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Abstract

The segregation of small molecules in polymers is hugely relevant for a wide

range of industrial systems. This thesis focuses on the segregation of surfactants

in poly(vinyl alcohol) films, which are models for the films used to encapsulate

detergent in unit-dose applications. The aim is to isolate and understand fac-

tors responsible for segregation observed in a range of model systems, that can

ultimately be used to predict and control this behaviour.

A diverse range of surfactant segregation behaviours has been identified. The

anionic surfactant, SDS, segregates extensively from PVA, with plasticisation by

glycerol enhancing the surface excess, and enabling the formation of thermody-

namically stable, stacked structures on the film surface. However, the behaviour

of zwitterionic amine oxide surfactants in PVA has been shown to reflect their

behaviour in water, forming a single monolayer on the surface.

By considering the interactions of these film components in solution using

surface tensiometry and by determining their phase behaviour, the roles of sur-

face energy and compatibility in segregation have been assessed. A significant

synergistic effect was observed in model film systems comprising two surfactants,

and these observations could also largely be explained by surface energy and

compatibility arguments.

Assessing the effect of temperature on the distribution of film components has

revealed some further migration, or surfactant restructuring after spin-coating.

The properties of the polymer matrix is particularly important for this, partic-

ularly as the incorporation of plasticisers has been shown to have a significant

impact on the distribution of surfactant in films. This has been addressed by

exploring the effect of plasticisation and resin degree of hydrolysis on the free

volume properties, which are likely to be linked to additive mobility.
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Chapter 1

Overview

The segregation and migration of small molecules in multi-component soft matter

systems is of huge commercial importance in a wide range of systems, including

tackifiers in adhesives and plasticisers in packaging. One area where this is par-

ticularly relevant is in the possible migration and segregation of components in

films used for unit-dose laundry detergents. The encapsulation of detergents in

PVA films is an area of increasing importance for P&G as there is growing pop-

ularity in this form of detergent. The construction is a PVA-based pouch, often

compartmentalised to prevent components from mixing prior to the dissolution

of the pouch in water. The successful utility of this technology, and the ability to

extend the range of components that may be encapsulated in this way, depends

on achieving an appropriate balance between mechanical strength, lifetime and

solubility of the PVA film.

Films used to construct these unit-dose detergent pouches are ≈70 µm thick,

and contain a wide range of additives including, but not limited to, plasticisers.

One challenge to be addressed relates to the distribution of these components in

the PVA films. A better understanding of the segregation of film additives would

enable this behaviour to be both controlled and exploited. If it can be predicted,

the process by which the additive migrates to the surface will be effective in

design development and additive prescription. This is particularly important to

consider when creating the seals in the pouches, which are formed by wetting

the PVA, partially dissolving the film. When two films are placed together, the

polymer chains will interdiffuse allowing a seal to be formed. Segregation of film

additives could detrimentally affect the sealing ability of the films, which could

ultimately lead to product failure during transport.

This work aims to understand the segregation behaviour of additives in PVA

by characterising their distribution in a number of model systems, in order to

provide results that can ultimately be linked with data from theory and simulation

1



Overview

to predict and control segregation.

Throughout this thesis, a range of surfactants are used as model additives in

the PVA film. Although the unit-dose pouches contain surfactants as detergent

components, it should be noted that in this thesis the surfactants studied do not

represent encapsulated detergent. In Chapter 4 the segregation behaviour of an

anionic surfactant, SDS, will be explored as this is a model for anionic surfactants

commonly found in laundry detergents.

Furthermore, this work aims to better understand and isolate the factors re-

sponsible for migration of different additives. Therefore, in Chapter 5, solution

state studies of film components will be used to identify factors involved in sur-

factant segregation. Building on these findings, in Chapter 6 the segregation

behaviour of amine oxide surfactants in PVA films will be presented and con-

sidered, alongside their solution behaviour. In this way, insights gained from

additive properties in solution, and the relationship to segregation and wetting

behaviour from Chapter 5 can be tested.

As well as attempting to obtain a clearer picture of factors responsible for

segregation, it is of interest to begin bridging the gap between the simplest model

film systems and the complex films used in industrial formulations. To this

end, Chapters 7 and 8 will begin to explore how these insights may translate to

industrial systems. In Chapter 7 the effect of heating spin-cast films is explored.

In Chapter 8 the presence of multiple segregating species on additive segregation

will be considered in order to add a level of complexity to the model systems, by

considering the interactions between components.

A different approach to understanding the segregation and migration of small

molecules in PVA films will be taken in Chapter 9, where positron annihilation

lifetime spectroscopy will be used to understand the effect of matrix properties,

including additive incorporation and degree of hydrolysis, on the microscopic free

volume properties of the polymer.

Finally, the results from each of these chapters will be summarised in Chapter

10 to provide an overview of the impact of additives and storage conditions on

their behaviour in PVA films, and suggestions for the direction of future work

directions will be presented.

2



Chapter 2

Introduction

2.1 Poly(Vinyl Alcohol)

Poly(vinyl alcohol) (PVA) is a synthetic, water-soluble, semi-crystalline polymer.

It is transparent, has good mechanical properties and excellent capability to

form films.1 One of its main applications is in food packaging, which makes

use of its barrier properties to oxygen and carbon dioxide.2 Its water solubility,

high hydrophilicity and good biocompatibility have also led to a wide range of

biomedical applications, with PVA having been shown to be suitable for tissue

mimicking, cell culturing and vascular implanting.3–6 PVA is valued for its non-

toxicity and biodegradability, which contribute to its low overall environmental

impact. These properties, together with its resistance to organic solvents, have

led to its increased use in the laundry industry, particularly as a film for packaging

unit-dose detergents.

Figure 2.1: Structure of poly(vinyl alcohol).

The structure of PVA is shown in Fig. 2.1. The monomer, vinyl alcohol, does

not exist in a stable form, instead rearranging into its tautomer, acetaldehyde.

PVA is therefore prepared from the hydrolysis of poly(vinyl acetate) (PVAc) via

saponification. The characteristics of the PVA consequently depend on its degree

of hydrolysis (DH), which dictates the percentage of hydroxyl groups present

on the backbone. This is particularly significant for the water solubility of the

polymer, with solubility lower with decreasing DH. A lower DH (and higher

proportion of residual acetate groups) also leads to a lower degree of hydrogen

bonding, reducing stereoregularity and decreasing the degree of crystallinity.7,8
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It is important to note that hydrolysis via saponification tends to lead to a

blocky character because the presence of a few -OH groups on the polymer catal-

yses the hydrolysis reaction at adjacent sites in preference to random positions

on the backbone. This blockiness is important in determining the properties of

the polymer, as well as the density of acetate groups.9

The properties of the polymer, including its water solubility, are also depen-

dent on the degree of polymerisation (DP), with lower molecular weight chains

exhibiting greater water solubility. The increase in tensile strength with molecu-

lar weight means that PVA must be tailored to the application by altering these

parameters.

2.1.1 Properties of PVA

PVA undergoes extensive hydrogen bonding between the hydroxyl groups of the

repeat units. This high capability for hydrogen bonding means that PVA is

somewhat crystalline at ambient temperatures. Despite being atactic, which

would normally lead to highly amorphous structures, the very small size of the

hydroxyl side groups permits the dense packing of polymer chains into crystalline

regions. PVA resins with a high DH exhibit greater crystallinity than resins with

lower DH as the residual acetate groups lower the stereoregularity of the polymer

chains, disrupting both intra- and intermolecular hydrogen bonding.

As a semi-crystalline polymer, PVA has a glass transition temperature (Tg),

which is the temperature above which there is sufficient free volume for significant

polymer chain motion in the amorphous regions, and the material transitions

from a glassy to rubbery state. This is distinct from the melting point, which is

the temperature at which the crystalline regions of the polymer flow. The glass

transition temperature is dependent on the degree of hydrolysis of the polymer,

and has been reported to be 85 ◦C for PVA with a DH of 87-89 % and 58 ◦C for

almost fully hydrolysed PVA.10 However, the glass transition of PVA is difficult

to measure calorimetrically.

2.1.2 Plasticisation

Additives are often required to give favourable properties to PVA. In particu-

lar, the addition of a plasticiser can be required to overcome its brittleness and

improve processability and flexibility for many industrial applications, including

unit-dose detergents. Plasticisers are involatile, low molecular weight molecules

that, when blended with polymers, can modify the polymer matrix, increasing the

free volume and chain mobility of the polymer by increasing the intermolecular
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spacing between the chains. As a result of the decrease in strength of intermolec-

ular forces, the density of the polymer decreases, improving the extensibility and

flexibility of the material, and lowering the glass transition temperature.11

The theory of free volume was initially developed by Flory and Fox12 to ex-

plain the plasticising effect of chain ends, observed as a reduction in the glass tran-

sition temperature of polymers upon decreasing molecular weight. The Flory-Fox

equation links the number average molecular weight, Mn, to the glass transition

temperature,

Tg = Tg∞ −
K

Mn

(2.1)

where Tg∞ is the glass transition temperature at a theoretical limit of infinite

molecular weight and K is an empirical parameter linked to the free volume.

This was explained in terms of the greater free volume of chain ends: decreasing

the molecular weight leads to an increase in concentration of chain ends, and thus

total free volume, lowering the glass transition temperature.

The most frequently studied plasticisers are polyols, and mono-, di- and

oligosaccharides.13 The effects of composition, shape, polarity and chain length

and number of functional groups on the plasticising ability of additives have

been extensively investigated.14–17 In general, additives with a small molecular

size, high polarity and a greater number of polar groups tend to have a greater

plasticising effect on a polymer. A greater distance between the polar groups in

the additive also tends to correspond to a greater plasticising effect. However,

the plasticiser selection for a given polymer system is based on the compatibil-

ity of the plasticiser with the host polymer, the amount necessary to achieve

plasticisation, and the desired physical properties of the film.13

A variety of environmentally-benign plasticisers have been incorporated into

PVA, including glycerol,11 sorbitol18 and propylene glycol19 in order to improve

the extensibility and flexibility of the polymer, whilst maintaining the desirable

mechanical properties. Glycerol is one of the most widely used plasticisers, with

its incorporation having been shown to decrease the hardness and elastic modulus

of PVA films. Glycerol has been shown to increase the free volume of poly(vinyl

alcohol), occupying the regions between polymer chains and disrupting the hydro-

gen bonding between them. The resultant decrease in Tg demonstrates the plas-

ticising behaviour of this molecule.20 When plasticised with glycerol, the melting

point of PVA also decreases by a value proportional to the glycerol content.11
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2.1.3 Solution State Properties of PVA

Throughout this project, the properties of PVA in solution are important, as they

are likely to be relevant to the formation of spin-cast films. PVA can self-associate

in solution into “pseudo-micelles”. When DH is close to 100 %, this occurs as

a result of the formation of intermolecular paracrystalline domains and/or by

hydrogen bonding. Wang et al.21 reported that the size of these colloidal particles

is in the range of 6-23 nm. Polymers with a lower degree of hydrolysis (and

therefore with lower crystallinity and a lesser ability to hydrogen bond) have also

been shown to self-associate. Typically this occurs in PVA with a DH of 70-80

mol% as a result of hydrophobic interactions between vinyl acetate sequences.

However, in contrast to the observation of Wang et al.,21 Atanase and Riess22

and Budhlall et al.23 found that PVA chains with a DH between 80 and 90 %

did not self-associate.

Thermoresponsive properties of PVA

Solutions of water-soluble polymers can show thermoresponsive properties. There

are two types of behaviour that can be observed: the lower critical solution tem-

perature (LCST), where above a certain temperature the system will demix and

the polymer will precipitate, and the upper critical solution temperature (UCST)

where the polymer and water will mix only above a specific temperature. The

LCST is also referred to as lower critical demixing, and is the consequence of a bal-

ance of effects between the solvent and the hydrophilic and hydrophobic regions

of the polymer molecule, with the hydrophobic effect (an entropic structuring

effect) becoming more dominant at higher temperatures. Elevation of temper-

ature reduces the hydration of these materials, thereby making the desolvated

molecules aggregate and precipitate.

The thermoresponsive behaviour of PVA was first reported by Nord et al.24,25

who reported that PVAs with a DH of 80-85 % are soluble in cold water but

separate out of solution upon heating, exhibiting a LCST. There have been a

number of subsequent studies, including that of Shiomi et al.26 where it was

reported that some fractionated, butanoylated PVA resins displayed both LCST

and UCST thermal transitions. For example, a resin with a degree of degree of

butanoylation of 7.4 mol% exhibited a LCST of 25.1 ◦C and an UCST of 135 ◦C.

The effects of a number of factors on the thermoresponsive behaviour of PVA

have been studied. Furusawa et al.27 reported that the LCST decreased with de-

gree of hydrolysis but increased with degree of polymerisation. This property can

be used to fractionate the polymer according to the critical temperature of phase

separation. Crowther et al.28 also studied the effect of molecular weight and
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sequence of acetate functionality on the thermoresponsive behaviour, suggesting

that random regions of hydroxyl/acetate groups contribute less to the driving

force for demixing compared to blockier regions. Congdon et al.9 demonstrated

that the thermoresponsive properties of PVA are highly tunable by selective alka-

noylation; increasing the hydrophobicity (acetyl < propanoyl < butanoyl) of side

groups, or decreasing the density of these side groups along the chain lowers the

LCST.

Surface Properties of PVA Solutions

The surface properties of PVA are important to consider in the frame of this

project, as its surface activity is likely to influence the adsorption of other ad-

ditives in solution-cast films. These properties of PVA solutions have been ex-

tensively studied, primarily using surface tensiometry.29,30 At low concentrations

PVA decreases the surface tension of water. The extent to which surface tension

is reduced is dependent on molecular weight and stereochemistry. Surface tension

has also been shown to decrease with acetate content.29,31

Moll et al.32 investigated the surface structure of PVA solutions in water us-

ing heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spec-

troscopy to probe the air-solution interface in the presence of 0.0625-6 wt.% PVA.

At low concentrations (<1 %) of two different grades of PVA: one with a Mw of

10 000 g mol−1 and DH of 80 %, and one with a Mw of 125 000 g mol−1 and

DH of 98 %, they identified that the interfacial water molecules prefer to ori-

ent themselves with their hydrogen-bonded -OH groups pointing away from the

bulk. They attributed this preferred orientation of the water molecules to the

ongoing hydrolysis of residual acetate groups, which leads to the production of

negatively charged acetate ions with a high surface activity, despite the different

DH of the two polymers. When the polymer concentration in solution is high

(≥1 %), the lower molecular weight PVA completely covers the surface of the

solution. However, the surface is not completely covered by the higher molec-

ular weight PVA, which was still found to contain a relatively high density of

interfacial water molecules. This was proposed to be a result of the formation of

aggregated pores at the interface. It is difficult to ascribe the results uniquely to

either the degree of polymerisation or degree of hydrolysis, due to both parame-

ters being varied simultaneously. Nevertheless, this observation is consistent with

the previous finding by Rošic33 that in solutions of high molecular weight PVA,

although surface tension initially decreases with concentration, beyond a certain

concentration, surface tension rises, with its value at PVA concentration >10 %

similar to that of pure water.
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2.2 Surfactants

In this thesis, the segregation of surfactant additives in PVA is predominantly

explored. These are amphiphilic molecules, consisting of a hydrophobic tail group

and a hydrophilic head group. Their name, derived from “surface-active agent”,

indicates a key property: the ability to adsorb onto interfaces, reducing the sur-

face tension compared to that of pure water. The amphiphilicity of surfactants

enables their use as detergents as the hydrophobic tail associates with oily sub-

stances, such as grease, which reduces their adhesion to the surface and means

they can more be easily removed by mechanical action, and solubilised by water

due to the hydrophilicity of the head group.34

Surfactants can be broadly classified as either anionic, cationic, non-ionic or

zwitterionic, based on the nature of the headgroup. In this thesis, at least one

example of each category of surfactant is studied. The behaviour of each specific

surfactant will be covered more extensively in the relevant chapters.

Surfactants can be characterised by the hydrophilic-lipophilic balance (HLB),

which is the degree to which the surfactant is water-loving or oil-loving. The

calculation of HLB values for non-ionic surfactants was initially described by

Griffin,35,36 and is given by Equation 2.2

HLB = 20 · Mh

M
(2.2)

where Mh is the molecular weight of the hydrophilic section of the molecule

and M is the molecular weight of the entire molecule. The higher the HLB of

the surfactant, the greater the hydrophilicity of the surfactant. A value of 0

therefore corresponds to a completely hydrophobic molecule, and a value of 20

corresponds to a completely hydrophilic molecule. This value can be used to

indicate applications in which a surfactant is likely to be particularly effective.

For example, an effective detergent requires a surfactant with a high HLB.

This approach to characterise surfactants is limited, however, as it cannot be

used to characterise ionic surfactants, and does not work for different chemistries

(e.g. hydrocarbon vs. fluorocarbon tails). Davies37 therefore suggested an al-

ternative method to determine HLB, whereby a value is calculated based on the

chemical groups in the molecule, allowing the hydrophilicity of different groups to

be accounted for. This is done by assigning group numbers to various structural

elements, and combining them using Equation 2.3

HLB =
∑
i

Hi + nL+ 7 (2.3)
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where Hi is the group number of the ith hydrophilic chemical group in the

molecule, L is the group number of the lipophilic groups in the molecule (for

-CH2 and -CH3 L = −0.475), and n is the number of lipophilic groups is the

molecule. Some example group numbers for hydrophilic groups are given in Ta-

ble 2.1.37

Table 2.1: Hydrophilic group numbers (taken from reference 37).

Hydrophilic group Hi
37

-SO4
-Na+ 38.7

N(tertiary amine) 9.4
-OH(free) 1.9

-O- 1.3

Based on Equation 2.3, the HLB of some example surfactants used in this

thesis are reported in Table 2.2, as calculated using the Griffin and Davies meth-

ods (Equations 2.2 and 2.3 respectively). Due to the limited number of reported

group numbers, the Davies method cannot be used calculate the HLB for the

cationic or zwitterionic surfactants studied in this thesis.

Table 2.2: HLB values for surfactants featured in this thesis.

Surfactant HLB (Griffin) HLB (Davies)
SDS 8.3 40

DDAO 5.2 -
DTAO 4.7 -
CTAB 7.7 -
C12E5 11.7 4.9

2.2.1 Surfactant Surface Adsorption and Self-Assembly

Surface adsorption is one of the defining features of surfactants, which results in

the surface tension reduction of a solution. Surface tension (γ) is a result of the

imbalance of intermolecular forces at the air-liquid interface, due to there being

fewer molecules on the air side, and is given by the work (w) required to create

an area, ∆A, of surface (Equation 2.4). It is also equivalent to the force per unit

length required, and is thus expressed in mN m−1.

w = γ∆A (2.4)

Another fundamental property of surfactants is their tendency to aggregate

in solution. One of the main types of associated units are micelles, which consist
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of a core of hydrophobic chains, shielded from contact with water by hydrophilic

head groups. The dominant driving force for micellisation is the entropy gained

when the hydrophobic portion of the molecule is removed from the aqueous en-

vironment. These are known as hydrophobic interactions, and are driven by the

repulsion between the non-polar tail and the surrounding water. The hydrogen

bonding between the water molecules excludes other solutes, giving the non-

polar tails a low solubility and a preference to aggregate with other non-polar

molecules.38,39

Micelles can be spherical, but may also be extended into ellipsoids or rods,

depending on the size of the head group relative to the tail group. A number

of other aggregates can form in solution, including lyotropic liquid crystalline

phases, such as the lamellar, hexagonal and cubic phases. In particular, the

lamellar lyotropic liquid crystal phase is often formed in detergent solutions.34

All of these phases are birefringent and so polarising optical microscopy can be

used to identify the phase type.

The onset of surfactant micellisation usually occurs at a well-defined con-

centration. This is known as the critical micelle concentration (CMC). Each

surfactant has a characteristic CMC at a given temperature and electrolyte con-

centration. Non-ionic surfactants (such as ethoxylated surfactants) tend to have

lower CMCs than the corresponding ionic surfactant of the same chain length, but

increasing the length of the hydrophilic group increases the CMC. The CMC de-

creases with increasing hydrophobic chain length. The valency of the counter-ion

is also important for ionic surfactants; increasing the valency can drastically re-

duce the CMC. The addition of co-solutes, both electrolytes and non-electrolytes

can also significantly impact the CMC.34

The CMC can be identified from the concentration dependence of the surface

tension of surfactant solutions. Upon increasing the concentration (c) of the pure

amphiphile, there is a rapid decrease in surface tension from the surface tension

of pure water. At the CMC, however, the surface tension levels off and becomes

almost independent of concentration. This is because when c > CMC the activity

of the surfactant in solution is almost independent of the concentration.

Surface tension measurements are very sensitive to impurities present in the

surfactant, such as alcohols, which can lead to a pronounced minimum when γ is

plotted against c. This is because the alcohols are also surface active, and bring

about a greater reduction in surface tension than the surfactant alone. At higher

concentrations, however, the surfactant can sequester the alcohol into the micelle

so that surface tension increases to the value of the pure surfactant solution.34

The solubility of ionic surfactants can be very temperature-dependent. Mi-
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celles only form above a certain temperature, which is known as the Krafft point,

where there is a dramatic increase in solubility. Below the CMC, surfactant sol-

ubility is limited by the low solubility of the single molecules. Above the CMC,

however, increasing the temperature leads to a great increase in surfactant solu-

bility as soluble micelles form.34

2.2.1.1 The Gibbs Adsorption Equation

The Gibbs adsorption equation can be used to relate the change in surface tension

of a solvent to the concentration of a solute, such as a surfactant, on the surface.

First, the excess of a species, j, at an interface, σ, between two pure phases,

α and β, (nσj ) is given by

nσj = nj − {nαj + nβj } (2.5)

where nαj and nβj are the amounts of j in each of the pure phases and nj is the

total amount of j. The surface excess of j, Γj, is then defined as the excess per

unit area, A,

Γj =
nσj
A
. (2.6)

The internal energy, U of the total system is given by

U = Uα + Uβ + Uσ (2.7)

where

Uα = TSα − pV α +
∑
j

µjn
α
j and Uβ = TSβ − pV β +

∑
j

µjn
β
j (2.8)

and S is the entropy, T is temperature, p is pressure, V is volume and µ is the

chemical potential. The equation for the internal energy of the interfacial region

is then given by Equation 2.9.

Uσ = TSσ − pV σ + Σjµjn
σ
j (2.9)

For any infinitesimal change, differentiation of Equation 2.9 gives

dUσ = T dSσ + Sσ dT + γ dA+ A d γ +
∑
j

µj dnσj +
∑
j

nσj dµj. (2.10)
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The differential internal energy at the interfacial region is

dUσ = T dSσ + γ dA+
∑
j

µ dnσj . (2.11)

Then, subtracting Equation 2.11 from Equation 2.10 yields the Gibbs adsorption

equation (Equation 2.12), which at constant temperature becomes Equation 2.13.

Sσ dT + A d γ +
∑
j

nσj dµj = 0 (2.12)

d γ = −
σ∑
j

dµj (2.13)

In the case of a surfactant (s) adsorbed to the surface of a solvent (l), this reduces

to

d γ = −Γσl dµl − Γσs dµs (2.14)

and if the position of the surface is chosen that Γσl = 0, this is simplified to

d γ = −Γσs dµs. (2.15)

In the limit of an ideally dilute solution the chemical potential of the surfactant

is

dµs = RT dln c (2.16)

where c is the concentration of the surfactant. The surface excess is therefore

Γs = − 1

RT

( ∂γ

∂ ln c

)
T
. (2.17)

In the case of an ionic 1:1 surfactant, both surfactant and counterion adsorb

at the interface.34 Therefore Equation 2.17 should be modified by a factor of 2

to give Equation 2.18.

Γs = − 1

2RT

( ∂γ

∂ ln c

)
T

(2.18)

2.2.2 Polymer-Surfactant Interactions

Understanding the nature of the interactions of PVA with different types of

surfactants (anionic, cationic, non-ionic) in solution would be beneficial in ra-

tionalising the segregation behaviour of each system. As Quijada-Garrido et

al.40 demonstrated that morphological factors including the degree of hydrogen

bonding dictate the diffusion behaviour of small molecules in polymer films, an
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awareness of interactions in the film is vital. The importance of the polymer-

surfactant interactions on the properties of polymer films has also been illustrated

by Edler et al.,41,42 who demonstrated the spontaneous formation of films at the

air-water interface from solutions of surfactants and neutral polymers including

poly(ethyleneimine) (PEI) and polyacrylamide. The self-assembled films are an

unusual class of aggregate, found to contain an ordered micelle phase encapsu-

lated in a polymer gel matrix.

The importance of the intermolecular interactions and, in particular, the de-

gree of surfactant self-association in the film was also highlighted by Wakabayashi

et al.43,44 who showed that differences in the diffusion behaviour of erucamide and

behenamide in a polypropylene film could be attributed to the self-association

of behenamide. An understanding of the degree of surfactant association in the

bulk polymer could therefore be helpful in predicting behaviour in the spin-cast

films.

As the films studied throughout this thesis are prepared from aqueous so-

lution, the interactions between components in water are particularly relevant.

Polymer-surfactant interactions in solution have been extensively studied and re-

viewed, by virtue of their extensive range of applications including detergents

and personal care products.45–48

Interactions between polymers and surfactants give rise of the formation of

association structures, modifying both the bulk solution and interfacial prop-

erties. The surfactant and polymer generally associate cooperatively and the

behaviour of surfactant/polymer mixtures can be very different from the individ-

ual polymer or surfactant solutions.49 An extensive range of techniques has been

used to investigate the aggregation and interactions in solution, including surface

tensiometry, conductivity, viscometry, laser light scattering, neutron scattering,

NMR, size exclusion chromatography and fluorescence.

The driving force for the polymer-surfactant interaction is often the reduction

of the area of contact between hydrocarbon tails and water. The interactions are

therefore controlled by a balance between hydrophobic and electrostatic effects.

Polymer-surfactant mixtures can be classified as strongly or weakly interacting;

weakly interacting mixtures usually comprise a neutral polymer and an ionic sur-

factant, with strongly interacting mixtures usually comprising a polyelectrolyte

and a surfactant of the opposite charge. Weakly interacting systems will be

primarily considered here.

The association between ionic micelles and polymers usually stabilises the mi-

celles, leading to a reduced value for the CMC. The concentration above which the

surfactant forms a complex with the polymer is known as the critical aggregation
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concentration (CAC). The CAC is usually lower than the CMC, and the strength

of the interaction between polymers and surfactants can be semi-quantitatively

characterised by the CAC/CMC ratio.45,50

Surface tensiometry is the main tool for the study of the air/solution inter-

face. The surface tension behaviour of weakly interacting polymer-surfactant

systems (containing an uncharged polymer) was investigated by Jones51 and

Lange,52,53 who studied systems containing sodium dodecyl sulfate (SDS) and ei-

ther polyethylene oxide (PEO) or poly(vinylpyrrolidone) (PVP). In the presence

of polymer, there are two identifiable transition points, conventionally referred

to as T1 and T2. This behaviour can be accounted for by variations taking place

in the bulk phase. The first break point (T1) is the CAC. The second (T2) is the

point at which the bulk polymer is saturated with surfactant micelles, although

this point is generally less well defined.47 This is illustrated in Fig. 2.2. It has

been demonstrated that T1 is only weakly dependent on the concentration of

polymer, whereas T2 is directly proportional to the concentration of polymer.49

Figure 2.2: Effect of PVP concentration on the surface tension of aqueous SDS
solutions, indicating T1 and T2. Reproduced with permission from reference 52.

As T1 is normally lower than the CMC of surfactant in the absence of polymer,

this shows that aggregation with the polymer is more favourable than normal

micellisation. At concentrations above T2, there is a further lowering of the

surface tension due to the presence of free surfactant molecules in solution. After

the CMC is reached, however, the surface tension is constant. It should be noted

that surface tension data can be difficult to interpret if the polymer is also surface

active.

The interaction of a water-soluble polymer with a surfactant in solution can be

described using one of three behavioural types. One case is where surfactant mi-
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cellisation occurs prior to aggregation with the polymer. This binding approach

is preferred for polymers with hydrophobic groups. Another case is where surfac-

tant binding to the polymer occurs below the CMC, with the polymer becoming

saturated with surfactant before micellisation. This behaviour was previously

described for SDS and PVP. The surfactant molecules aggregate on the polymer

in the form of bound micelles, with each polymer chain linking several micelles to

form a “pearl necklace” structure. This model was first proposed by Shirahama

et al.50 and is preferred for polymers with hydrophilic groups. Finally, more

complex behaviour can also exist between these two extremes.54

The interaction of neutral polymers with surfactants can exhibit any of the

types of behaviours discussed. The strength of the interaction is strongly depen-

dent on the surfactant chain length and charge, as well as on the presence of salts

in the solution. It has been established that there is also a significant influence

exerted by the hydrophobicity of the polymer. This has been highlighted by the

differences in the binding of cationic surfactants to poly(propylene oxide) (rela-

tively strong) and poly(ethylene oxide) (small to negligible).55 This is thought to

be a result of the stabilisation of the interface between the hydrophobic core of

the micelle and water.

Neutron reflectivity (NR) is another technique that has been employed to

probe interactions between polymers and surfactants in solution, and identify

the structure of adsorbed complexes at the air-water interface. For example, NR

and surface tension were used by Penfold et al. to characterise the adsorption of a

mixture of the polyelectrolyte polyethylene imine (PEI) and SDS.56 From this, the

authors identified that SDS adsorption was strongly dependent on the degree of

branching of the polymer. SDS adsorption was also found to be affected by charge,

with the most surfactant adsorption to the polymer observed at high pH when

the polymer is essentially uncharged. By using NR to determine the interfacial

composition profile of a mixture comprising SDS and poly(2-(dimethylamino)

ethyl methacrylate), a weak polyelectrolyte, Moglianetti et al.57 revealed the

complexation of SDS to polymers occupying an extended conformation on the

surface, with a stoichiometry that varies with SDS concentration. Furthermore,

at high SDS concentration (0.1 and 1 mM at pH 3 and 9 respectively), multilayer

structures could be identified on the surface using this technique.

The behaviour of uncharged polymers with anionic and cationic surfactants

has been shown to be very different; cationic surfactants generally show very little

affinity for neutral water-soluble polymers, whereas anionic surfactants tend to

bind very strongly to them. These large differences in interaction strengths have

been linked to the size of the hydrated head group of the surfactant, which is
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generally bulkier for cationic and non-ionic surfactants. However, most studies

have dealt with systems containing anionic surfactants as a result of the stronger

interactions generally observed.50–54,58,59

Phase Behaviour

Characterising the phase behaviour of polymer-surfactant systems could be useful

in providing insight into the effect of different parameters, including surfactant

and plasticiser concentration, on the behaviour of additives in PVA films prepared

from aqueous solutions. There have been a number of different approaches to

determine phase behaviour. Cloud point measurements are one frequently used

experimental tool. Some uncharged polymers (and surfactants) exhibit a lower

critical solution temperature (LCST), above which phase separation occurs as the

hydrophobic effect becomes more dominant. By taking cloud point measurements

Liu et al.60 constructed binodal curves, representing the border between the one

phase and the two-phase regions, for systems consisting of aqueous solutions of

polyethylene glycol and two nonionic surfactants: polyoxyethylene octyl phenyl

ether (Triton X-100) and polyoxyethylene sorbitan monooleate (Tween 80). The

authors determined the effect of temperature on the binodal curves, which can

be seen in Fig. 2.3, finding that for both the systems, solubility decreases with

increasing temperature, with the non-ionic surfactants dramatically reducing the

solubility of the polymer. This highlights the sensitivity of the cloud point to

interactions in the system, and shows the value of cloud point measurements to

identify relative strengths of interactions in polymer-surfactant solutions.

Figure 2.3: Effect of temperature on binodal curves of polymer/surfactant systems.
Open diamonds, 273.15 K; filled circles, 293.15 K; open triangles, 313.15 K. Reproduced
with permission from reference 60.
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Interactions of Surfactants with PVA

Whilst the interactions of surfactants with a wide range of water-soluble polymers

have been investigated, with studies focussing heavily on poly(vinyl pyrrolidone)

and poly(ethylene oxide), the interactions of surfactants with PVA are of partic-

ular relevance to this thesis.

It has been demonstrated that the PVA aggregates present in aqueous solution

known as “pseudo-micelles”, can be disrupted by anionic surfactants. SDS is the

most extensively studied surfactant, and its interactions with PVA of a range of

DH have been investigated by a number of authors.22,50,59,61–65

The degree of hydrolysis has a significant effect on the intermolecular in-

teractions of PVA in solution and therefore also on its interaction with surfac-

tants. This was first explored by Arai and Horin,61 who studied the nature of the

polymer-SDS complex as a function of the hydrophobic character of the polymer,

finding that the degree of SDS adsorption in solution increased with polymer

hydrophobicity.

Lewis and Robinson59 used viscometry to show that partially hydrolysed PVA

forms polyelectrolyte complexes with SDS as a result of hydrophobic interactions

between the polymer and the surfactant tails. These hydrophobic interactions

disrupt the intermolecular interactions between polymer chains, leading to disso-

ciation of the “pseudo-micelles”. At very low SDS concentration the surfactant

begins bind to the vinyl acetate sequences, causing disaggregation of the poly-

mer assemblies. At surfactant concentrations greater than 5 wt.% and polymer

concentrations of 0.1 wt.%, no PVA aggregates were found to remain. Atanase

and Reiss22 also observed that PVA in solution could be disaggregated by SDS,

finding that interaction with the surfactants has a strong influence on the LCST

of PVAs over a range of DH. The cloud point of each polymer increased with

SDS concentration, although a smaller effect was observed for polymers with

a greater degree of hydrolysis (80-90 %), where the lower concentration of hy-

drophobic groups means that the polymer is not in the form of “pseudo-micelles”

and therefore not aggregated in the absence of SDS.

Although the interactions between PVA and anionic surfactants have been

more extensively studied, Shirahama and Nagao63 investigated the effect of DH

on the interactions between PVA and the cationic surfactant tetradecylpyridinium

bromide, finding that increasing the hydrophobicity of the polymer increases its

binding tendency in aqueous solution. By determining binding isotherms, they

showed that the binding constant does not change significantly with the degree of

hydrolysis, whereas the binding saturation increases with acetyl content. This was

interpreted in terms of the acetyl groups acting together with the vinyl backbone
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to afford hydrophobic regions into which the surfactant is partitioned. From this,

they concluded that the increased number of sites causes the binding tendency to

increase with hydrophobicity, with the binding affinity remaining constant. The

authors calculated that approximately three acetyl groups in the polymer are

aggregated to provide a hydrophobic binding site for each surfactant molecule.

The importance of the hydrophobic interactions was also illustrated by Damas

et al.,64 who studied the interaction of PVA (98 % DH) with a number of short

chain, non-ionic polyol surfactants using dynamic light scattering, tensiometry

and viscometry in order to explore the effect of the polyol structure. In these

weakly interacting systems, despite the presence of hydroxyl groups in both the

surfactant and polymer, the -CH2OH groups of the surfactants were found to have

an unfavourable contribution to the polymer-surfactant interaction, whereas the

-CH2 groups interact favourably with the polymer.

In order to identify factors that influence the degree of binding, Shirahama et

al.62 studied the binding of four cationic surfactants (tetradecylpyridinium chlo-

ride and bromide, dodecyl pyridinium chloride and dodecylammonium chloride)

to PVA with a degree of hydrolysis of 90 %. Although only a narrow range of

alkyl chains were studied, the group found that the length of the alkyl chain

plays only a minor role in the binding of these cationic surfactants. This is in-

teresting given the importance of the hydrophobic interactions in the binding

of both nonionic and anionic surfactants,64 and the significance of the degree of

hydrophobicity of the polymer.61 However, the polar headgroup was found to

contribute significantly to the binding affinity.

Tadros65 used surface tensiometry, viscometry and conductivity to provide

evidence of interaction between between PVA and the cationic surfactant, cetyl

trimethyl ammonium bromide (CTAB). The mixed solution showed behaviour

typical of a polyelectrolyte. As PVA in uncharged, this therefore suggests the

formation of a polymer-surfactant “complex” or polymer-nucleated micelle. Upon

increasing the polymer concentration, the CMC of CTAB became ill-defined, with

the transition disappearing for PVA concentrations greater than 0.1 wt.%. This

was attributed to the adsorption of all surfactant molecules onto the polymer

chains.

2.3 Molecular Migration and Segregation

There are many examples where additives spontaneously migrate to surfaces.

The migration of low molecular weight components to interfaces in polymer films

can be part of an unwanted degradation mechanism; in most cases, the loss of
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the additive to the surface and further loss by evaporation, leaching or blooming

(where the additive precipitates on the surface) can cause failure of the material.

This is particularly relevant in the blooming of small molecule additives such as

plasticisers and antioxidants in polymers, which is significant for food packaging

applications and medical devices.66–68

For the purposes of this thesis, it is important to distinguish between migra-

tion and segregation. Here, segregation will refer to the separation of components

into regions enriched in respective components, where at least one region is at a

surface or interface. Migration, on the other, hand will refer specifically to the

movement of molecules, and has a kinetic consideration. This may indeed result

in segregation, although this is not necessarily the case.

This thesis will focus predominantly on the segregation and migration of sur-

factant additives in PVA films. Despite the segregation of surfactants to solution-

air interfaces having received much attention, the case where the solvent is re-

placed by a solid polymer is relatively unexplored.

Although the case of migration and segregation in polymer blends, block

copolymers or end-functionalised polymers has been extensively studied69,70 this

will not be discussed in depth. The case of the migration of small additive

molecules, including surfactants, has been much less extensively studied, and will

be covered in the following section.

2.3.1 Surfactant Segregation in Polymers

It is known that certain surfactants incorporated during polymer fabrication lo-

calise at the surface, altering the surface structure and properties. These are

most commonly surface active block copolymers or well-defined graft copolymers.

Whilst these high molecular weight additives are removed less easily from the sur-

face than lower molecular weight surfactants, they have the disadvantage of slow

diffusion through the bulk material, which is undesirable when the additive is

designed to modify the surface.71

Melt blending of surface-segregating additives is one approach used for surface

modification, whereby the host polymer is blended with an additive and extruded

into a fibre or a film, with the additive allowed to bloom to the surface. This

method furnishes the product with desirable surface properties (such as hydropho-

bicity) using a low total additive concentration, and causing little alteration of the

bulk properties. Indeed, Datla et al.72 modified the surface of polypropylene films

by melt-blending with stearyl alcohol ethoxylated additives. In all samples, the

concentrations of the additives were found to be significantly higher at the surface

19



Introduction

than in the bulk. Similarly, Zhu and Hirt investigated the migration of additives,

including polyethylene glycol and hydroxyl-terminated four-arm polyethylene ox-

ide, as a means to increase the hydrophilicity of polypropylene surfaces, finding

greater concentrations of all additives in the near-surface region.73

Torstensson et al.71 modified the surface of PMMA and a UV-curable acrylic

lacquer using small amounts of polymerisable, monomeric surfactants. By using

a low molecular weight surfactant, the additive diffused rapidly through the bulk

material to the surface. However, as the monomers are polymerisable, they were

subsequently made to react in order to chemically bond to the surface of the

polymer in order to prevent additive loss.

2.3.1.1 Surfactant Distribution in Latex Films

One area in which surfactant distribution in polymer films has been extensively

studied is latex films. Latexes (or latices) are colloidal dispersions of polymeric

particles in water from which polymeric films can be obtained by coalescence

of the particles. The resultant structure of the films is therefore different to

that of a film produced from polymer in solution as it can retain the memory of

the particular structure of the polymer in the latex. One specific class of these

materials is pressure sensitive adhesives (PSAs). A PSA is an adhesive capable

of bonding to most material surfaces through the application of light pressure.

Surfactants are important in these systems as they ensure the colloidal stability

of the dispersions during synthesis, enabling the generation of high-solids latices.

Surfactants are also known to affect the ordering and deformation of the particles,

as well as the interdiffusion of the polymer chains.74

The film forming process can be divided into stages. First, water evaporates

until the particles come into contact and densely pack together. Second, the

polymer particles are deformed as the drying proceeds. Finally, the boundaries

between particles disappear as they coalesce, and the polymers comprising adja-

cent particles interdiffuse.75

The final distribution of the surfactants is a topic of interest. These molecules

are adsorbed to the surface of the latex particles in solution, and are capable of

migrating during film formation, which leads to their inhomogeneous distribu-

tion throughout the dry film. The presence and distribution of these surfactants

is known to affect the final properties of the latex films; for example, it is be-

lieved that their heterogeneous distribution due to migration in a PSA film can

result in poor adhesive performance and water resistance.74 Although, the initial

conditions for the film forming process are very different in films prepared from

polymer solutions rather than suspensions of colloidal particles, the driving forces
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responsible for observed surfactant distribution in latex films are important to

consider in this project.

The discussion over the fate of surfactants in latex films began in 1936 when

Wagner and Fischer suggested that the polymer and surfactant could form two

interpenetrating networks.76 The distribution of surfactants in these films has

since been extensively experimentally investigated using a range of techniques in-

cluding Rutherford backscattering,74,77,78 confocal Raman spectroscopy,79 atomic

force microscopy80 and attenuated total reflectance (ATR) Fourier transform

infra-red spectroscopy (FTIR).81,82 However, as these techniques do not provide

information about the size and morphology of surfactant aggregates, a number

of higher resolution techniques including small angle X-ray scattering75,83,84 and

small angle neutron scattering85,86 have been more recently employed to provide

representative information about the whole film.

The surfactant distribution is affected by a huge range of factors including the

chemical functionality of polymer, nature of the surfactant, substrate and ageing

conditions. Depending on the compatibility of the polymer and surfactant, there

have been three main possibilities suggested: (1) dissolution of the surfactant

in the polymer, (2) phase separation of the surfactant from the polymer and

migration of the surfactant to interfaces, and (3) the surfactant remaining at the

interfaces between particles.

Much of the work on latex systems in the 1980s and 1990s was devoted to

investigating the surfactant at the air and substrate interfaces. In particular Zhao

et al.,81,87 showed that surface enrichment was dependent on the nature of the

surfactant/polymer couple and a function of the initial surfactant concentration in

the latex. From the study of anionic surfactants, Zhao et al.88 also first provided

a mechanism for the surfactant transport in latexes. They reported that it is

the tendency of the surfactant to reduce the interfacial energy that drives it to

the two interfaces, with surfactant-polymer incompatibility providing the driving

force for long-time migration. Their proposed mechanism involves the water flux

carrying the non-adsorbed surfactant to the film-air interface, which results in

the more pronounced enrichment of surfactant at this interface.

These arguments have subsequently been employed to explain surfactant seg-

regation in other systems. The role of interfacial energy in surfactant segregation

to the film-air and film-substrate interfaces was confirmed by Evanson et al.,89,90

who demonstrated that greater surface enrichment of surfactants at the substrate

interface could be induced when there is a high interfacial energy, providing the

impetus for adsorption and thus segregation.

The subject of surfactant-polymer compatibility has also been addressed by
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Evanson et al.89,90 and by Zhao et al.88 Evanson et al.90 showed that better com-

patibility between nonionic surfactants and an ethyl acrylate/methyl methacry-

late (EA/MMA) latex resulted in a lower degree of interfacial surfactant segrega-

tion. Zhao et al.88 addressed the role of incompatibility of styrene and the anionic

surfactant sodium dioctylsulfosuccinate (SDOSS) on the observed stratifications

in films comprising these components, and demonstrated that surfactant segrega-

tion could be controlled by adjusting the binding isotherm of the latex surfactant

system.91,92

Kientz and Holl82 studied the evolution of the distribution of a wide range

of surfactants in poly(2- ethylhexyl methacrylate) latex films. In this case, these

systems were incompatible, and thus there was little dissolution of the surfactant

into the polymer. They showed that the surfactant distribution was established

during the drying period, with the incompatibility of the surfactant and the

polymeric medium allowing only a slow evolution of structure in the dry film.

This observation was later corroborated by Belaroui et al.79

Kientz and Holl82 listed three factors that can determine surfactant distri-

bution in latexes: the initial surfactant distribution, the surfactant desorption

during the drying of the film, and the mobility of the surfactants after desorp-

tion. Based on the latter two factors, the authors stressed the importance of

polymer-surfactant interactions in understanding surfactant distribution.82 Al-

though Kientz and Holl argued that, due to its substantially lower surface area,

there is little surfactant on the air-water interface compared to the particle-water

interface, Tzitzinou et al.77 proposed an alternative mechanism for their observed

enrichment of surfactant at the surface of acrylic latex films, whereby the surfac-

tant at the air-water interface adsorbs onto particles as the drying front moves

as water evaporates.

Gundbala et al.74 proposed a model to predict the distribution of surfac-

tant in latex coatings established during the solvent evaporation stage. They

showed that an adsorption isotherm (which determines the amount of surfactant

adsorbed onto the particles and the amount of surfactant present in the bulk

solvent at equilibrium for a given surfactant concentration) and the diffusion of

the surfactant control the surfactant distribution in the final film.

In this model, the authors used a Langmuir expression for the adsorption

isotherm to give the concentration of surfactant on the particle surface, Γ =

Γ∞CS/(A+CS), where Γ∞ is the maximum surface adsorption onto the particles,

A is the concentration at which half the maximum surface adsorption occurs, and

CS is the surfactant concentration in the bulk.

The authors then used transport equations to account for diffusion of the
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surfactant. Their model also uses the Peclet number, Pes, of the surfactant,

defined as Pes = HĖ/DS, where H is the film thickness, Ė is the evaporation

rate and DS is the diffusion coefficient of the surfactant. The Peclet number

determines the ability of the surfactant on the surface to redistribute itself into the

bulk solution. Using these contributions, alongside the particle volume fraction

and the close packed volume fraction, the authors were able to determine CS and

Γ for each distance from the substrate.

This model always predicts a surface excess at the top surface, but the mag-

nitudes of the isotherm parameters determine whether the surfactant would be

expected to be enriched or depleted at the substrate. This model was found to

agree qualitatively with the distribution of the cationic surfactant CTAB, and the

nonionic surfactant Triton X-100 in a styrene-butyl acrylate copolymer latex de-

termined by ATR FTIR spectroscopy. This model also adequately predicted the

near-surface concentrations of a number of surfactants (sodium dodecyl sulfate

(SDS), lithium dodecyl sulfate (LiDS) and sodium triflate (ST)) in poly(styrene-

co-butyl acrylate) measured using Rutherford Backscattering.78 However, the

near surface concentrations of LiDS and SDS were somewhat lower than that

predicted, and the model could not adequately predict the distribution of sodium

octyl sulfate. In the latter case, a surfactant concentration close to 0 in the

bulk film was observed, whereas a much higher surfactant bulk surfactant con-

centration was predicted. This discrepancy was suggested to be caused by large

accumulation of the surfactant at the film air-interface, and thus depletion of the

bulk concentration.

2.3.2 Factors Affecting Segregation and Migration

In order to rationalise the segregation of some additives to the film surface, the

driving forces for segregation should be considered in greater depth. The following

section will cover surface energy, entropy and compatibility as potential driving

forces for segregation and migration.

2.3.2.1 Role of Additive Surface Energy

The differences in surface energy between the polymer matrix and additive will

first be considered. The component with the lowest surface energy should be

enriched on the surface as this decreases the overall free energy of the system.

The greater the difference in surface tension, the greater the reduction in the free

energy of the system upon segregation (∆F ∼ ∆γ). The selective migration of

one component to the surface is usually driven by this reduction in the surface
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energy, F , of the system at interface70 and is apparent from the Gibbs equation

in Section 2.2.1.1.

This concept has explained the selective enrichment of one component of a

block copolymer in a number of systems, and the surface enrichment of deuterated

polymer in a blend with hydrogenated polymer (deuterated analogues have a

slightly lower surface energy).93 Surface energy gradients have indeed been used

to functionalise polymer surfaces by the migration of a copolymer additive within

the matrix.94 The surface energy induced segregation of copolymer additives, as

well as the enrichment of end groups or one block of a block copolymer, has

been extensively reported, characterised and utilised. For example, incorporating

surface active perfluoroalkyl groups to polymers has been extensively used as a

surface modification strategy.69,95–98 Lee and Archer94 reported that the large

difference in the surface tension of components was responsible for the segregation

of polystyrene-b-poly(dimethylsiloxane) additives in polystyrene hosts. However,

this chemical dissimilarity is not, in fact, necessary for surface energy driven

segregation, as the surface tension of a homopolymer follows a simple scaling

relationship with molecular weight,

γ = γ∞ − k0/(Mn)α

where γ∞ is the surface tension in the limit of infinite molecular weight, k0 is

a constant that can be positive, negative or zero, and α reflects the interaction

strength between the end groups of the polymer chain and the surface; for repul-

sive interactions α ≈ 1 and for attractive interactions α ≈ 0.5. This means that

for a polymer where k0 is positive, surface tension should increase with increasing

molecular weight.

Although migration in polymer blends will not be considered in detail, the

migration of other additives has been used as an approach to functionalise poly-

mer surfaces. For example, by functionalising fullerene (C60), with perfluo-

roalkyl groups, Chen and McCarthy99 induced surface activity of the additive

in a polystyrene matrix.

The role of interfacial tension on additive migration has also been treated the-

oretically. It is clear that the case of the migration of small molecules to interfaces

has been much less extensively considered than the migration of minor-component

polymers in blends,100,101 which are of less relevance to the work contained in this

thesis. However, the migration of plasticisers is one area that has attracted par-

ticular attention. This is largely due to the implications of leaching packaging

additives, and the resulting detrimental effects on the mechanical properties of

the polymer. The weak interactions between the plasticiser and host matrix gives
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these molecules a tendency to migrate, and surface and interfacial tension can be

used to interpret these migration phenomena.

Zanjanijam et al.102 studied the migration of plasticiser in a polymer matrix

during processing. In this case, localisation of the plasticiser to the interface of

two polymers in a phase-separated blend, rather than the polymer-air interface

was considered. The authors calculated the interfacial tension values of each

components in a plasticised blend of poly(vinyl butyral) (PVB) and polypropylene

(PP) using the Parachor method (Equation 2.19),103 which is used to estimate

surface tensions using a sum of atomic and group contributions, Ps, and the molar

volume per structural unit, V . By determining the polar (γp) and dispersive (γd)

contributions to the surface tension, they were able to subsequently calculate

the interfacial tension between the components (Equation 2.20). The authors

rationalised the localisation of the plasticiser and the interface between the two

polymers by the resultant decrease in interfacial tension between PP and PVB.

γ =
(Ps
V

)4

(2.19)

γ12 = γ1 + γ2 − 2
√
γd1γ

d
2 − 2

√
γp1γ

p
2 (2.20)

The Harkins equation uses the surface tensions of a liquid and a substrate,

and their interfacial tension, to define a spreading coefficient, which provides a

measure of the ability of one liquid to spontaneously spread across another, and

indicates the possibility of one phase being located at the interface.104 A modified

Harkins equation (Equation 2.21), in which surface tensions are substituted with

interfacial tensions, has been used to determine the spreading coefficient for a

plasticiser encapsulating one component (in this case PVB) in a mixture of two

dissimilar polymers, λplast/PVB, thereby assessing the tendency of a plasticiser to

migrate to the interface and separate the phases of two polymers.

λplast/PVB = γPP-PVB − γPP-plast − γPVB-plast (2.21)

As Zanjanijam et al. determined that λplast/PVB>0, this indicates that spread-

ing and encapsulation of PVB by plasticiser is favourable, and results in a reduc-

tion in free energy. This can therefore, in part, explain the migration of plasticiser

to the interface of the polymer blend. This provides some thermodynamic rea-

soning for the observed changes in glass transition of the PVB and PP phases,

which are indicative of plasticiser migration.

Harkins’ spreading theory was also used by Taguet et al.105 to predict the sur-

face energy-driven formation of a thin layer of plasticiser, localised at the interface
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between two blended polymers. In this case, the authors observed the migration

of plasticiser to the interface in polyethylene/thermoplastic starch blends.

Rezaei Kolahchi et al.70 considered the differences in interfacial tension and

spreading coefficients of poly(ethylene terephthalate) containing a range of blended

polymers to predict surface morphology and wetting behaviour of minor compo-

nents. However, despite this example of interfacial energy differences driving

the development of complex droplet morphology, which can be predicted using

spreading coefficients, the case of surface energy differences driving migration of

an additive to the top surface layer of films, (as opposed to an interface between

two polymers106–109), is less extensively reported.

2.3.2.2 Role of Entropy in Additive Segregation

The configurational entropy per segment of polymer chains near rigid surfaces is

substantially lower than in the bulk. As a result, the highest molecular weight

component experiences an entropic penalty for residing at the surface. In a

monodisperse, homopolymer system, it has been suggested that this should re-

sult in a greater concentration of chain ends at the surface.110 In a polydisperse

system, the surface region would be expected to be enriched in the lower molec-

ular weight components.111

The segregation of additives to the surface therefore depends on a balance

between the reduction in surface energy and gain in translational entropy. In

the absence of a discernible surface energy difference, molecular size becomes an

important factor, with the lowest molecular weight component being enriched

on the surface.112 This was demonstrated by Harihan, Kumar et al.,113–115 who

showed that when the difference in surface energy is small, molecular weight can

become significant in polystyrene blends.

