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1. Background to the study 

 
1.1 Upper Teesdale environment 

Within the Upper Teesdale National Nature Reserve, Widdybank Fell (G. R. NY820290), the research 

location of chapters 1 and 2 in the present study, covers an area of approximately 5.5Km2 from around 

400 to 526.5m asl (Jones, 1973). Along with the adjacent Cronkley fell, the area is renowned for its 

unique flora assemblage, discussed in the following section. These well documented fells consist of 

two approximately flat hill tops, within the Northern Pennines Area of Outstanding Natural Beauty 

(AONB), supporting regularly grazed upland and arctic alpine vegetation. 

Being approximately equidistant between the Atlantic Ocean and North Sea, Upper Teesdale 

experiences a relatively stable, persistently wet climate, with a range of only around 10⁰C between 

the average temperatures of the coldest and warmest months (Lewthwaite, 1999). Nevertheless, the 

area receives prolonged winter snow cover and has been classified as a sub-arctic environment 

(Bellamy et al, 1969).  

Such upland habitats across the UK are thought to be some of the most susceptible to climate change 

(Berry et al, 2002). Arctic-alpine vegetation assemblages have thus been predicted to experience 

range reductions in the UK (Trivedi et al, 2008). Persistence of many upland plant species is related to 

a number of changes to the abiotic environment, such as increased soil erosion and fire risk (House et 

al, 2010), loss of soil carbon and increased flood risk (Orr et al, 2008). In addition to the impacts of 

geophysical and hydrological processes, alterations to weather patterns are also predicted to affect 

upland species in the UK. Predictions for reduced summer rainfall have raised concerns regarding the 

longevity of areas of moist blanket peat (Clark et al, 2010) and it is suggested that UK upland areas will 

experience an increase in graminoid vegetation (House et al, 2010). In conjunction with the 

detrimental impacts of anthropogenic processes, such as grazing and frequent change of land use, on 

native plant species (Stevenson and Thompson, 1993), the effects of future climate change are also 

predicted to have negative knock-on effects on higher trophic levels (Renwick et al, 2012).  

Upland areas of the Pennines across northern England, including Widdybank Fell, are largely lacking 

any tree cover (Cambers, 1974; Lewthwaite, 1999), a state which is maintained by a harsh climate and 

regular grazing (Squires, 1970; Chambers, 1974; Lewthwaite, 1999). The major resulting habitats types 

on Widdybank fell are heath, marsh, ombrogenous bog and calcareous grassland (Jones, 1973; 

Lewthwaite, 1999). 

1.2 Teesdale flora 

Three species of nationally rare plants were chosen for the present study, Gentiana verna, Primula 

farinosa and Viola rupestris, to represent species at the edge of their geographical distributions. G. 

verna is a prostrate, herbaceous evergreen found widely in alpine environments across Europe 

(Elkington, 1963). P. farinosa and V. rupestris are perennial rosette-forming herbs, with a primarily 

boreal and sub-arctic European distributions V. rupestris is less low- growing than P. farinosa and 

considerably more branched (Doody, 1975; Hampe and Petit, 2003). They belong to a group of species 

collectively known as the Teesdale rarities.  

The Teesdale flora has been well studied due to the presence of numerous nationally rare plant 

species. Originally thought to have persisted throughout the last glacial in ice-free regions (Wilmott, 

1930 [as cited by Pigott, 1956]), it is now generally accepted that arctic-alpine species recolonised 
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from southern refugia, remaining in cooler areas such as the Teesdale, Craven Pennines, Cwm Idwal, 

Ben Lawers and the Burren (Pigott, 1956; Gibbons, 1978; Lewthwaite, 1999). 

Several species display unique physiologies in Teesdale, and some such as Dryas octopetala and 

Polygala amorella resemble alpine and Scandinavian ecotypes respectively with the small leaves 

associated with cold climates (Pigott, 1956; Gibbons, 1978). Gentiana verna reproduces entirely 

vegetatively in Teesdale (Gibbons, 1978), a feature common at range edges (Beatty et al, 2008). 

According to it’s uniqueness within the UK, the area, under the management of Natural England is a 

Site of Special Scientific Interest (S.S.S.I). Of particular importance for many of the rare plant species 

is the Saccharoidal limestone, partially metamorphosed by the Whin Sill igneous intrusion (Fearn, 

1973; Lewthwaite, 1999). Low phosphorous availability has also been proposed as a mechanism for 

maintaining the vegetation species composition of the region (Lewthwaite, 1999; Turner et al, 2003). 

The geology of the area gives rise to a variety of soils within a small area, including the prominent 

peats, gleyed podsols and calcareous brown earths (Gibbons, 1978). The floral diversity has previously 

been linked to this heterogenous geomorphology (Johnson et al, 1971).  

Topographically, the study site on Widdybank fell is unremarkable, consisting of a gently sloping 

plateau draining in all directions, barring to the north, into the River Tees and its tributaries.  

1.3 Introduction to research topics 

 

1.3.1 Cow Green Reservoir 

The Cow Green reservoir was constructed on the lower slopes of Widdybank fell during the late 1960s 

and early 1970s (Vaughn et al, 2009). This flooded a portion of the S.S.S.I. classified site (Lewthwaite, 

1999), leading to considerable opposition from botanists of the time (Pigott, 1957; Bellamy, 1965 [as 

cited in Lewthwaite, 1999]).  

Due to the thermal inertia of water, lakes can alter local air temperature (Hostetler et al, 1994), in the 

same manner as oceans do (Piccoloroaz et al, 2015).  

1.3.2 Experimental warming and grazing 

In the face of a changing climate, organisms are faced with three main options: track suitable habitat 

either spatially (Davies & Shaw, 2001; Kelly & Goulden, 2008) or temporally (Badeck et al, 2004; 

Chmielewski & Rötzer, 2001; Richardson et al, 2013), adapt to their new environment (Jump & 

Penuelas, 2005; Aitken et al, 2008) or suffer reduced reproductive success (Inouye, 2008; Kudo et al, 

2004), leading to population decline and ultimately extinction (Thomas et al, 2004; Thuiller et al, 

2005).  

Following the methodology adopted by the international tundra experiment (ITEX), the use of open-

top passive warming chambers is now common practise for simulating the effect of predicted future 

increases in air temperature (e.g. Bay, 1996; Welker et al, 1997; Sullivan and Welker, 2005). A 

modification of this methodology was employed in the present study to the same effect.  

Grazing is a common feature of Upper Teesdale fells and, consequently, its exclusion has previously 

been shown to alter the local vegetation dynamics and was observed to effect growth and abundance 

of less common species (Elkington, 1981; Smith et al, 1996).  

The interaction between grazing and rising air temperatures is little studied, however, some evidence 

suggests grazing can reduce negative impact of warming on sward quality and species richness in 

Tibetan plateau pastures (Klein et al, 2004; Klein et al, 2007). 
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Climate change has been linked to the decoupling of trophic interactions (Winder and Schindler, 2004) 

and the breakdown of mutualistic interactions (Memmott et al, 2007). It has also been noted that 

competitive interactions should be factored into predictions of the ecological impacts of climate 

change (Brooker, 2006; Clark et al, 2011).  

Despite this, no study has yet, to my knowledge, attempted to empirically test the effect of increased 

temperatures on the intensity of interspecific interactions. In the Upper Teesdale assemblages, this is 

a particularly pertinent line of questioning as low levels of competition are thought to be important 

for the existence of many of the nationally rare species found here (Marshall, 1971).  

1.3.3 Species climate change tracking 

While some exceptions have been observed (e.g. Meiszkowska et al, 2006; Crimmins et al, 2011), it is 

well established that, as the global climate has warmed, species have tended to shift their ranges 

higher altitudes and latitudes and to experience advances in spring phenology (Parmesan and Yohe, 

2003; Lesica and McCune, 2004; Lenoir et al, 2008; Holzinger et al, 2008). It has also been observed 

that the same rates of movement are not experienced across the entire range of a species, leading to 

net expansions and contractions of species ranges (Anderson et al, 2009).  

1.3.4 Species distribution modelling 

Advances in the capabilities of geographical information systems (GIS) have led to the increasing 

popularity of species distribution modelling (SDM) for predicting the biogeographical impact of 

projected climate change (Peterson, 2001). With the application of machine learning algorithms, niche 

modelling became yet more accessible and moved away from the classical mechanistic model 

construction towards a correlative approach (Wiley et al, 2003). The widespread use of “black-box” 

computing methods such as the MaxEnt software package (Phillips, 2005) has caused concern that 

many researchers do not fully understand the assumptions of the models they are creating (Yackulic 

et al, 2013). Nevertheless, the current availability of climate and species distribution data present a 

wealth of opportunities for predicting ecological responses to projected climate change.  

The climate data available is considered by some to be of too coarse a resolution for SDMs (Franklin 

et al, 2013), and the resolution of widely used data sets is often attained by interpolation, rather than 

direct measurement (e.g. Hijmans et al, 2005). In addition to this, microclimate and topography can 

play a more important role in determining species distributions at the regional scale (Bennie et al, 

2008). As no fine scale climate data is yet available for Upper Teesdale, it is not possible to predict the 

future local distribution of the rarities, but inferences can be made about the potential UK distribution 

from the Europe-wide occurrence data.  

1.3.5 Aims of the present study 

In order to better inform future conservation efforts, the present study aims to address the following 

broad research questions regarding the nationally rare relic species: 

1. How will a warmer climate affect growth of the study species, and how will this interact with 

grazing and interspecific competition? 

2. How does the Cow green reservoir modify the local climate of Widdybank Fell? 

3. How have these species responded to post-industrial increases in temperatures across their 

European ranges? 

4. What dictates distribution of these species, do they exhibit regional adaptation and how will 

their distribution change in the future? 
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2. The effects of experimental warming and grazing on Upper 

Teesdale plant species 

 
2.1 Introduction 

 
2.1.1 Ecological impacts of temperature 

 

Upland and sub-arctic habitats are some of the most susceptible to climate change in the UK (Berry et 

al, 2002). At 54.66˚N, and being above 400m altitude, Widdybank fell is one such area.  

The persistence of a species can be determined by: maximum (Richter & Kolmes, 2005), minimum 

(Woodward, 1988), and variation in (Vasseur, 2014) temperature. Additionally, heat sum of the 

growing season can be an important factor (Woodward, 1988) as can the duration of the growing 

season (Galen & Stanton, 1995). Similarly, altered patterns of precipitation caused by a warming 

climate will affect plant growth, but changes in precipitation are not uniform across the globe so the 

overall impacts are harder to predict (Trenberth, 2011).  

The effects of temperature on photosynthetic rate (Bernacchi et al, 2001; Sage and Kubien, 2007; 

Smith and Dukes, 2013) and biomass accumulation (Criddle et al, 1997; Wang and Camp, 2000; 

Anderson et al, 2006) are well established. Although this often depends on the environment a plant is 

acclimated to (Hikosaka et al, 2005; Yamori et al, 2014), it was hypothesised that experimental 

warming would induce greater biomass accumulation, compared to control conditions.  

2.1.2 Ecological impacts of grazing 

Following anthropogenic forest clearance across prehistoric Britain, grazing pressure, primarily from 

sheep, has maintained a plagioclimax with few trees in Upper Teesdale (Squires, 1970; Chambers, 

1974; Lewthwaite, 1999). Although there is evidence the area was historically home to large 

herbivores such as elk (Blackburn, 1952), exclusion of grazing on Cronkley fell (adjacent to the location 

of the present study) has been shown to benefit the nationally rare species Dryas octopetella and 

Helianthemum canum by reducing Festuca sp and bryophyte cover (Elkington, 1981). In the present 

study, it was thus hypothesised that the reduced graminoid cover, and resulting decrease in 

competitive interactions, in simulated grazing plots would lead to greater biomass of the study 

species. However, conversely, removal of grazing in another working meadow in Upper Teesdale 

resulted in significantly lower species richness after only 4 years (Smith et al, 1996). 

The factor most limiting the growth of the Teesdale rarity species is thought to be competition, rather 

than climatic conditions (Marshall, 1971). For this reason, it was also hypothesised that, in 

conjunction, experimental warming and grazing simulation will work synergistically to increase 

biomass accumulation, by both increasing metabolic rate and reducing competition intensity for the 

study species.  

2.1.3 Effects of temperature on competitive interactions 

Alteration of ecological interactions by climate change are often overlooked in predictions (Post & 

Pedersen, 2008), and Suttle et al (2007) argued that the autecological responses commonly 

investigated are of little significance in the absence of holistic studies. Differential spatial and 

temporal, i.e. distributional and phenological, responses of species to increasing temperatures often 
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lead to disruption of ecological interactions (Schweiger et al, 2008; Gustine et al, 2017), known as 

trophic mismatches (Cushing, 1969). A study of over 100 species predicted that serious mismatches 

will occur, for instance, between plants and pollinators, reducing the duration of co-occurrence 

(Memmott et al, 2007).  

Tansley (1917) famously demonstrated that plants grown in their native environment will outcompete 

those species which are less well adapted. However, greater investment in seeds from plants grown 

in more favourable conditions can also convey a greater advantage than local adaptation (Santon and 

Galen, 1997). As the species studied here are at the less extreme edge of their arctic-alpine 

distribution, competitor species closer to the centre of their ranges will likely be better suited to the 

local environment.   

There is growing evidence that future climate change will result in increased frequencies of 

temperature (Bita and Gerats, 2013), water (Porporato et al, 2004) and even mineral (Lynch and Clair, 

2004) stresses. The stress gradient hypothesis suggests that as abiotic stress increases in a giver 

environment, the proportion of interspecific interactions that are facilitative will also increase 

(Maestre et al, 2009; He et al, 2013). While this hypothesis assumes that all species in a system 

experience greater abiotic stress, it has been noted that species are more exposed to environmental 

stressors at their range margins (Vergeer and Kunin, 2013). If species which are not at their range 

margins, e.g. one of the dominant species on Widdybank Fell, Sesleria caerulea, do not experience 

such high levels of stress as those at their range margins, e.g. the study species, then it follows that 

these species will become more prosperous and thus offer more competition than facilitation.  

It has been noted that some of the alpine plant species found in Upper Teesdale grow well in warmer, 

lower elevation gardens across the UK. It is suggested that this is the case only because competitor 

plant species, weeds, are removed (Marshall, 1971). Marshall (1971) also reported that the dominant 

graminoid species in Upper Teesdale increase biomass accumulation under experimental warming. It 

was, therefor, hypothesised that experimental warming would increase success of grasses, thus 

increasing the intensity of competition experienced by the study species in the present study.  

