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Abstract 

In all types of reservoirs, understanding the pore system is crucial to quantifying and 

predicting multiphase fluid storage and flow. The prediction of the fluid storage and flow 

helps to decipher the volume of the reservoir of interest, how easily accessible it is and 

how recoverable its reserves are. In the hydrocarbon industry, the focus of many recent 

studies is towards reserves in tight reservoirs. Improvements in the extraction methods 

such as the introduction of horizontal wells and hydraulic fracturing have indeed 

rendered these reserves economically viable.  

However, quantifying the pore system of fine-grained reservoirs is hugely challenging 

due to the mineralogical and textural heterogeneity at the microscale and the sub-

nanometer to micrometer size of pores. In this work, the pore system and pore surfaces 

of the Cretaceous Eagle Ford Formation are characterised by analysing a set of 25 samples 

from outcrops and six wells with maturities of R0 0.4-0.5%, 0.9% and 1.2%. The aim of this 

work is to establish an analytical workflow for the characterisation of the pore system in 

tight reservoirs, also by highlighting the importance of a multi-disciplinary approach, 

often neglected.  

The set of samples was analysed using a varied range of techniques; X-Ray Diffraction, 

optical microscopy, Energy Dispersion X-ray spectroscopy (EDS), Scanning Electron 

Microscopy (SEM) and micro-CT scans were used to reconstruct the mineralogical and 

textural framework in which porosities occur. Petrographic studies show that the organic 

matter (OM) is a marine type II kerogen and that microfacies vary from finely laminated 

foraminiferal mudstones to packstones. SEM-EDS and Cathodo-luminescence (CL) 

techniques were used to reconstruct mineral paragenesis and OM evolution. SEM and 

Backscattered-SEM (BSEM) high resolution maps identified different pore types and 

showed how pores change with maturity. At R0 0.4-0.5% the main porosity types are 

interparticle, enclosed within the coccolithic matrix, whereas at R0 1.2% spherical OM 

pores smaller than 20 nm are more frequent, related to the thermal maturation of the OM. 

Pore sizes were calculated using a combination of SEM, N2 and CO2 gas adsorption and 

Mercury injection Porosimetry (MICP). Immature and oil window samples present pores 

larger (~2-100 nm) than samples in the gas maturity window(~1-40 nm). MICP analyses 

indicate a connected pore system in all the samples. Focussed Ion Beam (FIB)-SEM 



volumes show that at R0 0.4 to 0.9%, the pore system is connected through interparticle 

pores, whereas at R0 1.2%, the connectivity occurs through pore throats < 10 nm. 

Environmental SEM (ESEM) observations and Chemical Force Microscopy (CFM) studies 

at the nanoscale show that surface wettability depends on chemical variations of the fluid 

interacting with the pore surfaces, also validated with AFM-IR analyses, and on the pore 

surface mineralogy. AFM-IR studies also identified in situ chemical changes between 

different organic molecules and between the same organic molecules at increasing 

maturities. In summary, this work brings to light the necessity to use a combination of 

physical and chemical methods to define the parameters affecting the pore system and its 

evolution with time. Moreover, the use of state-of-the-art methods such as the AFM-IR 

has allowed to validate previous theories on the organic molecules behaviour and to 

suggest a new approach for further studies at the nanoscale of rock surfaces. 
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Chapter 1 

Introduction 

 

 Pore system characterization 

In all types of underground reservoirs, an understanding of pore systems is essential to 

determine where resources are stored, how they are connected and how they can be 

extracted. In hydrocarbon reservoirs, deciphering the pore system is a fundamental step 

in the generation of reliable volume estimations and fluid flow models. Once the potential 

profitability of the reservoir is established, these models can help to maximise well 

performance and enhance the productivity of the reservoir. 

 Aims and objectives 

The final aim of this study is to provide a comprehensive understanding of the pore 

system and of the pore surfaces of the Eagle Ford reservoir by integrating geological, 

physical and chemical principles. This multi-disciplinary approach is often neglected, as 

it requires systematically different background competencies, but this work demonstrates 

that it is essential in order to make quantitative statements regarding the pore system of 

the Eagle Ford pore system and, in general, of tight reservoirs. Moreover, this work offers 

a new, reliable workflow for the characterisation from the nano-scale to the micro-scale 

of a complex pore-system. Once the system has been characterised at the nano and micro-

scale, the reservoir properties can be upscaled, taking into account the variabilities of the 

pore systems in function of the textural framework. 

In particular, this work allowed to answer the following questions: 
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- How do diagenesis and burial history affect the pore system? 

- How does the pore system change with the change in thermal maturity? 

- Which microfacies contain the best pore system? 

- How does the chemistry of the oil affect the pore surfaces?  

- Is porosity influenced by the OM type? 

- How does the surface chemistry of the pores vary and what controls it? 

- How do the surface chemistry variations influence wettability? 

The integration of the quantitative physical and geological analysis of the pores with a 

methodical reconstruction of their surface chemistry has also allowed the validation of 

completely novel testing methods (chapters 5 and 6). These testing methods have 

permitted to: 

- Quantify and observe the surface chemistry variabilities of pure calcite crystals in 

contact with different oil compounds.  

- Provide a new approach into the characterization of the nanometric surface 

chemistry variabilities of a mudstone reservoir. 

- Examine and chemically analyse in situ the chemical variations of the organic 

molecules with progressively increasing thermal maturities. 

 Unconventional resources 

In the last two decades, the advent of new technologies such as horizontal drilling and 

multistage hydraulic fracturing stimulation has rendered economically viable many 

hydrocarbon resources that were previously unrecoverable with conventional extraction 

methods (Grafton et al., 2016; Ríos et al., 2016; Slatt and O’Brien, 2011). Nowadays, 

unconventional hydrocarbons make up to more than 20% of the total worldwide 

resources (Aminzadeh and Dasgupta, 2013), indicating the need for detailed 

characterisation. The investigation of these resources is complicated by the fact that they 

are formed by nanometre to micrometre grain-size (< 62.5µm) sediments and are 

minerally and texturally heterogeneous (Algré and Legrand, 2014; Aplin et al., 2011; 

Bryndzia and Braunsdorf, 2014; Macquaker and Gawthorpe, 1993; Macquaker et al., 2007; 

Passey et al., 2010; Saidian et al., 2014). Due to their fine-grained and heterogeneous 

texture, unconventional reservoirs also present a diverse pore system formed by pores 
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from the sub-nanometre to the micron scale size. This tight, heterogeneous pore system 

produces a network with permeabilities in the range of sub nanodarcies to microdarcies 

(Merriman et al., 2003).  

 The Eagle Ford Formation 

This work aims to characterise the pore system of the Eagle Ford Formation. The Eagle 

Ford is a carbonate-rich unconventional reservoir, that was targeted as productive by the 

hydrocarbon industry in 2008, when hydraulic fracturing and horizontal drilling were 

here employed for the first time. In less than six years after the first discovery well, its 

production grew from virtually zero to more than 1 million barrels of oil equivalent per 

day (boe/d), and 7 billion cubic feet of gas equivalent (bcfe/d) per day. Its most recent 

production is of 1.4 boe/d and 4.9 bcf/d (U.S. EIA, 2019), making it the second-best 

unconventional play in the United States following the Marcellus Formation in terms of 

productivity. Due to the heterogeneity and complexity of this reservoir, assessing the pore 

system and understanding how it varies through time requires a detailed analysis of the 

controlling factors affecting the pores. This detailed analysis can be only done by using a 

multi-scale, multi-disciplinary approach. The combination of these techniques allows to 

place the pore system of the Eagle Ford Formation in a petrological framework, to 

quantify the pore sizes, volumes and connectivity, to analyse the surface chemistry 

characteristics of the pores and to understand how the system evolves through time. 

 Depositional environment and diagenesis 

The first factor that is being considered in this study is the petrological framework of the 

Eagle Ford samples and its relationship with the pore system. A porous network cannot 

be understood without considering the solid framework that encases it. The mineral and 

organic constituents of the rock, together with the rock fabric and texture, determine the 

nature of the porosities and therefore control the whole flow system network (Dawson 

and Almon, 2010; Katsube and Williamson, 1994). In turn, the microfacies and the 

mineralogical composition of the sediments are a function of their depositional and 

palaeoceanographic settings (Bjorlykke, 1998). Textural and compositional analyses can 

give important insights into the interpretation of the depositional environment and the 
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burial history of the samples (Bathurst, 1974; Bjorlykke, 1998; Macquaker and Gawthorpe, 

1993; Macquaker et al., 2007; Folk, 1959). Unravelling the diagenetic history of the 

sediments also has important implications in the assessment of reservoir properties of 

petroleum systems (Aplin and Macquaker, 2011; McAllister et al., 2015; Taylor and 

Macquaker, 2014). During burial, the sediments undergo a series of mechanical and 

chemical reactions that modify the pore network, the fluid properties as well as the 

mineral precipitates (Aplin et al., 2006; Bjorlykke, 1998). Mechanical compaction occurs at 

shallow depths (<2 km) and low temperatures (<60-80⁰C), and it is mainly a function of 

the effective stress and grain strength and size (Bjorlykke, 1998; Goulty, 1998). Chemical 

compaction, on the other hand, mainly depends on the chemical kinetics controlling the 

dissolution and precipitation of minerals (Aplin and Macquaker, 2011; Bjorlykke, 1998; 

Peltonen et al., 2009). Evidence of mechanical compaction can be sought, for example, in 

the reduction of porosity and in overpressure signals (e.g. expansion seams by pressure 

solution) and in the re-alignment of the mineral grains perpendicular to the stress 

direction. By looking for petrographical evidence of specific depositional patterns and 

diagenetic modification through time, it is possible to gain information on how these 

controls affect the pore system.  

 Thermal evolution of organic matter 

Understanding how organic matter is transformed at progressively higher burial stresses 

and temperatures is a vital step to the assessment of hydrocarbon resources in 

unconventional reservoirs (Chalmers and Bustin, 2017; Hackley et al., 2017; Schito et al., 

2017; Teichmüller, 1986). In addition, organic matter maturation significantly modifies the 

pore system, so that understanding its composition and retention helps in the overall 

comprehension of the nature and surface chemistry of the pore system. During thermal 

maturation, the organic matter generates oil, which migrates through the reservoir in the 

pore network of the unconventional source rock (Berg, 1999; Jia et al., 2014). The generated 

bitumen can modify the connectivity and the chemistry of the pore network (Anderson, 

1986; Morrow, 1990).  

In the gas window, thermal cracking of kerogen induces the formation of a large amount 

of organic nanoporosity ( Chalmers et al., 2012; Curtis et al., 2011; Loucks et al., 2012, 2011, 
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2009). These nanopores play an important role in the overall pore volume, as, due to their 

large surface areas, they are able to adsorb and store large amounts of gas (Chalmers et 

al., 2017; Curtis et al., 2011; Loucks et al., 2010, 2009; Ross and Marc Bustin, 2009; Wang 

and Reed, 2009). Moreover, several studies on mudstones have indicated that the 

connectivity of the pore system is associated to the narrow pore throats formed by the 

clay-rich matrix and the organic matter nanopores (Aplin and Moore, 2016; Clarkson et 

al., 2013a; Klaver et al., 2016; Mathia et al., 2019; Wang et al., 2016).  

 Pore systems in mudstones 

Given the relevance into the understanding of the pore system network in tight reservoirs, 

many studies have been made on the quantitative characterization of porosities in 

mudstones and chalk reservoirs (Aplin and Moore, 2016; Bernard et al., 2013; Busch et al., 

2017; Chalmers et al., 2012; Chalmers and Bustin, 2015; Fishman et al., 2012; Javadpour, 

2009; Klaver et al., 2015; Kuila, 2013; Liu et al., 2017; Loucks et al., 2012; Loucks and Reed, 

2014; Ma et al., 2016; Mathia et al., 2019; Peng et al., 2014; Saidian et al., 2014; Tian et al., 

2015; Wang et al., 2015). All the studies concluded that the pore system evolution is 

dictated by the primary rock texture and mineralogy, as well as by burial processes. 

Reduction of the available pore spaces is driven by compaction processes, precipitation 

of mineral phases in the form of cements, and migration of bitumen (Aplin et al., 2011; 

Chalmers and Bustin, 2015; Milliken and Day-Stirrat, 2013; Tiab and Donaldson, 2004). In 

contrast, an increase in the pore volumes can be given by chemical dissolution of mineral 

phases (Baruch et al., 2015; Loucks et al., 2010; Schieber, 2013) and, as previously 

mentioned, the maturation of the organic matter. In the gas window, the high surface 

areas of generated organic nanopores are found to be critical for the adsorbtion and 

storage of large amounts of gas (Chalmers et al., 2017; Curtis et al., 2011; Loucks et al., 

2010, 2009; Ross and Bustin, 2009; Wang and Reed, 2009). It was also observed that the 

migration of hydrocarbons, by migrating through the pore network, coats the mineral 

surfaces and inhibits the precipitation of further mineral phases by reducing the number 

of possible nucleation sites for cements (van Duin and Larter, 2001; Worden et al., 1998). 
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 Pore surface wettability variations 

Apart from inhibiting the cementation of new mineral phases, the migration of 

hydrocarbons also affects the wettability of mineral surfaces (Anderson, 1986; Basu and 

Sharma, 1997; Tölke et al., 2010). The wettability, in turn, strongly influences the 

productivity and the distribution of the hydrocarbons in a reservoir (Abdallah et al., 2007; 

Anderson, 1986; Mirchi et al., 2014). When a reservoir is oil-wet, pore surfaces retain more 

oil and the recovery rates are lower compared to a more water-wet reservoir. Unravelling 

the driving mechanisms that alters the wettability, therefore, contributes to the 

interpretation of the whole pore system behaviour and evolution. Wettability studies on 

hydrocarbon reservoirs brought to light that wetting behaviours can change at the 

nanometre scale and can evolve through time (Brown and Fatt, 1956; Buckley, 1998; 

Holbrook and Bernard, 1958). Many wettability studies focus on rendering an oil-wet 

reservoir more water-wet, increasing in this way the productivity; the alteration of the 

wettability and can be done by adding surfactants to the system or by reducing the overall 

salinity of the brine (Acevedo et al., 1992; Ahmadi et al., 2018; Alvarez et al., 2014; 

Andersen et al., 2016; Austad et al., 1997; Ayirala et al., 2006; Bryant et al., 1991; Feng and 

Xu, 2015; Kumar et al., 2005a; Penny et al., 2012; Standnes and Austad, 2000; Zhang and 

Somasundaran, 2006). Before adding surfactants in the production phase, however, it is 

necessary to understand how wettability changes depending on different properties. 

Previous works observed that wetting behaviours depend on many factors, such as the 

physiochemical conditions, the brine chemistry, the capillary pressure, the oil chemistry, 

the surface chemistry and surface roughness (Hiorth et al., 2010). Given the number of 

parameters that the wettability depends on, it is only possible to observe how they affect 

the system by analysing them separately. In the work done in this thesis, the factors that 

are considered are the chemistry of the oil interacting with the surface and the surface 

chemistry.  

 The Eagle Ford pore system 

Despite the success of this formation, further work needs to be done in order to better 

decipher the pore system and its controlling factors, especially considering future 

requirements to effectively manage the resources in a mature field. Several studies in the 
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recent years have analysed the porosity of the Eagle Ford (Anovitz et al., 2014; Chalmers 

et al., 2017; Ko et al., 2017; Ojha et al., 2017; Pommer et al., 2014; Schieber et al., 2016). In 

particular, Anovitz et al. (2014) studied the evolution of porosities with maturity 

combining SEM imaging and small angle neutron scattering (SANS). The data showed 

that the porosity of the system is highly dependent on the mineralogy and thermal 

maturity of the samples. However, the study does not give a detailed analysis of the 

samples and the pores. Ko et al. (2017), using a multi-technique approach, investigated 

the Eagle Ford pores and pore network in a quantitative way. Their samples, however, 

did not consider the evolution of the pore system as a function of maturity. Chalmers et 

al. (2017) took into account the thermal maturity of the samples, but the study only 

analysed the evolution of the organic matter without considering the impacts of the burial 

diagenesis on the rest of the porosity. Schieber et al. (2016) offered a detailed, but not 

quantitative investigation of the pore types and their evolution with burial diagenesis. 

However, none of these studies offers a quantitative analysis of the pore system in terms 

of changes in thermal maturity, and none has integrated a surface chemistry study to the 

petrological and physical characterisation of the pore system. Therefore, this thesis aims 

to cover all the points that have been neglected by previous works. 

 The multi-scale, multi-technique approach 

Quantifying pore properties such as distribution, shape and surface chemistry can 

ultimately enhance well performance and production. However, the porosity assessment 

requires a methodical approach and the combination of several techniques (Bustin et al., 

2008; Saidian et al., 2014). It is essential to determine the factors that influence pore 

structure and connectivity, specifically the rock texture, the mineralogy and the 

diagenetic processes that have occurred in the formation. Here, bulk rock analytical 

techniques, namely X-ray powder diffraction, Rock Eval and TOC measurements, have 

identified the bulk mineral composition of the samples, their organic matter content and 

hydrocarbon generation potential. Petrological studies as transmitted and reflected 

optical microscopy and scanning electron microscope (SEM) imaging have allowed the 

identification of the main components of the samples and to distinguish the microfacies 

and the depositional settings. Interpretation of diagenetic processes and textural 
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variability is performed through the integration of bulk mineralogy analyses, optical and 

electron microscope imaging, as well as Energy Dispersive X-ray spectroscopy (EDS) and 

cathodoluminescence (CL) mapping and X-ray computed tomography (XR-CT). Once the 

framework in which the pores were formed and evolved is reconstructed, quantification 

of the porosity and of the pore system connectivity is assessed. This is done using a multi-

technique approach; SEM and EDS high magnification and high-resolution analyses 

measured the quantity, shapes and area fraction of pores as well as distinguished the 

pores in different types depending on their relationship with the bulk rock. N2 and CO2 

gas adsorption and Mercury Injection Capillary Pressure (MICP) were used to assess the 

pore size distribution, the pore connectivity and pore volumes. Focused Ion Beam (FIB) 

reconstructed volumes distinguished the organic matter pores and helped to visualise 

and quantify the connectivity of the organic and non-organic pores. Given the different 

scales at which sample properties vary, a combination of these techniques was necessary 

in order to provide an accurate understanding of the pore system. Moreover, samples 

from the immature, oil and gas window were analysed and compared to decipher the 

pore system evolution with maturity.  

Pure calcite crystals are also used to test how different oil compounds changed the surface 

wetting properties at the nanoscale, by using Chemical Force Microscope (CFM) analyses 

and Atomic Force Microscope (AFM) combined with a nano-infrared (IR) source. Chips 

of Eagle Ford samples were then studied using the CFM methodology combined with 

EDS chemical mapping of the same areas. This tested the variability of the wetting 

behaviour at the nanoscale and its variability on different mineral surfaces. AFM-IR 

analyses were also performed for the first time on rock chips to test the methodology and 

to target nano-chemical variations on the same mineral surface given by organic 

compounds. Finally, AFM-IR was used on organic compounds on polished rock samples. 

This allowed the chemical variations of different organic matter types with maturity to be 

understood and to place these variations into a wetting behaviour context.Thesis layout 

This thesis is presented in forms of journal-style chapters. Each of the four data chapters 

(chapters 3-6) contains an introduction, a methodology, a result, a discussion and a 

conclusion paragraph. Some repetitions may occur in terms of methodology and 

concepts. The data chapters are preceded by an introduction and proceeded by a final 
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discussion and conclusion chapter that binds together the main findings of this work 

(Chapter 6). The data chapters contain some contributions to existing studies and mostly 

novel data and are therefore intended to be submitted in relevant academic journals in 

the near future. The data, apart from the XRD, Rock Eval and MICP analyses, were all 

collected by myself. The processing and interpretation of the data was completed by 

myself with the guidance of my supervisors.  

Chapter 2: Reconstruction of diagenetic processes in the Eagle Ford Formation based on 

petrographical studies across a maturity gradient. 

This chapter is a petrographical study of the samples. It aims to describe the samples in 

terms of composition, domains and microfacies. Through a qualitative and quantitative 

analysis of the samples, the main diagenetic processes were identified and placed in a 

precise thermal window. Different pore types were also distinguished and positioned in 

the microfacies and burial history context.  

Chapter 3: Characterization of the porosity system of the Eagle Ford Formation as a function of 

diagenesis and maturity. 

This chapter is a characterisation of the pore system of the Eagle Ford samples, taking into 

account the framework in which the pores formed and evolved. It quantitatively describes 

the pore properties, volumes and pore system connectivity by combining observations 

from different techniques. Moreover, it integrates the pore system attributes and thermal 

history evolution with the petrographical study of chapter 2. 

Chapter 4: AFM study of adhesion forces on calcite surfaces aged in different oil compounds. 

Chapter 4 focuses on the surface chemistry variations in relation to the exposure of the 

surfaces to different oil fractions. Pure calcite surfaces first aged in brine and then in oil 

compounds with variable molecular weight aim to represent the carbonate-rich Eagle 

Ford rock surfaces. Variations of quantitative measurements at the nanoscale are 

translated into wetting changes. Changes in measurements from sample to sample are 

then correlated to the chemical changes of the oil compounds. This experimental study 

also aims to test and validate the Chemical Force Microscope (CFM) methodology that 

was used on rock chips in chapter 6.  
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Chapter 5: Nanoscale variations in surface chemistry and implications for wettability in the 

Eagle Ford Formation. 

In this chapter the surface chemistry variations at the micro and nanoscale in relation to 

the mineralogy of the samples are described. State-of-the-art workflows for the wettability 

measurements at the nanoscale are tested; the combination of different techniques 

allowed to associate the relative changes in wettability to different mineral compounds. 

Moreover, nanometric chemical changes were also detected on the surfaces of coccolithic 

debris and associated to the presence or absence of certain organic compounds. Finally, 

chemical variations of the different organic matter types at different maturities were 

observed and associated to the wettability changes.
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2.  Chapter 2 

Reconstruction of diagenetic processes in the Eagle Ford 

Formation based on petrographical studies across a 

maturity gradient 

 

 Introduction 

Studying organic-rich mudstones from a petrographical point of view is a crucial step in 

the assessment of the resources and in the understanding how these resources can be 

extracted. Detailed description of diagenetical and textural variations has important 

implications in the prediction of lateral distribution and of reservoir properties such as 

porosity, permeability and rock strength (Schieber et al., 2016). 

However, interpretation of the depositional and diagenetic history of mudstones is 

complicated by their textural and mineralogical heterogeneity and by their typical 

micrometre grain-size. Mudstones can be deposited in a large variety of environments 

and throughout their depositional history undergo a series of physical and chemical 

processes, which can be reconstructed by means of petrographical and geochemical 

studies.  

 Mudstone heterogeneity 

Variations in mineralogy and texture at the micron-scale are determined by sediment 

supply, sea-bottom conditions during deposition, the nature of the depositional 

environment and the chemical and mechanical changes through time (Macquaker and 
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Bohacs, 2007; Schieber, 1991). In turn, the mineral and organic constituents of the rocks, 

as well as their diagenetic history, control the pore system (Allen et al., 2014; Aplin and 

Moore, 2016; Bernard et al., 2013a, 2012a; Chalmers et al., 2012; Clarkson et al., 2013b; 

Czerniakowski et al., 1984; Hemes et al., 2016; Higgs et al., 2007; Houben, 2013; Jennings 

and Antia, 2013; Katsube and Williamson, 1994;. Klaver et al., 2015a; Kuila et al., 2014; 

Loucks et al., 2009; Mathia, 2014; Milliken et al., 2013; Pommer et al., 2015; Ross and Marc 

Bustin, 2009; Rutter et al., 2017; Wang and Reed, 2009; Worden and Morad, 2000; Yang et 

al., 2015). Both mechanical and chemical processes affect pore size distributions, 

permeability and the capability of the rock to be fracked during the production phase 

(Aplin et al., 2011; Bernard et al., 2010; Dawson and Almon, 2010; Jarvie et al., 2007; 

Katsube and Williamson, 1994; McAllister et al., 2015; Taylor et al., 2014).  

 Mechanical and chemical compaction 

Mechanical compaction occurs at shallow depths (< 2.0 km) and low temperatures (< 60-

80 ⁰C) and is mainly a function of the effective stress and grain strength and size (Aplin 

et al., 2006; Bjorlykke, 1998; Fabricius, 2003; Goulty, 1998). Evidence of mechanical 

compaction can be observed in the reduction of porosity and in the re-alignment of the 

mineral grains perpendicular to the stress direction. Chemical compaction, on the other 

hand, mainly depends on the chemical kinetics controlling the dissolution and 

precipitation of the minerals (Aplin and Macquaker, 2011; Bjorlykke, 1998; Fabricius, 

2007; Gorniak, 2016; Mallon and Swarbrick, 2008; Peltonen et al., 2009). Common 

evidences for chemical compaction in mudstones are dissolution of mineral grains and 

cements, replacement of mineral phases and pressure-solution stylolites (Fishman et al., 

2012; Jason E Heath et al., 2011; Rashid et al., 2015). These reactions begin during the 

deposition and continue throughout the burial history of the sediments, progressively 

modifying the porosity and the pore system (Dewhurst et al., 1998; Gorniak, 2016).  

 Sedimentology and diagenesis of fine-grained, organic-matter rich 

carbonates 

This study is an effort to understand the sedimentology and diagenesis of a carbonate and 

organic-matter rich formation, the Eagle Ford. This formation is often defined generally 
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as a mudstone or, in industry terms, as a shale (Dawson, 2000; Hsu and Nelson, 2002; 

Jennings and Antia, 2013; Jiang et al., 2013; Mullen, 2010; Rylander et al., 2013; Tian et al., 

2018; Workman, 2013). Nonetheless, these terms are geologically inaccurate due to the 

presence of large amounts of carbonates, which outdistance the Eagle Ford from a 

characteristical mudstone. Previous studies on the Eagle Ford  (Driskill et al., 2012; 

Ergene, 2014; Pommer et al., 2015) and, more in general, on carbonate-rich tight reservoirs 

(Lønøy, 2006; Mathia et al., 2016; Pahnke, 2014) show that large amounts of carbonates (> 

50%) have also large impact on the sedimentology, the diagenesis, and consequently the 

whole pore system evolution; the rigid carbonatic structure is believed to prevent high 

degrees of compaction as it would occur in clay-rich formations, which are more ductile 

and prone to be deformed and compacted when exposed to mechanical stresses (Bennett 

et al., 1991). As previously mentioned, prevention of compaction also determines 

preservation of interparticle and intraparticle pores (Loucks et al., 2012; Milliken and Day-

Stirrat, 2013; Ohiara et al., 2017; Schieber, 2010). On the other hand, carbonates are highly 

affected by chemical compaction processes. In other studies on carbonate-rich tight 

formations, carbonates are found to undergo dissolution and reprecipitation processes 

throughout the whole maturity sequence (Czerniakowski et al., 1984; Jennings and Antia, 

2013; Mathia et al., 2016; McAllister et al., 2015). Moreover, high amounts of faecal pellets 

and foraminifera are often found to play an important role in the whole pore system and 

pore connectivity (Ergene, 2014; Laughrey and Ruble, 2013; Mcallister, 2017; Ríos et al., 

2016; Slatt, 2011). In this study, the role of the carbonates and the bioclasts, as well as the 

whole interpretation of sedimentological and diagenetic processes that have taken place 

in the pore system origin and evolution, is assessed. 

 Eagle Ford petrography  

Various authors have already analysed the Eagle Ford Formation from a petrographic 

point of view (Driskill et al., 2012; Ergene, 2014; Mcallister, 2017; Milliken et al., 2016; 

Pommer and Milliken, 2015), but given the high lithological heterogeneities, this sample 

set is unique. Moreover, in previous studies, either the analysed microfacies were not 

equivalent (Ergene, 2014), or the samples did not cover the whole maturity range (Driskill 

et al., 2012; Mcallister, 2017; Schaiberger, 2016). Pommer (2014) and Pommer and Milliken 
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(2015) analysed a very similar sample set to the one used in this thesis. However, the 

petrographic studies are mainly focused on the evolution of pore types with thermal 

maturity and were only performed by means of Scanning Electron Microscope (SEM) 

analyses.  

 Samples from different maturities 

As the samples analysed in this present study were collected from outcrops and wells at 

different depths in south-west Texas, changes in fabric and mineralogy with increasing 

maturity can be examined. These samples range from thermal maturities of R0 0.4% to 

1.2%, corresponding to temperatures between ~50° and 120° C respectively. This thermal 

range constitutes the range in which most of the chemical reactions take place. Moreover, 

having samples of the same lithostratigraphy at different maturities is crucial to 

determine at which temperature and under which conditions hydrocarbon migration and 

trapping have occurred (Chen et al., 2016). The large range of burial depths and thermal 

maturities also allows the identification of the specific time and temperature frames at 

which the diagenetic processes and the porosity evolutions have taken place. As 

previously mentioned, the lithological heterogeneity of the samples at multiple scales, 

together with the variations in mineralogy, burial history and depositional environments, 

strongly controls the reservoir properties (Dawson et al., 2008). The work presented in 

this chapter is an effort to define the organic matter content and type, the presence of 

sedimentary structures, the mineral replacements and the horizontal lithological 

variations, which are amongst the factors that can influence the reservoir characteristics.  

 Materials and methodology 

  A multi-technique approach 

The samples in this present study were examined with a varied range of techniques: XRD 

data provided information on the mineralogy of the samples and Rock-Eval® and TOC 

give insights into the nature of organic matter and on the hydrocarbon generation 

potential. The petrology and textural analysis were performed by transmitted and 

reflected optical microscopy and by X-ray computed tomography (CT). Ar-ion milled 

samples were also analysed with an SEM, enabling the different components and pore 
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types to be examined at the nanometre scale. In addition, cathodoluminescence (CL) and 

Energy Dispersive X-ray analysis (EDS) data were taken to help reconstruct the 

paragenesis and depositional setting of the samples. The different resolutions and scales 

(nanometer to the centimetre sizes) at which the samples were analysed provide a more 

general understanding of the whole sedimentology and diagenetic sequence of the Eagle 

Ford formation.  

 Depositional environment 

The understanding of the depositional environment changes leads to decipher 

paleoenvironmental changes such as sea-level fluctuations, uplift and burial. These 

changes, in turn, have important implications for reservoir quality. For instance, they can 

provide information on the lateral continuity or vertical heterogeneity of the sediments. 

Until recently, it was generally thought that fine-grained sediments enriched in organic 

carbon were deposited in low-energy settings with persistent anoxic levels in bottom 

water (Potter et al., 2005). However, new findings have brought to light that mudstones 

are deposited at different sedimentation rates, levels of oxygen and energy environments 

(Abbott, 2000; Aplin and Macquaker, 2011; Macquaker et al., 2010; Macquaker and 

Bohacs, 2007; Schieber, 2011, 2003; Schieber and Southard, 2009; Wignall et al., 1994). The 

preservation of organic matter, vital for the creation of good quality source rocks, is 

dictated by factors like primary production rate, water column depth and depletion of 

oxygen from the sediments (Hedges and Keil, 1995). Moreover, the seabed depositional 

environment also affects the bacterial reduction of sulphate to sulphide, which is 

responsible for the precipitation of pyrite and the degradation of organic matter 

(Jørgensen, 1982).
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 Geological background 

 Study area 

The Eagle Ford Formation is widespread across South and East Texas, attaining 

approximately a width of 80 km (50 mi) and a length of 650 km (400 mi) (Figure 2.1) The 

sets of samples that are investigated in this thesis were taken from outcrops and six 

different wells (Figure 2.2).  

  Regional stratigraphy 

 Figure 2.2. On the left, schematic diagram of the wells and the depths at which the samples were 

taken. On the right, a map of Texas with the samples locations. 

Figure 2.1. Map of Texas showing modern location of the Eagle Ford outcrops and play (modified 

after Lowery et al. 2012). The red square indicates the study area. 
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The formation deepens and dips southwards and thickens towards the South-East 

(Donovan et al., 2012; Pathak et al., 2014).  It is indeed found in outcrops, in the North-

West part of Texas as well as in the subsurface, up to ~4,755 m (~15,600 ft) deep at the 

Sligo shelf margin (Figure 2.3). Lithologically, the formation overlies the Buda Limestone 

and underlies the Austin Chalk, and can be distinguished in two units. The Lower Eagle 

Ford is a carbonate-rich (40-90% CaCO3) source rock with TOC% values of ~6% and HI 

of ~500mgHC, while the Upper Eagle Ford is less organic-rich (1-3% TOC) and presents a 

higher carbonate content (50-100%) (Liro et al., 1994b; McAllister et al., 2015). As it 

becomes deeper towards the southeast, the temperature and thermal maturity increase 

and the formation gradually transitions three different maturity windows: oil, wet gas 

and finally dry gas (Figure 2.3).  

 

 

Figure 2.3: Eagle Ford location map with the different maturity windows. In green: oil, in light 

green condensate and in red dry gas (modified after Tinnin and Darmaoen, 2016). 
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 Geological setting 

In the studied area, the Eagle Ford Shale was deposited during the Upper Cretaceous on 

the Commanche Platform (Figure 2.4). This late Jurassic-Early Cretaceous platform 

resulted as an amalgamation of a carbonate shelf complex developed between the proto-

Gulf of Mexico and the Western Interior Seaway (KWIS) of North America (Lowery et al., 

2014) (Figure 2.2).  

Eagle Ford sedimentation began as part of a major transgression that drove the sediment 

deposition from a shelf margin towards intrashelf depocenters (Galloway, 2008). The 

sediments overlie the Buda Limestone and were deposited irregularly along the play 

according to its bathymetric and structural features such as the San Marcos Arch and the 

shelf margins Sligo and Stuart City (Hentz and Ruppel, 2010). These topographic highs 

experienced lesser subsidence compared to the confining basinal environments, resulting 

in a considerable variation of the sea depth through the Seaway (50 to 300 meters) (Driskill 

et al., 2012; Eldrett et al., 2014; Harbor, 2011). As a result, the formation thinned abruptly 

at the top of the topographic highs with respect to the basinal areas (Harbor and Ruppel, 

2011), reaching the maximum thickness of 63 m and 146 m for the Lower and Upper Eagle 

Ford in the Maverick intra-shelf basin (Hentz and Ruppel, 2010)  

Figure 2.4: . Paleogeography map of Texas modified after Denne et al. (2014). 
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Moreover, the San Marcos Arch divided the Texas carbonate platform into two major 

environments, discerned by the different sediment type. The East Texas basin is 

characterised by a larger amount of siliciclastic influx (quartz and plagioclase) coming 

from the river-dominated deltas that prograded from the North and ended in the marine 

shelf of East Texas (Jennings and Anthia, 2013). The river input is blocked by the San 

Marcos Arch that renders the West Basinal area more carbonate-rich and less clay and 

siliciclastic-rich. 

The deposition of the Eagle Ford formation occurred between 98 and 91 Ma, covering the 

transition from Cenomanian to Turonian. This boundary also corresponds to the 

triggering of the OAE2, a global phenomenon characterised by a worldwide Carbon 

Isotope positive excursion (CIE) and global anoxic greenhouse conditions (Eldrett et al., 

2014). The OAE2 in South Texas is manifested with a shallow sea where the circulation 

patterns created areas of upwelling along the shelf margin that resulted in the 

proliferation of microorganisms and to the abundance of organic matter on the seafloor 

(Denne et al., 2014). The scarcity of oxygen in the bottom-waters permitted high amounts 

of organic matter to be preserved and buried along with the fine-grained sediments, 

originating the Eagle Ford mudstones (Lowery et al., 2014). The sediments in the 

Cretaceous Western Interior Seaway, in particular within the Lower Eagle Ford 

Formation, were deposited as rhythmically interbedded limestones and marls. Thin 

layers of bentonites, rich in kaolinite and smectite clay minerals are also found, testifying 

a sporadic volcanic activity in the inland (Denne et al., 2014; Donovan et al., 2012).  Recent 

studies have interpreted the driving mechanism of these sequences as a combination of 

astronomic forcing cycles (Eldrett et al., 2015). According to Eldrett et al. (2015), the marls 

are associated with insolation minima, stratified waters, reduced carbonate and silica 

production and high organic matter preservation (TOC 2-13 wt. %). On the other hand, 

the limestone beds are linked to insolation maxima, that led to the destratification of the 

water column and therefore to less effective preservation of the organic matter (TOC < 

1.5wt. %) (Eldrett et al., 2015). Carbonates are mainly composed of coccoliths, benthic and 

planktonic foraminifera and in less abundance of echinoids and bivalves. Biogenic silica 

is interpreted to be produced by siliceous plankton (i.e. radiolaria) (Denne et al., 2014; 

Driskill et al., 2012; Lowery et al., 2014). 
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In turn, the Lower and Upper Eagle Ford sediments are distinguished by a decrease in 

gamma-ray values, given by thorium and uranium components, from the Lower to the 

Upper Eagle Ford. The decrease in gamma-ray values is attributed to the increase in 

carbonate content and a decrease in organic matter and bentonites (Denne et al., 2014). 

On an outcrop, the sediments can be distinguished by the dark-grey colour of the lower 

Eagle Ford mudrocks and the interbedded dark and light-grey mudrocks in the upper 

Eagle Ford (Figure 2.5).  

Figure 2.5: : Stratigraphic column of an outcrop location of the study area (after Pierce et al. 2016). 
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 Samples and techniques 

The samples analysed were collected from outcrops in Val Verde County, Texas, and from 

six different wells in South-West Texas (Error! Reference source not found.2). The 

samples were taken at depths ranging between 400 m above mean sea level  (AMSL) to -

4500 m AMSL, resulting in samples from three different thermal maturity windows: R0 

0.4-0.5%, R0 0.9% and R0 1.2% (immature, oil and gas window). This allows us to study 

lithological and diagenetic changes with an increase in temperature. 

  Mineralogy and bulk characterization 

A set of 25 rock samples from outcrops and 6 wells at a range of maturities was provided 

by Shell. The bulk composition of the samples was determined in 17 of these samples 

using XRD at the James Hutton Institute, Aberdeen, UK. The whole rock analysis was 

performed on randomly-oriented powders. The samples were wet ground in ethanol 

using a McCrone micronizing mill and then spray-dried to produce the necessary random 

powder (Hillier, 2000). The powder X-ray diffraction (XRD) patterns were recorded from 

4° to 70° 2θ using Copper Kα radiation. Along with the XRD data, the cation exchange 

capacity (CEC) of the samples was provided. The CEC is used to quantify the cations that 

a clay mineral can accommodate on its negatively charged surface (expressed in milli-

equivalent per 100 grams). In particular, the measured CEC value is used to quantify the 

smectitic percentage in the Illite/Smectite (I/S) clay mineral group present in the bulk rock 

and to estimate a virtual I-S expandability of the group. Rock-Eval® and TOC analyses 

were performed by APT, Norway, using, respectively, a LECO SC-632 and a Rock-Eval-6 

instrument. Prior to the analyses the samples were ground using a mortar and carbonate 

was removed by adding diluted HCl. The measurements were taken by heating the 

samples from 300 °C to 650 °C at a rate of 25 °C per minute.  

  Optical microscopy 

12 thin sections (30 µm thick) were provided by the Shell Technology Centre laboratories, 

TX, US. Two sets of 17 thin sections from the available rock samples were also prepared 
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at Wagner Petrographic, US. The first set of thin sections was cut 30 µm thick and parallel 

to bedding and the other set, 100 µm thick, was cut perpendicular to the bedding. 

For the optical microscopy analyses, a Leica DM2500P transmitted light petrography 

microscope was used for the 30 µm thin sections and a Leica DM1750M reflected light 

microscope was used for the 100 µm thin sections. The organic petrology analyses were 

completed at Newcastle University using a Leica DM2700P incident light microscope. The 

oil immersion technique with white and blue light was used, with a magnification of 50 

×. Point counting analyses were carried on the 30 µm thick thin sections using 

JMicrovisionTM software. The point counting was based on 300 points at a magnification 

of 10 ×.  

  Scanning Electron Microscopy (SEM) 

SEM images at high resolution were collected at Durham University using a Hitachi SU-

70 FEG SEM, with a voltage of 10 kV, a working distance of 15 mm and a variable 

magnification of 500x to 10k x. The samples were 3 mm diameter cores cut using a Gatan 

ultrasonic cutter from 100 µm thick thin sections and Ar-ion polished using a Gatan 

Precision Ion Polishing system for 5 hrs at a beam angle 3° and 5 kV. The thin sections 

were all cut perpendicular to bedding. After polishing, the samples were carbon-coated 

to avoid charging, to reduce thermal damage and to improve the secondary electron 

signal. Backscattered (BSE) and secondary electron (SE) images were taken 

simultaneously in order to analyse both solid phases and porosities respectively. By 

qualitatively looking at the samples under the SEM, all the samples exhibit recurring 

components that can be distinguished in 5 groups: fossils and microfossils (in order of 

abundancy foraminifera, bivalves, calcispheres, radiolaria, fish bones), faecal pellets, 

pyrite, organic matter and matrix. These groups, called here domains, have distinctive 

characteristics in terms of pore types or mineralogy. In order to distinguish and quantify 

the domains, high resolution (4096 × 3349 pixels) SEM images for areas of 1 mm × 1mm at 

a magnification of 600 × were taken on all the 18 analysed samples. In the same areas, 

using the Oxford Instruments EDX system (X-MaxN 50 Silicon Drift Detector) attached 

to the Hitachi SU-70 FEG SEM, elemental identification was also conducted. The EDX 

maps were taken at a resolution of 1024 × 884 pixels, an energy range of 20 keV and a 
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dwell time of 250 µs. In order to identify and quantify the pore types, 4 areas of 50µm × 

50µm were randomly chosen on each sample. The areas were chemically analysed with 

the EDX system of the Hitachi SEM, that allowed the pore types to be distinguished, and 

with an FEI Helios Nanolab 600, that allowed segmentation of the pores. This instrument 

has the advantage of producing more stable, better quality high magnification secondary 

electron images compared to the Hitachi SU70. Each area consisted of a montage of 20 

high resolution (4096 × 3349 pixels) and high magnification (10 kx) images measuring 

12.74 µm in width and 10.3 µm in height. The pixel size for the high magnification pictures 

was 3.1 nm, but the smallest pore was defined by 6 pixels (i.e. ~ 18 nm diameter). The 

images were taken using the instrument immersion mode, at 1.50 kV, 4.0 mm working 

distance and a dwell time of 10 µs.  On the same samples, CL work was also performed 

using the Gatan Mono-CL system associated with the SEM. Areas of magnification of 600 

to 1 k x were analysed using a panchromatic filter. 

  X-ray Computed Tomography (XRCT) 

Five samples were scanned using the Xradia Zeiss Versa XRM-410 instrument at Durham 

University. Two samples (IM1_3 and GW6) were cores of 2.6 cm diameter and 1.2 cm 

height, whereas the other three cores were 5 mm in diameter and ~0.8 cm height. All the 

scans were performed using a standard LEI filter, and the scans were performed with a 

pixel size of 2.8 µm/pixel. The 3D volume and the processing of the data were performed 

using the software Avizo™ version 9.4 and a non-local means filter was applied to the 

raw data. In all the samples a cylindrical subvolume was extracted using the Volume edit 

function in Avizo™. The different greyscales in the scanned volumes correspond to 

different densities, and therefore different materials. The contrast between the greyscale 

led to the segmentation of five different phases. As the densities for some materials are 

similar, the greyscale contrast is too low to discriminate all the materials. In this case, a 

combination of phases is used in the segmentation. From the brightest (denser) to the 

darkest (less dense), the discriminated materials were: pyrite, carbonates, carbonates 

mixed with clay minerals, clay minerals and OM combined with pores. The 

segmentations were then, where available, validated using the XRD data  (Table 2.1). 
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Table 2.1: Samples of different maturities and microfacies analysed by XR-CT with the 

corresponding XRD data. NA = not available data. 

 

In order to calculate the heterogeneities of the samples, the area fraction % of each phase 

was calculated for each slice parallel and perpendicular to the bedding (Figure 2.6). For 

this, the Volume Fraction in xy tool in Avizo™ was used. The average value of each phase 

was calculated by measuring the whole volume fraction in 3D.  

Sample 

Name 

Maturity 

(R0%) 

Microfacies 

Type 

Total 

Carbonates (%) 

Total 

Silicates (%) 

Total 

Clays 

(%) 

TOC (wt 

%) 

OW2 0.9 A 43.2 8.0 42.1 2.6 

GW6 1.2 B 77.9 14.3 3.2 2.4 

IM1_3 0.5 A 25.5 21.0 45.5 NA 

IM2_3 0.4 A 50.1 24.2 9.0 7.9 

IM2_5 0.4 A NA NA NA NA 
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Figure 2.6: XRCT scans for samples IM2_1 (microfacies B, R0 0.5%) and IM2_3 (microfacies A, R0 

0.5%). a) is the whole cylindrical masked volume in which the heterogeneity percentages were 

calculated. b) is a slice perpendicular to the bedding. The heterogeneity ca lculated on these slices 

(along the z plane) will be called along bedding. c) is a slice taken parallel to the bedding. The 

heterogeneity calculated on these slices will be called across bedding.   
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 Results: 

  Bulk rock composition 

 XRD compositional analyses reveal significant vertical and lateral mineralogical 

variability. The most common mineralogical constituents are, in decreasing average 

volume content: calcite (59.6%), quartz (16.3%) and the clay mineral phases mixed 

illite/smectite (7.3%) and kaolinite (5.7%) followed by organic matter (3.4%) and pyrite 

(1.5%) (Table 2.2). Secondary minerals are plagioclase, k-feldspar, dolomite, ankerite, 

gypsum, apatite and marcasite. A variation with thermal maturity in the mineralogical 

content is observed for quartz and kaolinite, that decrease with the increase in maturity 

(Figure 2.7). Quartz content is on average ~24% in the immature window and ~11% in the 

oil and gas window. Kaolinite decreases from an average of ~13% in the immature and oil 

window to an average of ~1% in the gas window. Mixed I/S and calcite, on the other hand, 

starts to increase from the oil maturity window, from an average of 6% for the immature 

window to an average of ~10% for the oil and gas window. Na-plagioclase also increases, 

from 0% to 2%.  K-feldspar is only present in the immature and oil window samples (on 

average ~1% of the bulk mineral content). Gypsum occurs only in the outcrop samples. 

TOC varies from 0.4% to 7.9%, reflecting the variable but sometimes high amount of 

organic matter in these samples and shows a general decrease with the increase in 

maturity (Error! Reference source not found.). Along with the bulk mineralogy of the 

samples, the CEC of the clays was also measured (Table 3.0). The CEC values for these 

samples range between 0.5 and 9.1 meq/100 g and is positively correlated to the amount 

of mixed I/S (Figure 2.8).   
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OC1 A 0.4 Outcrop outcrop 50.5 1.3 0.6 0.1 1.1 30.6 1.5 0.4 3.3 4.4 4.4 7.7 52.5 32.5 1.6 

OC2 A 0.4 Outcrop outcrop 57.8 0.0 0.4 0.0 1.2 19.3 0.6 0.1 5.6 3.4 6.6 9.0 58.2 20.0 0.7 

OC3 A 0.4 Outcrop outcrop 49.8 0.2 0.3 0.0 1.3 23 1.2 0.1 6.6 5.0 5.5 11.6 50.3 24.3 0.8 

IM1_1 A 0.4 1 71.8 45.2 0.0 0.6 0.5 2.2 21.7 2.6 0.4 8.1 9.8 4.5 17.9 46.3 24.7 5.5 

IM1_2 A 0.4 1 74.9 33.8 1.3 1.5 0.5 2 30.2 0.8 0.2 25.8 1.6 6.3 27.4 37.1 31.2 4 

IM1_3 A 0.4 1 94.5 24.8 0.3 0.0 0.4 5.1 20.7 0.0 0.3 43.0 2.5 N/A 45.5 25.5 21.0 N/A 

IM2_1 A 0.5 2 73.73 34.9 0.0 1.4 0.0 2.2 31.5 1.6 0.1 12.9 6.6 5.8 19.5 36.3 33.2 2.1 

IM2_2 B 0.5 2 73.53 75.4 0.0 0.7 0.1 0.2 18.4 0.4 0.0 3.9 0.8 1.9 4.7 76.2 18.8 1.2 

IM2_3 A 0.5 2 148.4 50.1 0.0 0.0 0.0 2.2 22.4 1.5 0.3 1.8 7.2 7.9 9.0 50.1 24.2 3.8 

OW1 A 0.9 3 973.2 56.6 0.6 0.0 0.3 1.6 18.9 0.6 4.1 3.6 12.6 5.0 16.2 57.5 23.6 N/A 

OW2 A 0.9 3 961.8 41.6 0.6 0.9 0.1 2.2 3.6 0.1 4.3 24.0 18.1 4.5 42.1 43.2 8.0 9.1 

GW1 A 1.2 4 2556.3 56.8 0.0 0.1 0.3 2 13.6 0.1 0.9 1.9 18.5 3.5 20.4 57.2 14.6 8.2 

GW5 B 1.2 4 2556.7 64.7 0.0 0.1 2.4 0.6 8.9 0.5 0.7 1.0 12.5 1.6 13.5 67.2 11.3 5.8 

GW4 B 1.2 4 2532.5 61.0 10.3 1.6 0.1 1 12.7 0.2 2.7 0.0 8.3 1.0 8.3 73 15.6 1 

 



    

  

 

 

 

Table 2.2: Bulk mineralogy data, microfacies type and CEC. The N/A sign indicates that the data are not available, as the sample was not analysed. 
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GW3 B 1.2 4 2547.9 83.4 0.0 0.3 0.1 0.5 5.4 0.1 1.4 0.0 4.4 0.7 4.4 83.7 6.9 2.2 

H3A 1 B 1.2 4 2526.2 79.5 0.4 0.0 0.1 0.3 15.4 0.0 1.5 0.2 2.5 1.0 2.7 79.9 15.4 N/A 

H3A 2 A 1.2 4 2527.8 58.4 0.3 0.0 0.1 1 25.7 0.5 3.9 0.4 9.2 3.0 9.6 58.7 25.7 N/A 

H3A 3 A 1.2 4 2547.4 44.5 0.0 0.0 0.2 2.8 13.5 0.6 5.2 3.3 28.5 5.4 31.8 44.5 13.5 N/A 

H3A 4 B 1.2 4 2547.9 90.7 0.0 0.0 0.0 0.4 5.4 0.0 1.3 0 1.4 0.7 1.4 90.7 5.4 N/A 

H3A 5 A 1.2 4 2548.6 50.7 0.0 0.1 0.2 3.9 10.6 0.6 7.4 1.3 21.8 6.0 23.1 50.7 10.6 N/A 

H3A 6 B 1.2 4 2558.3 95.7 0.0 0.0 0.0 0.1 4.1 0.0 0.1 0 0 0.2 0.0 95.7 4.1 N/A 

GW6 B 1.2 5 2797.9 71.0 6.4 0.4 0.1 0.2 13 0.5 0.8 0.0 3.2 2.4 3.2 77.9 14.3 N/A 

GW2 B 1.2 5 2802.2 79.5 2.7 0.4 0.3 0.4 12.3 0.1 0.7 1.6 1.4 2.3 3.0 82.9 13.1 0.5 

GW7 C 1.2 6 3014.5 73.7 0.0 0.2 0.7 2.1 6.2 0 0.5 0.0 12.2 0.7 12.2 74.6 6.7 2.9 

GW8 C 1.2 6 3014.8 83.8 0.1 0.3 0.2 1.2 3.9 0.1 0.5 0.0 7.0 0.5 7.0 84.4 4.5 1.3 
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Figure 2.7: Plots of the most common minerals vs depth for all the samples analysed with XRD in 

all microfacies. Each point corresponds to a sample, and the colours represent the different 

maturities (blue, R0 0.5%; green, , R0 0.9%; red, , R0 1.2%). 
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y = 0.4118x + 0.0494 

R² = 0.6919 

Figure 2.8: CEC (meq/l) vs mixed-layer I/S (%) plot for the samples analysed (see table 3.0 for more 

details). 
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  Rock-Eval 

Rock-Eval analyses are reported in Table 2.3. The Van Krevelen diagram (Hydrogen Index 

vs Oxygen Index) underlines two families of samples (Table 2.3). 

 

Table 2.3: Rock Eval Data. The Hydrogen, Oxygen and Production Index were also calculated for 

each sample analysed. 