Lee and Archer112 investigated additive segregation when the difference in

free energy in the system was small, in a system consisting of polystyrene-b-

poly(methyl methacrylate) block copolymer additives in polystyrene host, and

explored the effect of the host and additive molecular weights. They reported a

surface enrichment of the methyl methacrylate groups at the surface when the

molecular weight of the polystyrene host was substantially higher than that of the

additive. When a high molecular weight additive copolymer was used, however,

the surface was actually depleted of methyl methacrylate groups. The absence of

surface segregation in materials when the matrix molecular weight is comparable

to, or lower than, that of the copolymer additive supports a mechanism based

on the differences in polymer configurational entropy between the bulk and the

interface.
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Tanaka et al.116 observed the surface enrichment of low molecular weight

PMMA in high molecular weight polystyrene films. In this case, the PMMA

additive has a higher surface tension than the polystyrene host. The authors ex-

plained these observations in enthalpic and entropic terms. First, as the polymers

were synthesised using living anionic polymerisation, one chain end is composed

of the sec-butyl initiator fragment. The surface tension of this end group is

substantially lower than that of vinyl polymers, which results in the preferential

adsorption of chain ends to the surface. Therefore, with decreasing molecular

weight of the low molecular weight additive, and thus increasing density of chain

end groups, this effect becomes more significant. Second, the conformational

entropic penalty of the polymer chain on the surface decreases with decreasing

molecular weight. As a result, when these effects outweigh the difference in sur-

face tension of the main chain parts of the two species, there is enrichment of the

higher surface tension component at the film surface.

2.3.2.3 Role of Polymer-Additive Compatibility in Segregation

Flory Huggins Theory

Flory Huggins theory is a useful tool for assessing compatibility of multi-component

systems. In this model, Flory and Huggins addressed the statistical thermody-

namics of polymer mixing in solution to predict the free energy of mixing (∆Gmix)

of polymer solutions.117,118 This theory uses a lattice model, composed of square

cells of volume v0. This volume approximately corresponds to the volume of a

solvent molecule and a segment of the polymer chain. Each site in the lattice is

then singly occupied either by a polymer segment or solvent molecule, so that its

segments occupy a continuous sequence of cells.

An expression for the enthalpy term of the free energy of mixing, ∆Hmix, can

be obtained by considering the intermolecular interactions in the system. This

is restricted to first neighbour interactions, and considers three types of contact:

solvent-solvent, solvent-segment and segment-segment interactions (g11, g12 and

g22 respectively). From these, the enthalpic part of the Gibbs free energy change

for the formation of one solvent-segment contact, ∆g12, is given by

∆g12 = g12 −
1

2
(g11 + g22) (2.22)

Then, by determining the number of solvent-segment contacts in the solution,

and defining the volume fractions of the solvent and polymer (φ1 and φ2 respec-

tively) using Equations 2.23 and 2.24, whereN1 is the number of solvent molecules

27



Introduction

and N2 is the number of polymer molecules with degree of polymerisation x,

φ1 =
N1

N1 + xN2

(2.23)

φ2 =
xN2

N1 + xN2

(2.24)

the enthalpy of mixing can be written as

∆Hmix = (z − 2)N1φ2∆g12. (2.25)

where z is the number of nearest neighbours of a cell.As ∆g12 and the lattice

parameter are not easily accessible, they can be replaced by a single parameter,

the Flory Huggins polymer-solvent interaction parameter, χ. The enthalpy of

mixing can therefore be more simply expressed as

∆Hmix = kTN1φ2χ (2.26)

The Flory Huggins interaction parameter, defined by Equation 2.27, is a temperature-

dependent dimensionless parameter, which can yield insight into the compatibility

of a system.

χ = (z − 2)
∆g12

kT
(2.27)

As the Gibbs free energy of mixing can be defined as

∆Gmix = ∆Hmix − T∆Hmix, (2.28)

and the entropy of mixing, ∆Smix can be expressed as

∆Smix = −R[n1lnφ1 + n2lnφ2] (2.29)

combining expressions for the entropy and enthalpy of mixing yields the Flory-

Huggins equation for the Gibbs free energy of mixing (Equation 2.30).

∆Gm = RT [n1lnφ1 + n2lnφ2 + n1φ2χ] (2.30)

Application of Flory Huggins theory to polymer blends

Flory Huggins theory was initially developed to consider the interactions of poly-

mer chains in a solvent. However, it has since been applied to polymer blends,

where the second polymer is treated like a solvent. For two polymers, A and B,
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Equation 2.30 can be modified to give

∆Gmix

kT
=
φ lnφ

vANA

+
(1− φ) ln(1− φ)

vBNB

+
χφ(1− φ)

v0

(2.31)

where NA and NB are the degrees of polymerisation and vA and vB are the volume

of monomer units of the two polymers. As v0 is defined as the volume of each

site in the lattice, in this case it is usually given by the geometric mean of vA and

vB.

If χ is assumed to depend only on temperature, volume fraction-temperature

phase diagrams can be constructed, which allow determination of the spinodal,

binodal, critical point, and upper and lower critical solution temperatures.119 The

spinodal defines the boundary between stability and instability of a single phase

mixture with respect to a two phase mixture. At the spinodal, Equation 2.32

holds. (∂2∆Gmix

∂φ2

)
T,p

= 0 (2.32)

The binodal refers to the boundary between the stable and metastable compo-

sitions, and defines the equilibrium composition of the two phase mixture. It can

be determined by equating the chemical potential of the individual components

of the two coexisting phases. The point at which the binodal and spinodal curves

meet is the critical point.120 From this value, the critical interaction parameter,

χc, can be determined, below which any homogeneous composition of the system

is stable.

The Flory Huggins parameter is the simplest numerical criterion of compati-

bility. It has been used to predict polymer-plasticiser compatibility; a good plas-

ticiser has a low χ value and it has been shown that if the interaction parameter

exceeds a critical value then phase separation will occur.121

Flory Huggins theory is limited in that assumes incompressibility, also treating

all interactions as isotropic and thus cannot account for species where interactions

are directional. It is therefore inappropriate for dealing with the interactions be-

tween charged surfactants and polymers. However, although Flory-Huggins the-

ory is not applicable to systems which are strongly interacting or have directional

bonds, a number of modifications have been used, for example the inclusion of

a separate term to account for electrostatic interactions, or the inclusion of the

electrostatic interactions into the interaction parameters.

For example, Liu et al.60 determined the phase diagrams of aqueous two-phase

systems comprised of water, polethylene glycol and one of the surfactants Triton

X-100 or Tween 80. The authors correlated the liquid-liquid equilibrium data

using Flory Huggins theory, with 3 interaction parameters, referred to as λ1, λ2
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and λ3, where 1, 2, and 3 represent the polymer, nonionic surfactant and solvent

respectively. The temperature dependence of the interaction parameters was dis-

cussed regarding the surfactant both as single molecules and micellar aggregates.

A better fitting effect was observed when the surfactant was considered in mi-

celles and the very low standard deviation (<0.1 %) showed the good descriptive

quality and applicability of the Flory Huggins model.

Foroutan et al.122 used a modified Flory Huggins theory to calculate the phase

behaviour of quaternary systems comprising poly-N -vinylcaprolactam (PVCL)

and polyethylene glycol (PEG) and four salts in water. By including two elec-

trostatic terms (the Debye Hückel and the Pitzer Debye-Hückel-equations), they

found good agreement to experimental data.

Solubility Parameters

Solubility parameters (δ) can also be used to evaluate compatibility in mixtures.

The Hildebrand parameter is defined in terms of the cohesive energy density,

cE = −U/V , where U is the molar internal energy and V is molar volume:

δ = c0.5
E = (−U/V )0.5 (2.33)

It is also related to the enthalpy of vaporisation by

δ =
(∆Hvap −RT

V

)0.5

(2.34)

Hildebrand and Scott123 showed that molecules with similar cE will mix read-

ily as there is minimal cohesive exchange energy needed for this interaction. The

Hildebrand-Scatchard equation describes the heat of mixing, ∆Hm, of regular

solutions of two components based on their solubility parameters (δ1 and δ2),

where Vm is the volume of the mixture.

∆Hm

Vm
= (δ1 − δ2)2φ1φ2 (2.35)

For the two components to be miscible (δ1 − δ2)2 must be small. This approach

relies on a number of assumptions, however, such as the interaction forces acting

between the centre of the molecules. As a result, this solubility parameter does

not describe the enthalpy change of mixing in polar systems well, and notably

cannot account for a negative enthalpy of mixing.

Hansen’s total solubility parameter (δt) splits the Hildebrand solubility pa-

rameter into the dispersive component (δd), the polar component (δp) and the

hydrogen bonding component (δh) (Equation 2.36). This approach can better
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predict the miscibility of polar components, since it can distinguish between ma-

terials of differing polarity but similar overall cohesive energy density.124

δ2
t = δ2

d + δ2
p + δ2

h (2.36)

2.3.3 Small Molecule Migration

Whereas thermodynamic parameters such as solubility can predict if segregation

will occur, the kinetics of migration are concerned with additive diffusion in the

matrix. The distribution and segregation of surfactants during film preparation

will be the primary consideration in the frame of this project. However, in order

to predict and control the migration of additives, it is essential that the timescales

and mechanisms associated with migration and the potential formation of surface

structures are understood. It is therefore important to consider the diffusion

process of the small molecules in the polymer matrix.

2.3.3.1 Fickian and non-Fickian Diffusion

The diffusion process can be classified based on the relative rates of diffusion

and polymer relaxation. Fickian (Case I) diffusion is characterised by a linear

dependence of diffusion over time, obeying Fick’s first law (Equation 2.37)

J = −D
( ∂c
∂x

)
(2.37)

where J is the diffusion flux in the x direction, c is the concentration of the

diffusing species, D is the diffusion coefficient and x is distance. Fick’s second

law describes how the concentration of the diffusing species changes with time,

and is given in 1 dimension by Equation 2.38.

∂c

∂t
= −D

( ∂2c

∂x2

)
(2.38)

Case II diffusion usually involves a front propagating at a constant velocity,

and therefore total sorption is linear with time. Whereas Fickian diffusion rates

are proportional to t1/2, Case II sorption is observed to be linear with t.125 Case II

diffusion has a diffusion coefficient with a strong concentration dependence, which

is not true for Case I diffusion. Other diffusion behaviours also exist, which have

a dependence on tn with n between 0.5 and 1.
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2.3.3.2 Measuring Small Molecule Diffusion in Polymers

The diffusion of small molecules in polymers and their migration to surfaces has

been studied in a wide range of systems. Much of the work undertaken in this area

is in the context of the migration of additives from packaging into food, due to the

potential adverse effects on food quality and on human health.126 Nevertheless,

the time-dependent additive concentration profiles of some other polymer/small

molecule systems, including a range of polymer-plasticiser systems have also been

characterised. An overview of these will be given in the following section.

Small molecule penetration into glassy polymers typically exhibits Case II

diffusion, with a sharp diffusion front moving through the polymer at constant

velocity. The diffusion of a molecule in a polymer is mainly determined by three

factors: the free volume of the polymer, the molecular size of the diffusing species,

and the interaction between the diffusing species and the polymer matrix.127 The

penetration of small molecules into polymers has received much interest over

recent years, and there have been a number of approaches used to monitor the

diffusion of small molecules in polymer films, including the study of the absorption

and release of additives in films.

One approach to investigate the kinetics of additive migration out of a film

has been analysing the additive concentration after extracting the remaining dif-

fusing species. This method was employed by Haider and Karlsson128 to monitor

the diffusion coefficient of antioxidants from polyolefin films. Hsu et al.129 used

FTIR microspectroscopy to map the concentration profile of a UV stabiliser in

polypropylene plaques after placing the powdered stabiliser in contact with the

neat plaque, and obtained diffusion coefficients from the concentration profiles.

Sanke and Hirt130 also used FTIR microspectroscopy to track the profiles of eru-

camide (1,3-cis-docosenamide) slip agents diffusing out of thick (∼50 µm) films of

linear low-density polyethylene (LLDPE) and a polyolefin plastomer (PO). They

identified a greater accumulation of the additive at the surface of the polyolefin

plastomer compared to the linear low-density polyethylene, alongside a greater

rate of additive migration from the PO, highlighting the dependency of the poly-

mer matrix on the rate of additive partitioning.

Neutron reflectivity has also been used to study small molecule diffusion at

polymer interfaces. This technique allows accurate determination of the inter-

facial profile between interdiffusing species and the width of the interface. An

“anneal-quench” procedure can be used, where a sample is heated for a given time,

before it is rapidly quenched and a reflectivity profile is collected, from which the

distribution of the additive can be determined. This approach has proven to

be successful in monitoring the diffusion of amorphous polymers when the glass
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transition temperature is above room temperature. An example of the use of this

approach is in the work by Geoghegan et al.93 who measured the kinetics of the

growth of surface enriched layers of deuterated polystyrene in a blend with fully

hydrogenated polystyrene. However, this approach has also been extended to the

diffusion of small molecules in polymer matrices. For example, Smith et al.131

measured the diffusion, surface enhancement and evaporation of a plasticising

additive from polymer films using neutron reflectivity and an “anneal-quench”

procedure.

The “anneal-quench” method cannot easily be used, however, if the polymer

of interest has a glass transition below room temperature, or if the ingress of small

molecules is to be studied. An alternative approach to enable real-time measure-

ment was therefore demonstrated by Bucknall et al.125 Although a measurement

time of 1-2 hours is usually required for the collection of a reflectivity profile over

the full available (Q) range, by measuring at a single angle, a reflectivity profile

over a limited Q range can be collected within a few minutes. One approach to

real-time NR involves preparing a bilayer of two polymers of which interdiffusion

is to be measured on the substrate, and then using a heated sample stage to

anneal the sample, quickly aligning the sample before collecting the reflectivity

profile. However, this approach is not possible if diffusion occurs below the Tg

of the polymer. In order to study the ingress of smaller molecules into polymer

films, Bucknall et al.125 therefore used a special reflectivity cell that allowed the

penetrant to come into contact with the polymer film on a remotely controlled

stage, after the sample had been aligned in the neutron beam. This method al-

lows data collection to begin the moment than contact between the polymer and

penetrant is made, which is particularly important for rapidly changing systems.

This method was first used to obtain interdiffusion coefficients for hydro-

genated and deuterated polystyrene, but subsequently enabled the diffusion of

plasticisers (oligo methyl methacrylate and polyethylene glycol oligomers) in

deuterated poly(methyl methacrylate) to be studied. By determining the com-

position of the layers in the sample from the obtained reflectivity profiles, the

velocity of the diffusion front could be calculated, which could subsequently be

used to evaluate diffusion coefficients of the plasticisers.125 This approach was

also used to study the penetrant behaviour of phthalate ester plasticisers of dif-

ferent molecular weights in thin PMMA films. Bucknall et al.127 showed that

the plasticisers diisononyl phthalate (DINP, 418.6 g mol-1) and dioctyl phthalate

(DO, 390.5 g mol-1) penetrate the polymer and swell the film. This swelling was

found to occur in three phases: first, during an “induction phase” lasting a few

minutes, the thickness of the dPMMA layer was constant, although an increase in
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interfacial width between the polymer and plasticiser layers was observed. This

was associated with the establishment of a gel layer between the dPMMA and

the plasticiser. Following this induction phase, a rapid increase in dPMMA layer

thickness in both plasticiser systems with a linear time dependence was observed.

This stage was therefore associated with the ingress of the plasticisers into the

polymer at a certain velocity, indicative of a Case II diffusion process. By deter-

mining this velocity, a lower rate of ingress into the polymer film was identified

for the larger, less mobile DINP. Finally, a second, much slower, phase of growth

was observed. This phase of growth could also be described by a linear time

dependence. The authors attributed this phase to a balancing of the osmotic

pressure, causing a “suction of plasticiser” into the polymer and a misfit-induced

pressure.

2.3.3.3 Migration Mechanisms

A number of approaches have been taken in order to develop a better mechanistic

understanding of the displacement of small molecules in polymer matrices. An

area of particular relevance is the work undertaken on the surface segregation of

long-chain fatty acid slip agents in polyolefins. In particular, there has been a

substantial body of work into the behaviour of slip additives such as erucamide.

Although the studies into the diffusion of small molecules in polymer films have

been prevalent,132 these longer chain molecules (C22 for erucamide) are relevant

when considering the migration of additives such as surfactant molecules in poly-

mer films, and thus will be reviewed in the following section.

Quijada-Garrido et al.133,134 determined the diffusion coefficient of erucamide

in an isotactic polypropylene (iPP) film. By studying the desorption rate of the

additive, they determined that at low erucamide concentrations (4.6 and 8 %) the

kinetic curves show good agreement with Fickian law. However, at higher addi-

tive loading (24 and 44 % erucamide), diffusion of erucamide to the film surface

occurs by a non-Fickian mechanism. This was accounted for by the incompati-

bility of erucamide with iPP, and the microstructure of the films, which consist

of polypropylene spherulites (with amorphous regions between the lamellae) and

globules of excess erucamide. The results could therefore be explained by assum-

ing two transport processes. The authors proposed a model comprising a linear

superposition of two simultaneous Fickian diffusion processes: the diffusion of

the additives in the amorphous regions of the spherulites, and the release of the

additive from the globules into the spherulites. This highlights the importance

of the morphology of the films in additive diffusion. From the temperature de-

pendence of the diffusion coefficients, the authors identified that this two-Fickian
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diffusion model follows an Arrhenius type relationship, (Equation 2.39), where

Ed is the activation energy and D0 is the pre-exponential factor, and were able to

estimate activation energies. Furthermore, they could to use the diffusion data

to estimate the solubility of erucamide in iPP as a function of temperature, by

extrapolating the diffusion data to a penetration depth equal to zero.

D = D0 exp
(−Ed
RT

)
(2.39)

Quijada-Garrido et al.40 also investigated the diffusion of erucamide in nylon

12, finding that the observed concentration profiles showed good agreement with

Fickian law at all concentrations, contrasting the diffusion of the additive in

iPP. This again demonstrates the importance of morphological factors, including

inter- and intramolecular hydrogen bonding, in diffusion behaviour. This also

highlights the necessity of understanding the location of the additive molecules

in semicrystalline systems in order to predict behaviour.

In another study, Taraszka and Weiss135 observed similar behaviour for the

diffusion of N,N -dioctadecylaniline in a low-density polyethylene film, identify-

ing two simultaneous Fickian processes that could be fitted to a dual pathway

model. This was interpreted as being due to the presence of a series of barriers

associated with the movement of a molecule as it migrates among many host

sites. The authors suggested that the faster component is attributable to the

diffusion of molecules within the amorphous domains of the polymer, with the

slower component attributable to diffusion within the interfacial regions between

the amorphous regions and microcrystallites. This contrasts the diffusion be-

haviour of the much smaller N,N -dimethylaniline, which could be fit to a series

expansion form of Fick’s second law with a single diffusion coefficient, and showed

much faster diffusion, demonstrating that this molecule experiences a different

rate-limiting step.

Wakabayashi et al.43 developed a model that adequately described the bloom-

ing of erucamide and behenamide (another anti-slip agent) to the surface of isotac-

tic polypropylene films, highlighting the importance of both additive solubility in

the host polymer and the diffusion coefficients in this process. In their model, the

additive dissolves in an amorphous region until saturation solubility is reached.

The additional additive migrates to the film surface at a speed according to the

diffusion process, in accordance with the findings of Quijada-Garrido et al.133,134

This model was modified to account for the different contributions of the amor-

phous and crystalline regions of the polymer by considering that a portion of

the excess additive beyond the saturation solubility was restricted within the

crystalline regions (consisting of spherulites), with the remaining excess additive
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localised in the amorphous regions. The extent of restriction within crystalline

regions was assumed to increase according to the initial amount of additive. By

assessing the temperature dependence of the diffusion of these two additives, the

authors identified that the diffusion coefficients follow the Arrhenius rule (Equa-

tion 2.39).

Wakabayashi et al.44 showed that the values of activation energy and pre-

exponential factor are larger for behenamide than for erucamide. They postulated

that the differences in the diffusion behaviour of the two additives are the result of

the self-association of behenamide, which gives the diffusing species a larger size.

As a result, behenamide becomes more easily restricted within the crystalline re-

gions in the spherulites, where diffusion is slower. The difference in the diffusion

coefficients of additives in this two-step transport between the amorphous and

crystalline regions in an ethylene copolymerised polypropylene film was later cor-

roborated using molecular dynamics simulations, which demonstrated the signifi-

cance of self-association by hydrogen bonding.136 This proposed two-step diffusion

model could also adequately explain the blooming process of UV stabiliser addi-

tives, such as 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3,-tetramethylbutyl)phenol and 2-

(2H-benzotriazol-2-yl)-4-methylphenol.44 This highlights the importance of con-

sidering additive self-assembly when attempting to understand additive migration

in a matrix.

Effect of additive structure on migration

No general diffusion model can predict the broad range of diffusion coefficients of

organic solutes in solid polymers. However, various efforts have been undertaken

to correlate additive structure with diffusion behaviour in polymer films, in order

to better understand the diffusion.

From the analysis of diffusion coefficients of several categories of molecules

in polyolefins, Vitrac et al.137 highlighted the strong dependence on additive

molecular weight, M . D was found to be related to M by D ∝M−α, with values

for α typically greater than 2.

Fang et al.66,138 investigated the diffusion of aromatic solutes in aliphatic

polymers above the Tg in order to provide a polymer-independent description of

the dependence of the diffusion coefficient on molecular weight. Using a num-

ber of homologous series of bulky aromatic solutes in different polymers, they

introduced several scaling relationships based on D ∝ M−α(T−Tg), showing that

aromatic solutes have a parallel behaviour to linear aliphatic solutes, but with

a temperature shift (T − Tg). Diphenylalkanes, where a flexible unit is present

between the two phenyl rings, were associated with a much larger temperature
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shift. These dramatic effects of the solute chemical structure were found to be

independent of the aliphatic polymer.

Reynier et al.139 correlated the diffusion coefficients of a broad set of molecules,

with molecular weights ranging from 100 to 800 g mol−1, to parameters describ-

ing their size, shape and flexibility, enabling their classification according to their

modes of displacement. One such diffusion mode is a crawling mode which relies

on the large number of degrees of freedom of long alkyl chains. Other, more rigid,

molecules diffuse by jumps, from one free volume site to another. This mode is

common for molecules such as heterocycles. Intermediate diffusion behaviours

were also observed, which can be described by jump displacements facilitated by

the easy relaxation of other parts of the molecule. By introducing the concept

of weighted fractionated volume, which corresponds to the sum of the different

partial volumes from groups in the molecule, in order to evaluate the influence

of the flexibility, it is possible to classify molecules according to the modes of

displacement.

Wang et al.126 used molecular dynamics simulations to investigate the diffu-

sion behaviour of additives in polypropylene. They reported that the diffusion of

the additive is attributed to a number of factors including the interaction energy

between the diffusant and the polymer; a strong interaction between the polymer

and the diffusant decreases the diffusion coefficient. Diffusion is also affected by

free volume, molecular weight, molecular size and shape, as well as the mobility

of the polymer chains. Larger molecules, particularly those with rigid parts, need

large free volume holes to diffuse (correlating well with the earlier work of Reynier

et al.),139 which results in a lowering of their diffusion coefficients. Greater flex-

ibility of the polymer chains provides more opportunities for diffusion through

transport channels. These findings demonstrate the importance of additive struc-

ture on their mobility, and thus migration, in a polymer matrix. In addition, the

relevance of free volume in additive diffusion indicates the value in measuring

the free volume properties of model systems in order to better understand, and

ultimately predict, migration behaviour.

2.3.3.4 Additive Loss

An additional consideration when studying the surface segregation of small molecules

is additive loss from films. This may be particularly significant for the low molec-

ular weight plasticiser molecules.

Loss of plasticiser is one of the main degradation mechanisms of plasticised

polymer products, and will decrease the flexibility, toughness and extensibility of

the material. It can also lead to the contamination of the surrounding environ-
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ments, which is a problem for many industries such as food packaging, medical

materials or toys.140 Although plasticisers can be lost into neighbouring polymers

or liquids (such as biological fluids or food),67 only evaporation into the air is of

relevance to this project, and thus will be primarily considered here.

Calvert and Billingham141 developed a theoretical model to describe the loss

of additives from a polymer in terms of three variables: evaporation rate, dif-

fusion coefficient and additive solubility. If the additive concentration is above

its saturation solubility in the polymer, the additive can bloom on the surface.

If the additive concentration is below its saturation solubility, however, bloom-

ing cannot occur and rate of additive loss is determined by volatilisation and

diffusion.

Considering the case where an additive is below its saturation solubility in

the polymer, the migration of plasticiser from polymers to a gas phase is a two

step process, involving the diffusion from the bulk polymer to the surface, and

the subsequent evaporation to the gas phase. The initial diffusion process can

be described by Fick’s second law (Equation 2.38). The diffusion coefficient of

the plasticiser generally increases with plasticiser concentration, as a result of its

greater mobility in the polymer as free volume increases. The concentration (C)

dependence of D can be described by an exponential function (Equation 2.40),

D(C) = DC0e
αC (2.40)

where DC0 is the zero-concentration diffusion coefficient and α relates to the plas-

ticisation efficiency of the plasticiser. Alternatively, the concentration dependent

evaporation can be expressed in terms of the free volume (f) of the polymer upon

plasticiser incorporation (Equation 2.41), where A and B are constants.142

D = Ae−B/f (2.41)

The overall rate of plasticiser loss is determined by the slower process, and

thus the process is either diffusion- or evaporation-controlled. In the diffusion-

controlled case, evaporation is faster than the diffusion of the plasticiser to the

surface. In the evaporation-controlled case, evaporation is slower than the rate

of diffusion to the surface, which can lead to the formation of a thin film of

plasticiser on the surface.142

The rate of evaporation (ν0) of the plasticiser from a strip of width l over which

gas flows at velocity u can be calculated by applying the mass transfer theory of

evaporation from a stationary liquid into a stirred gas, given by Equation 2.42,143
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ν0 = 0.33
(u 1
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1
2

)
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) 1
6

(2.42)

where Sg is the concentration of the plasticiser in the gas phase, Dg is the diffusion

coefficient in the gas phase, and ρ and µ are the density and viscosity of the gas

phase respectively. As rate of evaporation is zero when gas flow is zero, this does

not allow for loss of volatilised components when it has to diffuse through still air.

Nevertheless, using this approach, Bellobono et al.143 have found good agreement

with experimentally determined values of ν0.

The dominating mode of diffusion depends on a number of factors includ-

ing temperature and the characteristics of the polymer and plasticiser. Factors

affecting small molecule diffusion in polymers have been previously discussed,

and are equally important in diffusion-limited plasticiser loss. However, in an

evaporation-limited case, plasticiser loss is not affected by interactions between

the polymer and plasticiser, and is thus mainly affected by temperature and the

properties of the plasticiser, including its molecular shape and vapour pressure,

as well the gas surrounding the polymer (flow rate and volume).142

Smith et al.144 studied the diffusion, evaporation and surface enrichment of

a plasticising additive in a thin film of a segmented polyester-polyurethane ther-

moplastic polymer. By determining the volume fraction profiles of the plasticiser

using neutron reflectivity, they found that the diffusion of the plasticiser is suf-

ficiently rapid that the concentration can adjust itself throughout the film over

timescales much shorter than that of the rate of mass loss due to evaporation. In

this case, plasticiser loss was therefore determined to be evaporation-limited. It

should be noted, however, that neutron reflectivity is not very sensitive to grad-

ual variations in concentration. A flat concentration profile of a volatile additive

is therefore indicative of an evaporation-limited loss process, and could therefore

be useful in assessing additive loss in the model systems considered in this thesis.

By identifying the migration mode for different polymer-plasticiser systems,

Wei et al.142 determined that evaporation is generally rate-limiting for plasticiser

loss at low temperatures, with diffusion rate-limiting at higher temperatures.

They were able to identify a transition temperature at which there is a change in

the rate limiting process. For example, this occurs between 110 and 120 ◦C for a

PVC-di(2-ethylhexyl)phthalate (DEHP) system, and between 90 and 120 ◦C for

a nitrile butadiene rubber-DEHP system.

The Hertz equation (Equation 2.43) relates the rate of evaporation (ν0) to

the partial pressure of the plasticiser, p, temperature, T , plasticiser molecular
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weight, M , and the rate constant plasticiser transfer from the material, k.145

ν0 =
p√

2MkT
(2.43)

As the partial pressure is largely affected by the volatility of the plasticiser,

molecules with a high enthalpy of vaporisation (and therefore high boiling point)

should have a slow rate of evaporation. However, despite having a boiling point

of 290 ◦C,146 evaporation of glycerol from thin PVA films has previously been

identified.147 Loss of a range of additive molecules, including surfactants as well

as plasticisers, could therefore be significant throughout this work. Whereas

much of this thesis considers the distribution of surfactants established during

spin-coating, additive loss will become increasingly important in the context of

heating and ageing polymer films containing low molecular weight additives.

2.4 Summary

In this thesis, the overarching objective is to explore the segregation of a range

of additives in spin-cast PVA films in order to understand the factors responsible

for this behaviour. By building on current understanding of factors affecting

additive distribution in polymers, as well as the interactions between polymers

and surfactants in solution, that have been presented in this chapter, the aim is

to provide insights into model films that can ultimately translate to predictive

models and industrial systems.
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Methods

3.1 Materials

The following PVA resins were purchased from Sigma Aldrich and used as re-

ceived.

Table 3.1: Details of PVA resins

Material Reference Product M w/ kg mol−1 DH /%
PVA-70-88 P8136 30-70 87-90
PVA-23-98 348406 13-23 98
PVA-23-88 363170 13-23 87-89
PVA-50-98 363138 31-50 98-99
PVA-50-88 363073 31-50 87-89
PVA-125-98 563900 130 99
PVA-125-88 81365 130 88

The surfactants sodium dodecyl sulfate (SDS), N,N -dimethyldodecylamine

N -oxide (DDAO), N,N -dimethyltetradecylamine N -oxide (DTAO), pentaethy-

lene glycol monododecyl ether (C12E5), and cetyltrimethylammonium bromide

(CTAB), and plasticisers glycerol and propylene glycol were purchased from

Sigma Aldrich and used as received.

Deuterated analogues of SDS, C12E5, DDAO and DTAO were synthesised at

Rutherford Appleton Laboratories. All 25 hydrogen atoms of the alkyl chain in

SDS were labelled. All hydrogen atoms in the long alkyl chains of the amine

oxide surfactants (25 and 29 hydrogen atoms for DDAO and DTAO respectively)

were labelled, but hydrogen atoms on the methyl groups were not labelled. Only

hydrogen atoms on the hydrocarbon chain of C12E5 were labelled (d25), with the

hydrogen atoms present in the ethylene glycol repeat units unlabelled. Deuter-

ated analogues of glycerol (99 % isotopic enrichment) and propylene glycol (98
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% isotope enrichment) were purchased from CK isotopes. Only the non-labile

carbon-bonded hydrogen atoms in the plasticiser molecules were labelled in or-

der to prevent isotope exchange between labile -OH and -OD groups on the

plasticiser, polymer and solvent.

3.2 Film Preparation

The majority of the work comprising this thesis is performed using thin, spin cast

films of poly(vinyl alcohol) and additives. For most neutron reflection and AFM

measurements, films were spin cast from aqueous solutions with a total solute

concentration of 4 wt.%.

To prepare these films, PVA was dissolved in deionised water by heating

to 75 ◦C with stirring to create 4 wt.% solutions. Similar aqueous solutions

of other components (surfactants and plasticisers) were also prepared at 4 wt.%.

Solutions containing the desired proportion of the polymer with surfactant and/or

plasticiser with a total solute concentration of 4 wt.% were prepared by mixing

the relevant solutions. These solutions were spin-cast into films of 40-100 nm,

varying with surfactant and glycerol content, by using a rotational speed of 3500

rpm during the drying stage. For neutron reflectivity measurements, solutions

were spin-cast onto 55 mm diameter, 5 mm thick silicon blocks that had been

first cleaned using permanganic acid, and subsequently acetone, to remove traces

of hydrophobic impurities and ensure film consistency. For AFM measurements,

solutions were spin-cast onto 0.75 mm thick silicon wafers (approximately 15 ×
15 mm). For ion beam measurements, thicker films (150 nm) were prepared by

spin-casting from solution, with total solute concentrations of 6 wt.% onto the

same type of wafers as for AFM experiments but typically with a slightly larger

area.

3.3 Neutron Scattering

Neutron scattering can be a powerful technique for the study of soft matter

systems. The neutron is a subatomic particle, that also behaves as a wave, with

its wavelength, λ, given by the de Broglie relationship,

λ = h/mv (3.1)

where h is Planck’s constant and m and v are the mass and velocity of the neutron

respectively.
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Neutrons can either be scattered through interactions with the nucleus or

through the interactions of unpaired electrons with the magnetic moment of the

neutron. However, only nuclear scattering with be used in this work.

The momentum transfer vector, Q, is defined as the difference in the momen-

tum of the incident wave (ki) and the final wave (kf ), described by Equations 3.2

and 3.3, and illustrated in Fig. 3.1. In this thesis, only elastic neutron scattering

will be considered, where no energy changes occur during the collision.

|ki| = |kf | =
2π

λ
(3.2)

Q = |ki − kf | =
4π

λ
sin θ (3.3)

Figure 3.1: Schematic of elastic neutron scattering.

Substituting Equation 3.3 into Bragg’s Law, Equation 3.4, yields Equation

3.5, which expresses the relationship between the size of objects under study and

the momentum transfer vector.148

nλ = 2d sin θ (3.4)

Q =
2π

d
(3.5)

The strength of the interaction between the neutron and the nuclei is governed

by the scattering length of the nucleus, b. The amplitude of the wave squared

determines the probability of finding the neutron at that point in space and b2

represents the probability of the neutron being scattered somewhere in space,

per nucleus, per incident neutron, per solid angle. As solid angle is expressed in

steradians and there are 4π steradians in a sphere, the probability of a neutron

being scattered is 4πb2. This quantity is termed the scattering cross section, σ,

which is a measure of the scattering power of a material and is isotope dependent.

It should be noted that some nuclei, such as hydrogen, possess a negative value for

b, which still gives rise to a positive value of σ. The difference in scattering lengths

of different isotopes is the origin of contrast in this technique. In particular, there

is huge difference in scattering length of hydrogen and deuterium, which have both
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different magnitudes and different signs. This highlights one main advantage of

neutron scattering: selective deuteration of parts of the sample can be used to

manipulate the contrast.149,150 In order to consider the probabilities of neutrons

being scattered into a solid angle element, dΩ, the differential cross section, dσ
dΩ

can be defined.

The total scattering cross section is a sum of two components: the coherent

and incoherent cross sections,

σs = σcoh + σincoh. (3.6)

The incoherent term accounts for the correlation between the position of the same

nucleus at different times, and the coherent cross section involves correlation

between the position of different nuclei. Structural information on samples is

contained in the coherent component, but the incoherent component contributes

only to noise.150

3.3.1 Small Angle Neutron Scattering

Small angle neutron scattering (SANS) can be used to obtain structural informa-

tion about a system, including the size, polydispersity and interactions within a

wide range of disordered materials. SANS is capable of probing lengthscales from

approximately 1-100 nm, depending on the neutron wavelength and instrument

geometry.150

Lengthscales are explored in reciprocal space by detecting the number of scat-

tered neutrons as a function of the scattering vector, Q. As Q is related to the

wavelength and scattering angle (2θ) by

Q =
4π sin(θ)

λ
(3.7)

and Q is related to distance by Equation 3.5, the use of very small incident angles

allows the larger structures of polymers and surfactants to be probed.

When probing large-scale structures (such as polymer and surfactant assem-

blies), the lengthscales in question are much greater than atomic dimensions. It

is therefore helpful to define the scattering length density of the material. The

scattering length density, ρ, is calculated according to Equation 3.8 from the

scattering length contributions bi of each atom in a unit cell of volume, vm. M

and D represent the molar mass and the density of the material respectively.

ρ =
Σn
i=1bi
vm

where vm =
M

D
(3.8)
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SANS measures intensity, often called I(Q), which is formally defined as the

absolute differential scattering across section, dΣ
dΩ

. I(Q) has units of reciprocal

centimetres and represents the probability of a neutron of wavelength λ being

scattered, per unit solid angle, at that Q.150

Experimental Procedure and Fitting

SANS measurements were carried out on solution cast films, approximately 70 µm

thick. The Larmor instrument at ISIS was used with a incident beam, yielding

a fixed momentum transfer range of approximately 0.003 < Q < 0.7 Å−1. Scat-

tering was recorded as 2D detector images, and was seen to be uniform in all

directions for each sample. The 2D images were then radially-averaged to give

the differential scattering cross-section, after reduction to correct for detector

efficiency and background scattering from the substrate. Data modelling was

conducted using the software Sasview.151 A broad peak mode was used to fit the

data. This will be discussed more extensively in Chapter 6, but an example set

of data and its fit is shown in Fig. 3.2.
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Figure 3.2: SANS data and broad peak model fit for PVA containing 5 wt.% DDAO.

3.3.2 Neutron Reflectivity

In contrast to SANS, a bulk technique, neutron reflectivity (NR) is a surface-

sensitive depth profiling technique. Neutrons are capable of reflection and refrac-

tion when passing between media. NR usually involves measuring the specular

reflection, (where the angle of incidence is equal to the angle of reflection), as a

function of the wavevector perpendicular to the surface, when a highly collimated
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beam of neutrons is directed onto an extremely flat surface. This is illustrated in

Fig. 3.3. Reflectivity is determined by the refractive index profile perpendicular

to the interface. As refractive index is related to the scattering length density,

reflectivity measurements provide information about the composition profile per-

pendicular to the surface. It is a powerful technique for probing both surface

structures and buried interfaces on the nanometre scale.150,152

Figure 3.3: Schematic of specular neutron reflectivity.

As Golderger and Seitz153 showed that neutrons follow the same laws as elec-

tromagnetic radiation with the electric vector perpendicular to the plane of in-

cidence, formalisms from classical optics can be used. As in classical optics, the

refractive index, n, is defined as

n =
k2

k1

, (3.9)

where k2 and k1 are the wavevectors inside and outside the medium respectively.

Although it is possible to measure reflection at non-specular angles to obtain

information on the in-plane sample structure, here only specular reflection will

be considered. It should therefore be noted that the only change in wavevector

is perpendicular to the interface (in the z-direction).

For most materials, a good approximation for n is given by

n ≈ 1− λ2ρ

2π
, (3.10)

where ρ is defined as the scattering length density of the medium and λ is the

neutron wavelength. As usually n < 1, total external reflection occurs from most

materials (N.B. this contrasts with the behaviour of light, where n > 1, and thus

the opposite change in wavelength occurs, resulting in internal reflection).

The critical angle, θc, below which total reflection occurs is given by Snell’s

law,

cos θc =
n2

n1

. (3.11)

There is a simple relationship between the critical angle, neutron wavelength and

the scattering length density of the matrerial,
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θc = λ

√
ρ

π
, (3.12)

and the critical value for the wave transfer vector, Qc, is given by

Qc =
√

16πρ. (3.13)

Neutron radiation is partly reflected and partly transmitted at each interface.

Again, using classical optics, the reflectivity, R, from a single interface is given

by Fresnel’s law, where R = 1 for θ < θc and R is given by Equation 3.14 for

θ > θc. This is illustrated in Fig. 3.4.

R =

∣∣∣∣n1 sin θ1 − n2 sin θ2

n1 sin θ1 + n2 sin θ2

∣∣∣∣2. (3.14)

Figure 3.4: Schematic of specular neutron reflectivity from a single interface.

With the Born approximation, which assumes that a neutron is only scattered

once while passing through the sample, and weak multiple reflection processes can

be ignored, an expression for the reflectivity can then be obtained as

R(Q) =
16π2

Q4

∣∣∣∣∫ ρ(z) eizQ dz

∣∣∣∣2, (3.15)

and from a single interface, this reduces to a simple expression with a Q−4 power

law (Fig. 3.5),

R(Q) =
16π2

Q4
∆ρ2. (3.16)

From a single thin film at an interface (illustrated in Fig. 3.6), reflectivity becomes

R(Q) =

∣∣∣∣ r01 + r12e
iβ

1 + r01r12eiβ

∣∣∣∣2, (3.17)

where rij is the Fresnel coefficient at the ij interface, defined as

rij =
(pi − pj)
(pi + pj)

with pi = ni sin θ (3.18)
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and βi is the optical path length of the film,152

βi =
2π

λ
nidi sin θi. (3.19)
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Figure 3.5: Theoretical reflectivity from a bare silicon-air interface (red), from a
perfectly smooth 1000 Å film with SLD of 5× 10−6 Å−2 (blue) and the same film with
20 Å interfacial roughness (black). Corresponding SLD profiles are shown in the inset.

Figure 3.6: Schematic of specular neutron reflectivity from a thin film.

Fig. 3.5 shows reflectivity from a simple thin film, resulting in the presence of

Kiessig fringes due to the constructive and destructive interference of the waves

reflected from the two interfaces. The spacing of the Kiessig fringes is given by

∆Q =
2π

d
. (3.20)

Although this approach to to calculate the exact reflectivity can be extended

to three or four layers, calculating reflectivity from a system with many layers re-

quires a general technique, such as the approach described by Born and Wolfe;154
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applying the conditions that wave functions and their gradients are continuous

at each interface gives a characteristic matrix for each layer,

Mj =

[
cos βj −(i/pj) sin βj

−ip sin βj cos βj

]
(3.21)

where pj and βj were previously defined by Equations 3.18 and 3.19 respectively.

The resultant reflectivity can then be calculated from the product of the charac-

teristic matrices for each layer, MR = [M1][M2]...[Mn],

R =

∣∣∣∣(M11 +M12ps)pa − (M21 +M22)ps
(M11 +M12ps)pa + (M21 +M22)ps

∣∣∣∣. (3.22)

These calculations are only valid for smooth interfaces. However, in real samples

there is likely to be interfacial roughness, or a diffuse interface which will modify

the specular reflectivity by a Nevot-Croce factor

R = R0 exp(−qoq1σ
2), (3.23)

where σ is the root mean square roughness and qi = 2k sin θ (k = 2π/λ). Fig.

3.5 shows that upon inclusion of roughness the reflectivity decays more rapidly

than Q−4.

The matrix method described above is incapable of accounting for surface

roughness, and therefore an alternative formulation is required. One such method

is that of Abeles,155,156 which applies a Gaussian roughness to the Fresnel coeffi-

cients of each interface (Equation 3.24) and then defines the characteristic matrix

for each layer as in Equation 3.25.

rij =
(pi − pj
pi + pj

)
exp[−0.5(qiqjσ

2)], (3.24)

CM =

[
eiβm−1 rme

iβm−1

rme
−iβm−1 e−iβm−1 .

]
(3.25)

For N layers, the resultant matrix, MN = [M1][M2]...[MM+1], then yields the

reflectivity

R = M21M
∗
21/M11M

∗
11. (3.26)

Experimental Procedure

Specular neutron reflectivity measurements were taken using the INTER, OFF-

SPEC and CRISP reflectometers at ISIS.

Deuterium labelling of additives was used to provide contrast via the difference
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in scattering length density (SLD) of the components. A complete reflectivity

profile, from critical edge to background, was collected using three incident angles

(generally 0.25◦, 0.6◦ and 1.5◦) in order to obtain a momentum transfer range of

0.008 < Q/Å
−1
< 0.47. This required an acquisition time of between 1 and 2 h

per sample (depending on the reflectometer).

For all data collected on the reflectometers at ISIS, the reflectivity at Q >

0.25 Å
−1

is dominated by the sample-dependent background, arising primarily

from incoherent scattering. For these measurements, a constant background,

determined from reflectivity in the limit of high Q is assumed.

Fitting

The MOTOFIT package157 was used to fit the reflectivity data to scattering

length density profiles, with a least-squares approach to minimize the deviation of

the fit. The reflectivity is calculated using the Abeles matrix method for stratified

interfaces.155 The scattering length density profiles, ρ(z), were optimised using

a genetic algorithm in which the layer thicknesses, scattering length densities,

and roughnesses are varied to minimize χ2 between the measured and calculated

reflectivities. The obtained profiles typically include 3 layers, corresponding to

a surface excess, bulk film, and substrate, with each layer characterised by a

scattering length density, a thickness and a Gaussian roughness value. SLD-

depth profiles could be converted into volume fraction, φ(z), profiles in order to

calculate the surface excess, z∗, total additive volume fraction in the films, φtot,

and fraction of segregated surfactant, f . This is described more thoroughly in

Chapter 4. Reported errors in these values are obtained by adding the fitting

errors on the relevant parameters in quadrature.

An example set of data and the fit, alongside the corresponding SLD profile

is shown in Fig. 3.7. This fit consists of three layers, corresponding to a thin

surface excess layer (depth < 2 nm), the bulk film (2 < depth < 82 nm), and the

silicon oxide substrate layer (> 82 nm).

3.4 Image Analysis

In order to scale the SANS data to account for the varying thickness of films and

quantify I(Q) in units of cm−1, image analysis was used to accurately determine

the area of the irregularly shaped films so that thickness could be calculated from

their mass and density. This is a more reliable approach than using callipers,

which would be likely to damage the relatively soft film and yield low values

for sample thickness. Images were captured using a diffuse light source and

50



Methods

SL
D

/ Å
-2

Depth/ nmR

Q/ Å-1

Figure 3.7: Example set of NR data and fit, corresponding to a hydrogenated polymer
film with thin surface excess (cast onto a silicon substrate).

image analysis was subsequently performed using ImageJ.158 The stages of image

processing are shown in Fig. 3.8. First, channels of the initial image (3.8a)

were split, and only the red channel (3.8b) was used. To remove background,

maximum, minimum and Gaussian blur filters were applied to a duplicate image

which was subtracted from the original red-channel image. Threshold levels were

adjusted to produce 3.8c, and particle analysis was used to determine the film

area. The final image 3.8d shows an overlay onto the original red channel image

to confirm it captures the film region accurately. In order to determine the area,

a ruler was included in the original image as a scale bar. The film area in pixels

could then be converted to mm2.

(a) 1 (b) 2 (c) 3 (d) 4

Figure 3.8: Image analysis steps used to determine film thickness in order to scale
the SANS data.

3.5 X-Ray Diffraction

X-ray scattering can also be used to obtain structural information on samples.

In contrast to neutrons, X-rays are scattered by the electrons in a material. As a
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result, scattering cross section scales with atomic number. As for neutron scat-

tering, from Bragg’s law (Equation 3.4) structural size is inversely proportional

to scattering vector.

Samples were prepared by casting aqueous solutions containing PVA (and

additives) into PDMS moulds (20 mm disks) at 40 ◦C, and subsequently drying

under vacuum for 24 h.

X-ray diffraction was used to determine the degree of crystallinity and crys-

tallite size of PVA samples. Crystallinities of PVA-30-88 and PVA-50-98 samples

were examined using a Bruker D8 diffractometer operating with a 1D detector in

reflection mode using Cu Kα radiation. Diffracted intensity is plotted as a func-

tion of 2θ, with a range of 5◦ ≤ 2θ ≤ 90◦. Data was obtained by Gary Oswald,

Department of Chemistry, Durham University.

3.6 Ion Beam Analysis

Ion beam analysis is a family of real-space techniques that use medium energy

(MeV) ions to quantify depth distributions in materials and obtain concentration

profiles. A range of techniques have been used to study polymer surfaces and

interfaces.159,160 These techniques include elastic recoil detection analysis, nuclear

reaction analysis and Rutherford backscattering (RBS), although only the latter

technique will be used in this thesis.

When an incident ion strikes an atom with a higher atomic number on the

sample surface the incident atom can undergo an elastic collision and be backscat-

tered. RBS uses this principle, measuring the energy of the backscattered par-

ticles. It can be used for elemental determination and to depth profile heavier

elements in the sample. It is necessary for the target atom to have a higher mass

than the incident ion (usually 4He+ for polymeric samples). As it is an elastic

collision, the conservation of momentum and energy can be used to derive the

relationship between the geometry and the energy of the incoming and scattered

particles. The energy of the backscattered projectile of mass Mp after backscat-

tering from the target atom of mass Mt is determined by the kinematic factor,

K, which relates the energies of the incoming (Ep) and scattered (Ed) particles.

K =
Ep
Ed

=

(√
(M2

t −M2
p sin2 θ) +Mp cos θ

Mp +Mt

)2

(3.27)

This is the origin of the mass sensitivity; each element scattered from the

surface produces a backscattered ion with a characteristic Ed, with K determining

the amount of energy transferred to the target atom. The majority of collisions
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do not occur with atoms on the sample surface, and the beam penetrates into

the film. The ion interacts with electrons in the sample, losing energy with

each collision. The amount of energy lost is very well defined and is related to

the distance travelled by the projectile before it undergoes a nuclear scattering

event.

This technique can be used to obtain information on the composition of ma-

terials containing elements heavier than carbon, but is not suitable for studying

the concentration distributions of lighter elements. This restricts its applicability

to the investigation of polymer films. As the samples used in this study are thin

polymer/surfactant films spin-cast onto silicon substrates, backscattering will be

dominated by the silicon. However, the sodium and sulfur present in SDS should

be detectable.

RBS was carried out using a National Electrostatics Corporation 5SDH Pel-

letron Accelerator with RC43 endstation. In order to prevent loss of the low

molecular weight components, the films were cooled using liquid nitrogen imme-

diately after spinning, and their temperature maintained below -50 ◦C by cooling

the sample chamber. RBS experiments were carried out using a 1.5 MeV 4He+

ion beam incident on the sample surface using a range of angles from 60 to 80◦ to

the sample normal. The energy of backscattered 4He+ ions was determined using

a Canberra passivated implanted planar silicon (PIPS) detector with a nominal

energy resolution of 17 keV at 170◦ to the incident beam in a Cornell geometry.

Ion beam analysis data was analysed using the Surrey University DataFurnace

software.161 In order to convert the depth scale of the obtained concentration-

depth profiles from atoms per cm2 to nm, the densities of the film components

are needed. Values of 1.19, 1.26 and 1.01 g cm−3 were used for PVA, glycerol and

deuterated SDS respectively.

3.7 Atomic Force Microscopy

Atomic force microscopy (AFM) was used to measure lateral (x− y) variation in

the surface properties of polymer/surfactant films on the nanometre to micron

scale. This technique uses the deflection of a cantilever to obtain information

about a sample surface. A piezo-ceramic element capable of expanding or con-

tracting when a voltage gradient is applied moves the position of the sample

relative to the cantilever. Its deflection, as a result of changes in interactions

between the cantilever and the sample, is amplified by the position of a laser

reflected onto a photodiode.

A force-distance curve is generated at each pixel, describing the force exerted
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Figure 3.9: Force distance curve showing the adhesion force between the sample and
cantilever as the sample approaches the tip (grey) and as it is subsequently retracted
(black).

on the probe. A sketch of a representative force-distance curve is shown in Fig.

3.9. As the probe approaches the surface, attractive van der Waals forces exceed

the normal spring contact and the tip snaps into contact with the sample (a in

Fig. 3.9). As the distance between the probe and the sample decreases further,

the repulsive force increases (b). When the probe is subsequently withdrawn, and

distance increases, the tip remains in contact until strength of the Van der Waals

forces decrease such that the spring constant of the probe overcomes the attrac-

tive interactions (c). At this point the cantilever snaps back to the undeflected

position (d).162

AFM can be used in either contact mode or tapping mode. In contact mode,

the tip is in physical contact with the surface, and scans the surface either with a

specific height or under a constant force. This suffers problems with sample dam-

age due to adhesive and frictional forces. In tapping mode, when the cantilever

is oscillated, these problems are circumvented.

A Bruker MM8 Multimode AFM was used to characterise lateral variations in

the film surface properties. Films were spin cast onto silicon wafers (as described

in Section 3.2) which were cut to a size of 10 × 10 mm, and applied to a stainless

steel disk using double-sided tape, which was held by a magnet inside the AFM

sample housing. Analysis was made with a least 256 line resolution in Peakforce

quantitative nanoscale mechanical characterisation (QNM) mode at 2 kHz in the

vertical direction with a Bruker ScanAsyst-Air silicon tip on nitride layer probe,

with a force constant of 0.4 Nm−1. QNM is a variation of tapping mode in which

the sample is oscillated and the probe deflection is measured.

A number of parameters can be extracted in order to quantitatively assess the

surface topography of films. In this thesis, roughness will be primarily consid-
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ered. Prior to making taking roughness measurements, it is necessary to apply a

“Flatten” function to transform the image in order to remove distortion resulting

from any tilt and bow in the image.

Statistical values are calculated according to the heights of each pixel in the

image. A number of parameters can be obtained as statistical measurements of

roughness. In this thesis, average roughness Ra, root mean square roughness Rq,

and maximum roughness, Rmax, will be considered. Ra is the arithmetic average

of the surface height deviations from the mean plane, as defined by Equation

3.28, where N is the number of points, and Z represents the height values.

Ra =
1

N

N∑
j=1

|Zj| (3.28)

The root mean square roughness, Rq, represents the standard deviation of the

distribution of height values, calculated using Equation 3.29. This parameter is

greater than Ra, and is more sensitive to the larger deviations from the mean

plane.

Rq =

√√√√√ N∑
j=1

(Zj)2

N
(3.29)

Finally, Rmax represents the maximum vertical distance between the highest

and lowest height values.

3.8 Surface Tensiometry

There are a wide range of experimental methods used to determine the surface

tension, γ, of liquids, including the drop weight method and the Wilhelmy plate

method.163 In this thesis, the du Noüy ring method was used. This involves the

submersion of a platinum ring in the liquid of interest and measuring the force

required to detach it from the liquid surface (Figure 3.10). This force, F , is then

related to the surface tension of the liquid,

F = wring + 2π(R− a)γ cos θ + 2π(R + a)γ cos θ, (3.30)

where wring is the weight of the ring, R is the radius of the ring and the thickness

of the ring is 2a, so that (R − a) and (R + a) are equal to the radii of the inner

and outer ring of liquid film respectively. The high surface free energy of the

platinum means that it is completely wetted by the solution. As a << R, this
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Figure 3.10: Schematic of the du Noüy ring method for surface tensiometry.

equation can be simplified to Equation 3.31, where f is a correction factor to

account for the weight of the meniscus,163

F = wring + 4πRfγ. (3.31)

The surface tension of dilute aqueous solutions of PVA, glycerol and surfac-

tants were measured using a Krüss K10 tensiometer, equipped with a du Noüy

ring. This force tensiometer automatically calculates and displays the surface

tension value corresponding to the force needed to pull the liquid up. To ob-

tain accurate results, it is vital that the ring is very clean. The platinum ring

was therefore cleaned prior to measurements by holding it in a flame for ≈10 s.

