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Communication-Avoiding Algorithms for a High-Performance Hyperbolic PDE

Engine

Dominic Etienne Charrier

The study of waves has always been an important subject of research. Earthquakes, for example,

have a direct impact on the daily lives of millions of people while gravitational waves reveal

insight into the composition and history of the Universe. These physical phenomena, despite

being tackled traditionally by different fields of physics, have in common that they are modelled

the same way mathematically: as a system of hyperbolic partial differential equations (PDEs).

The ExaHyPE project (“An Exascale Hyperbolic PDE Engine") translates this similarity into

a software engine that can be quickly adapted to simulate a wide range of hyperbolic partial

differential equations. ExaHyPE’s key idea is that the user only specifies the physics while the

engine takes care of the parallelisation and the interplay of the underlying numerical methods.

Consequently, a first simulation code for a new hyperbolic PDE can often be realised within a

few hours. This is a task that traditionally can take weeks, months, even years for researchers

starting from scratch.

My main contribution to ExaHyPE is the development of the core infrastructure. This

comprises the development and implementation of ExaHyPE’s solvers and adaptive mesh

refinement procedures, it’s MPI+X parallelisation as well as high-level aspects of ExaHyPE’s

application-tailored code generation, which allows to adapt ExaHyPE to model many different

hyperbolic PDE systems. Like any high-performance computing code, ExaHyPE has to tackle the

challenges of the coming exascale computing era, notably network communication latencies and

the growing memory wall. In this thesis, I propose memory-efficient realisations of ExaHyPE’s

solvers that avoid data movement together with a novel task-based MPI+X parallelisation

concept that allows to hide network communication behind computation in dynamically adaptive

simulations.
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1
Introduction

Understanding wave phenomena has enabled advance in science and engineering. It has

allowed us to develop new technology, to understand and reduce risks to our life and property,

and to gain insight into the creation process of the Universe. This list is not comprehensive.

Mathematically, waves are modelled as hyperbolic PDE (partial differential equation) systems.

The PDE systems considered in this thesis are specialisations of this type. We focus on first

order systems:

𝜕𝑞

𝜕𝑡
+∇ · 𝐹 (𝑞) +

∑︁
𝑖

𝐴𝑖(𝑞) 𝜕𝑞

𝜕𝑥𝑖
= 𝑆(𝑞), (1.1)

where 𝑞 = 𝑞(𝑥, 𝑡) are the typically vector-valued state variables, 𝐹 is the conservative flux (a

tensor), the 𝐴𝑖 are the coefficient matrices for computing non-conservative products with 𝑖

being the space dimension, and 𝑆 is the source term.

Solutions 𝑞 that satisfy (1.1) can be derived analytically under idealised conditions. However,

for problem formulations that consider less ideal conditions such as heterogeneous material,

complicated domains, or nonlinearities, it becomes very difficult or impossible to find analytic

solutions. Computer simulations are employed to obtain approximate solutions. The insight

that can be obtained with them is limited by the used algorithms and computer hardware.

To gain the maximum insight with finite compute power, algorithms must take into account

1



Chapter 1. Introduction

(a) Geometry-Aligned Mesh

(b) Diffuse Interface Method

Fig. 1.1: Velocity magnitude of an earthquake wave travelling through the Alps: In these

ExaHyPE simulations, complicated topography is modelled via (a) a geometry-aligned mesh

or (b) a diffuse interface. Reprinted from [83] and [92], respectively.
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Chapter 1. Introduction

that physical processes span over multiple spatial and temporal scales. Moreover, they must

be tailored to the hardware to reduce the runtime and cost of complex simulations to realistic

levels.

The primary outcome of this thesis is the development of the core components of the

software engine ExaHyPE (“An Exascale Hyperbolic PDE Engine”) for simulating

waves. ExaHyPE solves large-scale scientific problems with dynamically adapted mesh

resolution on supercomputers. The engine allows the rapid development of simulation

codes that solve hyperbolic PDE systems in first-order form. ExaHyPE’s strategy is to

create efficient algorithms that are tailored to the hardware while it hides this complexity

from the engine users. Engine users are only required to specify the application-specific

part, i.e. the physics.

A wide range of applications have been implemented with ExaHyPE; see [83]. In this thesis,

I will focus on applications from seismology and fluid dynamics.

Seismology

The linear elastic wave equations can be used to model the propagation of earthquake waves

[67]. They take the form:

𝜕𝜎

𝜕𝑡
− 𝐸(𝜆, 𝜇) · ∇𝑣 = 𝑆𝜎,

𝜕𝑣

𝜕𝑡
− 1

𝜌
∇ · 𝜎 = 𝑆𝑣,

(1.2)

where 𝜎 is the stress tensor, 𝜌 and 𝑣 are mass density and velocity, respectively. The stress ten-

sor is symmetric, i.e. the PDE has the 9 unknowns 𝑞 = (𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑦, 𝜎𝑦𝑧, 𝜎𝑧𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑇 .

Furthermore, 𝑆𝜌 and 𝑆𝑣 are volume sources, and 𝐸(𝜆, 𝜇) is the stiffness tensor which relates

material strain to the stress tensor. All quantities depend on the spatial coordinates; the

stiffness tensor depends on them via the material parameters, the Lamé coefficients 𝜆 and

𝜇. Equation (1.2) does not make any assumptions on the topography, i.e. the shape of the

interface between solid and surrounding air. Topography and material distribution are often

approximated with a geometry-aligned computational mesh (Fig. 1.1 (a)). Alternatively,

3



Chapter 1. Introduction

topography information can be integrated into the PDE system via additional equations [92]:

𝜕𝜎

𝜕𝑡
− 𝐸(𝜆, 𝜇) · 1

𝛼
∇(𝛼 𝑣) + 1

𝛼
𝐸(𝜆, 𝜇) · 𝑣 ⊗∇𝛼 = 𝑆𝜎,

𝜕𝛼𝑣

𝜕𝑡
− 𝛼

𝜌
∇ · 𝜎 − 1

𝜌
𝜎∇𝛼 = 𝑆𝑣,

𝜕𝛼

𝜕𝑡
= 0,

𝜕𝜆

𝜕𝑡
= 0,

𝜕𝜇

𝜕𝑡
= 0,

𝜕𝜌

𝜕𝑡
= 0,

(1.3)

where the scalar diffuse interface parameter 𝛼 models topography as a smooth function. This

approach allows solving the equations numerically with computational meshes that are not

aligned with the topography. I refer to [92] for additional details on the derivation of the

model.

Leonhard Rannabauer kindly provided the implementation of the solvers for the linear elastic

wave equations that I use in this thesis. The diffuse interface method relies on more advanced

features of ExaHyPE; however, it might require less memory than the geometry-aligned

method, which has to store Jacobian matrix and determinant for every mesh element. A

comparison of both methods in terms of their performance and memory footprint is thus a

very interesting study.

Fluid Dynamics

The compressible Euler equations take the form of a hyperbolic conservation law as only the

flux tensor 𝐹 (𝑞) is non-trivial:

𝜕𝑞

𝜕𝑡
+∇ · 𝐹 (𝑞) = 0. (1.4)

The conserved state variables 𝑞 = (𝜌, 𝜌 𝑣, 𝜌 𝐸)𝑇 are constructed from the primitive variables 𝜌,

𝑣, and 𝐸. These symbols denote mass density, velocity, and energy density, respectively. The

nonlinear flux is given as

𝐹 =

⎛⎜⎜⎜⎜⎝
𝜌𝑣

𝜌 𝑣 ⊗ 𝑣 + 𝑃 𝐼𝑑×𝑑

𝑣(𝜌𝐸 + 𝑃 )

⎞⎟⎟⎟⎟⎠, (1.5)

To close (1.4) and (1.5), I use a pressure 𝑃 according to the EOS (equation of state) of a

perfect gas with adiabatic index 𝛾,

𝑃 = (𝛾 − 1) (𝜌𝐸 − 1
2 𝜌𝑣 · 𝑣).

4



Chapter 1. Introduction

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

A R C S B

x

ρ

(a) Sod’s Shock Tube (b) 2D Explosion (“2D Sod”)

Fig. 1.2: (a) Sod’s shock tube for the compressible Euler equation describes a Riemann

problem with initial states 𝑞𝐴 = 𝑞(𝑥 < 0.5, 0) = (1.0, 0, . . . , 1.0)T and 𝑞𝐵 = 𝑞(𝑥 > 0.5, 0) =

(0.125, 0, . . . , 0.1)T. The analytically computed profile of the density is shown at 𝑡 = 0.2

non-dimensional time. In region R a smooth rarefaction wave is present. In region C, a

contact discontinuity is present. In contrast to region C, a pressure jump aligns with the

density jump in region S (not shown). Therefore, in region S, a shock wave is present. (b)

shows a snapshot of a simulation of a spherical explosion at 𝑡 = 0.1 non-dimensional time.

The 2D density profile exhibits the same three characteristic wave types.
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Chapter 1. Introduction

The square matrix 𝐼𝑑×𝑑 of size 𝑑 is the identity matrix. The compressible Euler equations are

used to model flow in compressible gases and fluids. Note that (1.4) states the compressible

Euler equations in the strong form, which assumes that the flux is differentiable everywhere

(via the divergence operator). More general formulations of the problem are integral or weak

fomulations One integral formulation is the following, which can be recovered from the strong

formulation (1.4) via a Green’s theorem:∫︁
Ω

𝜕𝑞

𝜕𝑡
d𝑥 +

∫︁
𝜕Ω

𝐹 (𝑞) 𝑛 d𝑠 = 0, (1.6)

where Ω is a volume, 𝜕Ω its hull, 𝑛 is the outward directed normal vector and d𝑠 is the

infinitesimal surface element. This integral formulation of the problem relaxes the assumption

on the differentiability of the solution in space (via the flux). Aside from the smooth waves

that the strong fomulation admits too, e.g. rarefaction waves, (1.6) admits a second class of

solutions (Fig. 1.2): Propagating discontinuities such as contact discontinuities and shock

waves. Compared to contact discontinuities, not only a density but also a pressure jump is

present at shock fronts. Therefore, fluid particles flow from the low pressure domain into the

high pressure domain. Shock waves can be generated even from smooth initial conditions.

Both discontinuities, especially shock waves, are challenging for computer simulations.

All features of ExaHyPE are necessary to solve the compressible Euler equations: High-order

approximation techniques with low numerical diffusion are required to model the flow in smooth

areas, while nonlinear stability mechanisms are necessary to prevent spurious features in the

solution around shock waves and other discontinuities. The latter add numerical diffusion

that must be localised with AMR (adaptive mesh refinement). As they are comparably

small with 5 coupled equations, the compressible Euler equations have been a particularly

useful application for the initial development stages of ExaHyPE. The small number of

equations implies low memory requirements and low computational cost when solving these

equations with computer simulation codes. Important features of ExaHyPE such as AMR

and treatment of shock waves could be developed and tested on a laptop or small workstation.

1.1 Exascale Computing Challenges

The term Exascale in ExaHyPE’s name refers to exascale computing. Exa is the decimal unit

prefix for 10006 = 1018, i.e. for a quintillion or a “billion billion”. This is the number of floating

point operations (flop) that the coming generation of supercomputers will be able to perform

1.1. Exascale Computing Challenges 6
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(a) Projected Performance Development (b) Supercomputing Countries

Fig. 1.3: (a) Projected development of theoretical peak performance of supercomputers.

(b) Number of supercomputers per country and their theoretical peak performance (Rpeak),

which is visualised by the size of the boxes. Graph and diagram taken from TOP500 webpage

and adapted [90] .

per second. Exascale supercomputers promise to be the key to ground-breaking new research.

The leading countries in HPC (High Performance Computing) (Fig. 1.3 (b)), are investing

billions of dollars to become first in the race to exascale [116][114]. Having such compute

power at hand will allow them to take leadership positions in many scientific disciplines and

industries. The United States lead the race at the moment: Their supercomputer Frontier

[115] is expected to be ready in year 2021. It is designed to have a peak performance of 1.5

exaflop per second.

