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Abstract 

Exciplexes are intermolecular charge transfer (CT) complexes in which one electron donating 

(D) and one electron accepting (A) molecule interact in the excited state. The new bimolecular 

CT excited state species is the exciplex, a shortening of EXCIted state comPLEX. Until 

recently exciplexes were avoided in OLEDs structures since they constituted an efficiency loss 

pathway since they commonly possess low photoluminescence quantum yield (PLQY). 

Recently, the rise of thermally activated delayed fluorescence (TADF) applications for triplet 

harvesting in fluorescent OLEDs has resulted in renewed research interest in these bimolecular 

excited states. The TADF mechanism in fact, allows to upconvert triplet excited states (which 

are non-emissive in normal fluorescent emitters) into emissive singlet excited states thus 

boosting the efficiency of the emitter. 

To be efficient, the TADF mechanism needs to have minimal overlap between the highest 

occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO). 

Exciplexes intrinsically possess this characteristic since the CT excited state is formed between 

two different molecules making exciplexes the perfect candidates as TADF emitters. For this 

reason, TADF exciplexes are attracting more and more attention although always in the shadow 

of their more successful intramolecular counterpart (covalently linked D-A fragments in a 

single molecule) since they could be more easily tailored to maximise their efficiency and 

modify their properties. 

The first part of this thesis demonstrates the surprising discovery that exciplex electronic 

energy and PLQY are not intrinsically fixed by the D/A couple forming the exciplex, and that 

these characteristics can be tuned and improved through solid state dilution. It is shown that 

the exciplex electronic energy can be controllably increased by varying average intermolecular 

distance between the D and A molecule within the exciplex blend by inserting a third inert 

molecule in the blend forming the film.  

The change in the exciplex electronic energy and PLQY is rationalised by a general reduction 

of the coulombic binding energy with D-A separation. In contrast, the PLQY enhancement is 

not general and determined to be related to the degree of flexibility of the exciplex forming 

molecules. 



The second part of this thesis showcases work that broadens the range of potential applications 

of TADF exciplex OLEDs, demonstrating their suitability as emitters for solution processed 

devices and how they can be used to confine the recombination zone of a standard 

phosphorescent OLED - leading to performance and stability improvements. 

 

  



Table of Contents 
Chapter 1: Introduction .............................................................................................................. 1 

1.1 Motivation ................................................................................................................... 1 

1.2 Thesis Organization..................................................................................................... 1 

Chapter 2: Background Theory .................................................................................................. 6 

2.1 Fundamental Theory ................................................................................................... 7 

2.1.1 Excited states in Organic Materials ..................................................................... 7 

2.2 Jabłonski Diagram ..................................................................................................... 11 

2.3 Triplet Harvesting Mechanisms ................................................................................ 12 

2.3.1 Phosphorescence ................................................................................................ 13 

2.3.2 TTA .................................................................................................................... 14 

2.3.3 TADF ................................................................................................................. 14 

2.3.4 Exciplexes .......................................................................................................... 16 

2.4 OLEDs ....................................................................................................................... 18 

2.4.1 Working principle .............................................................................................. 18 

2.4.2 Stability .............................................................................................................. 21 

2.5 References ................................................................................................................. 22 

Chapter 3: Materials and Experimental Methods .................................................................... 27 

3.1 Organic Materials Studied ......................................................................................... 28 

3.2 Sample Preparation ................................................................................................... 32 

3.3 Film Thickness Measurement ................................................................................... 32 

3.3.1 Ellipsometry ....................................................................................................... 33 

3.3.2 Profilometry ....................................................................................................... 33 

3.4 Steady-State Spectroscopy ........................................................................................ 33 

3.4.1 Optical Absorption ............................................................................................. 33 

3.4.2 Photoluminescence ............................................................................................ 34 



3.4.3 Photoluminescence Quantum Yield ................................................................... 34 

3.5 Time Resolved Spectroscopy .................................................................................... 35 

3.5.1 Time-Gated Acquisition – CCD ........................................................................ 35 

3.6 Organic Light Emitting Diodes (OLEDs) ................................................................. 38 

3.6.1 Fabrication ......................................................................................................... 38 

3.6.2 Performance Testing .......................................................................................... 41 

3.6.3 Lifetime Testing ................................................................................................. 45 

3.7 References ................................................................................................................. 46 

Chapter 4: Influence of Solid State Dilution on the Photophysical Performance of a TADF 

Exciplex ................................................................................................................................... 47 

4.1 Introduction ............................................................................................................... 49 

4.2 Results and Discussion .............................................................................................. 50 

4.2.1 Photophysical characterization .......................................................................... 50 

4.2.2 Electron transfer ................................................................................................. 62 

4.2.3 Device Performance ........................................................................................... 64 

4.3 Conclusion ................................................................................................................. 67 

4.4 References ................................................................................................................. 68 

Chapter 5: Identifying the factors that lead to PLQY enhancement in diluted TADF 

exciplexes based on carbazole donors ..................................................................................... 72 

5.1 Introduction ............................................................................................................... 73 

5.2 Results and Discussion .............................................................................................. 74 

5.2.1 Photophysical characterization .......................................................................... 74 

5.2.2 Device Performance ........................................................................................... 89 

5.3 Conclusion ................................................................................................................. 91 

5.4 References ................................................................................................................. 93 

Chapter 6: Solution Processable TADF OLED Based on Small Molecule Exciplex .............. 95 

6.1 Introduction ............................................................................................................... 96 

6.2 Results and Discussion .............................................................................................. 97 

6.2.1 EML processed from Chlorobenzene ................................................................ 97 



6.2.2 EML processed from Chloroform .................................................................... 101 

6.2.3 EML processed from Chlorobenzene:Chloroform solvent blend .................... 104 

6.3 Conclusion ............................................................................................................... 107 

6.4 References ............................................................................................................... 108 

Chapter 7: The Effects of Exciton Localisation Induced by an Interfacial TADF Exciplex on 

PhOLED Efficiency and Stability .......................................................................................... 111 

7.1 Introduction ............................................................................................................. 112 

7.2 Results and Discussion ............................................................................................ 113 

7.2.1 Photophysical characterization ........................................................................ 113 

7.2.2 Device Performance ......................................................................................... 115 

7.3 Conclusion ............................................................................................................... 123 

7.4 References ............................................................................................................... 124 

Chapter 8: Concluding Remarks ............................................................................................ 128 

 

 

 

  



List of Acronyms 

A  Electron accepting unit/molecule 

CB  Chlorobenzene 

CCD  Charge coupled device 

CF  Chloroform 

CIE  Commision International D’Eclairage 

CT  Charge transfer 

D  Electron donating unit/molecule 

DF  Delayed fluorescence  

EBL  Electron blocking layer 

EIL  Electron injection layer 

EML  Emissive layer 

EQE  External quantum efficiency 

ETL  Electron transporting layer 

HBL  Hole blocking layer 

HIL  Hole injection layer 

HOMO Highest occupied molecular orbital 

HTL  Hole transporting layer 

ITO  Indium Tin oxide 

LE  Locally excited 

LiF  Lithium Fluoride 

LUMO  Lowest unoccupied molecular orbital 

Nd:YAG Neodymium doped Yttrium Aluminium Garnet 

OLED  Organic light emitting diode 

PF  Prompt fluorescence 

PH  Phosphorescence 

PL  Photoluminescence 

PLQY  Photoluminescence quantum yield 

IC  Internal conversion 

ISC  Intersystem crossing 



rISC  Reverse intersystem crossing 

RT  Room Temperature 

RTP  Room temperature phosphorescence 

SOC  Spin orbit coupling 

TADF  Thermally activated delayed fluorescence 

TF  Tooling factor 

TTA  Triplet-triplet annihilation 

VTE  Vacuum thermal evaporation 

  



List of Publications 
 

1. Marco Colella, Andrew Danos, Andrew P. Monkman. Identifying the Factors That Lead to 

PLQY Enhancement in Diluted TADF Exciplexes Based on Carbazole Donors. J. Phys. 

Chem. C 2019, 123, 28, 17318-17324 

2. Patrycja Stachelek, Jonathan S. Ward, Paloma L. dos Santos, Andrew Danos, Marco 

Colella, Nils Haase, Samuel J. Raynes, Andrei S. Batsanov, Martin R. Bryce , Andrew P. 

Monkman. Molecular Design Strategies for Color Tuning of Blue TADF Emitters, ACS 

Appl Mat and Interfaces 2019, 11, 30, 27125-27133 

3. Marco Colella, Andrew Danos, Andrew P. Monkman. Less Is More: Dilution Enhances 

Optical and Electrical Performance of a TADF Exciplex. J. Phys. Chem. Lett. 2019, 793–

798 

4. Amruth,C; Marco Colella, Jonathan Griffin, James Kingsley, Nicholas Scarratt, Beata 

Luszczynska, Jacek Ulanski. Slot-Die Coating of Double Polymer Layers for the 

Fabrication of Organic Light Emitting Diodes. Micromachines 2019,10, 53 

5. Marco Colella, Piotr Pander, Daniel de Sa Pereira, Andrew P. Monkman. Interfacial TADF 

Exciplex as a Tool to Localize Excitons, Improve Efficiency, and Increase OLED Lifetime. 

ACS Appl Mat and Interfaces 2018, 10, 40001-40007 

6. Piotr Pander, Simon Gogoc, Marco Colella, Przemyslaw Data, Fernando Dias. Thermally-

Activated Delayed Fluorescence in Polymer-Small Molecule Exciplex Blends for Solution-

Processed Organic Light Emitting Diodes, ACS Appl Mat and Interfaces 2018, 10, 34, 

28796-28802 

7. Marco Colella, Piotr Pander, Andrew P. Monkman. Solution processable small molecule 

based TADF exciplex OLEDs. Organic Electronics, 2018, 62, 168-173 

  



 

  



Declaration 
 

 

All material contained in this thesis is original and is the result of my own work except where 

explicit reference is made to the work of others. This thesis has not been submitted in whole or 

part of a degree at this or any other university. 

 

 

 

 

 

Study of Thermally Activated Delayed Fluorescent 

Exciplexes and their practical applications in OLEDs 

 

Marco Colella 

 

 

 

 

 

The copyright of this thesis rests with the author. No quotation from it should be published 

without the author’s prior consent and information derived from it should be acknowledged. 

  



 

  



Acknowledgements 
 

First, I would like to acknowledge my supervisor, Prof. Andy Monkman to provide the support 

necessary for my success during the last three years but especially for supporting me every 

time I went to visit him with strange half bad ideas. My co-supervisor, Fernando Dias for 

always being ready to offer a comforting word when needed. I would also like to acknowledge 

the precious members of the OEM group with which I had the pleasure to work side to side, 

Daniel, Piotr, Patrycja, Heather and Marc. A special mention in this category goes to Andrew 

with whom I have shared some of the most enjoyable, fruitful and exciting moments of my 

short academic research career. 

I spent the first part of my PhD in a beautiful company of which I enjoyed every moment. I 

want here to thank everyone for the support I received during those two beautiful years, James, 

Nick, Chris, Monika, Max, Jon, Tom, Omar, Hadi, Lidya, Hunan, Rosie and Ian. 

This PhD has taken me away from my family and friends which have never stopped supporting 

me and making me feel like I never left. For this reason, I want to thank my dear friends 

Lorenzo (also known as er Fragola), Jacopo and Andrea. 

I want to thank Sabrina, Roberto, Giorgia and Nicholas for making me feel part of their family 

for the last thirteen years. 

I want to thank my brother Massimo and his fantastic wife Giusy for simply being part of who 

I am. 

I could not forgive myself if do not properly thank my parents, Francesco and Elisabetta for 

always pushing me to become the better version of myself while always letting me be who I 

wanted be for this, I will never thank you enough and I hope I will be able to do the same with 

my children. 

Finally, I need to thank my wife Veronica to have agreed to spend the rest of her life with me 

for supporting me and SOpporting me. I love you. 

  



  



 

 

 

 

A mia moglie Veronica, 

la mia compagna di avventure. 

  



 



 
1 

 : 

Introduction 
 

1.1 Motivation 

Organic light emitting diode (OLED) technology has recently gained a significant share of the 

display market. OLED displays are now mass produced for mobile phones, tablets, TVs, and 

wearables already representing a market worth tens of billions.1 Current academic and 

commercial research into OLEDs is stimulated by the demand for new materials to enable 

cheaper, more efficient and stable products.2 

Current consumer OLED technologies are based upon phosphorescent emitters.2,3 While these 

molecules are incredibly efficient with external quantum efficiency above 20% and power 

efficiency >100lm/W putting them in competition with the organic light emitting diodes 

(LEDs) which currently dominate the market, their critical weakness lies in photochemical 

instability of blue emitters. In fact, where the red and green phosphorescent emitters have 

achieved lifetimes well above the commercial requirement of 10,000 hrs while the blue emitters 

do not survive 1000 hrs which limits the lifetime of the screens fully produced with this 

technology.4 To overcome this problem OLED displays produced nowadays use as blue emitter 

a normal fluorescent emitter which lowers the overall efficiency of the resulting device since 

no triplet harvesting mechanism is active.5 

More recently, a new way to obtain high efficiency emitters has been found via the thermal 

activated delayed fluorescence (TADF) mechanism which promises to join the record 

efficiency of the phosphorescent emitters with the stability of the fluorescent ones.6 

TADF emitters can be broadly separated into two sub classes: intramolecular and 

intermolecular. The latter of these two categories, TADF exciplexes have been largely 

overlooked as potential emitters compared to their intramolecular counterparts. This is because 

beyond the coarse control of initial choice of the donor (D) and acceptor (A) materials, it was 
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common belief that exciplexes could not be finely tuned or improved. In contrast, studies of 

slightly modified D-A intramolecular TADF materials have since proliferated. 

This thesis aims to deepen the photophysical understanding of TADF exciplexes and improve 

their potential as emitters for future generations of OLED devices. The data presented in this 

thesis has been collected in Sheffield (Ossila Ltd, Kroto Innovation Centre, Sheffield) and 

Durham (OEM group, Physics department, Durham). 
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1.2 Thesis Organization 

Chapter 2 presents the background theory necessary to analyse and understand the data and 

results contained in this thesis. It starts by introducing the concept of excited state multiplicity 

(singlet and triplet states), and the quantum mechanical origin of their energy difference. The 

concept of intersystem crossing and its role in phosphorescent and TADF emitters is then 

introduced. A Jabłonski diagram is then used to explain the three main triplet harvesting 

mechanisms relevant to OLEDs: triplet-triplet annihilation (TTA), TADF, and 

phosphorescence. Finally, the working principles of OLEDs and the processes that give rise to 

their stability issues are discussed. 

Chapter 3 lists the materials discussed in this thesis and their application. The sample 

preparation methods for photophysical measurements is presented along with the 

spectroscopical techniques employed. The OLEDs fabrication and measurement methods are 

then explained. 

Chapter 4 is the first of the experimental chapter and it presents the effects of solid state 

dilution on the TADF exciplex formed between 4,4'-(Diphenylsilanediyl) bis(N,N-

diphenylaniline) (TSBPA) and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-

T2T). The results show how the exciplex emission blueshifts with increasing host vol% and 

that this is followed by an increment in its photoluminescence quantum yield (PLQY). This 

PLQY increment is then directly translated in OLED performance. 

Chapter 5 shows how solid state dilution affects the TADF exciplexes formed by the three 

carbazole based donors, 1,3-Bis(carbazol-9-yl) benzene (mCP), 4,4'-Bis(carbazol-9-yl) 

biphenyl (CBP) and 4,4'-Bis(carbazol-9-yl)-2,2'-dimethylbiphenyl (CDBP). The study shows 

that the emission blueshift is common to all of them since is due to a weakened coulombic 

interaction between the donor and the acceptor at larger distances. In contrast, the PLQY 

enhancement is not general, and appears to require a certain degree of molecular flexibility to 

be observed. 

Chapter 6 presents the optimisation study of a solution processable TADF exciplex formed 

between 9-[2,8]-9-carbazole-[dibenzothiophene-S,S-dioxide]-carbazole (DCz-DBTO2) and 

4,4′-cyclohexylidenebis [N,N-bis(4methylphenyl) benzenamine] (TAPC). The study shows 

that the solvent system is of critical importance in order to guarantee the optimal film formation 

and donor-acceptor orientation within the film in order to maximise the efficiency. The best 
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result approaches the one obtained for the previously reported vacuum deposited OLEDs for 

the same system demonstrating the viability of TADF exciplexes as solution processable TADF 

emitters. 

Chapter 7 shows how an interfacial exciplex at the interface between the emissive layer (EML) 

and the electron transporting layer (ETL) junction can improve considerably its performance 

and stability in a Phosphorescent OLED (PhOLED) device. In the chapter is shown how this 

is achieved by inducing an extremely effective localization of the recombination zone (within 

5 nm) and by recycling via the TADF mechanism the piled up charges at the interface that are 

converted into exciplexes and then transferred by both Dexter and Forster energy transfer to 

the phosphorescent emitter. 

Chapter 8 Summarises the findings presented from chapter 4 to 7 and speculating at further 

work based on these investigations. 
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 : 

Background Theory 

 

This chapter introduces fundamental background theory and concepts necessary to analyse and 

understand the work presented in later chapters. The chapter starts by introducing the concept 

of molecular excited states and the origin of the singlet-triplet energy splitting. A brief overview 

of allowed and forbidden electronic transitions then follows, with schematic representation 

using a Jabłonski diagram. The three main triplet harvesting (TTA, TADF and 

phosphorescence) mechanisms relevant to OLEDs are then presented, with special attention 

given to TADF, which is the focus of this thesis. Finally, the working principles and the main 

stability issues of organic light emitting diodes are summarised. 
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2.1 Fundamental Theory 

2.1.1 Excited states in Organic Semiconductors 

When an organic molecule absorbs electromagnetic radiation and becomes excited, an electron 

is promoted from its highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO) level.1 The excited electron, now in the LUMO, leaves behind an 

hole (i.e. vacancy) in the HOMO. The negatively charged electron and positively charged hole 

can interact with each other forming a quasiparticle called an exciton. 

The energy and multiplicity of an exciton is defined by the quantum state of the electron that 

comprise the state. Generally, an atomic electron state is fully defined by four quantum 

numbers: the principal quantum number (n) that defines the energy level of the electron, the 

angular momentum quantum number (l) that defines the shape of the orbital occupied by the 

electron, the magnetic quantum number (ml) that describe the spatial orientation of the orbital 

and the spin quantum number (s) that describes the angular moment of the electron. Pauli’s 

exclusion principle establishes that two electrons cannot have the same set of quantum 

numbers, which leads to the fact that only two electrons (s = ± 1/2) can exist in any one orbital 

(n, l, ml) and that they must have opposite spin. Electrons possess semi integer values of spin, 

either +1/2 or -1/2. Electrons with spin value of +1/2 are commonly represented with an arrow 

pointing upward (↑ or 𝛼) while an arrow pointing downward (↓ or 𝛽) is used for electrons with 

value of -1/2. 

2.1.1.1 Singlet and Triplets 

The spin state of a molecule is given by the sum of the spin of all electrons in all orbitals. 

However, electrons in doubly filled orbitals are paired with an opposite spin partner (one 

electron spin up and the other spin down) and so contribute zero to the total spin of the system. 

It is therefore sufficient to consider only the unpaired electrons to describe an excited state 

configuration which are themselves usually the highest energy electrons. 

The total spin S of a singlet (or triplet) excited state of a molecule is S = 0 (or S = 1). This 

occurs when the electron in the LUMO and the remaining electron in the HOMO are 

antiparallel (or parallel). In such a two particle system there will be four resulting eigenstates 

due to the four possible values of the secondary spin quantum number ms which describes the 

angular momentum of an electron. For a certain value of the total spin S there can be 2S + 1 

values of ms with values ranging from − S to + S in steps of one. Therefore, for S = 0; ms = 0 
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and for S = 1; ms = -1, 0, 1. As schematically shown in (Figure 2.1). the two electrons forming 

the singlet (S = 0; ms = 0) are anti parallel and their precession around the axis is out of phase 

therefore cancelling each other and giving a total ms=0 with an anti-symmetric spin 

wavefunction, shown in the figure, typical of the singlet state. In the case of the triplet state 

there are three isoenergetic states where the two interacting electrons are in phase in all three 

combinations giving symmetric spin wave functions (shown in the figure) typical of a triplet 

state (S = 1; ms = -1, 0, 1). 

 

Figure 2.1 Spin Wavefunctions and cones of orientation of a two electron system, the index 1 and 2 refer 

respectively to electron 1 and 2. The red arrow indicates a spin-up electron with ms = + 1/2 while the blue arrow 

represents a spin down electron with ms = - 1/2. At the top of the figure is reported the total spin of a triplet (S = 

1 and a singlet (S = 0). Below (left) are reported the three symmetric spin wavefunctions of the triplet and (right) 

the anti-symmetric singlet wave function. The two cases where ms = 0 are distinguished by the phase of the 

precession of the two electrons forming the triplet where are in-phase and forming the singlet where are out of 

phase thus describing a symmetric spin state (triplet) and an anti-symmetric spin state (singlet).   

In contrast, the ground state of an organic molecule is typically a singlet state, where the two 

electrons occupy the same orbital with antiparallel spin (Pauli’s exclusion principle). 

2.1.1.2 Origin of the singlet-triplet gap 

For systems more complex than a hydrogen atom, the singlet and triplet state are not 

degenerate. In fact, their energy differs by twice the exchange energy (J) (Equation 2.1).2 The 

exchange energy is the energy required to exchange the two electrons forming the singlet and 

the triplet state. 

Equation 2.1 

𝐽 = ∬ Φ(1)Ψ(2) (
𝑒2

𝑟1−𝑟2
) Φ(2)Ψ(1)d𝑟1𝑑𝑟2 
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Where Ψ and Φ represent the HOMO and LUMO wavefunctions; r1 and r2 are the spatial 

coordinates of the electron labelled respectively 1 and 2; e is the elementary charge of the 

electron (e = 1.6x10-19 C).  

To a first order approximation, the exchange interaction scales exponentially with the overlap 

of the respective electronic wavefunctions. This is particularly relevant for TADF emitters 

because the energy difference between the singlet and triplet state is given by ΔEST=2J. This 

means that if the wavefunctions of the electron in the HOMO and the one in the LUMO overlap 

significantly, this results in a large exchange energy and thus a large ΔEST in the order of 0.7–

1.0 eV is found for large overlap systems, which is not favourable for a TADF emitter where 

a ΔEST as close as possible to zero is desirable.3  

In the case of Exciplexes Equation 2.1 represents an approximation since the HOMO and 

LUMO levels are located on two different molecules and the integral overlap of the 

wavefunctions will be effectively zero. On the other hand, this simplified picture highlights the 

intrinsic advantage that exciplexes have into fulfilling the energy level alignment requirements 

to emit efficiently via the TADF mechanism (illustrated in section 2.3.3). 

2.1.1.3 Local and charge transfer excited states 

This thesis focuses on systems that have a small ΔEST gap which promotes TADF (presented 

in section 2.3.3). To achieve this condition a small wavefunction overlap of the HOMO and 

LUMO orbital must be secured. A strategy commonly used to engineer this is to spatially 

separate HOMO and LUMO, for example by having them located on different fragments of a 

larger molecule, leading to materials that possess intra-molecular charge transfer (CT) states. 