Solutions were prepared using ultrahigh purity water obtained from a Sartorius

Arium R Comfort water purification system. Surface tension measurements were

subsequently performed at 20 ◦C. Repeat measurements were performed to check

reproducibility and the accuracy of the measurements was taken to 0.1 mN m−1.

3.9 Determination of Phase Diagrams

Solutions containing defined ratios of PVA and surfactant, in which the initial

total solute concentration was typically 10 wt.%, were prepared. These solutions

were applied to a glass slide which was thermostatted to 40 ◦C. The mass of

solution was regularly monitored and the point at which the solution became

cloudy was determined by visual inspection. As the total PVA and additive

content of the solution applied to the slides does not change throughout the

drying process, the average composition of the films could be determined from

the mass of solution at each point. These compositions were used to construct

ternary phase diagrams. An example phase diagram is included in Fig. 3.11,

56



Methods

where the red arrow indicates the change in composition upon drying a film

containing PVA and DDAO in a 9:1 ratio.

Figure 3.11: Example ternary phase diagram of the PVA/DDAO/water system, with
the red arrow indicating the compositional trajectory of a drying film containing 90%
PVA and 10% DDAO. Black data points represent the one-phase region, and red data
points represent the phase separated region, as indicated by the clouding of the sample.

3.10 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) can be used to identify thermal tran-

sitions in materials including melting points (Tm) and glass transition temper-

atures (Tg). Although the glass transition of PVA is often not calorimetrically

detectable, in this thesis, DSC has been used to identify melting points of samples.

Approximately 10 mg of solution cast film was weighed into DSC pans, which

was heated alongside an empty pan at a constant rate. During this heating, the

difference between heat flow to the sample-containing pan and the empty pan

was measured. Measurements were performed using a Perkin Elmer DSC 8000.

Samples were generally heated from 25 to 250 ◦C at a rate of 10 ◦C min−1 and

then subsequently cooled at the same rate. DSC measurements were carried out

by Douglas Carswell at the thermal analysis service, Department of Chemistry,

Durham University.
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3.11 Dynamic Mechanical Analysis

Dynamic mechanical analysis was performed in order to identify the glass tran-

sition temperatures of samples. In this technique, a sinusoidal strain is applied

to the material, and the resulting stress is measured, allowing the complex mod-

ulus to be determined. This consists of the storage modulus (G’) and the loss

modulus (G”), which represent the viscous and elastic behaviour of the material

respectively.

Samples for DMA were prepared by solution casting aqueous solutions of

polymer (and additives) containing 10 wt.% total solute, into PDMS moulds (35

× 10 mm rectangles).

DMA was carried out with a temperature ramp from -40 to 100 ◦C at 3 ◦C

min−1, and subsequent cooling at the same rate, using a TA Instruments DMA

Q800 with nitrogen cooling. Samples were oscillated at a frequency of 1 Hz in an

8 mm 3-point bend geometry. The amplitude of the oscillation was set at 2 %

strain. The glass transition temperature was inferred from the maximum of the

peak in tan δ, where δ is the phase angle, calculated as tan δ = G′′

G′
. An average

value of the tan delta values determined upon heating and cooling the film was

used. Some DMA measurements were carried out by Alex Robertson.

3.12 Thermal Gravimetric Analysis

Thermogravimetric analysis (TGA) is a method of thermal analysis that monitors

the mass of a sample over time as the temperature is changed. It can be used to

assess the thermal stability and volatility of components, and detect any water

desorption upon heating.

TGA was performed on a Perkin-Elmer Pyris 1 TGA under a flow of com-

pressed air. In Chapter 6, samples were heated at a rate of 1 ◦C min−1 to 80
◦C, and also at a rate of 10 ◦C min−1 to 400 ◦C to explore additive volatility. In

Chapter 9 samples were heated at a rate of 10 ◦C min−1 to 200 ◦C in order to

determine the water content of the solution cast resins. TGA measurements were

carried out by Douglas Carswell at the thermal analysis service, Department of

Chemistry, Durham University.

3.13 Positron Annihilation Lifetime Spectroscopy

Positron annihilation lifetime spectroscopy is a valuable technique in probing the

free volume properties of polymers.
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A positron is the antiparticle of the electron. In normal matter, positrons have

very short lifetimes, annihilating with electrons to form gamma rays. There are

three modes of positron decay. The fastest decay mode involves the formation of

a bound state of a positron with an electron, where the particles have antiparallel

quantum spin states. The bound state of a positron and an electron is known as

positronium, and the positronium species in which the electron and positron have

antiparallel spins is a singlet state, termed para-positronium (p-Ps). This species

has a characteristic lifetime (the mean lifetime associated with the exponential

decay to two 0.511 MeV gamma rays), denoted τ1, of 0.12 ns.164,165

Second, positrons can annihilate via direct impact with an electron. This has

a longer characteristic lifetime, τ2, of 0.3-0.5 ns, due to its lower probability of

occurrence164,165

Third, a positron can form a bound state with an electron where the quan-

tum spin states of the two particles are parallel. This triplet state is termed

ortho-positronium, o-Ps, and has a characteristic lifetime in a vacuum of 142 ns,

substantially longer than the mean lifetime of the p-Ps. In contrast to p-Ps, the

decay of o-Ps involves the generation of three 0.511 MeV gamma rays. In mate-

rials such as polymers, this lifetime is significantly reduced due to the interaction

of the positronium with other electrons. Thermally equilibrated positrons that

are bound to electrons in the form of o-Ps become trapped in voids until the

positron is annihilated. The void is assumed to be spherical, with o-Ps occupy-

ing the centre of the hole and the walls comprising electrons from neighbouring

molecules. Importantly, the positron is not annihilated by the electron to which

it is bound, but is “picked-off” by an electron in its neighbouring environment.

As a result, the lifetime of o-Ps is directly related to the size of the voids. This

forms the basis of PALS measurements.165

Experimentally, 22Na is usually used as a positron source, which decays to
22Ne, emitting a gamma ray of 1.28 MeV. When the positronium annihilates

gamma rays of 0.511 MeV are generated. Therefore in order to obtain a lifetime

decay curve, two gamma ray detectors are needed in order to detect these two

energies, connected to a clock that can resolve events occurring nanoseconds

apart. As positrons are emitted from the 22Na source much less frequently (≈
once every 1.5 ms) there is little chance of overlap of annihilation events. When

the gamma ray of 1.28 MeV is detected it starts the clock, which stops upon

detection of the 0.511 MeV gamma ray. The experimental set-up used in Chapter

9 is shown in Fig. 3.12.

In this study, PALS experiments were carried out in the Department of Poly-

mer Science at Stellenbosch University, South Africa. Samples were solution cast
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Figure 3.12: PALS experimental setup.

from solutions containing 10 wt.% solute into aluminium dishes at 40 ◦C. Some

samples were then dried under vacuum for 24 h (depending on the study). PALS

measurements were carried out using a fast-fast coincidence circuit. A 1 µCi 22Na

positron source (in the form of NaCl) was sealed in 6 µm aluminium foil, sand-

wiched between two identical stacks of film (each 1-2 mm). This thickness of film

is required to ensure that there is little chance of the positron annihilating outside

of the sample. The sandwich was sealed in aluminium foil and placed between

the two detectors to acquire a lifetime spectrum. Each spectrum was collected

to 1 million counts from annihilation events. The time resolution was monitored

(to 250 ps) using a 60Co source. Temperature control was achieved by attaching

the sample sandwich to a temperature-controlled plate placed between the two

detectors. Unless otherwise specified, PALS measurements were conducted at 20
◦C.

The positron decay spectra are made up of a series of lifetimes attributable to

the different positron annihilation mechanisms. The lifetime data was resolved

into three finite components, τ1, τ2 and τ3, corresponding to each of the annihi-

lation mechanisms, using the PATFIT program.166

As previously described, τ3 is correlated to the mean hole size, and was used

to obtain the medium free volume cavity radius using an empirical equation,167

τ−1
3 = 2

[
1− R

R0

+
1

2π
sin

(
2π.R

R0

)]
. (3.32)

Here, R is the radius of the hole and R0 = R + ∆R where ∆R is the width

of the electron layer at the internal surface of the potential well, determined to

be 1.656 Å.167 In the absence of positron or positronium chemical effects, the

probability of o-Ps formation is proportional to the number of regions of low

electron density (where o-Ps localisation is possible). The relative intensity of

the o-Ps annihilation lifetime (I3) is a percentage of the positrons annihilating by

the pickoff mechanism, and is therefore related to the free volume fraction. As a

result, the o-Ps intensity can be used to assess the influence of different factors

60



Methods

on the fractional free volume change using

fv = CI3Vf , (3.33)

where fv is the free volume fraction, and Vf is the volume of voids assumed to be

spherical cavities of radius R, determined using Equation (3.32). C is a constant

which reflects the probability of o-Ps formation and is independent of free volume,

estimated to be 0.0018.167
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Chapter 4

Segregation of SDS in PVA Films

Some of the work comprising this chapter has been published as: Briddick, A.;

Fong, R.J.; Sabattié, E. F. D.; Li, P.; Skoda, M. W. A.; Courchay, F.; Thompson,

R.L. “Blooming of Smectic Surfactant/Plasticizer Layers on Spin-Cast Poly(vinyl

alcohol) Films.” Langmuir, 34, 1410, 2018.

4.1 Chapter Introduction

This chapter focusses on the distribution of a single surfactant additive, sodium

dodecyl sulfate (SDS), in PVA films. By extending the previous characterisation

of additive segregation of a cationic and non-ionic surfactant in PVA films,168 and

continuing to explore the behaviour of different additives, the aim is to better

understand the factors affecting the surfactant distribution in PVA, including the

role of a model plasticiser.

SDS is an anionic surfactant, with the structure shown in Fig. 4.1. SDS is

commonly used as an emulsifying cleaning agent in household cleaning products

including laundry detergents, spray cleaners, and dishwasher detergents.169 The

interactions of this surfactant with proteins and polymer gels are of huge impor-

tance in biology; for example SDS polyacrylamide gel electrophoresis (PAGE) is

used as a means to separate proteins according to their size.170 This surfactant has

previously been demonstrated to be capable of modifying the properties of poly-

mer films, affecting the tensile strength, elongation at break and water vapour

barrier properties of soy protein isolate films plasticised with glycerol.171 The

wide range of studies using SDS as a model surfactant, particularly in the study

of polymer-surfactant interactions,48,50–52,172,173 make this a useful surfactant to

use in a model film system to explore surfactant behaviour in PVA.

In this chapter, neutron reflectivity is used as the primary tool to determine

the vertical depth distribution of SDS, and thus quantify its segregation, both in
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Figure 4.1: Structure of sodium dodecyl sulfate.

binary films (where SDS is the only additive) and in films plasticised by glycerol.

This chapter also describes the use of atomic force microscopy to explore the

lateral distribution of surfactant and investigate any possible correlation to the

observed depth profiles. Finally, neutron reflectivity is used to assess the effect

of film thickness on SDS distribution in plasticised films in order to better un-

derstand the role of plasticiser in SDS segregation, and begin to bridge the gap

between the simplest nanometre scale films previously studied,147,174 and com-

plex industrial films. Here, Rutherford backscattering is used as a complementary

technique to identify the SDS distribution in thick films.

4.2 Results

4.2.1 Surfactant Distribution in PVA Films

4.2.1.1 Binary Films

Neutron reflectivity was used to determine the distribution of surfactant in PVA

films. Model films consisting only of PVA and SDS were initially studied, with

the deuterium labelling of the surfactant enabling high-precision depth profiles

to be measured, as discussed in Chapter 3.

Hydrogenated materials (SDS, glycerol, PVA) were obtained from Sigma

Aldrich (Chapter 3), d25 SDS (hereafter referred to as “dSDS”) was supplied

by Rutherford Appleton Laboratories, and d5 glycerol (hereafter referred to as

“d-glycerol”) was obtained from CK isotopes. For this study a partially hydrol-

ysed (87-90 % DH) PVA resin with a molecular weight range of 30-70 kg mol−1

was used in order to represent the polymer in the industrial films.

∼50 nm thick films, containing 5 and 10 wt.% dSDS were spin-cast, and

SLD versus depth profiles were obtained by fitting the obtained reflectivity data,

which could be simply converted into an additive depth profile. The observed

SLD is made up of contributions from the two film components, and is assumed

to vary linearly with composition between the SLDs of pure PVA and pure dSDS

(Equation 4.1) (any non-linearity from a non-zero volume of mixing is likely to

be negligible). The volume fraction profile of dSDS, φdSDS(z), can therefore be

determined from Equation 4.2, where ρ is the measured SLD, and ρdSDS and
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ρPVA are the SLDs of pure dSDS and pure PVA respectively. The SLDs of all

film components used in this chapter are listed in Table 4.1.

ρ(z) = φdSDS(z)ρdSDS + ρPVA(1− φdSDS(z)) (4.1)

φdSDS(z) =
ρ− ρPVA

ρd−SDS − ρPVA

(4.2)

Table 4.1: Film component SLDs.

Component SLD/ 10−6Å−2

h-PVA (88% DH) (Sigma Aldrich) 0.75
hSDS (Sigma Aldrich) 0.34

d25 SDS (Rutherford Appleton Laboratories) 6.77
h-glycerol (Sigma Aldrich) 0.61
d5-glycerol (CK Isotopes) 4.91

As shown in Fig. 4.2, the obtained reflectivity data does not correspond to

a homogeneous film, indicated by the curvature superimposed onto the Kiessig

fringes, so it cannot be fitted to a simple 2-layer model. The data was therefore

initially fitted using a three-layer model, with the layers corresponding to a silicon

oxide layer on the substrate, the bulk film and a surface excess layer. This was

found to be the simplest model capable of adequately capturing the features in

the reflectivity data.

From these depth profiles it is apparent that SDS shows significant surface

segregation. However, the concentration-depth profiles determined from these

3-layer fits show that the films spin cast from solutions containing 5 wt.% and

10 wt.% dSDS, also contain surfactant in the bulk film, with the values for φdSDS

in the bulk film being 0.028 and 0.026 respectively (Table 4.2), corresponding to

concentrations of 2.6 and 2.4 wt.% dSDS.

Although an adequate fit can be obtained when the reflectivity data for these

two films is fitted using an SLD of the bulk film layer corresponding to pure PVA

(and thus reflecting complete segregation of the surfactant), the model captures

the fringes at lower Q much better if the SLD is allowed to increase to values

significantly greater than that of pure PVA. These fits are illustrated in Fig. 4.3.

Determining the total volume fraction of surfactant, φSDS,tot, by integrating

under the volume fraction-depth profile can provide a good indicator of how well

the model represents the film, as it should replicate the fraction of surfactant

in the solutions used for spin-coating. In the depth profile shown in Fig. 4.2,

φSDS,tot = 0.055 ± 0.010 (corresponding to 0.05 ± 0.01 wt.%) in the film spun
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Figure 4.2: Depth profiles of dSDS in PVA films with surfactant loadings of 5 wt.%
and 10 wt.%. Neutron reflectivity data and fits according to the three layer model are
shown in the inset, with data for 5 wt.% dSDS offset for clarity.

 5% dSDS
 10% dSDS

R

Q/ Å-1

Figure 4.3: NR data and fits obtained when the SLD of the bulk film layer was fixed
at the SLD for pure PVA.

from the solution containing 5 wt.% dSDS (of the total solute content), and

φSDS,tot = 0.072±0.010 (corresponding to 0.07±0.01 wt.%) in the film spun from

the solution containing 10 wt.% dSDS. However, from the volume fraction-depth

profile shown in Fig. 4.3, φSDS,tot = 0.016± 0.003 for the film containing 5 wt.%
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dSDS with φSDS,tot = 0.034 ± 0.005 for the film containing 10 wt.% dSDS. The

values obtained from Fig. 4.2 replicates the solution much better, and thus should

better represent the structure of the film, signifying that complete surfactant

segregation, where all SDS is excluded from the bulk PVA film, does not occur.

Upon increasing the surfactant loading from 5 % to 10 %, the thickness of the

segregated layer remains approximately constant, but the SDS volume fraction

in this layer increases from 0.51±0.02 to 0.87±0.01 (49±2 to 86±1 wt.%), with

very little change in the bulk dSDS concentration. This is therefore consistent

with a model for additive migration developed by Wakabayashi et al.,43 which

involves the dissolution of additive into the amorphous regions of polymer until

saturation solubility is reached, and the diffusion of additional additive to the

film surface.

The surface excess, z∗, defined by Equation 4.3, where φb is the bulk additive

concentration and φ(z) is the volume fraction profile in the surface region, can be

used to quantify additive segregation. The surface excess represents the amount

of material segregated from the bulk in excess of what the concentration would

be if the bulk concentration persisted all the way to the interface, and it is the

equivalent thickness of a pure layer of segregated additive. The fraction, f , of

total additive volume fraction (φdSDS(tot)) segregated to the surface can also be

calculated (Equation 4.4) and compared. These values are included in Table 4.2.

Comparison of f values has the advantage of accounting for the variation in total

surfactant content in the film, as well as film thickness, thereby scaling for the

total amount of surfactant present.

z∗ =

∫ ∞
0

φ(z)− φb dz (4.3)

f =
z∗

φdSDS(tot)

(4.4)

Integrating under the entire depth profile, from the air to substrate interfaces,

provides a value for φdSDS(tot), which can be converted to weight percentage (w),

in order to compare with the concentration of surfactant in the solutions used to

spin-cast the films, which should be similar. These values are reported in Table

4.3. Although many of the values for the total additive weight percentage in the

film are consistent with the concentration of SDS in the solutions used for spin-

casting, there are some exceptions where there is a significant discrepancy (for

example the binary film containing 10 wt.% dSDS). Although this could in part

be due to the ratio of solutes not remaining constant throughout the spin-casting,

it would be expected that this effect would be be systematic. This discrepancy is
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therefore likely to be a result of the uncertainty in fitting the SLD of the bulk layer;

slight variations in this parameter have little effect on the reflectivity, and so the

uncertainties reported in this concentration (Table 4.3) may be underestimated.

Another factor that should be considered is the presence of atmospheric water

absorbed into the spin-cast film. With a low SLD of -0.56 ×10−6Å−2, this is

likely to cause a small, but largely systematic, shift in the SLD of the bulk film,

and thus lead to slightly lower than true values for the bulk dSDS concentration.

This may account for the discrepancy between volume fractions from solutions

and those apparent from the neutron reflectivity measurements.

Table 4.2: Surface excess of dSDS and fraction of segregated surfactant in spin-cast
PVA films.

[dSDS]/wt.%
z∗/nm f φdSDS(bulk)/ 10−2

Binary Plast. Binary Plast. Binary Plast.
2 - 0.2±0.1 - 0.5±0.2 - 0.42± 0.01
5 1.3±0.1 2.4±0.4 0.25±0.04 0.5±0.2 2.8± 0.1 1.6± 0.1
10 3.4±0.1 5.5±0.1 0.3±0.1 0.9±0.1 2.6± 0.2 2.5± 0.1

Table 4.3: Concentration of dSDS in the solutions used for spin casting, and total
surfactant volume fraction and weight percentage in the film as determined from NR.

[dSDS]sol/wt.% φdSDS(tot)/10−2 wdSDS(film)/wt.%

Binary
5.0± 0.5 5.7± 0.1 5.3± 0.1
10.0± 0.5 6.9± 0.2 6.4± 0.2

Plast.
2.0± 0.5 0.8± 0.2 0.7± 0.2
5.0± 0.5 5.9± 0.4 5.4± 0.4
10.0± 0.5 8.4± 0.5 7.8± 0.5

4.2.1.2 Plasticised Films

PVA generally requires plasticisation to achieve the required mechanical prop-

erties for industrial applications (such as its use as hydrogels for biomedical ap-

plications, as well as for the encapsulating film in unit dose detergents).11 The

impact of plasticiser inclusion on the segregation behaviour in this model sys-

tem was therefore assessed. Glycerol was incorporated as a model plasticiser,

with a loading fixed at 20 wt.%. In this plasticised system, conversion of the

SLD profiles to volume fraction profiles of the deuterated species is complicated

by the presence of three components, but can be estimated by assuming that

the ratio of the two hydrogenated components remains constant throughout the

film. Although this may not necessarily be the case (as discussed further in Sec-

tion 4.2.2), the similar SLD of h-PVA and h-glycerol (0.75 ×10−6 Å
−2

and 0.61
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×10−6 Å
−2

respectively) means that an inhomogeneous distribution of plasticiser

will have little effect on the calculated volume fraction profile of the deuterated

species, which has a much higher SLD. The obtained depth profiles of dSDS in

the plasticised films are shown in Fig. 4.5, with fitted parameters summarised in

Tables 4.2 and 4.3.

As for the binary films, the plasticised films containing 2 and 5 wt.% dSDS

could be fitted well using a three-layer model, corresponding to a surface layer

significantly enriched in surfactant, a bulk film layer, and the SiOx substrate layer.

However, this model could not satisfactorily fit the reflectivity data obtained from

the film containing 10 wt.% SDS. To illustrate, the best 3 layer model fit and

profile is included in Fig. 4.4. An improved fit could be obtained by including

an additional layer in the surface excess. The depth profile therefore corresponds

to a surface layer of almost pure surfactant and a second layer comprising PVA

substantially enriched in surfactant.

f d
SD

S(
z)

Depth/ nm

R

Q/ Å-1

Figure 4.4: Depth profiles of dSDS in PVA films plasticised with 20 wt.% glycerol
fitted using a 3-layer model. Neutron reflectivity data and fit are shown in the inset.

Glycerol has been previously demonstrated to have excellent compatibility

with PVA, exhibiting no segregation from the PVA matrix in the absence of

any other additive.168 However, from these profiles it can be seen that there is a

significant enhancement of surfactant segregation in the presence of glycerol; com-

parison with the distribution of dSDS in binary films (Fig. 4.2) reveals that the

incorporation of plasticiser results in a significant increase in both the thickness
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 2% dSDS
 5% dSDS
 10% dSDS

Figure 4.5: Depth profiles of dSDS in PVA films plasticised with 20 wt.% glycerol.
Neutron reflectivity data and fits are shown in the inset, with data for films containing
2 wt.% and 5 wt.% dSDS offset for clarity.

of the segregated layer and concentration of dSDS in this layer. As for the binary

films, calculation of the surface excess and the fraction of segregated surfactant,

f , enables the increasing surfactant segregation in the presence of glycerol to be

quantified. These values are reported in Table 4.2, with the total additive volume

fractions and weight percentages presented in Table 4.3. From this, it can be seen

that the plasticised films exhibit a surface excess even at a surfactant loading as

low as 2 wt.%, with z∗ increasing with dSDS concentration, as observed for the

non-plasticised system. As a result, the volume fraction of surfactant in the sub-

surface film is lower in the plasticised films than in the binary films, dropping

from 0.028 to 0.016 in the films spun from solutions containing 5 wt.% dSDS, and

dropping from 0.036 to 0.025 in the films spun from solutions containing 10 wt.%

dSDS. The increase in f upon plasticisation confirms that the enhancement of

the surface excess by glycerol is not simply a result of variation in film thickness

(and therefore total amount of surfactant molecules present in the film), or slight

variations in the total surfactant concentration.

4.2.2 Effect of Film Thickness on Segregation

The effect of film thickness on the distribution of film components was investi-

gated in the PVA/SDS/glycerol system. One motivation for this investigation is
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to bridge the gap between the model thin films previously studied and the com-

mercial films used in unit dose detergents. Exploring the effect of film thickness

could also help obtain a greater understanding of the reasons for the significant

enhancement in the surface excess upon plasticiser incorporation which would

help enable the prediction of segregation.

In addition, from Figures 4.2 and 4.5, it can be seen that z∗ may be limited

by the amount of surfactant available at low dSDS concentrations. At equilib-

rium, the thickness of the wetting layer formed in a two-phase mixture would

be expected to correlate with the total film thickness (and thus total amount of

surfactant available that is in excess of the bulk solubility). A more thorough

investigation into the effect of film thickness should therefore deliver insights into

whether equilibrium in these spin-cast plasticised films is achieved.

Reflectivity data were collected on plasticised films of different total thickness,

which was controlled by spin casting films from aqueous solutions of different

total solute concentration but with the same ratio of film components. Aqueous

solutions with total solute concentrations from 4 wt.% to 12 wt.% were used,

which produced films of thicknesses from 50 nm to approximately 1500 nm. The

surfactant loading in the film was varied from 2-10 wt.%, with the plasticiser

concentration fixed at 20 wt.%. For this part of the study, two contrasts were

used: deuterated surfactant with hydrogenated PVA and glycerol and deuterated

glycerol with hydrogenated PVA and surfactant. This enables the isolation of

the concentration profiles of both SDS and glycerol, allowing the impact of the

surfactant on the plasticiser distribution to be determined.

4.2.2.1 Films Containing 2 wt.% SDS

Films with 2 wt.% SDS were initially studied. This surfactant loading is most

industrially relevant as doses of additive present in films are typically very low.

Figure 4.6 shows the reflectivity data and fits for films containing 2 wt.% dSDS

and 20 wt.% glycerol which were spin cast from solutions of 4, 6 and 8 wt.% total

solute concentration. For each of these films, the total sample thickness was low

enough that the Kiessig fringes (which are present due to the constructive and

destructive interference of neutrons reflected from the film surface and substrate)

could be resolved in order to accurately determine the total film thickness.

The three samples could all be fitted using a model consisting of a single

surfactant-rich segregated layer and a layer corresponding to the bulk film. As

the total film thickness increases from 50 nm to 210 nm, there is very little

change in the thickness of the surface excess layer, although the concentration

of dSDS in this layer increases. With this very low surfactant loading, for each
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film thickness, φdSDS in the surface layer is significantly less than 1, and thus

it is apparent that there is no full coverage of the surface by a wetting layer of

dSDS, with the surface layer consisting of hydrogenated material significantly

enriched in surfactant. The obtained depth profiles indicate that the size of the

surface excess increases with film thickness, and therefore depends on the total

amount of available surfactant, rather than only on the surfactant concentration

relative to PVA concentration. However, it is clear that while the SDS volume

fraction increases with film thickness (and thus amount of available surfactant),

the thickness of this surface layer remains approximately constant. This suggests

that in the thinner films, the lack of full coverage of the surface layer is a result

of the limited amount of surfactant present in the system. Calculation of z∗

and f allows quantification of this effect. Table 4.4 shows that although the

surface excess increases significantly with film thickness, the fraction of segregated

surfactant appears to be constant for all film thicknesses measured, within the

uncertainty of this value. As described in Chapter 3, the reported errors are

determined by adding the uncertainties in each of the relevant fitted parameters

in quadrature. For both z∗ and f this includes the error associated with the

volume fraction of surfactant in the bulk film, which is generally captured by the

fit with a large relative error.

Table 4.4: Surface excess of deuterated SDS and fraction of segregated surfactant in
films spin-cast from solutions containing 2 wt.% dSDS and 20 wt.% h-glycerol.

Film Thickness/ nm z∗/ nm f
50 0.2±0.1 0.8±0.1
150 0.6±0.2 1.0±0.3
210 1.5±0.2 0.6±0.1

It is possible to further establish the nature of the surface excess by considering

the reflectivity data and obtained depth profiles from films containing d-glycerol

and hSDS in order to characterise the distribution of glycerol. SLD-concentration

profiles of films containing 2 wt.% hSDS and 20 wt.% d-glycerol of varying film

thickness (spun from solutions of different total solute concentration) are shown

in Fig. 4.7.

As discussed previously, in order to convert the SLD profiles into volume

fraction profiles, it must be assumed that the ratio of the two hydrogenated com-

ponents remains constant throughout the entire film. From Fig. 4.7, this is clearly

not the case. As hSDS has a significantly lower SLD than PVA (Table 4.1), the

extensive SDS segregation observed means that calculation of the additive con-

centration from the SLD profile using the same approach as for the other contrast,
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Figure 4.6: Volume fraction depth profiles of dSDS in plasticised PVA films of varying
total film thickness. Neutron reflectivity data and fits are shown in the inset, with data
for the thickest films offset for clarity.

assuming the ratio of the two hydrogenated species remains constant throughout

entire film, would tend to result in the underestimation of the concentration of

d-glycerol in the surface layer. Unlike the other contrast, the greater difference

in the SLDs of the two hydrogenated components and the strong segregation of

SDS means that an average SLD of the two hydrogenated components cannot

be assumed throughout the thickness of the film. If the surface of the film was

rich in surfactant, the SLD of the first layer would be lower than the weighted

average of the two hydrogenated components, and would result in a calculated

unphysical negative concentration of d-glycerol. The distribution of glycerol in

the films will therefore be assessed directly from the SLD profile. Although col-

lecting data using two contrasts is helpful to fully characterise the distribution

of film components, the depth profiles from the films of the two contrasts spin-

cast from each concentration of solution cannot generally be superimposed due

to slight variations in surfactant loading and film thickness.

The two thinnest films could be successfully fitted using a three-layer model

similarly to the other contrast, consisting of a thin layer of polymer apparently

enriched in deuterated additive, a layer corresponding to the bulk film where addi-

tive is evenly distributed, and the substrate layer. For both films, it can be seen

that the concentration of glycerol throughout the bulk remains approximately
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Figure 4.7: SLD-depth profiles of PVA films containing 20 wt.% d-glycerol and 2
wt.% hSDS, with varying total film thickness. Neutron reflectivity data and fits are
shown in the inset, with data for the thickest films offset for clarity.

constant, reflecting the very small amount of glycerol that actually segregates.

However, a slight enrichment of glycerol on the surface is apparent over the same

lengthscale as that of the segregated dSDS observed using the dSDS/h-glycerol

contrast, which was not previously observed for binary d-glycerol/PVA films.168

This suggests the co-adsorption of the two additives on the surface. Upon in-

creasing the film thickness from 50 nm to 100 nm, there is only a very modest

increase in the amount of segregated glycerol, as determined by the area under

the first “peak”, where the SLD of this layer is unchanged, but a slight increase

in thickness is observed.

The reflectivity data for the two thicker films contains features at high Q

(> 0.1 Å
−1

), that can not be adequately captured using a three-layer model.

It has previously been shown that when SDS concentration is high (20 wt.%),

nanostructuring of the surface excess can occur in thin films, where surfactant

bilayers stack on the surface, separated by interstitial glycerol layers.174 Although

not observed in the limited range of film thicknesses studied to determine the

depth profiles of dSDS, these features at high Q in the reflectivity obtained for

thick films containing d-glycerol and hSDS, suggest that this structured surface

excess could occur in films containing low concentrations of surfactant, when the

thickness is such that a large amount of the additive is present. These films were
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therefore fitted with a model with a higher level of complexity, allowing for a

degree of structuring to the surface excess.

The 240 nm thick film could be adequately fitted by incorporating an addi-

tional layer of lower SLD below the glycerol-enriched layer. The best fit corre-

sponds to a thin, well-defined layer of high SLD on the surface, and a thicker

layer of low SLD (0.35 ×10−6 Å−2) corresponding well to a layer of pure SDS.

The layer of glycerol on the film surface is much thinner than for the two films of

lower total thickness, and the higher SLD shows there is a higher concentration of

glycerol in this layer, compared to in the 50 and 100 nm thick films. The length-

scale corresponds well to a surface monolayer of the plasticiser, suggesting that in

the thicker film, when there is a greater total amount of surfactant present that

is capable of segregating, the additives can begin to form more ordered structures

even with a very low surfactant concentration relative to PVA.

The thickest film, spun from solution containing 12 wt.% total solute, must

be fitted with a further degree of structure. Although the total thickness can-

not be determined as the Kiessig fringes cannot be resolved, it is estimated to

be approximately 1.5 µm by scratching a representative film and using AFM to

measure the difference in height between the substrate and the film. This value

is also consistent with the mass of the film (∼ 0.004g on a 55 mm silicon block).

It is clear that the surface region of this film is substantially thicker than that

of the 50, 100 and 240 nm films, demonstrating that the size of the surface ex-

cess is dependent on the total amount of additive present, rather than solely on

its concentration relative to PVA. This could not have been inferred from the

limited range of film thicknesses studied with the other contrast. In this thick

film containing d-glycerol, below a surface layer of low SLD, there are two thin

layers of high SLD separated by another layer of low SLD. The structure fitted

to the data therefore corresponds to two layers of almost pure SDS separated

by interstitial glycerol layers, as has been previously observed.174 Although the

layers in the SLD profile are not well-defined, this is to be expected for a number

of reasons. First, perfectly separated glycerol and surfactant layers are unlikely

to be present throughout the entirety of the film surface, and thus the presence

of defects is likely. The formation of this structure requires the majority of sur-

factant molecules to assemble into layers over a very short timescales and as the

surfactant concentration is low, the presence of polymer chains trapped within

the surface excess are likely to disrupt the structure. Second, an average SLD

for each component was used, with the assumption that it does not vary across

the molecule. In reality, the variation in SLD from the head group to the tail of

dSDS will cause an apparent roughening of the profile and thus loss of definition
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of the layers.

Again, in the two thicker films, the SLD remains constant throughout the

bulk film, with a value corresponding to ∼ 80 % PVA and ∼ 20 wt.% d-glycerol,

showing the low extent of glycerol segregation.

As it was determined from the other contrast that only a very low con-

centration of dSDS is present in the bulk film (φb (dSDS) was determined to be

4.2 × 10−3, 1.7 × 10−4 and 7.0 × 10−3 for the 50 nm, 150 nm and 210 nm films

respectively), the concentration of SDS in the bulk film will have little effect

on the SLD of the bulk layer. This means that the bulk film can therefore be

approximated to have the SLD of PVA. Taking the additional assumption that

the surface layer comprises solely of SDS and d-glycerol, the d-glycerol surface

excess, z∗, can then be calculated in order to quantify its segregation (Table 4.5).

It should be noted that while this assumption is likely to be valid for the two

thickest films, the dSDS depth profiles in Fig. 4.6 show a relatively low volume

fraction of dSDS in the surface layer of the thinnest film. This suggests that poly-

mer is likely to be present in this layer, which would result in the values presented

in Table 4.5 being an overestimate of z∗. To illustrate, if the composition of the

hydrogenous components in this layer was 10 % PVA and 90 % SDS (v/v), z∗

would become 0.3 nm. From this substantial decrease from z∗ = 0.4 nm, assum-

ing no polymer on the surface, it is therefore clear that if substantial amounts of

polymer are present in this layer, this approach to determine the surface excess

of glycerol is unreliable. Indeed, despite there being a peak in the SLD at the

surface, should this layer contain substantial amounts of PVA (> 40%), it would

actually still correspond to a layer depleted in glycerol.

Table 4.5: Surface excess of deuterated glycerol in films spin-cast from solutions
containing 2 wt.% hSDS and 20 wt.% d-glycerol.

Film Thickness/ nm z∗/ nm
50 0.4±0.1
100 0.6±0.2
240 -0.5±0.2

Thick (>600 nm ) -0.5±0.2

4.2.2.2 Higher Surfactant Loadings

This study was subsequently extended to films containing 5 and 10 wt. % SDS.

The concentration-depth profiles of 5 wt.% dSDS in films of different thicknesses

are shown in Fig. 4.8.
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Figure 4.8: Volume fraction-depth profiles of dSDS in plasticised PVA films containing
5 wt.% dSDS of varying total film thickness. Neutron reflectivity data and fits are shown
in the inset, with data for the thicker films offset for clarity.

For the two thinnest films, a three layer model (as previously described) can

adequately capture all features in the reflectivity data, although the fit to the 100

nm film is imperfect at Q ≈ 0.2 Å
−1

for this simple model. The same effect can be

seen as for the films containing 2 wt.% dSDS, where increasing the film thickness

does not significantly affect the thickness of the surface layer, but increases the

volume fraction of SDS in this layer, suggesting that increasing the amount of

available surfactant excludes PVA from the surface.

For the thicker films containing 5 wt.% dSDS, a model consisting of a single

segregated layer cannot successfully capture the features at high Q (> 0.1 Å
−1

),

notably a weak Bragg peak at Q ≈ 0.15 Å−1, indicative of repeating structures,

which cause interference of scattering. This Bragg peak corresponds to structures

on a lengthscale of 4 nm (= 2π/Qpeak), that are not reproduced by the three-

layer model, indicating a depth profile with a greater level of complexity. Here

it is helpful to clarify the appearance of Bragg peaks in the reflectivity data,

and distinguish them from of fringes, which systematically decrease in size with

increasing Q. This is illustrated in Fig. 4.9.

The appearance of this Bragg peak shows the development of multi-layer

features begin as SDS loading increases. A profile with a degree of structure

to the segregated layer was therefore considered for the thicker films. In order
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Figure 4.9: NR data obtained from a film spun from and 8 wt.% solution containing
5 wt.% dSDS and 20 wt.% h-glycerol, indicating the presence of both fringes and Bragg
peaks.

to avoid over-parameterisation, the simplest multilayer model was used to fit

the data, which consists of two repeating layers, where the thickness, SLD and

roughness of each of the two layers comprising the multilayer is able to vary during

the fitting, but these parameters are constant for each repeat. The number of

repeated multilayers was systematically increased until the best fit was obtained.

This model allowed a much more precise fit to the data throughout the entire Q

range to be obtained. For films containing 5 wt.% dSDS, and spun from 8 wt.%

and 10 wt.% solution, it was found that a profile consisting of layers of highly

concentrated dSDS (high SLD) separated by layers of hydrogenated material

(low SLD) could fit the data precisely throughout the whole Q range. The films

spun from 8 wt.% and 10 wt.% solution contain 3 and 4 multilayers respectively,

which consist of layers of almost pure dSDS ( ≈ 30 Å) and layers of hydrogenated

material (≈ 3 Å).

As discussed for the lower surfactant loading, the lack of completely defined

layers is likely to be a result of the uneven SLD distribution throughout the

ordered SDS layers (a degree of roughness arising from variation in SLD along

the SDS molecule would be expected even for perfectly aligned surfactant layers),

as well as the presence of defects in the highly structured surface excess. It is

remarkable that, despite the parameters of the layers comprising the multilayer
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being constrained very little, and permitted to vary over wide limits during the

fit, very consistent values for thickness and SLD were obtained for the films spun

from solution containing 8 and 10 wt.% total solute, with just one extra repeat

present for the latter film. Reflectivity data for the thickest film (represented

in green in Fig. 4.8) contains fewer features, as they are likely to have been

washed out by roughness in the film and defects in a large number of stacked

layers, and it is therefore difficult to characterise accurately using the multilayer

model. However the reflectivity can be well characterised using the simple 3-layer

model used for the thinnest films, with the exception of the small Bragg peak at

high Q which cannot be captured by this non-oscillating profile. By assessing the

SLD-concentration profiles obtained from each film containing 5 wt.% dSDS, it

is immediately clear that the surface excess increases with film thickness.

This same trend is apparent in films containing 10 wt.% dSDS (1:9 ratio of

dSDS:PVA). Figure 4.10 shows the approximate distribution of dSDS in films

spin-cast from solutions containing 4, 8 and 12 wt.% total solute, each containing

10 wt.% surfactant, where a clear increase in the surface excess with film thickness

is again apparent. A Bragg peak can be identified at high Q for the thicker films,

but due to the complexity of the imperfect surface structures, and absence of other

features, this could not be reliably fitted with the multilayer model. Fitting of

the surface was therefore restricted to two layers to prevent over-parametrisation.

However, the good fit over the low Q range successfully characterises the overall

larger scale feature of the total adsorbate thickness and density, thus enabling

quantification of the increase in surface excess with film thickness.

Calculated values for z∗ in films containing 5 and 10 wt.% dSDS are included

in Table 4.6. Although calculating f would allow clarification of whether the pro-

portion of segregated additive remains constant or increases with film thickness,

this is not possible for the thickest films due to large uncertainties in the total

film thickness when fringes cannot be resolved, meaning that the total amount

of surfactant has a very large associated uncertainty.

Table 4.6: Surface excess of dSDS in films of different thicknesses, spin-cast from
solutions containing 5 and 10 wt.% dSDS and 20 wt.% h-glycerol.

Tot. solute conc./ wt.%
5 wt.% dSDS 10 wt.% dSDS

Thickness/ nm z∗ Thickness/ nm z∗

4 80 2.4± 0.4 70 5.5± 0.1
6 100 3.8± 0.1 - -
8 600 10.8± 0.2 500 11.1± 0.2
10 - 15.0± 0.2 - -
12 - 20.2± 0.1 - 42.8± 0.7
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Figure 4.10: Concentration-depth profiles of dSDS in plasticised PVA films of varying
total film thickness containing 10 wt.% dSDS. Neutron reflectivity data and fits are
shown in the inset, with data for the thickest films offset for clarity.

The distribution of d-glycerol in thick films containing 20 wt.% d-glycerol

and 5 and 10 wt.% hSDS are shown in Figures 4.11 and 4.12 respectively. As

for the previous contrast, in order to avoid over-parameterisation the structure of

the surface excess was fitted with a repeated layer, with the number of repeated

layers systematically increased until the best fit was achieved. In this case, the

multilayer consists of a thin layer (3 Å) rich in d-glycerol and a thick layer (35

Å) of low SLD, corresponding to surfactant rich regions. Again, it can be seen

that very consistent values for the thicknesses of these layers were obtained for

each film, despite wide limits (15-50 Å for the surfactant-rich layer and 1-8 Å

for the d-glycerol-rich layer) given for these parameters to vary. The SLD values

of the surfactant rich layers in the two thinner films containing 5 wt.% hSDS,

and in the thinnest film containing 10 wt.% hSDS, correspond to almost pure

hydrogenated surfactant, suggesting that the layers of pure components are better

defined when there are fewer stacked layers to be arranged during the spin casting.

Nevertheless, the excellent fit of the data of thicker films to a repeating layer

model shows that the film surface structures are still very well-defined, even when

the self-assembly of a large amount of surfactant and plasticiser is necessary. This

distribution of d-glycerol in films confirms that it is the plasticiser occupying the

regions between surfactant-rich layers in the profile obtained using deuterated

surfactant.
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Figure 4.11: SLD-depth profiles of PVA films containing 20 wt.% d-glycerol and 5
wt.% hSDS, with varying total film thickness. Neutron reflectivity data and fits are
shown in the inset, with data for the thickest films offset for clarity.
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Figure 4.12: SLD-depth profiles of PVA films of varying total film thickness containing
20 wt.% d-glycerol and 10 wt.% hSDS. Neutron reflectivity data and fits are shown in
the inset, with data for the thicker film offset for clarity.

An aside: off-specular reflectivity

The 2D detector of the OFFSPEC reflectometer also records the off-specular
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reflectivity, which yields information about the in-plane structures. An example

off-specular pattern obtained is included in Fig. 4.13, which reveals the presence

of a Bragg sheet, coinciding with the Bragg peaks from the specular reflectivity.

This suggests that the structure in these films is not entirely perpendicular to the

surface, with some lateral variation across the film. The derived vertical profiles,

which assume lateral homogeneity, should therefore be treated with a degree of

caution.

Some lateral variation across the surface is perhaps to be expected as the

deviation of the structure of the lamellar phase from the periodic stacking of am-

phiphile and solvent molecules in solution has been previously shown by Hendrikx

et al.175 Indeed, Kekicheff et al.176 have also shown that the flat geometry of the

lamellar phase of SDS bilayers is not the lowest free energy conformation, and

have identified an array of structural defects of lengthscale 60 Å in the bilayers,

as well as the presence of textural defects with dimensions greater than 200 Å.

Figure 4.13: Off-specular reflection pattern from a film spin cast from 12 wt.% to-
tal solute solution, containing 2 wt.% hSDS and 20 wt.% d-glycerol, illustrating the
presence of a Bragg sheet, indicative of structures in the x− y plane.

Another aside: double critical edges

In the thickest films containing high levels of surfactant and deuterated glycerol,

double critical edges are apparent upon close inspection of the low Q region of

the reflectivity data (for example in the reflectivity data for the thicker film in

Fig. 4.12). Critical edges are a result of the total external reflection from an

interface, appearing in the data when the refractive index of the phase being

entered, n2, is equal to the product of the refractive index of the incident phase,

n1, and the cosine of the incident reflection angle, θ (Equation 3.11). For all films

studied in this thesis, this condition is met when the neutron wave meets the

silicon interface, giving a critical edge at Q ≈ 0.01 Å
−1

, characteristic of a silicon
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substrate. The position of the critical edge is related to scattering length density

of the material by

Qc =
√

16π∆ρ. (4.5)

This value of Q therefore gives ∆ρ = 1.99× 10−6 Å−2, consistent with the scat-

tering length density of silicon (2.07 ×10−6 Å−2). In thick films containing 20

wt.% d-glycerol, it appears that the condition for a critical edge is also met at the

air-film interface.177 The position of this second critical edge is at Q ≈ 0.008 Å
−2

.

From Equation 4.5, this gives ∆ρ = 1.4× 10−6 Å
−1

, which is consistent with the

SLD of the bulk PVA film containing 20 % d-glycerol (as ρair = 0).

Normally, the edge at lower Q would not be visible as neutrons would be

reflected below any critical edge, and thus reflectivity would be unity until the

highest critical edge is reached. However, in this case beam attenuation reduces

the scattering between the two critical edges, meaning both are visible. Although

this was not accounted for in this analysis, this demonstrates the effect of the film

thickness on neutron absorption, which is related to the absorption cross section,

σa. This is given by Equation 4.6, where b′′ is the imaginary component of the

scattering length (b = b′ − ib′′) and k is the wavevector of the incident neutron.

Unlike the coherent and incoherent scattering cross sections, σs, σa is wavelength

dependent.149 Although negligible in thin polymer films, the presence of two

critical edges shows that absorption starts to become relevant as films become

much thicker.

σa =
4π

k
b′′ = 2λb′′ (4.6)

As no widely accessible reflectivity analysis packages are suitable for use in

systems with thick layers, the thickest films containing d-glycerol were fitted

using the same protocols as the thinner films, with a constant reflectivity for Q

values below the silicon critical edge. This approach has successfully captured the

surface features of these thick films, but it is worth being aware of the limitations

of this method of analysis for these films.

4.2.2.3 Rutherford Backscattering

Rutherford backscattering is an ion beam analysis technique that can provide

complementary analysis to neutron reflectivity. Unlike NR, which can be per-

formed under atmospheric conditions, RBS operates under vacuum and so the

sample must be vitrified prior to measurement in order to prevent loss of volatile

film components. The depth profiles of films containing 10 wt.% SDS and 20

82



Segregation of SDS in PVA Films

[S
D

S]
/ a

t.%

Depth/ nm

 Spun from 8% solution
 Spun from 10% solution
 Spun from 12% solution

Co
un

ts
Channel

Na S

Figure 4.14: Depth profiles of SDS in PVA films of varying thickness, containing 10
wt.% SDS and 20 wt.% glycerol. RBS data and fits are shown in the inset.

wt.% glycerol spun from solutions containing 8, 10 and 12 wt.% total solute are

shown in Fig. 4.14.

Although the significantly lower resolution means that surfactant nanostruc-

tures identified with NR cannot be resolved, the presence of a surface excess is

confirmed by RBS. As a real-space technique, the data interpretation is much less

ambiguous than for neutron reflectivity. From these concentration-depth profiles,

values for the surface excess were calculated as 7.2, 7.1 and 10.4 nm for films spun

from solutions containing 8, 10 and 12 % solute respectively. Although there is

very little change in the surface excess in the two thinner films, there is a modest

increase in z∗ for the thickest film, and thus these measurements follow a quali-

tatively similar trend to the NR data. It is interesting, however, that the extent

of surface segregation as determined by RBS is much lower than that measured

by NR, from which z∗ was determined to be 11.1 and 42.8 nm for films spun

from solutions containing 8 and 12 wt.% total solute respectively. Although RBS

has a much lower resolution, this alone is not enough to explain the substantial

difference in the surface excess values obtained using RBS and NR as the film

containing 10 wt.% SDS in a film spun from solution containing 12 wt.% total

solute exhibits a surface excess 4 times greater than that obtained by RBS. The

lower extent of surfactant segregation in the vitrified films observed by RBS is

also reflected in the significantly higher concentration of SDS observed in the
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bulk film. These differences between the depth profiles obtained using the two

techniques are likely to be indicative of migration occurring after spin-coating,

which is prevented from occurring by vitrification of the samples measured by

RBS. These measurements therefore provide evidence for the gradual (minutes

to hours) migration of dSDS to the surfaces of plasticised films.

4.2.3 Film Surface Topography

Specular neutron reflectivity is only capable of probing the z-direction of the

film. It is of interest to understand how the PVA film topography changes upon

incorporation of SDS, and whether the change in depth profile with surfactant

concentration can be related to effects on film surface structures. Atomic force

microscopy is a useful tool for identifying any surface features, which could help

to gain insight into the lateral surfactant distribution on the surface. AFM can

capture a number of surface properties, but in this study the height maps will

be primarily considered. Adhesion is another property that can be useful in

understanding the film surface, which records the pull-off force for the probe on

the sample. In the case of assessing the effect of incorporating a stickier additive,

for example oligomers into polymers,178 adhesion measurements can give a good

idea of the lateral distribution of the additive. However, in the case of SDS

incorporation into PVA it is not obvious which of the two components is tackier,

and therefore whether surfactant-rich domains would produce a higher or lower

adhesion.

Height maps were obtained for 1 µm2 areas of films spin-cast from aqueous

solution of 4 wt.% total solute concentration, producing samples approximately

70 nm thick, containing SDS as the only additive. These are shown in Figure 4.15.

From these images, it is immediately apparent that, while the surface of the pure

PVA film is very smooth, incorporation of SDS leads to the formation of surface

features, which become more prominent and better-defined as loading increases

from 2 to 20 wt.%. This can also be seen in Fig. 4.16, which compares typical

cross sections of the sampled film areas with increasing SDS loading, illustrating

the presence of a significant unevenness of the surface when [SDS] ≥ 10 wt.%.

Figure 4.15 also shows the captured adhesion maps. Again, from these images,

the appearance of surface features can be identified upon SDS incorporation,

which become more prominent as additive concentration increases. In the case of

adhesion measurements, the scale is arbitrary, but is consistent between samples

as the same probe was used for each measurement, and thus the films can be

reliably compared.
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Figure 4.15: Height and adhesion maps for binary PVA/SDS films.

Comparison of the height and adhesion maps shows that the regions of greatest

adhesion generally correspond to the least prominent areas of the film. Based on

the increasing SDS concentration on the surface as surfactant loading increases, as

observed by NR, it is plausible that the increasing adhesion as SDS concentration

increases suggests that the surfactant-rich domains produce the greatest adhesion,

and it is therefore the polymer-rich domains that comprise the surface of the most

prominent regions of film. However, the surface adhesion cannot be considered
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quantitatively due to the uncertainty in the contact area of the probe and the

film surface. Additionally, it is possible that the apparent adhesion will coincide

with concave surface features simply because there is more contact with the probe

when it fits into these holes.

Surface roughness of the height maps can be used to quantitatively assess

the effect of surfactant concentration on film topography. Average roughness,

Ra, root mean square roughness, Rq, and maximum roughness, Rmax, will be

considered, which are discussed more extensively in Chapter 3. These three

parameters are plotted against surfactant loading in binary films in Figure 4.17.

Error bars represent the standard error in the average result taken from at least

5 areas of film. From this plot, it is clear that there is a significant increase in

all three roughness parameters with SDS concentration, although this increase

is distinctly non-linear for Rmax, where a substantial increase is observed upon

increasing [SDS] from 2.5 to 5 wt.%, which is followed by a modest increase in

Rmax as [SDS] is further increased to 20 wt.%.
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Figure 4.16: Example cross sections of binary PVA/SDS films with increasing sur-
factant concentration. Cross sections of films containing 2.5-20 wt.% SDS are offset for
clarity.

AFM was also used to assess the change in surface topography of plasticised

PVA films with SDS loading. As for the NR experiments, glycerol was incor-

porated as a model plasticiser with a fixed loading of 20 wt.%. Example height

maps of plasticised PVA films containing 0, 5, 10 and 20 wt% SDS are shown

in Fig. 4.18 and typical cross sections for these films can be seen in Fig. 4.19.

Fig. 4.18 also includes the adhesion maps for films containing 5 and 10 wt.%
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Figure 4.17: Change in average roughness, root mean square roughness and maximum
roughness of binary PVA films with surfactant loading.

SDS, although the scanned regions of the films containing 0 % and 20 % SDS

were found to be featureless in adhesion. It should be noted that due to the pres-

ence of larger-scale surface features, images of 5 µm were captured for plasticised

films containing SDS (in contrast to the binary films containing SDS and the

plasticised film in the absence of SDS, where 1 µm areas of film were captured).