Building such a massively parallel exascale machine is not the only isolated challenge. Software

must be prepared for the exascale era, too. Already with today’s petascale machines, it is

difficult to write scientific software that reaches performance levels close to their theoretical

peak. The majority of HPC applications cannot exploit more than a fraction of it. Take for

example the HPCG (High-Performance Conjugate Gradient) benchmark [46]. It models the

requirements of state-of-the-art solvers for elliptic PDE systems. When running HPCG on

the fastest machines in the TOP500 list, they deliver only 1.5 % of their theoretical peak

performance [90].

The picture looks completely different if a dense linear algebra code such as HPL (High-

1.1. Exascale Computing Challenges 7
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Performance Linpack) [45][110] is run on these machines. Most machines achieve around 80 %

of their theoretical peak performance in this benchmark. Not coincidentally, HPL is the gold

standard for comparing the performance of installed machines against the theoretical peak

performance that system integrators promise [90]. It is natural to ask why HPL performs

so much better than HPCG on today’s supercomputer architectures. The answer lies in

the memory access patterns the codes exhibit. HPL’s computations are dominated by dense

matrix-matrix products, which result in very regular data access patterns [46]. In this case,

modern hardware is very efficient in preloading data before it is used by the processing units.

Moreover, the arithmetic intensity that HPL exhibits is high, i.e. HPL performs many floating

point operations per byte that it loads from memory.

Fig. 1.4: The memory wall. Memory access times did not improve at the same rate as CPU

cycle times in the past years. Although CPU frequency scaling has hit a wall now too, the

gap is far from closed. In fact, modern multi-core CPUs increase the pressure on the memory

subsystem even further (blue line). From [73].

HPCG, in contrast, performs mostly linear algebra operations with low arithmetic intensity,

notably scalar products. The code spends proportionally more of its runtime with loading

data from memory than HPL. At the same time, data access is less regular due to the usage of

sparse matrices. Compared to HPL, the applications performance is more shaped by memory

latency and bandwidth. Hence, HPCG is more affected by the memory wall than HPL [73].

This term was coined to describe that memory access times did not decrease at the same rate

as the duration of a CPU (central processing unit) cycle over the past years (Fig. 1.4). As

a consequence, the CPU has to wait hundreds of cycles until data that is not found in the

1.1. Exascale Computing Challenges 8
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caches is loaded from main memory. Regular data access patterns that allow preloading data

before they are used are essential to keep the CPU cores busy. The majority of scientific

applications have runtime behaviour that is more similar to that of HPCG than to HPL,

while today’s supercomputer architectures are tailored to codes such as HPL that exhibit

very regular memory access patterns and have high arithmetic intensity.

As exascale supercomputer designs such as Frontier [115] do not present radical new

approaches to close the gap between CPU and memory performance, software must be

tailored to the hardware characteristics instead. Algorithms must be (re-)designed such

that arithmetic intensity is high and inter-process communication is hidden or avoided.

This is already true for the current petascale era but will be of even higher importance

in the exascale era [73].

1.2 Challenges for ExaHyPE

One key idea of ExaHyPE is that the users focus on the physics while all HPC aspects such

as parallelisation and compute kernel optimisations are taken care of by the engine. Users

build their applications on a code base that is maintained by HPC specialists who tackle

the challenges the exascale era brings. Starting from this goal, ExaHyPE has to tackle

multiple challenges to gain acceptance in the targeted scientific communities. On the one

hand, there are algorithmic and performance engineering challenges which are closely related

to the challenges any scientific software has to face to successfully enter the exascale era. On

the other hand, there are software engineering challenges due to ExaHyPE’s aspirations to

be a useful generic and extensible tool that can be applied to hyperbolic PDE problems from

a large variety of scientific disciplines. Due to its engine character, simulation codes built

upon ExaHyPE inherit the characteristics of ExaHyPE’s building blocks. If the building

blocks are not there, applications built upon them will not perform.

ExaHyPE is built around the ADER-DG (Arbitrary DERivative Discontinuous Galerkin)

method, a discretisation and time stepping scheme for the evolution of hyperbolic PDE

systems that performs only a single neighbour communication step per time step. ADER-DG

is considered a good fit to HPC as it has dominating algorithmic steps with high arithmetic

1.2. Challenges for ExaHyPE 9
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intensity that allow to hide communication well [51]. Highly optimised realisations of the

method are able to achieve up to 60 % of the peak performance on petascale supercomputers

[63]. ADER-DG is a predictor-corrector method. It has a large memory footprint as it has to

store a predictor vector in addition to the solution vector. To save memory and computational

cost, ExaHyPE employs dynamic AMR, i.e. the method’s accuracy is only increased in

areas where interesting features are present in the solution. Moreover, ExaHyPE does not

realise the plain ADER-DG method. Instead, it adds further stability mechanisms on top: To

increase the robustness of ADER-DG in the vicinity of shock waves and other discontinuities,

ExaHyPE teams it up with a more robust finite volume method. After the ADER-DG

time step, the solver rolls back in time locally where those solution features cause numerical

instabilities and employs a more robust (though less computationally efficient) finite volumes

method. The resulting method is called a posteriori limiting ADER-DG [54] as problems are

cured a posteriori, i.e. after the ADER-DG time step. Dynamic AMR and limiting increase

the complexity of ADER-DG and make it more sensitive to memory and network latencies.

At the same time, computational cost and memory demands become difficult to predict.

I see the following challenges that must be solved to prepare ExaHyPE’s algorithms for the

exascale era:

1. ExaHyPE’s ADER-DG method must perform aggressive AMR to keep the large

persistent memory footprint and bandwidth demand of ADER-DG under control.

2. ExaHyPE’s numerical methods must be implemented such that communication phases

are overlapped with computation phases.

3. ExaHyPE’s numerical methods must be formulated such that their access to the caches

and main memory is minimal. Tasks and eventually loops must be fused where possible

in order to increase arithmetic intensity and scalability of the methods.

In addition, the following performance engineering challenges must be addressed:

4. ExaHyPE is built upon the PDE framework Peano [103], which has been mainly

employed for programming solvers for low-order elliptic PDE systems. In contrast to

ExaHyPE’s numerical methods, these methods use significantly larger computational

meshes. Design decisions made during the development of frameworks are often biased by

the requirements of the primarily targeted applications. Therefore, Peano’s applicability
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and performance must be assessed with respect to ExaHyPE’s requirements.

5. A sole geometrically inspired load balancing scheme is not suitable for ExaHyPE as the

computational work and memory footprint of ExaHyPE’s numerical methods is difficult

to predict. Moreover, performance fluctuations among compute nodes are expected to

be common in exascale machines. A second load balancing layer must be added on top

that allows to move work from overloaded ranks temporarily to ranks with less work.

ExaHyPE must be designed to support such a feature.

6. The compute kernels of ExaHyPE’s numerical methods must be optimised towards

the targeted supercomputing architectures. This must be done in a generic way that is

applicable to most PDE systems and architectures targeted by the engine.

This last performance engineering evergreen will not be addressed further in this thesis as it is

tackled by ExaHyPE collaborators at Technical University of Munich. I rely on their work

in this thesis to ensure that the single-core performance of ExaHyPE is at a competitive

level that allows conducting scalability studies. Lastly, I see the following classic software

engineering challenges:

7. The engine must be able to serve the PDE modelling needs of different communities:

Not all applications require all PDE terms; it must be possible to switch certain compute

kernels off. Certain applications do not require limiting at all (linear elasticity with

geometry-aligned meshes) while it is essential for others (compressible Euler).

8. A workflow must be developed that allows users to realise new hyperbolic PDE solvers

quickly. Users should only be concerned with the physics. Building applications with

ExaHyPE must hide the complexities of numerical methods and their parallelisation

from its users.

1.3 Scientific Contributions

In order to tackle the challenges formulated in the previous section, I make the following

scientific contributions:

1. I developed all high-level algorithms and solvers (which includes their parallelisation)

plus a major part of the user interface of a generic software engine for simulating

hyperbolic PDEs. The software is presented in [83] and has been successfully applied to

1.3. Scientific Contributions 11
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applications of practical importance [92][75]. The engine offers dynamically adaptive

mesh refinement and a hybrid distributed-memory shared-memory parallelisation. User

applications can conveniently switch on features and add PDE terms via a configuration

file.

2. I proposed efficient realisations of ExaHyPE’s ADER-DG method that significantly

reduce memory footprint and memory access of the method (Chapter 8). A preprint on

these realisations is available from [39]. In [37], we present a node-level performance

analysis for them in the context of systems with deep memory hierarchy, where one

additional layer of persistent but fast memory is placed between main memory and hard

drive.

3. We developed a tasking technique for dynamically adaptive simulations that prioritises

tasks along partition boundaries and mesh resolution transitions [38]. The technique

allows to explicitly overlap communication and computation without sacrificing a whole

CPU core for communication. Furthermore, we avoid a task graph assembly completely.

In this thesis, I describe how we implement the technique for ExaHyPE’s ADER-DG

method.

4. I implemented a posteriori subcell limiting ADER-DG as a hybrid ADER-DG-FVM

(finite volume method) solver. (Chapter 7). This reduces the communication steps of

the method by up to a factor of 4. Moreover, the solver reuses the limiter criteria as

refinement criterion. We use this hybrid solver in [92].

5. I developed a mesh data structure based on Peano plus intra-grid transfer operators

that allow unconstrained mesh adaptivity for the ADER-DG method. Moreover, I

transferred the a posteriori solution correction idea of the a posteriori subcell limiting

ADER-DG method to adaptive mesh refinement (see Chapter 6 and Chapter 7). The

resulting mesh adaptation procedure might be an alternative to pre-refinement techniques

that rely on estimates to decide where to pre-refine the mesh.

6. I assess the meshing framework Peano [103] for parallel dynamically adaptive mesh

refinement in the context of high-order finite element type discretisations. (see Chapter

6 and Chapter 9)

1.3. Scientific Contributions 12
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1.4 Publications

The following peer-reviewed articles are related to this thesis:

1. D. E. Charrier and T. Weinzierl, “An Experience Report on (Auto-)tuning of Mesh-

Based PDE Solvers on Shared Memory Systems,” in Parallel Processing and Applied

Mathematics, vol. 10778, R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski,

Eds. Cham: Springer International Publishing, 2018, pp. 3–13.

2. M. Tavelli et al., “A simple diffuse interface approach on adaptive Cartesian grids for

the linear elastic wave equations with complex topography,” Journal of Computational

Physics, vol. 386, pp. 158–189, 2019.

3. D. E. Charrier et al., “Studies on the energy and deep memory behaviour of a cache-

oblivious, task-based hyperbolic PDE solver”, The International Journal of High Perfor-

mance Computing Applications, Apr. 2019, 2018, pp. 3–13.

4. A. Reinarz et al., “ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations

of Wave Problems,” Submitted to Computer Physics Communications (accepted with

minor corrections), Preprint: arXiv:1905.07987 [cs, math], May 2019.

The following preprints cover aspects of this thesis:

1. D. E. Charrier and T. Weinzierl, “Stop talking to me – a communication-avoiding

ADER-DG realisation,” arXiv:1801.08682 [cs], Jan. 2018.

2. D. E. Charrier, B. Hazelwood, and T. Weinzierl, “Enclave Tasking for Discontinuous

Galerkin Methods on Dynamically Adaptive Meshes,” arXiv:1806.07984 [cs], Jun. 2018.

3. P. Samfass et al., “Tasks Unlimited Lightweight Task Offloading Exploiting MPI Wait

Times for Parallel Adaptive Mesh Refinement”, May 2019.

This thesis contributed to the development of the open-source software ExaHyPE, which is

freely available from www.exahype.org.

1.5 Thesis Structure

Chapter 2 introduce vanilla versions of ExaHyPE’s numerical methods, which I use as

foundation for discussing the optimisations that I propose in the research chapters of this
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thesis. A brief overview of ExaHyPE’s architecture is then given in Chapter 3. Chapter 4

quickly demonstrates the principal usage of ExaHyPE by realising a parallel adaptive solver

for a nonlinear problem with less than 100 lines of code. It follows a discussion how ExaHyPE

relates to other software in Chapter 5. In Chapter 6, I present ExaHyPE’s dynamic AMR

implementation before I dive into the implementation of ExaHyPE’s a posteriori limiting

ADER-DG method, which I implement as a hybrid ADER-DG-FVM method in Chapter 7.