2.2 Methodology 
2.2.1 Experimental design 

Plants of the study species were grown in-situ, in either (a) control, (b) simulated grazing or (c) 

competition removal conditions, with experimentally passively warmed and un-warmed variants of 

each. Three replicates of each treatment were established as the species emerged, starting on 

28/01/2019 for Gentiana verna and 16/02/2019 for Primula farinosa and Viola rupestris and ending 

on 20/06/2019 for G. verna and P. farinosa and 26/06/2019 for V. rupestris, giving study durations of 

140, 121 and 127 days for G, verna, P farinosa and V rupestris respectively.  

Plots for the three species were situated within 200m of each other, all having the same aspect. Soil 

pH values were 6, 5.7 and 6.3 for the P. farinosa, V. rupestris and G. verna plots respectively.  

                           2.2.2 Warming procedure 

Warming conditions were imposed by the use of conical, open-top passive warming chambers. These 

were constructed from 1 mm thickness polyethylene tetraphthalate (Wootton Industries Ltd, 

Rotherham, UK). Chambers had a base diameter of 28 cm, top diameter of 12 cm and a height of 18 

cm, to accommodate the small, low-growing study species (Fig 1.1.).  
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                         2.2.3 Simulated grazing procedure 

Simulation of grazing was achieved by clipping the surrounding graminoid vegetation to a uniform 

height, as low as possible to the ground surface, without disturbing the target experimental plants. 

Clipping was repeated approximately twice each month to maintain a constant simulated grazing 

pressure. Isolation treatments of the target experimental plants were achieved by removing all plant 

growth at ground level to a radius of 10cm around each individual study plant (one per plot) (Fig 1.2.).  

                          2.2.4 Growth metrics 

Plant leaf area, which correlates strongly with biomass (Jonasson, 1988), was used as a non-

destructive, repeatable measure of growth of each individual study plant over the course of the 

experiment. Photographs were taken of target plants against a contrasting white background base 

plate, using a single-reflex camera (Canon DS126091; Tokyo, Japan) with a 24 – 105mm lens (Cannon; 

Tokyo, Japan). Base plates were marked with quadrats of a known area, to which extent photographs 

were cropped (Fig 1.3.a). The camera was supported by a tripod (Manfrotto 055cl; Cassola, Italy), 

maintaining a position parallel to the baseplate. Using the software package ImageJ (National Institute 

of Health, Maryland, USA; University of Wisconsin, USA), pixels occupied by the plant were 

distinguished from those of the baseplate (Fig. 1.3.b), using the Otsu threshold method (see Vala and 

Baxi, 2013). Results were imported into Excel and the total plant area calculated ([plant pixel number 

/ total pixel number] × quadrat area).  

                             2.2.5 Competition metrics 

Competition intensity was determined using the formula: 

 

                                                                         (Control plant growth – Isolated plant growth)  

                                                                         (Control plant growth + Isolated plant growth) 

 

This was based on work by Armas et al (2004) in which plant mass, a strong correlate of area (Jonasson 

et al, 1988), used in the present study, was originally used. The formula generates positive or negative 

values, representing facilitative and competitive interactions respectively.  

One-way analysis of variance (ANOVA) and Fisher’s least significance post-hoc analyses were used to 

test for significant differences between treatment mean values, using SPSS 24 (Armonk, New York, 

USA).  

Relative competition intensity =  
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Figure 1.1. Two conical passive open-top warming chambers used on Widdybank fell during the spring 

of 2019, with dimensions indicated in red.  

 

Figure 1.2. An example of a plot with all competitor vegetation removed around Viola rupestris, circled, 

after one month, showing marked graminoid encroachment.  

10cm 5cm 
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Figure 1.3. a) Unedited image showing a Gentiana verna plant against a base plate marked with 100cm2 

quadrat and b) the same image clipped to the extent of the quadrat outline and edited in ImageJ, using 

the Otsu threshold method, to contrast the plant with the base plate.  

 

 

 

 

 

 

 

 

 

 

 

2.3 Results 
2.3.1 Leaf area responses 

No significant difference was found in mean leaf area growth between treatments in G. verna (F (3,11) 

– 1.31, P > 0.05 [Fig 1.4.c]) or V. rupestris (F (3,11) = 1.23, P > 0.05 [Fig 1.4.b]). Warmed P. farinosa 

plants did, however, exhibit mean leaf area growth greater than that of the clipped, un-warmed 

treatment, but not significantly different from the true control or warmed, clipped treatments (F 

(3,11) = 4.02, P < 0.05 [Fig 1.4.a]).  

a) b) 
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Figure 1.4. Mean a) Primula farinosa, b) Viola rupestris and c) Gentiana verna leaf area growth (cm2) 

after 79, 83 and 142 days treatment respectively (n = 3 in each treatment). Standard error is indicated 

by error bars, P values represent the results of One-way ANOVA. Letters indicate significant differences 

between treatment means (Fisher’s Least significant difference, P < 0.05).  

2.3.2 Primula dry biomass accumulation 

Mean dry mass of P. farinosa was found to be significantly higher after 83 days treatment in all 

warmed treatments, compared to un-warmed treatments (F (5,17) = 5.74, P < 0.01 [Fig 1.5.]). No 

significant differences were found between means of warmed treatments or un-warmed treatments. 

This demonstrates that the only factor P. farinosa responded to was experimental warming.  

Relative growth rate (RGR) was not significantly affected by the treatments in the present study for 

any of the species investigated.  

 

Figure 1.5 Mean dry mass of P. farinosa after 83 days treatment (n = 3 in each treatment). Standard 

error is indicated by error bars and P value represents the results of one-way ANOVA. Letters indicate 

statistically significant differences between treatment mean values (Fisher’s Least significant 

difference, P < 0.05). 

 

2.3.3 Competition intensity 

Mean (±SEM) un-warmed interaction intensities in G. verna (-0.05 ± 0.41), P. farinosa (0.42 ± 0.71) 

and V. rupestris (0.32 ± 0.39) were not significantly different to mean intensities under experimental 

warming ((0.71 ± 0.69, -0.36 ± 0.14 and 0.80 ± 1.37 respectively) t (4) = - 1.2, P > 0.05; t (4) = 0.43, P > 

0.05; t (4) = - 0.34, P > 0.05 [Fig 1.6.]).  
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Figure 1.6. Mean relative interaction intensity experienced by Gentiana verna, Primula farinosa and 

Viola rupestris under control and experimentally warmed conditions, after 142, 83 and 79 days 

treatment respectively (N = 3 in each treatment). Standard error is indicated by error bars, P values 

represent the results of independent samples t-test.  
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2.4 Discussion 
2.4.1 Effects of warming and grazing simulation  

 

Neither G. verna nor V. rupestris leaf area showed any significant differences between any of the 

short-term treatments imposed, indicating that, in the locality, these species are unaffected by 

warming or grazing simulation or the two in conjunction. P. farinosa exhibited significantly higher leaf 

area in the warmed treatment compared to the un-warmed, clipped treatment. Whilst no differences 

were found between the un-warmed treatments or the warmed treatments. The absence of any 

impacts from the grazing simulation in the present study could likely be due to grazed areas becoming 

more resistant to grazing pressure (Adler et al, 2004), whereby the effects of grazing are inversely 

proportional to historic grazing levels (Cingolani et al, 2005). 

Leaf area production per plant was chosen as a plant growth parameter as it may be more pertinent 

to the competitive success of a plant than simple biomass measurements i.e. it reflects the area of 

land in which a plant has successfully outcompeted the surrounding vegetation. This assumption was 

based upon the phenomenon of plants that take up a larger amount of space tending to be 

competitively dominant (Schwinning and Weiner, 1998) and leaf area strongly predicting competition, 

for example, from weed plants amongst crops (Kropff and Spitters, 1991). It is, however, likely that 

the final leaf area measurements of the present study were taken too late in the season, as late 

growing season leaf senescence resulted in negative growth values in some instances.  

It is important to note that whilst the chambers raised the mean air temperature, a plants persistence 

can be determined by the temperature extremes (Woodward, 1988; Richter and Kolmes, 2005) or the 

duration of the growing season (Galen and Stanton, 1995).  

Whilst total leaf area is not a true measure of a plant’s productivity, point intercept data correlate 

strongly with plant biomass (Jonasson 1988). As pixel-based analysis is effectively a very high-

resolution variation of the point quadrat methodology, this was opted for as a non-destructive 

sampling method. Whilst some criticisms have been made of pixel analysis methods, for instance, 

regarding uneven reflectance and shadow casting (Rich, 1990), the major variable with the potential 

to affect image capture in the field, illumination intensity, has been shown to have little effect on 

analysis results (Leister et al, 1999).  

For P. farinosa, all warmed treatments had significantly higher end of growing season mean dry 

masses than the un-warmed treatments, whilst no significant differences were found within either 

the warmed or un-warmed treatments. This indicates that P. farinosa biomass accumulation benefits 

from experimental warming, whilst grazing has no observable effects. The positive effects on P. 

farinosa dry matter production observed, could be due to little alteration in competition due to its 

sparsely vegetated surroundings (Fig. 1.7).  
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Figure 1.7 An example of the sparse vegetation ground cover typical of the areas in which Primula 

farinosa, circled, is found on Widdybank fell.  

 

2.4.2 Effects of experimental warming on competition intensity  

No significant differences were found in competition intensity under warmed and un-warmed 

conditions in any of the species investigated. This is perhaps surprising, as a fundamental prediction 

of the Lotka-Volterra competition models is that ecological perturbations will lead to changes in 

species interactions (Khasminskii and Klebaner 2001; Lui and Chen, 2003). It has previously been noted 

that both the intensity and importance of competition increases with system productivity (Sammul et 

al, 2000), which may explain the lack of any response in the relatively unproductive uplands of 

Teesdale. It should be noted, however, that the difference between mean interaction intensity for 

warmed and unwarmed P. farinosa was only marginally non-significant and a clear negative effect of 

competition was observed under experimental warming. This suggests that, with further replication, 

detrimental impacts of warming may be established, as would be anticipated for a species as the 

lower, colder, extreme of its range.  

The non-significant changes in competition intensity recorded are due to removal of competitors 
having no positive or negative detectable impact on growth. This suggests that the plants are limited 
by an environmental factor other than competitive interactions. In the case of P. farinosa this may 
well be temperature as chambers had a clear positive effect on their growth, however G. verna and V. 
rupestris are apparently limited by some other factor. Whilst warming did not affect growth of these 
latter species, it is important to note that they are already at the lower limit, in terms of latitude or 
altitude, of their respective ranges. These are the regions predicted to be lost from species ranges 

10cm 5cm 
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under climatic warming (Thuiller et al, 2008; Levin, 2011), so the species are likely not to benefit from 
increased temperatures here, where the environment is becoming potentially more favourable for 
species from lower latitudes and elevations (Van Grunsven et al, 2011; Telwala et al, 2013).  
The theoretical increase in abiotic stress generated by a warmed climate (Porporato et al, 2004; 

Lynch and Clair, 2004; Bita and Gerats, 2013) appears to have had no impact on facilitative 

interactions either, as would be predicted by the stress-gradient hypothesis (Maestre et al, 2009; He 

et al, 2013). It is, however, worth noting that, while the chambers effectively increased 

temperatures, they have no impact on the surrounding area. This may lead to an influx of natural 

water or nutrient levels from the surrounding, un-warmed, areas which may have otherwise been 

altered by natural climate change.  

The fact that the species studied here are at their range margins could also impact the findings in 
terms of local adaptation, which is thought to confer greater resistance to climate change and 
competition to individuals at the edge of their ranges (Sagarin and Gaines, 2006).  
 
Relative interaction intensity (RII), a measure of the strength of competitive or facilitative interactions, 

is thought to be the most suitable metric for plants (Aramas et al, 2004). This measure was opted for 

in the present study, as competition intensity values can be derived easily from simple removal 

experiments.  

On average, humidity was 1.92 % lower in the chamber warmed, removal plot than in the chamber 

warmed control plot and 5.64 % lower in the un-warmed removal plot compared to the un-warmed 

control plot. Most probably due to the removal of bryophyte ground cover, this may have negatively 

impacted the plants in the removal plots, working antagonistically with the intended effects of 

competitive release. The RII metric used measures both the strength of competitive and facilitative 

interactions, however no statistically significant negative effects of bryophyte removal were observed.  

2.4.3 Warming chamber efficacy  

Chambers raised the mean ground-level air temperature by 1.3 °C and reduced relative humidity by 

1.5 %, whilst soil temperature and air temperature variance were not affected. The confounding 

decrease in humidity, associated primarily with shelter from precipitation, is an established 

phenomenon for any open-top chamber (OTC) design (Wookey et al, 1993).  

Aside from the effects on mean temperature, OTCs have been shown to cause around a 25 % decrease 

in freeze-thaw events (Bokhorst et al, 2011) and can increase snow cover duration (Wipf and Rixen, 

2010).  

OTCs are also known to decrease photosynthetically active radiation (PAR) wavelengths reaching 

plants, through light attenuation of the clear plastic materials used in chamber construction (Debevec 

and MacLean, 1993). However, Day et al (1999) found Polyethylene tetraphthalate (PET) to cause only 

an 11-12 % reduction, and conical chambers, as used here, tend to have a smaller effect than more 

common hexagonal designs (Slade and Roslin, 2016). Nevertheless, this still introduces an inherently 

confounding variable into all chambered treatments, which will receive only around 90 % of the PAR 

received by unwarmed treatments.  

OTCs minimise environmental confounding variables (Marion et al, 1997), and are believed to be a 

more realistic representation of climate warming than closed top chambers (Bokhorst et al, 2011). 

Additionally, they create more natural concentrations of atmospheric carbon dioxide and humidity 

within the vegetation layer due to the opportunity to continually exchange air with the open lower 

atmosphere above (Slade and Roslin, 2016).  
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2.4.4 Implications of the study 

Overall, warming and grazing did not appear to have any observable effects on the growth of the study 

species and not impact of warming was found on competition intensity. Future controlled grazing 

experiments, both in winter and spring-autumn, could benefit the overall study of the potential future 

of the Teesdale flora. Further work would also benefit from investigating the effects of vegetation 

warming on overall reproductive output as well as the allocation of resources to growth versus 

reproduction, to better understand the effects of grazing and warming on future population longevity. 

It is also clear that the results generated herein had low statistical power and more replicates would 

be needed to truly establish the ecological effects of in-situ experimental manipulations.  
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3. The effects of reservoir proximity on the temperature 

environment pf Widdybank Fell 

 
3.1 Introduction 

 
3.1.1 The Cow Green reservoir 

Filled during the autumn of 1971 (Lewthwaite, 1999), the Cow green reservoir in upper Teesdale was 

constructed to fulfil the growing water demand of industrial towns in the Teesside area (Kennard and 

Reader, 1975). The reservoir has a maximum depth of only around 25m (Kennard and Reader, 1975), 

but a comparatively high capacity of 40.9Mm3 (McCulloch, 2004).  