Alternatively, this can be achieved between two different molecules (inter-molecular CT state), 

the latter case is also called an Exciplex. CT character identifies such excited states as having 

large separation between HOMO and LUMO. In contrast Locally Excited (LE) states involve 

the whole molecule and have large HOMO-LUMO overlaps. 

The wavefunction of any state can be expressed as a combination of local and CT contribution.4  

Equation 2.2 

𝜓 = 𝑐1𝜓(𝑀1
−𝑀2

+) + 𝑐2𝜓(𝑀1
+𝑀2

−) + 𝑐3𝜓(𝑀1
∗𝑀2) + 𝑐4𝜓(𝑀1𝑀2

∗) 

Where the subscripts 1 and 2 represent the indexes that distinguish the two molecules that are 

interacting; the superscripts + and - respectively represent a positively and negatively charged 

molecule while * represent the localisation of the excited electron onto one of the two 
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molecules forming the excited state. The first two terms of Equation 2.2 describe the 

contribution of the CT character to the total wave function while the last two terms describe its 

local character. The stronger the local character the stronger the oscillator strength due to the 

greater overlap with the ground state.2,4 This means that, while LE states can more rapidly 

decay by radiative processes, their larger ΔEST values make them less capable of harvest triplets 

than CT states. At the same time CT excited state are less coupled to the ground state and so 

cannot emit as quickly, although they are ideal for triplet harvesting. 

2.1.1.4 Intersystem Crossing and reverse Intersystem crossing 

Intersystem crossing (ISC) and reverse intersystem crossing (rISC) are formally forbidden 

processes that allow an excited state to change its total spin which is usually a conserved 

quantity. For ISC and rISC to happen it is therefore necessary that the singlet and the triplet 

states mix so that the spin flip from one to the other becomes partially allowed.2 In the zeroth-

order approximation (Figure 2.2a) it is assumed that there is no intersystem crossing 

mechanism active thus if a molecule is initially in the singlet or triplet state this cannot change 

from one to the other. If mixing mechanisms are active the singlet and the triplet states will 

mix at the crossing point of their potential energy surfaces (i.e some critical nuclear coordinate 

where J vanishes). 

Two of the main state mixing mechanisms exploited in materials used as emitters in OLED 

devices are spin orbit coupling (SOC) and vibronic coupling (VC). The magnitude of the first 

one grows with the fourth power of atomic number (Z) of the atoms constituting the molecule 

(SOC ∝ Z4). This is why efficient phosphorescent materials often contain heavy atoms such as 

Ir or Pt. The second one instead depends critically on the ΔEST gap which gives rise to rISC 

(i.e. TADF). 
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Figure 2.2 (a) Intersystem crossing is forbidden in the zero order approximation (b) it becomes partially allowed 

when a spin-mixing mechanism is available near the crossing point of the energy curves for the S and T states. 

Figure adapted from Turro2 

 

2.2 Jabłonski Diagram 

A Jabłoński diagram is a visual representation of molecular energy levels arranged with energy 

on the vertical axis. It is normally used to highlight relevant energy levels and the possible 

optical transitions in a molecule (or in the case of this thesis, an exciplex). For simplicity it is 

practice to separate states with different multiplicity in different horizontal regions. 

A general Jabłoński diagram is shown in Figure 2.3. The thick lines represent the different 

electronic levels, while the thinner lines above them represent the excited vibrational states of 

the electronic levels. The dashed arrows represent non radiative processes while the solid 

arrows represent either absorption or emission transitions. The horizontal wavy arrows 

represent internal conversion (IC) processes where an excited state rapidly converts to an 

isoenergetic vibronic state on a lower electronic band. On a typical Jabłoński diagram it is 

possible to visualize transitions between states like absorption, fluorescence, delayed 

fluorescence, phosphorescence, vibrational relaxations as well as intersystem crossing (ISC) 

and reverse intersystem crossing (rISC). The diagram in Figure 2.3 also shows typical rates 

that are involved for the different optical processes. Absorption (kabs) happens in the 

femtosecond regime, while emission from the prompt fluorescence (kPF) occurs in the 

nanosecond timescale. Depending on the photophysical properties of the system studied, an 

equilibrium between the singlet and triplet populations may be established by the ISC and rISC. 

If the rISC is efficient in the order of microseconds and it can give rise to delayed fluorescence 

(kDF) through TADF.  
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Conversely, phosphorescent emission (kPH) from the lowest triplet to the ground state can be 

commonly observed in the millisecond region. This latter process is much slower than kPF 

because it is spin forbidden but can take place if SOC is present and all non-radiative processes 

heavily suppressed. This criterion is commonly achieved by cooling the sample to liquid 

nitrogen temperature (or even below) while the first is entirely material dependent. Very 

efficient SOC can also boost kPH in the microsecond region. 

 

Figure 2.3 Jabłonski diagram with thick lines to represent the electronic states while the thinner lines 

represent the vibrational states. S0 is the ground state, S1 and T1 are the first singlet and triplet excited 

states respectively. The dashed arrows represent non radiative processes while the solid arrows represent 

either absorbed or emitted radiation. kabs, kPF, kDF and kPH are respectively the transition rates of 

absorption, prompt fluorescence, delayed fluorescence and phosphorescence.5 

2.3 Triplet Harvesting Mechanisms 

While triplet states are generally not optically accessible, they are formed three times more 

often than singlet states under electrical excitation. This is because optical selection rules 

prevent the photoexcited electron to spin flip from the singlet ground state which it originates 

from.2,6 This constraint does not apply when the excitons are formed electrically since the 

electrons are injected into the organic film where they are free to interact according to the spin 

statistic presented in section 2.1.1.1. As such, finding ways to convert non emissive triplets 

into emissive singlets is important for OLED applications. 

Three mechanisms have been investigated to harvest triplet for light production; 

phosphorescence, triplet-triplet annihilation (TTA) and thermally activated delayed 

fluorescence (TADF). The photophysical mechanisms of each are schematically shown in 
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Figure 2.4 which shows simplistically the main key concepts behind the three triplet harvesting 

mechanisms that are being discussed, more details about the physics and the energy levels 

involved are given in the following dedicated sections. 

 

Figure 2.4 Schematic representation of the three triplet harvesting mechanisms used to maximise the efficiency 

of the OLED devices, (a) Phosphorescence (b) TTA and (c) TADF. The black arrows in (a) and (c) represent the 

the ISC-rISC processes. In (a) the ISC process is ultrafast in the picosecond or faster timescale and the process 

bottleneck is represented by the lifetime of the triplets.7,8 In (b) the arrow is different (blue) because the nature of 

triplet harvesting is collisional and the rate depends on carrier density, and so comparing to intrinsic ISC or rISC 

rates is not valid, nonetheless the upconverted states will emit in the nanosecond timescale typical of fluorescent 

processes.9,10 In (c) rISC and ISC are typically comparable with the latter usually an order of magnitude faster. 

The difference in the equilibrium is given by the fact that the upconverted singlets will emit at a rate two order of 

magnitudes faster than ISC thus making the triplet harvesting mechanism effective.11,12 

2.3.1 Phosphorescence 

The first triplet harvesting mechanism to be efficiently exploited was phosphorescence (Figure 

2.4a) where singlet states converted into triplets trough ISC and directly generated triplet states 

can emit efficiently thanks to effective SOC maximised by the presence of heavy metals in the 

molecular structure of the emitter (eg Ir, Pt). The magnitude of the SOC is proportional to Z4 

(as previously mentioned) and hence more effective with heavy atoms.13 This SOC makes the 

spin flip necessary for direct emission out of T1 weakly allowed and competitive with other 

non-radiative decay rates that make phosphorescence undetectable in most materials at room 

temperature. It has been demonstrated that for Ir and Pt complexes the PLQY can reach values 

close to 100% at room temperature which has made them ideal candidates as emitters in 

OLEDs.13 
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2.3.2 TTA 

TTA (Figure 2.4b) is a bi-excitonic collisional process where two excited triplets form an 

encounter complex, promoting (ideally) one triplet to the singlet excited state while the other 

relaxes to the ground state. This process is allowed as long as 2ET1 > ES1.  

The encounter complex of two triplets can create 9 different states with three different 

characters, a singlet, a triplet or a quintet depending of the total resulting spin of the two 

interacting triplets forming the encounter complex. The most useful resulting state (for OLED 

application) is the singlet since it can produce an excited singlet state according to Equation 

2.3 which can decay radiatively originating delayed fluorescence (DF). 

Equation 2.3 

2𝑇1  → 𝑆0 + 𝑆1 

Conversely to the singlet encounter complex, the triplet and the quintet cannot produce and 

excited singlet state thus effectively acting as quenching mechanisms to singlet complexes. 

Even considering the ideal situation where level alignment minimises the loss mechanisms 

(2ET1 < ETn with n > 1 and 2ET1 ≠ S1 to avoid singlet fission) the limitation of the TTA process 

is that as a 2:1 triplet to singlet process only 50% of the triplets produced can be recycled into 

singlets. Therefore, the theoretical maximum efficiency achievable by an ideal TTA emitter in 

an OLED is the 25% singlets excitons (directly generated) plus half of the triplet excitons, all 

of which form efficient TTA pairs, resulting in 25%+0.5*75%=62.5%.14 

In practice TTA only becomes efficient at high density of triplets and is considered a loss 

mechanism for OLED devices based on phosphorescence and TADF emitters which can 

harvest the entire triplet population (and not only half) leading a maximum efficiency of 100%. 

To identify that the DF observed from a system arises from TTA, the measurement of the power 

dependence of the DF intensity is of fundamental importance to distinguish it from the other 

triplet harvesting mechanisms (eg TADF). 

2.3.3 TADF 

The current model for the TADF mechanism presented here is based on the work of Penfold et 

al15, Marian et al16 and from Monkman group17–19. If phosphorescence and non-radiative decay 

of the triplet state is slow and the energy gap between the singlet and triplet states is small 

enough (normally <0.2 eV), then rISC back to the singlet state can occur efficiently. Initial 
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studies assumed that TADF occurred between the 1CT and 3CT states, however El Sayed’s rule 

instead demands that there must be a change in orbital type in order to have a non-negligible 

kISC. In other words, ISC between two states of the same orbital character is strictly forbidden.20 

Later Monkman and co-workers 18,19 showed that the states involved in TADF could be 

independently tuned by the environment, and therefore must be of different character. 

This result led to the insight that a local excited triplet state (3LE) must be mediating the rISC 

process. Dias et al.19 showed that different molecules with very similar energy gaps (ΔEST) 

exhibit large variations in krISC. They show that by sterically hindering the motion of Donor 

(D) and Acceptor (A) groups, the emission could be switched from TADF to room temperature 

phosphorescence (RTP).21 This result demonstrated experimentally the fundamental role of 

vibronic coupling in the TADF process, as steric restriction of the vibrational motion removed 

the coupling mechanism between the 3CT and the 3LE necessary to achieve high krISC. 

Concurrently Etherington et al.22 showed by experimentally tuning the CT in and out resonance 

with the 3LE states the rISC could be tuned and it was maximum when the CT was in resonance 

with the 3LE. Later Gibson et al23 would later show by simulation that the two main processes 

of the TADF mechanisms are reverse Internal Conversion (rIC) (Equation 2.4) which 

establishes an equilibrium between the 3LE and 3CT depending of the size of the vibronic 

coupling and rISC mediated by the energy gap to convert 3LE into 1CT. Equation 2.5 shows 

how the coupling between 3CT and 1CT is always mediated by the 3LE (Figure 2.5).  

Equation 2.4 

𝑘𝐼𝐶 =
2𝜋

ℏ
|⟨Ψ3𝐶𝑇

|𝐻̂𝑣𝑖𝑏|Ψ3𝐿𝐸
⟩|

2
𝛿(E3𝐶𝑇

− E3𝐿𝐸
) 

Equation 2.5 

𝑘𝑟𝐼𝑆𝐶 =
2𝜋

ℏ
|
⟨Ψ1𝐶𝑇

|𝐻̂𝑆𝑂𝐶|Ψ3𝐿𝐸
⟩⟨Ψ3𝐿𝐸

|𝐻̂𝑣𝑖𝑏|Ψ3𝐶𝑇
⟩

E3𝐶𝑇
− E3𝐿𝐸

|

2

𝛿(E1𝐶𝑇
− E3𝐿𝐸

) 

Where kIC and krISC are the internal conversion and reverse intersystem crossing rates; ℏ is the 

Planck’s constant Ψ3𝐿𝐸
, Ψ1𝐶𝑇

, Ψ3𝐶𝑇
 are respectively the locally excited triplet, the charge 

transfer singlet and the charge transfer triplet wavefunctions; 𝐻̂𝑣𝑖𝑏, 𝐻̂𝑆𝑂𝐶 are the vibronic and 

the spin orbit coupling Hamiltonians; E3𝐿𝐸
, E1𝐶𝑇

 and E3𝐶𝑇
 are the electronic energy levels of 

the locally excited triplet, the charge transfer singlet and the charge transfer triplet; 

𝛿(E3𝐶𝑇
− E3𝐿𝐸

) and 𝛿(E1𝐶𝑇
− E3𝐿𝐸

) are Kronecker deltas of the two equations. The Kronecker 
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delta function is equal to 1 if the energy levels inside the round brackets are equal is otherwise 

zero for any other case. 

This assumes that the electronic energy must be resonant for IC and rISC processes to be 

efficient we nonetheless know from the literature that this condition is not as stringent as it is 

represented in Equation 2.4 and 2.5 and that there are numerous examples of molecules and 

exciplexes that emit efficiently via TADF with a ΔEST ≠ 0 althoug still very small in the order 

of tens of meV.19,23,24 

 

Figure 2.5 Schematic representation of the rISC pathways with different 3LE-3CT alignments. Figure adapted 

from Gibson et al.23 

The size of the rISC rate is also strongly dependent by the ΔEST gap (Equation 2.6 empirically 

and Equation 2.5 theoretically). 

Equation 2.6 

𝑘𝑟𝐼𝑆𝐶 ∝ 𝑒
−∆𝐸𝑆𝑇

𝑘𝐵𝑇⁄
 

While all of the above work was performed on molecular TADF materials with intra-molecular 

CT states, similar findings concerning the TADF mechanism in exciplexes were also reported 

by Monkman et al. 25 While this work also highlight the fundamental role of the ΔEST gap, little 

can be said about the role of vibronic coupling since this cannot be controlled as it has been in 

the D-A molecules. 

2.3.4 Exciplexes 

An exciplex is an excited complex that is bound in the excited state while does not interact in 

the ground state. It requires an electron donating (donor or D) and an electron accepting 
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(acceptor or A) molecule to form. It can be formed by photoexciting either the donor or the 

acceptor which will be locally excited with the state localised on excited molecule. This LE 

state separated at the D-A interface forming a CT exciplex. The exciplex formation when one 

of the two components is photoexcited (D* or A*) happens through electron transfer (ET) 

(schematically shown in Figure 2.7a). The wavefunction of the exciplex (DA)* can be then 

written similarly to Equation 2.2 with M1 and M2 being the acceptor (A) and the donor (D). 

Equation 2.7 

𝜓([𝐷𝐴]∗) ≈ 𝑐1𝜓(𝐷∗𝐴) + 𝑐2𝜓(𝐷𝐴∗) + 𝑐3𝜓(𝐷+𝐴−) 

With |c3|
2 representing the fraction of CT states in the exciplex wavefunction.  

Not all D-A couples will form an exciplex, it has been showed in the literature that a driving 

force for the electron transfer has to be present for it to form in the first place. This driving 

force has been identified in the difference between the LUMO and HOMO levels of the D and 

A components. The minimum requirement for exciplex formation can be summarised as 

𝐸𝐿𝑈𝑀𝑂
𝐴 − 𝐸𝐿𝑈𝑀𝑂

𝐷 > 0 and 𝐸𝐻𝑂𝑀𝑂
𝐴 − 𝐸𝐻𝑂𝑀𝑂

𝐷 > 0, if these conditions are not met, ET in not 

energetically favourable as schematically shown in Figure 2.6.26 

 

Figure 2.6 From left to right: The materials do not form a D-A couple, charge transfer is not possible and energy 

transfer from A to B occurs instead, this kind organic heterojunction is referred to as Type I. Donor (A) and 

acceptor (B) have very similar LUMO energies so the ET will be inefficient; donor (A) and acceptor (B) with 

suitable energy levels to promote efficient ET thus exciplex formation can take place efficiently. The organic 

heterojunctions shown in the middle and right part of the figure are referred to as Type II. 

The exciplex emission happens at the D-A interface and its maximum theoretical energy is, in 

first approximation, the difference between the ELUMO
A − EHOMO

D  (Figure 2.7b). An important 

contribution to total energy of the exciplex is given by the Coulomb attraction energy EC(𝑟) =
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e2

4πrε0ε
 between the D-A couple.4,27 The exciplex energy can be then written in first 

approximation as: 

Equation 2.8 

𝐸𝐸𝑥𝑐𝑖𝑝𝑙𝑒𝑥 =  ELUMO
A − EHOMO

D − EC(𝑟) 

It is clear from Equation 2.8 that, the more physically separated the D-A couple is, the more 

blueshifted its emission will be due to the reduction of the EC(𝑟) term. Furthermore, Attar et 

al27 proved that it is possible to induce blueshift in interfacial exciplexes were a preferential 

orientation of the D-A exciplex dipoles can be induced proving that pulling the D-A couples 

apart by using external electric field assuming that the HOMO and LUMO levels of D and A 

do not change under the effect of the electric field. 

 

Figure 2.7 (a) Schematic representation of exciplex formation through electron transfer in the case of donor 

excitation or acceptor excitation, Figure adapted from Turro et al28. (b) Schematic representation of exciplex 

emission where only the 𝐄𝐋𝐔𝐌𝐎
𝐀 − 𝐄𝐇𝐎𝐌𝐎

𝐃  contribution is being represented. 

 

2.4 OLEDs 

2.4.1 Working principle 

An OLED is an optoelectronic device in which electroluminescence (EL) is used to produce 

light from an electrical input. This property was firstly observed in organic materials by André 
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Bernanose and co-workers in the early 1950s,29 and in 1987 Tang and Van Slyke published the 

first efficient multilayer OLED.30 

Figure 2.8b is shows a generic structure of an OLED, while Figure 2.8a shows a schematic 

representation of the correspondent energy level alignment of the different layer materials. 

Electrons are injected from the cathode, which is made of a low work function metal. In order 

to be injected from the cathode into the electron transport layer (ETL) the electrons need to 

overcome the electron injection barrier (ΔEe); the energy difference between the work function 

of the cathode (𝜙𝐶) and electron affinity (EA) of the ETL. Holes, are injected from the anode, 

commonly formed by high work function transparent metal oxides such as the indium tin oxide 

(ITO), the transparency is required to allow the EL to emerge from the OLED. Similarly, holes 

have to overcome an hole injection barrier (ΔEh), defined as the energy difference between the 

work function of the anode (𝜙𝐴) and the ionization potential of the hole transport layer (HTL). 

The purpose of the ETL and HTL is to reduce the injection barriers and facilitate the transport 

of the carriers to the emissive layer (EML). Once the carriers are injected in the device they 

can then interact in the EML, ideally forming an exciton that decays radiatively. All the other 

processes are considered energy loss pathways 

 

Figure 2.8 (a) Schematic representation of the energy level alignment of an OLED structure. (b) General structure 

of a multilayer OLED. 

 

2.4.1.1 Exciplex OLEDs 

Interfacial exciplexes were for long avoided in OLEDs structures since they represented a 

design flaw in the OLED stack and an efficiency loss pathway.31,32 On the other hand, 
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exciplexes offer the possibility to working structures with only two organic materials since an 

exciplex is essentially composed by an hole transporting and a electron transporting material. 

This offers the possibility of building structures of the kind HTL|EML(Exciplex)|ETL (Figure 

2.9) where the exciplex in this case it would be a mixture of the HTL and the ETL. This 

simplified yet effective structure characteristic offers a great practical advantage when 

industrial upscaling is taken into account. 

 

Figure 2.9 Schematic representation of an OLED structure where only two exciplex forming materials are 

employed. The HTL and ETL act respectively as donor and acceptor materials in the EML (EXCIPLEX) blend. 

Even before exciplexes were investigated as promising candidates for the EML, they were 

widely used as hosts due to the great exciton confinement capability that they offer while being 

able to exploit energy transfer to higher PLQY emitters (eg PHOLEDs or laser dyes).33–36 Their 

natural exciton confinement capabilities derive from the driving force necessary to form the 

exciplex in the first place. The HOMO-HOMO and LUMO-LUMO offset necessary to stabilise 

the exciplex couples is also what prevents the charges injected into the device from leaking 

through the remaining layers of the OLED stack thus remaining confined in the EML for the 

radiative processes. 

The interest in exciplexes as emitters increased greatly after Goushi et al37 demonstrated that it 

was possible to harvest triplets via TADF in the same way it was recently demonstrated small 

molecules.25,26,38,39 Strategies to achieve efficient TADF in exciplex OLEDs were then further 

investigated. Dos Santos et al25 highlighted the importance of the proximity of the LE triplet 

levels of the D-A couple to the exciplex energy to minimise the ΔEST thus maximise the rISC. 

Kim et al40 demonstrated that cooling down an exciplex OLED is a possible way to boost its 

efficiency by reducing the non-radiative emission pathways. Later the same group reported a 

study showing that the relative orientation of the D-A couple would affect its photophysics.41 
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2.4.2 Stability 

The failure mechanisms of OLED devices can be classified as either intrinsic or extrinsic. 

Intrinsic deterioration involves problems in the stability of the organic thin films, interfaces 

between anodes and organic layers, excited state stability, movement of ionic impurities, 

diffusion of transparent electrode metals into the active layers, cation instability, large energy 

barriers for charge carriers, positive charge accumulation, and width of recombination zones.13 

Extrinsic deterioration involves all the failure mechanisms unrelated to the materials and device 

structure. For Example, environmental factors such as atmospheric oxygen and moisture 

dramatically affect the lifetime of OLED devices. Environmental exposure of organic materials 

leads to the formation of non-emissive dark spots within the device area.42 It is possible 

nonetheless to avoid the extrinsic degradation if the devices are properly encapsulated and 

therefore isolated from the environment.  

Generally, intrinsic degradation processes lead to a progressive and spatially uniform loss of 

luminance efficiency over time during operation.43 Initial studies focused on the thermal 

stability of the thin films, the formation of traps and luminescence quenchers, the interfacial 

degradation between adjacent layers and the anode instability. The concern was that the 

principal cause of the short operational lifetime was due the low glass transition temperatures 

(Tg) of the materials and especially of the HTL which would suffer the thermal stress as the 

device operates at high current. Adachi et al. then demonstrated that low Tg hole transport 

layers can also exhibit long lifetimes and vice versa.44 The trap formation in the bulk has two 

effects, first the traps lead to the formation of non-radiative recombination centres, secondly, 

they are responsible for the decrease of the carrier mobility and hence the increasing of the 

operating voltage.43,45 These effects add up over time and eventually significantly degrade the 

device performance. Understanding and avoiding these problems is therefore important for 

commercial applications. 
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Materials and Experimental 

Methods 

 

This chapter details the main experimental methods employed to acquire the data discussed in 

the subsequent chapters. First, the set of organic materials studied are presented, then sample 

preparation methods and characterization techniques for the exciplex blends are outlined. 