S
am

p
le N

am
es 

L
E

C
O

 T
O

C
 (w

t%
) 

S
1 (m

g
 H

C
/g

) 

S
2 (m

g
 H

C
/g

) 

S
3 (m

g
 C

O
2/g

) 

T
m

ax (°C
) 

H
y

d
ro

g
en

 In
d

ex 

(S
2x100/T

O
C

) 

O
xy

g
en

 In
d

ex 

(S
3x100/T

O
C

) 

S
1/T

O
C

 N
o

rm
. O

il 

P
ro

d
u

ctio
n

 In
d

ex 

(S
1/(S

1+S
2) 

OC1 4.4 3.0 22.4 0.5 435 507 10 68 0.12 
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OC3 4.6 2.0 34.8 0.9 428 761 19 44 0.06 

IM2_1 5.8 2.7 32.5 0.4 433 562 7 46 0.08 

IM2_2 2.1 1.1 15.2 0.3 433 723 13 53 0.07 

IM2_3 6.3 3.0 46.6 0.9 433 736 13 48 0.06 

OW1 5.0 5.4 27.1 0.5 445 547 11 108 0.17 

OW2 3.6 2.8 13.8 0.4 444 383 11 78 0.17 

GW1 3.9 3.3 2.7 0.6 475 69 16 86 0.55 

GW3 0.7 0.6 0.7 0.4 425 98 53 89 0.47 

GW4 1.0 0.8 0.8 0.3 449 80 32 75 0.48 

GW7 0.4 0.5 0.8 0.3 441 195 78 115 0.37 

GW8 0.6 0.3 0.4 0.3 432 66 49 53 0.45 

H3A 1 1.0 0.8 0.6 0.4 468 63 35 82 0.57 

H3A 2 3.0 2.0 1.3 1.1 469 44 36 68 0.61 

H3A 3 5.4 6.5 4.8 1.2 477 87 22 119 0.58 

H3A 4 0.7 0.7 0.5 0.4 431 72 47 96 0.57 

H3A 5 6.0 5.7 3.5 1.1 473 58 18 95 0.62 

H3A 6 0.2 0.1 0.2 1.1 440 78 483 57 0.42 
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The immature samples (R0 0.4%-05%) have a high Hydrogen Index (between 383 and 761 

mg HC/g TOC) and a low Oxygen Index (7 to 19 mg CO2/g TOC), whereas the oil and gas 

maturity samples present a low (<200 mg HC/g TOC) Hydrogen Index and higher 

(between 16 and 78 mg CO2/g TOC) Oxygen Index. The plot also shows the original 

kerogen type (i.e. the kerogen that has not generated any hydrocarbons) is a type I-II oil-

prone marine kerogen. The temperature of maximum S2 generation, Tmax, ranges 

between 425 °C and 477 °C and confirms that the samples are situated within the oil 

window generation range, except for samples GW1, H3A1, H3A2, H3A3 and H3A5 that 

have a Tmax higher than 465 °C and lie instead within the gas window maturity (Figure 

2.10). The S2 peaks (mg HC/g) decrease significantly from the immature samples, with a 

maximum of 46.6 mg HC/g (IM2_3, Ro 0.5%) to the gas window, with a minimum of 0.2 

mg HC/g (H3A6 R0 1.2%). However, caution must be taken when interpreting the data 

for the mature samples with low TOC values (i.e. samples GW3, GW7 and GW8). For 

these samples, the data collected are poor as S2 peaks are too small to be meaningful.  

 

Outcrops 

Well 1 

Well 2 
Well 3 
Well 4 
Well 5 

Well 6 

Figure 2.9: Van Krevelen diagram showing two families of samples. The immature samples 

(outcrops, wells 1, 2) have a high Hydrogen index and a low Oxygen Index. The samples in the oil 

and gas window (well 3, 4, 5) have a low Hydrogen index. 
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 Petrographic studies 

 Domains 

Five domains were distinguished in these samples: fossils, matrix, faecal pellets, pyrite 

and organic matter (Figure 2.11). 

Figure 2.10:  Hydrogen Index (S2x100/TOC vs Tmax (°C) for all the samples analysed using the 

Rock Eval method, at all maturities. 

Figure 2.11: SEM BSE image of sample IM1_2 (R0 0.5%), highlighting the domains present in the 

samples: Faecal Pellets (FP), Matrix (Ma), Organic matter (OM), Pyrite (Py) and Fossils: Coccoliths 

(Co), Bivalve Shells (B), Foraminifera (F). 
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 For the organic matter, the organic petrology results are also included.  The thin sections 

analysed and the corresponding maturity and microfacies types are the samples listed in 

Table 2.3. 

Table 2.3 

 Microfossils 

The fossils can be either carbonatic (foraminifera, calcispheres, coccoliths, bivalves, 

inoceramids, pelecypods, ostracods, sponges and corals, echinoderm and crinoid plates 

and spiculae), silicic (radiolarians) or phosphatic (fish bones). The pelecypods are thin-

shelled filaments of shells, thought to be at the larval or juvenile stage. They are 

occasionally found clustered in micrometric-size laminations.  The calcispheres are 

interpreted to belong to the Pithonella species. The foraminifera can be in turn be 

distinguished as planktonic (Globorotalia, Globotruncana, Heterolix Striata) and, in minor 

abundances, benthic (Bulimina) or agglutinates (Figure 2.12). These interpretations are in 

accordance with the work by Denne et al. (2014). As the size of foraminifera can 
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IM2_2 2.1 1.1 15.2 0.3 433 723 13 53 0.07 

IM2_3 6.3 3.0 46.6 0.9 433 736 13 48 0.06 

OW1 5.0 5.4 27.1 0.5 445 547 11 108 0.17 

OW2 3.6 2.8 13.8 0.4 444 383 11 78 0.17 

GW1 3.9 3.3 2.7 0.6 475 69 16 86 0.55 

GW3 0.7 0.6 0.7 0.4 425 98 53 89 0.47 

GW4 1.0 0.8 0.8 0.3 449 80 32 75 0.48 

GW7 0.4 0.5 0.8 0.3 441 195 78 115 0.37 

GW8 0.6 0.3 0.4 0.3 432 66 49 53 0.45 

H3A 1 1.0 0.8 0.6 0.4 468 63 35 82 0.57 

H3A 2 3.0 2.0 1.3 1.1 469 44 36 68 0.61 

H3A 3 5.4 6.5 4.8 1.2 477 87 22 119 0.58 

H3A 4 0.7 0.7 0.5 0.4 431 72 47 96 0.57 

H3A 5 6.0 5.7 3.5 1.1 473 58 18 95 0.62 

H3A 6 0.2 0.1 0.2 1.1 440 78 483 57 0.42 
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potentially provide insights on the depositional environment, for each sample 100 

foraminifera were measured along their long axis analysing the thin sections (Table 2.4). 

For the samples analysed, the smaller foraminifera average size is observed in sample 

IM1_3 (39 µm) and the largest in sample IM2_5 (106 µm). No correlation between size 

and maturity was found. The fossil percentages were also calculated by point counting 

(Table 2.4). The fossils were distinguished between bivalves, phosphatic shells, 

foraminifera, radiolaria, echinoids and calcispheres. In the point counting, euhedral 

calcite crystals were also taken into account. Foraminifera are the most common fossil 

type and vary between an average of 61% for microfacies A, 46% for microfacies B and 

24% for microfacies C (Table 2.5). The foraminifera were also distinguished between the 

most common four classes (Table 2.6). In all wells and at all maturities, the majority of the 

foraminifera studied are Heterolix and Globorotalia.  Calcispheres are also common at all 

depths. They reach 34% of the total most frequent fossil types in sample GW4 (R0 1.2%).  
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 a) 
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Figure 2.12: Images of fossils under thin section and SEM SE light (i and l)  a) calcitic bivalve shell (b); b) 
phosphatic shell (fh); c) echinoderm plates (e), serial foraminifer (Heterolix striata) (fs), agglutinated 
foraminifer (fa); f) foraminifer with polygonal chambers (Globotruncana) (fpc); g) foraminifer with rounded 
chambers (Globorotalia) (fg), pyritised radiolaria (r); h) oyster shell (o); i) intact coccollitosphere l) intact 
coccolith 



 

 

 

Table 2.5: Percentages of the different fossil types distinguished in the samples. The calcite euhedral crystals are also taken into account. 

Samples 

names 

Microfacies 

Types 

V. 

Reflectance 

(R0 %) 
Depth (m) Bivalves (%) 

Phosphatic 

shells (%) 

Foraminifera 

(%) 

Calcite 

euedral 

crystals (%) 

Echinoids (%) 
Calcispheres 

(%) 

Radiolaria 

(%) 

OC1 A 0.4 outcrop 8 7 71 3 1 10 0 

OC2 A 0.4 outcrop 9 9 62 6 4 8 0 

OC3 A 0.4 outcrop 5 3 65 20 2 5 0 

IM1_1 A 0.4 74.9 9 0 81 0 0 10 0 

IM1_2 A 0.4 94.5 55 0 42 3 0 0 0 

IM2_1 A 0.5 73.7 2 5 51 10 29 3 0 

IM2_2 B 0.5 73.5 0 3 1 96 0 0 0 

IM2_3 A 0.5 148.4 12 14 54 10 0 7 0 

OW1 A 0.9 973.2 7 9 70 5 0 9 0 

OW2 A 0.9 961.8 5 0 76 4 5 10 0 

GW1 A 1.2 2556.3 4 0 71 2 12 11 0 

GW5 B 1.2 2556.7 8 0 56 8 3 25 0 

GW4 B 1.2 2532.5 19 1 54 9 0 10 7 

GW2 B 1.2 2802.2 12 0 39 2 0 34 3 

GW6 B 1.2 2797.9 18 0 45 2 0 26 0 

GW7 C 1.2 3014.5 0 5 23 13 27 30 2 

GW8 C 1.2 3014.8 23 4 24 7 26 16 0 

Sample Name 

O
C

6 

O
C

7 
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1
 

G
W

4
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2
 

G
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6
 

V.Reflectance 

(R0 %) 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 1.2 1.2 1.2 1.2 1.2 

Foram size 

(µm) 
73.4 84.2 42.1 59.0 39.4 60.5 96.3 93.5 40.2 67.7 50.9 105.6 55.7 48.9 50.9 69.2 53.3 100.2 42.1 68.6 42.6 52.3 91.9 

                        
Table 2.4: Average foraminifera size (µm) for the samples analysed and corresponding vitrinite reflectance (R0 %). 
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Table 2.6: Percentage of the different foraminifera types distinguished in the samples. 

 Matrix 

In thin section under transmitted light, the matrix appears as a micritic compound, 

whereas under the SEM, the different components forming the matrix can be 

distinguished. On average, the matrix is composed of micron-sized coccolithic debris (by 

more than 40%), carbonates (~5%), pyrite (~2-3%), clay minerals (~20%), silicates (~15%) 

and organic matter (~15%) (Figure 2.11). 

 Faecal pellets 

Faecal pellets are a major rock-forming constituent. They are carbonate aggregates formed 

by zooplanktons (copepods) (Hattin, 1975). On average, they measure between 70 µm to 

200 µm and in the samples analysed reach up to 800 µm. The faecal pellets are considered 

a separate domain from the matrix as they are formed predominantly by coccolithic debris 

(~90%) and organic matter, whereas the clay minerals and the silicates are in very minor 
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OC1 A 0.4 outcrop 37 53 6 4 

OC2 A 0.4 outcrop 41 49 7 3 

OC3 A 0.4 outcrop 63 37 0 0 

IM1_1 A 0.4 74.9 58 35 4 3 

IM1_2 A 0.4 94.5 42 36 8 14 

IM2_1 A 0.5 73.7 93 7 0 0 

IM2_2 B 0.5 73.5 0 2 0 0 

IM2_3 A 0.5 148.4 35 60 3 2 

OW1 A 0.9 973.2 17 50 30 3 

OW2 A 0.9 961.8 26 45 9 20 

GW1 A 1.2 2556.3 80 20 0 0 

GW5 B 1.2 2556.7 60 30 10 0 

GW4 B 1.2 2532.5 38 62 0 0 

GW2 B 1.2 2802.2 32 68 0 0 

GW6 B 1.2 2797.9 41 59 0 0 

GW7 C 1.2 3014.5 88 12 0 0 

GW8 C 1.2 3014.8 98 2 0 0 
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abundance (~5%). They can be very common: on a 1mm x 1mm area, for example, in 

samples OC2 and OC3 ~50 specimens were recognised, occupying  ~24% of the sample 

surface (Figure 2.13).  

 Organic Matter 

Organic matter is present at all maturities in the form of kerogen and migrated bitumen. 

Organic petrology analyses were performed to distinguish the various maceral types 

(Figure 2.14). The main macerals are liptinite (mostly alginite, sporinite, cutinite, resinite, 

bituminite) followed by inertinite and vitrinite. Macerals from the liptinite group are 

considered algal materials and bacterial lipids (Type I marine kerogen) (Ma, 2016). The 

alginites can be either lamellar masses (lamalginites) or discrete bodies (telalginites, such 

as Tasmanites or Leiosphaeridia) (Neto et al., 1992). The high-intensity yellow fluorescence 

in the immature samples (Figure 2.14 e) is indicative of high remaining hydrocarbon 

potential. The liptinite group also includes amorphous organic material that is derived 

from algae or bacterial precursors (Hackley and Cardott, 2016). The inertinite represents 

small fragments of oxidized plant tissue and has very low oil/gas potential (kerogen Type 

IV) (Edman and Pitman, 2010). Evidence for this is also the weak fluorescence compared 

to the liptinite macerals. Vitrinite is associated with Type II or III kerogen (Tissot and 

10 μm 

Figure 2.13: SEM SE image of an area 1 mm x 1 mm sample OC2 (R0 0.5%), highlighting the fecal 

pellets (blue), which are recognised by their ellipsoidal shape. 
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Welte, 1978) and refers to organic matter derived from the woody tissue of vascular plants 

(Hackley and Cardott, 2016). The organics are generally aligned parallel to bedding, and 

change colour with increasing maturity (from brownish to grey-black in white light 

optical microscopy). Although vitrinite reflectance analysis was not performed, the 

macerals that were found are in line with the Rock-Eval experiments, which show a 

predominant Type I-II marine kerogen (Figure 2.14). 
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Figure 2.14: a) Blue light fluorescence, oil immersion photomicrograph of a lamalginite (l) (sample 

OW4, R0 0.5%); Blue light fluorescence, oil immersion photomicrograph of cutinites (c) (sample 

OC6, R0 0.5%); c) White incident light, oil immersion photomicrograph of inertinite (i) (sample 

OC7, R0 0.5%); d) Blue light fluorescence, oil immersion photomicrograph of a telalginite (t) 

(sample OC1, R0 0.4%); e) Blue light fluorescence, oil immersion photomicrograph of a lamalginite 

(l)  (sample OC3, R0 0.4%); f) Blue light fluorescence, oil immersion photomicrograph of a 

lamalginite (l)  (sample GW10, R0 1.2%); g) White incident light, oil immersion photomicrograph 

of a fusinite (f) (sample GW10, R0 1.2%); h) White incident light, oil immersion photomicrograph 

of a vitrinite (v) and pyritised sponge spiculae (sample OW2, R0 0.9%). The white bar represents a 

scale of 100 µm. 
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 Mineral compounds  

The mineral compounds that constitute the sample were deposited as flocs (<~ 10 µm) or 

as single particles  (>~ 10 µm) (Aplin and Moore, 2016) (Figure 2.15).  

The minerals do not account for the cements that fill the primary pores. Therefore, 

correlations between the minerals and the mineralogy content cannot strictly be made. As 

the point counting was made to quantitatively estimate the domains, differentiation 

between the types of minerals in the point counting was not made. The minerals are found 

within the matrix and are classified into: 

Figure 2.15: SEM images of the different mineral compouds indicated by the red arrows.  a) calcite 

subhedral particles (sample OC2, R0 0.4%); b) quartz subhedral particles (sample OC1, R0 0.4%); 

c) framboidal pyrite (f) and kaolinite booklets (k) in foraminifera chambers (sample IM1_1, R0 

0.5%); d) mixed illite/smectite (sample H3A2, R0 1.2%); e) euhedral dolomite (sample GW4, R0 

1.2%); f) on the left, euhedral pyrite, on the right, a framboidal pyrite (sample H3A5, R0 1.2%). 
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a) Carbonates 

Carbonates are ubiquitous and can be distinguished as calcite, dolomite, ankerite and 

siderite phases. The calcite is present as sub-euhedral crystals smaller than 30 µm. The 

smaller minerals (< 5 µm) are also a key component of the micritic matrix. CL studies 

allowed differentiation of the dual origin of the carbonate minerals, which is either 

detrital or authigenic, formed as reprecipitated mineral phases. Dolomite cements are a 

minor constituent of the overall mineralogy of the samples (<3% in all the samples except 

in samples GW4, GW2 and GW6). They are large (20-50 µm) crystals formed by 

replacement of existing calcite crystals, as testified by the nanometric crystals of calcite 

within rhombohedral dolomites (Figure 2.15e). Ankerite and siderite account for less than 

2% of the total mineralogy and therefore are not considered.  

b) Silicates 

Silicate crystals found in the samples are quartz and, in minor amounts, K-feldspar and 

plagioclase. Quartz is usually less than 3 µm in diameter, euhedral and generally occurs 

as filling the pore spaces between the coccolithic matrix (see paragraph 2.3.3.3). For this 

reason, the origin of this micro-crystalline euhedral quartz is considered authigenic.  

Sub-angular, irregular, larger (5-10 µm) quartz is also present in minor quantities (Figure 

2.15 b), and their angular shape could be an indication of a detrital origin (Milliken and 

Olson, 2017; Pommer, 2014; Pommer et al., 2014). Cathodoluminescence analyses and the 

Figure 2.16: Sample GW7 (R0 1.2%), microfacies C. a) SEM BSE image; b) elemental map of the same 

area; c) corresponding area in panchromatic CL. In the elemental map, the orange colour 

corresponds to calcite, the green is quartz, the purple is mixed clays (kaolinite + I/S) and the yellow 

is apatite. The red arrow on the panchromatic CL image indicates a recrystallised foraminifer. The 

black arrow indicates dissolution at a contact between two carbonatecrystals. The microquartz is 

too small to reveal any information about its origin. 

a) b) c) 
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distinction between detrital and authigenic quartz are complicated by the small sizes of 

the grains (Figure 2.16), and by the relatively small abundance compared to the 

carbonates (Pommer, 2014) (Table 2.2).  

Minor K-feldspar crystals are also found, exclusively in the immature and oil window (Ro 

0.4% to 0.9%). Their origin is not unequivocal, but their angular shapes are indicative of 

detrital origin. The plagioclase, i.e. albite, appears as angular dispersed in the matrix. XRD 

data show that these grains are only found in the gas maturity window (R0 1.2%). EDX 

maps show calcite crystals being replaced by albite, which is indicative of an authigenic 

origin. 

c) Clay Minerals 

The predominant clays are kaolinite and mixed-layer illite/smectite. Kaolinite sheets are 

common in the matrix and are variable in size, usually smaller than 5 µm. Their shape is 

variable; they can have sub-angular or rounded borders and their texture is commonly in 

the form of flaky booklets (Figure 2.15 c and d). Due to their ductile behaviour, they can 

be affected by compaction. They mainly occur in the immature (R0 0.4-0.5%) and oil (R0 

0.9%) window samples and are often associated with the replacement of other minerals 

such as calcite. For this reason, kaolinite tactoids were interpreted as authigenic by many 

authors (Driskill et al., 2012; Jennings and Antia, 2013; Pommer, 2014).  

Mixed Illite/smectite particles are found at all maturities, but in major abundances in the 

high maturity window (R0 1.2%). They appear in forms of very small (<4 µm) fibres and 

sheets and for this reason, it is hard to determine whether their origin is allogenic or 

authigenic (Milliken et al., 2016).  

d) Pyrite 

 Pyrite occur in the form of single subhedral crystals or as framboids. They are found 

dispersed within the matrix, within organic matter, or precipitated within foraminifera 

tests (Figure 2.15 f). The pyrite crystals and framboids have variable sizes (50 nm to 30 

µm). The subhedral grains are interpreted to be mainly marcasite, a dimorph of pyrite. 

Other minerals, occurring in minor abundances are ankerite, siderite and apatite. 
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 Microfacies 

Transmitted light optical microscopy allowed the microfacies to be discerned by 

observing the fabric and texture of the rocks and to understand their microstructures. The 

microfacies were defined observing the mineralogy, the presence of fossils and the crystal 

types and sizes, the amount of matrix and its relationship with the crystals, the presence 

or absence, shape and thickness of laminae and the various microstructures. The three 

microfacies identified were: laminated foraminiferal mudstones, wackestones and 

packstones. From now on, in this and in the following chapters, these facies will be called 

A, B and C respectively (Figure 2.17).  

 

 



46      Chapter 2 

 

 

Figure 2.17: Thin section and SEM images of the microfacies types. a) laminated foraminiferal silt-

rich mudstone (microfacies A, sample IM2_6 (R0 0.5%)); b) laminated foraminiferal clay-rich 

mudstone (microfacies A, sample OW4 (R0 0.9%)); c) laminated foraminiferal-calcite rich mudstone 

(microfacies A, sample IM2_3 (R0 0.5%)). The red arrow indicates wavy and inclined laminae within 

the matrix; d) recrystallised sparry wackestone (microfacies B, sample IM2_2 (R0  0.5%)); e) 

wackestone (microfacies B, sample IM1_2 (R0 0.5%)); f) packstone (microfacies C, sample GW7 (R0  

1.2%)). 
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a) Microfacies A: laminated foraminiferal mudstone 

A mudstone is described as a rock that comprises particles predominantly smaller than 

62.5 µm. A laminated foraminiferal mudstone is a mudstone containing micrometric (100 

to 600 µm) foraminiferal-rich levels. The mineralogical content of the laminated 

foraminiferal mudstones is varied, and are primarily formed by clays, carbonates, silicates 

and feldspars (Aplin and Macquaker, 2011). The mudstones present in these samples are 

mainly carbonate-rich (47.6% on average), with minor contents of silicates (23.2% on 

average) and clays (20.6% on average). The TOC content ranges between 3 wt % and 7.9%, 

with an average of 5.2 wt. %. These samples can be sub-divided into three types: 

a) Laminated foraminiferal, silt-rich mudstones containing more than 30% silicates. The 

thin sections appear light brown in colour. Samples OC1, IM2_1 and H3A2 are 

laminated foraminiferal silt-rich mudstones (Figure 2.17 a). 

b) Laminated foraminiferal, clay-rich mudstones: XRD data show that foraminiferal clay-

rich mudstones contain at least 27% of clays and 36% of carbonates. Under transmitted 

light, the thin sections appear as light-brown to red-brown. Samples IM1_2, IM1_3, 

OW2 and H3A3 are classified as clay-rich mudstones (Figure 2.17 b).   

c) Laminated foraminiferal, carbonate-rich mudstones: these contain at least 50% of 

carbonates and appear dark to light brown in thin section. They mostly contain faecal 

pellets and foraminifera. Samples OC2, OC3, IM2_3, OW1 and H3A5 are classified as 

laminated foraminiferal carbonate-rich mudstones (Figure 2.17 c). 

In all the foraminiferal mudstone types, the laminae appear as horizontal and parallel-

laminated at the centimetre scale. The laminations are caused by alternations of 

foraminiferal-rich layers (white-pale colours) with more clay and organic-matter rich 

laminae, that form the matrix.  

The foraminifera-rich layers are formed by at least 90% of foraminifera held together by 

calcite cements. The foraminifera tests within these beds and dispersed in the matrix are 

either hollow or filled with cements (mainly blocky calcite and in minor amounts also 

quartz or kaolinite), occasional minerals (pyrite) or organic matter. The foraminiferal 

laminae exhibit a sharp erosive contact derived from the contact between the hard fossils 
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on a softer micritic substrate (Figure 2.17 a). Weak forms of wave ripples and inclined 

laminae are also present (Figure 2.17 c). Signs of compaction and loading can be seen in 

the flattened faecal pellets, the deformed particles surrounding the foraminifera and the 

crushed tests of foraminifera or other fossils perpendicular to the burial stress direction 

(Figure 2.18 b). Dispersed within the matrix are different types of fossils such as 

foraminifera, phosphatic shells and fish bones, coccospheres, bivalves, inoceramids, 

pelecypods, ostracods, radiolaria, spiculae, echinoderms. There are also frequent faecal 

pellets and detrital silicate compounds (quartz, plagioclase, K feldspar) and carbonates 

(mainly calcite and dolomite). Amongst the fossils, the foraminifera are the most common 

and constitute at least 10% of the whole microfacies, measuring between 20 µm up to 400 

µm. On average, they are larger than 62.5 µm (silt-size). Pyrite is common (between 1% 

and 5.1%) within the matrix and in the foraminifera tests in the forms of framboids or 

euhedral crystals. Less common is the presence of plagioclase (average 2%) and dolomite 

(average 0.3%). Intergranular pores dominate the pore system in the samples from 

microfacies A. At increasing maturities (form R0 0.4% to R0 1.2%), an increase in organic 

matter pores at the expense of intergranular pores (-44%) is observed. 

b) Microfacies B: wackestone 

Wackestones are defined as a mud-supported carbonate rock that contains > 10% grains 

(Dunham, 1962). The wackestones in the samples analysed here are formed by laminae, 

apart from sample IM2_1 (R0 0.4%), which is a pervasively recrystallised, sparry 

a) b) 

Figure 2.18: a) Thin section photomicrograph of sample IM2_5 (microfacies A, R0 0.5%). The red 

arrows indicate a sharp contact between the hard foraminiferal layer and the ductile clay-rich 

matrix on the bottom. b) Thin section photomicrograph of sample OW8 (R0 0.5%). The red arrow 

indicates a foraminifer with chambers collapsed from the burial stress. 
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wackestone. This type of sample was classified as concretionary by McAllister (2017). The 

crystals are formed by large (> 50 µm) sub-angular to angular calcite crystals. Surrounded 

by angular calcite particles are occasional intact planktonic foraminifera which suggests 

the angular granules did not have a biogenic origin. Further evidence for this are the CL 

images, in which the grains do not reveal any overgrowth from original biogenic 

carbonates (i.e. fossils, shell fragments or coccoliths). The matrix is formed by a mixture 

of micro and nanograins of quartz, carbonates, clays and organic matter. For this sample, 

the TOC content is 1.9%. (Figure 2.17 d). 

On the other hand, in the laminated wackestone samples (GW3, GW4, GW5, H3A4, H3A6, 

GW2, GW6 at R0 1.2%), CL images show that the coarse (> 60 µm) sub-angular or rounded 

calcite crystals are reprecipitated cements around fossils (foraminifera, calcispheres and 

radiolaria) and faecal pellets (Figure 2.19). Where still visible and preserved, the 

constituents filling the foraminifera are predominantly calcitic cements and organic 

matter. The most common pores are interparticle matrix pores (on average, 57%), like in 

microfacies A. However, by a qualitative analysis, it can be seen that the abundant calcite 

cement within the foraminifera and the matrix has significantly reduced the number of 

interparticle and intraparticle pores (see Chapter 3). Weak forms of wave ripples and 

inclined laminae are present but usually disrupted by the pervasive cementation.  

 

50 µm 

a) b) c) 

Figure 2.19: Calcite grain overgrowth in sample GW3 (microfacies B, R0 1.2%). a) is an SEM BSE 

image, b) is the elemental map of the same area and c) is the corresponding area in panchromatic. 

On the elemental map, the orange colour corresponds to calcite, purple is kaolinite, green is quartz 

and pink is pyrite. The red arrow on the panchromatic image indicates a primary biogenic calcite 

foraminifera, around which the calcite cements have reprecipitated in different phases, which 

correspond to different greyscales. 
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c) Microfacies C: packstones 

Packstones are defined as grain-supported carbonate rocks that contain 1% or more of the 

mud-grade size fraction (Dunham, 1962). The two packstone samples GW7 and GW8 are 

formed by high percentages of carbonates (75% and 84%) and low amounts of mixed-

layer illite/smectite (12% and 7%) and TOC (0.5 wt % and 0.7 wt %). The packstones have 

a massive texture with no clear sedimentary structures. The carbonates comprise 

foraminifera, sponge spicules, bivalves and oyster fragments, calcispheres and 

echinoderm plates and spines. The samples, analysed under the CL, show evidence of 

dissolution and reprecipitation of calcite, that grows on the surfaces of the fossil shells 

and masks the original fabric (Figure 2.20). 

 They are white to light brown in thin section (Figure 2.17 f). The most common pore types 

for this microfacies are interparticle matrix pores, which constitute on average 60% of the 

overall pore types. Since organic matter contents are low, the organic matter pores 

account for only ~5% of the overall porosity. Dissolution pores, on the other hand, are 

more abundant than in the other microfacies and constitute up to 31% of total number of 

visible pores, compared to an average of 3.7% in microfacies A and an average of 7.3% in 

microfacies B. The intraparticle fossil and mineral pores are a minority (< 5%). 

 

 

Figure 2.20: Sample GW7 (microfacies C, R0 1.2%). a) SEM BSE image; b) elemental map of the same 

area; c) corresponding area in panchromatic CL. In the elemental map, the orange colour 

corresponds to calcite, the green is quartz, the purple is mixed clays (kaolinite + I/S) and the red is 

pyrite. The red and white arrow on the panchromatic CL image indicates recrystallised bioclasts, 

possibly an oyster shell (red) and an agglutinated foraminifera (white). The numbers indicate the 

different calcite precipitation phases. 
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 Pore types 

The high resolution and high magnification SEM maps allowed the identification and 

differentiation of pores as small as 18 nm in diameter. The classification of the different 

pore types was modified after Loucks et al. (2012). Interparticle matrix pores, interparticle 

mineral pores, intraparticle fossil pores, intraparticle dissolution pores and organic-

matter pores were discerned (Figure 2.21). The pore types were also quantified by 

analysing the SEM SE maps overlain with the EDX chemical maps (Table 2.7). 
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OUT1 0.4 A 6 68 15 11 0 

OUT2 0.4 A 8 69 13 7 3 

OUT3 0.4 A 10 64 18 8 0 

IM1_1 0.4 A 7 71 8 13 1 

IM2_2 0.5 B 4 69 9 6 12 

IM2_3 0.5 A 4 77 13 2 4 

OW1 0.9 A 5 74 9 10 2 

OW2 0.9 A 12 65 8 3 12 

GW5 1.2 B 13 65 15 6 1 

GW4 1.2 B 13 64 17 2 4 

GW2 1.2 B 18 47 19 4 12 

H3A2 1.2 A 47 41 2 0 10 

H3A3 1.2 A 41 38 16 2 3 

H3A4 1.2 B 29 57 10 3 1 

H3A5 1.2 A 43 37 18 0 2 

GW6 1.2 B 27 37 19 3 14 

GW7 1.2 C 5 61 4 2 28 

GW8 1.2 C 4 59 1 5 31 

        

Table 2.7: Percentage of the different pore types relative percentages measured by observing the 

SEM and EDX maps. 
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Figure 2.21: SEM images of the different pore types indicated by the red arrows.  a) dissolution 

pores (sample H3A2, R0 1.2%); b) interparticle mineral pores in framboidal pyrite (sample IM1_3, 

R0 0.4%); c) interparticle matrix pores (sample IM1_2, R0 0.5%); d) OM fracture pores in bitumen 

filling a foraminifer-coccosphere chamber (sample OW2, R0 0.9%); e) pendular pores in an organic 

matter filament within the matrix (sample OW2, R0 0.9%); f) OM sponge pores in bitumen filling 

foraminifer chambers 
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a) Interparticle matrix pores 

Interparticle matrix pores are pores that occur between particles. In these samples, they 

are found as intra-aggregate porosities between clays and carbonates, between the 

coccolithic debris in the matrix and in the faecal pellets (Figure 2.21 c). For the 18 samples 

analysed, the interparticle matrix pores are the most frequent type, occurring at all 

maturities (37 to 77% of the overall number of pore types), apart from samples H3A2, 

H3A3 and H3A5 where the OM pores are slightly more abundant. Relatively to the rest 

of the pore types, the highest percentages of interparticle matrix pores are found at lowest 

maturities (R0 0.4-0.5%). 

b) Intraparticle mineral pores 

The intraparticle mineral pores reflect the abundance of framboidal pyrite and kaolinite, 

whose structure often allows intraparticle pores to form. In general, they range between 

1% and 19% of the overall pore types and do not follow a specific trend with increasing 

maturity, nor with microfacies type (Figure 2.21 b). 

c) Intraparticle dissolution pores 

Intraparticle dissolution pores can be identified by their elliptical shape within 

precipitated carbonate minerals and, to a lower extent, K-feldspar and plagioclase 

minerals. They are found at all maturities, but they become more abundant in the oil and 

gas maturity window samples. They are mainly found in microfacies B and C. In the two 

samples from microfacies C, at the highest maturity, they reach  31% of the overall visible 

pore volume (Figure 2.21 a).  

d) Intraparticle fossil pores  

Intraparticle fossil pores occur within well-preserved foraminifera tests and 

coccolithophorids and are most common in the least mature samples (R0 0.4-0.5%). 

Intraparticle dissolution pores have a more elliptical shape and are found within 

precipitated carbonates and, to a lesser extent, plagioclase minerals. They range between 
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0% and 31% and are found at all maturities, but most commonly in the highest maturity 

samples (R0 1.2%). 

e) Organic matter pores 

Organic matter pores are pores found in the organic matter and can be distinguished in 3 

types: pendular, spongy and fracture-like OM pores (Walls and Sinclair, 2011) (Figure 

2.21 e,f,g). Pendular and fracture-like OM pores are generally larger, more elongated and 

have a higher aspect ratio compared to spongy OM pores. Pendular and fracture-like 

pores are present at all maturities but begin to be more common in the oil window. From 

qualitative observations, spongy OM pores are the most abundant pore type; they have a 

circular or semi-circular shape and are usually smaller than 10 nm. The spongy OM pore 

type is only found in the highest maturity samples (R0 1.2%), where OM that has not 

developed a spongy texture can also be present. The pendular and fracture-like OM pores 

are rare (< 10% of the overall porosity) and are found in the immature and oil window 

samples. SEM images show that not all the organic matter that is present in the gas 

window has generated pores. This is indicative of the presence of different organic matter 

types (Löhr et al., 2015). Loucks et al. (2012) suggest that, for example, Type II kerogen is 

more prone to generate OM pores than Type III kerogen. Several authors suggest instead 

that the OM pores are generated only in bitumen after the secondary cracking in the gas 

window (Löhr et al., 2015; Milliken et al., 2013; J Schieber, 2013). Organic matter pores 

reach 41% of the overall pore types in sample H3A2 (microfacies A, R0 1.2%).  

 Diagenetic processes and interpretation 

  Cements and mineral replacements 

Cements and mineral replacements are two different processes. A cement is defined as a 

mineral phase that has precipitated from an aqueous solution into primary void space 

whereas a mineral replacement involves the dissolution of a primary mineral phase and 

precipitation of a new, authigenic mineral phase (Maliva and Siever, 1988). However, in 

limestones, the two concepts are rarely distinguishable and only the authigenic minerals 

that do not show any clear precipitation into an open space are termed replacements 
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(Milliken and Day-Stirrat, 2013). In this study, the term replacement will only be used 

where the process is evidently a replacement and not cementation.  

The fact that the majority of the bioclasts are intact and filled with cements, implies that a 

phase of cementation has occurred at relatively shallow burial depths, in the early stages 

of diagenesis (Heydari, William and Wade, 2002; Hentz and Ruppel, 2010; Mcallister, 

2017). Diagenesis in these samples is very complex and consists of multiple phases of 

cementation (Figure 2.20) as well as multiple cement types. In particular, observations of 

the infills of the foraminifera chambers allow us to infer the nature of the cements as well 

as the sequence of precipitation (Table 2.8). The foraminifera tests have large (> 50 µm) 

chambers and are the most obvious sites in which cements precipitate.  As the XRD data 

only provide the bulk composition of the samples, in order to have a better insight on the 

cements that are present, the foraminifera infills were quantified by means of point 

counting studies in 17 samples from different maturities.  

Table 2.8: Percentage of the relative percentages of different cement types within the foraminifera 

tests and the corresponding XRD bulk rock results. For more detaild bulk mineralogy refer to 

chapter 3. OM = organic matter, N/A = not available data. 
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GW6 1.2 B 100 0 0 0 2.4 3.2 77.9 14.3 

GW7 1.2 C 80 7 6 7 0.7 12.2 74.6 6.7 

GW8 1.2 C 96 2 0 2 0.5 7.0 84.4 4.5 
           



56      Chapter 2 

 

 Calcite and Dolomite 

The most common type of cement is calcite, which precipitates in the intrafossil porosity 

and within the matrix debris. Especially within the fossil tests that are partially filled with 

cements, the cements can be identified by their angular shape (Figure 2.22).   

Figure 2.23 shows that there is no apparent trend between the increase in depth and 

maturity and the increase in calcite cement in the foraminifera chambers. 

 

 

 

 

 

 

Figure 2.23: Total calcite cements (%) vs depth plot. Yellow dots correspond to the laminated 

foraminiferal mudstone samples, purple dots to the wackestone samples and the light blue dots 

to the packstone samples. There is no clear correlation between the cements filling the foraminifera 

and the depth at which the samples are found. 

Figure 2.22: Foraminifera chambers in sample IM2_4 (R0 0.5%) filled with cements of calcite (c), 

kaolinite (k) and infill of bitumen infill (b). 
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The foraminifera chambers filled with cements are extremely common (> 90 % of the 

chambers), and amongst those, calcite is the most frequent cement. On average, cements 

are more frequent in microfacies B and C (83% and 88% respectively) compared to 

microfacies A (57.2%). However, an increase in cement and authigenic calcite within the 

matrix and the faecal pellets with increasing maturity can be noticed. In particular, the 

cements begin to fill the faecal pellets and matrix interparticle pores in the oil window (R0 

0.9%) and become pervasive in the gas window (R0 1.2%) (Figure 2.24).  

In the gas window, calcite overgrowths surrounding the primary calcite minerals and 

fossils are also common. Microfacies B, in particular, shows extensive calcite cements 

around the original detrital calcites and around the fossils. The cements are better 

observed in CL, which enables the visualisation of the various episodes of calcite 

precipitation. As seen in Figure 2.20, calcite cements are interpreted to have formed in at 

least 3 different episodes. The CL also shows that microfacies B is in fact originally very 

similar to microfacies A. However, in microfacies B the calcite cements have entirely 

masked the faecal pellets and foraminifera, which appear here as massive calcite crystals 

(Figure 2.26). The two samples from microfacies C instead present a massive structure in 

which the fossil debris, mainly formed by shells and spiculae, is held together by calcite 

cement (Figure 2.25). A previous phase of calcite cement is also observed in forms of 

overgrowth around the debris. Previous studies using carbon isotopes (Mcallister, 2017 

and references therein) have demonstrated that the carbonate cements were precipitated 

from a marine inorganic source and not from microbial processes. Moreover, the presence 

of zonations in the calcite (Figure 2.27) suggests existing very small chemical variations 

Figure 2.24: On the left, a fecal pellet in an immature sample (sample IM1_1, R0 0.5%). On the right, 

faecal pellets in a gas window sample (sample H3A1, R0 1.2%). 
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in the calcite-saturated fluid, which are interpreted as changes in the microbial oxidation 

of organic matter (McAllister et al., 2015).  

  

Figure 2.27: Sample H3A2 (R0 1.2%). a) is an SEM BSE image, b) is the elemental map of the same 

area and c) is the corresponding area in panchromatic CL. On the elemental map, the orange colour 

corresponds to calcite, green is quartz and pink is pyrite. The red arrows indicate the three calcite 

cement phases, which have a different greyscale compared to the foraminifera shell.  

Figure 2.26: Sample GW4 (R0 1.2%). a) is an SEM BSE image, b) is the elemental map of the same 

area and c) is the corresponding area in panchromatic CL. On the elemental map, the orange 

colour corresponds to calcite, green is quartz, purple is kaolinite, blue is dolomite and pink is 

pyrite. The red arrow indicates the cement growth zonations. 

a) b) c) 

a) b) 

a) b) c) 

c) 

I 

III II 

Figure 2.25: Sample H3A6 (R0 1.2%), microfacies B. a) SEM BSE image; b) elemental map of the 

same area; c) corresponding area in panchromatic CL. In the elemental map, the orange colour 

corresponds to calcite and green is quartz. The red arrows on the panchromatic CL image indicate 

the microquartz cements, which have different greyscales and suggest a different timing of 

deposition. The white rim on the black paticle on the right suggests that the white particle was 

deposited on a later stage. The structure of an original bioclast completely recrystallised is also 

visible. 
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 Dolomite 

Crystals of dolomite are observed around foraminifera shells or scattered in the matrix 

(Figure 2.28). CL analyses show the existence of micro-crystals of calcite within the 

dolomite crystals, which indicates that the dolomite is authigenic. Magnesium is probably 

derived from the dissolution of other mineral phases (ie. feldspars, clays). The large 

dimensions of the dolomite crystals suggest an early diagenetic origin, when there was 

still sufficient pore space for the precipitation of large crystals, but could be also formed 

as a replacement of other carbonate phases (i.e. calcite). 

 Quartz 

Quartz cements are commonly found in the Eagle Ford samples in all the microfacies 

types. They are observed in forms of subangular granules (5-10 µm) precipitated in the 

intraparticle pores within the allochems, or as micro-crystals (<3 µm), filling the pores 

within the coccolithic matrix (Error! Reference source not found.). The sub-angular 

granules within the fossils seen in thin section are a minor cement constituent (< 15%), 

occurring at all maturities. There is no apparent relationship between the sub-angular 

cements and the fossils. The micro-crystals, instead, have generally smoothed borders and 

occur at all maturities, increasing in gas window (R0 1.2%) samples. However, XRD data 

show that the quartz bulk percentage does not have any direct relationship with the 

increase in thermal maturity (Table 2.2). This suggests that the quartz precipitation 

Figure 2.28: Calcite mineral overgrowth in sample IM2_1 (R0 0.5%) surrounded by dolomite 

cements. a) is an SEM BSE image, b) is the elemental map of the same area and c) is the 

corresponding area in panchromatic. On the elemental map, the orange colour corresponds to 

calcite, purple is kaolinite, green is quartz and blue is dolomite. The red arrows on the 

panchromatic image indicate the calcite remnants on which the dolomite has precipitated, 

suggesting an authigenic origin. 

a) b) c) 
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process starts early with the precipitation of sub-angular cements and micro-crystals in 

primary pores and continues at higher maturities as a micro-grain replacement in the 

matrix. Milliken et al. (2016) have studied the origins of the silica in the Upper Eagle Ford 

and have concluded that the majority of the quartz that is found is authigenic and most 

likely originated from the alteration of original biogenic opal derived from radiolarian 

microfossils and sponge spicules. The radiolarian microfossils are composed by opal-A, 

which, being unstable transforms into a more stable phase opal-CT as lepispheres which 

in turn transform into quartz (Fishman et al., 2014; Kastner et al., 1977; Peltonen et al., 

2009). The samples in this study were taken from the Lower Eagle Ford intervals, but the 

micro-quartz origin can be inferred as the same as for the one described by Milliken et al., 

2016 for the Upper Eagle Ford.  

Another possible origin for the micro-quartz precipitation at higher maturities is 

explained by the release of Si from illitization reactions during late diagenesis ( T > 90°) 

(Thyberg and Jahren, 2011; Worden and Morad, 2003). However, the XRD analyses do not 

allow us to differentiate illite from smectite, and therefore it is not possible to determine 

whether illitization has occurred. The fact that bulk quartz does not increase in the oil and 

gas window compared to the low maturity window samples can be explained with the 

fact that the Si becomes available for the precipitation of quartz as well as other minerals 

such as Na-rich plagioclase (albite), the abundance of which increases in the gas maturity 

window (from an average of 1% to an average of 2%) (Table 2.2). 
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 Clays 

Kaolinite and mixed illite/smectite are common cements in these samples. The kaolinite 

appears in forms of micrometric (<3 µm) booklets within the allochems and in the matrix. 

Within the foraminifera tests, it usually fills the space that is not occupied by calcitic 

cements, and therefore it is interpreted as post-dating calcite (Figure 2.29). The kaolinite 

in the matrix usually occurs as single booklets, whereas in the forams it is commonly 

found in the form of aggregates. In the matrix, the distinction between the kaolinite, the 

mixed illite/smectite and the other mineral grains is only possible under the SEM. On the 

contrary, to differentiate the clay cements from the OM infill and the quartz and calcite 

cements, an optical microscope is sufficient. Point counting of the cements shows that the 

clay cements within the foraminifera tests are more common in microfacies A than in 

microfacies B and C (on average, 25% vs 5% and 4.5% respectively). There is no apparent 

trend between the clay cements within the allochems and the increase in maturity nor the 

ratio of clays. This can be explained by the fact that the clays are present in large amounts 

in the matrix and that kaolinite and mixed-layer illite/smectite cannot be differentiated by 

point counting. Considering the origin of the clays to be authigenic, relationships between 

the clay mineralogy and cements can be made.  

Figure 2.29: Sample H3A5 (R0 1.2%). Foraminifera with different cements filling the chambers. The 

red arrow indicates the kaolinite booklets filling the space left free by the calcite (c) and the pyrite 

(p). The pyrite occurs as framboidal (pf) and euhedral (pe). 
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As seen in the bulk rock composition Paragraph (2.3.1), the bulk mineralogy data show 

an abrupt decrease in kaolinite amounts from the oil to the gas window. On average the 

kaolinite at R0 < 0.9% is ~13%, whereas at higher maturities (R0=1.2%) is ~1%. In contrast, 

the I/S bulk ratio increases from an average of ~7% at R0 < 0.9% to an average of ~9% in 

the gas window samples (Figure 2.7).  

Differences in the bulk mineralogy of the samples can be due to 1) diagenetic processes 

or 2) variations in sediment supply at individual locations. The abrupt decrease in 

kaolinite at thermal maturities > R0 0.9%, suggests that diagenetic processes are 

predominant. The major clay diagenetic process occurring at temperatures > 90° is 

illitization, which modifies kaolinite and K-feldspar, mobilising Al, K and Si in the system, 

producing illite and micro-quartz. A simplified equation of the reaction is: Kaolinite + K-

feldspar ➔ Illite + Albite + H2O. In turn, the origin of kaolinite and I/S is interpreted as 

related to the dissolution and alteration of detrital aluminium oxides and clay minerals 

delivered to the basin as ash (Jennings and Antia, 2013; Taylor et al., 2014; Wilson et al., 

2016). The alteration of plagioclase mobilizes Al in the porewaters, which becomes 

available for the precipitation of the kaolinite and I/S. 

 Albite 

Euhedral crystals of albite are commonly observed in the BSE images, replacing the calcite 

(Figure 2.30). They are common in oil and gas window samples, whereas they are rare in 

immature samples. Bulk mineralogy data are in accordance with the observations, and 

the average albite content at R0 < 0.9% is ~1%, whereas at R0 ≥ 0.9% ~2%. Albite is common 

in microfacies A and B, whereas in microfacies C it only represents 0.5% of the bulk 

mineralogical content. The precipitation of albite is thought to be derived from the 

mobilization of Na and Al occurring in the early phases of diagenesis, because of the 

alteration and dissolution of detrital aluminium oxides (Jennings and Antia, 2013; Taylor 

et al., 2014; Wilson et al., 2016). 
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 Pyrite 

Pyrite is scattered through the matrix and occurs in minor amounts as a cement in the 

foraminifera chambers. As mentioned above, it is mainly seen in the oil window and gas 

window, but it is also frequent in the immature window. The average pyrite content is 

1.5%, with no correlations with microfacies nor maturity. The presence of pyrite within 

the foraminifera chambers was not quantified, as the crystals can be too small to be seen 

and it appears opaque in transmitted light, making it difficult to differentiate with other 

opaque minerals. Under the SEM it appears as framboidal or euhedral. It has variable 

dimensions (< 30 µm) and is also seen filling fractures. Its occurrence is associated with 

the sulphate reduction during early burial diagenesis (Dawson, 2000).  

Figure 2.31: a) SEM BSE image of pyrite replacing calcitic foraminifera shells (sample IM2_1, R0 

0.5%); Reflected light photomicrograph of a thin section showing pyrite replacing radiolaria (red 

arrow) and siliceous sponges (white arrow) (IM2_1, R0 0.5%); 

20 µm 

Figure 2.30: Sample GW4 (R0 1.2%). a) is an SEM BSE image, b) is the elemental map of the same 

area. On the elemental map, the orange colour corresponds to calcite, green is quartz, purple is 

albite, and red is pyrite. The black arrow indicates the intergrowing between the albite and the 

calcite cement. 

a) b) 
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Pyrite cements juxtapose early phase cements in the foraminifera, indicating an early 

phase cement which coincides in time with the precipitation of the other mineral phases 

that fill the tests. Replacive pyrite, usually at the expenses of calcite cements or bioclasts, 

is also found as scattered throughout the matrix and within the allochems (Figure 2.31).  

 OM infill 

OM occurs as infill in the intraparticle fossil and mineral pores and in the interparticle 

matrix pores (Figure 2.32). Bitumen can be distinguished from the kerogen in the cases 

where it fills intraparticle porosity and when it coats mineral crystals. The OM that occurs 

as an infill of primary or secondary pores, is indicative of a hydrocarbon phase that has 

been generated and has migrated through the pore system, being trapped in free spaces 

(i.e. the pores).  

The decomposition of organic matter was studied by Lewan (1991), who suggested that 

it produces an increase in volume, causing a pressure differential and the migration of the 

organic matter (Loucks and Reed, 2014). When the organic matter is clearly considered as 

migrated, for example the one present in the foraminifera tests, it is named bitumen. The 

OM in the foraminifera tests is common and is also seen under transmitted light. Point 

counting indicates that the OM fill is present at all maturities, which supports the 

hypothesis that the OM migration begins at the very early stages of diagenesis (at R0 ≤ 

Figure 2.32: a) Bitumen filling the chambers of a foraminifer (sample OC2, R0 0.5%). b) Bitumen 

filling the coccolithic matrix (sample H3A1, R0 1.2%). In b) some spaces between the coccolith plates 

are completely filled with bitumen, whereas others present porosities within the bitumen. 
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0.4%). The presence of OM infills in the low-maturity samples is consistent with 

generation from a sulfur-rich kerogen (Sun et al., 2015). In the foraminifera tests where 

other cement phases have precipitated, OM fills the remaining pore space. This implies 

that the organic matter migration post-dates the other early phase cements. Pyrite is 

commonly seen as a replacement or on the top of OM or other cements, which suggests 

that some pyrite precipitates also at a later stage (Figure 2.31). Organic matter infills are 

also commonly found within faecal pellets and within the matrix, filling pore spaces or 

fractures. Point counting results from the foraminifera chamber fills also show that 

Microfacies A samples present the major occurrence of OM infills (average value of 

11.4%), which decrease in microfacies B and C (average values of 8.4 and 3 % respectively) 

(Table 2.8). 

 In the oil and gas window, as seen in the pore section, the bitumen infills, exhibit OM 

pendular and sponge-like pores, which are indicative of a continuous hydrocarbon 

generation and migration. XRD data show that the TOC (wt %) content is higher in the 

samples from microfacies A, which is also the microfacies with a lower average calcite 

content compared to microfacies B and microfacies C (47%, 78% and 79% respectively) 

(Figure 2.33).  

 

Figure 2.33: TOC wt. % vs carbonates (%) for all the samples analysed, from all maturities. The 

yellow colour corresponds to microfacies A samples, purple to microfacies B samples and light 

blue to microfacies C samples. There is a clear trend between the carbonates and the TOC (%), and 

between the carbonates and OM content and the microfacies types. 
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This suggests that carbonate cementation was hindered by the migration of bitumen in 

the TOC rich samples. However, as the carbonate cementation is more pervasive at high 

maturities and the organic matter migration occurs at an earlier stage, the inverse 

correlation is more indicative of primary depositional process controls (Pommer and 

Milliken, 2015).   

 Gypsum veins 

Gypsum veins are very rare and are only observed in the outcrop samples (Figure 2.34). 

They can be as thick as 30 µm and they completely cut through the existing texture. Due 

to their occurrence only on outcrop samples, they are interpreted as weathering products, 

caused by the infiltration of meteoric waters saturated by CaSO4. Gypsum veins 

commonly present shrinkage cracks, which are caused by the dehydration of the gypsum 

to its hemihydrate form (Schieber et al., 2016). 

  Compactional features 

Compaction is indicated by the presence of collapse features, such as collapsed 

foraminifera chambers or fragmented shells (Figure 2.35 c and d). The foraminifera 

Figure 2.34: SEM BSE image. Gypsum veins (white arrows) in an outcrop sample (sample OC1, R0 

0.5%). The veins cut through the original texture. The red arrow indicates a foraminifera shell 

partially destroyed by the gypsum vein.    
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usually remain intact, probably because of the early phase cements that infill the 

chambers rendering the allochems more resistant to the burial stress. However, when the 

tests are not completely filled with cements, they are subject to the compactional stress 

normal to bedding, and therefore prone to collapse and destruction (Figure 2.35 d). Other 

signs of compaction can be seen around the rigid grains. The ductile material (i.e. clays 

and OM) compacts around rigid grains (Figure 2.35 a). The lensoidal faecal pellets also 

appear flattened perpendicular to the burial stress (Figure 2.35 b). 