Although the construction was sanctioned by parliament, the reservoir was subject to considerable 

opposition due to the planned partial flooding of the site of special scientific interest (S.S.S.I.) at 

Widdybank fell (Lewthwaite, 1999). It was also suggested that the reservoir could alter the local 

climate, threatening the nationally rare plant species present on the remaining portion of the fell 

(Bellamy, 1965 [as cited in Lewthwaite, 1999]; Bradshaw, 1966 [as cited in Lewthwaite, 1999]).  

3.1.2 The effect of waterbodies on their surrounding environment 

Lakes interact with their surrounding environment in several ways, including atmospheric gas 

exchange (Potes et al, 2017), alteration of local wind and precipitation patterns (Hjelmfelt and 

Braham, 1983) and by acting as dispersal barriers to terrestrial organisms (Houle, 1998).  

One of the most important land-water interactions if the net import of nutrients by lakes from the 

surrounding land (Duchesne et al, 2001). However, seasonally, soils may receive a net nitrogen input 

from water bodies as is the case during spawning events of anadromous salmonids (Helfield and 

Naiman, 2001). The link between dam construction and inhibition of anadromous migration is intuitive 

and well established (Larinier, 2000).  

Natural lakes differ from reservoirs in terms of surface versus sub-surface water discharge (Kennedy 

and Walker, 1990), it is suggested that reservoirs will thus disperse nutrients and store heat to a 

greater extent (Wright, 1967 [as cited in Kennedy and Walker, 1990).  

Much like the ocean, lakes are known to moderate the temperature of surrounding land (Hostetler et 

al, 1994), by means of their high thermal inertia (Piccolroaz et al, 2015). Lakes are thus net heat 

exporters during the winter months (Haginoya et al, 2009) as are regions containing many lakes 

(Jeffries et al, 1999). This phenomenon has long been known to be correlated with both lake area and 

depth (Gorham, 1964). Similarly, coastal areas have been shown to exhibit smaller fluctuations in air 

temperature diurnally, as well as seasonally (Scheitlin, 2013). Due to their thermal inertia, lake 

temperatures tend to lag behind air temperatures of the surrounding area, causing the effect on 

seasonality mentioned above (Lenters et al, 2005) 

The Cow green reservoir has been shown to have increased invertebrate biomass due to nutrient 

enrichment (Armitage, 1976), increased fish size and reduced fecundity due to alterations to 

phenology (Crisp et al, 1983) and facilitated upstream expansion of submerged angiosperms due to 

slower, less variable flow rates (Holmes and Whitton, 1977). Approximately 35 years after its 

construction, faunal changes were still more pronounced in the dammed river Tees than in the 

adjacent, unaltered, Maize beck (Armitage, 2006).  
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As the land surrounding the Cow green reservoir is composed largely of organic peat soils (Turnar et 

al, 1973), the area leaches humic acids into the reservoir water (Turner et al, 2003). In humic lakes 

with low levels of light transmission, the portion of the lake exchanging heat energy with the 

atmosphere, the epilimnion, is smaler than in clear water lakes, leading to a lesser effect on the local 

climate (Heiskanen et al, 2015). However, the Cow green reservoir rarely develops such thermal 

stratification (Crisp et al, 1977).  

3.1.3 Ecological effects of lakes on their surrounding environment 

While the ecological effects of the reservoir on the aquatic biota is well studied, little is known of the 

effect on the terrestrial vegetation. In a paper by Huntley et al (1998), winter heat export was observed 

from the Cow Green reservoir in the upper Teesdale, and a 0.25˚C moderation of maximum and 

minimum temperatures was recorded in the 27 years since its construction. Crucially for the local 

vegetation, grass temperature minima were significantly moderated and snow cover significantly 

reduced, but no effect was observed on daily temperature ranges. Huntly et al (1998) concluded that 

the reservoir construction was the only cause to which shifts in vegetation could be attributed since 

the earlier work by Jones (1973). It is hypothesised that mean daily temperature will be higher, and 

variation in temperature will be smaller, closer to the edge of the Cow Green reservoir. 

Growing degree days (herein, GDDs) are a measure of heat accumulation during the growing season 

(McMaster and Wilhelm, 1997) commonly used to predict the timing of growth and reproductive 

events in crop plants (Worthington and Hutchinson, 2005).  

Based on the above literature, the following hypotheses were developed regarding the Cow Green 

reservoir.  

1. Mean winter temperature will be higher closer to the reservoir. 

2. Temperature range will be smaller closer to the reservoir.  

3. Minimum temperature nearer to the reservoir will lag behind minimum temperatures 

experienced further from the reservoir. 

4. Minimum temperatures experienced will be less severe closer to the reservoir.  

 

3.2 Methodology 

 
3.2.1 Temperature data collection 

To assess the impact of lake proximity on the winter and early spring temperature environment at 

grass canopy height, a transect of Tinytag temperature loggers (Gemini data loggers, Chichester, UK) 

was setup (Fig 1). Spanning a distance of approximately 1.4Km east of the high-water mark of the Cow 

green reservoir, the loggers ran for the period November 7th to April 15th, 2018 to 2019. This gave a 

continuous dataset for the winter and transition into the growing season. Loggers were placed in 

patches of uniform vegetation type (calcareous lowland grassland of the Festuco-Brometea nodum, 

(see Jones 1973)), which did not exhibit any topographical discontinuities such as depressions or 

severe slope angles i.e. in a uniform orientation over an altitude range of 495 to 520m.a.s.l.  Efforts 

were made to deploy loggers at regular intervals, within these constraints. The distance between 

loggers was reduced within 0.5Km of the reservoir high-water mark, in order to increase data 

resolution for this region, where the impact of the reservoir was expected to be more pronounced. 

Loggers were set to record the maximum, minimum and hourly temperatures, from which mean 
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temperature, mean daily temperature range, growing degree day (GDD) sum, mean temperature at 

11p.m. and number of frost days were calculated.  

              3.2.2 Data analysis 

The data set was divided into early winter, 7th November to 31st December, 2018, and spring, 1th 

March to 15th May, 2019, in order to test if the lakes effects were seasonal.  

A frost day was defined as any day during which the temperature dropped below 0˚C at least once. 

This represents air frost, but at ground level, rather than at the standard height of a meteorological 

station, 1.25m (https://www.metoffice.gov.uk/weather/guides/observations/how-we-measure-

temperature).  

The following formula was used to calculate growing degree days:  

 

  

 

The sum of these daily values is then calculated for the period in question, usually the full growing 

season, to ascertain the total heat units experienced by a plant (McMaster and Wilhelm, 1997). The 

base temperature represents the temperature value below which the plant in question is unable to 

grow (Miller et al, 2001). In this study, a GDD base temperature of 2˚C was used, based on reports of 

minimum temperature requirements of 0 – 4.5 ˚C for floristically similar environments in Italian 

mountain pastures at 600-1600m asl (Romano et al, 2014).  

The mean time of day at which the minimum daily temperature was recorded for each logger was 

determined and temperature measured daily at 11p.m. was used to represent the coldest period of 

each day. 

Data from one, potentially faulty, logger was judged to be outlying, reporting 13 fewer frost days than 

the mean (s.d. 4.15), and 15 days fewer than predicted by linear regression for its distance from the 

reservoir. The logger data were thus subsequently removed from all analyses.  

Linear regression analyses were used to test for relationships between distance from the reservoir 

and the temperature variables described using SPSS 24 (Armonk, New York, USA).  

Maximum daily temperature + Minimum daily temperature 

2   
Base temperature -  GDD =  
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Figure 2.1. Points indicate the locations of data loggers, note some points represent multiple loggers in 

close proximity. Satellite imagery sourced from Google maps (https://www.google.com/maps), 

accessed 29/08/2019.  
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3.3 Results 

 
3.3.1 Mean temperature  

No significant relationship was found between distance from the reservoir edge and mean winter to 

spring temperature (F(1,13) = 0.13, P > 0.05, R2 = 0.01 [Fig 2.2.]), mean winter to spring daily 

temperature range (F(1,13) < 0.01, P > 0.05, R2 = 0.01 [(Fig 2.3.]) or winter to spring growing degree 

day sum (F(1,13) = 0.25,  P > 0.05, R2 = 0.14 [Fig 2.4.]).  

 

Figure 2.2. Relationship between distance from reservoir edge and mean winter to spring temperature, 

recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values indicate the results of linear 

regression 

 

Figure 2.3. Relationship between distance from reservoir edge and winter to spring mean daily 

temperature range, recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values indicate 

the results of linear regression.  
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3.3.2 Growing degree days (GDDs) 

 

Figure 2.4. Relationship between distance from reservoir edge and winter to spring growing degree day 

sum, recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values indicate the results of 

linear regression.  

3.3.3 Temperature minima 

Mean 11 pm temperature (taken to represent the coldest time of each day (see Fig. 2.7.)), of the 2018 

to 2019 winter to spring transition, showed a significant linear relationship with distance from the 

reservoir (F(1,13) 11.20, P ≤ 0.005, R2 = 0.46 [Fig. 2.5.]). This illustrates that sites further from the 

reservoir tended to experience colder temperatures during this period of the night, equating to a 

moderation of 11 pm temperatures of around 0.4°C at the reservoir edge, compared to 1.4 Km from 

its edge.  

 

Figure 2.5. Relationship between distance from reservoir edge and winter to spring mean 11 pm 

temperature, recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values indicate the 

results of linear regression and trend line is calculated using least squares method.  

0

100

200

300

400

500

600

700

800

900

0 0.5 1 1.5 2

G
D

D
 s

u
m

Distance from reservoir (Km)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2

M
e

an
 1

1
p

m
 t

em
p

er
at

u
re

 (
˚C

)

Distance from reservoir (Km)

P < 0.005 

R2 = - 0.463 

P = 0.627 

R2 = 0.136 



22 
 

Total number of frost days recorded on Widdybank fell (Fig 2.6.) was significantly related to distance 

from the reservoir (F(1,13) = 8.10, P < 0.05, R2 = 0.38). Sites further from the reservoir thus tended to 

experience more days (approximately 5 days more at 1.4 Km from the reservoir compared to its edge) 

with frost at ground level.  

 

Figure 2.6. Relationship between distance from reservoir edge and winter to spring number of frost 

days recorded, recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values indicate the 

results of linear regression and trend line is calculated using least squares method.  

3.3.4 Temperature lag and seasonality  

No significant relationship was found between distance from the reservoir and the time of day at 

which the minimum daily temperature was recorded (F (1,13) < 0.01, P > 0.05, R2 < 0.001 [Fig 2.7.]). 

 

 

Figure 2.7. Relationship between distance from reservoir edge and mean time of day at which minimum 

temperature was recorded, recorded over the period 07/11/18 to 14/05/19 (n = 15). P and R2 values 

represent the results of linear regression.  
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A significant relationship was found between mean winter temperature and distance from the 

reservoir (F (1,13) = 7.70, P < 0.05, R2 = 0.37 [Fig 2.8.a]), but no such relationship was found for mean 

spring temperature (F (1,13) = 0.67, P = 0.43, R2 = 0.05 [Fig 2.8.b]). This indicates that the lake exerts 

a warming effect of around 1.5°C, over the distance of 1.4Km, during the winter months, but no effect 

during the spring.  

 

 

Figure 2.8. Relationship between distance from reservoir edge and mean a) winter and b) Spring 

temperature, recorded 0ver the periods 07/11/18 to 31/12/18 and 01/03/19 to 15/05/19 respectively 

(n = 15). P and R2 values indicate the results of linear regression and trend line is calculated using least 

squares method.  
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3.4 Discussion  

Prevailing winds in the area are south westerly (Huntley et al, 1998), approximately parallel to the 

transect, drawing air from the lake towards the temperature loggers. This means that the effects of 

lake proximity should be most easily observed where the transect was sited.  

The water temperature in a lake is the function of both its depth and area (Gorham, 1964) and the 

high heat capacity of water (Faizal and Rafiuddin, 2011). At 3km long and under 1km wide, with a 

maximum depth only 25m (Kennard and Reader, 1975), the Cow Green reservoir is relatively small. 

Despite this, Huntley et al (1998) concluded that changes in vegetation of the area observed since a 

previous survey pre-reservoir filling (Jones, 1973) can, for the most part, be attributed to its 

construction. The lag between lake and adjacent lower atmosphere air temperatures, characteristic 

of water bodies (Lenters et al, 2005), was also observed for Cow Green (Huntley et al, 1998).  

3.4.1 Mean air temperature at vegetation height  

No significant relationship was found between distance from the reservoir and mean temperature for 

the study period 07/11/18 – 14/05/19. As this study period encompassed two seasons, and the 

thermal energy budget of lakes is highly seasonal (Katz et al, 2011), it is possible that Winter and Spring 

may have opposing effects on local air temperature. To test this, the data set was split into early 

Winter (07/11/18 – 31/12/18) and Spring (01/03/19 – 15/05/18). A significant, negative linear 

relationship was found between distance from the reservoir and mean Winter temperature. This 

follows the patterns of Winter heat export by lakes reported worldwide (Jeffries et al, 1999; 

Büyükalaca et al, 2003; Haginoya et al, 2009). No such relationship was found for mean Spring 

temperatures. The inverse of the relationship observed in Winter was expected, given the typical lag 

of lake temperatures, and common phenomenon of summer heat import by lakes (Büyükalaca et al, 

2003; Haginoya et al, 2009). It would appear that, for the Cow Green reservoir, Spring is a thermally 

transitional stage, during which no net effect is exerted on local air temperatures.  

3.4.2 Temperature range 

No significant relationship was found between distance from the reservoir and the mean daily 

temperature range. This conflicts with evidence that water bodies reduce air temperature variation 

of the surrounding area (Scheitlin, 2013). Huntley et al (1998), however, reported the same results for 

this reservoir 20 years previously. It was also reported that maximum and minimum temperatures (at 

standard height of 1.5m (Met office Stevenson screen)) were both moderated by the construction of 

Cow Green (Huntley et al, 1998). These findings indicate that the lake exerts no observable effect on 

the temperature range experienced in the vegetation boundary layer by low-growing plants during 

the Winter and Spring. The temporal resolution of these measurements could have been too fine to 

observe any measurable signal due to lake proximity, i.e. only measuring daily temperature ranges. 

Future work would thus benefit from testing the effect of lake proximity on yearly temperature range, 

another important dictator of species persistence (Hijmans et al, 2005).  

3.4.3 Growing degree days 

Growing degree days (GDDs) are an important predictor of plant growth stages (Miller et al, 2001), 

including those of grassland forbs (Hutchinson et al, 2000). Using a 2°C base temperature, based on 

results from floristically similar Italian montane pastures (Romano et al, 2014), no significant 

relationship was found between distance from the reservoir and GDD sum. This appears 

counterintuitive given the colder winter temperature experienced further from the reservoir, but 
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more extreme maximum temperatures are also more likely further from the water, which could lead 

to analogous sum values.  