Finally, the production and testing methods for OLED devices are presented. 
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3.1 Organic Materials Studied 

In this thesis several donor-acceptor exciplex systems are examined. Almost all the molecules 

used were commercially available and used as received from Ossila, Sigma Aldrich and 

Lumtec. The only molecule used that is not commercially available was synthesised at the 

University of Strathclyde (D-A-D molecule “2d” in Chapter 6). Table 3.1-Table 3.5 summarise 

the chemical structures of all compounds utilised. All the materials used for OLED production 

were purified via vacuum sublimation under a temperature gradient or acquired pre-sublimed 

from the aforementioned suppliers. PEDOT:PSS was acquired from Ossila and filtered with a 

0.45μm syringe filter to eliminate aggregates.  

Table 3.1 Chemical structures of exciplex forming donors (D) used in this thesis including, chemical names, 

acronyms and chapters in which they feature. 

Exciplex Donors 

Chemical Structure Chemical Name 
HOMO/LUMO  

(eV) 

Egap 

(eV) 
Acronym Chapter 

 

 

4,4'-

(Diphenylsilanediyl) 

bis(N,N-

diphenylaniline) 

5.9/2.3 3.6 TSBPA 4 

 

 

4,4'-Bis(carbazol-9-

yl)-2,2'-

dimethylbiphenyl 

5.8/2.4 3.4 CDBP 5 

 

 

4,4'-Bis(carbazol-9-

yl) biphenyl 
5.8/2.3 3.5 CBP 5 

 

 

1,3-Bis(carbazol-9-

yl) benzene 
6.1/2.3 3.8 mCP 5 

 

 

4,4′-

cyclohexylidenebis 

[N,N-

bis(4methylphenyl) 

benzenamine] 

5.5/2.0 3.5 TAPC 6 

    

  

  

  

  



 
29 

 

 

2,6-bis[3-(9H-

carbazol-yl)phenyl] 

pyridine 

6.1/2.6 3.5 26DCzPPy 7 

 

Table 3.2 Chemical structures of exciplex forming acceptors (A) used in this thesis including, chemical names, 

acronyms and chapters in which they feature 

Exciplex Acceptors 

Chemical Structure Chemical Name 
HOMO/LUMO 

(eV) 

Egap 

(eV) 
Acronym Chapter 

 

 

2,4,6-tris 

[3-(diphenylphosphinyl) 

phenyl] 

-1,3,5-triazine 

7.1/3.2 3.9 PO-T2T 4,5,7 

 

 

9-[2,8]-9-carbazole-

[dibenzothiophene-S,S-

dioxide]-carbazole 

6.1/3.1 3.0 
2d 

DCz-DBTO2 
6 

 

Table 3.3 Chemical structures of hosts used in this thesis including, chemical names, acronyms and chapters in 

which they feature 

Hosts 

Chemical Structure Chemical Name HOMO/LUMO 

(eV) 

Egap 

(eV) 

Acronym Chapter 

 

 

1,3-

Bis(triphenylsilyl) 

benzene 

7.1/2.8 4.3 UGH-3 4,5 

 

 

Bis[2-

(diphenylphosphino) 

phenyl] ether oxide 

6.5/2.0 4.5 DPEPO 4 
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2,6-bis[3-(9H-

carbazol-yl)phenyl] 

pyridine 

6.1/2.6 3.5 
26DCzPP

y 
7 

 

 

Table 3.4 Chemical structures of the hole transporting materials used in the OLEDs produced in this thesis 

including, chemical names, acronyms and chapter in which they feature 

Hole Transporting Materials 

Chemical Structure Chemical Name HOMO/LUMO 

(eV) 

Egap 

(eV) 

Acronym Chapter 

 

 

N,N′-Bis 

(naphthalen-1-yl)-N,N′ 

bis(phenyl)benzidine 

5.5/2.4 3.1 NPB 4,5,7 

 

 

4,4'-(Diphenylsilanediyl) 

bis(N,N-diphenylaniline) 
5.9/2.3 3.6 TSBPA 4 

 

 

4,4'-Bis(carbazol-9-yl)-

2,2'-dimethylbiphenyl 
5.8/2.4 3.4 CDBP 5 

 

 

4,4'-Bis(carbazol-9-yl) 

biphenyl 
5.8/2.3 3.4 CBP 5 

 

 

1,3-Bis(carbazol-9-yl) 

benzene 
6.1/2.3 3.8 mCP 5 

 

 

poly(3,4-

ethylenedioxythiophene) 

polystyrene sulfonate 

5.2 (Work 

Function) 
n/a PEDOT:PSS 6 
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Table 3.5 Chemical structures of the electron transporting materials used in the OLEDs produced in this thesis 

including, chemical names, acronyms and chapter in which they feature 

Electron Transporting Materials 

Chemical Structure Chemical Name HOMO/LUMO 

(eV) 

Egap 

(eV) 

Acronym Chapter 

 

 

2,4,6-tris 

[3-(diphenylphosphinyl) 

phenyl] 

-1,3,5-triazine 

7.1/3.2 3.9 PO-T2T 4,5,7 

 

 

2,2',2"-(1,3,5-

Benzinetriyl)-tris(1-

phenyl-1-H-

benzimidazole) 

6.2/2.7 3.5 TPBi 6,7 

 

 

2,9-Dimethyl-4,7-

diphenyl-1,10-

phenanthroline 

6.4/3.0 3.4 BCP 7 

 

Table 3.6 Chemical structures of the Iridium complex used in the OLEDs produced in this thesis including, 

chemical names, acronyms and chapter in which they feature 

Phosphorescent Red Dopant 

Chemical Structure Chemical Name HOMO/LUMO 

(eV) 

Egap 

(eV) 

Acronym Chapter 

 

 

bis(2-(3,5-

dimethylphenyl) 

quinoline-

C2,N')(acetylacetonato)ir

idium(III) 

5.3/3.3 2.0 Ir(dmpq)2acac 7 
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3.2 Sample Preparation 

Photophysical characterization of exciplex blends was performed exclusively on solid state 

samples since it represents the closest condition to those in the OLED devices. The solid state 

samples were prepared either via drop casting or thermal evaporation on sapphire or quartz 

substrates. For drop casting, molecules were dissolved in toluene or chloroform at typical 

concentrations of 10 mg/ml, donor and acceptor solutions mixed in a 1:1 volume ratio, and 

then deposited on the substrate atop a pre-heated 50°C hotplate and left until completely dry in 

air. Lower concentrations were used if the solubility of a particular molecule was found to be 

below 10 mg/ml. This method affords rapid and simple access to thick films (desirable to 

increase absorption and emission signal) using small amounts of material but offers very little 

control on the microstructure of the deposited films. It is nonetheless a valuable tool to screen 

if a D-A blend forms an exciplex. Conversely, when a high degree of repeatability of the films 

deposited is required and, to minimise the segregation of the hetero molecules co-deposited 

and improve the heterogeneity of the dispersion in the exciplex-host blend, vacuum thermal 

evaporation (VTE) is the best option for film deposition. This technique is indeed well known 

to enable the production of reproducable films with minimum to none formation of aggregates, 

which are very likely to be found in films deposited via drop casting. The smoothness of the 

VTE deposited films is also important for the measurement of photoluminescence quantum 

yields of the blends, where scatter from surface roughness can influence the measurement. The 

downside of VTE is that material consumption is far greater. 

3.3 Film Thickness Measurement 

When preparing OLED devices it is critically important to be able to accurately measure the 

thickness of deposited films. In this thesis two techniques have been used to measure this 

parameter, ellipsometry and profilometry. In chapter 4, 5 and 7 a J.A Woollam VASE 

ellipsometer based in the physics department of Durham university has been used to measure 

film thickness for the calibration of the tooling factors of the vacuum deposited materials (see 

section 3.6.1). In chapter 6 a J.A Woollam VASE ellipsometer and a Dektak profilometer - 

both based at the Kroto Innovation centre in Sheffield - were used to measure the thicknesses 

of films deposited from solution and VTE. 
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3.3.1 Ellipsometry 

Spectroscopic ellipsometry is a non-destructive optical technique based on the change in 

polarization of light as it is reflected obliquely from a thin film. Ellipsometry uses a model 

based approach to determine thin film properties such as the film thickness. The measurements 

were performed in the wavelength range of transparency of the films (typically 500-1100 nm) 

and the collected data were numerically fitted to estimate the film thickness. Films for this 

measurement were deposited on silicon oxide (SiOx) substrates of known SiOx thickness. The 

reason for using this substrate is twofold: firstly the highly reflective SiOx surface provides an 

optimal reflectance signal for the measurement, secondly the SiOx is a standard material in 

ellipsometry and it is very reliably fitted in the modelling software. This means that the sample 

model needs only to fit the organic film thickness to match the simulated and actual data. 

3.3.2 Profilometry 

In this technique a diamond stylus descends vertically into contact with a sample and is then 

dragged horizontally across the sample. The profilometer then measures small variations in 

vertical stylus displacement as a function of position. A small part of the deposited film is 

scratched away and the trace of the profilometer is taken across the valley formed by the 

scratch. The height difference between the scratched part of the sample and the untouched part 

of the film corresponds to the thickness of the sample. Profilometry is a direct technique with 

no modelling required, which is a significant advantage over ellipsometry (although the latter 

offers a more precise measurement when the sample is modelled correctly). In chapter 6 both 

techniques were used to measure the thickness of the spin coated films in order to cross validate 

the measurements. 

3.4 Steady-State Spectroscopy 

3.4.1 Optical Absorption 

The absorption spectrum measures the ratio of absorbed to incident photons at a given 

wavelength (λ), which is proportional to the probability of a transition from the ground state to 

an excited state differing by the energy of the absorbed photon. The intensity of the light 

(wavelength λ) that passes through the sample (I) of known thickness (x) and concentration (c) 

is given by the Beer-Lambert law1 (Equation 3.1). 

Equation 3.1 

𝐼 (𝜆) =  𝐼0𝑒−𝜀(𝜆)𝑥𝑐 



 
34 

Where I0 is the intensity of the incident light and ε is the molar extinction coefficient which 

strongly depends of the incident wavelength. 

Absorbance spectra were collected using a Shimadzu UV3600 double beam spectrometer in 

ambient conditions. All absorption spectra were collected from VTE deposited films using a 

blank substrate as reference. The instrument uses monochromated broad band light sources 

(deuterium lamp for the UV and tungsten for the Vis/NIR regions). The intensities of the 

transmitted light are collected with a PMT for the UV-Vis region and InGaAs detector for the 

Vis-NIR. The absorption spectrum is measured in terms of optical density (OD) which is 

defined in Equation 3.2. 

Equation 3.2 

𝑂𝐷 = log
𝐼0

𝐼
 

 

 

3.4.2 Photoluminescence 

Photoluminescence (PL) spectra were recorded by measuring the intensity of emitted radiation 

as a function of the emission wavelength under continuous excitation with a selected 

wavelength. The PL spectrum is collected perpendicularly to the excitation in order to minimise 

reflected or scattered light from the excitation beam reaching the detector. The PL spectra were 

collected using either a Jobin Yvon Horiba Fluoromax 3 or Fluorolog spectrometers, both 

equipped with Xe arc lamp, an excitation monochromator, a reference photodiode, an emission 

monochromator and a PMT detector. The slits widths on both monochromators can be 

controlled to increase the resolution of the spectrum collected (at cost to signal intensity) and 

narrow the selected excitation wavelength (at cost of the total excitation power). The reference 

photodiode is used to normalise the intensity of the excitation beam in order to correct for the 

different output of the Xe lamp at different wavelengths and for output fluctuations over time. 

Finally, to take into account for the non-uniform sensitivity of the PMT to different 

wavelengths a (correction provided by the manufacturer) is applied automatically. 

3.4.3 Photoluminescence Quantum Yield 

The Photoluminescence quantum yield or PLQY of a material is defined as the number of 

photons emitted as a fraction of the number of photons absorbed (Equation 3.3). 
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Equation 3.3 

𝑃𝐿𝑄𝑌 =
# 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝐸𝑚𝑖𝑡𝑡𝑒𝑑

# 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

This property of a fluorophore is of fundamental importance for understanding molecular 

behaviour and interactions of materials to be applied as emitters in OLEDs.  

The PLQY measurements presented in chapter 4 were collected using a fibre coupled Thorlabs 

UV LED 340 nm as excitation source and an Ocean Optics HR2000+ spectrometer as detector 

connected to a 4” integrating sphere (Labsphere). The PLQY values measured on this system 

were calculated according to literature taking in account the direct and indirect interaction of 

the sample with the excitation beam.2 The measurements presented in chapter 5 were acquired 

using a calibrated integrating sphere (Horiba Quanta-ϕ) coupled to a Horiba Fluorlog-3 

spectrofluorometer (330 nm excitation) with calculations performed on included Fluoracle 

software. For all measurements the sphere was flushed with a stream of dry nitrogen gas for 30 

minutes before measurement, unless otherwise specified. 

3.5 Time Resolved Spectroscopy 

3.5.1 Time-Gated Acquisition – CCD 

Time resolved photoluminescence spectroscopy provides insight on the kinetics, energy levels 

(local or CT) and even the nature of the emissive process (eg TADF or TTA) of a given system. 

It is indeed possible to identify the dominant states giving rise to the prompt and delayed 

emission and their relative ratio. The setup (Figure 3.1a) uses a 10 Hz pulsed laser that hits the 

sample mounted in a cryostat oriented at 45°. The sample emission is then collimated and 

focused using two lenses onto a dual grating spectrograph that passes a variable spectral 

window to an intensified charge coupled device (iCCD) (Stanford Computer Optics 4Picos) 

triggerable with a 200 ps time resolution. The excitation source used was either the 3rd harmonic 

output of a Nd:YAG laser (355 nm output, FWHM of 150 ps) or a N2 laser (337 nm output, 

FWHM of 3 ns). The shorter pulsed Nd:YAG was used to collect the PL decays since it allowed 

better temporal resolution in the prompt region of the decay, while the N2 laser allowed a finer 

control of the excitation power and therefore was preferred for the acquisition of the laser 

fluences.  
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Figure 3.1 (a) Time gated PL spectrum acquisition system. The Nd:YAG uses an electronic signal to trigger the 

iCCD camera while the N2 laser beam triggers the iCCD through a fast photodiode. (b) The intensity of the spectra 

collected with the iCCD at each delay time is integrated and normalised over the specific integration time. The 

integrated time normalised spectra (inset figure b) are then plotted against the delay time to reconstruct the PL 

decay. 

To synchronise the laser pulses with the camera shutter, the iCCD has to be precisely triggered. 

The Nd:YAG laser is equipped with an electronic trigger that occurs before the laser pulse 

emerges and communicates directly with the camera. After the camera receives the trigger 

signal a fixed minimum delay time takes into account the time for the laser pulse to reach the 

sample in the cryostat which is mostly due to the internal optical processes inside laser itself 

such has the flashlamp/Qswitch timing. This fixed delay time has been measured at 975.5 ns, 

which appended to the FWHM of the Nd:YAG laser (150 ps) constitutes the zero time of the 

decays. This value has to be subtracted from the delay time of each spectrum as a constant the 

data analysis. The N2 laser uses a fast photodiode as optical trigger but is used exclusively for 

laser fluence measurements where the delay time is much longer (> several μs) than the zero 

time of the system so no delay constant is introduced in the data processing of the spectra 

acquired with this laser. All measurements performed in this setup where carried out under 

vacuum (10-3 mbar) when at room temperature (≈ 290 K) or under stream of dry nitrogen when 

at 80 K. 

3.5.1.1 Data Analysis 

The spectra acquired with the system described in Figure 3.1a, are normalized over the spectral 

integration time, then plotted against the delay time to reconstruct the PL decay (Figure 3.1b). 

Information about the kinetics and the energy of the states involved in the emissive process can 

then be extracted from the decays and spectra. As many as three emission regions can often be 

observed in a PL decay (Figure 3.2a), the prompt fluorescence (PF), delayed fluorescence (DF) 

and phosphorescence (PH). These regions are not fixed and can occur at varying delay time, 
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especially when the temperature is changed from room temperature (RT) to 80K. At RT the 

phosphorescence usually cannot be observed, but sometimes even at low temperature it is not 

trivial to identify the emission from the local triplet (as later shown in chapter 5). Figure 3.2b 

shows how the ΔEST gap is determined from the difference between the onset of the steady 

state spectrum measured with the fluorimeter (giving 1CT) and the phosphorescence acquired 

with iCCD system at low temperature and long delay time (giving 3LE). The two onset values 

are converted in energy using the relation E = hv/λ and their difference gives ΔEST gap. 

 

Figure 3.2 (a) PL decay measured at 80K where the prompt region, the delayed region and the phosphorescence 

region are highlighted (b) Identification of the 1CT and 3LE energy for an exciplex blend. The 1CT is measured 

from the spectra acquired from the steady state measurement. 

To quantify the kinetics of the emissive processes, the different regions of decays were fitted 

with a sum of exponential decay functions (Equation 3.4). 

Equation 3.4 

𝑦(𝑡) = ∑ 𝐴𝑖𝑒−𝑡
𝜏𝑖⁄

𝑛

𝑖=1

 

Where τi are the decay time constants or lifetimes of the species emitting in the region of the 

decay that is being fitted and Ai is a fit parameter. Both DF and PF can be fitted as 

aforementioned using different Ai and τi. An important parameter that can be derived from the 

decay is the ratio between the integrated intensity for the delayed region and the prompt region 

which indicates the contribution of the triplet harvesting process to the overall emission. This 

is the ratio of the DF and PF yield, ΦDF and ΦPF respectively. From this ratio and the lifetime 

of the DF region (τDF) is possible to calculate the rISC rate (krISC) according to Dias et al.3 
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Equation 3.5 

𝑘𝑟𝐼𝑆𝐶 =
1

𝜏𝐷𝐹
(1 + Φ𝐷𝐹 Φ𝑃𝐹⁄ ) 

3.6 Organic Light Emitting Diodes (OLEDs) 

3.6.1 Fabrication 

3.6.1.1 ITO cleaning 

Regardless of the deposition process utilized, ITO substrates were cleaned in sonication baths 

of acetone and then isopropyl alcohol (IPA) for 15 minutes each. Afterward the substrates were 

dried with nitrogen (Sheffield, Chapter 6) or air (Durham, Chapter 4, 5 and 7) before being 

treated with UV ozone (Sheffield, Chapter 6) or oxygen plasma (Durham, Chapter 4, 5 and 7) 

for 10 minutes. Afterward the ITO substrates were ready for deposition (spin coating or VTE). 

Different ITO substrates were used across this thesis, in chapters 6 and 7 substrates purchased 

form Ossila (20 Ω/sq) were used with a pixel size of 4.5 mm2. In chapter 4 and 5 VisionTek 

Systems ITO substrates were used with pixel sizes of 4, 8 and 16 mm2. 

3.6.1.2 Solution Processing 

Spin coating is a versatile technique that allows deposition of thin films from solution in 

thicknesses ranging from μm to nm.4 The technique uses centripetal force (generated by 

rotating the substrate at constant speed between few hundreds and few thousands rpm) to coat 

evenly the surface of a spinning substrate. Figure 3.3 shows how centripetal force pulls the 

liquid coating into an even covering. During deposition the solvent then evaporates to leave an 

even layer of the desired material. What makes spin coating so versatile is that it makes easily 

accessible a wide range of thicknesses. In fact, just three parameters can be changed to obtain 

the desired thickness (t): the rotation speed (ω), the concentration of the cast solution (C), and 

the viscosity of the solution (v), as shown in Equation 3.6. 

Equation 3.6 

𝑡 ∝
𝑣𝐶

√𝜔
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Figure 3.3 Schematic representation of the spin coating process. From left to right, solution dispensing, solvent 

evaporation due to the rotation, film drying, repeat if necessary to build multiple layers. 

The first layer deposited in Chapter 6 is PEDOT:PSS Al 4083 (Ossila). Prior to deposition the 

PEDOT:PSS solution was filtered with a 0.45 µm PVDF filter. A 40 nm layer was then spun 

using 5000 rpm for 45 seconds. The films were then placed on a hot plate at 150°C for at least 

10 minutes to evaporate all the remaining solvent and cooled down before depositing the next 

layer.  

The emissive layer (EML) was then cast from chlorobenzene (CB), chloroform (CF) or a 5:95 

vol% CB:CF solvent blend. All solutions were filtered using 0.1 µm PTFE filter and no thermal 

anneal was performed for the EML. The films deposited for the thickness study from CB were 

cast at spin speeds between 500 and 5000 rpm from a 20 mg/ml solution. For the thickness 

study from CF solvent the spin speed was kept constant at 6000 rpm and the concentration 

varied from 23.3-10 mg/ml in order to obtain the desired range of thicknesses. The spin speed 

for the films deposited from CF had to be kept constant and high because of the difficulty in 

obtaining good quality films when using this solvent for spin coating. The CB:CF solutions 

were prepared at 20 mg/ml concentration and spun at 6000 rpm. The different ratios were 

achieved by preparing solutions of the two components of the EML at the same concentration 

and then mixing these in the required volume ratios. The thicknesses of the films were 

measured using both ellipsometry and profilometry to ensure the validity of the measurements. 

3.6.1.3 Vacuum Deposition 

Thermal vacuum evaporation (VTE) is a technique used to deposit thin films from a wide range 

of materials with allows high level of control over the deposited thickness. The principle is to 

heat the material under high vacuum to produce vapour pressure. Under high vacuum 

conditions even a relatively low vapour pressure is sufficient to generate a cloud of gas inside 

the chamber that is free to travel through the chamber and deposit evenly onto the substrate 

itself, rotating at 10 rpm to ensure an even coverage. A schematic representation of a thermal 

evaporator is presented in Figure 3.4. In this scheme two different types of sources are shown, 
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one on the bottom of the chamber for metals and salts (LiF and Al in this thesis), and the others 

on the side of the chamber for organic materials (also called low temperature evaporation or 

LTE sources).  

In this thesis three different evaporators were used: Lesker Spectros II systems at Sheffield 

(Chapter 6) and Durham (Chapter 7) that differed only in the number of LTE sources mounted 

in the chamber (2 in Sheffield and 6 in Durham), and a Lesker Super Spectros at Durham with 

12 LTE sources. An important practical difference between the two Spectros II systems was 

that the one in Sheffield did not allow co-evaporation of multiple organic materials, while the 

one in Durham allowed routine 2 component co-evaporation. The Super Spectros on the other 

hand allowed simple co-evaporation of up to 6 materials at once (even though impractical for 

OLED production) necessary for the study presented in Chapter 4 and 5 were three materials 

needed to be co-evaporated. The Spectros II in Durham also differs slightly from the scheme 

presented in Figure 3.4, since it was equipped with a turbomolecular pump rather than a 

cryogenic pump. 

 

Figure 3.4 Schematic representation of a thermal evaporator with both organic and metal sources. 

When fabricating OLEDs via VTE it is critically important to first correctly calibrate the 

thickness monitors. This operation is performed through the calculation of the tooling factor 

(TF). The TF is a correction factor that takes into account the relative orientation of the 

evaporation source with the thickness monitor itself as well as the geometry of the chamber 

(distance to thickness monitor-substrates). The TF is material dependant, and a calibration 

evaporation with a guessed TF must be initially performed in order to correct the TF (using 

Equation 3.7) by comparison the real thickness of the evaporated film determined by an 
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independent measurement. The thicknesses of the evaporated films for TF calibration were 

measured with J.A Woollam VASE ellipsometers. 