I propose communication-avoiding low-storage variants of ADER-DG in Chapter 8 before I

present ExaHyPE’s distributed-memory and shared-memory parallelisation in Chapter 9. I

employed all developed techniques to run large-scale simulations. The results are examined in

Chapter 10. Finally, Chapter 11 concludes this thesis with a summary and a discussion of

major findings plus ideas for future research directions.
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2
Numerical Methods for Hyperbolic PDEs

In this chapter, I give an overview of the numerical methods that ExaHyPE uses to solve

hyperbolic PDE systems. Written from a computer science perspective, I focus on their

program flow and communication patterns. This chapter provides the foundation for discussing

variants of these numerical methods that minimise two aspects of communication, network

communication and data movement between processing units and memory. Communication is

considered the main road block for software to reach peak performance on exascale machines.

Structure

The first section briefly reiterates the equation systems solved by ExaHyPE and the optimal

flow that ExaHyPE’s numerical time stepping methods should realise to minimise commu-

nication. In the next sections, I formalise the numerical methods FVM (Section 2.2) and

ADER-DG (Section 2.3) that we use in ExaHyPE. Section 2.4 discusses the coupling of

ADER-DG and FVM to construct the a posteriori subcell limiting ADER-DG method.

I clarify what the strengths of all three methods are with respect to the modelled wave

phenomena and express straightforward realisations of the methods as pseudocode. This

allows a comparison of the algorithms against optimal algorithms and among themselves in

terms of communication requirements.

15



Chapter 2. Numerical Methods for Hyperbolic PDEs

2.1 Solving Hyperbolic Partial Differential Equations

ExaHyPE provides numerical methods for solving hyperbolic PDE systems that can be

expressed in the following strong form:

𝜕𝑞

𝜕𝑡
+∇ · 𝐹 (𝑞) +

𝑑∑︁
𝑖=1

𝐴𝑖(𝑞) 𝜕𝑞

𝜕𝑥𝑖
= 𝑆(𝑞), (2.1)

where 𝑞 : R𝑑 × R+
0 → R𝑣 are the vector-valued state variables, 𝐹 (𝑞) : R𝑑 × R+

0 → R𝑣×𝑑 is

the conservative flux, and 𝐴𝑖(𝑞) : R𝑑 × R+
0 → R𝑣×𝑣 are the coefficient matrices of the non-

conservative product, where 𝑖 is a space dimension and 𝑑 the number of space dimensions.

Furthermore, 𝑆(𝑞) : R𝑑 × R+
0 → R𝑣 is the algebraic source term. The argument brackets

indicate that 𝐴𝑖(𝑞), 𝑆(𝑞), and 𝐹 (𝑞) may depend on 𝑞. In (2.1), 𝐹 (𝑞) is subject to the tensor

divergence ∇ · (·) = ∑︀𝑑
𝑗=1

𝜕(·)𝑖𝑗

𝜕𝑥𝑗
.

Given a computational domain Ω, a simulation end time 𝑇final, and suitable initial and

boundary conditions, ExaHyPE’s numerical methods solve weak formulations of (2.1), which

also admit discontinuities in 𝑞. They do not compute the exact solution 𝑞 but an approximation

𝑞ℎ. ExaHyPE uses two numerical methods and couples them with each other to obtain a

highly accurate and robust solver: It employs a FVM method with high spatial resolution in

regions where the solution exhibits discontinuities, and the ADER-DG method which builds

upon high order polynomials to obtain very high accuracy where the solution is sufficiently

differentiable. I describe both algorithms and their coupling in the subsequent sections.

The Computational Mesh

Both methods, FVM and ADER-DG, perform a decomposition of the computational domain

into smaller parts (cells) yielding a mesh 𝒯 . (Mesh and grid are used interchangeably in this

thesis.) Both methods minimise their approximation error with increasing mesh resolution.

The simplest mesh family considered by ExaHyPE are uniformly spaced (regular) Cartesian

meshes (Fig. 2.1 (a)–(c)). From a comparison of meshes (c) and (d) in Fig. 2.1, it is apparent

that it often suffices to increase the resolution locally (adaptively). ExaHyPE supports

dynamically adaptive Cartesian meshes via the PDE framework Peano [102][103][105].

Whilst the ADER-DG and FVM methods allow for very general cell shapes, ExaHyPE only

considers quadratic or cubic cells. Complicated domain boundaries are treated by incorporating

additional terms into the governing PDE system [92] or via shape transformations that are
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(a) Initial State on 30× 30 Mesh (b) Initial State on 60× 60 Mesh

(c) Initial State on 120× 120 Mesh (d) Initial State on Adaptive Mesh

Fig. 2.1: The project logo set as initial state of a 2D simulation. (a)–(c) For increasing mesh

resolution, the initial state begins to resemble the project logo. (d) It is sufficient to increase

the resolution locally.
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qh(·, T )

x

y

(a) Constant per Cell

qh(·, T )

x

y

(b) Bilinear Function per Cell

Fig. 2.2: Approximation of a smooth scalar-valued solution 𝑞 in 2D at time 𝑇 by discontin-

uous, cell-wise polynomial approximations: (a) each cell holds a constant, (b) each cell holds

a bilinear function where the mesh resolution was halved. The respective 2D mesh used is

shown on the bottom.

applied to the mesh cells. ExaHyPE’s algorithms represent the discrete solution 𝑞ℎ = 𝑞ℎ(𝑥, 𝑡)

in each cell 𝐾 at a given time 𝑇 as a polynomial (Fig. 2.2). Continuity of the discrete solution

at the interface between two cells is only weakly enforced. Therefore, the solution exhibits

jumps at these interfaces.

One-Step Schemes vs Single-Touch Algorithms

Not only is the spatial resolution of the initial state important for scientific simulations but

also its evolution. The ADER-DG and FVM methods that ExaHyPE implements are

explicit time stepping schemes, i.e. the discrete solution 𝑞ℎ(·, 𝑇 + Δ𝑇 ) at the next time

step depends solely on the discrete solution at the current time step, 𝑞ℎ(·, 𝑇 ). Moreover,

ExaHyPE’s ADER-DG and FVM schemes are one-step schemes [59]. Such schemes require

only a single exchange of information between neighbouring cells. Therefore, their program

flow is similar to that of explicit Euler:

Algorithm 2.1 (Explicit Euler). The current simulation state at time 𝑇 is evolved to a new

state at time 𝑇 + Δ𝑇 according to an update operator 𝐿ℎ(𝑇, Δ𝑇 ). This operator models the

physics of the simulated system and is applied to the current simulation state 𝑞ℎ(·, 𝑇 ).
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1 𝑞ℎ(·, 0)← approximate 𝑞(·, 0) # set initial simulation state
2 𝑇 ← 0 # set initial simulation time
3 while 𝑇 < 𝑇final do # run time steps until final time is reached
4 𝑞ℎ(·, 𝑇 + Δ𝑇 )← 𝑞ℎ(·, 𝑇 ) + Δ𝑇 𝐿ℎ(𝑇 ) 𝑞ℎ(·, 𝑇 ) # compute next simulation state
5 𝑇 ← 𝑇 + Δ𝑇 # increment (current) simulation time
6 end while

The time step size Δ𝑇 in Algorithm 2.1 can typically not be chosen freely. It depends on the

physics via the update operator 𝐿ℎ(𝑇 ) and the resolution of the used computational mesh. If

Δ𝑇 is chosen too large, the time stepping becomes unstable and the simulation states lose

their physical meaning [32]. Typically, the simulation crashes with numerical errors shortly

after. The update operator 𝐿ℎ(𝑇 ) evolves the simulation state within each cell and couples

the individual cells of the computational mesh. If it acts linearly on 𝑞ℎ(·, 𝑇 ), then 𝐿ℎ(𝑇 ) can

be represented as a matrix. ExaHyPE’s algorithms never assemble and store such a matrix

representation of 𝐿ℎ(𝑇 ). They directly evaluate the action 𝐿ℎ(𝑇 ) 𝑞ℎ(·, 𝑇 ) instead.

However, applying the action of 𝐿ℎ(𝑇 ) onto the previous simulation state 𝑞ℎ(·, 𝑇 ) requires

that straightforward realisations of ExaHyPE’s algorithms traverse the computational mesh

multiple times. The solution is read multiple times per time step. A single-touch algorithm

describes a one-step scheme that accesses the solution data only once per time step. While

one-step schemes have the minimum number of neighbour communication steps per time step,

single-touch algorithms additionally minimise communication between processing units and

main memory. They are an ideal fit to exascale computers, whose extreme compute power

can only be exploited if communication is minimal [73]

In this thesis, I rephrase ExaHyPE’s numerical methods as single-touch algorithms or

if that is not possible, as weak single-touch algorithms that access solution data more

than once only in a fraction of time steps. In order to highlight my modifications to the

original numerical methods, I introduce typical straightforward algorithmic realisations

of these methods in the remainder of this chapter.
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2.2 Finite Volumes Methods

In this section, I briefly outline the unsplit FVM methods upon which ExaHyPE’s FVM

implementations are based. To this end, I consider a formulation of (2.1) where only the flux

tensor 𝐹 is non-trivial. The FVM method is derived from a more general integral formulation

[78][95] that can be recovered from the strong formulation (2.1) by integrating over a cell (or

volume) 𝑉 :
∫︁

𝑉

(︂
𝜕𝑞

𝜕𝑡
+∇ · 𝐹 (𝑞)

)︂
d𝑥 = 0.

Applying Green’s theorem to the term involving 𝐹 results in the more general weak formulation:

d𝑞𝑉

d𝑡
= − 1
|𝑉 |

∮︁
𝜕𝑉

𝐹 (𝑞) 𝑛 d𝑠(𝑥),

where 𝑞𝑉 = 𝑞𝑉 (𝑡) =
∫︀

𝑉 𝑞 d𝑥 is the volume average of 𝑞 in 𝑉 and 𝑛 = (𝑛1, 𝑛2, . . .)T is the

normal vector to the volume hull 𝜕𝑉 . While the divergence operator in the strong formulation

only admits solutions that are pointwise differentiable (in space), i.e. “smooth” solutions, this

more general formulation admits additional solutions such as propagating discontinuities.

A spatial semi-discretisation is then derived by approximating the normal flux 𝐹 (𝑞) 𝑛 at every

interface. Evaluating the normal flux at the interface requires to evaluate the FVM solution

at the interface. Let 𝑞+ denote the interface state of the cell in direction of the interface’s

normal vector 𝑛 and 𝑞− the one of the cell in opposite direction (Fig. 2.3). The interface

states 𝑞± can be chosen directly as the volume averages of the neighbours, i.e 𝑞± = 𝑞±
𝑉 .

However, if the solution 𝑞 is sufficiently differentiable, better estimates of 𝑞± can be obtained

by reconstructing a higher order polynomial interpolant from the volume averages of a volume

𝑉 and its neighbours (Fig. 2.3 (b)).

With either approach, the limit values of the normal flux from both sides of an interface,

𝐹 (𝑞+) 𝑛 and 𝐹 (𝑞−) 𝑛, typically differ. Therefore, in the FVM method, a unique numerical

normal flux 𝐺(𝑞+, 𝑞−) 𝑛 is defined on each interface:

d𝑞𝑉

d𝑡
= − 1
|𝑉 |

∮︁
𝜕𝑉

𝐺(𝑞+, 𝑞−) 𝑛 d𝑠(𝑥). (2.2)

The numerical normal flux 𝐺(𝑞+, 𝑞−) 𝑛 is typically chosen as the exact or approximate solution

to a Riemann problem; see [95] for a comprehensive overview. ExaHyPE’s applications often
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(a) Interface Discontinuity
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(b) Linear Slope Reconstruction

Fig. 2.3: (a) At the interface (bold) of two 2D mesh cells, the scalar-valued discrete solution

𝑞ℎ at time 𝑇 is discontinuous. The example shows the volume averages of the neighbour in

direction of the interface’s normal vector 𝑛 (“+”) and of the neighbour in opposite direction

(“-“). The volume averages of other cells are not shown. (b) A similar scenario is shown in 1D.