3.4.4 Temperature minima at vegetation height  

The mean time at which the minimum daily temperatures recorded were not significantly related to 

distance from the reservoir. Again, this is possibly due to the temporal resolution of the data being 

too high to be affected by the reservoir’s temperature lag i.e. it may take a longer time period for a 

lag effect to be established between reservoir and adjacent atmospheric temperatures. To the closest 

hour, 11 pm exhibited the coldest daily temperatures on average. The mean 11 pm temperature was 

found to be significantly negatively related to distance from the lake, supporting the earlier findings 

that Cow Green moderated minimum temperatures (Huntley et al, 1998).  

A significant positive relationship was found between distance from the reservoir and total number of 

frost days during the study period, further indicating that the lake exerts winter warming effects, 

reducing temperature extremes. This is particularly relevant to the local vegetation as even single 

short freezing events can be lethal to many plants (Pearce, 2001). Frost exposure is also important for 

the timing of key lifecycle events (Wheeler et al, 2015) and is even used to define the growing season 

in some cases (Suckling, 1989). As frost days were defined as any day during which the temperature 

dropped below 0 °C, this did not take into account the duration of freezing events, thus 1 minute or 

12 hours bellow 0 °C were classified the same, which may have affected data analysis and 

interpretation. Future work would, therefor, certainly benefit from also investigating the length of 

freezing events at different distances from the reservoir.  

While the Teesdale rarity species are not actively growing during the winter months, It is important to 

note that winter temperatures can also affect plant growth during the growing season, for instance, 

by altering the timing of germination (Yu et al 2010) or summer nutrient uptake ability (Weih and 

Karlsson, 2002).   

3.4.5 Implications and limitations of the study 

It should be noted that the relationships between some of the variables investigated and distance 

from the reservoir could, in fact, have been curvilinear. While building a large number of non-linear 

regression models was beyond the scope of this study, there are two possible effects of the present 

approach to data analysis which should be considered. Firstly, assuming all relationship were linear 

may lead to incorrect rejection of relationships as non-significant, based on linear regression output 

values. This is unlikely to be the case given the limited ability to precisely discern the most accurate 

regression line with the small sample sizes used. Secondly, linear regression analyses ignore the 

possibility that the relationship between the variables is stronger at one end of the transect. This is 

likely the case as some of the scatter plots appear to become asymptotic further from the reservoir’s 

edge. In order to accurately determine the nature of these relationships, a higher resolution of data 

loggers would need to be deployed. 

While changes in mean temperature can be the ultimate dictator of a species distribution (Parmesan 

and Yohe, 2003; Lesica and McCune, 2004; Holzinger et al, 2008), the persistence of a species is often 

dictated by the maximum (Richter and Kolmes, 2005), minimum (Woodward, 1988) or variation in 

temperature (Vasseur, 2014). The Cow Green reservoir thus has the potential to affect the local 

vegetation by protecting it from extreme cold temperatures. Aside from preventing damage as a direct 

result of freezing, this may also impact the timing of emergence of some species, although, in the 

present study, no temperature lag was observed due to the reservoir. The recorded spring 

temperatures indicate that the reservoir will have no effect on the early growing season for the arctic-
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alpine flora growing adjacent to it. Future work would benefit from also investigating the effects on 

soil temperature, which has important influences on plant growth, particularly nutrient uptake (Dong 

et al, 2001; Pregitzer and King, 2005). Finally, It is important to note that the data collected were for 

a single year, so generalisations should be avoided, and conclusions should not be drawn from these 

data in isolation.  
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4. Responses of the study species to post-industrial climate change 

across their European ranges 

 
4.1 Introduction 

 
4.1.1 Species distributions 

Tracking environmental change is more restricted in the largely two-dimensional terrestrial 

environment, compared to the three-dimensional aquatic environment, and is harder still for those 

organisms which are sessile  

The fundamental determinants of a species’ distribution are soil characteristics, species interactions, 

population dynamics, dispersal barriers and, predominantly, temperature and water availability 

(Blach-Overgaard et al, 2010).  

4.1.2 Upper Teesdale environment 

Within Upper Teesdale National Nature Reserve, Widdybank fell (G. R. NY820290) covers an area of 

approximately 5.5Km2 from around 400 to 526.5m asl (Jones, 1973). The major habitat types of the 

area are heath, marsh, ombrogenous bog and calcareous grassland (Lewthwaite, 1999). These upland 

and sub-arctic habitats are some of the most susceptible to climate change in the UK (Berry et al, 

2002). Being only 80km from the coast to the east and west, Teesdale does not experience particularly 

wide fluctuations in temperature, having monthly means of 2.2⁰C and 12.3⁰C in February and July 

respectively (Lewthwaite, 1999). The oceanic climate also leads to regular precipitation, 250 days a 

year, with around 60 days of annual snow cover (Lewthwaite, 1999). 

Of the three species studied, P. farinosa and V. rupestris are classified as northern-montane and G. 

verna as alpine (Marshall, 1971), all of which are far from their core ranges in the UK.  

4.1.3 Upper Teesdale vegetation 

The Teesdale flora has been well studied due to the presence of numerous nationally rare plant 

species. Originally thought to have persisted throughout the last glacial in ice-free regions (Wilmott, 

1930: as cited in Pigott, 1956), it is now generally accepted that arctic-alpine species recolonised from 

southern refugia, remaining in cooler areas such as the Teesdale, Craven Pennines, Cwm Idwal, Ben 

Lawers and the Burren (Pigott, 1956; Gibbons, 1978; Lewthwaite, 1999). Such microclimatic areas, 

even those which are transient can allow species to persist in an otherwise unsuitable environment 

(Pardini et al, 2015).  

4.1.4 Ecological responses to climate change 

Changes in latitude (Van Grunsven et al, 2010; Chen et al, 2011), altitude (Kelly and Goulden, 2008; 

Lenoir et al, 2008; Chen et al, 2011) and phenology (Claland et al, 2007; Gordo and Sanz, 2010) of 

plants associated with climate change are well documented. In their renowned 2003 meta-analysis of 

species responses to increased global air temperatures, Parmesan and Yohe found strong patterns of 

movement towards higher altitudes and latitudes and advancement of spring phenology.  

In the current chapter some simple exploratory analyses were conducted to identify any trends in the 

spatial and temporal distributions of G. verna, P. farinosa and V. rupestris and their major competitor 

S. caerulea as they pertain to their temperature environment. It was hypothesised that, across their 
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respective European ranges, the study species would have shifted towards higher altitudes and 

latitudes and would now have a significantly earlier growing season during the post-industrial era. The 

remaining data available on the species’ distribution, longitude, has no direct uniform effect on 

climate. It was thus hypothesized that no change would have occurred in the longitude of occurrences 

of the study species during the same time period.  

 

4.2 Methodology 
 

4.2.1 Species occurrence data 

Data records of species occurrences were downloaded for the three study species, Gentian verna, 

Primula farinosa and Viola rupestris from the open source database the Global Biodiversity 

Information Facility (GBIF.org, Copenhagen, Denmark; accessed 17/05.2019). In addition, the 

dominant graminoid competitor of these species on Widdybank fell, Sessleria caerulea, was 

investigated. Linear regression analyses were used to determine trends over time, for the 200 year 

period between the years 1800 and 2000, in the latitude, longitude, elevation and day of year that the 

species were recorded.  

Records for P. farinosa in Japan and Russia were removed from the analyses undertaken here as they 

skewed regression results, particularly those related to longitude. This was due to the fact that 

occurrences only appear in records since 1935 and 1948 for Japan and Russia respectively. 

4.2.2 Phenological shifts 

From the regression models of trends in the timing of recorded occurrences of the species studied, 

the change in the most probably day of the year for an occurrence to be recorded was calculated. For 

the dates determined in this way, for the years the 1900 and 2000, an approximation of the mean 

temperature across the species ranges, during the 20th century, was calculated using data from 

weather stations in Stockholm, Munich, Durham and Geneva. By subtracting the mean temperature 

of the most probable occurrence day in 1900 from that of the most probable occurrence day in 2000, 

the effect of the observed changes in phenology of the species studied on the temperatures they 

experience was estimated. Daily temperature data for European weather stations were obtained from 

Tank et al (2002, http://www.ecad.eu).  

                      4.2.3 Range shifts 

To estimate how latitude affects temperature, 10,000 random points were generated, in QGIS 3.6.2. 

(Open source geospatial foundation; Chicago, USA) to extract mean annual terrestrial air temperature 

data from the Worldclim.org raster data set bio_1 (Hijmans et al, 2005). Linear regression analysis was 

used to determine the mean change in annual temperature per degree of latitude, which was found 

to be 0.62˚C for the period between the years 1960 and 1990. Using the linear regression models of 

latitudinal changes in the recorded occurrences of the species studied, the effects of these latitudinal 

shifts on the mean annual temperatures experienced by the species studied, across their respective 

European ranges, were calculated for the period between the years 1900 and 2000.  

The rate of temperature decrease with increasing altitude is termed the dry adiabatic lapse rate 

(Blandford et al, 2008). A dry adiabatic lapse rate of 0.55˚C per 100m elevation is regarded as 

approximately usual (Körner, 2007), and this is confirmed for montane environments in northern Italy 

where the three study species grow (Rolland, 2003). Linear regression models constructed for the 

http://www.ecad.eu/
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study species’ observed elevations, between the years 1900 and 2000, were used to approximate the 

distance, in meters, that the species ranges have shifted altitudinally. An adiabatic lapse rate of 0.55˚C 

was therefore used to calculate the extent to which altitudinal shifts of the species have counteracted, 

or amplified, concurrent global surface air temperature increase (˚C).  

4.2.3 Net effect of distributional and phenological shifts on the temperature 

environments of the study species 

By calculating the sum of the above mentioned effects of the altitudinal, latitudinal and phenological 

shifts of the study species on the mean temperatures experienced by them for the 20th century, a net 

temperature change figure, induced by the species’ niche tracking, was obtained.  

Distributions of the study species are predominantly European, and thus lower longitude generally 

equates to more oceanic environments across their ranges. As longitude per se has no uniform linear 

relationship with temperature, it was excluded from calculations. However, mean temperature and 

temperature variance data for seven locations, representing an east to west transect across Europe, 

were included to indicate the effect longitude may have across the species ranges (Table 3.2.).  

All statistical analyses were carried out using simple linear regression in SPSS 24 (Armonk, New York, 

USA).  
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4.2 Results 

 
4.2.4 Phenology 

G. verna and P. farinosa both showed small, but highly significant trends in records towards 

occurrence later in the year (F (1, 180) = 16.04, P < 0.001, R = 0.15 [Fig 3.1.]; F (1, 401) = 680.80, P < 

0.001, R = 0.12 [Fig 3.1.a, b]), as did their major competitor species S. caerulea (F (1, 791) = 1187.05, 

P < 0.001, R = 0.14 [Fig 3.1.d]). No significant trend was found in V. rupestris.  

 

 

Figure 3.1. Trends in day of the year on which occurrences were recorded 1800 to 2000 for a) G. verna, 

b) P. farinosa, c) V. rupestris and d) S. caerulea (n = 181, 402, 674 and 792 respectively). P and R2 values 

represent the results of simple linear regression and trend lines were calculated using the least squares 

method.  
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4.2.5 Latitude 

Small, but significant trends were found towards lower latitudes of recorded occurrences of G. verna 

(F (1, 187) = 5.76, P < 0.05, R = 0.11 [Fig 3.2.a]), P. farinosa (F (1, 408) = 217.90, P <0.0001, R = - 0.10 

[Fig 3.2.b]), V. rupestris (F ( 1, 708) = 170. 80, P < 0.0001, R = - 0.10 [Fig 3.2.c]) and S. caerulea (F (1, 

752) = 641.22, P < 0.0001, R = - 0.11 [fig 3.2.d]). Although the relationship not strong, it is uniform 

across all four species.  

 

Figure 3.2. Trends in latitude at which occurrences were recorded 1800 to 2000 for a) G. verna, b) P. 

farinosa, c) V. rupestris and d) S. caerulea (n = 188, 409, 709 and 753 respectively). P and R2 values 

represent the results of simple linear regression and trend lines were calculated using the least squares 

method.  

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

1800 1850 1900 1950 2000

0

10

20

30

40

50

60

70

80

1800 1850 1900 1950 2000

0

10

20

30

40

50

60

70

80

1800 1850 1900 1950 2000

0

10

20

30

40

50

60

70

80

1800 1850 1900 1950 2000

Year 

La
ti

tu
d

e 
(˚

) 

P < 0.0001, 

R2 = 0.012 

P < 0.0001, 

R2 = 0.010 

P < 0.0001, 

R2 = 0.010 
P < 0.0001,  

R2 = 0.012 

a) 

c) d) 

b) 



32 
 

4.2.6 Longitude 

Significant trends were found showing a shift towards lower longitudes of recorded occurrences of G. 

verna (F (1, 188) = 13.17, P < 0.0001, R = -0.256 [Fig 3.3.a]), P. farinosa (F (1, 409) = 27.75, P <0.05, R = 

0.02 [Fig 3.3.b]), V. rupestris (F (1, 706) = 107.90, P < 0.0001, R = -0.118 [Fig 3.3.c]) and S. caerulea (F 

(1, 789) = 78.01, P < 0.0001, R = 0.037 [Fig 3.3.d]). For species distributed across Europe, a decrease in 

longitude of recorded occurrences indicates a move toward more maritime environments.  

 

Figure 3.3. Trends in longitude at which occurrences were recorded 1800 to 2000 for a) G. verna, b) P. 

farinosa, c) V. rupestris and d) S. caerulea (n = 189, 410, 707 and 790 respectively). P and R2 values 

represent the results of simple linear regression and trend lines were calculated using the least squares 

method.  
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4.2.7 Elevation 

Significant upward trends in the altitude of recorded occurrences were found in P. farinosa (F (1, 409) 

= 8.29, P <0.005, R = 0.14 [Fig 3.4.b]), V. rupestris (F (1, 709) = 30.23, P < 0.001, R = 0.21 [Fig 3.4.c]) 

and S. caerulea (F (1, 772) = 11.00, P < 0.001, R = 0.12 [Fig 3.4.d]), while no significant trend was found 

in G. verna (F ( 1, 189) = 2.03, P > 0.05, R = 0.01 [Fig 3.4.a]) 

0.037 

 

Figure 3.4. Trends in elevation at which occurrences were recorded 1800 to 2000 for a) G. verna, b) P. 

farinosa, c) V. rupestris and d) S. caerulea (n = 190, 410, 710 and 773 respectively). P and R2 values 

represent the results of simple linear regression and trend lines were calculated using the least squares 

method.  