Equation 3.7 

𝑇𝐹𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 =  𝑇𝐹𝑔𝑢𝑒𝑠𝑠𝑒𝑑

𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑡𝑄𝐶𝑀
 

After deposition all the substrates were encapsulated under inert atmosphere. In chapters 4, 5 

and 7 encapsulation used a UV-curable epoxy (DELO Katiobond) along the outer edges of the 

active area with a glass cover slip in chapter 6 encapsulation was performed using a glass 

coverslip sealed by applying a drop of a low viscosity UV curable epoxy (Ossila) to cover the 

entire active area of the device with a glass coverslip. 

3.6.2 Performance Testing 

OLED devices were characterised by measuring the I-V-L characteristic, from which the 

performance metrics were calculated. I is the measured current, V the voltage and L is the 

Brightness or Luminance, defined as the intensity of light emitted from a surface per unit area 

in a given direction. As well as total luminance, the spectrum of the electroluminescence (EL) 

was also measured to allow the output photon flux to be determined. In this thesis two different 

OLED measurement setup have been used. The first, based in Durham (Figure 3.5a), is 

equipped with an Agilent Source Measure Unit (6632B) for electrical characterization of the 

devices and a calibrated fibre coupled Ocean Optics USB4000 spectrometer and a 10” 

integrating sphere (Labsphere) for optical measurements. The second setup based in Sheffield 

(Figure 3.5b) used an Ossila X100 source measure unit for the I-V acquisition and a Konica 

Minolta LS-110 for optical detection. The EL spectra of the OLED devices measured on the 

latter was acquired separately using a Stellarnet BLUE-Wave vis-25 spectrometer.  
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Figure 3.5 (a) Picture of  the OLED testing system used in Chapters 4, 5 and 7 (Durham), where 1 is the 10” 

integrating sphere with OLED mounting, 2 is the USB spectrometer and 3 is the source measure unit. (b) Picture 

of  the OLED testing system used in Chapter 6 (Sheffield), where 1 is the luminance meter, 2 oled mounting with 

x-y stage, 3 is the source measure unit and 4 shows a pixel in focus through the luminance meter. 

The fundamental difference between the two setups is that the luminance meter assumes that 

the emission profile of the OLED device is Lambertian in order to proceed with the calculations 

necessary to determine the performance figures of merit. The integrating sphere does not work 

under this assumption but must be calibrated with a source of known intensity. This Lamberian 

assumption is generally good, but the use of an integrating sphere is always preferable. 

The key reference metric for OLED devices is the external quantum efficiency (EQE), which 

describes the ratio between the number of photons (nph) that escape the surface of the OLED, 

and the number of electrons injected into it (ne). The different setups use different derivations 

to obtain the number of photons. 

The setup in Figure 3.5a measures the total radiant flux (W) emitted from the device in Watts 

by integrating the calibrated EL spectrum measured with the spectrometer. This quantity is 

then converted into number of photons by dividing by the energy of the photon at a given 

wavelength (Eph = hc/λ) where λ is the wavelength, h is the Planck constant and c is the speed 

of light, integrating according to Equation 3.8. 

Equation 3.8 

𝑛𝑝ℎ = ∫
𝑊(𝜆) ∙ 𝜆

ℎ ∙ 𝑐
 𝑑𝜆 

Conversely, the LS110 (Figure 3.5b) measures the total Luminance (Ltot) of the devices in 

cd/m2. To calculate the number of photons from this measurement it is necessary to calculate 

the spectral distribution of the total luminance (ie, the EL spectrum) acquired separately with 

the spectrometer using Equation 3.9. 
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Equation 3.9 

𝐿(𝜆) =  𝐿𝑡𝑜𝑡 ∙ 𝐼(𝜆) 

Where I(λ) is the area normalised EL spectrum. Assuming that the distribution of the light from 

the surface of the OLED is Lambertian (ie isotropic) the distribution of the Luminous flux 

(Lum) measured in lumens (lm) is equal to: 

Equation 3.10 

𝐿𝑢𝑚(𝜆) = 𝐿(𝜆) ∙ 𝜋 ∙ 𝐴 

Where A is the device area. The Luminous flux can also be described in terms of the radiant 

flux: 

Equation 3.11 

𝐿𝑢𝑚(𝜆) = 𝑊(𝜆) ∙ 𝑉(𝜆) ∙ 683 

Where V(λ) is the luminosity function of the human eye and 683 lm/W is a conversion factor. 

Combining the last two equations, the radiant flux can be expressed as a function of the 

luminance: 

Equation 3.12 

𝑊(𝜆) =
𝐿(𝜆) ∙ 𝜋 ∙ 𝐴

𝑉(𝜆) ∙ 683
 

Substituting this expression into Equation 3.8 it is possible to calculate the total number of 

photons using the Luminance meter: 

Equation 3.13 

𝑛𝑝ℎ = ∫
𝐿(𝜆) ∙ 𝜋 ∙ 𝐴 ∙ 𝜆

683 ∙ 𝑉(𝜆) ∙ ℎ ∙ 𝑐
 𝑑𝜆 

In both setups ne is calculated by dividing the measured current I by the elementary charge e. 

Equation 3.14 

𝑛𝑒 =
𝐼

𝑒
 

The EQE is then finally calculated as the ratio of nph and ne. 
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Equation 3.15 

𝐸𝑄𝐸 =
𝑛𝑝ℎ

𝑛𝑒
 

The EQE can also be described using the PLQY of the emitter, the fraction of excited states 

that can emit radiatively (γ), the charge balance in the device (χ) and the outcoupling factor 

(ηout), as shown in Equation 3.16. 

Equation 3.16 

𝐸𝑄𝐸 =   𝑃𝐿𝑄𝑌 ∙ 𝜒 ∙ 𝛾 ∙ 𝜂𝑜𝑢𝑡 

This equation is used to estimate the maximum theoretical EQE achievable for an emitter after 

its PLQY has been measured. Commonly γ is assumed to be 100% for TADF and 

phosphorescent emitters since both classes of materials allow harvesting of all the produced 

excited states for emission. χ can also be assumed to be unitary when the excitons are well 

confined within the EML. Finally, ηout describes the fraction of photons produced in the device 

that escape the substrate surface and, (if the device surface is not specially engineered nor the 

emitters aligned), it is assumed to be between 0.25 and 0.3 due to total internal reflection and 

internal losses at the cathode and depending by the degree of anisotropy of the emitter.5–7  

Other performance metrics used to describe OLED devices are the current efficiency (CE) and 

the power efficiency (PE, also know as luminous efficacy). The first of these is defined by the 

ratio between the Luminance (Ltot) and the current density (J) flowing into the device (Equation 

3.17) and is measured in cd/A. 

Equation 3.17 

𝐶𝐸 =
𝐿𝑡𝑜𝑡

𝐽
 

The second describes the ratio between the luminous flux (optical power weighted by the 

luminosity function) emitted by the device and the electrical power, calculated as the product 

of the voltage (V) applied to the device and the measured current (I) that flows through it, 

necessary to produce it (Equation 3.18), and is measured in lumens/Watt. 

Equation 3.18 

𝑃𝐸 =
𝐿𝑢𝑚

𝐼 ∙ 𝑉
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3.6.3 Lifetime Testing 

The main issue in lifetime testing of OLED devices is to make the extrinsic deterioration 

mechanisms negligible, so that only the intrinsic ones related to material used will be active. 

In order to do this, a proper encapsulation has to be performed at the end of the OLED 

preparation to protect it from the degradation due to moisture and oxygen that can attack 

reactive organic layers or metals.8 

For these lifetime measurements the encapsulation has been performed using a metallic 

coverslip on top the active area of the device. The coverslip then has a cavity where a getter is 

included, to avoid it contacting directly with the OLED stack (Figure 3.6). The function of the 

getter is to absorb any moisture and oxygen that can permeate the sealant over time, thus 

excluding lifetime shortening effects on the tested devices. 

 

Figure 3.6 Scheme of an encapsulated OLED device for lifetime testing. 

The parameter commonly used to test the stability of the OLEDs is the luminance of the 

devices. By tracking the luminance decay over time it is possible to define the operational 

lifetime of the devices as the time required for the luminance to drop to a target percentage of 

the initial value (L0). Commonly this target value is 90% and this parameter is called LT90 

although other targets are possible (eg LT50).  

Lifetime characterization of the devices was carried out after performance test to determine the 

L-J characteristics. Using this information, it is possible to select the necessary current (I0) to 

start the lifetime test at the desired L0. The current (I0) is then kept constant increasing the 

voltage, and the decay of the luminance from its initial value (L0) is recorded over time with a 

photodetector. The measurements have been performed using an Ossila OLED Lifetime system 

which uses a Si photodiode to measure the relative luminance decay and an Ossila X100 source 

measure unit to drive the OLED at constant current and measure the variation of the current in 

the photodiode. 
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Chapter 4: 

Influence of Solid State 

Dilution on the Photophysical 

Performance of a TADF 

Exciplex 

This chapter shows for the first time how diluting an exciplex in the solid state surprisingly can 

improve its performance. Using the TSBPA donor and PO-T2T acceptor to form an exciplex it was 

possible to blueshift the emission, increase the PLQY from 58% to 80%, and increase the device EQE 

from 14.8% to 19.2% by simply diluting the exciplex with an inert high triplet energy host material – 

here either UGH-3 or DPEPO. These effects are explained in terms of an increasing donor-acceptor 

distance and associated charge separation, while different behaviours observed in the different hosts 

are attributed to different energy barriers to electron transfer through the host. This then highlights the 

importance of the chosen host on photophysical experiments. The inappropriate choice of host may 

hinder the exciplex formation by not offering a suitable LUMO level to assist long distance electron 

transfer through thermodynamically favourable hopping 
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4.1 Introduction 

 

Efficient TADF has been observed in both intermolecular and intramolecular CT systems1,2. 

At present, reports investigating new structures, colour tuning methods, and strategies for 

improving device performance of TADF molecules greatly outnumber similar reports for 

exciplexes3–7. Furthermore, when taking into considerations polymeric structures where 

substituents exhibiting TADF in intra-molecular (intra-substituent in this case) CT states have 

been more successful than polymers where the structure was studied to obtain the CT state 

between two different substituents (inter-substituent).8–10 

Nonetheless, existing studies show the potential of TADF exciplexes as high performance 

emitters or triplet harvesting host for fluorescent/phosphorescent emitters 2,11–15.While the 

donor (D) and acceptor (A) spacing is rigidly set by the chemical structures of molecular TADF 

materials, D-A spacing in exciplexes has only gained limited attention as a design parameter 

until recently. 

Adachi et al. recently reported that inserting a spacer layer between an interfacial exciplex 

blueshifts its emission rather than preventing entirely its formation13. Similar colour shifts have 

also been reported by Monkman and Al’Attar for interfacial exciplexes through the effect of 

applied electric field15. Graves et al initially described how sample inhomogeneity caused 

dispersion of the singlet-triplet energy gap (ΔEST) in exciplex films, resulting in non-

exponential decay kinetics and time dependent emission spectra 14. Kim et al. have meanwhile 

used computational methods to show how critical the D-A distance and orientation is to the 

singlet and triplet energies in an exciplex blend, which ultimately control the effective ΔEST 

and rate of reverse intersystem crossing (rISC)12. Kim et al. have also recently reported the 

surprising result that a TADF exciplex OLED shows improved performance at low 

temperatures11. Although low temperatures decrease the rISC rate, this is outcompeted by a 

simultaneous increase in exciplex photoluminescence quantum yield (PLQY) - as non-radiative 

singlet decay channels are also suppressed at low temperatures. 

In this chapter a similarly surprising yet highly practical approach is developed to improve the 

performance of a recently reported TADF exciplex blend 16, with donor and acceptor structures 

shown in Figure 4.1a. Using a fixed 1:1 ratio of 4,4'-(Diphenylsilanediyl)bis(N,N-

diphenylaniline) (TSBPA) donor and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine 

(PO-T2T) as acceptor, it is possible to blueshift emission (summarized in Figure 4.1b), increase 
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PLQY (from 58% to 80%) and increase device external quantum efficiency (EQE) from 14.8% 

to 19.2% by simply diluting the exciplex with an inert host material – either 1,3-

Bis(triphenylsilyl)benzene (UGH-3) or Bis[2-(diphenylphosphino)phenyl]ether oxide 

(DPEPO). These hosts were selected because they are both optically and UV transparent 

(essential for photophysical measurements), have high triplet energies (crucial for device 

performance), while also allowing comparison of the effects of different host polarities and 

HOMO/LUMO levels. They are also demonstrated to not form any exciplex themselves with 

TSBPA or PO-T2T in contrast to the subsequent report of the same effect17.  

 

Figure 4.1 (a) Molecular structures of exciplex forming molecules TSBPA and PO-T2T and the hosts 

molecules, UGH-3 and DPEPO. (b) 1931 CIE chromaticity diagram schematically showing the blueshift of 

the exciplex emission with increasing dilution from the neat exciplex to 90% vol% UGH-3. 

 

4.2 Results and Discussion 

 

4.2.1 Photophysical characterization 

 

To investigate the effect of the solid state dilution the photophysical properties of 100 nm thick 

vacuum deposited films were first investigated. In Figure 4.2 it is shown that the absorption 

spectrum of the neat exciplex (i.e. not diluted) it is the sum of the absorption spectra of the 

donor and acceptor that form the exciplex. Furthermore, no direct exciplex CT absorption 
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band18 is observed for the exciplex blend as expected. The exciplex formation is indeed an 

excited state interaction and the molecules do not interact in the ground state.  

 

Figure 4.2 Normalised absorption spectra of evaporated neat TSBPA, neat PO-T2T and TSBPA:PO-T2T 

films. 

In Figure 4.3a and Figure 4.3b show the evolution of the absorption spectra with increasing 

amount of host. At all dilutions it is clear that no ground state interaction is present and that the 

spectra are composed by just the sum of the three components of the evaporated films. It should 

be noted that UGH-3 and DPEPO do not show any absorption at 340 nm and 355 nm, which 

are the excitation wavelengths used for the following PLQY and TRPL. 

 

Figure 4.3 Absorption spectra of evaporated TSBPA:PO-T2T exciplex films with increasing vol% of (a) 

UGH-3 and (b) DPEPO. 

From the steady state PL a substantial blueshift of the exciplex emission is observed in both 

hosts (Figure 4.4), with onset energies given in Table 4.1. The onset of the neat exciplex 

(without any dilution) is observed at 2.67 eV and increases with dilution in both hosts up to 
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2.85 eV in 90 vol% UGH-3, and 2.80 in 90 vol% DPEPO. In both 90% host films (i.e. exciplex 

highly diluted) TSBPA emission becomes clearly visible at wavelengths below 425 nm, 

indicating that the exciplex formation is being hindered, however it is extremely surprising that 

the exciplex is still so dominant even diluted at 90 vol% host. 

 

Figure 4.4 Steady state PL spectra of vacuum deposited TSBPA/PO-T2T (1:1 ratio) films in (a) UGH-3 and 

(b) DPEPO. Legend percentages are vol% of the host material, with ‘Neat’ equivalent to 0% host 

 

Table 4.1 Exciplex photophysical properties at different dilutions in UGH-3 or DPEPO 

Dilution 
      

vol% 

Average 

D-A 

distance 

(Å) 

DF (µs) 
PL onset 

(eV) 

 PL FWHM 

(eV) 

PLQY 

air/N2 

Neat 

exciplex 
0 6.0 2.4 ± 0.1 2.67 

0.51 
0.45 / 0.58 

UGH-3 10 6.3 2.2 ± 0.1 2.68 0.52 0.50 / 0.63 

UGH-3 30 6.8 2.8 ± 0.1 2.70 0.51 0.51 / 0.65 

UGH-3 50 7.6 3.1 ± 0.1 2.79 0.58 0.67 / 0.80 

UGH-3 70 9.0 3.1 ± 0.2 2.83 0.58 0.49 / 0.70 

UGH-3 90 13 - 2.85 0.48 0.35 / 0.35 

DPEPO 10 6.3 2.4 ± 0.1 2.67 - 0.52 / 0.68 

DPEPO 30 6.8 2.5 ± 0.1 2.67 - 0.34 / 0.45 

DPEPO 50 7.6 2.3 ± 0.1 2.70 - 0.23 / 0.28 
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DPEPO 70 9.0 2.9 ± 0.1 2.73 - 0.28 / 0.38 

DPEPO 90 13 2.8 ± 0.1 2.80 - 0.06 / 0.07 

 

The blueshift of the exciplex emission onset (hv𝑚𝑎𝑥) is assigned to the increase in the average 

D-A separation distance as the host vol% increases. Increasing the average D-A distance and 

therefore the separation, r, of electron and hole in the CT state causes the coulombic potential 

energy, EC(r), to rise (towards zero) as per Equation 4.1.  

Equation 4.1 

EC(r) =
e2

4πrε0ε
 

Equation 4.2 

hv𝑚𝑎𝑥 ≈ ID − AA − EC 

 

where e is the electron charge, ε0 and ε are respectively the permittivity of the vacuum and of 

the medium. ID and AA are the ionization potential of the donor and the electronic affinity of 

the acceptor. The electric field term (EC) in Equation 4.1 has the effect of broadening the CT 

emission band as the field increases15.  

The average distances between nearest neighbor D-A pairs has also been estimated in Table 

4.1. using the molecular masses and volume fractions of the films and assuming a uniform 

cubic lattice, uniform orientation distribution, and density of 1.1 g/mL (approximated from 

tetraphenylsilane) for all materials19,20. The total energy of the CT state thus increases with 

separation (Equation 4.2) resulting in higher energy exciplex and emission, in accordance with 

the findings of Al’Attar 12 and calculations reported by Kim et al.12 This observation is also 

consistent with previously mentioned recent work of Adachi et al.13 

The difference in the magnitudes of the observed blueshift between the two hosts is rationalized 

by their different polarities. Rich in polar O-C and O=P bonds, DPEPO is indeed known to be 

a very polar host21, while UGH-3 is largely aromatic and non-polar21. Increased host polarity 

allows the exciplex CT state to relax further before emission (by shielding the coulomb term 

through increased ε), resulting in a consistently smaller overall blueshift for DPEPO films than 

for UGH-3. The sensitivity of the exciplex emission to polarity even at high dilutions suggest 

that the exciplex maintains CT character even at the largest D-A distances examined here. 
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To better understand how the presence of a host affects the kinetics of charge separation, 

exciplex formation, and emission, time-resolved PL decays of these films were measured, ( 

Figure 4.5-Figure 4.7). The prompt region was not fitted because of the multiexponential 

kinetics arising from the competition between the emission from the TSBPA donor, TSBPA 

excimer (see Figure 4.8 for better reference of the TSBPA excimer position) and the exciplex. 

The delayed region (the second cascade region of the log-log intensity time plots) is dominated 

by the exciplex emission and were fitted with mono-exponential decay functions. The fitted 

lifetimes (τDF) are included in Table 4.1. 

Figure 4.5a shows the time resolved photoluminescence decay measured for the neat exciplex 

film. The competition between the three different PF emission processes can be seen in the 

broad spectrum collected at 1.9 ns delay time (Figure 4.5b). The most intense peak at 500 nm 

is assigned to the prompt emission of the exciplex while the shoulder at 440 nm it is assigned 

to the TSBPA excimer. Already at 19.6 ns delay time the emission is dominated by the exciplex 

centered at 520 nm. The emission continuously redshifts up to 22.4 µs where it is centered at 

550 nm, after which no further redshift is observed. The dependence of the DF intensity with 

excitation dose shows a gradient close to 1 (Figure 4.5c). which eliminates TTA as a possible 

competing DF mechanism. 
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Figure 4.5 (a) Room temperature photoluminescence decays of evaporated TSBPA:PO-T2T exciplex film. (b) 

Photoluminescence spectra of TSBPA:PO-T2T 1:1 ratio evaporated film at different delay times. (c) Linear fit of 

the log of the integrated intensity vs log of the laser power of TSBPA:PO-T2T 1:1 ratio evaporated film. 

Figure 4.6 and Figure 4.7 show the time resolved PL decays and spectra acquired for films 

diluted in UGH-3 and DPEPO. A general small increase in τDF was observed with increasing 

dilution for both hosts, with values given in Table 4.1. The increase in delayed lifetime can be 

indicative of a decrease in non-radiative decay from the exciplex triplet state, although this 

explanation cannot be asserted from lifetimes alone. In contrast to the spectra measured at 1.9 

ns delay for the neat exciplex film at similar delay times in the films diluted with 10 and 30 

vol% UGH-3 (Figure 4.6b and Figure 4.6c) no donor emission is observed. On the other hand, 

the prompt region of the decays maintains the same multiexponential behaviour. This may 

indicate that the kinetics of the exciplex excited state formation does not change at low level 

of dilution but that the exciplex formation now is more favourable. The same behavior is 

observed for the films diluted with 10-30-50 vol% of DPEPO (Figures 4.7b, 4.7c and 4.7d). 

For further dilutions in both hosts emission from TSBPA starts to be observable again in the 

early spectra (1.7-1.9 ns delay). The signal from TSBPA increases in intensity with increasing 

amount of host, indicating that the D-A interaction is being weakened and that there is an 



 
56 

increasing fraction of excited donors that cannot form the exciplex state efficiently anymore. 

For 90 vol% UGH-3 the DF signal is very weak (Figure 4.6f) indicating that almost no exciplex 

is being formed. For the 90 vol% DPEPO the DF emission is still clearly visible. The PF is 

dominated by donor emission at 1.7 ns delay time that quickly disappears at 21.3 ns delay. The 

increasing contribution of donor emission in the decays makes the prompt region lose some of 

its multiexponential characteristic, evolving smoothly toward the pure TSBPA decay when no 

PO-T2T is present in the blend (Figure 4.8). The different behavior observed for the two films 

diluted with 90 vol% UGH-3 and DPEPO is assigned to the tendency of UGH-3 to crystallize 

at low dopant concentration which might have hindered the exciplex formation. 

As a general trend, in all the exciplex blends it is observed that the delayed CT emission 

blueshifts with increasing delay time up to 22.4 µs. It is interesting that the magnitude of the 

CT blueshift observed for the more diluted films is smaller than the one observed for the more 

diluted blends. This indicates that, in the more diluted films there is a narrower distribution of 

D-A distances and D-A geometries12.  
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Figure 4.6 (a) Room temperature photoluminescence decays of evaporated TSBPA:PO-T2T exciplex films with 

increasing vol% of UGH-3. (b-f) Photoluminescence spectra of TSBPA:PO-T2T 1:1 ratio diluted in 10-90 vol% 

UGH-3 evaporated film at different delay times. 
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Figure 4.7 (a) Room temperature photoluminescence decays of evaporated TSBPA:PO-T2T exciplex films with 

increasing vol% of DPEPO. (b-f) Photoluminescence spectra of TSBPA:PO-T2T 1:1 ratio diluted in 10-90 vol% 

DPEPO evaporated film at different delay times. 

To be sure that the excited donor was not interacting with the chosen hosts films, of TSBPA 

vol% in DPEPO or UGH-3 (without PO-T2T) were fabricated. The spectra at 1.2 ns in both 

hosts is dominated by the TSBPA emission at 375-380 nm with a second peak from the prompt 

TSBPA excimer emission centered at 460 nm. At 3.9 ns the most intense peak in both films is 

from the excimer. At 9.7 ns only the excimer emission is visible and centered at 480 nm. At 

40.9 ns a slightly blueshifted emission is still present although the spectra are slightly distorted 
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because of the low signal to noise ratio at this delay time. As shown in Figure 4.8a, in both 

decays no strong DF nor exciplex formation is observed. These results confirms that in absence 

of PO-T2T, TSBPA does not interact with the chosen hosts. 