  Dissolution 

Evidence of dissolution of the mineral components is found in the contacts between the 

more cohesive particles or bioclasts. In some samples, pressure solution micro-stylolites 

have also formed. Dissolution is also present in minerals such as carbonates or K-feldspar 

and produces intraparticle dissolution pores. Intraparticle dissolution pores are mainly 

Figure 2.35: a) Thin section photomicrograph. The red arrows indicating ductile sediment 

compacting the hard bivalve shell (sample OC7, R0 0.5%); b) SEM mixed SEM BSE image of a faecal 

pellets stressed in the direction of the bedding. On the left, a harder grain is compressing a faecal 

pellet (sample OC2, R0 0.5%); c) Thin section photomicrograph of a thin bivalve shell broken by 

the foraminifera (pelecypod) (sample IM2_5, R0 0.5%); d) Thin section photomicrograph of 

collapsed tests of a foraminifer (sample OW8, R0 0.9%); 
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present in the oil and gas window. The fact that dissolution pores begin to widely occur 

in the oil window, correlates them to the decarboxylation of kerogen that generally occurs 

between 80°C and 120°C and generates carboxylic and phenolic acids (Leggett and Zuffa, 

1987; MacGowan and Surdam, 1993; Schieber et al., 2010; G. Yuan et al., 2019). These acids 

dissolve the mineral phases starting from the discontinuities in the mineral lattice, which 

generate the pores within the minerals (Figure 2.36). 

 

  Fractures 

The original texture of the samples can be overprinted by fractures (Figure 2.37). Where 

present, fractures can significantly contribute to the increase of permeability and act as 

pathways for the hydrocarbons (Loucks et al., 2012). The fractures are generally a few (<5 

µm) thick. Identification of lateral extent is impeded by the limited size of the samples, 

but fractures are commonly observed to run from one side of the thin section to the other 

(~1 cm wide). The fractures generally run parallel to the laminations, but cross-cutting 

perpendicular fractures also occur. As observed by Ríos et al. (2016), microfractures can 

develop parallel to the bedding along the contact between the foraminifera-rich layers 

and the clays, by differences in mechanical strength. Fractures can be either empty or 

filled with cements.  

Figure 2.36: a) SEM BSE image. The red arrow indicates a contact between two tests. Where the 

contact has occurred, the two tests are partially dissolved. (sample OW8, R0 0.5%); b) SEM BSE 

image. The red arrow indicates a pressure solution vein filled with organic matter (sample OW8, 

R0 0.5%); c) SEM BSE image. The red arrow indicates dissolution pores within a carbonate crystal. 
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The most common cement is fibrous calcite. Pyrite cement is also common, especially in 

sample IM1_2. In many cases they cross-cut the existing texture as well as cement infills 

in the allochems. This indicates that they were formed in a late phase of burial diagenesis, 

and probably caused by the volume increase during the hydrocarbon generation 

processes (Bernard et al., 2013b; Blood and Lash, 2015). As explained in Chapter 3, caution 

must be taken when observing the fractures that are not filled with cements, as they can 

be induced by releasing stress from well recovery (Antrett et al., 2011; Flügel, 2004; Gregg 

et al., 1982) or by mishandling during sample preparation (see Chapter 3). 

Figure 2.37: a) Thin section photomicrograph of sample IM2_7, R0 0.5%; b) thin section 

photomicrograph of sample OW8, R0 0.9%; c) SEM BSE and d) SEM SE images of a void fracture. 
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  Interpretation of the samples paragenesis 

The wide maturity range of the sample set (R0 0.4 to 1.2%) provides a unique opportunity 

to investigate the diagenesis of the samples through time. Petrographic analyses by means 

of optical microscope, SEM and CL provide a relative timescale of the mechanical and 

chemical processes these sediments have gone through (Figure 2.38). 

 Compaction 

The first process to modify the sediments deposited on the subsurface is mechanical 

compaction. Compactional processes begin in the early phases of diagenesis and continue 

during the burial history of the samples. Pommer (2014) suggests that at low maturities, 

the lack of extensive cementation and the presence of inter- and intraparticle pores within 

the allochems and the coccolithic debris is indicative of a porosity loss that has occurred 

primarily via compactional processes. Compaction is observed in the flattening of faecal 

pellets, in the rearrangement of ductile particles around more rigid and large particles 

and bioclasts, in the collapse of the foraminifera chambers and in the fragmentation of 

Figure 2.38: Reconstructed paragenesis sequence with the chemical processes occurred in 

microfacies A (blue) and microfacies B and C (green). 
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thin shells. However, the large skeletal framework has allowed for the preservation of 

many micro- and nano- primary pores. Other authors (Fabricius, 2003; Gorniak, 2016; 

Mallon and Swarbrick, 2008; Pahnke, 2014; Pollastro, 1986), by studying the porosity 

evolution in chalk, have concluded that compaction associated to initial burial reduces 

porosities by up to 50%, and that further compaction is hindered by the rigidity of the 

carbonates and by the presence of cement phases. Mechanical compaction in the early 

phase of diagenesis is juxtaposed by chemical processes. 

 Immature window processes 

The first chemical reaction is the precipitation of euhedral calcite cement. This cement is 

commonly observed in microfacies A in the foraminifera chambers and is thought to have 

preserved the tests during compaction (Pommer et al., 2014). The origin of this first 

generation of calcite cement is probably caused by the calcite-saturated marine waters 

and bacterial sulphate reduction processes (Irwin et al., 1977; Macquaker, 1997; McAllister 

et al., 2015; Scotchman, 1987). Sulphate reduction at R0 ≤ 0.4%  is also responsible for the 

release of H2S which, reacting with detrital iron minerals present in the system, causes the 

precipitation of pyrite (Berner, 1984). Pyrite cement occurs as euhedral and framboidal 

and is observed as filling the pores in the foraminifera with calcite and kaolinite and is 

thus considered synchronous with these mineral phases. Kaolinite, in fact, is also 

considered to be precipitated at R0 ≤ 0.4%. This mineral generally fills the spaces in the 

intra-fossil pores that are not filled with calcite and it is also commonly observed filling 

completely the foraminifera chambers. Kaolinite is therefore interpreted as slightly post-

dating the calcite cement precipitation. The presence of an early kaolinite phase is linked 

to the instability of other mineral phases (i.e. plagioclase), which dissolve and 

reprecipitate as more stable minerals. This was suggested for mudstone plays by several 

authors (Jennings and Antia, 2013; Taylor et al., 2014; Wilson et al., 2016), and also by 

Fabricius (2007), in North Sea chalk reservoirs. Quartz precipitation and replacements are 

also observed at R0 < 0.4%. Quartz derives from the precipitation of opal-A and appears 

in form of equant partcles and in form of micro-crystals (< 3 µm). At temperatures < 50° 

C, opal-A transforms in the more stable phase opal-CT, which in turns, at temperatures < 

100° C, transforms into quartz (Kastner et al., 1977; Maliva and Siever, 1988). The equant 
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quartz and the micro-crystals begin to be present at R0 ≤ 0.4% and become abundant after 

the oil window. First stage quartz is thought to derive from the radiolaria shells, that are 

already almost completely dissolved during early diagenesis (if not replaced by other 

minerals, i.e. pyrite), and to replace early diagenesis phases (i.e.calcite, kaolinite). The fact 

that the micro-crystals overlie other minerals and fill the inter and intraparticle pores 

suggests that they were precipitated at R0 ≤ 0.4%, after the calcite, the kaolinite and the 

pyrite cements. Dolomite is also observed replacing the calcite, and given the large 

dimensions of the crystals, is thought to have formed at R0 ≤ 0.4%, when there was 

sufficient pore space for the mineral to form and precipitate. Quartz, dolomite, kaolinite 

and calcite cements in microfacies B and C samples are also considered to have formed at 

this stage. However, differently from microfacies B and C samples, in microfacies A the 

presence of high percentages of TOC (%) results in higher bitumen volumes. The presence 

of OM infills in the immature microfacies A samples suggests that the OM migration 

begins at R0 ≤ 0.4%. The fact that the organic matter fills large intra-mineral and fossil pore 

spaces in microfacies A and B samples left unoccupied by pyrite, calcite, quartz or 

kaolinite, suggests that this phase postdates the other mineral phases and continues 

during the oil maturity stage. The filling and coating of organic matter in the immature 

samples is thought to inhibit the formation of further cement phases in the oil and gas 

window. Microfacies B and C samples, indeed, contain less TOC (%) and are more prone 

to secondary calcite reprecipitation compared to microfacies A samples. 

 Oil window processes 

 In the oil window, other phases increase in abundance such as albite and mixed I/S, 

whereas kaolinite becomes less abundant. Albite replacements and mixed-layer I/S are 

thought to have formed by the alteration of kaolinite and detrital K-feldspar (Bjørlykke, 

2014). Illitization also releases Si, wich reprecipitates in form of micro quartz in the nano 

and micropores within the matrix.  

In microfacies A, at R0 ~0.9%, the bitumen fills or borders the minerals, modifying the 

wettability of the reservoir and potentially inhibiting further calcite precipitation (Scholle, 

1977). In these samples, the carbonate cement continues to precipitate but is not pervasive 

as in microfacies B and C samples in the high maturity window (R0 1.2%). The reason for 
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this is the low abundance of organic matter in these microfacies. The organic matter 

content is not enough to generate significant oil and alter the wetting state of the rock 

from water-wet to oil-wet, and therefore it does not suppress the diagenesis. Calcite 

cement, where possible, continued to precipitate throughout the burial history as seen in 

CL. 

 Dissolution and mineral precipitation 

Dissolution associated with OM maturation is mainly observed in the creation of etched 

pores within the minerals, whereas dissolution derived by pressure-solution is observed 

between the rigid clasts and in pressure-solution veins (Figure 2.36). Dissolution also 

continues during late burial diagenesis, when the samples enter the gas window maturity. 

Fe redox reactions and the dissolution of radiolarians and of K-feldspar, calcite and I/S 

minerals allows for the availability in solution of elements such as Ca, Fe, Al, Si and Mg 

and the reprecipitation or the replacement of other minerals. Calcite reprecipitation is 

mainly observed in the faecal pellets, where the interparticle pores are in most cases 

occluded by calcite cements. Pyrite, for example, precipitates in this late stage in the 

organic matter or within mineral crystals. Textural heterogeneities observed with XR-CT 

XR-CT analyses show that the samples are heterogeneous at the millimetre scale (Figure 

2.39). Considering that each of the ~1000 slices analysed is one pixel wide (2.8 µm), the 

variations are measured along a ~2.8 mm thick volume. In the 5 samples analysed, the 

heterogeneities occur in all the samples, independently from their maturity and the 

microfacies type (A or B). Heterogeneities across the bedding are more pronounced and 

demonstrate mineralogical changes caused by environmental variations and sediment 

input over time. Along the bedding, the variations are less visible, especially for samples 

OW2, GW6 and IM2_1. This means that, at the millimetre-scale, in the same depositional 

event, the sediment input on the seafloor was deposited homogeneously. Both across and 

along the bedding, the carbonate variations are inversely correlated to the clay and mixed 

silicates-clays-carbonates variations, similarly to what observed from the XRD analyses. 

The abundances of the OM-pores and pyrite phases are too low to identify any variation 

at this resolution. The variabilities across the bedding in some cases exceed 100% of the 
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average values calculated for the total volume of rock analysed, whereas along the 

bedding on average they exceed the mean values by ~40%.  
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Figure 2.39: Calculated heterogeneities from XRCT scans. The x axis corresponds to the slice number, 

the y axis to the percentage of each mineral. The y axis on the right of each plot is the relative 

percentage for the OM and the pyrite phases, in minor abundances compared to the other phases 

(represented on the left y axis). The dotted lines correspond to the average value of each phase for the 

whole sample. 
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 Discussion 

Petrographic studies of the Eagle Ford samples allow the identification of diagenetic 

changes as a function of lithology and maturity. These changes are determined by specific 

mechanical and chemical factors, the understanding of which leads to a predictive model 

for reservoir quality (Ali et al., 2010; Driskill et al., 2009). Bulk mineralogical results show 

that the samples are carbonate and organic-matter-rich and contain clays, quartz, K-

feldspar, pyrite and other minerals in minor abundances. Petrographic analyses show that 

the samples undergo mechanical and chemical changes as a function of thermal maturity.  

 Depositional environment 

The mineral composition and the mechanical and chemical changes are strictly related to 

the depositional environment (Ali et al., 2010; Schieber, 2011). The low detrital quartz 

component in the Eagle Ford, for example, is caused by the presence of the San Marcos 

Arch, which blocked the clastic input from the North-East (Pommer, 2014) (Figure 2.1). 

Mineral composition differences are the main reason for the dissimilarities between 

microfacies A and B: microfacies A samples contain more TOC, more silicates and less 

carbonate compared to microfacies B samples. Moreover, the analogies in the texture, i.e. 

the laminations, and the presence of recrystallized foraminifera in the oil window 

wackestones, suggests that the depositional environment for the two microfacies was 

similar. In particular, the organic matter type (I-II marine kerogen), the very fine grain 

size of the sediments (< 62.5 µm), the scarcity  of benthic fauna and the occurrence of 

laminations suggest deposition in deep (~100 m), dysoxic to intermittently anoxic 

environments (Bernhard, 1986; Denne et al., 2014; Donovan et al., 2012; Robison, 1997). 

Incomplete anoxia is suggested by the presence of sharp erosional contacts, wave 

laminations and ripples (Macquaker et al., 2007; Schieber, 2010; Schieber et al., 1998), 

which point to a depositional environment where bottom water currents occurred. 

Moreover, the high vertical heterogeneities and the condensed millimetric layers of 

planktonic fossils have been linked to periods of increased fertility and high primary 

productivity. This suggests that stratified waters and euxinic bottom water conditions 

alternated with times of mixed surface waters and suboxic to anoxic conditions, where 
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primary productivity was enhanced (Denne et al., 2016; Frébourg et al., 2016; Wendler et 

al., 2002; Wever et al., 2014). 

 The three microfacies: depositional context 

 The differences between the mudstone and the wackestone samples are shown by the 

large volume of carbonates in the wackestone samples, juxtaposed with a low TOC wt %. 

These two elements are linked to primary depositional processes. The low (average 1.3%) 

TOC values for the wackestone microfacies are related to aerobic oxidation of organic 

matter, which, as McAllister (2014) has suggested, it is likely to have occurred at the 

sediment-water interface.  Changes in TOC values can also be related to differences in 

sediment input or to enhanced primary productivity, which can cause dilution (Arthur et 

al., 1986; Elderbak et al., 2014; Gamero Diaz et al., 2013; Macquaker and Bohacs, 2007). 

This is also shown by the δ13C data taken on similar samples by McAllister (2017). δ13C 

values indicate that carbonate cements are mainly derived from a marine source and not 

from microbial processes (McAllister, 2017 and references therein), which is in accordance 

to the fact that the system is dominated by marine, biogenic calcite. The lack of organic 

matter characterises also the two packstone samples (R0 1.2%, ~0.5% wt TOC). Despite 

this similarity with the wackestone samples, the packstones display a coarser grained 

texture formed by bioclasts. The massive texture and the presence of large (> 20 µm), 

reworked bioclasts is indicative of a different environmental setting compared to the 

mudstones and the wackestones. The inclusion of echinoderms, bivalves and other 

reworked bioclasts suggests high energy event sedimentation (Harbor, 2011), with greater 

exposure to oxygenated environments and carbonate-saturated marine waters, which 

lithify the sediments.  

 Variations in time and space 

The fact that mudstones, wackestones and packstones are present in the same sample set 

and in the same wells, is associated with a change in the depositional conditions. 

However, the absence of a complete dataset from each core and the absence of well 

correlations impedes to discriminate whether this is due to sea-level rise, or to the location 

of deposition of the samples. Many studies (Schieber et al., 1998; Wignall et al., 1994) have 
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highlighted the vertical and lateral variations in mudrocks and tied them to different 

depositional settings in time and space. In this specific case, studies from other authors 

with more complete datasets than this one propose that the Lower Eagle Ford Formation 

was deposited during a transgressive system tract (Donovan et al., 2012; Driskill et al., 

2012; Liro et al., 1994a), which would lean towards the relative sea-level rise hypothesis. 

Nonetheless, the map of the sample locations (Figure 2.1) also shows that the samples 

were deposited in different parts of the Maverick basin, related to different 

paleoenvironments and paleobathymetries, which would favour the location hypothesis. 

However, results from the calculations of foraminifera dimensions show that there is no 

clear variation in the foraminifera lengths from one size of the Maverick basin to the other 

(well 1 to well 6). This could indicate that the surface water conditions and chemistry were 

the same all over the basin, and therefore that the microfacies were laterally continuous 

(Driskill et al., 2012). Therefore, changes in microfacies are more likely to be related to a 

change in sediment input through time and to the nature of biological productivity rather 

than a change between the depositional locations.  

  Diagenesis 

Studying the diagenesis and reconstructing the depositional environment is also 

imperativee to determine how reservoir properties, such as porosity and permeability, 

vary within the samples, between the samples and between the microfacies. The porosity 

and the connectivity of the system are highly dependant on the mineral framework and 

on the diagenetic processes the samples have undergone. Many studies show that 

mechanical compaction in mudrocks and fine-grained carbonates reduces the porosity 

(Aplin et al., 2006; Milliken and Day-Stirrat, 2013; Pahnke, 2014; Scholle, 1977; Pollastro, 

1986). In the samples from this study, pores are categorised as organic matter pores, 

interparticle matrix pores, intraparticle fossil pores and intraparticle mineral pores. The 

pores analysed with the SEM in this study are > 18 nm, but not necessarily the smallest 

pore sizes for these samples (see Chapter 4). Lønøy (2006), describing the pore system in 

Cretaceous and Tertiary chalk sediments, suggested that most of the carbonate-related 

pores were pores < 10 nm, occurring between grains of planktonic coccoliths (Pahnke, 

2014). Given the large amounts of coccoliths in these samples, the presence of pores < 10 
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nm can be assumed as well. As the laminated foraminiferal mudstone microfacies is the 

only one in this dataset for which samples from the immature to the gas window are 

found, the evolution of the mineral and pore system with thermal maturity can be 

established.  

 Calcitic framework 

In the mudstone microfacies, in the immature window, the rigid structure allows the 

preservation of the pores within the matrix, within the faecal pellets and within the fossils 

and inhibits the compaction of ductile grains (Loucks et al., 2012; Milliken and Day-Stirrat, 

2013; Schieber, 2010). Particularly important are the faecal pellets, which can measure 

over 100 µm (Table 2.4), shelter more interparticle pores than the rest of the matrix due to 

a lack of clay laths clogging the porosities. They can account for as much as 25% of the 

total rock components and can provide a location where oil may reside. Moreover, faecal 

pellets have also been considered a possible source of hydrocarbons in chalk reservoirs 

(Moussa, 1988; Torres et al., 2017), and could potentially explain the source of some of the 

hydrocarbons in the Eagle Ford Formation as well. The abundant foraminifera, on the 

other hand, provide pores as large as 60 µm, in which liquid hydrocarbons can be trapped 

(Slatt et al., 2012). The interparticle matrix pores are on average the most abundant pore 

type at all maturities and in all microfacies (Table 2.7). This signifies that the calcitic 

skeletal framework, and consequently the diagenesis the samples are subject to, strongly 

affected the pore system and connectivity (Pommer and Milliken, 2015; Pommer, 2014). 

In microfacies B and C samples the carbonates are more abundant and the grain sizes are 

generally larger compared to microfacies A. Given the low amounts of the other 

components, microfacies B and C samples present a relatively higher amount of 

interparticle matrix pores compared to the other pore types (Table 2.8). In these 

microfacies (R0 1.2%) faecal pellets and most of the intraparticle porosity results 

completely cemented. The fact that a reduced amount of foraminifera chambers are filled 

with bitumen compared to microfacies A (on average 11.4% in microfacies A compared 

to 8.4 and 3% respectively for microfacies B and C respectively), also indicates that 

microfacies B and C samples have generated and store fewer amounts of hydrocarbons 

compared to microfacies A. 
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 Porosity reduction processes 

The presence of calcite, kaolinite, pyrite and quartz cements in the immature samples 

indicates that porosity reduction processes occurred at R0 ≤ 0.4%, even before significant 

compaction. Affected by the cementation are the interparticle matrix pores, in which 

kaolinite and micro quartz crystals precipitate. Around 90% of the large intraparticle fossil 

pores, on the other hand, are in the samples filled with cements. The pores are filled 

sequentially by the secondary minerals calcite, pyrite, kaolinite and quartz, with a 

predominance of calcite cement (on average in all the samples analysed ~68%). 

Subsequently to the precipitation of these cements, but always at R0 ≤ 0.4%, the OM starts 

to migrate into the available pore spaces, further reducing the porosity.  Even though the 

studied samples from microfacies B and C all come from the gas window, evidence 

suggests that the pore system for these samples already changed in the immature window 

as well. Highly pervasive cementation processes, in fact, are not hindered by the migrated 

organic matter as in microfacies A samples. Microfacies B and C do not contain enough 

organic matter to impede the pervasive calcite cementation. Because of this, many of the 

inter- and intraparticle pores that can be seen in microfacies A (i.e. within the faecal 

pellets, in the matrix and in the foraminifera) are not present in microfacies B and C. 

However, micro migration from local OM-richer microfacies (A) would be expected to 

trap hydrocarbons in the microfacies with lower contents of OM (microfacies B and C). 

This could be explained by the fact that perhaps, in the early stages the amounts of 

bitumen generated in the OM-rich layers is not enough for expulsion. When the samples 

enter the oil window, in all the microfacies types, minerals start to dissolve as a result of 

physical processes, chemically unstable phases and acidic fluids formed by organic matter 

degradation (Figure 2.36). This causes chemical changes in the system and the 

reprecipitation of minerals in form of cements, mainly calcite, kaolinite, I/S and quartz. 

The cements precipitate in the available remaining spaces, which are primary and 

secondary pores in the matrix, in the faecal pellets, in the fossils, or in fractures caused by 

the fluid pressure generated during burial (Gottardi and Mason, 2018). In particular, the 

small (< 3 µm) crystals of quartz and clays are responsible for the reduction of the 

interparticle matrix pores. Overall, qualitatively speaking, the cementation of the skeletal 

framework produces a decrease in the bulk porosity and a decrease in the pore sizes 
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(Milliken and Day-Stirrat, 2013) (see chapter 4 for more details). Indeed, the interparticle 

and intraparticle fossil and mineral pores, which are affected by higher degrees of 

compaction and diagenesis compared to the immature window samples, begin to close 

up or completely disappear. 

 Porosity generation 

The processes responsible for porosity decreases are partly compensated by processes 

that increase porosity.  

 Thermal maturation of organic matter 

 In the gas window, the organic matter pores increase due to thermal cracking and gas 

generation (Chen and Xiao, 2014; Löhr et al., 2015). Organic matter pores are more 

common in the microfacies where there is more TOC, i.e. in microfacies A samples. In 

microfacies B, even if the OM is not abundant, their relative abundance compared to the 

other pore types, is between 10 and 30%. The reason for this is that, in general, the other 

pore types decrease in abundance. In microfacies C samples, the amount of TOC is so low 

that the organic matter generated pores are < 5% of the pore types. The OM pores, which 

are relatively smaller compared to the other pore types, form within the organic matter 

infills and stringers, creating the spongy aspect in the OM. However, merely from 2D 

image analyses, little can be said about the connectivity and permeability of the system 

and on the hydrocarbon flow. The fact that the generated organic matter found the path 

to migrate in the pores suggests that the system was connected at least at R0 ≤ 0.4%. 

Further insights on the pore system require integration of the petrography data with 

measurements on the pore system, which is undertaken in the next chapter. 

 Dissolution 

Dissolution caused by acidic fluids produces intraparticle dissolution pores, which 

appear especially in calcite and feldspar minerals (Baruch et al., 2015; Löhr et al., 2015). 

The dissolution pores, however, are at most 14% of the overall pore types in the 

mudstones and in the wackestones. In the packstones, they reach 31% of the total pore 

types. However, in microfacies B and C the system is affected by pervasive cementation, 
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which reduces the total porosity (Milliken and Day-Stirrat, 2013). The dissolution in the 

grains might be due to the higher depth at which the samples are found, or to the intrinsic 

nature of the clasts. Perhaps, shell fragments and echinoderms already present structural 

mineralogical defects that allow the acids to etch the grains more effectively. The 

dissolution of primary mineral components caused by acid generation and pressure 

dissolution thus produces a redistribution of the porosities, with formation of dissolution 

intraparticle pores and the reprecipitation of the phases in a more buffered system. 

 Fractures 

Reservoir properties also require an adequate fracture characterization. Natural fracture 

porosities, when present, can increase the vertical and lateral connectivity and provide 

fluid pathways throughout the formation (Ramirez and Aguilera, 2016). In these samples, 

fractures are common and range from the micrometric to centimetric scale. Fractures are 

found filled with hydrocarbons, which validates the hypothesis that fluids exploited these 

channels as migration pathways during the expulsion phase. Also, they can be found 

filled with cements, and in particular with calcite, which suggests that the fluids were 

calcite-saturated. Despite acting as baffles in the sediments, it has been suggested that 

fractures with cements can play an important role in the production phase, as they can be 

reactivated during hydraulic fracturing and serve as fluid pathways (Aplin and 

Macquaker, 2011; Cho et al., 2013; Gale and Holder, 2010; Ghanizadeh et al., 2015; Loucks 

et al., 2012). Furthermore, in these samples, empty fractures are also frequently found. 

Many authors (Clarkson et al., 2012; Gottardi and Mason, 2018; Ramiro-Ramirez, 2016) 

have highlighted the presence of a wide natural fracture system in the Eagle Ford 

Formation at many scales (nm to km). The fractures pores observed in these samples 

could have contributed to the migration of hydrocarbons and overall fluid flow. 

However, fracture pores, especially at this scale, are likely to be caused partly by stress 

release or by sample preparation and therefore caution must be taken in assessing the 

permeability and connectivity of the system by considering the fractures in the 

calculations (Clarkson et al., 2012; Ramiro-Ramirez, 2016).  
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 Brittleness of the rock 

Although not considered in this study, another important property to take into account is 

the brittleness of the rock. The three microfacies, being carbonate-rich, are brittle and 

likely to propagate fractures during hydraulic fracturing (Davies et al., 2012; Mcallister, 

2017). The presence of laminations in the mudstone and wackestone samples provides 

planes of weakness where the fractures can nucleate and propagate. Moreover, the low 

values of CEC in all the microfacies (< 10 meq/l) allow hydrocarbon extraction with a 

reduced risk of clay mineral swelling (Mc Allister, 2017).  
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 Concluding comments 

Carbonate and organic-rich samples from the Lower-Eagle Ford Formation (Texas, USA) 

were examined to gain a better understanding of the sedimentology and diagenetic 

history of the Formation and to evaluate the factors that influence its reservoir 

characteristics. Namely, the petrographical analysis presented in this chapter allowed the 

determination of the organic matter content and type, to evaluate the hydrocarbon 

generation potential and to observe the changes in fabric and mineralogy with increasing 

temperature and maturity. All these factors also allow to better understand the pore 

system and its evolution during burial diagenesis.  

 The key outcomes of this study are: 

1. The formation is highly heterogeneous, and three different microfacies can be 

distinguished: laminated foraminiferal mudstones, wackestones and packstones. 

The laminated foraminiferal mudstones are carbonate-rich (47.6% on average) 

with an average TOC content of 5.2 wt. %. The wackestone samples are interpreted 

to have been formed in similar depositional settings as the laminated foraminiferal 

mudstones but present higher carbonate and lower TOC content. This facies 

presents extensive calcite precipitation, that occludes or reduces the pores in the 

system. The packstones are formed by large bioclasts fragments held together by 

carbonate cements. They are highly carbonatic (~80%), with an average TOC value 

of 0.6 wt %.  

2. Types of pores were identified: interparticle matrix pores, intraparticle pores 

(fossil, dissolution and mineral) and organic matter pores. Interparticle matrix 

pores are the dominant pore type, but with the increase in maturity, organic 

matter pores are found to increase relative to the other pore types up to becoming 

the prevailing pore type in the samples in the gas window, but only in some 

samples in the laminated foraminiferal mudstones. Changes in pore types with 

changes in maturities and lithofacies underline how the pore system is 

interconnected with the diagenesis and mineralogy of the samples. Organic matter 

pores, when the TOC wt % is sufficiently high, can play an important role in the 

whole pore system development. 
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3. Five domains were identified in these samples; fossils, matrix, faecal pellets and 

organic matter. Foraminifera are the most common fossil type in all microfacies. 

The matrix is mainly composed of micron-sized coccolithic debris (~40%) and clay 

minerals (~20%). The faecal pellets are formed predominantly by coccolithic debris 

(~90%), hence they are considered a separate domain from the matrix. 

4.  Petrographic analyses show that the laminated foraminiferal mudstones and 

wackestones were deposited in an intermittently dysoxic environment in which 

weak bottom water currents occurred. This depositional environment allowed for 

the preservation of the organic matter and for the formation of vertical 

heterogeneities. In the laminated foraminiferal mudstones, millimetric condensed 

layers of planktonic fossils are alternated to more clay and organic-matter rich 

laminae. In the wackestones, the original laminated texture has been disrupted by 

pervasive cementation. In the packstones instead, the massive texture suggests a 

more oxygenated and a higher energy depositional environment compared to the 

other two microfacies.  

5. The presence of high degrees of heterogeneities, especially in the laminated 

foraminiferal mudstones, implies that the Eagle Ford are probably characterised 

by high degrees of vertical anisotropy, which impacts the permeability and fluid 

flow properties of the system (Yang and Aplin, 1998). 

6. The organic matter is a type I-II marine kerogen. The main macerals are liptinite 

followed by inertinite and vitrinite. In the immature window, the samples also 

show a high hydrogen index (between 390 and 790 mg HC/g TOC). Both the 

organic matter type and the high hydrogen index are indicative of organic matter 

with high hydrocarbon generation potential, implying the Eagle Ford is a good 

source rock. 

7. The samples belong to three maturity ranges (R0 0.4-0.5%, R0 0.9% and R0 1.2%). 

This allows correlation of the different diagenetic processes to the different 

thermal windows. Cementation starts to occur in the immature window with the 

precipitation of early calcite and pyrite cements and subsequently kaolinite and 

quartz. In the mudstones, the cements mainly fill the intraparticle fossil pores 

within the foraminifera chambers and the interparticle matrix pores in the matrix 
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and in the faecal pellets. As burial stresses increase, dissolution of mineral 

components and pressure-solution features start to appear in the oil and in the gas 

window (T > 80 ⁰C). Intraparticle dissolution pores in carbonate and K-feldspar 

minerals also appear in the oil window and are linked to the acid production 

caused by the decarboxylation of the organic matter. The dissolution of mineral 

components prompts the availability of chemical components in the system, 

which reprecipitate in forms of cements. The cements increase in the oil and gas 

window maturity, especially in the wackestones and in the packstones microfacies 

samples. The different cementation processes between the microfacies have here 

been linked to different depositional environments as well as to the bitumen 

migration. Since the generation of hydrocarbons and their initial migration at R0 ≤ 

0.4%, bitumen infilling pores is thought to inhibit carbonate cementation. At R0 ≥ 

1.2% (~120 ⁰C) the organic matter starts generating gas, which creates sponge-like 

pores within the organic matter. This process occurs in all the microfacies, but 

given the low amounts of TOC wt % in the wackestones and the packstones, it is 

more evident in the laminated mudstone samples. The amount of TOC wt % in 

the system is considered crucial in the interpretation of the pore system, both 

because more organic matter inhibits cementation and preserves the primary 

pores and because in the gas window the organic matter generates porosities.  

8. The pore system in the laminated foraminiferal mudstone microfacies is believed 

to host the best reservoir characteristics; the lower cementation and the higher 

amount of TOC wt % help to preserve the primary mineral pores and to generate 

more hydrocarbons. The presence of laminations in the system also provides 

important planes of weakness where fractures can nucleate and propagate during 

hydraulic fracturing. 
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3. Chapter 3 

Characterization of the porosity system of the Eagle Ford 

Formation as a function of diagenesis and maturity 

 

 Introduction 

In the petroleum industry, evaluating the quality of a reservoir is essential to understand 

its production potential (Birdwell and Washburn, 2015; Chalmers et al., 2017). In 

particular, in unconventional reservoirs, the mineral and textural heterogeneity combined 

with the small size (nano to microscale) of the pores require a thorough characterization 

of the system (Aplin and Macquaker, 2011; Bryndzia and Braunsdorf, 2014; Macquaker et 

al., 2007). Indeed, the quality of unconventional reservoirs is defined by a combination of 

rock properties, such as available fluid storage, effective permeability, organic matter 

content and organic matter type (Shim et al., 2011). The available fluid storage and the 

effective permeability of a reservoir are determined by the pore system (Clarkson et al., 

2012), which in unconventional reservoirs is constrained by narrow, irregular pores. In 

particular, in these reservoirs the permeability ranges from sub-nD to tens of µD (Bustin 

et al., 2008; Wang and Reed, 2009), impeding a free-state fluid flow as in conventional 

reservoirs and therefore a hydrocarbon extraction by conventional methods (Clarkson et 

al., 2012).  
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  Pore system controlling factors 

 Mineralogy 

Rock textures, together with the mineralogical and organic matter content of the rocks, 

are fundamental controls of the pore system (Bjorlykke, 1998; Javadpour et al., 2012; 

Milliken, 2014; Wilkinson et al., 2001). Textural and mineralogical variations reflect both 

temporal and lateral variabilities of the depositional environment and diagenetic 

processes (Macquaker and Gawthorpe, 1993; Macquaker et al., 2007). Therefore, the bulk 

rock framework and its transformation with diagenesis must be studied in relation to the 

differences in pore space geometries and their evolution during thermal maturation 

(Houben et al., 2014; Jennings and Antia, 2013; Philipp et al., 2017). In mudstones, for 

example, when platy minerals are present (i.e. clays and micas), the pore structures within 

these minerals are complex and formed by pores smaller than 50 nm (Chalmers and 

Bustin, 2015). These pores, given the ductile behaviour of clays and micas, evolve with an 

increase in burial stress, temperature and compaction (Aplin et al., 2006; Aplin and 

Moore, 2016; Dewhurst et al., 1998; Rutter and Wanten, 2000; Yang and Aplin, 2010). More 

mechanically competent particles, instead, such as calcite and quartz, are able to shelter 

interparticle pores larger than 50 nm at increasing burial stresses (Schieber, 2013). During 

diagenesis, precipitation of mineral phases in form of cements in the available pore spaces 

is believed to induce the reduction of pore volumes (Aplin et al., 2011; Chalmers and 

Bustin, 2015; Milliken and Day-Stirrat, 2013; Tiab and Donaldson, 2004) and the hindrance 

in the flow of hydrocarbons during primary migration. In contrast, chemical dissolution 

of mineral phases can develop porosity within minerals (Baruch et al., 2015; Loucks et al., 

2010; Schieber, 2013).  

 Organic matter content 

Another component that is often positively correlated to the increase in pore volume is 

organic matter (OM) content (Loucks et al., 2009; Wang and Reed, 2009). Many studies 

have shown that maturation of kerogen and bitumen in the gas window induces the 

formation of organic nanopores which, due to  their large surface areas, are able to adsorb 
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and store large amounts of gas (Chalmers et al., 2017; Curtis et al., 2011; Loucks et al., 

2010, 2009; Ross and Marc Bustin, 2009; Wang and Reed, 2009). Moreover, Bernard et al. 

(2013), Driskill et al. (2012); Löhr et al. (2015) and Milliken et al. (2014) observed a 

correlation between the shape of the organic pores and the maceral type, concluding that 

porosity and pore-size distribution is also influenced by the OM nature. Coating of 

minerals with migrated hydrocarbons is also considered responsible for the inhibition of 

the precipitation of further mineral phases (Bukar, 2013; Worden et al., 1998).  This 

favours the preservation of porosity, also explaining the positive relationship between the 

organic matter content and the pore volumes, even at low maturities (Chalmers et al., 

2017; Sun et al., 2017). 

 Rock texture and microfacies 

Along with the mineralogical content and the diagenetic modifications, rock texture and 

facies types are also responsible for pore system changes (Bathurst, 1974; McAllister et al., 

2015; Mcgarity, 2013; Taylor and Macquaker, 2014). In laminated mudstones, for example, 

the horizontal parallel bedding provides preferential pathways for fluid flow, rendering 

the horizontal permeability over 103 times higher than the vertical permeability (Armitage 

et al., 2011; Chandler et al., 2016; Mullen, 2010; Philipp et al., 2017; Rutter et al., 2017; Tiab 

and Donaldson, 2004; Yang and Aplin, 1998).  

Mineralogy and facies types are also responsible for changes in rock mechanical 

parameters (Busch et al., 2017; Philipp et al., 2017; Rutter et al., 2017). Mechanical 

parameters are important during the completion phase, as they determine the 

“frackability” of the rocks and the productivity potential of the reservoir (Josh et al., 2012; 

Shim et al., 2011). Geomechanical studies demonstrated that Young’s elastic modulus 

decreases with increasing clay and TOC content and increases with increasing carbonate 

and silica (Hornby, 1998; Jarvie et al., 2007; Rutter et al., 2017; Rybacki et al., 2016; Sone 

and Zoback, 2013). Therefore, the presence of calcite, dolomite and quartz or feldspar over 

more ductile materials (i.e. clays, micas, organics), increases the brittleness of the rocks, 

facilitating the fracturing process and increasing borehole stability (Gamero Diaz et al., 

2013; Jarvie et al., 2007; Josh et al., 2012; Li et al., 2018; Peters et al., 2015; Rutter et al., 2017; 

Slatt, 2011; Wang and Reed, 2009). Being relatively brittle and more resistant to 
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compaction compared to clay-rich systems, carbonate-rich mudstones are particularly 

attractive to the energy industry.  

 Aim of the study 

This study aims to: 

1) Analyse how the pore system relates to the rock fabric. Quantitatively measure the 

pore types and pore shapes. 

2) Quantify the pore numbers and pore volumes. 

3) Determine the connectivity of the pore system and the type of pores the system is 

composed of.   

4) Determine the pore system changes in relation to the petrographic background, and 

infer how the thermal maturity and diagenesis changes impact the pore system and 

connectivity.  

Given the heterogeneity of the formation, implementing a multi-scale, multi-techniques 

approach leads to a thorough understanding of the pore system. The robust workflow of 

techniques and methods enables to have a detailed characterization of the pore network, 

which will eventually be of aid in the well performance and production phase. In 

addition, the produced data can be implemented in fluid flow models in order to 

minimise the uncertainties regarding the volume of hydrocarbons present, their location 

and accessibility. Deciphering how the pore system relates to the microfacies type also 

helps to upscale the micrometre and centimetre scale rock properties to entire reservoir 

sections where similar fabrics and textures are detected.   

Combination of the detailed petrography study in chapter 2 and the extensive 

quantitative analysis in this chapter add further rigor and in-depth analysis to previous 

studies on porosity characterisation in mudrock reservoirs and highlight the importance 

of a holistic approach. 

 The samples analysed  

In this study, samples ranging from the lower oil maturity window (R0 0.44%) to the gas 

window (R0 1.22%) of the Lower Eagle Ford Formation were analysed. The Eagle Ford is 
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a carbonate- and organic matter-rich formation that was deposited in the proto-Gulf of 

Mexico between 91 to 98 Ma. At present, this formation extends from East to West Texas, 

producing 1.3 million bo and 4.9 tcf of gas per day (U.S. EIA, 2019), making it the second-

best US unconventional play, after the Marcellus basin play. The formation is 

characterised by limestones and marlstones rich in foraminifera and coccoliths, which 

affect the heterogeneity of the pore system and the behaviour of the fluid flow (Denne et 

al., 2014; McAllister et al., 2015; Pahnke, 2014). As the porosity system is heterogeneous 

and characterised by nanometric to micrometric pore sizes, a multi-scale and multi-

technique approach is needed to develop a comprehensive understanding of its structure 

(Bustin et al., 2008; C.R. Clarkson et al., 2013; Mastalerz et al., 2008; Schmitt et al., 2013). 

Bulk chemistry and petrography data provide information on the mineralogy of the rocks 

and on the microfacies and domains constituting the rocks. Imaging techniques such as 

electron microscopy allow the quantification of the pore types, shapes, orientation, sizes 

and the monitoring of sediment transformations occurring during diagenesis (Chalmers 

and Bustin, 2015; Shao et al., 2017). Gas adsorption and mercury injection data bring 

essential information to the reservoir porosity characterization, namely the size of the 

pore bodies and throats as well as their volume and specific surface area. However, to 

have a better understanding of the 3D pore structure, direct visualization of the rock 

structure is advantageous. For this, X-Ray Computed Tomography (XRCT) and Focused 

Ion Beam (FIB) slicing are routinely used methods (Desbois et al., 2011, 2009; Hemes et 

al., 2015; Klaver et al., 2016, 2012; Zhou et al., 2016). For rocks as tight as these, the FIB 

technique is preferred, as it enables the visualisation of pores as small as 20 nm, in 

contrary to the XRCT that is not able to distinguish pores smaller than 1µm.  

 Previous works on the Eagle Ford Pore system 

Several studies have previously analysed the pore system of the Eagle Ford in an effort to 

better determine the reservoir properties (Anovitz et al., 2014; Chalmers et al., 2017; Ko et 

al., 2017a; Ojha et al., 2017; Pommer et al., 2014; Schieber et al., 2016). However, no work 

has been carried out on the evolution of the pore systems during thermal maturation, 

merging petrographic data with the analytical techniques and analysing the porosities of 

samples in 3D. Pommer (2014) analysed in detail the porosity evolution, but only using 
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SEM analyses. Chalmers et al. (2017) adopted a multidisciplinary approach, taking into 

account the framework and the thermal maturity of the samples. In their study, however, 

only the evolution of the organic matter was analysed and not the substantial porosity 

associated with mineral phases. Ko et al. (2017) investigated the Eagle Ford pores and 

pore network in a quantitative way using various techniques. Nevertheless, the samples 

examined were all taken from two oil-producing wells, ruling out the possibility of 

understanding the evolution of the porosities as a function of burial diagenesis.  



Chapter 3   93 

 

 Methodology  

25 samples from the Lower Eagle Ford Formation were taken from 6 different wells and 

2 outcrop locations from the immature, oil and gas window in West Texas, US (Figure 

2.1).  

To characterise the porosities, the following techniques and parameters were used: 

 Helium Pycnometer 

Grain density measurements were carried out by using a Micromeritics AccuPyc II 1340 

Pycnometer at Durham University. The gas chosen for the analyses was helium, as it is 

chemically inert and with a smaller kinetic radius (260 ppm) compared to other gases. The 

experiments were performed on volumes of rock smaller than 1 cm3, dried for 24 h at 105° 

C. The total porosities were then calculated using the following equation: 

 Φ = (1 − 
𝜌𝑏

𝜌𝑔𝑟 
 ) ∙ 100% 

Where 𝜌𝑏 is the bulk density measured of a calculated volume and mass and  𝜌𝑔𝑟 is the 

measured grain density for each sample. 

 SEM and FIB-SEM 

SEM images at high resolution (4096 × 3349 pixels) were collected at Durham University 

using a Hitachi SU-70 FEG SEM, with a voltage of 10 KV, a working distance of 15 mm 

and a variable magnification of 500 × to 10k ×.  

The 20 samples analysed were 3 mm diameter cores drilled using a Gatan ultrasonic cutter 

from 100 µm thick thin sections and Ar-ion polished using a Gatan precision ion polishing 

system with beam energies of 0.1 to 0.3 kV and an angle of 5⁰. The thin sections were all 

cut perpendicular to the bedding of the lithologies. After polishing, the samples were 

carbon-coated to avoid charging, reduce thermal damage as well as improve the 

secondary electron signal. Backscattered and secondary electron images were taken 

simultaneously in order to analyse the samples components as well as the porosities in 

the samples respectively. As described in chapter 3, by a qualitative observation of the 

variations in the porosity parameters and values relative to the different constituents, five 
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different domains were chosen: fossils and microfossils, faecal pellets, pyrite, organic 

matter and matrix. The distinction of the domains allows inferences about which domains 

contribute the most to the overall porosity.  

In order to distinguish and quantify the domains, high resolution (4096 × 3349 pixels) SEM 

images for areas of 1mm x 1mm at a magnification of 600 × were taken for all the samples. 

In the same areas, chemical element identification was also carried out by producing EDX 

maps with an Oxford Instruments EDX system (X-MaxN 50 Silicon Drift Detector) 

provided in the Hitachi SU-70 FEG SEM. The maps were taken at a resolution of 1024 × 

884 pixels, a voltage of 20 kV and a dwell time of 250 µs.  

The same areas were also analysed using a FEI Helios Nanolab 600 at Durham University. 

This instrument has the advantage of producing more stable, better quality high 

magnification secondary electron images compared to the Hitachi SU70. However, since 

the Nanolab microscope does not have an EDX or a backscattered detector, the porosity 

images taken with this instrument had to be correlated to the chemical and domain 

studies performed with the Hitachi SU70 microscope. 

In order to remove any uncertainty derived from the heterogeneities in the samples, for 

each sample four areas of 50 µm × 50 µm were randomly chosen in order to provide a 

reliable 2D representation of each sample. Each area consisted of a montage of 20 high 

resolution (4096 x 3349 pixels) and high magnification (10 k ×) images measuring 12.74 

µm in width and 10.3 µm in height (Figure 3.1). The pixel size for these images was 3.1 

nm/pixel, and the smallest pores identified had a diameter of 18.8 nm. The images were 

taken using the instrument immersion mode, at 1.50 kV, 4.0 mm working distance and a 

dwell time of 10 µs. The overlay of the latter images with the corresponding EDX maps 

allowed to discern five main porosity types and quantify the respective percentages: 

matrix interparticle pores, mineral intraparticle pores, fossil intraparticle pores and 

organic matter pores. 
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The quantification of the area percentage of the porosities and other parameters of each 

image and area was carried out by means of the software MATLAB™ provided with the 

Image Processing Toolbox™. Each pore was segmented and separated from the rest of 

the image by means of specific algorithms. To do so, the Canny method was used. This 

consists of a multi-step algorithm that reduces the image noise by means of a Gaussian 

filter, computes an image gradient and thresholds the output. The result is an image with 

only the thresholded edges of the objects, in this case, the pores (Canny, 1986). To have 

better edge detection results, dilation, eroding and greyscale segmentation processes 

were implemented to the Canny method. If the pores visible to the naked eye were not all 

automatically detected, the images were manually edited using Photoshop™ (Figure 3.1). 

For each pore in every image, different parameters were analysed:  

Area: the number of pixels in the region converted in nm2. 

Perimeter: the boundary of each porosity in pixels converted in nm. 

Equivalent diameter: is calculated as the diameter of a circular pore with the same area, in 

nm. It is calculated as 2 ∙  √
𝐴𝑟𝑒𝑎

𝜋
. 

5 µm 

a) b) 

Figure 3.1: a) Example of an SEM-SE 50 µm x 50 µm map (area 2, sample GW2, R0 1.2%) 

b) example of a Matlab binary image porosity thresholding of the same area. The red 

arrow indicates a pore were the Matlab code has not detected the pore boundary 

correctly. After manually correcting the pores, for each pore the different parameters 

were extracted and analysed separately. 
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Equivalent radius: is calculated as the radius of a circular pore with the same area, in nm. 

It is calculated as √
𝐴𝑟𝑒𝑎

𝜋
. 

Minor Axis: is the length (in nm) of the minor axis of the ellipse. 

Major Axis: is the length (in nm) of the major axis of the ellipse. 

The calculated shape factors were elongation, circularity and orientation: 

Elongation: is calculated as  1 − 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 (
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑙𝑒𝑛𝑡𝑔ℎ
). It is a dimensionless value 

ranging from 1, for the most elongated pores to 0 for the circular pores.  

Orientation: is the angle (in degrees) between the x-axis and the major axis of the ellipse 

that has the same second-moments as the region. 

Circularity: is the degree to which porosities are similar to a circle and is a function of the 

form of the pore as well as of the smoothness of the perimeter. It is a dimensionless value, 

defined as:  
4𝜋𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2. The values range from 0 to 1, with 1 indicating a perfect circle and 

values approaching to 0 indicating an increasingly elongated polygon.  

 Mercury injection capillary pressure (MICP) 

23 samples were analysed using the Micrometrics Autopore II 9920 at Newcastle 

University. The samples were cut to 1 cm3 and freeze-dried at -50° for 10 hours prior to 

the analysis. 

The equivalent pore throat sizes were obtained by converting the intruding pressures 

using the Washburn equation (Washburn, 1921), which, assuming cylindrical pores, states 

that the size of a pore is inversely proportional to the amount of pressure that is required 

to intrude a pore  The equation was used assuming a contact angle of 140⁰ and a surface 

tension of 0.485 N/m. The analyses consisted of calculating the total intruded volume of 

mercury for 57 pressure points between 3 and 39000 psi, by measuring the volume of 

mercury remaining in the penetrometer stem. The maximum applied pressure allowed to 

detect pores as small as 5.6 nm in diameter. In order to avoid experimental errors and 

artefacts induced by drying and destressing, conformance and compaction corrections 

were applied and a cut-off radius was chosen for all the samples. The corrections were 
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applied following the method proposed by Comisky et al., (2011). The pore volume 

compressibility for each pressure step and plotting it against the mercury pressure 

Comisky et al., (2011) and references therein. Any deviation at low pressures from the 

linear portion of the curve corresponds to the pore throat radius in which the mercury is 

starting to be intruded (Comisky et al., 2011 and references therein). The total porosity 

was calculated by using the bulk grain density extracted from the XRD data, assigning to 

the organic matter a density a value of 1.1 g/cm3 for the immature samples, 1.2 g/cm3 for 

the oil and 1.3 g/cm3 for the gas maturity window samples (Okiongbo et al., 2005).  To 

have an idea on the heterogeneity of the observed porosities, fractal dimensions were 

calculated by using the expression D = 3-A, where A is the slope parameter in the linear 

trendline intersecting the data in the log −
𝑑𝑣
𝑑𝑟

 vs  log 𝑑𝑣 plot (Friesen and Mikula, 1988; S. 

Liu et al., 2017). Values of fractal dimensions may vary between 2 and 3, with 2 

corresponding to a perfectly smooth surface and 3 to a completely irregular surface (Wang 

et al. 2015). 

The mean radius was calculated after applying the conformance and compaction 

corrections by selecting the radius corresponding to the average accumulated porosity 

values.  

Most samples were also run in drainage, which corresponds to an extrusion curve in the 

pressure/cumulative volume diagram (Figure 3.2). Apart from acquiring information on 

the pore throat sizes from the intrusion data, the measurement of the mercury extruded 

from the sample at decreasing pressure steps can also yield details on how much mercury 

has been retained inside the pores, and therefore on the pore system and capillarity of the 

samples (Klaver et al., 2015). 
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Initial pore entry pressure was also identified by plotting the Hg intrusion pressure (psi) 

vs. the Hg intrusion percentage and selecting the inflection point on the curve. This point 

indicates the first mercury that enters the largest pore throats that control the sample pore 

volume. It enables us to have information on the pore throat distribution and on the 

connectivity of the pores (Shafer and Neasham, 2000; Tian et al., 2018). Another factor to 

consider is the compressibility of the samples. Some authors (Friesen and Mikula, 1988; 

Mathia, 2014; Shafer and Neasham, 2000) have linked the amount of carbonates and more 

soft components (i.e. clays, organic matter) to the strength of the material, and hence to 

the hysteresis shape. 

 Gas Adsorption 

N2 gas adsorption measurements were executed on 12 samples at Aachen University. 

Additionally, CO2 gas was also employed for 6 of the samples. Temperatures of 72° K for 

N2 and of 0°C for CO2 were used for the analyses. The samples were crushed manually 

using a pestle and mortar and sieved to a grain fraction between 63 and 375 µm. All 12 

samples were outgassed and then heated for 20 hours at a temperature of 105 °C to 

remove any adsorbed capillary water. The quantity of gas adsorbed was measured at 64 

manually selected increasing pressure steps from 0 kPa to 100 kPa, with an equilibration 

time of 10 s for every pressure step and an evacuation pressure of 133 kPa.  

Figure 3.2: Example of MICP pressure (psi) vs cumulative volume (ml/g) plot (GW5 sample, R0 

1.2%). The arrows indicate the imbibition and drainage paths. 
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The specific surface area was calculated using the BET method, that assumes a multilayer 

gas molecule adsorption model (Brame and Griggs, 2016). The total specific pore volume 

was measured using the Gurvitsch rule, the pore size distribution using the Barret-Joyner-

Jalenda (BJH) approach and the surface area analysis using the Brunauer-Emett-Teller 

(BET) method (Gregg and Sing 1982). Both adsorption and desorption curves were 

measured as the hysteresis pattern formed between the adsorption and desorption 

branches provides information on the types of pores present in the samples (Sing, 1985). 

The pore size distributions, the pore volumes and the BET surface area of the samples 

were extracted from the adsorption curves. The technique allowed to analyse porosities 

ranging from 2 nm up to 200 nm in diameter with N2 and from 1.25 nm to 2 nm using 

CO2. 

 FIB slice and view 

FIB-SEM tomography volumes of 5 samples (Table 3.1) were produced slicing the samples 

using the FEI Helios Nanolab 600 (Curtis et al., 2010) using the FEI Slice and View G2 

software.  

Sample 

Names 

Well 

number 

Ro 

(%) 

TOC 

(wt%) 

Sum Carbonates 

(%) 

Sum Clays 

(%) 

Sum silicates 

(%) 

IM2_1 2 0.5 5.8 36.3 19.5 33.2 

IM2_3 2 0.5 7.9 50.1 9.0 24.2 

OW1 3 0.9 4.9 56.6 16.2 23.6 

GW11 4 1.2 3.4 N/A N/A N/A 

H3A5 4 1.2 6.5 50.7 23.1 18.6 

       

Table 3.1: Samples analysed using the FIB- slice and view technique. 