 

4.2.8 Net temperature changes 

Using the regression equations herein, the overall effects of the phenological and distributional shifts, 

outlined above, on the temperature environment the plants inhabit were calculated, as outlined in 

the relevant methodology section.  

V. rupestris showed the largest net change in temperature of occurrence locations, - 2.01˚C, with G. 

verna and P. farinosa showing only 0.13˚C and -0.26˚C changes respectively (Table 3.1.). The larger net 

temperature change experienced by V. rupestris was driven predominantly by an upward shift in 

elevation of recorded occurrences. While P. farinosa recorded occurrences also increased in elevation, 

a large enough increase to exert around a 1°C decrease in ambient temperature, this was largely 

ameliorated by the confounding effects of later phenology and lower latitudes.  
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G. verna experienced the smallest net temperature change, and the only positive net change, resulting 

from a slight decrease in latitude of recorded occurrences and slight advancement of phenology.  

Table 3.1. Change in temperature resulting from shifts in elevation, latitude and phenology of G, verna, 

P. farinosa and V. rupestris, 1900 to 2000, as calculated by linear regression. Net changes represent the 

sum of all other column values. N/A represents non-significant change in variable over time.  

 

Table 3.2. Shows temperature data for seven weather stations chosen to represent an east to west, 

and thus continental to maritime transect across Europe, with approximately uniform latitudes (Fig 

3.5.). Longitudinal data was not included in the above net temperature change calculations as it has 

no uniform effect on temperature. These data are included only to illustrate potential effects across 

the study species’ core ranges. Mean temperature is not significantly related to longitude (F (1, 5) = 

0.77, P > 0.05, R2 = 0.13) but is strongly related to temperature variance (F (1, 5) = 361.14, P < 0.0001, 

R2 = 0.98).  

Table 3.2. Mean yearly temperature and temperature variance for seven weather stations, forming an 

east to west transect across Europe. Geographical coordinates of each weather station are indicated 

by longitudinal and latitudinal values (2.d.p). 
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Figure 3.5.Locations of the weather stations used to calculate the temperature data shown in Table 3.2, 

chosen to represent a longitudinal transect across Europe.  

  

4.3 Discussion 
4.4.1 Shifts in post-industrial phenology 

With the exception of V. rupestris, a trend towards occurrences being recorded later in the year was 

found across all species. For G. verna and P. farinosa, this equated to a delay of phenology by 0.13 and 

0.12 days per year respectively i.e. the species are now observed later in the year. For the spring 

growing species G. verna and P. farinosa (Elkington, 1963; Hambler and Dixon, 2003), this represents 

a shift towards warmer summer weather. While this appears counterintuitive for arctic-alpine species 

given global temperature increases during the post-industrial era (IPCC AR5 WG1 Summary for policy 

makers, 2013), it may be explained, in part, by alterations to the seed stratification process during 

warmer winters. Yu et al (2010), for example, reported delays to spring phenology in vegetation of the 

Tibetan plateau due to winter warming preventing seed chilling requirements from being met, leading 

to delays in germination. Given the perennial nature of the study species (Elkington, 1963; Doody 

1975; Hambler and Dixon, 2003), however, later germination is unlikely to have a major impact on 

overall occurrence timings. These results do appear to conflict with delays in phenology reported for 

arctic (Henry and Molau, 1997) and alpine (Rammig et al, 2010) plant species. Meta-analyses which 

have also found phenology advances of 0.23 to 0.63 days per year to be a common phenomenon 

across taxa (Parmesan and Yohe, 2003; Root et al, 2003).  
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4.4.2 Shifts in post-industrial latitude 

Each of the study species showed a minor decrease in latitude over the period 1900 to 2000, 0.1° (G. 

verna), 0.5° (P. farinosa) and 0.5° (V. rupestris). As these species are restricted to the northern 

hemisphere, this conflicts with the established phenomenon in the existing literature, suggesting that 

increasing global temperatures are causing many species to shift their ranges towards the poles (e.g. 

Parmesan and Yohe, 2003; Hicklng et al, 2006; Chen et al, 2011). The three study species are 

predominantly found in Europe, where the major mountain ranges, the Alps, Pyrenees and Caucasus, 

are towards the south of the continent. These cooler, high-altitude areas may explain the decreases 

in latitude found during the last 200 years. To test this, the number of recorded occurrences of each 

species, 1900 to 2000, in the latitudinally adjacent countries, Germany and Austria, were plotted. 

Germany was chosen to represent a higher latitude, lower altitude region, relative to Austria. Based 

on this hypothesis, an increase in occurrences in Austria, relative to those in Germany would be 

expected. This pattern was found in P. farinosa, while almost identical relationships were found for G. 

verna in both countries and no significant relationship was found for V. rupestris in either country (Fig 

3.6). This implies that the southward range shift of P. farinosa may be related to a shift towards higher 

altitudes, but this is likely not the case for G. verna or V. rupestris.  

 

 
Figure 3.6. Normalised number of recorded occurrences of a) G.verna, b) P.farinosa and c) V.rupestris 

each year in Germany and Austria, 1900 to 2000, as shown by GBIF datasets. Trend lines were calculated 

using the least squares method, P and R2 values indicate the results of simple linear regression.  

4.4.3 Shifts in post-industrial longitudes  

A uniform decrease in mean longitude was found across the three study species and their major 

competitor in Upper Teesdale, Sesleria caerulea. Longitude has no direct linear relationship with 

temperature as latitude and altitude do. However, in Europe, lower longitudes tend to represent a 

more maritime environment (Fig. 3.7). Areas closer to the coast exhibit smaller seasonal and diurnal 

temperature fluctuations (Scheitlin, 2013), due to the high heat capacity of the oceans (Faizal and 

Rafiuddin, 2011). This is reflected by the positive relationship between longitude and annual 

temperature variance shown in Table 2. In Europe, the release of thermal energy from the Atlantic 

Ocean during winter, and its transport by prevailing south westerly winds make the Maritime-

Continental climate gradient particularly pronounced (Seager et al, 2002). This suggests that the 

species studied may have shifted towards environments with less temperature variation in the post-

industrial era. This is possibly a response to the increases in global atmospheric temperature variation, 

which have occurred due to anthropogenic climate forcing, associated with a greater atmospheric 

heat budget (Schär et al, 2004; Meehl and Tebaldi, 2004).  
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Figure 3.7. Relationship between longitude and distance from nearest ocean at 50 random points within 

Europe, defined by the coordinates -25 to 47˚E, 32 to 74˚N. Trend line was calculated using the least 

squares method, P and R2 values indicate the results of simple linear regression.  

Records for P. farinosa in Japan and Russia were removed from analyses as they skewed regression 

results, particularly longitude i.e. the highest longitudes were only recorded recently, increasing the 

probability of a positive relationship between longitude and time. Occurrences only appear in records 

since 1935 and 1948 for Japan and Russia respectively, however, there is no reason to assume that P. 

farinosa was not present in either country before this point. 

4.4.4 Shifts in post-industrial altitudes 

P. farinosa and V. rupestris exhibited respective increases of 4.2 m and 2.0 m altitude per year over 

the period 1900 to 2000, whilst no significant relationship was found for G. verna. The increase of 4.2 

m per year for V. rupestris is relatively large compared to an average of 2.8 m per year found cross 

alpine plants (Walther et al, 2005) and 0.85m per year found for boreal-montane vegetation (Savage 

and Vellend, 2015).  

                                   4.4.5 Net effect of distributional and phenological shifts on temperature 

environment  

The net temperature changes calculated for the study species for the period 1800 to 2000, based on 

their shifts in phenology, latitude and altitude, indicate little change for G. verna and P. farinosa, but 

a large decrease for V. rupestris (refer to Table 3. 1.). Altitudinal shifts were the largest single 

contributors to the net temperature changes calculated for P. farinosa and V. rupestris, accounting for 

estimated -1.09°C and -2.32°C changes respectively.  

It is important to note that net temperature changes calculated here are relative to a concurrent 

increase in global mean surface temperature of ca 0.85°C from 1880 to 2012 (IPCC AR5 WG1 Summary 

for policy makers, 2013). This equates to a ca 0.64°C increase for the period 1900 to 2000, assuming 

a constant rate of temperature change. Accounting for this, G. verna, P. farinosa and V. rupestris are 

estimated to have experienced net changes in mean temperature of occurrence locations of +0.77°C, 

+0.38°C and -1.37°C respectively. These reflect concerns that many plant species will not be capable 

of shifting their ranges fast enough to trach their thermal niches under future climate change scenarios 

(Neilson et al, 2005).  

y = 4.7751x + 85.594
R² = 0.3071
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These calculations, while for the period 1900 to 2000, used the regression models built for the period 

1800 to present. This results in a larger dataset to extrapolate trends from; however, as the regression 

models are linear, this may not truly reflect the variable changes that occurred post 1900 due to the 

irregular rate of climate change (Watanabe et al, 2014; Smith et al, 2015). It is also important to note 

that the impacts of latitude and altitude on temperature are, by no means, uniform, so approximations 

of the mean effects per unit distance were used in the present study. In addition to the net 

temperature changes experienced by the study species, they will also likely experience smaller annual 

temperature variations across Europe in the future due to their shifts towards lower longitudes. 

The positive net temperature changes calculated for G. verna and P. farinosa indicate that these 

species have not shifted their ranges or phenologies sufficiently to fully track the spatial and temporal 

movement of their fundamental niches. The positive net temperature change value calculated for V. 

rupestris shows that the species has altered its distribution and phenology more than enough to 

counteract the effects of a warming climate, effectively “out-running” climate change. One possible 

explanation for this is a potential lag effect between the effects of the “little ice age” which occurred 

in Europe from around a thousand years ago until the mid-nineteenth century (Grove, 2001; Nesje 

and Dahl, 2003). This may have caused V. rupestris to inhabit warmer regions e.g. at lower elevations 

prior to the 1800 date used for the regression models herein. Such lags in the ecological effects of 

climate change have been recorded before (e.g. Bertrand et al, 2011), but this affect was not observed 

in the other two study species in the present study.  

The strong role played by increasing altitude of recorded occurrences, for both P. farinosa and V. 

rupestris, in the net temperature changes calculated suggests this may be the primary response 

induced to ameliorate the impacts of increased temperatures. This is most probably due to the smaller 

distance required for a species’ range to shift in order to track it’s thermal niche, as has been reported 

before (Bush and Hooghiemstra, 2005 [as cited in Colwell et al, 2008]). This does pose a potential 

threat to the species for the future, as uphill range expansion is fundamentally limited by peak altitude 

(Dirnböck et al, 2011; Bertrand et al, 2011) and can lead to isolation of high-altitude populations 

(Peterson 1995; Finn et al, 2016).   

4.4.6 Ecological impact of phenological and distributional shifts 

Whilst only the major competitor species within the Teesdale vegetation matrix, S. caerulea, was 

investigated, it did exhibit the same predominant responses observed in the other study species. This 

suggests that the existing competitor species in the Teesdale assemblage would be affected by a 

warming climate in a similar manner to the study species. Further work would benefit from testing 

this with experimental warming of S. caerulea in Upper Teesdale.  

Spatial and temporal changes in species’ ranges lead to novel species interactions (e.g. Stralberg et al, 

2009; Herstoff and Urban, 2014; Alexender et al, 2015) and potential trophic mismatches (Edwards 

and Richardson, 2004; Durant et al, 2007; Doiron et al, 2015). Research usually focuses on the bottom-

up effects of these ecological disruptions; for example, the effects of food plant phenology on 

herbivores (e.g. Post et al, 2007; Post et al, 2008). However, mutualistic plant-pollinator interactions 

are also predicted to be negatively affected by phenological mismatches (Memmot et al, 2007). 

Between plant species, extended leaf phenology has been shown to lead to competitive dominance 

(Smith and Hall, 2016) and un-equal phenological alterations could likely cause new competitive 

dominances to arise through spatial pre-emption in the future (Brewer, 2003). Conversely, 

competitive release of less affected species may potentially arise. Range expansion into novel 

environments may disrupt ecological interactions due to a lack of mutualistic interactions (Hampe and 

Petit, 2005) or enemy release, the phenomenon of invasion due to lack of predation (Keane and 
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Crawley, 2002). Contrasting effects may be observed where novel species begin to infringe on the 

range of species in question.  

The trends observed in the present study are for all occurrence data worldwide and future work may 

benefit from dividing data into geographically distinct ranges, as ecotypes may exhibit local adaptation 

to their environment (e.g Joshi et al, 2001; Becker et al, 2006; Liancourt et al, 2013). All trends 

analysed herein were based on changes in the mean values. However, investigating changes in 

extremes of altitude, latitude, longitude and phenology may offer insights into the future persistence 

of the study species. The three nationally rare species studied here were insufficient to establish 

general trends in range and phenology for the Teesdale rarities and further research is needed to 

illuminate climatic responses for the assemblage as a whole.  

4.4.7 Limitations of the study method 

The variables investigated herein may not be the only contributors to a species’ thermal environment, 

for instance, vegetation can modify their own microclimate by reducing heat convection (Körner, 

2007).  

It is also important to note that focusing on unidimensional, unidirectional responses to climate 

change, such as directional range shifts, has been shown to cause underestimates of the scale of 

species responses (VanDerWal, et al, 2013).  

All data sourced from GBIF are subject to a number of issues; these include inaccurate recordings from 

unverified collaborative editing and no knowledge of the sampling intensity. The number of 

occurrences of each species studied, per year, has increased rapidly, especially since 1950 (Fig 3.8.), 

however it is not possible to distinguish between the effects of increased sampling intensity and 

increased abundance. Uneven increases in sampling intensity in different countries due to non-

uniform socio-economic development could also likely skew analyses of linear relationships over time. 

Additionally, distinguishing the effects of temperature increase from its covariates, such as habitat 

fragmentation and degradation is not possible.  

 

 

Figure 3.8 Number of recorded occurrences of a) G.verna, b) P.farinosa and c) V.rupestris each year, 

1800 to 2018, as shown by GBIF datasets.  

The scatter plots for G. verna, P. farinosa and S. caerulrea show that a large number of occurrences 

are recorded on the first of each month, most likely an artefact of the GBIF database often assigning 

records which specify a month, but not an exact date, to the first of that monthd. Without removing 

all records for the first day of any month, or converting these to the 15th, the middle of the month, it 

is not possible to remove this bias. This latter approach was avoided as it would necessitate removing 

all genuine records from these dates. This does, however, mean that these dates may be inaccurate 
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by up to -30 days, however, this phenomenon is present in records from all years so introduces no 

inherent bias in itself.  