 

Figure 4.8 (a) Room temperature photoluminescence decays of evaporated TSBPA:DPEPO and 

TSBPA:UGH-3 exciplex films. Photoluminescence spectra of (b) TSBPA:DPEPO and (c) TSBPA:UGH-3 

1:1 ratio evaporated films at different delay times. 

The dependence of the delayed emission intensity upon excitation power was also checked for 

each diluted sample (Figure 4.9 and Figure 4.10) in order to confirm the DF is arising from the 

TADF mechanism rather than from TTA. All the films show a close to 1 gradient of the log-

log plot of the emission intensity against the excitation power, therefore indicating a single 

exciton process, i.e TADF, excluding TTA. This demonstrates that the overall DF mechanism 

does not change with dilution. 
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Figure 4.9 (a-e) Linear fit of the log of the integrated intensity vs log of the laser power of TSBPA:PO-T2T 

1:1 ratio evaporated film diluted in 10-90 vol% UGH-3. 
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Figure 4.10 (a-e) Linear fit of the log of the integrated intensity vs log of the laser power of TSBPA:PO-

T2T 1:1 ratio evaporated film diluted in 10-90 vol% DPEPO. 

To better understand the cause of the observed increase in τDF  the absolute PLQYs of the films 

were measured, with values reported in Figure 4.11 and Table 4.1. For all films the PLQY was 

found to increase with removal of atmospheric oxygen, confirming that triplet harvesting is 

occurring. For the UGH-3 diluted films the PLQY increased from 58% for the neat exciplex to 

a maximum of 80% when diluted with 50 vol% UGH-3. The PLQYs then decreased when the 

exciplex was further diluted. This decrease could be due to the fact that at very high dilution 

(and corresponding large D-A distances) the probability of exciplex formation begins to 
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decrease so that eventually most of excitons remaining localized on the donor and therefore 

decay through low efficiency pathways. The maximum PLQY achievable is the given by the 

balance between the increasing exciplex PLQY and the dilution percentage that still provides 

close to zero donor emission This is supported by the growth of the 340 nm TSBPA donor 

emission band at high dilutions in Figure 4.4, as well as the fact that at 90% dilution the PLQYs 

in air and vacuum converge, indicating negligible contribution to emission from TADF. This 

is also seen in the time resolved spectra, where a higher ratio of overall prompt (containing 

both exciplex and donor contributions) to delayed emission (exciplex only) is seen in higher 

dilution time-resolved PL traces (Figure 4.6 and Figure 4.7,). This changing ratio of prompt to 

delayed emission manifests as an apparent lower level of DF when decays are normalized to 

initial time points. 

4.2.2 Electron transfer 

 

Figure 4.11 (a) PLQY values (error of ± 5 % is assumed) of vacuum deposited films in air and nitrogen 

atmosphere with the different dilution in UGH-3 and DPEPO (the dashed and full lines are present only to 

guide the eye). (b) Schematic representation of the D (blue), A (black), and host (grey) HOMO and LUMO 

levels relevant to electron transport (blue arrows) and exciplex formation (green oval). 

Combined, the tandem increases in τDF and PLQY with dilution strongly suggest that some 

concentration quenching pathways are reduced for exciplexes with larger D-A distances but 

this increment is then outcompeted by other low efficiency emission pathways (eg donor 

emission) leading to a PLQY reduction upon further dilution. This observation may also 

indicate that PLQY is enhanced through reduction in the degree of charge separation in the 

excited state, for example avoiding non radiative radical ion pair formation.22,23 Despite the 

fact that the PL emission onsets blueshift on dilution closer to the TSBPA and PO-T2T triplet 
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energies (2.90 and 2.97 eV respectively)16it can be ruled out the possibility that the increase in 

PLQY arises from a distance associated minimisation of ΔEST (and improvement of triplet 

harvesting), as this would accelerate rISC leading instead to a shorter τDF 
7. 

Surprisingly, the trend in PLQY shown for UGH-3 diluted exciplex is not reproduced for those 

diluted in DPEPO. Instead the PLQY has an initial increase up to 68% for the 10 vol% (similar 

to that measured for the sample diluted with 10 vol% UGH-3) but only decreases on further 

dilution. The difference in optical behaviour for different hosts demonstrates that the CT state 

formation in the diluted films must be mediated by the host, as a tunnelling or purely through-

space mechanism would be independent of the choice of host. Furthermore, from the estimated 

D-A separations it is clearly seen that ET occurs strongly at separations greater than 0.6 nm, 

which again indicates that the host is acting as a mediator between the LUMO orbitals of 

TSBPA (-2.3 eV18) and PO-T2T ( -3.2 eV19). As pictured in Figure 4.11b, the differences in 

the LUMO levels of the hosts then readily explains why UGH-3 spacer (LUMO -2.8 eV17) still 

allows exciplex formation and high PLQY at larger distances, whereas DPEPO (LUMO -2.0 

eV3) does not27,28. Furthermore, comparing the FWHM for the CT emission band as a function 

of UGH-3 dilution (Table 4.1) an increment is observed as the dilution increases, until 90% 

UGH-3 were it instead narrows. This might imply that only certain orientations of D and A 

facilitate hopping ET through the intermediate host molecule. The broadened spectra results 

from a distribution of emitting CT states having different conformations and ET routes29 and 

at 90% dilution only the highly blueshifted and narrowed exciplexes can form. This then gives 

an indication of a possible way to produce narrow emission bands from exciplex systems. It 

should be again stressed that in all photophysical measurements only the donor is excited, so 

that electron transfer (ET) through the host is required for exciplex formation in the diluted 

films. This is not the case for electrical excitation where the CT state is formed directly from 

free charges, as discussed in the context of OLEDs below. 

The distance dependence of ET was estimated by plotting the ratio of residual donor emission 

to exciplex emission from the spectra in Figure 4.4 (normalizing for changes in exciplex PLQY 

on dilution). For UGH-3 an exponential increase in donor emission with average D-A spacing 

is observed (Figure 4.12), from which a distance decay constant βf = 1.1 Å-1 is estimated, 

indicating efficient hopping ET with similar distance dependence found in other organic 

systems.28 For DPEPO, the mechanism for long range ET cannot proceed exothermically and 

is not yet understood, but based on the PLQY roll off is not as efficient as in UGH-3. 
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Figure 4.12 Distance dependence of residual donor emission (from Figure 4.4, UGH-3 series) corrected for 

differing exciplex PLQYs. 

 

4.2.3 Device Performance 

 

To assess the practical application of the dilution enhanced exciplex, OLEDs with different 

host vol% DPEPO and UGH-3 were produced. The structure used was NPB (40 nm)|TSBPA 

(10 nm)|TSBPA:PO-T2T 1:1 in X vol% Host (30 nm)|PO-T2T (50 nm)|LiF (1 nm)|Al (100 

nm), where X was varied from zero to 70 vol%. In both device series the maximum EQE 

(shown in Figure 4.13a and Figure 4.13c) increases with dilution up to 50 vol%, matching the 

trend seen for UGH-3 film PLQYs in Figure 4.11a. The maximum device brightness decreases 

with increasing dilution, as this reduces the total amount of exciplex D and A in the fixed 

thickness EML. The EL spectra of both UGH-3 (Figure 4.13b) and DPEPO (Figure 4.13d) 

OLEDs blueshift with dilution, consistent with the trend observed in the steady state PL spectra 

(Figure 4.4), although the EL spectra are each slightly redshifted with respect to their PL 

counterparts. This redshift of EL compared to PL is commonly seen in TADF systems, and is 

likely due to the differences between direct charge carrier combination to form the CT state in 

devices, compared to photoexcitation and ET to form the CT state in photophysics20. 
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Figure 4.13 EQE vs brightness and EL spectra of OLEDs with different dilution vol% respectively in UGH-

3 (a and b) and DPEPO (c and d) 

In Figure 4.14a compares the values of maximum measured EQE for the devices produced with 

estimates based on the PLQYs using EQE =  𝜂𝑜𝑢𝑡 ∙ 𝑃𝐿𝑄𝑌 ∙ 𝛾 ∙ 𝜂𝑓𝑟, where 𝜂𝑜𝑢𝑡 is the 

outcoupling factor (assumed here to be 0.25), the PLQY values taken from Table 4.1 are those 

from the UGH-3 samples, γ is the charge balance factor (assumed to be 1) and 𝜂𝑓𝑟 is the fraction 

of excited states that can radiatively decay, which is 1 for TADF exciplexes that can harvest 

both singlets and triplets. UGH-3 PLQYs are used here, having identified that DPEPO blocks 

ET and exciplex formation after optically excitation. In contrast, in electrically driven devices 

there is no need for ET through the diluting host material, as shown schematically in Figure 

4.14b. As such the same early decrease in DPEPO device EQEs was not observed conversely 

to the aforementioned for PLQY values. 
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Figure 4.14 (a) Comparison between the measured Max EQE values of OLED devices with different 

dilutions in UGH-3 and DPEPO, along with estimated EQE values calculated from UGH-3 nitrogen 

PLQYs. (b) Schematic representation of the exciplex formation mechanism under electrical excitation in 

OLED devices. 

Indeed, the estimated EQE values in Figure 4.14a are in very good agreement with the 

measured maximum EQE values for both UGH-3 and DPEPO based devices for dilution up to 

30 vol%. At 50 vol% dilution the UGH-3 device still shows a very good agreement with an 

estimated EQE of 20% and a measured one of 19.2% (the highest measured EQE in this study, 

and a 30% enhancement of the neat exciplex), while the DPEPO device qualitatively follow 

the estimated trend but quantitatively underperform. At higher dilutions the maximum EQE 

decreases, again in line to what was observed for PLQYs, and again thought to be due to 

extreme D-A distances inhibiting exciplex formation. 

It is not trivial to explain the discrepancy between the estimated EQEs and those measured in 

hosts at 50 vol% and above. This might be caused by the different polarities and dielectric 

constants of DPEPO and UGH-3, large values of which would electrostatically screen the 

donor and acceptor, reducing their coupling and the probability of exciplex formation. If this 

is the case, significant care must be taken to choose appropriate hosts for future studies in 

exciplex dilution. Similar to the requirements for molecular TADF hosts, these hosts will need 

to balance both polarity and electrical transport properties to achieve the best devices. 

Alternatively, it could be that the discrepancy is a simple problem a charge balance in these 

specific devices, and that further optimization of the organic stack could increase efficiency 

closer to the estimated values. Nonetheless both device series and the estimates show the same 

qualitative trend. 
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4.3 Conclusion 

 

In conclusion this chapter reports the unprecedented result that diluting the exciplex formed by 

TSBPA and PO-T2T greatly improves its photophysical properties and its behaviour as the 

emitting layer in OLED devices. The dilution was performed using two different hosts with 

different polarities. Rather than immediately preventing exciplex formation as expected, it is 

observed that dilution blueshifts the emission of the exciplex due to the reduction of the 

electrostatic interaction between D and A over greater distances. The exciplex maintains a 

strong CT character despite the increased D-A separation. The films diluted in DPEPO were 

systematically slightly redshifted compared to those in UGH-3 due to the effect of polarity on 

CT state relaxation. In addition to the blueshifted emission, an increase in the PLQY of the 

exciplex passing from 58% to 80% it is observed before further dilution begins to hinder 

exciplex formation. The increase in PLQY is directly transferable into OLEDs, where the 

maximum EQE increases from 14.8% for the neat exciplex to 19.2% for the device diluted with 

50 vol% of UGH-3, in good agreement with the estimated EQE values.  

These effects are attributed to simple increases in D-A distance and reduction in concentration 

quenching. An in-depth study over the effect that the dilution induces into the morphology of 

the deposited films it is also needed to better understand the photophysical phenomena.  

On the other hand, in the absence of a more complex explanation of the dilution enhancement, 

it is likely that these effects will be general to other exciplex blends and inert host materials. 

Optimisation of exciplex dilution – previously assumed to only inhibit exciplex formation – 

will therefore likely allow exciplex based TADF devices to rapidly match and exceed the 

performance of leading molecular TADF materials. 
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 :  

Identifying the factors that lead 

to PLQY enhancement in 

diluted TADF exciplexes based 

on carbazole donors 
This chapter compares the effects of dilution on the photophysical and electrical performance 

of three TADF exciplexes based on CBP, CDBP and mCP donors with PO-T2T. Intrinsically 

different photophysical behaviour between CDBP and mCP exciplexes is observed when 

compared to CBP, which is explained by a heterogeneous distribution of triplet energies in the 

CBP molecules arising from a distribution of the biphenyl bridge twist angle. This study of 

different donors demonstrates that the PLQY enhancement of diluted exciplexes is independent 

of the separation associated spectral blueshift, with the latter being universal while the former 

is speculated to arise for donors with low structural rigidity. OLEDs produced from these 

carbazole based exciplexes show decreased EQEs likely due to the relatively low conductivity 

of donors and host, suggesting that functional conductive hosts may assist in translating PLQY 

enhancements in diluted exciplexes into improved electrical performance. 
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5.1 Introduction 

The previous chapter demonstrated that diluting the TSBPA:PO-T2T exciplex in an inert host 

(UGH-3) leads to increasingly blueshifted emission and a considerable increase in the PLQY 

that translates into improved device EQEs1,2. This approach provides a promising new strategy 

to produce high efficiency blue OLEDs based on exciplexes. Although the observed blueshift 

of the exciplex emission can be rationalised in terms of the decreasing coulombic interaction 

between the donor and the acceptor, the origin of the PLQY increment is not as well 

understood. 

This chapter compares the optical and electrical properties of three TADF exciplexes formed 

between carbazole based donors (mCP, CBP and CDBP) with PO-T2T as acceptor (Figure 

5.1). These materials are diluted in UGH-3 as it was demonstrated in the previous chapter this 

host material provided the best results in both optical experiments and in OLED devices. Films 

were prepared at different host vol% keeping the D:A relative ratio always 1:1 by volume. The 

molecular structures of CDBP and CBP differ only by the two central methyl groups (Figure 

5.1) which sterically induce a twist across the biphenyl bridge, locking its conformation. This 

twist reduces the conjugation across the molecule and leads to different triplet energies in 

CDBP (T1 = 2.92 eV) compared to CBP (T1 = 2.70 eV).3 The mCP also possesses a twisted 

geometry, this time due to meta nitrogen linkages and the close packing of the carbazoles 

around the central benzene ring. These structural effects also lead to a high triplet level4,5 (T1 

= 2.94 eV), similar to CDBP. 

 

Figure 5.1 Molecular structures and HOMO/LUMO levels of the exciplex forming donors (CDBP, CBP and 

mCP), acceptor (PO-T2T) and the host used to dilute the exciplexes (UGH-3). 
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5.2 Results and Discussion 

5.2.1 Photophysical characterization 

In Figure 5.2a-c the absorption spectra of the three dilution series are presented, showing that 

no ground state interaction is present (i.e. no direct CT absorption band)6 and that the 

absorption intensity is directly proportional to the donor and acceptor content of the films. 

Furthermore, to ensure that there is no interaction between the host and the three donors 

(exciplex formation or otherwise) the PL of the three donors in UGH-3 was also measured 

(Figure 5.2d). Only the emission from the donor molecules is observed, confirming the inert 

nature of the host. 

 

Figure 5.2 Absorption spectra for (a) CDBP:PO-T2T, (b) CBP:PO-T2T and (c) mCP:PO-T2T 1:1 vol% in 

different vol% of UGH-3, from Neat exciplex (0 vol% UGH-3) to 75 vol% of UGH-3. (d) Photoluminescence 

spectra of drop casted CBP, CDBP and mCP 10 vol% in UGH-3 

 

All three exciplexes exhibit a blue shift of their PL with increasing dilution (Figure 5.3), 

consistent with results presented in the previous chapter for the TSBPA:POT2T exciplex.1 This 

blueshift is rationalised in terms of a reduced coulombic energy term for the exciplex as the 
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electron-hole separation of the CT excited state increases. No donor emission is observed up 

to 25 vol% of UGH-3 in any film (Figure 5.3), while upon further dilution in the CDBP:PO-

T2T and mCP:PO-T2T exciplexes only a small donor peak (365 nm) is observed at 50 vol% 

and 75 vol% of the host respectively. Stronger donor emission (360-380 nm) is observed in the 

CBP:PO-T2T films for the same dilutions, which suggests a stronger interaction of CDBP and 

mCP with PO-T2T compared to CBP assuming that the electron transfer (ET) mediated through 

the host remains similar for all exciplexes and that the PLQYs of the donor emissions are not 

greatly different. The former assumption is justified by the fact that the LUMO levels of the 

three donors CDBP (2.4 eV7), CBP (2.3 eV8) and mCP (2.3 eV7) all are above the LUMO of 

UGH-3 (2.8 eV9), thus allowing thermodynamically favourable electron hopping towards the 

deeper PO-T2T LUMO level (3.2 eV1), as schematically shown in Figure 5.1.  

The stronger interaction of CDBP and mCP with PO-T2T (compared to CBP) is believed to be 

due to the molecular structure of the donors. Two methyl groups on the CDBP bridging 

benzene rings and the steric hinderance of the two closely connected carbazole units in the 

mCP both impart highly twisted structures. This twisted molecular structure leads to reduced 

conjugation across the molecules resulting in similarly high triplet levels in both. Furthermore, 

CDBP and mCP have natural transition orbitals (NTOs) localised on the carbazole units,4,10 in 

contrast to CBP where the NTOs are spread across the biphenyl bridge10. This localised donor 

electron density may result in the increased capacity of CDBP and mCP to form exciplexes at 

large separation distances. 
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Figure 5.3 Photoluminescence spectra of (a) CDBP:PO-T2T 1:1 vol% ratio, (b) CBP:PO-T2T 1:1 vol% and (c) 

mCP:PO-T2T in different vol% of UGH-3 from Neat exciplex (0 vol% UGH-3) to 75 vol% of UGH-3. (d) 1931 

CIE chromaticity diagram schematically showing the blueshift of the electroluminescence emission coordinates 

with increasing % vol% UGH-3 in all exciplexes studied. 

Time resolved PL decays at room temperature (RT) (Figure 5.4) reveal quite different 

behaviour with dilution for CDBP:PO-T2T and mCP:PO-T2T compared to CBP:PO-T2T. The 

CDBP:PO-T2T and mCP:PO-T2T exciplexes possess delayed fluorescence (DF) with single 

exponential decay kinetics at all dilutions, and in both cases the DF lifetime (τDF) increases 

slightly with increasing dilution (Table 5.2). For the CDBP:PO-T2T exciplex an increase of 

τDF from 2.4 µs to 4.1 µs is observed (neat to 75% exciplex), while for mCP:PO-T2T there is 

a much smaller change, 2.1 to 2.6 µs.  



 
77 

 

Figure 5.4 Left: Time resolved photoluminescence decays collected at room temperature of (a) CDBP:PO-T2T 

(c) CBP:PO-T2T and (e) mCP:PO-T2T exciplexes in different vol% of UGH-3. Right: Energy diagrams showing 

the lowest lying measured local triplets (solid red lines) of the exciplex forming molecules and the blue shifted 

CT energy (black lines) with increasing dilution for (b) CDBP:PO-T2T (d) CBP:PO-T2T and (f) mCP:PO-T2T. 

The blue lines indicate the local triplet of PO-T2T, while the dashed red line in d shows the level of the inferred 

triplet energy upon dilution, the same as in CDBP and discussed in the text below. 

In contrast the CBP decays are predominantly bi-exponential. The first component was fitted 

using the same time constant as that obtained from the CDBP:PO-T2T decays at the 

corresponding dilution (as shown in Figure 5.5) with a longer lived component also required 

to fit the fully DF region. An additional third exponential was necessary to fully characterise 

the 75 vol% diluted film, with all fitting parameters reported in Table 5.1. The behaviour of 

the CBP films is interpreted as arising from the presence of a distribution of CBP 

conformations, characterised by different dihedral angles of the phenyl units across the 

biphenyl bridge. This distribution of CBP geometries (each with different levels of conjugation 
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between the two carbazole moieties) implies the presence of a distribution of triplet levels and 

associated ΔEST gaps within the films, leading to the multiexponential DF observed. As it is 

possible to fit the fast component of the CBP decays using the corresponding CDBP films this 

indicates that a proportion of the CBP molecules are in the same conformation as CDBP, i.e. 

highly twisted bridging phenyls and so low conjugation across the biphenyl bridge. This 

twisting confers a similar high triplet level (2.92 eV) to some of the CBP molecules and 

therefore a small ΔEST gap and fast rISC rate according to Equation 5.1.11  

Equation 5.1 

𝑘𝑟𝐼𝑆𝐶 ∝ 𝑒
−∆𝐸𝑆𝑇

𝑘𝐵𝑇⁄
 

However, in the PH measurements only the lowest energy population of CBP triplets can be 

observed (with onset energy 2.7 eV) because of energy transfer during the very long triplet 

lifetime. The slow DF decay component is given by that population of CBP molecules that 

retain a higher degree of conjugation across the biphenyl bridge, i.e. less twisting, (where the 

CBP triplet is 2.70 eV), bigger ΔEST, and a much slower rISC rate. 

 

Figure 5.5 Time resolved photoluminescence decays collected at room temperature of CDBP:PO-T2T and 

CBP:PO-T2T at different dilution (a) neat exciplexes (b) 25 vol% UGH-3 (c) 50 vol% UGH-3 (d) 75 vol% UGH-

3. The first component of the biexponential fitting (a,b and c) and the triexponential fitting (d) of the CBP:PO-

T2T films is obtained from the fitted decay lifetime of the CDBP:PO-T2T film at the same dilution vol%, and is 

extended to guide the eye (black dashed line). 
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For CDBP, the 3LE is always in close resonance with the exciplex 1CT level due to its sterically 

locked twisted conformation, so the triplet level distribution is effectively homogeneous in the 

films. The resulting ΔEST gaps between the 1CT and the T1 of either the donor and the acceptor 

are always small, with values 0.03 < ΔEST < 0.05 eV (Table 5.3).  

CBP:PO-T2T forms an exciplex with very similar energy to CDBP:PO-T2T (Table 5.3) due to 

the very similar HOMO levels. Upon dilution in UGH-3 the distribution of CBP linkage angles 

is changed, leading to a different distribution of triplet energies, ΔEST gaps, and rISC rates. 

Any concentration quenching mechanisms common to both CBP and CDBP must also be 

suppressed similarly in both systems, leading to their PLQYs converging to values of roughly 

50% (+- 5% error). Decreases in the PLQY at 75% dilution are due to the increased D-A 

distances hindering the electron transfer from D to A that forms the exciplex, leading to the 

observed increase in donor emission. 

The behaviour of the mCP dilution series further supports this interpretation since this material 

possesses CT and triplet energy levels very similar to CDBP, as schematically shown in Figure 

5.4b and f. The mCP triplet is always in close resonance with the exciplex energy, and this does 

not change upon dilution due its rigid molecular structure. For mCP:PO-T2T the PLQY barely 

increases upon dilution (within error) but drops quickly as optically excited exciplex formation 

is again hindered at higher dilutions. 

Table 5.1 Time constants obtained from the exponential fittings of DF component of the decays in Figure 5.5. 