Although the Bragg sheet present in the off-specular reflectivity reveals in-plane

surface structures of lengthscales ∼ 4.1 nm, these are impossible to resolve on

AFM scans because they are not larger than the AFM tip diameter (∼ 10 nm),

and thus the focus here is on the larger scale surface structures. As for the binary

films, SDS inclusion results in the presence of distinct surface features, compared

to the PVA/glycerol film, although little obvious difference can be identified from

the films containing 5, 10 and 20 wt.% SDS. For 10 and 20 wt.%, these struc-

tures resemble connected domains, that are on the order of 1 nm higher than the

remaining sample surface. This is reflected in the values for surface roughness

(plotted in Fig. 4.20), which shows an increase in all three roughness parameters

upon inclusion of 5 wt.% SDS, but no further change (outside the uncertainty in

the measurements) upon increasing SDS concentration to 20 wt.%. This is differ-

ent to the behaviour of the binary films. Comparison of the height and adhesion

maps for films containing 5 and 10 wt.% SDS reveals that the most prominent

structures on the film surface have greater adhesion than the surrounding ma-

terial. This is in contrast to observations of the binary films, and suggests that
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these elevated regions are rich in the tackier plasticiser and surfactant. It can also

be seen that the variation in adhesion across the film is substantially less for the

film containing 5 wt.% SDS than 10 wt.% SDS, contrasting with the behaviour

observed in the height maps. It is likely that the regions of greater adhesion are

caused by the presence of glycerol on the surface. This is consistent with the

slight enrichment of glycerol observed for the thinner films. Even in the absence

of significant glycerol surface enrichment, the adhesion of the polymer-rich re-

gions is nonetheless expected to be greater in the presence of plasticiser. When

the surfactant concentration is low, and no complete surfactant-glycerol struc-

tures are able to form, this could lead to regions of glycerol-plasticised PVA on

the surface. At higher loadings however, when more extensive surfactant-glycerol

nanostructures are able to form on the surface, the surface of the film is likely to

be occupied almost exclusively by SDS, giving rise to the lower adhesion observed

across the surface; when the surface is dominated by SDS tailgroups, the glycerol

at the exterior surface will be negligible.
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Figure 4.18: Height and adhesion maps for plasticised PVA/SDS films.
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Figure 4.19: Example cross sections of plasticised PVA/SDS films (incorporating 20
wt.% glycerol) with increasing SDS concentration.
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Figure 4.20: Change in average roughness, root mean square roughness and maximum
roughness of plasticised PVA films with SDS concentration.
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4.3 Discussion

4.3.1 Surfactant Distribution in Binary and Plasticised

Films

SDS was shown to segregate extensively from unplasticised PVA films. In the

film containing 5 wt.% dSDS, it appears that the surface does not consist of a

layer of pure surfactant, but instead comprises a thin (3.5 nm) layer of PVA

enriched in surfactant, or alternatively an incomplete and patchy wetting layer.

This is likely due to the limited availability of surfactant in this thin film. In the

thin unplasticised film containing 10 wt.% dSDS, however, it is clear that a full

wetting layer is able to form. The thickness of this layer, 4.5 nm, is much greater

than the average length of an SDS molecule, calculated by Sammalkorpi et al.179

to be 1.36 ± 0.07 nm, suggesting the surface adsorption of multiple surfactant

layers during the drying process.

In order to rationalise and understand this segregation, the surface energies of

the respective components should be considered, as spontaneous surface segrega-

tion would be expected for the component with the lower surface energy. Values

for the surface energy of PVA from 37 to 59 mN m−1 have been reported, vary-

ing with molecular weight and degree of hydrolysis.180–183 However, the polymers

most closely resembling that used for this study have surface tension reported to

be ∼40 mN m−1. As reported values for the surface energy of pure SDS range

from 48.4 to 52.5 mN m−1,184 all of which are greater than the surface tension

of PVA, no spontaneous surfactant segregation may be expected based on these

values alone. However, it is likely to be of greater value to consider the surface

activity of components in aqueous solution. This will be addressed thoroughly in

Chapter 5, alongside the role of the compatibility of film components.

Although glycerol shows no surface activity when present as the only addi-

tive in PVA films,168 it has a profound effect on the segregation of SDS. In the

presence of glycerol, surfactant segregation was enhanced significantly, evident by

an increase in both the thickness of the surface layer and the surfactant volume

fraction in this layer. This was accompanied by a decrease in the concentration of

surfactant in the bulk, subsurface layer. It can be seen that in the thin, plasticised

film containing 10 wt.% dSDS, φb(dSDS) = 0.025, corresponding to a dSDS concen-

tration of 2.3 wt.%. (The significant surface excess means that even though the

concentration of dSDS in the bulk film is low, the total amount of dSDS reflects

the composition of the 10 wt.% dSDS solution used to spin cast the film.) This

is greater than the total SDS concentration incorporated into the film containing
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2 wt.% dSDS, which can still be seen to exhibit a surface excess, with a very

limited concentration remaining in the bulk film. The increase in φb(dSDS) with

total SDS concentration could therefore suggest that some surfactant becomes

kinetically trapped in the bulk film during the spin-casting of films with higher

surfactant loading, and that these films are therefore not at equilibrium. On the

other hand, the lack of change of φb(dSDS) in the binary films suggests that this

concentration of surfactant may be more readily accommodated by the polymer,

and thus there may a greater compatibility of the polymer and surfactant in the

absence of plasticiser. This will be explored more extensively in the next chapter.

Upon increasing film thickness, multiple repeating layered structures on the

film surface were resolved by NR, even when only a low concentration of surfactant

was present. This behaviour, where a substantial amount of additive precipitates

on the film surface, is referred to as blooming. In thin films, blooming was only

observed for high concentrations of SDS.174 As discussed in reference 174, the

thickness of these layers corresponds very well to surfactant bilayers, separated by

layers of glycerol molecules. Despite being measured on separate films, the SLD

profiles measured with the two different deuterium labelling regimes fit together

very well. The remarkably consistent values for the thicknesses of these repeat-

ing layers provide strong evidence for a multi-layered surface structure in thick

PVA/SDS/glycerol films, with the only significant variation being in the number

of stacked layers. The films fitted with repeating multilayers could therefore be

represented by the structure indicated in Fig. 4.21. This layering of multiple

smectic surfactant/plasticiser layers, has not been observed for other surfactants

in PVA.168 However, the behaviour of SDS correlates with its strong tendency to

form bilayers and stacked structures in other media.185–187 For example, Coiro et

al.185 report the presence of SDS lamellae of thickness ≈ 4 nm, separated by a

polar slab in concentrated aqueous solutions. As glycerol is also highly polar, and

capable of interacting favourably with the surfactant head groups, it is therefore

perhaps unsurprising that this is the thermodynamically favourable conforma-

tion adopted by the segregated surfactant, necessitating the limited segregation

of glycerol molecules. Auvray et al.187 have measured the phase behaviour of

SDS in non-aqueous solvents including glycerol. Although they observed that

the lamellar phase forms only above 104 ◦C, with SDS crystals present in the

solvent at lower temperatures, the presence of PVA could nonetheless drive the

formation of these SDS/glycerol layers as surfactant is excluded from the bulk

polymer.

This spontaneous structuring does suggest that the formation of smectic layers

is likely to be thermodynamically favourable, as exclusion of the surfactant from
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Figure 4.21: Diagram of the structure of the surface excess in thick, plasticised
PVA/SDS films.

the bulk film into an ordered, stable structure without perturbing the polymer

chains enables the system to minimise its free energy. However, further insights

into whether this enhancement of segregation by glycerol is kinetically or ther-

modynamically driven can be gained by assessing how the film thickness affects

the surface excess and fraction of segregated surfactant in plasticised films.

If the plasticiser enhancement of the surface excess is thermodynamically

driven, the surface excess would be defined by the solubility limit in the bulk

film. It would therefore be expected that increasing the total amount of surfac-

tant (by increasing film thickness) would increase the surface excess, while the

concentration of surfactant accommodated in the subsurface region would remain

constant.

On the other hand, if equilibration is kinetically limited, with the presence

of glycerol increasing the mobility of components during spin casting, ultimately

enabling a greater proportion of surfactant to arrange itself on the surface during

the relatively quick drying times, it is likely that the structure and size of the sur-

face excess would remain constant with film thickness. The surface excess would

then be defined by the rate of migration in the drying film and bulk concentration

would therefore change as the ratio between solutes remains constant but total

amount of surfactant increases.

From the volume fraction-depth profiles determined by NR, it is clear that

there is a significant increase in the surface excess of dSDS with film thickness,
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as well as surfactant concentration. This therefore strongly suggests that the

enhancement of the SDS surface excess by glycerol is driven by the thermody-

namically favourable structuring of the surface excess into stable smectic layers.

Specific factors responsible for surfactant segregation will be considered in greater

depth in Chapter 5.

The substantial quantitative differences in the depth profiles obtained using

NR and RBS suggest that the mobility of additives after the spin-coating of the

films could have a major role in the distribution of film components. This is

likely to be due to the presence of residual water. It is worth noting that, with

a slightly lower surface energy, the deuterated surfactant (used in NR) may have

a greater tendency to segregate than the fully hydrogenated surfactant (used in

RBS). However, this effect is likely to be small. Additionally, the fact that the

depth profiles of d-glycerol in thick PVA/SDS/glycerol films show large regions

of depleted SLD on the surface, corresponding to surfactant, confirms that the

hydrogenated surfactant still exhibits extensive segregation. The substantial dif-

ferences in quantitative values obtained with NR and RBS make it most likely

that RBS measurements were taken on films in a state of incomplete equilibra-

tion, and further surface structure rearrangement occurs during the relatively long

time required for sample alignment and data collection for the former technique.

4.3.2 Impact of Surfactant and Plasticiser Inclusion on

PVA Film Topography

AFM can be used to relate the surfactant depth profiles to the film topography.

From the dSDS depth profiles determined from NR, it can be seen that increasing

both SDS concentration and total film thickness results in an increase in surface

excess. For each film, the low overall film roughnesses observed by AFM supports

the simple interpretation of the specular neutron reflectivity. From the variation

in roughness parameters with SDS concentration, it is clear that this increase in

z∗ is accompanied by a substantial increase in surface roughness. From Fig. 4.17,

the greatest increase in roughness occurs upon increasing SDS concentration from

2.5 to 5 wt.%. No NR data was obtained for binary films with [SDS] <5 wt.%.

However, based on the observation that the presence of glycerol promotes SDS

segregation, and the depth profile of dSDS in a plasticised film containing 2 wt.%

surfactant reveals only a slight surface excess, very low amounts of segregation

would be expected in the binary film. This would result in a film surface of similar

roughness to that of a pure PVA film. Figure 4.2 shows that there is extensive

surfactant segregation from binary films containing 5 wt.% dSDS, which results
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in the substantial increase in roughness observed by AFM. A slight increase in

roughness is found when 10 wt.% SDS is incorporated compared to 5 wt.%. From

NR the thickness of this layer in the film containing 10 wt.% is similar to that

of the film containing 5 wt.% SDS, although the concentration of SDS is higher

as it approaches more complete wetting in the former film, resulting in a modest

increase in roughness. This increase in roughness should be expected as the

segregation of a single, solid additive results in the presence of defects in the

solid adsorbed layer.

In contrast to the binary films, there is negligible increase in film roughness

of plasticised films above an SDS loading of 5 wt.%. This could be linked to

the formation of a highly structured surface excess in the presence of plasticiser.

The stacking of SDS bilayers in plasticised films with high SDS concentration has

been found,174 and this has indeed also been observed for thick films of lower SDS

concentration. With 5 wt.% SDS adequate to form a wetting layer of surfactant

on the film surface in the presence of plasticiser, and any additional surfactant

leading to the formation of additional surfactant bilayers separated by glycerol,

it is reasonable to suggest that this would lead to an even surfactant layer on the

film surface. Therefore, following the formation of a wetting layer, any increase in

the concentration of SDS has little effect on the surface roughness. The observed

features in the height maps are likely to be defects in the lamellar-structured

surface excess.

Considering the SLD profiles obtained alongside the AFM height maps, it is

likely that the repeating smectic layers extensively cover the surface, but there

are defects that could consist of areas of fewer numbers of stacked layers. This

is analogous to lipid-surfactant layers containing defects, that are routinely stud-

ied using NR.188,189 For plasticised films containing SDS, Rq < 1 nm. This is

substantially less than the thickness of a surfactant bilayer (≈ 4 nm). However,

the maximum roughness of ≈ 8 nm, is approximately equal to the thickness of

the surface excess layer of these films as determined by NR, suggesting that even

without a high level of structuring of the surface layer, as observed for the thin

films, the segregated layer is patchy.

4.4 Chapter Conclusions

In this chapter, the segregation behaviour of the anionic surfactant SDS has been

explored. Extensive segregation in binary films, leading to wetting layers of SDS,

was observed from surfactant depth profiles obtained using neutron reflectivity.

This segregation was found to increase in the presence of glycerol, and in thick
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films the plasticiser enables the formation of stacked structures of alternating

glycerol and surfactant layers on the surface, which could be identified by deter-

mining the depth profiles of both dSDS and d-glycerol.

By studying the effect of film thickness, it can be concluded that the observed

enhancement of the surface excess by glycerol is thermodynamically driven by

the formation of the stable smectic layers on the surface, as the thickness of

the surface layer (and thus number of repeating layers) is related to the total

amount of surfactant present, not simply the surfactant concentration relative to

PVA. This has significant implications for the thick (∼ 70 µm) industrial films,

which are often similarly plasticised, as incorporation of a very low concentration

of additive could eventually lead to a substantial surface excess and therefore

significantly impact the properties of the film.

Determination of the distribution of SDS using Rutherford backscattering,

after immediately vitrifying samples following spin-coating, revealed the same

qualitative trend as determined by NR, with an increase in surface excess ob-

served with increasing film thickness. However, values for the surface excess were

substantially lower than those determined by NR, which strongly suggests that

equilibrium structures are not obtained immediately during the spin-coating.

Although the off-specular reflectivity has indicated that there is some lateral

structuring on the plasticised film in addition to the formation of alternating

surfactant/plasticiser layers parallel to the surface, AFM has also revealed some

longer-range surface structures, which are likely to indicate defects in the re-

peated surface structure such as patches of fewer repeating layers. However, the

consistency of the average and maximum roughness values throughout the surfac-

tant concentration range suggests that the size and number of these defects are

similar at each SDS loading. In contrast to the evenly stacked layers present on

the surface of the plasticised films, the huge increase in roughness of binary films

with SDS concentration suggests that the NR profiles correspond to the presence

of uneven wetting layers of almost pure SDS.

Thorough characterisation of the distribution of components in model systems

is the first step in understanding the segregation behaviour of additives in PVA.

By contributing the extensive characterisation of this model system to those

previously characterised, the aim is to build a more complete picture of the

behaviour of surfactants in PVA, and use these observations to understand the

role of different factors in segregation. This will be considered more extensively

in the next chapter.
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Chapter 5

Solution State Studies:

Rationalising Segregation

Observed in Model Systems

5.1 Chapter Introduction

Both the model films used in this work and the complex industrial films are pre-

pared from aqueous solutions of polymer and additives. It is therefore of interest

to better understand the interactions between components in solution, as their

solution properties are likely to influence the final structure and nature of inter-

actions in the film. Although the interactions between polymers and surfactants

have been extensively studied in solution51,52,65,173,190,191 (as discussed in greater

detail in Chapter 2), on the whole this research has largely focused on the ef-

fect of small amounts of polymer on the micellisation behaviour of surfactants

and their aggregation with the polymer below the critical micelle concentration

(CMC). Conversely, solutions used for film preparation, either model spin-cast

films or thick commercial films, contain very high concentrations of polymer and

lower amounts of surfactant additives. Although the surfactant:polymer ratio

is generally low, the relatively high total solute concentration in these solutions

makes the concentration of surfactant significantly greater than the CMC. In this

chapter two main driving forces for surface segregation will be assessed: surface

energy and compatibility. By assessing these in turn, the aim is to be able to be-

gin to make justified predictions of the segregation behaviour in polymer/additive

films, based on their experimentally-accessible solution behaviour. The solution

behaviour of film components of the two systems previously studied147,168 (con-

taining the cationic surfactant, CTAB and the non-ionic surfactant, C12E5) as
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well as the SDS system from Chapter 4 will be assessed, and discussed in the

context of their observed segregation behaviour.

5.2 Results and Discussion

5.2.1 Role of Surface Energy in Segregation

One likely driving force for migration is the surface energy differences between

components; as discussed in Chapter 2, the component with the lowest surface

energy should be enriched at the surface of the mixture. In the case of films

prepared from aqueous solutions, the surface tension of solutions of each solute

is therefore useful in understanding the surface activity of different components.

Additionally, measuring the surface tension of mixed solutions can help gain in-

sight into the drying process and aid in understanding the interactions between

components in solution. Surface tension has been widely used to explore the na-

ture of polymer surfactant interactions,51–53 and a greater understanding of the

interactions in these systems can be used to relate the solution properties to the

properties of the solution-cast or spin-cast films, aiding the identification of driv-

ing forces for segregation, and ultimately assisting in predicting and controlling

this behaviour.

The solute concentration used to spin-cast model films is high, relative to the

CMC of the surfactant species. However, in order to explore the interactions

between components of the model films, particularly via surface tension mea-

surements, lower solute concentrations must be used, both to reduce excessive

viscosity and to ultimately aid transferability to the industrial systems where,

although total solute concentration in the aqueous solutions used for film prepa-

ration is very high, additive concentration is much lower than in these simple

model systems.

5.2.1.1 Surface Tension of Individual Film Components

The surface tension of the pure film components in aqueous solution was first

considered in order to characterise the surface activity of individual species in

dilute solution. Plots of the surface tension of aqueous solutions of each of the

solutes are shown in Fig. 5.1.

The surface tension behaviour of PVA was characterised using solutions of the

same polymer used for film preparation (30-70 kg mol−1, 87-90 % DH). There is a

linear decrease in surface tension with ln[PVA/wt.%], up to a transition at 3 wt.%,

indicative of some association of the polymer in solution above this concentration.
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The observed surface tension of these solutions shows very similar behaviour to

that observed by Tadros,65 who used PVA with a molecular weight of 42 kg

mol−1 and a DH of 88 %. Although the concentration at which this transition

occurs differs slightly (0.7 % (w/v)), this could be attributable to the difference in

molecular weight. Additionally, although the degree of hydrolysis is very similar

to that used in this study, the distribution of the remaining acetate groups is

likely to significantly affect both the surface adsorption and the micellisation

of the polymer. Blocky polymers are likely to be more effective at lowering the

surface tension and forming micelles than polymers where residual acetate groups

are evenly distributed throughout the chain.
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Figure 5.1: Surface tension of aqueous solutions of each of the pure solutes. Lines
are a guide to the eye.

The Gibbs adsorption equation can be used to determine the surface excess

(Γ) of a solute (Equation 5.1), using the gradient of the linear section of the plot

of surface tension (γ) against the natural logarithm of concentration (c). R and

T represent the molar gas constant and absolute temperature respectively. Here,

the surface excess is defined as Γ = z∗/Vm, where Vm is the effective volume of

the adsorbing molecule. Although n is equal to 1 for nonionic surfactants, the

rigorous thermodynamic treatment requires the term n = 2 for a 1:1 electrolyte,

such as SDS, in the absence of extra electrolytes. However, the point should be

raised that, while this factor is widely accepted in the literature, the factor n = 2

suggests equal contribution of the anion and cation to the surface tension, whereas

in reality they differ hugely in both size and surface activity.192 Nevertheless,

Tajima et al.193 found that the Gibbs adsorption for SDS is valid for n = 2, with
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the authors using activity in place of concentration.

The surface excess represents the excess of solute per unit area over what

would be present if the bulk concentration prevailed all the way to the surface.

However, it is important to note that this equation is only valid for ideal so-

lutions, where the activity coefficient is 1 and thus the activity is equal to the

concentration. In this case, as the concentration range for these surfactants in the

region below the CMC is very low, replacing the activity with concentration is a

reasonable approximation. The area per molecule on the surface of the solution

is then related to Γ by Equation 5.2.

Γ = − 1

nRT

(
dγ

d ln c

)
T

(5.1)

A =
1

ΓNA

(5.2)

It is possible to using the Gibbs adsorption equation at 20 ◦C, to determine

ΓPVA. This yielded a value of 0.47± 0.01 µmol m−2, corresponding to a molecular

area, APVA, of 3.50± 0.09 nm2. However, it has been previously determined that

when applied in this form, the Gibbs adsorption equation strongly overestimates

the surface concentration of polymers, due to their polydisperse nature, and thus

this value should be treated with caution.31

This surface tension measurement of SDS solutions, illustrated in blue in Fig.

5.1, shows behaviour in agreement with reports in the literature,184,194 dropping

sharply towards the CMC. of 0.14 wt%. The dip in surface tension observed

between 0.15 and 0.25 wt.% SDS has also been extensively reported and is at-

tributable to contamination with traces of dodecanol from SDS hydrolysis.195

Using the Gibbs adsorption equation at 20 ◦C, ΓSDS in solution in the absence

of PVA was determined to be 3.8 ± 0.1 µmol m−2. This is consistent with that

obtained by Hines et al.196 using neutron reflectivity (3.9 µmol m−2). The calcu-

lated surface excess corresponds to an area of 0.44 ± 0.01 nm2 per SDS molecule

on the surface.

Pentaethylene glycol monododecyl ether (C12E5) (Fig. 5.2) is a nonionic sur-

factant. As with SDS, it has a 12-carbon hydrophobic tail, but has a much larger,

uncharged headgroup consisting of 5 ethylene glycol units.

Figure 5.2: Structure of pentaethylene glycol monododecyl ether.

The surface tension behaviour of aqueous C12E5 solutions reveals a CMC at

3.0×10−3 wt.%. This is broadly consistent with values reported in the literature,
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which, although significantly variable, include 2.9 × 10−3 wt.%,197 6.8 × 10−5

M (2.8 × 10−3 wt.%)198 and 5.7 × 10−5 M (2.3 × 10−3 wt.%).199 Applying the

Gibbs adsorption equation to data in Fig. 5.1 shows that pure aqueous C12E5

solutions show a surface excess, ΓC12E5
, of 3.31± 0.06 µmol m−2, corresponding

to a molecular area, AC12E5
, of 0.50± 0.02 nm2.

The final surfactant that will be considered in this chapter is cetyl trimethyl

ammonium bromide (CTAB). The structure of this cationic surfactant is shown in

Fig. 5.3. The molecule has a 16-carbon hydrophobic tail group and a quaternary

ammonium headgroup.

Figure 5.3: Structure of cetyl trimethyl ammonium bromide.

The measured surface tension of CTAB solutions is represented by the purple

data points in Fig. 5.1. The CMC of 0.032 wt.% lies comfortably within the

range of previously reported critical micelle concentrations for CTAB of 0.027-

0.034 wt.% (0.8 − 0.98 × 10−4 M).200–202 From these measurements ΓCTAB was

determined to be 2.19±0.08 µmol m−2, corresponding to a value for ACTAB of

0.76± 0.03 nm2.

Based on the surface tension behaviours of solutions of each solute, it is clear

that although both the polymer and surfactants are surface active, at all concen-

trations relevant for spin-coating (≥4 wt.%) (which is above the transition points

for all components), the surface tension of all surfactant solutions are lower than

that of the PVA solution.

It has been previously reported that CTAB shows no surface segregation in

spin-cast, non-plasticised PVA films, and is instead evenly distributed through-

out the entire film.168 Upon glycerol incorporation, however, extensive CTAB

segregation to both the air and substrate interfaces occurs. This qualitatively

follows the same trend observed with the PVA/SDS system. On the other hand

C12E5 was shown to exhibit substantial segregation in PVA, and form wetting

layers in non-plasticised films.168 However, C12E5 exhibits much less extensive

segregation than SDS, with a greater concentration of the non-ionic surfactant

accommodated in the bulk PVA film. The segregation of C12E5 in PVA is some-

what suppressed in the presence of glycerol, with a reduced surface excess forming

in the plasticised films. This contrasts with the behaviour of SDS.

Therefore, even taking into account the differences in concentration of the

polymer and surfactant in typical solutions used for spin casting, (i.e. 3.6 wt.%
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PVA and 0.4 wt.% additive), differences in surface energy of film components

cannot alone explain the previously observed different segregation behaviours.168

If surface energy differences alone determined segregation behaviour, all three

surfactants would be expected to exhibit substantial surface excesses, but CTAB

shows no surface excess in binary films. If the extent of segregation was dependent

only on the reduction in free energy achieved by the surfactant occupying the

surface it would be expected that segregation increases in the order SDS < CTAB

< C12E5.

Therefore, to better understand the interactions in solution during the drying

process the surface tension of mixed solutions containing both polymer and sur-

factant should be considered. In this way the impact of PVA on surfactant surface

activity can be assessed. Tadros65 has previously studied the effect of PVA on the

surface tension of CTAB, finding that at low PVA (< 0.1 wt.%) concentrations the

surface activity of the surfactant decreases (the minimum surface tension reached

increases) and the CMC becomes ill-defined. This is shown in Fig. 5.4. At PVA

concentrations greater than 0.1 wt.%, surface tension merely decreases with in-

creasing surfactant concentration, with no apparent CMC, and surface tension

does not reach values as low as in the case of the pure surfactant solution, even at

very high CTAB concentrations. Although there are differences in the exact resin

used by this study, these findings suggest that the favourable interactions between

the polymer and cationic surfactant reduces the surface-energy driving force for

the surfactant to segregate, so that less free energy reduction would be achieved

by the preferential adsorption of CTAB to the surface. This is in fact consistent

with the absence of surfactant segregation observed in the binary PVA/CTAB

system. However, it should be noted that the distribution of CTAB in PVA was

determined using Rutherford backscattering, which has a lower resolution than

NR. Although it would be expected that even partial monolayer coverage should

fall within the detection threshold, a very small surface excess of CTAB could

have been too little to resolve by this technique. It is therefore not possible to

say unequivocally that CTAB shows no surface activity in PVA.

Fig. 5.5 shows the effect of PVA on the surface tension behaviour of SDS and

C12E5 solutions. In order to clearly see the effect of PVA on the surface activity

of the surfactants, a range of polymer concentrations was used from 0.01 to 0.5

wt.%, (all significantly lower than the 4 wt.% used for film preparation), kept

constant throughout the entire surfactant concentration range.

In the case of SDS, although PVA dramatically reduces the surface tension at

very low surfactant concentration, presumably due to the adsorption of polymer

to the surface of the solution, the surface tension at higher concentrations (rele-
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Figure 5.4: Surface tension of CTAB with different PVA concentrations. Reproduced
with permission from reference 65.

vant for the spin-coating of films) is higher than that for the solutions containing

only SDS, indicating that the PVA suppresses the surface activity of SDS (note

this figure is not plotted on a log scale). Although the surfactant is ionic, the non-

ionic nature of the polymer means that the interactions between components are

relatively weak, leading to the absence of any noticeable transitions correspond-

ing to aggregation of the polymer and surfactant. This is perhaps surprising

given that noticeable transition points have been previously observed in the case

of SDS interacting with poly(ethylene oxide)51 and poly(vinylpyrrolidone),52,173

despite the nonionic nature of these polymers. In the presence of PVA the CMC is

no longer identifiable, with the surface tension merely decreasing gradually with

concentration, as observed by Tadros65 in the case of the PVA/CTAB mixtures.

In contrast to the PVA/CTAB system, however, the minimum surface tension

reached is as low as the pure surfactant solution. At the highest surfactant con-

centrations, which are most relevant for film preparation, the value for surface

tension for all PVA concentrations is approximately equal to that in the absence

of polymer, suggesting that even though surfactant surface activity is somewhat

suppressed at intermediate concentrations, SDS is still the more surface active

component at the higher concentrations. Therefore, despite the interactions be-
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tween species, enrichment of SDS on the film surface should reduce the surface

free energy of the system and thus be favourable.

PVA has a lesser effect on the surface tension of C12E5 solutions than on

SDS solutions. Although there is a substantial reduction in surface tension at

the lowest C12E5 concentration due to the surface adsorption of PVA, there is

no significant suppression of surfactant surface adsorption, even up to 0.4 wt.%

polymer, and the CMC can still be clearly identified. Apart from very low con-

centrations of surfactant, the presence of PVA has negligible effect on the surface

tension of C12E5 solutions. This can be rationalised by considering the much

weaker interactions present between non-ionic surfactants and polymers, which

has been extensively reported.190,191 This demonstrates that C12E5 remains the

most surface active component in the mixed system, meaning segregation to

the film surface is favourable, which is indeed observed. Although the surface

tension results can account for the C12E5 behaviour, the suppression of SDS sur-

face activity by the polymer highlights the importance of looking beyond simply

the differences in surface energy of the pure components in solution in order to

rationalise or predict segregation behaviour in other model polymer/surfactant

systems.

5.2.1.2 Influence of Glycerol on Surface Tension of Surfactant Solu-

tions

As it has been observed that plasticiser inclusion has a significant impact on the

surfactant distribution in spin-cast films in all three of the model film systems

studied, in order to thoroughly investigate the role of surface energy in surfactant

segregation, the study of the surface tension of film components was extended to

explore the interactions between surfactant and glycerol in solution. The surface

tension of aqueous glycerol solutions are shown in Fig. 5.6. Takamura et al.203

previously reported an almost linear decrease in the surface tension of aqueous

solutions with glycerol content at 20 ◦C. However, in this current work (Fig. 5.6)

recording the surface tension of solutions using the du Noüy ring method revealed

a greater deviation from linearity, although there is a smooth, gradual decrease

from the surface tension of pure water to the surface tension of pure glycerol.

As glycerol is not surface active, the reduction in surface tension with glycerol

incorporation is due to a change in solvent properties. Although glycerol does

give rise to some surface tension reduction, it is the least surface active solute

and at all concentrations the surface tension of glycerol solutions is much higher

than both PVA and SDS solutions. Surface energy alone is therefore unlikely to

be responsible for segregation of the plasticiser observed in the presence of SDS
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Figure 5.5: Effect of PVA inclusion on surface tension of surfactant solutions.

or C12E5. This is also logical given that if this were the case, glycerol would also

be expected to segregate in the presence of CTAB, which was not observed by

ion beam analysis.168

The effect of glycerol on the behaviour of surfactants in solution has been

previously reported. Hamel et al.204 observed an increase in the CMC of CTAB,

DTAB and TTAB (analogues of CTAB with 12 and 14 carbons in the alkyl chain

respectively) with glycerol concentration, which was attributed to the combi-

nation of two factors. First, the presence of glycerol causes a reduction of the
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Figure 5.6: Surface tension of aqueous glycerol solutions.

cohesive energy density of the solvent system, increasing the solubilising ability

of the solvent system. Second, the co-solvent decreases the dielectric constant

of the solution, which favours the mutual repulsion of the ionic head group in

the micelle and opposes micellisation. D’Errico et al.205 also investigated the ef-

fect of glycerol on CTAB by analysing the changes in surfactant self-aggregation

as a function of glycerol concentration, using surface tension to determine the

CMC of the surfactants and static fluorescence quenching to determine aggre-

gation numbers. The authors first found that the CMC of CTAB is affected by

the presence of glycerol only when glycerol concentration is above 30 wt.% of

the total solution. The area per surfactant molecule was found to increase with

glycerol concentration, indicating less dense packing at the air-solution interface.

They also showed that the mean aggregation number decreases with increasing

glycerol concentration. These observations were interpreted to be a result of an

indirect solvent-mediated mechanism. As glycerol lowers the dielectric constant

of the medium, the addition of glycerol enhances electrostatic interactions in so-

lution, which oppose the surfactant self-aggregation and cause a slight decrease

in the CMC. The increased electrostatic repulsion between the head groups also

increases the curvature of the micelle, which results in the observed decrease in

aggregation number. The observed decrease in surface activity of CTAB in the

presence of glycerol means that surface energy alone cannot explain the segrega-

tion of CTAB from PVA films in the presence of plasticiser.

As discussed in Chapter 4, neutron reflectivity revealed a lamellar structure
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comprising SDS and glycerol layers on the surface when large quantities of sur-

factant were present, suggesting a synergistic effect in the adsorption of SDS and

glycerol at the PVA-air interface. To fully explore surface energy as a driving

force for segregation, the interactions between these species in solution should

be investigated. The surface tension behaviour of mixed solutes for this model

system was therefore measured. Glycerol was incorporated into SDS solutions

at fixed loadings from 6-42 wt.%. The effect of glycerol incorporation on the

surface tension of SDS solutions is shown in Figure 5.7. It is apparent that glyc-

erol incorporation enhances the reduction in surface tension achieved by SDS at

low concentrations, up to the CMC of the surfactant, showing that the presence

of glycerol enhances the efficiency of the surfactant adsorption. At the higher

concentrations that are most relevant for the spin-casting or solution-casting of

model films, however, glycerol causes no further reduction in surface tension of the

SDS solutions (to spin cast a film containing 10 wt.% SDS from a solution with

4 wt.% total solute, ln([SDS]/wt.%) = -0.9). Increasing glycerol concentration

can be seen to slightly decrease the CMC, and the dip attributed to dodecanol

contamination is much smaller. This could be indicative of the presence of glyc-

erol precluding the efficient packing of the monolayer of SDS and dodecanol. The

Gibbs adsorption equation was applied to determine the SDS surface excess at

each glycerol loading, which is illustrated in Fig. 5.8. There is an almost linear

decrease in the SDS surface excess with glycerol concentration, which is likely to

be due to the co-adsorption of glycerol and surfactant onto the solution surface.

This means that the solution surface activity of film components cannot alone ex-

plain the enhancement in film surface excess in this model system in the presence

of glycerol, but the adsorption of glycerol to the solution surface is consistent

with the formation of mixed surface layers suggested by NR.

The surface tension behaviour of the three-solute solutions can be assessed

in order to consider how glycerol inclusion affects the surface tension behaviour

of SDS when it has already been significantly suppressed by the PVA. Fig. 5.9

shows that glycerol incorporation into SDS solutions containing 2 fixed concen-

trations of PVA has a negligible effect on the surface tension throughout the

whole surfactant concentration range. Therefore, these experiments clearly show

that surface energy alone is insufficient to explain the plasticiser enhancement of

the surface excess in PVA/SDS films.
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Figure 5.7: Surface tension of aqueous SDS solutions in the presence of 0, 6, 17, 29
and 42 wt.% glycerol.
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Figure 5.8: Influence of glycerol concentration on the solution surface excess of SDS.

5.2.2 Role of Compatibility in Segregation

It is also important to explore the link between the compatibility of film compo-

nents and their wetting behaviour in films. There have been a number of theoreti-

cal approaches to understand compatibility of different species, including modified

Flory Huggins theories and solubility parameters (Chapter 2).119,120,123,124 Insight

into the compatibility of different film components can also be gained experimen-
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Figure 5.9: Effect of glycerol on SDS surface tension behaviour in the presence of
PVA.

tally by exploring the phase behaviour of model systems. The aim of the work in

this section is therefore to demonstrate an experimentally facile method, capable

of determining compatibility of model systems, that can be used to rationalise

and ultimately aid in predicting segregation in other systems.

As both the simple spin-cast films and the industrial films are prepared from

aqueous solution, the phase behaviour of the polymer/surfactant/water system

should be assessed. This can be done by tracking the composition during solution

casting of a thick film on a glass slide, and visually identifying phase separation

from the clouding of the film. Phase diagrams were determined at 40 ◦C in

order to reduce time for the water evaporation so that measurements for each

polymer/surfactant system can be collected within an hour. This is reasonable

as the phase diagrams of CTAB206 and SDS207 in water show no phase change

between 20 and 40 ◦C. Although this approach is experimentally accessible, it

is not appropriate for non-ionic surfactants including C12E5 as these possess a

temperature-dependent cloud point. The cloud point is the temperature at which

liquid-liquid phase separation occurs, when the temperature-sensitive hydrogen

bonding between the solvent and the oxygen atoms of the hydrophilic tail are

insufficient to solubilise the hydrophobic region of the surfactant. At this tem-

perature the surfactant separates into a surfactant rich phase and an aqueous

phase containing nonionic surfactant at a concentration close to the CMC.208

The temperature at which clouding occurs is strongly dependent on the presence
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of additives, and their concentration,209 and could therefore plausibly be used to

study polymer-surfactant compatibility. However, using the simple experimental

approach of tracking composition during the solution casting of a film to assess

phase behaviour would be severely limited by both its temperature sensitivity

and the difficulty in judging the liquid-liquid phase separation in a film.

Using the method described above, ternary phase diagrams for the non-

plasticised and plasticised PVA/surfactant/water systems were constructed to

identify phase transitions associated with the drying of the solution-cast films.

In order to construct the plasticised phase diagrams, the PVA:glycerol ratio was

fixed at 4:1, and treated as a single psuedocomponent throughout.

The SDS/PVA/water phase diagrams are presented in Fig. 5.10. The single

phase, compatible region is represented by black data points and the phase sepa-

rated, clouded region, where surfactant crystallisation is apparent, is represented

by the red data points. First considering the non-plasticised phase diagram, it is

apparent that there is very limited compatibility in the absence of water. This

extremely limited compatibility is also clear in the plasticised phase diagram. In

fact, there is a significant decrease in the size of the one-phase region when PVA

is replaced by a PVA/glycerol mixture. The observed enhancement of SDS sur-

face excess in spin-cast films upon glycerol incorporation is therefore consistent

with this decrease in compatibility, and phase separation of the system.
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Figure 5.10: Phase diagram of the non-plasticised (5.10a) and plasticised (5.10b)
PVA/SDS/water systems, in units of mass fraction.

The constructed phase diagrams of non-plasticised and plasticised PVA/CTAB/water

system are shown in Fig. 5.11. In contrast to the SDS system, there is an ex-

tended one-phase region in the non-plasticised system, where polymer and surfac-
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tant are compatible in the absence of water. This is also true for the plasticised

system, although substantially less CTAB can be incorporated in the PVA film in

the absence of water before phase separation occurs. Given the fact that CTAB

has a longer hydrocarbon tail, the significantly higher compatibility of CTAB

over SDS is perhaps surprising, as it would be expected to interact unfavourably

with the hydrophilic polymer. Tadros,65 showed that in dilute solution there

is a significant interaction between the PVA and CTAB, where polymer binds

surfactant in solution via hydrophobic bonding of the surfactant tails and the hy-

drophobic part of the polymer chain, forming a charged complex. It is therefore

plausible that this interaction could be reflected by a favourable interaction in

the solid state.

It could be suggested that the absence of CTAB segregation is largely a ki-

netic effect, where the surfactant, which is solid in the pure state, with its bulky

headgroup as a result of its association with the Br− ion, is unable to migrate

to the surface during spin-casting, and thus remains trapped in the bulk film.

The segregation apparent in the presence of glycerol could then be explained in

terms of the glycerol increasing the mobility of the film components, preventing

the CTAB from becoming kinetically trapped in the bulk PVA, and permitting

it to localise on the surface. However, the extensive one-phase region of CTAB

and PVA in the absence of water suggests that the even distribution of CTAB

in PVA films is the result of its compatibility, in conjunction with there being

little surface energy reduction from the segregation of the surfactant to the sur-

face (5.2.1). The decrease in the size of the one-phase region in the presence

of glycerol (Fig. 5.11b), shows that CTAB is less compatible in the plasticised

films. This incompatibility, alongside its greater mobility, could allow for the

segregation observed in plasticised films.
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Figure 5.11: Phase diagram of the non-plasticised (5.11a) and plasticised (5.11b)
PVA/CTAB/water systems, in units of mass fraction. In the plasticised system the
PVA/glycerol ratio was fixed at 8:2.

5.3 Chapter Conclusions

In this chapter, surface energy and compatibility have been assessed as driving

forces for additive segregation, that can be used to rationalise the behaviour in

the PVA/SDS system, as well as some previously characterised model systems.

Considering the surface activity of individual film components can provide a use-

ful indicator of the preference of additives to segregate, but, by itself, is limited as

consideration of the interactions between the film components may be necessary.

Surface energy arguments alone are insufficient to predict the enhancement of the

surface excess of CTAB and SDS by glycerol.

Compatibility of bulk systems can be an useful indicator for the segregation

behaviour of additives in spin-cast films. This experimentally simple method of

determining phase behaviour via solution casting is capable of delivering insights

into compatibility, corroborating the observed segregation behaviour in spin-cast

films. These initial studies show promise in their transferability to other systems.

Based on the significant role of compatibility in the segregation behaviour of

surfactant systems, this very simple experimental protocol could have a useful

role to play in making initial predictions about segregation in a range of systems.

Taken together, an understanding of the surface tension behaviour of solu-

tions of film components (and the interactions between components) and their

compatibility in bulk systems holds promise in being a powerful tool in the pre-

diction of segregation in polymer/additive systems. The insights gained in this

chapter will be taken forward in an attempt to rationalise segregation observed
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in other model film systems, and test the validity of these conclusions.
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Chapter 6

Segregation of Amine Oxide

Surfactants in PVA Films

6.1 Chapter Introduction

In this chapter, the segregation behaviour of another class of surfactant will be

characterised in order to develop a fuller picture of surfactant segregation in PVA.

Amine oxides are particularly interesting because of their small but highly polar

headgroup. They are also widely used in industry, notably as a key component

of hand dish washing products such as FAIRY.210 Compared to other surfactants

of the same chain length such as SDS and C12E5 they are more hydrophilic, due

to the unusually high dipole moment of the -NO group of 4.38 D.211 In solution

this surfactant exists in equilibrium between the protonated (neutral) form and

the deprotonated (cationic) form. The position of this equilibrium is dependent

on the pH of the solution. The two specific amine oxide surfactants that will

be studied in this chapter are N,N -dimethyldodecylamine N -oxide (DDAO) and

N,N -dimethyltetradecylamine N -oxide (DTAO), which differ by a single -C2H4

group. The generic structure of these surfactants is shown in Fig. 6.1.

Figure 6.1: Structure of the amine oxide surfactants studied in this chapter. For
DDAO and DTAO, n is 5 and 6 respectively.

As in Chapter 4, NR with deuterium labelling is used to identify surfactant

segregation in spin cast PVA films. The more complex plasticised system will also

be considered in order to determine the effect of glycerol on the distribution of
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amine oxides and compare this behaviour to previously studied systems. Surface

tension measurements are used to compare the surface adsorption in solution with

that identified in the solid polymer, and also to assess the role of surface energy in

the surfactant distribution. The phase behaviour of the PVA/amine oxide/water

system is also assessed in order to gain insights into the compatibility of these

components. Finally, small angle neutron scattering on solution cast films is

employed to better understand this compatibility, and the bulk organisation of

the PVA/surfactant film. By undertaking these solution-state studies, the aim is

to assess how well the conclusions reached in Chapter 5 can be used to rationalise

observed segregation in other systems.

6.2 Results

6.2.1 Distribution of N,N -dimethyldodecylamine N -oxide

in PVA films

Neutron reflectivity was used to determine the depth profiles of DDAO in spin-

cast PVA films. In order to fairly compare the surfactant behaviour in a range of

model systems containing the different classes of surfactant, the same resin used

in previous systems, with a molecular weight range of 30-70 kg mol−1 and a degree

of hydrolysis of 87-90 %, was used to prepare the films. The obtained reflectivity

data could be fitted well to a three-layer model, consisting of a thin surfactant-rich

layer at the film-air interface, a bulk polymer-rich layer, and a layer of higher SLD

corresponding to silicon oxide on the substrate. Using the same method described

in Chapter 4, the SLD profiles were converted into concentration-depth profiles

of the deuterated surfactant. The depth profiles obtained from the binary films

are shown as the solid lines in Fig. 6.2. It should be noted that reflectivity

for the film containing 2 wt.% DDAO was collected using only the two smallest

angles, and is therefore missing the data at high Q. As a result, a slight increase

in reflectivity can be identified at Q ≈ 0.2 Å−1, which would normally not be

apparent upon stitching the data with that from the highest angle.

From these depth profiles, a very similar surface composition can be identi-

fied for all surfactant concentrations. In order to quantitatively compare these

profiles, the volume fraction (φDDAO,1) and thickness (d1) of the surface layer

of surfactant (determined from the fitted parameters) are included in Table 6.1.

These values can be seen to be consistent for each surfactant loading in binary

films, with the exception of the lowest loading of 2 wt.%. The thickness of the

layers are all consistent within the precision of the measurement (∼0.5 nm),
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Figure 6.2: Concentration-depth profiles 2-20 % DDAO in binary and plasticised
PVA films, and neutron reflectivity data and fits. Fits for data from non-plasticised
films are shown as solid lines, with fits for data from plasticised films shown as dashed
lines. Reflectivity data offset by factors of 10 for clarity, using the same colour scheme
as for the derived profiles.
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with this thickness corresponding well to a surfactant monolayer adsorbed onto

the surface. The surface excess, defined by Equation 4.3, was also calculated.

These values are also included in Table 6.1. In the binary films, little change in

the surface excess with surfactant loading can be identified due to the large un-

certainties associated with this measurement which result from significant error

propagation of each of the fitted parameters (errors in each value were deter-

mined by adding the uncertainties of the parameters necessary for calculation of

the value in quadrature).

NR was also used to explore the effect of the inclusion of glycerol as a model

plasticiser on the distribution of deuterated DDAO in PVA films. The glycerol

loading was fixed at 20 wt.% and the surfactant concentration was varied from

2 to 20 wt.%. Using the same method as for the PVA/SDS/glycerol model

system the concentration-depth profile of the deuterated surfactant was obtained

by assuming an even distribution of glycerol throughout the film. These depth

profiles are shown as the dashed lines in Fig. 6.2.

For all surfactant loadings, the concentration of dDDAO in the surface layer is

slightly reduced upon glycerol incorporation. Table 6.1 also includes the obtained

values for the volume fractions of DDAO in the surface layer of plasticised films,

(φDDAO,1) and the thickness of the surface layer, d1, alongside the surface excess,

z∗. It can be seen that, as observed with the binary films, surfactant volume

fraction and the thickness of the surface layer is very similar for all surfactant

loadings above 2 wt.%, with both sets of values consistent for each loading within

the uncertainty of the fitted parameters. In the case of plasticised films, the

consistent structure of the surface layer, regardless of the surfactant loading (with

the exception of 2 wt.%), results in a general decrease in the surface excess as

the bulk surfactant volume fraction increases.

Table 6.1: Thickness of surface layer (d1), surfactant volume fraction in the sur-
face layer (φDDAO,1) and surface excess (z∗) in binary and plasticised films containing
dDDAO.

[dDDAO]/wt.%
φDDAO,1/10−2 d1/nm z∗/nm

Binary Plast. Binary Plast. Binary Plast.
2 50±20 49±6 1.0±0.4 0.9±0.1 0.4±0.3 0.3±0.1
5 60±10 40±3 1.1±0.5 2.6±0.3 0.5±0.3 0.8±0.2
10 60±10 50±10 1.4±0.3 2.1±0.4 0.5±0.1 0.6±0.2
20 56±10 48±3 1.2±0.3 2.0±0.2 0.5±0.2 0.4±0.1
40 54±3 - 1.3±0.2 - 0.24±0.06 -
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6.2.1.1 Interfacial Surfactant Adsorption

Comparison of the fitted parameters (included in Appendix B) reveals that depth

profiles of samples containing dDDAO appear to have a thicker silicon oxide layer

adjacent to the substrate than would be expected (approximately 25 Å, measured

by ellipsometry for representative silicon blocks). This observation strongly sug-

gests adsorption of the deuterated surfactant to the substrate interface. The SLD

of the deuterated surfactant is similar to that of the silicon oxide, and so adsorp-

tion of an additional surfactant layer would manifest itself in a thickening of the

third layer in this 3-layer model.

To test this hypothesis, reflectivity data for binary film containing 5 wt.%

dDDAO was fitted using a 4 layer model, including an additional layer to account

for surfactant absorption to the substrate interface. Although this does result in

a slight improvement in the χ2 values, the other fitted parameters (thickness and

SLD of surface and bulk layers) are consistent within the uncertainty of these

values. Due to the similar SLD of the enriched layer of deuterated surfactant and

the silicon oxide there is a uncertainty in the thickness of this surfactant layer

as these two components cannot be distinguished. Therefore, in order to avoid

over-parameterisation, the reflectivity data for these systems is fitted using a three

layer model, although the thickness of the silicon oxide layer can reasonably be

increased due to the presence of surfactant. The increase in thickness of the silicon

oxide layer is of the order of (but not greater than) that of a surfactant monolayer.

The similarity of the profiles obtained using 3 and 4 models is illustrated in Fig.

6.3.

Table 6.2: Concentration of deuterated DDAO in the solutions used for spin-casting
and volume fraction and weight percentage of surfactant in the spin-cast film.

[DDAO]sol/wt.% φdDDAO(tot)/10−2 wdDDAO(film)/wt.%

Binary
2.0± 0.5 1.4± 0.2 1.3± 0.2
5.0± 0.5 4.2± 0.4 3.9± 0.3
10.0± 0.5 10.5± 0.2 9.8± 0.1
20.0± 0.4 21.2± 0.2 19.9± 0.2
40.0± 0.4 35.6± 0.1 33.8± 0.1

Plasticised
2.0± 0.5 1.7± 0.1 1.6± 0.1
5.0± 0.5 8.6± 0.4 7.9± 0.3
10.0± 0.4 11.9± 0.4 10.9± 0.3
20.0± 0.4 19.1± 0.2 17.7± 0.2
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Figure 6.3: SLD-depth profiles obtained from reflectivity data for a film containing 5
wt.% dDDAO fitted with a 3 layer model and 4 layer model (red and blue dashed lines
respectively). Data and fits are shown in the inset.

6.2.1.2 Plasticiser Distribution in the Presence of Amine Oxide Sur-

factants

Further insight into the distribution of components in the plasticised films can be

gained by collecting reflectivity data with another contrast. In order to identify

any impact of amine oxide surfactants on the distribution of glycerol throughout

the film, the SLD-depth profiles of films consisting of PVA, deuterated glycerol

and hydrogenated DDAO were obtained. These are illustrated in Fig. 6.4. There

is much less contrast in SLD between PVA and the hydrogenated surfactant than

between d-glycerol and the hydrogenated components, and so the NR signal is

almost entirely dominated by the depth distribution of the plasticiser. However,

an accurate conversion of SLD to φGly(z) cannot be made and the surface excess

of glycerol cannot be accurately determined in this three-component system as

the distribution of the surfactant is not even and the concentrations of each of

the hydrogenated components, and thus their contribution to the SLD, in the

surface layer are unknown. (Unlike with the other contrast, the SLDs of the

two hydrogenated components differ significantly). However, the minimum and

maximum concentration of glycerol on the surface can be determined by assuming

the remaining surface is fully occupied by PVA (minimum), and fully occupied
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by hDDAO (maximum), which have SLDs of 0.75 ×10−6 and -0.20 ×10−6 Å−2

respectively. The SLD of the surface layer in the presence of 5 wt.% DDAO of 3.3

×10−6 Å−2 therefore corresponds to 0.61 ≤ φGly ≤ 0.69, with the spread in values

due to the uncertainty the conversion of SLD to φGly(z). The difference between

the values for the minimum and maximum volume fraction of glycerol on the

surface is actually less than the uncertainty arising from the fitted parameters.

The surface layer of higher SLD therefore reveals some segregation of the

deuterated glycerol. Previous work has confirmed that no segregation of glycerol

occurs in pure PVA/glycerol films.147,168 The increased concentration of glycerol

on the surface therefore strongly suggests the co-adsorption of DDAO and plasti-

ciser into a monolayer on the film surface. Comparison of the SLD and thickness

of this layer (Table 6.3) shows that, in the same manner as the surfactant dis-

tribution, the segregation of glycerol is consistent, regardless of the surfactant

loading in the film. This further supports the hypothesis that z∗ is independent

of φDDAO,tot. In contrast to the behaviour of the surfactant, however, there is no

evidence for glycerol enrichment at the substrate interface.
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Figure 6.4: SLD-depth profiles obtained from reflectivity data for films containing
2-20 wt.% hDDAO with 20 wt.% d-glycerol. Data and fits are shown in the inset.
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Table 6.3: SLD and thickness (d1) of the surface layer of films containing 20 % d-
glycerol and 2-20 wt.% hDDAO.

[DDAO]sol/wt.% SLD1/ 10−6 Å−2 d1/ nm
2 3.3±0.6 1.5±0.6
5 3.3±0.5 1.4±0.3
10 3.2±0.6 1.3±0.4
20 3.1±0.4 1.3±0.3

6.2.1.3 Impact of Surfactant Tail Length on Amine Oxide Distribu-

tion

The effect of the hydrophobicity of the surfactant on the segregation behaviour

was assessed by comparing the distribution of N,N -dimethyldodecyl amine N -

oxide with N,N -dimethyltetradecyl amine N -oxide (DTAO) (12 and 14 carbons

in the chain respectively), in both binary and plasticised films. At a 20 wt.%

surfactant loading, DTAO exhibits very similar segregation behaviour to DDAO,

where a surfactant rich layer is present on the surface, the thickness of which

corresponds well to a surfactant monolayer, with the remaining surfactant evenly

distributed throughout the bulk of the film (Fig. 6.5). The fitted parameters for

the surface layer (φ1 and d1) and calculated surface excess are compared for the

two surfactants in Table 6.4. As observed for DDAO, plasticisation results in a

decrease in the surface volume fraction of DTAO and an increase in thickness of

this layer, with no overall change in the surface excess. There is no measurable

change in the thickness of the surface layer upon increasing the number of carbons

in the alkyl chain from 12 to 14. There is, however, a significant increase in the

surfactant volume fraction in the surface layer, and, as a result, a corresponding

increase in the surface excess.

Table 6.4: Surfactant volume fraction in the surface layer (φ1), thickness of the surface
layer (d1) and surface excess (z∗) for 20 wt.% dDDAO and 20 wt.% dDTAO in binary
and plasticised PVA films.

Surfactant
φ1/10−2 d1/nm z∗/nm

Binary Plast. Binary Plast. Binary Plast.
DDAO 56±10 48±3 1.2±0.3 2.0±0.2 0.5±0.2 0.4±0.1
DTAO 78±6 61±4 1.5±0.2 1.6±0.2 0.8±0.1 0.6±0.1

For both surfactants, the obtained depth profiles show behaviour remarkably

similar to that typically observed for surfactants in solution, with a monolayer

adsorbed to the solution-air interface and the remaining surfactant present as

aggregates in solution. Based on the assumption that this profile does indeed
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Figure 6.5: Comparison of the SLD-depth profiles of PVA films containing dDDAO
and dDTAO. Data and fits are shown in the inset.

reflect an adsorbed pure monolayer on the surface, rather than a layer of PVA

enriched in surfactant, it is possible to determine the area per molecule from the

reflectivity fitted by modelling the adsorbed layer as a single uniform layer. The

area per molecule, A, can be calculated using Equation 6.1

A =

∑
mibi
ρτ

(6.1)

where ρ is the scattering length density, τ is the layer thickness and
∑
mibi is

the total scattering length for the surfactant, with mi being the number of atoms

of scattering length bi. The coherent scattering lengths of each isotope present

in the surfactants are tabulated below (Table 6.5).

