.03 -0.01 0.02 -0.10 -0.01 0.05 -0.16 0.00 0.08

5 6 0.00 0.00 -0.02 0.00 0.00 -0.04 0.00 0.00 -0.03

6 1 0.05 0.08 0.06 0.13 0.20 0.15 0.18 0.22 0.17

7 1 -0.05 -0.08 0.06 -0.13 -0.20 0.15 -0.18 -0.22 0.17

8 1 0.13 0.11 0.11 0.20 0.23 0.19 0.05 0.18 0.10

9 1 -0.13 -0.11 0.11 -0.20 -0.23 0.19 -0.05 -0.18 0.10

10 6 0.00 0.00 -0.03 0.00 0.00 -0.03 0.00 0.00 0.02

11 6 0.00 0.00 -0.03 0.00 0.00 -0.01 0.00 0.00 0.05

12 1 -0.15 -0.19 0.16 -0.18 -0.14 0.14 0.01 0.15 -0.07

13 1 0.15 0.19 0.16 0.18 0.14 0.14 -0.01 -0.15 -0.07

14 6 0.00 0.00 -0.03 0.00 0.00 0.02 0.00 0.00 0.02

15 1 0.20 0.21 0.19 -0.02 0.08 0.03 -0.18 -0.20 -0.16

16 1 -0.20 -0.21 0.19 0.02 -0.08 0.03 0.18 0.20 -0.16

17 6 0.00 0.00 -0.03 0.00 0.00 0.03 0.00 0.00 -0.03

18 1 0.20 0.21 0.19 -0.06 -0.15 -0.10 -0.15 -0.03 -0.07

19 1 -0.20 -0.21 0.19 0.06 0.15 -0.10 0.15 0.03 -0.07

20 1 0.14 0.20 0.16 -0.18 -0.18 -0.16 0.16 0.06 0.09

21 1 -0.14 -0.20 0.16 0.18 0.18 -0.16 -0.16 -0.06 0.09

22 6 0.00 0.00 -0.02 0.00 0.00 0.03 0.00 0.00 -0.04

23 6 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.01

24 1 -0.13 -0.09 0.10 0.17 0.13 -0.13 -0.19 -0.18 0.16

25 1 0.13 0.09 0.10 -0.17 -0.13 -0.13 0.19 0.18 0.16

26 1 0.00 0.05 0.03 0.01 -0.08 -0.04 -0.02 0.13 0.06

27 1 0.00 -0.05 0.03 -0.01 0.08 -0.04 0.02 -0.13 0.06

28 6 0.00 0.00 0.02 0.00 0.00 -0.03 0.00 0.00 0.05

29 8 0.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 -0.01

30 8 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.02

31 1 0.00 0.00 0.02 0.00 0.00 -0.03 0.00 0.00 0.05

32 1 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.06

25 26 27



D.5. DECANOIC ACID 429

A" A" A’

Frequencies -- 777.6215 831.4375 877.0829

Red. masses -- 1.2242 1.2957 3.8554

Frc consts -- 0.4362 0.5277 1.7475

IR Inten -- 1.5541 3.7907 3.4906

Raman Activ -- 0.0675 0.0325 9.5068

Depolar (P) -- 0.7500 0.7500 0.1059

Depolar (U) -- 0.8571 0.8571 0.1915

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.02 0.00 0.00 0.03 0.01 -0.02 0.00

2 6 0.00 0.00 0.05 0.00 0.00 0.04 -0.01 -0.02 0.00

3 1 -0.21 0.01 -0.09 -0.24 0.02 -0.09 -0.03 0.04 0.01

4 1 0.21 -0.01 -0.09 0.24 -0.02 -0.09 -0.03 0.04 -0.01

5 6 0.00 0.00 -0.01 0.00 0.00 -0.06 0.03 0.03 0.00

6 1 -0.20 -0.14 -0.13 -0.20 -0.01 -0.07 -0.03 0.01 0.00

7 1 0.20 0.14 -0.13 0.20 0.01 -0.07 -0.03 0.01 0.00

8 1 0.14 -0.04 0.03 0.20 0.10 0.10 0.02 0.03 0.00

9 1 -0.14 0.04 0.03 -0.20 -0.10 0.10 0.02 0.03 0.00

10 6 0.00 0.00 -0.06 0.00 0.00 -0.02 -0.02 -0.02 0.00

11 6 0.00 0.00 0.00 0.00 0.00 0.07 -0.03 0.01 0.00

12 1 -0.18 -0.18 0.14 -0.17 0.06 0.03 0.01 -0.04 0.00

13 1 0.18 0.18 0.14 0.17 -0.06 0.03 0.01 -0.04 0.00

14 6 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.09 0.00

15 1 -0.10 0.10 0.00 -0.17 -0.16 -0.12 0.00 -0.02 0.00

16 1 0.10 -0.10 0.00 0.17 0.16 -0.12 0.00 -0.02 0.00

17 6 0.00 0.00 0.02 0.00 0.00 -0.06 -0.06 -0.05 0.00

18 1 -0.15 -0.21 -0.14 -0.12 0.13 0.01 0.00 0.09 0.00

19 1 0.15 0.21 -0.14 0.12 -0.13 0.01 0.00 0.09 0.00

20 1 0.05 -0.15 -0.04 0.12 0.20 0.11 -0.13 0.02 0.00

21 1 -0.05 0.15 -0.04 -0.12 -0.20 0.11 -0.13 0.02 0.00

22 6 0.00 0.00 -0.05 0.00 0.00 0.03 0.05 -0.07 0.00

23 6 0.00 0.00 -0.03 0.00 0.00 0.06 0.35 0.05 0.00

24 1 -0.11 -0.20 0.13 -0.06 0.18 -0.05 -0.04 0.03 -0.01

25 1 0.11 0.20 0.13 0.06 -0.18 -0.05 -0.04 0.03 0.01

26 1 -0.02 0.19 0.08 -0.01 -0.23 -0.09 0.43 -0.06 -0.03

27 1 0.02 -0.19 0.08 0.01 0.23 -0.09 0.43 -0.06 0.03

28 6 0.00 0.00 0.07 0.00 0.00 -0.08 -0.14 -0.07 0.00

29 8 0.00 0.00 -0.02 0.00 0.00 0.02 -0.04 0.14 0.00

30 8 0.00 0.00 -0.02 0.00 0.00 0.02 -0.14 -0.14 0.00

31 1 0.00 0.00 0.05 0.00 0.00 -0.03 0.00 0.55 0.00

32 1 0.00 0.00 -0.09 0.00 0.00 -0.12 0.12 0.01 0.00

28 29 30

A’ A" A"

Frequencies -- 896.4953 896.8882 969.1981

Red. masses -- 1.9855 1.3057 1.2578

Frc consts -- 0.9402 0.6188 0.6961

IR Inten -- 1.8850 0.6590 1.2309

Raman Activ -- 4.4482 0.1521 0.0511

Depolar (P) -- 0.3574 0.7500 0.7500

Depolar (U) -- 0.5266 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.10 -0.12 0.00 0.00 0.00 0.04 0.00 0.00 0.04

2 6 -0.08 -0.11 0.00 0.00 0.00 0.01 0.00 0.00 -0.03

3 1 -0.13 0.22 0.04 -0.25 0.02 -0.08 -0.22 0.01 -0.07

4 1 -0.13 0.22 -0.04 0.25 -0.02 -0.08 0.22 -0.01 -0.07

5 6 0.02 0.18 0.00 0.00 0.00 -0.07 0.00 0.00 -0.02

6 1 -0.22 0.02 0.00 -0.18 0.12 -0.01 -0.13 0.21 0.03

7 1 -0.22 0.02 0.00 0.18 -0.12 -0.01 0.13 -0.21 0.03
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8 1 -0.03 0.20 -0.01 0.07 0.20 0.09 -0.15 0.21 0.02

9 1 -0.03 0.20 0.01 -0.07 -0.20 0.09 0.15 -0.21 0.02

10 6 -0.07 0.03 0.00 0.00 0.00 0.05 0.00 0.00 0.06

11 6 -0.03 -0.04 0.00 0.00 0.00 0.02 0.00 0.00 -0.07

12 1 -0.01 -0.01 -0.01 0.00 0.21 -0.07 0.20 0.04 -0.07

13 1 -0.01 -0.01 0.01 0.00 -0.21 -0.07 -0.20 -0.04 -0.07

14 6 0.05 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.04

15 1 0.02 -0.07 0.00 0.13 -0.18 -0.02 0.17 0.09 0.07

16 1 0.02 -0.07 0.00 -0.13 0.18 -0.02 -0.17 -0.09 0.07

17 6 0.01 -0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.01

18 1 0.06 -0.01 0.00 0.18 0.11 0.09 0.10 -0.22 -0.04

19 1 0.06 -0.01 0.00 -0.18 -0.11 0.09 -0.10 0.22 -0.04

20 1 0.01 -0.01 0.00 -0.22 -0.01 -0.07 0.17 -0.20 -0.01

21 1 0.01 -0.01 0.00 0.22 0.01 -0.07 -0.17 0.20 -0.01

22 6 -0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 -0.05

23 6 -0.03 0.01 0.00 0.00 0.00 -0.07 0.00 0.00 0.06

24 1 -0.02 0.00 0.00 0.20 -0.10 -0.02 -0.22 0.01 0.06

25 1 -0.02 0.00 0.00 -0.20 0.10 -0.02 0.22 -0.01 0.06

26 1 -0.04 0.02 0.00 0.04 0.21 0.08 -0.07 -0.14 -0.06

27 1 -0.04 0.02 0.00 -0.04 -0.21 0.08 0.07 0.14 -0.06

28 6 0.01 0.01 0.00 0.00 0.00 0.07 0.00 0.00 -0.05

29 8 0.01 -0.02 0.00 0.00 0.00 -0.01 0.00 0.00 0.01

30 8 0.01 0.01 0.00 0.00 0.00 -0.02 0.00 0.00 0.01

31 1 0.00 -0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00

32 1 0.75 0.04 0.00 0.00 0.00 -0.13 0.00 0.00 -0.12

31 32 33

A’ A’ A’

Frequencies -- 992.7591 1005.3624 1036.4664

Red. masses -- 4.2997 4.0330 3.1949

Frc consts -- 2.4968 2.4017 2.0222

IR Inten -- 0.4383 7.3362 1.2518

Raman Activ -- 1.3306 0.6301 0.2870

Depolar (P) -- 0.2109 0.4866 0.7483

Depolar (U) -- 0.3483 0.6546 0.8560

Atom AN X Y Z X Y Z X Y Z

1 6 -0.16 -0.03 0.00 0.04 -0.05 0.00 0.16 0.03 0.00

2 6 0.17 0.00 0.00 -0.04 0.04 0.00 -0.20 0.05 0.00

3 1 -0.29 0.15 0.02 -0.06 0.10 0.02 0.27 -0.11 -0.01

4 1 -0.29 0.15 -0.02 -0.06 0.10 -0.02 0.27 -0.11 0.01

5 6 0.22 -0.01 0.00 -0.06 -0.01 0.00 -0.08 -0.05 0.00

6 1 0.08 0.09 0.00 -0.15 0.13 0.00 -0.20 0.06 0.00

7 1 0.08 0.09 0.00 -0.15 0.13 0.00 -0.20 0.06 0.00

8 1 0.14 0.05 -0.01 -0.19 0.10 0.00 -0.03 -0.12 -0.01

9 1 0.14 0.05 0.01 -0.19 0.10 0.00 -0.03 -0.12 0.01

10 6 -0.19 -0.19 0.00 0.07 -0.14 0.00 0.11 -0.07 0.00

11 6 -0.07 0.20 0.00 0.23 0.11 0.00 -0.03 0.05 0.00

12 1 -0.17 -0.19 -0.01 0.03 -0.08 -0.01 0.21 -0.16 0.00

13 1 -0.17 -0.19 0.01 0.03 -0.08 0.01 0.21 -0.16 0.00

14 6 0.02 0.16 0.00 -0.23 -0.05 0.00 -0.02 0.18 0.00

15 1 0.01 0.12 -0.01 0.25 0.08 -0.01 0.00 0.05 0.01

16 1 0.01 0.12 0.01 0.25 0.08 0.01 0.00 0.05 -0.01

17 6 -0.05 -0.18 0.00 -0.20 0.06 0.00 -0.02 -0.17 0.00

18 1 0.12 0.06 0.00 -0.15 -0.12 0.00 -0.06 0.21 0.00

19 1 0.12 0.06 0.00 -0.15 -0.12 0.00 -0.06 0.21 0.00

20 1 0.01 -0.22 0.01 -0.10 -0.03 0.00 -0.04 -0.16 0.00

21 1 0.01 -0.22 -0.01 -0.10 -0.03 0.00 -0.04 -0.16 0.00

22 6 0.10 -0.03 0.00 0.18 0.12 0.00 0.07 -0.12 0.00

23 6 -0.06 0.03 0.00 0.00 -0.15 0.00 -0.04 0.12 0.00
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24 1 0.08 -0.03 0.01 0.27 0.03 0.00 0.04 -0.11 0.01

25 1 0.08 -0.03 -0.01 0.27 0.03 0.00 0.04 -0.11 -0.01

26 1 -0.16 0.13 0.01 0.00 -0.13 0.01 -0.18 0.24 0.01

27 1 -0.16 0.13 -0.01 0.00 -0.13 -0.01 -0.18 0.24 -0.01

28 6 0.02 0.00 0.00 0.02 -0.03 0.00 0.00 0.01 0.00

29 8 0.01 -0.01 0.00 -0.02 0.06 0.00 0.01 -0.03 0.00

30 8 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.02 0.00

31 1 0.00 -0.08 0.00 -0.03 -0.08 0.00 0.01 -0.01 0.00

32 1 0.10 0.04 0.00 0.31 0.01 0.00 -0.03 -0.02 0.00

34 35 36

A" A’ A’

Frequencies -- 1036.6182 1058.3600 1062.8066

Red. masses -- 1.1458 2.4902 2.6242

Frc consts -- 0.7254 1.6434 1.7464

IR Inten -- 0.0553 9.1235 5.8194

Raman Activ -- 0.1137 5.7182 0.2993

Depolar (P) -- 0.7500 0.4538 0.1996

Depolar (U) -- 0.8571 0.6243 0.3328

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.04 0.03 -0.04 0.00 -0.11 -0.02 0.00

2 6 0.00 0.00 0.04 -0.02 0.06 0.00 0.14 -0.09 0.00

3 1 0.16 -0.01 0.05 -0.04 0.07 0.02 -0.18 0.05 0.00

4 1 -0.16 0.01 0.05 -0.04 0.07 -0.02 -0.18 0.05 0.00

5 6 0.00 0.00 -0.03 -0.02 -0.06 0.00 -0.10 0.09 0.00

6 1 0.06 -0.19 -0.04 -0.13 0.15 0.00 0.22 -0.17 -0.01

7 1 -0.06 0.19 -0.04 -0.13 0.15 0.00 0.22 -0.17 0.01

8 1 0.24 -0.12 0.03 -0.10 0.01 0.00 -0.20 0.20 0.01

9 1 -0.24 0.12 0.03 -0.10 0.01 0.00 -0.20 0.20 -0.01

10 6 0.00 0.00 0.01 0.04 -0.13 0.00 0.08 0.05 0.00

11 6 0.00 0.00 0.01 0.02 0.13 0.00 0.14 -0.05 0.00

12 1 -0.22 0.22 -0.01 0.03 -0.11 0.00 0.07 0.09 -0.01

13 1 0.22 -0.22 -0.01 0.03 -0.11 0.00 0.07 0.09 0.01

14 6 0.00 0.00 -0.03 -0.04 0.01 0.00 -0.14 0.09 0.00

15 1 0.22 -0.22 -0.01 -0.07 0.21 0.00 0.19 -0.08 0.01

16 1 -0.22 0.22 -0.01 -0.07 0.21 0.00 0.19 -0.08 -0.01

17 6 0.00 0.00 0.04 0.20 -0.01 0.00 0.07 -0.08 0.00

18 1 0.24 -0.12 0.03 -0.06 0.06 0.01 -0.28 0.22 0.00

19 1 -0.24 0.12 0.03 -0.06 0.06 -0.01 -0.28 0.22 0.00

20 1 0.06 -0.20 -0.04 0.33 -0.13 0.00 0.10 -0.14 -0.01

21 1 -0.06 0.20 -0.04 0.33 -0.13 0.00 0.10 -0.14 0.01

22 6 0.00 0.00 -0.05 -0.20 0.07 0.00 -0.04 -0.08 0.00

23 6 0.00 0.00 0.04 0.02 -0.05 0.00 0.00 0.08 0.00

24 1 -0.14 -0.04 0.04 -0.26 0.12 0.00 -0.06 -0.07 0.00

25 1 0.14 0.04 0.04 -0.26 0.12 0.00 -0.06 -0.07 0.00

26 1 -0.07 -0.06 -0.03 0.19 -0.22 -0.01 -0.01 0.08 0.00

27 1 0.07 0.06 -0.03 0.19 -0.22 0.01 -0.01 0.08 0.00

28 6 0.00 0.00 -0.04 -0.02 0.02 0.00 -0.02 0.02 0.00

29 8 0.00 0.00 0.01 0.00 -0.02 0.00 0.01 -0.04 0.00

30 8 0.00 0.00 0.01 -0.01 -0.01 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.01 0.08 0.00 0.02 0.06 0.00