 τ1 (µs) τ2 (µs) τ3 (ms) 

CDBP:PO-T2T 

Neat 2.4 - - 

25 vol% UGH-3 3.1 - - 

50 vol% UGH-3 4.0 - - 

75 vol% UGH-3 4.1 - - 

CBP:PO-T2T 

Neat 2.4 83 - 

25 vol% UGH-3 3.1 130 - 

50 vol% UGH-3 4.0 280 - 

75 vol% UGH-3 4.1 96 1.56 

 

Figure 5.6-Figure 5.8 show spectra obtained at different delay times for the CDBP, CBP and 

mCP exciplexes. Consistent with what was observed in the previous chapter,1 increasing host 

vol% causes a reduction in the time dependant shift observed for the onsets of the prompt (1.9 

ns delay) and the most redshifted spectrum of the delayed PL component for all exciplexes 
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(Table 5.2). In all cases the initial spectrum recorded at 1.9 ns is found at higher energies at 

higher dilutions. The onset of the spectra redshifts over time, but by decreasing amounts at 

higher dilutions. This red shift is due to the presence of a heterogeneous distribution of CT 

lifetimes, where the highest energy CT states decay fastest (with blue emission) as they have 

more local LE character and stronger coupling to the ground state. The lower energy CT states 

decay more slowly as they are more weakly coupled to the ground state, leading to redder 

emission at longer times12. The reduced size of the onset shift at higher dilutions suggests that 

there are fewer low energy D-A “orientations” present in the film when the host vol% increases, 

which is intuitive as these low energy (short D-A distance) exciplexes will be the first to be 

disrupted as the host is incorporated12–14. As shown in Table 5.2, both prompt and delayed 

emission onsets blueshift with increasing host vol%, similar to the steady state PL discussed 

above. The fact that the onset of the prompt fluorescence blueshifts indicates that new higher 

energy exciplexes are formed which are not present in the undiluted films. This indicates that 

the average D-A separation increases with increasing dilution, creating more isolated D and A 

that can only form pairs at distances otherwise prevented by a closer nearest neighbour in an 

undiluted film. This change in the D-A distance distribution, substantially blueshifting the 

“centre of mass” of the CT band in the diluted films, which asymptotes at CT energies that 

correspond to separation distances at which the ET that forms the exciplex can no longer 

proceed. 
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Figure 5.6 CDBP:PO-T2T spectra measured at different delay times at room temperature. (a) Neat CDBP:PO-

T2T 1:1 exciplex film. (b) CDBP:PO-T2T 1:1 exciplex film diluted in 25 vol% UGH-3. (c) CDBP:PO-T2T 1:1 

exciplex film diluted in 50 vol% UGH-3. (d) CDBP:PO-T2T 1:1 exciplex film diluted in 75 vol% UGH-3. 

 

Figure 5.7 CBP:PO-T2T spectra measured at different delay times at room temperature. (a) Neat CBP:PO-T2T 

1:1 exciplex film. (b) CBP:PO-T2T 1:1 exciplex film diluted in 25 vol% UGH-3. (c) CBP:PO-T2T 1:1 exciplex 

film diluted in 50 vol% UGH-3. (d) CBP:PO-T2T 1:1 exciplex film diluted in 75 vol% UGH-3. 
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Figure 5.8 mCP:PO-T2T spectra measured at different delay times at room temperature. (a) Neat mCP:PO-T2T 

1:1 exciplex film. (b) mCP:PO-T2T 1:1 exciplex film diluted in 25 vol% UGH-3. (c) mCP:PO-T2T 1:1 exciplex 

film diluted in 50 vol% UGH-3. (d) mCP:PO-T2T 1:1 exciplex film diluted in 75 vol% UGH-3. 

 

Table 5.2 Lifetimes and spectral onsets of PL decays of the CDBP, CBP and mCP based exciplex series. Slope 

of the linear fit of the log-log plot of the PL integrated intensity vs laser power 

 τDF 

(µs) 
LF slope 

CT prompt / delayed 

onset (eV) 

CT prompt / 

delayed shift (eV) 

CDBP:PO-T2T 

Neat 2.4 0.87 3.03 / 2.83 0.20 

25 vol% UGH-3 3.1 0.95 3.07 / 2.85 0.22 

50 vol% UGH-3 4.0 0.95 3.06 / 2.87 0.19 

75 vol% UGH-3 4.1 1.01 3.11 / 2.96 0.15 

CBP:PO-T2T 

Neat - 0.86 2.97 / 2.74 0.23 

25 vol% UGH-3 - 0.86/1.32 2.96/ 2.76 0.20 

50 vol% UGH-3 - 0.90 3.02 / 2.84 0.18 

75 vol% UGH-3 - 0.95 3.13 / 2.92 0.21 

mCP:PO-T2T 

Neat 2.1 0.96 3.05 / 2.84 0.21 

25 vol% UGH-3 2.1 0.96 3.07 / 2.89 0.18 

50 vol% UGH-3 2.5 0.99 3.07 / 2.89 0.18 

75 vol% UGH-3 2.6 0.96 2.11 / 2.96 0.15 
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To exclude the contribution of other DF processes such as TTA, laser fluences (LF) were 

measured for different excitation doses in each exciplex at each dilution. For the CDBP 

exciplex the LFs (Figure 5.9) were measured at a delay time and integration times of 0.25 µs 

and 1.5 µs respectively, to ensure that only the behaviour of the delayed part of the decay was 

assessed. The LFs measured were fitted with two linear regions. The high power region (laser 

power > 10µJ) showed sublinear dependence of the measured emission intensity with 

excitation dose, indicating that singlet-singlet quenching is likely active at high excitation 

powers. In the low power region (laser power < 10µJ) a behaviour closer to the ideal slope of 

1 is observed. As phosphorescence is unlikely at room temperature in these systems, the 

observed DF is attributed to a pure TADF mechanism in the CDBP:PO-T2T exciplexes across 

all dilutions.  

Since the CBP exciplexes showed such a long DF, the LFs were measured both in the early 

and in a later region of the DF to assess if different triplet harvesting processes were present at 

later delay times (Figure 5.10). In both the early DF (0.5 µs delay time/1.5 µs integration time) 

and longer DF (80 µs delay time/420 µs integration time) two regimes of laser power 

dependence were observed, similarly to the CDBP exciplex. In the high power region, a more 

severe sublinearity is observed, and for the neat film gradients are as low as 0.51 and 0.32 for 

the early and late high power LFs are observed. These results indicate stronger singlet-singlet 

quenching processes in the CBP exciplex, which is unsurprising based on the much slower 

triplet harvesting (and longer exciton lifetimes) in this exciplex series. Indeed, when comparing 

the early DF and later DF LFs in the high power region, a stronger quenching of the LF 

measured at longer delay time is always observed – indicating that the longest lived excitons 

(those least able to be rapidly harvested for emission) are the most likely to suffer from multi-

exciton deactivation processes (possibly through non-emissive triplet fusion that is hindered 

by reduced triplet mobility at higher dilution). The same trend is observed in the low power 

regions of the LFs, with the early time LFs always showing slightly higher gradients than the 

LFs measured at later time. Nonetheless these gradients are all close to 1, indicating that the 

CBP:PO-T2T exciplex is also dominated by the TADF mechanisms despite the CBP T1 being 

substantially lower than the exciplex energy at all dilutions. 

The mCP:PO-T2T LFs were also measured in the DF region from 0.25 to 1.5 µs (Figure 5.11) 

showing trends similar to what discussed for the CDBP exciplex. In this exciplex again excited 

state quenching in the high power region is observed. This effect disappears for the exciplex 

diluted with 75vol% UGH-3. As for the other two exciplexes, the low power region is 
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characterised by a slope very close to 1 thus indicating the dominating TADF character of the 

DF at all dilutions. Another trend also observed in the LFs of all three exciplexes is that the 

sublinearity of the high power region becomes less severe with increasing dilution. This can be 

explained by considering that with increasing dilution vol% in the films, the exciton density 

will be become lower at all times (fewer exciplexes per volume unit) making the exciton 

concentration dependant quenching pathways less efficient15. The quenching mechanisms may 

include singlet-singlet annihilation in the early PF region (depleting the exciton population 

available for DF emission later on), as well as non-emission triplet-triplet annihilation in the 

DF region itself.  

 

 

Figure 5.9 Linear fit of the of the integrated photoluminescence intensity vs the laser power measured at 0.25µs 

delay and 1.5 µs integration time of CDBP:PO-T2T 1:1 ratio evaporated films, (a) neat exciplex, (b) diluted in 

25vol% UGH-3, (c) diluted in 50vol% UGH-3, (d) diluted in 75vol% UGH-3. 
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Figure 5.10 Linear fit of the of the integrated photoluminescence intensity vs the laser power measured at 0.25µs 

delay and 1.5 µs integration time of CBP:PO-T2T 1:1 ratio evaporated films, (a) neat exciplex, (b) diluted in 

25vol% UGH-3, (c) diluted in 50vol% UGH-3, (d) diluted in 75vol% UGH-3. 

 

Figure 5.11 Linear fit of the of the integrated photoluminescence intensity vs the laser power measured at 0.25µs 

delay and 1.5 µs integration time of mCP:PO-T2T 1:1 ratio evaporated films, (a) neat exciplex, (b) diluted in 

25vol% UGH-3, (c) diluted in 50vol% UGH-3, (d) diluted in 75vol% UGH-3. 
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PL decays were also measured at low temperatures for both dilution series (Figure 5.12 a,c and 

e). Even at 80K the CDBP and mCP exciplexes retain a strong DF component (in contrast to 

the CBP films) as a result of the smaller ΔEST and faster rISC rate in the these exciplexes. 

Spectra were also measured at 80K with 80 ms delay (Figure 5.12b, d and f) in order to capture 

the phosphorescence of the exciplex films. For the CDBP series (Figure 5.12b) this failed to 

unambiguously resolve the phosphorescence of the films to obtain the T1 energies. The spectra 

collected are instead still DF from the exciplex state and are clearly blueshifted with dilution, 

similarly to the steady state spectra (Figure 5.3a). This kind of concerted blueshift upon dilution 

is not expected for phosphorescence. In order to obtain a better estimation of the ΔEST of the 

CDBP exciplex series, the phosphorescence of evaporated films of CDBP in UGH-3 were 

measured at concentrations of 10, 25 and 50 vol% without PO-T2T (Figure 5.13). The 10% 

CDBP films shows a phosphorescence onset of 2.92 eV, while the 25 and 50 vol% films possess 

a slightly lower phosphorescence onset of 2.90 eV and 2.85eV respectively. This redshift of 

the phosphorescence with the increasing concentration is likely due to excimer formation10. 

For the CBP series, structured emission is always obtained even in the presence of PO-T2T 

(Figure 5.12d) with onset energies between 2.67 and 2.71 eV, consistent with literature reports 

of the CBP triplet energy3. Similarly, the mCP series also showed a consistent phosphorescent 

spectra (Figure 5.12f) with onset energy between 2.91 eV and 2.97 eV from the exciplex films. 

 

Table 5.3 Comparison between the PLQY values and the ΔEST of the CDBP, CBP and mCP based exciplex 

 PLQY  

(%) 

PL onset 

(eV) 

PH onset 

(eV) 

ΔEST 

(eV) 

CDBP:PO-T2T 

Neat 41 2.88 2.85a 0.03 

25 vol% UGH-3 49 2.89 2.85a 0.04 

50 vol% UGH-3 47 2.93 2.90a 0.03 

75 vol% UGH-3 45 2.97 2.92a 0.05 

CBP:PO-T2T 

Neat 39 2.85 2.67 0.18 

25 vol% UGH-3 46 2.87 2.71 0.16 

50 vol% UGH-3 55 2.92 2.70 0.22 

75 vol% UGH-3 51 2.97 2.71 0.26 

mCP:PO-T2T 

Neat 30 2.90 2.94 -0.04 

25 vol% UGH-3 33 2.93 2.91 0.02 

50 vol% UGH-3 25 2.96 2.94 0.02 

75 vol% UGH-3 18 3.01 2.97 0.03 
a phosphorescence value measured for CDBP:UGH-3 evaporated films at 10-25 and 50 CDBP vol% (i.e. without PO-T2T) 
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Figure 5.12 Left: Time resolved photoluminescence decays collected at 80K of (a) CDBP:PO-T2T (c) CBP:PO-

T2T and (e) mCP:PO-T2T 1:1 vol% ratio and in different vol% of UGH-3. Right: PL spectra measured at 80K 

and 80 ms delay time and 10 ms integration time of (b) CDBP:PO-T2T (d) CBP:PO-T2T and (f) mCP:PO-T2T 

1:1 vol% ratio and in different vol% of UGH-3 

 

Figure 5.13 Phosphorescence spectra of vacuum deposited films of CDBP:UGH-3 at different CDBP vol%. 
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Photoluminescence Quantum Yields (PLQYs) were measured for all exciplex films (Table 5.3) 

in anticipation of a significant efficiency enhancement with dilution as observed for 

TSBPA:PO-T2T in the previous chapter.1 Instead, the CDBP series shows only a small PLQY 

increment, from 41% for the neat exciplex to 49% for the 25 % UGH-3 film. At 50 vol% UGH-

3 the PLQY remains essentially unchanged while it deceases at 75% dilution to 45%. The mCP 

series shows only a decrease of the PLQY with dilution. For CBP the PLQY instead increases 

from the 39% measured for the neat film to 55% obtained for the sample diluted with 50 vol% 

of UGH-3, then decreases slightly at 51% at 75% dilution. The general decrease of PLQY at 

75 vol% dilution can be explained by observing the steady state PL spectra (Figure 5.3a), as at 

this level of dilution all three exciplexes show donor emission under optical excitation, 

inevitably lowering the PLQY. 

The differences in PLQY behaviour for the different exciplex series is unexpected, and hints 

towards the mechanism of the efficiency enhancement, as seen in the previous chapter, which 

is correlated to the different rigidities of the donor molecules. Rigid CDBP and mCP possess 

NTOs localised on the carbazole moieties and higher local triplet energies as a result of their 

reduced (phenyl bridge) conjugation, yielding a small ΔEST for the resulting exciplex. It is 

reasonable to suggest that this rigidity may also reduce excited state quenching processes (eg, 

vibrationally driven IC) that are conversely active in CBP. As the inclusion of the UGH-3 host 

does not change the structure (and hence the triplet energy) or reduce any quenching 

mechanisms in these rigid materials, dilution cannot improve the PLQY from its starting value 

for mCP and CDBP. Instead, the PLQY can only decrease as exciplex formation becomes more 

and more hindered and donor emission becomes a competing emission channel. A blueshift in 

the emission is nonetheless observed, as the coulombic energy always changes with increasing 

separation independently of any efficiency increase.  

Conversely dilution is able to enhance CBP by providing a rigid host, which increases the 

proportion of the twisted CBP molecules having higher triplet energy and thus more efficient 

rISC (similar to CDBP). Dilution will also spatially isolate any low triplet CBP molecule that 

would otherwise act as a low efficiency triplet trap, likely populated by short range Dexter 

transfer. Therefore the PLQY can be enhanced on dilution because of the flexible CBP, 

similarly to what observed in the previous chapter with the flexible TSBPA based exciplex1, 

whilst PLQY remains largely unchanged in the rigid CDBP because there is no scope for the 

host to change the photophysics. It is also therefore no coincidence that the CBP PLQY rises 

to meet that of the CDBP, while the radically different molecular structure of mCP means that 
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no additional insight can be gleaned from comparing its absolute PLQY values to the other 

two. 

5.2.2 Device Performance 

 

The OLED devices were then prepared using these diluted exciplexes to test the performance 

as emitters of the films analysed in the previous sections of the chapter (Figure 5.14 Figure 

5.16). The OLED stack used for all the devices was NPB 40 nm|Donor 10 nm|Donor:PO-T2T 

in x vol% UGH-3 30 nm|PO-T2T 50 nm where Donor represents CBP, CDBP or mCP and x 

vol% values were 0 (neat exciplex), 25, 50 and 75. In all three dilution series studied, the 

electroluminescence (EL) blueshifts in line with the PL. The maximum brightness 

monotonically decreases with increasing host vol% due to the decreased concentration and total 

loading of exciplex emitter in the emissive layer (EML). The only exception to this trend is the 

device with CBP diluted at 50 vol%, where the maximum brightness is higher than in the neat 

undiluted exciplex. This can be explained by considering that at this dilution the CBP exciplex 

show the maximum PLQY value (55 %) which is able to offset other factors common to all 

three series that would otherwise decrease its brightness. The overall resistivity of the OLED 

devices increases, requiring higher driving voltage to reach similar currents due to the presence 

of the resistive UGH-3. In all exciplexes the EQE decreases with increasing dilution, despite 

the increased PLQY values for CBP.1 This unexpected result is assigned to the low conductivity 

of the chosen donors and host and suggests that, when exciplexes are formed by donors with 

relatively low conductivity are diluted (eg carbazole), the hole injection capability in the EML 

drops critically, making it impossible to achieve the full performance of the exciplex as an 

emitter as indicated by the PLQY. This may be remedied in future by using diluting hosts with 

ambipolar transport properties, although finding such a host that does not also form a 

competing exciplex with PO-T2T will likely prove challenging. For TSBPA the greater 

conductivity of the diphenyl amine (DPA) unit means that hole injection is not a limiting factor 

even at high dilution so that the EQE can improve in line with the PLQY. 
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Figure 5.14 CDBP:PO-T2T 1:1 vol% ratio OLEDs characteristics for different vol% of UGH-3 in the emissive 

layer blend. From Neat exciplex (0 vol% UGH-3) to 75 vol% of UGH-3. (a) EQE vs Brightness. (b) Current 

density vs voltage. (c) Normalised electroluminescence spectra 

 

Figure 5.15 CBP:PO-T2T 1:1 vol% ratio OLEDs characteristics for different vol% of UGH-3 in the emissive 

layer blend. From Neat exciplex (0 vol% UGH-3) to 75 vol% of UGH-3. (a) EQE vs Brightness. (b) Current 

density vs voltage. (c) Normalised electroluminescence spectra. 
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Figure 5.16 mCP:PO-T2T 1:1 vol% ratio OLEDs characteristics for different vol% of UGH-3 in the emissive 

layer blend. From Neat exciplex (0 vol% UGH-3) to 75 vol% of UGH-3. (a) EQE vs Brightness. (b) Current 

density vs voltage. (c) Normalised electroluminescence spectra. 

 

5.3 Conclusion 

In conclusion, the effect of dilution on the photophysical and electrical performances of three 

TADF exciplexes based on CBP, CDBP and mCP donors with PO-T2T is compared. CDBP 

and mCP exciplexes show intrinsically different photophysical behaviour when compared to 

CBP despite the similarities in the structures of CBP and CDBP. This has been assigned to a 

heterogeneous distribution of triplet energies in the CBP molecules arising from a distribution 

of conformations of the CBP molecule -between planar and highly twisted biphenyl bridges- 

which introduces a distribution of ΔEST gaps, as evidences by a highly multiexponential time 

resolved PL decay. 

Furthermore, this result show that the PLQY enhancement of the diluted exciplexes is 

independent of the D-A separation associated with the spectral blueshift, and suggest that only 

donor molecules with low structural rigidity are able to enhance exciplexes PLQY through 
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dilution. Finally, OLEDs produced from these carbazole based exciplexes show decreased 

EQEs with increasing dilution, which it is assigned to the relatively low conductivity of the 

carbazole based donors. This limiting factor is only exacerbated by the inclusion of the resistive 

UGH-3, which outcompetes the modest increase in PLQY observed for CBP in determining 

the overall device performance. This problem might be addressed in future studies by 

employing functional hosts that can assist the charge injection and conduction across the EML, 

in contrast to resistive UGH-3. 
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 : 

Solution Processable TADF 

OLED Based on Small 

Molecule Exciplex  

 

This chapter presents the optimisation of a solution processable TADF exciplex emitter in 

OLED devices formed by the small molecules DCz-DBTO2 and TAPC. This exciplex was 

previously reported by Jankus et al.1 to give vacuum deposited devices current efficiency, 

power efficiency and EQE of 32.3 cd/A, 26.7 lm/W and 10.3 % obtained with DCz-

DBTO2:TAPC vol% ratio of 30:70. The thickness and ratio of the exciplex layer was optimised  

for solution processing using two different solvents, chlorobenzene and chloroform. The best 

results were achieved when the two solvents were mixed (5 vol% of chlorobenzene in 

chloroform). With this solvent mixture comparable results to evaporated devices were 

achieved; 27.5 ± 3.5 cd/A, 16.5 ± 2.0 lm/W and EQE of 8.9 ± 0.6 % at DCz-DBTO2:TAPC 

wt% ratio of 30:70. This result demonstrates the suitability of small molecule TADF exciplexes 

as solution processable emissive layer for OLEDs. 

 

 

 

 

 

 

The work presented in this chapter was published in Organic Electronics: Marco Colella, Piotr Pander, Andrew 

P. Monkman, Solution processable small molecule based TADF exciplex OLEDs, Organic Electronics 62 

(2018) 168-173, Marco Colella fabricated all the samples and devices. All authors contributed to the data 

interpretation and the preparation of the manuscript.  
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6.1 Introduction 

 

Currently, there are two approaches commercially viable to fabricate OLEDs - vacuum 

deposition and solution processing. The first offers great control over the deposition process 

and has been the main deposition technique for work presented in the previous chapters. 

Indeed, thermal vacuum deposition is also the main fabrication method used for commercial 

OLEDs. This technique allows to build complex multilayer stacks that often results in more 

efficient and stable devices, which has led to evaporated OLEDs dominating the present 

markets. On the other hand, this technique needs to be performed under costly high vacuum 

conditions, and the usage of material can be far greater than in solution processing – both of 

which are very important costs considerations for mass production. 

For this reason, efficient solution processable OLEDs are still of great interest in order to be 

integrated in solution based roll-to-roll deposition systems to lower the production costs2. An 

important task is therefore to determine fabrication procedures that produces comparable 

devices from solution processing to those obtained via thermal evaporation. Good results have 

already been achieved with solution processed PhOLEDs3,4, while in recent years good results 

have been obtained also via solution processing TADF small molecules and TADF exciplex 

hosts doped with fluorescent or phosphorescent emitters5–10. However they do not quite match 

the performance of evaporated devices yet. 

In this chapter, a TADF exciplex formed by the D-A-D molecule 9-[2,8]-9-carbazole-

[dibenzothiophene-S,S-dioxide]-carbazole (DCz-DBTO2) and 4,4′-cyclohexylidenebis[N,N-

bis(4-methylphenyl)benzenamine] (TAPC) (Figure 6.1d) has been solution processed, with 

molecular structures shown in Figure 6.1b. This exciplex was selected because it has already 

been demonstrated to harvest nearly 100% of the triplets via TADF, with a PLQY of 53 ± 4 % 

in a co-evaporated film consisting of 30%wt of DCz-DBTO2 in TAPC. 1 

To develop a suitable solution process it is noted that both molecules have good solubility in 

chlorinated solvents (>20 mg mL-1) such as Chlorobenzene (CB) and Chloroform (CF). The 

deposition parameters were optimised to maximise OLED performance, obtaining a maximum 

current efficiency of 27.5 ± 3.5 cd/A, a maximum power efficiency of 16.5 ± 2.0 lm/W, a 

maximum EQE of 8.9 ± 0.6 and luminances > 4000 cd/m2.These are comparable results to the 

evaporated devices published by Jankus et al. of 32.3 cd/A, 26.7 lm/W and 10.3 % for a device 

with the same DCz-DBTO2:TAPC wt% of 30:70.1 The effect of the thickness and DCz-



 
97 

DBTO2:TAPC ratio was also explored in both solvents, and find that the two solvent mixed 

together (ratio of CB:CF 5:95 vol%) gives the best wettability offered by the CF with an 

improved surface tension provided by the CB. 11,12 

 

 

Figure 6.1 (a)The energy diagram of the devices produced in this study. (b) The molecular structures of TAPC 

and DCz-DBTO2. (c) the device structure of the devices used in this work. The PEDOT:PSS and the DCz-

DBTO2:TAPC layer have been deposited via spin coating while TPBi and the cathode via thermal evaporation. 