Table 6.5: Coherent scattering lengths of isotopes present in the surfactant molecules
comprising the surface monolayer.

Atom bi/ 10−5Å
H -3.74
D 6.67
C 6.65
N 9.36
O 5.80
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There are additional considerations in calculating the area per molecule in

plasticised films. It is apparent from Figure 6.4 that glycerol is also enriched

in the surface monolayer, co-adsorbed with the surfactant, which will therefore

contribute to the SLD of this layer. However, with the assumption that this

surface monolayer in plasticised films contains only surfactant and glycerol, an

approximation can be made. The SLD contribution from the hydrogenated com-

ponent (glycerol) is calculated from the SLDs of the surface monolayer of the

two contrasts via simultaneous equations and subtracted, to leave a corrected

value for the SLD which arises solely from the deuterated component, and can be

used to determine the area per molecule. Without making this correction in the

SLD to account for the presence of glycerol in the surface layer, the calculated

area per molecule is lower but generally within the uncertainty of the corrected

value, demonstrating that the presence of the hydrogenated component has very

little effect on the calculated area per molecule. The surfactant molecular areas

in each of the films containing N,N -dimethyldodecylamine N -oxide (binary and

plasticised) calculated using Equation 6.1 are compared in Table 6.6.

Table 6.6: Area per dDDAO and dDTAO molecule in the surface layer of binary and
plasticised films.

[dDDAO]/wt.%
A/nm2

Binary Plasticised(uncorrected) Plasticised(corrected)
2 0.7±0.3 0.8±0.2 0.9±0.2
5 0.5±0.2 0.29±0.06 0.35±0.09
10 0.5±0.1 0.33±0.09 0.4±0.1
20 0.5±0.2 0.34±0.05 0.40±0.07
40 0.5±0.1 - -

[dDTAO]/wt.%
A/nm2

Binary Plasticised(uncorrected) Plasticised(corrected)
20 0.36±0.06 0.42±0.05 -

For dDDAO, the area per molecule is unchanged with surfactant loading, sug-

gesting that the structure of the monolayer is identical, irrespective of the total

amount of surfactant present in the bulk of the film. For the plasticised films, the

area per molecule is again unchanged with surfactant concentration, with the ex-

ception of the film containing 2 wt.% dDDAO, which is significantly larger. This

suggests that there is less than full coverage at 2 wt.% surfactants but at higher

loadings, the monolayer formed is identical, regardless of the surfactant concen-

tration. Due to the large uncertainties associated with the values for molecular

area in the binary films, the effect of plasticisation on the area per surfactant

molecule in the surface monolayer is unclear, but appears to be small.
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6.2.2 Film Surface Topography

As described in Chapter 4, assessing the height maps of the film surface, and

considering the roughness of the film in conjunction with the measured depth

profiles, can reveal information about the nature of the segregated layer, such as

the presence of defects. Height maps of representative regions of non-plasticised

spin-cast films with areas of 2 µm2 are shown in Figure 6.6. By eye, there is

very little change in the surface when DDAO concentration is increased from

5 to 20 wt.%. Upon increasing DDAO concentration to 40 wt.%, however, the

surface features become larger and more pronounced. Nevertheless, as the scale

bar only ranges from -1 nm to 1 nm, the film is still very smooth. This contrasts

the behaviour observed with non-plasticised PVA/SDS films, which show a huge

increase in surface roughness as additive concentration increases (which are pre-

sented with scale bars ranging from, -5 to 5 nm, Chapter 4). The smoothness

of these PVA/DDAO films, and general consistency of surface features with in-

creasing surfactant loading, can also be clearly seen by comparing cross sections

(Fig. 6.7).

Figure 6.8 shows a plot of Ra, Rq and Rmax. It can be seen that there is no

significant increase in average film roughness upon DDAO incorporation through-

out the entire surfactant concentration range (even including the pure PVA film).

Up to a concentration of 5 wt.%, Rmax also remains consistent with that of the

pure PVA film. However, as the concentration is increased further there is a

substantial increase in Rmax with [DDAO]. Despite this, the low and consistent

values for average roughness show that the surface monolayer, identified from the

depth profiles obtained using neutron reflectivity, is very even across the surface.

6.2.3 Solution Properties of Amine Oxide Surfactants

The segregation behaviour of these amine oxide surfactants in PVA films is dif-

ferent to that previously observed in any PVA/surfactant system.168,174 However,

this behaviour is analogous to that of surfactants in solution. Surface tensiometry

was used to characterise the behaviour of the amine oxide surfactants in water.

Figure 6.9 shows that the surface tension of DDAO and DTAO solutions decrease

to critical micelle concentrations of 0.024 and 0.0051 wt.% respectively (1.1 and

0.20 mM). These values are similar to, but both slightly lower than those reported

by Birnie et al.212 (1.7 and 0.27 mM for DDAO and DTAO respectively).

As discussed in Chapter 5, the Gibbs adsorption equation enables the de-

termination of the amounts of adsorbed surfactant from surface tension mea-

surements.213 Values for the surface excess, Γ, of the surfactant in solution are

124



Segregation of Amine Oxide Surfactants in PVA Films

(a) 0% DDAO (b) 3% DDAO

(c) 5 % DDAO (d) 10 % DDAO

(e) 20 % DDAO (f) 40 % DDAO

Figure 6.6: Height maps of non-plasticised PVA/DDAO films.

included in Table 6.7

Comparison of the obtained area per molecule in solution with the area per

molecule on the polymer surface, determined from the fitted reflectivity data

(Table 6.7) shows that DTAO occupies a smaller area per molecule than DDAO

both in solution and in the film. Additionally, although there are fairly large

uncertainties associated with these measurements, the area per molecule on the

film and solution surface are remarkably consistent for both surfactants.

The effect of plasticiser inclusion on the surface tension of solutions of the

amine oxide surfactants is shown in Figure 6.9. The surface excesses of DDAO

and DTAO were determined at glycerol concentrations of 0, 20 and 40 wt.%.
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Figure 6.7: Example cross sections of PVA films containing 0-40 wt.% DDAO. Profiles
are offset for clarity.
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Figure 6.8: Change in average roughness, root mean square roughness and maximum
roughness of PVA films with DDAO loading.

These values are included in Table 6.7 and illustrated in Fig. 6.10 (values marked

with an asterisk represent values that have not been corrected for the presence of

hydrogenated glycerol in the surface layer). As previously stated, DTAO occupies

a lower area per molecule than DDAO. Upon incorporation of 20 wt.% glycerol
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the molecular area of both surfactants on the solution surface is unchanged. In

contrast, upon incorporation of 40 wt.% glycerol the two surfactants have the

same molecular area, as a result of the increase in area per DDAO molecule and

decrease in area per DTAO molecule.
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Figure 6.9: Surface tension of aqueous solutions of amine oxide surfactants in the
presence of 0, 20 and 40% glycerol.

The values of the surfactant surface excesses at the air-water interface of the

solution can be compared with the determined surface excesses in the plasticised

film. Despite the excellent agreement between the surface excess in solution and

film for binary films, it is inconsistent and outside of the range of uncertainty

for plasticised films/solution of the same glycerol loading (20 wt.%). However,

the decrease and increase in Asurf of DDAO and DTAO respectively in solution

with 40 wt.% glycerol qualitatively follows the same trend observed in the film,

although a greater concentration of glycerol in solution is required to bring about

this effect. Interestingly, the values of Asurf in plasticised films are consistent for

DDAO and DTAO, and are also consistent with the values determined for both

surfactants in solution with 40 wt.% glycerol.

Table 6.7: Comparison surface excess (Γ) and area per molecule of DDAO and DTAO
in PVA films and on the water surface.

DDAO
Γ/µmol m−2 A/nm2

Solution Film Solution Film
Binary 2.90±0.09 3.3±0.7∗ 0.57±0.02 0.5±0.2∗

Plasticised 4.89±0.06 4.1-4.7∗ 0.58±0.01 0.35-0.40∗

3
DTAO

Γ/µmol m−2 A/nm2

Solution Film Solution Film
Binary 4.9±0.3 4.6±0.5 0.34±0.02 0.36±0.04

Plasticised 5.0±0.1 4.0±0.5∗ 0.33±0.01 0.42±0.05∗
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Figure 6.10: Change in molecular area of DDAO and DTAO on the solution surface
with glycerol concentration.

6.2.4 Compatibility of the PVA/Amine Oxide Surfactant

System

6.2.4.1 Phase Behaviour

Compatibility has been previously demonstrated to have a high influence on

surfactant segregation, and ternary phase diagrams have been shown to pro-

vide a good indication of the compatibility of the PVA/water/surfactant sys-

tems. As for the PVA/SDS and PVA/CTAB systems discussed in Chapter 5,

PVA/water/amine oxide surfactant phase diagrams were constructed by deter-

mining points at which the system clouds during solution-casting. The ternary

phase diagrams for the PVA/DDAO/water and PVA/DTAO/water systems are

shown in Fig. 6.11. It can be seen that all compositions relevant for the formation

of spin-cast films are well into the one-phase region; in the absence of water over

50 wt.% surfactant can be incorporated before phase separation occurs. There is

little difference in the phase behaviour of DDAO and DTAO, which is reflected

in their very similar depth profiles and segregation behaviour. This shows that

the significant increase in hydrophobicity with the extra -C2H4 group in DTAO

leads to no obvious change in compatibility with PVA. Damas et al.64 reported

that the -CH2OH groups of non-ionic polyol surfactants interact unfavourably

with PVA, with the -CH2 groups of the surfactant interacting favourably with

the polymer in solution. It could therefore be expected that DTAO would be

more compatible with PVA than DDAO, which is not observed.
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Figure 6.11: Ternary phase diagrams of the binary DDAO/PVA and DTAO/PVA
systems, in units of mass fraction.

6.2.4.2 Aggregation of Surfactant in the PVA Matrix: A SANS Study

Based on this phase behaviour analysis, amine oxide surfactants have been shown

to exhibit substantially higher compatibility with PVA than any other surfactant

studied so far. Small angle neutron scattering can provide further insight into

the structures present in polymer samples, and thus can be used as a tool to

better understand the nature of the surfactant aggregates. Data was collected on

PVA films containing amine oxides and/or glycerol in varying ratios. In contrast

to neutron reflectivity, SANS measures organisation in the bulk. Therefore, in

order to ensure that the samples scattered enough for measurement, the films

were solution-cast at 40 ◦C (rather than spin-cast) to give films approximately

70 µm thick, much thicker than the 70 nm thick films produced by spin-coating

and actually of very similar thickness to the industrial films in soluble unit-

dose applications. An important point to note is that the much longer time

for the solution-cast film to dry (on the order of tens of minutes rather than

seconds) means that it is likely that equilibrium structures will have had longer

to develop, whereas spin-cast films may contain surfactant kinetically trapped in

non-equilibrium structures. This is addressed more thoroughly in Chapter 7.

The SANS data for binary and plasticised films containing dDDAO and

dDTAO at concentrations ranging from 0-40 wt.% are shown in Figures 6.12 and

6.13 respectively. All samples scatter strongly, exhibiting a large peak in scat-

tering intensity at Q ≈ 0.055 Å−1. Because the size of this peak increases with

surfactant concentration, it strongly suggests the aggregation of the deuterated

surfactant within the samples.
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Figure 6.12: SANS data for the binary PVA/DDAO and PVA/DTAO systems. Solid
curves are fits using the broad peak model.

The peak at Q ≈ 0.055 Å−1 is present in all samples, including pure PVA.

This is therefore likely to be due to scattering from the interface between the

amorphous and crystalline domains of the polymer, with contrast in the pure

PVA arising due to the density differences of the two regions. The position of

this peak in pure PVA (Q0 = 0.054 Å−1) is largely unchanged upon incorporation
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Figure 6.13: SANS data for the plasticised (20 % glycerol) PVA/DDAO and
PVA/DTAO systems. Solid curves are fits using the broad peak model.

of either 20 % d-glycerol (Q0 = 0.057 Å−1) (Fig. 6.14) or up to 20 % deuterated

amine oxide surfactants (Q0 = 0.054− 0.059 Å−1), strongly suggesting that scat-

tering from the same structures is measured. However, intensity is significantly

greater in the latter system due to the increased contrast between amorphous

and crystalline domains as a result of a higher concentration of additive with a
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greater SLD.
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Figure 6.14: SANS data for pure PVA and PVA containing 20 wt.% d-glycerol. Solid
curves are fits using the broad peak model.

The SANS data with a single peak could be captured well by a broad peak

model, that can be used to identify the peak position, and thus the distance

between scattering inhomogeneities. In this model, the scattering intensity, I(Q),

is calculated as:

I(Q) =
A

qn
+

C

1 + (|Q−Q0|ξ)m
+B (6.2)

where A is the Porod law scale factor, n is the Porod exponent, C is the Lorentzian

scale factor, m is the exponent of Q, ξ is the screening length and B is the flat

background. A limited range of the data containing a secondary peak at higher

Q was also fitted with this simple model in order to extract the positions of the

primary peak. Fitted parameters are included in Appendix C. From the peak

positions, determined from Q0, the characteristic distance corresponding to this

peak, d0, can be calculated using Equation 6.3. The variation in d0 for binary

and plasticised films containing dDDAO and dDTAO is shown in Fig. 6.15.

Q =
2π

d
(6.3)

First considering the binary films, it can be seen that in the concentration

range of 2-20 % surfactant, there is very little difference in the spacing between

the regions occupied by DDAO and DTAO, and there is no significant change in
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Figure 6.15: Spacing between scattering structures in binary and plasticised PVA
films containing DDAO and DTAO, determined from peak positions of SANS data.
Curves are a guide to the eye.

d0 with surfactant concentration. Upon incorporation of 40 % DDAO, however,

there is a substantial increase in d0. There is no difference between the values

for DDAO and DTAO, and thus this feature is not directly related to surfactant

molecular structure.

In the case of the plasticised films, there is again very little difference between

the spacing between scattering structures in PVA films containing DDAO and

DTAO at each concentration. However, in contrast to the binary films, there is

a general increase in d0 with surfactant concentration.

At high surfactant loadings (20 % DDAO and 10 % DTAO) a secondary peak

at higher Q appears (denoted Q1). This is likely to be due to the structuring

of the surfactant within the surfactant-rich domains, such as the formation of

micelles. The position of this secondary peak is consistent with that previously

observed for DDAO in solution, which has been consistently modelled as prolate

ellipsoids.214–216 The peak position is also related to the spacing, d, of the scat-

tering inhomogeneities by Equation 6.3. Based on Q1 ≈ 0.15 Å−1, determined

from the data corresponding to PVA containing 40 % DDAO, the secondary peak

corresponds to a distance, d1, of 41 Å. This correlates well with the length of a

fully extended DDAO bilayer.217 Although a value for d1 cannot be accurately

determined from the SANS data on binary films, comparison of the secondary

peak positions (Q1) for DDAO and DTAO in plasticised PVA films reveals that

Q1 DDAO (0.19 Å−1) > Q1 DTAO (0.15 Å−1), which reflects the larger size of the
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aggregates formed from the surfactant with the larger hydrocarbon tail.

6.3 Discussion

6.3.1 Distribution of Components in PVA/Amine Oxide

Surfactant Films

Surface enrichment: Adsorption of Surfactant to the Film-Air Inter-

face

Neutron reflectivity has revealed that the amine oxide surfactants exhibit segre-

gation behaviour in PVA unlike any previously studied model surfactant. DDAO

shows some surface activity in PVA, forming a surfactant monolayer layer on

the surface, but the majority of the surfactant is evenly distributed throughout

the bulk film. Although surfactant multilayer adsorption has been previously

observed with C12E5
168 and SDS,174 this is the first system where the adsorption

is restricted to a single monolayer.

Surface energy has been previously suggested to be largely responsible for

segregation; comparison of the surface activity of the components in aqueous

solution was able to rationalise the extensive segregation of SDS and C12E5 from

PVA (Chapter 5). In this chapter, tensiometry has shown that the amine oxide

surfactants have the lowest surface tension in solution of all components in the

model film system. Therefore, based on the previous arguments presented in

Chapter 5, it would be favourable for them to segregate more extensively to the

surface, with the amount of segregated additive dependent on the total amount

of surfactant present. Although very little surfactant is actually observed to

segregate, and the amount of segregated surfactant is independent of the total

amount present in the system, the substantially lower surface tension of DDAO

and DTAO in solution compared to PVA is likely to lead to the formation of

the surface monolayer in the solid films as this is sufficient to reduce the surface

energy of the system. This corroborates the findings presented in Chapter 5,

although for this to be unequivocally concluded, the interaction between PVA

and surfactants in solution should be more thoroughly investigated.

The role of the entropic penalty associated with the deformation of large

polymer molecules at the surface should also be considered in the context of

rationalising the observed segregation of the smaller surfactant molecules. It

is plausible that a monolayer of surfactant remaining on the solution surface

throughout the spin-coating process, resulting in its presence on the the dry

film, reduces the surface free energy for this reason. A single monolayer of the
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relatively short chain surfactant on the surface is sufficient to reduce the entropic

penalty from long PVA chains occupying the surface in restricted configurations,

if the monolayer makes the interface more diffuse. If this was the sole factor

responsible for the observed segregation of the amine oxide surfactants, however,

an enrichment of glycerol on the surface of PVA films would be expected in the

absence of surfactant, which has not been observed.168 Furthermore, a sharp

interface between the monolayer and the PVA would not be expected as this

would again result in a conformational entropy penalty.

Guided by the insights gained from Chapter 5, compatibility arguments will

therefore also be considered in order to rationalise the observed depth profiles

of the amine oxides. Based on the minimal segregation observed even with very

high surfactant concentration, it is probable that most of the surfactant is present

in the bulk film due to its high solubility in the PVA matrix. This was confirmed

by obtaining phase diagrams of the PVA/amine oxide/water systems, which re-

veal that a substantial amount of surfactant can be incorporated into the PVA

matrix in the absence of water without phase separation occurring. Amine oxide

surfactants are extremely hydrophilic, with their high hydrophilicity compared

to other surfactants of the same chain length attributable to the strength of the

dipole in the N-O bond of the amine oxide. This property could act to make them

very compatible with the host polymer.218 It is therefore likely that the strength

of their interaction with hydroxyl groups in the PVA matrix can compensate for

the free energy penalty of having the component with a lower surface free energy

dispersed throughout the bulk.

The association of polymers and surfactants in solution to form polymer-

bound micelles has been thoroughly documented, and it is well-established that

non-ionic and cationic micelles do not associate greatly with hydrophilic poly-

mers.219 Additionally, although Brackman et al.220 reported the stabilisation of

micelles of DDAO in the cationic form by the hydrophobic polymers poly(vinyl

methyl ether) and poly(propylene oxide), no-association between these polymers

and the neutral form of DDAO was identified in solution. Association of neu-

tral DDAO with polymers has been shown to occur only when the polymer is

sufficiently hydrophobic.45,219 Indeed DDAO showed no association with the rel-

atively hydrophilic polymer poly(ethylene oxide). In the current work with PVA,

with the solutions at the natural pH, the surfactants are almost exclusively in

the neutral form, and therefore little interaction with the hydrophilic PVA in

solution would be expected. However, this does not preclude the possibility of

the amine oxide surfactants interacting favourably with hydroxyl groups present

in amorphous regions of the solid film matrix.
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Influence of Plasticiser on Surface Properties of Three-Component

Films

The replacement of some PVA with glycerol can have a significant impact on

surfactant and plasticiser distribution in PVA films due to the competing com-

patibilities of the three components.168,174 However, in this model system there is

surprisingly little difference in the segregation of the amine oxide upon glycerol

incorporation other than a slight thickening of the surface layer, and an increased

area per surfactant molecule for DDAO. The adsorption of glycerol onto the sur-

face over a similar lengthscale to the thickness of the adsorbed surfactant layer

indicates the co-adsorption of this species with the surfactant into a more diffuse

monolayer, but no other surface enrichment.

It was previously reported that incorporating glycerol into a film containing

CTAB results in segregation of the surfactant that was not observed in the binary

film. This was suggested to be a result of glycerol out-competing CTAB for sites

in the amorphous regions of the matrix.168 In Chapter 4, it was illustrated that

glycerol enables the formation of thermodynamically stable stacked SDS/glycerol

layers on the film surface, allowing even more SDS to segregate than was observed

in binary films. The behaviour of the amine oxide system, however, contrasts

both of these previously observed behaviours, with the measured depth profiles

suggesting a very high compatibility of the amine oxide with the matrix, even

in the presence of plasticiser. This is likely due to the hydrophilicity of the

surfactant.

Interfacial Adsorption

The thick region of high SLD (∼3.8 ×10−6 Å−2) on the substrate interface appar-

ent in the SLD-depth profiles of films containing deuterated surfactant is strongly

indicative of interfacial surfactant adsorption. Although neutron reflectivity is

not capable of resolving the nature of the structures at the interface of these

films spun onto a silicon substrate due to the similar SLD of the silicon oxide

and the deuterated surfactant, there has been substantial evidence for the for-

mation of structures on solution-substrate interfaces. When reflectivity data for

a PVA/DDAO film was fitted with a 4-layer model, to include an additional

surfactant-rich layer adjacent to the substrate, the thickness of the interfacial

layer was found to be 13±10 Å, which could correspond to a number of different

structures, which have been probed theoretically experimentally.221–224 The huge

uncertainty in this value is a result of the difficulty in resolving the interfacial

surfactant from the SiOx. It was previously reported that treating structured

surfactant films as a bilayer generally results in a good fit to reflectivity data.224
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This surfactant rich layer present adjacent to the silicon substrate could therefore

correspond either to a monolayer, as observed on the surface, a bilayer-type struc-

ture consisting of a surfactant headgroup closest to the hydrophilic substrate, a

tail region, and another headgroup region adjacent to the bulk polymer film, or a

more complex structure such as cylindrical aggregates, as observed in the case of

nonionic DTAO on the mica-solution interface by Kawasaki et al.225 The evidence

from NR suggests that, similarly to the behaviour observed in solution, structures

are forming on the film-substrate interface. They are not multilayered, however,

and are therefore consistent with the single-phase behaviour of the surfactant in

the bulk. Although the nature of these aggregates will not be considered further,

this presents convincing evidence that the behaviour of the surfactant in the solid

film reflects that in solution.

6.3.2 Structure of the Surface Monolayer: DDAO vs. DTAO

in Film and Solution

It is particularly noteworthy that the surfactant exhibits identical behaviour

when water is replaced by a solid polymer, given the significant differences in

surface tension of pure water and pure PVA. Although a range of surface energy

values for PVA have been reported, from 37-59 mN m−1 180,181,226 depending on

the degree of hydrolysis and molecular weight, all are higher than the surface

tension of the surfactant solutions above the CMC.

When discussing the nature of the surfactant behaviour both in the film and

in solution, it is important to acknowledge the equilibrium between the proto-

nated and unprotonated forms of the surfactant. The equilibrium constant, Ka

is defined as

Ka =
[(CH3)2RNO-] [H+]

[(CH3)2RNOH]
. (6.4)

The pKa can be written in terms of the degree of ionisation of the micelle,

αM

pKa = pH + log[αM/(1− αM)]. (6.5)

At neutral pH, the amine oxides are almost exclusively in the neutral form,

although the presence of the cationic species should be considered. The pKm

value can be defined as the intrinsic proton dissociation constant of the micelle,

rather than the single surfactant molecules. This is known to be greater than that

of the single surfactant molecule.227,228 It is particularly relevant that Maeda et
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al.218 have shown that DDAO and DTAO have significantly different pKm values;

pKm(DDAO) (5.89) is smaller than pKm(DTAO) (6.30), meaning that a higher con-

centration of the cationic species of DTAO is likely to be present in solution than

in the corresponding DDAO solution. This is thought to be a result of the different

shapes of the largely non-ionic micelles; DDAO has been shown to form spheri-

cal micelles, whereas DTAO forms rod-like micelles. Although these pKm values

were taken in solutions containing 1 M NaCl, it was determined that the salt con-

centration has no significant effect on pKm. The degree of protonation therefore

affects both the solution and surface properties of the surfactant, including CMC,

aggregation number, and aggregate shape. This is due to the well-known hydro-

gen bonding between cationic and non-ionic amine oxide groups,229 the likely

formation of hydrogen bonds between two neighbouring cationic groups,230 and

the dipole-dipole interactions between the nonionic species.218 Solutions for both

surface tension measurements and spin-casting were used at natural pH, above

pH 7, and the proportion of cationic surfactant is therefore very low.

Analysis of the Gibbs isotherms, however, has shown that DTAO occupies a

significantly smaller area per molecule than DDAO. As the area per molecule on

the surface is highly sensitive to the degree of ionisation (α) of the surfactants, it

is probable that the lower area per molecule is due to the slightly greater degree of

ionisation of DTAO ( although a substantially greater degree of ionisation would

lead to a greater molecular area due to greater headgroup repulsion). However,

the dissociation constants of the surfactant monomers are not identical to that in

the micelle as the introduction of charges is generally more favoured on the micelle

surface. Despite this, it is plausible that even a slightly higher concentration of

the cationic surfactant in DTAO solutions would result in the formation of strong

hydrogen bonds on the surface between the cationic and non-ionic headgroups,

leading to the formation of dimers and decreasing the average area per headgroup.

This effect is then replicated in the solid film, where the area per molecule is

greater for DDAO than DTAO, with values consistent with those of the area on

the solution surface. This suggests that the nature of interactions is consistent

when the bulk is water or solid PVA.

Influence of Glycerol on Surfactant Molecular Area

At the highest concentration, the presence of glycerol has the opposite effect on

the areas of the DDAO and DTAO molecules both in the film and solution. With

a pKa of 14.4,231 the incorporation of glycerol into the mixtures is expected to

have a negligible increase in the proportion of the cationic species from that of

the binary solutions. It could therefore be suggested that it is the interaction
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between the surfactant head groups and the plasticiser molecules that affects the

area per molecule on the surface. This should be addressed by considering the

nature of the interactions between the surfactant and glycerol.

The effect of glycerol on surfactant behaviour has been addressed in a number

of systems including ionic and nonionic surfactants,204,205,232 although there have

been no reported studies on the effect of co-solutes such as glycerol on the sur-

face tension or micellisation behaviour of amine oxide surfactants. In general two

different mechanisms for the action of co-solvents such as glycerol on the micel-

lisation of surfactants have been suggested. The first is an indirect mechanism,

where the additive changes the properties of the aqueous medium, in particular

the dielectric constant, which impacts the electrostatic interaction in solution.

This is generally accepted in the case of ionic surfactants. The second is a direct

mechanism, where the additive replaces some of the water molecules that hy-

drate the surfactant. D’Errico et al.205 investigated the effects of glycerol on the

cationic surfactant, CTAB and the non-ionic ethoxylated surfactant Brij 58. Al-

though the CMC of CTAB is affected by the presence of the co-solute only above

30 wt.% glycerol, above this concentration the area per surfactant molecule was

found to increase almost linearly with the glycerol concentration. The average

area per Brij 58 molecule on the surface was also found to follow a generally

linear increase with concentration. In both of these systems the authors found

no evidence of a direct interaction between the surfactant and glycerol molecules.

However, different behaviour could be reasonably expected of the amine oxide

surfactants studied in this work due to the strong N-O dipole and ability to form

strong hydrogen bonds with the additive.

It is surprising that in solutions containing 40 wt.% glycerol, the molecular

areas of DDAO and DTAO are equal, given that this necessitates a decrease in

molecular area for the former surfactant and increase in molecular area for the

latter. This suggests that at this high glycerol concentration, the interactions

between individual surfactant alkyl chains are not the dominating factor. It is

therefore likely that the glycerol-surfactant monolayer is controlled by the hydro-

gen bonding between glycerol and amine-oxide groups, rather than the presence

of any cationic-nonionic hydrogen bonds, which leads to identical structures of

the monolayers. This argument can therefore be used to rationalise the respective

increase and decrease in Asurf of DTAO and DDAO with glycerol concentration;

it is plausible that the strength of hydrogen bonds between glycerol and the sur-

factant headgroup are stronger than the dipole-dipole interactions between the

non-ionic headgroups predominantly present in the DDAO solution/film, which

leads to a contraction of the monolayer. Conversely, the glycerol-surfactant hy-
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drogen bonds are likely weaker than those present between cationic/non-ionic

headgroups in the DTAO solution/film and so the plasticiser acts to preclude the

formation of the hydrogen bonded dimers and overall increase molecular area.

The lack of change of molecular area in solution for both surfactants when

glycerol content is increased from 0 to 20 wt.% is surprising. This behaviour

suggests that in this system, the monolayer is unaffected by the co-solute at this

loading as there is no co-adsorption of glycerol in solution. (This is in contrast to

the solid film, where enrichment of d-glycerol to the surface of PVA containing 20

wt.% d-glycerol is apparent, Fig. 6.4). This argument can be used to explain the

observations in both solution and films. However, the inconsistency of the values

for Asurf between solution and film in the presence of 20 wt.% glycerol suggests a

subtle difference in the behaviour of surfactants when water is replaced by a solid

polymer; in the presence of the PVA much lower loading of glycerol is required

for its co-adsorption to the surface.

6.3.3 Compatibility of the PVA/Amine Oxide System

Having discussed the nature of the monolayer on the surface of the PVA film, it is

worth now considering the nature of the surfactant aggregates in the bulk of the

film, where the majority of the additive is localised. The high compatibility of the

PVA/amine oxide surfactant system, as revealed by the ternary phase diagram,

was previously discussed in terms of its role in the resulting surfactant distribution

in spin-cast films. The high compatibility of the amine oxides with PVA can also

be corroborated with findings from small angle neutron scattering. First, SANS

demonstrates that these molecules are localised in specific regions already present

in the polymer. As it is clear from the SANS data that the surfactants localise

in the same region as glycerol, a commonly used plasticiser, it is probable that

DDAO and DTAO are localised in the amorphous regions of the polymer. To

confirm this, the effect of DDAO on the glass transition temperature of PVA

films was measured using DMA (Fig. 6.16). A representative plot of the DMA

data used to determine the Tg is included in Appendix D. If the additive localises

in the amorphous regions, a change in glass transition temperature would result,

whereas this would not be expected should the additive localise exclusively in the

crystalline regions. From the clear decrease in Tg with DDAO concentration it

can be concluded that the amine oxides do indeed occupy the amorphous regions,

and contribute to the plasticisation of the PVA.

The lack of change in d0 upon increasing the concentration of both DDAO

and DTAO from 0 to 20 % (Fig. 6.12) suggests that these additives can be incor-
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Figure 6.16: Change in Tg of PVA with DDAO concentration.

porated at a high loading without substantially changing the overall structure of

the polymer. At the very high loading of 40 % DDAO, however, an increase in

the size of the amorphous domains must occur to accommodate the surfactant,

leading to an increase in d0. In contrast to the binary films, in the case of the

plasticised films, where 20 % glycerol is additionally incorporated, as little as 5

% surfactant causes a substantial increase in d0, which increases almost linearly

with additive concentration. This likely indicates that the preferential occupation

of both surfactant and plasticiser in the amorphous domains causes an increase

in size of these regions and a resulting greater spacing between them.

From Figure 6.17, it can be seen that the peak in I(Q) for a film containing

20% dDDAO shows a greater scattering intensity than a film containing 20 %

d-glycerol, therefore suggesting that surfactant localises more specifically in the

amorphous regions than glycerol. To determine whether this is indeed due to the

increased aggregation of the amine oxide in the amorphous regions of the PVA,

rather than simply being a result of the difference in contrast between PVA and

d-glycerol and PVA and dDDAO, SANS data was acquired for a film containing

DDAO contrast matched to d-glycerol (4.91 ×10−6 Å-2). The comparison of the

SANS data for these samples is shown in Fig. 6.17. It can be clearly seen that

although the intensity of the peak at Q ≈ 0.055 Å−2 decreases upon replacing

dDDAO with DDAO contrast matched to d-glycerol due to the decreasing con-

trast between the PVA matrix and the additive, it is still significantly higher than

for the peak from the sample containing d-glycerol. This confirms that there is
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a higher concentration of the surfactant additive aggregating in these domains

than plasticiser, or at least sharper interfaces at the polymer-rich domains.
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Figure 6.17: Comparison of SANS data for PVA films containing 20 wt.% d-glycerol,
20 wt.% dDDAO and 20 wt.% (h/d)-DDAO, contrast matched to d-glycerol.

6.4 Chapter Conclusions

In this chapter, a new model PVA/surfactant system has been characterised in

films and solution. Two amine oxide surfactants have been shown to exhibit

segregation behaviour in PVA remarkably similar to their behaviour in water,

showing consistent molecular areas in solution and in the film. Neutron reflectiv-

ity has shown that the surface structure of the films is consistent, regardless of

surfactant loading.

This is the only polymer/surfactant system observed where the surfactant

acts similarly to its behaviour in aqueous solution. This has been attributed to

the small amine oxide group which affords the surfactant a high level of com-

patibility with the polymer matrix. The head group is also capable of strong

dipole-dipole bonds with adjacent head groups, resulting in the favourable for-

mation of a monolayer on the surface.

Comparison of the molecular areas of DDAO and DTAO shows that the longer

chain surfactant has a lower molecular area, which is attributed to the higher

degree of ionisation and hence stronger inter-head group interactions. This could

also be a result of the stronger tail-tail attraction due to the extra -C2H4 in
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the hydrocarbon chain, and slightly lower surface energy as indicated by surface

tensiometry. The nature of the intermolecular interactions in the monolayer

can be used to justify the effect of the incorporation of glycerol on the molecular

areas of DDAO. Although there are some subtle differences between the surfactant

behaviour in solution and in the film, the remarkable and unprecedented similarity

between the systems demonstrates the importance of the interactions between the

headgroups.

Consideration of the solution properties of the amine oxide surfactants shows

that the conclusions presented in Chapter 5 can be confirmed in this system,

as the observed depth profiles appear to be a balance of surface energy and

compatibility factors. First, the very low surface tension of the amine oxide

surfactant compared to PVA can lead to a preferential adsorption to the surface.

Second, the high compatibility of the PVA/amine oxide system as determined

by its phase behaviour and specific localisation in the amorphous regions of the

polymer, reflects the lack of extensive segregation as observed in other surfactant

systems. The corroboration of these findings with the conclusions of Chapter

5 illustrates the value of the solution state studies in allowing predictions of

surfactant segregation in other systems to be made.
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Chapter 7

Impact of Temperature on Film

Additive Distribution

One of the underlying questions throughout this work is whether additives are

capable of migrating over time. To what extent is equilibrium reached in the

initial spin-casting process? Is there scope for further segregation, and how does

this depend on the nature of the additive? These questions were first hinted at

in Chapter 4, where subtle differences in surfactant distribution were identified

when the films were immediately vitrified after spin-casting rather than measur-

ing under ambient conditions. In this chapter, this question is explored more

extensively. For three model systems (SDS, C12E5 and DDAO in PVA) the effect

of ageing films at elevated temperature on the surfactant distribution is inves-

tigated, in order to provide insights into the mobility of these additives and its

implications for the properties of industrial films.

7.1 Protocol

In order to determine whether additive migration occurs upon heating the films,

neutron reflectivity was used to quantify the depth profiles of deuterated additives

in the same spin cast films, at a number of temperature increments. For each

model system, the loading of deuterated surfactant was fixed at 10 wt.%. Each

film was spin-cast from a solution containing 4 wt.% total solute to produce

∼ 70 nm thick samples, in order to obtain reflectivity with resolvable Kiessig

fringes. By repeatedly measuring a single film for each surfactant, this eliminates

any ambiguity arising from slight variations of total film thickness or additive

concentration in different films of the same composition. Measurements were

carried out at 25, 45, 65 and 85 ◦C. Films were subsequently allowed to cool back

to 25 ◦C and reflectivity data was obtained again.
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7.2 Results

7.2.1 Effect of Temperature on SDS Distribution

7.2.1.1 Binary Films containing SDS

PVA films containing dSDS as the only additive were first investigated. As in the

previous chapters, reflectivity data was collected over a range of 0.01 < Q < 0.3

Å−1, which was used to obtain a SLD-depth profile, that could be converted to

a volume fraction-depth profile as described in Chapter 4 (Equation 4.2). The

obtained volume fraction-depth profiles for the film obtained at 25 ◦C (before

heating), 45, 65, 85 and 25 ◦C (re-cooled) are shown in Fig. 7.1.

 25 °C
 45 °C
 65 °C
 85 °C
 25  °C(cooled)

f d
SD

S(
z)

Depth/nm

R

Q/Å-1

Figure 7.1: Depth profiles of 10 wt.% dSDS in non-plasticised PVA films at 25 ◦C,
after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron reflectivity data
and fits are shown in the inset, with data offset for clarity.

For each temperature, the reflectivity data can be fitted with a four-layer

model, consisting of two layers comprising a surface excess, a bulk, subsurface

polymer layer and the SiOx layer. This is in contrast to the profiles presented

in Chapter 4, where the reflectivity data of a binary PVA/dSDS film could be

adequately fitted using a three-layer model, with all features adequately captured

by treating the surface excess as a single layer. The surface excess, z∗, and

fraction of segregated surfactant, f , have been calculated at each temperature.

These values are included in Table 7.1.
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Table 7.1: Surface excesses (z∗) and fraction of segregated surfactant (f) in binary
films containing 10 wt.% dSDS.

T/◦C z∗/nm f
25 6.5± 0.5 0.58± 0.06
45 6.4± 0.5 0.60± 0.06
65 6.9± 0.5 0.60± 0.06
85 6.2± 0.4 0.61± 0.06

25 (cooled) 6.1± 0.4 0.61± 0.06

Considering first the profile obtained from the film measured at 25◦C, the

top surface layer consists of almost pure dSDS, and it is apparent that there is a

wetting layer of the surfactant. The thickness of this layer is much thicker than

a bilayer of SDS. The second layer is also rich in surfactant, but can be seen

to contain a significant amount of the (lower SLD) hydrogenated polymer. The

subsurface film is fitted with a single layer. Although the volume fraction of this

layer is quite high (φdSDS ≈ 0.08, corresponding to 8.8 wt.%), particularly when

compared to that in the Chapter 4, where φdSDS ≈ 0.03, the uncertainty in the

concentration of the bulk layer, as determined using NR is typically quite large.

The value for the volume fraction of 0.08 reported here is likely greater than the

true value, given that the values for z∗ and f determined in this film at 25◦C are

also substantially higher than the values presented in Chapter 4 for a thin film

containing 10 wt.% dSDS.

From Fig. 7.1, it can be seen that the a feature at Q ≈ 0.2 Å−1 is not captured

well by this model. It should be noted that in contrast to the features observed

at high Q in the thick, plasticised films (Chapter 4), these are not Bragg peaks,

and therefore not necessarily indicative of a repeating structure on the surface.

However, since the feature is at relatively high Q, it corresponds to a feature on a

relatively short lengthscale. Although it is not as well-defined as the Bragg peaks

seen in Chapter 4 for plasticised films, it is still likely to arise from the internal

structure of the adsorbed layer, since the feature occurs at about the same Q.

Despite these fringes being poorly captured by the fit, the good fit of this model

to the reflectivity data over the low Q range show the successful characterisation

of the overall larger scale features of the total adsorbate thickness and density.

Upon heating to 45 ◦C and subsequently 65 ◦C, the reflectivity data can

be fitted using a similar 4-layer model, with little change in concentration or

thickness of each of the layers observed. Within the uncertainty of these values,

there is no change in either z∗ or f . This, alongside the very similar shape of

the profiles at these temperatures, indicates little change in the distribution of

surfactant throughout the film.
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Upon heating to 85 ◦C, however, a more significant change in the surface

excess of the film occurs. Although the data is still fitted using the same 4-

layer model, the concentration of dSDS in the two surface layers comprising the

surface excess is substantially lower. A slight broadening of the surface excess

layers can also be identified in Fig. 7.1, reflecting a roughening of this layer.

This can also be inferred from the raw reflectivity data; the fringes at higher

Q (0.16 Å−1) becomes slightly flattened out at 85 ◦C, indicating an increase in

roughness. The suppressed feature at 0.16 Å−1 does not recover upon cooling the

film, suggesting that the internal structure of the adsorbed layer is irreversibly

altered. Despite the slight change in the shape of the volume fraction-depth

profile, the values in Table 7.1 reveal no significant change in the surface excess

or fraction of segregated surfactant upon heating to 85 ◦C. This therefore suggests

a rearrangement of the surface occurs, rather than further additive migration into

or from the subsurface film. When the film is cooled back to 25 ◦C, there is very

little change in the volume fraction-depth profile or z∗ and f values, compared

to the film at 85 ◦C, indicating that the changes in surface excess upon heating

to 85 ◦C are irreversible.

7.2.1.2 Plasticised Films containing SDS

The change in the distribution of dSDS upon heating plasticised films was sub-

sequently investigated. As in previous chapters, glycerol was used as a model

plasticiser, with its loading fixed at 20 wt.%. As described in Chapter 4, after

fitting the reflectivity data to a SLD-depth profile, this can be converted into a

volume fraction-depth profile by assuming an even ratio of the two hydrogenated

components. The obtained volume fraction-depth profiles, alongside the reflec-

tivity data and fits, are presented in Fig. 7.2. In this case a significant (> 10

nm) decrease in film thickness was observed to occur upon heating from 25 ◦C to

45 ◦C, and there is a further slight decrease in film thickness upon heating to 65
◦C. This is almost certainly due to a loss of glycerol from the film over time as it

has previously been determined that glycerol can be significantly volatile in thin

films.147 To illustrate the variation in film thicknesses, the depth profile of the

whole film (from air interface to substrate) is included in Fig. 7.2. It should be

noted, therefore, that the second “peak” in the concentration profile corresponds

to the silicon oxide layer on the substrate, and not a layer enriched in surfactant.

Assuming an even distribution of glycerol throughout the plasticised film, z∗ and

f can be calculated. These values are reported in Table 7.2.

The film measured at 25 ◦C is qualitatively consistent with the plasticised

film containing 10 wt.% dSDS presented in Chapter 4. As for the film in Chapter
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Figure 7.2: Depth profiles of 10 wt.% dSDS in PVA films containing 20 wt.% h-
glycerol at 25 ◦C, after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron
reflectivity data and fits are shown in the inset, with data offset for clarity.

Table 7.2: Surface excesses (z∗) and fraction of segregated surfactant (f) in plasticised
films containing 10 wt.% dSDS.

T/◦C z∗/nm f
25 3.6± 0.4 0.58± 0.06
45 3.9± 0.4 0.66± 0.07
65 3.6± 0.4 0.63± 0.06
85 3.6± 0.4 0.65± 0.07

25 (cooled) 3.8± 0.4 0.69± 0.07

4, reflectivity data was fitted with a four-layer model. However, the values for z∗

and f differ slightly; although z∗ is slightly higher than that previously reported,

f is substantially lower. One likely reason for this is the large uncertainty in

the SLD of the layer corresponding to the bulk film. Although the degree of

segregation could also be affected by the total film thickness, if this was the case

a lower value for z∗ would be expected here, due to the significantly lower total

film thickness compared to that in Chapter 4. The total volume fraction of dSDS

in the film measured at 25 ◦C, prior to heating, was calculated to be 0.11, which

corresponds to 10.7 wt.%, and is therefore representative of the solution used to

spin cast the film. It is interesting to note that f is very similar to the value

obtained for the binary film (Section 7.2.1.1) as glycerol was previously shown
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to enhance segregation in PVA (Chapter 4). Although the influence of glycerol

on SDS distribution is most apparent at higher loadings of SDS (including the

20 wt.% loading studied in Chapter 4), the similar values for f in binary and

plasticised films observed here could nevertheless indicate some development in

the surface before first reflectivity was first collected (at 25 ◦C).

Upon heating the film incrementally to 85 ◦C, very little change in the reflec-

tivity data and obtained volume fraction profile of the surfactant can be identified.

This is is reflected by the lack of change in z∗ and f . This contrasts with the

behaviour of the non-plasticised film, where a slight change in structure of the

surface excess layer was observed to occur. This is likely to be, at least in part,

due to the action of the plasticisers leading to the film already being close to

equilibrium structure at 25 ◦C.

It is also worth determining the change in plasticiser distribution upon heating

the film. SLD-depth profiles obtained from films containing 10 wt.% hSDS and

20 wt.% d-glycerol determined from reflectivity measured at 25 and 85 ◦C are

included in Fig. 7.3. The slight decrease in film thickness and decrease in SLD

of the bulk film are indicative of loss of d-glycerol from the film. It can be

seen, however, that the surface layer remains enriched in d-glycerol after heating,

although the concentration of the plasticiser at the surface decreases slightly.

This is likely to be a result of heating directly from 25 to 85 ◦C, which gives less

cumulative time for evaporation of the plasticiser, leading to some retention of

d-glycerol in the film. This observed surface enrichment of glycerol supports the

idea that glycerol is somewhat bound to the surfactant headgroups and is thus

more readily lost from the bulk of the film than the adsorbed layer environment.

7.2.2 Effect of Temperature on C12E5 Distribution

7.2.2.1 Binary Films containing C12E5

The effect of heating PVA films containing C12E5 was subsequently studied. The

distribution of this surfactant in non-plasticised films at each temperature can

be assessed by their volume fraction-depth profiles (Fig. 7.4). Here both the

full depth profile (from air interface to the substrate) and a depth profile of the

surface region of film are included.

A model consisting of 5 layers was required to adequately fit the entire Q

range of the reflectivity at each temperature. These correspond to two layers for

the surface excess, enriched in deuterated surfactant, a bulk film layer, a layer of

surfactant enriched at the substrate interface, and finally a layer corresponding

to silicon oxide on the substrate. This interfacial segregation of the surfactant, in
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Figure 7.3: SLD-depth profiles of PVA films containing 10 wt.% hSDS and 20 wt.%
d-glycerol at 25 ◦C and after heating to 85 ◦C. Neutron reflectivity data and fits are
shown in the inset, with data for 25 ◦C offset for clarity.

addition to the surface segregation, has been previously reported.168 However, as

the silicon oxide has a similar SLD to the deuterated surfactant it is difficult to

resolve these two layers in order to accurately quantify the interfacial segregation.

From the full depth profile, a slight decrease in film thickness can be observed

at each temperature increase. As no plasticiser is present in this film, this decrease

in thickness is likely to indicate loss of the surfactant itself. Alternatively, a

decrease in thickness could be the result of the loss of residual water from the film,

although if this were the case, a decrease in the thickness of the binary dSDS/PVA

film would also be expected. As water has a low SLD (−5.6× 10−7Å
−2

), its loss

from the bulk film should lead to an increase in the SLD of this layer, which

would appear as an increase in φC12E5
. However the uncertainty in the SLD of

the bulk layer is typically too high to quantify dehydration in this way.

From the depth profile of the surface region of the film (7.4b), it is appar-

ent that the surfactant distribution changes upon heating the film. The surface

excess and fraction of segregated surfactant are reported in Table 7.3. There is

little change in the depth profile (and thus z∗ and f) upon heating from 25 ◦C to

45 ◦C. Upon heating further to 65 ◦C, the thickness of two surface layers remains

constant but the surfactant volume fraction on the surface drops slightly, appear-

ing to drop again after heating to 85 ◦C. A much more substantial change in the
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(b) Surfactant distribution at the film surface.

Figure 7.4: Depth profiles of 10 wt.% dC12E5 in non-plasticised PVA films at 25 ◦C,
after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron reflectivity data
and fits are shown in the inset of 7.4b, with data offset for clarity.

depth profile can be seen after allowing the film to cool back to 25 ◦C. In this case

the reflectivity data can be fitted using a 4-layer model, with a single layer found
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to be capable of capturing the surface excess. The thickness of this layer is lower

than that of the two surface layers determined at all other temperatures, and the

volume fraction of surfactant in this layer is also lower. In addition, it can be

seen that volume fraction of surfactant in the bulk film layer is greatly increased,

relative to the concentration in this layer at every other temperature measured.

Although the SLD of this layer can typically have a large uncertainty associated

with it, the substantial increase in φb(C12E5) suggests that this is not only a result

of the uncertainty in the fitted parameter. It is clear, however, that the decrease

in surface excess apparent in the film measured after cooling to 25 ◦C is not ad-

equate to cause such an increase of surfactant volume fraction in the bulk film.

It is therefore necessary to consider the interfacial segregation of the surfactant

more carefully. From the full depth profiles (Fig. 7.4a), it can be seen that the

thick, surfactant-rich layer adjacent to the silicon oxide clearly identifiable in the

films measured at 25, 45, 65 and 85 ◦C is barely present in the profile determined

after the film was cooled, suggesting the migration of surfactant from the sub-

strate to the bulk film. From this profile, although it is hard to resolve interfacial

C12E5 from the silicon oxide, it is also clear that the extent of segregation at the

substrate is much greater than that at the air-film interface. Therefore, although

difficult to quantify, this should not be neglected by considering only z∗ and f ,

which are calculated based only on the C12E5 segregated to the air-film interface.

Table 7.3: Surface excesses (z∗) and fraction of segregated surfactant (f) in plasticised
films containing 10 wt.% dC12E5.

T/◦C z∗/nm f
25 1.4± 0.2 0.91± 0.09
45 1.4± 0.2 0.86± 0.09
65 1.1± 0.1 0.80± 0.08
85 1.1± 0.1 0.79± 0.07

25 (cooled) 0.7± 0.1 0.70± 0.07

7.2.2.2 Plasticised Films containing C12E5

The change in the distribution of C12E5 in plasticised films upon heating will now

be assessed. The volume fraction depth profiles for the surfactant obtained from

reflectivity measured at 25, 45, 65 and 85 ◦C and after cooling back to 25 ◦C are

included in Fig. 7.5.

The z∗ and f values for C12E5 for the plasticised film at each temperature

are presented in Table 7.4. In accordance with previously published results,168

comparison of Table 7.3 and 7.4 reveals a lower extent of C12E5 segregation in
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(b) Surfactant distribution at the film surface.

Figure 7.5: Depth profiles of 10 wt.% dC12E5 in PVA films containing 20 wt.% h-
glycerol at 25 ◦C, after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron
reflectivity data and fits are shown in the inset of 7.5b, with data offset for clarity.

the plasticised film.

First considering the whole depth profile (from the air to substrate interface),
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Table 7.4: Surface excesses (z∗) and fraction of segregated surfactant (f) in plasticised
films containing 10 wt.% dC12E5.

T/◦C z∗/nm f
25 2.5± 0.2 0.22± 0.03
45 1.4± 0.2 0.30± 0.04
65 1.6± 0.2 0.15± 0.02
85 1.0± 0.1 0.14± 0.02

25 (cooled) 0.5± 0.1 0.07± 0.02

a decrease in film thickness upon heating the film can be identified. This is likely

to be due to loss of glycerol, as observed for the SDS system. However, the loss

of C12E5 observed from the binary film means that this depth profile could be

complicated by the loss of both molecules, to different extents, over time and

upon heating.

Although the reflectivity measured at 25 ◦C (before heating) was fitted with a

5-layer model with two layers comprising the surface excess region, upon heating

to 45 ◦C, a 4-layer model, with the surface excess region comprising a single

layer, could adequately fit the entire Q range. At 45 ◦C, the volume fraction of

the surfactant on the surface can be seen to decrease, and the additional decrease

in thickness of the surface region results in a decrease in z∗ and f (Table 7.4).

The depth profile then remains almost identical upon further heating to 65 ◦C .

However, a further decrease in the surface excess is apparent at 85 ◦C (although

due to the accompanying decease in total film thickness this does not correspond

to a significant change in f). A further decrease in the surface excess can be

identified when the film is cooled back to 25 ◦C although, again, any differences

in f are within the uncertainty of this calculated value.

As for the binary film, it is clear that interfacial surfactant segregation is also

significant for the plasticised film, as indicated by the presence of an additional

layer of high SLD adjacent to the silicon oxide layer. Although precise quan-

tification of interfacial segregation is not possible due the difficulty in resolving

the two layers on the substrate, by eye it can be identified that the amount of

interfacial surfactant decreases at each temperature increment.

Finally, the effect of heating the plasticised films containing C12E5 on the

distribution of d-glycerol was assessed. Figure 7.6 shows the SLD-depth profile

of the film measured at 25 and 85 ◦C. Only a slight decrease in film thickness

occurs upon heating the sample, which is accompanied by a slight decrease in the

SLD of the bulk film, suggesting some plasticiser loss. At 25 ◦C, there is some

substantial enrichment of d-glycerol on the surface, in agreement with Briddick

et al.,168 and this surface layer is largely unchanged after heating to 85 ◦C. As
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for the film containing SDS, the retention of d-glycerol in the film is likely to be

because the film was heated straight from 25-85 ◦C, and thus the experiment was

conducted over a shorter timescales.

It is clear that heating a film containing SDS has a very different effect to

heating the film containing C12E5. However, it should also be considered that

the quality of the fits on the C12E5 films is much higher than the SDS films. As the

reflectivity models assume uniform, flat layers, this suggests that the C12E5 films

can be characterised by much more even layers, with the SDS films containing a

greater degree of lateral unevenness across the film, particularly upon heating.
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Figure 7.6: SLD-depth profiles of PVA films containing 10 wt.% hC12E5 and 20 wt.%
d-glycerol at 25 ◦C and after heating to 85 ◦C. Neutron reflectivity data and fits model
are shown in the inset, with data for 25 ◦C offset for clarity.

7.2.3 Effect of Temperature on DDAO Distribution

7.2.3.1 Binary Films containing DDAO

The final model system that will be explored contains the zwitterionic surfactant

DDAO. The volume fraction-depth profiles of the surfactant in a non-plasticised

film obtained from the reflectivity data acquired as 25, 45, 65 and 85 ◦C, and

after cooling back to 25 ◦C are shown in Fig. 7.7.