32 1 0.00 0.00 0.08 0.20 0.01 0.00 0.00 0.01 0.00

37 38 39

A’ A’ A’

Frequencies -- 1064.3683 1080.0570 1129.5256

Red. masses -- 2.1800 2.8282 2.3475

Frc consts -- 1.4551 1.9438 1.7646

IR Inten -- 0.0523 43.5909 123.2532

Raman Activ -- 13.6136 5.4027 6.2433
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Depolar (P) -- 0.7416 0.2650 0.2633

Depolar (U) -- 0.8517 0.4190 0.4168

Atom AN X Y Z X Y Z X Y Z

1 6 0.05 0.01 0.00 0.00 0.06 0.00 0.03 0.08 0.00

2 6 -0.06 0.06 0.00 -0.02 -0.11 0.00 -0.08 -0.11 0.00

3 1 0.09 -0.02 0.00 0.11 -0.13 -0.03 0.19 -0.17 -0.04

4 1 0.09 -0.02 0.00 0.11 -0.13 0.03 0.19 -0.17 0.04

5 6 0.13 -0.06 0.00 -0.05 0.10 0.00 0.06 0.12 0.00

6 1 -0.12 0.13 0.01 0.14 -0.25 0.00 0.05 -0.20 0.01

7 1 -0.12 0.13 -0.01 0.14 -0.25 0.00 0.05 -0.20 -0.01

8 1 0.26 -0.17 0.00 0.01 0.05 0.00 0.12 0.04 -0.01

9 1 0.26 -0.17 0.00 0.01 0.05 0.00 0.12 0.04 0.01

10 6 -0.14 0.10 0.00 0.03 0.02 0.00 -0.08 -0.06 0.00

11 6 0.10 -0.10 0.00 -0.07 -0.02 0.00 0.04 0.07 0.00

12 1 -0.25 0.21 0.00 0.19 -0.11 0.00 0.03 -0.13 -0.01

13 1 -0.25 0.21 0.00 0.19 -0.11 0.00 0.03 -0.13 0.01

14 6 -0.10 0.07 0.00 0.06 0.13 0.00 -0.05 -0.03 0.00

15 1 0.24 -0.23 0.00 0.04 -0.09 0.01 0.13 -0.02 -0.01

16 1 0.24 -0.23 0.00 0.04 -0.09 -0.01 0.13 -0.02 0.01

17 6 0.03 -0.07 0.00 -0.02 -0.13 0.00 -0.02 0.04 0.00

18 1 -0.18 0.13 0.00 0.10 0.09 -0.01 0.06 -0.12 0.00

19 1 -0.18 0.13 0.00 0.10 0.09 0.01 0.06 -0.12 0.00

20 1 0.11 -0.14 0.00 0.09 -0.20 0.02 0.08 -0.05 0.00

21 1 0.11 -0.14 0.00 0.09 -0.20 -0.02 0.08 -0.05 0.00

22 6 -0.03 0.04 0.00 0.01 0.20 0.00 0.00 0.01 0.00

23 6 0.00 -0.04 0.00 -0.02 -0.20 0.00 -0.01 0.02 0.00

24 1 -0.07 0.06 0.01 -0.11 0.27 0.02 0.14 -0.11 0.00

25 1 -0.07 0.06 -0.01 -0.11 0.27 -0.02 0.14 -0.11 0.00

26 1 0.02 -0.06 0.00 -0.02 -0.19 0.01 0.24 -0.17 0.00

27 1 0.02 -0.06 0.00 -0.02 -0.19 -0.01 0.24 -0.17 0.00

28 6 0.00 0.00 0.00 0.04 -0.05 0.00 -0.10 0.14 0.00

29 8 0.00 0.01 0.00 -0.02 0.08 0.00 0.00 -0.14 0.00

30 8 0.00 0.00 0.00 0.00 -0.01 0.00 0.03 0.02 0.00

31 1 0.00 -0.01 0.00 -0.04 -0.20 0.00 0.06 0.42 0.00

32 1 0.00 0.00 0.00 -0.28 -0.01 0.00 -0.32 -0.01 0.00

40 41 42

A" A’ A"

Frequencies -- 1140.5094 1149.0965 1208.7051

Red. masses -- 1.5040 3.1159 1.7707

Frc consts -- 1.1526 2.4241 1.5242

IR Inten -- 0.8562 157.9372 0.0106

Raman Activ -- 1.0436 7.7159 1.1832

Depolar (P) -- 0.7500 0.2359 0.7500

Depolar (U) -- 0.8571 0.3818 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.01 -0.03 -0.08 0.00 0.00 0.00 0.08

2 6 0.00 0.00 -0.01 0.07 0.10 0.00 0.00 0.00 -0.13

3 1 -0.03 0.00 -0.01 -0.17 0.16 0.04 -0.26 -0.02 -0.07

4 1 0.03 0.00 -0.01 -0.17 0.16 -0.04 0.26 0.02 -0.07

5 6 0.00 0.00 0.02 -0.07 -0.11 0.00 0.00 0.00 0.12

6 1 0.00 0.04 0.01 -0.02 0.16 -0.01 0.18 0.18 0.07

7 1 0.00 -0.04 0.01 -0.02 0.16 0.01 -0.18 -0.18 0.07

8 1 -0.06 0.00 -0.01 -0.09 -0.07 0.01 -0.15 -0.20 -0.07

9 1 0.06 0.00 -0.01 -0.09 -0.07 -0.01 0.15 0.20 -0.07

10 6 0.00 0.00 -0.02 0.08 0.09 0.00 0.00 0.00 -0.11

11 6 0.00 0.00 0.03 -0.08 -0.09 0.00 0.00 0.00 0.10

12 1 0.02 -0.08 0.02 0.04 0.09 0.01 -0.20 -0.13 0.07

13 1 -0.02 0.08 0.02 0.04 0.09 -0.01 0.20 0.13 0.07
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14 6 0.00 0.00 -0.05 0.08 0.08 0.00 0.00 0.00 -0.08

15 1 -0.13 0.01 -0.02 -0.07 -0.07 0.01 -0.06 -0.21 -0.06

16 1 0.13 -0.01 -0.02 -0.07 -0.07 -0.01 0.06 0.21 -0.06

17 6 0.00 0.00 0.06 -0.09 -0.08 0.00 0.00 0.00 0.05

18 1 -0.04 0.17 0.03 0.07 0.06 -0.01 0.19 0.04 0.05

19 1 0.04 -0.17 0.03 0.07 0.06 0.01 -0.19 -0.04 0.05

20 1 -0.25 0.04 -0.05 -0.06 -0.08 0.01 0.03 -0.17 -0.03

21 1 0.25 -0.04 -0.05 -0.06 -0.08 -0.01 -0.03 0.17 -0.03

22 6 0.00 0.00 -0.09 0.08 0.10 0.00 0.00 0.00 -0.02

23 6 0.00 0.00 0.12 -0.03 -0.07 0.00 0.00 0.00 -0.01

24 1 0.09 -0.34 0.07 0.12 0.05 0.01 -0.14 0.07 0.01

25 1 -0.09 0.34 0.07 0.12 0.05 -0.01 0.14 -0.07 0.01

26 1 -0.46 0.09 -0.06 0.21 -0.24 0.01 0.15 -0.10 0.00

27 1 0.46 -0.09 -0.06 0.21 -0.24 -0.01 -0.15 0.10 0.00

28 6 0.00 0.00 -0.12 -0.12 0.16 0.00 0.00 0.00 0.03

29 8 0.00 0.00 0.02 0.00 -0.15 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.02 0.05 0.03 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.06 0.48 0.00 0.00 0.00 0.00

32 1 0.00 0.00 -0.02 0.27 0.00 0.00 0.00 0.00 -0.16

43 44 45

A’ A" A’

Frequencies -- 1235.0539 1243.3966 1272.0192

Red. masses -- 1.2961 1.4501 1.3094

Frc consts -- 1.1648 1.3209 1.2483

IR Inten -- 8.7201 0.0686 9.8392

Raman Activ -- 0.1845 0.4294 0.5519

Depolar (P) -- 0.7317 0.7500 0.6531

Depolar (U) -- 0.8451 0.8571 0.7901

Atom AN X Y Z X Y Z X Y Z

1 6 -0.01 -0.03 0.00 0.00 0.00 0.07 0.01 0.03 0.00

2 6 0.02 0.05 0.00 0.00 0.00 -0.09 0.00 -0.05 0.00

3 1 -0.06 0.06 0.02 -0.19 -0.02 -0.05 0.04 -0.05 -0.02

4 1 -0.06 0.06 -0.02 0.19 0.02 -0.05 0.04 -0.05 0.02

5 6 -0.05 -0.01 0.00 0.00 0.00 0.04 0.05 -0.02 0.00

6 1 0.07 -0.01 0.00 0.22 0.03 0.04 -0.12 0.07 0.00

7 1 0.07 -0.01 0.00 -0.22 -0.03 0.04 -0.12 0.07 0.00

8 1 0.11 -0.15 0.00 0.10 -0.20 -0.02 -0.19 0.19 0.00

9 1 0.11 -0.15 0.00 -0.10 0.20 -0.02 -0.19 0.19 0.00

10 6 -0.01 0.05 0.00 0.00 0.00 0.01 0.05 -0.02 0.00

11 6 -0.05 0.02 0.00 0.00 0.00 -0.06 0.00 -0.05 0.00

12 1 0.21 -0.16 0.00 -0.17 0.18 -0.01 -0.20 0.19 0.00

13 1 0.21 -0.16 0.00 0.17 -0.18 -0.01 -0.20 0.19 0.00

14 6 -0.04 0.03 0.00 0.00 0.00 0.09 0.03 0.04 0.00

15 1 0.23 -0.22 0.00 0.22 -0.03 0.03 -0.14 0.09 0.00

16 1 0.23 -0.22 0.00 -0.22 0.03 0.03 -0.14 0.09 0.00

17 6 -0.02 0.05 0.00 0.00 0.00 -0.09 -0.05 0.00 0.00

18 1 0.24 -0.21 0.00 -0.06 -0.19 -0.05 0.04 0.01 0.00

19 1 0.24 -0.21 0.00 0.06 0.19 -0.05 0.04 0.01 0.00

20 1 0.23 -0.18 0.00 0.08 0.18 0.05 0.13 -0.15 0.00

21 1 0.23 -0.18 0.00 -0.08 -0.18 0.05 0.13 -0.15 0.00

22 6 -0.05 -0.01 0.00 0.00 0.00 0.06 -0.03 0.03 0.00

23 6 0.00 0.05 0.00 0.00 0.00 0.00 -0.03 0.06 0.00

24 1 0.16 -0.17 -0.01 0.22 -0.03 -0.03 0.24 -0.20 -0.01

25 1 0.16 -0.17 0.01 -0.22 0.03 -0.03 0.24 -0.20 0.01

26 1 0.08 -0.04 -0.01 -0.23 0.19 0.01 0.20 -0.14 -0.01

27 1 0.08 -0.04 0.01 0.23 -0.19 0.01 0.20 -0.14 0.01

28 6 0.01 -0.02 0.00 0.00 0.00 -0.04 -0.01 0.01 0.00

29 8 0.01 0.03 0.00 0.00 0.00 0.00 0.03 0.03 0.00
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30 8 -0.02 -0.02 0.00 0.00 0.00 0.01 -0.02 -0.03 0.00

31 1 -0.01 -0.18 0.00 0.00 0.00 0.00 -0.01 -0.40 0.00

32 1 0.10 0.00 0.00 0.00 0.00 -0.13 -0.10 0.00 0.00

46 47 48

A" A’ A"

Frequencies -- 1281.8996 1299.5284 1313.2939

Red. masses -- 1.3019 1.3878 1.1930

Frc consts -- 1.2605 1.3809 1.2123

IR Inten -- 0.2112 1.7378 0.0148

Raman Activ -- 0.0852 1.8795 6.1649

Depolar (P) -- 0.7500 0.7339 0.7500

Depolar (U) -- 0.8571 0.8465 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.05 -0.01 -0.03 0.00 0.00 0.00 0.04

2 6 0.00 0.00 -0.05 -0.01 0.04 0.00 0.00 0.00 -0.01

3 1 -0.14 -0.02 -0.04 -0.02 0.04 0.03 -0.11 -0.02 -0.02

4 1 0.14 0.02 -0.04 -0.02 0.04 -0.03 0.11 0.02 -0.02

5 6 0.00 0.00 -0.03 -0.04 0.04 0.00 0.00 0.00 -0.06

6 1 0.25 -0.11 0.02 0.15 -0.11 0.00 0.26 -0.21 0.00

7 1 -0.25 0.11 0.02 0.15 -0.11 0.00 -0.26 0.21 0.00

8 1 0.22 -0.13 0.01 0.20 -0.18 0.00 0.12 0.04 0.02

9 1 -0.22 0.13 0.01 0.20 -0.18 0.00 -0.12 -0.04 0.02

10 6 0.00 0.00 0.08 -0.04 0.00 0.00 0.00 0.00 0.04

11 6 0.00 0.00 -0.07 0.04 0.01 0.00 0.00 0.00 0.03

12 1 0.03 0.17 -0.04 0.09 -0.11 0.00 0.16 -0.04 -0.02

13 1 -0.03 -0.17 -0.04 0.09 -0.11 0.00 -0.16 0.04 -0.02

14 6 0.00 0.00 0.01 0.03 -0.04 0.00 0.00 0.00 -0.06

15 1 -0.04 0.20 0.03 -0.05 0.08 0.00 -0.26 0.16 -0.01

16 1 0.04 -0.20 0.03 -0.05 0.08 0.00 0.26 -0.16 -0.01

17 6 0.00 0.00 0.06 0.02 -0.04 0.00 0.00 0.00 0.01

18 1 -0.21 0.18 0.00 -0.20 0.16 0.00 0.15 0.02 0.02

19 1 0.21 -0.18 0.00 -0.20 0.16 0.00 -0.15 -0.02 0.02

20 1 -0.21 0.04 -0.03 -0.17 0.14 0.00 0.13 -0.15 0.00

21 1 0.21 -0.04 -0.03 -0.17 0.14 0.00 -0.13 0.15 0.00

22 6 0.00 0.00 -0.08 0.03 0.01 0.00 0.00 0.00 0.06

23 6 0.00 0.00 0.01 -0.04 0.04 0.00 0.00 0.00 -0.03

24 1 -0.12 -0.08 0.03 0.01 0.01 0.00 -0.10 0.23 -0.02

25 1 0.12 0.08 0.03 0.01 0.01 0.00 0.10 -0.23 -0.02

26 1 0.22 -0.23 -0.01 0.21 -0.14 0.01 -0.20 0.25 0.01

27 1 -0.22 0.23 -0.01 0.21 -0.14 -0.01 0.20 -0.25 0.01

28 6 0.00 0.00 0.03 -0.06 0.08 0.00 0.00 0.00 -0.03

29 8 0.00 0.00 0.00 0.05 0.02 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 -0.02 -0.05 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 -0.01 -0.56 0.00 0.00 0.00 0.00