 

In order to avoid curtain effects (Curtis et al., 2010), the area was platinum coated before 

being milled. The milling was performed using the ion beam (30 kV voltage, beam current 

of 9 nA at a working distance of 4 mm) and a total of 300 slices 12.74 µm wide and 10.3 

µm high and were taken at intervals of 10.25 nm. The overall measured volume was 12.74 
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µm x 10.3 µm x 3.1 µm. The images were taken using the electron beam at 20 kV of voltage, 

a beam current of 1.4 nA and a magnification of 12 kx. The images were collected at a 

resolution of 1024 x 884 pixels and 6 µm of dwell beam time.  

The images were saved in sequence and stacked in order to reconstruct a volume by 

means of the FIB Stack Wizard Tool in the software Avizo™, also considering the drift 

occurring during the sample slicing in the FEI. 

The 5 samples were chosen in order to cover the whole maturity sequence, by accounting 

for similar mineralogy and TOC values. The selection of the location of the slicing was 

made accounting for the areas having a good balance between OM content and 

mineralogy and was therefore not completely random.  

For each sample, the organic matter and the porosity were segmented and quantified in 

Avizo. The segmentation was done by using a greyscale thresholding. The pores in the 

SEM images have a darker greyscale compared to the organic matter. As at times the 

automatic greyscale thresholding does not select the edge of the pores automatically, the 

pore segmentation was corrected manually. As the resolution for this technique was 12.4 

nm/pixel, the smallest pore sizes were identified in pores of ~ 25nm of diameter.  The 

connectivity of the pores and of the OM particles was also analysed by means of the Axis 

Connectivity tool in Avizo, and the connectivity of the two phases is calculated by dividing 

the volume fraction of the connected pores or OM particles over the volume fraction of 

the total amount of pores or OM. To test which pore sizes have more relevance on the 

overall pore network, the connectivity of the pores was also measured by analysing only 

the pores smaller than 100 nm. The total porosity of the samples was also measured by 

dividing the pore volume fraction by the total volume fraction.  

Each pore and OM particle were analysed using the material statistics and label analysis 

tool in Avizo™. The distinction between OM-related pores and non-OM related pores 

was calculated by analysing the slices separately. The parameters analysed as a 3D 

volume were:  

Area: is defined as the number of non-zero pixels in a binary image, converted to nm2 by 

multiplying it by the area of a single pixel.  
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Perimeter: it estimates the number of points that lie on the object boundary. 

Volume: is the volume of the object, calculated by summing the number of voxels occupied 

by the object. 

Equivalent Diameter: is given by the formula √
6 ×𝑉𝑜𝑙𝑢𝑚𝑒3𝑑

𝜋

3
. 

Orientation:  is the theta orientation of the particle in degrees [-180,180], computed with 

the inertia moments. 

Feret diameter: is defined as the distance between two parallel tangents of the particle at 

an arbitrary angle.  

Length: calculated as the maximum of the Feret diameters, in 3D. 

Width: calculated as the minimum of the Feret Diameters in 3D. 

Sphericity: it indicates how spherical an object is in 3D, is expressed as the ratio of the 

surface area of a sphere to the surface area of a particle. It is calculated as: 
𝜋 

1
3 (6𝑉)

2
3

𝐴
 where 

V is the volume of a particle and A is its surface area. It varies between 0 and 1, with 1 

being a perfectly spherical object. 

Shape_3D: is a factor defined as;  
𝐴𝑟𝑒𝑎 3𝐷

36𝑝𝑖𝑥𝑒𝑙𝑠𝑐𝑣𝑜𝑙𝑢𝑚𝑒3𝐷2

3
, in which 1 equals to a perfect sphere. 
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 Results 

Before quantifying the porosities and the pore structure, the samples were also studied 

by means of bulk analysis methods (XRD, TOC wt% and Rock-Eval) and optical and 

electron microscopy (see Chapter 2) (Table 3.2). 

Table 3.2: List of the samples analysed, subdivided by outcrop and well names, maturity and 

microfacies type. The mineralogical composition measured by means of XRD is also listed, as well 

as the TOC (wt %) results. Carbonates comprise calcite, dolomite and ankerite, whereas silicates 

include quartz, K-feldspar and plagioclase. For more detailed XRD results, refer to chapter 3. The 

total porosity values measured by means of He-pycnometer, MICP, FIB-SEM image processing 

and FIB, and the total pore volumes for N2 and MICP are listed. N/A = not measured. 

 

The samples are carbonate-rich (37-84%), with minor components of other minerals such 

as quartz, clays (mixed illite/smectite and kaolinite), plagioclase and pyrite. TOC (wt %) 

values range from 0.5 to 7.9% and decrease with increasing maturity, whereas carbonate 

values slightly increase with increasing maturity (Table 3.2). Rock-Eval studies show that 
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OC1 Outcrop 0.4 4.4 52.5 32.5 3.3 4.4 A 16.9 8.9 2.5 N/A 0.009 

OC2 Outcrop 0.4 6.6 58.2 20 5.6 3.4 A 15.0 11.6 1.35 N/A 0.027 

OC3 Outcrop 0.4 5.5 50.3 24.3 6.6 5 A 18.9 16.3 0.73 N/A 0.039 

IM1_1 1 0.4 4.5 46.3 24.7 8.1 9.8 A 14.2 8.5 N/A N/A N/A 

IM1_2 1 0.4 6.3 37.1 31.2 25.8 1.6 A N/A N/A N/A N/A N/A 

IM1_3 1 0.4 N/A 25.1 21 43 2.5 A 13.3 N/A 1.2 N/A N/A 

IM2_1 2 0.5 5.8 36.3 33.2 12.9 6.6 A 8.5 8.4 2.9 1.8 0.014 

IM2_2 2 0.5 1.9 76.2 18.8 3.9 0.8 B 8.3 1.7 1.02 N/A 0.006 

IM2_3 2 0.5 7.9 50.1 24.2 1.8 7.2 A 17.1 14.8 1.32 4.1 N/A 

OW1 3 0.9 4.9 56.6 23.6 3.6 12.6 A 16.5 10.6 0.4 5.7 N/A 

OW2 3 0.9 4.5 43.2 8 24 18.1 A 14.8 10.7 0.75 N/A N/A 

GW1 4 1.2 3.5 57.2 14.6 1.9 18.5 A 16.7 12.1 N/A N/A N/A 

GW3 4 1.2 0.5 83.8 6.9 0 4.4 B 10.1 N/A 0.25 N/A 0.022 

GW4 4 1.2 1 73 15.6 0 8.3 B 11.2 5.6 1.4 N/A 0.024 

GW5 4 1.2 1.6 67.2 11.3 1 12.5 B 13.5 11.2 1.17 N/A N/A 

H3A 1 4 1.2 0.9 79.5 16.9 0.2 2.5 B 12.0 7.9 2.5 N/A 0.017 

H3A 2 4 1.2 3 58.4 30.2 0.4 9.2 A 12.5 7.2 0.35 N/A 0.023 

H3A 3 4 1.2 5.4 44.5 19.3 1.6 28.5 A 18.2 13.0 3.93 N/A N/A 

H3A 4 4 1.2 0.7 90.7 6.7 0 1.4 B 6.5 6.1 0.27 N/A 0.012 

H3A 5 4 1.2 6 50.7 18.6 1.3 21.8 A 15.0 12.9 3.62 4.5 N/A 

H3A 6 4 1.2 0.2 95.7 4.2 0 0 B 17.9 6.8 N/A N/A N/A 

GW6 5 1.2 2.4 77.9 14.3 0 3.2 B 14.7 6.6 N/A N/A N/A 

GW2 5 1.2 2.3 82.9 13.1 1.6 1.4 B 15.8 6.7 2.93 N/A N/A 

GW7 6 1.2 0.7 74.6 6.7 0 12.2 C 10.0 3.9 0.13 N/A 0.008 

GW8 6 1.2 0.5 84.4 4.5 0 7 C 7.4 4.5 2.37 N/A 0.010 
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the sample maturity range is between R0 0.4% and R0 1.2% and that organic matter is 

mainly marine Type I and II (Table 2.3). Petrographic analyses validate the marine origin 

of the organic matter and show that the terrigenous sedimentary input is low relative to 

the marine and allochthonous input (Paragraph 2.2.3).  

As seen in Chapter 2, optical and electron microscope analyses allowed the subdivision 

of samples into three categories according to the different microfacies: microfacies A, 

corresponding to laminated foraminiferal mudstone samples, microfacies B, 

corresponding to the wackestone samples, and microfacies C corresponding to the 

packstone samples (Figure 2.7). All the samples from microfacies B and C, apart from 

microfacies B sample IM2_1, R0 0.5%, have a maturity of  R0 1.2%, and therefore a detailed 

study of the porosity evolution with the increase of thermal maturity and burial is only 

possible for samples belonging to microfacies A (Table 2.3). An increase in the maturity 

sequence determines an intensification of mechanical and chemical compaction processes, 

which affect the properties and mineralogy of the rocks. In these samples, the most 

relevant diagenetic processes are, in sequence: carbonate and clay cements precipitation, 

oil emplacement that partly fills inter and intraparticle pores, framboidal pyrite 

formation, dissolution and reprecipitation of carbonates and other phases (quartz, 

feldspar, clays), organic matter thermal cracking and calcite and plagioclase dissolution. 

A detailed description of all the petrographic results can be found in Chapter 2.  

 Total porosity 

The porosity percentages were calculated for all of the samples by means of SEM, FIB-

SEM, Helium porosimeter and MICP methods (Table 3.2 ). FIB-SEM pore volumes were 

calculated only for 4 samples (sample GW11, lacking the analyses with the other 

techniques, is not considered). The FIB-SEM porosities range from 1.8% to 5.7%. SEM pore 

area calculations were carried out on 18 samples and range between 0.1% (sample GW7) 

and 3.9% (sample H3A3). However, these image processing techniques do not allow the 

measurement of pores smaller than 18 nm, and therefore the total porosity values are not 

representative of the bulk porosities of the samples. The helium pycnometer calculated 

porosity, on the other hand, represents the overall porosity of the samples, as the size of 

its kinetic diameter (260 pm) allows it to enter all pores, in contrast to the other techniques 
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used here. The total porosity values range from 6.5% (sample H3A4) to 18.9% (sample 

OC3). MICP values (between 1.7% and 16.3%) are always lower than the helium porosity 

values, as generally the mercury cannot enter pores smaller than 5.6 nm of diameter.  
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Figure 3.3:  Chart showing the total porosity measured using various techniques (Helium Porosity, 

MICP, image Processing using FIB-SEM and FIB). The total porosities display different results 

depending on the technique used. The results depend on the resolutions of each technique. The 

helium porosimeter and the MICP allow displaying a larger pore range compared to the Image 

processing FIB-SEM and FIB techniques. However, the Helium porosimeter results will not be 

used n this work as considered less reliable compared to the MICP bulk porosity values (see text 

for more detail). 

Figure 3.3: MICP porosity (%) vs Helium porosity (%). 



Chapter 3   105 

 

However, helium porosity data is reasonably well correlated (R2 = 0.53) with the MICP 

results (Figure 3.). As helium porosities were calculated on very small (<0.5 mm) rock 

chips, it is believed that the measured bulk volumes and densities could be affected by 

experimental errors (Bustin et al., 2008). For this reason, for any correlation between 

porosities and mineralogy, microfacies or maturity, the MICP data were considered more 

reliable.  

The lowest porosity value (1.7%) is found in sample IM2_2 (R0 0.5%). This sample is highly 

recrystallised and, as explained in Chapter 2, no trace of bio-carbonate compounds can be 

seen, in contrast to the rest of the microfacies B samples. The two microfacies C samples, 

GW7 and GW8, yield a porosity of 3.9% and 4.5% respectively whereas the high maturity 

microfacies B samples yield a porosity range between 5.6% and 11.2%. In microfacies A 

samples, the porosity values range between 7.2% and 16.3%. The MICP porosity values 

are found to be related to the mineral composition of the samples and to diagenetic 

processes, rather than decreasing gradually with maturity (Figure 3.4).  

Figure 3.4: MICP porosity (%) vs mineralogical contents for all samples at all maturities. A) carbonates 

(calcite, dolomite and ankerite) (%), b) TOC (wt%), c) clays (%) and d) silicates (K-feldspar, plagioclase 

and quartz) (%). The different colours correspond to the differen microfacies: microfacies A (blue), 

microfacies B (green) and microfacies C (purple). 

a) b) 

d) c) 
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A good (R2=0.51) negative relationship between the carbonate percentage and the porosity 

values can be seen (Figure 3.4 a). Indeed, the lowest porosity values are found in samples 

from microfacies B and C, where the reprecipitation of carbonate minerals (calcite and 

dolomite) is more common (Figure 3.5). In agreement with other studies (Kuila et al., 2014; 

Milliken et al., 2013; Passey et al., 2010), the TOC (wt%) versus porosity (%) plot shows 

there is a positive correlation between the abundance of organic matter and porosity 

(Figure 3.4 b). There is no apparent trend between the porosity values and clay or silicates 

(quartz and feldspar) fractions (the R2 values are 0.22 and 0.12 respectively) (Figure 3.4 c 

and d).   

 Porosity from SEM observations 

The combined EDX-SEM maps along with the FIB 3D models were used to distinguish 

the different pore types and shape factors. The classification of the different kinds of 

porosities was modified after Loucks et al. (2012).  

 Pore types 

Interparticle matrix pores, intraparticle mineral pores, intraparticle fossil pores, 

intraparticle dissolution pores and organic-matter pores were identified using the high 

resolution (10k ×) 50 µm x 50 µm maps (Figure 3.6 and Figure 3.7, Table 3.3).  

 

20µm 

Figure 3.5: Example of calcite reprecipitation around a calcitic bioclast, probably a foraminifera 

(sample GW3, R0 1.2%). a) is a CL panchromatic image, b) is a SEM-BSE image and c) is the 

corresponding SEM-EDS elemental map. On the elemental map, the orange colour corresponds to 

calcite, purple is kaolinite, green is quartz and pink is pyrite. The red arrow on the panchromatic 

image indicates a primary calcitic crystal, around which the calcite has reprecipitated in different 

phases corresponding to different greyscales. 

a) b) c) 
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 Intraparticle dissolution pores 

Intraparticle dissolution pores have a more elliptical shape and are found within 

precipitated carbonates and, at a lower extent, plagioclase minerals. They range between 

0% and 31% and are found at all maturities, but most abundantly in the highest maturity 

window samples, in microfacies C (R0 1.2%) (Figure 3.6 a). 

 Intraparticle mineral pores 

Intraparticle mineral pores reflect the abundance of framboidal pyrite and kaolinitic clays, 

whose structure often allows intraplate pores to form (Figure 3.6 b). They range between 

1% and 19% of the overall pore types, and they don’t follow a specific trend with 

increasing maturities, nor with the microfacies type. 

 Interparticle matrix pores 

Interparticle matrix pores are described as pores that occur between particles. In these 

samples, they are found as intra-aggregate porosities between clays and carbonates, 

between the coccolithic debris in the matrix and in the faecal pellets (Figure 3.6 c). For the 

18 samples analysed, the interparticle matrix pores appear as the most frequently type 

occurring at all maturities (37 to 77% of the overall pore types), apart from samples H3A2, 

H3A3 and H3A5 where the OM pores are slightly more abundant. Relatively to the rest 

of the pore types, the highest percentages of interparticle matrix pores are observed at the 

lowest maturities (R0 0.4-0.5%).  

 Intraparticle fossil pores 

Intraparticle fossil pores occur primarily within well-preserved foraminifera hollow tests 

or coccolithophorides, and they are more common in the least mature samples (R0 0.4-

0.5%) (Figure 3.6 d). 

 Intraparticle organic matter pores 

 Organic matter pores are pores found in the organic matter and can be distinguished as 

3 types: pendular, spongy and fracture-like OM pores (Walls and Sinclair, 2011) (Figure 
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3.6 e-g). Pendular and fracture-like OM pores are generally larger, more elongated and 

have a higher aspect ratio compared to spongy OM pores. Spongy OM pores are the most 

abundant, are circular or semi-circular and are usually smaller than 10 nm. The spongy 

OM pore type is only found in the highest maturity samples (R0 1.2%) and at high 

maturities, OM that has not developed a spongy texture is also present. Pendular and 

fracture-like OM pores are rare (<10% of the overall porosity) and are found in immature 

and oil window samples.  
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Figure 3.6: SEM images of the different pore types indicated by the red arrows.  a) dissolution 

pores (sample H3A2, R0 1.2%); b) interparticle mineral pores in framboidal pyrite (sample IM1_3, 

R0 0.4%); c) interparticle matrix pores (sample IM1_2, R0 0.5%); d) OM fracture pores in bitumen 

filling a foraminifer-coccosphere chamber (sample OW2, R0 0.9%); e) pendular pores in an organic 

matter filament within the matrix (sample OW2, R0 0.9%); f) OM sponge pores in bitumen filling 

foraminifer chambers 
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 Pore types as a function of maturity 

Considering the different microfacies, in microfacies A the pore types follow a trend with 

increasing maturity; in general, the most abundant pores are the interparticle matrix 

porosities, which range from an average of 60% in the immature and oil window samples 

to an average of 39% in the gas window samples (Figure 3.7). The foraminifera can be 

several hundred nanometers wide, and during diagenesis they are often only partially 

filled with authigenic cements such as calcite, quartz and kaolinite (Figure 2.29). Another 

component that increases the intraparticle matrix pores in microfacies A samples is the 

large abundance of faecal pellets amid the matrix (see Chapter 2). The porosity of OM 

increases from an average of 7% in the immature and oil window samples to an average 

of 30% for the gas window samples. In this microfacies, the intraparticle mineral pores 

are ~13% in the immature window, ~9% in the oil window and ~12% in the gas window. 
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Figure 3.7: Chart displaying the relative pore type area percentages measured by analysing FIB-SEM 

maps overlapped to EDX maps of the same areas. The colour contour boxes indicate the different 

maturity windows. Green corresponds to immature samples, blue corresponds to the oil samples (R0 

0.9%) and red corresponds  to the gas window samples (R0 1.2%). Interparticle matrix pores are 

significantly high at all maturities. Intraparticle mineral pores  are present at all maturities. 

Intraparticle dissolution pores are mainly present in the gas window (R0 1.2%), especially in  the 

microfacies C samples (GW7 and GW8). See chapter 3 for more details. 
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In addition, the hollow chambers of the foraminifera constitute a significant portion of the 

overall pore types as well (up to 13%, in sample IM2_3). 

Microfacies B and C samples (except for sample IM2_2, R0 0.5%) all belong to the gas 

window maturity. In these samples, the most common pores are interparticle matrix 

pores, with an average of 54% in microfacies B and 60% in microfacies C. Following the 

interparticle matrix pores, in the microfacies B samples, with an average of 16%, are the 

intraparticle mineral pores. In microfacies C samples and in sample IM2_2, their average 

relative percentage is ~5%. In microfacies C and in sample IM2_2, more common are the 

dissolution intraparticle pores, with a pore type percentage average of 24%. OM-related 

pores in microfacies B and C are also found. In microfacies B, the OM-pore types are on 

average 17%, compared to ~4% in microfacies C. However, the TOC wt% of the two 

microfacies C samples is < 1%, which also explains the low quantity of OM-related pores.  
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OC1 0.4 A 68 15 11 0 

OC2 0.4 A 69 13 7 3 

OC3 0.4 A 64 18 8 0 

IM1_2 0.4 A 71 8 13 1 

IM2_2 0.5 B 69 9 6 12 

IM2_3 0.5 A 77 13 2 4 

OW1 0.9 A 74 9 10 2 

OW2 0.9 A 65 8 3 12 

GW5 1.2 B 65 15 6 1 

GW4 1.2 B 64 17 2 4 

GW3 1.2 B 47 19 4 12 

H3A2 1.2 A 41 2 0 10 

H3A3 1.2 A 38 16 2 3 

H3A4 1.2 B 57 10 3 1 

H3A5 1.2 A 37 18 0 2 

GW6 1.2 B 37 19 3 14 

GW7 1.2 C 71 4 2 18 

GW8 1.2 C 77 1 5 13 

       

       
Table 3.3: Pore types and corresponding microfacies and maturity.



112      Chapter 3 

 

 Shape factors 

The elongation, orientation and circularity were the calculated shape factors (Figure 3.8). 

In microfacies A, at increasing maturities the elongation tends towards higher values 

(from a peak average of 0.65 to a peak average of 0.85 in the most mature samples), 

denoting more elongated pores in the gas window samples. The circularity, on the other 

hand, measures the smoothness and the shape form and increases for samples in the oil 

and gas window (from a peak average of 0.12 to a peak average of 0.25). The fine stringers 

of OM are aligned with the laminations and in the gas window, where the stress is also 

higher, present circular or semi-circular pores. These pores are also often aligned to the 

organic matter laminae and therefore aligned with the laminations (Figure 3.9). 
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Figure 3.9: Organic matter in sample GW4 (R0 1.2%)  containing OM elongated pores in the 

direction of the  OM lamination (red arrows). 

Figure 3.8: Shape factors of circularity, elongation and orientation for all pore types in relation to 

the maturity and the microfacies for example samples. The y axis for the circularity and the 

elongation in frequency. The x axis varies from 0 to 1, with 1 being the most circular/elongated 

pores. The diagram for the orientation is a 360⁰ rose diagram and displays the orientation of the 

longest axis of each pore. a) Microfacies A and B samples at increasing maturities and b) 

Microfacies C samples in the gas window. In microfacies A, the samples exhibit more circular, 

more elongated and more well oriented parallel to the bedding pores. In microfacies C, the 

samples, despite being in the gas  window, show similar shape factors to the immature and gas 

window samples. 
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Samples from the gas window of microfacies B are characterised by significantly 

elongated and mixed circular and acicular pores. The acicular pores are related to the high 

percentages of interparticle matrix pores and intraparticle mineral pores, which are 

formed by the pore spaces between euhedral minerals. The circular and semi-circular 

pores are instead related to the organic matter, which generates gas, producing bubble-

like pores. In microfacies C, the pores are not strongly oriented in one direction and are 

mostly acicular. The majority of pores comprise interparticle matrix pores, which have 

generally angular edges. 

 Pore areas and PSD 

The pore areas calculated in the image processing analyses range between 0.1% for 

sample GW7 and 3.9% for sample H3A3 (Figure 3.10: left) (Table 3.4).  

 

There is no clear correlation between pore area percentages and maturity, but correlations 

can be found with the pore area percentages and the microfacies. In microfacies A 

samples, the precipitation of calcite in the highest maturity window (R0 1.2%) has in some 

cases (samples GW3, H3A2, H3A5) significantly reduced the number of interparticle 

pores within the faecal pellets and the matrix. Comparing samples from the same 

maturity and microfacies with similar mineralogy (i.e. samples H3A2 and sample H3A3), 

the total porosity drops by up to 85% between a sample with and a sample without calcite 

reprecipitation. 

 

Figure 3.10: left) average pore diameter (nm) and right) average pore area (%) for all the samples 

from the 10 k x SEM-SE image processing analyses. 
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Table 3.4: Average pore area (%) and average pore diameter (nm) from the SEM-SE image 

processing analyses. 

 

The SEM-SE pore size analyses show that there is a trend with microfacies type as well as 

with maturity. Calculated average pore size distributions for the different thermal 

maturities show that the pore diameter decreases in size with the increase in maturity 

(Table 3.4). Typical values are 99 nm for the low maturity window, 78 nm for the oil 

window samples and 68 nm for the gas maturity samples. In microfacies A, the average 

diameter ranges between 140 nm for sample OC1 (R0 0.44%), decreasing to 50 nm for 

sample H3A4 (R0 1.22%). For microfacies C samples (GW7 and GW8) the pore radius is 

comprised between 65 and 74nm, whereas in microfacies B samples (IM2_2, GW3, GW4, 

GW5, H3A1, H3A4, H3A6, GW6 and GW2) it ranges between 50 and 58 nm (Figure 3.10: 

right). The pore areas and pore size distributions were also compared (Figure 3.11). 
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OC1 0.4 A 4.4 2.5 140.3 

OC2 0.4 A 6.6 1.4 104.7 

OC3 0.4 A 5.5 0.7 75.9 

IM1_1 0.4 A 6.9 3.0 89.0 

IM2_3 0.5 A 7.9 1.3 79.9 

OW1 0.9 A 5.0 0.4 70.1 

OW2 0.9 A 4.5 0.8 85.3 

GW5 1.2 B 1.6 1.2 104.1 

GW4 1.2 B 5.6 1.5 93.4 

GW3 1.2 B 0.5 0.2 58.0 

GW6 1.2 A 2.4 2.9 76.5 

H3A 2 1.2 A 3.0 0.4 55.0 

H3A 3 1.2 A 5.4 3.9 52.5 

H3A 4 1.2 B 0.7 0.3 50.0 

H3A 5 1.2 A 6.0 3.6 55.2 

GW7 1.2 C 0.7 0.1 65.4 

GW8 1.2 C 0.5 2.4 74.6 
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Pore area and pore size distributions show that, although for all the samples analysed 

between 40 and 93% of the pore diameter sizes are smaller than 100 nm, these pores 

account for only up to 7% of the overall pore area. For pore sizes smaller than 50 nm, 

which comprise up to 76% of the overall number of pores, the input to the pore area 

decreases to less than 2%. In general, in these samples with this technique, the overall 

contribution of pores larger than 300 nm to the total area is always higher than 40%, even 

if they account for only an average of 9% of the overall porosity. 

 Gas adsorption 

 N2 Isotherm types 

The 12 samples analysed using nitrogen indicate a typical type IV isotherm, suggesting 

multilayer adsorption (Brunauer et al., 1938). All the isotherms show a sharp increase in 

the quantity of gas adsorbed around 0.9 P/P0, indicating multilayer adsorption followed 

Figure 3.11: Relative percentages of the pore areas as a function of the pore sizes (straight line) and 

the number of pores smaller than 50, 100 and 300 nm (dotted line). The colours behind the sample 

names indicate the different maturities. Green corresponds to immature samples, blue 

corresponds to the oil samples (R0 0.9%) and red corresponds to the gas samples (R0 1.2%%). The 

difference between the pore areas and the number of pores under a certain value is considerable: 

for pores smaller than 50 nm, which account for 21% up to 76% of the total pores, their total pore 

area is always less than 2%. 
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by a capillary condensation in the range of the meso- and macroporosities (Rouquerolt et 

al., 1994; Thommes et al., 2015) (Figure 3.12. For more results see Figure A.1-Figure A.4).  

 N2 hysteresis shapes 

The adsorption/desorption curves present a hysteresis in all the samples, signifying the 

process is not reversible. For all the samples, the hysteresis loop closure point is found 

around a pressure of 0.42 P/P0, which corresponds to the lower limit of capillary 

condensation hysteresis (Gregg et al., 1967). However, the shape of the hysteresis varies 

as a function of maturity and of the microfacies analysed. In the samples belonging to 

microfacies A, the hysteresis changes shape and increases with the increase in maturity. 

The narrow hysteresis shape found at low maturities (Figure 3.12a) indicates the 

dominance of a meso and macroporous system network, in which the gas can easily flow 

through the pores and pore throats. The larger hysteresis at the higher maturities (Figure 

3.12 b) suggests instead the presence of both micro and mesopore volumes, indicative of 

a more complex, yet connected pore system formed by narrower pore throats in which 

the gas cannot easily pass through, causing a delay in the desorption. Similar behaviour 

to the low maturity samples of microfacies A is seen in microfacies B and C samples, but 

with a lower adsorption capacity (Figure 3.12 c; d). According to the IUPAC classification, 

the shape also suggests a geometry of the pore types (IUPAC, 1985). Samples from the 

high maturities of microfacies A present an H2 shape type loop, which is typically 

associated with ink bottle-shaped pores (narrow mouths and larger bodies). In the low 

maturity samples of microfacies A and in the microfacies B and C samples the hysteresis 

curves resemble more an H3-H4 type, which is interpreted as a pore system formed by 

slit-shaped porosities.
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 Pore volumes 

The pore volumes of the samples analysed range from 0.01 cm³/g (sample IM2_2) to 0.04 

cm³/g (sample OC3) (Table 3.5). These values are in accordance with the porosity values 

measured with the MICP, that shows that sample IM2_2 and sample OC3 yield the lowest 

and highest total porosities, respectively. BET surface areas range from 0.32 m²/g (sample 

IM2_2) to 5.80 m²/g (sample H3A2) and the BET values show a strong correlation (R2=0.91) 

with the TOC wt% values (Figure 3.13 a). Although there is no clear trend between the 

mineral content of the samples and the pore volume or the BET specific surface area, the 

samples exhibit an inverse relationship between the average pore diameter and the micro 

a) b) 

c) d) 

Figure 3.12: Gas adsorption N2 measurements for two samples from microfacies A in the a) 

immature (OC1) and b) gas window (H3A5), c) a microfacies B (R0 1.2%) sample (GW4), and d) 

microfacies C (R0 1.2%) sample (GW7). The sample in microfacies A in the gas window exhibits a 

larger hysteresis, signifying that the pore system is more complex and that the pore throats are 

narrower. 
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and mesopore volumes, and between the BET specific surface area and the micro and 

mesopore volume (Figure 3.13b).  

 

 

Also, the pore volume analyses indicate that most of the pore volume (59.8 to 89.7%) is 

within the macropores (pores > 50 nm) for all the samples except for sample H3A2 (32.4% 

of the pore volume) (Table 3.5). Positive correlations with the maturity of the samples 

start to be seen for pore volumes of pores smaller than 20 nm normalised to the TOC 

values (average of 1.2% for samples with R0 0.5% to an average of 19.7% for samples at R0 

1.2%) (Table 3.5). 

a) b) 

Figure 3.13: Gas adsorption N2 measurements of a) BET specific  surface area (m²/g) vs TOC (wt 

%) and b) average pore diameter (nm) vs micro and mesopore volume. 



    

 

 

 

 

Table 3.5: Gas adsorption measurements (N2 and CO2) of surface areas, average pore diameters, macro-, meso- and micropore volumes and calculated pore 

volumes for pores < 20 nm. To see how the presence of organic matter influences the total pore volume, the pore volumes were also normalised to the TOC 

values. The percentages of each pore volume fraction compared to the total pore volumes was also calculated 
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OC1 outcrop 0.5 4.4 0.557 1.6 67.3 0.009 0.007 0.003 0.134 74.5 27.7 8.2 0.002 

OC2 outcrop 0.5 6.6 1.572 2.9 68.7 0.027 0.021 0.006 0.134 77.8 23.3 8.0 1.219 

OC3 outcrop 0.5 5.5 2.721 3.7 57.8 0.039 0.028 0.011 0.157 71.7 28.2 12.0 2.189 

IM2_1 2 0.5 5.8 0.522 NA 108.5 0.014 0.013 0.001 N/A 89.7 9.9 2.5 0.430 

IM2_2 2 0.5 1.9 0.321 NA 71.6 0.006 0.005 0.001 N/A 86.8 10.4 3.9 2.055 

H3A1 5 1.2 1.0 2.398 NA 29.0 0.017 0.012 0.005 0.10 69.6 29.0 19.1 19.338 

H3A2 5 1.2 3.0 5.799 NA 15.9 0.023 0.010 0.013 N/A 43.3 56.6 36.5 12.335 

H3A4_ 5 1.2 0.7 1.331 4.1 36.6 0.012 0.008 0.004 N/A 65.8 32.9 15.4 20.874 

GW2 4 1.2 2.3 3.399 2.1 26.4 0.022 0.013 0.009 0.14 59.8 40.2 23.6 10.251 

GW4 4 1.2 1.0 2.571 1.9 38.2 0.024 0.017 0.008 0.12 69.5 32.7 14.3 14.294 

GW7 6 1.2 0.4 0.771 NA 43.6 0.008 0.006 0.002 N/A 71.2 23.7 13.8 34.519 

GW8 6 1.2 0.6 1.094 NA 35.8 0.010 0.007 0.003 N/A 71.8 30.8 14.4 26.236 
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 Pore size distributions 

Combined CO2/N2 adsorption data cover a pore-size distribution that ranges from 1 nm 

to 250 nm, with the data exhibiting a good transition between the two gases. From the 

PSD vs dv/dw pore volume cumulative plots, it is possible to notice a variation in pore 

sizes with the microfacies type. Microfacies A and B samples mainly exhibit pores in the 

mesopore range. CO2 analyses in these samples also display the presence of pores < 2nm. 

Cumulative pore sizes plots (Figure 3.14) also show that in the gas window samples the 

porosity is held within pores smaller than 10 nm, whereas in the immature window it is 

mostly between 10 and 100 nm.  

The pore sizes for microfacies A and B decrease with increasing in maturity, from an 

average of 75 nm to an average of ~ 30 nm. Samples from microfacies C exhibit larger pore 

diameters (on average ~ 40 nm) compared to samples from microfacies A and B at the 

same maturity (R0 1.2%) (on average ~ 30 nm). dv/dlogr plots imply a bimodal distribution 

of pore sizes for samples from microfacies A and sample H3A4 from microfacies B (Figure 

3.15a and b) and a unimodal distribution for samples from microfacies B and C (Figure 

3.15 c and d). 

a) b) 

Figure 3.14: Cumulative plots of pore size distributions vs dV/dw Pore Volume (cm³/g·nm) for a) 

an immature sample (OC3) and b) a gas window sample (H3A2) from microfacies A. 
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 Mercury injection capillary pressure (MICP) 

Before the analyses of the data, all curves were corrected for conformance and compaction 

errors. By plotting the pore throat sizes versus the pore volume fraction, the pore throat 

distribution can be analysed (Figure 3.16). The samples present a unimodal pore size 

distribution for the pore size range analysed, and the pore size ranges depend strictly on 

the microfacies type and on the maturity of the samples. 

 

 

 

a) b) 

c) d) 

Figure 3.15:  Pore size distributions using the gas adsorption technique (CO2, orange and N2, blue) 

for a) OC1, OC2 and OC3 samples (R0 0.5%, microfacies A), b) H3A2, H3A3 and H3A5 (R0 1.2%, 

microfacies A), c) sample H3A1 (R0 1.2%, microfacies B) and d) samples GW7 and GW8, R0 1.2%, 

microfacies C). The distributions are bimodal for samples from microfacies A and shift to lower 

values in the gas maturity samples. They pore sizes appear instead unimodal for samples from 

microfacies B. Microfacies C samples present pores between 10 and 100 nm as well as pores < 4 nm. 

However, no CO2 data is available to quantify the pores smaller than 2 nm. 
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 Pore-throat size distribution 

In microfacies A, an increase in maturity determines a shift in the pore throat diameters 

from an average of 23 nm for the immature samples (R0 0.4%), to an average of 16 nm for 

the highest maturity samples (R0 1.2%). Moreover, the pore throat distribution presents a 

broader spectrum in the low maturities, covering the meso- and macropore sizes, to a 

narrower spectrum at high maturities, restricted to micro and mesopores smaller than 20 

nm (Table 3.7). For additional data, refer to Figure A.5Figure A.6 in the appendix.

Figure 3.16: Pore size distributions for two exemplary samples from microfacies A in the 

immature window (blue) and the gas window (green). 
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Table 3.6: MICP results for the samples analysed: average pore diameter sizes calculated by 

intruded volume (nm), fractal dimensions and MICP measured porosity, entry pressures, porosity 

volumes and retained Hg volume values (%). NA = data not available. 

 

In samples from microfacies B, the pore throat size distribution is composed only of 

mesopores and the average pore throat diameter is 18 nm. In the two microfacies C 

samples, the pore throat size distribution is delimited between 10 and 100 nm, with no 

variations in frequency values. The average pore throat diameter in these two samples is 

42 nm. 

 

S
am

p
le N

am
es 

W
ell N

am
es 

R
o

 (%
) 

T
O

C
 (w

t%
) 

M
icro

facies 

A
v

erag
e p

o
re 

d
iam

eter sizes 

(n
m

) 

F
ractal 

D
im

en
sio

n
s 

M
IC

P
 P

o
ro

sity
 

(%
) 

E
n

try
 P

ressu
res 

M
IC

P
 p

o
ro

sity
 

V
o

lu
m

e (cm
³/g

) 

R
etain

ed
 H

g
 

V
o

lu
m

e (%
)  

OC1 Outcrop ~0.4 4.4 A 7.2 2.27 8.9 20000 0.005 10.2 

OC2 Outcrop ~0.4 6.6 A 27.6 2.39 11.8 1500 0.027 43.4 

OC3 Outcrop ~0.4 5.5 A 43.4 2.19 16.3 700 0.197 42.6 

IM1_1 1.0 ~0.5 4.5 A NA 2.84 8.4 NA 0.001 NA 

IM2_1 2.0 ~0.5 5.8 B 8.4 2.26 1.7 17000 0.001 NA 

IM2_2 2.0 ~0.5 1.9 A NA 2.41 14.8 NA 0.001 NA 

IM2_3 2.0 ~0.5 7.9 A 27.8 2.48 8.5 1300 0.001 32.3 

OW1 3.0 ~0.9 4.9 A 38.4 2.28 10.6 900 0.026 43.9 

OW2 3.0 ~0.9 2.6 A 27.6 2.31 10.7 1500 0.022 NA 

GW1 4.0 ~1.2 3.5 A 10.7 2.75 12.1 9900 0.021 NA 

GW5 4.0 ~1.2 1.6 B 10.3 2.34 6.7 10900 0.025 39.8 

GW4 4.0 ~1.2 1.0 B 10.3 2.32 NA 10900 0.012 NA 

GW3 4.0 ~1.2 0.5 B 16.5 2.28 5.6 3900 0.006 3.2 

H3A1 4.0 ~1.2 1.0 B 15.5 2.33 11.2 4500 0.011 28.4 

H3A2 4.0 ~1.2 3.0 A 8.9 2.33 6.6 15000 0.010 25.6 

H3A3 4.0 ~1.2 5.4 A 12.3 2.37 3.9 7300 0.006 46.6 

H3A4 4.0 ~1.2 0.7 B 17.8 2.33 4.5 3400 0.006 21.6 

H3A5 4.0 ~1.2 6.0 A 13.7 2.39 7.9 5800 0.034 47.1 

H3A6 4.0 ~1.2 0.2 B 13.7 2.28 7.2 5800 0.008 26.1 

GW6 5.0 ~1.2 2.4 B 11.7 2.90 13.0 8100 0.013 53.0 

GW2 5.0 ~1.2 2.3 B 12.3 2.31 6.1 7300 0.016 44.7 

GW7 6.0 ~1.2 0.7 C 34.2 2.20 12.9 1100 0.006 NA 

GW8 6.0 ~1.2 0.5 C 49.8 2.28 6.8 550 0.012 NA 
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 Hg saturation 

Plotted diagrams of pressures (psi) vs mercury saturation (%) (Figure 3.17) give insights 

on the connected porosity, and therefore on the permeability of the samples. In most of 

the samples (except for samples OC3, GW8 and H3A3), the volume percentage in the 

steep side of the curve is below 10%, indicative of a tight, yet connected, pore network. 

The inflection point, which corresponds to the pressure at which the saturation of 

mercury increases abruptly, is situated above 1000 psi in all the samples except for sample 

GW8, sample OW1 and sample OC3. This pressure, which is the pressure at which the 

mercury is starting to enter the system, corresponds to a pore throat radius of ca. 100 nm, 

meaning that most of the samples the pore throats have sizes in the mesopore or 

micropore range (Figure 3.17).  

 

Figure 3.17: Mercury saturation (%) vs Mercury pressure (psi) plots. Each mercury pressure is 

correlated to a pore throat size. In all the samples except for samples GW8, OW1 and OC3, the 

inflection point, i.e. the first mercury entering the pore system, is situated above 1000 psi. 

 Hysteresis  

The extrusion curve can provide information on the quantity of mercury that is retained 

in the pore system during the pressure reduction and on the nature of connectivity of the 

pores (Figure 3.2). The more “snap-off” of mercury occurs, the more the system is 

heterogeneous and formed by small pore-throats connecting larger pore bodies (Klaver 

et al., 2015). The small pore throats, indeed, cause the mercury to remain trapped in the 
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samples during the drainage phase. In the samples, no clear trend occurs between the 

retained mercury and maturity, mineralogy or microfacies. However, the lower retained 

mercury volume values (10.2%) and the higher (53%) are found in a low maturity (sample 

OC1) and a high maturity sample respectively (sample GW2) (Table 3.7). Overall, the 

average retained volume is more than one third (36.1%). Sample OC3 has the lowest 

inflection point (700 psi) and a corresponding high porosity fraction (12.2%). Comparing 

the total pore volumes from the gas adsorption and the MICP analyses, cumulative 

volumes measured with the MICP method are in the same range as the ones measured 

with the BET method. Generally, the MICP values are slightly lower (except for sample 

OC3 ad sample GW8); moreover, the MICP displays more pore volumes in the range of 

the micro and mesopores compared to macropores: on average, ~54% over ~28% for the 

MICP data and ~29% over 71% for the gas adsorption data respectively (Table 3.7). 

 Fractal dimensions 

To measure the complexity of the pore medium, fractal dimensions (Df) were calculated 

using a  log −
𝑑𝑣
𝑑𝑟

 vs  log 𝑑𝑣 plot (Figure 3.18). The more the value is high, the more the 

system is complex. In the sample datasets, Df values range between 2.19 (sample IM2_2) 

and 2.9 (sample GW6). The average fractal dimension is 2.38. In microfacies A high 

maturity samples, a good relationship exists between the TOC wt% values (R2=0.52) and 

the fractal dimensions (Figure 3.19). Also, a good (R2=0.58) inverse correlation is found 

between the carbonate (%) and the fractal dimensions (Figure 3.20 a) and a positive 

correlation between % silicates and the fractal dimensions in the immature window 

(Figure 3.20 b).



 

 

 

 

 

 

Table 3.7: MICP pore volume measurements and calculated micro, meso and macropore volume from MICP data (%). 
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OC1 outcrop 0.5 4.4 67.3  0.0 0.005 0.001 0.001 0.003 15.6 22.2 62.2 

OC2 outcrop 0.5 6.6 68.7  1.2 0.027 0.001 0.025 0.001 4.8 91.1 4.1 

OC3 outcrop 0.5 5.5 57.8  2.2 0.197 0.159 0.037 0.001 80.9 18.6 0.7 

IM2_1 2 0.5 5.8 108.5  0.4 0.001 0.001 0.000 0.000 38.5 30.8 30.8 

IM2_2 2 0.5 1.9 71.6  2.1 0.001 0.001 0.000 0.000 100.0 0.0 0.0 

H3A1 5 1.2 1.0 29.0  19.3 0.011 0.001 0.008 0.002 11.5 72.6 15.9 

H3A2 5 1.2 3.0 15.9  12.3 0.010 0.001 0.004 0.005 10.4 41.7 47.9 

H3A4_ 5 1.2 0.7 36.6  20.9 0.006 0.001 0.005 0.000 10.7 82.1 7.1 

GW2 4 1.2 2.3 26.4  10.3 0.016 0.001 0.014 0.001 7.5 86.9 5.6 

GW4 4 1.2 1.0 38.2  14.3 0.013 0.001 0.008 0.004 8.8 63.2 28.0 

GW7 6 1.2 0.4 43.6  34.5 0.006 0.002 0.004 0.000 28.6 71.4 0.0 

GW8 6 1.2 0.6 35.8  26.2 0.012 0.003 0.008 0.001 25.2 70.4 4.3 
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Figure 3.19: Fractal dimension vs TOC (wt %) plot for the high maturity (Ro 1.2%) samples. 

a) b) 

Figure 3.20: Fractal dimension vs a) carbonates (calcite, dolomite and ankerite) (%) and b) silicates 

(quartz, K-feldspar, plagioclase) for samples at low maturities (R0 0.5%). 

Figure 3.18: Example of a fractal dimension plot calculation based on MICP analyses (sample GW5, 

R0 1.2%). The slope of the fitting line in the double logarithmic plot  can be used to calculate the 

fractal dimension (in this case, Df = 3-0.63). 
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 Focused Ion Beam (FIB) 

 Porosity and OM volume fractions 

In order to visualise and measure in 3D, variations in the nature of the pore system, only 

samples from microfacies A were selected for this technique (Figure 3.21). To calculate 

the OM volumes, a kerogen density of 1.1 g cm-3 for the immature samples, 1.2 g cm-3 and 

of 1.35 g cm-3 for the most mature samples were used, as suggested by Okiongbo et al. 

(2005). 

The bulk density, typically close to 2.7 g cm-1, was calculated using the bulk mineralogy 

and TOC wt% values. The calculated porosity values range from 1.8% for sample IM2_1 

to 4.5% for sample H3A5. The organic matter volume fractions observed in the samples 

vary between 11.4% for sample H3A5 to 24.6% for sample IM2_3. The OM volumes 

measured after the 3D thresholding in Avizo are in all the samples very similar, but 

slightly larger than the OM volumes calculated from the TOC% values (Table 3.8). The 

reasons behind the discrepancy between the FIB and XRD values could be due to the 

volume of the sample chosen for the FIB not being representative, or the greyscale 

thresholding not being accurate.  

a) b) c) 

10 µm 

Figure 3.21: 3D FIB volume renders at increasing maturities of samples a) IM2_1 (R0 0.5%), b) 

OW1 (R0 0.9%) and c) H3A5 (R0 1.2%). The blue colour represents for the three samples the 

segmented 3D volume of OM and the red colour represents the segmented 3D volume of pores. 
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The 2D slices give an insight into where the porosity is situated. For the samples analysed, 

most of the porosity is situated in the matrix for the low maturity and oil window samples 

(IM1_1, IM1_3, OW1) and in the OM in the higher maturity (R0 1.2%) samples (H3A5, 

GW11). The amount of porosity within the OM was calculated by filling the void spaces 

within the OM using the fill function in Avizo and subtracting the actual OM volume to 

the result (Figure 3.23). This method is not accurate, as it does not consider the porosity 

within the OM in the case of the presence of open voids. However, similarly to the FIB-

SEM pore type calculations, results show that samples at high maturities exhibit larger 

(up to 80% more in sample H3A5) portions of porosity within the OM volume compared 

to the samples at low maturities (up to 54% in sample OW1).  
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IM2_1 13.5 1.8 84.6 6.2 587 127 0.4 36.3 33 19.5 5.8 13.4 2.4 

IM2_3 24.6 4.2 97.7 26 1159 118 2.3 50.1 24 9 7.9 18.3 8.9 

OW1 11.4 3.7 72.3 13.7 4942 72 2.1 56.6 19 3.6 4.9 10.6 4.3 

GW11 16.7 2.7 94.1 1.4 8391 58 2.0 NA NA NA 3.4 6.3 1.0 

H3A5 14.1 4.5 94.3 13.6 3466 39 3.6 50.7 10.6 23.1 6.5 12.5 8.0 

              

 

Table 3.8: Results from FIB analysis. The OM is always well connected, whereas the porosity 

connectivity varies from sample to sample. The connected pores < 100 nm increase relative to the 

overall connected pores at increasing maturities. The volumes of organic matter calculated from 

the TOC values are similar to the volumes calculated from the FIB method. GW11 sample was only 

analysed using the FIB technique, and therefore no XRD or other data was available apart from 

TOC (wt %).  NA= not available data. 
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10 µm 

Figure 3.23: FIB 3D volume rendering for sample IM2_3.  In blue, the segmented OM volume. 

In pink, the non- OM pores and in celeste the OM pores obtained using the fill function. This 

function consists in filling the void spaces in the OM and then subtracting the OM volume to 

the result. 

a) 

b) 

c) 

d) 

2 µm 

Figure 3.223: Example of the Avizo fill function on one slice of sample H3A5 (R0 1.2%). a) is the 

unprocessed sample, in b) the  orange colour corresponds to the segmented OM, in c) the blue 

colour corresponds to the segmented OM together with the segmented pores. In d) in the light 

blue are the pores obtained by subtracting slice b) to slice c). In light green, the non-OM pores. 
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 Pore size distributions and connectivity 

Pore size distributions display a decrease in pore size from the lowest to the highest 

maturity sample analysed (Table 3.9); the mean diameter pore size values range from 

126.9 nm for sample IM1_1 to 39.5 nm for sample H3A5. Measuring the connected OM 

and porosity, the data show how the connectivity of the OM within the samples is always 

high (between 72% and 98%), whereas the connectivity of the porosities varies from 

sample to sample (between 1.4% for sample GW11 to 26% for sample IM2_3). The 

connected OM do not show a direct relationship with the TOC (wt %) content, but the 

TOC wt % is high (> 3.4 %) in all the samples analysed. 
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IM2_1 0 24 1.9 48 39.9 95.0 

IM2_3 0.04 26.9 3.25 65.8 36.9 93.0 

OW1 0 40.4 1.1 72 12.4 66.7 

GW11 0.039 57.2 20.3 90.1 66.8 99.6 

H3A5 0.04 49.5 19.4 82.8 66.8 99.7 

       
Table 3.9: FIB cumulative pore volume analysis from a volume of 12.7 µm x 10.3 µm x 3.1 µm in 

size. The most distinct difference between the pore volumes of samples from the immature and oil 

window and samples from the gas window samples is seen at the pore size threshold of 95nm. 

 

The connected pores, although they do not show any trend with the increase in maturity, 

appear to vary depending on the dimensions of the pores. By filtering the pores smaller 

than 100 nm, the connected porosity values decrease to less than 34% of the overall 

connectivity values in the immature and oil window samples, and to at least 70% in the 

most mature samples. However, the smaller pores visible with this technique have a 

diameter of 25 nm, suggesting that even more pores could be connected through non-

visible, smaller pores. In all the samples, the pore volume distributions do not match the 

distribution of numbers of pores relative to pore sizes: there is a larger number of pores 
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with small diameters, but they contribute relatively little to the total pore volumes (Figure 

3.23).  

In sample OW1, the pore volume for pores with a diameter larger than 250 nm, accounts 

for 87.6% of the total pore volume even though the pores smaller than 250 nm correspond 

to the 66.7% of the total number of pores. In sample IM2_1, the pore volume for pore sizes 

larger than 95 nm accounts for 95% of the total pore volume. The pore size distribution is 

bimodal, with 19% of the pores having a diameter between 30 and 40 nm and the rest of 

the pores a diameter between 95 and 350 nm. Sample IM2_3 presents a bimodal 

distribution of pore sizes (25nm to 95nm and 150 to 350 nm). The pore volumes compared 

to the pore sizes have similar values to sample IM2_1, with pores larger than 250 nm 

accounting for 63.1% of the total pore volume with 93.0% of the pores smaller than 250 

nm. In sample GW11 and sample H3A5, 99.6% and 99.7% respectively of the porosities is 

associated with pores smaller than 250 nm. In both of the high maturity samples, the 

accumulated pore volume for pores with a diameter smaller than 250 nm is 66.8%, 

whereas in the immature and oil window samples the cumulative pore volume below 

pore sizes of 250 nm does not exceed 40% (Table 3.9). 

For pore sizes smaller than 95 nm, in the two gas window samples, 20.3% and 19.4% of 

the pore volumes are situated in pores smaller than 95 nm, whereas in the immature and 

oil window samples, in pores smaller than 95 nm the pore volume values range between 

Figure 3.24: TOC (wt%) vs carbonate content (%) from the XRD analyses. The plot highlights a 

strong negative correlation. 
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1.1% and 3.25%. This is consistent with the results obtained in the SEM image processing 

interpretations and in the MICP pore volume estimates (Figure A.7). 
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 Discussion 

Deciphering all the factors and processes that lead to such a complex network is essential 

to bring to light the intrinsic nature of this heterogeneous reservoir. A comprehensive 

understanding of the pore sizes, shapes and connectivity can be achieved only by a 

combination of all the methodologies described in this chapter and the bulk rock analyses 

described in Chapter 2.  

Microfacies classification and mineralogy analyses are essential for the FIB-SEM and FIB 

observations, as they provide information on the evolution of the pore types in terms of 

maturity and facies type. The classification of the pore types in five groups, combined 

with the analysis of the overall porosity and connectivity by means of FIB-SEM, FIB, Gas 

Adsorption and Mercury Injection Porosimeter data, allows the most relevant processes 

occurring in the three microfacies to be inferred. The merging of the observations is aimed 

to provide an overall understanding of the pore system in terms of hydrocarbon storage 

and flow potential. 

 Mineralogy 

The mineralogy of the samples impacts the total porosity; TOC wt% values present a 

strong positive correlation with the total porosity, whereas the carbonates (calcite, 

dolomite and ankerite) show an inverse relationship. Clays (kaolinite and mixed illite-

smectite) and silicates (quartz and feldspars), present but in minor abundances, might 

play a role as assemblage grains in the compaction phase and show weak correlations 

with the maturities analysed. Quartz occurs as microgranules and its content increases 

from the oil to the gas window. The micro quartz, as seen in Chapter 2, precipitates in the 

pore spaces within the matrix, decreasing the overall porosity. Previous studies have 

shown that pores associated with the clay-rich matrix are common and usually < 10 nm 

(Mark E Curtis et al., 2012; Javadpour, 2009; Kuila et al., 2014; Loucks et al., 2009; Milliken 

et al., 2013; Passey et al., 2010; Schieber et al., 2010; Walls and Sinclair, 2011). In this work, 

however, clay minerals are always less than 30% of the overall mineralogy and clay-

hosted pores account for up to 19% of the overall porosity with no clear variation with 

maturity or microfacies. The pore system observed in these samples resembles more the 
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one of a chalk reservoir rather than a clastic mudstones one. The similarity is due to the 

abundance of inter- and intra-particle porosities within the coccolithic debris, as well as 

the diagenetic processes linked to carbonates and organic matter (Fabricius, 2003; Martin 

et al., 2011). The system is mainly controlled by a tight, rigid, carbonate framework 

surrounded by a more ductile organic matter phase.  