In this system, a thin layer of segregated surfactant at the air-film interface

can be identified at 25 ◦C , corresponding well to the thickness of a surfactant
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Figure 7.7: Depth profiles of 10 wt.% dDDAO in non-plasticised PVA films at 25 ◦C,
after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron reflectivity data
and fits are shown in the inset, with data offset for clarity.

monolayer, and in agreement with the findings reported in Chapter 6. NR also

reveals evidence for the adsorption of DDAO at the substrate interface, as the

layer adjacent to the substrate (∼ 4 nm) appears to be somewhat thicker than

would be expected for silicon oxide (∼ 2.4 nm). This depth profile remains almost

identical upon heating to 45 and 65 ◦C, with only a slight decrease in overall film

thickness observed when the film is heated to 65 ◦C. However, upon heating to

85 ◦C, a substantial loss in surfactant concentration both in the surface layer

and bulk film is also immediately apparent. A significant drop in SLD of the

bulk and surface layers occurs, although the surface excess remains present, and

is of very similar thickness to that identified in the film at lower temperatures.

This substantial drop in SLD of the surface and bulk film is accompanied by a

decrease in the total thickness of the film. This therefore initially appears to

indicate the evaporation and loss of additive. However, it is important to explore

and discount, if appropriate, other possible explanations.

In particular, it is important to consider that the obtained concentration-

depth profiles are determined from an SLD profile based on the NR fits. SLD can

be simply converted into volume fraction using on Equation 4.2. Immediately

attributing the decrease in SLD upon heating and ageing this film to additive

loss would therefore assume that the SLD of the PVA and deuterated additive
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remain constant throughout this process. The validity of this assumption should

be explored.

The SLD of a material is defined by the coherent scattering lengths of its

constituent elements, bi, and its molar volume, vm (Equation 7.1). The molar

volume is itself related to the density of the material, D, and its molar mass, M ,

by Equation 7.2.

ρ =
Σn
i=1bi
vm

(7.1)

vm =
M

D
(7.2)

Although the coherent scattering lengths of the elements do not change during

this process, it is plausible that the density of one or more of the film components

changes during the ageing process, particularly as the film is heated through the

glass transition of the polymer. It therefore may not be valid to assume that

the molar volume and thus SLD remain constant. It can be seen from Fig. 7.7

that the significant “loss” occurs upon heating from 65 to 85 ◦C, through the Tg,

where the dynamics in the amorphous region become faster, and the mobility of

the additive could increase significantly.

To explore this possibility, the SLDs of both PVA and DDAO should be

considered. First, it is possible that the density of the PVA decreases upon

heating through the Tg, which would decrease its SLD, and therefore the observed

SLD. However, if this were the case, it would be expected to reverse upon cooling,

which is not observed. It would also be expected to occur in other model systems.

Second, it is also possible that the density of the deuterated DDAO could

decrease if some reorganisation occurs upon heating through the Tg. In Chapter

6, the SANS data of solution-cast films containing amine oxides shows that the

surfactant is aggregated in well-defined regions, corresponding to the amorphous

regions of the polymer. In the case of the spin-cast films used for NR, the film

dries much faster and so it is possible that surfactant is trapped out of equilibrium

since the glass transition temperature is somewhat above room temperature (Fig.

6.16). Then, as polymer chains become more mobile, the surfactant molecules

could reorganise and aggregate in the amorphous regions, as observed for the

thicker solution cast films. If this latter state has a lower density than the sur-

factant distribution following spin-casting, this could result in a decrease in the

observed SLD of this film. To illustrate this possibility numerically, for the bulk

PVA film containing 10 wt.% dDDAO to give an SLD of 1.5 ×10−6Å
−2

, (observed

in Fig. 7.7) the density of the surfactant would be 1.2 g cm−3. For the SLD of
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this layer to reduce to 1.2 ×10−6Å
−2

after heating to 65 ◦C, the density would

need to reduce to 0.8 g cm−3. This is a substantial decrease in density, and it

is extremely questionable whether this rearrangement to an aggregated state of

significantly lower density is favourable.

The probability of additive loss from the film should therefore be considered.

Although with a melting point of 132-133 ◦C233 and a boiling point of 260 ◦C,234

it would not be expected that this additive is highly volatile, glycerol (with a

boiling point of 290 ◦C146) has been observed to evaporate. The loss of other high-

boiling point additives, including C12E5 at room temperature, has also previously

been observed.147 TGA was therefore used to assess the thermal behaviour of

DDAO, alongside other additives. Pure samples of DDAO, C12E5, SDS and

glycerol were initially heated from 20 ◦C to 85 ◦C at a rate of 1 ◦C min−1. This

temperature range reflects that experienced by the spin-cast films during the

neutron reflectivity experiment. TGA was also performed on the pure additives

whilst heating samples to 400 ◦C in order to determine if there is any further

additive volatility. The TGA traces are shown in Figure 7.8.
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Figure 7.8: TGA traces of the pure additives. 7.8a shows the thermal behaviour of
additives heated to 85 ◦C at a rate of 1 ◦C min−1, and 7.8b shows the additives heated
to 400 ◦C at a rate of 10 ◦C min−1.

Upon heating the pure additive samples to 85 ◦C, a 13 % loss in mass of the

amine oxide occurs. This is substantially lower than degree of mass loss observed

in the spin-cast films upon heating to 85 ◦C (Figure 7.7), which suggest that 48

% of the surfactant is lost; φDDAO drops from 0.14 to 0.075 (12.2 to 6.3 wt.%).

However, it is apparent from the TGA that there is a greater amount of DDAO

loss than any of the other additives. Heating to 400 ◦C revealed the complete loss

of DDAO by 160 ◦C. A likely reason for this DDAO loss from films at temperatures

significantly below its reported boiling point is the increased exposed surface area
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of the films compared to the pure additive, which is particularly significant if

the enthalpy of vaporisation of the additive is fairly low (although no value for

this could be found). To attempt to confirm that substantial DDAO loss could

occur during the heating of the spin-cast film, PVA/surfactant samples were

solution cast into DSC pans in an oven thermostatted to 40 ◦C, in an attempt

to avoid additive loss during solution casting, and then mass loss was measured

while samples were heated to 80 ◦C and then held at 80 ◦C for 1 hour. At the

end of this isotherm, however, it is clear from the �10 wt.% mass loss that a

significant amount of water remains in the sample after solution-casting which

is lost from the film during the isotherm, and is impossible to distinguish from

additive loss. This is consistent with the measured water content of samples that

will be discussed in Chapter 9. These TGA curves are included in Appendix F.

It should be noted that the amine oxide surfactants are highly hydrophilic.218

Some of the observed mass loss in the TGA of the pure additive samples could

therefore be due to evaporation of water already bound to the surfactant, prior

to dissolving it to make the mixed solutions. This is also something to consider

with the spin-cast films: heating to 85 ◦C could cause loss of any residual water.

However, the negative SLD of water (−5.6× 10−7Å
−2

) means that loss of water

would cause an increase in the SLD of the film. As the opposite is in fact observed

upon heating the film, this suggests that water loss is not significant as the thin

samples aid water loss during casting.

One limitation with these TGA experiments is that the surface area of the

sample is much lower than that of the spin-cast films. This has two implications:

first, the amount of water trapped in the TGA sample is much higher than in the

film and second, the higher surface area of the film would lead to a greater evap-

oration of volatile components. Due to the limitation of running TGA of these

systems, it can therefore not be unequivocally confirmed that DDAO loss occurs

during the temperature exposure of the spin-cast films. However, the greater

loss of DDAO compared to other investigated additives, which reveal no substan-

tial change in SLD upon heating the film, alongside the entropic unfavourability

of the rearrangement of surfactant into lower-density structures inside the film

suggest that additive loss from this system is the most plausible explanation.

As for the previous model systems, the surface excess and fraction of segre-

gated surfactant can be obtained from the depth profile. These are tabulated

below (Table 7.5). Values for φDDAO, tot are also included in order to assess the

extent of additive loss.
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Table 7.5: Surface excesses (z∗), fraction of segregated surfactant (f) and total sur-
factant volume fraction (φDDAO tot) in binary films containing 10 wt.% dDDAO.

T/◦C z∗/nm f φDDAO tot

25 0.37± 0.05 0.06± 0.01 0.14± 0.02
45 0.40± 0.05 0.07± 0.01 0.14± 0.02
65 0.40± 0.05 0.07± 0.01 0.14± 0.02
85 0.13± 0.03 0.05± 0.01 0.08± 0.02

25 (cooled) 0.13± 0.03 0.05± 0.01 0.08± 0.02

7.2.3.2 Plasticised Films containing DDAO

Volume fraction-depth profiles of dDDAO in plasticised films at 25, 45, 65 and

85 ◦C and 25 ◦C (cooled back down) are included in Fig. 7.9.
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Figure 7.9: Depth profiles of 10 wt.% dDDAO in PVA films containing 20 wt.% h-
glycerol at 25 ◦C, after heating to 45, 65 and 85 ◦C and upon cooling to 25 ◦C. Neutron
reflectivity data and fits are shown in the inset, with data offset for clarity.

Although at 25 ◦C, a layer of segregated surfactant is present on the film

surface, consistent with the findings reported in Chapter 6, upon heating the

film to 45 ◦C, the surface excess disappears, leaving a film that has an even

distribution of surfactant throughout.

Loss of additive from the plasticised film is also apparent. As was found for

the film containing C12E5, the volatility of both glycerol and DDAO (as apparent

from the binary film) means it can be difficult to know the exact composition of
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the film at each temperature.

In this plasticised film, upon heating from 25 to 45 ◦C a significant decrease

in film thickness (> 10 nm) occurs, although the SLD of the bulk film layer

remains unchanged. This indicates the loss of glycerol. Upon heating further, a

small decrease in film thickness occurs (∼ 1 nm at each temperature step). The

decrease in total thickness is accompanied by a decrease in SLD of the bulk film

layer. Therefore, this is likely to be a result of the loss of dDDAO, as the loss of

hydrogenated plasticiser would not decrease the SLD of the film. Indeed, it could

increase the SLD very slightly, although as the SLD of h-glycerol (0.61 ×10−6

Å−2) is very similar to the SLD of PVA (0.75 ×10−6 Å−2), this effect would likely

be negligible.

Although it is likely that DDAO is lost from the binary film upon heating, a

surface monolayer is apparent at each temperature. Therefore it could be sug-

gested that the disappearance of the monolayer upon heating the plasticised film

cannot be attributed to additive loss from the film. It is unlikely that the DDAO

on the surface would spontaneously migrate into the bulk film upon heating to 45
◦C. It is therefore plausible that the absence of surface monolayer resolved by NR

could be a result of the rearrangement of an evenly mixed surfactant/plasticiser

monolayer into smaller patches on the surface, which would not be detectable

by specular reflectivity. This could potentially be confirmed using AFM. In-

deed, depth profiling a polybutadiene film with a squalane monolayer on the

surface using ion beam analysis, revealed the presence of phase-separated regions

of squalane which were undetectable by NR.235

The SLD-depth profiles of a film containing 10 wt.% dDDAO and 20 wt.%

d-glycerol at 25 and 85 ◦C are shown in Fig. 7.10. In contrast to the findings in

Chapter 6, no enriched glycerol layer is present on the surface of the plasticised

film containing DDAO at 25 ◦C. Instead, the reflectivity data could be fitted with

a surface layer of a lower SLD than the bulk film, indicative of glycerol depletion

on the surface. When the film is heated to 85 ◦C, substantial glycerol loss is

apparent, from both the decrease in total film thickness and decrease in SLD of

the bulk film. At this temperature, the reflectivity could be fitted to a two layer

model, with layers corresponding to the film and the silicon oxide. It should be

noted that the SLD of the film was determined to be ∼ 0.7 ×10−6 Å−2, very

similar to the SLD of PVA, suggesting that the plasticiser has been completely

lost from the film. This is also consistent with the film becoming 20 % thinner

upon heating.
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Figure 7.10: SLD-depth profiles of PVA films containing 10 wt.% hDDAO and 20
wt.% d-glycerol at 25 ◦C and after heating to 85 ◦C. Neutron reflectivity data and fits
are shown in the inset, with data for 25 ◦C offset for clarity.

7.3 Discussion

In-situ neutron reflectivity measurements at elevated temperature have revealed

a rich range of behaviours of surfactant additives. Although it is apparent that

surfactant and/or plasticiser migration occurs within the films, in many films

there is an accompanying loss of additive which must also be considered.

The experimental approach used throughout this chapter neglects any po-

tential migration during the measurement occurring below 25 ◦C. As NR mea-

surements for previous chapters were measured using a sample stage with no

temperature control, at a temperature of ∼20 ◦C, there is potential for devel-

opment of the surface structure or additive migration (either into or out of the

film) to occur as the film is first heated from room temperature (∼20 ◦C) to 25
◦C. This is likely to be particularly significant in the case of the plasticised films,

which has been shown by DMA to have a Tg of 23 ◦C. It is also possible that

the surfactant additives are capable of lowering the glass transition temperature

from the value of 65 ◦C for the pure PVA. This should be borne in mind when

considering slight differences in surfactant distribution measured at 25 ◦C to that

determined in previous chapters.

Additionally, due to variable times for sample alignment and measurement,

the time that the films were held at each temperature cannot be completely
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controlled. It is therefore difficult to decouple the effects of temperature and

time on additive loss, and thus differences in the extent of glycerol loss, for

example, in different films should be expected. As differences in depth profiles of

PVA/SDS/glycerol films obtained from NR (where the sample was under ambient

conditions) and RBS (where the sample was vitrified immediately after spinning)

have indicated the migration and surface development in the time shortly after

spin coating (Fig. 6.16), the age of the film is likely to be important. Although

the migration on this timescale cannot be probed using NR, this highlights the

importance of time, as well as temperature, on surfactant distribution.

The effect of temperature on the distribution of film components in each of

the model systems will now be discussed in greater detail.

7.3.1 Effect of Temperature on SDS Distribution

Non-plasticised PVA/SDS films show no significant change in the surface excess or

fraction of segregated surfactant over time upon heating the film. However, there

was some change in the shape of the surface excess region of the concentration

profile upon heating to 85 ◦C. As the glass transition temperature of this non-

plasticised PVA resin has been measured to be 65 ◦C (Chapter 9), it is likely that

above this temperature the surfactant and polymer will have sufficient mobility

to allow rearrangement of the surface. The melting point of pure SDS (204-207
◦C)236 is much higher than the maximum temperature of the film (85 ◦C), and so

the lack of shift in the overall surfactant distribution is consistent with strongly

segregated, nearly pure SDS, that does not migrate because it is solid.

The broadening of the surface excess layer, combined with the overall decrease

in surfactant volume fraction is therefore likely to be due to a change in surfac-

tant structuring and morphology at the surface. Changes in surfactant structures

upon heating has been previously reported. For example, Auvray et al.187 noted

the increase in SDS lattice spacing in ethylene glycol with temperature. However,

as specular NR is only capable of measuring the vertical distribution of surfactant,

it cannot be unequivocally concluded that the change in volume fraction-depth

profile is due to the structural re-organisation of the SDS on the surface. Nev-

ertheless, based on the broadening of the surface excess layer and increase in

interfacial roughness of the obtained volume fraction-depth profiles, it is likely

that this is the result of the rearrangement of surfactant into aggregates.

The fact that the reflectivity for the binary SDS film could only be adequately

fitted using 2 layers to capture the surface excess (and therefore using a 4-layer

model), in contrast to the 3-layer model successfully used in Chapter 4, could also
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indicate development of the surface below 25 ◦C. However, based on these exper-

iments alone it could not be postulated whether this would arise from migration

from the bulk film, or simply a rearrangement of the segregated surfactant.

Although NR is not well-suited to the characterisation of rough interfaces,

the good fit to the low Q region using this model means that the thickness and

SLD of the surface layer can be accurately obtained, and thus the consistency

of the surface excess at each temperature can be identified with a high level of

confidence.

The behaviour of this surfactant is likely to be consistent with the work of

Dulal et al.68 who studied the behaviour of the slip additive erucamide in high

density polyethylene. The authors identified the accumulation of the additive

at 38 ◦C, and the formation of plate-like crystal structures, which when heated

further (to 50 ◦C) formed in raised compositions, leaving some of the polymer

uncovered. This resulted in a change in the surface characteristics and mor-

phology. They also used contact angle analysis to show that the hydrophobic

hydrocarbon chains were oriented towards the air interface. Although no contact

angle analysis has been performed on these PVA/surfactant systems to confirm

the orientation of the surfactant tails towards the air interface (which is difficult

due to the water solubility of the PVA), this probable arrangement is likely to

have significant implications for the wetting behaviour of the film, and thus on

the sealing ability of commercial films.

There is little change in the volume fraction-depth profile in the plasticised

films. Although there is no extensive stacking of surfactant and plasticiser layers

in this thin film, there is still likely to be a favourable interaction between the

SDS and glycerol. Glycerol increases the mobility of the film components during

the later stages of spin-casting and, as a result, upon heating the film there is

little rearrangement of the already stable surface structures, which are likely close

to equilibrium structure. Another possibility that would explain the differences

between binary and plasticised films upon heating, is that the surface layer of

surfactant on the surface contains some polar solvent around the headgroups.

This may be driven off by heating, causing the observed restructuring of the

surfactant. When water is bound to the surfactant head groups (in binary films),

this could be lost at elevated temperatures. However, the higher boiling point of

glycerol (290 ◦C146) means that if glycerol replaces water molecules in binding to

the headgroups in plasticised films, the structure is more resilient with respect to

heating. Nevertheless, glycerol has been previously be shown to evaporate from

spin-cast PVA films under atmospheric conditions, with glycerol content in the

film equilibrating after approximately 1 week.147 The loss of glycerol is linked
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to both elevated temperature and time after spin-casting, and as it is difficult to

control the amount of time the films are held at each temperature, decoupling the

roles of time and temperature in additive loss would require more experiments.

However, although it is apparent that glycerol is lost from the film over time,

determining the distribution of d-glycerol in the film at 25 and 85 ◦C revealed

that the enrichment of plasticiser at the surface remained upon heating, and that

the plasticiser was mainly lost from the bulk film, which is also indicative of the

high stability of the surfactant/plasticiser structures on the surface.

The substantial loss of plasticiser is in part likely to be due to the low crys-

tallinity of this PVA resin; with a DH of 87-90%, the presence of acetate groups

reduces the extent of hydrogen bonding between adjacent polymer chains (this

will be considered in greater depth in Chapter 9). As diffusion occurs primarily in

the amorphous domains of a semi-crystalline polymer,237 this lower crystallinity

could result in the significant loss of glycerol observed. Additionally, glycerol has

a lower affinity for the acetate groups due to their inability to hydrogen bond,

which could also lead to its lower affinity for the polymer and thus increased

migration from the film.

7.3.2 Effect of Temperature on C12E5 Distribution

C12E5 was found to exhibit very different behaviour to SDS upon heating a non-

plasticised film. First, it is apparent that this surfactant is sufficiently volatile

to be partially lost from the film upon heating. The loss of this surfactant from

PVA films over time has been previously observed,147 and it is clear that heating

the film increases this additive loss. Second, some migration of C12E5 from both

the film-air interface and the film-substrate interface is clear. Although small

changes in the surface excess occur upon heating from 25-65 ◦C, the greatest

decreases in surface and interfacial excesses, and the largest increase in SLD of

the bulk film layer occur after the film was heated to 85 ◦C and subsequently

cooled to 25 ◦C. This provides strong evidence for migration as a result of the

increase in polymer and surfactant mobility as the film is heated above the glass

transition temperature. The substantial differences in the depth profiles of the

film measured at 85 ◦C and after cooling to 25 ◦C are likely to be a result of

it being held at 85 ◦C, where further migration can occur, rather than it being

the cooling process driving migration into the bulk film. This highlights the

difficulty arising from the inability to decouple the roles of time and temperature

in additive migration.

The decrease in surfactant segregation with increasing temperature, and mi-
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gration of C12E5 into the bulk film indicates that this surfactant could be ki-

netically trapped on the surface of the spin-cast film, suggesting that the depth

profiles measured at room temperature do not represent an equilibrium system,

with the surfactant concentration in the bulk film unrepresentative of the solu-

bility of the surfactant with the polymer. Additionally, the high concentration of

C12E5 in the bulk film measured at 25 ◦C after being heated to 85 ◦C demonstrates

that this higher surfactant concentration in the subsurface film is thermodynami-

cally stable; as the film cools very gradually to 25 ◦C (∼1 hour), it would be very

unlikely for surfactant to be kinetically trapped in the bulk film. The increasing

equilibrium solubility of C12E5 in PVA with temperature is surprising, however,

given that nonionic surfactants become less soluble with increasing temperature

in hydrogen bonding solvents such as water.

The migration of additives from the surface into the bulk film has previously

been reported.68 For example, although the behaviour of the slip additive eru-

camide at elevated temperature varies, (it has been found to either be lost from

the film, undergo chemical change or decomposition or migrate back into the

film), Shuler et al.238 found that in a trilayer film comprising two layers of lin-

ear low-density polyethylene and a skin layer consisting of a polyolefin plastomer

incorporating the erucamide, the additive migrated back into the film from the

surface upon heating. This was observed for the C12E5 in PVA.

In plasticised films, there is also a substantial decrease in the interfacial ex-

cesses of C12E5 upon heating from 25 to 85 ◦C. However the biggest change in

the volume fraction-depth profile occurs upon heating from 25 to 45 ◦C. This

correlates well with heating the film through the glass transition of plasticised

PVA, where polymer and surfactant mobility increases significantly, facilitating

the migration of the surfactant into the film, and the additive loss through evap-

oration.

Although migration from the interfaces to the bulk film occurs in the plasti-

cised film, this is to a lesser extent than in the non-plasticised film, as indicated

by the lack of significant increase in the SLD of the bulk film. A likely reason

for this is the presence of glycerol, which occupies the amorphous regions of the

polymer, out-competing C12E5, which instead remains localised on the surface.

From the SLD-depth profiles of films containing d-glycerol and hC12E5, only

a slight loss of glycerol can be identified upon heating from 25 to 85 ◦C. This

shows the importance of time rather than temperature in plasticiser loss from

films. From these profiles, it is also apparent that it is favourable for glycerol

to co-adsorb with the surfactant at the surface, even after the mobility of film

components has increased above the glass transition, and surfactant segregation
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has somewhat decreased. This highlights the favourable interactions between the

two additives on the surface.

7.3.3 Effect of Temperature on DDAO Distribution

In films containing DDAO, the change in volume fraction-depth profile is domi-

nated by the unexpected loss of the surfactant as the film is heated.

In the binary film, surfactant loss was mostly found to occur upon heating

from 65 to 85 ◦C. It should be noted that despite a large drop in total dDDAO

content in the film, a monolayer of surfactant remains on the film surface at each

temperature. This could be favoured in order to avoid the entropic penalty that

would result from having a long polymer molecule localised on the surface.113,239

However, should this be the case, it would be expected that in PVA/glycerol films,

in the absence of surfactant, a layer of glycerol should be present on the surface,

which has not been observed.168 Therefore, the persistence of this surfactant

layer could instead be enthalpically driven, and due to the favourable reduction

in surface energy.

In plasticised films, DDAO loss was found to occur at each temperature in-

crement. This is therefore consistent with additive loss occurring only when

sufficient mobility is attained after heating above the glass transition tempera-

ture. In contrast to the non-plasticised film, after heating above 25 ◦C the surface

monolayer of surfactant appears to be no longer present, as the depth profiles re-

flect an even distribution of surfactant throughout the whole film. This could be

a result of the high compatibility of the amine oxide surfactant for PVA (Chapter

6); the surface monolayer of surfactant may be kinetically trapped after the fast

spin-coating, and upon heating the plasticised film, sufficient additive mobility is

achieved for the surfactant to re-disperse into the bulk. However, it is interesting

that this is not observed for the non-plasticised film. The exact distribution of

surfactant cannot be predicted from these experiments alone, but is likely to be

governed by balance of entropic and enthalpic factors, including surface energy

and compatibility.

It can be seen that after heating the film containing hDDAO and d-glycerol

to 85 ◦C all glycerol had evaporated from the film. This is probably due to the

length of time the film was aged at high temperature as the film was heated to 85
◦C immediately after measurement at 25 ◦C, but reflectivity data of the heated

film was not collected for ∼ 4 hours. As a result, it cannot be determined whether

there would have been any glycerol enrichment of the surface.
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7.4 Chapter Conclusions

In this Chapter, the effect of temperature on the distribution of three surfactant

additives in PVA films was investigated. Understanding the effect of heating

these model films was complicated by the difficulty in decoupling the effect of

temperature and time, which is particularly relevant in the loss of additives from

the films. Nevertheless, a range of additive behaviours was identified.

In the SDS system, no change in the amount of segregated surfactant oc-

curs upon heating and ageing the film. However, in binary films, a increase in

interfacial roughness of the surface excess layer indicates a rearrangement of sur-

factant structures on the surface. No change at all is apparent when heating the

plasticised film.

C12E5 is the only surfactant observed to migrate into the bulk PVA film upon

heating. In the non-plasticised films, there is a significant decrease in the size of

the surface and interfacial excesses. When glycerol is present, although analysis

is complicated by the loss of two components from the film, a reduction in the

surface excess is again indicative of surfactant migration into the bulk film. This

is less significant than in the non-plasticised film, probably due to the glycerol

competing for the amorphous regions in the polymer that the surfactant would

otherwise localise in.

Finally, the DDAO system exhibits the most significant surfactant loss upon

heating through the glass transition of PVA. The greater volatility of DDAO

compared to the other additives studied was confirmed by TGA. Despite the

significant loss of DDAO from films in the absence of plasticiser, a monolayer

of surfactant remains on the surface of the film upon heating. This is in con-

trast to its behaviour in plasticised films, where an even surfactant distribution

throughout the whole film was identified upon heating above 25 ◦C.

Although further experiments are required to fully resolve the relationship be-

tween time and temperature in the distribution of these additives, these findings

suggest that changes in film surface structure upon ageing will have significant

implications for film surface properties such as hydrophilicity, and thus their seal-

ing ability in commercial systems. Additionally, this work has touched upon the

importance of surfactant diffusion through the PVA, which is likely to be relevant

for the mobility of encapsulated components in unit-dose detergents.
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Chapter 8

Segregation Synergy of Mixed

Surfactant Systems in PVA Films

8.1 Chapter Introduction

Having thoroughly characterised the segregation behaviour of a number of model

film systems comprising a single surfactant (Chapters 4 and 6), and rationalised

their behaviours using surface energy and compatibility arguments, in this chap-

ter more complex model systems will be considered.

Mixtures of surfactants can be non-ideal, and properties of mixtures can differ

from those of the individual species. Depending on the nature of the surfactants,

the interactions between them can lead to synergism or antagonism. Many indus-

trial formulations contain mixtures of surfactants, either to exploit this synergistic

behaviour or to provide different types of performance in a single formulation (for

example cleaning plus fabric softening).240 By probing segregation behaviours in

films containing multiple surfactant species, this takes the model systems closer

to the complex formulations used in industry, enabling a fuller understanding of

the driving forces for segregation.

Three model systems will be considered here: SDS/DDAO, C12E5/DDAO and

SDS/C12E5. The segregation of SDS and DDAO has been thoroughly discussed

in earlier chapters, and the behaviour of C12E5 have been reported in a previous

publication.168 The three selected surfactants exhibit very distinct segregation

behaviours in PVA, and are also affected by the presence of plasticiser to different

extents. Probing the distribution of each additive in the film should therefore

highlight any synergism between surfactants in the segregation from PVA films.

To complement the depth profiling of the films, the interactions between com-

ponents in solution will be probed via surface tension experiments. Through this,
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the aim is to better understand the role of surface energy in segregation in more

complex systems.

The interactions between surfactant molecules are influenced by the nature

of the headgroup. Therefore, in this study, the use of surfactants with the same

12-carbon hydrophobic tail should enable the nature of interactions between head-

groups to be assessed.

8.2 Results

8.2.1 Vertical Depth Distribution in Mixed-Surfactant Films

8.2.1.1 SDS/DDAO

The first model system contains the anionic surfactant SDS and the zwitteri-

onic amine oxide surfactant DDAO. Their individual segregation behaviours are

covered in detail in Chapters 4 and 6 respectively.

The simpler, non-plasticised system will be initially considered. By contrast

matching all components except one to the SLD of the PVA resin (0.75 ×10−6

Å−2), the volume fraction-depth profile of a single (deuterated) component in the

film can be isolated. Table 8.1 shows the respective amounts of deuterated and

hydrogenated additives required to contrast match to PVA.

Table 8.1: Mass of hydrogenated and deuterated additives required to contrast match
to PVA (giving a total additive mass of 0.1 g).

Additive Mass deuterated/ g Mass hydrogenated/ g
Glycerol 0.034 0.966

SDS 0.069 0.931
DDAO 0.153 0.847
C12E5 0.181 0.819

For the SDS/DDAO model system, two contrasts were used in order to identify

how the incorporation of SDS affects the distribution of dDDAO, and how the

incorporation of DDAO affects the distribution of dSDS. The obtained volume

fraction-depth profiles are shown in Figures 8.1 and 8.2 respectively. To quantify

the effect of a secondary surfactant additive on the distribution of a deuterated

surfactant, the surface excess, z∗, and fraction of segregated surfactant, f , are

calculated and tabulated (Tables 8.2 and 8.3 ), in the same way as in earlier

chapters.

In this set of experiments, the total surfactant loading in each sample was fixed

at 10 wt.%. In order to vary the ratio of two surfactant species, this therefore
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necessitates the variation of the concentration of the deuterated species, which

will itself directly impact the surface excess. The fraction of segregated surfactant,

accounting for variation in film thickness and overall surfactant concentration,

will therefore be used as the primary means of assessing the impact of a secondary

surfactant on segregation behaviour. In order to simplify interpretation of the

depth profiles in these more complex systems, the effect of SDS on the distribution

of dDDAO will first be considered before assessing the effect of contrast matched

(cm) DDAO on the distribution of dSDS.

As discussed in detail in Chapter 6, in the absence of any additional surfac-

tant, dDDAO forms a single monolayer on the surface of the PVA film, with the

remaining additive evenly distributed throughout the bulk film. This is illus-

trated by the red curve in Fig. 8.1. From this figure, it can be seen that upon

incorporation of contrast matched SDS (at two different loadings), the dDDAO

surface layer is significantly broadened over a lengthscale much greater than a

single monolayer. The concentration of dDDAO in this layer is also substantially

reduced. Instead of a monolayer, the surface region of the depth profile now

comprises a thick layer of PVA enriched in surfactant. To quantitatively assess

the effect of SDS loading on dDDAO distribution, the surface excess (z∗) and

fraction of segregated surfactant (f) are reported in Table 8.2. Although the

variation in the concentration of dDDAO means that a clear trend cannot be

easily discerned from z∗, the change in f with dDDAO/SDS ratio clearly shows

that SDS strongly promotes dDDAO segregation, with the higher SDS concen-

tration causing a much higher fraction of the amine oxide to enrich the surface.

As previously observed for films containing dDDAO as the only surfactant, the

film containing 2.5 % contrast matched SDS showed significant segregation of

the amine oxide at the substrate interface. However, this is harder to quantify

due the difficulty in resolving interfacial surfactant from the silicon oxide. This

interfacial segregation was less apparent in the film containing 7.5 % contrast

matched SDS and only 2.5% dDDAO.

Table 8.2: Surface excess (z∗) and fraction of segregated surfactant (f)for binary and
plasticised PVA films containing dDDAO and contrast matched SDS.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% dDDAO 0.5± 0.1 0.06± 0.01 0.6±0.2 0.06± 0.01
7.5 wt.% dDDAO, 2.5 wt.% cmSDS 1.4± 0.1 0.30± 0.02 0.7± 0.1 0.30± 0.05
2.5 wt.% dDDAO, 7.5 wt.% cmSDS 0.5± 0.1 0.9± 0.1 2.1± 0.1 0.4± 0.1

Having established this trend, it is worthwhile quantitatively comparing the

effect of SDS inclusion on f , compared to a film containing the same concentration
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Figure 8.1: Volume fraction-depth profiles of dDDAO in PVA films with a total
surfactant loading of 10 wt.%, with varying ratios of dDDAO and contrast matched
SDS. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.

of the dDDAO with no additional surfactant. In Chapter 6, it was shown that

the surface excess remains constant at ∼0.5 nm for all loadings of dDDAO in

binary films. Expressing these values as fractions of the total surfactant present

comprising the surface excess gives fDDAO = (0.06±0.01) and fDDAO=(0.30±0.05)

for films containing 5 and 2 wt.% dDDAO respectively. Although these loadings

do not exactly match the concentrations of dDDAO in the mixed surfactant films,

by considering the values for f of (0.30±0.02) and (0.9±0.1) for films containing

7.5 wt% dDDAO (plus 2.5 wt.% SDS) and 2.5 wt% dDDAO (plus 7.5 wt.% SDS)

respectively, it is clear that the reduction in dDDAO concentration alone cannot

account for the substantial increase in efficiency of adsorption.

The effect of DDAO on dSDS segregation will now be considered. As dis-

cussed in Chapter 4, in non-plasticised films SDS forms a thick surface excess

layer, with a low surfactant concentration in the bulk film. This is illustrated by

the red line in Figure 8.2. For this contrast, only one measurement of a mixed

surfactant film could be taken due to the formation of visible crystals of surfactant

in solutions containing a higher concentration of dSDS. Although the surfactant

concentrations are much greater than the CMC, and thus the formation of other

liquid crystalline phases is possible, the solute concentration is no higher than

in the single surfactant systems. This observable crystallisation could be sugges-
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tive of an increase in Krafft temperature (Tk), the temperature below which the

surfactant solubility is less than the CMC, of one of the surfactants. However

in previous studies, Tk in binary surfactant mixtures in solution has been found

to be lower than that of the respective single components.241 In these mixed

surfactant systems, micelle formation is increasingly favoured, which lowers the

CMC and reduces the monomer concentration that is able to form crystals.242

Summerton et al.243 studied crystallisation in the mixed SDS/DDAO system,

finding that increasing the concentration of DDAO lowers the concentration of

SDS monomers, due to mixed micelle formation, consequently reducing the drive

for SDS crystallisation. The opposite effect is observed in this current work,

and therefore the possibility of DDAO increasing the Krafft temperature of SDS

should be discounted. Nevertheless, as no SDS crystallisation has been observed

in its pure solutions (Chapter 4), it is likely that in this case, DDAO crystalli-

sation is observed, as the Krafft point of DDAO could be elevated by increasing

ionic strength due to the high concentration of SDS. This has been extensively

observed for surfactants in the presence of salts.244,245

It should be noted that this crystallisation was not observed for the other

contrast (hSDS and dDDAO), raising the question of whether equilibrium has

been reached in the mixed surfactant solutions before spin-casting. However,

detailed consideration of crystallisation kinetics is beyond the remit of this thesis,

but could form part of a future work extension.

From Figure 8.2, it is immediately apparent that the film containing 2.5 wt.%

dSDS (and 7.5 wt.% cm-DDAO) exhibits a much lower surface excess compared

to the film containing 10 wt.% dSDS; although the thickness of the surface layer

is similar for the two films, the concentration of dSDS in this layer is much lower

in the presence of DDAO. It should be noted that fitting the data for this film to

this simple 3-layer model does not capture the feature at Q ∼ 0.2 Å−1. However,

the good fit throughout the lower Q range means that an accurate picture of the

thickness and concentration of the total thickness of surface layer can be attained.

To determine whether the lower extent of segregation can be accounted for

simply by the lower concentration of deuterated surfactant in this film, f values

should again be compared (Table 8.3). The decrease in f from 0.3 to 0.1 upon

DDAO incorporation confirms that segregation is inhibited in the latter film.

As for the previous contrast, it should also be confirmed that this observed

trend is a direct result of the incorporation of the amine oxide, and not merely

due to the reduction in dSDS concentration. The reflectivity data from a spin-

cast film of PVA containing 2.5 wt.% dSDS as the only additive was therefore

collected and fitted. The obtained volume fraction-depth profile, yielded an f
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value of 0.6, substantially higher than the value of 0.1 obtained from the film

containing 2.5 wt.% dSDS and 7.5 wt.% DDAO. This confirms that the presence

of DDAO strongly suppresses SDS segregation. These reflectivity data and fits,

alongside the corresponding depth profiles, are included in Appendix A.
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Figure 8.2: Volume fraction-depth profiles of dSDS in PVA films with a total surfac-
tant loading of 10 wt.%, with varying ratios of cmDDAO and dSDS. Neutron reflectivity
data and fits (offset for clarity) are shown in the inset.

Table 8.3: Surface excess (z∗) and fraction of segregated surfactant (f) for binary
and plasticised PVA films containing dSDS and cmDDAO.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% dSDS 3.4± 0.1 0.3± 0.1 5.5± 0.1 0.9± 0.1
7.5 wt.% dSDS, 2.5 wt.% cmDDAO - - 2.44± 0.07 0.47± 0.04
2.5 wt.% dSDS, 7.5 wt.% cmDDAO 0.42± 0.03 0.11± 0.02 0 0

Superimposing the depth profiles can be used to better assess the distribution

of components in these multi-surfactant systems. It should be noted that as the

distribution of only one component can be measured, each profile corresponds

to a different spin-cast film, which may vary in total film thickness and additive

concentration. The superimposed depth profiles can therefore only approximately

reflect the concentration of the two surfactants at the surface. The superimposed

depth profiles of dDDAO and dSDS in non-plasticised films is shown in Fig.

8.3. From this figure, it can be seen that the thickness of the surface excess
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regions of the two surfactants differ substantially, despite the thickness of the two

films being similar (72 nm and 78 nm for the films containing dDDAO/cm-SDS

and dSDS/hDDAO respectively). Although the thicknesses of the surface excess

regions of these two films appears to be different, the use of a third contrast,

in which both surfactants are deuterated would be required to be confident in

resolving the relative positioning of these layers.
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Figure 8.3: Superimposed volume fraction-depth profiles of dDDAO (7.5 wt.%) and
dSDS (2.5 wt.%) in unplasticised PVA.

As it has been found that incorporation of a model plasticiser (glycerol) can

significantly impact surfactant distribution in single-surfactant systems, the effect

of plasticisation on the distribution of the components in films containing multiple

surfactants was subsequently studied. In these systems, all components except

one were again contrast matched to the SLD of PVA. This approach removes the

need to assume an even distribution of glycerol throughout the film to obtain a

surfactant volume fraction-depth profile (the approach taken in Chapters 4 and

6). In all films the loading of contrast-matched glycerol is fixed at 20 wt.%.

To assess the effect of multiple surfactants on their distribution in plasticised

films, an identical approach was taken to that for the binary films, whereby the

effect of cmSDS on dDDAO distribution, and the effect of cmDDAO on dSDS

distribution were considered. The obtained depth profiles for these two contrasts

are presented in Figures 8.4 and 8.5 respectively, with determined values for z∗

and f reported in Tables 8.2 and 8.3 respectively. In the non-plasticised films,

SDS significantly promotes the segregation of DDAO, while DDAO strongly sup-

presses SDS segregation, and it can be seen that these trends are consistently

reproduced in the plasticised system. First considering the dDDAO/SDS con-

trast, SDS incorporation causes an overall increase in the fraction of segregated
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dDDAO. However, this is a lesser effect than in the non-plasticised films, as there

is no significant broadening of the surface layer upon incorporation of 2.5 wt.%

cmSDS, and the extent of segregation in the presence of 7.5 wt.% cmSDS is sig-

nificantly lower in the plasticised film than in the non-plasticised film. Second,

considering the dSDS/DDAO contrast, it can be seen that DDAO incorpora-

tion causes a substantial reduction in f , to an even greater extent than in the

non-plasticised film. Indeed, in the presence of 7.5 wt.% DDAO, no surface

layer enriched in dSDS is observed at all, with the dSDS uniformly distributed

throughout the entire film.
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Figure 8.4: Volume fraction-depth profiles of dDDAO in PVA films with 20 wt.%
h-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of dDDAO
and cmSDS. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.

Finally, the effect of including two surfactants on the segregation of the plas-

ticiser in this model system will be assessed. To briefly summarise, although

no glycerol segregation occurs in pure PVA films, the presence of surfactant can

have a significant impact on its distribution in the film: SDS and glycerol were

found to bloom into stacked bilayer structures at high surfactant concentrations

(although when this film structure was fitted using a single surface excess layer,

it corresponds to a layer substantially depleted in glycerol, relative to the subsur-

face film). Glycerol was also found to co-adsorb into the DDAO monolayer at all

DDAO loadings. These depth profiles, alongside the depth profiles of d-glycerol

in the presence of DDAO/SDS mixtures are included in Figure 8.6. Here it can
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Figure 8.5: Volume fraction-depth profiles of dSDS in PVA films with 20 wt.% h-
glycerol and a total surfactant loading of 10 wt.%, with varying ratios of dSDS and
cmDDAO. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.

be seen that when the films contain 2.5 % SDS and 7.5 % DDAO, glycerol is ex-

cluded from the surface. When the film contains a 7.5 wt.% SDS (and 2.5 wt.%

DDAO), the glycerol distribution is even throughout the whole film. This sug-

gests that the distribution of glycerol is linked to that of the anionic surfactant;

when SDS segregation is sufficiently suppressed, exhibiting only a slight surface

excess, glycerol segregation is not favoured.

177



Segregation Synergy of Mixed Surfactant Systems in PVA Films

f d
-G

ly
(z
)

Depth/nm

 10% SDS, 0% DDAO
 2.5% SDS, 7.5% DDAO
 7.5% SDS, 2.5% DDAO
 0% SDS, 10% DDAO

R
Q/ Å-1

Figure 8.6: Volume fraction-depth profiles of d-glycerol in PVA films with 20 wt.%
d-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of SDS and
DDAO. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.

8.2.1.2 C12E5/DDAO

The second model system consists of DDAO and the non-ionic surfactant C12E5.

C12E5 has been previously reported to show substantial surface and interfacial

segregation, with the lengthscales of the enriched layers significantly greater than

a monolayer.168 The depth profile of 10 wt.% C12E5 in the absence of any addi-

tional additive is shown in red in Figure 8.7.

The impact of DDAO on the distribution of dC12E5 will first be assessed. It is

clear from the depth profiles presented in Figure 8.7 that there is no enhancement

of segregation of dC12E5 upon inclusion of cmDDAO. In fact, from comparison

of f values in Table 8.4, it can be seen that there is a decrease in f upon incor-

poration 2.5 wt.% cmDDAO, and a further decrease in the presence of 7.5 wt.%

cmDDAO.

As with the previous model system, it is worth confirming that this effect

is a result of the incorporation of the secondary surfactant, rather than due to

the changing dDDAO concentration alone. From an additional measurement on

a film containing 2.5 wt.% dC12E5 as the only additive, f was found to have a

value of 0.3 ± 0.1. The extremely low degree of C12E5 segregation in the film

containing 2.5 wt.% dC12E5 and 7.5 wt.% DDAO (f = 0.05) means that this
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effect can therefore be confidently attributed to the presence of the secondary

surfactant.
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Figure 8.7: Volume fraction-depth profiles of dC12E5 in PVA films with a total sur-
factant loading of 10 wt.%, with varying ratios of dC12E5 and cmDDAO. Neutron
reflectivity data and fits (offset for clarity) are shown in the inset.

Turning to the second contrast, the depth profiles of dDDAO in the presence

of cmC12E5 are presented in Figure 8.8. Determined values for z∗ and f are

included in Table 8.5. In contrast to the previous model system (SDS/DDAO),

C12E5 causes no enhancement of the segregation of dDDAO. Upon incorporation

of 2.5 wt.% C12E5 the surface excess layer can still be seen to correspond to the

thickness of a single monolayer. There is even a reduction in φdDDAO in this

layer, which corresponds to a greater area per molecule occupying the surface in

a monolayer (Chapter 6). When the concentration of C12E5 is increased further,

the dDDAO surface excess disappears completely, and the depth profile comprises

a uniform distribution of dDDAO throughout the entire film.

In Chapter 6, it was shown that varying the DDAO concentration had little

effect on its volume fraction in the surface layer (and thus its molecular area in

a monolayer). Therefore, variation in DDAO concentration alone cannot explain

the reduction in φdDDAO in the film containing 7.5 wt.% dDDAO and 2.5 wt.%

C12E5. A film containing 2 wt.% DDAO as the only additive was reported to

have a surface excess (z∗) of 0.4 nm (Table 6.1) corresponding to an f value of

0.3. This confirms that the complete absence of a surface excess in the equivalent
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mixed surfactant film is a result of the nonionic surfactant acting to suppress the

segregation of the zwitterionic surfactant.
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Figure 8.8: Volume fraction-depth profiles of dDDAO in PVA films with a total
surfactant loading of 10 wt.%, with varying ratios of cmC12E5 and dDDAO. Neutron
reflectivity data and fits (offset for clarity) are shown in the inset.

Table 8.4: Surface excess (z∗) and fraction of segregated surfactant (f) for binary
and plasticised PVA films containing dC12E5 and cmDDAO.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% dC12E5 4.7± 0.1 0.7± 0.1 3.5± 0.1 0.5± 0.1
7.5 wt.% dC12E5, 2.5 wt.% hDDAO 1.6± 0.1 0.2± 0.05 0.96± 0.04 0.2± 0.05
2.5 wt.% dC12E5, 7.5 wt.% hDDAO 0.3± 0.1 0.05± 0.02 0.12± 0.03 0.05± 0.02

Table 8.5: Surface excess (z∗) and fraction of segregated surfactant (f) for binary
and plasticised PVA films containing dDDAO and cmC12E5.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% dDDAO 0.5± 0.1 0.06± 0.01 0.6± 0.2 0.06± 0.01
7.5 wt.% dDDAO, 2.5 wt.% hC12E5 0.28± 0.08 0.04± 0.01 0.23± 0.07 0.05± 0.01
2.5 wt.% dDDAO, 7.5 wt.% hC12E5 0 0 0.08± 0.04 0.06± 0.01

To illustrate the distribution of the two surfactants in the non-plasticised film,

a superposition of the depth profiles in films containing 7.5 wt.% dDDAO and

2.5 wt.% dC12E5 is shown in Fig. 8.9.
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Figure 8.9: Superimposed volume fraction-depth profiles of dDDAO (7.5 wt.%) and
dC12E5 (2.5 wt.%) in a non-plasticised PVA film.

It can been seen that the two surfactants segregate over approximately the

same lengthscale. Additionally, it is clear that the volume fractions of DDAO

and C12E5 in the surface layer do not account for the entire volume. This layer

therefore consists of polymer enriched in surfactant, rather than a layer consisting

exclusively of surfactant.

The distribution of DDAO and C12E5 in mixed-surfactant, plasticised films

was subsequently assessed. The effect of DDAO incorporation on the distribution

of dC12E5 will first be considered. In this case, determination of f is complicated

by the interfacial segregation of the nonionic surfactant; the SLD of dC12E5 is

close to that of the silicon oxide on the substrate, and so the two layers are

difficult to resolve precisely in order to quantify an interfacial excess. This can

be seen in the full concentration-depth profiles (Fig. 8.10). Therefore, to allow

comparison, the reported f values only account for the fraction of surfactant com-

prising the surface excess (at the film-air interface). Considering both interfaces,

the total fraction of segregated additive is, in reality, higher than these reported

values. Here it can be seen that DDAO causes a substantial reduction in dC12E5

surface segregation. Indeed, in the film containing 2.5 wt.% dC12E5 and 7.5 wt.%

cmDDAO, there is no surface excess at all, although an interfacial excess can be

identified from the depth profile.

When assessing the effect of C12E5 incorporation on the distribution of dDDAO,

a trend in f (Table 8.5) is much harder to distinguish in the plasticised films than

in the non-plasticised films. However, from the profiles (Fig. 8.11), it can be seen

that when the non-ionic surfactant is included, the concentration of dDDAO in

181



Segregation Synergy of Mixed Surfactant Systems in PVA Films

the surface layer decreases, as observed in the absence of glycerol.
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Figure 8.10: Volume fraction-depth profiles of dC12E5 in PVA films containing 20
wt.% h-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of dC12E5

and cmDDAO. Neutron reflectivity data and fits (offset for clarity) are shown in the
inset.

The effect of two interacting surfactant species on the segregation of the plas-

ticiser will now be assessed. This is shown in Fig. 8.12.

Briddick et al.168 previously identified a slight surface excess of d-glycerol in

the presence of 10 wt.% C12E5, and, as previously discussed, a slight surface

excess of d-glycerol is also observed in the presence of DDAO. However, in the

presence of both surfactants, no segregation of glycerol can be identified. This

suggests that as the segregation of both surfactants is reduced in this mixed

surfactant system, glycerol segregation is also suppressed. Differences in the

glycerol volume fraction in the bulk (and the substantially lower volume fraction

than would correspond to 20 wt.%) are likely to be a result of the loss of glycerol

from the film.
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Figure 8.11: Volume fraction-depth profiles of dDDAO in PVA films with 20 wt.%
h-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of cmC12E5

and dDDAO. Neutron reflectivity data and fits (offset for clarity) are shown in the
inset.
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Figure 8.12: Volume fraction-depth profiles of d-glycerol in PVA films with 20 wt.%
d-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of C12E5 and
DDAO. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.
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8.2.1.3 SDS/C12E5

In this final model system, films containing mixtures of SDS and C12E5 will

be explored. First considering the effect of C12E5 inclusion on the distribution

of dSDS in non-plasticised PVA, Figure 8.13 reveals a substantial suppression

of SDS segregation in the presence of the nonionic surfactant. The values in

Table 8.6 show that f decreases from 0.9 in the absence of C12E5, to 0.2 when

there is a 1:3 ratio of dSDS to cmC12E5. To eliminate the possibility of this

being attributable to differences in dSDS concentration, f for mixed surfactant

systems was compared to those determined from binary dSDS/PVA films of the

corresponding dSDS concentrations. The values of f of 0.8±0.1 and 0.6±0.1 for

films containing 7.5 wt.% and 2.5 wt.% dSDS respectively, show that although

the loading of the anionic surfactant itself does affect f , this is not to a great

enough extent to account for the reduction of f to 0.6±0.1 and 0.2±0.1 for films

containing 7.5 and 2.5 wt.% dSDS respectively, when total surfactant loading is

made up to 10 wt.% with C12E5.

The effect of SDS on the distribution of dC12E5 shows a much less clear trend.

Although the depth profiles in Figure 8.14 show an obvious decrease in the size

of the surface excess upon SDS incorporation, the similar values for f (within

the uncertainty of the measurements) show that this can be accounted for by the

changing concentration of dC12E5 as the ratio between surfactants in the mixed

system is varied.

Table 8.6: Surface excess (z∗) and fraction of segregated surfactant (f) for binary
and plasticised PVA films containing dSDS and cmC12E5.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% dSDS 3.4± 0.1 0.3± 0.1 5.5± 0.1 0.9± 0.1
7.5 wt.% dSDS, 2.5 wt.% cmC12E5 2.81±0.08 0.6± 0.1 3.3± 0.1 0.8± 0.1
2.5 wt.% dSDS, 7.5 wt.% cmC12E5 1.4± 0.2 0.2± 0.05 0.3± 0.1 0.3± 0.1

Table 8.7: Surface excess (z∗) and fraction of segregated surfactant (f) for binary
and plasticised PVA films containing dC12E5 and cmSDS.

Binary Plasticised
z∗/nm f z∗/nm f

10 wt.% d-C12E5 4.7± 0.1 0.7± 0.1 3.5± 0.1 0.5± 0.1
7.5 wt.% dC12E5, 2.5 wt.% cmSDS 3.9± 0.1 0.5± 0.1 1.2± 0.1 0.4± 0.1
2.5 wt.% dC12E5, 7.5 wt.% cmSDS 1.3± 0.1 0.5± 0.1 1.2± 0.1 0.5± 0.1

As for the previous systems, the relative concentrations of the two surfactants

can be assessed by superimposing their depth profiles. This is illustrated for a

film containing 7.5 wt.% SDS and 2.5 wt.% C12E5 in Fig. 8.15.
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Figure 8.13: Volume fraction-depth profiles of dSDS in PVA films with a total surfac-
tant loading of 10 wt.%, with varying ratios of cmC12E5 and dSDS. Neutron reflectivity
data and fits (offset for clarity) are shown in the inset.
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Figure 8.14: Volume fraction-depth profiles of dC12E5 in PVA films with a total
surfactant loading of 10 wt.%, with varying ratios of dC12E5 and cmSDS. Neutron
reflectivity data and fits (offset for clarity) are shown in the inset.
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Figure 8.15: Superimposed volume fraction-depth profiles of dSDS (7.5 wt.%) and
dC12E5 (2.5 wt.%) in non-plasticised PVA.

It can be seen that the C12E5 and SDS segregate over a similar lengthscale on

the surface. Although it appears that the concentration of these surfactants in

the surface layer do not give a total volume fraction of 1, in this case it is likely

that the surface layer consists almost exclusively of surfactant.

The influence of glycerol on the surfactant segregation in this model system

will now be considered. The depth profiles of dSDS in the plasticised, mixed

surfactant films are shown in Figure 8.16. The values in Table 8.6 show that

incorporation of C12E5 causes a suppression of the dSDS segregation, as observed

for the non-plasticised films. In contrast to the non-plasticised films, however,

the inclusion of SDS causes a substantial reduction in dC12E5 segregation in

plasticised films (Fig. 8.17).

The effect of two surfactants on the distribution of d-glycerol will now be

assessed. Concentration depth profiles of d-glycerol in films containing SDS and

C12E5 are shown in Fig. 8.18. It can be seen that the reflectivity data contains

a feature at high Q, analogous to that present in the data for the film containing

10 wt.% hSDS and 20 wt.% d-glycerol. As for the film containing SDS as the

only surfactant, the reflectivity could be fitted using a multilayer model for the

surface region, comprising thick regions of hydrogenated material separated by

thin layers rich in deuterated glycerol.