(d) Normalised photoluminescence of DCz-DBTO2, TAPC, DCz-DBTO2:TAPC thin films and 

electroluminescence spectrum of the DCz-DBTO2:TAPC used as EML in the OLED devices. The red-shifted 

peak in the TAPC fluorescence spectrum is assigned to excimers formed in solid state. 

 

6.2 Results and Discussion 

6.2.1 EML processed from Chlorobenzene 

 

6.2.1.1 Thickness 

 

Figure 6.2 shows the results obtained for devices with the structure ITO|PEDOT:PSS 40 nm| 

DCz-DBTO2:TAPC (30:70 x nm)|TPBi 40 nm|LiF 1nm|Al 100 nm. The schematic 

representation of the device structure and the energy levels of the OLEDs produced are shown 

in Figure 6.1a and c. This ratio between DCz-DBTO2 and TAPC was chosen as a starting point 

for the study because it had already been shown to give the highest values of current and power 
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efficiency in the evaporated devices1. The thickness of the EML was varied from 15 to 48 nm 

with results summarised in Table 6.1. It is clear from Figure 6.2a that increasing the EML 

thickness from 15 to 20 nm does not substantially affect the performance of the devices in 

terms of resistivity, efficiency and turn on voltage (VON all  ̴ 3.5 V). When the EML thickness 

is further increased from 24 to 34 nm, the resistivity and VON of the devices increases. In terms 

of efficiency, the greater EML thickness does not substantially vary the maximum efficiency, 

which is reached around 100 cd/m2. Surprisingly the maximum CE is not affected by the 

thickness variation, showing values within 10 ± 2 cd/A. The EQE can also be interpreted as 

constant within the standard deviation (3 ± 0.9 %). 

The efficiency of the device with the EML of 48 nm is the lowest at low luminance which is 

interpreted as a result of current leakage (visible in Figure 6.2a). This leakage is probably 

caused by the low spin speed used to deposit the DCz-DBTO2:TAPC layer (500 rpm)13–15 

leading to an increased roughness of the film that can affect the conduction of the device.16 

 

 

Figure 6.2 Device characteristics for ITO|PEDOT:PSS (40 nm)| DCz-DBTO2:TAPC 30:70 (15-17-20-24-34-48 

nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from chlorobenzene. (a) Current density vs driving voltage. 

(b) Luminance vs driving voltage. (c) Current efficiency vs current density. (d) Power efficiency vs Luminance. 
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Table 6.1 Performance summary of OLEDs produced with the structure  ITO|PEDOT:PSS (40 nm)| DCz-

DBTO2:TAPC 30:70 (15-17-20-24-34-48 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from 

chlorobenzene. 

 48 nm 34 nm 24 nm 20 nm 17 nm 15 nm 

Max CE (cd/A) 6.5 ± 2.2 11.1 ± 2.2 7.8 ± 2.0 11.5 ± 0.8 9.3 ± 0.7 12.3 ± 1.9 

Max PE (lm/W) 3.4 ± 1.2 7.1 ± 1.4 6.0 ± 1.5 9.1 ± 0.6 7.4 ± 0.6 11.0 ± 1.7 

Max EQE (%) 2.1 ± 0.5 3.4 ± 0.7 2.4 ± 0.6  3.5 ± 0.2 2.8 ± 0.2 3.7 ± 0.6 

Max Luminance (cd/m2) 3033 ± 105 3296 ± 240 2787 ± 192 2436 ± 214 2566 ± 157 2254 ± 250 

VON @ 1cd/m2 (V) 5 ± 0.5 4 ± 0.5 4 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 

 

6.2.1.2 DCz-DBTO2:TAPC Ratio 

 

The same device structure was used to optimise the ratio between the two exciplex forming 

molecules. To ensure consistency in the processing the EML layer was fixed at 20 nm since 

this thickness gave the second highest CE and EQE value with the smallest standard deviation 

(Table 6.1). The ratio between DCz-DBTO2 and TAPC has then been variated from 10:90 to 

50:50 wt%, with the results summarised in Table 6.2. 

Figure 6.3a shows that the DCz-DBTO2:TAPC ratio has no effect on the J-V characteristics of 

the devices passing from 20:80 wt% to 50:50 wt% ratio. Only the 10:90 wt% ratio shows a 

slightly lower current, likely due to the reduced ability of DCz-DBTO2 to conduct electrons 

from the TPBi into the EML and is in agreement with what was shown by Jankus et al1. 

However, Figure 6.3b shows that the 10:90 ratio achieves the highest maximum brightness 

having only 10 wt% of DCz-DBTO2. It is interesting also that the maximum brightness 

monotonically diminishes with the increasing concentration of DCz-DBTO2 in the EML. This 

is attributed to an increased leakage of electrons through the DCz-DBTO2, since no electron 

blocking layer (EBL) is present between the PEDOT:PSS layer and the EML in the OLED 

stack (Figure 6.1a).  

In terms of efficiency the highest values are surprisingly achieved for the two extreme ratios, 

10:90 and 50:50 (Table 6.2). On the other hand, as shown in Figure 6.3c and d, the devices 

with 50:50 wt% showed their efficiency peak at very low current density and luminance and 

the worst roll-off. The other ratios instead show the maximum efficiency at values around 100 

cd/m2, which represents the nominal value for display application. This behaviour can be 
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explained by considering that increasing the DCz-DBTO2 loading moves the recombination 

zone towards the HIL, balancing the charges at lower current density values than for the ratios 

where less DCz-DBTO2 is present.  

 

 

Figure 6.3 Device characteristics for structure ITO|PEDOT:PSS (40 nm)| DCz-DBTO2:TAPC 10:90-20:80-

30:70-40:60-50:50 (20 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from chlorobenzene. (a) Current 

density vs driving voltage. (b) Luminance vs driving voltage. (c) Current efficiency vs current density. (d) Power 

efficiency vs Luminance. 

 

Table 6.2 Summary of results obtained for OLEDs produced with the structure  ITO|PEDOT:PSS (40 nm)|DCz-

DBTO2:TAPC 10:90-20:80-30:70-40:60-50:50 (60 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from 

chlorobenzene. 

 10:90 20:80 30:70 40:60 50:50 

Max CE (cd/A) 14.2 ± 3.4 11.6 ± 1.2 13.0 ± 2.6 11.7 ± 1.0 14.1 ± 2.5 

Max PE (lm/W) 11.2 ± 2.7 9.1 ± 0.9 10.2 ± 2.0 9.2 ± 0.8 12.7 ± 2.2 

Max EQE (%) 4.3 ± 1.0 3.5 ± 0.4 3.9 ± 0.8 3.5 ± 0.3 4.2 ± 0.8 

Max Luminance (cd/m2) 3200 ± 165 2876 ± 200 2786 ± 146 2583 ± 126 2449 ± 139 

VON @ 1cd/m2 (V) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 
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6.2.2 EML processed from Chloroform 

 

Since the efficiency was not comparable to vacuum deposited devices (EQE > 10%) when 

processing from CB (EQE < 5%) CF was exploited for its better wettability and very low 

surface tension (32.2 mN/m for CB and 26.0 mN/m for for CF). This solvent properties allow 

the film to solidify onto the substrate much faster than CB leading to better film quality. 17 

 

6.2.2.1 Thickness 

 

As previously shown for the CB devices, the influence of the EML thickness has been studied 

for EMLs spin cast from CF. Figure 6.4 shows that increasing the EML thickness increases 

monotonically the resistivity of the device. The devices with a 50 nm EML showed the highest 

CE, PE and EQE maximum values, 17.3 ± 2.7 cd/A, 10.9 ± 1.7 lm/W and 5.2 ± 0.8 % 

respectively. The highest average maximum brightness is 3,982 ± 312 cd/m2 and was achieved 

for the devices with the EML 60 nm thickness. When comparing devices produced with similar 

EML, (Table 6.1 and Table 6.3) higher maximum brightness and efficiencies are consistently 

obtained from devices where CF was used to deposit the EML. This discrepancy can be 

explained considering the reduced drying time achieved when spin casting the devices using 

the more volatile CF solutions. The solution dries on the substrate in less than 1 second, 

minimising the π-π stacking of the carbazoles on the DCz-DBTO2 molecules18,19. 

 



 
102 

 

Figure 6.4 Device characteristics for ITO|PEDOT:PSS (40 nm)|DCz-DBTO2:TAPC 30:70 (30-40-50-60-70 

nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from chloroform. (a) Current density vs driving voltage. (b) 

Luminance vs driving voltage. (c) Current efficiency vs current density. (d) Power efficiency vs Luminance. 

 

Table 6.3 Summary of results obtained for OLEDs produced with the structure  ITO|PEDOT:PSS (40 nm)|DCz-

DBTO2:TAPC 30:70 (30-70 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from chloroform. 

 70 nm 60 nm 50 nm 40 nm 30 nm 

Max CE (cd/A) 12.9 ± 2.1 14.1 ± 2.3 17.3 ± 2.7 14.7 ± 3.2 13.0 ± 2.7 

Max PE (lm/W) 6.6 ± 1.2 7.6 ± 1.4 10.9 ± 1.7 10.2 ± 2.2 9.8 ± 2.4 

Max EQE (%) 3.9 ± 0.6 4.2 ± 0.7 5.2 ± 0.8 5.1 ± 0.8 4.0 ± 0.8 

Max Luminance (cd/m2) 3,533 ± 593 3,982 ± 312 3,816 ± 315 3,454 ± 280 3,272 ± 216 

VON @ 1cd/m2 (V) 5.5 ± 0.5 5.5 ± 0.5 4.5 ± 0.5 4.0 ± 0.5 4.0 ± 0.5 

 

6.2.2.2 DCz-DBTO2:TAPC Ratio 

 

In order to get the highest possible film quality for a second ratio study the spin speed was set 

at 6000 rpm and use 20 mg/ml CF solution which deposited a 60 nm DCz-DBTO2:TAPC layer. 

The ratio between DCz-DBTO2 and TAPC was again varied between 10:90 and 50:50 wt%. 
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The results show that similar results are obtained across a range of DCz-DBTO2:TAPC ratios 

from 20:80 to 40:60 as shown in Table 6.4. 

There is no large difference in the maximum EQE values for the devices with DCz-DBTO2 

content between 20-40 wt%. Even the devices with a lower DCz-DBTO2 content (10 and 20 

wt%) show a mean value of the maximum EQE of 5.6 % and 6.4 %, respectively, that peaks at 

10 cd/ m2. The devices with DCz-DBTO2 content of 30 and 40 wt% show similar maximum 

EQEs of 6.2 % and 6.1 % respectively, obtained at 100 cd/m2 which represents the brightness 

reference value for OLED display devices.  

Figure 6.5a shows that the current increases with increasing DCz-DBTO2 concentration in the 

blend, saturating above 30 wt% DCz-DBTO2. This can be explained by considering that 

increasing the DCz-DBTO2 content in the device increases the contribution of the electron 

current. The luminance also follows a similar trend, with the maximum brightness increasing 

with the increasing current reaching a maximum value for the 30:70 ratio of 3061 cd/m2. The 

maximum brightness decreases at 50:50 ratio, probably due to DCz-DBTO2 π-π stacking that 

reduces the probability of exciplex formation and thus the brightness of the device. 

The slightly different behaviour observed between the ratio studies (in CF and CB) can be 

attributed to the different EML thicknesses deposited, which is 3 times higher for CF than in 

the films deposited from CB. This leads to a different optimal position of the recombination 

zone inside the EML. 

These results can be compared to those of reported previously by Jankus et al.1. The optimum 

donor acceptor ratio found for more complex devices (featuring exciton blocking layers) was 

found to be 38:62, yielding devices having respectively current efficiency, power efficiency 

and EQE of 32.3 cd/A, 26.7 lm/W and 14%. Such EBLs are not straightforward to deposit by 

solution processing, as subsequent solvent depositions can dissolve previous ones.  

Nonetheless, for the simpler solution processed devices, without blocking layers, the 

performance of evaporated devices was approached when optimum charge balance is achieved. 

With the inclusion of blocking layers in more complex device structures, this performance can 

likely be improved further. However, the result clearly suggests that by achieving optimal 

charge balance in solution cast devices, performance levels matching evaporated devices can 

be achieved in exciplex based TADF devices. 
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Figure 6.5 Device characteristics for structure ITO|PEDOT:PSS (40 nm)| DCz-DBTO2:TAPC 10:90-20:80-

30:70-40:60-50:50 (60 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from chloroform. (a) Current density 

vs driving voltage. (b) Luminance vs driving voltage. (c) Current efficiency vs current density. (d) Power 

efficiency vs Luminance. 

 

Table 6.4 Summary of results obtained for OLEDs produced with the structure  ITO|PEDOT:PSS (40 nm)|DCz-

DBTO2:TAPC 10:90-20:80-30:70-40:60-50:50 (60 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from 

chloroform. 

 10:90 20:80 30:70 40:60 50:50 

Max CE (cd/A) 18.5 ± 2.6 21.1 ± 7.3 20.7 ± 3.8 19.5 ± 4.0 15.4 ± 4.4 

Max PE (lm/W) 9.5 ± 1.2 11.0 ± 3.9 10.9 ± 2 10.2 ± 2.1 7.2 ± 2.7 

Max EQE (%) 5.6 ± 0.8 6.4 ± 1.9 6.2 ± 1.4 6.1 ± 1.1 4.1 ± 1.4 

Max Luminance (cd/m2) 2210 ± 104 2821 ± 332 3061 ± 131 2998 ± 350 2528 ± 207 

VON @ 1cd/m2 (V) 6.0 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 

 

6.2.3 EML processed from Chlorobenzene:Chloroform solvent blend 

 

Both optimization studies have shown that the optimal exciplex D:A ratio lies between 20:80 

and 30:70, and the CF thickness optimization identified 60 nm EML as optimal as long as it 
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can be deposited uniformly. To further improve the deposition procedure a final study using 5 

vol% of CB in CF was performed, as it has been shown in the literature that improves the film 

quality while still limiting the π-π stacking of the carbazoles on the DCz-DBTO2. 11,12 With 

this solvent blend, the thickness of the EML was once again optimised, maintaining constant 

the ratio between DCz-DBTO2 and TAPC at 30:70 wt%. 

The results are summarised in Table 6.5 Summary of results obtained for OLEDs produced 

with the structure  ITO|PEDOT:PSS (40 nm)| DCz-DBTO2:TAPC 30:70 (15-21-30-60 

nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from a 5:95 chlorobenzene:chloroform 

solution. These results show that the best results are obtained for an EML thickness of 60 nm 

as expected from the results of the CF study and since the solvent blend is formed by 95% of 

CF. Maximum CE and EQE of 27.5 ± 3.3 cd/A and 8.9 ± 0.6 % are achieved as well as a 

maximum brightness close to 5000 cd/m2. As seen in Figure 6.6a, the devices with the EML 

15 nm thick have current leakage even at low voltage probably because of pin holes formed 

due to the low thickness of the layer. A similar problem was also observed for the devices 

deposited from CB with the same EML thickness. 

The resistivity of the OLEDs increases with increase of the EML thickness as expected. 

Curiously, the devices with the 15 nm thick EML show higher brightness than those of 21 nm. 

This behaviour is attributed to the current leakage present in the latter devices. In the devices 

with 30 and 60 nm thick EML the brightness increases monotonically with thickness, again as 

expected as they contain more exciplex forming material. 
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Figure 6.6 Device characteristics for ITO|PEDOT:PSS (40 nm)| DCz-DBTO2:TAPC 30:70 (15-21-30-60 

nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from a 5:95 chlorobenzene:chloroform solution. (a) Current 

density vs driving voltage. (b) Luminance vs driving voltage. (c) Current efficiency vs current density. (d) Power 

efficiency vs Luminance. 

 

 

Table 6.5 Summary of results obtained for OLEDs produced with the structure  ITO|PEDOT:PSS (40 nm)| DCz-

DBTO2:TAPC 30:70 (15-21-30-60 nm)|TPBi (40 nm)|LiF (1 nm)|Al (100 nm) deposited from a 5:95 

chlorobenzene:chloroform solution. 

 60 nm 30 nm 21 nm 15 nm 

Max CE (cd/A) 27.5 ± 3.3 18.0 ± 1.0 20.2 ± 2.0 5.9 ± 2.8 

Max PE (lm/W) 15.0 ± 1.9 12.6 ± 0.7 15.9 ± 1.2 4.6 ± 2.3 

Max EQE (%) 8.9 ± 0.6 5.4 ± 0.4 6.1 ± 0.6 2.7 ± 0.7 

Max Luminance (cd/m2) 4679 ± 304 3657 ± 187 2992 ± 280 3020 ± 142 

VON @ 1cd/m2 (V) 5.5 ± 0.5 4.0 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 
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6.3 Conclusion 

This chapter successfully demonstrates the feasibility of solution processing of TADF 

exciplexes as emissive layers in OLEDs using the DCz-DBTO2:TAPC TADF exciplex as 

EML. The effect on the performance of the devices with the variation of the EML thickness 

and DCz-DBTO2:TAPC ratio has been systematically studied for devices prepared from CB, 

CF and 5:95 vol% blend of CB:CF. With the solvent blend, comparable results to those 

obtained by evaporation deposition by Jankus et al 1 has been achieved in terms of brightness, 

current efficiency, power efficiency and EQE. The best result obtained in this work is 27.5 ± 

3.3 cd/A with a maximum brightness if 4679 ± 304 cd/m2 and EQE of 8.9 ± 0.6%, at the same 

DCz-DBTO2:TAPC ratio of 30:70. This result can confidently be improved through further 

optimization of the device stack by introducing electron and hole blocking layers for better 

confinement of carriers within the exciplex for example. Moreover, an in-depth morphological 

study is needed on these films to understand if the increasing in performance is really due to a 

better homogeneity of the film or if the surface roughness is playing an important role as well. 

These results nonetheless are of fundamental importance because they demonstrate the 

suitability of TADF exciplexes for high throughput roll to roll fabrication techniques that may 

dramatically lower the industrial fabrication costs. 
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 : 

The Effects of Exciton 

Localisation Induced by an 

Interfacial TADF Exciplex on 

PhOLED Efficiency and 

Stability 

In this chapter, a TADF exciplex formed between the EML host 26DCzPPy and the ETL PO-

T2T is employed at the interface between the EML and the ETL to improve the stability and 

efficiency of a phosphorescence OLED based on Ir(dmpq)2acac. We show that the presence of 

the TADF exciplex at the EML-ETL interface induces an efficient localisation of the 

recombination zone which is confined within the 5 nm thick EML. Furthermore, the TADF 

exciplex allows harvesting of the holes and electrons that accumulate at the EML-ETL 

interface, transferring the resultant excited state energy to the phosphorescent emitter through 

Förster and/or Dexter energy transfer. This approach effectively improves the LT90 of devices 

from <1 min to 6 h by limiting recombination processes outside of the 5 nm EML. 

 

 

 

The work presented in this chapter was published in ACS Applied Materials and Interfaces: Marco Colella, Piotr 

Pander, Daniel de Sa Pereira and Andrew P. Monkman, Interfacial TADF Exciplex as a Tool to Localise 

Excitons, Improve Efficiency and Increase OLED Lifetime, ACS Appl. Mater. Interfaces, 2018, 10 (46), 

40001–40007. Marco Colella fabricated all the samples and devices. The photophysical measurements were 

carried by Marco Colella together with Piotr Pander. All authors contributed to the data interpretation and the 

preparation of the manuscript.  
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7.1 Introduction 

Since 2008 Kondakova et al started combining exciplexes and phosphorescent emitters 

showing performance enhancement1 Later, Fukagawa et al.2 demonstrated performance 

enhancement of PhOLEDs when a TADF host was used, many other groups also have 

published similar results using either TADF small molecules or exciplexes as hosts. These 

improvements in performance are explained by the effective Förster resonant energy transfer 

(FRET) to the emitter that these systems can provide, jointly with the 100% triplet harvesting 

via the TADF host3–11. Furthermore, Duan et al. 8 demonstrated that by inserting a TADF 

exciplex at the interface between the host and the hole transport layer (HTL) of a PhOLED, it 

is possible to enhance the stability and the performance of the device exploiting the energy 

transfer from the interfacial exciplex and the guest material.  

This chapter shows the effect of using a TADF exciplex on the electron side of a PhOLED 

device to improve the charge balance and control the localisation of the recombination zone in 

the EML. In fact, the electron mobility in OLED devices is indeed commonly lower than the 

hole mobility, causing the holes to pile-up at the interface between emissive layer (EML) and 

electron transport layer (ETL). This imbalance could well be a source of device degradation 

thus lead to low operational lifetime. To address this problem, a TADF exciplex formed by the 

well-known bipolar EML host 2,6-bis[3-(9H-carbazol-9-yl)phenyl]pyridine (26DCzPPy) and 

the donor 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T) used as ETL, was 

introduced to avoid the pile-up problem. All the devices were doped with bis(2-(3,5-

dimethylphenyl)quinoline-C2,N')(acetylacetonato)iridium(III) (Ir(dmpq)2acac) to obtain 

efficient FRET from the interfacial exciplex due to the extensive overlap of the absorption 

spectrum of the dopant with the exciplex emission as well as yielding 100% phosphorescent 

emission. The molecular structure of the molecules involved in the FRET process are shown 

in Figure 7.1a. Furthermore, we have employed a device architecture with an unusually thin 5 

nm EML, that allows us to assess the localization of the recombination zone and obtain more 

information about the energy transfer mechanisms between the exciplex and the dopant. We 

were indeed able to observe when exciton localisation was lost simply by observing the 

changes in the electroluminescence spectrum, and by relating those changes to the variations 

in the stability of the device with the different device structures. 

A maximum EQE of 28.6% at 100 cd/m2 as well as a very low roll-off with an efficiency of 

25.2 % at 1000 cd/m2 was achieved using this architecture. Further device structures were used 
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introducing a 1nm spacer layer between the EML and the exciplex, and by substituting PO-

T2T alternatively with 2,2’,2’’-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) 

and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) to assess the role of energy transfer 

to the Ir(dmpq)2acac. All the results highlight the importance of the energy transfer process 

from the interfacial exciplex to the phosphorescent guest in the enhancement of both 

performances and stability of the devices. 

7.2 Results and Discussion 

 

7.2.1 Photophysical characterization 

 

Although the 26DCzPPy:PO-T2T exciplex has been previously reported 12 there has been little 

explanation to its photophysics. First of all, the exciplex time resolved PL decay at room 

temperature (Figure 7.1c) shows a biexponential characteristic with PF decay time (τPF = 14.4 

± 0.4 ns) and DF decay time (τDF = 3.0 ± 0.2 μs). From the integral of the PF and DF regions 

of the PL decay, the ratio between the DF and PF contribution to the emission has been 

calculated (DF/PF ≈ 2.5) while the rISC rate is 1.1 x 106 s-1 calculated accordingly to the 

procedure reported by Dias et al.13. The singlet-triplet gap is estimated to be ΔEST = 0.09 eV.  
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Figure 7.1 (a) Molecular structure of the exciplex forming donor (26DCzPPy), acceptor (PO-T2T) and 

phosphorescent emitter (Ir(dmpq)2acac) used in this study. (b) The normalised absorption and PL spectra of 

Ir(dmpq)2acac and 26DCzPPy:PO-T2T exciplex. (c) Time resolved fluorescence decay curves of the exciplex 

blend at 80 K and 295 K. (d) Integrated area as a function of the laser excitation (355 nm) of 26DCzPPy:PO-T2T 

exciplex blend. 