 Carbonates and organic matter 

Carbonates in these samples are both primary and authigenic. Primary carbonates include 

biogenic foraminifera, coccoliths or other fossil debris, whilst authigenic carbonates 

derive from mineral precipitation from oversaturated marine waters (McAllister et al., 

2015; Moore, 2001). As seen in chapter 2, carbonate cements start to occur in the immature 

window (R0 ≤ 0.5%) and continue to precipitate at R0 ≥ 1.2% occluding the primary 

intraparticle and interparticle pores. The availability of carbonate-saturated fluids was 

interpreted to derive from the increase in dissolution of the primary calcite crystals. 

Calcite crystals dissolve because of increasing burial stresses and increasing acidification 

of connate waters due to organic matter maturation processes. Evidence in dissolution 

from pressure-solution is present at all maturities, but dissolution intraparticle pores start 

to be abundant in the oil and gas maturity window (Figure 2.36). Reprecipitation 

processes are also frequently observed and testified by means of cathodoluminescence 

analyses at all maturities, although they are more common in the oil and gas window 

compared to the immature window (R0 ≥ 0.9%) (Figure 2.19). Organic matter, on the other 

hand, is classified as either marine or terrigenous kerogen or a secondary migrated 

bitumen (Dawson, 2000; Denne et al., 2016; Ergene, 2014; Fishman et al., 2012; Mcgarity, 

2013).  

Organic matter (TOC wt%) and carbonate minerals (calcite, dolomite and ankerite) 

percentages are also negatively correlated (Figure 3.24). This negative relationship can be 

explained by the fact that often the carbonate skeletal structure is filled or rimmed with 

organic matter, which, as in other studies  (Scholle, 1977), is here thought to inhibit the 

precipitation of further calcite cement. The more the organic matter there is, the least 

carbonate cements precipitate (Figure 3.25).  
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Despite being mainly associated only to the carbonates and to the organic matter, this 

formation is highly heterogeneous and complex. The complexity of the formation is 

governed by a series of processes that are linked to the origin and evolution of the play, 

which also determine the storage and fluid flow capacity of these rocks.  

 Early-stage compaction 

As observed in other petrographic studies on the Eagle Ford (Ergene, 2014; Mcallister, 

2017; Pommer and Milliken, 2015), the first process occurring at the early stages of 

sediment burial is mechanical compaction. Early mechanical compaction in these samples 

is testified by grain fracturing, pressure solution and re-alignment processes (Figure 2.35). 

Porosity reduction due to compaction is believed to be primarily affected by the most 

ductile components, such as clays and kerogen (Loucks et al., 2012; Milliken et al., 2014; 

Pommer et al., 2014). However, as seen in Chapter 2, in the Eagle Ford, the presence of a 

solid skeletal framework formed by carbonates and, in minor abundances, silicates, is 

thought to have mitigated the compaction processes and fracturing, hence preserving 

primary porosity (Ko et al., 2017 and references therein) (Figure 3.25). As observed in 

other works (McAllister et al., 2015; Pommer et al., 2014), the large foraminifera chambers 

are here usually only partly filled by early-stage cements, allowing for the retention of 

5 µm 

Figure 3.25: SEM-BSE image of sample IM2_3 (R0 0.5%) overlapped with  a SE image of the same 

area. The arrows indicate pores bordered  with OM within the carbonate matrix. The pores are not 

entirely within the OM, but between the carbonate particles and the OM. For this reason, they were 

classified as interparticle matrix pores in the pore types quantification. 
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intraparticle fossil primary pores. Nonetheless, even if the presence of mechanical 

compaction is undoubted and testified by deformation and re-alignment processes (see 

Chapter 2), the degree to which it has affected the porosity system cannot be inferred.  

 Dissolution processes 

Evidence of dissolution processes is commonly observed in these samples. Dissolution 

derived by mechanical compaction is testified in the contact within rigid clasts (Figure 

2.36) and in pressure-solution veins. Dissolution also continues during late diagenesis, at 

temperatures > 80 ⁰C. At these temperatures, the organic matter decarboxylation causes 

the expulsion of acidic fluids, which unbalance the pH conditions at which the minerals 

are stable. The acidification of the connate waters is believed by many authors to cause 

the dissolution of mineral phases such as calcite, feldspar and clay minerals (Er et al., 2016; 

Loucks et al., 2012;  Leggett and Zuffa, 1987; MacGowan and Surdam, 1993; Schieber et 

al., 2010). In this study, in the samples analysed, SEM image processing shows evidence 

of the dissolution of minerals. Starting from the oil window, an increase in corroded 

seams in noticed (Figure 2.36 a), as well as the formation of new intraparticle mineral 

pores mainly within the carbonates and feldspar minerals (Figure 2.36 c). Intraparticle 

dissolution pores can be as small as 20 nm and are more common, compared to other 

types of porosities, in microfacies C (R0 1.2%) (Table 3.3). Biogenic products such as faecal 

pellets, on the other hand, appear well preserved even at high maturities. Their 

preservation could be related to early OM migration into the pores or to the same 

mucillagineous coating that also preserves the original porosities within the coccoliths 

(Porter and Robbins, 1981). In general terms, when mineral phases dissolve, they release 

in the fluids elements that favour the precipitation of other mineral phases in forms of 

cements.  

 Cementation processes 

When mineral phases precipitate producing cements, these newly formed components 

impact the pore system as well as the overall structure of the affected area. As seen in 

Chapter 2, the different depositional environment in which the microfacies have formed 

causes the samples to have distinct diagenetic patterns relative to the microfacies type. 
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Cathodoluminescence studies indicate that there is a greater abundance of authigenic 

carbonates in microfacies B and C compared to the microfacies A samples (see Chapter 

2). Moreover, if the cements in microfacies A mainly impact the intraparticle primary 

fossil pores, in microfacies B and C cements are found around the minerals, also affecting 

the interparticle matrix pores (Figure 3.7). In chapter 3 it is observed how, by looking at a 

whole maturity sequence from the same microfacies (microfacies A samples), the increase 

in burial stress and temperature produces the dissolution and reprecipitation of new 

phases (Figure 3.5), which are believed to affect the bulk porosity and the pore system 

(Mastalerz et al., 2013; Mathia et al., 2016). 

 Total porosity and microfacies types 

Total porosities calculated with different techniques show that FIB and FIB-SEM values 

are ~ 10 times or lower compared to the bulk MICP measurements. As stated in Klaver 

(2014), this difference is mainly caused by the different resolution of the techniques, which 

is also the reason why the MICP measurements are the most reliable in terms of bulk 

porosity. Indeed, the Hg porosimetry can measure pores as small as 2.8 nm in diameter 

whereas the FIB-SEM and the FIB techniques cannot detect pores smaller than ~18 nm in 

diameter. The different values suggest that the samples present a large number of pores 

smaller than 18 nm.  

Total porosities also vary between the three microfacies. Samples from microfacies A have 

on average higher total porosities than samples from microfacies B and C. In microfacies 

A samples, the calcite percentage is lower compared to the microfacies B and C samples 

and overall, the total porosity exhibits a negative relationship with the carbonates 

component. This negative correlation is linked to the reprecipitation of calcite cement 

phases within the available pores within the minerals, the fossils and the matrix. 

Cementation and reprecipitation processes, as seen in chapter 2, occured earlier in the 

burial hisotry and in more abundance in microfacies B and C samples, causing a higher 

decrease in porosity (-40% and -60% respectively) compared to microfacies A samples at 

similar maturities (R0 1.2%). Particularly noteworthy in microfacies A samples is the 

presence of faecal pellets, in which intraparticle pores can account for more than 40% of 

the total area percentage and for more than 60% of the interparticle matrix pores (see 
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Chapter 2). In microfacies B samples, faecal pellets are also present, but their pores are 

filled with calcite cements (Figure 2.24). Microfacies C samples differ from microfacies A 

and B samples also for the nature of their fossil components, which are mainly broken 

fossil bioclasts held together by calcite cements. 

 Influence of organic matter on bulk porosity 

As previously mentioned, in the gas window, along with the cementation processes that 

fill the pores, pores are also generated both by dissolution processes and by the thermal 

maturation of the organic matter. In the gas window, organic matter pores are mainly 

present in the form of sponge-like pores. They are typically smaller than 20 nm (King et 

al., 2015; Liu et al., 2017), and the positive correlation between the TOC and bulk porosity 

also suggests that many of the organic matter generated pores are not visible with the 

image processing techniques used in this work (Kuila, 2013; Milliken et al., 2013). In the 

gas window, the organic matter pores are not observed in all the organic moieties, but 

appear to be confined within the bitumen phase (Figure 3.26).  

 

 

These observations are in line with the previous works by Bernard et al., (2013, 2012); Ko 

et al., (2017), Milliken et al., (2013) which attest that different organic matter types can 

10 µm 

Figure 3.26: SEM-BSE image of sample H3A3 (R0 1.2%) overlapped with a SE image of the same 

area. The yellow arrows indicate porous organic matter, whereas the blue arrows non-porous 

organic matter. Porous and non-porous organic matter coexist in samples at gas maturities. 
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have significant variations in pore generation from pyrolysis. In particular, the same 

authors consider the bitumen phase extremely important for the organic matter pore 

formation related to the gas generation in the gas window. Other authors believe instead 

that the organic matter porosity differences are already present in the immature window 

and caused by the textural differences, but are masked by compaction during burial 

(Fishman et al., 2012; Milliken et al., 2013) and by bitumen migration (Löhr et al., 2015). 

Given that migrated bitumen is also present in the immature samples (Paragraph 2.3.4), 

it is not here possible to attest whether the kerogen structure presents primary pores. 

Therefore, both the hypothesis can be considered valid. 

Organic matter is also often found to fill or rim the intraparticle fossil pores and the 

carbonate skeletal structure. When filled, the overall porosity decreases. When rimmed, 

the porosity decreases with reference to the skeletal carbonate framework, but it also 

prevents the reprecipitation of authigenic minerals, such as calcite or quartz, within the 

minerals. In the analysed faecal pellets from all maturities, the coccolithic structure 

presents pores rimmed with OM (Figure 3.25). It is still unclear whether this OM is related 

to the oil migration and trapping, or to the polysaccharides-derived coating of the 

coccolithic faecal pellets as suggested by Slatt and O’Brien, (2011) and Spain and McLin, 

(2013). At low maturities, oil emplacement in the reservoir, as well as the faecal pellet 

copepod-derived coating, would have favourable effects on the overall matrix porosity, 

inhibiting mineral dissolution and precipitation of other mineral phases (Bukar, 2013). In 

support of this hypothesis, it is the strong negative correlation between TOC (wt %) and 

carbonates (%) (Figure 3.24). 

 Total porosity and thermal maturity 

Contrarily to what was observed by other authors (Klaver et al., 2016; Mastalerz et al., 

2013; Mathia et al., 2016), however, total porosity analyses with the MICP technique show 

that there is no direct correlation with burial depth. This suggests that organic matter 

maturation, dissolution and reprecipitation processes cause a porosity redistribution in 

the system. New pores are formed by the maturation of organic matter and due to the 

etching of the minerals (Figure 3.6 f and a respectively), whereas primary pores are totally 

or partially occluded by the reprecipitation of secondary mineral phases. The dissolution 
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and reprecipitation phenomenon is common and has been observed in many types of 

reservoirs (Cao et al., 2014; Dayal, 2017; Fowler and Yang, 2003; Giles and de Boer, 1990; 

Gorniak, 2016; Worden and Morad, 2003; Yuan et al., 2019). No variation was also noticed 

with the increase in maturity between the immature (R0 0.4-0.5%) and the oil window 

samples (R0 0.9%), as observed by other authors (e.g. Klaver et al., 2016 and Mathia et al., 

2016). Generally, the decrease in bulk porosity between the immature and oil window 

maturity is explained by the migration of hydrocarbons that flow through the available 

paths and obstruct the pores and pore throats. However, in the Eagle Ford Formation, 

hydrocarbon generation occurs at a lower maturity than in clastic source rocks, probably 

due to the high sulphur content of the kerogen (Sun et al., 2016). If OM pores associated 

to depositional texture of the organic matter are present, the clogging of primary OM 

pores cannot be observed for this dataset (Curtis et al., 2012; Ko et al., 2017; Löhr et al., 

2015a; Loucks et al., 2012, 2012; Milliken et al., 2013). The lowest maturity samples 

analysed already present migrated OM. Moreover, in the oil window, no significant 

change in pore types compared to the immature window is noticed. In the shift between 

the oil and the gas window, however, from what is visible by the image processing 

techniques, the dissolution intraparticle pores and the organic matter pores increase by 

up to +200%. Matrix-related pores instead decrease by up to -61% in relation to the 

immature and the gas window maturities (Figure 3.7). The values support the 

redistribution of porosity correlated to dissolution, reprecipitation and gas maturation 

processes.  

 Pore shapes 

Along with variations in pore types, the pore shapes also suggest a change in the pore 

system between the immature and gas maturity samples and between the samples from 

the three microfacies. In the immature window samples, where the interparticle pores 

related to the carbonate and silt aggregates are more abundant, the pores are angular, not 

significantly elongated and not oriented in one direction (Figure 3.8). This is in contrast 

to clay-rich mudstone studies, in which the pores are mainly related to the clay particles 

and are relatively flat at all maturities (Aplin and Moore, 2016; Desbois et al., 2009; Heath 

et al., 2011; Hemes et al., 2016; Houben, 2013). With the increase in maturity, in the gas 
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window samples from microfacies A and B, pores are significantly more elongated and 

oriented, similarly to what was observed by Bernard et al. (2012) in the Posidonia shale. 

Moreover, in the gas window, the samples exhibit a range of more circular pores along 

with the non-circular pores. This variation is caused by a systematic change in the pore 

system: interparticle matrix pores and intraparticle fossil and mineral pores become less 

abundant due to the increase in compaction and cementation of mineral phases in the 

primary pores (Aplin et al., 2006; Dewhurst et al., 1998). On the other hand, dissolution 

and organic matter pores, which have a spherical or ellipsoidal shape, start to form. In 

microfacies C samples the most abundant pore types are the interparticle matrix pores. In 

fact, the pore shapes are similar to the ones for the immature samples of microfacies A 

and B. Many other shale studies have observed the formation of organic matter pores at 

high maturities (Bernard et al., 2013b; Mark E. Curtis et al., 2012; Jason E. Heath et al., 

2011; Loucks et al., 2009; Mathia, 2014; Milliken et al., 2014; Passey et al., 2010; S. Wang et 

al., 2016) and their spherical or ellipsoidal shapes compared with the other pore types 

(Alcantar-Lopez and Chipera, n.d.; Busch et al., 2017; Jiao et al., 2014; King et al., 2015; 

Löhr et al., 2015; L. Ma et al., 2016). However, the sphericity of the pores is not indicative 

of a simple pore system. The fractal dimensions calculated from the MICP technique, 

indeed, also indicate that at increasing TOC values in the most mature samples, the fractal 

dimensions become higher. This implies that the more organic matter is present, the more 

the system evolves into a complex, possibly tortuous pore system.  

 Pore size distributions and maturity 

The complexity of the pore system is also related to the pore size distribution differences 

between the samples at low maturity and at high maturities, and the samples from the 

different microfacies. MICP and gas adsorption show very similar trends in the pore size 

distributions (Table 3.5, 3.6, 3.7). However, the MICP average diameter values are slightly 

smaller (-40%). This is because MICP measures pore throats, whereas gas adsorption 

measures pore bodies (Gregg et al., 1967). In addition, despite following the same 

maturity and microfacies trend, the two image processing techniques are unable to detect 

pores < 18 nm, which MICP and gas adsorption analyses indicate as abundant. Moreover, 

advances in imaging techniques, such as the use of He-ion microscopy, have allowed 
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visualisation of these small (< 10 nm) pores within the organic matter of several other 

mudstone reservoirs (Cavanaugh and Walls, 2015; Dong and Harris, 2013; King et al., 

2015; Wang et al., 2016). By merging all the techniques implemented in this study, it is 

possible to conclude that the bimodal distribution for microfacies A samples (Figure 3.15) 

is given by large intraparticle fossil and mineral pores and by the micro and meso 

interparticle matrix pores, which are formed by the spaces between coccolithic fragments, 

organic matter and minerals or precipitates (i.e. clays, quartz, feldspars, pyrite framboids 

and carbonates). In the gas maturity window, the pores become smaller (between ~3 and 

~30 nm) and have a narrower pore size distribution, similarly to the microfacies B 

samples. This is here interpreted to be caused by the organic matter maturation, 

compaction and reprecipitation processes discussed before. Microfacies C samples have 

instead slightly larger pores sizes (~40 nm on average) given by the bioclasts interlocked 

with cements. In this case, as seen Chapter 2 (paragraph 2.3.2.3) the bioclasts are 

constituted by large (> 50 µm) shell fragments, sponges and foraminifera. 

 Pore volumes and maturities 

The pore volume distributions data from the various techniques, show discrepancies in 

the calculations of the contributions between micro, meso and macroporosities  (Table 3.5, 

3.6). In general, incongruities between the techniques are explained by the different 

resolutions and measurement methods (Klaver et al., 2015a). In particular, it must be 

taken into account that the MICP technique measures the pore throats, whereas the gas 

adsorption the pore bodies. Therefore, larger pore sizes can be expected in the gas 

adsorption measurements. These large pores usually match the large foraminifera tests, 

or the intraparticle pores within the coccoliths in the faecal pellets or in the matrix (Mathia 

et al., 2016). )High pore volume percentages found at larger pore sizes in this study differ 

from previous works, in which much of the porosity consists of micro and mesopores 

associated with organic pores as well as clay minerals (Allen et al., 2014; Liu et al., 2017; 

Mathia et al., 2019; Sondergeld et al., 2010). In these samples, clays are not believed to be 

playing a major role. In microfacies A, the meso and micropores measured with the MICP 

and gas adsorption techniques show an increase in pore volume from the oil to the gas 

window. This suggests that in the gas window, smaller pores also contribute to the 
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hydrocarbon storage potential. This is also testified by the increase in BET surface area in 

the gas window. Moreover, the correlation between the BET surface areas (m2/g) and TOC 

(%) at high maturities indicates that the small pores are mainly associated with organic 

matter. In fact, as many authors have observed, the TOC content is a key factor in the gas 

storage capacity (Chen et al., 2016; Sondergeld et al., 2010; Wang et al., 2016). This is 

because the organic matter generates pores at high maturities and organic micropores, 

presenting larger surface areas, are able to adsorb more methane (Bustin et al., 2008; Chen 

et al., 2016; Rexer et al., 2013; Ross and Bustin, 2009). The organic matter pore volume 

contribution to the overall pore volume is shown to increase from the immature to the gas 

window; this is shown in the increase in  OM pore voumes in the gas window in the FIB 

analyses, in the increase in organic matter pores seen in the SEM images and in the 

increase in pores smaller than 20 nm in the gas window measured with the gas adsorption 

technique. However, pore volume quantifications also show that meso and macropores 

contribute at a greater extent to the total pore volumes (Figure 3.24). Therefore, it can be 

concluded that organic matter pores at high maturities certainly contribute to the 

connectivity and gas storage, transforming the whole pore system, but macropores play 

a key role even in the gas window.  

Change in pore systems can be observed as a function of increasing thermal maturity, but 

also between the different microfacies. Microfacies A, which contains less carbonate and 

more organic matter compared to the other two microfacies, displays a system governed 

by pores linked to the carbonate skeletal fraction. As seen before, at increasing maturities, 

interparticle and intraparticle pores relatively decrease compared to the organic matter 

pores. Microfacies B and C samples, instead, do not yield high amounts of TOC (wt%), 

rendering the pore system more carbonate-related. Lower pore volumes in microfacies B 

and C suggest that these facies have a tighter network compared to microfacies A in both 

the immature and gas maturity windows, which is probably related to their higher 

cementation factors relative to the microfacies A samples.  

 Pore Connectivity and microfacies types 

As the pore shapes, sizes and types change with an increase in maturity and variations in 

microfacies types, the connectivity of the pore system also changes. Variations in 
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connectivity are noticed in the gas adsorption analyses, with the different hysteresis 

shapes between the microfacies A samples at low maturities and high maturities and in 

the microfacies B and C samples (Figure 3.12). The almost complete overlap between the 

adsorption and desorption curve in the low maturity samples of microfacies A samples 

suggests that the interparticle and intraparticle pores are well connected through 

relatively large (> 10 nm) pore throats that mainly reside between the matrix 

heterogeneous framework and the large foraminifera tests. The microfacies C pore 

network, instead, consists in a connected, yet tighter, carbonate and only partly OM-

related system. Microfacies B samples also present low adsorption values, but the 

hysteresis is slightly larger compared to the microfacies C samples. In the mature samples 

of microfacies A instead, the hysteresis curves are large. This is indicative of a connected, 

yet more complex pore system formed by ink-bottle shaped pores (i.e. large pore bodies 

and narrow pore throats). The narrow pore throats impede the experimental CO2 and N2 

gases to easily flow out of the pores thus forming the large hysteresis. As previously 

mentioned, the origin of these pore networks is tightly associated with the mineralogy 

and fabric of the different microfacies and to compaction and cementation processes. 

MICP drainage curves are in accordance with the gas adsorption data, as the snap-off 

percentages increase in the gas window maturities. Increasing snap-off values are 

indicative of larger amounts of mercury being retained in the samples after the 

measurements, meaning the pore throats are too small to allow a smooth flow of a non-

wetting fluid (Tsakiroglou et al., 1997). To support these statements are also the FIB data, 

which, by analysing the connectivity of microfacies A samples in pores < 100 nm, suggest 

an increase in connectivity in the high maturity samples. However, FIB results show that 

the OM results almost entirely connected whereas the pores are connected for less than 

26%. This suggests that, in the gas window, the smaller pores are not visible with the FIB-

SEM technique and that the system is connected mainly through OM pore throats smaller 

than 25 nm. It can be concluded that in the laminated foraminiferal microfacies, organic 

matter micropores, although not being the main contributors in the whole pore storage 

capacity, have a pivotal role in the overall connectivity of the pore system (Liu et al., 2017; 

Passey et al., 2010). 
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In the gas window of the laminated foraminiferal mudstones pores result to be mainly 

OM related, but they can also be associated with inter and intraparticle pores within and 

in the carbonates, clays and silt. 

The influence of the microfabrics in the connectivity of the pore network and in the pore 

structure profile in tight reservoirs was also testified in other works (Comisky et al., 2011b; 

Curtis et al., 2010; Dawson and Almon, 2010; Wang and Yu, 2017). However, most of the 

studies are centred on clay and silicate-rich mudstones. It is indeed commonly accepted 

that silt-rich mudstones are generally more permeable than clay-rich mudstones, as the 

nano-sized clays tend to obstruct the pores (Aplin and Moore, 2016; Dewhurst et al., 1998; 

Sun et al., 2016; Yang and Aplin, 2010). Carbonate-dominated mudstones have 

intrinsically different properties compared to silt and clay-rich mudstones, which 

juxtapose these fine-grained carbonate reservoirs to chalk reservoirs. However, authors 

(Dawson, 2010, Katsube) noticed that even in this reservoir, silt content increases the 

permeability of the system. By observing the mineralogy content, microfacies A yields a 

more connected pore network and larger pore volumes and it is also the microfacies with 

more silt content (Table 3.2). Despite not being directly correlated with the overall 

porosity percentages (Figure 3.4 d), silicates might play an important role in the 

connectivity and consequently in the permeability of the facies.  

 Pore connectivity and fluid flow 

Based on Yang and Aplin's (2010) model, Mathia et al. (2019) estimated that the 

permeability of a pore network dominated by OM pores to be around 10 nD. For this 

formation, it can be inferred that in mature (R0 1.2%) microfacies A samples the fluid 

pathways are too narrow to allow fluid transport at production timescales. Similarly, the 

entry pressures and the gas adsorption hysteresis for the calcite pathways in samples of 

microfacies B and C suggest very low permeability values. Immature microfacies A 

samples present a carbonate pathway consisting of larger pore bodies and larger pore 

throats compared to samples belonging to other microfacies and maturities, which is 

indicative of higher permeabilities. Potential pathways can also be the fracture-related 

pores, as they can provide a potential network for hydrocarbon migration and also 

enhance oil and gas recovery (Loucks et al., 2012 and references therein). The 
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microlaminations present in microfacies A samples are believed to favour the creation of 

fractures parallel to the laminae as well as to lead to an overall anisotropy, which is also 

reflected in the permeability (Mokhtari, 2014; Yang and Aplin, 1998). However, in this 

work, the fracture-related pores were not quantified thoroughly. Particular attention 

must be taken in the quantification of the fractures, as in samples as small as the ones 

analysed (from the millimetre to the centimetre scale) fractures can be caused by pressure 

release during the recovery phase as well as by mishandling during the sample 

preparation (Heath et al., 2011). 
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 Concluding comments 

The integration of different methodologies has allowed the quantitative characterisation 

of pores and the pore network, as well as identification of the primary factors affecting 

the increase and decrease in pore space and the connectivity of the pore system. 

1. Pores can be classified into 5 types: interparticle matrix pores, intraparticle mineral 

pores, intraparticle fossil pores, intraparticle dissolution pores and organic matter 

pores. The interparticle matrix pores and the organic matter pores are the dominant 

pore types.  

2. Pores in the laminated foraminiferal microfacies samples exhibit a clear evolution 

with increasing maturity. From the oil window (R0 0.9%) to the gas window (R0 

1.2%) pores become smaller, more circular and more oriented parallel to the 

laminae. The interparticle matrix pores continue to play a major role, but the 

organic matter pores relative increase as a result of gas generation (from an average 

of 7% to an average of 30%). 

3. Pores in samples belonging to the wackestone and limestone lithofacies are almost 

exclusively interparticle matrix pores, organic matter pores and intraparticle 

dissolution pores. The pore system is controlled by reprecipitation processes that 

start in immature (R0 ≤ 0.4%) samples and become significant in the gas maturity 

window (R0 1.2%), reducing both total porosity and pore sizes in comparison to the 

foraminiferal laminated mudstone samples at the same maturities.  

4. Pore networks in immature samples of the laminated foraminiferal mudstones and 

in the wackestone and packstone microfacies are dominated by interconnected 

pores associated with the rigid carbonate skeleton (interparticle matrix pores).  

5. Pore size distribution measurements by means of gas adsorption, MICP and image 

processing analyses suggest that, in all microfacies, the pore bodies and throats are 

predominantly within the mesopore range.  

6. Pore volume analyses indicate that, although the system is dominated by 

mesopores, the macropores are the major contributor in the overall pore volumes 

for all samples at all microfacies. Image processing analyses and gas adsorption 

data normalised to the total pore volume suggest that, in the gas window maturity 
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(Ro 1.2%), the organic matter generated pores contribute to the overall pore 

volumes due to their high surface areas. 

7. At gas window maturities (Ro 1.2%), in the laminated foraminiferal mudstone 

samples, the pore system undergoes a transformation. The organic matter starts to 

generate gas and spongy organic pores are formed. Petrographic evidence suggest 

that the whole pore system is affected by an increase in mechanical and chemical 

compaction and reprecipitation processes, which reduce the interparticle pore 

bodies and pore throat sizes. The pore network becomes more complex, formed by 

pore bodies connected through narrow (< 20 nm) pore throats within the OM and 

the interparticle matrix pores. 

8. Samples in all microfacies result connected. However, laminated foraminiferal 

mudstones exhibit a pore system formed by higher pore volumes and higher 

connectivity values compared to the wackestones and the packstones. 
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4.  Chapter 4 

AFM study of adhesion forces on calcite surfaces aged in 

different oil compounds  

 

 Introduction 

In tight reservoirs, oil is held in the nano and micropores in the system through strong 

capillary forces. These strong capillary forces, i.e. the interfacial tensions between the pore 

surfaces, the brine and the oil, are reflected by the relative wettability. Knowing the 

wettability and what affects it is essential for hydrocarbon recovery. The recovery is 

facilitated by the reduction of the capillary pressures, which occurs by the alteration of 

the interfacial tensions by using specific types of surfactants (or other chemistries) 

depending on the system (Mirchi et al., 2014). Wettability alteration is also believed to 

influence reservoir quality by halting diagenesis (van Duin and Larter, 2001; Worden et 

al., 1998). Therefore, an understanding of the wettability processes is related to both oil 

recovery and reservoir quality.  

 Wettability 

Wettability is the tendency for a solid to cover itself with a certain fluid in reference than 

another competing one (Abdallah et al., 2007; Hassenkam et al., 2009). Wetting 

characteristics are related to interfacial energies. In a reservoir, interfacial tensions occur 

between the two immiscible liquid phases oil and water and the mineral surfaces. When 

a rock is water-wet, the interfacial tensions between water and oil are low and the rock 

surface prefer initially to be in contact with water and oil is the mobile phase. When a rock 
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is oil-wet, the rock surface is preferably in contact with oil (Abdallah et al., 2007; 

Anderson, 1986) (Figure 4.1). 

The measurement of the degree of oil or water wetting is essential during the production 

and recovery phase. For instance, a reservoir with strongly oil-wet pore surfaces will have 

lower recovery rates compared to a more water-wet or mixed-wet reservoir. 

Consequently, studying the wettability at the pore-scale helps to understand the 

reservoir-scale behaviours and, hence, to improve the reservoir productivity (Abdallah et 

al., 2007; Anderson, 1986; Mirchi et al., 2014). However, despite reservoirs being often 

described as either oil-wet or water-wet, the wetting behaviour of a pore system varies, 

and a reservoir can also present a complex, mixed wettability (Morrow, 1990). The concept 

of mixed wettability was first suggested by Salathiel (1973), who stated that during oil 

migration the smaller pores, due to the higher capillary pressures required to enter the 

small pore spaces, remain water wet, whereas the largest pores are more prone to be oil-

wet. Moreover, it has been proved that the wettability can also vary from area to area, 

within the reservoir, giving rise to the so-called fractional wettability (Brown and Fatt, 

1956; Holbrook and Bernard, 1958). Mixed and fractional wettability are thought to 

originate from an initial water-wet system. The wettability in a reservoir can evolve 

through time, becoming increasingly more oil-wet when the mineral surfaces are exposed 

to crude oil during thermal maturation (Buckley et al., 1998). At a fundamental level the 

wettability is determined by the interaction of Van Der Waals, electrostatic double layer 

Water 

Oil 

a) b) 

Figure 4.1: Simplified a) water-wet and b) oil-wet system. In a) the water preferentially adheres to the rock 
surfaces. In b) the oil preferentially adheres to the surfaces. 
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and steric forces between oil, water, brine and the minerals within the porous system 

(Hirasaki and Zhang, 2004; Thyne, 2015). As it is not possible to distinguish the three 

forces, only the net force between the solid-water and the water-oil interfaces, i.e. the 

disjoining pressure, is considered (Basu and Sharma, 1997; Hirasaki and Zhang, 2004; Shi 

et al., 2016). Therefore, the disjoining pressure determines the wettability of a reservoir 

(Basu and Sharma, 1997). When the disjoining pressure is sufficiently high, the water film 

that is coating the surfaces destabilizes and the low-molecular-weight polar compounds 

(e.g. phenols and acetic acid) can penetrate these coatings and cause part of the surface to 

be more oil-wet compared to the rest (Abdallah et al., 2007; Aplin and Larter, 2005; Larter 

et al., 1997; Larter and Aplin, 1995; van Duin and Larter, 2001).  

Wettability can be altered from oil-wet to water-wet in order to improve oil recovery. 

When the capillary pressure is too low, spontaneous imbibition is not possible. However, 

by adding surfactants to the brine, spontaneous imbibition takes place displacing the oil 

in the pores to the surface of the reservoir (Austad et al., 2010, 1997; Ayirala et al., 2006; 

Standnes and Austad, 2000). The alteration of the wetting state can be done by reducing 

the overall salinity as well as by adding surfactants to the system (Acevedo et al., 1992; 

Ahmadi et al., 2018; Alvarez et al., 2014; Andersen et al., 2016; Austad et al., 1997; Ayirala 

et al., 2006; Bryant et al., 1991; Feng and Xu, 2015; Kumar et al., 2005a; Penny et al., 2012; 

Standnes and Austad, 2000; Zhang and Somasundaran, 2006). In this way, the recovery 

of the oil is eased and enhanced (i.e. enhanced oil recovery, EOR methods) (Tang and 

Morrow, 1999).  

 Surface charges 

The alteration of the wettability state in the reservoir is possible because the interactions 

between a mineral surface and the oil’s molecules depend on the electric potential and 

charge distribution. When the force is overall attractive, the polar functional group from 

the oil will cause rupture of the water layer on the mineral surface and adhere to the 

charged mineral surface (Salathiel, 1973; Yang et al., 2002). When the double layer force 

is repulsive, the layer remains stable (Yang et al., 2002). For this reason, the electrical 

charges on the surfaces are in many studies (Al Mahrouqi et al., 2017; Alvarez and 

Schechter, 2016; Kasha et al., 2015; Purswani et al., 2017; Sanaei et al., 2019; Zhang et al., 
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2007) characterised by means of zeta potential calculations. From these studies, it emerges 

that the original calcite surface, being under-bond saturated, presents an overall positive 

charge and that the partially positive charge acts as an anchor point for the negatively 

charged species present in the oil. The oil molecules that are found to have more affinity 

to the calcite surfaces are negatively charged polar oil particles (Buckley et al., 1998; 

Karimi et al., 2015; Morrow and Mason, 2001). Nevertheless, the total surface charge of 

calcite has been reported to be a function of a series of factors, including the pH, the 

temperature and the type of fluid the surface enters in contact with (Borysenko, Polson, 

Arif, Anderson, 1986). Initial low pH conditions affect the calcite surface charge and 

increase the oil-wettability (Aksulu et al., 2012; Awolayo et al., 2018; Burgos et al., 2002), 

and temperatures higher than 100°C increase the diffusion rate and, in terms of oil 

recovery, the sweep efficiency (Austad et al., 1997; Standnes and Austad, 2000). The ions 

present in the brine are also able to affect the wettability by interacting with the ions 

complexating the calcite surface (Austad et al., 1997; Sakuma et al., 2014).  

 Previous studies on chemical interactions on calcite surfaces 

Several authors have studied the chemical interactions of oil with carbonate surfaces by 

means of molecular dynamics simulation techniques (Chen et al., 2019; Prabhakar and 

Melnik, 2017; Sakuma et al., 2014; Sedghi et al., 2016; van Duin and Larter, 2001; Xin et al., 

2019; Yu et al., 2009) and laboratory experiments such as contact angle measurement 

(Abdallah and Gmira, 2014; Hansen et al., 2000; Hirasaki and Zhang, 2004; Karoussi and 

Hamouda, 2008; McCaffery and Mungan, 1970; Xin et al., 2019), imbibition (Hirasaki and 

Zhang, 2004; Kumar et al., 2005b; Standnes and Austad, 2000), ESEM (Al Mahri et al., 

2017) or AFM (Abdallah and Gmira, 2014; Basu and Sharma, 1997; Hassenkam et al., 2009; 

Karoussi et al., 2008; Karoussi and Hamouda, 2008; Seiedi et al., 2010; Skovbjerg et al., 

2012). Buckley et al. (2003) list the advantages and disadvantages of each technique, 

concluding that the AFM is the best method to obtain information on organic material 

present on the surfaces and on its location and coverage on the mineral surface. At the 

same time, the AFM is also capable of measuring the wettability of the mineral surfaces 

at the nanoscale. This can be done by means of the measurement of adhesion forces 

between specific functional groups (molecules) and mineral surfaces. To measure the 
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adhesion forces, the AFM tip must be functionalised with a monolayer of the chemical 

group that is desired to be measured, in this case, the technique is referred as chemical 

force microscopy (CFM) (Noy et al., 1997).  In the particular case of petroleum science, the 

most commonly used functional groups are  -CH3 and -COO(H), as methyl and carboxyl 

are commonly present in oil and are therefore representative of oil-mineral surfaces 

interactions (Hassenkam et al., 2015; Hilner et al., 2015; Sand et al., 2017). 

 Chemical Force Microscopy (CFM) on calcite surfaces  

In these works, the CFM method with a -CH3 functionalised tip was used. The non-polar 

tip can be used as a proxy of an oil molecule to determine the wettability of a surface by 

measuring its adhesion to a mineral surface. In the same way, it can also be used to study 

the wettability of oil-aged surfaces. This helps to understand adhesion changes on calcite 

surfaces exposed to different fluids and oil fractions. The calcite surfaces are intended to 

reproduce the pore surfaces of a carbonate-rich reservoir. As the wettability depends on 

many parameters, in this study only the type of oil in which the samples were aged was 

changed. To reproduce a carbonate-rich reservoir, freshly cleaved calcite crystals were 

first aged at a set temperature in a calcite-saturated brine (70 °C), and then in compounds 

with progressively increasing molecular weights (dodecane, decanoic acid in dodecane 

0.1 M, decanoic acid in dodecane 1M, maltene C5, maltene C8, asphaltene, crude oil. This 

study, apart from providing insights on how the pore surfaces of a carbonate reservoir 

behave when in contact with different fluids, also sheds light on which oil fractions have 

greater effects on the wettability changes on calcite surfaces.  

Over the years, several studies using different techniques have shown that crude oil alters 

the wettability of mineral surfaces, mainly due to the sorption of asphaltenes and resin 

fractions (Anderson, 1986; Buckley and Recovery, 1995; Drummond and Israelachvili, 

2002; Ese et al., 2000; Karimi et al., 2015; Kumar et al., 2005a; Morrow, 1990; H Toulhoat 

et al., 1994; Vargas and Tavakkoli, 2018). Aged mineral particles have also been examined 

using AFM to confirm the precipitation of oil fractions on the surface (Abdallah et al., 

2007; Basu and Sharma, 1997; Buckley and Lord, 2003; Karoussi et al., 2008; Kumar et al., 

2005a). In addition,  authors have reported on the use of CFM to investigate the wettability 

alteration of calcite (Chandrasekhar and Mohanty, 2018; Rezaei and Firoozabadi, 2014; 
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Standnes and Austad, 2003) or chalk particles (Hassenkam et al., 2015, 2009; Henriksen et 

al., 2004; Hirasaki and Zhang, 2004; Hopkins et al., 2017; Skovbjerg et al., 2013).  

However, most CFM studies on calcite and chalk have aimed to investigate the most 

efficient recovery methods and not the differences in adhesion forces resulting from the 

interaction of different oils and oil fractions. Hassenkam et al. (2009), instead, investigated 

non-treated chalk surfaces and concluded that the mixed wettability residing in chalk 

reservoirs derives from the inherent heterogeneity of the chalk surfaces, and not from the 

migrating oil in the pore system. Skovbjerg et al. (2013) suggested, in contrast, that the 

differences in wettability were caused by nanometric clay laths attached to the coccoliths 

forming the chalk. A more similar working procedure to the one applied in this work was 

performed by Kumar et al. (2005). In their experiments, Kumar et al. (2005) investigated 

the effects of different Saturates-Aromatics-Resins-Asphaltenes (SARA) fractions on mica 

and silicon surfaces by ageing the crystals first in brine and then in oil. In their work, the 

measurements were performed using the standard contact angle procedure (Washburn, 

1921) and AFM was only used as an imaging and adhesion measurement tool by means 

of a functionalised carboxyl tip. Contrarily to this work, the force measurements were 

conducted on single point locations and not on whole regions (mapping). 

To validate the analyses and prove that the change in adhesion forces are caused by the 

different materials on the surface, the AFM-IR methodology was used. Since its 

development, the AFM-IR has been widely used in biological and polymer studies (Dazzi 

et al., 2012; Dazzi and Prater, 2017). From a geochemical point of view, however, this 

technique has for now only been applied to study the different organic matter types on 

shale rocks (Eoghan et al., 2016; Jakob et al., 2019; Yang et al., 2017).  

The combination of CFM and AFM-IR studies offers a robust analysis at the nanometer 

scale of the wettability distribution, and its variation, on calcite surfaces exposed to fluids 

with different molecular weights. From a geological point of view, understanding the 

calcite surface behaviour when in contact with different fluids is crucial for the effective 

oil recovery from carbonate reservoirs as well as for CO2 sequestration studies (Sand et 

al., 2008). 
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 Methodology 

 Samples 

d) All the surfaces examined were of samples prepared from Iceland Spar calcite crystals. 

To avoid contamination, all crystals (~4 × 5 × 1 mm) were freshly cleaved and 

immediately immersed in ageing solutions.   The surface studied in all cases was the 

{101̅4} calcite cleavage planes.  

 Brine 

The brine used for the experiments was produced following the composition of an 

existing Gulf of Mexico seawater. The starting solution was a Milli-Q water, in which 

constituents were dissolved by calculating the molar fractions of each compound. The 

concentrations of the dissolved constituents are listed in Table 4.1. Calcite crystals were 

added to the brine to ensure the solution was carbonate saturated.  

 

 

 

 

 

 

 

 

Table 4.1: List and quantity of dissolved constituents in the artificially created brine. The starting 

liquid was distilled water. The grams to add to the distilled water were calculated taking into 

account the molar weight of each compound. 

 

 

 

Brine constituents mg/L 

Na 29500 

K 144 

Mg 620 

Ca 2080 

Cl 48250 

SiO2 51 

SO4 21 
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 Oil compounds 

The oil-based compounds used for this study were: dodecane, 0.1 M decanoic acid 

dissolved in dodecane, 1 M decanoic acid dissolved in dodecane, maltene C5, maltene C8, 

asphaltene and oil. The maltene C5 and C8 differ for the n-alkane (n-C5 and n-C8) used in 

the separation.  

For the model oil solutions, a n-dodecane, 99% Fisher Scientific pure was used. The 

decanoic acid solutions were made by adding 0.1 M and 1.0 M 99% pure decanoic acid to 

the n-dodecane. The crude oil chosen for the analyses is a standard oil RM8505 acquired 

from the National Institute of Standards and Technology (NIST). The maltene C5, maltene 

C8 and asphaltene fractions were extracted from the crude oil by n-heptane addition (Liu, 

2017). As the extracted oil fractions were solid, to maintain the sample in solution, toluene 

was added to the fractions in a 5 mg to 1 ml proportion.  

 Ageing procedure 

To reproduce reservoir conditions, the cleaved samples were aged in brine for one month 

at 70° C. The pH of the brine was measured using a pH meter and probe (pH 7.3). In order 

to avoid the precipitation of salts on the crystal’s surface during the ageing phase, the 

brine was calcite-saturated and no extra HCO3 was added. The samples were then 

removed from the brine and placed in the different oil compounds for another month at 

70° C. Prior to the AFM analysis, the samples were extracted from the oil solutions and 

washed in brine. Care was taken not to dry the surfaces, as this has been shown to induce 

organic precipitation (Kumar 2005). The calcite crystals were then glued on a glass surface 

using epoxy glue and were placed in a fluid cell. The fluid cell was created by placing an 

O-ring (polypropylene) around the crystal. The fluid cell was then filled with the brine 

solution to maintain equilibrium conditions inside the cell during imaging. To test the 

wettability variation on an initially oil-wet surface, analysis of calcite surfaces directly 

exposed to dodecane with no brine ageing were also carried out. 
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 AFM tip functionalisation procedure 

Gold coated (PNP-Tr-Au) AFM probes from Nanoworld (spring constant 0.08 N/m) were 

bought. For this type, the gold coating included both the backside of the cantilever and 

the probe itself, to facilitate the functionalisation. The functionalisation was performed 

using thiol-chemistry, in a procedure very similar to that described by Skovbjerg et al. 

(2012) and Hassenkam et al. (2016). The gold tips were first exposed to ozone in a 

UV/ozone cleaner (Love et al., 2005) for 10 minutes to remove any possible organic 

contaminants. Then, they were immediately submerged in ethanol for 10 minutes. The 

tips were then introduced in an ethanol solution of 0.05 mM of HS(CH2)10CH3 (obtained 

from Sigma-Aldrich) for at least 24 hours. Before use, the tips were washed in ethanol and 

mounted on the AFM cantilever holder. Because of the strong reaction between the thiol 

group (HS) in the molecule and the gold coating the probe, this procedure results in  AFM 

tips functionalised with CH3 non-polar functional group molecules that can then interact 

with the sample’s surface (Error! Reference source not found.). 

Figure 4.2: Typical force-distance curve resulting from the functionalised –CH3 tip approaching 

the surface (red) and then retracting (blue). The force of adhesion is calculated by analysing the 

minimum distance between the equilibrium position and the maximum deflection during 

retraction (in this case 6.9 nN). The force-distance curve was extracted from a map of a surface of 

a calcite crystal aged in asphaltene. 

adhesion force 

withdrawal 

approach 
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 CFM setup  

For the CFM analyses, a Nanowizard 3 AFM (JPK Instruments) was used. The data were 

collected on by theJPK instruments software and then converted to an ASCII file to be 

processed in Matlab. All the experiments were carried out at standard conditions (20⁰ C 

and 1 atm). The AFM adhesion maps were collected in force mapping mode in at least 5 

randomly chosen areas on the crystal surfaces of 30 x 30 µm2 in size and a resolution of 

25 x 25 pixels. This mode allows the cantilever to create, at each pixel point, a so-called 

force-distance curve (Figure 4.2). These curves represent the measured force (between 

sample and probe) as a function of the distance between the tip and the sample surface. 

These curves enable calculation of adhesion forces and to infer the mechanical properties 

of the sample in the measured location (Cappella and Dietler, 1999). The force of adhesion 

is defined as the force needed to disengage the tip from the surface during retraction 

(Hassenkam et al. 2009) and is calculated by analysing the minimum distance between 

the equilibrium position and the maximum deflection during retraction (Figure 4.2).   

For the adhesion force measurements, the approach speed (of the probe against the 

sample) was kept at 10 µm/s, after contact a dwell time of 1 second was applied, before 

retracting the probe, to allow for the “formation” of bonds and therefore to obtain a 

consistent adhesion measurement.  Retraction rate was also of 10 µm/s. Approach and 

retract speed were kept constant through all measurements, as this parameter has been 

shown to influence the measured adhesion (Cappella and Dietler, 1999; Kumar et al., 

2005a). A tip-sample travel distance, z, of 0.7 µm was kept for all the experiments. The 

total force (or setpoint) used during the scans, was of 0.7 N) Maps of various area sizes at 

128 x 128 or 256 x 256 pixels were also collected using the same speed and delay settings. 

However, these maps were only used for imaging purposes, as small pixel sizes cannot 

be representative of the adhesion forces of the area, as they may be smaller than the actual 

tip radius.  (Tao and Bhushan, 2006). 

To verify that the topographic heights on the surfaces were oil droplets, measurements 

using the quantitative imaging (QI) mode were also performed on the samples aged in 

the different oil compounds. The QI mode is similar to force volume mode but it can be 

performed at much faster scanning speeds, therefore reducing the time needed to perform 
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the imaging, and allowing for higher resolution scans. (Chopinet et al., 2013). For 

reproducibility reasons, at least two calcite crystals were aged for each experiment and 

the data collection was repeated in all the samples following the same procedure. A 

minimum of 10 areas 30 × 30 µm were mapped for the calcite aged only in brine and in 

each oil compound. whole duration of the experiment the tip was kept wet. Excess oil on 

the surface was removed by thoroughly washing the surface with brine using a syringe. 

 AFM data processing 

The data were collected using the JPK software tool. To compute an automated analysis 

and to extract the adhesion forces and topography parameters, the raw data were 

extracted and processed using Python and Matlab. Topography and adhesion maps were 

plotted and tables with topography and adhesion forces parameters were created. The 

maximum value for the adhesion forces was set to 9 nN. Higher values imply that the 

cantilever remains attached to the surface, without registering the real adhesion force. 

Looking at the different force curves, 9 nN is established as the maximum upper value 

and a good threshold between the real and the fictitious values. 

Figure 4.3: Schematic representation of gold tip functionalised using a HS(CH2)10CH3 thiol 

solution. The -CH3 polar groups at the end of the molecule are hydrophobic (blue) and able to 

bond with polar hydrophobic molecules present on the surface (yellow), whereas repulsive forces 

occur between the -CH3 groups and the hydrophilic molecules on the surface. 
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The agreement between topography and adhesion force maps can be visualised by 

correlating the topography and the adhesion cross plots of the same region and by 

creating linear regression models between the topography and adhesion force pixel 

values (Figure 4.4). 

 

 Infrared spectroscopy (IR spectroscopy) 

IR spectroscopy is a technique used to give information on the vibrational bands present 

in a    chemical compound (El-Saleh, 1996). IR spectroscopy involves the use of infrared 

radiation on a material. When the IR laser interacts with the material, the photons are 

absorbed by molecules within the material, which then vibrate. Molecules can have 

different degrees of vibrational modes, meaning that every molecule can vibrate in 

different ways. The vibrational modes correspond to particular bond types, which are 

a) 

b) 

Figure 4.4: a) Example of cross correlation between a topography (blue) and an adhesion plot (red) 

and b) linear regression plot for the same area (area 2 of sample n. 1 aged in dodecane).      
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associated with specific energies and therefore frequency of the vibrations. The 

combination of the vibration types at specific frequencies creates a specific fingerprint for 

each measured compound. The possible vibrational modes are represented in Figure 4.5. 

The fingerprint is a function of the frequency (or wavelength) of the light absorbed. The 

most studied infrared region is between 4000 cm-1 and 400 cm-1, as most of the vibrational 

frequencies are in that range. However, the absorption of the electromagnetic IR radiation 

only occurs when the molecule presents a dipole moment, i.e. areas of partially positive 

and negative charge (Fifield and Kealey, 1991; Harvey, 2000; Pavia et al., 2009; Smith, 

2011). In Fourier-Transform Infrared (FT-IR) analyses, after the IR source has hit the 

sample and excited the molecules, the vibrations will be detected in forms of frequencies 

by means of a photoconductive detector. The AFM-IR methodology utilises the same IR 

principles, but the setting and sensitivity of the instrument differ from the original FT-IR.  

 AFM-IR  

AFM-IR is an analytical technique that combines the nanoscale resolution of the AFM and 

the chemical analysis of IR spectroscopy. By employing the AFM tip as an IR detector, the 

AFM-IR can be applied to detect the chemical molecules present on the surface at a spatial 

resolution below 50 nm, in contrast to the ~2 µm of the FT-IR technique (Dazzi et al., 2012).  

Figure 4.5: Possible vibrational modes identified with the IR spectroscopy. 
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The configuration of the instrument is represented in Figure 4.6 and consists of a classic 

AFM setting, to which a tunable IR source is added.  

The detection of chemical molecules on the surface is achieved by pointing the IR laser to 

the tip of the AFM. Once the IR laser is tuned into a wavelength the sample absorbs, the 

molecules on the surface will be excited and absorb light. In turns, the absorbed light 

converts into heat which causes thermal expansion. The thermal expansion excites the 

oscillations of the AFM probe, which are detected in the form of contact resonant 

frequencies. The frequency of the vibrations can be associated with a molecular bond 

type. Therefore, by measuring the responses of the AFM cantilever tip to the IR 

absorption, it is possible to create an IR spectrum, which is characteristic of a certain 

compound. The measurements can be done on single points of the surface, or also by 

tuning the laser to a fixed wavelength and creating a chemical map to detect the 

distribution of chemical species over a region on the sample surface (Bondy et al., 2017; 

Dazzi et al., 2012; Eoghan et al., 2016). For reproducibility reasons, at least 5 point-IR 

spectra were collected in each area. 

Figure 4.6: Schematic representation of an AFM-IR configuration. The IR laser (1) intersects the tip 

of the AFM (2) and, when the molecules on the surface are excited, produces contact resonant 

frequencies, which are tracked by the detector (3) and converted into specific wavenumbers. 
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  AFM -IR experiments setup 

A nanoIR2 and a nano IR3 system (Anasys Instruments, Santa Barbara, CA) were used to 

test the presence of chemical components on the calcite surfaces. The results from the two 

versions of the instrument are comparable, as the instruments operate in the same way. 

For the analyses, two IR tunable laser sources with different wavelength ranges were 

chosen. For the 2700-4000 cm-1 wavenumber range (high-range), a Fastspectra OPO laser 

was used and for wavenumbers comprised between 900 and 1900 cm-1 (mid-range), a 

PointSpectra QCL laser was used. 