However, as the concentration of SDS was decreased, and the concentration of

C12E5 was increased, the distribution of glycerol throughout the film was found

to be even. As found for the SDS/DDAO system, it appears that glycerol segre-

gation is closely linked to the distribution of pure SDS.
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Figure 8.16: Volume fraction-depth profiles of dSDS in PVA films with 20 wt.% h-
glycerol and a total surfactant loading of 10 wt.%, with varying ratios of cmC12E5 and
dSDS. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.
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Figure 8.17: Volume fraction-depth profiles of dC12E5 in PVA films with 20 wt.%
h-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of dC12E5 and
cmSDS. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.
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Figure 8.18: Volume fraction-depth profiles of d-glycerol in PVA films with 20 wt.%
d-glycerol and a total surfactant loading of 10 wt.%, with varying ratios of C12E5 and
SDS. Neutron reflectivity data and fits (offset for clarity) are shown in the inset.

8.2.2 Surface Tension of Mixed Surfactant Systems

In Chapter 5, surface tension experiments were used to provide insight into the

role of the surface energy of film components in the segregation observed in spin-

cast films. In this section, surface tension will be used to better understand the

interactions between different surfactants in solution, and identify any synergism

in surface adsorption, which could ultimately be related to the observed distri-

bution of surfactants in PVA. In solution, mixtures of different surfactants can

exhibit synergism or antagonism. Mixtures of charged and uncharged surfactants

generally show synergism, due to the interaction between different headgroups.

However, mixtures of surfactants with different tail groups, for example mixtures

of hydrocarbon and perfluorinated chains, can show antagonism due to demixing,

which results in the formation of two different kinds of micelles.246 In this study,

binary mixtures of surfactants with the same 12-carbon hydrocarbon chains will

be considered, to reflect the polymer/surfactant systems studied in the solid state.

At the CMC, surfactants undergo cooperative self-association, forming mi-

celles. In mixed surfactant systems, both ideal and non-ideal mixing contributions

may occur. As the hydrophobic effect which drives micellisation is not specific to

the headgroup of the surfactant, even in the absence of favourable interactions,

combinatorial entropy favours the formation of randomly mixed aggregates. This
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leads to the ideal mixing behaviour. However, electrostatic interactions between

different head groups provide the base for the non-ideal component of mixing, and

the interactions between surfactant molecules have been shown to be influenced

by the nature of the headgroup.240

It is possible to use data from the surface tension behaviour of mixed sur-

factant solutions to evaluate the interaction between surfactant species in the

mixed micelles. Mixtures of two surfactants can exhibit synergy (whereby the

mixture shows greater surface activity than that attainable with the individual

surfactants of the mixture at the same concentration) if they attract each other

sufficiently.

According to the pseudophase separation model,240 the CMC of a binary

surfactant system is related to the CMCs of the individual surfactant species by

Equation 8.1,

1

CMC
=

y1

f1 CMC1

+
(1− y1)

f2 CMC2

. (8.1)

where yi is the mole fraction of the ith component in the mixed surfactant system,

and fi is the activity coefficient of this component in micelles. The activity

coefficients can be related to the interaction parameter, β.

ln f1 = (1− x1)2β and ln f2 = x2
1β (8.2)

Hua and Rosen247 have shown that the condition for synergism due to mixed

micelle formation and mixed monolayer formation is determined solely by the

value of the relevant β parameters and the properties of the individual surfac-

tants. A negative value for β indicates an attractive interaction between the two

surfactants, whereas a positive value indicates overall repulsion. This parameter

could therefore be used to assess interactions in solution, which are likely to be

important in the structure of films spin-cast from aqueous solution.

In this section, in order to assess the effect of a second surfactant on the

surface tension of a primary surfactant, the concentration of the second species

is kept constant while the surface tension of a broad range of concentrations of

the first surfactant is measured. This enables determination of the concentration

of both surfactant species at which micellisation occurs, and permits the effect of

one surfactant on the surface excess of another to be identified in some systems.

8.2.2.1 SDS/DDAO

The surface tension behaviour of mixed SDS/DDAO solutions will first be con-

sidered. Surface tension as a function of DDAO concentration in the presence of
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different (fixed) SDS concentrations is shown in Fig. 8.19. Every SDS concen-

tration shown is below the CMC of the pure SDS.
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Figure 8.19: Effect of SDS incorporation on the aqueous surface tension behaviour
of DDAO. Lines are a guide for the eye. Dashed black and purple lines represent the
surface tension of 1 ×10−3 and 5×10−2 wt.% SDS solutions respectively, in the absence
of DDAO.

In the presence of SDS it can be seen that there is a significant decrease in

the surface tension of the solutions at each DDAO concentration, compared to

that of the pure DDAO solutions, indicating a strong synergistic effect. The

CMC also becomes less clearly identifiable from the break point in the surface

tension plot, although appears to shift to lower concentration with increasing

SDS concentration.

Goloub et al.248 have studied the effect of SDS on the surface tension of DDAO

solutions buffered to pH 8 (where almost all surfactant molecules are neutral),

similarly observing a decrease in surface tension of DDAO solutions and a decrease

in DDAO concentration at the CMC in the presence of SDS. They obtained a

value for the β parameter of -7.0. This large, negative value indicates strong

attractive interactions between the surfactants.

In this work, in order to accurately represent the solutions used to spin-cast

the polymer/surfactant films, surfactant solutions are not buffered. Based on the

pKm (intrinsic proton dissociation constant of the micelle) of DDAO (5.89, Chap-

ter 6), it is likely that, in the absence of additional solutes, the surfactant would

be overwhelmingly in the neutral, unprotonated form. However, zwitterionic sur-

factants, such as DDAO, may exhibit specific interactions in mixtures with either
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cationic or anionic surfactants, due to their capability to either accept or donate

the proton on the head group. This results in the formation of ion pairs with

an oppositely charged ionic surfactant. In the protonated form, DDAO would be

strongly stabilised by binding to the anionic surfactant. This means that, in this

system, the deprotonation of DDAO requires much higher pH than that required

to deprotonate pure DDAO, and thus the DDAO is no longer exclusively in the

unprotonated state. The formation of strong ion pairs, and presence of SDS in

the mixed micelles, can therefore rationalise the strong synergistic reduction in

CMC for the mixed DDAO/SDS system.

Interestingly, in the presence of SDS, at higher DDAO concentrations there

is an increase in the surface tension, approaching the limiting surface tension of

pure DDAO solutions. Although this was not apparent in the work of Goloub et

al.,248 this is likely due to the narrower range of DDAO concentrations used in

their study. This observation suggests that at high DDAO concentrations (above

the CMC), the surfactant monolayer on the surface comprises mostly DDAO.

However, given that the formation of ion pairs with SDS is favourable, this is

unexpected. One possibility is that the surface of the solution was not at equi-

librium when the surface tension measurement was made, and some replacement

of DDAO with SDS occurs over longer timescales (∼ minutes). However, this is

unlikely, given that at higher concentration molecules have less far to travel in

order to approximate their equilibrium formation. Another possibility, therefore,

is that the composition of the adsorbed layer at high concentrations is different

from that at low concentrations, as micelles can provide an environment that can

sequester a surface active component from the solution surface. If micelles are

able to lower their free energy by solubilising a surface active component, this can

compensate the cost in increasing the surface tension. Indeed, this effect is ob-

served in the surface tension plot of SDS contaminated with dodecanol (Chapter

5).

It is worth considering the limitation in taking static surface tension mea-

surements, using the du Noüy ring method, and it should therefore also be noted

that the surface tension measurements at lower concentrations may also not rep-

resent a surface at equilibrium. However, the reduction from the surface tension

of pure water to <30 mN m−1 nevertheless indicates very efficient surfactant

adsorption. Although dynamic surface tension measurements would be required

to fully understand the properties of the surface, in the context of this thesis,

these measurements are significant; during the spin-casting process, solution is

applied to the silicon block which is stationary for < 30 s prior to spinning. As a

result, these (potentially) non-equilibrium surface tension measurements are rep-
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resentative of the solution surface during film preparation. This is particularly

significant given that the concentrations of surfactant in solutions used to spin

cast the films are above the CMC.

It is possible to use the Gibbs adsorption equation to assess the effect of SDS

incorporation on the surface excess of DDAO. These values are included in Table

8.8. Typical fitting regions from which values for the surface excess are obtained

are included in Fig. 8.20. Quoted uncertainties are taken from the uncertainty

in the gradient of this fit.
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Figure 8.20: Gibbs plots used to determine the maximum surface excess of DDAO in
the presence of different concentrations of SDS.

Table 8.8: Limiting values for the surface excess of DDAO in the presence of different
concentrations of SDS.

[SDS]/wt.% Γ/10−6 mol m−2

0 2.90± 0.09
5× 10−4 2.9± 0.1
1× 10−3 4.0± 0.3
5× 10−2 2.65± 0.04

Despite the general shift of the curve to lower surface tensions, the surface

excess of DDAO is fairly consistent at each SDS loading, with the exception of

1 × 10−3 wt.%. This suggests that the presence of SDS has little impact on the

maximum packing density of DDAO.

The effect of DDAO on the surface tension of SDS solutions is shown in Fig.

8.21. It should be noted that each DDAO concentration studied is lower than
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the CMC of pure DDAO. By fixing the concentration of DDAO and assessing

the change in surface tension with SDS concentration, a greater range of concen-

trations of the two species can be probed. This shows very different behaviour

to the reverse case (Fig. 8.19). Here a strong synergistic effect in surfactant

adsorption is immediately apparent, as at all concentrations of DDAO, the sur-

face tension of the SDS solutions is dramatically reduced to values lower than

the surface tension achieved by the pure SDS solution above the CMC. At each

DDAO concentration, the surface tension is much lower than would be expected

should each surfactant contribute to the reduction in surface tension to the same

extent as in the single component solutions. At the lowest DDAO concentration

(7× 10−4 wt.%), the surface tensions of the mixed solutions are still much lower

than at the CMC of this surfactant.
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Figure 8.21: Effect of DDAO incorporation on the aqueous surface tension behaviour
of SDS. Lines are a guide for the eye. Dashed blue, black and purple lines represent
the surface tension of solutions of 7×10−4, 5×10−3 and 5×10−2 wt.% DDAO solutions
respectively, in the absence of SDS.

As previously stated, it is likely that the interaction between the headgroups,

and formation of ion pairs, are responsible for this surface tension reduction,

apparent even at very low total surfactant concentration. The significant con-

tamination of the SDS with dodecanol should perhaps also be acknowledged here.

It is plausible that the low surface tension apparent at low loadings of all surfac-

tant is related to the adsorption of both surfactants and the dodecanol. However,

the composition of the surface cannot be determined from surface tension mea-

surements alone. Nevertheless, in the context of this project, the surface tension
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behaviour at high surfactant concentrations is more relevant.

As observed in Fig. 8.19, at concentrations above the CMC of pure SDS

solutions, the surface tension of mixed solutions can be seen to increase with

SDS concentration, approaching the value of the surface tension of pure SDS

solutions. Again, this suggests that when [SDS] is substantially greater than

[DDAO], the surface monolayer is dominated by SDS. As this would suggest that

ion pair formation between the two species is more important in the bulk than

on the surface monolayer, it is reasonable to suggest that, again, the surface

adsorbed DDAO is sequestered into the micelles.

8.2.2.2 C12E5/DDAO

The surface tension behaviour of the mixed C12E5/DDAO system will now be

considered. The effect of C12E5 on the surface tension of DDAO solutions is

shown in Fig. 8.22. Here, 4×10−3 wt.% is a higher concentration of C12E5 than

its CMC, but all other C12E5 concentrations are below the CMC.
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Figure 8.22: Effect of C12E5 incorporation on the aqueous surface tension behaviour of
DDAO. Lines are a guide for the eye. Dashed blue, black and purple lines represent the
surface tension of of 3 ×10−5, 1 ×10−4 and 4×10−3 wt.% C12E5 solutions respectively,
in the absence of DDAO.

It can be seen that in the presence of 3 × 10−5 and 1 × 10−4 wt.% C12E5,

there is a decrease in the surface tension of the mixed solutions throughout the

DDAO concentration range, up to the CMC. The surface tension above the CMC

is then only slightly lower in the presence of C12E5. A slight decrease in the

CMC can also be identified. In this case, there is no obvious synergism, as the

194



Segregation Synergy of Mixed Surfactant Systems in PVA Films

reduction in surface tension of water at most DDAO concentrations, seems to

be close to a linear addition of the reduction of surface tension achieved by each

solute individually. On close inspection, the surface tension of the mixed systems

is actually higher than would be expected should each solute contribute to the

same extent to the reduction in surface tension as in their single-solute solutions.

This antagonism in surfactant adsorption is likely to be a result of the weaker

attraction between the headgroups of the non-ionic and zwitterionic surfactant

(which is mostly uncharged at natural pH).

In the presence of 4 × 10−3 wt.% C12E5, the surface tension of the mixed

solutions is consistently low (∼30 mN m−1) throughout the concentration range

of DDAO below the CMC. This concentration of C12E5 is above its CMC in the

absence of additional solutes, and therefore the surface appears to be saturated

with C12E5. Above the CMC of the mixed solutions, however, there is a slight

increase in surface tension, approaching the value of the surface tension of solu-

tions of high DDAO concentration in the absence of additional solute. As for the

previous system discussed, this could be a result of DDAO exclusively occupying

the surface at high [DDAO], which is particularly likely when DDAO concentra-

tion is high enough that these aggregates dominate in the bulk, solubilising any

C12E5 that would be on the surface.

Goloub at al.248 probed the effect of DDAO on the surface tension of C12E6

solutions. Despite the slight change in headgroup on the nonionic surfactant

(with C12E6 possessing one extra -CH2CH2O group), they report very similar

behaviour to that presented here, with a slight decrease in the CMC of C12E5

with DDAO concentration. At pH 8, they determined the interaction parameter,

β, of the two surfactants to be -1.0. The negative value is indicative of attractive

interactions between the surfactants, although this interaction is weaker than

that between SDS and DDAO.

The change of surfactant surface excess upon incorporation of a second surfac-

tant can be identified using the Gibbs adsorption equation. The effect of C12E5

concentration on the surface excess of DDAO is shown in Table 8.9. From this,

it can be seen that although the C12E5 causes a reduction in surface tension, it

causes no significant change in the surface excess of the DDAO.

The effect of DDAO (at concentrations below its CMC) on the surface tension

of C12E5 is shown in Fig. 8.23. Here, behaviour is very similar to that shown in

Fig. 8.22, with a decrease in surface tension with DDAO concentration, a slight

decrease in slope of the linear region, and a decrease in the CMC of C12E5. In

this case, it can be seen that there is a greater reduction in surface tension than

that attainable with the two surfactants in the mixture individually, indicative
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Table 8.9: Limiting values for the surface excess of DDAO in the presence of different
concentrations of C12E5.

[C12E5]/wt.% Γ/10−6 mol m−2

0 2.90± 0.09
3× 10−5 2.9± 0.1
1× 10−4 2.7± 0.1

of synergy between the additives. This is in accordance with Rosen,249 who

observed that zwitterionic surfactants with no net formal charge show only weak

interactions with non-ionic surfactants, although when the zwitterionic species

is capable of forming a species with a net charge, the interaction may become

strong enough for the system to exhibit synergy at neutral pH.
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Figure 8.23: Effect of DDAO incorporation on the aqueous surface tension behaviour
of C12E5. Lines are a guide for the eye. Dashed blue, black and purple lines represent
the surface tension of solutions of 9×10−4, 4×10−3 and 4×10−2 wt.% DDAO solutions
respectively, in the absence of C12E5.

The change in C12E5 surface excess, calculated using the Gibbs adsorption

equation, with DDAO concentration is shown in Table 8.10. This shows that in

this C12E5 concentration range, DDAO inclusion reduces ΓC12E5
as a result of the

co-adsorption of the two surfactants in the monolayer.

A β parameter of -1.0 for the interaction of DDAO with C12E6 at pH 8 has

been previously reported.248 This suggests a favourable interaction between the

two surfactants. Assuming that at the natural pH measured, DDAO is exclusively

in the nonionic (unprotonated) state, and the presence of an additional ethoxy

196



Segregation Synergy of Mixed Surfactant Systems in PVA Films

Table 8.10: Limiting values for the surface excess of C12E5 in the presence of different
concentrations of DDAO.

[DDAO]/wt.% Γ/10−6 mol m−2

0 3.16± 0.06
9× 10−4 2.25± 0.06
4× 10−3 1.98± 0.09

group in C12E6 has little effect on the interactions with DDAO, it is likely that

the interactions in this system are also attractive.

8.2.2.3 SDS/C12E5

Finally, the surface tension of the mixed SDS/C12E5 system will be assessed. The

effect of incorporating various concentrations of C12E5 on the surface tension of

SDS solutions is shown in Fig. 8.24. Here, a decrease in surface tension through-

out the whole C12E5 concentration range can be identified, although the shape

of the curve is similar for all SDS concentrations, with a clear CMC exhibited.

Comparing the surface tension of the single component solutions, to the values

obtained in the mixed solutions suggests that there is no large synergistic effect

in the surface tension reduction. As for the previous model system, when the

concentration of C12E5 is greater than its CMC in the single component solution,

the surface tension is dominated by its adsorption to the surface at low [SDS].

However, a gradual increase in the surface tension with [SDS] suggests the co-

adsorption of both species. Again this is likely to be a result of the more surface

active component being sequestered by micelles above the CMC.

The effect of incorporating various concentrations of SDS on the surface ten-

sion of C12E5 solutions is shown in Fig. 8.25. Upon SDS incorporation there

is a slight decrease in the surface tension of the C12E5 solutions throughout the

concentration range below the CMC, although this reduction is somewhat less

than would be observed should the SDS contribute as much to the surface tension

reduction as in solutions with SDS as the only additive. In addition, the CMC

can be observed to shift slightly to lower concentrations.

These results show a similar trend to that observed by Goloub et al.248 in the

case of C12E6 in the presence of SDS and additional salt. However, in contrast to

their work, although the values of surface tension above the CMC are unchanged

from pure C12E5 upon addition of 8×10−4 and 6×10−3 wt.% SDS, when 5×10−2

wt.% SDS is incorporated, the surface tension above the CMC is slightly higher.
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Figure 8.24: Effect of C12E5 incorporation on the aqueous surface tension behaviour
of SDS. Lines are a guide for the eye. Dashed blue, black and purple lines represent the
surface tension of of 3 ×10−5, 2×10−4 and 3×10−3 wt.% C12E5 solutions respectively,
in the absence of SDS.
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Figure 8.25: Effect of SDS incorporation on the aqueous surface tension behaviour
of C12E5. Lines are a guide for the eye. Dashed black and purple lines represent the
surface tension of solutions of 6×10−3, and 5×10−2 wt.% SDS solutions respectively,
in the absence of C12E5.
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Goloub et al.248 reported β parameters for the C12E5/SDS system in the

presence of different electrolytes, ranging from β = −3.4 for 0.1 M NaCl to β =

−4.3 for 1M CsCl solution. These negative values show that the net interactions

in the mixed micelles are attractive, despite synergy between the two components

not being easily identifiable from Fig. 8.24.

As for the previous model systems, the Gibbs adsorption equation can be

used to assess the effect of C12E5 on the surface excess of SDS, and vice versa

(Tables 8.11 and 8.12). It can be seen that the surface excess of both surfactants

decreases in the mixed system, indicating the co-adsorption of the two species in

the surface monolayer.

Table 8.11: Limiting values for the surface excess of C12E5 in the presence of different
concentrations of SDS.

[SDS]/wt.% Γ/10−6 mol m−2

0 3.16± 0.06
8× 10−4 3.2± 0.1
6× 10−3 3.0± 0.1
5× 10−2 2.10± 0.07

Table 8.12: Limiting values for the surface excess of SDS in the presence of different
concentrations of C12E5.

[C12E5]/wt.% Γ/10−6 mol m−2

0 3.8± 0.1
3× 10−5 2.60± 0.1
2× 10−4 1.9± 0.1

8.3 Discussion

8.3.1 Surfactant Distribution in Multiple-Component Sys-

tems

The segregation behaviour of the mixed surfactant systems studied using neutron

reflectivity can be summarised as follows:

1. DDAO/SDS: In both non-plasticised and plasticised films, DDAO strongly

suppresses the segregation of SDS, while SDS promotes the segregation of

DDAO.
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2. C12E5/DDAO: DDAO significantly suppresses C12E5 segregation and C12E5

suppresses DDAO segregation in non-plasticised films. In the presence of

glycerol, DDAO suppresses C12E5 segregation, although C12E5 has little

effect on DDAO segregation.

3. SDS/C12E5: In non-plasticised and plasticised films containing SDS and

C12E5, segregation of both surfactants is reduced compared to films con-

taining a single surfactant.

In model systems containing a single surfactant, segregation behaviour was

explained and interpreted by considering the surface energy of film components

as well as their compatibility with the host polymer. Interactions between plasti-

ciser, polymer and surfactant have also been shown to be important in influencing

surfactant distribution. Here these arguments will be extended to the more com-

plex systems in an effort to rationalise the observed depth profiles. Three factors

that should therefore be considered are the order of compatibilities with PVA,

the order of surface tensions and any possible interactions between additives. To

summarise briefly:

Most compatible DDAO > C12E5 > SDS Least compatible

Highest surface tension SDS > DDAO > C12E5 Lowest surface tension

8.3.1.1 SDS/DDAO

The SDS/DDAO system will first be considered. When DDAO is the sole addi-

tive in a film, the formation of a single monolayer on the surface was attributed

to a lowering of the free energy of the system, but the even distribution of the

remaining surfactant revealed its high compatibility with PVA. As SDS has a

higher surface tension than DDAO, when considering the components individu-

ally, the inclusion of SDS presents no further driving force for DDAO to segregate.

With the lower aqueous surface tension, there is a greater preference for DDAO

to occupy the surface, than SDS. It is therefore plausible that this effect can be,

at least in part, responsible for the suppressed segregation of SDS, compared to

its behaviour as the only surfactant in films.

Incompatibility of SDS with PVA has been identified as the main factor re-

sponsible for its extensive segregation (Chapter 4). The significant reduction in f

in the presence of DDAO therefore suggests some increase in SDS compatibility

as a result of interaction with the second surfactant. One possibility is that the

interactions between the headgroups of the two surfactants lead to the formation
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of structures that can localise more favourably within the amorphous regions of

polymer matrix. This potential favourable interaction between surfactants could

also play a role in the enhanced segregation of DDAO, and its presence in a thick

surface excess layer, rich in both surfactants.

Another contributing factor that should not be neglected is the entropy of

mixing. While SDS is extremely incompatible with PVA, DDAO is very com-

patible with the polymer. Segregation of a single surfactant species on the film

surface would be entropically unfavourable, although with two surfactants com-

prising the surface excess, the entropy of mixing increases, decreasing the free

energy of the system. This mixing necessitates an increase in the segregation of

DDAO, with the layer enriched in this surfactant expanding from a monolayer

(in the single surfactant film) to the thickness of multiple surfactant molecules.

There are some significant differences observed in the surfactant segregation

in this system when experiments were repeated in the presence of glycerol. First,

when the ratio of dDDAO to SDS is 3:1, the thickness of the surface excess

layer corresponds to a monolayer, suggesting very little influence of SDS on the

segregation of dDDAO. From the depth profile of the other contrast for this film

(ratio of DDAO to dSDS is 3:1) no segregation of SDS is observed at all. This

supports the argument that the lower aqueous surface tension of DDAO leads to

its occupation of the surface instead of SDS, reducing segregation of the latter

surfactant. This also again implies that interactions between the two surfactant

species promote compatibility of SDS with the matrix. In Chapter 4, it was

suggested that the enhancement of the surface excess of SDS in the presence

of glycerol is thermodynamically driven. As glycerol segregation only occurs

when the SDS:DDAO ratio is high, it is apparent that glycerol segregation is

closely linked to the anionic surfactant, and thus DDAO also suppresses glycerol

segregation in this mixed system.

8.3.1.2 C12E5/DDAO

To interpret the observed depth profiles in the model system comprising C12E5

and DDAO, surface energy arguments should again be considered. In this case,

C12E5 has the lower aqueous surface tension and so has a greater preference to

occupy the surface than DDAO. This can explain the change in distribution of

dDDAO upon C12E5 incorporation to the film. At a 3:1 ratio of dDDAO:C12E5,

the significant decrease in the volume fraction of dDDAO in the surface layer (and

hence greater area per DDAO molecule) is likely to be a result of the co-adsorption

of the more surface active non-ionic species. Increasing the concentration of C12E5

further so the dDDAO:C12E5 ratio becomes 1:3, there is no enrichment of the
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surface with dDDAO.

Now considering the distribution of dC12E5, the thickness of the surface layer

is consistent with that of DDAO, confirming the co-adsorption of the two sur-

factant species. The observation that DDAO acts to significantly suppress C12E5

segregation suggests that compatibility also plays a role in these surfactant dis-

tributions. As for the previous model system, it is plausible that, particularly

with the high compatibility of DDAO with PVA, interactions between the head

groups of the two surfactant species could act to promote the compatibility of

C12E5 with the matrix. In addition, the high solubility of DDAO in PVA may

also provide an environment capable of accommodating the tailgroups of C12E5

that is otherwise absent. The entropy of mixing is also likely to be significant

here; localisation of a single surfactant on the surface would be less entropically

favourable than its distribution throughout the bulk film.

Upon inclusion of glycerol, very similar effects are observed as in the non-

plasticised films. Again, the reduction of φdDDAO in the surface monolayer is con-

sistent with the co-adsorption of C12E5 due to its lower aqueous surface tension.

One subtle difference is that there is still some dDDAO present in the surface

layer of the film (albeit at a very low concentration). Additionally, in contrast to

the non-plasticised film, no surface excess of C12E5 is apparent, despite its low

surface tension. However, this could be due to the difficulty in identifying the sur-

face layer with a low concentration of deuterated additive due to the low contrast

between the layers. As glycerol shows some segregation in the single-surfactant

films containing C12E5 and DDAO, the lack of plasticiser segregation in the mixed

surfactant system, in conjunction with the overall reduction in surfactant segre-

gation, again demonstrates that surfactant and plasticiser segregation are closely

linked.

8.3.1.3 SDS/C12E5

In the final model system, containing C12E5 and SDS, both surfactants are highly

incompatible with PVA, exhibiting substantial surface excesses in their respective

single-surfactant films. In this system, it was found that the segregation of both

surfactant species is reduced, compared to the films containing one surfactant.

However, whereas a strong reduction in SDS segregation is observed in the pres-

ence of C12E5, SDS only causes a modest suppression of the nonionic surfactant.

Again, it should be noted that the interfacial segregation of C12E5 makes accu-

rate calculation of the total fraction of segregated surfactant more difficult, and

here only the surfactant segregated to the film-air interface is considered in the

calculation.

202



Segregation Synergy of Mixed Surfactant Systems in PVA Films

Surface energy should first be assessed as a driving force for segregation. C12E5

has the lower aqueous surface tension, and therefore it is thermodynamically

favourable for this species to occupy the surface. When considering the first

model system (SDS/DDAO) it was suggested that the lower surface energy of

DDAO excludes some SDS from the surface, thereby suppressing segregation.

This argument could also be applied here. In fact, the even greater difference in

aqueous surface tension between C12E5 and SDS, could lead to this being a more

significant effect than for the first model system. Compatibility of the surfactants

with the matrix also has a significant role to play in the distribution of components

throughout the film. Although both species exhibit low compatibility with PVA,

it is plausible that interactions between headgroups of the two surfactants enable

the formation of structures that can occupy regions of the polymer matrix more

favourably.

In the presence of glycerol, the same trend is observed as in the non-plasticised

films, with the suppression of segregation of both surfactants observed. Despite

the lower aqueous surface tension of C12E5, the low concentration of this additive

adjacent to the air-film interface indicates that it is the SDS that is predominantly

enriched on this surface, although the nonionic surfactant does still exhibit ex-

tensive segregation from the bulk film.

In the presence of low concentrations of C12E5, it appears that glycerol is still

capable of forming some stacked structures with surfactant, as previously ob-

served for films containing SDS as the only surfactant. A Bragg peak is apparent

in the reflectivity data for the film containing 7.5 wt.% SDS. As this is indicative

of a repeating structure, this suggests that even with 2.5 wt.% C12E5 incorpo-

rated, in the presence of glycerol the surface excess is arranged into repeating

layered structures. This Bragg peak is located at Q ∼ 0.2 Å−1, consistent with

the position of the Bragg peak from the plasticised film containing SDS as the

only surfactant. This indicates that, at a low concentration, the non-ionic surfac-

tant does not significantly perturb the stacking of the SDS/glycerol structures,

described in Chapter 4. Taking this in conjunction with the low concentration of

C12E5 in the near surface region of the film, suggests that compatibility, and the

favourable formation of thermodynamically stable stacked structures of plasticiser

and SDS, dominates over surface energy arguments in determining the vertical

distribution of the two surfactant species in this film. As the concentration of

SDS is decreased and the concentration of C12E5 is increased, the plasticiser does

not segregate to the surface, again demonstrating the strong coupling of SDS and

glycerol segregation.
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8.3.2 Solution Behaviour of Mixed Surfactant Systems

Studies on mixed surfactant systems are usually concerned with the onset of

micelle formation and therefore on interactions at and below the CMC. However,

by probing a broader range of concentrations, above the CMC, and considering

the surface tension at high surfactant concentrations, the effect of a secondary

surfactant species on surface tension, and therefore the role of surface energy on

driving segregation in more complex systems can be understood. In particular,

this can aid understanding on the species present on the solution surface, which

may correlate with the surface of the spin-cast film.

For each model system studied, interactions between species in solution are

apparent. These will be discussed in greater depth in the following sections.

8.3.2.1 SDS/DDAO

In this model system, DDAO was found to suppress the segregation of SDS,

whereas SDS was found to promote the segregation of DDAO in the PVA film.

The attractive interaction between these two surfactants, identified in solution,

combined with the high incompatibility of SDS with PVA (Chapter 5) and the

high compatibility of DDAO with PVA (Chapter 6) is likely to result in an “aver-

age” compatibility of the two additives with the matrix, and thus the suppressed

segregation of SDS and promoted segregation of DDAO.

Surface tension experiments (Fig. 8.19 and 8.21) showed that at high DDAO

concentration, DDAO competes with the adsorption of SDS to the surface (at

least on the timescales relevant for measuring surface tension, or for spin-coating),

which could also contribute to the lower SDS segregation observed in the pres-

ence of DDAO. When considering the reverse case, it is apparent the high SDS

concentrations only suppresses the adsorption of DDAO to the surface at high

surfactant concentrations, relevant after solvent loss during spin-coating. This

could also plausibly contribute to the observed suppression and enhancement of

the segregation of SDS and DDAO respectively.

8.3.2.2 C12E5/DDAO

Neutron reflectivity revealed that C12E5 segregation was significantly suppressed

in the presence of DDAO. In this mixed system, DDAO also segregated to a lesser

extent, with no surface excess apparent in the presence of high concentrations of

C12E5 concentration. Although this can be rationalised to some extent in terms of

the surface energies of the pure components, assessing the surface tension of the

mixed components can also aid in better understanding the interaction between
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the two surfactants.

The findings of Goloub et al.248 show that an attractive interaction is likely

present between these surfactants, albeit to a lesser extent than in the DDAO/SDS

system. These favourable interactions could therefore lead to the highly compat-

ible DDAO promoting the compatibility of the C12E5 with the PVA.

As only a surface monolayer of DDAO forms in the simple PVA/DDAO films,

the synergistic adsorption of the two surfactants apparent from the surface tension

experiments shows that the C12E5 and DDAO co-adsorb onto the surface of the

solution in order to effect a greater reduction in surface tension. The necessary

replacement of some DDAO by C12E5 is therefore likely to result in the overall

reduced segregation of DDAO in the mixed system.

8.3.2.3 SDS/C12E5

Neutron reflectivity has revealed that segregation of both SDS and C12E5 is re-

duced in the mixed system, compared to in the single-surfactant systems. Al-

though surface tension showed little synergism in the surface adsorption of the two

surfactants in solution, from the work of Goloub et al.248 the interaction between

the two species is attractive. The Gibbs adsorption isotherms also revealed that

both species are present on the solution surface. Similarly to the previous two

systems, the favourable interaction between the surfactants may mean that this

results in an “average” compatibility with PVA. Although this could be expected

to cause an increase in the extent of C12E5, its higher compatibility with PVA

means that segregation of the non-ionic surfactant is likely to be largely related

to the monolayer on the surface of the solution. Therefore the co-adsorption of

the two surfactants in the mixed solution and the replacement of C12E5 with SDS

could plausibly lead to suppression of the non-ionic surfactant.

8.4 Chapter Conclusions

In this chapter, the distribution of multiple surfactants in PVA films was assessed

in order to better understand the role of different factors in segregation. It is

clear from the insights in this chapter that in mixed systems, the presence of

multiple additives has a significant influence on segregation behaviours, resulting

in different depth profiles from those of the single surfactants systems. This is true

for the three model systems studied. The explanation of segregation behaviours

in each of the mixed systems can be summarised in terms of three effects:

1. Surface energy
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2. Entropy of mixing

3. Compatibility

Looking at the surface tension behaviour of the mixed systems can help to

better understand the interactions between the different species. From these

results, it is significant that the surface energy of each component cannot be con-

sidered independently when attempting to predict segregation in multi-surfactant

systems.

By assessing these findings in the context of a previously reported study,248

it is likely that the interactions between surfactants in each of the model sys-

tems studied is attractive. This favourable interaction could therefore plausibly

contribute to the increased compatibility of surfactants with PVA observed in

the presence of another surfactant, and the suppression of segregation of both

surfactants.

Surface tension has therefore offered insights into into each of the model sys-

tems. Although there are limitations in this approach, such as the neglect of

interactions with the polymer in solution, it is clear that an understanding of the

nature and strength of interactions between different additives can prove infor-

mative in ultimately understanding and predicting segregation in more complex

film systems.
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Chapter 9

Properties of the PVA Matrix

Some of the work comprising this chapter has been published as: Fong, R.J.;

Robertson, A.; Mallon, P.E.; Thompson, R.L. “The Impact of Plasticizer and

Degree of Hydrolysis on Free Volume of Poly(vinyl alcohol) Films.” Polymers,

10, 1036, 2018.250

Thanks must go to Gary Oswald for running the XRD measurements, and

Alex Robertson for running the DMA measurements included in this chapter.

9.1 Chapter Introduction

In earlier chapters, it was demonstrated that the presence of plasticiser in PVA

films, and its interaction with other molecules such as surfactants, can bring

about a surprisingly rich range of segregation behaviours of model film compo-

nents.168,174 However, the complex nature of the interactions between film com-

ponents means that predicting the migration and adsorption of different species

to interfaces is difficult, even in simple models for complex formulations. It is

therefore of interest to better understand the effect of film composition on the

properties of the polymer matrix in order to ultimately better predict and control

small molecule segregation and migration. Developing this understanding could

also assist with the correlation of the properties of the material with film perme-

ability and transport properties, which is particularly important in the context

of the diffusion and migration of encapsulated detergent components through the

film. In this chapter, positron annihilation lifetime spectroscopy (PALS) is as-

sessed as a tool to understand the behaviour of plasticisers in PVA at a molecular

level, which is supported by macroscopic studies of the polymer matrix by XRD

and DMA.

PALS can be used to probe free volume size distributions and concentrations

in polymers by measuring the time difference between the emission of a positron
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from a radioactive source and its subsequent annihilation. The details of this

technique are described in greater depth in Chapter 3. PALS is a highly valuable

technique in providing information on the polymer free volume and its relation-

ship with various properties. These include permeability, the glass transition,

crystallisation, dynamics, and the chemical environment of free volume cavities.

PALS has been widely used in the study of polymeric systems at a molecular level,

and can be used to quantitatively assess the effect of plasticisation on free volume.

Although the plasticisation of amorphous polymers has been predominantly in-

vestigated,251,252 there have been some cases of the use of PALS to investigate the

plasticisation of semi-crystalline polymers, including poly(ethylene oxide)253,254

and poly(vinyl chloride).255,256

Although the plasticisation of PVA has been widely studied,11,18,19,257 PALS

has not been implemented to study its effect on free volume properties. There

have been a number of PALS studies of unplasticised PVA,20,258–260 including

the incorporation of non-plasticising additives and the properties of nanocom-

posites,261–264 but most have focused on the effect of the chemical environment

on the yield of positronium formation, rather than on the free volume properties

of the materials.265–267 In this chapter, PALS is used to assess the effect of the

degree of hydrolysis and plasticiser incorporation on the free volume properties

of solution-cast PVA films, and explore the relationship between free volume and

bulk properties such as crystallinity and glass transition temperature, Tg, which

were characterised by XRD and DMA respectively. By investigating the plastici-

sation of PVA and the influence of degree of hydrolysis (DH), the aim is to gain

insights into the polymer-additive interactions.

9.2 Results

9.2.1 Influence of Plasticisation on PVA Properties

9.2.1.1 Influence of Plasticisation on Free Volume

To investigate the effect of plasticisation on the free volume properties of PVA,

two model plasticisers were used: glycerol and propylene glycol. The concentra-

tions of both additives were varied from 0 to 50 wt.%. Following preparation of

the samples (as detailed in Section 3.13), PALS was used to determine the effect

of plasticiser inclusion on the cavity radius, R, and on the o-Ps intensity, which

can be linked to the void concentration in the absence of any chemical effects.

All PALS results could be satisfactorily fitted using three-lifetime analysis.

As described in greater depth in Section 3.13, these lifetimes are attributable to
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annihilation of the para-positronium (p-Ps), the “free” positron, and the ortho-

positronium (o-Ps) respectively.

Figure 9.1 shows the impact of propylene glycol on the cavity radius, R,

and intensity of the o-Ps component, I3, in PVA. The linear increase in R with

propylene glycol loading throughout the whole concentration range shows the in-

creasing cavity radius upon plasticiser inclusion. There is a very modest decrease

in I3 with propylene glycol concentration. Although this parameter is generally

associated with the concentration of free volume voids, in this case the decrease

in I3 is unlikely to suggest that the number of voids decreases as the plasticiser

loading increases. A decrease in I3 with plasticiser concentration has been pre-

viously reported in a number of studies.254,268 In some cases the decrease in I3

has indeed been attributed to a hole-filling mechanism, whereby the plasticiser

molecules occupy the cavities, rather than increasing their size or creating new

ones, reducing the overall void concentration.251 However, the clear increase in

cavity radius with propylene glycol concentration suggests that this is not the

case in this system and that there must be another effect. Instead, this decrease

in I3 is likely to be the result of the inhibition of o-Ps formation by the plasticiser.

Although Equation 3.33 could be used to calculate the fractional free volume, the

use of the determined positron parameters (τ3, I3) to calculate free volume can

only be justified when void concentration is the sole factor governing o-Ps inten-

sity, and any possible chemical effects capable of affecting the probability of o-Ps

formation can be neglected.269
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Figure 9.1: (a) cavity radius (R) and (b) o-Ps intensity (I3) in vacuum-dried, solution-
cast PVA films as a function of propylene glycol concentration. Error bars are within
the size of the data points.

The effect of plasticisation by glycerol on the free volume properties of PVA

was subsequently investigated. As glycerol is very hygroscopic, it is also impor-
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tant to consider the impact of water on the plasticised PVA films. The presence of

water, and thus relative humidity, significantly affects the mechanical properties

of PVA and its blends.270 The impact of water inclusion on the plasticisation of

PVA by glycerol was therefore also assessed by comparing air-dried and vacuum-

dried films in order to link this to its macroscopic free volume properties. The

preparation of these vacuum-dried glycerol-plasticised PVA films is consistent

with the preparation of the films containing propylene glycol. Figure 9.2 shows

the impact of glycerol concentration on the free volume properties (R and I3) of

PVA, and the effect of the presence of water in the film on these parameters. The

water content of the films after air-drying for 24 h, prior to drying under vacuum,

(hollow symbols) was determined by thermal gravimetric analysis (TGA) to be

8 wt.% (Figure 9.3).
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Figure 9.2: Cavity radius (R) (a) and o-Ps intensity (I3) in air dried and vacuum-
dried, solution-cast PVA films as a function of glycerol concentration. Error bars are
within the size of the data points.

As found for the PVA/propylene glycol system, there is a substantial increase

in the size of the free volume holes with increasing glycerol concentration, con-

firming the plasticisation effect. However, in contrast to propylene glycol, two

regions are apparent for the glycerol system: the first at low concentrations, (<

15 wt.%), where increasing the plasticiser concentration results in a negligible

increase on R, and the second at higher concentrations (> 15 wt.%), where R

increases significantly when additional plasticiser is incorporated.

As observed for propylene glycol, a slight decrease in I3 with increasing plasti-

ciser concentration can be observed, which as discussed in relation to the previous

system, is unlikely to reflect a decrease in free volume void concentration upon

increasing glycerol loading.
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Figure 9.3: Decrease in film water content of non-plasticised PVA during solution-
casting in air (hollow symbols) and decrease in cavity radius during the solution-casting
of films in air (filled symbols).

Comparison of the PALS parameters in the vacuum-dried and air-dried films

reveals that PVA/glycerol system follows the same trends in the presence and

absence of water, with the cavity radius systematically shifted to higher values

when water is present. This clearly demonstrates the additional plasticisation

effect of water. The presence of water can also be seen to cause a small decrease

in I3.

Figure 9.3 shows the change in water content and cavity radius over an 8

day air-drying period in the absence of additional plasticisers. Water content in

the film decreases from 8.5 % after 24 h, to an equilibrium value of 5-6 % after

3 days. This is accompanied by a decrease in the cavity radius, corresponding

to the decreasing void size as water is lost from the film. The presence of low

amounts of water can be seen to have a significant impact on the cavity radius;

the 3.2 % decrease in water content leads to a 4 % reduction in R.

9.2.1.2 Relating Glass Transition Temperature to the Free Volume

As plasticisers are used to lower the glass transition temperatures (Tg) of poly-

mers including PVA,11,18,19 it would be expected that an increase in free volume

cavity radius would lead to a decrease in the Tg. Although not easily calorimetri-

cally detectable, the glass transition temperatures of the solution cast PVA resins

can be determined using dynamic mechanical analysis (DMA) (Section 3.11), al-

lowing the effect of plasticiser inclusion on the macroscopic polymer properties to

be compared with the microscopic free volume properties. The glass transition
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temperature and cavity radius of partially-hydrolysed PVA, both non-plasticised

and in the presence of 20 wt.% glycerol and 20 wt.% propylene glycol, are com-

pared in Table 9.1 and Figure ??. Propylene glycol causes a greater depression in

Tg than glycerol at the equivalent wt.% loading, (47.4 ◦C vs. 29.6 ◦C), correlating

well with the greater percentage increase in cavity radius upon propylene glycol

compared to glycerol incorporation (11% vs. 2%).

Table 9.1: Comparison of the effect of plasticisation and residual water on the glass
transition temperature and cavity radius of solution cast PVA films.

Plasticiser Drying method R/Å Tg/
◦C

None Air 2.64 53.3
None Vacuum 2.45 65.1

Glycerol Air 2.74 26.8
Glycerol Vacuum 2.50 35.5

Propylene glycol Vacuum 2.72 17.7

9.2.1.3 Influence of Plasticisation on Crystallinity

From the PALS results, it is apparent that there are clear differences in the

microscopic plasticisation behaviour of propylene glycol and glycerol in PVA film,

which is manifested in differences in macroscopic properties of the polymer. X-

ray diffraction (XRD) was used to gain further insight into the effect of these

additives on the resin properties, by assessing sample crystallinity. Although

PALS measures the free volume void size solely in the amorphous regions of the

polymer, insight into these different plasticising behaviours and effects on the

polymer can be gained from the polymer crystal structure. The XRD patterns

obtained from the non-plasticised film, and films plasticised with 20 wt.% glycerol

and 20 wt.% propylene glycol are shown in Fig. 9.4. The characteristic peak at

approximately 20 ◦ confirms the semi-crystalline nature of the polymer.271 The

apparent crystallite size in the PVA samples, tcrys, can be estimated from the

inverse peak width using Scherrer equation,

tcrys =
kλ

β cos θ
(9.1)

where k is a shape factor for the crystallite, here assumed to be unity, λ is the X-

ray wavelength, β is the peak full width-half maximum (FWHM) determined by

fitting the peaks to a Lorentzian function after a linear background subtraction,

and θ is the scattering angle of the peak. The crystallite sizes estimated using

this equation are tabulated below (Table 9.2). It can be seen that incorporating

20 wt.% plasticizer significantly reduces the degree of crystallinity of the PVA
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resin since the Bragg peak is less distinct from the background than for pure

PVA. It is also apparent that this reduction is substantially greater for propylene

glycol than for glycerol. Comparing the values of tcrys reveals that there is only a

small decrease in crystallite size upon glycerol incorporation, but propylene glycol

causes a substantial increase in crystallite size. This significant difference in the

behaviours of the two systems is interesting, particularly as the lack of change

of crystallite size in the PVA containing 10 wt.% glycerol correlates well with

the lack of cavity radius increase compared to pure PVA. In addition, the 30 %

increase in crystallite size of PVA containing 10 wt.% propylene glycol correlates

with the substantial increase in cavity radius observed. This suggests that the

incorporation of propylene glycol allows PVA crystals to grow when they are

better able to move in the plasticised state.
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Figure 9.4: XRD patterns obtained for vacuum dried, solution cast films of pure PVA
(red), with 20 wt.% glycerol incorporated (black) and with 20 wt.% propylene glycol
incorporated (blue).

Table 9.2: Comparison of the effect of plasticisation on integrals and FWHM of XRD
peaks for vacuum-dried films containing non-plasticised PVA, PVA plasticised with
glycerol and PVA plasticised with propylene glycol.

Sample FWHM /◦ tcrys/nm
PVA 4.19± 0.04 2.18± 0.02

PVA/glycerol 4.24± 0.04 2.08± 0.02
PVA/propylene glycol 3.25± 0.04 2.77± 0.03
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9.2.1.4 Effect of Temperature on Glycerol-Plasticised PVA

Cavity radii in vacuum-dried PVA samples heated incrementally to 110 ◦C were

determined in order to assess the effect of temperature on the free volume proper-

ties of the unplasticised and plasticised polymer. Fig. 9.5 shows the temperature

dependence of R for the pure PVA and for PVA containing 3 different loadings of

glycerol. For each sample, it is clear that increasing T increases the cavity radius.

A change in gradient is apparent at 45 ◦C for the PVA samples containing 0, 5

and 10 wt.% glycerol. This is likely to be due to the Tg,259 and the tempera-

ture of this transition in R is consistent with the Tg of the unplasticised resin

determined by DMA. The absence of this transition in the sample containing 24

wt.% glycerol is likely to be due to the much lower Tg of this sample, consistent

with the measured Tg of a highly plasticised resin (27 ◦C, Table 9.1). The data

in Figure 9.5 confirms the negligible change in cavity radius upon inclusion of up

to 10 wt.% glycerol, relative to the pure PVA. Up to 65 ◦C, this level of glycerol

incorporation has no effect on R, although some divergence is apparent at higher

temperatures. Throughout the entire temperature range studied, the PVA films

containing 5 wt.% and 10 wt.% glycerol contain voids of equal size.
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Figure 9.5: Effect of temperature on the cavity radii in non-plasticised and glycerol-
plasticised PVA films.

9.2.1.5 Effect of Surfactant Inclusion on Film Free Volume

PALS has revealed the huge impact of commonly used plasticisers on the mi-

croscopic free volume properties of PVA. Complex industrial formulations can

contain a wide range of molecules besides traditional plasticisers as additives,
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and migration of encapsulated components into the film is also likely to affect

the free volume properties of the film, which itself is then likely to affect matrix

permeability. To extend this study and explore the use of PALS as a tool to

understand the free volume properties upon incorporation of a wider range of

additives, the effect of a model surfactant on the free volume properties of PVA

was explored. CTAB was selected as a model surfactant due to its high com-

patibility with PVA, demonstrated by its phase behaviour (Chapter 5) and its

lack of segregation in binary films.168 The change in cavity radius with CTAB

concentration is shown in Fig. 9.6. It can be seen that there is an almost linear

increase in R when CTAB concentration is increased from 0 wt.% to 10 wt.%,

above which void size remains approximately constant. Comparison with Figures

9.1 and 9.2 shows that over the concentration range of 0-10 wt.%, CTAB causes

a greater increase in cavity radius than either of the two conventional plasticisers

studied.
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Figure 9.6: Change in cavity radius of solution-cast PVA/CTAB films with CTAB
loading.
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9.2.2 Influence of Degree of Hydrolysis on PVA Proper-

ties

9.2.2.1 Influence of Degree of Hydrolysis on Free Volume

The degree of hydrolysis (DH) is a key property of PVA, capable of influencing

its physical and mechanical properties. DH also affects the nature of the interac-

tions in the matrix, both between polymer chains and between the polymer and

small additive molecules such as plasticisers. By blending relevant proportions of

solutions of PVA with degrees of hydrolysis of 88 % and 98 %, series of polymer

films with a range of overall DH were produced for three molecular weights of

PVA (13-23 kg mol−1, 31-50 kg mol−1 and 125 kg mol−1). The miscibility of the

88 % and 98 % DH polymers for each molecular weight was confirmed from the

DSC curves of each of the pure polymers and a blend, which revealed a single

melting point (Tm) of the blend at an intermediate value of the melting points of

the pure polymers. Values for Tm are tabulated below (Table 9.3), with the DSC

curves included in Appendix E. Were these blends to phase separate, two distinct

melting points would be observed, corresponding to each of the pure polymers.

The compatibility of the two resins should also be discerned from the glass transi-

tion of the blends as an approximation of the glass transition of miscible blends is

given by the Fox equation, Equation 9.2, where x1 and x2 are the weight fractions

of components 1 and 2 respectively. However, as previously mentioned, the Tg of

these resins is not always calorimetrically detectable.

1

Tg

=
x1

Tg1

+
x2

Tg2

(9.2)

Table 9.3: Melting points of pure PVA resins and their 50:50 (w/w) blend.

Mw/ kg mol-1
Tm/

◦C
88% DH 98% DH Blend

13-23 198 229 215
31-50 201 222 217
125 196 226 218

Fig. 9.7 shows that the cavity radii are similar for each molecular weight,

confirming that the chain ends do not significantly contribute to plasticising the

polymer in this molecular weight range. For each molecular weight, as DH of the

blend increases from 88 % to 98 % there is a modest decrease in R. This suggests

that the replacement of a greater fraction of acetate groups with hydroxyl groups

causes a slight contraction of the void size in the resins.
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Figure 9.7: Effect of degree of hydrolysis on the cavity radius in non-plasticised,
vacuum-dried PVA resins of different molecular weights.

As discussed in Section 9.2.1.2, the link between the macroscopic properties of

the polymer and its microscopic free volume properties can be assessed by consid-

ering how the glass transition temperatures relate to the cavity radii. Table 9.4

shows the effect of degree of hydrolysis on both cavity radius and glass transition

temperature of air-dried films of PVA with a molecular weight 31-50 kg mol−1.

This is also illustrated in Fig. ??. As observed upon plasticiser incorporation, the

decrease in cavity radius upon increasing the degree of hydrolysis is also reflected

in the increase in glass transition temperature.

Table 9.4: Comparison of the cavity radius and Tg in vacuum-dried films with degrees
of hydrolysis.

DH/% R/Å Tg

88 2.64 53.3
98 2.45 65.1
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9.2.2.2 Influence of Degree of Hydrolysis on Crystallinity

XRD was subsequently used to gain insight into the nature of the effect of the

number of acetate groups on the properties of the resin by assessing sample

crystallinity. Fig. 9.8 shows the superimposed XRD pattern of PVA resins with

DH of 88 % and 98 %. The consistent peak position confirms that altering the

degree of hydrolysis does not significantly alter the inter-chain spacing of the

crystal structure, with only a very slight shift of the peak to higher angle for 98

% DH, consistent with its tighter packing. However, it can be seen that the XRD

pattern for the PVA with a DH of 98 % has a Bragg peak of higher intensity and

greater peak integral, revealing a higher degree of crystallinity. Values for FWHM

and tcrys calculated using Equation 9.1 are included in Table 9.5. It can be seen

that the films with the greater DH have a substantially greater crystallite size.

In agreement to the observations for the plasticised films, the polymer with the

smaller free volume cavities exhibits the larger crystallites, and it is plausible that

the greater mobility as a result of larger free volume cavities facilitates a greater

extent of crystallisation in these domains, despite the lower overall crystallinity

of the sample.

Table 9.5: Comparison of the effect of DH on FWHM of XRD peaks and crystallite
size in solution-cast PVA films.

Sample FWHM /◦ tcrys/nm
88% DH 4.09± 0.04 2.20± 0.02
98% DH 2.90± 0.03 3.10± 0.03

As previously mentioned, PALS measures only the size of cavities present in

the amorphous regions of the polymer. This means that the crystallinity of the

polymer should not directly affect the measured cavity radius. The simultaneous

increase in cavity radius and decrease in crystallinity upon increasing the degree

of hydrolysis from 88 % to 98 % therefore demonstrates the profound effect of

this relatively subtle change in the chemistry of the polymer. This could have

significant implications for additive interactions with the polymer.