32 1 0.00 0.00 -0.10 0.10 0.00 0.00 0.00 0.00 -0.07

49 50 51

A" A’ A"

Frequencies -- 1323.7340 1328.8484 1329.1819

Red. masses -- 1.0324 1.4536 1.0754

Frc consts -- 1.0659 1.5124 1.1194

IR Inten -- 0.0043 10.6568 0.8283

Raman Activ -- 29.8093 0.6160 1.1246

Depolar (P) -- 0.7500 0.6345 0.7500

Depolar (U) -- 0.8571 0.7764 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.01 0.01 0.03 0.00 0.00 0.00 0.03

2 6 0.00 0.00 -0.02 0.04 -0.05 0.00 0.00 0.00 0.03

3 1 -0.01 -0.01 -0.01 0.00 -0.05 -0.04 -0.07 0.00 -0.01
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4 1 0.01 0.01 -0.01 0.00 -0.05 0.04 0.07 0.00 -0.01

5 6 0.00 0.00 -0.03 0.03 -0.05 0.00 0.00 0.00 -0.03

6 1 0.01 0.03 0.00 -0.21 0.17 0.00 0.23 -0.27 -0.01

7 1 -0.01 -0.03 0.00 -0.21 0.17 0.00 -0.23 0.27 -0.01

8 1 0.21 -0.12 0.01 -0.19 0.16 0.00 -0.22 0.26 0.01

9 1 -0.21 0.12 0.01 -0.19 0.16 0.00 0.22 -0.26 0.01

10 6 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 -0.02

11 6 0.00 0.00 0.01 -0.05 0.04 0.00 0.00 0.00 0.01

12 1 0.27 -0.23 0.00 0.07 -0.04 0.00 -0.08 0.02 0.00

13 1 -0.27 0.23 0.00 0.07 -0.04 0.00 0.08 -0.02 0.00

14 6 0.00 0.00 -0.01 -0.05 0.00 0.00 0.00 0.00 -0.01

15 1 0.16 -0.18 0.00 0.24 -0.21 0.00 -0.07 0.03 -0.01

16 1 -0.16 0.18 0.00 0.24 -0.21 0.00 0.07 -0.03 -0.01

17 6 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 -0.04

18 1 -0.17 0.19 0.01 0.11 -0.12 0.00 0.11 -0.08 0.00

19 1 0.17 -0.19 0.01 0.11 -0.12 0.00 -0.11 0.08 0.00

20 1 0.27 -0.23 0.00 -0.12 0.14 0.00 0.14 -0.02 0.01

21 1 -0.27 0.23 0.00 -0.12 0.14 0.00 -0.14 0.02 0.01

22 6 0.00 0.00 0.02 0.06 -0.04 0.00 0.00 0.00 -0.01

23 6 0.00 0.00 0.02 0.00 -0.01 0.00 0.00 0.00 0.03

24 1 0.21 -0.14 0.00 -0.23 0.19 0.01 0.27 -0.27 0.00

25 1 -0.21 0.14 0.00 -0.23 0.19 -0.01 -0.27 0.27 0.00

26 1 0.03 -0.05 0.00 0.03 0.01 0.02 0.13 -0.18 -0.01

27 1 -0.03 0.05 0.00 0.03 0.01 -0.02 -0.13 0.18 -0.01

28 6 0.00 0.00 0.00 -0.07 0.09 0.00 0.00 0.00 0.01

29 8 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 -0.01 -0.03 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 -0.01 -0.37 0.00 0.00 0.00 0.00

32 1 0.00 0.00 -0.02 -0.12 0.00 0.00 0.00 0.00 -0.02

52 53 54

A" A" A’

Frequencies -- 1336.6065 1338.5524 1362.1968

Red. masses -- 1.1109 1.0896 1.4840

Frc consts -- 1.1693 1.1503 1.6224

IR Inten -- 0.0090 0.0183 21.2232

Raman Activ -- 0.1285 1.0180 0.5948

Depolar (P) -- 0.7500 0.7500 0.7062

Depolar (U) -- 0.8571 0.8571 0.8278

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.02 0.00 0.00 -0.02 -0.01 -0.03 0.00

2 6 0.00 0.00 0.00 0.00 0.00 -0.03 -0.07 0.06 0.00

3 1 -0.04 -0.01 -0.01 0.05 0.00 0.00 0.03 0.04 0.05

4 1 0.04 0.01 -0.01 -0.05 0.00 0.00 0.03 0.04 -0.05

5 6 0.00 0.00 -0.05 0.00 0.00 0.01 0.01 0.03 0.00

6 1 0.12 -0.10 0.00 -0.16 0.20 0.01 0.26 -0.22 0.00

7 1 -0.12 0.10 0.00 0.16 -0.20 0.01 0.26 -0.22 0.00

8 1 0.12 0.00 0.01 0.22 -0.23 0.00 0.05 -0.03 -0.01

9 1 -0.12 0.00 0.01 -0.22 0.23 0.00 0.05 -0.03 0.01

10 6 0.00 0.00 -0.01 0.00 0.00 0.05 0.05 -0.06 0.00

11 6 0.00 0.00 0.05 0.00 0.00 0.03 0.00 -0.04 0.00

12 1 0.28 -0.29 0.00 0.07 0.05 -0.01 -0.24 0.21 0.00

13 1 -0.28 0.29 0.00 -0.07 -0.05 -0.01 -0.24 0.21 0.00

14 6 0.00 0.00 0.04 0.00 0.00 -0.03 -0.05 0.06 0.00

15 1 0.09 -0.21 -0.01 -0.29 0.20 -0.01 -0.09 0.06 0.01

16 1 -0.09 0.21 -0.01 0.29 -0.20 -0.01 -0.09 0.06 -0.01

17 6 0.00 0.00 -0.02 0.00 0.00 -0.04 -0.02 0.05 0.00

18 1 0.16 -0.25 -0.01 0.29 -0.18 0.01 0.23 -0.19 0.00

19 1 -0.16 0.25 -0.01 -0.29 0.18 0.01 0.23 -0.19 0.00
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20 1 -0.25 0.28 0.01 0.07 0.04 0.01 0.13 -0.10 -0.01

21 1 0.25 -0.28 0.01 -0.07 -0.04 0.01 0.13 -0.10 0.01

22 6 0.00 0.00 -0.03 0.00 0.00 0.00 0.04 -0.06 0.00

23 6 0.00 0.00 0.00 0.00 0.00 0.02 0.03 -0.03 0.00

24 1 -0.09 0.00 0.01 0.17 -0.17 0.00 -0.22 0.16 0.01

25 1 0.09 0.00 0.01 -0.17 0.17 0.00 -0.22 0.16 -0.01

26 1 0.05 -0.05 -0.01 0.07 -0.11 -0.01 -0.09 0.11 0.02

27 1 -0.05 0.05 -0.01 -0.07 0.11 -0.01 -0.09 0.11 -0.02

28 6 0.00 0.00 0.01 0.00 0.00 0.01 -0.05 0.07 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 -0.01 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.21 0.00

32 1 0.00 0.00 -0.03 0.00 0.00 0.00 0.14 0.00 0.00

55 56 57

A’ A’ A’

Frequencies -- 1388.5865 1398.2189 1401.6268

Red. masses -- 1.5326 1.6243 1.5925

Frc consts -- 1.7411 1.8710 1.8433

IR Inten -- 8.2266 2.0507 3.2715

Raman Activ -- 0.0593 0.4255 0.0909

Depolar (P) -- 0.1155 0.6871 0.2243

Depolar (U) -- 0.2071 0.8145 0.3664

Atom AN X Y Z X Y Z X Y Z

1 6 0.01 0.03 0.00 -0.04 0.02 0.00 0.01 -0.02 0.00

2 6 0.09 -0.07 0.00 0.06 -0.04 0.00 -0.05 0.04 0.00

3 1 -0.04 -0.05 -0.06 0.11 -0.09 0.02 -0.03 0.05 0.01

4 1 -0.04 -0.05 0.06 0.11 -0.09 -0.02 -0.03 0.05 -0.01

5 6 -0.06 0.04 0.00 -0.09 0.08 0.00 0.06 -0.05 0.00

6 1 -0.26 0.24 0.00 -0.14 0.14 0.00 0.14 -0.13 0.00

7 1 -0.26 0.24 0.00 -0.14 0.14 0.00 0.14 -0.13 0.00

8 1 0.17 -0.16 0.01 0.26 -0.23 -0.01 -0.17 0.16 0.00

9 1 0.17 -0.16 -0.01 0.26 -0.23 0.01 -0.17 0.16 0.00

10 6 -0.05 0.02 0.00 0.10 -0.09 0.00 -0.01 0.02 0.00

11 6 0.07 -0.05 0.00 -0.08 0.07 0.00 -0.05 0.06 0.00

12 1 0.13 -0.12 0.00 -0.30 0.27 0.00 0.05 -0.04 0.00

13 1 0.13 -0.12 0.00 -0.30 0.27 0.00 0.05 -0.04 0.00

14 6 0.02 0.00 0.00 0.04 -0.04 0.00 0.11 -0.09 0.00

15 1 -0.21 0.20 0.00 0.23 -0.21 0.00 0.17 -0.15 -0.01

16 1 -0.21 0.20 0.00 0.23 -0.21 0.00 0.17 -0.15 0.01

17 6 -0.07 0.07 0.00 -0.01 0.01 0.00 -0.09 0.07 0.00

18 1 -0.03 0.04 -0.01 -0.12 0.10 0.00 -0.32 0.28 0.00

19 1 -0.03 0.04 0.01 -0.12 0.10 0.00 -0.32 0.28 0.00

20 1 0.25 -0.22 0.00 0.02 -0.03 0.00 0.26 -0.24 0.00

21 1 0.25 -0.22 0.00 0.02 -0.03 0.00 0.26 -0.24 0.00

22 6 0.02 -0.04 0.00 0.01 -0.01 0.00 0.02 -0.03 0.00

23 6 0.05 -0.04 0.00 -0.02 0.01 0.00 0.02 -0.02 0.00

24 1 -0.11 0.07 0.00 -0.02 0.01 0.00 -0.08 0.05 0.00

25 1 -0.11 0.07 0.00 -0.02 0.01 0.00 -0.08 0.05 0.00

26 1 -0.12 0.13 0.02 0.04 -0.03 0.00 -0.05 0.07 0.01

27 1 -0.12 0.13 -0.02 0.04 -0.03 0.00 -0.05 0.07 -0.01

28 6 -0.04 0.06 0.00 0.01 -0.01 0.00 -0.02 0.02 0.00

29 8 0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00

30 8 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

31 1 0.00 -0.12 0.00 0.00 0.03 0.00 0.00 -0.05 0.00

32 1 -0.10 0.00 0.00 0.12 0.05 0.00 -0.02 -0.02 0.00

58 59 60

A’ A’ A’

Frequencies -- 1412.6737 1415.6826 1459.3153
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Red. masses -- 1.2527 1.8549 1.0827

Frc consts -- 1.4729 2.1903 1.3585

IR Inten -- 1.8902 40.1475 16.0341

Raman Activ -- 0.3045 0.2447 6.4702

Depolar (P) -- 0.5998 0.4813 0.7500

Depolar (U) -- 0.7498 0.6498 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.13 -0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00

2 6 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1 -0.48 0.20 -0.19 -0.06 0.03 -0.02 0.00 0.00 0.00

4 1 -0.48 0.20 0.19 -0.06 0.03 0.02 0.00 0.00 0.00

5 6 -0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00

6 1 0.01 -0.02 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

7 1 0.01 -0.02 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

8 1 0.08 -0.05 0.01 0.02 -0.01 0.00 0.00 0.00 0.00

9 1 0.08 -0.05 -0.01 0.02 -0.01 0.00 0.00 0.00 0.00

10 6 0.02 -0.03 0.00 0.02 -0.01 0.00 0.00 0.00 0.00

11 6 -0.01 0.01 0.00 -0.02 0.02 0.00 0.00 0.00 0.00

12 1 -0.08 0.07 0.00 -0.05 0.04 0.00 0.00 0.00 0.00

13 1 -0.08 0.07 0.00 -0.05 0.04 0.00 0.00 0.00 0.00

14 6 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 0.00 0.00

15 1 0.02 -0.02 0.00 0.07 -0.06 0.00 0.00 -0.01 0.00

16 1 0.02 -0.02 0.00 0.07 -0.06 0.00 0.00 -0.01 0.00

17 6 0.00 0.00 0.00 0.04 -0.04 0.00 0.01 0.00 0.00

18 1 0.01 -0.01 0.00 -0.04 0.02 0.00 0.02 0.02 0.02

19 1 0.01 -0.01 0.00 -0.04 0.02 0.00 0.02 0.02 -0.02

20 1 0.00 0.01 0.00 -0.10 0.09 0.01 -0.04 -0.03 -0.04

21 1 0.00 0.01 0.00 -0.10 0.09 -0.01 -0.04 -0.03 0.04

22 6 0.01 -0.01 0.00 -0.12 0.08 0.00 -0.01 0.02 0.00

23 6 -0.02 0.01 0.00 0.15 -0.10 0.00 -0.05 -0.06 0.00

24 1 -0.03 0.02 0.01 0.35 -0.23 -0.06 -0.02 -0.07 0.05

25 1 -0.03 0.02 -0.01 0.35 -0.23 0.06 -0.02 -0.07 -0.05

26 1 0.04 -0.04 0.00 -0.36 0.30 -0.01 0.35 0.41 0.44

27 1 0.04 -0.04 0.00 -0.36 0.30 0.01 0.35 0.41 -0.44

28 6 0.01 -0.01 0.00 -0.08 0.10 0.00 0.01 -0.01 0.00

29 8 0.00 0.00 0.00 0.02 -0.02 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.01 -0.02 0.00 -0.01 0.00 0.00

31 1 0.00 0.03 0.00 0.00 -0.20 0.00 0.00 0.04 0.00

32 1 -0.53 -0.16 0.00 -0.07 -0.02 0.00 0.00 0.00 0.00

61 62 63

A’ A’ A’

Frequencies -- 1483.5856 1483.9213 1487.3552

Red. masses -- 1.0745 1.0761 1.0695

Frc consts -- 1.3935 1.3961 1.3940

IR Inten -- 0.0239 0.2385 0.1303

Raman Activ -- 0.6401 0.9129 57.1249

Depolar (P) -- 0.4858 0.3205 0.5717

Depolar (U) -- 0.6539 0.4854 0.7275

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

2 6 0.01 0.01 0.00 -0.02 -0.02 0.00 0.01 0.02 0.00

3 1 0.00 -0.02 -0.01 -0.04 -0.06 -0.05 0.02 0.01 0.02

4 1 0.00 -0.02 0.01 -0.04 -0.06 0.05 0.02 0.01 -0.02

5 6 -0.03 -0.03 0.00 0.01 0.01 0.00 -0.02 -0.03 0.00

6 1 -0.07 -0.08 -0.09 0.14 0.14 0.16 -0.10 -0.11 -0.12

7 1 -0.07 -0.08 0.09 0.14 0.14 -0.16 -0.10 -0.11 0.12

8 1 0.22 0.24 0.26 -0.07 -0.08 -0.09 0.17 0.19 0.20

9 1 0.22 0.24 -0.26 -0.07 -0.08 0.09 0.17 0.19 -0.20
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10 6 0.03 0.03 0.00 0.02 0.03 0.00 0.01 0.01 0.00