To calibrate the instrument and test the working method, a pmma (polymethyl 

methacrylate) test sample was first used. After the collection of the background spectra, 

the IR laser was tuned in four different spectra ranges between 900 and 1900 cm-1, and in 

one spectrum range for wavelengths between 2700 and 4000 cm-1. This provides more 

accurate results. As the IR sources are different, the data with the two lasers must be 

acquired at separate moments. The background spectra collection and the frequency 

tuning was performed before examining every sample. All the IR spectra were smoothed 

in the Anasys instruments software Analysis studio and the two laser spectra were 

plotted in the same diagram, normalising the frequency to the corresponding incident 

power. The acquisition interval is 4 cm-1 for the mid-range wavelength interval and 10 cm-

1 for the high-range. For the chemical mapping of one area at a specific frequency, the 1630 

cm-1 and the 2920 cm-1 wavelengths were chosen. These wavelengths correspond to the 

C=C aromatic vibration and to the CH2 aliphatic stretching respectively. These absorbance 

bands were chosen as they are commonly found in organic compounds. The mapped 

areas were selected randomly on the calcite surfaces. For each sample, one area of 20 × 20 

µm and one area of 2 × 2 µm were mapped. The point laser measurements were taken 5 

times in different points of the surface in order to assure the repeatability of the 

measurement. A gold-contact mode tip was used. The metal coating allows the generation 

of an electric field on the tip, which intensifies the incident radiation (Dazzi and Prater, 

2017).  
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  Results 

 Topography and adhesion forces 

Topography and adhesion force maps were plotted for each scanned area. For each scan, 

the maximum, minimum and average values were also calculated. For the adhesion plots, 

the average values, the area percentage covered by adhesion forces higher than 0.5 nN, 1 

nN, 2 nN, 3 nN and 4 nN value of the average of the adhesion forces and of the forces 

higher than 0.5 nN, 1 nN, 2 nN, 3 nN and 4 nN was also calculated and plotted (Figure 

4.7 and Table A.1).  

a) b) 

c) d) 

e) f) 

Figure 4.7: Average plots of a) average of adhesion forces (nN) in each area for the different aging 

experiments and percentages for the average areas covered by adhesion forces (af) higher than b) 

0.5 nN, c) 1 nN, d) 2 nN, e) 3nN and f) 4 nN. 
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Two areas of 30 × 30 µm2 each were used to underline any correlation between the 

topography and the adhesion forces in the oil compounds. The R2 values for this 

correlation are plotted in Table 4.2.  

 

Table 4.2: R-squared (R2) calculated for two areas from linear regression plots for each oil 

compound. The linear regression plots were made by plotting the topography values against the 

corresponding adhesion force values. A discrete agreement between the topography and the 

adhesion forces is noticed mainly in the model oil compound experiments. 

Oil compound  
R

2
 Linear  

Regression  (area 1) 

R
2
 Linear  

Regression (area 2) 

Dodecane 0.079 0.1399 

Decanoic Acid 0.1 M  0.4589 0.3827 

Decanoic Acid 1 M 0.3746 0.2598 

Maltene C5 0.0368 0.0207 

Maltene C8 0.2015 0.0104 

Asphaltene  0.0008 0.2804 

Crude Oil 0.0129 0.1487 
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 Calcite in brine 

a) Topography 

High resolution (64 × 64 pixels to 128 × 128 pixels) maps at a scale of 10 × 10 µm2 or 5 × 

5 µm were used to analyse the topography. Topography maps indicate the surfaces aged 

in brine presents several randomly located asperity peaks of variable dimensions. The 

peaks are caused by semi-circular shaped asperities on the surfaces (Figure 4.8 a). On the 

images analysed, they reach 350 nm in height and measure up to 2.5 µm in diameter but 

are typically less than 100 nm high and have diameters between 20 and 50 nm.  

No specific patterns on the surfaces are noticed. In some cases, it is possible to see calcite 

cleavage steps (Figure 4.8 b) which typically measure 100 – 300 nm in height drop. 

a) b) 

Figure 4.8: 128 x 128 pixels topography maps of a calcite surface aged in brine. a) area of surface 

roughness. The highest peak in this area measures 480 nm and the average topography is 165 nm. 

In b) a calcite step measuring 136 nm is present. The surface in this area appears smoother than in 

region a). 
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b) Adhesion forces 

Adhesion forces vary from 11 pN to a maximum of 673 pN. In the 30 × 30 µm2 regions, 

the adhesion forces vary from 20 nN to 470 pN (Figure 4.9). The area percentage covered 

by adhesion forces higher than 500 pN reaches a maximum of 3.7% and is less than 1% 

for 13 of the 15 areas analysed. In all the samples, no adhesion forces ≥1 nN were 

measured (Figure 4.7). The cross-sections at the same scan lines in the height maps and in 

the adhesion forces maps do not show any clear correlation between height and adhesion 

values, suggesting that the particles/droplets on the surfaces are not responsible for an 

adhesion increase.  

 Calcite in dodecane 

a) Topography  

For the samples aged in dodecane, a maximum height difference of 722 nm was measured 

between two cleavage steps (Figure 12 a). Higher topography points corresponding to 1-

3 pixels on the 25 × 25 pixels areas are randomly distributed on the surfaces. Mapped 

areas of 2 × 2 µm2 show semi-circular topography highs of 180 to 230 nm (Figure 4.10). 

a) b) 

Figure 4.9: a) Topography and b) corresponding adhesion map of area 04 on calcite surfaces aged 

in brine. At the bottom of each map, the cross-section profile taken across the red line in the maps. 
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b)   Adhesion forces 

Adhesion forces on calcite surfaces aged in dodecane vary from 0.1 nN to 9 nN. Average 

values of the adhesion forces calculated for each pixel point in each 30 × 30 µm2 map vary 

between 160 pN to 2 nN. The area percentage covered by adhesion forces higher than 500 

pN varies from 9.2% to 84.8%, with an average of 44.5%.  

Figure 4.10: Topography in 2D nd 3D of an area of a calcite surface aged in dodecane. 

a) b) 

Figure 4.11: a) Topography and b) corresponding adhesion map of area 01 on calcite surfaces aged 

in dodecane. At the bottom of each map, the cross-section profile taken across the red line in the 

maps.     
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Areas covered by adhesion forces higher than 1 nN vary from 2.3% to 62% with an 

average of 30.2%, whereas percentages of areas of 30 × 30 µm2 that present adhesion 

forces higher than 2 nN range between 0 and 47 %. For adhesion forces higher than 3 nN 

the maximum surface coverage is 27%, whereas adhesion forces higher than 4 nN cover 

up to 19.4% of a 30 × 30 µm2 area, with an average of 3% of coverage (Figure 4.7).  

In most cases, adhesion highs show discrete agreements with the topography highs 

(Figure 4.12), but the R2 values (Table 4.2) indicate that the correlation is limited to some 

areas.  

 Dodecane with decanoic acid 01M 

a) Topography 

In the calcite surfaces aged in decanoic acid, 0.1 M, the highest topographic feature 

measured is 212 nm. In this case, surface features resembling droplets were clearly 

identified on the topographic scans. Therefore, the reported surface roughness is a 

combination of the actual topography of the calcite surface as well as by the particles and 

droplets deposited on its surface.  The particle sizes are clear on the 128 × 128 pixel size 

maps, which show the random distribution of the droplets. At increasing magnifications, 

in 5 × 5 µm2 or smaller areas, in some cases a “ramification” of ~ 20-30 nm high droplets 

on the surface can be seen (Figure 4.13).  

Figure 4.12: Overlapped cross-plots of the same points in a) area 01 and b) area 04 of the surface 

of calcite aged in brine and in dodecane. The topography (red) and the adhesion forces (blue) 

lines show a moderate correlation. 

a)  

b)  
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b) Adhesion forces 

Adhesion forces show a minimum of 7 pN and a maximum of 9 nN, with an average 

adhesion force of 410 pN in the 30 × 30 µm areas. The percentage of adhesion forces ≥ 0.5 

nN for 30 × 30 µm2  areas varies from 9.5% to 38.3%.  

Figure 4.13: 5 x 5 µm wide topography map of a calcite surface aged in a decanoic acid solution 0.1 M. 

The droplets on the surface show ramifications and are on average 20 nm high. 

a) b) 

Figure 4.14: a) Topography and b) corresponding adhesion map of area 02 on calcite surfaces aged 

in brine and in decanoic acid 0.1 M. At the bottom of each map, the cross-section profile taken 

across the red line in the maps. 
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For adhesion forces ≥1 nN, the surface percentages drop to a minimum of 0.2% to a 

maximum of 29.7%, whereas adhesion forces ≥2 nN cover up to 13.3% of the measured 

areas. Adhesion forces higher than 3 nN and 4 nN cover a maximum of 7.7 and 4.8%, with 

an average of 2.4 and 1.1% respectively. By the overlapped cross-plots and the R2 values 

(Table 4.2), a good agreement between the topography and the adhesion forces is 

observed (Figure 4.15). 

 Dodecane with decanoic acid 1M 

a) Topography 

The peak to valley roughness in the topographic scans is 811 nm. Cleavage steps of 

variable height drops (~40 to ~600 nm) are present in the analysed areas. Topography 

highs are also formed by particles or droplets deposited on the surfaces. High resolution 

(128 × 128 nm2) maps show particles-droplets of several micrometres on the surfaces as 

well as nanometer-sized particles-droplets. The distribution of the particle-droplets is 

random, both in a single region and between different regions (Figure 4.16). 

Figure 4.15: Overlapped crossplots of the same points in a) area 01 and b) area 05 of the surface of 

calcite aged in brine and in decanoic acid 0.1 M. The topography (red) and the adhesion forces (blue) 

lines show a moderate correlation 

a)  

b)  
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b) Adhesion forces values 

Adhesion forces range from a minimum of 0 to a maximum of 9 nN, with an average of 

1.1 nN.  The average values range between 29 pN and 6.4 nN. The calculated percentage 

of the area in which the adhesion force is equal or higher than 0.5 nN and 1 nN is 

comprised between 0 and 99.6% and 0 and 98.3% respectively. When the adhesion forces 

are ≥ 4 nN the percentage of the area covered by these adhesion forces ranges between 0 

and 81.4%.  The average forces are 35.5% of the total 30 x 30 µm measured areas when ≥ 

0.5 nN, 24.3% when ≥ 1 nN, 15.3% when ≥ 2 nN, 10.6% when ≥ 3 nN and 6.1% when ≥ 4 

nN. There is a moderate match between the calcite surface topography and the adhesion 

forces (Figure 4.17 and Table 4.2). The cleavage steps act as entrapments for the dodecane 

and decanoic acid solution, making the distribution of the droplets on the surface non-

ununiform. high adhesion forces are mainly present along the cleavage steps as well as 

associated with the irregularly shaped droplets randomly distributed on the surfaces. 

Figure 4.16: 5 x 5 µm2 area of a calcite surface aged in a decanoic acid solution 1 M. In this area, the 

droplets on the surface are up to 200 nm high. 
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 Maltene C5 

a) Topography 

The topography of calcite samples aged in maltene C5 appears rougher compared to the 

previous solutions analysed. The peak to valley roughness reaches 4.7 µm, whereas the 

average measured roughness for the samples analysed is ~ 720 nm. The roughness is given 

by agglomerated blobs localised randomly on the surface of the samples and no cleavage 

plane is visible. The blobs measure on average 1 to 2 µm in diameter and are present on 

all the regions of the samples analysed.  

b) Adhesion Force values 

adhesion force values range between 0 and 9 nN, with an average value of 5.3 nN (Figure 

21). The calculated average percentage of adhesion forces higher than 0.5 nN and 1 nN on 

a 30 × 30 µm surface is 75.6 and 72.6% respectively. For forces higher than 2nN, 3 nN and 

4 nN, the average area percentages are 67.4%, 62% and 57% respectively. In some areas, 

a) b) 

Figure 4.17: a) Topography and b) corresponding adhesion map of area 07 on calcite surfaces 

aged in brine and in decanoic acid 1 M. At the bottom of each map, the cross-section profile 

taken across the red line in the maps. 
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the adhesion forces are high in almost the whole surface of the samples, without reflecting 

the surface roughness of the area (Figure 4.18, Figure 4.19 and Table 4.2).  

 

a) b) 

Figure 4.18: a) Topography and b) corresponding adhesion map of area 07 on calcite surfaces aged 

in brine and in maltene C5. At the bottom of each map, the cross-section profile taken across the 

red line in the maps. 

Figure 4.19: Overlapped crossplots of the same points in a) area 05 and b) area 06 of calcite surface 

aged in brine and in maltene C5. The topography (red) and the adhesion forces (blue) lines show 

no correlation. 

a)  

b)  
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 Maltene C8 

a) Topography 

The maximum peak-to-valley surface roughness observed in the samples is 2.1 µm, with 

an average roughness of 480 nm. Agglomerated blobs are present in all the scanned 

regions (Figure 4.20). In QI mode, these calcite surfaces of 2.5 × 2.5 µm2 result to be 

completely covered by maltene C8 (Figure 4.20). In this case, the topography results 

smoother with average roughness values of 5 nm.  In other 2.5 × 2.5 µm areas, the calcite 

surface is visible and 4-6 µm diameter wide particle/droplets are adhering to the surface 

(Figure 4.20). 

Figure 4.20: Topography maps in 2D and 3D (taken in QI mode) of calcite surfaces aged in maltene 

C8. The surface roughness and the density of the particle/droplets varies from area to area. 
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b) Adhesion forces 

Adhesion forces range between 10 pN and 7.5 nN, with average values across the samples 

of 2.7 nN.  The percentage of adhesion forces ≥ 0.5 nN is on average 69%. For adhesion 

forces ≥1 nN, the surface percentages are on average 59%, whereas adhesion forces ≥2 nN 

cover up to 46% of the measured areas. Adhesion forces higher than 3 nN and 4 nN cover 

a maximum of 79% and 75%, with an average of 37and 30% respectively. The topography 

and adhesion forces cross plots of the same areas display a discrete positive relationship 

between the topography and the adhesion forces (Figure 4.21). However, despite being 

higher than the maltene C5 values, the R2 values do not display a significant correlation 

(Figure 4.22). 

 

 

 

a) b) 

Figure 4.21: a) Topography and b) corresponding adhesion map of area 07 on calcite surfaces 

aged in brine and in maltene C8. At the bottom of each map, the cross-section profile taken 

across the red line in the maps. 
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 Asphaltene 

a) Topography 

Areas analysed in QI mode show a microstructure formed by distinct blobs adhering to 

the surface. The blobs are either elongated, with rounded borders, or circular, ring-

shaped. The maximum valley to peak value is 412 nm, and on average the surface 

roughness is 130 nm. The ring-shaped structures and the blobs observed adhering on the 

surfaces in the 2 × 2 µm areas have a typical diameter of 0.9-1 µm and are 50 to 230 nm 

high. Calcite cleavage steps, which measure ~ 1 µm in height are also visible (Figure 4.23 

a).  

Other areas exhibit patches of uniform calcite surface in between a rougher (~30 nm of 

average roughness against ~10 nm) layer of material, which is presumably the asphaltene 

deposited on the surface. The layer deposition is not uniform and is predominantly visible 

in areas of 5 × 5 µm or below scanned in QI mode. At smaller scan sizes, it is also possible 

to see the calcite surface and single droplets adhering to the surface (Figure 4.23 b). 

 

Figure 4.22: Overlapped crossplots of the same points in a) area 02 and b) area 11 of the surface 

of calcite aged in brine and in maltene C8. The topography (red) and the adhesion forces (blue) 

lines show no correlation. 

a)  

b)  
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b) Adhesion forces 

The average minimum adhesion force is 60 pN and the average maximum of 8.2 nN. 

Considering the whole 30 × 30 µm areas, the average calculated adhesion force is 2.9 nN. 

The calculated average adhesion force percentages for forces ≥ 0.5 nN is 81%. For forces ≥ 

1 nN is 73.3% and for forces ≥ 2 nN 58%. The percentage of surface covered by adhesion 

Figure 4.23: Topography maps taken in QI mode of regions of calcite surfaces aged in asphaltene. 

The distribution of the asphaltene is variable. In a blobs and ring-shaped structures are visible. In 

a a calcite step is also present, and the aspaltene appears more concentrated at the boundary 

between the step and on minor parallel surface cleavages. In b the calcite surface is exposed only 

in minor areas. In b small (~50 nm) single droplets are also visible. 

a) b) 

Figure 4.24: a) Topography and b) corresponding adhesion map of area 03 on calcite surfaces 

aged in brine and in asphaltene. At the bottom of each map, the cross-section profile taken 

across the red line in the maps. 
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forces equal or larger than 3 nN ≥decreases instead to 41% and for forces ≥ 4 nN to 27.8%. 

By observing the cross plots (Figure 4.25) and the R2 values (Table 4.2) of the topography 

maps and the adhesion maps no clear relationship between the topography highs and the 

high adhesion forces is noticeable.   

  Oil 

a)  Topography 

Calcite aged in oil presents average surface roughness variations between the tops and 

the bottoms of the asperities of 230 nm, with a maximum of 510 nm. QI mode data 

highlighted a ramified distribution of the oil droplets, which reach ~ 200 nm in height 

(Figure 4.26). The distribution of the oil droplets is highly variable, consisting of 

connected droplets as well as single, round-shaped droplets. Maps at lower 

magnifications (Figure 4.26) highlight the high density of droplets on the surface.  

 

 

Figure 4.25: Overlapped crossplots of the same points in a) area 05 and b) area 03 of the surface of 

calcite aged in brine and in asphaltene. The topography (red) and the adhesion forces (blue) lines 

show discrete correlation. 

a)  

b)  
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b) Adhesion forces 

Adhesion forces on calcite crystals aged in oil range between a minimum average of 10 

pN and a maximum average of 8.5 nN. On average, between all the areas analysed, the 

adhesion forces are 2.4 nN. 70% of the 30 x 30 µm surfaces are covered by adhesion forces 

≥ 0.5 nN and a 56% by forces ≥ 1 nN. For adhesion forces ≥ 2 nN, the surface covered drops 

to 37% and for forces ≥ 3 nN 29.1%. adhesion forces ≥ 4 nN account for an average of 23% 

of the scanned regions. By cross-correlating the topography and the adhesion maps, no 

clear association is noticed between the two, signifying that the topography highs do not 

necessarily correspond to high adhesion forces (Figure 4.27 andFigure 4.28 and Table 4.2). 

Figure 4.26: Topography maps taken in QI mode of regions of calcite surfaces aged in oil. The 

distribution of the oil is highly variable. 

a) b) 

Figure 4.27:  a) Topography and b) corresponding adhesion map of area 03 on calcite surfaces 

aged in brine and in asphaltene. At the bottom of each map, the cross-section profile taken across 

the red line shown in the maps. 
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 Aged calcite dodecane with no brine 

To test any variability in the adhesion behaviour and force measurements between calcite 

subject to a water-wetting phase before being affected by oil compounds, surfaces of 

calcite aged in brine and then dodecane were correlated to surfaces aged in only 

dodecane.  

a) Topography 

Calcite steps measuring up to 250 nm are visible on the surface. A maximum height 

variation of 650 nm is noticed and on average, on 30 × 30 mm areas, the peak to valley 

height is ~ 100 nm. QI mode scans highlight that the surface roughness is given by semi-

circular or irregularly shaped droplets/particles which are randomly distributed on the 

calcite surfaces (Figure 4.29). 

 

 

 

Figure 4.28: Overlapped crossplots of the same points in a) area 02 and b) area 04 of the surface of 

calcite aged in brine and in asphaltene. The topography (red) and the adhesion forces (blue) lines 

do not show a clear correlation. 

a)  

b)  
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b) Adhesion Forces 

Adhesion forces in calcite aged only in dodecane vary between a minimum of 150 pN and 

a maximum average of 4.3 nN. On average, the adhesion force on the 30 × 30 µm surfaces 

is 1.1 nN and forces ≥ 0.5 nN cover 66% of the surfaces. An average of 46.7% of the surface 

is occupied by adhesion forces ≥ 1 nN, whereas an average of 20% by forces ≥ 2 nN. 

Adhesion forces ≥ 3 nN occupy 5.1% of the surfaces, whereas the forces ≥ 4 nN occupy 

0.8% of the whole surface areas. Cross correlating the adhesion maps with the topography 

maps, a discrete correlation can be found (Figure 4.30, Figure 4.31). 

 

 

 

 

Figure 4.29: Topography maps in 2D and 3D of calcite surfaces aged only in dodecane. The droplets 

on the surface vary in dimension and in shape. 
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a) b) 

Figure 4.30: a) Topography and b) corresponding adhesion map of area 02 on calcite surfaces aged 

only in dodecane. At the bottom of each map, the cross-section profile taken across the red line in 

the maps. 

Figure 4.31: Overlapped crossplots of the same points in a) area 05 and b) area 06 of the surface of 

calcite aged only in dodecane. The topography (red) and the adhesion forces (blue) lines show a 

good correlation. 

 

a)  

b)  
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 Summary of results 

a) Average adhesion forces values: 

Figure 35 displays the average adhesion force values measured for all the areas analysed 

with the different solutions/oil compounds. The lowest average adhesion forces are 

observed in the calcite aged in brine. The addition of model oil (dodecane and decanoic 

acid compounds) increases the overall average adhesion force on the 30 × 30 µm surfaces. 

Calcite surfaces aged in dodecane without brine have a larger average adhesion force 

value compared to the calcite aged first in brine and then in dodecane. Addition of 

decanoic acid to the dodecane produces an increase in the adhesion forces at 

concentrations of 1M, but for concentrations of 0.1 M no significant differences are 

noticed. Crude oil fractions exhibit higher (+360% increase) average adhesion values 

compared to the model oil compounds (Figure 4.7Error! Reference source not found.). 

The main differences are noticed in the minimum average adhesion values, which are 

always above 1 nN in the crude oil fractions. The average adhesion force in the crude oil 

is lower (2.4 nN) compared to the average adhesion force for the oil fraction asphaltene 

(4.7 nN). 

 

Figure 4.32: Average adhesion forces for all the calcite areas analysed. The colours correspond 

to the different aging experiments. Each column in the diagrams corresponds to an area analysed 

(Area n.). 
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b) Surface area percentages of adhesion forces  

Surface area percentages covered by adhesion forces reflect the same trend as the average 

adhesion force values. The percentage of 30 × 30 µm areas covered by adhesion forces 

larger than 0.5 nN is higher with the increase of heavy oil compounds in the solutions 

(Figure 4.33 a). Significant differences are noticed between the crude oil fractions and the 

model oil solutions at increasing adhesion forces: for adhesion forces higher than 4 nN, 

the average area percentages on the surfaces aged in crude oil fractions are 32% against 

3% for the surfaces aged in model oil compounds (dodecane and decanoic acid). The area 

covered by adhesion forces ≥  4 nN is lower (24%) in the oil compared to the area for the 

oil fraction asphaltene (50%) (Figure 4.7 and Figure 4.33). 

 

  

a) b) 

c) d) 

e) 

Figure 4.33: Percentages of the area coverage by adhesion forces (a.f.) larger than a) 0.5 nN, b) 1 

nN, c) 2 nN, d) 3 nN, e) 4 nN. The colours correspond to the different aging experiments. Each 

column in the diagrams corresponds to an area analysed (Area n.). 
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c) Surface testing 

To test the nature of the surface roughness, different surface areas of calcite crystals aged 

in decanoic acid 1M, asphaltene and oil were scanned in QI mode at a variable setpoint. 

The setpoint defines the magnitude of the tip-sample interaction and allows direct 

visualization of the compressibility of the particles/droplets on the surfaces. When the 

setpoint is gradually increased (0.2 to 5.2), the particles on the surface deform and 

contract. However, restoring the setpoint to the initial value, the particles return to the 

original shape (Figure 4.34). This behaviour rules out the possibility that these particles 

are solid crystal deposits on the surfaces and suggests that the asperities are instead 

compressible oil droplets adhering to the surfaces. 
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Figure 4.34: The same area of a calcite surface aged in decanoic acid 1 M scanned at different 

setpoint. At increasing setpoints (i.e. the force applied to the tip) the droplets are “squeezed” on 

the surface. When the setpoint decreases in the last row, the droplets return to their original aspect. 

The images on the left column are topography maps, whereas the ones on the right are deflection 

maps, used to better visualise the droplets. 
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 Results: AFM-IR 

 AFM-IR chemical maps 

The validation of the CFM data was performed by means of AFM-IR analyses. AFM-IR 

chemical maps at a wavelength of 2920 cm-1 were produced for all the samples aged in oil 

compounds (Figures 4.37 to 4.47 a and b). The 2920 cm-1 wavelength was chosen as it 

represents a CH2 bond, indicative of organic molecules. The contrast of the colours in the 

chemical maps indicates areas where the variation in the amplitude-frequency of the 

peaks is located. All the samples show a heterogeneous distribution of the oil compounds 

on the surfaces. In all the samples, the chemical absorbance of the 2920 cm-1 peak is well 

correlated to the topography of the same area; the lowest absorption occurs in low 

topography areas. The most common vibrational groups were identified as in Table 4.3: 

Table 4.3: IR wavenumbers and assigned molecular motion and functional group. 

IR wavenumber (cm-1)  Bond  Type of compound 
 

900-1000 
C=H bend alkenes 

O-H bend carboxyls 

1040 Si-O stretch silicates, clays 

1050 
C-O stretch alcohols 

C-N stretch amines 

1110 
C-N stretch aliphatics/amines 

C-O stretch esters, ethers, alcohols 

1200-1350 C-O stretch carboxyls 

1370 S=O stretch sulfonates 

1395-1440 O-H bend carboxyls 

1400-1500 C-O stretch carbonates 

1410 C-H bend alkene 

1430 C-H bend aliphatic 

1510- 1610 C=C stretch  aromatics 

1620 N-H stretch amines 

1710 C=O stretches carboxyls 

2860 C-H stretches aliphatic 

3000-3100 C-H stretches aromatics 

>3000 O-H stretches carboxyls, hydroxyls 

3360-3440 N-H stretch  amines 

1.  2.  3.  
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 AFM-IR point spectroscopy 

a) Calcite in brine 

Pure calcite nano-IR spectra analysis shows a small peak at 1310 cm-1, one at 1420 cm-1 and 

a broad peak around 1585 cm-1. The 1420 cm-1 peak represents the carbonate absorption 

band, while the 1585 cm-1 peak is assigned to the -OH stretching band. Other low 

absorption bands are present around 980 cm-1, 1160 cm-1, 1700 cm-1 and the peak at 2950 

cm-1 are fingerprints related to organic compounds (i.e. O-H esters and carboxylic acid 

bends, C-H aliphatic stretches and C=O alcohols stretch). In the highest laser range, peaks 

at ~3250 cm-1 are also observed (Figure 4.35). The broad 3250 cm-1, together with the 1585 

cm-1 peak are within the water -OH group stretch region (Figure 4.35). Although extreme 

precaution has been taken for not contaminating the samples with organic material, on 

the surface low absorbance peaks of organic molecules were observed. The presence of 

small amounts of organic molecules can be explained by the contamination on the surface 

by “adventitious carbon”. It is extremely rare not find any contamination-derived organic 

compound or water moisture from the atmosphere on a freshly cleaved mineral surface 

(Bovet et al., 2013; Stipp and Hochella, 1991). 
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b) Dodecane 

The spectroscopy of the calcite surface covered in dodecane presents peaks in the low-

range laser at 980 cm-1, 1160 cm-1, 1458 cm-1, 1473 cm-1 and 1628 cm-1. The 980 cm-1 is 

interpreted as a C-H bend and the 1160 cm-1 is assigned to a CH2 twist or to a C-O stretch, 

the 1473 cm-1 and 1458 cm-1 are respectively assigned to methylene (CH2) and methyl 

(CH3) bends and overlap with the carbonate surface background peaks. The 2740 cm-1 and 

Figure 4.35: a) Topography and b) frequency map at the set wavenumber 2920 cm
-1 

of a 20 x 20 

µm area and c) a nano-IR spectrum reconstruction of a point on the calcite surface aged in brine. 

The y axis on the spectrum is the absorbance, normalised as the two spectra were taken with 

different lasers. 
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the 2925 cm-1 peaks are assigned to aliphatic CH2 and CH3 stretches, whereas the 1628 cm-

1 and the 3360 cm-1 absorbance bands are associated with the brine solution and 

correspond respectively to the O-H scissors and the O-H bond stretching. 

c) Decanoic acid dissolved in dodecane 

The dissolution of decanoic acid into the dodecane adds to the spectrum a peak at 1063 

cm-1 and a peak at 1738 cm-1, both corresponding to C=O stretches of the carboxylic acid 

groups. In the decanoic acid 1.0 M aged calcite, the 1738 cm-1 peak absorbs more compared 

to the decanoic acid 0.1 M aged calcite, indicating that the carboxylic acids are more 

Figure 4.36: a) Topography and b) frequency map at the set wavenumber 2920 cm-1 of a 2 x 2 µm 

area and c) a nano-IR spectrum point reconstruction on the calcite surface aged in dodecane. The 

y axis on the spectrum is the absorbance, normalised as the two spectra were taken with different 

lasers. 
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abundant in the high molarity of the decanoic acid solution. The CH2 peak present at 1160 

cm-1 in the dodecane appears at 1167 cm-1 in the decanoic acid 0.1 M and at 1152 cm-1 in 

the decanoic acid 1.0 M aged calcite surface. The region of the CH2 peaks (1167 cm-1) also 

overlaps to the C-O carboxylic acid stretch region. The CH2 and CH3 stretches caused by 

the presence of alkanes are seen here at the 1630 cm-1 peak. In the decanoic acid 0.1 M, at 

wavenumbers between 2700 cm-1 and 4000 cm-1, the CH2 and CH3 stretches (2870 cm-1) 

and the O-H stretch band (2982 cm-1) are present. In the decanoic acid 1.0 M, the same 

bands are present at slightly different wavenumbers: the CH2-CH3 stretches at 2842 cm-1, 

2970 cm-1 and the O-H bond stretching around 3350 cm-1. The O-H bends in these ranges 

are interpreted as being caused both by the carboxylic acids and by the brine solution 

(Figure 4.37Figure 4.39).  

 

Figure 4.37: a) Topography and b) frequency map at the set wavenumber 2920 cm-1 of a 2 x 2 µm 

area and c) cross-plot profile of the blue line on the topography map of an area on the calcite 

surface aged in decanoic acid 0.1. 
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Figure 4.39: a) Topography and b) Frequency map at the set wavenumber 2920 cm-1 of a 2 x 2 µm 

area and c) a profile of the surface roughness (<10 nm) of the oil film coating the calcite surface. 

Figure 4.38 : a nano-IR spectrum point reconstruction of a point on the calcite surface aged in 

decanoic acid 0.1 M. The y axis on the spectrum is the absorbance, normalised as the two spectra 

were taken with different lasers. 
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d) Calcite in maltene C5 

Calcite in maltene C5 exhibits peaks at 1045 cm-1, 1110 cm-1,1380 cm-1, 1463 cm-1, 1496 cm-1 

and 1605 cm-1 for the low laser range. At wavenumbers between 4000 cm-1 and 2700 cm-1, 

the surface absorbs at 2740 cm-1, 2854 cm-1 and 3092 cm-1. The 1045 cm-1 and the 1110 cm-1 

peaks correspond to the CH2 twist band of alkanes and to the C-O ester stretch band. The 

1110 cm-1 peak also overlaps with the C-N stretch in aliphatics and amines. The 1380 cm-1 

peak is assigned to the C-H alkane bend (CH3) and to the inorganic carbonate peak. The 

1462 cm-1, 1496 cm-1 are given by the methyl CH2 and CH3 bending vibrations. The peak 

at 1605 cm-1 is associated with a C=C stretch present in aromatics. The 2740 cm-1 and the 

2854 cm-1 are assigned to the CH2 and CH3 carboxylic acids stretchings and the 3092 cm-1 

to the O-H stretch in alcohols or carboxylic acids. The absence of a 1710 cm-1 peak, which 

is a C=O stretch, could indicate a low abundance of carboxylic acids (Figure 4.41).  

 

 

 

 

Figure 4.40: is a nano-IR spectrum reconstruction of a point on the calcite surface aged in decanoic 

acid 1 M. The y axis on the spectrum is the absorbance, normalised as the two spectra were taken 

with different lasers. 
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Figure 4.41: a) Topography and b) Frequency maps (b and d) at the set wavenumber 2920 cm-1 of 

a 20 x20 µm 2 x 2 µm area and d) a nano-IR spectrum reconstruction of a point on the calcite 

surface aged in maltene C5. The y axis on the spectrum is the absorbance, normalised as the two 

spectra were taken with different lasers. 
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e) Calcite in maltene C8 

Calcite aged in maltene C8 has a similar fingerprint to the calcite aged in maltene C5. The 

assigned peaks are at 1040 cm-1, 1120 cm-1, 1459 cm-1, 1602 cm-1 and 1710 cm-1 for the 912-

1900 cm-1 laser range. In the higher range, the fingerprint is formed by peaks at 2750 cm-1, 

2894 cm-1 and a broad O-H stretch above 3100 cm-1 caused by the brine. The 1040 cm-1 and 

the 1120 cm-1 peaks are assigned to the C-O stretch band due to the presence of esters. The 

peak at 1459 cm-1 is given by the CH2 aromatics or methylene vibrational bending, as well 

by the carbonate surface, and the 1602 cm-1 to the C=C aromatic stretching.  

Figure 4.42: a) Topography and c) and b) Frequency map at the set wavenumber 2920 cm-1 of a 

2 x 2 µm area and d) a nano-IR spectrum reconstruction of a point on the calcite surface aged 

in maltene C8. The y axis on the spectrum is the absorbance, normalised as the two spectra were 

taken with different lasers. 
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The 1710 cm-1 peak is assigned to a C=O stretch typical of esters. The 2750 cm-1 and the 

2894 cm-1 are assigned respectively to the CH2-CH3 aliphatic vibrational stretchings. 

Compared to the maltene c5, the maltene C8 presents a higher ~1490 cm-1 peak and lower 

values in the 2700 to 4000 cm-1 range, suggesting that the maltene C8 is slightly richer in 

aromatics and depleted in aliphatics Figure 4.42.  

f) Calcite in asphaltene 

The fingerprint for the calcite aged in the asphaltene compound is similar to the maltene 

C5 and C8 fingerprints. The absorption peaks are seen at 994 cm-1, 1110 cm-1, 1430 cm-1, 

1595 cm-1, 2866 cm-1, 2960 cm-1 and 3060 cm-1. A broad, low absorption peak caused by the 

acid hydroxyl group is also present between 3200 cm-1 and 3500 cm-1. The absorption 

peaks at 994 cm-1 and at 1110 cm-1 are associated with the C-O stretch ester or carboxylic 

acids bands and the 1110 cm-1 peak also overlaps with the range of the functional group 

S=O. The 1430 cm-1 peak is related to the CH2-CH3 vibrational bend and the 1595 cm-1 to 

the C=C aromatic stretching or to N-H amines bend. The 2866 cm-1 and 2960 cm-1 peaks 

are assigned to the CH2 and CH3 aliphatic vibration groups. Compared to the maltene 

fractions, the asphaltene presents lower absorptions in the 2800-3000 cm-1 range, 

indicative of a lesser presence of aliphatic compounds, and a higher absorption in the 1100 

cm-1 range, indicative of a higher presence of carboxylic acids (Figure 4.43Figure 4.44). 

Figure 4.43: a) Topography and b) frequency map at the set wavenumber 2920 cm-1 of a 2 x 2 µm 

area. 
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g) Calcite in oil 

The samples aged in calcite with unfractionated crude oil present peaks at 1040 cm-1, 1120 

cm-1, 1377 cm-1, 1460 cm-1, 1494 cm-1, 1622 cm-1. The 1040 cm-1 and the 1120 cm-1 peaks are 

assigned to C-O stretch bands formed by esters or carboxylic acids bands. The latter also 

overlaps with the S=0 stretching in sulfonates/sulfones and to the C-N stretch in 

aliphatics/amines. In the high-IR laser range, absorption peaks are detected at 2866 cm-1, 

2940 cm-1, 3025 cm-1 and 3200 cm-1. As in the maltenes and asphaltenes, the 2866 cm-1 and 

the 2940 cm-1 peaks are associated with CH2 and CH3 aliphatic vibration groups, whereas 

the higher frequency peaks are assigned to the O-H stretching given by 

alcohols/carboxylic acids or water. Compared to the crystals aged in maltene and 

asphaltene, the crystals aged in oil have slightly higher transmittance relative values in 

the CH2 - CH3 bendings and stretches ( 2860 cm-1, 2940 cm-1 and ~1460 cm-1) (Figure 4.45).  

Figure 4.44: Nano-IR spectrum reconstruction of a point on the calcite surface aged in oil. The y 

axis on the spectrum is the absorbance, normalised as the two spectra were taken with different 

lasers. 
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Figure 4.45: a) Topography and b) frequency map at the set wavenumber 2920 cm-1 of a 2 x 2 µm 

area and c) a nano-IR spectrum reconstruction of a point on the calcite surface aged in oil. The y 

axis on the spectrum is the absorbance, normalised as the two spectra were taken with different 

lasers. 
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 Discussion 

 Calcite surface in contact with brine 

The surface sites that can interact with species in aqueous solution or in oil are CO3Ca+, 

CaOH2+ and CaCO3-. When the calcite surface is within brine, the surface sites can interact 

with the ions in the solution, modifying the electrostatic potential and consequently the 

wettability of the mineral surface.  

The solutions at which the mineral surfaces are exposed to in the reservoir are considered 

an important aspect in the wettability of the surfaces and also in the wettability alteration 

processes (Alvarez et al., 2014; Austad et al., 1997; Kumar et al., 2005b). The brine in which 

the samples were aged is a model Gulf of Mexico reservoir brine, containing Na+, K+, Mg2+, 

Ca2+, Cl-, Si, SO42- and CO3- ions. Buckley (1998), by analysing the surface zeta potential of 

calcite in contact with fluids, has concluded that the ions in the solution that most interact 

and bond with the surface ions are Na2+, Ca2+, Mg2+ and SO42-. In particular, the presence 

of SO42- is found to have a high affinity with the positive charges on the surface. When it 

is adsorbed on the surfaces, it lowers the positive charges and therefore also the 

electrostatic repulsion on the surface (Austad et al., 2010, 2005; Karoussi and Hamouda, 

2008; Sakuma et al., 2014; Zhang and Somasundaran, 2006). 

 Adsorption of oil on the calcite surface  

When oil is added to the system, calcite surface sites can interact with the oil polar groups 

(Anderson, 1986; Bennett et al., 2002; Buckley and Recovery, 1995; Kakati and Sangwai, 

2018; Sand et al., 2017; Subramanian et al., 2017; Wu et al., 2017; Yang et al., 2002). There 

is still a debate on which oil compounds are responsible for wetting state changes. Many 

authors (Ese et al., 2000; Gonzalez and Travalloni-Louvisse, 1993; Langevin and Argillier, 

2016; Lord and Buckley, 2002; Morrow, 1990; Mullins, 2011; Herve Toulhoat et al., 1994) 

have observed the most oil-wetting capacities in asphaltene-based compounds. Hoeiland 

et al. (2001), based also on other studies (Bennett et al., 2002; Larter et al., 2000; Larter and 

Aplin, 1995; Skauge et al., 1999; Takamura and Chow, 1983; Taylor et al., 1997; van Duin 

and Larter, 2001) suggest that it is not the oil fraction, but the number of certain kinds of 

molecules that is important for wetting behaviours. These authors observed that oil 
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compounds rich in phenols (Bennett et al., 2002; Kim et al., 2019; Larter et al., 2000; Larter 

and Aplin, 1995; Taylor et al., 1997; van Duin and Larter, 2001) or in organic acids 

(Hoeiland et al., 2001; Skauge et al., 1999) affect the wetting state changes more than high-

molecular ring-structured acids. The phenols are small compounds characterised by a 

hydroxyl group attached to an aromatic group. The acid species are instead fatty acids, 

resins, or asphaltenes with a −COOH functionality. These polar molecules have enough 

water solubility to be able to penetrate into the water film and adsorb on the mineral 

surface, making the surface accessible to other, more complex, oil compounds. This is also 

the reason why, in the recovery phase, cationic and non-ionic surfactants are preferred to 

anionic surfactants  as they can desorb the acidic components from the surface by forming 

an ion pair, favouring the oil mobility and thus wettability alterations (Heydari et al., 

2018; Kumar et al., 2005; Standnes and Austad, 2003, 2000; Totland and Lewis, 2016; Wang 

et al., 2012). 

 Oil compound adhesion forces 

e) As mentioned above, the carboxyl groups (R-COO-) and the hydroxyl groups in phenol 

compounds are considered the “anchor” molecules for other surface-active 

components in the oil (Standnes and Austad, 2003; Zhang et al., 2007). The adsorption 

of the organic acids onto calcite occurs primarily through electrostatic attraction 

(Sørgård et al., 2017), whereas the other polar molecules are attracted by the carboxylic 

bonding onto the surface mostly through hydrophobic and dipole-dipole interactions. 

The more polar molecules are adsorbed to the surface, the more the surface will be oil-

wet (Standnes and Austad, 2003). Therefore, the more carboxyl groups and/or phenols 

are present in the oil, the more the calcite surface will transition from water-wet to oil-

wet. Many works have observed that asphaltenes are the oil fraction that most affects 

the wettability of the calcite surfaces (Buckley and Wang, 2002; Mahmoudvand et al., 

2019; Mullins, 2011; Herve Toulhoat et al., 1994). Here, the adhesion values on the 

surfaces exposed to the maltene C5, C8 and the crude oil are lower (2.6, 2.7 and 2.4 nN 

respectively) than the adhesion forces on the calcite surfaces aged in asphaltene (4.7 

nN). However, other studies (Kumar et al., 2005) have observed similarities in the 

adhesion forces on the asphaltene fraction and the crude oil aged mineral surfaces. The 
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crude oils used during the experiments, however, vary. It is possible that the difference 

in this case is caused by the high amounts of neutral oil fraction, which does not react 

as much as other polar molecules; analysing equal amounts of asphaltene and crude 

oil, the quantity of polar groups binding to the polar groups on the surface will thus 

be lower in the crude oil in respect of the asphaltene fraction. The adsorption also 

depends on the surface charges, which in turn depend on the chemical and 

thermodynamic conditions of the system (Buckley, 1998) and on the mineral surfaces 

analysed. Moreover, Natarajan et al., (2014) and Wang et al., (2010) suggest that the 

adsorption of asphaltenes onto mineral surfaces strongly depends on the concentration 

of asphaltenes in solution and on the time the surface was exposed to the oil fraction. 

In the work presented in this thesis, the adhesion forces did not show a linear increase 

or decrease during the same experimental session, which corresponded to the analysis 

of multiple areas on one sample. This provides evidence to the fact that the adhesion 

measured comes from the original functionalisation of the tip with the surface, and not 

from oil compounds stuck on the tip during the experiments.  

 The influence of brine 

To test the influence of the brine on the wettability of the samples, the adhesion forces on 

the calcite surfaces aged in brine and then in dodecane were compared with the calcite 

surfaces directly aged in dodecane. The adhesion forces for the samples where the brine 

was in the system only during the experimental analyses slightly increase: from an 

average adhesion force of 0.9 nN in the samples aged in brine before, the samples aged 

without any brine present an average adhesion force of 1.2 nN (Figure 4.7). We here 

interpret the overall increase in wettability to be caused by the layer of brine between the 

surface and the oil compounds. This brine film contains cations and anions (i.e.,  Na2+, 

Ca2+, Mg2+ and SO42-) that can directly be exchanged with the calcite surface and with the 

oil molecules, modifying the overall surface charge and reducing the available domains 

of adhesion for the oil to the surface (Karoussi and Hamouda, 2008; Austad et al., 2010, 

2005; Sakuma et al., 2014; Zhang and Somasundaran, 2006). To consider this hypothesis, 

we assume that the groups in the oil interacting the most with the brine and with the 

mineral surfaces are polar carboxyls and phenols, (Bennett et al., 2002; Kim et al., 2019; 
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Larter et al., 2000; Larter and Aplin, 1995; Taylor et al., 1997; van Duin and Larter, 2001; 

Hoeiland et al., 2001; Skauge et al., 1999). The negative ends of the carboxyl acids can 

either be associated with the ions in the water film or, if the water film is discontinuous, 

interact with the cations on the calcite surface (Mirchi et al., 2014). Lager et al. (2008), 

Purswani et al. (2017), Zhang et al. (2007) established that, in presence of a brine film, the 

carboxylic material in the oil and the surface has weaker bonds compared to the ligand 

bonds between the brine and the carboxylic material. This possibly explains the difference 

in adhesion between the calcite aged in brine first and the calcite directly placed to age in 

dodecane. Figure 4.46 is a representation of possible case scenarios.  
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a) 

b) 

c) 

Figure 4.46: Stages of oil-wetting of a calcite surface (pink) in brine (blue). In a) the positively 

charged surface attracts the anions in the brine, which forms a uniform layer on the calcite surface. 

The oil molecules interact with the cations in the brine. In b) the phenols and the carboxyl acids in 

the oil break through the brine film and the polar ends form bondings with the calcite surface, 

rendering the surface mixed-wet. In c) the surface is completely covered by the oil. The oil 

molecules form robust interactions with the calcite surface and are able to displace the water layer. 
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 IR spectra 

The IR spectra confirm the presence of different compound classes on the surfaces of the 

calcite crystals. Starting from the calcite in brine and proceeding with the model oil 

compounds, we notice an increase in peaks associated with the increase in organic groups 

(Figure 4.35 andFigure 4.45). The presence of dodecane is associated to the alkane-related 

C-H groups. When decanoic acid is added to dodecane, fatty acid C-O and O-H bonds 

appear on the IR spectra. The surfaces aged in crude oil fractions are associated with an 

increase in C-O, O-H, C=C and C-H chemical bonds compared to the model oil 

compounds. These oil fractions are attributed to the presence of alkanes, aromatics and 

phenols. The asphaltene spectrum is similar to the maltenes spectrum but presents higher 

absorbances in the C-O and O-H groups peaks, associated with phenols, alcohols, 

paraffins and fatty acids. As seen before, the end groups in the phenols and in the fatty 

acids have a high affinity with the calcite surface molecules (Standnes and Austad, 2003; 

Zhang et al., 2007). The affinity is reflected in higher interactions with the calcite surface, 

and therefore in a greater destabilisation of the bonds between the water film and the 

calcite surface molecules. The more molecules in the oil interact with the calcite surfaces, 

the more the surfaces become oil-wet. In this work, the high affinity of carboxylic acids 

and phenols with the calcite surface polar groups is attested by the higher average 

adhesion forces in the asphaltenes compared to the other oil compounds. Therefore, IR 

confirms the presence of either individual compounds or compounds classes on the 

calcite surface.  

 Surface roughness 

By observing the roughness of the surfaces affected by the different oil fractions, we gain 

important information regarding the way the oil fractions interact with the surface and 

the homogeneity of the oil film on the surfaces.  

Both the linear regression measurements and the cross plots have highlighted in some 

areas a certain degree (for the 10 areas measured, an average of R2= 0.2) of agreement 

between the topography and the corresponding adhesion values. The cross-correlation 

underlines that the topography roughness is caused by the oil droplets sticking on the 
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surfaces. Also, applying a high setpoint (i.e. the force applied to the tip scanning the 

surface), the droplets are seen to be dragged along the surface. If an area is scanned 

multiple times, the oil film is gradually removed from the surface, similarly to what was 

observed by Buckley and Lord (2003) (Figure A.8). The QI mode offered further 

confirmation on the presence of the oil compounds on the surfaces and provided 

information on the texture and distribution of the oil compounds. The same surface 

scanned at different setpoints also proved the compressibility of the material, with a semi-

circular shape, lying directly on the completely smooth calcite surface (Figure 4.34). The 

existence of oil films on the calcite samples exposed to different oil compounds is also 

proven, for the first time, in this study by AFM-IR analyses. The AFM-IR frequency maps 

display a difference in absorption at a certain frequency. In this case, the 2920 cm-1 peak 

was chosen. Although the calcite surface can absorb at this wavenumber as well, the 2920 

cm-1 peak intensity is greater in experiments in which organics interacted with the surface. 

This makes it possible, on a frequency map at the 2920 cm-1 peak, to locate the surface as 

opposed to the organic compounds. The frequency maps compared with the topography 

maps indicate that the calcite surface is coated by a ~20 to 30 nm layer of oil compounds 

(e.g., Figure 4.37 c), which is of variable thickness and discontinuous (i.e. Figure 4.36 a 

and b). The peak to valley roughness of this layer is on average of a few nanometers (<10 

nm) (Figure 4.39 c). The roughness and thickness of the film coat are not found to have 

any correlation with the type of oil fraction analysed.  

Some calcite regions, independent of the compound in which they were aged, present 

areas of higher adhesion close to topography features such as calcite steps. Higher 

adhesions along the step planes compared to the {1014} surfaces can be topography 

related, with more oil remaining entrapped between two steps, or also caused by the 

different distribution of surface charges between the calcite planes. Kim et al. (2019) 

observed that, when a plane contains more Ca2+ ions, for example, the electrostatic 

interactions between the surface and the oil compounds are larger, and the calcite attracts 

more polar anions to the surface. The negatively charged molecules are responsible for 

increasing adhesion forces, corresponding to more oil-wet surfaces.  
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 Distribution of oil on the surface 

In the samples analysed, the distribution of the oil fractions is very variable, producing a 

mixed wettability behaviour at the microscale. The surfaces present a complete oil 

coverage in some areas and scattered oil droplets in other areas of the same crystal 

(asphaltene sample 1.5 x1.5 µm). There are also areas on the surface where large (1-2 µm) 

oil droplets coexist with a continuous oil film formed by nanometric size (~10 nm high) 

droplets. Bertrand et al. (2002), observed a similar behaviour on alkanes absorbed on 

water and called this state frustrated-complete wetting. Where the film is discontinuous, 

the water-wetting areas can either be islands on a semi-continuous film, continuous 

except for some areas where droplets are present, or spread but discontinuous, producing 

a “branched’ system of oil droplets (Figure 4.13). The latter was observed to occur in some 

areas in the model oil compound fractions, and it is known as the Ouzo effect. The Ouzo 

effect refers to a phenomenon in which the droplet formation occurs when an organic 

phase is diluted in water (Lu et al., 2017). Further studies must be made to understand 

what alters the wettability on the surface at the micro and nanoscale. Bertrand et al. (2002) 

suggested that the connectivity of the oil on the surfaces depends on many factors, such 

as the initial geometry of the surface, the surface charges, the exposure the surface has to 

the brine and other thermodynamic conditions. Other possible reasons are related to the 

attractive capillary forces between the oil molecules, i.e. the strength of the lateral 

interactions between the oil molecules in the interfacial film (Buckley, 1998; Buckley and 

Wang, 2002; Wang et al., 2017). In this work, the surface coverage percentage by means of 

the ~20-30 nm thick oil film increases with the increase in heavy oil fraction components 

(Figure 4.7). In model oil compound aged surfaces, the presence of oil droplets, as 

opposed to a homogeneous film, is common (Figure 4.10). The surfaces aged with crude 

oil and with asphaltene and maltene fractions show a higher density of droplets on the 

surfaces or a more uniform layer of oil compared to the model oil fractions (Figure 4.20).  

In conclusion, the increase of surface coverage agrees with the increase in adhesion forces, 

suggesting a positive correlation between the oil fraction components and the oil-wetting 

behaviour in calcite surfaces. Many papers (Drummond and Israelachvili, 2002; 

Hassenkam et al., 2009; Mirchi et al., 2014; Yang et al., 2002) quantify the relationship 
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between adhesion forces and contact angle by using the relationship Wa = γL (1+ cos θ), 

where Wa is the work of adhesion, γL is the surface tension between the fluids and θ is the 

contact angle at the solid surface. However, despite having quantified the adhesion forces, 

in this work, no relationship between adhesion forces and contact angle was made. 

Further work needs to be done to quantify the exact wettability of the samples. 
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 Concluding comments 

This work has provided evidence of the importance of the type of oil compounds in 

wettability changes and has provided a solid base for the study of the fluid migration and 

hydrocarbon recovery in a tight carbonate reservoir system. In particular, from this study, 

it can be inferred that: 

1. The organic layer, independently from the compound in which the calcite was aged 

into, forms a heterogeneous organic film on the surface; it is possible to observe single 

droplets, complete or incomplete coverage of the organic film as well as an organic 

film with droplets on the top. The organic layer can reach up to 30 nm of thickness. 

Single droplets vary in size, with the smaller detectable droplet being around ~ 10 nm 

wide to ~ 2-3 µm wide. The height of the droplets varies from a few nm (~10 nm) to 

~200 nm. 

2. Oil compounds have the tendency to concentrate along the calcite steps by forming 

elongated and parallel droplets. 

3. IR spectra confirm the presence of the oil compounds on the surface. The adding of 

decanoic acid to the dodecane is indicated in the IR by the presence of fatty acid 

vibrations. The crude oil fractions are characterised by vibrational groups typical of 

aromatics, fatty acids, esters and alcohols. 

4. Adhesion force measurements indicate an increase in the adhesion forces in the crude 

oil fractions compared to the model oils. The lower values are registered in the calcite 

aged in brine, whereas the highest average adhesion forces are given by the asphaltene 

fraction (4.7 nN).  

5. The percentage of surface covered by progressively higher adhesion forces increase in 

the crude oil and crude oil fractions compared to the model oil compounds. In 

particular, the highest average area percentages covered by adhesion forces higher 

than 4 nN is found on calcite surfaces aged in asphaltene (~ 50 %) This is also in line 

with the topography observations, which indicate that the number of droplets per unit 

area is higher in the crude oil fractions relatively to the model oil compounds. 