The Godunov FV method directly uses the volume averages (grey) while the MUSCL-Hancock

method reconstructs linear functions (black) for extrapolating a cell’s volume averages to the

cell’s faces (dashed). Therefore, the MUSCL-Hancock method’s interface states agree better

with the reference solution (red).

use a Rusanov flux,

𝐺(𝑞+, 𝑞−) = 1
2

(︁
𝐹 (𝑞+) + 𝐹 (𝑞−)

)︁
− 𝜆max

2
(︁
𝑞+ − 𝑞−

)︁
,

where 𝜆max denotes the maximum eigenvalue chosen from both the Jacobian of 𝐹 (𝑞+) and

the Jacobian of 𝐹 (𝑞−). They either discretise the time derivative with a forward Euler

rule yielding the Godunov method [61] or according to a modified version of the MUSCL

(Monotonic Upwind scheme for Conservation Laws)-Hancock procedure [99][95]. Per volume

𝑉 , the Godunov method requires performing an update of the form:

𝑞𝑉 (𝑇 + Δ𝑇 ) = 𝑞𝑉 (𝑇 )− Δ𝑇

|𝑉 |

∮︁
𝜕𝑉

𝐺(𝑞+, 𝑞−) 𝑛 d𝑠(𝑥). (2.3)

All volume averages 𝑞𝑉 (𝜏) together form the volume-wise constant solution representation of

𝑞ℎ(·, 𝜏) at time 𝜏 ∈ {𝑇, 𝑇 + Δ𝑇} on the computational domain. Putting equations (2.3) for all

volumes 𝑉 of a mesh in a single equation system, results in an algorithm alike Algorithm 2.1.

The FVM method’s CFL (Courant–Friedrichs–Lewy) condition dictates which time step size

choice results in a stable algorithm; e.g. [78][95]:

Δ𝑇 <
1
𝑑

Δ𝑥𝑉

𝜆max,𝑉
, (2.4)
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where 𝜆max,𝑉 denotes the maximum absolute eigenvalue of the Jacobian of 𝐹 (𝑞) over the

volume 𝑉 and Δ𝑥,𝑉 the volume’s edge length. For PDE systems where 𝐹 depends nonlinearly

on 𝑞, the stability region for Δ𝑇 might change after every step of the algorithm. Typically, it

also changes if the mesh is adapted.

Higher-Order Methods, Patches, and Ghost Layers

The notion of “first-order” and “second-order” accuracy of FVM methods refers to the

leading term of the local truncation error of the respective FVM method applied to linear

advection problems with sufficiently regular solution [29]. The first-order Godunov method

is very dissipative while the second-order MUSCL-Hancock scheme employs significantly

less numerical dissipation in regions where the solution is sufficiently differentiable (Fig. 2.4).

In each cell, the scheme reconstructs a linear polynomial from the volume averages of

neighbouring cells in order to obtain more accurate interface states. A second-order time

integration procedure then renders the whole scheme second-order accurate with respect to

the mesh spacing [95].

Low-order FVM methods require a high mesh resolution due to their low accuracy while high

order FVM methods require a number of neighbours to reconstruct high-order polynomials.

Therefore, it is a common pattern to not associate single volumes 𝑉 with mesh cells but

regular subgrids (or, patches) that group multiple volumes together. ExaHyPE implements

such patch-based FVM schemes, too. Using patches further allows to group the corresponding

volume averages into regular blocks. These can then be fed more efficiently to the hardware

processing units as these read memory in fixed size chunks and offer SIMD (single instruction

multiple data) instructions to perform the same operation on multiple floating point numbers

at once; see e.g. [106][104]. In addition, the regular blocks allow to decompose FVM substeps

such that they can be processed in parallel by multiple cores of a CPU or GPU (graphics

processing unit).

In each regular block of volume averages that corresponds to a subgrid, ExaHyPE’s FVM

implementations keep storage for additional volume averages. These ghost cells are reserved

for storing volume averages from the boundary layers of neighbouring patches (Fig. 2.5). In its

original form, the MUSCL-Hancock scheme requires two communication steps as it performs

a substep where it evolves the interface data by half a time step [95]. The updated interface

data has to be exchanged between neighbouring cells before the time step can be finished
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(a) Explosion — Godunov Density (b) Explosion — MUSCL-Hancock Den-

sity

(c) Sod – MUSCL-Hancock Density
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Fig. 2.4: (a) – (b): The density variable of a gas is computed on a 2D mesh with two different

FVM methods: (a) the first-order Godunov method, (b) the second-order MUSCL-Hancock

method. The circular gas explosion simulated in the test is modelled by the compressible Euler

equations and the density variable is compared at time 𝑡 = 0.1. The density variable is warped

and linear interpolation is used to connect the individual volumes. Both methods use a mesh

(not shown) with 270× 270 volumes (a subgrid has 10× 10 volumes). (c) – (d): The Sod shock

tube test allows us to compare solutions obtained with the Godunov and MUSCL-Hancock

method against an analytical reference solution. We compare at time 𝑡 = 0.2 and use a mesh

with 270× 90 volumes. In both tests, the numerical diffusion added by the Godunov method

becomes apparent.
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Fig. 2.5: A 2D mesh consists of 3× 3 subgrids where each is divided into 10× 10 volumes.

The regular blocks of volume averages corresponding to the subgrids keep storage for two

additional layers of volume averages. These ghost layers are used for copying the volume

averages of neighbouring subgrids. They can be interpreted as a number of additional layers

of virtual cells (gray fill) around each subgrid.

in the second substep [95]. The method uses ghost layers of width one, which are filled in

every substep. Therefore, neighbouring patches need to exchange ghost layers during every

substep–that is twice per time step.

ExaHyPE’s modified MUSCL-Hancock scheme exchanges two layers of boundary cells at

once in a single communication step. This comes at the expense of storing two ghost layers

per neighbour and performing certain slope computations redundantly. This modification

can be understood as a trade of communication latency versus communication bandwidth.

With it, MUSCL-Hancock can be written in the form of Algorithm 2.1, too. The following

algorithm shows a straightforward realisation of both of ExaHyPE’s FVM methods. They

realise a one-step scheme (cf. Algorithm 2.1) with two algorithmic phases: one loop over the

interfaces that copies the boundary layers to the ghost layers and a second loop that updates

all subgrids; see Algorithm 2.2.
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Algorithm 2.2 (Patch-Based Finite Volumes Methods). Algorithmic phases of ExaHyPE’s

Godunov and MUSCL-Hancock scheme. In an implementation, 𝑞ℎ(·, 𝑇 + Δ𝑇 ) and 𝑞ℎ(·, 𝑇 )

can be stored in the same vector as 𝑞ℎ(·, 𝑇 ) is not required any longer after the update.

1 𝑇 ← 0 # set initial simulation time
2 initialiseFV( )
3

4 while 𝑇 < 𝑇final do # run time steps until final time is reached
5 for face connected patches 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # communicate with face neighbours
6 copyBoundaryLayers(𝑞ℎ(·, 𝑇 )|𝐾𝑎 , 𝑞ℎ(·, 𝑇 )|𝐾𝑏

) # copy to neighbour's ghost layers
7 end for
8 for patch 𝐾 ∈ 𝒯 do # evolve (current) simulation state
9 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← update(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 ) # Godunov or MUSCL−Hancock update

10 end for
11 𝑇 ← 𝑇 + Δ𝑇 # increment (current) simulation time
12 end while
13

14 function initialiseFV( )
15 for patch 𝐾 ∈ 𝒯 do
16 𝑞ℎ(·, 0)|𝐾 ← ∀𝑉 ⊂ 𝐾 : average 𝑞(·, 0)|𝑉
17 end for
18 end function

2.3 The ADER-DG Method

The ADER-DG method is a generic recipe to construct high-order approximations of smooth

solutions. Higher-order ADER-DG variants assume that the solution is sufficiently regular

within each mesh cell. If this not the case, e.g. if the solutions contains jumps, these

methods generate non-physical oscillations and might even become unstable. Due to this

regularity assumption, I start from the strong formulation (2.1) to derive ADER-DG. Again,

I consider a simplified variant of (2.1) where only the flux is non-trivial. My discrete ansatz 𝑞ℎ

approximates the space-time solution 𝑞 as cell-wise polynomial function times an interval-wise

polynomial function that approximates the time evolution, i.e. I prescribe that the solution

is smooth within every cell. Spatial and temporal component of the discrete ansatz use the

same polynomial order 𝑝.

I then multiply (2.1) by a cell-wise polynomial test function 𝑣ℎ drawn from the function space
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that the spatial component of the discrete ansatz 𝑞ℎ belongs to. Integrating over a mesh cell

𝐾 and a time interval (𝑇, 𝑇 + Δ𝑇 ) then results in a cell-wise spatial semi-discretisation of

(2.1): ∫︁
𝐾

∫︁ 𝑇 +Δ𝑇

𝑇

(︂
𝜕

𝜕𝑡
𝑞ℎ +∇ · 𝐹 (𝑞ℎ)

)︂
𝑣ℎ d𝑥 d𝑡 = 0.

In the next step, I apply the product rule to the second term, which yields∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝐾

𝜕

𝜕𝑡
𝑞ℎ 𝑣ℎ d𝑥 d𝑡−

∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝐾

𝐹 (𝑞ℎ) : ∇𝑣ℎ d𝑥 d𝑡

+
∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝐾
∇ · (𝐹 (𝑞ℎ) 𝑣ℎ) d𝑥 d𝑡 = 0,

(2.5)

for any 𝑣ℎ as above and every 𝐾 ∈ 𝒯 . Here, 𝐹 (𝑞ℎ) : ∇𝑣ℎ denotes the inner product of the

two tensors. I then integrate the first term of (2.5) by parts in time, where I use that 𝑣ℎ does

not depend on time. Furthermore, I apply Green’s theorem to the third term. This yields the

variational problem:

Find 𝑞ℎ such that∫︁
𝐾

(𝑞ℎ(·, 𝑇 + Δ𝑇 )− 𝑞ℎ(·, 𝑇 )) 𝑣ℎ d𝑥 =
∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝐾

𝐹 (𝑞ℎ) : ∇𝑣ℎ d𝑥 d𝑡

−
∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝜕𝐾

𝐹 (𝑞) : (𝑣ℎ ⊗ 𝑛) d𝑠(𝑥) d𝑡,

(2.6)

for all 𝑣ℎ as above and every 𝐾 ∈ 𝒯 . Here, 𝑣ℎ ⊗ 𝑛 is the outer product of the two vectors

that yields a tensor of the same structure as 𝐹 (𝑞).

The values of 𝑞ℎ within the time interval (𝑇, 𝑇 + Δ𝑇 ) are unknown. In the ADER-DG

method, those intermediate values are thus replaced by an estimate 𝑞*
ℎ–the space-time predictor.

It is chosen from the same function space as the discrete ansatz 𝑞ℎ. (Procedures to obtain

𝑞*
ℎ are discussed in the next section.) The space-time predictor 𝑞*

ℎ is inserted into 𝐹 and the

traces of its cell-wise restrictions are inserted into a numerical normal flux 𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) 𝑛,

which replaces the original boundary flux. The inputs 𝑞*,−
ℎ and 𝑞*,+

ℎ denote the traces of the

𝑞*
ℎ from the cells in negative and positive direction to the normal of the shared interface,

respectively.

The above modifications transform (2.6) into the corrector step of the ADER-DG method:
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Find 𝑞ℎ(·, 𝑇 + Δ𝑇 ) such that∫︁
𝐾

(𝑞ℎ(·, 𝑇 + Δ𝑇 )− 𝑞ℎ(·, 𝑇 )) 𝑣ℎ d𝑥 =
∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝐾

𝐹 (𝑞*
ℎ) : ∇𝑣ℎ d𝑥 d𝑡⏟  ⏞  

volume integral

−
∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝜕𝐾

𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) : (𝑣ℎ ⊗ 𝑛) d𝑠(𝑥) d𝑡⏟  ⏞  
surface integral

(2.7)

for any 𝑣ℎ as above and every 𝐾 ∈ 𝒯 . The first term on the right-hand side is called the

volume integral and the second term is called the surface integral. The surface integral can be

decomposed into single face integrals. Only the face integrals couple a cell with its neighbours

in the ADER-DG method.