11 6 0.00 0.00 0.00 -0.04 -0.04 0.00 -0.01 -0.01 0.00

12 1 -0.19 -0.21 0.23 -0.14 -0.17 0.18 -0.10 -0.11 0.12

13 1 -0.19 -0.21 -0.23 -0.14 -0.17 -0.18 -0.10 -0.11 -0.12

14 6 -0.02 -0.03 0.00 0.02 0.01 0.00 0.02 0.03 0.00

15 1 -0.01 -0.01 -0.01 0.25 0.28 0.30 0.08 0.09 0.10

16 1 -0.01 -0.01 0.01 0.25 0.28 -0.30 0.08 0.09 -0.10

17 6 0.02 0.02 0.00 0.01 0.02 0.00 -0.03 -0.03 0.00

18 1 0.16 0.18 0.20 -0.10 -0.11 -0.12 -0.17 -0.19 -0.21

19 1 0.16 0.18 -0.20 -0.10 -0.11 0.12 -0.17 -0.19 0.21

20 1 -0.14 -0.16 -0.17 -0.09 -0.10 -0.11 0.20 0.23 0.24

21 1 -0.14 -0.16 0.17 -0.09 -0.10 0.11 0.20 0.23 -0.24

22 6 0.00 -0.01 0.00 -0.01 -0.01 0.00 0.01 0.01 0.00

23 6 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

24 1 0.04 0.05 -0.05 0.07 0.10 -0.10 -0.08 -0.11 0.11

25 1 0.04 0.05 0.05 0.07 0.10 0.10 -0.08 -0.11 -0.11

26 1 -0.01 -0.02 -0.02 0.01 0.01 0.01 0.01 0.02 0.02

27 1 -0.01 -0.02 0.02 0.01 0.01 -0.01 0.01 0.02 -0.02

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.02 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00

64 65 66

A’ A’ A"

Frequencies -- 1489.4918 1496.0780 1498.6320

Red. masses -- 1.0743 1.0775 1.0398

Frc consts -- 1.4043 1.4209 1.3759

IR Inten -- 0.2456 1.6163 7.9835

Raman Activ -- 1.9350 7.0217 7.8895

Depolar (P) -- 0.6897 0.6511 0.7500

Depolar (U) -- 0.8163 0.7887 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.02 0.00 -0.01 -0.03 0.00 0.00 0.00 -0.05

2 6 -0.04 -0.03 0.00 0.02 0.00 0.00 0.00 0.00 -0.02

3 1 -0.10 -0.17 -0.14 0.14 0.25 0.21 -0.26 0.42 0.05

4 1 -0.10 -0.17 0.14 0.14 0.25 -0.21 0.26 -0.42 0.05

5 6 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00

6 1 0.23 0.22 0.26 -0.12 -0.08 -0.11 0.04 0.00 0.00

7 1 0.23 0.22 -0.26 -0.12 -0.08 0.11 -0.04 0.00 0.00

8 1 -0.02 -0.02 -0.02 -0.13 -0.15 -0.17 0.02 -0.02 0.00

9 1 -0.02 -0.02 0.02 -0.13 -0.15 0.17 -0.02 0.02 0.00

10 6 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00

11 6 0.01 0.01 0.00 -0.02 -0.02 0.00 0.00 0.00 0.00

12 1 -0.11 -0.13 0.14 -0.07 -0.07 0.08 0.01 0.00 0.00

13 1 -0.11 -0.13 -0.14 -0.07 -0.07 -0.08 -0.01 0.00 0.00

14 6 -0.02 -0.02 0.00 -0.02 -0.03 0.00 0.00 0.00 0.00

15 1 -0.07 -0.08 -0.09 0.12 0.13 0.15 0.00 0.00 0.00

16 1 -0.07 -0.08 0.09 0.12 0.13 -0.15 0.00 0.00 0.00

17 6 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 1 0.11 0.13 0.14 0.13 0.15 0.16 0.00 0.00 0.00

19 1 0.11 0.13 -0.14 0.13 0.15 -0.16 0.00 0.00 0.00

20 1 0.12 0.13 0.15 0.00 0.01 0.01 0.00 0.00 0.00

21 1 0.12 0.13 -0.15 0.00 0.01 -0.01 0.00 0.00 0.00

22 6 0.02 0.03 0.00 0.02 0.03 0.00 0.00 0.00 0.00

23 6 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

24 1 -0.14 -0.19 0.19 -0.15 -0.21 0.21 0.00 0.00 0.00

25 1 -0.14 -0.19 -0.19 -0.15 -0.21 -0.21 0.00 0.00 0.00



D.5. DECANOIC ACID 439

26 1 -0.02 -0.01 -0.02 -0.03 -0.02 -0.03 0.00 0.00 0.00

27 1 -0.02 -0.01 0.02 -0.03 -0.02 0.03 0.00 0.00 0.00

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

32 1 0.14 0.04 0.00 -0.21 -0.06 0.00 0.00 0.00 0.71

67 68 69

A’ A’ A’

Frequencies -- 1503.3772 1510.0484 1514.6455

Red. masses -- 1.0866 1.0938 1.0982

Frc consts -- 1.4469 1.4695 1.4844

IR Inten -- 1.7767 0.9293 15.0552

Raman Activ -- 0.3751 0.5951 0.1027

Depolar (P) -- 0.7254 0.6665 0.5184

Depolar (U) -- 0.8409 0.7999 0.6829

Atom AN X Y Z X Y Z X Y Z

1 6 -0.01 -0.03 0.00 -0.01 -0.02 0.00 0.00 -0.01 0.00

2 6 -0.01 -0.03 0.00 -0.02 -0.04 0.00 -0.02 -0.03 0.00

3 1 0.15 0.26 0.22 0.12 0.20 0.18 0.06 0.10 0.09

4 1 0.15 0.26 -0.22 0.12 0.20 -0.18 0.06 0.10 -0.09

5 6 0.00 0.02 0.00 -0.02 -0.02 0.00 -0.02 -0.02 0.00

6 1 0.05 0.11 0.10 0.14 0.20 0.21 0.10 0.14 0.14

7 1 0.05 0.11 -0.10 0.14 0.20 -0.21 0.10 0.14 -0.14

8 1 -0.05 -0.05 -0.06 0.13 0.14 0.15 0.14 0.15 0.17

9 1 -0.05 -0.05 0.06 0.13 0.14 -0.15 0.14 0.15 -0.17

10 6 0.03 0.03 0.00 -0.01 -0.01 0.00 -0.03 -0.03 0.00

11 6 0.03 0.02 0.00 0.01 0.01 0.00 -0.03 -0.03 0.00

12 1 -0.15 -0.17 0.18 0.05 0.05 -0.06 0.15 0.17 -0.19

13 1 -0.15 -0.17 -0.18 0.05 0.05 0.06 0.15 0.17 0.19

14 6 0.00 0.01 0.00 0.02 0.02 0.00 -0.02 -0.03 0.00

15 1 -0.14 -0.15 -0.17 -0.05 -0.04 -0.05 0.16 0.17 0.19

16 1 -0.14 -0.15 0.17 -0.05 -0.04 0.05 0.16 0.17 -0.19

17 6 -0.02 -0.02 0.00 0.03 0.03 0.00 -0.02 -0.02 0.00

18 1 -0.02 -0.02 -0.03 -0.12 -0.14 -0.15 0.15 0.17 0.18

19 1 -0.02 -0.02 0.03 -0.12 -0.14 0.15 0.15 0.17 -0.18

20 1 0.11 0.11 0.12 -0.16 -0.16 -0.19 0.12 0.13 0.15

21 1 0.11 0.11 -0.12 -0.16 -0.16 0.19 0.12 0.13 -0.15

22 6 -0.02 -0.04 0.00 0.02 0.03 0.00 -0.01 -0.02 0.00

23 6 -0.01 0.00 0.00 0.01 0.00 0.00 -0.01 0.00 0.00

24 1 0.15 0.21 -0.21 -0.13 -0.17 0.18 0.08 0.11 -0.11

25 1 0.15 0.21 0.21 -0.13 -0.17 -0.18 0.08 0.11 0.11

26 1 0.03 0.03 0.04 -0.03 -0.02 -0.03 0.02 0.02 0.02

27 1 0.03 0.03 -0.04 -0.03 -0.02 0.03 0.02 0.02 -0.02

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 -0.21 -0.07 0.00 -0.16 -0.05 0.00 -0.08 -0.03 0.00

70 71 72

A’ A’ A’

Frequencies -- 1811.7485 2990.7263 2991.1097

Red. masses -- 9.6128 1.0577 1.0573

Frc consts -- 18.5907 5.5738 5.5732

IR Inten -- 301.3317 1.7510 0.7403

Raman Activ -- 8.7783 21.2957 14.9391

Depolar (P) -- 0.2048 0.0626 0.0418

Depolar (U) -- 0.3399 0.1178 0.0802
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Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 6 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00

3 1 0.00 0.00 0.00 0.01 0.01 -0.02 0.01 0.01 -0.02

4 1 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.02

5 6 0.00 0.00 0.00 0.03 0.04 0.00 0.01 0.01 0.00

6 1 0.00 0.00 0.00 0.05 0.06 -0.10 -0.01 -0.01 0.02

7 1 0.00 0.00 0.00 0.05 0.06 0.10 -0.01 -0.01 -0.02

8 1 0.00 0.00 0.00 -0.20 -0.23 0.43 -0.08 -0.09 0.17

9 1 0.00 0.00 0.00 -0.20 -0.23 -0.43 -0.08 -0.09 -0.17

10 6 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.03 -0.03 0.00

11 6 0.00 0.00 0.00 -0.03 -0.03 0.00 0.02 0.02 0.00

12 1 0.00 0.00 0.00 0.03 0.03 0.07 0.16 0.18 0.35

13 1 0.00 0.00 0.00 0.03 0.03 -0.07 0.16 0.18 -0.35

14 6 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00

15 1 0.00 0.00 0.00 0.15 0.17 -0.32 -0.11 -0.13 0.24

16 1 0.00 0.00 0.00 0.15 0.17 0.32 -0.11 -0.13 -0.24

17 6 0.00 -0.01 0.00 0.01 0.01 0.00 -0.02 -0.03 0.00

18 1 0.00 0.00 0.00 -0.05 -0.06 0.11 -0.07 -0.08 0.15

19 1 0.00 0.00 0.00 -0.05 -0.06 -0.11 -0.07 -0.08 -0.15

20 1 -0.02 0.01 0.00 -0.05 -0.05 0.11 0.15 0.17 -0.32

21 1 -0.02 0.01 0.00 -0.05 -0.05 -0.11 0.15 0.17 0.32

22 6 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 6 -0.05 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1 0.04 -0.01 0.01 0.01 0.01 0.02 -0.01 -0.01 -0.02

25 1 0.04 -0.01 -0.01 0.01 0.01 -0.02 -0.01 -0.01 0.02

26 1 -0.16 -0.01 -0.07 0.00 0.00 0.00 -0.01 -0.01 0.01

27 1 -0.16 -0.01 0.07 0.00 0.00 0.00 -0.01 -0.01 -0.01

28 6 0.56 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 -0.04 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 -0.33 -0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.02 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 -0.01 0.00

73 74 75

A’ A’ A’

Frequencies -- 2994.1316 2996.9887 3004.7772

Red. masses -- 1.0577 1.0589 1.0595

Frc consts -- 5.5865 5.6036 5.6358

IR Inten -- 4.4914 0.1242 16.1065

Raman Activ -- 406.5274 37.8800 52.8608

Depolar (P) -- 0.0277 0.0574 0.0584

Depolar (U) -- 0.0538 0.1086 0.1103

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

2 6 0.00 0.00 0.00 0.02 0.02 0.00 0.03 0.03 0.00

3 1 0.01 0.01 -0.02 0.00 -0.01 0.01 0.01 0.01 -0.03

4 1 0.01 0.01 0.02 0.00 -0.01 -0.01 0.01 0.01 0.03

5 6 0.01 0.01 0.00 -0.02 -0.02 0.00 0.00 0.00 0.00

6 1 -0.01 -0.01 0.02 -0.10 -0.11 0.21 -0.17 -0.19 0.36

7 1 -0.01 -0.01 -0.02 -0.10 -0.11 -0.21 -0.17 -0.19 -0.36

8 1 -0.06 -0.07 0.13 0.11 0.13 -0.24 -0.01 -0.02 0.03

9 1 -0.06 -0.07 -0.13 0.11 0.13 0.24 -0.01 -0.02 -0.03

10 6 -0.02 -0.02 0.00 -0.02 -0.03 0.00 -0.01 -0.01 0.00

11 6 0.02 0.02 0.00 -0.01 -0.01 0.00 -0.02 -0.02 0.00

12 1 0.11 0.12 0.23 0.13 0.15 0.29 0.04 0.05 0.09

13 1 0.11 0.12 -0.23 0.13 0.15 -0.29 0.04 0.05 -0.09

14 6 -0.02 -0.02 0.00 0.02 0.02 0.00 -0.03 -0.03 0.00

15 1 -0.11 -0.12 0.23 0.08 0.09 -0.16 0.11 0.12 -0.23
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16 1 -0.11 -0.12 -0.23 0.08 0.09 0.16 0.11 0.12 0.23

17 6 0.03 0.03 0.00 0.02 0.02 0.00 -0.01 -0.02 0.00

18 1 0.13 0.15 -0.28 -0.13 -0.15 0.28 0.15 0.17 -0.32

19 1 0.13 0.15 0.28 -0.13 -0.15 -0.28 0.15 0.17 0.32

20 1 -0.17 -0.19 0.36 -0.10 -0.11 0.20 0.09 0.10 -0.19

21 1 -0.17 -0.19 -0.36 -0.10 -0.11 -0.20 0.09 0.10 0.19

22 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

23 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1 0.01 0.01 0.02 0.02 0.02 0.04 -0.03 -0.03 -0.06

25 1 0.01 0.01 -0.02 0.02 0.02 -0.04 -0.03 -0.03 0.06

26 1 0.01 0.01 -0.02 0.00 0.00 -0.01 0.00 0.00 0.01

27 1 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00 -0.01

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.00 -0.01 0.00 -0.01 0.04 0.00 -0.01 0.04 0.00

76 77 78

A" A’ A"

Frequencies -- 3007.2660 3009.5867 3010.4341

Red. masses -- 1.0989 1.0593 1.1000

Frc consts -- 5.8552 5.6532 5.8735

IR Inten -- 0.3538 148.0822 0.7520

Raman Activ -- 245.9549 53.1658 16.2520

Depolar (P) -- 0.7500 0.0468 0.7500

Depolar (U) -- 0.8571 0.0894 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00

2 6 0.00 0.00 -0.02 0.03 0.03 0.00 0.00 0.00 0.02

3 1 0.01 0.01 -0.01 0.04 0.04 -0.09 -0.01 -0.01 0.02

4 1 -0.01 -0.01 -0.01 0.04 0.04 0.09 0.01 0.01 0.02

5 6 0.00 0.00 0.05 0.02 0.02 0.00 0.00 0.00 -0.04

6 1 -0.06 -0.06 0.11 -0.18 -0.20 0.38 0.07 0.08 -0.14

7 1 0.06 0.06 0.11 -0.18 -0.20 -0.38 -0.07 -0.08 -0.14

8 1 0.15 0.17 -0.30 -0.09 -0.10 0.20 -0.13 -0.14 0.25

9 1 -0.15 -0.17 -0.30 -0.09 -0.10 -0.20 0.13 0.14 0.25

10 6 0.00 0.00 -0.05 0.02 0.02 0.00 0.00 0.00 0.01

11 6 0.00 0.00 0.04 0.01 0.02 0.00 0.00 0.00 0.03

12 1 0.17 0.19 0.34 -0.12 -0.13 -0.25 -0.04 -0.04 -0.08

13 1 -0.17 -0.19 0.34 -0.12 -0.13 0.25 0.04 0.04 -0.08

14 6 0.00 0.00 -0.02 0.01 0.02 0.00 0.00 0.00 -0.05

15 1 0.14 0.16 -0.27 -0.09 -0.10 0.19 0.10 0.11 -0.19

16 1 -0.14 -0.16 -0.27 -0.09 -0.10 -0.19 -0.10 -0.11 -0.19

17 6 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.05

18 1 -0.07 -0.08 0.14 -0.09 -0.10 0.18 -0.16 -0.18 0.32

19 1 0.07 0.08 0.14 -0.09 -0.10 -0.18 0.16 0.18 0.32

20 1 0.03 0.04 -0.06 -0.04 -0.05 0.08 0.15 0.17 -0.29

21 1 -0.03 -0.04 -0.06 -0.04 -0.05 -0.08 -0.15 -0.17 -0.29

22 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01

23 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1 0.00 0.00 0.01 0.02 0.02 0.04 0.03 0.03 0.05

25 1 0.00 0.00 0.01 0.02 0.02 -0.04 -0.03 -0.03 0.05

26 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

27 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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32 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

79 80 81

A" A’ A’