6. The AFM-IR frequency maps validate the results given by the adhesion forces and the 

topography maps. The AFM-IR maps show that the oil compound forms a layer on the 
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surface which is sometimes disrupted, allowing for the visualisation of the calcite 

surface.  

7. The adhesion forces are indicative of the wetting state of a surface. The calcite aged in 

brine, with an average adhesion force of 0.1 nN and a percentage of surface covered 

by adhesion forces higher than 0.5 nN of 0.4 %, displays a completely water-wet 

surface. The calcite aged in asphaltene, with an average adhesion fore of 4.7 nN and a 

percentage of surface covered by adhesion forces higher than 4 nN of 81%, is indicative 

of a nearly completely to completely oil-wet surface. 

8. Higher adhesion forces in the asphaltene fraction are related to higher interactions 

between the oil groups and the surface molecules. IR data indicate that asphaltenes 

yield many polar groups, such as alcohols, phenols and fatty acids, which are 

considered responsible for the increase in adhesion forces. 
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5. Chapter 5 

Nanoscale variations in surface chemistry and implications 

for wettability in the Eagle Ford formation 

 

5.1. Introduction 

Wettability plays a crucial role in the fluid displacement in porous media, and therefore 

understanding the wettability behaviour of a reservoir is essential for the full 

understanding of the oil recovery dynamics (Brady et al., 2016; Rabbani et al., 2018). When 

a reservoir is predominantly water-wet, the oil is concentrated in the larger pores and, 

depending on the permeability of the reservoir, it is easily displaced by the aqueous 

solution. However, when a reservoir is oil-wet, the oil is present in small pores and 

adheres onto the surfaces, rendering the displacement more difficult (Basu and Sharma, 

1997). On the other hand, the emplacement of oil in the smaller pores creates a connected 

organic network and possible migration pathways (Basu and Sharma, 1997; Cardott et al., 

2015; Hackley and Cardott, 2016). It has been established that all reservoirs, before being 

filled with oil, are initially water-saturated and therefore water-wet (Basu and Sharma, 

1997; Hiorth et al., 2010; Salathiel, 1973; Tiab and Donaldson, 2004). After the oil enters 

the system, the water film covering the surfaces can be completely or partially ruptured 

depending on several factors, such as the physicochemical conditions, the brine 

chemistry, the capillary pressure, the oil chemistry and the surface chemistry and surface 

roughness  (Hiorth et al., 2010). The effects regarding the nature of the oil have been 

highlighted in Chapter 4, concluding that, in accordance with other studies (Buckley, 

2001; Kumar et al., 2005; Radke et al., 1992), a calcite system is more prone to become oil-
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wet when the oil contains many short aromatic molecules or carboxylic acids. In this 

chapter, the factor that will be considered is the nature of the mineral surfaces interacting 

with the oil molecules. Previous works (Borysenko et al., 2009; Drummond and 

Israelachvili, 2002; Peng et al., 2015; Siddiqui et al., 2018) inferred that mineral surfaces 

present different surface properties and electrical attributes, which cause variations in the 

wetting behaviour of the surfaces.  

5.1.1. Mineral and organic surfaces 

Many studies on wettability changes caused by the mineral surfaces regard the clay 

mineral phase (Hilner et al., 2015; Purswani et al., 2017; Rezaei Gomari et al., 2006; 

Skovbjerg et al., 2013; Zhang and Somasundaran, 2006). Clay mineral surfaces are 

characterised by a high surface area and high surface charges, able to bear a high degree 

of interaction with the aqueous solution and with the oil polar groups, rendering the pore 

surfaces more oil-wet (Tang and Morrow, 1999). Differences between the type of clays 

were also observed. Borysenko et al. (2009), measuring two shale samples with different 

clay values, noticed that the sample with more illite was more hydrophilic than the 

sample bearing more kaolinite, consistent with the fact that kaolinite clays have fewer 

substitution sites than the illite–smectite ones (Bantignies et al., 1997; Skovbjerg et al., 

2012). Silicate surfaces, on the other hand, have an acidic interface between the surface 

and the water layer (Tiab and Donaldson, 2004) that make the surfaces able to adsorb the 

basic oil constituents (i.e. nitrogen-bearing compounds). Carbonate surfaces are instead 

more basic, and able to adsorb more acidic compounds such as carboxyls and phenols 

(Buckley, 2001; Tiab and Donaldson, 2004). Since the oil compounds are generally more 

acidic, the carbonate-rich reservoirs have a higher tendency to be oil-wet. Apart from the 

mineralogical content, the wettability in a reservoir also depends on the organic matter 

values. Higher TOC values are typically correlated with more oil-wet surfaces (Siddiqui 

et al., 2018, Lan et al 2015). The higher the total organic carbon, the higher the 

concentrations of organic matter, which can migrate and coat the mineral compounds, 

altering the wettability of the system. 
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5.1.2. Wettability in unconventional reservoirs 

The mineralogical heterogeneity at the microscale of unconventional reservoirs leads to a  

more complex characterization of the wettability compared to the more uniform 

conventional reservoirs (Alvarez and Schechter, 2016; Siddiqui et al., 2018). In general, the 

coexistence of different minerals and the organic matter renders the wettability mixed-

wet. As stated in the previous chapters, being carbonate-rich, the Eagle Ford is not a shale 

play sensu stricto. The richness in carbonates and the presence of high amounts of 

coccolithic debris can juxtapose this reservoir to a chalk reservoir (Figure 5.1). 

 

Chalk systems are considered hydrophobic at the large scale (Chilingar and Yen, 1983; 

Strand et al., 2007), but recent studies have shown that many chalk surfaces have a 

nonuniform wetting behaviour (Hassenkam et al., 2009; Skovbjerg et al., 2012, 2013). It 

was suggested the hydrophobic patches could derive from the polysaccharides coating 

on the coccoliths or from nanometer-size authigenic clays attached to the coccoliths. 

Skovbjerg et al., (2013a, 2012) infer that both the organic film and the clays could serve as 

anchor points for the absorption of more organic compounds.

a) 

5 

μ

m 

b) 

Figure 5.1: SEM micrographs of a) a zoom in the matrix of Eagle Ford sample IM2_3 (R0 0.5%) 

and b) Stevns Klint chalk (from Strand et al. 2007). The coccolithic debris present in the Eagle Ford 

is very similar to the one of the chalk sample. 
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5.1.3. A wettability study at the nanoscale 

This work is an effort to quantify the wettability at the nanoscale and to understand how 

the wettability varies with the variations in mineralogy and organic matter content. In 

characterising the wettability of shale reservoirs, several techniques have been employed 

such as the NMR (Odusina et al., 2011) the imbibition method (Jadhunandan and Morrow, 

1991) and the contact angle method (Bai et al., 2013; Basu and Sharma, 1997; Hirasaki and 

Zhang, 2004; Siddiqui et al., 2018). To examine the wettability of a reservoir at the micron 

scale, it is also possible to use the Environmental Scanning Electron Microscope (Bennett 

et al., 2002; Buckman et al., 2016). However, despite providing information at the 

microscale on an actual rock chip surface, the ESEM does not provide quantitative results. 

In this study, apart from the ESEM, the Atomic Force Microscopy (AFM) will be used to 

quantitatively analyse fresh rock chips surfaces from the Eagle Ford Formation. The 

wettability is here analysed by functionalising the cantilever tip with -CH3 groups and 

calculating the adhesion forces. This Chemical Force Microscopy (CFM) study, combined 

with ESEM preliminary examinations and SEM and chemical mapping analyses, provides 

a solid evaluation of the wettability and nano-surface chemistry behaviour in a 

heterogeneous system.  

5.1.4. Wettability changes with the organic matter type 

The presence of hydrocarbons migrating into a tight reservoir also raises some questions 

regarding the origin of the oil (Bernard et al., 2012), and whether it is the oil that has 

migrated the responsible for the wettability alteration. Despite many studies have been 

carried out in the origin of the oil, the origins of the hydrocarbons and the storage and 

migration of the hydrocarbons in source rocks are still not comprehensively known (Xie 

et al., 2005). As seen in Chapter 2, Ar-Ion polished samples analysed under the SEM, 

combined with bulk geochemical analyses can provide preliminary information into the 

understanding of the maturities at which the hydrocarbons have migrated and generated 

(Curtis and Ambrose, 2011; Loucks et al., 2012; Milner et al., 2010; Taheri et al., 2013). 

Many studies have also examined how the kerogen of an immature sample evolves if 
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heated at progressively higher temperatures (Horsfield et al., 1989; McCarthy et al., 2011). 

However, due to the micrometre-size of the organic particles in unconventional 

reservoirs, these studies are performed on extracted kerogen samples and not on the 

actual rock chips. In the recent years, the advancement of novel, high-resolution 

techniques, have allowed for the investigation of the geochemical composition of the 

organic matter in place (Bernard et al., 2012; Yang et al., 2017). Bernard et al. (2012) 

investigated the organic constituents of the Barnett Shale by using transmission electron 

microscopy (TEM) and synchrotron-based scanning transmission X-ray microscopy 

(STXM) nanoscale experiments. In the work of this thesis, the geochemistry of the 

compounds on the surface was analysed at the nanoscale with a novel approach. In a first 

moment, the surfaces of fresh rock chips were scanned using the AFM-IR combined with 

SEM-EDS chemical mapping. This to examine the variability of the organic compounds 

on the surface in relation to the mineralogy variability. In a second moment, polished rock 

surfaces were investigated, and the organic matter types identified by SEM analyses were 

correlated with AFM-IR analyses, similar to the work of Yang et al. (2017). The latter study 

was made to determine which organic matter type had generated pores and evolved 

during thermal maturity.   
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5.2. Materials and Methods 

5.2.1. Samples 

The samples analysed were taken from the Lower Eagle Ford Formation in South-West 

Texas. Prior petrographic and geochemistry analyses (see Chapter 2) have assigned to 

these samples 3 maturity windows: R0 0.4-0.5%, R0 0.9% and R0 1.2% (respectively 

immature, oil and gas window). 

5.2.2. Environmental Scanning Electron Microscope (ESEM) 

As a qualitative analysis of the wettability behaviour on the surfaces, surfaces of Eagle 

Ford Formation rock chips were analysed using an Environmental Scanning Electron 

Microscope (ESEM). 

The Philips XL30 ESEM with LAB6 gun facility at Heriot Watt University was used for 

the analyses. The images were collected at increasing pressures of 0.5 torr intervals up to 

a pressure of 6.5 torr (0.87 KPa). Around 6.5 Torr (0.87 KPa), the water humidity in the 

chamber reaches 100%, allowing water droplets to condensate on the surface of the 

samples. A voltage of 20 kV and a working distance of 6.5-7.5 mm was kept during the 

analyses. The magnification values during the analyses varied between 250 × and 3500 ×. 

The samples analysed were sample IM2_1 and sample IM2_3 from the lower maturity 

window (R0 0.5%), sample OW2 from the oil window (R0 0.9%) and sample GW6 from the 

gas window (R0 1.2%) (Table 5.1). To avoid any kind of contamination, the samples were 

broken immediately prior to the analyses into rock chips ~ 2-3 mm thick and ~ 10 mm 

long. The procedure for the images collection was created by following Wei et al (2002), 

as in Bennett et al. (2004) and Buckman et al. (2016). (Wei et al., 2002; Bennett et al., 2004; 

Buckman, 2016).  
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Table 5.1: Samples analysed with the ESEM technique. Rock-Eval, TOC (wt %) and XRD data are 

listed (for more detail, see chapter 3). The samples were selected from different maturities, from 

an outcrop and from three different wells. 

 

5.2.3. Chemical Force Microscopy (CFM) 

 Sample preparation 

For the CFM analysis, the samples were broken in millimetre-sized rock chips. In order 

to study the adhesion force of the pore surfaces in the samples, rock chips were freshly 

cleaved. The cleavage plane corresponds to the surface of major weakness (King et al., 

2015). 

As the surface topography in rock chips is extremely rough (>1000 nm), before the 

analyses the samples were Ar-Ion polished using a Gatan precision Ion Polishing system. 

In order to visualise the actual surfaces, the samples were only partially polished for 30 

minutes at a beam angle of 3° and a voltage of 5kV. In this way, only the highest asperities 

were removed and the cantilever tip was able to cover the whole z-height distance (up to 

~800 nm) (Figure 5.2). Being careful not to contaminate the freshly cleaved surface, the 

samples were then glued on a glass surface using an epoxy glue and, positioned in a fluid 

cell. The fluid cell was created by placing a glass O-ring onto the glass surface 

surrounding the sample. For the CFM analyses, the fluid cell was then filled with a calcite 

saturated solution, prepared by adding calcite crystals into distilled water. 

Sample 

Names 
R0% TOC (wt 

%) 

Total 

Silicates 

(%) 

Total 

carbonates 

(%) 
Total I/S (%) 

Total 

Kaolinite 

(%) 

OC2 ~0.44 6.6 58.2 2.9 3.4 5.6 
IM2_3 ~0.55 7.9 24.2 50.1 7.2 1.8 
OW2 ~0.9 2.6 8.0 43.2 18.1 24.0 
GW7 ~1.25 0.5 4.5 84.4 12.2 0 
       



220      Chapter 5 

 

 

 

 

 

 Tip preparation 

As described in Paragraph 4.2.5, the tips were gold coated (PNP-Tr-Au) probes from 

Nanoworld (spring constant 0.08 N/m). The functionalisation was performed similarly to 

the procedure described by Skovbjerg et al. (2012) and Hassenkam et al. (2016). The gold 

tips were first exposed to UV irradiation in a UV/ozone cleaner (Love et al., 2005) for 10 

minutes and then immediately submerged in ethanol for 10 minutes. The tips were then 

submersed in an ethanol solution of 0.05 mM of HS(CH2)10CH3 for at least 24 hours. 

Before use, the tips were washed in ethanol and mounted on the AFM holder. This 

procedure leaves AFM tips functionalised with CH3 non-polar functional group 

molecules that can interact with the surface (Figure 5.3). 

Figure 5.3: Schematic representation of gold tip functionalised using a HS(CH2)10CH3 thiol 

solution. The -CH3 polar groups at the end of the molecule are hydrophobic (blue) and able to 

bond with polar hydrophobic molecules present on the surface (yellow), whereas repulsive 

forces occur between the -CH3 groups and the hydrophilic molecules on the surface 

a) 

2
0

0
0

 n
m

 

b) 

Figure 5.2: Schematic representation of the surface roughness of a rock chip a) before and b) 

after the Ar-Ion polishing.   
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 Data collection 

Before the data collection, the tip was calibrated using the calibration manager. The 

sensitivity and spring constant of the tip during the analyses were verified to enter in the 

range of the tip specifics. To ensure that the surface was smooth enough to allow the data 

collection, initial topography mapping was performed for each sample in air, using a PNP 

tip in Qi mode. For the maps, the setpoint was set to 1 and the relative setpoint to 10. For 

the same area, the images were first collected at a pixel size of 8 × 8 and then at a pixel 

size of 64 × 64, for areas of 10 µm × 10 µm.  

For the CFM analyses, the functionalised gold-coated tips were used.  The images were 

taken in contact mode in Force Mapping. This mode allows creating a force-distance curve 

for each pixel point, which enables to calculate the adhesion force needed to disengage 

the tip (Hassenkam et al. 2009) (see Figure 4.2). A set force speed of 10 µm/s and a 1-

second delay during the withdrawal and a relative setpoint of 0.4 were applied for all the 

experiments. The images were collected in 10 µm x 10 µm areas first at a pixel size of 8 × 

8 and then at a pixel size of 32 × 32 or 64 × 64. Only the images taken at a pixel size of 32 

× 32 were taken into account in the adhesion force measurements.  

 Data processing 

The data were collected using the JPK software tool. To compute an automated analysis 

and to extract the adhesion forces and topography parameters, the raw data was extracted 

and processed using Python and Matlab. Topography and adhesion maps were plotted 

and tables with topography and adhesion forces parameters were created. The maximum 

value for the adhesion forces was set to 9 nN. Higher values imply that the cantilever 

remains attached to the surface, without registering the real adhesion force. Looking at 

the different force curves, 9 nN is established as a good threshold between the real and 

the fictitious values. 

 Data correlation 

Once the data were collected, the rock chips were dried and carbon coated for SEM 

analyses. SEM images and EDX maps of the same areas analysed with the AFM were 
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collected. The Hitachi SU-70 FEG SEM at Durham University was used, with an operating 

voltage of 10 kV, a working distance of 15 mm and a magnification of 1k ×. EDX maps of 

the same areas were also collected at a resolution of 1024 × 884 pixels, an energy range of 

20 keV and a dwell time of 250 µs. The CFM topography and adhesion maps were then 

compared to the SEM images and the EDX chemical maps in order to assess the 

differences in adhesion forces as a function of differences in mineralogy. 

5.2.4. Infrared spectroscopy (IR spectroscopy) 

IR spectroscopy is a technique used to have information on the vibrational bands present 

in a    chemical compound (El-Saleh, 1996). IR spectroscopy involves the use of infrared 

radiation on a material. When the IR laser interacts with the material, the photons in that 

material are absorbed and vibrate. The molecules have different degrees of vibrational 

modes, meaning that every molecule can vibrate in different ways. The vibrational modes 

correspond to particular bond types, which are associated with specific energies and 

therefore frequency of the vibrations. The combination of the vibration types at specific 

frequencies creates a specific fingerprint for each measured compound. The possible 

vibrational modes are represented in Figure 4.5. The fingerprint is a function of the 

frequency (or wavelength) of the light absorbed. The most studied infrared region is 

between 4000 cm-1 and 400 cm-1, as most of the vibrational frequencies are in that range. 

However, the adsorption of the electromagnetic IR radiation only occurs when the 

molecule presents a dipole moment, i.e. areas of partially positive and negative charge 

(Fifield and Kealey, 1991; Harvey, 2000; Pavia et al., 2009; Smith, 2011). In Fourier-

Transform Infrared (FT-IR) analyses, after the IR source has hit the sample and excited 

the molecules, the vibrations will be detected in forms of frequencies by means of a 

photoconductive detector. The AFM-IR methodology utilises the same IR principles, but 

the setting and sensitivity of the instrument differ from the original FT-IR.  

5.2.5. Atomic Force Microscopy combined with a nano-IR source (AFM-IR) 

Prior to the analyses, four Eagle Ford rock chips from the three maturity windows (Table 

5.1) were Ar-Ion polished using a Gatan precision Ion Polishing system for 5 hrs at a beam 
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angle 3° and 5kV. A nanoIR2 system (Anasys Instruments, Santa Barbara, CA) at Bruker, 

Karlsruhe, DE, was used to analyse the chemistry of the organic compounds in the samples. 

For the analyses, two IR tunable laser sources with different wavelength ranges were 

chosen. For the 2700-4000 cm-1 wavenumber range (high-range), a Fastspectra OPO laser 

was used and for wavenumbers comprised between 900 and 1900 cm-1 (mid-range), a 

PointSpectra QCL laser was used. 

A gold-coated contact mode tip was used for the whole set of experiments. The metal 

coating allows the generation of an electric field on the tip, which intensifies the incident 

radiation (Dazzi and Prater, 2017). To calibrate the instrument and test the working 

method, a pmma (polymethyl methacrylate) test sample was first used. After the 

collection of the background spectra, the IR laser was tuned in 4 different spectra ranges 

between 900 and 1900 cm-1, and in 1 spectra range for wavelengths between 2700 and 4000 

cm-1. This in order to provide more accurate results and to focus the laser onto the correct 

vibrational frequencies. As the IR sources are different, the data with the two lasers must 

be acquired in separate moments. The background spectra collection and the frequency 

tuning were performed before examining every sample. All the IR spectra were smoothed 

using the Savitzky-Golay algorithm with a three-point average in the Anasys instruments 

software Analysis studio and the two laser spectra were plotted in the same diagram 

normalising the frequency to the corresponding incident power. The chosen resolution 

was 4 cm-1 for the mid-range wavelength interval and 10 cm-1 for the high-range. For the 

chemical mapping of one area at a specific frequency, the 1630 cm-1 and the 2920 cm-1 

wavelengths were chosen. These wavelengths correspond to the C=C aromatic vibration 

and to the CH2 aliphatic stretching respectively. These absorbance bands were chosen as 

they are commonly found in organic compounds. The mapped areas were selected by 

looking at low-resolution SEM maps acquired prior to the AFM analysis using a Hitachi 

SU-70 FEG SEM. The maps were taken at a magnification of 200 ×, an accelerating voltage 

of 10 kV and a dwell time of 3 µs. The resolution was 512 × 442 pixels. The SEM maps 

allowed to locate the spots on the surface where different types of organic matter were 

present. For each sample, at least 4 areas of variable sizes presenting organic matter were 

analysed. To validate the results, the IR spectra point analysis was repeated two times for 

each different organic matter compound. Aliphatic to aromatic ratios were also calculated 
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using Craddock’s method (Craddock et al., 2015); the relative the A-factor is here defined 

by the changes in intensities of IR absorbance bands between the aliphatic C-H and the 

aromatic C=C stretching vibrations at 1430 and 1600 cm-1 respectively. 
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OW2_area1_1 0.021 9.000 1.896 

0.44 2.6 8 43.2 0.8 3.9 

OW2_area1_2 0.000 8.718 3.349 

OW2_area1_3 0.000 2.300 0.860 

OW2_area2_2 0.016 6.528 0.785 

OW2_area2_3 0.000 5.820 0.890 

OW2_area3_4 0.018 4.339 0.745 

OW2_area3_5 0.023 9.000 0.790 

OW2_area3_6 0.021 8.352 0.609 

OW2_area4_1 0.017 8.048 1.037 

OW2_area4_3 0.028 8.082 1.328 

GW2_area1_7 0.010 9.000 0.297 

0.5 2.3 13.1 82.9 1.4 1.6 

GW2_area1_8 0.014 3.042 0.178 

GW2_area1_10 0.010 2.887 0.382 

GW2_area2_1 0.006 3.846 0.292 

GW2_area3_2 0.012 4.406 0.413 

GW2_area3_1 0.013 2.849 0.433 

GW2_area3_2 0.011 3.353 0.353 

GW2_area4_2 0.016 1.772 0.155 

GW2_area4_3 0.012 3.394 0.342 

GW2_area5_4 0.009 9.000 0.327 

GW2_area5_6 0.013 9.000 0.357 

H3A4_area1_1 0.013 9.000 0.592 

1.2 0.7 5.4 90.7 1.4 0 

H3A4_area1_2 0.000 9.000 2.883 

H3A4_area1_3 0.020 8.795 1.127 

H3A4_area1_4 0.000 7.601 1.806 

H3A4_area3_1 0.022 6.333 2.033 

H3A4_area4_1 0.009 3.040 0.360 

H3A4_area4_2 0.011 3.010 0.560 

H3A4_area4_6 0.012 3.164 0.391 

H3A4_area4_8 0.012 3.417 0.500 

H3A4_area5_1 0.007 5.003 1.095 

H3A4_area5_3 0.009 5.427 0.900 
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Table 5.2: List of samples used in the CFM analysis with the minimum, maximum and average 

adhesion force value (nN) for each 10 x 10 µm area analysed. Thermal maturity, TOC (wt %) and 

XRD data (%) are also listed. 
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H3A5_area1_9 0.090 9.000 1.162 

1.2 6 10.6 50.7 21.8 1.3 

H3A5_area2_5 0.014 6.590 0.670 

H3A5_area3_8 0.014 6.034 0.434 

H3A5_area3_9 0.010 7.137 0.576 

H3A5_area3_10 0.012 7.993 0.416 

H3A5_area5_7 0.012 9.000 1.051 

H3A5_area5_11 0.015 7.078 0.297 

H3A5_area6_10 0.013 9.000 0.233 

H3A5_area6_11 0.020 5.923 0.618 

H3A5_area6_12 0.010 9.000 0.320 

IM2_3_area1_1 0.000 9.000 3.938 

0.5 7.9 24.2 50.1 7.2 1.8 

IM2_3_area1_2 0.006 9.000 4.113 

IM2_3_area1_3 0.155 9.000 5.297 

IM2_3_area1_4 0.335 7.665 4.263 

IM2_3_area2_1 0.161 9.000 3.887 

IM2_3_area2_2 0.104 9.000 2.470 

IM2_3_area2_4 0.235 4.126 0.666 

IM2_3_area2_5 0.289 3.123 1.236 

IM2_3_area3_1 0.026 9.000 0.099 

IM2_3_area3_2 0.157 5.120 0.459 

IM2_3_area3_3 0.059 6.773 1.658 

IM2_3_area3_4 0.569 8.633 3.459 

IM2_3_area4_1 0.365 6.558 1.269 

IM2_3_area4_2 0.257 6.480 1.987 

IM2_3_area4_3 0.316 7.554 1.327 

IM2_3_area4_4 0.215 8.125 2.559 

IM2_3_area5_1 0.037 4.666 3.598 

IM2_3_area5_2 0.026 5.168 6.991 

IM2_3_area5_3 0.259 6.597 5.160 

IM2_3_area5_4 0.000 9.000 0.055 

IM2_3_area6_1 0.099 5.668 4.668 

IM2_3_area6_2 0.369 9.000 3.547 

IM2_3_area6_3 0.054 9.000 1.326 

IM2_1_area1_1 0.007 4.114 0.629 

0.5 5.8 33.2 36.3 6.6 12.9 

IM2_1_area1_2 0.000 4.262 0.779 

IM2_1_area1_3 0.008 2.223 0.284 

IM2_1_area1_4 0.008 3.316 0.308 

IM2_1_area2_1 0.013 2.560 0.343 

IM2_1_area2_2 0.011 3.651 0.382 

IM2_1_area2_3 0.014 2.691 0.582 

IM2_1_area2_4 0.094 3.798 0.727 

IM2_1_area2_5 0.013 6.866 1.371 

IM2_1_area2_6 0.013 6.866 1.371 



226      Chapter 5 

 

5.3. Results 

The samples were analysed with a suite of techniques that enabled to have a better 

understanding on the surface properties in relation to the mineralogy, the organic content 

and organic chemistry. The possibility of analysing samples at different thermal 

maturities is also providing insights on the evolution of the wettability of the system in 

relation to the evolution of the organic matter.   

5.3.1. Environmental Scanning Electron Microscope (ESEM) 

Freshly cleaved rock chips from an outcrop sample (OC_2, R0 0.5%) and from three 

different wells were analysed using the ESEM (Table 5.1). The behaviour of the water 

condensed onto the surfaces of the samples can provide information on the hydrophilicity 

or hydrophobicity of the different mineral surfaces of the rock chips. 

Three images of a foram test from an outcrop sample (OC_2, R0 0.5%) were taken at 

intervals of 1 minute (Figure 5.4). The water droplets are observed to condense onto the 

surface and to rapidly spread, completely covering the surface of the foram (Figure 5.4 c). 

The sequence indicates a hydrophilic behaviour of the calcitic mineral, also seen in Figure 

5.5 (sample IM2_3, R0 0.5%). The minerals surrounding the broken chamber of the foram 

are not distinguishable. Figure 5.6 (sample IM2_3, R0 0.5%) focuses on the heterogeneous 

matrix. At intervals of 1 minute per image, the water gradually coats most of the minerals, 

leaving kaolinite plates and small silt grains uncovered. The different wetting of the 

surfaces underlines a higher hydrophobicity of the quartz and of the kaolinite.  
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Figure 5.4: Sequence of ESEM images of a foram test in sample OC_2 (R0 0.5%) taken at intervals 

of 1 minute. In a) red arrows indicate the water droplets on a smooth , concave foram test. In b) 

the droplets start to increase in size and spread and in c) they cover uniformly the whole foram 

chamber. 
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Figure 5.6: ESEM image sequence of the heterogeneous matrix in sample IM2_3 (R0 0.5%).The 

silicate sub-angular grains (red arrows) and the kaolinite plates (green arrow) remain uncovered 

by water, indicating a more hydrophobic behaviour compared to the rest of the matrix 

 

Figure 5.5: ESEM image of a calcite surface in sample IM2_3 (R0 0.5%). The smooth surface 

appears to be completely covered by water.  
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In Figure 5.7 (sample OW2, R0 0.9%), within the matrix a coccolith, silicate sub-angular 

minerals and a pyrite framboid were identified. The coccolith results completely covered 

by water, whereas the silicates and the pyrite framboids remain exposed. This indicates 

that the pyrite and silicates have a similar hydrophobicity, whereas the carbonate material 

is less hydrophobic. Figure 5.7 (a) and (b) are interpreted to show large (> 50 µm) calcite 

cement crystal surfaces of a high maturity sample (sample GW7, R0 1.2%). The droplets 

on the smooth surfaces are indicative of a more oil-wetting behaviour compared to the 

calcite surface in Figure 5.5 (sample IM2_3, R0 0.5%). 

  

Figure 5.7: ESEM image sequence of the heterogeneous matrix in sample OW2 (R0 0.9%).The silicate 

sub-angular grains (red arrows) and a pyrite framboid (blue arrow) are not covered by water 

unlike the rest of the matrix, indicating an hydrophobic behaviour. The coccolith (orange arrow) is 

instead completely covered by water, indicative of a more hydrophilic behaviour. 

Figure 5.8: ESEM images of calcite cement surfaces in sample H3A_7 (R0 1.2%). Both the figures 

show a surface with water droplets that are not spreading onto the surface, indicating a 

hydrophobic behaviour. 
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5.3.2.  Chemical Force Microscopy (CFM) 

Four samples from the immature window (R0 0.44%-0.5%) and two samples from the gas 

window (R0 1.2%) were analysed using the chemical force microscopy as a means to 

understand the wettability changes (Table 5.2). To obtain as accurate as possible analysis 

of natural pore surfaces, the surfaces analysed were freshly cleaved rock chips. 

 Overall adhesion force measurements 

The overall results from the CFM experiments do not show any trend with the increase in 

maturity (Figure 5.9). The average adhesion values for the adhesion forces in the areas 

analysed range between 0.3 nN for sample GW2 to 2.3 nN in sample IM2_3. The variations 

in the adhesion forces within the same areas are significant (Table 5.2), whereas there is 

no relationship between the average adhesion forces and the maturity of the samples. This 

indicates that in these samples the adhesion forces depend on nanometric variations 

rather than on maturity differences. The TOC (wt %) values exhibit a moderate correlation 

(R2=0.32) with the adhesion forces values, suggesting that the adhesion forces could be 

correlated to the amount of oil that has migrated within the porous network of the 

samples. Another possibility is that with more organic matter in the system there are more 

chances of analysing an adhesive organic matter phase. 

 

R0 0.4% 

R0 0.5% 

R0 1.2% 

Figure 5.9: Average adhesion force for all the areas analysed, distinguished by thermal maturity. The 

highest average adhesion forces are found in the immature window (R0 0.5%). There is no trend with 

the average adhesion forces and the increase in maturity. 
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 Topography and adhesion forces correlation 

For all the areas, a cross-correlation between the topography and the adhesion force was 

made. The cross-plots did not show any correlation in any of the areas analysed. In Figure 

5.10, two examples of cross-plots for two of the samples analysed. 

 

 Adhesion force values and SEM maps 

As mentioned in the previous paragraph, each area analysed with the chemical force 

microscope exhibits differences in values. To better understand whether the changes in 

adhesion force values are determined by mineralogical or organic constraints, CFM 

topography and adhesion maps were correlated with SEM and SEM-EDS chemical maps. 

The correlation was performed on one or two areas for each of the samples. Figure 5.11 

displays a coccolith within the matrix in sample IM2_3 (R0 0.5%). The matrix is formed by 

clays, quartz, pyrite and carbonate minerals and organic matter. The higher adhesion 

values are noticed in the lower topographic areas, i.e. within the coccolith and in the 

matrix, presumably in a pore throat. The higher adhesion values (4 nN) are correlated to 

the presence of clays (kaolinite) mixed with organic matter within the coccolith (darker 

colour) and to the presence of organic matter.  

Figure 5.10: Cross-correlation between the topography (red) and the adhesion (blue) plots taken 

over the same line of a) sample H3A4 (area 4_6) and b) sample IM2_3 (area 1_4). 
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In Figure 5.12, two other topography lows are observed in both the CFM topography and 

in the SEM map. The adhesion maps report the maximum adhesion forces (3.8 nN) in the 

topography lows. SEM-EDS maps of the same area underline the presence of C and S, 

typical of organic matter, in the same areas, suggesting that the topography lows 

correspond to exposed pore surfaces, possibly connected to each other, containing organic 

carbon.  

 

 

Figure 5.11: CFM rock chips experiments of sample IM2_3 (R0 0.5%). a) is a topographic CFM map, 

b) is an SEM image of the corresponding area, c) is the CFM adhesion force map and d) is the SEM-

EDS corresponding chemical map. 
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Figure 5.12: CFM rock chips experiments of sample IM2_1 (R0 0.5%). a) is a topographic CFM map, 

b) is an SEM image of the corresponding area, c) is the CFM adhesion force map and d) is the SEM-

EDS corresponding chemical map. 
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The rest of the area analysed presents adhesion values between 0 and 2.2 nN, which do 

not correlate to any specific mineral. Figure 5.13 (b) is an image of an area of sample H3A3 

(R0 1.2%), showing a coccolith within a heterogeneous matrix. The SEM-EDS map 

indicates the presence of a predominantly carbonate matrix, with traces of quartz and clay 

minerals. The adhesion force map shows values comprised between 0 nN and 1.5 nN in 

the carbonate and siliciclastic matrix, between 2 and 4 nN in areas where kaolinite and 

pyrite minerals are present. Within the coccolith, the high adhesion values correlate 

instead to the presence of a bituminous phase, indicated by the C and S in the SEM-EDS 

maps. 

 

Figure 5.13: CFM rock chips experiments of sample H3A3 (R0 1.2%). a) is a topographic CFM map, 

b) is an SEM image of the corresponding area, c) is the CFM adhesion force map and d) is the 

SEM-EDS corresponding chemical map. 
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The higher adhesion values on the kaolinites and pyrites compared to the carbonates are 

indicative of a more oil-wet behaviour of the former to the latter, as also suggested by 

ESEM analyses (see paragraph 5.3.1). Figure 5.14 shows the heterogeneous matrix of 

sample OW2 (R0 0.44%). The adhesion values in the area vary between 0.01 and 4.3 nN. 

The higher adhesion values are correlated to the presence of kaolinite clays. The silicates 

show slightly higher (~1 nN) values compared to the carbonates. The lack of high 

adhesion values within the topography lows and the scarcity of concentration of C and S  

in the SEM-EDS maps suggest that organic carbon is not present in these areas.  

 

 

 

 

 

 

 

  

Figure 5.14: CFM rock chips experiments of sample OW2 (R0 0.4%). a) is a topographic CFM map, 

b) is an SEM image of the corresponding area, c) is the CFM adhesion force map and d) is the 

SEM-EDS corresponding chemic 
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5.4. AFM-IR measurements on rock chips 

In order to have an insight on which oil molecules adhere the most to the mineral phases, 

preliminary AFM-IR tests were performed on freshly cleaved rock chips. The same areas 

of the rock chips were also analysed with the SEM and SEM-EDS to correlate the mineral 

surfaces with the organic molecules on the surfaces. 

The preliminary tests were taken on a rock chip of sample H3A5 (R0 1.2%). The rock chip 

was partially polished with the same procedure as the samples analysed with the CFM 

method. The two topography maps (Figures 5.15 and 5.16 a) indicate an inhomogeneous, 

rough surface (1000 to 1200 nm). The frequency maps (Figures 5.15 and 5.16 b) were taken 

at a frequency of 2920 cm-1, corresponding to CH2 aliphatic stretches. The colours on the 

maps are representative of the relative values in the absorbance peaks. Warm colours (i.e. 

yellow and red) are indicative of a higher absorbance at 2920 cm-1.  

 

a) b) 

c) d) 

Figure 5.15: Area 1 of an AFM-IR rock chips experiment of sample H3A5 (R0 1.2%). a) a topographic 

CFM map, b) is a CFM adhesion force map, c) is a BSEM image of the corresponding and d) is the 

SEM-EDS corresponding chemical map. The two dots in figure d) are the two locations were point-

IR analyses were made (Figure 5.17). 
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The different colours on the maps indicate a heterogeneous absorbance of the 2920 cm-1 

frequency peak. The relative frequency value distributions do not reflect the topography, 

suggesting that the different values are caused by variations in the occurrence of organic 

molecules on the surfaces, and not by topography differences. Comparing the SEM and 

SEM-EDS maps of the same areas (Figures 5.15 and 5.16 c and d), little can be inferred 

regarding the correlation between the mineralogical distribution and the relative 

absorbance values, as the SEM-EDS mapping resolution is too low. It appears that the 

surfaces are a mixture of carbonates and I/S or kaolinite clays (Figures 5.15 and 5.16 d). 

Both of the point nano-IR analyses (Figure 5.17) were taken in areas that are indicated as 

containing carbonates in the chemical maps (Figure 5.15 d). However, the IR 2920 cm-1 

frequency map and the spectra underline a difference in the absorbance peaks associated 

with organic compounds. C-O stretches at 1250 and 1710 cm-1 are associated with the 

presence of carboxyls, whereas O-H groups to hydroxyls. S-O stretches are linked to 

sulfonates and C-C bonds to the presence of aromatics.  

Figure 5.16: Area 2 of an AFM-IR rock chips experiment of sample H3A5 (R0 1.2%). a) a 

topographic CFM map, b) is a CFM adhesion force map, c) is a BSEM image of the corresponding 

and d) is the SEM-EDS corresponding chemical map. 
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5.5. AFM-IR measurements on polished rock chips 

Compared to the rock chips, the polished rocks allow to better target and visualise the 

different kinds of OM phases within the samples. Rock Eval analyses (Chapter 2) of the 

samples analysed with this technique have a different TOC (wt %) and, as they have 

different maturities, different hydrogen (HI) and oxygen indexes (OI) (Figure 5.18). 

Figure 5.17: IR point spectra of two points on the surfaces of the coccolith area in sample H3A5 in 

figure 3.11 (R0 1.2%). The green spectrum presents more peaks associated to organic compounds 

compared to the blue spectrum. 

Figure 5.18: Pseudo Van Krevelen diagram for the four polished samples analysed using the AFM-

IR technique. Yellow corresponds to sample IM2_3, blue to sample IM2_1, green to sample GW3 

and pink to sample H3A3. 
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The low maturity (R0 0.5%) samples (IM2_1, IM2_3) have a high Hydrogen Index (562 and 

736 respectively) and a low Oxygen Index (7 and 13 respectively). The high maturity (R0 

1.2%) samples analysed (GW3 and H3A3) have a low Hydrogen Index (98 and 87 

respectively) and a higher Oxygen Index compared to the low maturity samples (53 and 

22 respectively). The most common bonds identified by observing the IR spectra are listed 

in Table 5.3. 

Figure 5.19 (sample IM2_3, R0 0.5%) shows an AFM topography map (a), a frequency map 

at a frequency of 2920 cm-1 (b) and an SEM image of the same area (c). The frequency map 

underlines areas of higher absorbance, which correspond in the SEM maps to areas 

identified as bitumen infill in two foraminifera chambers and bitumen-filled 

microfracture. The point-IR analyses indicate a bitumen compound rich in aliphatics (C-

H bend at 1490 cm-1 and CH2 and CH3 stretches at 2860 cm-1 and 2923 cm-1). At 1050 cm-1 

IR wavenumber (cm-1)  Bond  Type of compound 
 

900-1000 
C=H bend alkenes 

O-H bend carboxyls 

  1040 Si-O stretch silicates, clays 

1050 
C-O stretch alcohols 

C-N stretch amines 

1110  
C-N stretch aliphatics/amines 

C-O stretch esters, ethers, alcohols 

1200-1350 C-O stretch carboxyls 

1370 S=O stretch sulfonates 

1395-1440 O-H bend carboxyls 

1400-1500 C-O stretch carbonates 

1410 C-H bend alkene 

1430 C-H bend aliphatic 

1510- 1610 C=C stretch  aromatics 

1620 N-H stretch amines 

1710 C=O stretches carboxyls 

2860 C-H stretches aliphatic 

3000-3100 C-H stretches aromatics 

>3000 O-H stretches carboxyls, hydroxyls 

3360-3440 N-H stretch  amines 

   

Table 5.3: IR wavenumbers and assigned molecular motion and functional group. 
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a small absorbance peak is present, indicative of either a C-O stretch from alcohols or a 

C-N stretch from amine compounds.
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Figure 5.19: AFM-IR experiments on a polished surface of sample IM2_3  (R0 0.5%). a) is a 

topographic map of the analysed are, taken simultaneously to b) which is the frequency map at 

the set wavenumber of 2920 cm-1. c) is the corresponding area under the SEM and d) the IR 

spectrum of the point indicated in the SEM image. On the y axis, the absorbance values (arbitrary 

units). As the units vary between the lasers, an arbitrary value and different y axis were chosen 

for the analyses.   
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Figure 5.20 (sample H3A3, R0 1.2%) is a foraminifera a with chambers infilled of bitumen. 

In the SEM image, it is possible to see that the bitumen presents nanoporosities, indicative 

of the generation of hydrocarbons. The frequency map of the same area shows frequency 

highs on the bitumen within the forams and on the stringer of organic matter at the top 

of the foram. Point analyses (Figure 5.20 d and e) indicate that both the kerogen and the 

bitumen present aromatics (C=C peak, 1590 cm-1 and 1605 cm-1). 

Figure 5.20: AFM-IR experiments on a polished surface of sample H3A3  (R0 1.2%). a) is a 

topographic map of the analysed are, taken simultaneously to b) which is the frequency map at 

the set wavenumber of 2920 cm-1. c) is the corresponding area under the SEM and d) the IR 

spectrum of bitumen, indicated in the SEM image with the colour orange and e) the IR spectrum 

of the kerogen, indicated in the SEM image with the colour purple. 
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The C-H stretch bands corresponding to the aliphatics are higher in the bitumen whereas 

the C=O stretches (~1040 cm-1 and 1710 cm-1), typical of carboxylic acids, esthers or ketones 

are slightly higher in the kerogen. Peaks between 3180 cm-1 and 3390 cm-1 represent either 

O-H stretches, which represent either water or alcohols on the surface of the sample or in 

the bitumen and kerogen or C-H stretches in the aromatics.  

In Figure 5.21 a comparison between the bitumen at low maturities (R0 0.5%) and the 

bitumen at high maturities (R0 1.2%) is shown. The main differences are noticed for the 

C=C aromatic stretch at 1610 cm-1, which increases with the increase in maturity and the 

C-H bends around 1430 cm-1 and C-H stretches at 2920 cm-1, which decrease at increasing 

maturities. No significant differences are noticed in the C=O carboxylic stretches.  

Figure 5.21: On the left, two SEM images and on the right the corresponding IR spectra of two 

bitumen compounds from samples a) and c) IM2_3 (R0 0.5%) and b) and d) H3A3  (R0 1.2%). The 

higher maturity bitumen has higher C=C and O-H peaks. The two dots correspond to the locations 

where the IR spectra were acquired. 
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This is consistent with the Pseudo-Van Krevelen diagram (Figure 5.18), that shows only a 

slight increase in the Oxygen Index between the low maturity sample (IM2_3, OI = 13) 

and the high maturity sample (H3A3, OI=22). 

Figure 5.22 shows topographic AFM maps, frequency maps at 2920 cm-1 and SEM maps 

of an area that is interpreted as a tasmanite in sample IM2_1, R0 0.5% and in sample H3A3 

(R0 1.2%). The frequency map highlights higher absorbance values for the organic matter 

compared to the surrounding matrix.  

 

The point IR for sample IM2_1 (Figure 5.22 a) identifies a peak at 1100 cm-1, corresponding 

to a C-O carboxylic stretch or to a C-N stretch. The carboxyl group is also visible in the 

C=O stretch at 1706 cm-1 and the O-H stretch at 3112 cm-1. An aromatic C=C stretch is 

present at 1630 cm-1. Aliphatic C-H vibrations are also visible at 1470 cm-1 (bend) and 2820 

cm-1 and 2926 cm-1 (stretches) for the CH2 and CH3 vibrational groups respectively. Point 

analysis on the tasmanite in sample H3A3 (R0 1.2%) (Figure 5.22b) shows similar peaks 

a) 

 

Figure 5.22: Figures of two Tasmanites in samples a) IM2_1 (R0 0.5%) and b) H3A3 (R0 1.2%). On 

the left, an AFM-IR topographic image. In the middle, a frequency map at 2920 cm-1 of the same 

area and on the right, the SEM images that allowed for the identification and location of the 

tasmanites in the AFM-IR experiments. The coloursed dots on the SEM images are the points were 

the IR spectra were collected. 

b)  

 

a) 
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compared to the tasmanite in sample IM2_1 (R0 0.5%). A C-H alkene bend is identified at 

955 cm-1, a C-O stretch or a C-N stretch at 1110 cm-1, a S=O stretch at 1367 cm-1 and a C-H 

alkanes or aliphatics bend at 1410 cm-1. At 1630 cm-1 the peak for the aromatic C=C stretch 

is present and has a higher absorbance compared to the same peak for the tasmanite in 

the immature window (Figure 5.23), whereas at 1710 cm-1 the carboxyl C=O stretch is 

visible but has a lower absorbance compared to the C=O stretch in the tasmanite in the 

immature window. At 1370 cm-1 peak is higher at higher maturities compared to the low 

maturity sample. At higher wavenumbers, the aliphatic CH2 and CH3 stretches are 

similarly present at 2830 cm-1 and at 2926 cm-1. The O-H stretch at ~3110 cm-1 at high 

maturities is higher, signifying the presence of either water or alcohols on the surface of 

the sample or within the maceral moiety.  

Figure 5.23: IR spectra of the Tasmanites from samples a) IM2_1 (R0 0.5%) and b) H3A3  (R0 1.2%). 

The points are indicated in the SEM maps in figure 3.16.   
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Figure 5.24 exhibits two types of organic matter in a high maturity sample (GW3, R0 1.2%). 

The bitumen phase (Figure 5.24 b) presents peaks similar to the bitumen in sample H3A3 

(Figure 5.16). The organic matter fracture infill (Figure 5.24 a) has high peaks within the 

carboxylic acid range (C-H bend at 1038 cm-1, C=O stretch at 1754 cm-1 and O-H stretch at 

3338 cm-1).  

Figure 5.24: AFM-IR experiments on a polished surface of sample GW3  (R0 1.2%). a) is a 

topographic map of the analysed are, taken simultaneously to b) which is the frequency map at 

the set wavenumber of 2920 cm-1. c) is the corresponding area under the SEM and d) the IR 

spectrum of bitumen, indicated in the SEM image with the colour celeste and e) the IR spectrum 

of an inertinite, indicated in the SEM image with the colour purple. The dots on the SEM image 

correspond to the points where the spectra were acquired. 
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The inertinite (Figure 5.24 c), in comparison, shows a lower C-O absorbance at 1120 cm-1, 

a higher C=C aromatic stretch at ~1600 cm-1 and a higher O-H esters stretch or C-H 

aromatic stretch at wavenumbers > 3000 cm-1. In order to have a better understanding of 

the different aliphatic-aromatic present in the samples, the A factor was also calculated 

for all the spectra described (Table 5.4) results show that, in general, the A-factor 

decreases with the increase in maturity for all the maceral types (except for sample GW3). 

By comparing the samples at the same maturity, the A-factor is higher in the tasmanites, 

followed by bitumen and kerogen, meaning that tasmanites yield more aliphatics, and 

possibly oxygenated groups compared to the kerogen.  

 

    

Table 5.4: Calculated A factor (proportional to aliphatics) for all the illustrated spectra in the 

samples analysed. 

  

Sample 

name 

R0 

(%) 
Maceral type 

A-factor 

(aliphatic/aromatic 

+ aliphatic) 

IM2_3 0.5 bitumen 0.46 

H3A3  1.2 bitumen 0.43 

H3A3  1.2 kerogen 0.44 

IM2_1 0.5 tasmanites 0.59 

H3A3 1.2 tasmanites 0.5 

GW3 1.2 bitumen 0.47 

GW3 1.2 kerogen 0.42 
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5.6. Discussion 

The importance of wettability for petroleum reservoirs has been known for many decades 

(Amott, 1958; Anderson, 1986). It is well established that wettability alterations affect the 

productivity and the economics of a reservoir as the oil, migrating, remains trapped 

within the porous system. Many are the aspects that need to be taken into consideration 

when studying the wettability. Given the large number of properties the wettability 

depends on, many works on wettability in reservoirs have been performed by reducing 

the variabilities in play. The majority of works on reservoir wettability and wettability 

alterations are made on clean, smooth mineral surfaces (Al Mahri et al., 2017; Basu and 

Sharma, 1997; Bryant et al., 1991; Buckley and Lord, 2003; Hamouda and Karoussi, 2008; 

Karoussi and Hamouda, 2008).  

In Chapter 4, calcite mineral surfaces were investigated to test the oil film surface 

coverage and to understand which are the molecules that affect the surface wettability the 

most. The study is in agreement with many previous works (Clementz, 1979; Cuiec, 1984), 

which attest the importance of asphaltenes in the oil-wetting of the surfaces. The use of 

clean mineral surfaces is a fundamental step into the understanding of specific aspects 

that modify the oil-surface interactions (i.e. brine composition, P-T conditions, oil 

composition). However, these experiments do not fully reflect the real mineral surface in 

the reservoir.  

5.6.1. Environmental Scanning Electron Microscopy (ESEM) analyses 

In this work, the ESEM was used to provide a qualitative assessment of the changes in 

wettability in relation to the composition of the samples. Despite no SEM-EDS chemical 

analysis was performed for these preliminary tests, from the shape and grayscale of the 

minerals in the ESEM pictures and the X-ray Diffraction chemical composition of the 

samples, it was possible to distinguish calcite cements and carbonate fossil fragments (i.e. 

foraminifera tests, coccolithic debris), pyrite, kaolinite and quartz. ESEM images indicate 

that quartz and kaolinite present a higher hydrophobicity compared to the calcite 

surfaces. Other works based on the ESEM technique display differences in wetting 
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behaviour between the different minerals; Buckman et al., (2016) released a working 

procedure to test the wettability of reservoir rocks, qualitatively attesting that quartz is 

more water-wet compared to illite and kaolinite. Deglint et al. (2017) analyse rock chip 

samples under the ESEM and quantitatively measure the contact angles in relation to the 

mineralogical complexity. The results of the study by Deglint et al. (2017) show that the 

measured contact angle for a K-feldspar crystal was 95⁰ and for a dolomite crystal 68⁰. 

Bennet et al. (2004), coupling core flooding experiments to environmental scanning 

electron microscopy (ESEM) analyses, observed that core flooding altered the wettability 

of the core plugs, rendering pore surfaces progressively more oil-wet. However, the study 

by Bennett et al. (2004), as other similar imbibition test studies  performed on core plugs 

(Habibi et al., 2016; Lan et al., 2015; Larter et al., 2000; Standnes and Austad, 2003; Strand 

et al., 2007; Zolfaghari et al., 2017), did not provide any further information on wettability 

differences relative to mineralogy variations at the microscale. Moreover, more recent 

works (Deglint et al., 2017) observe that if the core plugs are not properly preserved, the 

core experiments will not provide adequate results. Unlike the other studies, here samples 

from different thermal maturities (R0 0.5%, 0.9% and 1.2%) were considered (Figure 5.19). 

In this study, ESEM analyses from different thermal maturities show that comparable 

calcite surfaces have more oil-wet behaviour in the high-maturity sample (R0 1.2%) 

compared to the low-maturity sample. This wettability change implies that wetting 

behaviour is not only controlled by the surface mineralogy, but also by other factors. One 

hypothesis is that the increase in thermal maturity also causes an increase in the oil 

produced, which in turn migrates along the pore network and gradually modifies the 

wettability of the surfaces, as it happens during the core-flooding experiments (Yuan et 

al., 2019). Another hypothesis could be related to the fact that, at higher maturities, the 

carbonate-saturated fluids are enriched in organic compounds, which become 

immediately adsorbed onto the carbonate surfaces (Chave, 1965; Chave and Suess, 1970). 

Moreover, higher maturities imply that the hydrocarbons are subject to different 

temperatures. Namely, at increasing maturities the organic matter generates 

progressively lighter composites, that migrate and are expelled. Part of the oil, however, 

is retained into the system and is subject to chemical composition changes (Jia et al., 2014). 
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These chemical composition changes, as seen in chapter 4, are responsible for different 

wetting behaviours. 

5.6.2. CFM on rock chips 

The ESEM provides important preliminary information on the wettability of the samples 

and allows to broadly distinguish wettability changes with changes in thermal maturity 

and composition. However, wettability measurements in an unconventional reservoir 

such as the Eagle Ford are particularly complicated by the mineralogical heterogeneity at 

the nanoscale and by the very small (nanometer-scale) pore system (Habibi et al., 2016; 

Roshan et al., 2016; Singh, 2016). Over the past decade, to study the wettability in 

reservoirs, authors have used the Chemical Force Microscopy technique (CFM) method 

(Hassenkam et al., 2009; Hilner et al., 2015; Kumar et al., 2005b; Skovbjerg et al., 2013, 

2012). This method was also used in this chapter, as it allows to provide a more 

quantitative and detailed analysis of the rock chips. Despite the benefits of analysing the 

behaviour of an actual reservoir rock, working on rock chips, in general, impedes to 

clearly discern the factors impacting the wettability. For example, surface roughness has 

been proven to affect the wettability of a sample (Basu and Sharma, 1997; Morrow and 

Mason, 2001). Moreover, surface roughness becomes problematic while performing the 

CFM experiments, as the AFM instrument has limited z capacities (Habibi et al., 2016). 