In (2.7), the discrete ansatz 𝑞ℎ(·, 𝜏) is replaced by the discrete solution 𝑞ℎ(·, 𝜏), 𝜏 ∈ {𝑇, 𝑇 +Δ𝑇},
respectively. Equation (2.7) describes ADER-DG’s fully-discrete, explicit one-step update

procedure advancing the solution from state 𝑞ℎ(·, 𝑇 ) to Note that the solution snapshots

𝑞ℎ(·, 𝜏), 𝜏 ∈ {𝑇, 𝑇 + Δ𝑇}, computed with the ADER-DG method only dependent on space

but not on time, i.e. ADER-DG does not compute a space-time solution. As in the FVM

methods, the numerical flux 𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ )𝑛 is typically obtained using an exact or approximate

Riemann solver. ExaHyPE’s ADER-DG uses a Rusanov solver by default. For a stable

algorithm, the time step size Δ𝑇 must adhere to a CFL condition [92]:

Δ𝑇 <
1
𝑑

CADER(𝑝)
2 𝑝 + 1

Δ𝑥𝐾

|𝜆max,𝐾 |
, (2.8)

where 𝑑 is the space dimension, 𝑝 is the approximation order, Δ𝑥𝐾 is the diameter of the

mesh cell, and 𝜆max,𝐾 is the maximum absolute eigenvalue of the (linearised) flux tensor.

Note that compared to a 𝑝-th order RK-DG (Runge-Kutta Discontinuous Galerkin) method,

the ADER-DG method’s stability region is smaller, which is expressed by the 𝑝-dependent

factor CADER(𝑝) < 1 in (2.8); see Chapter 5 and [48] for more details.

The Prediction Step

The original arbitrary derivative finite volume and discontinuous Galerkin algorithms introduce

the space-time predictor 𝑞*
ℎ as a Taylor expansion in space and time around the space-time

point (𝑥𝐾 , 𝑡) in every cell 𝐾 ∈ 𝒯 , where 𝑥𝐾 denotes the cell center. They then apply a Cauchy-

Kowalewsky (CK) procedure to compute time derivatives in terms of the spatial derivatives.

The CK (Cauchy-Kowalewsky) approach is regarded as the most efficient approach for linear
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hyperbolic systems; see [59] for a detailed discussion of this approach and a comparison

to other ADER approaches utilised in the literature. It can be implemented in an explicit

and generic way for linear problems; however, it becomes rather cumbersome for nonlinear

problems [54].

In the following, I discuss the local space-time discontinuous Galerkin predictor [50]. While

the CK procedure is regarded as the fastest predictor implementation for linear problems

[59], the local space-time DG predictor a very general and robust method that is applicable

to both linear and nonlinear PDE systems. ExaHyPE provides optimised implementations

of both variants.

The derivation of the variational problem for obtaining the local space-time discontinuous

Galerkin predictor starts again from equation (2.1). Again, I use a discrete space-time ansatz

𝑞*
ℎ for the solution. However this time, I also use space-time test functions 𝜑ℎ. Integration

over the space-time slab 𝐾 × (𝑇, 𝑇 + Δ𝑇 ) yields the following problem:

Find 𝑞*
ℎ such that

∫︁
𝐾

∫︁ 𝑇 +Δ𝑇

𝑇

𝜕

𝜕𝑡
𝑞*

ℎ 𝜑ℎ d𝑥 d𝑡 +
∫︁

𝐾

∫︁ 𝑇 +Δ𝑇

𝑇
∇ · 𝐹 (𝑞*

ℎ) 𝜑ℎ d𝑥 d𝑡 = 0,

for any 𝜑ℎ as above and every 𝐾 ∈ 𝒯 . Integrating the first term in time by parts, rephrases

the problem as:

Find 𝑞*
ℎ such that∫︁

𝐾
𝑞*

ℎ(·, 𝑇 + Δ𝑇 ) 𝜑ℎ(·, 𝑇 + Δ𝑇 ) d𝑥−
∫︁

𝐾

∫︁ 𝑇 +Δ𝑇

𝑇
𝑞*

ℎ

𝜕

𝜕𝑡
𝜑ℎ d𝑥 d𝑡

=
∫︁

𝐾
𝑞*

ℎ(·, 𝑇 ) 𝜑ℎ(·, 𝑇 )d𝑥−
∫︁

𝐾

∫︁ 𝑇 +Δ𝑇

𝑇
∇ · 𝐹 (𝑞*

ℎ) 𝜑ℎ d𝑥 d𝑡,

(2.9)

for all 𝜑ℎ as above and every 𝐾 ∈ 𝒯 .

Since no Green’s theorem was applied, (2.9) can be decomposed into uncoupled implicit

cell-wise subproblems. Using Picard iterations to solve the fixed-point problems quickly

converges to a solution for many problems [54]. A straightforward choice of the initial guess is

the previous solution [54]. More sophisticated choices are discussed in [51]. The latter paper

also details the treatment of non-conservative terms of (2.1) with the ADER-DG method.
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Convergence

To the best of my knowledge, no a priori error estimates for the ADER-DG method for

particular hyperbolic conservation laws in multiple dimensions have been published to this

date. The high-order approximation ability of the method is typically verified via numerical

experiments. For hyperbolic PDE systems that admit a sufficiently regular solution, it has

been demonstrated that the discretisation errors behave as:

‖𝑞(·, 𝑇 )− 𝑞ℎ(·, 𝑇 )‖𝐿𝑘(Ω) ≤ 𝐶 Δ𝑥𝑝+1
𝐾 , (2.10)

with a constant 𝐶 independent of the cell size Δ𝑥𝐾 , the time step size Δ𝑇 , and the approxi-

mation order 𝑝. The symbol ‖ · ‖𝐿𝑘(Ω), 𝑘 ∈ {1, 2,∞}, denotes the respective Lebesgue norm.

See [59] for a verification of the convergence rate for the linear advection equation, and for

the nonlinear, compressible Euler equations; see [52] for a verification for elastic waves. See

[51] for a verification for the compressible Euler equations and the equations of ideal general

relativistic magnetohydrodynamics (GRMHD).

Algorithm

The ADER-DG method can be written the following way, which decomposes each time step

of Algorithm 2.1 into three algorithmic phases:

Algorithm 2.3 (The ADER-DG Method). A straightforward ADER-DG implementation

has three algorithmic phases per time step. In the first phase, we loop over all mesh cells

and perform the predictor step (blue). In the second phase, we loop over all mesh faces and

perform the Riemann solve and the subsequent face integral (green). In the third and last

phase, we loop over all cells again and perform the corrector step (red). In an implementation,

𝑞ℎ(·, 𝑇 + Δ𝑇 ) and 𝑞ℎ(·, 𝑇 ) can be stored in the same vector as 𝑞ℎ(·, 𝑇 ) is not required any

longer after the predictor computation. The symbols 𝑛𝑎 and 𝑛𝑏 denote the outward-directed

normal vectors to the respective cell hull. They are used to determine which cell is located in

direction of the positively signed normal vector 𝑛 of the face when performing the Riemann

solve.

1 𝑇 ← 0 # set initial simulation time
2 initialiseADERDG( )
3

4 while 𝑇 < 𝑇final do

2.3. The ADER-DG Method 29



Chapter 2. Numerical Methods for Hyperbolic PDEs

5 for cell 𝐾 ∈ 𝒯 do # predictor step
6 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)← predictor(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 ) # with CK or local space−time DG

7 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾 # copy (or reuse) solution vector
8 end for
9 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # Riemann solves

10 ( 𝑞*
ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
11 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
12 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
,

13 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎

, 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

14 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎

), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
15 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

16 end for
17 for cell 𝐾 ∈ 𝒯 do # finish corrector step
18 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += volumeIntegral (𝐹 (𝑞*

ℎ)|𝐾 , Δ𝑇 ) # complete the corrector step
19 end for
20 𝑇 ← 𝑇 + Δ𝑇

21 end while
22

23 function initialiseADERDG( )
24 for cell 𝐾 ∈ 𝒯 do
25 𝑞ℎ(·, 0)|𝐾 ← represent 𝑞(·, 0)|𝐾 as polynomial
26 end for
27 end function

The ADER-DG algorithm requires one step, the cell-wise predictor, prior to the neighbour

communication. Aside from this, Algorithm 2.3 and Algorithm 2.2 have an identical program

flow, the loop over the faces is followed by a loop over the cells.

2.4 A Posteriori Subcell Limiting for ADER-DG

Solving hyperbolic problems subject to discontinuous initial conditions with a plain higher order

method causes numerical solutions to yield non-physical oscillations around the discontinuities.

The polynomial solution representation used within the cells is only able to model functions

that are sufficiently differentiable (Fig. 2.6 (a)). When solving nonlinear hyperbolic problems,

discontinuities can develop over time even from smooth initial conditions (“shock formation”).

In [64], the authors summarise three problematic effects of discontinuities on the solution

computed with a higher order method:

• The loss of pointwise convergence at the point of discontinuity
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• The reduction to first order pointwise accuracy away from the point of discontinuity.

• The introduction of artificial and persistent oscillations around the point of discontinuity.

Whilst the first two effects can be tackled by AMR around the discontinuities, the last effect

might lead to non-physical solution. For example, physically positive quantities such as the

mass density might attain negative values. The positivity of these quantities need to be

preserved for physically meaningful results of a computation.

According to the Godunov theorem [61], only first-order accurate numerical methods are

capable of evolving discontinuities without introducing non-physical oscillations. While classic

Godunov FVM is robust in the presence of shocks, higher-order FVM schemes require

additional nonlinear stabilisation techniques. The construction of higher order FVM methods

which are robust in the presence of discontinuities has been accomplished with the aid of

slope (or, flux) limiters. An overview of slope limiters for the second order MUSCL-Hancock

scheme [98] is given in [91].

For higher-order variants of the DG and ADER-DG methods, a number of limiting approaches

have been presented too; see [54] for an overview. ExaHyPE’s limiting ADER-DG solver is

based on the a posteriori subcell limiting algorithm, which couples the ADER-DG method

with a robust FVM solver [54]. Below, I discuss the original method from [54]. ExaHyPE’s

variant is discussed in Chapter 7.

At the begin of every time step, the a posteriori subcell limiting ADER-DG method runs a

plain ADER-DG time step. After completion of the ADER-DG time step, the ADER-DG

solution is checked for non-physical values and oscillations. Cells where such defects are

present in the solution are called troubled. If at least one cell is marked as troubled, the

scheme performs a rollback to the previous valid solution in all troubled cells and their direct

and second-degree neighbours. The previous valid solution might be either a previous valid

ADER-DG solution or stem itself from an FVM recomputation. As some cells might require

an FVM recomputation over the span of multiple time steps, an FVM patch might be

available from the previous step. In all three cell types that are involved in the rollback, the

scheme then projects the pre-update DG polynomial onto an FVM patch or uses the already

available FVM patch from the last time step. Finally, the scheme recomputes the solution in

troubled cells and their direct neighbours using a robust FVM method (Fig. 2.6 (c) – (d)).
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(a) Unlimited High-Order Method (b) Limited High-Order Method

(c) Limiter Status Stencil (𝐿max = 3) (d) Limiter Status Along a Discontinuity

Fig. 2.6: (a) The unlimited ADER-DG method generates non-physical oscillations along

discontinuities and strong gradients. (b) The oscillations can be cured by coupling the ADER-

DG method with a robust FVM method. (c) The limiter status stencil of size 𝐿max = 3.

White cells are considered as well-behaved and keep the DG (discontinuous Galerkin) solution.

Red cells are considered as troubled and are recomputed with FVM during the recomputation

step. Orange cells are recomputed with FVM, too. Yellow cells are considered well-behaved

too; however, they need to project the pre-update DG solution onto a FVM patch in order

to provide boundary conditions for adjacent orange cells. (d) The limiter status distribution

along a discontinuity where the DG polynomials show non-physical oscillations.
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The second-degree neighbours are simply rolled forward in time to their original ADER-DG

solution. During the recomputation, their purpose is to provide FVM boundary data to the

direct neighbours of troubled cells (Fig. 2.6 (c)).