 

The delayed fluorescence changes its intensity and kinetics with temperature as depicted in the 

exciplex photoluminescence decays between 295 and 80 K (Figure 7.1c) which confirms the 

thermally-activated nature of the DF. Furthermore, the delayed fluorescence component shows 

a laser fluence dependency with 0.92 exponent (Figure 7.1d). This being close to 1, indicates a 

single exciton process which, along with the strongly temperature dependent delayed 

fluorescence (Figure 7.1c) indicates that the TADF mechanism is the main triplet harvesting 

mechanism involved (i.e. excluding TTA). 

Interestingly, the prompt and delayed fluorescence spectra of the exciplex blend are distinct 

(Figure 7.2). The early emission spectrum at 0.7 ns delay shows emission maximum at ≈ 460 

nm while at later time delays there is a gradual redshift observed and the delayed fluorescence 

shows a maximum at ≈ 490 nm the same as the steady state PL spectrum in Figure 7.1b. This 

behaviour is consistent with a distribution of D-A orientations and distances with different 
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energies14. The TADF emission clearly dominates at 295 K, but at 80 K the weak delayed 

fluorescence (1-100 μs delay), is accompanied by phosphorescence emission (> 10 ms delay) 

of 26DCzPPy (Figure 7.2)15. This observation suggests that the local triplet state of 26DCzPPy 

is coupled with the exciplex CT state and the coupling of 1CT and 3CT with the 3LE gives rise 

to TADF in this system. Figure 7.1b shows the extensive overlap between the absorption of 

Ir(dmpq)2acac and the 26DCzPPy:PO-T2T PL, which is necessary to provide efficient FRET 

between the exciplex and the phosphorescent emitter. 

 

 

Figure 7.2 Time-resolved photoluminescence spectra of the 26DCzPPy:PO-T2T exciplex blend at 295 K and 80 

K. The double peak arising at 22.4 and 70.8 ms delay time at 80 K are assigned to the phosphorescence of 

26DCzPPy. 

 

7.2.2 Device Performance 

 

Initially, we optimised the concentration of the dopant by implementing a device structure of 

NPB (40nm)|TCTA (10 nm)|26DCzPPy (5 nm)|1-4-10 wt% of Ir(dmpq)2acac in 26DCzPPy (5 

nm)|PO-T2T (50 nm)|LiF (1nm)|Al (100 nm) which are respectively labelled as Dev1, Dev2 

and Dev3. The 5 nm buffer layer of 26DCzPPy was used to avoid direct injection of holes from 

the TCTA layer into Ir(dmpq)2acac, This choice maximises the charge recombination at the 
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exciplex interface and therefore assists the energy transfer process from the interfacial exciplex 

to the guest phosphor, allowing this process to dominate the device physics. The slight redshift 

observed with the increased doping concentration in Figure 7.3c is due to reabsorption of the 

emitter emission. In fact, the emission and the absorption spectrum overlap in the region 

between 550 and 650 nm showing a rather small Stokes shift as visible in Figure 7.1b. 

In Figure 7.3a it can be seen that the current density of the devices increases with the 

concentration of Ir(dmpq)2acac in the EML. This is a typical behavior in PhOLEDs due to 

charge trapping on the Iridium complexes since they act as deep traps for both holes and 

electrons16. The energy difference between the HOMO and LUMO levels of 26DCzPPy and 

Ir(dmpq)2acac is 0.61 eV and 0.74 eV respectively5,17,18. In terms of efficiency, we find the 

device loaded with 4 wt% Ir(dmpq)2acac (Dev2) to exhibit the highest EQE at both reference 

brightness (100 cd/m2 and 1000 cd/m2) of 28.6 % and 25.2 % respectively. We attribute this 

small roll-off to triplet-polaron quenching19. In general, all three devices show an efficiency 

roll-off of only 10 % between 100 cd/m2 and 1000 cd/m2. Interestingly the device with 1 wt% 

Ir(dmpq)2acac (Dev1) shows similar performances to the device with 10 wt% Ir(dmpq)2acac 

(Dev3) up to the brightness of 2000 cd/m2. Afterwards the efficiency drops significantly faster 

compared to the more heavily doped devices. This can be explained comparing the 

electroluminescence (EL) spectra shown in Figure 7.3c and Figure 7.3d. The figures show the 

EL spectra at the same brightness of 1,000 cd/m2 and 10,000 cd/m2 respectively. No exciplex 

emission is visible in any of the devices at 1,000 cd/m2. However, in the spectra collected at 

brightness of 10,000 cd/m2 (Figure 7.3d) Dev1 shows a strong exciplex emission at 471 nm 

(inset of Figure 7.3d) which is not visible in either Dev2 or Dev3. This observation confirms 

that the exciplex is indeed populated and that, even with a doping concentration as low as 1%, 

it can be fully harvested via FRET at moderately low current density. The abrupt EQE roll off 

observed for Dev1 at high current density is therefore assigned as a consequence of saturating 

the energy transfer process, which leads to the exciplex peak to arise in the EL spectrum. The 

exciplex emission observed in the EL spectrum is blue shifted by ≈ 20 nm from the PL spectrum 

of Figure 7.2b due to the interfacial geometry of the exciplex under the influence of the electric 

field in the OLED structure20. It should also be considered that the EML thickness is only 5 nm 

which is within the typical triplet exciton diffusion length, making Dexter energy transfer 

(DET) from the 26DCzPPy-PO-T2T interface a non-negligible effect in this particular device 

structure especially with the increment of doping concertation 21. 
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Figure 7.3 (a) JV and (b) EQE curves of the PhOLEDs with different doping level of Ir(dmpq)2acac. Normalised 

EL spectra of the PhOLEDs at constant brightness of (c) 1000 cd/m2 and (d) 10000 cd/m2. 

 

Table 7.1 Exciplex photophysical properties at different dilutions in UGH-3 or DPEPO 

wt% 

Ir(dmpq)2acac 

@ 100 cd/m2 @ 1000 cd/m2 

V cd/A EQE V cd/A EQE LT90 (h) 

Dev1 - 1 wt% 4.3 29.8 ± 9.1 24.5 ± 1.2 5.8 31.5 ± 0.9 21.9 ± 1.1 0.02 

Dev2 - 4 wt% 4.3 36.6 ± 6.6 28.6 ± 1.4 5.5 30.7 ± 0.8 25.2 ± 1.3 1 

Dev3 - 10 wt% 4.0 27.3 ± 4.5 26.0 ± 1.3 5.3 24.6 ± 0.5 22.7 ± 1.1 6 

Dev4 - 4 wt%  

1 nm spacer 4.3 26.0 ± 2.7 18.4 ± 0.9 5.3 23.4 ± 0.4 18.6 ± 0.9 1 

Dev5 - 4 wt% 

TPBi 4.3 26.1 ± 3.9 15.6 ± 0.8 5.0 26.4 ± 0.5 21.3 ± 1.1 0.13 

Dev6 - 7 wt% 

BCP 5.5 21.4 ± 2.9 31.5 ± 1.6 7.0 15.3 ± 0.4 15.3 ± 0.8 > 0.01 
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To separate the contributions of DET and FRET to total energy transfer devices were produced 

with a 1 nm spacer layer introduced between the EML and the PO-T2T. The device structure 

used is NPB (40nm)|TCTA (10 nm)|26DCzPPy (5 nm)|4 wt% of Ir(dmpq)2acac in 26DCzPPy 

(5 nm)|26DCzPPy (1 nm)|PO-T2T (50 nm)|LiF (1nm)|Al (100 nm) labelled Dev4. In Figure 

7.4b the performance of Dev4 is compared to Dev2 since both possess the same structure, 

differentiated only by the 1 nm spacer present in Dev4. At 100 cd/m2 the EQE drops from 28.6 

% for Dev2 to 18.4 % with the spacer, as summarised in Table 7.1. Dev4 maintains a constant 

EQE of 18.6 up to 1000 cd/m2 showing that the device still possesses a good charge balance 

with the turn-on voltage unaffected by the 1 nm 26DCzPPy layer. Figure 7.4c shows that at 

1000 cd/m2 no exciplex emission is visible in the EL spectrum, indicating that, all the 

exciplexes produced at the 26DCzPPy:PO-T2T interface are transferred via FRET to the 

dopant, since the DET has been greatly reduced by the spacer layer separation. On the other 

hand, in the inset of Figure 7.4d at a brightness of 10,000 cd/m2, the exciplex emission is again 

clearly visible, at the same spectral position as observed for Dev1. The exciplex emission peaks 

at 471 nm indicates the incomplete energy transfer from the interfacial exciplex to the dopant, 

assuming that the 1 nm spacer layer does not affect the FRET efficacy but that DET must have 

been substantially eliminated22. The difference in efficiency between the devices with and 

without the spacer is attributed to the effective suppression of the DET contribution. Thus, the 

exciplex emission appears at high brightness even at 4 wt% doped EML. This indicates that 

the process of energy transfer from the interfacial exciplex to the dopant must be maximised to 

optimise the device efficiency. 
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Figure 7.4 (a) JV and (b) EQE curves of the PhOLEDs with and without the 1 nm 26DCzPPy spacer layer at the 

EML|ETL interface. EL spectra of the PhOLEDs at constant brightness of (c) 1000 cd/m2 and (d) 10000 cd/m2. 

 

PO-T2T was then replaced with two standard electron transport materials, TPBi and BCP. TPBi 

was chosen due to the very good LUMO alignment with 26DCzPPy, with a ΔELUMO = 0.14 eV 

23,24. BCP, on the other hand, was chosen because it has the very similar LUMO energy to PO-

T2T 25,26. Despite having the same LUMO level as PO-T2T, BCP does not produce exciplex 

emission when blended with 26DCzPPy and neither does TPBi, Figure 7.5a and Figure 7.5b. 
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Figure 7.5 (a) Photoluminescence spectra of 26DCzPPy, TPBi and 26DCzPPy:TPBi blend. (b) 

Photoluminescence spectra of 26DCzPPy, BCP and 26DCzPPy:BCP blend. 

 

Figure 7.6 shows the results for the PhOLEDs with the structures; NPB (40nm)|TCTA (10 

nm)|26DCzPPy (5 nm)|4 wt% of Ir(dmpq)2acac in 26DCzPPy (5 nm)|TPBi (50 nm)|LiF 

(1nm)|Al (100 nm) and NPB (40nm)|TCTA (10 nm)|26DCzPPy (5 nm)| 7 wt% of 

Ir(dmpq)2acac in 26DCzPPy (5 nm)| BCP (50 nm)|LiF (1nm)|Al (100 nm) respectively labelled 

as Dev5 and Dev6. Dev5 shows lower performance in respect to the exciplex enhanced devices, 

with good roll off and EQE of 21.3 % at 1000 cd/m2, Table 7.1. The most interesting aspect is 

the substantial difference between the EQE obtained for the same doping level of 4 wt%, at 

100 cd/m2. The device where TPBi is used (Dev5) shows a build-in of efficiency with the EQE 

at 100 cd/m2 of only 15.6 % compared to 28.6 % for Dev2. The good resistance to roll-off is 

provided by the good energy level alignment with the bipolar host 26DCzPPy that guarantees 

the balance of the charges in the EML. On the other hand, the resulting performance is lower 

due to the absence of the energy transfer as well as a recombination zone localization effect 

arising from the TADF exciplex. Evidence of this is provided by comparing the EL spectra of 

the devices in Figure 7.6c and Figure 7.6d. At 1,000 cd/m2 only the emission from the 

Ir(dmpq)2acac is observable whereas at 10,000 cd/m2 the emission from the adjacent layer of 

26DCzPPy is clearly visible, demonstrating the broadening of the recombination zone with the 

increasing voltage in the absence of the TADF exciplex at the host-ETL interface. 

The same mechanism occurs when BCP is used to replace PO-T2T. In this last case, due to the 

large electron injection barrier alongside the low conductivity of BCP itself 27 the operational 

voltage increases substantially, as visible in Figure 7.6a, increasing from 4.3 V with the 
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exciplex to 5.5 V without, at 100 cd/m2. The difference becomes even bigger at brightness of 

1000 cd/m2 passing from 5.5 V with the exciplex to 7 V with the BCP layer. 

On the other hand, when BCP is used, very high efficiency of 31.5% is found at 100 cd/m2, out 

performing all the other devices assessed in this work (Figure 7.6b). This is considered to be 

the effect of the device structure used. At low voltage the electrons pile up at the ETL-EML 

interface as they cannot easily overcome the injection barrier between the BCP and 26DCzPPy 

(0.34 eV) and are more likely to be directly injected into the Ir(dmpq)2acac. Once injected into 

the dopant the electrons are well confined by the 5 nm 26DCzPPy undoped layer. The only 

possibility for recombination is then with the holes trapped by the dopant, giving rise at a very 

sharp emission onset at very low current and thus resulting in extremely high efficiency thanks 

to the high PLQY of excitons localized on the Ir(dmpq)2acac28. At higher voltage the electrons 

possess enough potential energy to inject into the EML host, bypassing this initially very 

efficient mechanism and causing the efficiency to reduce, with the EQE halving at 1000 cd/m2. 

 

Figure 7.6 (a) JV and (b) EQE curves of the PhOLEDs with BCP and TPBi as ETL and a 1 nm spacer between 

the EML and PO-T2T. Normalised EL spectra of the PhOLEDs at constant brightness of (c) 1000 cd/m2 and (d) 

10000 cd/m2. 
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Among the devices produced in this study, the only one showing a detectable secondary 

emission in the EL spectrum at 1000 cd/m2 (Figure 7.6c) is the device with BCP as ETL (Dev6), 

confirming the earlier suggestion that, for this device, the electrons have enough potential 

energy to overcome the injection barrier into the host which moves the recombination zone 

towards the undoped 26DCzPPy layer. This effect is seen to increase at 10,000 cd/m2 where 

both TPBi and BCP show emission from the host at ≈ 425 nm. The host emission in the EL 

spectrum is redshifted of 33 nm from the PL (Figure 7.5) again due to partial reabsorption by 

the Ir complex. The secondary emission from the host is a clear sign of the loss of confinement 

of charge recombination in the EML. 

Finally, in Figure 7.7 the stability of the devices is compared by operating the OLEDs at 

constant current with an initial brightness (L0) of 1000 cd/m2. When the exciplex interface is 

present in the device structure, the lifetime increases monotonically with the concentration of 

dopant. The devices show LT90 of < 1 min for 1 wt% increasing to ≈ 1 hour at 4 wt% and ≈ 6 

hours for 10 wt%. We attribute this increment to the increase of efficacy of the energy transfer 

process due to the presence of a greater number of dopant molecules, thus avoiding charge 

build up and quenching at the interface and degradation of the exciplex itself. Interestingly, the 

initial behaviour of the device with the 1nm spacer layer (Dev 4) shows the same LT90 as the 

one without the spacer layer (Dev 2). Its decay rate accelerates with LT50 of 13.5 h with the 1 

nm spacer layer whereas the device without the spacers has an LT50 of 24 h. This difference 

highlights the role of DET in reducing charge pile-up and thus degradation at the interface. 

Moreover, PhOLEDs where BCP (Dev 6) and TPBi (Dev 5) were used showed LT90 of < 1 

min and 8 minutes respectively. We attribute the longer LT90 of the TPBi device over the BCP 

one to the better confinement of the recombination zone, as shown from the EL spectra (Figure 

7.6) and discussed above. The interfacial exciplex turns the piled-up charges into useful 

exciplexes that are transferred to the Ir(dmpq)2acac through FRET and DET, reducing the 

degradation mechanisms associated with it. The BCP device exhibits lower stability than TPBi 

due to the loss of exciton confinement in the 5 nm thick EML, spreading the recombination 

zone to non-efficient areas of the device more prone to degradation than the high PLQY Ir 

doped layer, i.e. the undoped host. 
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Figure 7.7 Luminance decay of the OLEDs measured at constant current. All the devices kept at the current value 

that corresponds to the initial luminance of L0 = 1000 cd/m2. 

 

7.3 Conclusion 

This chapter demonstrates that utilising a TADF exciplex at the interface between EML and 

ETL can improve the efficiency and stability of PhOLEDs. We highlight this improvement as 

a consequence of an extremely effective localisation of the excitons into the 5 nm EML. The 

interfacial exciplex not only localises the recombination zone onto the EML-ETL interface, but 

also harvests the holes and electrons piled-up at that interface and recycling them into useful 

light in the emitter. We show clearly that both DET and FRET mechanisms are responsible for 

the energy transfer process from the exciplex to the dopant, and that the DET process provides 

a very important contribution to the overall efficiency of the devices. Using the TADF exciplex 

interface layer on the electron side of the device greatly increases device lifetime LT90 from 

minutes to hours at 1000 cd/m2. In the future, this strategy may be promising to apply to 

hyperfluorescent OLEDs to further improve the energy transfer mechanisms and boost the 

efficiency without the use of heavy metals. 
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 : 

Concluding Remarks 
 

This thesis has presented a multifaceted research program concerning TADF exciplexes; their 

intrinsic emission mechanisms and how to tune this through dilution, their suitability as 

solution processable emitters, and their applicability in OLED structures as a tool for achieving 

exciton confinement.  

In Chapter 4 it is demonstrated, for the first time that exciplex colour and performance are not 

fixed and can be tuned and enhanced through solid state dilution. Before this study it was 

common belief that diluting an exciplex in a host would only hinder the exciplex formation and 

thus emission. Instead for the TSBPA:PO-T2T exciplex it is possible to controllably blueshift 

its emission and improve its PLQY (from 58% to 80%). This improvement can be directly 

translated into OLED’s performance where the EQE passed from 14.8% to 19.2%. The 

blueshift is rationalised in terms of a reduced coulombic binding energy term in the expression 

for exciplex total energy. The chapter also highlights the importance of the choice of the host 

for photophysical experiments, since inappropriate energy level alignment (donor-host-

acceptor) can hinder electron transfer from the excited donor to the acceptor that forms the 

exciplex. Level alignment is shown to not be as important in devices, where the exciplex 

formation happens through direct injection of holes and electrons (and the host does not play a 

role). 

These dilution effects are further investigated in Chapter 5 where a family of three exciplex 

forming carbazole donors (mCP, CBDP and CBP) where studied with the PO-T2T acceptor. 

The three carbazole donors differed (only slightly) in their molecular structure, so that the 

different photophysical behaviour could be attributed to these differences. All three exciplexes 

showed a consistent blueshift with increasing dilution, in agreement with what observed for 

the TSBPA:PO-T2T exciplex, although the same cannot be said for the PLQY enhancement 

effect. Instead the two more rigid structures (mCP and CDBP) do not provide any substantial 

variations in PLQY, and at high dilutions the PLQY drops due to the increased number of 
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isolated donors that cannot contribute to the exciplex emission. The third more flexible donor 

(CBP), in contrast does show a PLQY enhancement from 39% to 55% the same value observed 

for the similarly structured (but rigid) CDBP. This suggests that a certain degree of molecular 

flexibility is necessary to provide room to observe a PLQY enhancement as quenching 

processes are deactivated. EQE values of the OLEDs produced with the diluted exciplexes as 

EMLs did not closely follow the PLQY values, probably due to the relatively low conductivity 

of the carbazole based donors. In contrast to highly conductive TSBPA, the carbazole devices 

are strongly affected by the introduction of the host, probably due to the disruption of the 

percolation pathways necessary for conduction. This problem might be addressed in future 

studies by employing functional hosts that can assist the charge injection and conduction across 

the EML, but without interfering with the exciplex formation process (i.e. forming other 

competing exciplexes). 

Shifting focus, in Chapter 6 it is shown how OLEDs of a previously reported TADF exciplex 

formed between DCz-DBTO2 and TAPC can be effectively solution processed with little loss 

of the overall performance. The challenge of this work was to optimise the solvent system used 

to spin cast suitably smooth EMLs. Initially chlorobenzene was used due to its high boiling 

point, good film forming properties and high repeatability. The devices produced this way 

showed nonetheless poor performance, due to aggregation problems in the film nanostructure. 

This problem was addressed by using chloroform as solvent where the low boiling point results 

in extremely fast drying time and thus a much reduced propensity to form aggregates. However, 

chloroform is a challenging solvent to handle as it dries almost instantly during deposition 

leading to irregular films. For this reason, 5% of chlorobenzene was add to the chloroform 

solution and this approach demonstrated to provide the best results with an EQE of 8.9 ± 0.6% 

was achieved. The improvement is due to the 5% of chlorobenzene stabilizing the film while 

covering the substrate without substantially increasing the drying time, thus leading to a better 

nanostructure and performance. 

Finally, Chapter 7 shows how the presence an interfacial TADF exciplex at the EML-ETL 

interface can improve both performance and stability of a PhOLED. The improvement arises 

from the extremely narrow charge confinement within the 5nm EML made possible by the 

presence of the exciplex. The exciplex not only confines the recombination zone but also 

prevents the piled up charges at the EML-ETL interface by rapidly depleting both singlets and 

triplets (through energy transfer mechanisms back to the phosphorescent emitter). This strategy 
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improves the LT90 of the PhOLED from a few minutes for a standard (without exciplex) device 

stack. 

In conclusion, this thesis demonstrates the strong potential that TADF exciplexes possess for 

application in OLEDs. As emitters more investigation is surely needed, in particular on the role 

that the host plays in the performance enhancement effect (if any) when diluting the exciplex.  

Furthermore Chapter 5 has highlighted the need for the development of functional conducting 

hosts in order to avoid the performance reduction due to problems related to the low 

conductivity of the diluted exciplex films. Further investigation on the mechanism that drives 

the PLQY enhancement of the exciplexes is also necessary to clarify the role of molecular 

flexibility highlighted in this thesis. These questions may be answered by investigating 

different families of exciplex forming donors and acceptors with the investigations focused on 

trying to separate the contributions between the donor and acceptor molecular conformations 

and the respective electron donating and electron accepting strength of the exciplex forming 

molecules. Moreover, very useful information could be extracted by an in depth morphological 

study on the effect of different degrees of dilution vs performance change using different hosts 

to try to understand if certain hosts induce or not a preferable donor-acceptor orientation that 

favourites the exciplex formation thus higher PLQY. 

Concerning the photophysical investigation since the energy splitting between the CT singlet 

and CT triplet is effectively zero due to the fact that the CT state is formed between two 

different molecules, it would interesting to observe the change of the photophysical behaviour 

of different exciplexes at low temperature (below 80 K) to try to understand if coupling effects 

beyond the vibronic one (like hyperfine coupling) are providing a non-negligent contribution 

to the rISC process. 

In Chapter 6 solution processing it has been shown which constitutes a viable approach and 

that the solvent system used to deposit the exciplex layer is critical to maximise the OLED 

performance. On the other hand, the development of dendrimers and polymers, containing 

exciplex forming moieties could further improve the development of such devices and reduce 

the issues related to the film quality being so closely dependant by the solvent system used. 

Finally, the approach presented in Chapter 7 showed to be generally promising and it will be 

interesting to apply to enhance the efficiency and stability of small molecule based TADF 

OLEDs and hyperfluorescent devices to try to approach the holy grail of a stable and 

commercially viable blue emitter.   
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