This is why many authors use this method to test the solution salinity changes effects on 

quartz and mica surfaces (Hassenkam et al., 2009b; Hilner et al., 2015b; Matthiesen et al., 

2016). For the sake of this work, the surface roughness of the samples was not considered 

in the wettability measurements and the topography issue during the experiments has 

been for the first time solved by partially Ar-Ion milling the surface, allowing the 

cantilever to reach most of the topographic lows (Figure 5.2). 

5.6.3. The CFM combined with EDS analyses 

The combination of CFM and SEM-EDS analyses was made in an effort to understand if 

the variations in the adhesion forces seen in the CFM analyses depend on mineralogy 

compositional changes. The cross-correlations showed that the kaolinite bears more 
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adhesion forces than illite-smectite clays or calcite and quartz, similarly to what observed 

in the ESEM experiments and by previous works; Borysenko et al. (2009) argued that 

illitic-smectitic mudrocks are more hydrophilic than kaolinitic mudrocks. This theory is 

in line with the studies by Saada, (1995) and Bantignies et al. (1997), that suggest that the 

Al-OH linkages present on the kaolinite surfaces play an important role in the adsorption 

of the hydrocarbon molecules, and argue that the Si and Al environments on the illite 

groups are instead insensitive to the adsorption processes. The low adhesion forces on 

quartz crystals could be caused by the fact that generally, quartz is hydrophilic, due to 

the exposure of Si and  -OH groups on the surfaces. Contrarily to the ESEM analyses, no 

differences in adhesion forces are detected between the pyrite and the calcite surfaces, 

underlying a possible mixed-wetting behaviour of this mineral as suggested by Habibi et 

al. (2016). Calcite surfaces analysed with the CFM instead show low adhesion values. This 

is similar to the works by Hassenkam et al. (2009) and Skovbjerg et al. (2012), that analyse 

clean North Sea chalk surface properties. In their work, they also suggest that differences 

in adhesion forces on the coccoliths are caused by the presence of either polysaccharides 

remains or clay nanoparticles on the top of the calcite, which is more hydrophobic than 

calcite. This was also suggested by Hilner et al. (2015) examining quartz surfaces. 

Skovbjerg et al (2012) also validated the presence of clay nanoparticles using XRD 

analyses. The presence of clay nanoparticles was However, the resolution of the adhesion 

experiments is in the experiments performed in this thesis are too low (0.3 µm/pixel) to 

detect the presence of nanometric adhesion particles on the calcite surfaces as in Skovbjerg 

et al., (2012) and in Hassenkam et al., (2011). To detect compositional differences on the 

coccolith surfaces, the AFM-IR method was used. This method has the advantage of not 

being destructive as other techniques (i.e. XRD) and of being able to visualise the surface 

in-situ.  

5.6.4. AFM-IR on coccolith surfaces 

Here, the analysis of the surfaces of coccolith debris by means of the novel AFM-IR 

technique has allowed shedding light on the differences in chemical composition of the 

coccolith surfaces. By comparing the AFM-IR spectrum of a point with high absorbance 

with a spectrum of a point with fewer absorbance values, we notice that the first spectrum 
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presents vibrational peaks at frequencies related to organic or inorganic compound 

functional groups, i.e. carboxyls, sulfates and hydroxyls (Figure 5.17). These groups are 

also the ones that commonly characterise the polysaccharides (Fernando et al., 2017). 

Moreover, the peaks around 1000 cm-1 commonly found in clay infrared spectroscopy 

measurements (Madejová et al., 2017) in this case are not present. The hypothesis that the 

differences in adhesion forces on the coccolith surfaces are caused by the presence of 

polysaccharides, which attracts more oil molecules than the calcite, is a possibility. 

However, the high maturities and depositional processes at which these samples have 

been subject to render their presence unlikely. Nevertheless, the presence of nanometre-

sized clays here and in other parts of the sample cannot be ruled out, analogously to the 

fact that the oil film is never completely homogeneous even on fresh, smooth mineral 

surfaces (see Chapter 4).  

5.6.5. Organic matter changes with thermal maturity 

AFM-IR measurements on different types of organic matter (i.e. kerogen, bitumen, 

tasmanites) have also testified chemical changes between the organic matter types as well 

as chemical changes with thermal maturity. Tasmanites contain more aliphatic 

compounds than bitumen, which in turn contains more aliphatic compounds than 

kerogen (Table 5.4) moreover, at increasing maturities the aromatic/aliphatic ratio 

increases in all organic matter types analysed. This is in line with previous studies on 

individual macerals (Birdwell and Washburn, 2015; Chen et al., 2013; Dereppe et al., 1994; 

DiStefano et al., 2016; Hackley et al., 2017). Although there is plenty of literature on the 

thermal maturation of organic matter, most of the previous studies were performed using 

destructive methods. Bernard et al., (2012) analysed the organic matter chemistry of a gas 

shale sample using a non-destructive method, the X-ray absorption near edge structure 

(XANES) spectra. Despite bearing a very high resolution (25 nm) compared to a 

traditional FT-IR method, this technique is not easily accessible as it requires the use of a 

synchrotron. Moreover, the study by Bernard et al. (2012) only analyses a sample from 

the gas maturity window. More recently, a study published by Yang et al. (2017) uses for 

the first time the AFM-IR technology to analyse the organic matter chemical changes in 

gas shale samples (Figure 5.24). Similarly to the work by Yang et al. (2017), the work that 
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has been carried out in this thesis analyses different organic macerals from the immature 

window to the gas window. Both the works show a high variation in the composition of 

the organic matter with an increase in maturity. The results in Yang et al. (2017) are similar 

to the results in this work, with the main difference being the higher resolution and 

spectral range of this work compared to the work by Yang et al. (2017).  

  

  

Figure 5.25: Solid bitumenIR peaks at increasing maturities (from Yang et al. (2017)). 
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5.7. Conclusions 

Environmental Scanning Electron Microscopy (ESEM) analyses qualitatively 

demonstrated that the mineralogy of a reservoir rock affects the wettability behaviour. In 

particular, calcite is more water-wet than kaolinite and pyrite and calcite surfaces become 

more oil-wet with the increase in thermal maturity. 

The Chemical Force Microscopy (CFM) is a powerful technique to analyse the adhesion 

forces changes at the nanoscale. On the rock chips analysed, at different maturities, is able 

to highlight high differences in the adhesion force values (0 to 9 nN) even in 10 x 10 µm 

areas. The locations with a high concentration of organic matter on the SEM-EDS maps 

correspond to points of high adhesion values relative to the surrounding points. The 

calcite surfaces show less adhesion compared to the quartz and to the kaolinite surfaces.  

The AFM-IR tool was here used for the first time to test the surface chemistry variations 

on freshly cleaved rock chips. The combination of the technique with SEM-EDS maps of 

the same areas showed that, although the chemical mapping on coccolithic debris shows 

a homogeneity in the mineral chemistry, the frequency maps on the same areas exhibit 

molecular variations at the nanoscale. Point AFM-IR spectra collected from two points of 

a coccolith surface underline the chemical differences. The areas with more organic 

compounds on the surface suggest the presence of polysaccharides or nanometre-sized 

clays, which could attract hydrocarbons and render the coccolith surface more oil-wet. 

Although the IR peaks yield peaks common in the polysaccharides they are believed to 

be diagenetically unstable, rendering the clays hypothesis more valid. 

The AFM-IR technique was also used to test the chemistry variations of different organic 

types with an increase in thermal maturity (R0 0.5% to 1.2%). The bitumen, the tasmanites 

and the inertinite considered in this work show differences in the chemical composition, 

with the bitumen being richer in aliphatics and the kerogen in carboxylic acids. From the 

immature to the gas window, the bitumen and the kerogen show a decrease in aliphatics 

and an increase in aromatics. 

The interpretation of the point IR spectra also gives an insight into the wetting behaviour 

of the organic molecules. The increase in aromatic molecules with the increase in maturity 
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is linked to a lower affinity between the organics and the water molecules and therefore 

increases the oil-wetting of the surfaces. 
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Chapter 6 

Discussion and Conclusions 

6.  

6.1. Summary and key findings 

A combination of petrographic, physical and chemical analytical techniques has allowed 

the quantitative characterisation of the pore system and the pore surfaces of the Lower 

Eagle Ford Formation. In summary, the adoption of a multi-scale and multi-technique 

approach and the availability of samples from different maturities and microfacies 

allowed to 1) investigate the role of depositional settings and diagenesis as controls on 

the pore system; 2) understand how the pore system is linked to fabric and texture; 3) 

determine what role oil chemistry plays in surface chemistry alteration processes; 4) 

visualise and interpret wettability variations with nanoscale surface changes at the 

nanoscale and 5) investigate in situ the chemical changes in OM as a function of type and 

maturity and associate wettability variations to the chemical changes. This study 

demonstrates that a multi-disciplinary approach, although usually neglected, is necessary 

to fully understand the controlling factors of pore systems in unconventional reservoirs. 

Moreover, although being focused on a very specific case, the study is a clear example of 

how a multi disciplinary approach is often essential for a full comprehension of a broader 

range of scientific conundrums. Geologically speaking, the workflow that is presented 

here can also be applied to other case studies in unconventional and conventional 

reservoirs, as well as to more sustainable projects such as water reservoirs and carbon 

capture and storage applications. Nonetheless, employing several analytical techniques 

to chemically and physically characterise the porosities and the pore surfaces is essential 
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for understanding the intrinsic properties of materials in different sciences (i.e. 

pharmaceutical, food and nanotechnology disciplines) .                       

6.1.1. Microfacies 

Determination of the petrographic and petrophysical characteristics of conventional and 

unconventional reservoirs is a standard procedure for determining reservoir quality 

(Aplin and Macquaker, 2011; Mathia et al., 2019; Milliken, 2014; Passey et al., 2010). 

However, if in conventional reservoirs mineralogical and textural variations at the micro- 

and nanoscale mildly affect the whole pore-system network, in unconventional reservoirs 

these variations, have an even higher impact, as the pore-system and the minerals are in 

the same scale range. This study demonstrates that in the Eagle Ford, mineralogical, fabric 

and textural heterogeneities exert strong controls on the pore system. Bulk mineralogy 

data, together with Rock-Eval and microscopy analyses, have allowed distinguishing 

three microfacies and their respective compositional characteristics (Figure 2.17). 

Laminated foraminiferal mudstones are composed of carbonates, silicates and clays. 

Wackestones and packstones, on the other hand, are mainly composed of carbonates (> 

81%) and have undergone extensive carbonate cementation and reprecipitation. The 

variations between the microfacies are attributable to the different depositional 

environments; the laminations in the mudstones and in the wackestones are interpreted 

to have been formed in an intermittently dysoxic environment, whereas the massive 

fabric of reworked bioclasts (>20 µm) of the packstones suggests a more shallow, 

oxygenated environment. In the wackestone samples, pervasive carbonate dissolution 

and reprecipitation are here interpreted to have obliterated the original laminated fabric 

of the samples. Burial history interpretation, as well as mineralogy and texture variations, 

have important implications for the reservoir quality and the assessment of the resources; 

high TOC (wt %) content of type II kerogen, combined with lower amounts of cements in 

the laminated foraminiferal mudstones reveals a better source rock and reservoir 

potential compared to the wackestones and packstones microfacies. Higher TOC content, 

indeed, is reflective of a more connected organic pathway for the oil and gas migration 
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(Liu et al., 2017; Nie et al., 2018). In turn, high amounts of carbonate cementation have 

been linked in previous studies to porosity losses (Mathia et al., 2016; Ko et al., 2017).  

6.1.2. Pore systems   

Quantitative analyses on porosity loss and increase, as well as changes in pore shapes, 

sizes and connectivities have in this study been related to microfacies and diagenetic 

processes. Scanning Electron Microscopy has allowed the pores the pores to be classified 

in five types: interparticle matrix pores, intraparticle mineral pores, intraparticle fossil 

pores, intraparticle dissolution pores and organic matter pores Figure 2.21. Pore types 

were found to be strongly related to the microfacies type and thermal maturity of the 

samples Table 3.3: Pore types and corresponding microfacies and maturity. In the 

wackestone and packstone microfacies, the pores are mainly interparticle matrix pores 

(average value ~ 57%) and interpreted to be related to the rigid carbonate framework, 

which composes more than 80% of the overall mineral components. Intraparticle 

dissolution pores and organic matter pores are also present but in minor abundances. In 

the laminated foraminiferal mudstones, on the other hand, the pores are mainly 

interparticle matrix pores. In the same microfacies, in the gas window, the organic matter-

related intraparticle pores increase while the intraparticle matrix pores decrease. Changes 

in shape factors from the immature to the gas window show that: pores become more 

oriented perpendicular to the burial stress, elongated and circular. A similar trend was 

observed in the pore shapes of other tight formations by Klaver et al., (2016) and Busch et 

al., (2017). Here this trend is only seen in the mudstone and wackestone samples. The 

packstone samples, regardless of higher maturity, display pore shapes similar to the 

immature laminated mudstones. Possibly, this is caused by the lack of ductile components 

(i.e. organic matter and clays) in the packstone samples and consequently a lack of 

compaction and rearrangement of the grains and pores (Milliken and Curtis, 2016). 

Moreover, less organic matter also translates into fewer circular nanopores as the circular 

nanopores are linked, similarly to other studies (Loucks et al., 2012; Valenza et al., 2013), 

to gas generation.  
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6.1.3. Pore system connectivity 

Mercury Injection Porosimeter (MICP) data combined with Gas Adsorption and Focused 

Ion Beam (FIB) analyses have revealed that not only the pore shapes and types, but also 

the pore sizes and the whole connectivity of the system changes as a function of 

microfacies and diagenesis; in the wackestone and in the packstone samples the pore 

system is mainly formed by interparticle matrix pore throats and bodies between 10 and 

100 nm, with high amounts of cements occupying the available primary and secondary 

pore spaces. In the laminated mudstone samples, the pore sizes present a bimodal 

distribution (< 4 nm and between 10 and 100 nm), and the average pore values register a 

shift towards lower values (< 10 nm) with increasing maturities. This shift is interpreted 

to be caused by increasing compaction and cementation processes, which occlude the 

interparticle and intraparticle pores associated with the mineral framework, and by the 

generation of organic pores, formed by the thermal maturation of the organic matter. 

Despite the reduction in pore sizes due to compaction and cementation, the foraminiferal 

laminated mudstone pore system presents well-connected pores even at high maturities. 

Gas adsorption and MICP analyses reveal that the pore throats are narrower (<20 nm) 

than the pore bodies (~20-100 nm). Combining the bulk data with SEM imaging has 

allowed establishing that the large pore bodies are formed by pores within the matrix, in 

the faecal pellets, and in the fossil cavities. The pore throats are instead formed by tighter 

inter- and intraparticle pores and, in the laminated foraminiferal mudstones, by the small 

organic matter pores. A similar pore network was suggested for other mudstones (Aplin 

and Moore, 2016; Clarkson et al., 2013a; Klaver et al., 2016; Mathia et al., 2019; Wang et 

al., 2016), with the main difference being that narrow pore throats are present at all 

maturities and associated with the clay-rich matrix.  

6.1.4. Millimetre-centimetre scale anisotropy 

Microtomography (micro-CT) analyses have revealed that laminated foraminiferal 

limestones present vertical heterogeneities at the microscale (Figure 2.39). High degrees 

of vertical heterogeneities at the microscale in mudstones can cause anisotropy in the fluid 
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flow and hence in the permeability of the system (Armitage et al., 2011; Chandler et al., 

2016; Mullen, 2010; Philipp et al., 2017; Rutter et al., 2017; Tiab and Donaldson, 2004; Yang 

and Aplin, 1998). The presence of layers with more clay and organic matter alternating 

with layers of cemented planktonic fossils might give rise to preferential fluid flow along 

clay and organic-rich layers, and, when fractured, at the intersection between the more 

and the less competent layer. The fact that these layers can be considered as planes of 

weakness was also suggested by other authors (Lash and Engelder, 2005; Mckernan, 2016) 

and differences in vertical and horizontal fluid flow was also suggested by Yang and 

Aplin (2007). Although numerous fractures are seen on the thin sections, in the micro-CT 

experiments as well as in the SEM polished samples, caution must be taken in accounting 

these fractures into the pore system. Although fractures are evident planes of weaknesses 

occuring along bedding, they are here discounted as part of the pore network, as they 

could be related to mishandling or stress-release (Clarkson et al., 2012; Ramiro-Ramirez, 

2016). Moreover, even if the vertical heterogeneities were quantified using micro-CT, 

more work needs to be done in the assessment of the anisotropy of the pore system. 

6.1.5. Influence of organic matter on the pore system 

Although organic pores are observed in other fine-grained reservoir studies (Loucks et 

al., 2009; Clarkson, Solano, et al., 2013; Chalmers and Bustin, 2015; Pommer et al., 2015; 

Milliken and Curtis, 2016), this reservoir presents some peculiar aspects. For instance, no 

decrease in organic pores is noticed between the immature and the oil window as seen in 

other studies (Mastalerz et al., 2013; Mathia et al., 2019). This is probably caused by the 

fact that oil generation and bitumen filling in these samples start occurring at R0 ≤ 0.44%. 

Moreover, porosity decrease associated with compaction is here hindered by the rigid 

carbonate framework. In the gas window instead, as previously mentioned, organic 

matter generates porosities. Organic matter pores are typically smaller than 20 nm and on 

average ~ 30% of the overall pore types. This conclusion is in accordance with other works 

carried on in the Eagle Ford Formation (Chalmers and Bustin, 2017; Ko et al., 2017) and 

in other fine-grained sediments (Mastalerz et al., 2008). Nonetheless, the organic matter 

influence on the pore system is also related to its type and occurrence (Ko et al., 2014; Nie 
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et al., 2018; Valenza et al., 2013). In line with this hypothesis, previous petrographic 

observations on the Eagle Ford Formation showed that fusinite and inertodetrinite, for 

example, do not contribute to the increase in porosity even if they are accounted for in the 

TOC measurements (Chalmers et al., 2017; Ko et al., 2017).  FIB-SEM data also reveal that 

in laminated foraminiferal mudstones organic matter is well connected (> 72% on all 

samples analysed). Organic matter connectivity has important implications for the 

hydrocarbons flow as it can lead to a potential migration pathway as well as to an 

interconnected pore pace in the organics,  which favours the free gas phase flow (Loucks 

et al., 2009; Wang and Reed, 2009; Ambrose et al., 2010; Sondergeld et al., 2010). MICP 

and gas adsorption data indicate a connected pore network, underlying that organic pores 

are interconnected. However, in the wackestones and in the packstones the TOC values 

are too low (< 2.5 %) to allow high amounts of organic matter-related pores and an organic 

matter connected network. 

6.1.6. Organic matter evolution at increasing thermal maturities 

During maturation, most generated oil is expelled by organic matter migration through 

the pore network (Jia et al., 2014). As organic matter migrates through the pore network, 

pore surface molecules progressively interact more with the migrated oil. Indeed, polar 

oil molecules such as phenols or fatty acids have high affinities with the molecules on the 

mineral surfaces (Aplin and Larter, 2005; Taylor et al., 1997). The interactions are 

associated to C-H and O-H bonds, which interact with the cations and progressively 

disrupt the water films on the mineral surfaces Moreover, AFM-IR studies have 

underlined the presence of several oxygenated bonds like -OH and -COOH in the 

bitumen phase. The presence of -OH and -COOH suggests that bitumen was formed in 

hydrous conditions, and that water and oil were in metastable equilibrium during oil 

generation (Helgeson et al., 1993; Mansuy and Landais, 1995; Michels et al., 1996). Oil 

generation produces water-soluble polar organic compounds, which partition first into 

water and then onto mineral surfaces (Aplin and Larter, 2005; Taylor et al., 1997). This 

suggests that the wetting state of the pore system is associated to the formation of 

hydrophobic surfaces, which progressively attract more polar and non-polar oil 
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compounds rendering the pore network mixed to oil-wet (Bennett et al., 2002; Larter et 

al., 1997, 1996). Large scale ESEM experiments validate the hypothesis that pore mineral 

surfaces progressively become more hydrophobic. When oil is generated and migrates 

into the pore system, part of the oil is also retained in the system in various forms of 

bitumen (Cardott et al., 2015). Whilst the expelled oil at increasing thermal maturities 

generates progressively lighter composites, the retained oil is gradually enriched in 

aromatics and NSO compounds (Jia et al., 2014). These compounds are typically found in 

asphaltenes, although their chemical composition is highly variable. AFM-IR 

measurements on the organic phases in the Eagle Ford samples, in line with previous 

studies on individual macerals (Birdwell and Washburn, 2015; Chen et al., 2013; Dereppe 

et al., 1994; DiStefano et al., 2016; Hackley et al., 2017), have attested that, at increasing 

maturities, the aromatic/aliphatic ratio increases in all the OM types analysed (i.e. 

inertinite, bitumen, tasmanites), testifying chemical changes in the OM with increasing 

maturities. The asphaltenes-rich bitumens are composed of aromatic units linked by 

aliphatic bridges (Michels et al., 1996; Yen et al., 1961). During thermal breakdown, the 

aliphatic units in the asphaltenes are progressively removed giving rise to a relative 

enrichment in aromatics (Michels et al., 1996) and polar compounds. The key implication 

is that the oil-wetting state of the system will depend on the maturity of the formation as 

well as on the TOC (wt %) content, and that the amount of oil-wet surfaces is positively 

correlated to the amount of TOC (Lan et al., 2015; Siddiqui et al., 2018). As the Eagle Ford 

pore system is associated to the carbonates as well as to the organic matter, it is reasonable 

to think that the migrated bitumen, especially at high maturities, produces an overall 

mixed or oil-wetting behaviour. 

6.1.7. Dissolution 

AFM point IR at increasing maturities also indicate that the ratios of acidic compounds 

increase during thermal maturation. Several previous works associate the progressively 

higher presence of carboxylic acids at higher thermal maturities to the dissolution of 

minerals (Helgeson et al., 1993; Schieber et al., 2016). Petrographic evidence of the 

presence of a progressively higher acidic medium with increasing maturities is pressure-
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solution veins and intraparticle dissolution-etched pores in carbonate and feldspar 

minerals. These dissolution processes are mainly present in the oil and gas maturity 

window, where also the acidic compound peaks measured with the AFM-IR are higher. 

Moreover, many studies indicate that the increase in adsorption of organic acids increases 

with the decrease in pH, which in turn promotes dissolution (Aksulu et al., 2012; Feng 

and Simpson, 2008; Madsen and Lind, 1998).  

6.1.8. Pore system implications of wettability measurements 

The understanding of the fluid flow behaviours and the wetting state of the pore surfaces 

has important implications for the relative permeability of the reservoir (Anovitz et al., 

2016). As fluid thermodynamics strongly depend on rock-fluid interactions (Cole et al., 

2013), it is important to analyse the pore surface chemistry as a function of pore size and 

type (Anovitz et al., 2016; Landrot et al., 2012; Peters, 2009). This is why here for the first-

time pore system analyses have been correlated to pore chemistry analyses. As seen in the 

previous paragraphs, the pore system in all the microfacies is mainly associated with 

interparticle carbonate mineral pores and, in the laminated foraminiferal mudstone 

samples in the gas window, to the intraparticle organic matter pores. Chemical Force 

Microscopy (CFM) studies combined with Atomic Force Microscopy (AFM) - nanoIR 

analyses allowed to conclude that nanoscale wettability variations occur even on 

homogeneous calcite surfaces and that these changes are influenced by localised surface 

charges and by the oil chemistry. No direct relationship was determined in this study 

between the wettability and surface force values in contrast to previous studies (Kumar 

et al. 2005, Lorenz et al. 2017). 

6.1.9. Asphaltenes  

Data in this study show how oil fractions containing more -OH and -COOH groups have 

stronger interactions with calcite surfaces.  The results indicate that it is asphaltene 

fraction of oil that most affects wettability state, rendering the pore surfaces more 

hydrophobic. These results are in accordance with many previous studies (Standnes and 
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Austad, 2003; Zhang et al., 2007; Buckley and Wang, 2002; Mahmoudvand et al., 2019; 

Mullins, 2011; Toulhoat et al., 1994; Buckley, 1995). Moreover, due to their large size and 

their affinity to be adsorbed onto porous surfaces, asphaltenes may aggregate and 

precipitate, causing a physical blockage of the pores (Al-Maamari and Buckley, 2003; 

Buckley and Wang, 2002; Sabbaghi et al., 2008; Spiecker et al., 2003). Both the alteration of 

the wettability and pores obstruction derived from asphaltenes precipitation are 

responsible to negatively affect the production phase (Davudov et al., 2018); oil-wet 

surfaces and the precipitation of asphaltenes into the pore throats have been associated to 

a reduction in pore connectivity, which leads to low reservoir permeabilities and 

hydrocarbon mobility (Buckley, 1998; Moghanloo et al., 2018).  

6.1.10. Mineralogical controls on organic adhesion to surfaces 

Chemical Force Microscopy (CFM) studies combined with Scanning Electron Microscopy 

(SEM) imaging have allowed inferring that 1) mineralogy influences adhesion and 2) 

adhesion forces vary at the nanoscale, even on the same mineral surface. In particular, 

adhesion forces on kaolinite surfaces are found to be higher than the adhesion forces on 

illite-smectite clays, calcite, pyrite or quartz. This result is in line with what observed in 

other studies (Bantignies et al., 1997; Borysenko et al., 2009; Skovbjerg et al., 2013) which 

suggest that the high adhesion on kaolinite surfaces is due to the presence of Al-OH 

bonds. These bonds, according to Saada, (1995) and Bantignies et al. (1997), would have 

high affinities with polar organic molecules.  

In the Eagle Ford, the pore system is mainly associated with the carbonates and organic 

matter, whereas kaolinite-related pores are not abundant. Moreover, especially at high 

maturities, the kaolinite content is low (< 3.3 %). Nonetheless, even if the pore system is 

not strongly associated with clays, in this study is suggested that even low quantities of 

particles in the range of the nanometer can influence the whole system. In line with this 

hypothesis is also the fact that nanometric organic content variations measured here for 

the first time with the AFM-IR on coccolith surfaces could be associated to kaolinite 

nanometric attached on the mineral surfaces, as in Skovbjerg et al., (2012). Peters (2009) 



Chapter 6   266 

 

 

also calculated that kaolinite, even measuring as little as 5% of the bulk mineralogy of 

sandstone samples, it accounted for over half of the pore-to-mineral contact area. 

6.1.11. Implications for the hydrocarbons production and storage 

Despite the fact that this study focuses on petrographic observations below the 

centimetre-scale, the findings of this work offer important implications for the 

understanding of the overall reservoir properties. This is because nanoscale 

heterogeneities and pore system properties are found to be highly correlated with the 

bulk mineralogy and the microfacies of the samples. Therefore, by knowing the 

mineralogy and the microfacies, bulk reservoir characteristics can be inferred. Firstly, it is 

possible to predict that wackestone and packstone samples have a lower hydrocarbon 

storage capacity compared to laminated foraminiferal mudstone samples. This is 

probably because in the laminated foraminiferal mudstones the high pore volumes are 

given by large macropores within the foraminifera chambers and the carbonate matrix. 

In the wackestone and packstone samples, these pores are instead occluded by carbonate 

cements, limiting the pore volumes and storage capacities. Nonetheless, in the laminated 

foraminiferal mudstones in the gas window, and despite mineral reprecipitation in 

primary pores, the organic matter in the system generates further porosity due to thermal 

cracking. Moreover, the organic matter is found to play a major role in the preservation 

of the original pores as a result of hydrocarbon expulsion and adsorption onto the mineral 

surfaces. Indeed, oil-wet surfaces are thought to inhibit mineral precipitation.  

As pore-surfaces progressively become more oil-wet, the fluid displacement and thus the 

extraction of the retained oil in the pore system become more challenging (Berg et al., 

2016; Sørgård et al., 2017). Fluid flow and fluid displacement are also complicated by the 

connectivity of the system. As previously mentioned, in the laminated foraminiferal 

mudstones in the gas window, the pore system is formed by very narrow (< 20 nm) pore 

throats. Despite the narrowness of the pores, the connectivity of the system through meso 

and micropores within the kerogen is thought by several authors to make a major 

contribution to gas flow efficiency (Chalmers et al., 2012; Chalmers and Bustin, 2008, 2007; 
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Clarkson and Bustin, 1996; Curtis et al., 2011; Keller et al., 2011; Larsen et al., 1995; Marsh, 

1987; Mathia, 2014; Unsworth et al., 1989). 

6.2. Novelties and limitations 

The petrography results in this thesis are consistent with what has been previously 

observed in the Eagle Ford (Dawson, 1997; Mcallister, 2017; Ramiro-Ramirez, 2016; 

Juergen Schieber, 2013). The main difference between this and other studies is the effort 

to provide quantitative data to all the petrographic observations. On the other hand, these 

previous works have distinguished in the same area analysed other types of facies apart 

from the foraminiferal laminated mudstones, wackestones and packstones observed here. 

This draws the attention on the high heterogeneity of the samples, and to the fact that this 

study is unlikely to cover the whole Lower Eagle Ford section. Wackestone and packstone 

samples are only available from the gas window, which could be related to their absence 

at low maturities, but also to a lack of specimens analysed in this study. Moreover, this 

study is missing samples from the post-mature window (R0 ≥ 1.4%), in which Mastalerz 

et al. (2008) detected an increase in porosity caused by a secondary cracking of bitumen. 

Also, more samples from the oil window could be able to provide a more robust 

reconstruction of pore system changes with an increase in maturity.  

Considering all these limitations, however, this work is the first attempt to incorporate 

the surface chemistry and wettability studies in a multi-technique and multi-scale pore 

system characterisation. Moreover, the combination of petrographic and surface 

chemistry data has also allowed validating for the first time the link between the increase 

in dissolution with the increase in acidic compounds.  

6.3.  Future Work 

Availability of new samples from the post-mature window (R0 1.4%) and further samples 

from the oil window (R0 0.9%) would be beneficial to understand the complete diagenesis 

sequence. Moreover, other samples from other microfacies at variable maturities could 

provide insights on the variations in depositional environments and in pore system 
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changes with maturity changes. In would be also useful to have a clear understanding of 

the facies correlation between the various wells and outcrops.  

Surface chemistry studies could better be validated by testing the adhesion forces on clean 

calcite surfaces in distilled water saturated in calcite. This would also allow to better 

understand the role the brine plays in the whole wetting alteration process. As surface 

chemistry depends on many factors, a further study could test whether surface roughness 

controls the wettability on actual pore surfaces. This can be done by adopting the CFM 

technique on rock chip surfaces and by correlating the topography roughness values to 

the adhesion forces maps.  

Ideally, the experiments should reflect real reservoir conditions. However, the 

instrumentation that was used did not allow to conduct experiments at different pressure 

or temperature conditions. Advancing technologies have recently allowed the assemblage 

of atomic force microscopes that can function at varying P-T conditions. As future work, 

testing how P-T conditions affect the measurements could provide valuable insights into 

the overall nanoscale surface chemistry changes.  

Moreover, other AFM-IR work could be conducted on fresh rock chips, also by examining 

other mineral surfaces and by implementing a higher resolution during the analyses. 

Although finding the same areas in the CFM, AFM-IR and SEM-EDS is very challenging 

due to the different resolutions and outputs of the techniques, correlating the results from 

these techniques would allow to validate the interpretations and determine the best 

analytical workflow. Also, several authors have correlated adhesion forces and 

wettabilities by using specific equations (Drummond and Israelachvili, 2002; Hassenkam 

et al., 2009; Mirchi et al., 2014; Yang et al., 2002). In future studies, performing contact 

angle experiments in the same areas as adhesion measurements could be of aid in 

determining the right correlation between the contact angle and adhesion forces.   
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6.4. Conclusions 

The adoption of a multi-disciplinary approach has allowed characterising the pore system 

and the surface chemistry of the pores in the Lower Eagle Ford Formation. In particular, 

it was concluded that: 

1. The pore system is highly influenced by the carbonate-rich framework and by the 

microfacies type. Three different facies were identified: laminated foraminiferal 

mudstones, wackestones and packstones. In the facies, five different domains 

were distinguished: microfossils, matrix, faecal pellets, organic matter and 

mineral particles.  

2. Amongst these three microfacies, in the laminated foraminiferal mudstones the 

microlaminations, the TOC values higher than 3% and the lower amounts of 

carbonates precipitates allow for a more connected pore system compared to the 

one in the wackestone and packstone microfacies. 

3. The pores are mainly in the size of the nano (< 2 nm) and mesopores (between 2 

nm and 50 nm). 

4. The pore system in the laminated foraminiferal mudstones is influenced by 

thermal maturity changes; in the immature and oil window, the pore system is 

mainly associated with intraparticle and interparticle pores formed by the 

carbonate framework. In the gas window, the pore system is associated with the 

carbonate framework as well as to the pores formed within the organic matter 

during thermal cracking. The pores are connected at all maturities, but at high 

maturities the system is tighter: large interparticle and intraparticle pore bodies 

are mainly connected through small (< 20 nm) organic matter pore throats. 

5. Chemical force microscopy studies on representative calcite crystals surfaces 

allowed to infer that asphaltenes are the oil fraction that alters the most the 

wettability of the samples. Point IR data shows high concentrations of C-O and O-

H molecular groups on the oil-wet surfaces. These molecular groups have been 

linked to the increase in hydrophobicity and to the presence of higher amounts of 

carboxyls and phenol compounds in the most oil-wetting fractions. 
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6. Chemical force microscopy studies on real rock chips have brought to light 

different wetting behaviours on different minerals. Specifically, kaolinite surfaces 

are more hydrophobic than quartz, pyrite, illite/smectite and carbonates. 

7. AFM-IR analyses on polished samples have allowed determining differences in 

the chemistry of different organic matter types at different maturities; in 

accordance to other studies, aliphatic compounds decrease progressively from 

tasmanites, to bitumen and kerogen. Moreover, at increasing maturities the 

aromaticity increases in all organic matter types analysed. 

8. The presence of high -OH and -COOH absorbance values in bitumen is indicative 

of reactions occurring between water and oil during bitumen generation. 
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A. Appendix  

 
Figure A.1: CO2 (orange) and N2 (blue) pore size distribution graphs of the samples analysed.  
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Figure A.2: CO2 (orange) and N2 (blue) pore size distribution graphs of the samples analysed. 
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Figure A.3: Gas adsorption isotherms for the immature samples analysed. Samples OC1, OC3 and 

IM2_1 belong to microfacies A. Sample IM2_2 belongs to microfacies B.  
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Figure A.4: Gas adsorption isotherms for the gas window samples analysed. Sample H3A2 belongs 

to microfacies A,samples H3A1, GW4, H3A4 belong to microfacies B. Samples GW7 and GW8 

belong to microfacies C. 
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Figure A.5: Pore throat size distributions measured with the MICP technique. In red, the 

cumulative pore distribution. All the samples belong to microfacies A.  
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Figure A.6: Pore throat size distributions measured with the MICP technique. In red, the 

cumulative pore distribution. Samples OW1, OW2 and H3A3 belong to microfacies A, sample 

H3A1 to microfacies B and samples GW7  and GW8 to microfacies C. 
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Figure A.7: Pore volume distribution (blue, dotted line) vs number of pores relative to the pore 
sizes (purple) for samples a) IM2_1 (R

0
 0.5%) b) IM2_3 (R

0
 0.5%) c) OW1 (R

0
 0.9%) and d) H3A5 

(R
0
 1.2%). 
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Cal. in dodecane_25 0.008 2.976 0.174 60.00 2.06 0.53 0.11 0.00 0.00 

Cal. in dodecane_26 0.006 1.332 0.270 80.00 11.97 0.08 0.00 0.00 0.00 

Cal. in dodecane_27 0.006 4.107 0.301 80.00 11.58 2.28 0.92 0.16 0.02 

Cal. in dodecane_28 0.006 1.339 0.267 80.00 9.25 0.09 0.00 0.00 0.00 

Cal. in dodec_no brine_01 0.009 5.733 0.298 64.00 20.56 8.74 2.32 0.88 0.29 

Cal. in dodec_no brine_02 0.015 0.919 0.208 25.00 5.44 0.00 0.00 0.00 0.00 

Cal. in dodec_no brine_03 0.012 1.897 0.464 25.00 42.08 10.40 0.00 0.00 0.00 

Cal. in dodec_no brine_04 0.011 8.205 1.098 25.00 81.76 50.40 8.96 1.92 0.32 

Cal. in dodec_no brine_05 0.026 6.094 1.697 25.00 85.92 68.00 30.24 14.08 8.16 

Cal. in dodec_no brine_06 0.000 6.464 1.270 64.00 71.04 49.37 20.63 9.28 3.49 

Cal. in dodec_no brine_07 0.015 6.186 0.869 32.00 42.87 34.38 19.82 5.08 0.68 

Cal. in dodec_no brine_08 0.000 7.638 1.019 128.0 41.39 35.39 24.38 11.99 4.08 

Cal. in dodec_no brine_09 0.009 5.733 0.298 64.00 20.56 8.74 2.32 0.88 0.29 

Cal. in dodec_no brine_10 0.015 1.301 0.254 128.0 5.39 0.08 0.00 0.00 0.00 

Cal. in dodec_no brine_11 1.002 4.454 2.567 25.00 100.0 100.0 84.48 21.44 0.64 

Cal. in dodec_no brine_12 0.958 3.954 2.396 25.00 100.0 99.84 75.04 16.00 0.00 

Cal. in dodec_no brine_13 0.243 5.422 2.629 25.00 99.68 97.60 84.64 26.40 1.28 

Cal. in dodec_no brine_14 0.102 5.414 1.405 128.0 98.88 78.63 14.27 1.91 0.16 

Cal. in dodec_no brine_15 0.289 3.545 1.877 25.00 99.84 98.56 34.88 1.12 0.00 

Cal. in dodec_no brine_16 0.015 1.301 0.254 128.0 5.39 0.08 0.00 0.00 0.00 

Cal. in dodec_no brine_17 0.016 1.582 0.276 64.00 14.70 1.86 0.00 0.00 0.00 

Cal. in dodec_no brine_18 0.094 6.121 0.809 25.00 81.44 25.60 0.48 0.16 0.16 

Cal. in dodec_no brine_19 0.069 2.047 0.795 25.00 73.76 30.40 0.16 0.00 0.00 

Cal. in dodec_no brine_20 0.113 9.000 1.844 25.00 99.36 96.48 30.56 2.08 0.80 

Cal. in dodec_no brine_21 0.028 2.810 1.201 25.00 94.88 64.00 4.80 0.00 0.00 

Cal. in dodec_no brine_22 0.094 1.859 0.678 25.00 65.44 16.96 0.00 0.00 0.00 

Cal. in dodec_no brine_23 0.452 5.214 2.283 25.00 99.36 96.16 63.84 19.04 1.12 

Cal. in dodec_no brine_24 0.094 6.121 0.809 25.00 81.44 25.60 0.48 0.16 0.16 

Cal. in dodec_no brine_25 0.069 2.047 0.795 25.00 73.76 30.40 0.16 0.00 0.00 

Cal. in dodec_no brine_26 0.113 9.000 1.844 25.00 99.36 96.48 30.56 2.08 0.80 

Cal. in dodec_no brine_27 0.028 2.810 1.201 25.00 94.88 64.00 4.80 0.00 0.00 

Cal. in dodec_no brine_28 0.094 1.859 0.678 25.00 65.44 16.96 0.00 0.00 0.00 

Cal. in dodec_no brine_29 0.452 5.214 2.283 25.00 99.36 96.16 63.84 19.04 1.12 

Cal. in dodec_no brine_30 0.016 1.582 0.276 64.00 14.70 1.86 0.00 0.00 0.00 
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Cal. in dec. acid 0.1 M_01 0.019 1.522 0.291 25.00 26.24 3.52 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_02 0.021 9.000 0.337 25.00 24.96 6.08 1.12 0.64 0.48 

Cal. in dec. acid 0.1 M_03 0.019 1.723 0.265 25.00 23.68 2.56 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_04 0.019 1.522 0.291 25.00 26.24 3.52 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_05 0.020 9.000 0.762 128.0 38.33 29.69 10.17 2.19 1.68 

Cal. in dec. acid 0.1 M_06 0.107 7.272 0.636 64.00 23.71 16.28 10.67 6.08 2.83 

Cal. in dec. acid 0.1 M_07 0.014 1.367 0.162 16.00 13.28 0.78 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_08 0.000 8.226 0.821 25.00 32.32 23.52 13.28 7.68 4.80 

Cal. in dec. acid 0.1 M_09 0.016 5.379 0.505 25.00 18.40 13.12 8.48 5.44 1.92 

Cal. in dec. acid 0.1 M_10 0.021 6.862 0.593 25.00 22.40 15.84 8.32 4.16 1.76 

Cal. in dec. acid 0.1 M_11 0.006 6.790 0.542 64.00 21.88 14.28 8.15 4.61 1.95 

Cal. in dec. acid 0.1 M_12 0.009 7.138 0.654 64.00 30.27 21.41 11.60 5.22 2.00 

Cal. in dec. acid 0.1 M_13 0.107 7.272 0.636 64.00 23.71 16.28 10.67 6.08 2.83 

Cal. in dec. acid 0.1 M_14 0.006 2.922 0.195 128.0 16.93 1.31 0.12 0.00 0.00 

Cal. in dec. acid 0.1 M_15 0.145 6.952 0.361 25.00 20.80 3.84 0.16 0.16 0.16 

Cal. in dec. acid 0.1 M_16 0.015 2.913 0.229 25.00 13.44 2.08 0.16 0.00 0.00 

Cal. in dec. acid 0.1 M_17 0.018 2.972 0.215 25.00 10.56 0.80 0.16 0.00 0.00 

Cal. in dec. acid 0.1 M_18 0.015 1.363 0.185 25.00 11.20 0.48 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_19 0.020 1.050 0.204 25.00 9.44 0.16 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_20 0.113 2.387 0.402 64.00 32.74 8.42 0.02 0.00 0.00 

Cal. in dec. acid 0.1 M_21 0.008 1.129 0.188 64.00 13.77 0.12 0.00 0.00 0.00 

Cal. in dec. acid 0.1 M_22 0.006 2.922 0.195 128.0 16.93 1.31 0.12 0.00 0.00 

Cal. in dec. acid 1 M_01  0.007 0.321 0.030 128.0 0.00 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_02 0.013 3.579 0.758 25.00 28.80 22.72 15.84 11.52 0.00 

Cal. in dec. acid 1 M_03 0.000 5.407 1.057 25.00 29.76 24.32 20.96 16.80 14.08 

Cal. in dec. acid 1 M_04 0.000 9.000 2.323 25.00 63.36 53.76 44.48 36.00 26.40 

Cal. in dec. acid 1 M_05 0.012 1.285 0.115 25.00 3.04 0.64 0.00 0.00 0.00 

Cal. in dec. acid 1 M_06 0.008 0.392 0.058 25.00 0.00 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_07 0.005 0.828 0.043 128.0 0.07 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_08 0.003 0.634 0.032 128.0 0.03 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_09 0.012 0.200 0.049 16.00 0.00 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_10 0.007 0.321 0.030 128.0 0.00 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_11 0.016 1.730 0.068 128.0 0.37 0.02 0.00 0.00 0.00 

Cal. in dec. acid 1 M_12 0.000 9.000 0.197 32.00 6.05 3.52 1.07 0.68 0.39 

Cal. in dec. acid 1 M_13 0.031 9.000 4.628 32.00 98.24 97.17 95.51 90.33 57.32 

Cal. in dec. acid 1 M_14 0.025 6.433 0.503 32.00 33.59 20.61 1.66 0.59 0.29 

Cal. in dec. acid 1 M_15 0.024 1.090 0.097 32.00 2.64 0.39 0.00 0.00 0.00 

Cal. in dec. acid 1 M_16 0.012 2.571 0.068 64.00 0.59 0.02 0.02 0.00 0.00 

Cal. in dec. acid 1 M_17 0.000 2.054 1.545 32.00 99.61 98.34 0.20 0.00 0.00 

Cal. in dec. acid 1 M_18 0.013 1.266 0.096 64.00 1.29 0.07 0.00 0.00 0.00 
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Cal. in dec. acid 1 M_19 0.000 1.307 0.301 64.00 5.44 0.12 0.00 0.00 0.00 

Cal. in dec. acid 1 M_20 0.023 0.922 0.062 32.00 0.78 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_21 0.000 6.127 0.274 32.00 4.00 0.49 0.20 0.10 0.10 

Cal. in dec. acid 1 M_22 0.018 1.118 0.088 64.00 0.44 0.05 0.00 0.00 0.00 

Cal. in dec. acid 1 M_23 0.016 1.730 0.068 128.0 0.37 0.02 0.00 0.00 0.00 

Cal. in dec. acid 1 M_24 0.005 0.947 0.129 128.0 0.70 0.00 0.00 0.00 0.00 

Cal. in dec. acid 1 M_25 0.002 9.000 3.019 25.00 94.40 92.32 77.28 49.92 13.44 

Cal. in dec. acid 1 M_26 0.000 4.679 2.372 25.00 99.20 96.48 83.36 9.12 0.32 

Cal. in dec. acid 1 M_27 0.120 3.900 3.024 25.00 98.72 97.92 94.24 62.24 0.00 

Cal. in dec. acid 1 M_28 0.039 9.000 5.852 25.00 94.88 93.28 85.12 82.88 81.44 

Cal. in maltene C5_ 01 0.083 7.341 2.674 25.00 91.52 39.52 36.00 34.88 34.88 

Cal. in maltene C5_ 02 0.074 3.097 0.781 25.00 76.48 22.08 1.60 0.16 0.00 

Cal. in maltene C5_ 03 0.035 4.907 0.844 25.00 74.72 28.00 3.68 0.64 0.16 

Cal. in maltene C5_ 04 0.040 2.251 0.538 25.00 46.08 7.68 0.16 0.00 0.00 

Cal. in maltene C5_ 05 0.052 4.672 0.550 25.00 40.80 9.44 1.60 0.16 0.16 

Cal. in maltene C5_ 06 0.000 5.268 1.168 25.00 89.44 51.04 9.12 3.20 1.28 

Cal. in maltene C5_ 07 0.011 7.898 0.883 25.00 79.20 32.32 3.04 0.80 0.32 

Cal. in maltene C5_ 08 0.031 5.927 0.947 25.00 83.36 33.12 3.68 1.28 0.32 

Cal. in maltene C5_ 09 0.004 0.828 0.117 25.00 1.44 0.00 0.00 0.00 0.00 

Cal. in maltene C5_ 10 0.005 0.947 0.129 128.0 0.70 0.00 0.00 0.00 0.00 

Cal. in maltene C5_ 11 0.015 3.912 1.973 25.00 94.08 88.32 53.44 6.40 0.00 

Cal. in maltene C5_ 12 0.022 9.000 2.319 25.00 82.72 76.96 59.36 33.76 13.92 

Cal. in maltene C5_ 13 0.020 5.814 1.703 25.00 70.56 62.40 42.40 25.76 1.28 

Cal. in maltene C5_ 14 0.651 9.000 4.514 25.00 100.0 99.68 98.56 91.36 70.24 

Cal. in maltene C5_ 15 0.037 9.000 3.206 25.00 97.92 95.68 82.40 56.16 22.72 

Cal. in maltene C5_ 16 0.016 9.000 4.644 128.0 97.72 97.01 94.15 85.94 68.27 

Cal. in maltene C5_ 17 0.022 8.422 1.187 25.00 36.64 29.44 23.36 16.96 10.56 

Cal. in maltene C5_ 18 0.067 9.000 1.600 25.00 76.96 57.44 30.08 15.20 5.92 

Cal. in maltene C5_ 19 0.014 3.540 1.030 25.00 40.48 15.10 10.50 2.60 0.00 

Cal. in maltene C5_ 20 0.000 7.729 3.143 25.00 68.80 63.84 56.80 51.36 41.44 

Cal. in maltene C5_ 21 0.000 7.956 2.984 25.00 82.24 71.84 56.80 42.72 33.12 

Cal. in maltene C5_ 22 0.000 7.439 3.373 25.00 88.32 83.68 73.44 65.28 51.68 

Cal. in maltene C5_ 23 0.000 9.000 2.084 25.00 50.24 38.56 31.52 26.88 22.72 

Cal. in maltene C5_ 24 0.000 8.568 6.170 25.00 92.16 87.52 82.56 79.04 75.20 

Cal. in maltene C5_ 25 0.000 7.892 4.444 25.00 85.92 79.84 72.80 68.48 63.52 

Cal. in maltene C5_ 26 0.014 9.000 1.564 25.00 72.16 54.08 27.20 13.28 6.40 

Cal. in maltene C5_ 27 0.067 9.000 1.600 25.00 76.96 57.44 30.08 15.20 5.92 

Cal. in asphaltene_01 0.000 9.000 1.540 25.00 19.84 13.44 7.68 4.96 3.52 

Cal. in asphaltene_02 0.052 9.000 2.722 25.00 72.64 64.96 52.80 36.16 24.48 

Cal. in asphaltene_03 0.000 9.000 7.919 25.00 95.04 94.08 92.32 90.88 89.60 
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Cal. in asphaltene_04 0.000 9.000 7.769 25.00 88.80 88.48 87.84 87.04 86.08 

Cal. in asphaltene_05 0.000 9.000 4.072 25.00 51.36 50.56 49.28 48.00 46.88 

Cal. in asphaltene_06 0.000 9.000 7.331 25.00 88.64 87.84 85.12 83.68 81.44 

Cal. in asphaltene_07 0.000 9.000 7.497 25.00 90.72 89.92 89.28 87.36 84.64 

Cal. in asphaltene_08 0.014 9.000 4.756 25.00 87.04 80.00 65.60 59.84 52.00 

Cal. in asphaltene_09 0.000 9.000 4.371 25.00 83.52 81.12 76.32 60.48 40.80 

Cal. in asphaltene_10 0.019 8.150 1.457 25.00 47.36 38.56 24.48 17.28 12.96 

Cal. in asphaltene_11 0.029 8.887 4.531 25.00 97.76 95.84 87.20 64.80 51.20 

Cal. in asphaltene_12 0.000 9.000 1.908 25.00 64.32 49.76 34.40 26.40 18.56 

Cal. in asphaltene_13 0.000 9.000 1.617 25.00 70.88 54.40 21.44 11.04 9.28 

Cal. in asphaltene_14 0.000 9.000 7.183 25.00 96.16 93.92 89.12 85.60 80.16 

Cal. in asphaltene_15 0.056 8.948 1.826 25.00 93.12 71.36 38.56 10.24 3.20 

Cal. in oil_01 0.008 8.381 3.799 25.00 83.36 75.68 64.80 56.96 47.36 

Cal. in oil_02 0.034 9.000 2.737 25.00 92.00 79.20 57.44 35.68 24.16 

Cal. in oil_03 0.024 9.000 1.451 25.00 87.84 51.52 13.12 8.16 6.88 

Cal. in oil_04 0.016 3.847 0.945 25.00 61.76 43.20 9.76 0.32 0.00 

Cal. in oil_05 0.014 9.000 0.991 25.00 77.28 47.36 3.20 0.80 0.16 

Cal. in oil_06 0.000 7.135 1.184 25.00 78.72 49.44 15.52 5.92 2.24 

Cal. in oil_07 0.016 7.414 1.901 25.00 83.68 66.40 28.00 17.60 13.60 

Cal. in oil_08 0.015 9.000 3.268 25.00 73.28 66.72 54.40 45.44 34.88 

Cal. in oil_09 0.013 9.000 1.615 25.00 52.32 38.08 27.20 22.72 16.00 

Cal. in oil_10 0.000 9.000 5.151 25.00 85.92 77.60 67.20 60.64 57.12 

Cal. in oil_11 0.000 9.000 2.309 25.00 47.84 44.48 37.92 29.28 24.48 

Cal. in oil_12 0.000 9.000 2.455 25.00 58.24 48.32 38.24 31.36 26.24 

Cal. in oil_13 0.000 9.000 2.818 25.00 52.96 48.00 37.44 33.28 28.48 

Cal. in oil_14 0.000 9.000 2.267 25.00 63.68 56.64 43.36 28.00 19.04 

Cal. in oil_15 0.000 9.000 3.875 25.00 60.96 56.96 49.76 44.96 42.40 

Cal. in oil_16 0.013 9.000 1.615 25.00 52.32 38.08 27.20 22.72 16.00 

Cal. in oil_17 0.015 9.000 3.268 25.00 73.28 66.72 54.40 45.44 34.88 

 

 

Table A.1: Table of all the CFM experiments on calcite surfaces described in chapter 4.  
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a)  

b)  

Figure A.8: a) CFM scan of a 2.5 x 2.5 µm2 area of a calcite surface aged in maltene C8. b) is the same 

area, scanned for the second time at a setpoint value of 1. 
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