Detection Criteria for Non-Physical Oscillations

An a posteriori subcell limiting algorithm considers two criteria to detect troubled cells after

the ADER-DG time step: an application-specific PAD (physical admissibility detection) and

a relaxed DMP (discrete maximum principle). The PAD is used to ensure that the state

variables do not assume non-physical values, e.g. the mass density must remain positive. The

PAD depends on the modelled physics or other application-specific criteria. It is provided

by the user. The DMP tries to detect oscillations caused by Runge’s phenomenon. It is

independent of the application but the user must specify two tuning parameters. The DMP

compares the extreme values of post-update DG polynomial in cell 𝐾 with the minimum and

maximum values of the pre-update numerical solution in a neighbourhood around cell 𝐾:

min
𝑥∈𝐾′

𝐾′∈𝒱(𝐾)

𝑞ℎ,𝑖(𝑥, 𝑇 )− 𝜀 ≤ 𝑞ℎ,𝑖(𝑥, 𝑇 + Δ𝑇 )|𝐾 ≤ max
𝑥∈𝐾′

𝐾′∈𝒱(𝐾)

𝑞ℎ,𝑖(𝑥, 𝑇 ) + 𝜀, (2.11)

where the set 𝒱(𝐾) contains the face-connected neighbours of cell 𝐾. The DMP is evaluated

per state variable 𝑖 of the ADER-DG solution and uses a relaxation parameter 𝜀 which must

be tuned with respect to the ADER-DG approximation order and the considered PDE. The

DMP states that a significant change of the minimum and maximum values of the solution

within a cell must come from its closest neighbours. Otherwise, non-physical oscillations are

assumed to be the cause of the change.

Algorithmic Building Blocks

Next, I translate the textual description of the a posteriori limiting ADER-DG method

into an algorithm as I have done with the other numerical methods. To this end, I first

introduce the method’s individual algorithmic building blocks. I start with the substeps that

are required to perform the recomputation step. Here, the layers of first and second degree

neighbours (Fig. 2.6 (c)) must be identified around the troubled cells (Fig. 2.6 (d)) before the

FVM recomputation step can be run. This is done by diffusing an integer flag that is called

limiter status. Two loops over the mesh are required to identify direct and second-degree

neighbours of troubled cells. These loops only perform communication between neighbouring

cells:
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Algorithm 2.4 (Limiter Status Diffusion). In every limiter status diffusion iteration, the

limiter status of a cell is computed as the maximum of its own limiter status and those of its

face-connected neighbours minus one. The minimum limiter status is 0 and the maximum

limiter status is 𝐿max = 3, which indicates a troubled cell.

1 function diffuseLimiterStatus(𝐿max = 3)
2 for 𝑖 = 1, 2, . . . , 𝐿max − 1 do # for each layer to construct around a troubled cell
3 for face-connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do
4 limiterStatus𝐾𝑎 ← max(limiterStatus𝐾𝑎 , limiterStatus𝐾𝑏

− 1)
5 limiterStatus𝐾𝑏

← max(limiterStatus𝐾𝑏
, limiterStatus𝐾𝑎 − 1)

6 end for
7 end for
8 end function

After the two layers are build, three additional loops are required to recompute troubled

cells and their direct neighbours with a robust FVM method. The algorithm roughly follows

the structure of the FVM method but some limiter status-based filtering is necessary in

the neighbour exchange and update step. In addition, the recomputed solution must be

represented again as ADER-DG polynomial in troubled cells and their direct neighbours:

Algorithm 2.5 (Solution Recompution with a FV Method). The troubled cells with limiter

status 𝐿max = 3 and their direct neighbours with limiter status 𝐿max − 1 are recomputed with

an FVM method. Before, troubled cells and their first- and second-degree neighbours, i.e. all

cells with at least limiter status 𝐿max − 2, have to exchange FVM boundary data from time

level 𝑡 = 𝑇 . Modifications to standalone FVM are highlighted in green.

1 function recomputeWithFV()
2 for cell /patch 𝐾 ∈ 𝒯 do # allocate/deallocate previous FV solution
3 if limiterStatus𝐾 > 0 and oldLimiterStatus𝐾 = 0 then
4 if 𝑇 = 0 then
5 𝑞ℎ,FV(·, 0)|𝐾 ← ∀𝑉 ⊂ 𝐾 : average 𝑞(·, 0)|𝑉
6 else
7 𝑞ℎ,FV(·, 𝑇 )|𝐾 ← average polynomial 𝑞ℎ(·, 𝑇 )|𝐾 in 𝑉 , ∀𝑉 ∈ 𝐾 :
8 end if
9 else if limiterStatus𝐾 = 0 ∧ oldLimiterStatus𝐾 > 0 then

10 deallocate 𝑞ℎ,FV(·, 𝑇 )|𝐾
11 end if
12 end for
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13

14 for face−connected cells/patches 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # exchange FV boundary layers
15 if limiterStatus𝐾𝑎

≥ 𝐿max − 2 and
16 limiterStatus𝐾𝑏

≥ 𝐿max − 2 then
17 copyBoundaryLayers (𝑞ℎ,FV(·, 𝑇 )|𝐾𝑎

, 𝑞ℎ,FV(·, 𝑇 )|𝐾𝑏
)

18 end if
19 end for
20

21 for cell /patch 𝐾 ∈ 𝒯 do # recompute troubled cells and direct neighbours
22 if limiterStatus𝐾 ≥ 𝐿max − 1 then
23 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 ← update(𝑞ℎ,𝐹 𝑉 (·, 𝑇 )|𝐾 , Δ𝑇 )
24 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← represent 𝑞ℎ,FV(·, 𝑇 )|𝐾 as polynomial
25 end if
26 end for
27 end function

The overall algorithm is then constructed from the individual building blocks as follows:

Algorithm 2.6 (The A-Posteriori Subcell Limiting ADER-DG Method). The algorithmic

phases of a straightforward ADER-DG implementation with a posteriori subcell limiting as

proposed in [54]. Modifications to the unlimited method are highlighted in green.

1 𝑇 ← 0 # set initial simulation time
2 InitialiseADERDG( )
3

4 while 𝑇 < 𝑇final do # run ADER−DG time steps with a few modifications
5 recomputeWithFV← false
6 for cell 𝐾 ∈ 𝒯 do
7 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)← predictor(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 )

8 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾 # must copy solution vector!
9 end for

10 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do
11 ( 𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎 , 𝐹 (𝑞*

ℎ)|𝐾𝑎)
12 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
13 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
,

14 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎 , 𝑛𝐾𝑏

, 𝑛, Δ𝑇 )
15 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑎), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
16 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

17 exchange min. and max. of 𝑞ℎ(·, 0)|𝐾𝑎
and 𝑞ℎ(·, 0)|𝐾𝑏

18 end for
19 for cell 𝐾 ∈ 𝒯 do
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20 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += volumeIntegral (𝐹 (𝑞*
ℎ)|𝐾 , Δ𝑇 )

21 oldLimiterStatus𝐾 ← limiterStatus𝐾 # save current limiter status
22 limiterStatus𝐾 ← 0 # compute new limiter status
23 if ¬DMP(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 , prev. min and max in neighbourhood) or
24 ¬PAD(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾) then # evaluate the limiter criteria
25 limiterStatus𝐾 ← 3
26 recomputeWithFV← true
27 end if
28 end for
29 if recomputeWithFV then
30 diffuseLimiterStatus( )
31 recomputeWithFV( )
32 end if
33 𝑇 ← 𝑇 + Δ𝑇

34 end while

Note that to facilitate rollbacks, the limiting ADER-DG solver must store the previous

ADER-DG solution 𝑞ℎ(·, 𝑇 ), too. Overwriting the same solution vector is not possible

anymore. Furthermore, all cells that compute with the FVM method, i.e. troubled cells and

their direct neighbours, need to store one FVM patch for 𝑞ℎ(·, 𝑇 ) and 𝑞ℎ(·, 𝑇 + Δ𝑇 ) each.

Project-to-FV cells need to store an FVM patch for 𝑞ℎ(·, 𝑇 ) during the recomputation phase.

2.5 Discussion

In this chapter, I express typical straightforward realisations of the numerical methods

used in ExaHyPE as pseudocode algorithms in order to unveil their program flow and

communication patterns. I compare the algorithms against two classes of time stepping

algorithms: one-step schemes and single-touch schemes. One-step schemes only require a

single neighbour-communication step per time step; however, they may consist of multiple

algorithmic phases per time step, i.e. they may load solution data multiple times. Hence,

they are optimal with respect to avoiding network latency but not optimal with respect to

memory access. In contrast, single-touch schemes are one-step schemes that load solution data

only once per time step. My brief analysis reveals that the ADER-DG and FVM method’s

are rather simple and can both be written as one-step scheme; however, the a posteriori

limiting ADER-DG method requires three additional communication steps if discontinuities

are present in the solution. In total, straightforward realisations of the limiting ADER-DG
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scheme require 8 loops over the mesh, of which 6 access the solution or parts of it.
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3
Engine Design and Toolset

ExaHyPE’s feature list has grown continuously during the duration of my PhD and user

interfaces had often to be redesigned due to new requirements. To ensure code stability while

keeping developer productivity at a high level, ExaHyPE separates user aspects from the

core aspects of the engine via glue code. Users do not to write this glue code themselves.

Instead, ExaHyPE provides a source-to-source compiler that generates it based on the profile

of the user’s application and numerical method of choice. This has allowed ExaHyPE’s

developers to keep up with the growing list of feature requests while keeping the application

focus of the application scientists on the physics.

This chapter gives a brief overview of the software architecture of ExaHyPE’s two main

components, ExaHyPE core and ExaHyPE toolkit. The ExaHyPE core provides proce-

dures for mesh adaptation, time stepping and plotting. It further implements the solver base

classes that ExaHyPE users base their application upon. Fig. 3.1 shows the software stack

for an ExaHyPE user solver. ExaHyPE’s core is written in object-oriented C/C++. The

ExaHyPE toolkit generates the implementation files that users start writing their application

with. The toolkit wraps a glue-code generator and a code generator for optimised compute

kernels. The glue-code generator is used to extend the solver base classes of the ExaHyPE

core with project-specific compile-time information such as the number of variables or the
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approximation order. Furthermore, it creates a template for the user solver that users tailor

to their particular application. The toolkit and its components are written in Python 3.

They are steered via the ExaHyPE specification file, where users configure compile-time

and runtime parameters. The generation of optimised compute kernels is controlled from the

specification file, too.

Fig. 3.1: ExaHyPE applications rely on the ExaHyPE core and the ExaHyPE code

generators (ExaHyPE toolkit and optimised kernel generator). They are steered by the

specification file. The ExaHyPE core is based upon Peano. The generated optimised kernels

rely on libxsmm.

The ExaHyPE core provides three solver abstract classes that users base their implemen-

tation upon: ADERDGSolver, FiniteVolumesSolver, and LimitingADERDGSolver. Most of

ExaHyPE’s features and optimisations are available to all three solvers.

The UML (Unified Modelling Language) diagram 3.2 shows the inheritance diagram for user

solver’s based on ExaHyPE’s ADER-DG and FVM methods. The base classes implement

all high-level functionality including mesh refinement and communication routines. Their

high-level routines call cell- and face-wise solver kernels, which are in turn implemented by

the base class of the user solver. The toolkit generates application-specific compile-time

information such as the polynomial order and number of variables into this class. Data field

sizes and kernel-loop bounds can thus be derived from this information at compile time. Every
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toolkit run overwrites the user solver base class.

A user solver’s base class does not have knowledge of the application’s fluxes, source terms,

and refinement criteria. Implementing these application-specific details is left to the users.

They implement the user solver class. Users can rely here on the flexibility of general-purpose

programming languages such as C/C++ or Fortran.

userapplicationsolvers

UserSolverBase

Order : int = ...
NumberOfVariables : int = ...
...

stableTimeStepSize(...)
updateSolution(...)
riemannSolver(...)
...
flux(...)
eigenvalues(...)
...

UserSolver

...

void flux(...)
void eigenvalues(...)
...

ADERDG/FiniteVolumesSolver

...

progressMeshRefinement(...)
updateCell(...)
broadcast()
reduce(...)
sendDataToNeighbour(...)
...
stableTimeStepSize(...)
updateSolution(...)
riemannSolver(...)
...

Fig. 3.2: ExaHyPE solver base class, user solver base class, and user solver. The user

implements only functionality of the latter. The abstract user solver base class is regenerated

every time the toolkit is called. The abstract ExaHyPE solver implements mesh refinement

and communication procedures.