9.2.2.3 Influence of Degree of Hydrolysis on Interaction of PVA with

Glycerol

As PALS and XRD revealed that the slight change in DH from 88 % to 98 %

has a substantial effect on the free volume properties and crystallinity of the

polymer, the effect of DH on the interaction of the resin with other additives

was subsequently assessed. PALS was used to compare the behaviour of the o-Ps
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Figure 9.8: XRD patterns obtained for vacuum dried, solution-cast film of PVA
(molecular weight 31-50 kg mol−1) with DH of 88 % and 98 %.

lifetime in glycerol-plasticised PVA films with degrees of hydrolysis of 88 % and

98 % (Mw=31-50 kg mol−1). Figure 9.9 shows that the behaviour of the resin with

88 % DH is consistent with the results presented in Section 9.2.1.1, where up to a

critical concentration glycerol incorporation causes a negligible change in R, but

as glycerol loading is increased further a substantial increase in this parameter is

observed. However, this behaviour is not observed for the resin with 98 % DH.

Here, an almost linear increase in cavity radius was found with glycerol loading

throughout the whole plasticiser concentration range (as previously observed for

PVA of lower DH plasticised with propylene glycol).
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Figure 9.9: Comparison of the effect of glycerol loading on the cavity radius in
solution-cast, vacuum-dried PVA resins with DH of 88 % and 98 %.

9.3 Discussion

9.3.1 Effect of Plasticisation on the Free Volume Proper-

ties of PVA

From Figures 9.1b and 9.2b, a modest decrease in I3 is apparent upon increasing

the concentration of both propylene glycol and glycerol. Although this parameter

is typically inversely related to the concentration of free volume voids in the ma-

trix, in this case an increase in plasticiser concentration is unlikely to reduce the

number of cavities present. However, an alternative explanation for the decrease

in this parameter upon plasticiser incorporation could be taken from Mohamed

et al.,265 who suggested that an unexpected decrease in the o-Ps intensity with

increasing temperature is instead due to an increasing number of sites where the

positronium precursors can be trapped, although little is known about the na-

ture of these sites. The authors also suggested the possibility of the increase in

molecular mobility above the Tg, causing the free volume holes to appear occu-

pied due to segmental mobility at high frequencies. Forsyth et al.272 highlighted

the importance of considering the concept of dynamic free volume, as well as

static free volume, both of which are probed by PALS. The static, or interstitial,

free volume sites are the pre-existing free volume cavities which are required for

the flow of polymer chains, whereas dynamic free volume is the time-dependent

fraction of the total free volume. The detection of dynamic free volume by PALS

is dependent on the frequency of molecular motion. However, Yoshinori et al.273
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showed that the o-Ps pickoff lifetime is correlated with the free volume for both

glassy and rubbery polymers, indicating its sensitivity to changes in free volume,

whether it is dominated by changes in the static or dynamic free volume. In the

systems studied here, the decrease in I3 could therefore feasibly be attributed to

the increase in molecular mobility in the presence of plasticiser.

However, another explanation to consider is the possible inhibition of the o-Ps

formation by plasticiser molecules. It has been previously observed that changing

polarity can affect o-Ps intensity through inhibition of positronium formation,

leading to misleading values of I3.274 As a result, the effect of plasticiser inclusion

on the I3 parameter will not be used quantitatively as it cannot be reliably

interpreted. It should perhaps be noted that polarity has also been observed

to be capable of affecting o-Ps lifetime,274 and thus R, by quenching. However,

given that quenching would reduce R upon plasticiser incorporation, rather than

causing any increase in apparent cavity radius, it can be assumed that the trends

discussed here are valid, although exact values extracted from the τ3 should be

treated with caution.

A fair comparison of the microscopic effects of the plasticisation of the two

additives can be made by plotting the change in cavity radius against additive

concentration in units of mol g-1. This is shown in Figure 9.10. It can be seen

that incorporation of propylene glycol results in the greater increase in cavity

radius of the two plasticisers. Although there remains the possibility that there

may be some difference in any quenching effects of the two plasticisers, and thus

it cannot be unequivocally concluded that propylene glycol has a greater effect of

microscopic free volume, the corroboration of the microscopic plasticisation be-

haviour with the macroscopic properties of the resins, as evidenced by the greater

reduction in Tg by propylene glycol, strongly suggests that this is the case. Figure

9.10 also shows that the behaviour of the o-Ps parameter in partially hydrolysed

PVA is different for the two plasticisers studied. Although a linear increase in

cavity radius is observed throughout the entire concentration range of propylene

glycol, up to 20 wt.% glycerol can be incorporated into the same resin whilst

having a negligible impact on the measured void size. One interpretation for

this substantial increase in void size with plasticiser concentration is the phase

separation of glycerol from the polymer matrix, and formation of pure plasti-

ciser domains at concentrations higher than a critical loading. This possibility

is discounted, however, as phase separation would provide another location for

o-Ps annihilation, and result in a poor fit of the PALS data to a three-component

model. At glycerol loadings higher than 20 wt.% the PALS data can still be fitted

well with three components, with negligible improvement in variance attained by
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introducing a fourth, making this explanation unlikely. Additionally, it has been

shown elsewhere that glycerol and partially hydrolysed PVA are compatible to 39

wt.%, determined by the plasticiser loading at which the heat of fusion drastically

reduces.257 The high compatibility of PVA and glycerol was also demonstrated

by the even distribution throughout spin cast films, as shown by neutron reflec-

tivity,147 and the lack of any visible bloomed droplets on the surface of solution

cast samples containing glycerol up to 40 wt.%.
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Figure 9.10: Comparison of the effect of glycerol and propylene glycol on cavity radius
in PVA.

An alternative explanation for the observed behaviour can be proposed by

considering the nature of the interactions of the plasticisers with the polymer,

and how these may differ for glycerol and propylene glycol. It is widely accepted

that the plasticisation of PVA can be attributed to the formation of hydrogen

bonds between plasticiser and polymer chains.11,19 The molecular structures of

the two plasticisers are shown in Fig. 9.11. Glycerol, with three hydroxyl groups,

has higher -OH group functionality than propylene glycol (two hydroxyl groups).

It is therefore plausible that glycerol more readily forms hydrogen bonds with the

hydroxyl groups present on the PVA chains, and can be accommodated into the

matrix whilst causing minimal impact on chain separation up to a threshold. On

the other hand, propylene glycol contains a methyl group which, although may in-

teract more favourably with residual acetate groups on the polymer backbone, is

much more likely to disrupt hydrogen bonding between adjacent polymer chains,

and may also inhibit plasticiser-polymer hydrogen bonding. This could then lead

to an immediate increase in free volume cavity radius upon incorporation into the
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matrix. This effect can also be considered in terms of the observed macroscopic

properties of the polymer, notably the greater reduction in the crystallinity of the

PVA when plasticised with propylene glycol compared to when it is plasticised

with glycerol. Furthermore, from the glass transition temperatures in Table 9.1,

it is apparent that both the non-plasticised PVA and PVA containing 20 wt.%

glycerol were below their glass transition temperatures when the PALS measure-

ments were taken (20 ◦C), whereas the film containing 20 wt.% propylene glycol

was above its glass transition temperature. As it can be seen in Fig. 9.5 that the

glass transition causes only subtle changes in the free volume cavity radii, it is

sensible to suggest that the substantial increase in void size, due to the nature

of the PVA-propylene glycol interactions, results in the significant depression of

the observed Tg. A lesser depression in the Tg of the glycerol-plasticised films can

be identified. As the glass transition of this system occurs above the tempera-

ture at which PALS measurements were conducted, this corresponds well to the

relatively slight increase in cavity radius detected.

(a) Propylene glycol (b) Glycerol

Figure 9.11: Plasticiser molecular structures.

9.3.2 Effect of Plasticisation by Water on the Free Volume

Properties

Water is ubiquitous in nearly all industrial applications of PVA. It is therefore im-

portant to assess the significant plasticising behaviour of water in these systems.

Comparing Figures 9.1, 9.2 and 9.3, reveals that the inclusion of 8 wt.% water in

the PVA resin has a greater impact on the free volume void size than both glyc-

erol and propylene glycol at this loading. The plasticisation of PVA by water has

previously been reported and discussed, with a two-fold mechanism suggested

based on studies into the changing properties of PVA as water is absorbed.20

As well as increasing the size of the free volume cavities, water molecules bring

about a lubrication effect. This promotes the mobility of the polymer chains and

disrupts direct interchain hydrogen bonding. For the properties of solution-cast

films used in this study, where water is gradually lost from films, the reverse pro-

cess is more relevant and so the change in PALS parameters during the drying

of the film was therefore studied. In contrast to the broad range of water con-
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tents investigated by Hodge et al.,20 the focus here is on a narrow range of low

water contents. Nevertheless, comparable findings were identified. In the range

between 8 % and 30 % water, Hodge et al. reported an increase in R and large

decrease in I3 (from 27 % to 20.5 %) with water content, which is consistent with

that observed in the present study of the reverse (drying) system. This contrasts

the behaviour observed for glycerol and propylene glycol, where only a modest

decrease in I3 is apparent as plasticiser loading increases. One important fac-

tor that should be considered it the high polarity of water. Polar molecules are

capable of decreasing the probability of o-Ps formation and thus can affect I3.

However, Trotzig observed very little change in I3 of poly(ethylene oxide) from

10-23 wt.% water content.275 Although similar arguments to that used to address

the modest decrease in I3 upon plasticiser incorporation could be applied, it could

alternatively be postulated that as well as increasing the size of the holes, wa-

ter also occupies a fraction of the free volume cavities, decreasing their relative

concentration. It is also possible that this substantial decrease in o-Ps inten-

sity could be attributed to dynamic reordering of the PVA chains upon water

loss. Thimmegowda et al.276 observed an increase in I3 of poly(2-hydroxyethyl

methacrylate) upon water sorption, and attributed this to the reordering of the

polymer chains as a result of the swelling by water. It is therefore feasible that

the reverse argument can be applied here. In this case, a rearrangement of the

PVA chains upon water loss could result in the division of comparatively large

free volume holes into smaller ones, (causing a decrease in void size greater than

can be accounted for by water loss from the cavities alone), thus increasing the

number of free volume holes. Despite the apparent decrease in I3 with increasing

water content, indicating the decrease in concentration of free volume cavities,

the high frequency of the plasticiser motion means that the water occupying the

cavities can still contribute to polymer chain mobility, and thus the macroscopic

plasticisation behaviour.

From the comparison of the change in R with glycerol concentration for air-

dried and vacuum-dried films (Figure 9.2a), it is apparent that water has a greater

effect on the void volume than glycerol. This can be attributed to the greater

ability of water to disrupt the hydrogen bonding network within the PVA resin

compared to glycerol. The observation of the significant plasticisation effect by

water in films containing additional plasticising species highlights the industrial

significance of humidity and its impact on PVA matrix properties.
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9.3.3 Influence of CTAB Inclusion on PVA Free Volume

Properties

The effect of CTAB on the free volume of PVA is interesting, demonstrating

that a wide range of film additives are likely to be important in determining

the free volume properties of the polymer matrix, even if there is little effect on

the macroscopic plasticisation behaviour. Despite being a solid in its pure state,

and by no means a traditional plasticiser, PALS reveals that CTAB causes a

substantial increase in the cavity radius of free volume voids in PVA. Although

only ∼ 10 wt.% CTAB can be incorporated without phase separation occurring,

which is much lower than the amount of the traditional plasticisers that can

be incorporated, the increase in free volume over this concentration is much

higher than any other studied additive. This is likely to be a result of the large

hydrophobic chain causing a large disruption in the packing of the polymer chains

in the amorphous regions. The CTAB concentration at which no further increase

in free volume is observed correlates very well with the compatibility limit with

PVA as observed by the phase diagram (Chapter 5). This strongly suggests that

at higher concentrations (∼ 10 wt.%), CTAB is incorporated within the polymer

matrix as a single phase, with the extra surfactant separated into a phase of pure

surfactant, with no free volume voids where o-Ps can localise. As free volume is

likely to have significant implications for the mobility of both additive molecules

in the film and the encapsulated detergents in industrial systems, this finding

demonstrates the importance of understanding the properties of all additives

present, and proves the utility of PALS in delivering insights on their microscopic

behaviour.

9.3.4 Influence of the Degree of Hydrolysis on PVA Free

Volume Properties

The change in cavity radius can also provide insights into the influence of the

polymer composition on the free volume properties of the matrix, probing the ef-

fect of increasing the degree of hydrolysis from 88% to 98%. Despite the narrow

DH range studied, the observed decrease in R with DH shows that the replace-

ment of residual acetate groups by hydroxyl groups causes a decrease in void size

in the matrix. This qualitatively similar behaviour was found for each molecular

weight of PVA. This is likely to be a result of an increased number density of

hydrogen bonding sites and the formation of a tighter structure. Cowie et al.258

previously reported the effect of varying the degree of hydrolysis of PVAc from 20

% to 85 %. They found that at low DH, where there is little hydrogen bonding,
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increasing the vinyl alcohol content led to an increase in free volume cavity radius

(increase in τ3 from ≈ 1.9 ns to ≈ 1.95 ns), suggesting the formation of a more

open structure. However, after a critical value of 35 % vinyl alcohol groups they

observed a sudden decrease in R over a very narrow DH range (decrease of τ3 to

≈ 1.7 ns). The authors suggested this was the result of both an increased number

of hydrogen bonding sites and the replacement of the carbonyl group hydrogen

bond acceptors, which favour a more open structure than hydroxyl groups.

In the work contained in this chapter, the effect of smaller changes in the

PVA degree of hydrolysis on the matrix free volume properties are considered,

where DH is higher and the polymer is well into the post-network collapse region

identified by Cowie et al.258 The length of the hydrogen bond lies within a narrow

range of 2.6-3.1 Å, meaning that with a high proportion of alcohol groups there

are stringent steric restrictions in the network. It was previously suggested that

a critical concentration of hydrogen bond donors and hydroxyl group acceptors is

needed to establish a tighter network, and so it could therefore be expected that

following this network collapse, any further increase in hydroxyl groups would

have little influence on the structure. However, the slight decrease in cavity

radius in the range between 88 % and 98 % DH suggests that the removal of

nearly all acetate groups permits the formation of an even tighter network. The

microscopic free volume is reflected by the macroscopic polymer properties, as

the glass transition temperature is shown to increase as void size decreases upon

formation of a tighter network.

This result could have significant implications for the interactions of other

additives in the PVA matrix. This is particularly important as it has been previ-

ously demonstrated that some surfactants have considerable affinity for glycerol,

but very little affinity for PVA.168,174 Comparison of the plasticisation effect of

glycerol in resins of 88 % and 98 % reveals that although a limited content of

glycerol can be incorporated into the 88 % DH resin without affecting the sizes

of voids present, the inclusion of any amount of glycerol into an almost fully-

hydrolysed resin increases the cavity radius. From this, it can be inferred that

the glycerol molecules interact with the vinyl alcohol groups, occupying the larger

cavities formed when these groups are sterically hindered from interacting with

other vinyl alcohol groups due to the presence of acetate groups. However, in

the absence of the more hydrophobic acetate groups, which are capable of dis-

rupting the inter-chain hydrogen bonding, the introduction of plasticiser (such

as glycerol) will disrupt the tighter hydrogen bonded network, even at very low

loadings.
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9.4 Chapter Conclusions

In this chapter, PALS has been used to study the effect of plasticiser incorporation

and resin DH on the free volume properties of poly(vinyl alcohol) films, and efforts

have been taken to link these microscopic properties to the macroscopic behaviour

observed in these films.

PALS has revealed interesting differences in the plasticisation behaviours of

propylene glycol, glycerol, and water, which have been attributed to their differ-

ent functionality, and thus the different extent of interactions between the matrix

and additive. Water was shown to have a more significant effect on free volume

cavity size than either glycerol or propylene glycol. As well as studying the effect

of glycerol and propylene glycol, by touching upon the effect of other additives on

free volume properties, the huge effect of CTAB on cavity radius observed high-

lights the importance of considering the plasticising effect of all film additives,

not only the conventional plasticisers. Increasing the DH of the PVA resin causes

a decrease in free volume cavity radius, indicating that the absence of acetate

groups permits the formation of a tighter network. When considering both the

DH of the resin and the incorporation of plasticisers, the size of the microscopic

free volume is shown to be qualitatively reflected in the glass transition temper-

ature, although the relationship between these parameters is complex. From the

variation in the plasticisation behaviour of glycerol with resin DH, it is likely

that glycerol preferentially interacts with PVA in the vicinity of residual acetate

groups as these cavities permit a limited concentration of the plasticiser to be

accommodated in PVA without increasing the size of existing voids present in

the matrix.

The findings from this chapter show that PALS can be a useful tool in un-

derstanding trends in the properties of PVA films. The aim of this work was to

assess the utility of PALS in delivering insight into the properties of the polymer

matrix that can influence the migration of film components. PALS has proven to

be a valuable technique in gaining understanding of the free volume properties

of PVA resins and exploring the polymer-plasticiser interactions, shedding light

on the relationship between molecular structure and bulk material properties.
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Chapter 10

Conclusions and Future

Directions

10.1 Conclusion

Throughout this thesis, the surface and interfacial segregation of a number of

surfactant additives in PVA films has been explored, with the aim of better

understanding factors affecting the distribution of these additives. To this end,

studies of the surfactants in solution were used to accompany the extensive depth

profiling of a range of model films in order to assess the roles of surface energy

and compatibility in segregation. By obtaining a fundamental understanding

of the segregation of small molecules in simple model film systems, this should

ultimately aid in predicting and controlling segregation in industrial films.

Surface tension can provide insight in understanding the role of surface en-

ergy. Although all surfactants studied throughout this thesis are more surface

active than PVA, the polymer-surfactant interactions in solution are important

in determining the surface activity of the surfactant in mixed solution. Surface

tension was also used to understand interactions in more complex, mixed surfac-

tant systems, in order to identify favourable interactions between each surfactant,

which can ultimately impact surfactant distribution in films.

Compatibility has also been identified as an important factor in the distribu-

tion of film components and has been found to be strongly related to the extent of

surfactant segregation in spin-cast films. By determining the PVA/surfactant/water

phase diagrams during the solution casting of films, the compatibility of the

surfactant and polymer can be easily assessed in the model systems. This ex-

perimental approach to determine phase behaviour could be valuable in guiding

predictions of surfactant segregation in other systems.
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The anionic surfactant SDS was found to segregate extensively from PVA,

with its segregation usually enhanced in the presence of glycerol, a model plas-

ticiser. Furthermore, in thicker films, stacked structures comprising surfactant

bilayers separated by interstitial glycerol regions were identified on the film sur-

face. It was confirmed that the glycerol-surfactant interactions provide a ther-

modynamic driving force for this segregation enhancement.

In contrast, zwitterionic amine oxide surfactants were found to exhibit very

different segregation behaviour; at most a single surfactant monolayer is present

on the surface of spin-cast films, with the remaining surfactant evenly distributed

through the bulk. By determining the surfactant molecular area, it appears that

the surface of the film resembles the surface of an aqueous surfactant solution.

These surfactants are extremely compatible with PVA and in the bulk film, sur-

factant is localised in the amorphous regions of the polymer.

In mixed surfactant systems, the presence of multiple surfactants in PVA films

was found to significantly affect the distribution of film components compared

to in the single-surfactant model systems. With the exception of SDS promoting

the segregation of DDAO, segregation of each surfactant studied was found to

be suppressed in the presence of a second surfactant. Although this behaviour

could largely be rationalised using surface energy and compatibility arguments,

it is clear that the interaction between surfactants, notably the strong synergy

between SDS and DDAO, has a significant role to play in determining the distri-

bution of additives.

Although the majority of work comprising this thesis focuses on the vertical

depth distribution of surfactants established during spin-casting, exploring the

change in surfactant distribution upon heating the films has provided insight into

the further migration of additives, as well as their loss from the films. Although

difficult to separate the effect of temperature and time on the properties of the

film, it is clear that film ageing can have significant implications for the surface

properties of PVA films. This includes the hydrophilicity of the film, which is

likely to be related to its sealing ability in industrial systems.

Finally, the free volume properties of PVA and the effect of plasticisation and

resin degree of hydrolysis have been explored. It was found that the microscopic

free volume properties correlate well to macroscopic plasticisation of the polymer.

The different plasticisation behaviours of propylene glycol and glycerol, as well

as the decrease in free volume upon increasing DH could be related to the extent

of hydrogen bonding in the matrix. This greater fundamental understanding of

the matrix properties will be essential in understanding migration of additives

through the film. This is important for a number of reasons: first, as film perme-
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ability is closely related to free volume and additive migration has been identified

upon heating the film, understanding how each incorporated additive affects free

volume is imperative in predicting and controlling additive distribution; second,

a better understanding of free volume, and ultimately permeability, is essential

in tackling the closely related problem of migration of encapsulated detergent

components.

10.2 Future Directions

Throughout this thesis, the characterisation of a broad range of PVA/surfactant

systems has yielded insights into the roles of surface energy and compatibility in

the segregation of surfactants in PVA. In particular, the extension of the model

systems to comprise multiple surfactants is valuable in bridging the gap between

the simplest models and the complex industrial formulations. Although signifi-

cant synergistic effects have been identified in the adsorption of these additives,

which is related to their behaviour in solution, a better understanding of this

effect could be obtained through the use of NR (to study the surface) and SANS

(to study the bulk) of these mixed surfactant solutions.

For future studied on these model systems, steps should be taken to improve

the robustness of fits through the use of constraints. This is particularly impor-

tant given that in some systems lateral variation in the film surface make perfect

fits impossible to achieve.

Focus should now be turned to better understanding the kinetics of migration

over time. Whilst further migration and development of the surface excess has

been identified in some systems upon heating the films, it is clear that loss of

glycerol and other volatile additives creates difficulty in completely understand-

ing this behaviour. Although additive loss has not yet been distinguished from

water loss, this should be attempted using TGA-mass spectrometry, in order to

understand the volatility of different film components.

A better understanding of the kinetics of migration and segregation could also

be beneficially applied to address an accompanying problem in unit dose deter-

gents: the migration of encapsulated detergent components, including fragrance

molecules, through the PVA film. An interesting avenue to explore would there-

fore be to measure the ingress of small molecules into PVA films over time using

NR. This would also help to understand the likely migration of C12E5 into the

bulk PVA film upon heating.

Ion beam analysis is likely a valuable collection of techniques in characterising

additive migration. As samples can be quenched after the desired time period
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and subsequently measured, the effect of time on the depth profiles of films can

be determined.

Additionally, monitoring of the change in depth profiles should be accompa-

nied by characterisation of film topography both over time, and upon heating of

the films. This would be important given that segregated SDS seems to rearrange

upon heating of the film, leading to an increase in surface roughness.

PALS has proven useful in providing insights into the free volume properties

of the polymer upon incorporation of a number of additives. From this initial

exploration, it is clear that there is scope for this technique to be further exploited

and extensively utilised in the context of molecular migration in order to obtain

a more rigorous understanding of the role played by free volume. In particular,

free volume effects of a wider range of additives should be explored. However, in

order to relate the free volume properties of the matrix to molecular migration,

film permeability studies should also be undertaken.

Furthermore, as PALS has revealed the importance of hydrogen bonding in the

matrix in the free volume properties of the systems studied, accompanying Fourier

transform infra-red (FTIR) spectroscopy could be used to assess the extent of

hydrogen bonding between PVA and different additives, as well as in resins of

different DH. This would help identify a relationship between the intermolecular

forces in the matrix and the resulting free volume properties, providing a more

comprehensive understanding of the film system as a whole.

Although the majority of this thesis focussed on a specific PVA resin, most

closely related to industrial formulations, efforts to broaden the classes of poly-

mers studies should be continued in order to better understand the influence of

polarity, crystallinity and ultimately compatibility on segregation. PALS has re-

vealed significant differences in the microscopic free volume properties of PVA

upon plasticisation with glycerol and propylene glycol. Plasticisation by glycerol

has also been shown to have a substantial effect on the distribution of surfac-

tants. Ultimately it would be valuable for these observations to be considered

together, by exploring the effect of plasticiser functionality and polymer degree

of hydrolysis on surfactant segregation and migration.

It is clear that compatibility plays a huge role in determining the segrega-

tion behaviour of additives. Whilst phase diagram determination of the surfac-

tant/polymer water systems has been useful in rationalising the observed segre-

gation behaviours of different additives, this could be extended to determine com-

patibility in mixed surfactant systems and investigate the effect of temperature

on compatibility. In order to employ this in the thorough prediction of segrega-

tion, a more quantitative measure for compatibility is required. One promising
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approach would be to consider solubility parameters of film components.

Some of the greatest value from this project will ultimately come from its

links with theory and simulation. Experimentally determined phase diagrams

have proven to be a valuable and accessible tool that can be used to make sensi-

ble predictions about segregation behaviour based on the compatibility of com-

ponents. However, they will also be useful in corroborating theoretical phase

diagrams. Ultimately, this should enable the prediction of segregation in com-

plex systems.

Finally, it is worth reiterating that the work undertaken throughout this thesis

is in the context of small molecule segregation affecting the sealing ability of PVA

films. Therefore, it would be useful to better understand the surface properties

in the context of this application. Specifically, contact angle analysis would pro-

vide information on the effect of segregated surfactant on surface hydrophilicity,

which is important for film sealing. An extension to this would be undertaking

normal force measurements to determine the adhesion between two model films,

and monitoring the interdiffusion of PVA using a deuterium-labelled polymer.

Through this, the role of segregated surfactant on seal formation in simple model

systems could be better understood. The use of deuterated PVA could also help

to better resolve the distribution of film components in model systems.
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[33] R. Rošic, J. Pelipenko, J. Kristl, P. Kocbek, M. Bešter-Rogač and S. Baum-
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Appendix A

Additional dSDS and dC12E5

Depth Profiles

Calculation of z∗ and f from depth profiles of dSDS and dC12E5 was used to quan-

titatively demonstrate the effect of the inclusion of a second surfactant (Chapter

8). The obtained neutron reflecitivty, fits, and corresponding volume fraction-

depth profiles are included in this appendix.

 7.5% dSDS
 2.5% dSDS

Q/ Å-1

f d
SD

S(
z)

Depth/nm

R

Figure A.1: Concentration-depth profiles of dSDS in PVA films. Neutron reflectivity
data and fits (offset for clarity) are shown in the inset.
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Additional dSDS and dC12E5 Depth Profiles

Q/ Å-1

f d
C1

2E
5(z

)

Depth/nm

 2.5% dC12E5

R

Figure A.2: Concentration-depth profiles of dC12E5 in PVA films. Neutron reflectiv-
ity data and fits (offset for clarity) are shown in the inset.
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Appendix B

Neutron Reflectivity Fitted

Parameters

PVA/SDS system

Binary Films

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 13.8

Fronting ∞ 0

1 37.22 3.52 6.18

2 872.96 0.92 4.31

3 8.66 3.47 12.51

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 19.4

Fronting ∞ 0

1 45.57 6.14 4.91

2 954.06 0.87 3.50

3 11.60 3.42 10.75

Backing ∞ 2.07 4.0

253



Neutron Reflectivity Fitted Parameters

Plasticised Films

2 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

4 % tot. solute

χ2 = 2.76

Fronting ∞ 0

1 4.98 4.98 15.64

2 537.42 0.71 18.86

3 16.89 3.47 4.35

Backing ∞ 2.07 4.0

2 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

6 % tot. solute

χ2 = 12.13

Fronting ∞ 0

1 26.73 2.84 18.13

2 1525.20 0.70 4.82

3 46.62 3.47 3.11

Backing ∞ 2.07 4.0

2 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

8 % tot. solute

χ2 = 13.71

Fronting ∞ 0

1 21.87 6.22 12.16

2 2127.70 0.74 12.89

3 27.26 3.42 25.80

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

4 % tot. solute

χ2 = 28.56

Fronting ∞ 0

1 40.19 5.01 9.16

2 825.67 0.88 2.52

3 12.06 3.41 15.97

Backing ∞ 2.07 4.0

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

6 % tot. solute

χ2 = 35.94

Fronting ∞ 0

1 44.46 6.26 6.14

2 975.07 0.81 7.05

3 8.05 3.49 12.67

Backing ∞ 2.07 4.0

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

8 % tot. solute

χ2 = 33.05

Fronting ∞ 0

1 23.54 4.41 3.74

2(3 repeats)
3.29 3.92 3.74

30.68 6.79 4.81

3 2951.50 0.83 5.21

4 26.41 3.47 12.79

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

10 % tot. solute

χ2 = 48.56

Fronting ∞ 0

1 21.58 4.65 2.69

2(3 repeats)
3.35 3.87 0.95

32.71 6.75 3.88

3 7013.60 0.98 1.44

4 39.96 3.45 11.09

Backing ∞ 2.07 4.0

5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

12 % tot. solute

χ2 = 11.92

Fronting ∞ 0

1 242.60 6.26 29.78

2 29217 0.80 35.62

3 25.62 3.45 8.68

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

4 % tot. solute

χ2 = 6.17

Fronting ∞ 0

1 40.49 6.33 8.64

2 30.87 3.28 3.16

3 633.66 0.82 3.89

4 9.78 3.42 9.54

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

8 % tot. solute

χ2 = 62.31

Fronting ∞ 0

1 145.76 6.28 23.52

2 3124.4 0.89 12.29

3 37.03 3.45 5.85

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % hGly

12 % tot. solute

χ2 = 18.9

Fronting ∞ 0

1 599.51 6.55 72.11

2 23164 0.73 14.78

3 31.12 3.43 9.82

Backing ∞ 2.07 4.0

2 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

4 % tot. solute

χ2 = 6.39

Fronting ∞ 0

1 16.59 1.96 3.13

2 544.40 1.49 15.67

3 10.03 3.42 10.03

Backing ∞ 2.07 4.0

2 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

6 % tot. solute

χ2 = 5.37

Fronting ∞ 0

1 32.31 1.90 4.64

2 985.32 1.48 11.92

3 10.00 3.42 10.80

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

2 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

8 % tot. solute

χ2 = 9.16

Fronting ∞ 0

1 1.52 4.88 0.57

2 32.96 0.35 9.89

3 3296.60 1.41 0.97

4 14.30 3.42 9.58

Backing ∞ 2.07 4.0

2 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

12 % tot. solute

χ2 = 7.30

Fronting ∞ 0

1 46.77 0.51 1.10

2 11.33 2.98 4.34

3 20.82 0.39 4.38

4 7.52 3.24 3.59

5 8077.20 1.60 3.99

6 23.91 3.47 7.73

Backing ∞ 2.07 4.0

5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

6 % tot. solute

χ2 = 2.12

Fronting ∞ 0

1 15.68 0.69 0.70

2 5.35 4.48 14.04

3 20.81 0.35 5.79

4 6.26 4.50 7.71

5 895.12 1.43 3.93

6 7.80 3.47 10.24

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

8 % tot. solute

χ2 = 8.81

Fronting ∞ 0

1(3 repeats)
3.64 2.55 3.19

34.82 0.35 3.69

2 11.95 0.69 13.50

3 3036.3 1.33 28.07

4 8.79 3.47 6.18

Backing ∞ 2.07 4.0

5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

10 % tot. solute

χ2 = 11.11

Fronting ∞ 0

1(5 repeats)
3.29 3.31 1.29

35.89 0.91 1.06

2 6316.60 1.40 38.83

3 8.31 3.50 6.10

Backing ∞ 2.07 4.0

5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

12 % tot. solute

χ2 = 12.08

Fronting ∞ 0

1(7 repeats)
4.82 3.05 1.95

34.34 0.89 2.90

2 6467.80 1.41 8.62

3 12.06 3.42 7.57

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

10 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

6 % tot. solute

χ2 = 6.58

Fronting ∞ 0

1(3 repeats)
4.36 3.61 1.01

34.46 0.94 10.57

2 1022.20 1.46 2.30

3 5.23 3.45 7.48

Backing ∞ 2.07 4.0

10 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % dGly

12 % tot. solute

χ2 = 10.20

Fronting ∞ 0

1(3 repeats)
5.49 3.27 0.10

34.48 0.79 2.50

2 11340 1.52 14.70

3 13.83 3.48 1.30

Backing ∞ 2.07 4.0

PVA/N,N -dimethyldodecylamine N -oxide (DDAO)

Binary Films

2 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 28.2

Fronting ∞ 0

1 9.98 3.83 2.44

2 979.3 0.81 5.57

3 28.80 3.47 4.00

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

5 % dDDAO
Layer Thickness/ Å

SLD/ 10−6 Å−2
Roughness/ Å

3-layer model

χ2 = 7.34

Fronting ∞ 0

1 11.31 4.60 5.26

2 822.2 0.97 3.59

3 34.5 3.47 2.59

Backing ∞ 2.07 4.0

5 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

4-layer model

χ2 = 7.08

Fronting ∞ 0

1 12.35 3.70 1.35

2 826.15 0.95 4.47

3 13.20 4.00 1.49

4 19.79 3.47 5.38

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 14.27

Fronting ∞ 0

1 14.52 4.16 3.82

2 827.27 1.38 3.26

3 72.88 3.48 3.19

Backing ∞ 2.07 4.0

20 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 7.56

Fronting ∞ 0

1 12.09 4.18 2.79

2 831.60 1.96 2.16

3 20.06 3.47 3.41

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

40 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 2.41

Fronting ∞ 0

1 13.17 4.09 1.62

2 758.80 2.92 2.63

3 15.03 3.47 4.00

Backing ∞ 2.07 4.0

Plasticised Films

2 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 5.14

Fronting ∞ 0

1 8.50 3.77 3.76

2 795.50 0.80 5.73

3 29.44 3.47 4.00

Backing ∞ 2.07 4.0

5 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 26.61

Fronting ∞ 0

1 26.53 3.21 2.61

2 475.64 1.15 3.75

3 20.42 3.47 9.75

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 7.94

Fronting ∞ 0

1 21.10 3.62 7.63

2 754.0 1.41 1.40

3 25.72 3.47 3.88

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

20 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 5.95

Fronting ∞ 0

1 20.12 3.71 7.29

2 443.50 1.84 5.20

3 21.70 3.47 7.96

Backing ∞ 2.07 4.0

2 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 38.61

Fronting ∞ 0

1 14.89 3.46 3.73

2 518.56 1.49 1.81

3 9.06 3.41 6.78

Backing ∞ 2.07 4.0

5 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 22.04

Fronting ∞ 0

1 14.28 3.34 4.24

2 521.99 1.40 2.56

3 15.18 3.47 8.78

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 22.04

Fronting ∞ 0

1 13.64 3.20 2.29

2 599.70 1.37 4.73

3 47.92 3.47 2.32

Backing ∞ 2.07 4.0
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Neutron Reflectivity Fitted Parameters

20 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 22.04

Fronting ∞ 0

1 13.47 3.11 1.36

2 522.18 1.35 1.65

3 10.05 3.47 8.27

Backing ∞ 2.07 4.0

PVA/N,N -dimethyltetradecylamine N -oxide (DTAO)

Binary

20 % dDTAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 12.47

Fronting ∞ 0

1 15.32 5.31 3.25

2 562.12 1.78 2.18

3 34.54 3.47 5.06

Backing ∞ 2.07 4.0

Plasticised

20 % dDTAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 9.58

Fronting ∞ 0

1 16.65 4.39 4.12

2 325.86 1.82 3.19

3 57.37 3.47 8.85

Backing ∞ 2.07 4.0

264



Neutron Reflectivity Fitted Parameters

Film Ageing

SDS

Binary

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C

χ2 = 14.92

Fronting ∞ 0

1 60.78 6.71 9.91

2 26.43 4.82 4.14

3 485.91 1.20 1.37

4 11.40 3.47 11.28

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

45 ◦C

χ2 = 16.00

Fronting ∞ 0

1 59.34 6.79 10.97

2 26.46 5.15 1.83

3 473.70 1.24 2.17

4 18.64 3.50 11.85

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

65 ◦C

χ2 = 16.66

Fronting ∞ 0

1 62.82 6.88 18.83

2 24.91 5.15 0.48

3 452.93 1.25 4.65

4 11.56 3.42 7.11

Backing ∞ 2.07 4.0
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10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

85 ◦C

χ2 = 12.80

Fronting ∞ 0

1 74.48 6.32 24.00

2 24.78 3.33 4.08

3 427.83 1.19 3.36

4 8.21 3.42 7.11

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C cooled

χ2 = 13.32

Fronting ∞ 0

1 75.18 6.23 21.99

2 24.83 3.44 4.22

3 419.06 1.18 4.43

4 8.31 3.41 7.21

Backing ∞ 2.07 4.0

Plasticised

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C

χ2 = 4.22

Fronting ∞ 0

1 46.09 5.25 5.99

2 32.86 2.12 1.16

3 490.55 1.02 2.69

4 14.34 3.42 11.58

Backing ∞ 2.07 4.0
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10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

45 ◦C

χ2 = 4.45

Fronting ∞ 0

1 45.78 5.42 6.62

2 36.02 2.26 4.83

3 365.85 1.01 3.57

4 11.10 3.43 12.49

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

65 ◦C

χ2 = 4.76

Fronting ∞ 0

1 45.44 5.15 6.99

2 34.50 2.43 1.94

3 359.27 1.03 7.82

4 11.15 3.42 11.88

Backing ∞ 2.07 4.0

10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

85 ◦C

χ2 = 3.82

Fronting ∞ 0

1 44.82 5.18 8.92

2 33.56 2.58 4.93

3 356.82 1.00 7.97

4 9.19 3.42 11.80

Backing ∞ 2.07 4.0
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10 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C cooled

χ2 = 3.82

Fronting ∞ 0

1 45.67 5.43 8.76

2 33.87 2.49 3.23

3 362.51 0.97 5.41

4 9.23 3.43 11.95

Backing ∞ 2.07 4.0

10 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

25 ◦C

χ2 = 13.84

Fronting ∞ 0

1 54.49 2.43 4.03

2 824.18 1.60 0.76

3 8.16 3.47 9.34

Backing ∞ 2.07 4.0

10 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

85 ◦C

χ2 = 4.62

Fronting ∞ 0

1 46.58 2.82 2.85

2 773.21 1.55 4.31

3 9.04 3.47 9.90

Backing ∞ 2.07 4.0
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C12E5

Binary

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C

χ2 = 1.55

Fronting ∞ 0

1 12.33 3.17 2.36

2 35.25 1.28 0.97

3 1000.30 0.71 2.76

4 69.06 3.82 14.83

5 26.76 3.40 8.58

Backing ∞ 2.07 4.0

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

45 ◦C

χ2 = 1.87

Fronting ∞ 0

1 12.41 3.21 1.30

2 31.36 1.32 3.96

3 975.24 0.75 1.91

4 68.84 3.85 17.94

5 23.34 3.40 7.70

Backing ∞ 2.07 4.0

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

65 ◦C

χ2 = 1.32

Fronting ∞ 0

1 11.69 3.25 4.33

2 27.16 1.28 4.67

3 963.65 0.76 1.13

4 63.84 3.97 19.09

5 25.88 3.44 4.84

Backing ∞ 2.07 4.0
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10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

85 ◦C

χ2 = 1.69

Fronting ∞ 0

1 10.89 3.05 4.17

2 29.43 1.33 6.67

3 958.87 0.77 1.47

4 57.19 3.92 19.54

5 20.95 3.45 2.29

Backing ∞ 2.07 4.0

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C cooled

χ2 = 1.40

Fronting ∞ 0

1 21.81 2.25 6.99

2 967.64 0.90 6.76

3 28.67 2.89 7.05

4 22.69 3.45 5.90

Backing ∞ 2.07 4.0

Plasticised

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C

χ2 = 5.31

Fronting ∞ 0

1 23.91 3.19.2.65

2 53.52 1.85 8.49

3 552.42 1.16 8.84

4 31.04 3.14 1.09

5 19.17 3.47 3.33

Backing ∞ 2.07 4.0
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10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

45 ◦C

χ2 = 3.29

Fronting ∞ 0

1 45.52 2.40 5.40

2 539.00 1.20 5.17

3 29.73 2.50 6.94

4 29.97 3.47 2.55

Backing ∞ 2.07 4.0

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

65 ◦C

χ2 = 3.29

Fronting ∞ 0

1 48.34 2.47 7.66

2 522.73 1.26 6.93

3 29.63 2.09 4.84

4 29.19 3.47 4.67

Backing ∞ 2.07 4.0

10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

85 ◦C

χ2 = 3.29

Fronting ∞ 0

1 34.77 2.28 7.87

2 500.12 1.10 7.51

3 29.43 2.02 4.71

4 25.57 3.47 5.69

Backing ∞ 2.07 4.0
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10 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C cooled

χ2 = 4.52

Fronting ∞ 0

1 30.70 1.90 7.17

2 492.87 1.15 7.36

3 29.88 1.90 3.71

4 14.16 3.47 6.81

Backing ∞ 2.07 4.0

10 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

25 ◦C

χ2 = 7.66

Fronting ∞ 0

1 27.55 3.24 5.73

2 300.08 1.53 3.20

3 12.24 3.41 7.97

Backing ∞ 2.07 4.0

10 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

85 ◦C

χ2 = 4.31

Fronting ∞ 0

1 28.69 3.45 3.99

2 279.44 1.63 1.07

3 12.15 3.41 7.32

Backing ∞ 2.07 4.0
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DDAO

Binary

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C

χ2 = 5.15

Fronting ∞ 0

1 13.39 3.29 1.10

2 417.57 1.53 2.99

3 24.32 3.49 2.93

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

45 ◦C

χ2 = 3.04

Fronting ∞ 0

1 11.56 3.46 3.70

2 413.86 1.50 3.61

3 24.82 3.49 2.24

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

65 ◦C

χ2 = 3.41

Fronting ∞ 0

1 14.87 3.45 4.42

2 399.19 1.53 5.00

3 21.51 3.42 4.17

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

85 ◦C

χ2 = 3.41

Fronting ∞ 0

1 12.18 2.51 8.11

2 380.30 1.16 0.64

3 26.67 3.50 2.07

Backing ∞ 2.07 4.0
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10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

25 ◦C cooled

χ2 = 3.41

Fronting ∞ 0

1 9.73 2.51 2.93

2 387.52 1.15 1.89

3 26.70 3.51 2.10

Backing ∞ 2.07 4.0

Plasticised

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C

χ2 = 2.84

Fronting ∞ 0

1 18.37 3.42 6.77

2 935.18 1.36 1.94

3 28.28 3.47 6.69

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

45 ◦C

χ2 = 2.55

Fronting ∞ 0

2 833.33 1.44 0.26

3 29.10 3.41 1.88

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

65 ◦C

χ2 = 1.21

Fronting ∞ 0

1 833.33 1.41 1.93

2 29.94 3.50 2.15

Backing ∞ 2.07 4.0

274



Neutron Reflectivity Fitted Parameters

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

85 ◦C

χ2 = 1.99

Fronting ∞ 0

1 808.56 1.30 10.12

2 30.02 3.51 2.95

Backing ∞ 2.07 4.0

10 % dDDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

25 ◦C cooled

χ2 = 1.17

Fronting ∞ 0

1 795.39 1.20 0.91

2 31.41 3.51 2.17

Backing ∞ 2.07 4.0

10 % DDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

25 ◦C

χ2 = 5.05

Fronting ∞ 0

1 474.43 1.21 3.36

2 9.18 3.46 2.45

Backing ∞ 2.07 4.0

10 % DDAO
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

85 ◦C

χ2 = 1.80

Fronting ∞ 0

1 401.74 0.64 3.48

2 14.53 3.41 7.71

Backing ∞ 2.07 4.0
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Synergy of surfactant segregation

DDAO/SDS system

Non-plasticised films

2.5 % dDDAO, 7.5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 3.57

Fronting ∞ 0

1 43.92 2.04 29.35

2 533.24 0.77 18.02

3 41.85 3.41 5.72

Backing ∞ 2.07 4.0

7.5 % dDDAO, 2.5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 12.80

Fronting ∞ 0

1 78.91 2.08 1.06

2 645.14 1.06 29.04

3 82.85 2.66 5.68

4 29.23 3.44 3.98

Backing ∞ 2.07 4.0

7.5 % hDDAO, 2.5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 13.53

Fronting ∞ 0

1 44.44 1.65 11.34

2 11.29 1.49 37.87

3 744.66 1.00 6.98

4 10.78 3.47 7.86

Backing ∞ 2.07 4.0

2.5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 8.87

Fronting ∞ 0

1 34.83 2.44 3.52

2 719.23 0.81 4.14

3 10.80 3.46 8.84

Backing ∞ 2.07 4.0
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7.5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 4.03

Fronting ∞ 0

1 47.60 5.91 7.32

2 20.62 3.45 1.05

3 821.20 0.76 16.54

4 18.37 3.47 8.63

Backing ∞ 2.07 4.0

Plasticised films

2.5 % dDDAO, 7.5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 3.57

Fronting ∞ 0

1 43.92 2.04 29.35

2 533.24 0.77 18.02

3 41.85 3.41 5.72

Backing ∞ 2.07 4.0

7.5 % dDDAO, 2.5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 5.81

Fronting ∞ 0

1 24.17 2.83 3.52

2 474.86 0.94 8.16

3 21.38 1.72 8.01

4 24.90 3.50 7.10

Backing ∞ 2.07 4.0

2.5 % hDDAO, 7.5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 15.29

Fronting ∞ 0

1 76.37 3.24 19.72

2 479.70 0.98 13.29

3 22.68 3.45 5.66

Backing ∞ 2.07 4.0
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7.5 % hDDAO, 2.5 % dSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 4.50

Fronting ∞ 0

1 539.19 0.77 19.96

2 20.56 3.47 9.81

Backing ∞ 2.07 4.0

7.5 % hDDAO, 2.5 % hSDS
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 3.99

Fronting ∞ 0

1 43.05 0.72 18.91

2 458.83 1.10 5.25

3 11.50 3.47 2.95

Backing ∞ 2.07 4.0

DDAO/C12E5 system

Non-plasticised films

2.5 % dDDAO, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 3.20

Fronting ∞ 0

1 556.92 0.96 16.62

2 36.41 3.49 12.26

Backing ∞ 2.07 4.0

7.5 % dDDAO, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 10.30

Fronting ∞ 0

1 14.22 2.41 1.98

2 785.56 1.21 0.29

3 39.18 3.42 11.58

Backing ∞ 2.07 4.0
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2.5 % hDDAO, 7.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 2.16

Fronting ∞ 0

1 11.43 3.33 2.63

2 748.42 0.94 1.17

3 31.38 2.25 3.08

4 17.18 3.48 4.05

Backing ∞ 2.07 4.0

7.5 % hDDAO, 2.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 5.19

Fronting ∞ 0

1 6.29 2.57 1.80

2 1089.30 0.82 4.93

3 39.10 4.36 25.64

4 10.26 3.46 4.45

Backing ∞ 2.07 4.0

Plasticised films

2.5 % dDDAO, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 3.10

Fronting ∞ 0

1 20.12 2.08 22.39

2 910.37 0.85 6.38

3 16.48 4.96 15.99

4 33.79 3.46 4.20

Backing ∞ 2.07 4.0

7.5 % dDDAO, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 3.53

Fronting ∞ 0

1 11.36 2.74 4.00

2 645.39 1.12 1.75

3 40.18 3.43 5.82

Backing ∞ 2.07 4.0
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2.5 % hDDAO, 7.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 3.42

Fronting ∞ 0

1 11.51 3.48 5.12

2 612.70 0.86 3.10

3 33.21 1.50 3.92

4 15.24 3.47 8.57

Backing ∞ 2.07 4.0

7.5 % hDDAO, 2.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 5.82

Fronting ∞ 0

1 381.19 0.84 16.78

2 27.77 1.42 4.72

3 15.98 3.41 6.13

Backing ∞ 2.07 4.0

2.5 % hDDAO, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 6.21

Fronting ∞ 0

1 362.26 1.14 20.93

2 12.23 3.42 6.24

Backing ∞ 2.07 4.0

7.5 % hDDAO, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 3.88

Fronting ∞ 0

1 398.52 1.05 13.49

2 11.28 3.47 6.87

Backing ∞ 2.07 4.0
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SDS/C12E5 system

Non-plasticised films

2.5 % dSDS, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 9.82

Fronting ∞ 0

1 28.19 2.98 1.58

2 13.25 3.84 2.18

3 614.54 1.17 7.51

4 10.04 3.49 9.81

Backing ∞ 2.07 4.0

7.5 % dSDS, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 14.77

Fronting ∞ 0

1 48.51 4.21 5.35

2 34.07 1.44 2.01

3 621.18 0.87 4.20

4 9.32 3.45 10.82

Backing ∞ 2.07 4.0

2.5 % hSDS, 7.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 12.59

Fronting ∞ 0

1 54.92 2.73 4.28

2 39.33 1.29 2.47

3 621.73 0.94 1.03

4 37.49 1.89 2.22

5 13.79 3.43 6.43

Backing ∞ 2.07 4.0
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7.5 % hSDS, 2.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 3.88

Fronting ∞ 0

1 45.87 1.52 5.67

2 720.03 0.80 15.09

3 29.49 1.56 2.90

4 10.23 3.47 4.47

Backing ∞ 2.07 4.0

2.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

χ2 = 2.63

Fronting ∞ 0

1 59.36 1.24 4.34

2 729.44 0.81 8.38

3 27.89 3.44 2.17

Backing ∞ 2.07 4.0

Plasticised films

2.5 % dSDS, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 6.72

Fronting ∞ 0

1 65.4 1.28 9.49

2 346.89 0.80 0.13

3 11.58 3.47 10.91

Backing ∞ 2.07 4.0

7.5 % dSDS, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 3.12

Fronting ∞ 0

1 45.46 5.06 2.52

2 22.91 1.42 0.46

3 390.19 0.85 1.66

4 25.78 3.47 15.96

Backing ∞ 2.07 4.0
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2.5 % hSDS, 7.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 4.20

Fronting ∞ 0

1 45.62 1.10 6.95

2 7.66 4.12 2.10

3 382.09 0.96 1.88

4 25.86 3.01 6.40

5 25.79 3.48 9.21

Backing ∞ 2.07 4.0

7.5 % hSDS, 2.5 % dC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 4.89

Fronting ∞ 0

1 43.18 1.13 6.18

2 8.38 4.00 2.02

3 380.70 0.77 1.22

4 28.40 2.88 8.13

5 25.23 3.47 3.51

Backing ∞ 2.07 4.0

2.5 % hSDS, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 7.90

Fronting ∞ 0

1 564.35 1.23 25.61

2 19.29 3.43 6.33

Backing ∞ 2.07 4.0

2.5 % hSDS, 7.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % d-glycerol

χ2 = 7.52

Fronting ∞ 0

1 564.35 1.23 25.61

2 19.29 3.43 6.33

Backing ∞ 2.07 4.0
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7.5 % hSDS, 2.5 % hC12E5
Layer Thickness/ Å SLD/ 10−6 Å−2 Roughness/ Å

20 % h-glycerol

χ2 = 7.52

Fronting ∞ 0

1(2 repeats)
33.29 0.44 5.39

4.63 4.26 2.40

2 26.87 0.64 7.76

3 901.31 1.20 2.60

4 14.68 3.49 6.78

Backing ∞ 2.07 4.0
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Appendix C

SANS Fitted Parameters

Sample B/cm-1 A n C q0/Å-1 m ξ/Å χ2
R

PVA 4.57 1.85E-5 2.50 0.14 0.054 1.86 31.61 1.04
2% dDDAO 4.06 2.14E-3 1.96 4.51 0.056 1.79 4.38 0.72
5% dDDAO 3.95 1.02E-2 1.47 10.58 0.057 1.64 1.91 0.72
10% dDDAO 2.71 1.00E0 0.26 14.35 0.058 1.58 35.82 1.24
20% dDDAO 8.06 1.07E-3 2.24 30.10 0.056 2.93 42.11 0.84
40% dDDAO 6.08 1.00E-2 1.68 89.65 0.038 2.45 35.93 1.01
2% dDTAO 4.21 5.10E-2 1.88 6.35 0.056 1.75 41.43 0.87
5% dDTAO 3.51 1.30E-2 1.56 16.17 0.056 1.38 31.38 0.62
10% dDTAO 3.99 2.45E-2 1.34 30.10 0.059 1.47 29.55 0.85
20% dDTAO 14.13 1.62E-3 2.32 55.49 0.056 2.00 40.92 0.92

20% gly 4.27 5.02E-10 1.43 1.31 0.050 1.56 37.77 0.69
2% dDDAO, 20% gly 2.77 5.12E-2 1.56 3.02 0.054 1.90 36.34 0.55
5% dDDAO, 20% gly 2.78 2.02E-1 0.86 8.05 0.047 1.50 31.72 0.54
10% dDDAO, 20% gly 4.97 3.90E-2 1.27 15.66 0.040 2.70 45.99 0.75
20% dDDAO, 20% gly 4.06 1.02E-2 1.69 47.05 0.035 2.90 43.77 1.08
5% dDTAO, 20% gly 3.09 2.00E-2 1.34 9.35 0.045 1.48 27.29 0.58
10% dDTAO, 20% gly 11.84 2.00E-1 1.06 33.91 0.039 2.95 43.28 0.65
20% dDTAO, 20% gly 6.47 7.00E-1 0.95 95.59 0.037 3.07 43.57 0.91

20% d-gly, 20% gly 3.09 7.92E-4 0.80 6.33 0.057 2.63 36.77 1.09
20% DDAO

5.07 1.00E-6 3.12 17.01 0.054 2.51 42.17 1.11
Contrast matched (d-gly)
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Appendix D

DMA
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Figure D.1: DMA data used to determine Tg for a solution-cast PVA film containing
5 wt.% DDAO. The two sets of data are obtained from heating and cooling the sample,
and the position of tan delta is averaged to determine Tg.
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Appendix E

DSC for PVA blends
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(b) 31-50 kg mol-1
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Figure E.1: DSC data for PVA of 88% DH, 98% DH and a blend of the two grades,
showing an averaging of the melting points.
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Appendix F

TGA for PVA/Additive films
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Figure F.1: TGA curves of PVA/additive films produced by solution casting at 40
◦C. After heating at 10 ◦C min−1 from 25 to 80 ◦C, the samples were isothermed at 80
◦C for 1 hour. Each film contains 10 wt.% additive.
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