Frequencies -- 3016.6605 3017.2084 3026.5803

Red. masses -- 1.1024 1.0357 1.0602

Frc consts -- 5.9106 5.5549 5.7221

IR Inten -- 1.8518 51.5287 2.8285

Raman Activ -- 55.6258 185.2765 197.3676

Depolar (P) -- 0.7500 0.0039 0.0286

Depolar (U) -- 0.8571 0.0078 0.0557

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.01 0.05 0.00 0.00 0.00 0.00 0.00

2 6 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

3 1 -0.02 -0.02 0.04 -0.24 -0.25 0.49 0.00 0.00 0.00

4 1 0.02 0.02 0.04 -0.24 -0.25 -0.49 0.00 0.00 0.00

5 6 0.00 0.00 -0.04 0.01 0.01 0.00 0.00 0.00 0.00

6 1 0.11 0.12 -0.22 -0.02 -0.02 0.05 0.00 0.00 0.00

7 1 -0.11 -0.12 -0.22 -0.02 -0.02 -0.05 0.00 0.00 0.00

8 1 -0.11 -0.12 0.22 -0.03 -0.04 0.07 0.00 0.00 0.00

9 1 0.11 0.12 0.22 -0.03 -0.04 -0.07 0.00 0.00 0.00

10 6 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00

11 6 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

12 1 0.08 0.08 0.15 -0.01 -0.01 -0.02 0.00 0.00 0.01

13 1 -0.08 -0.08 0.15 -0.01 -0.01 0.02 0.00 0.00 -0.01

14 6 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

15 1 0.14 0.15 -0.27 -0.01 -0.01 0.02 0.00 0.00 0.00

16 1 -0.14 -0.15 -0.27 -0.01 -0.01 -0.02 0.00 0.00 0.00

17 6 0.00 0.00 -0.06 0.00 0.00 0.00 0.00 0.00 0.00

18 1 0.04 0.04 -0.07 0.00 0.00 0.01 0.01 0.02 -0.03

19 1 -0.04 -0.04 -0.07 0.00 0.00 -0.01 0.01 0.02 0.03

20 1 -0.17 -0.19 0.33 0.00 0.00 0.01 0.01 0.01 -0.01

21 1 0.17 0.19 0.33 0.00 0.00 -0.01 0.01 0.01 0.01

22 6 0.00 0.00 0.01 0.00 0.00 0.00 -0.02 -0.03 0.00

23 6 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.00

24 1 -0.04 -0.05 -0.09 0.00 0.00 0.00 0.14 0.16 0.30

25 1 0.04 0.05 -0.09 0.00 0.00 0.00 0.14 0.16 -0.30

26 1 -0.01 -0.01 0.01 0.00 0.00 0.00 -0.22 -0.27 0.49

27 1 0.01 0.01 0.01 0.00 0.00 0.00 -0.22 -0.27 -0.49

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.00 0.00 0.00 -0.10 0.50 0.00 0.00 0.00 0.00

82 83 84

A" A’ A"

Frequencies -- 3028.7688 3036.2056 3041.0354

Red. masses -- 1.1044 1.0597 1.1052

Frc consts -- 5.9694 5.7557 6.0217

IR Inten -- 2.3440 41.2012 0.0162

Raman Activ -- 4.9306 4.7492 41.0942

Depolar (P) -- 0.7500 0.0691 0.7500

Depolar (U) -- 0.8571 0.1292 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 -0.02

2 6 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 0.05

3 1 0.05 0.05 -0.09 0.00 0.00 0.00 -0.07 -0.07 0.13

4 1 -0.05 -0.05 -0.09 0.00 0.00 0.00 0.07 0.07 0.13

5 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
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6 1 -0.16 -0.18 0.32 0.00 0.00 0.00 0.14 0.16 -0.28

7 1 0.16 0.18 0.32 0.00 0.00 0.00 -0.14 -0.16 -0.28

8 1 0.00 0.00 0.01 0.00 0.00 0.00 0.12 0.14 -0.24

9 1 0.00 0.00 0.01 0.00 0.00 0.00 -0.12 -0.14 -0.24

10 6 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01

11 6 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 -0.03

12 1 -0.14 -0.16 -0.28 0.00 0.00 0.01 -0.05 -0.04 -0.08

13 1 0.14 0.16 -0.28 0.00 0.00 -0.01 0.05 0.04 -0.08

14 6 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 -0.05

15 1 0.08 0.09 -0.16 0.01 0.01 -0.01 -0.08 -0.08 0.15

16 1 -0.08 -0.09 -0.16 0.01 0.01 0.01 0.08 0.08 0.15

17 6 0.00 0.00 -0.04 -0.01 -0.01 0.00 0.00 0.00 -0.02

18 1 -0.10 -0.11 0.20 0.02 0.03 -0.04 -0.14 -0.16 0.28

19 1 0.10 0.11 0.20 0.02 0.03 0.04 0.14 0.16 0.28

20 1 -0.11 -0.13 0.22 0.03 0.04 -0.07 -0.07 -0.08 0.14

21 1 0.11 0.13 0.22 0.03 0.04 0.07 0.07 0.08 0.14

22 6 0.00 0.00 0.02 -0.04 -0.04 0.00 0.00 0.00 0.02

23 6 0.00 0.00 0.00 -0.02 -0.03 0.00 0.00 0.00 -0.01

24 1 -0.05 -0.06 -0.10 0.23 0.26 0.48 -0.07 -0.08 -0.14

25 1 0.05 0.06 -0.10 0.23 0.26 -0.48 0.07 0.08 -0.14

26 1 -0.01 -0.02 0.03 0.14 0.17 -0.30 -0.05 -0.05 0.09

27 1 0.01 0.02 0.03 0.14 0.17 0.30 0.05 0.05 0.09

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 -0.01

85 86 87

A" A" A"

Frequencies -- 3049.7286 3053.5077 3076.3471

Red. masses -- 1.1024 1.1039 1.1041

Frc consts -- 6.0409 6.0643 6.1564

IR Inten -- 38.8602 91.0493 46.4576

Raman Activ -- 23.3674 32.8893 2.8199

Depolar (P) -- 0.7500 0.7500 0.7500

Depolar (U) -- 0.8571 0.8571 0.8571

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 0.01 0.00 0.00 -0.01 0.00 0.00 0.01

2 6 0.00 0.00 -0.02 0.00 0.00 0.01 0.00 0.00 0.00

3 1 0.04 0.04 -0.08 -0.04 -0.04 0.07 0.03 0.03 -0.05

4 1 -0.04 -0.04 -0.08 0.04 0.04 0.07 -0.03 -0.03 -0.05

5 6 0.00 0.00 -0.03 0.00 0.00 0.02 0.00 0.00 0.00

6 1 -0.06 -0.07 0.12 0.04 0.05 -0.09 0.01 0.01 -0.02

7 1 0.06 0.07 0.12 -0.04 -0.05 -0.09 -0.01 -0.01 -0.02

8 1 -0.09 -0.10 0.17 0.08 0.08 -0.15 0.00 0.00 0.00

9 1 0.09 0.10 0.17 -0.08 -0.08 -0.15 0.00 0.00 0.00

10 6 0.00 0.00 -0.03 0.00 0.00 0.04 0.00 0.00 0.00

11 6 0.00 0.00 -0.03 0.00 0.00 0.04 0.00 0.00 0.00

12 1 0.10 0.11 0.20 -0.11 -0.12 -0.21 0.00 0.01 0.01

13 1 -0.10 -0.11 0.20 0.11 0.12 -0.21 0.00 -0.01 0.01

14 6 0.00 0.00 -0.01 0.00 0.00 0.04 0.00 0.00 -0.01

15 1 -0.08 -0.09 0.16 0.12 0.13 -0.24 -0.01 -0.01 0.03

16 1 0.08 0.09 0.16 -0.12 -0.13 -0.24 0.01 0.01 0.03

17 6 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 -0.02

18 1 -0.04 -0.04 0.07 0.12 0.14 -0.24 -0.03 -0.04 0.07

19 1 0.04 0.04 0.07 -0.12 -0.14 -0.24 0.03 0.04 0.07

20 1 0.02 0.02 -0.05 0.07 0.09 -0.15 -0.07 -0.08 0.14

21 1 -0.02 -0.02 -0.05 -0.07 -0.09 -0.15 0.07 0.08 0.14
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22 6 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 -0.08

23 6 0.00 0.00 -0.06 0.00 0.00 -0.05 0.00 0.00 -0.05

24 1 -0.12 -0.13 -0.23 -0.04 -0.04 -0.08 0.23 0.26 0.46

25 1 0.12 0.13 -0.23 0.04 0.04 -0.08 -0.23 -0.26 0.46

26 1 -0.18 -0.22 0.37 -0.15 -0.18 0.30 -0.13 -0.17 0.27

27 1 0.18 0.22 0.37 0.15 0.18 0.30 0.13 0.17 0.27

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

88 89 90

A" A’ A’

Frequencies -- 3077.5245 3081.9525 3759.3043

Red. masses -- 1.1025 1.1009 1.0645

Frc consts -- 6.1521 6.1607 8.8632

IR Inten -- 88.0220 45.7924 65.1459

Raman Activ -- 28.8920 108.6398 172.6592

Depolar (P) -- 0.7500 0.5776 0.2568

Depolar (U) -- 0.8571 0.7323 0.4086

Atom AN X Y Z X Y Z X Y Z

1 6 0.00 0.00 -0.09 -0.01 -0.09 0.00 0.00 0.00 0.00

2 6 0.00 0.00 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00

3 1 -0.28 -0.28 0.52 0.15 0.13 -0.29 0.00 0.00 0.00

4 1 0.28 0.28 0.52 0.15 0.13 0.29 0.00 0.00 0.00

5 6 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

6 1 -0.09 -0.10 0.18 0.03 0.03 -0.06 0.00 0.00 0.00

7 1 0.09 0.10 0.18 0.03 0.03 0.06 0.00 0.00 0.00

8 1 -0.03 -0.04 0.07 0.00 0.01 -0.01 0.00 0.00 0.00

9 1 0.03 0.04 0.07 0.00 0.01 0.01 0.00 0.00 0.00

10 6 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

11 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 1 0.02 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.00

13 1 -0.02 -0.02 0.03 0.00 0.00 -0.01 0.00 0.00 0.00

14 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 1 -0.01 -0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

16 1 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

17 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 1 -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

19 1 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

20 1 -0.01 -0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

21 1 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

22 6 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

23 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00

25 1 -0.02 -0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00

26 1 -0.01 -0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

27 1 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

28 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 8 0.00 0.00 0.00 0.00 0.00 0.00 0.06 -0.01 0.00

30 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 1 0.00 0.00 0.00 0.00 0.00 0.00 -0.99 0.11 0.00

32 1 0.00 0.00 -0.02 -0.19 0.83 0.00 0.00 0.00 0.00

[...]
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Raman scattering Matlab code

E.1 Shape parameters

The shape parameters are used in the local field correction as developed in section 5.3.2.

The file name is shapefactor.m; as with all Matlab functions, the file name is identical

to the name of the function.

function [S] = shapefactor(r_1,r_2,r_3)

% The function SHAPEFACTOR computes the shape factors of an ellipsoid as

% used in local field corrections through numerical integration and scaling

% to ensure S_1 + S_2 + S_3 = 1.

%

% Raymond Rammeloo - 5 November 2018

%

% INPUT

% r_1, r_2, r_3 The three semiaxes of the ellipsoid, in a any unit.

%

% OUTPUT

% S The shape factor for each axis of the ellipsoid in a

% vector of size 3x1 as S = [S_1; S_2; S_3]

%Specify integration variable and range

u = 0:0.001:1000;

%Compute fuction and its numerical integration by summation

f_1 = .5*r_1*r_2*r_3./((u+r_1^2).*sqrt((u+r_1^2).*(u+r_2^2).*(u+r_3^2)));

S_1 = sum(f_1);

f_2 = .5*r_1*r_2*r_3./((u+r_2^2).*sqrt((u+r_1^2).*(u+r_2^2).*(u+r_3^2)));

S_2 = sum(f_2);

f_3 = .5*r_1*r_2*r_3./((u+r_3^2).*sqrt((u+r_1^2).*(u+r_2^2).*(u+r_3^2)));

S_3 = sum(f_3);

%Scale output vector so that S_1 + S_2 + S_3 = 1 is satisfied

S = [S_1; S_2; S_3]./(S_1 + S_2 + S_3);

E.2 The pirs function

This function performs the computational method developed in chapter 5. Its file name

is pirs.m. It comprises the computation of shape factors. To save time, the function

445
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may be adjusted to take the shape parameters (Sx, Sy, Sz) rather than the molecular radii

(rx, ry, rz) as input.

function [I_x, I_y, I_x_map, I_y_map, I_tot_map] = ...

pirs(n,k_i_theta,psi,lambda_0_laser,z,MOL_ORIENTATION,...

RAMANSHIFT,RAMANTENSOR_m,MOL_RADII_m,POLARTENSOR_m,NA,...

OBJ_ORIENTATION,g,fig)

%

% The function PIRS models the detected polarised intensities from a Raman

% scatterer located at or near an interface in a user-specified

% experimental geometry. The detected intensities are given by the squared

% sum of the complex field amplitudes along the X and Y directions for all

% modelled rays within the observed field of view. The effects of the

% interface on the electromagnetic radiation is approximated by an

% optically thin film bounded by two infinite half-spaces (media) when the

% scatterer is located at the interface. However, when the scatterer is

% located away from said interface, two infinite half-spaces are considered

% and the refractive index of the intermediate layer should be the same as

% that of the lower medium. Local field correction is applied to the

% incident field, the induced dipole moment and the radiated Raman field.

% Lorentz reciprocity is used to obtain the far-field radiation of the

% effective Raman-induced dipole in both half-spaces.

%

% (c) Raymond X. Rammeloo, 2016-2019

% Version of 18 November 2019

%

% --- INPUT VARIABLES -----------------------------------------------------

% n = 3x2 array containing the refractive indices of the three

% layers at the incident wavelength (first column) and at the

% Raman scattering wavelength (second column). The numbering is

% along the +z-direction of the laser of reference (L-frame):

% 1 = substrate hemisphere material (z < 0),

% 2 = interfacial thin film (z = 0),

% 3 = lower material/medium (z > 0).

% If only one column is provided, the same refractive indices are

% used for both incident and Raman scattered light.

%

% k_i_theta = propagation angle of the incident laser beam in the L-frame,

% taken from the +Z-direction in a right-handed rotation about

% the +Y-axis, in the range 0-180 degrees.

%

% psi = linear polarization direction of the incident laser beam,

% measured anti-clockwise from the plane of incidence in the

% range 0-90 degrees, with:

% 0 degrees = p-polarisation,

% 90 degrees = s-polarisation.

%

% lambda_0_laser = vacuum wavelength of the incident laser in nm.

%

% z = position of the scattering molecule in the laser-frame as

% (X,Y,Z) = (0,0,z) with z >= 0 in nm. If z = 0, a thin film may

% be accommodated with a refractive index (n2) that differs from

% those of the bounding media (n1, n3). However, if z > 0, n2

% must be equal to n3 or an unphysical result is obtained.

%

% MOL_ORIENTATION = orientation of the scattering molecule in the L-frame,

% a vector containing the 3 classical Euler angles alpha, beta

% and gamma in degrees which specify the molecular orientation by
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% successive anticlockwise rotations of the molecular frame of

% reference (m-frame) to the L-frame of reference with respect to

% a space-fixed vector.

%

% RAMANSHIFT = the Stokes Raman shift of the modelled mode in 1/cm.

%

% RAMANTENSOR_m = the 3x3 Raman polarisability tensor of the scattering

% moiety in the m-frame. It may be specified in any unit, the SI

% has it in C/V*m^2.

%

% MOL_RADII_m = semi-axes of the molecular ellipsoid that specify the

% ellipsoidal shape of the scattering molecule in nm. It is used

% to implement the local field correction.

%

% POLARTENSOR_m = the 3x3 polarisability tensor of the scattering molecule

% in the m-frame in C/V*m^2. It is used to implement the local

% field correction.

%

% NA = the numerical aperture of the microscope objective that

% collects and collimates the Raman-scattered light.