3.1 The ExaHyPE Core

The ExaHyPE core is realised upon the third version of the PDE framework Peano. Peano

creates and stores adaptive Cartesian meshes and realises the traversal of these meshes, too.

Just as ExaHyPE applications are plugged into ExaHyPE via automatically generated glue

code, ExaHyPE’s algorithms are plugged into Peano’s mesh traversal automaton. In fact,

ExaHyPE’s glue code generation is inspired by Peano’s glue code generation.

Peano decomposes a simulation into individual steps/phases. Per phase, certain operations

are performed per cell or face read. Roughly, such a phase corresponds to a traversal of the

mesh that executes multiple substeps. Peano calls the simulations steps adapters and the

latter substeps mappings. Mappings are the classes that are written by the Peano application

developer. Before instructing Peano to run through the mesh, an adapter must be selected

first. During the mesh traversal, Peano’s traversal automaton then invokes callbacks on this
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adapter, which in turn invoke the same callback on all of the adapter’s mappings. ExaHyPE’s

mappings eventually invoke PDE-specific functions of ExaHyPE user solvers. UML diagram

3.3 models the interplay between ExaHyPE’s mappings, solvers, and the runner class that

steers the whole simulation.

ExaHyPE can simultaneously run multiple simulations on the same mesh. These simulations

may populate different mesh levels and may have different adaptive mesh refinement patterns.

It is ongoing research how to efficiently couple these simulations for multi-physics simulations

and UQ (uncertainty quantification) applications. However, it is also possible to integrate

ExaHyPE as forward solver into classic multi-physics and UQ pipelines [89]. Here, the

ExaHyPE core’s plotters and infrastructure for reducing global metrics are useful tools to

extract quantities of interest from a simulation. Plotters can be quickly added to a simulation

via the toolkit (see Chapter 4). After the initial generation, they can be customised freely by

users.

3.2 Toolkit, Optimised Kernels, and Debugging/Benchmarking
Ecosystem

ExaHyPE’s toolkit is written in Python 3. Project-specific glue-code generation is realised via

the jinja2 template engine [12]. JSON Schema is used to validate ExaHyPE specification

files [10]. A JSON (JavaScript Object Notation) schema defines validation information for

files in the JSON format or objects in JSON representation. It is typically written in JSON

itself. It allows to specify valid ranges for integers, options for string enums, optional and

mandatory parameters, and dependencies.

ExaHyPE specification files must not necessarily be written in JSON format [11]. A pre-

parsing step converts other compatible specification file formats such as the original ExaHyPE

format into a JSON representation. JSON encodes data objects as simple objects that either

contain other data objects, primitive data types (integers, strings, . . . ), or arrays of the first

two.

Optimised Kernels

The optimised kernel generator is a Python 3 subprogram executed by the toolkit [58]. It

generates aggressively vectorised ADER-DG kernels targeted to Intel CPU architectures. To

this end, the generator relies on LIBXSMM [68], which generates hardware-tailored inline
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solvers

1 1

1

*

*

**

Solver

ADERDGSolver FiniteVolumesSolver

LimitingADERDGSolver

Runner

runAsWorker(...)
runAsGlobalMaster(...)

runTimeStep(...)
updateMeshOrLimiterDomain(...)
...

Repository

switchToAdapterTimeStep()
switchToAdapterMeshRefinement()
switchToAdapter...()
...
iterate()

Adapter

enterCell(...)
leaveCell(...)
touchVertexFirstTime(...)
touchVertexLastTime(...)
...

Mapping

enterCell(...)
leaveCell(...)
touchVertexFirstTime(...)
touchVertexLastTime(...)
...

Fig. 3.3: Conceptual class diagram showing ExaHyPE’s abstract solver base classes, their

relationships, and their integration into ExaHyPE’s remaining infrastructure. The diagram

omits a further abstraction layer between repository and adapters. ExaHyPE’s runner,

repository, adapters, and mappings have been initially generated with Peano’s code generation

tool. Peano does not realise adapters and mappings as specialisations of an abstract class.

Instead, Peano’s code generation tool directly generates specialisations and the glue-code

between repository, adapters, and mappings.
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assembly code for small matrix-matrix multiplications as they are common in ADER-DG

kernels.

Benchmarking, Profiling, and Debugging

Reproducibility of results is steadily becoming a very important topic in high-performance

computing and scientific computing in general. ExaHyPE provides a Python 3 tool named

sweep.py to conduct reproducible benchmarks and parameter studies, which can be easily

ported from one supercomputer to the other. Furthermore, the tool’s input scripts help

developers to understand what simulations the users have performed and to determine if issues

that users experience stem from the hardware, ExaHyPE, or their application. ExaHyPE

relies on Peano’s infrastructure for debug output and assertions. Both codes use plenty of

both. Log output can be filtered individually per application. In addition, both codes are

populated with user-defined regions for tracing with ITAC [112] and Score-P [72]. These

are essential for understanding asynchronous communication patterns and the behaviour of

ExaHyPE’s multi-threading implementation.
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Example Usage: Solving the Euler Equations

When choosing a software package to solve science and engineering problems, it is important

to quickly get hands-on experience with a running code. In this chapter, I showcase a typical

ExaHyPE user story. I realise a dynamically adaptive, multi-threaded simulation of a

nonlinear hyperbolic PDE plus a plotter to visualise the numerical solution at different time

stages. All this requires less than 100 lines of code.

Tip: This chapter how cases how an application scientist would use ExaHyPE, and does not

reveal anything about how ExaHyPE’s algorithmic building blocks work. It is not necessary

to read this chapter to understand the other chapters of this thesis. Feel free to skip it now

and to read it later.

Problem Formulation

I want to solve the compressible Euler equations in 2D,

𝜕𝑞

𝜕𝑡
+∇ · 𝐹 (𝑞) = 0, (4.1)
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with state variables 𝑞 = (𝜌, 𝜌𝑣, 𝜌𝐸)𝑇 . Here, 𝜌, 𝑣 = (𝑣𝑥, 𝑣𝑦)T, and 𝐸 are mass density, velocity,

and energy density, respectively. The product 𝜌𝑣 forms the moment density.

The flux 𝐹 and the pressure 𝑝 are given as:

𝐹 =

⎛⎜⎜⎜⎜⎝
𝜌𝑣

𝜌 𝑣 ⊗ 𝑣 + 𝑝𝐼

𝑣(𝜌𝐸 + 𝑝)

⎞⎟⎟⎟⎟⎠, 𝑝 = (𝛾 − 1) (𝜌𝐸 − 1
2 𝜌𝑣 · 𝑣),

where (𝑣 ⊗ 𝑣)𝑖𝑗 = 𝑣𝑖 𝑣𝑗 , 𝑖, 𝑗 = 1, 2. The pressure is defined according to the EOS of a perfect

gas with adiabatic index 𝛾. While this is a small PDE with only four unknowns, it is difficult

to solve as the flux is nonlinear in 𝑞.

I want to solve the compressible Euler equations with a third order ADER-DG method in

2D. Being a high-order method, the ADER-DG method represents smooth solutions very

precisely using only a small number of cells.

The problem that I consider is an entropy wave with the smooth analytical solution:⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑝

𝜌𝑣𝑥

𝜌𝑣𝑦

𝜌𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜌0(𝑥, 𝑡)

𝜌0(𝑥, 𝑡) · 𝑣0,𝑥

0
𝑝0

𝛾−1 + 𝜌0(𝑥, 𝑡) · (𝑣0 · 𝑣0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.2)

where 𝑝0 = 1 and 𝑣0 = (0.5, 0)T. Here, 𝜌0(𝑥, 𝑦, 𝑡) describes a moving Gaussian-like pulse that

is initially centered at 𝑥0 = (0.5, 0.5)T,

𝜌0(𝑥, 𝑦, 𝑡) = 0.5 + 1 · exp
(︂−||(𝑥− 𝑥0)− 𝑣0 𝑡||2

0.32

)︂
,

where || · ||2 denotes the Euclidean norm.

Generating the Solver

The development of any ExaHyPE application always starts with the specification file. The

minimal specification file to generate my ADER-DG solver look as follows:

exahype-project Euler

output-directory const = ./ApplicationExamples/ThesisCharrier/UserWorkflow

(continues on next page)
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(a) Uniform Mesh: Initial Stage (b) Uniform Mesh: Final Stage

(c) Adaptive Mesh: Initial Stage (d) Adaptive Mesh: Final Stage

Fig. 4.1: (a) – (b): Snapshots of the advected pulse on a uniform mesh. (c) – (d): Snapshots

of the propagation on an adaptive mesh. All plots show the warped density variable of the

compressible Euler equations. The shown grid does not show the actual mesh cells. To

visualise the high order polynomial approximation of the ADER-DG method in each cell, the

cell-wise solution is sampled on an equidistant subgrid with four grid points per coordinate

direction.
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(continued from previous page)

computational-domain

dimension const = 2

offset = 0.0, 0.0, 0.0

width = 1.5, 1.0, 1.0

end-time = 1.0

end computational-domain

solver ADER-DG EulerSolver_ADERDG

variables const = rho:1,j:2,E:1

order const = 3

maximum-mesh-size = 0.12

time-stepping const = globalfixed

type const = nonlinear

terms const = flux

optimisation const = generic

end solver

end exahype-project

I use an ADER-DG solver named EulerSolver_ADERDG, where I specify the type of the PDE and

its variables (nonlinear, rho:1,j:2,E:1), and the PDE terms that I want to use from (1.1).

For the compressible Euler equations, I specify only that I want to use a flux. Furthermore,

I set the approximation order to 3 and specify that I use a fixed time step size throughout

the whole simulation (globalfixed). Additionally, I prescribe that I want to discretise the

computational domain with a uniform mesh with mesh spacing not larger than 0.12.

Next, I call ExaHyPE’s toolkit to generate glue code into the output directory

(./ApplicationExamples/ThesisCharrier/UserWorkflow):

Toolkit/toolkit.sh Euler.exahype

This generates C/C++ glue code to register my solver EulerSolver_ADERDG in ExaHyPE’s

solver registry, and further glue code to implement my solver’s details. The glue code for the

solver consists of two classes:

The abstract base class (AbstractEulerSolver_ADERDG) gathers all project-specific constants
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Fig. 4.2: Abstract base class and user solver. The user implements only functionality of the

latter. The abstract base class is regenerated every time the toolkit is called.

(order, number of variables, . . . ) and implements the generic parts of the ADER-DG method’s

substeps. These ADER-DG substeps, in turn, call PDE terms that are defined in the user

solver class (EulerSolver_ADERDG). While the abstract base class is regenerated every time

the toolkit is called, the user solver class is only generated once.

In the user solver, I need to implement the PDE terms for the compressible Euler equations.

Specifying Flux and Eigenvalues

I start with specifying the flux term in the source file EulerSolver_ADERDG.cpp. I notice

that the toolkit has already generated a stub for the flux routine as I have put flux as PDE

term into the solver specification. I complete the routine as follows1:

void Euler::EulerSolver_ADERDG::flux(double* Q, double** F) {

const double j2 = Q[1]*Q[1]+Q[2]*Q[2];

const double p = (gamma-1) * (Q[3] - 0.5*irho*j2);

// col 1

F[0][0] = Q[1];
(continues on next page)

1 Note that the first element of an array has index 0 in C/C++, and that the const modifiers can be omitted

in the source file signatures, but not in the ones in the header file.

48



Chapter 4. Example Usage: Solving the Euler Equations

(continued from previous page)

F[0][1] = irho*Q[1]*Q[1] + p;

F[0][2] = irho*Q[2]*Q[1];

F[0][3] = irho*(Q[3]+p)*Q[1];

// col 2

F[1][0] = Q[2];

F[1][1] = irho*Q[1]*Q[2];

F[1][2] = irho*Q[2]*Q[2] + p;

F[1][3] = irho*(Q[3]+p)*Q[2];

}

Next, I specify the eigenvalues of the linearised flux tensor:

void Euler::EulerSolver_ADERDG::eigenvalues(double* Q,int direction,double* lambda)

→˓{

constexpr double gamma = 1.4;

const double irho = 1./Q[0];

const double j2 = Q[1]*Q[1]+Q[2]*Q[2];

const double p = (gamma-1) * (Q[3] - 0.5*irho*j2);

const double u_n = Q[direction + 1] * irho;

const double c = std::sqrt(gamma * p * irho);

lambda[0] = u_n - c;

lambda[1] = u_n;

lambda[2] = u_n;

lambda[3] = u_n + c;

}

Specifying Boundary and Initial Conditions

Having the physics in place, I still need to specify boundary and initial conditions.