Analysis of all trends in species distribution were carried out using simple regression, assuming all 

relationships studied are linear and monotonic. As the rate of climate warming is not constant 

(Watanabe et al, 2014; Smith et al, 2015), this is not a realistic representation of species responses, 

i.e. a species must alter the severity of its response to match the rate of climatic change. However, as 

the responses observed here are small, this method was deemed most appropriate to identify the 

basic underlying trends in distribution and phenology of the study species.  
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5. Predicted 2050 distribution of the study species 

               5.1 Introduction 

                             5.1.1 Species climate tracking 

The distributional shifts of species in response to recent changes in climate are well established (e.g. 

Parmesan and Yohe, 2003). It is also common for leading and trailing edges to move at different rates 

(e.g. Anderson et al, 2009), leading to either range expansion or contraction, but no common trends 

have been established across taxa. As established in the previous chapter, the species in question have 

experienced shifts in latitude, longitude, altitude and phenology of occurrences in the post-industrial 

era.  

                            5.1.2 Species distribution models 

Predicting the distribution of a species can be approached using mechanistic or correlative techniques. 

Mechanistic models involve defining and quantifying the physiological constraints which limit the 

species’ persistence or abundance (Kearney et al, 2010). Defining the temperature range suitable for 

a species and mapping this in space is a common example of such a model (Buckley et al, 2010). This 

method is more applicable to predicting the distribution of plants as their presence can be directly 

linked to environmental variables like temperature through its effects on their metabolic processes 

(Criddle et al, 1994). For consumer species at higher trophic levels, distribution and abundance are 

determined by the distribution of their food source, rather than directly by their physical environment, 

a phenomenon known as the ideal free distribution (Bernstein et al, 1999). Establishing the exact limits 

of a species’ tolerances can be time-consuming, so such methods are increasingly being avoided.  

In contrast, correlative models reverse engineer the process of quantifying limiting factors by instead 

illuminating the statistical relationships between known occurrences of a species and environmental 

data (Kearney et al, 2010). Such models are often regression-based, with generalised linear models 

being one of the most popular techniques (Buckley et al, 2010).  

Correlative models can be advantageous as they allow the use of very large data sets with which to 

establish causal relationships but are subject to a number of limitations which will be outlined in the 

subsequent discussion section.  

Broadly referred to as ecological niche models, these techniques aim to define the environmental 

conditions in which a species can survive (Warren, 2012), defined by Hutchinson (1957) as the niche 

or n-dimensional hypervolume. When the areas of earth which meet the appropriate environmental 

criteria are mapped geographically, this forms the basis of the species distribution model (SDM) 

(Kearney and Porter, 2004). Once the species’ niche has been defined, it can be projected onto past 

(Martínez‐Meyer et al, 2004) or predicted future (Peterson et al, 2002) climate scenarios to compare 

where a species could live under different environmental conditions.  

                              5.1.3 Maximum entropy modelling (MaxEnt) 

Most correlative modelling approaches, in addition to spatial environmental data, require data on 

presences and absences of the species in question for part of their known range. MaxEnt is has the 

added advantage of using only known occurrence data to perform the same task (Phillips, 2005). 

MaxEnt is a machine learning algorithm-based software package (Elith et al, 2010) and is widely used 

for predicting species distributional responses to predicted future climate scenarios (e.g. Bradley et 

al, 2010; Milanovich et al, 2010; Khanum et al, 2013).  
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It was hypothesised that, under projected climate warming scenarios for 2050, no net changes in the 

area of habitat suitable for the species studied would be predicted by maxent models. It was also 

hypothesised that, under future climate change scenarios, predicted areas of suitable climate would 

be at higher latitudes.  

In addition to its use generating distribution models, MaxEnt also allows the user to see which 

environmental variables were the strongest predictors of a species’ occurrence, from which inferences 

about environmental requirements can cautiously be made (Young et al, 2011).  

                          5.1.4 Regional adaptation of plant ecotypes 

The phenomenon of plants preforming better, in terms of growth and reproduction, in their home 

environment, relative to non-local plants of the same species is well established (e.g. Joshi et al, 2001; 

Leimu and Fischer, 2008). It has also been shown that many plant species do not inhabit exactly the 

same niche across the entirety of their range (Wasof et al, 2013).  

In their UK populations, the study species G. verna (Elkington, 1963) P. farinosa (Hambler and Dixon, 

2003) and V. rupestris (Jonsell et al, 2000) are geographically isolated from their respective core ranges 

in Eurasia. They also live in a less variable maritime environment than their counterparts in alpine, 

arctic and boreal regions (Lewthwaite, 1999).  

It was thus hypothesised that the species studied would inhabit a significantly different set of 

environmental conditions in its UK range, compared to its continental range, representing regional 

environmental adaptation.  

          5.2 Methodology 

           5.2.1 Species occurrence data 

Geographical coordinates of species occurrences were downloaded via the open source database, the 

Global Biodiversity Information Facility (GBIF.org, Copenhagen, Denmark; accessed 17/05/2019). 

These data were collated from field survey, herbarium and museum collection data.  

           5.2.2 Climatic variable data 

Raster data for 19 bioclimatic variables were downloaded from WorldClim (Hijmans et al, 2005; 

http://www.worldclim.org/). These data are interpolated from precipitation and temperature data 

from meteorological stations worldwide, for 1960 to 1990 (current). The data sets used were designed 

to represent biologically meaningful predictors of habitat suitability (Hijmans et al, 2005) and are well 

used in studies (e.g Wang et al, 2010; Yang et al, 2013; Remya et al, 2015). Data for the same 

bioclimatic variables for 2050, based on the IPCC’s representative concentration pathway 6 (RCP 6) 

were also downloaded from WorldClim. The most severe of the IPCC’s four future climate scenarios, 

RCP 8.5, is more extreme than the projections generated by most other models (Riahi et al, 2011). RPC 

6 was thus chosen for use in the present study because it represents the most severe scenario likely 

to occur. For a general overview of the differences between the IPCC’s RCP projections, see Fig 4.1. 

The Beijing climate centre climate system model 1.1 (BCC-CSM1-1) global circulation model was used 

in the construction of current and future distribution predictions. All climate data were at a spatial 

resolution of approximately 1Km2 (Khanum et al, 2013).  

http://www.worldclim.org/
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Figure 4.1. This figure illustrates the projected effects of the IPCC’s relative concentration pathway 

(RCP) scenarios on future mean global air temperature (reproduced from Ansuategi et al, 2015).  

 

Soil water pH in H2O at 5cm depth and soil water capacity at depths of 5cm and 30cm were 

downloaded via the International Soil Reference and Information Centre (Hengl et al, 2017). The 

resolution of these data were altered to 1km2 to match that of the bioclimatic layers, allowing for 

model outputs to be created in regular 1km2 pixels.  

                           5.2.3 Model application  

The maximum entropy approach (MaxEnt 3.4.1; Phillips et al, 2006) was used to model current and 

future habitat suitability for the study species using the above-mentioned climate data.  

This is a user-friendly software package which requires only that the modeller inputs the relevant 

climate and concurrent species distribution data. The model output generated is that with maximal 

entropy i.e. the closest to spatially uniform, within the constraints of the environmental requirements 

of the species (Phillips et al, 2017). The model also ensures that the mean values of each 
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environmental variable used in its construction are equal in the predicted and known distributions of 

the species (Phillips et al, 2017). This method has been shown to be mathematically equivalent to 

models generated using Poisson regression (Renner and Warton, 2013), but does not require the 

collection of confirmed absence data.  

Here models were constructed using only the occurrence records for the same period as the climatic 

data were recorded, 1960 to 1990. This is important for predictive performance as models are created 

by inferring the environmental requirements of species based on the environmental conditions they 

have been observed to live in. Thus, in order to establish a causal relationship between climatic 

conditions and species occurrence, the occurrence data and climate data must be concurrent.  

As true, verified absence data are not available for the study species, certain assumptions were made 

regarding the data available. A pseudo absence dataset was created, using the MaxEnt default 

settings, whereby 10,000 random grid cells, not known to contain the species in question, are drawn 

from the area studied to represent absences (Hertzog et al, 2014).  

The logistic output format is simply a log transform of the raw MaxEnt output values calculated for 

each map cell (Merow et al, 2013). This output format was chosen as it equates to the probability of 

a species’ presence under the environmental conditions at a given location (Phillips and Dudik, 2008). 

This thus creates a model output suitable for converting to a binary form i.e. classifying cells as either 

suitable or unsuitable. For this purpose, the equal training sensitivity and specificity threshold was 

used to categorise environmental suitability of cells as it has been shown to have a high prediction 

accuracy (Cao et al, 2013). Models were then trained, using only 10% of the data, as the occurrence 

data sets used were very large.  

Environmental variables were tested for collinearity using Pearson’s correlation in SPSS 24 (IBM, 

Armonk, New York, USA). Variables with a correlation coefficient above 0.8 were regarded as highly 

collinear, as in Khanum et al (2013). Stepwise removal of the highly correlated variables with the 

lowest predictive power, as shown by jackknife analysis, was carried out. Once no two variables with 

a highly collinear relationship remained, all remaining variables contributing less than 1% to the 

model’s predictive ability were removed, provided this did not decrease the receiver operating 

character (ROC) area under curve (AUC). Ten cross validation replicates of each model were run, 

following the procedure in Elith et al (2011) and Khanum et al (2013). The resulting mean ROC AUC 

value was then used to indicate model performance. Permutation importance values calculated by 

MaxEnt were reported to indicate the predictive power of each variable used.  

Models for the four major European ecotypes of P. farinosa were created with occurrence data from 

the UK, Austria, Spain and Sweden, to represent each of the regions of Europe inhabited by P. farinosa. 

Ecotype-specific models could only be generated for P. farinosa due to small sample sizes for G. verna 

and V. rupestris in the UK. 10,000 random pointes were extracted from the predicted distributions, 

using QGIS 3.6.2, to calculate mean longitude and latitude suitable for each ecotype.  

Permutation importance values from MaxEnt’s variable contribution analyses were used to make 

inferences regarding the environmental determinants of the study species’ distributions. These values 

represent the extent to which the final model’s accuracy decreases when each environmental variable 

is removed from the model in turn (Philips, 2005). Maxent calculates these values by default, 

normalising them to percentages for ease of interpretation (Philips, 2005).  

For the variables which best predicted P. farinosa distribution in the UK, values were extracted from 

the Bioclim raster layers at the occurrence locations recorded in the four ecotype regions stated 

above. For P. farinosa, the variables annual temperature range, and isothernality, the magnitude of 
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day/night temperature variation relative to winter/summer variation (O’Donnell and Ignizio, 2012), 

were extracted. These data were used to compare differences in the most important climatic 

conditions experiences by plants of each ecotype. Significant differences in geographical coordinates 

and variable values for the different ecotypes were tested for using One-way ANOVA and Games-

Howell post-hoc analysis in SPSS 24 (IBM, Armonk, New York, USA).  

 

              5.3 Results 

                          5.3.1 European distributions 

MaxEnt distribution models for the three study species gave area under curve (AUC) of the receiver 

operating characteristic (ROC) values higher than would be predicted using random models, 0.5, in all 

cases. For each species, the most effective climatic predictors of occurrence pertained to their 

temperature, rather than precipitation conditions (Table 1).  

Once highly correlated variables were removed, the models generated ROC AUCs of 0.952 (± 0.002) 

for G. verna, 0.929 (± 0.004) for P. farinosa and 0.925 (± 0.006) for V. rupestris. Models predicted 11.6 

%, 1.4 % and -19.7 % net changes in European range areas for G. verna, V. rupestris and P. farinosa 

respectively by 2050, based on the IPCC’s RCP 6 (Fig 4.2.). No significant differences were found 

between current and future mean latitude or longitude of predicted ranges for any of the study 

species.  
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a) 

c) 

b) 
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Figure 4.2. Current predicted ranges and predicted range expansion and reduction by 2050 for a) G. 

verna, b) P. farinosa and c) V. rupestris, as shown by Maximum entropy modelling, using the equal 

training sensitivity and specificity threshold (n = 10 for each species). Models are based on the IPCC’s 

representative concentration pathway 6. Satellite imagery obtained from ArcGIS (accessed 

07/08/2019). 

                        5.3.2 Environmental predictors of study species distribution 

G. verna and V. rupestris were both best predicted by temperature seasonality, while P. farinosa was 

best predicted by mean temperature of the warmest quarter of the year (Table 4.1.). P. farinosa and 

V. rupestris showed a similar division of model contribution between the variables used, while the 

model for G. verna relied heavily on temperature seasonality, which alone accounted for 67.5% of the 

predictive power of the model (Table 4.1.). The soil variables pH and water capacity, at 5 and 30 cm 

depth, all contributed less than 1% to the overall models and were subsequently removed, leaving 

only climatic variables.  

Table 4.1. Contribution of climatic variables to the final MaxEnt models generated for a) G. verna b) P. 

farinosa and c) V. rupestris (n = 10 for each species). Values indicate the permutation importance, as 

calculated by the MaxEnt software package.  

G. verna Mean 
variable 
importance 
(%) 

 P. farinosa Mean 
variable 
importance 
(%) 

 V. rupestris Mean 
variable 
importance 
(%) 

Temperature 
seasonality 

67.5  Temperature 
seasonality  

37.2  Min 
temperature 
of coldest 
month  

34.7 

Precipitation 
of driest 
month 

12.0  Mean 
temperature 
of warmest 
quarter 

26.4  Temperature 
seasonality 

27.1 

Max 
temperature 
of warmest 
month 

8.9  Precipitation 
of warmest 
quarter 

16.0  Mean 
diurnal 
range 

16.7 

Precipitation 
of wettest 
quarter 

4.2  Mean 
temperature 
of coldest 
quarter 

11.4  Mean 
temperature 
of warmest 
quarter 

10.9 

Mean 
temperature 
of coldest 
quarter 

3.8  Precipitation 
of coldest 
quarter 

4.1  Mean 
temperature 
of wettest 
quarter 

4.3 

Mean 
diurnal 
range 

2.2  Precipitation 
of driest 
quarter 

3.8  Precipitation 
of wettest 
month 
 

3.3 
 

Precipitation 
of coldest 
quarter 

1.4  Mean 
diurnal 
range 

1.1  Precipitation 
of driest 
quarter 

1.9 

a) c) b) 
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      Precipitation 
of coldest 
quarter 

1.1 

 

                        5.3.3 Primula farinosa ecotypic variation 

The European P. farinosa range is divided into four major regions, Scandinavian, British, Pyrenean and 

Alpine (see Fig 4.3.), represented by Sweden, the UK, Spain and Austria, respectively. Lacking suitable 

upland, sub-arctic or alpine areas, there are few recorded occurrences outside of these areas; 

exceptions include the Caucasus, Carpathians and Baltic regions.  

   

Figure 4.3. Recorded occurrences of P. farinosa across Europe, 1970 to 2000, as shown by the Global 

Biodiversity Information Facility database (GBIF.org).  