%

% OBJ_ORIENTATION = the orientation of microscope objective in the L-frame,

% a vector containing the 3 classical Euler angles alpha, beta

% and gamma in degrees that specify the transformation from the

% observation frame of reference (O-frame) to the L-frame by

% successive anticlockwise rotations of the axes with respect to

% a vector fixed in space.

%

% g = number of nodes in the modelling grid along each axis X, Y of

% the O-frame. The field due to the induced dipole is computed at

% each grid node on the circular aperture of the objective lens.

% The value of g should be chosen large enough to capture the

% variation of the emited Raman field across said aperture.

%

% fig = set to 1 to produce a figure of the polarised intensity

% distributions over the modelling grid.

%

% --- OUTPUT --------------------------------------------------------------

% I_x = the modelled irradiance recorded along the x-polarisation

% axis in the O-frame in arbitrary units. It is computed from the

% sum of the squared complex amplitudes of the collimated dipole

% field along the O-frame x-axis at each modelling grid node.

%

% I_y = as I_x but along the y-axis of the O-frame.

%

% I_x_map = the intensities I_x in a square array of size g x g,

% representing a top-view intensity map, looking down the z-axis

% of the O-frame towards the origin where the Raman-scattering

% molecule is located.

%

% I_y_map = as I_x_map but with the I_y intensities in the array.

%

% --- FIGURE --------------------------------------------------------------

% One figures is produced if input variable fig is set to 1. The modelled

% polarised intensity distributions I_X_map and I_Y_map as well as their

% sum I_tot_map are plotted as a colour intensity map of the field of view

% after collimation by the objective.
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%% -- I. CHECK FOR ERRORS IN INPUT VARIABLES -----------------------------

% The computation is stopped and an error message is presented if the input

% lies out of the intended range. The Euler angles are left without

% constraint.

% (1) Ensure six refractive indices are specified

if size(n,2) == 1

n = [n n];

end

% (2) Check whether k_i_theta is in the correct range

% Note: || is the logic OR operator in Matlab.

if k_i_theta < 0 || k_i_theta > 180

error([’Propagation angle of incident laser out of range.’...

’Value is restricted to 0 <= k_i_theta <= 180.’])

end

% (3) Check if thin-film approximation is correctly applied

if z == 0

elseif z < 0

error(’Molecular position z < 0, but is restricted to z >= 0.’)

elseif n(2,1) == n(3,1) && n(2,2) == n(3,2)

else

error([’Thin-film approximation does not apply.’...

’For z > 0, n2 must be equal to n3.’])

end

% (4) Check if NA is positive and does not exceed maximum value of n_air

if NA < 0

error(’NA is negative, but must be 0 <= NA <= n_air.’)

elseif NA > 1.0003

error([’NA is larger than n of immersion medium (air).’...

’Value must be 0 <= NA <= n_air.’])

end

% (5) Check whether g is a positive integer

if rem(g,1) ~= 0 || g <= 0

error(’Grid size g must be a positive integer.’)

end

%% -- II. CALCULATE APPLIED FIELD AT MOLECULE IN LASER FRAME (E_app_L) ----

% A linearly polarised incoming laser beam at unity intensity is propagated

% to the location (0,0,z) of the molecule. The coupling factors F depend on

% the propagation angle of the laser beam in the L-frame.

% (1) Compute the p- and s-polarised components of incident field with the

% linearly polarised amplitude set to unity.

E_i_p = cosd(psi);

E_i_s = sind(psi);

% (2) Compute the coupling factors F, depending on the range of k_i_theta.

% The angles of incidence and transmission are in radians as required for

% complex calculations. The thin-film approximation is used in the F_z

% coupling factor. This is only relevant for z = 0 and n2 not equal to n3.

if k_i_theta <= 90

% Zones I and II, laser incident on molecule through medium 1

theta_i = pi/180*k_i_theta;

theta_t = asin(n(1,1)/n(3,1)*sin(theta_i));
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t_p = (2*n(1,1)*cos(theta_i))/...

(n(3,1)*cos(theta_i) + n(1,1)*cos(theta_t));

t_s = (2*n(1,1)*cos(theta_i))/...

(n(1,1)*cos(theta_i) + n(3,1)*cos(theta_t));

PHASE = 2*pi*n(3,1)/lambda_0_laser*z*cos(theta_t);

F_x = t_p*cos(theta_t)*exp(1i*PHASE); % 1i is the complex number

F_y = t_s*exp(1i*PHASE);

F_z = -(n(3,1)/n(2,1))^2*t_p*sin(theta_t)*exp(1i*PHASE);

else % k_i_theta > 90

% Zone III, laser incident on molecule through medium 3

theta_i = (180 - k_i_theta)*pi/180;

theta_t = asin(n(3,1)/n(1,1)*sin(theta_i));

r_p = (n(1,1)*cos(theta_i)-n(3,1)*cos(theta_t))/...

(n(1,1)*cos(theta_i)+n(3,1)*cos(theta_t));

r_s = (n(3,1)*cos(theta_i)-n(1,1)*cos(theta_t))/...

(n(3,1)*cos(theta_i)+n(1,1)*cos(theta_t));

PHASE = 2*pi*n(3,1)/lambda_0_laser*z*cos(theta_i);

F_x = (-exp(-1i*PHASE) + r_p*exp(1i*PHASE))*cos(theta_i);

F_y = exp(-1i*PHASE) + r_s*exp(1i*PHASE);

F_z = -(n(3,1)/n(2,1))^2*(exp(-1i*PHASE) + r_p*exp(1i*PHASE))*...

sin(theta_i);

end

% (3) Compute the macroscopic applied field at the location of the molecule

% in the L-frame. Note that above the critical angle, E_app is an

% evanescent field. The p-polarised component then produces independent

% E_app_x and E_app_z components, with s always along y.

E_app_L = [F_x 0 ;

0 F_y;

F_z 0 ]*[E_i_p; E_i_s];

%% -- III. PROJECT APPLIED FIELD ONTO FRAME OF MOLECULE (E_app_m) ---------

% Given the orientation of the molecule through the input, we can find the

% transformation matrix between the L-frame of reference and the m-frame

% for a vector fixed in space. This matrix is then used to express the

% electric field at the molecule in the m-frame of reference.

% (1) Define the three Euler angles that give the orientation of the

% scatterer in the laboratory frame of reference in radians.

alpha = pi/180*MOL_ORIENTATION(1);

beta = pi/180*MOL_ORIENTATION(2);

gamma = pi/180*MOL_ORIENTATION(3);

% (2) Define the transformation matrix T_L_to_m from molecule to laboratory

% frame of reference using these Euler angles. The inverse matrix T_L_to_m’

% effects the transformation from L to m-frame.

T_L_to_m = [cos(gamma)*cos(alpha)-sin(gamma)*cos(beta)*sin(alpha), ...

cos(gamma)*sin(alpha)+sin(gamma)*cos(beta)*cos(alpha), ...

sin(gamma)*sin(beta);

-sin(gamma)*cos(alpha)-cos(gamma)*cos(beta)*sin(alpha), ...

cos(gamma)*cos(beta)*cos(alpha)-sin(gamma)*sin(alpha), ...

cos(gamma)*sin(beta);

sin(beta)*sin(alpha), -sin(beta)*cos(alpha), cos(beta)];

%(3) The applied field is now transformed onto the axes of the molecule to

% find the field E_app_m causing Raman scattering.

E_app_m = T_L_to_m*E_app_L;
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%% -- IV. CALCULATION OF EFFECTIVE INDUCED DIPOLE IN L-FRAME (p_eff_L) ----

% The induced dipole arises from the Raman effect. We know the electric

% field at the molecule and its Raman tensor, both expressed in the

% scatterer frame of reference. The local field correction is applied using

% the molecular ellipsoidal shape and its polarisability in the m-frame.

% The shape parameters as well as the cavity and reaction field tensors are

% computed before the local field correction can be applied to obtain the

% effective Raman tensor in the m-frame. The induced dipole is then

% computed and transformed from the m-frame to the L-frame. The components

% of the obtained dipole vector p_eff_L are complex and may not be in

% phase.

% (1) Compute shape parameters S through numerical intergration and scaling

% to ensure S_x + S_y + S_z = 1. Shape parameters are included as a

% diagonal matrix for ease of computation of the local field correction.

r_x = MOL_RADII_m(1); % semi-axes of molecular ellipsoid in nm

r_y = MOL_RADII_m(2);

r_z = MOL_RADII_m(3);

u = 0:0.001:1000; % dummy integration variable

S_x = sum(.5*r_x*r_y*r_z./...

((u+r_x^2).*sqrt((u+r_x^2).*(u+r_y^2).*(u+r_z^2))));

S_y = sum(.5*r_x*r_y*r_z./...

((u+r_y^2).*sqrt((u+r_x^2).*(u+r_y^2).*(u+r_z^2))));

S_z = sum(.5*r_x*r_y*r_z./...

((u+r_z^2).*sqrt((u+r_x^2).*(u+r_y^2).*(u+r_z^2))));

S = [S_x 0 0; 0 S_y 0; 0 0 S_z]./(S_x + S_y + S_z);

% (2) Compute cavity and reaction field tensors C_in and R_in for the

% incident light. The permittivity of medium 2 (surrounding the cavity) is

% given as a tensor for ease of computation.

IM = [1 0 0; 0 1 0; 0 0 1]; % 3x3 identity matrix

epsilon_in = IM*n(2,1)^2;

epsilon_0 = 8.854187817*10^(-12); % vacuum permittivity in C/V/m

C_in = epsilon_in/(epsilon_in - S*(epsilon_in - IM));

R_in = 3*S*(IM - S)*(epsilon_in - IM)/...

(4*pi*epsilon_0*r_x*r_y*r_z*10^(-27)*...

(epsilon_in - S*(epsilon_in - IM)));

% (3) Compute reaction field tensor R_scat for scattered light

epsilon_scat = IM*n(2,2)^2;

R_scat = 3*S*(IM - S)*(epsilon_scat - IM)/...

(4*pi*epsilon_0*r_x*r_y*r_z*10^(-27)*....

(epsilon_scat - S*(epsilon_scat - IM)));

% (4) The effective Raman tensor, considering the local field effect can

% now be given

RAMANTENSOR_eff_m = (IM + POLARTENSOR_m*R_scat)*RAMANTENSOR_m*...

(C_in/(IM - R_in*POLARTENSOR_m));

% (5) The effective Raman-induced dipole in the L-frame p_eff_L is now

% given as a 3x1 column vector

p_eff_L = T_L_to_m’*RAMANTENSOR_eff_m*E_app_m;

%% -- V. DEFINE MODELLING GRID AT OBJECTIVE ENTRANCE ----------------------

% The collected Raman scattered radiation is modelled on a grid of nodes at

% the circular entrance to the microscope objective. The physical size of

% this grid is limited by the NA of the objective, while the modelling size

% is given as input variable g.
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% (1) Find all grid coordinates falling withing the field of view in the

% O-frame of reference. The coordinates of the grid run from -R_obj to

% +R-obj along the x and y directions while z = 1 for each grid node Q.

% R_obj is de radius of the objective in units of its working distance. The

% number of nodes g along x and y is given as input, resuling in a square

% grid to represent the circular aperture. All nodes for which

% x^2 + y^2 =< R_obj^2 fall within view of the objective, those outside the

% view are discarded. Each grid node in our view Q_O, given by GRID through

% the appropriate index in RAY_index, is specified in O-frame coordinates.

% The unit of length is the working distance of the objective, so z = 1 for

% each Q.

n_air = 1.0003;

if g == 1

Q_O = [0 0 1]’;

RAY_index = 1;

NQ = 1;

else

R_obj = tan(asin(NA/n_air));

GRID_X = repmat(R_obj.*(2.*((1:g)-1)/(g-1)-1),g,1);

GRID_Y = repmat((R_obj.*(2.*((1:g)-1)/(g-1)-1))’,1,g);

[RAY_index] = find(GRID_X.^2 + GRID_Y.^2 <= R_obj^2);

NQ = numel(RAY_index);

Q_O = [GRID_X(RAY_index) GRID_Y(RAY_index) ones(length(RAY_index),1)]’;

end

% (2) The grid nodes Q are now expressed in L-frame coordinates through a

% transformation over the Euler angles of OBJ_ORIENTATION, which specify

% the O-frame relative to the L-frame. We define the transformation matrix

% T_L_to_m from m-frame to L-frame using these Euler angles. The inverse

% matrix T_L_to_m’ effects the transformation from L-frame to m-frame.

alpha = pi/180*OBJ_ORIENTATION(1);

beta = pi/180*OBJ_ORIENTATION(2);

gamma = pi/180*OBJ_ORIENTATION(3);

T_L_to_O = [cos(gamma)*cos(alpha)-sin(gamma)*cos(beta)*sin(alpha), ...

cos(gamma)*sin(alpha)+sin(gamma)*cos(beta)*cos(alpha), ...

sin(gamma)*sin(beta);

-sin(gamma)*cos(alpha)-cos(gamma)*cos(beta)*sin(alpha), ...

cos(gamma)*cos(beta)*cos(alpha)-sin(gamma)*sin(alpha), ...

cos(gamma)*sin(beta);

sin(beta)*sin(alpha), -sin(beta)*cos(alpha), cos(beta)];

Q_L = T_L_to_O’*Q_O;

% (3) The grid nodes in L-frame spherical coordinates are given in Q_Lsph

% as [rho; theta; phi] for each grid node within view of the objective. The

% quandrant of the arctan function is taken into acccount with Matlab

% in-built function atan2, in which the range of phi is from -pi to +pi.

% This range is brought into our range of 0-2pi by adjusting the negative

% range of phi from (-pi to 0) to (+2pi to +pi).

Q_Lsph = [sqrt(sum(Q_L.^2,1));

acos(Q_L(3,:)./sqrt(sum(Q_L.^2,1)));

atan2(Q_L(2,:),Q_L(1,:))];

Q_Lsph(3,Q_Lsph(3,:) < 0)=2*pi+Q_Lsph(3,Q_Lsph(3,:) < 0);

%% -- VI. COMPUTE THE DIPOLE FIELD AT OBJECTIVE (E_dip_O)------------------

% The Lorentz reciprocity theorem is employed to calculate the dipole

% field amplitude E_dip_Q = [E_p; E_s; 0] at each grid node relative to the

% plane of incidence that includes the L-frame z-axis and the node Q. The
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% coupling factors of the dipole far-field into the surrounding media are

% derived from the coupling of a plane wave incident from point Q onto the

% dipole components parallel and orthogonal to this plane of incidence. The

% cavity field is also taken into account at this stage as a further local

% field correction for the Raman emission. The computation is performed for

% each grid node Q in a for-loop. The form of the coupling factors depends

% on the polar angle Q_theta, that expresses from which side of the

% interface the light is coming (following reciprocity, this is the

% direction in which the scattered radiation is propagating). The

% wavelength of the Raman-scattered light and the refractive indices at

% that wavelength are employed.

% (1) The vacuum wavelength and angular frequency of the Raman-scattered

% light depends on the incident laser wavelength and the Raman shift, both

% given as input. These values are used for to compute the coupling

% factors.

c = 299792458; % vacuum speed of light in m/s

lambda_0_scat = n_air/(n_air/lambda_0_laser - 10^(-7)*RAMANSHIFT); % in nm

omega_Raman = 2*pi*c/lambda_0_scat; % in 1/s

% (2) Start loop over all grid nodes Q to computed E_dip_O at each Q

E_dip_O = zeros(3,NQ); % pre-allocate array for speed

for k = 1:NQ

Q_rho_L = Q_Lsph(1,k);

Q_theta_L = Q_Lsph(2,k);

Q_phi_L = Q_Lsph(3,k);

% (3) Compute the coupling factors for a plane wave incident onto the

% molecule, which are then used through reciprocity to obtain the coupling

% factors for the far-field radiation of the Raman-induced dipole. The

% scattered wavelength and refractive indices at that wavelength are used.

if Q_theta_L < pi/2

% Zone III, the far-field radiation of the dipole into medium 3,

% obtained from a plane wave incident from medium 3 through reciprocity

theta_i = Q_theta_L;

theta_t = asin(n(3,2)/n(1,2)*sin(theta_i));

r_p = (n(1,2)*cos(theta_i) - n(3,2)*cos(theta_t))/...

(n(1,2)*cos(theta_i) + n(3,2)*cos(theta_t));

r_s = (n(3,2)*cos(theta_i) - n(1,2)*cos(theta_t))/...

(n(3,2)*cos(theta_i) + n(1,2)*cos(theta_t));

PHASE = 2*pi*n(3,2)/lambda_0_scat*z*cos(theta_i);

F_x = (-exp(-1i*PHASE) + r_p*exp(1i*PHASE))*cos(theta_i);

F_y = exp(-1i*PHASE) + r_s*exp(1i*PHASE);

F_z = (n(3,2)/n(2,2))^2*(exp(-1i*PHASE) + r_p*exp(1i*PHASE))*...

sin(theta_i);

else % Q_theta_L >= pi/2

% Zones I and II, the far-field radiation of the dipole into medium 1,

% obtained from a plane wave incident from medium 1 through reciprocity

theta_i = pi - Q_theta_L;

theta_t = asin(n(1,2)/n(3,2)*sin(theta_i));

t_p = (2*n(1,2)*cos(theta_i))/...

(n(3,2)*cos(theta_i) + n(1,2)*cos(theta_t));

t_s = (2*n(1,2)*cos(theta_i))/...

(n(1,2)*cos(theta_i) + n(3,2)*cos(theta_t));

PHASE = 2*pi*n(3,2)/lambda_0_scat*z*cos(theta_t);

F_x = t_p*cos(theta_t)*exp(1i*PHASE);

F_y = t_s*exp(1i*PHASE);

F_z = (n(3,2)/n(2,2))^2*t_p*sin(theta_t)*exp(1i*PHASE);
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end

% (4) The dipole field E_dip_Q = [E_p; E_s] along the p and s directions of

% the Q-frame are computed using the coupling factors just derived through

% Lorentz reciprocity, using the appropriate prefactor and using the

% projection of p_eff_L onto the plane of incidence spanned by Q and the z-

% axis of the L-frame. The p and s directions are defined relative to this

% plane.

T_L_to_q = [ cos(Q_phi_L) sin(Q_phi_L) 0;

-sin(Q_phi_L) cos(Q_phi_L) 0;

0 0 1];

C_scat_m = epsilon_scat/(epsilon_scat - S*(epsilon_scat - IM));

C_scat_q = T_L_to_q*T_L_to_m’*C_scat_m*T_L_to_m*T_L_to_q’;

E_dip_Q = 1/(4*pi*epsilon_0*Q_rho_L)*(omega_Raman/c)^2*...

[-F_x 0 -F_z;

0 F_y 0 ]*C_scat_q’*T_L_to_q*p_eff_L;

% (5) The field due to the Raman-induced dipole at Q is now given in

% Cartesian coordinates of the Q-frame as E_dip_Q = [E_p; E_s; 0]. This

% expression is transformed to the L-frame with transformation matrix

% T_Q_to_L, specified by the spherical coordinates of Q in the L-frame. The

% result is then transformed to the O-frame with T_L_to_O, which was

% computed in section V and which is the same matrix for each point Q,

% whereas T_Q_to_L varies with the location of Q.

T_Q_to_L = [cos(Q_phi_L) -sin(Q_phi_L) 0;

sin(Q_phi_L) cos(Q_phi_L) 0;

0 0 1]*...

[ cos(Q_theta_L) 0 sin(Q_theta_L);...

0 1 0 ;...

-sin(Q_theta_L) 0 cos(Q_theta_L)];

E_dip_O(:,k) = T_L_to_O*T_Q_to_L*[E_dip_Q; 0];

end

%% -- VII. COLLIMATE DIPOLE FIELD AT OBJECTIVE (E_col_O) ------------------

% Effect collimation of the dipole field at each Q by rotating over angle

% col_angle about axis col_axis to bring the propagation direction of the

% dipole field along the +z-axis of the O-frame.

% (1) Specify unit vectors zu_O and Qu_O

zu_O = [0 0 1]’; % unit vector +z in O-frame

E_col_O = zeros(3,NQ); % pre-allocate array for speed

for k = 1:NQ % Loop over all grid nodes Q

Qu_O = Q_O(:,k)/norm(Q_O(:,k)); % unit vector pointing from origin to

% point Q in the O-frame

% (2) Compute collimation angle and axis for each point Q

col_angle = acos(dot(zu_O,Qu_O));

if col_angle == 0

col_axis = [0 0 0]’;

else

col_axis = cross(Qu_O,zu_O)/sin(col_angle); % axis specified in O-frame

end

% (3) Perform rotation that represents the collimation action with

% Rodrigues’ rotation formula

E_col_O(:,k) = E_dip_O(:,k)*cos(col_angle) +...

cross(col_axis,E_dip_O(:,k))*sin(col_angle) +...

col_axis*dot(col_axis,E_dip_O(:,k))*(1-cos(col_angle));
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end

% (4) Any NaN (not a number) entries in the result are set to zero, as this

% implies that no dipole was induced in the first place

E_col_O(isnan(E_col_O)) = 0;

%% -- VIII. COLLECTION POLARISATION & DETECTION (OUTPUT) ------------------

% The collection polarisation can be set along either the x or y axis of

% the O-frame, both of which are calculated. The detected intensity at each

% grid node is given by the squared absolute amplitude along the selected

% direction. For complex amplitudes, the function abs takes the complex

% modulus. The intensity is scaled to the number of grid nodes NQ for

% comparison of modelling results obtained with different grid sizes.

% (1) The intensity map on the square modelling grid, viewed from the

% objective towards the molecule (i.e. down the z-axis of the O-frame).

I_x_map = zeros(g,g);

I_x_map(RAY_index) = 0.5*n_air*epsilon_0*c*(abs(E_col_O(1,:)).^2);

I_y_map = zeros(g,g);

I_y_map(RAY_index) = 0.5*n_air*epsilon_0*c*(abs(E_col_O(2,:)).^2);

I_tot_map = I_x_map + I_y_map;

% (2) The sum over all grid nodes gives the total polarised intensity. This

% is divided by the number of grid nodes in the field of view to facilitate

% comparison between modelling runs of varying grid size.

I_x = sum(sum(I_x_map))/NQ;

I_y = sum(sum(I_y_map))/NQ;

%% -- IX. FIGURE (OUTPUT) -------------------------------------------------

% The figure is produced only if fig == 1. It presents the three intensity

% maps in one figure with a single intensity colorbar.

if fig == 1

caxis_max = max(max([I_x_map; I_y_map; I_tot_map]));

set(groot,’defaulttextinterpreter’,’latex’);

figure(’name’,’I_map’,’Color’,’w’,...

’units’,’centimeters’,’position’,[3 3 20 7])

s1 = subplot(1,3,1);

imagesc(I_x_map)

colormap(hot)

xlabel(’$x^\mathsf{O}$-axis’)

ylabel(’$y^\mathsf{O}$-axis’)

title([’$I_x = $ ’ num2str(I_x,3)])

caxis([0 caxis_max]);

set(s1,’XTick’,[],’YTick’,[])

set(s1,’units’,’centimeters’,’position’,[1.5 1 5 5])

s2 = subplot(1,3,2);

imagesc(I_y_map)

title([’$I_y = $ ’ num2str(I_y,3)])

caxis([0 caxis_max]);

set(s2,’XTick’,[],’YTick’,[])

set(s2,’units’,’centimeters’,’position’,[7 1 5 5])

s3 = subplot(1,3,3);

imagesc(I_tot_map)

title([’$I_x + I_y = $ ’ num2str(I_x+I_y,3)])

caxis([0 caxis_max]);

set(s3,’XTick’,[],’YTick’,[])

set(s3,’units’,’centimeters’,’position’,[12.5 1 5 5])

colorbar(’units’,’centimeters’,’Position’,[18 1 .5 5],...
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’axislocation’,’out’,’ticklength’,0.03)

end

E.3 Example script

The example given below was used to compute the relative intensities of Raman-scattering

of the sulfate v1 mode as a function of laser polarisation angle ψ. The results are presented

in figure 6.9. The file name of the script is example_script_sulfate_psi.m.

% Sulfate anion v_1 Raman mode at fused silica surface

%% (1) Compute intensities for varying incident polarisation angle psi

n_sul = 1.3368; % 0.3 molar ammonium sulfate in water used in KTH

nn = [1.4607 1.4594

n_sul n_sul

n_sul n_sul];

k_i_theta = 75; % in degrees

NA = 0.55;

RAMANTENSOR_m = -16.1e-42*eye(3); % sulfate v_1 mode, result from Gaussian

lambda_0_laser = 532; % in nm

MOL_ORIENTATION = [0 0 0]; % isotropic scatterer, so orientation irrelevant

RAMANSHIFT = 980; % in 1/cm

MOL_RADII_m = 0.30268*[1 1 1]; % in nm

POLARTENSOR_m = -1.649e-41*48.549*eye(3); % in SI units

OBJ_ORIENTATION = [0, 180, 0]; % in degrees

fig = 0;

z = 0;

g = 15; % optimised value for speed and sufficient precision

psi = 0:1:90; % in degrees

%Compute absolute and relative intensities at each value of psi

IM_psi = zeros(2,numel(psi)); % pre-allocate for speed

IM_psi_rel = zeros(2,numel(psi));

for m = 1:numel(psi) %loop over psi

[IM_psi(1,m), IM_psi(2,m), ~] = pirs(nn,k_i_theta,psi(m),...

lambda_0_laser,z,MOL_ORIENTATION,RAMANSHIFT,...

RAMANTENSOR_m,MOL_RADII_m,POLARTENSOR_m,NA,OBJ_ORIENTATION,g,fig);

IM_psi_rel(:,m) = IM_psi(:,m)./sum(IM_psi(:,m));

end

%% (2) Figure of absolute and relative intensities vs psi

set(groot,’defaulttextinterpreter’,’latex’);

figure

subplot(1,2,1)

hold on; box on;

plot(psi,IM_psi(1,:),’-’,’color’,[255,0,0]./255,’linewidth’,2); %x

plot(psi,IM_psi(2,:),’-’,’color’,[0,0,0]./255,’linewidth’,2); %y

axis([min(psi) max(psi) 0 max(max(IM_psi))])

xlabel(’Incident polarisation angle $\psi$ / $^\circ$’,...

’interpreter’,’latex’,’fontsize’,12)

ylabel(’Modelled intensity / a.u.’,’interpreter’,’latex’,’fontsize’,12)

legend({’$I_x$’,’$I_y$’},’location’,’east’,...

’interpreter’,’latex’,’fontsize’,12)

subplot(1,2,2)
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hold on; box on;

plot(psi,IM_psi_rel(1,:),’-’,’color’,[255,0,0]./255,’linewidth’,2); %x

plot(psi,IM_psi_rel(2,:),’-’,’color’,[0,0,0]./255,’linewidth’,2); %y

axis([min(psi) max(psi) 0 1])

xlabel(’Incident polarisation angle $\psi$ / $^\circ$’,...

’interpreter’,’latex’,’fontsize’,12)

ylabel(’Relative intensity’,’interpreter’,’latex’,’fontsize’,12)

legend({’$I_x$’,’$I_y$’},’location’,’east’,...

’interpreter’,’latex’,’fontsize’,12)

%% (3) Figure of relative intensities from model and experiment

% data 20170324/022-035

psi_exp = (0:15:90)’;

IE_psi = 1000*[0.3749 0.3724 0.2916 0.2004 0.1736 0.0817 0.0267;

0.1970 0.2930 0.5446 0.9009 1.3099 1.6524 1.8460];

IE_psi_rel = [0.6555 0.5596 0.3487 0.1819 0.1170 0.0471 0.0143;

0.3445 0.4404 0.6513 0.8181 0.8830 0.9529 0.9857];

figure

hold on; box on;

plot(psi,IM_psi_rel(1,:),’-r’,’linewidth’,1); %x

plot(psi,IM_psi_rel(2,:),’-k’,’linewidth’,1); %y

plot(psi_exp,IE_psi_rel(1,:),’xr’,’linewidth’,2); %x

plot(psi_exp,IE_psi_rel(2,:),’ok’,’linewidth’,2); %y

axis([0 90 0 1])

xlabel(’Incident polarisation angle $\psi$ / $^\circ$’,...

’interpreter’,’latex’,’fontsize’,12)

ylabel(’Relative intensity’,’interpreter’,’latex’,’fontsize’,12)

legend({’$I_x$ model’,’$I_y$ model’,’$I_x$ exp.’,’$I_y$ exp.’},...

’location’,’east’,’interpreter’,’latex’,’fontsize’,12)
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Image analysis

Microscopy images of section 7.1 are analysed by the following method. In these images,

the contact spot between a mating flat and spherical surface is seen (figure 7.2) as a

circular dark area. In this area, the white light illumination passes through the glass-

on-glass contact, whereas it reflects off the glass-air interfaces formed outside the contact

area. The size of the contact spot is a measure of the contact pressure, which we aim to

derive reproducibly here.

The method centres on fitting a circle through the edges of the observed contact spot.

This may be performed by manually selecting points in the images or by an automated

procedure. Both are implemented in the Matlab script presented below. The manual

procedure is favoured for images that include distortions, such as those analysed here.

Figure F.1 presents the fitting result for contact spot 7 of the dataset presented in chap-

ter 7. The circular fit was consistently applied around the first inflection point from the

centre of the circle towards its edge in all seven contact spots. Once a radius is found,

expressed in pixels, it is converted to physical dimensions by a magnification factor. In

our analysis, a value of 1.64 µm per pixel was used.

Matlab script

% A script to analyse microscope images of the contact area between a

% sphere and a flat surface

% INPUT - a bmp file from the microscope camera

% - when running the script, you will be prompted to provide the

% area of the image that includes the central dark spot. First

% click at the approximate centre of the contact spot and with a

% second click provide an outer radius from said centre to define

% the image area used in the algorithm.

% OUTPUT - figure with the image, selected area and fitted circle

% - figure with the X and Y cross-sections of the image through the

% centre of the contact area

% - derived contact pressure

%

% (c) Raymond X. Rammeloo, 2018

%% Process image data

%import bitmap file manually into Matlab workspace
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Figure F.1: Analysis of the microscopy image of contact spot 7 from the dataset analysed
in chapter 7. Top image: a circle (yellow) is fitted through eight manually
selected points (red) at the edges of the contact area. Bottom plot: horizontal
and vertical cross-sections through the centre of the fitted circle are computed
to assess their accuracy.



459

data = spot7;

%format to double-precision numbers rather than bits

image = double(data)./255;

%produce gray scale image using the blue colour only and scale the

%intensity to a maximum of 1

I = sqrt(image(:,:,3).^2)./max(max(sqrt(image(:,:,3).^2)));

%% Choose manual or automatic circle fitting

manual = 1; %1 for manual, 0 for automatic

MAGNIFICATION = 1.64e-6; % meter per pixel from calibration of camera image

%% Extract circular contact spot from microscope image

fig1 = figure(’name’,’Contact image analysis’);

imagesc(I)

axis image; caxis([0 max(max(I))])

colormap gray; colorbar

set(fig1,’windowstyle’,’docked’)

hold on

if manual ==0

%Select relevant area of image in which the central dark spot is situated

%with the crosshairs:

% - first, the approximate centre of the central dark spot

% - second, a point that defines a circular ring encompassing the processed

% part of the image

[X, Y] = ginput(2);

selection_centre = [round(X(1)) round(Y(1))];

selection_edge = [ceil(X(2)) ceil(Y(2))];

selection_radius = norm(selection_edge-selection_centre);

selection = [selection_centre(1) + selection_radius*cos(0:0.01:2*pi) ;

selection_centre(2) + selection_radius*sin(0:0.01:2*pi)]’;

%Draw selected area in figure

plot(selection(:,1),selection(:,2),’-r’,’LineWidth’,1)

%Obtain X and Y pixel coordinates

[data_xx, data_yy] = meshgrid(1:size(I,2),1:size(I,1));

selection = zeros(size(I));

selection(((data_xx-selection_centre(1)).^2 ...