 

Models created using the strongest environmental correlates of plants in each individual region 

generated markedly different predicted potential distributions (Fig 4.4.). Mean longitude and latitude 

of the predicted potential distributions were significantly different between all ecotypes investigated 

(Fig 4.5.). All ecotypes showed mean longitudes and latitudes significantly different from the overall 

model for the species, with the exception of UK latitude (Fig 4.5.a). Models indicate that the only other 

region containing plants with environmental tolerances suitable for the UK climate was the Pyrenees 

(Fig 4.4.c).  

1000km 500km 
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Figure 4.4. Current predicted ranges for P. farinosa based on occurrence data for a) Sweden, b) UK, c) 

Spain and d) Austria, as shown by Maximum entropy modelling, using the equal training sensitivity and 

specificity threshold (n = 10 for each species). Models are based on the IPCC’s representative 

concentration pathway 6.  

a) 

d) 

c) 

b) 
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Figure 4.5. Median a) latitude and b) longitude of random points in current predicted ranges of P. 

farinosa ecotypes (n = 1000 in each ecotype). The top and bottom of boxes represent the 75th and 

25th percentiles respectively, whiskers represent maximum and minimum values within groups. Dots 

show mean values and letters indicate significant differences between group means, as shown by One-

way ANOVA and Games-Howell post-hoc analysis (P < 0.05). 

In contrast to the seven climatic variables used to build the model for the full European distribution, 

the model created for UK occurrence records relied on only two variables, annual temperature range 

and isothermality. These contributed 80.2 % and 19.8 % respectively to the model’s predictive ability 

and generated a model with a ROC AUC of 0.993 (± 0.001).  

Significant differences were found between mean annual temperature range and isothermality at the 

recorded occurrence locations of each European region (Fig 4.6.). UK occurrence locations showed the 

lowest mean annual temperature range, 19.3°C, compared to a European mean of 26.2°C, and highest 

mean isothermality, 3.6°C/°C, compared to a European average of 3.0°C/°C. The only mean variable 

value found not to be significantly different to the species mean was isothermality of the Swedish 

ecotype (Fig 4.6.b).  

 

a) 

b) 
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Figure 4.6. Median a) annual temperature range and b) isothermality at recorded occurrence locations 

of P. farinosa in different European countries (n = 30339, 490, 512, 847 and 8095 in the respective 

countries). The top and bottom of boxes represent the 75th and 25th percentiles respectively, whiskers 

represent maximum and minimum values within groups. Dots show mean values and letters indicate 

significant differences between group means, as shown by One-way ANOVA and Games-Howell post-

hoc analysis (P < 0.05). 

                         5.3.4 Primula farinosa UK distribution  

A model constructed using all European occurrence data for P. farinosa shows 99.2 % of the Northern 

Pennines area of outstanding natural beauty (AONB) is currently suitable for the species, while 100 % 

is found to be suitable based on UK occurrences (Fig 4.7). Under the IPCC’s RCP 6 projection, by 2050 

this will have decreased to 40.3 % for the model built using all European records but will still be 100 

% according to the model created with UK records only (Fig 4.7.).  
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Figure 4.7. Predicted UK ranges of P. farinosa based on a) all recorded occurrence data and b) UK 

occurrence data only, showing predicted range expansion and contraction by 2050, as shown by 

maximum entropy modelling using the equal training sensitivity and specificity threshold (n = 10 for 

each model). Models are based on the IPCC’s representative concentration pathway 6. Insets show 

enlarged images of the North Pennines area of outstanding natural beauty in which Upper Teesdale is 

located. Yellow dots represent the study site of chapters one and two, Widdybank Fell.   

 

a) 

b) 
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        5.4 Discussion  

                      5.4.1 Model performance 

The receiver operating characteristic (ROC) area under curve (AUC) values of the models generated 

are all high, indicating correct predictions of presence or absence in more than 90% of cases for each 

species. Future work may benefit from reducing the Pearson’s correlation coefficient used to classify 

variables as highly colinear as, in most disciplines, 0.8 is regarded as a strong relationship. Increasing 

strictness of the collinearity criteria may help to prevent overfitting, a common issue in models with 

many predictor variables (Elith et al, 2010; Muscarella et al, 2014). The optimum number of predictors 

needed to avoid over and underestimating model performance is still largely unknown (Radosavljevic 

and Anderson, 2014; Moreno-Amat et al, 2015) but reduction of model complexity, informed by 

principal component analysis may be beneficial to future research (Hirzel et al, 2002).  

The ROC AUC is a useful measure of a model’s ability to correctly categorise areas as suitable or 

unsuitable, as it is exempt from issues of subjective threshold choice. However, it has been shown to 

inflate estimates of model accuracy, when used to assess the efficacy of models which used assumed 

absences (as is the case in MaxEnt), rather than confirmed absences (Peterson et al, 2008; Jiménez‐

Valverde, 2012). Using this performance measure penalises models for predicting potential 

distribution, rather than the realized distribution i.e. with interspecific interactions (Jiménez‐Valverde, 

2012).   

                   5.4.2 Current environmental suitability across Europe 

MaxEnt models indicate that only small areas of the UK are currently suitable for G. verna and V. 

rupestris, in which the Northern Pennines are not included (Fig 4.1. a, b). This suggests that the species 

are indeed relicts from a previously suitable environment as concluded by several previous 

publications (Pigott, 1956; Bellamy et al, 1969; Squires, 1971) and that they are now living in a sub-

optimal environment in the UK. P farinosa is predicted to live in a large swath of land across the UK, 

which is reflected by its higher abundance here. MaxEnt models the fundamental niche of a species, 

consistently predicting distribution larger than in reality (Yang et al, 2013). Predicted distributions 

closely resembled the actual European distributions of the study species, but overestimated ranges 

across France and Germany for all species. This may be due to the high agricultural intensity in these 

countries (Donald et al, 2001), which could also limit distribution. The model results suggest that, 

under the projections of the IPCC’s RCP 6, by 2050 climate change will have had little effect on the 

European distribution of the study species. Largely accurate predictions of current distribution justify 

the projection of these models onto future climate scenarios.  

                     5.4.3 Future environmental suitability across Europe 

The IPCC’s RCP 6 was chosen to represent the climate of 2050 as it is the second most severe of the 

IPCC’s four projected scenarios (Van Vuuren et al, 2011). Of these four scenarios, the most severe, 

RCP 8.5, is more extreme than most other predictions, and the less extreme scenarios, RCP 2.6 and 

RCP 4.5 predict little change in global temperatures by 2050 (Riahi et al, 2011). RCP 6 was thus used 

as it represents the most severe climate change scenario which is most likely to occur. 

An increase in mean global surface air temperature would cause an increase in latitude of the thermal 

niche of a species and, unless the species was already at the extreme of its thermal niche on Earth, 

should cause no significant overall change in species range area. These assumptions were tested for 

the three study species chosen in the present study. Contrary to the hypothesis of no change in 

suitable habitat area, models showed a severe overall decrease in suitable habitat of 19.7 % for P. 
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farinosa, while G. verna and V. rupestris are predicted to have small increases by 2050. No significant 

changes in the predicted mean latitude or longitude of any of the study species were found by 2050, 

in accordance with the hypothesis outlined above. While climate change is often synonymous with 

negative ecological impacts, the small increases in suitable habitat area for G. verna and V. rupestris 

are not counterintuitive. For example, a uniform increase in global temperatures simply means that 

species range may move, but this does not necessitate range shrinkage. In European high altitude and 

latitude areas, loss of plant species richness is more commonly associated with agricultural 

intensification (Luoto et al, 2003; Ren et al, 2009). These models indicate that, according to the IPCC’s 

RCP 6, during the first half of the 21st Century, climate change in isolation will have little impact on 

the European distribution of the study species.  

                    5.4.4 Environmental predictors of species presence 

Phillips (2005) warns that variable contribution estimates should be interpreted cautiously, 
particularly when variables are correlated. Contribution values are given here as indicators of species 
requirements, rather than empirical data. It is important to note that MaxEnt is a machine-learning 
algorithm (Phillips et al, 2004), whereby the predictive ability of variables is based upon their 
correlation with occurrence data. This can lead to, for example, precipitation of the warmest quarter 
correctly predicting the majority of occurrence locations and thus heavily contributing to the overall 
model, whilst precipitation of the remaining three quarters may contribute relatively little or even be 
omitted. This should not be interpreted as the species not requiring rainfall during these periods.  

Jackknife analysis showed that, for G. verna, the highest contributing variable in isolation, temperature 
seasonality, generated a model with a ROC AUC of 8.99. Temperature of the coldest quarter, which 
contributed only 3.8 % to the overall model, alone generated a model with a ROC AUC of 9.20. This 
gives two important insights into the variable contributions. Firstly, whilst temperature of the coldest 
quarter is not strongly correlated, relatively, with the occurrence data, it is an important determinant 
of G. verna distribution. Secondly, the contribution of temperature seasonality to the model is 
dependent upon interactions with other variables a common phenomenon in niche modelling (e.g. 
the predictive ability of temperature in conjunction with precipitation is greater than the sum of the 
two individually (VanDerWal et al, 2013)).  

Across the study species, temperature seasonality was an important predictor of occurrence and 
variables relating to the warmest and coldest periods of the year also featured highly in models. This 
indicates that the occurrence of these arctic-alpine species is often dictated by the annual variation in 
temperatures experienced. Precipitation played a much lesser role in model predictions than the 
temperature variables, indicating that these species may universally inhabit damp environments.  

The final inclusion of only two predictor variables in the model built using only UK P. farinosa 

occurrence data (annual temperature range and isothermality), using the same method, is most 

probably due to fewer variables being required to predict the distribution of a smaller, less variable, 

data set. No precipitation-related variables were used to predict UK occurrences. This suggests that 

none of the aspects of precipitation included in the Worldclim dataset are limiting to P. farinosa in the 

UK i.e. most of the UK has sufficient precipitation for P. farinosa to persist, so this does not convey 

any discriminatory ability to the model. 

                        5.4.5 Regional adaptation of Primula farinosa ecotypes 

Based on the observation that many species exhibit regional adaptations to their environments (Joshi 
et al, 2001; Leimu and Fischer, 2008) and often inhabit different environmental conditions in these 
different regions (Wasof et al, 2013), the hypothesised that P. farinosa would inhabit a different set 
of environmental conditions in the UK, compared to the rest of Europe, was tested.  
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While the boxplots for figures 4.5 and 4.6 show considerable overlap between the longitude and 
latitude and climatic conditions inhabited by the European populations of P. farinosa, it is important 
to note the parameters being displayed here. Boxes display the 25th and 75th population percentiles 
and error bars display the most extreme values of the populations. This best represents the full spatial 
and environmental extent of the different populations, but consequently compresses the plots. Dots 
should be used to interpret the population mean values from which statistical analyses were derived, 
and boxes are best interpreted as an indication of data skewing (for instance, a mean value higher 
than the median indicates a number of extremely high values within the population).  

If no differentiation in environmental tolerances had occurred between the isolated regions currently 
inhabited by P. farinosa, then the plants from each region would inhabit regions of similar climatic 
conditions. This could still lead to corelative model predictions differing for each region e.g. plants in 
a maritime British environment may fill a smaller proportion of their thermal niche than their 
continental counterparts. This, however, would still mean that the UK would be classified as suitable 
for the environmental tolerances of the continental plants. As this is not the case in the models created 
for P. farinosa, this indicates that the UK, Scandinavia, Pyrenees and the Alps may be home to distinct 
ecotypes adapted to their local environments. The models suggest that the only other ecotype suited 
to the UK climate is the Pyrenean one, which inhabits a similarly maritime environment. As P. farinosa 
seeds are dispersed only short distances by hydrochory (Hambler and Dixon, 2003), however, it is 
unlikely that the Pyrenean adapted plants could become established in the UK currently. It is 
important to note that these models do not show absolutely that plants from the Alps or Scandinavia 
are unable to survive in the UK climate, but rather that they currently live in significantly different 
climates. The models generated for each region all had significantly different mean latitudes and 
longitudes.  

In the UK, P. farinosa occurrence was best predicted by annual temperature range and isothermality. 
Isothermality is a measure of the severity of day/night temperature fluctuation, relative to 
winter/summer fluctuation (O’Donnell and Ignizio, 2012) and is a strong ecological predictor in 
maritime environments (Nix, 1986). Smaller annual temperature ranges were found at the P. farinosa 
occurrence locations in the UK and the Pyrenees than in Scandinavia or the Alps, indicative of more 
maritime regions (Scheitlin, 2013). The UK and Pyrenees were also found to have higher levels of 
isothermality than the other European regions i.e. a larger daily temperature range, relative to annual 
temperature range. These are the strongest environmental correlates of P. farinosa occurrence in the 
UK and, as such, should not be interpreted as the sole environmental requirements for the species in 
the region.  

Based on the distinct environmental tolerances of P. farinosa in UK ecotype, compared to continental 
populations, a 2050 projected distribution model was created using only UK occurrence training data. 
According to the model created using all European occurrence data, by 2050, the proportion of the 
Northern Pennines AONB suitable for P. farinosa will have decreased by more than 50%. In contrast, 
the model created using only the occurrence data for the locally adapted UK plants show that by 2050, 
all of the Northern Pennines AONB will still be climatically suitable. This shows that, due to local 
adaptation, there is perhaps little concern for P. farinosa in the upper Teesdale under the RCP 6 
predictions. This again suggests that agricultural practices are potentially a more important factor in 
the UK in limiting species distribution.  

The higher predicted success of UK plants could be attributed to the greater resistance to climate 
variability at range edges predicted by the abundant centre model (Sagarin et al, 2006). However, it 
has also been shown that range centre seeds can perform better than those of locally adapted 
ecotypes, due to higher maternal investment in more optimum environments (Santon and Galen, 
1997). These possibilities remain ripe for further investigation in the context of the findings of the 
present study.  
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                     5.4.6 Limitations to the present methodology 

Using presence-only species occurrence data is fundamentally flawed for a number of reasons. Firstly, 

and most importantly, any grid cell of the map where there is no recorded occurrence is classified as 

an absence by MaxEnt (Elith et al, 2010). These assumed absences are unverified and thus may lead 

to the model classifying areas of suitable environmental conditions as unsuitable for the species in 

question. However, unless regions with one set of environmental conditions are consistently surveyed 

less than others, a large sample size should counteract the niche classification implications of assumed 

absences. Assumed absences also have detrimental implications when using model evaluation 

techniques based on true positive rate (proportion occurrence grid cells correctly predicted [also 

sensitivity]) and false positive rate (proportion of absence grid cells correctly predicted [also 1-

specificity]), such as the receiver operating characteristic (ROC) area under curve (AUC). Sampling bias 

arising from uneven sampling intensity, pseudo replication and variation in species detectability across 

its range also hinder model accuracy (Phillips et al, 2009; Elith et al, 2010).  

The Worldclim data set was interpolated from weather station data worldwide to a resolution of 

approximately 1Km2 (Hijmans et al, 2005). The resolution of the data and method by which it was 

attained have been criticised for use in localised SDMs (Bedia et al, 2013; Piggio et al, 2018; Wango et 

al, 2018). As the distribution of the study species was analysed for general trends across Europe, these 

issues were avoided as no localised predictions were made.  

Indirect variables, (those representing the compound effect of other environmental variables, e.g. 
Altitude and NDVI (Li et al, 2011; Körner, 2007)) were avoided in model construction in favour of 
individual climate components. This avoided basing projections on predictors which are only proxies 
for temperature and precipitation, giving more insight into the fundamental causes of species 
distributions. Whilst altitude was excluded from analyses, it should be noted that altitude also affects 
air pressure and thus CO2 availability (Smith et al, 2009). Whilst this may affect plant growth (Kogami 
et al, 2001), no data are available which would allow these effects to be projected onto future 
emissions scenarios.  

There is some disagreement in the literature as to what exactly the continuous outputs generated by 
MaxEnt represent (e.g. Royle et al, 2012; Yakulic et al, 2013). To avoid ambiguity, and for the purposes 
of spatial analysis, the logistic output was converted to a binary (suitable or unsuitable) prediction. As 
MaxEnt generates a value between 0 and 1 for each cell of a map, threshold choice involves deciding 
on a number, between 0 and 1, below which a cell is classified as unsuitable and above which it is 
classified as suitable for the species in question (Escalante et al, 2013). This is a largely is a largely 
subjective process, but can seriously impact model outputs (Norris, 2014). The default for many 
modellers is to simply use 0.5, but this neglects the fact that a species’ prevalence is not uniform across 
its range (Freeman and Moisen, 2008). In the present study, the equal training sensitivity and 
specificity threshold was chosen to create binary models, due to its high prediction accuracy (Cao et 
al, 2013). This is the threshold value calculated by MaxEnt, for a situation in which the proportion of 
occurrences correctly predicted is equal to the proportion of absences correctly predicted in the data 
used to train the model. This effectively weights the threshold according to how widespread the study 
species is i.e. how likely a default threshold of 0.5 is to correctly classify as suitable or unsuitable.  

                     5.4.7 Ecological explanations and implications of model results 

Whilst it is hard to quantify whether a species is at the edge of its geographic range, the following 

table (Table 4.2.) percentiles at which the mean UK longitudes and latitudes of the study species are 

found. The values indicate that, in terms of both their longitude and latitude, the UK populations of 

the species studied herein are not at the extremes of their ranges. Although geographical coordinates 

cannot be used alone do not determine climate (e.g. Leroux, 1998; Grabowski, 2000; Hall, 2004), along 
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with the large areas found to be climatically suitable for the UK ecotype of P. farinosa, this calls into 

question the thought that the Teesdale rarities are at their range margins and is an important area for 

future research.  

Table 4.2. Population percentiles of Gentiana verna, Primula farinosa and Viola rupestris mean UK 

longitudes and latitudes.  

Species Longitude Latitude 

Gentiana verna 35.8 41.5 
Primula farinosa 22.5 22.6 
Viola rupestris 33.3 38.8 

 

Niche models created using only climate variables can, by definition, only predict areas of suitable 

climate. There are many of the determinants of a species’ distribution which are not factored into 

these models. As such, the ranges predicted here will be subject to further reduction dependent upon 

species interactions, agricultural practices and geomorphological restrictions. Despite this, Dullinger 

et al (2012) found environmental variables to be more important dictators of plant species distribution 

than distance from refugial source populations. Dullinger et al (2012) also reported calcicolous species 

and species with short seed dispersal distances filled a smaller proportion of their potential 

distributions. As G. verna, P. farinosa and V. rupestris are all calcicolous (Elkington, 1963; Jonsell et al, 

2000; Hambler and Dixon, 2003) and have short seed dispersal distances (Hambler and Dixon, 2003; 

Hedley, 2015; Beattie and Lyons, 1975), this may cause further significant restrictions to their 

distributions. It is important to note that a species’ distribution is dictated not just by its current 

surroundings, but also by historic environmental conditions (Hortal et al, 2008). For this reason, the 

results of correlative distribution models may be skewed to some extent if distribution lags behind 

climate change.  

The differing environmental conditions that P. farinosa was found to inhabit across its European range 
lends support to the thought that the Teesdale rarities, including Hippocrepis comosa (Fearn, 1973), 
Dryas octopetata and Polygala amorella (Pigott, 1956; Gibbons, 1978) belong to ecotypes distinct 
from those found on the continent. Conservation efforts should, therefor, focus not just on protecting 
areas inhabited by the rarities, but also on allowing genetic diversity to spread by maintaining 
connected metapopulations (Hannah et al, 2014).  

Alterations to ecological interactions are usually overlooked in studies on the biological effects of 
climate change (Post and Pedersen, 2008). For example, phenological mismatches can lead to 
detrimental effects on reproductive success, through the breakdown of mutualistic interactions (Toby 
Kiers et al, 2010). Under changing climatic conditions, the leading and trailing edges of species ranges 
often move at different rates (Anderson et al, 2009). Models tend to predict more stable trailing edges 
due to the lack of ancestral ecological interactions in newly colonised areas (Hampe and Petit, 2005).  

The finding of no significant changes in latitude or longitude in the 2050 models is unexpected given 

the poleward trends seen in most species (Parmesan and Yohe, 2003; Root et al, 2003), however this 

is may simply be due to the limited extent of upland and alpine areas across Europe.  
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6. Conclusions 

            6.1 Effects of experimental warming and grazing simulation on Upper Teesdale plant species 

For the most part, there were no observable effects of experimental warming and simulated grazing 

on leaf area growth of the study species. In support of the hypotheses of the study, P. farinosa 

exhibited significantly greater dry biomass accumulation in all warmed treatments, compared to the 

un-warmed treatments, despite being at its warmer range extremity at the study site. Finally, across 

all of the species studied, no significant differences were found between competition intensity under 

control and experimentally warmed conditions.  

The importance of reproduction for future conservation efforts was recognised by Doody (1975) in 

her demographic study of some of the Teesdale rarities. Further work would certainly benefit from 

investigating the effects of experimental warming on reproductive success of the species in question.  

More replicates are clearly needed to establish the effects of the treatments investigated here with 

greater statistical confidence, particularly the effects of warming on competition intensity, which is an 

understudied area of vegetation ecology.  

            6.2 Effect of reservoir proximity on the temperature environment of Widdybank Fell 

Contrary to the hypothesised impacts of proximity to the Cow Green reservoir, no effects were 

observed on mean air temperature or growing degree day sum and no lag effect was observed on 

temperature at the daily scale. The reservoir did appear to moderate cold temperature extremes, 

significantly reducing exposure to freezing events.  

While it is hard to relate this phenomenon directly to its impact on the local vegetation, future work 

could certainly benefit from using distribution data of the rarities, collected by Margret Bradshaw, to 

attempting to track any movement of populations post reservoir construction. 

It is important to note that demographic turnover plants can vary greatly across their ranges, creating 

a lag between environmental changes and their biotic responses (e.g. Lönn and Prentice, 2002). For 

one of the species studies here, V. rupestris, the population turnover time was estimated at 32 years 

(Doody, 1975). While this could significantly delay the observable impact of climate change, it would 

not obscure the effects of the reservoir, which was filled in 1971 (Lewthwaite, 1999). This precludes 

the possibility of a local extinction debt due to the reservoir’s construction.   

         6.3 Responses to post-industrial climate change across their European ranges 

All species studied exhibited a small trend towards lower latitudes and longitudes, representing a 

more maritime environment, in the post-industrial era. G. verna and P. farinosa were observed 

significantly later in the year and P. farinosa and V. rupestris were found to inhabit significantly higher 

altitudes.  

Accounting for concurrent increases in mean global surface air temperature, G. verna and P. farinosa 

did not fully track the spatial or temporal movement of their fundamental thermal niches in the post-

industrial era. Conversely, V. rupestris was able to track its thermal niche, even exhibiting a net shift 

into cooler areas, driven primarily by its movement towards higher altitudes. This is, however, a short-

term solution which may lead to population isolation in the future. These findings support the intuitive 

logic that species would shift their ranges to higher altitudes more readily than to higher latitudes, 

due to the smaller distance required to experience an equivalent temperature reduction.  
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The delay in phenology observed is counterintuitive given that it represents a shift towards warmer 

summer temperature for the species studied but could be explained by alterations to the seed 

stratification process during winter.  

As species shift their ranges it is likely that they will form novel species interactions and potentially 

lose ancestral interactions, further complicating predictions for their future success.  

            6.4 Future distributions of and variations in the study species 

MaxEnt distribution models indicated that each of the study species are at their environmental limits 

in Upper Teesdale, with only small areas of the UK being classified as climatically suitable form them. 

In terms of latitude and longitude, however, the UK does not lie at the extremes of the ranges of any 

of the species studied, suggesting the maritime nature of the UK climate may play an important role 

in determining distribution of the study species.  

The MaxEnt model created using only the UK occurrence data for P. farinosa indicates that a much 

larger area of the UK is currently suitable for the species, supporting the hypothesis that P. farinosa 

may have developed regional adaptation to the UK climate. The mean annual temperature range and 

isothermality, the most important predictors of P. farinosa presence in the UK, at known occurrence 

locations showed significant differences in mean values between inhabited regions. This further 

supports the notion that the species has developed regionally adapted ecotypes. This point should not 

be overlooked as local adaptation of plants has been shown to counteract and outweigh the effects 

of climatic changes (Liancourt et al, 2013).  

Due to both the isolation of the UK populations and low seed dispersal abilities of the species studied 

and the apparent differences in climatic requirements of the continental ecotypes, genetic input from 

populations outside of the UK is unlikely. While Upper Teesdale is relatively distant from the core 

ranges of the species studied, such areas can be important “stepping-stones” for species range shift 

(Hannah et al, 2014).  

For all models, little change is predicted in distribution by 2050 based in the IPCC’s RCP 6 climate 

projection. For the UK, and much of Europe, the predicted distributions are much larger than the 

known distributions of the species, showing that the species do not currently fill their fundamental 

niches. This suggests that factors other than climate are important dictators of the species ranges. 

It is well established that plants can modify their microclimate (Cuddington et al, 2011), for instance, 

low-growing species can decouple from atmospheric temperature to some extent by reducing heat 

convection (Körner, 2007). In the present study, this was inadvertently demonstrated when bryophyte 

removal was shown to significantly reduce relative humidity. In light of this, an important direction for 

future research could be to create a fine-scale dataset, using the bioclim variables outlined by Hijmans 

et al (2005), for the Upper Teesdale region. This would facilitate much more accurate distribution 

modelling for the area.  
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            6.5 Summary of the concepts investigated 

The effects of the phenomena studied here on a species’ distribution and persistence can be best 

conceptualised as a simple two-dimensional representation of a Hutchinsonian niche. Here mean and 

minimum temperatures were used to demonstrate the thermal niche of a hypothetical species. Units 

are arbitrary and are provided as examples only, as such, they do not correspond numerically to the 

effects of the environmental variables discussed.  

 

 

 

 

 

Figure 6.1 Diagrammatic representations of the impact of a) competitor species, b) lake proximity, c) 

range shifts, d) ecotypic variation and e) microclimate on niche breadth of a species.  

The first figure demonstrates the simplified thermal niches of three northern hemisphere species, with 

a more northerly species better adapted to colder temperatures and a more southerly species better 

adapted to warmer temperatures (fig. 6.1. a). In regions where the temperature is suitable for both 

e) 

d) 

c) 

b) a) 
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the study species and a competitor, i.e. the respective niche’s overlap, resources must be divided 

between the two. Here this is simplified by splitting the region of overlap exactly in half.  

The second figure illustrates how moderation of the minimum temperatures by the reservoir could 

allow the study species to inhabit a region which would otherwise lie outside of its thermal niche (fig. 

6.1.b).  

In the third figure, a representation of failure of a species to track its niche, as was the found to have 

occurred in G. verna and P. farinosa in chapter 3, is given (fig. 6.1.c). The green plot represents a 

species niche at a given point in time, while the red plot represents the same niche following a shift in 

environmental conditions. In this instance, the lower black section indicates the area in which the 

species currently lives which will no longer be suitable in the future. The white section indicates the 

newly suitable habitat the species has colonised and the upper black section the newly suitable habitat 

the species has failed to colonise.  

The following figure demonstrates how ecotypes of the same species which have slightly different 

environmental tolerances give rise to the average thermal niche displayed in all of the figures (fig. 

6.1.d). 

Finally, the last figure illustrates how the insulative effects of ground-cover vegetation can allow plants 

to alter their own environment, making areas with temperature previously too low habitable (fig. 6.1. 

e).  

The present study suggests that the scenarios shown in Figure 6.1 b, c and d may affect the study 

species so some extent in Upper Teesdale. Chapter three showed that the Cow Green Reservoir 

moderated temperature minima at ground level (Figs. 2.6, 2.8 a), potentially extending the species’ 

thermal niches to include areas which would ordinarily experience temperatures too low at times. In 

Chapter four, P. farinosa and G. verna were found to have shifted their spatial and temporal ranges 

insufficiently to fully counteract the effects of post-industrial climatic warming (Table 3.1). This could 

lead to a reduction in overall niche breadth, as demonstrated in Figure 6.1 c, as species fail to fully 

exploit areas of newly favourable climate. Finally, as was shown for P. farinosa in Chapter 5 (Figs. 4.4, 

4.6), ecotypic variation may occur in the environmental tolerances of species. This may confound the 

above effects on niche breadth, with plants possibly becoming better adapted to different 

environmental conditions in different areas. No compelling evidence was found regarding the role of 

interspecific interactions in determining niche breadth of the study species.  

To conclude, it is hard to establish the extent to which the presence of the Teesdale rarities can be 

attributed to climate, past and present, geomorphology or anthropogenic land management 

processes, deforestation, grazing etc.  

The prospect of the UK becoming climatically unsuitable for the rarities to persist creates both 

biological and social implications for conservation efforts. A commonly raised issue within the field of 

ecology is the idea of the shifting baseline syndrome leading conservationists trying to maintain an 

ecological state which may no longer be suited to the current environment (Papworth et al, 2009). 

While it is true that the future existence of the species investigated here is probably not dependent 

on the populations in the Teesdale, the unique local adaptation of these populations could provide an 

important source of the phenotypic diversity needed to survive in a rapidly changing environment.  

No area of the present study raised any pressing concerns for the future of Gentian verna, Primula 

farinosa or Viola rupestris in Upper Teesdale under current climate change scenarios. The 
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environment of the northern Pennines is climatically stable relative to the Alpine and Boreal core 

ranges of the species and does not appear to pose any great threat to the longevity of the populations  
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