+ (data_yy-selection_centre(2)).^2) < selection_radius^2) = 1;

selection_X = data_xx(selection == 1);

selection_Y = data_yy(selection == 1);

%Assign points that are below an intensity threshold that includes the

%central dark spot and plot these in the image

INTmin = min(min(I(selection == 1)));

INTmax = max(max(I(selection == 1)));

intensity_threshold = INTmin + 0.2*(INTmax - INTmin);

[Y_threshold, X_threshold] = find( I < intensity_threshold );

%Remove coordinates of pixels that lie outside the selected circle

disregard = find(((X_threshold-selection_centre(1)).^2 ...

+ (Y_threshold-selection_centre(2)).^2) > selection_radius^2);

X_threshold(disregard) = [];

Y_threshold(disregard) = [];

plot(X_threshold,Y_threshold,’.r’,’Markersize’,1);

elseif manual == 1

% Manual selection of 8 points on the edge of the dark spot at the user’s

% discretion

[X_threshold,Y_threshold] = ginput(8);
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plot(X_threshold,Y_threshold,’.r’,’Markersize’,1);

end

%Determine the convex hull (or envelope) that encompasses all points below

%the threshold and use this to determine the edge of the contact area

EDGE_POINTS = convhull(X_threshold,Y_threshold);

EDGE_X = X_threshold(EDGE_POINTS);

EDGE_Y = Y_threshold(EDGE_POINTS);

plot(EDGE_X,EDGE_Y,’or’,’Markersize’,2);

%Fit a circle through the edge coordinates and extract its radius (based on

%the circfit function by Izhak Bucher of 25/10/1991)

a = [EDGE_X EDGE_Y ones(size(EDGE_X))] \ [-(EDGE_X.^2 + EDGE_Y.^2)];

X_centre = -.5*a(1); %position in pixel units

Y_centre = -.5*a(2);

R = sqrt((a(1)^2 + a(2)^2)/4 - a(3)); %radius in pixel units

%Draw fitted circle and its centre into image

CIRCLE = [X_centre + R*cos(0:0.01:2*pi) ; Y_centre + R*sin(0:0.01:2*pi)]’;

plot(CIRCLE(:,1),CIRCLE(:,2),’-y’,’LineWidth’,1)

plot(X_centre,Y_centre,’xy’,’Markersize’,6,’Linewidth’,1)

%% Plot cross-section of contact through its centre

fig2 = figure(’name’,’contact cross-section’);

set(fig2,’windowstyle’,’docked’)

hold on; box on

[pixels_Y, pixels_X] = size(I);

%centre of the horizontal axis is the centre of the fitted circle

Xaxis_horizontal = ((1:pixels_X)’ - X_centre).*MAGNIFICATION;

Xaxis_vertical = ((1:pixels_Y)’ - Y_centre).*MAGNIFICATION;

%horizontal cross-section, along X-direction

plot(Xaxis_horizontal,I(round(Y_centre),:),’or’,’Markersize’,2);

%vertical cross-section, along Y-direction

plot(Xaxis_vertical,I(:,round(X_centre)),’ob’,’Markersize’,2);

%include vertical lines to indicate centre and edge of the fitted circle

plot([0 0],[0 1],’-k’)

plot([-R*MAGNIFICATION -R*MAGNIFICATION],[0 1],’--k’)

plot([R*MAGNIFICATION R*MAGNIFICATION],[0 1],’--k’)

%include smoothed lines, 5-point moving average

plot(Xaxis_horizontal,smooth(I(round(Y_centre),:),5,’moving’),’-r’);

plot(Xaxis_vertical,smooth(I(:,round(X_centre)),5,’moving’),’-b’);

axis([-100*MAGNIFICATION 100*MAGNIFICATION 0.5 1])

xlabel(’Position / m’,’fontsize’,10,’interpreter’,’latex’)

ylabel(’Gray-scale intensity / a.u.’,’fontsize’,10,’interpreter’,’latex’)

legend({’horizontal cross-section’,’vertical cross-section’...

’contact centre’,’contact edge’},’fontsize’,10,...

’interpreter’,’latex’,’Location’,’south’)

%% Compute mean and central normal contact pressure for the sphere-on-flat

%Compute diameter of the contact spot in meters

CONTACT_DIAMETER = 2*R*MAGNIFICATION; % in meter

%Use Hertzian contact mechanics to compute the normal mean and central

%pressure in the contact

E = 34.451e9; %composite modulus of SF10 and fused silica in contact / Pa

R_sphere = 5e-3; %radius of curvature of the fused silica sphere / m

P_mean = (2*E*CONTACT_DIAMETER) / (3*pi*R_sphere); %mean pressure / Pa

P_centre = CONTACT_DIAMETER*E / (pi*R_sphere); %pressure in centre / Pa



Appendix G

Supplementary results

G.1 Chapter 4

G.1.1 Phenyl breathing mode in the bond-polarisability model

Of particular interest is the symmetric breathing mode of the benzene ring, in its pure

form or in a phenyl derivative such as toluene. It gives rise to a strong polarised Raman

band that Raman himself used to demonstrate the effect [59]. The polarisability of each

C−H bond can be given in the bond frame of reference b as

αb
C−H =

α∥ 0 0

0 α⊥,ip 0

0 0 α⊥,oop

 (G.1)

with component α∥ parallel to the bond axis x̂b and the two components α⊥ in plane or

out-of-plane with respect to the plane of the molecule (see figure G.1). The choice of axes

is such that the transformation from the bond frame of reference to that of the functional

group involves just one elementary rotation.

The bond polarisability tensor αg
C−H in the functional group frame of reference g

is given through equation 4.2 where the transformation Tb→g is effected by an active

H

HH

H

H

H

C

Figure G.1: The symmetric phenyl ring breathing mode (open arrows) and choice of axes
in the functional group (left) and bond (right) frames of reference.
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anticlockwise rotation about the common z axis

Tb→g = Rz(ϕ)
−1 = Rz(−ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (G.2)

with rotation matrix defined in equation 2.12. This definition effects an anticlockwise

rotation of the axes with a vector fixed in space, so its inverse (equivalent to a negative

rotation angle) has to be employed to effect an anticlockwise rotation of a vector in a fixed

set of axes. The angle ϕ takes the place of the first or third Euler angle (the other two

being zero) and specifies the orientation of the bond in the plane of the molecule. The

bond polarisability in the molecular frame of reference can now be given as

αg
C−H = Rz(−ϕ)αb

C−HRz(ϕ)

=

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


α∥ 0 0

0 α⊥,ip 0

0 0 α⊥,oop


 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1



=

α∥ cos
2 ϕ+ α⊥,ip sin

2 ϕ (α∥ − α⊥,ip) sinϕ cosϕ 0

(α∥ − α⊥,ip) sinϕ cosϕ α∥ sin
2 ϕ+ α⊥,ip cos

2 ϕ 0

0 0 α⊥,oop


(G.3)

The orientation of the C−H bonds in the molecule are given by its equilibrium geom-

etry. The values for the five bonds (numbered from 1 to 5 in figure G.1 ) are ϕ1 = 60◦,

ϕ2 = 120◦, ϕ3 = 180◦, ϕ4 = 240◦ and ϕ5 = 300◦. The normal coordinate Qbr of the

breathing mode br describes the simultaneous stretching of the five C−H bonds

Qbr(t) = q1(t) + q2(t) + q3(t) + q4(t) + q5(t) (G.4)

where the motions of all bonds are in-phase with equal amplitudes. This means that the

values of the bond length coordinates q are assumed to be identical at all times t

q1(t) = q2(t) = q3(t) = q4(t) = q5(t) (G.5)

which requires that

q1 = q2 = q3 = q4 = q5 =
Qbr√
5

(G.6)

to ensure normalisation of the normal mode amplitude Qbr. The polarisability tensor for

the vibrational mode is now computed through the sum of the individual bond polaris-
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abilities in the group frame of reference, obtaining

αg
br =

Qbr√
5
(αm

1 +αm
2 +αm

3 +αm
4 +αm

5 )

=
Qbr√
5

2α∥ + 3α⊥,ip 0 0

0 3α∥ + 2α⊥,ip 0

0 0 5α⊥,oop

 (G.7)

which forms a tensor of elliptical symmetry. It has three unique non-zero components

(αxx ̸= αyy ̸= αzz) and no off-diagonal components. The polarisability of bond 3 does

not contribute to αxy while the pair of bonds 1 and 4 cancel the contribution of 2 and 5.

Finally, the Raman tensor can now be given as

α′g
br =

∂αg
br

∂Qbr
=

1√
5


2α′

∥ + 3α′
⊥,ip 0 0

0 3α′
∥ + 2α′

⊥,ip 0

0 0 5α′
⊥,oop

 (G.8)

Considered in isolation, the phenyl moiety has the symmetry properties of the C2v

point group. A fully symmetric vibrational mode belongs to to its A1 symmetry species.

The vectors xx, yy and zz form a suitable basis for this irreducible representation (see the

character table in appendix A). Thus, the Raman tensor of such modes have non-zero and

unequal diagonal elements only, as shown above. As no off-diagonal elements are present,

a fully polarised Raman band is expected in the spectrum of a molecule containing a

phenyl group. However, the equilibrium geometry of such a molecule may be of lower

symmetry. Furthermore, side groups may distort the bond polarisabilities so that these

are no longer identical. Non-zero off-diagonal components then arise in the Raman tensor

of such vibrational modes, giving rise to bands that show a degree of depolarisation.

In toluene, the motions in the phenyl and methyl groups are coupled. Though this

affects the molecular vibrational frequencies, the methyl group rotates freely in the liq-

uid state at room temperature [203]. This ensures that the point group symmetry of the

molecule is best described as C2v, even though at any instant in time it is of lower sym-

metry. Toluene has Cs symmetry when one of the C−H bonds of the methyl group is in

the plane of the aromatic ring or perpendicular to it. These are also known as an eclipsed

and staggered conformation, respectively. The staggered conformation has been found to

be the equilibrium geometry of the electronic ground state in a number of studies [203].

G.1.2 Toluene computational results

Toluene is known to be a strong Raman scatterer and one of the demonstration materials

favoured by C.V. Raman himself [59]. The computation on toluene serves a limited purpose

here: to characterise its Raman spectrum and identify strong and highly polarised modes

around 1000 cm−1. These are used to calibrate the linear polarisation directions in the

Raman system as explained in chapter 3.
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The computational frame of reference of the standard orientation s is transformed to

our molecular frame m, given in figure A.1, by changing the directionality of the x and z

axes through transformation matrix

Ts→m =

−1 0 0

0 1 0

0 0 −1

 (G.9)

which is its own transverse. The transformation results in a sign change of the xy, yx, yz

and zy components of the Raman tensors while leaving the other components unaffected.

A small deviation of the carbon plane from the xmym plane remains.

0 200 400 600 800 1000 1200 1400 1600 1800

0

5

10

15

Figure G.2: Computed Raman spectrum of toluene in the gas phase at B3LYP/6-
311++G(d,p) theory and convoluted with a Lorentzian of 10 cm−1 full width
at half maximum. The spectrum is shown up to 1800 cm−1, ignoring the
strong Raman bands between 3000 and 3200 cm−1.

The computed Raman spectrum of toluene (figure G.2) includes seven strong non-

degenerate bands below 1800 cm−1. There are 39 modes, numbered from low to high

frequency following the numbering of Gaussian. None of the computed modes are fully

polarised. The normal motion of the atoms is included with appendix D.4. These reveal
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that most modes are localised to either the aromatic ring or the methyl group. The fre-

quencies are overestimated by around 2% according to reference [203], which was confirmed

in our own experiments (not shown).

Eight out of its 39 normal modes lie in the range 3000-3200 cm−1. These mainly

involve motions of the hydrogen atoms. Motion of their diffuse electron clouds increases

the polarisability derivative and these modes are predicted to be strongly Raman active.

In fact, the mode of highest frequency (v39) is the strongest Raman scattering as well as

being highly polarised (table G.1). Its form is similar to the ring breathing mode derived

in the bond-polarisability model in equation G.1. Our computation suggests that it is

advantageous to use the high-shift rather than the low-shift region, in particular when

interfacial experiments are performed where overlap with substrate bands is expected

(compare figure 3.6).

Table G.1 lists the seven strongest Raman bands of toluene below 1800 cm−1 alongside

mode 39. Though assigned to the A species of C1 by Gaussian, the form of its Raman

tensors is close to that of the A′ species of Cs, the expected point group of toluene. The

symmetry properties of most vibrational modes are clearly of a higher order than C1,

which causes some components of the Raman tensor to be practically zero, i.e. zero

within precision of the computation or of negligible magnitude compared to the other

components of the tensor.

Mode v10 is a ring breathing mode involving atomic motion in the plane of the molecule.

Its depolarisation ratio ρ is 0.0471. Mode v16 is a ring deformation, with alternate carbon

atoms moving towards the centre of mass. It is the strongest band in this spectral region

and is nearly fully polarised at ρ = 0.0386. Any depolarisation arises from the non-zero

xz and zx components of its Raman tensor. The modes v22, v25 and v27 have small but

non-zero xy and yx components (as well as yz and zy in the latter), though these are

expected to be zero on the grounds of symmetry for the Cs point group. In all tensors

of table G.1, the off-diagonal components are small compared to the components on the

diagonal. Taking only the diagonal into account would produce a form expected of the

fully symmetric species of the C2v point group (see table C.1). Some vibrational modes

thus exhibit a higher symmetry than the molecule itself and the forms of their Raman

tensors resemble those of another species.

Mode v16 is the polarised band observed at about 1000 cm−1 experimentally. Its Raman

tensor is very close to the form expected for an A1 mode of the C2v point group as derived

in the bond-polarisability model (equation G.8). The off-diagonal non-zero elements arise

from slight differences in the polarisabilities of the C−H bonds in the phenyl moiety which

don’t completely cancel when combined in the pattern of the vibrational motion. Its low

depolarisation and relative strength make this Raman band suitable for calibration of the

directions of linear polarisation. Though many other materials could be used for this

purpose, toluene gives rise to strong Raman scattering as the components in its Raman

tensors are high for a number of modes. Furthermore, toluene has the advantages of being

readily available at high purity in nearly every laboratory.



466 APPENDIX G. SUPPLEMENTARY RESULTS

Table G.1: Selected vibrational modes of toluene and their Raman tensors in the molecular
frame of reference at B3LYP/6-311++G(d,p) theory level. All modes belong
to the A symmetry species of the C1 point group, though resemble the Raman
tensors of the A′ species of Cs. Their numbering follows the Gaussian log.

Mode ν̄ S αm
v

# / cm−1 / Å4 amu−1 / 10−42 C V−1 m2

v10 798 16.6

10.2 0 0.7
0 13.4 0

0.7 0 4.3


v16 1017 35.2

 16.5 0 −0.1
0 13.8 0

−0.1 0 6.0


v17 1050 13.7

 9.26 0 −0.09
0 9.10 0

−0.09 0 4.15


v22 1228 12.9

−7.25 0.03 0.96
0.03 −9.48 0
0.96 0 −3.02


v25 1414 16.0

 13.7 0.1 −2.3
0.1 0.4 0

−2.3 0 −0.7


v27 1490 10.5

−5.28 −0.02 6.98
−0.02 −1.76 0.11
6.98 0.11 3.06


v31 1645 22.2

 13.8 0 −0.2
0 −8.7 0

−0.2 0 −0.7


v39 3188 293

28.2 0 0.2
0 24.8 0

0.2 0 0.8
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Figure G.3: Symmetric (top) and antisymmetric CH2 stretch Raman intensities modelled
for zinc arachidate in the SF10-silica contact as a function of the tilt angle of
its alkyl chain (further details in section 7.3. The range 0◦ ≤ βm ≤ 90◦ fully
specifies the intensities, modelling over 90◦ < βm ≤ 180◦ is redundant. The
position of the headgroup can thus not be deduced from this analysis.
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Figure G.4: Modelled harmonic Raman spectra of the ν(CH) band for zinc arachidate
in the SF10-silica contact for various molecular tilt angles βm with respect
to the interface normal. The local field correction is omitted here (compare
figure 7.8 where it is included). The spectral intensities are summed over the
full full range of molecular azimuthal and twist angles. Modelling parameters
conform to the contact Raman experiment while employing computational
Raman tensors of decanoic acid (modes 71-89). Each modelled Raman line is
convoluted with a Lorentzian of 10 cm−1 fwhm to generate the spectra.
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