I impose the values of the analytical solution (4.2) at time 𝑡 = 0 as initial conditions. By

default, ExaHyPE assumes that I want to impose initial conditions per support point of the

ADER-DG method. I complete the pre-generated stub as follows:
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void referenceSolution(const double* const x,const double t,double* const Q) {

constexpr double gamma = 1.4;

constexpr double p = 1.0;

constexpr double v0 = 0.5;

constexpr double width = 0.3;

const double distX = x[0] - 0.5 - v0 * t;

const double distY = x[1] - 0.5;

const double distance = std::sqrt(distX*distX + distY*distY);

Q[0] = 0.5 + 1.0 * std::exp(-distance / std::pow(width, DIMENSIONS));

Q[1] = Q[0] * v0;

Q[2] = 0;

// total energy = internal energy + kinetic energy

Q[3] = p / (gamma-1) + 0.5*Q[0] * (v0*v0);

} // must come before adjustPointSolution and boundaryValues (see below)

void Euler::EulerSolver_ADERDG::adjustPointSolution(const double* const x,const␣

→˓double t,const double dt, double* const Q) {

if (tarch::la::equals(t, 0.0)) {

referenceSolution(x,t,Q);

}

}

As I have the analytical solution at hand, I prescribe Dirichlet boundary conditions:

void Euler::EulerSolver_ADERDG::boundaryValues(...,int direction,double* fluxIn,

→˓double* stateIn,double* gradStateIn,double* fluxOut,double* stateOut){

referenceSolution(x,t+0.5*dt,stateOut);

double _F[3][NumberOfVariables]={0.0};

double* F[3] = {_F[0], _F[1], _F[2]};

flux(stateOut,F);

for (int i=0; i<NumberOfVariables; i++) {

fluxOut[i] = F[direction][i];
(continues on next page)
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(continued from previous page)

}

}

The centre of the Gaussian pulse stays far away from the boundary throughout the simulation.

Hence, I simply evaluate the analytical solution in the middle of the time interval [𝑡, 𝑡 + Δ𝑡].

Adding a Plotter

To understand what is happening during the simulation, I want to plot the solution. To this

end, I insert a plotter definition into my solver’s specification and let the toolkit generate the

plotter class files:

exahype-project Euler

[...]

solver ADER-DG EulerSolver_ADERDG

[...]

plot vtu::Cartesian::vertices::ascii Plotter

variables const = 4

time = 0.0

repeat = 1e-2

output = ./solution

end plot

end solver

end exahype-project

The plotter will create the first plot at simulation time 0.0 and additional plots every 0.01

simulation time units. All plot files are prefixed with solution.

Rerunning the toolkit generates a class Plotter that writes VTU files. As I want to plot all

four variables of the compressible Euler equations, I extend the pre-generated stub in the

class as follows:

void Euler::Plotter::mapQuantities(
(continues on next page)
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(continued from previous page)

...,

double* Q,

double* outputQuantities,

double timeStamp

) {

outputQuantities[0] = Q[0];

outputQuantities[1] = Q[1];

outputQuantities[2] = Q[2];

outputQuantities[3] = Q[3];

}

Building and Running the Simulation

The next step is to build the code. For now, I specify that I want to build in release mode

with the GNU compiler, and turn off the distributed- and shared-memory parallelisation.

Afterwards, I run make on the toolkit-generated make file in the project repository. The

required steps to perform in the command line are given below:

export COMPILER=GNU

export MODE=Release

export DISTRIBUTEDMEM=None

export SHAREDMEM=None

make

At this stage it is convenient to copy the specification file into the project folder. From the

project folder, I run the simulation via:

./ExaHyPE-Euler Euler.exahype

The output of the simulation can be visualised as shown in Fig. 4.1 (a) – (b).

4.1 Adaptivity and Parallelisation

In the first part of this chapter, I implemented a solver for the compressible Euler equations.

It required me to write around 50 lines of code myself. So far, this implementation is running
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in serial and uses a uniformly spaced mesh. With ExaHyPE, advanced techniques such as

adaptive mesh refinement and multi-threading can be realised with minimal user effort on top

of such a first implementation.

Dynamic Adaptive Mesh Refinement

To use adaptive mesh refinement in ExaHyPE, two modifications are necessary. First, I need

to specify the maximum depth of the adaptive mesh on top of the uniform base mesh. Here, I

specify two levels of AMR2:

exahype-project Euler

[...]

solver ADER-DG EulerSolver_ADERDG

variables const = rho:1,j:2,E:1

order const = 3

maximum-mesh-size = 0.4

maximum-mesh-depth = 2

[...]

end solver

end exahype-project

Second, I need to specify which mesh cells to refine and which to erase in the user solver

implementation. Let 𝜌𝐾 denote the maximum density in cell 𝐾. Below, I refine cells

in vicinity of the density maximum (0.75 < 𝜌𝐾/1.5 ≤ 1.0), and erase cells further away

(𝜌𝐾/1.5 < 0.6). I keep all other cells at their current mesh level. I extend the pre-generated

refinementCriterion stub as follows:

exahype::solvers::Solver::RefinementControl

Euler::EulerSolver_ADERDG::refinementCriterion(double* luh, ...) {

double largestRho = -std::numeric_limits<double>::infinity();

for (int i=0; i<(Order+1)*(Order+1); i++) { // loop over all nodes

const double* Q = luh + i*NumberOfVariables;

largestRho = std::max (largestRho, Q[0]);

}
(continues on next page)

2 From hereon, I use a slightly larger uniform mesh spacing than before for visualisation reasons.
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(continued from previous page)

if ( largestRho/1.5 > 0.75 ) { // maximum is 1.5

return RefinementControl::Refine;

} else if ( largestRho/1.5 < 0.6 ) {

return RefinementControl::Erase;

}

}

A snapshot of the adaptively refined solution is shown in Fig. 4.1 (c) – (d).

Multi-Threading

I want to use Intel’s TBB to run my solver in parallel on a multi-core CPU. I thus recompile

it with the following settings:

export COMPILER=GNU

export MODE=Release

export DISTRIBUTEDMEM=None

export SHAREDMEM=TBB

make

Furthermore, I add a shared-memory parallelisation block to the specification file. Here, I

specify the number of threads that I want to use via the cores parameter3:

exahype-project Euler

[...]

shared-memory

cores = 2

end shared-memory

solver ADER-DG EulerSolver_ADERDG

[...]
(continues on next page)

3 The parameter name “cores” is misleading. These are actually the threads that ExaHyPE uses.
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(continued from previous page)

plot vtk::Cartesian::vertices::ascii Plotter

[...]

end plot

end solver

end exahype-project

After the built, I run the simulation the usual way.

More Features

Other features such as the distributed-memory parallelisation, the usage of optimised ADER-

DG kernels, and the reduction of global observables can be activated and tailored via the toolkit,

too. No further code must be written. For a comprehensive overview and documentation of

all these features, I refer to the ExaHyPE guidebook [6].
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The development process of scientific simulation codes can be roughly decomposed into four

main steps (Fig. 5.1): First, the continuous model of the problem is derived that is a PDE in

strong form in the context of this thesis. Second, numerical methods are applied to discretise

the continuous problem. The resulting discrete problem is an approximation to the continuous

problem that can be solved on a computer. The discretisation reveals details on substeps,

data fields, and data dependencies. This information is required to derive algorithms in the

third step of the process. In the fourth and final step, the algorithms are translated into code.

Application scientists have expert knowledge on the continuous model. They aim to explain

physical processes with the aid of computational methods. Furthermore, they are interested

in refining the continuous model and to find its limitations by comparing simulations against

measurements that they have obtained from experiments. Applied mathematicians have

expert knowledge on numerical methods and the mathematical aspects of algorithms. The

latter is an expertise they share with computer scientists, who are experts in translating

algorithms into efficient software.

For application scientists, it is important to know where to start with the software development

process to minimise the time to create a running simulation tailored to their problem. They
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will ask the following questions:

1. Is there already an in-house, community, or commercial code that solves my problem?

2. Is there a PDE engine such as PyClaw [71], FEniCS [56], Firedrake [57], or ExaHyPE,

which only requires me to express the physics of my problem and the rest of the solver

construction is automated?

3. Is there a general-purpose numerics framework/toolbox, such as Peano [103] or SUNDIALS

[66], where I find the discretisation, meshes, and algorithms that I want to use? In

comparison to the PDE engines, I have to interface individual solver components myself

when using such frameworks.

If all of the above does not apply, application scientists start developing from a meshing

framework or in case they have very particular requirements, from a general-purpose pro-

gramming language like texttt{C/C++}, texttt{Fortran} or texttt{Python}. A general rule

is: The lower the abstraction level, the more flexibility in the implementation, but the more

time-demanding the software development process will become.

Abstract Problem

Formulation

Software 

Realisation

Continuous Domain & Model

Discrete Domain & Model

Complete Program Description

Algorithms & Parameters

Fig. 5.1: The development of scientific software is performed in four steps. Application

scientists understand the continuous model of the problem. Mathematicians develop numerical

methods to discretise the continuous problem. Discretisations reveal details on substeps and

data dependencies, which are necessary to derive algorithms. The algorithms are translated

into efficient software by computer scientists. Adapted from [69].

Developers of software frameworks and engines face the same questions but from the other

perspective when deciding how generic or specialised their product should be. ExaHyPE aims

to solve a wide range of hyperbolic PDEs. Its underlying numerical methods must therefore

be generic, accurate, and robust. To allow simulating large-scale problems on supercomputers,

these methods must exhibit high arithmetic intensity and low communication cost.
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Structure

The first section of this chapter compares different numerical methods for solving hyperbolic

differential equations. The second section groups the scientific computing software stack into

four categories. I show where ExaHyPE fits. Following this review, I list the requirements

on ExaHyPE and discuss why ExaHyPE is built upon the PDE framework Peano.

5.1 Numerical Methods for Hyperbolic PDEs

A computer simulation’s accuracy depends on the approximation quality of its numerical

methods. Scientific simulations make errors in the spatial discretisation, in the time evolution,

and in the representation of material and geometry. In order to obtain a scientifically

meaningful result, these approximation errors must be controlled and reduced to an acceptable

level. The efficiency of numerical methods can be measured by the computational work

they require to keep the approximation errors below a certain threshold. This work can

be often significantly reduced with adaptive procedures where more computational work is

only invested where local approximation errors dominate the global approximation errors.

ExaHyPE combines accurate and robust numerical methods with adaptive mesh refinement.

All of ExaHyPE’s building blocks have a long research history. This section aims to give a

high-level overview.

Spatial Discretisation

ExaHyPE follows the Eulerian approach for solving hyperbolic PDE systems; it describes

the evolution of the numerical solution to a hyperbolic PDE with respect to a spatial

computational mesh. The solution is then decomposed into a spatially-varying and temporally-

varying component. For both components an ansatz is made. The ansatz for each components

makes assumptions on the solution. These assumptions might or might not be justified for the

modelled wave phenomena. In the following, I discuss different approaches for constructing

an ansatz for the spatially-varying component.

Hyperbolic partial differential equations can be roughly grouped into two main groups:

conservation laws and non-conservative equations. Finite volumes methods (FVM) and DG

methods are considered a natural choice for discretising conservation laws [64] in space yet are

also applicable to hyperbolic PDE systems that contain non-conservative terms [36][49][81].

In the FVM, the computational domain is decomposed into many small cells (volumes), which
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together form the computational mesh. Each cell holds volume averages of the state variables.

Godunov type finite volume methods compute the numerical flux at the interface of the cells

as the solution of a Riemann problem [61]. The volume averages stored in both cells that share

the interface are used as left and right initial values of the Riemann problem. In practice,

the Riemann problem is typically not solved exactly but an approximate Riemann solver is

employed instead. Approximate Riemann solvers differ in the number of wave characteristics

they model; see [95] for a comprehensive overview of exact and approximate Riemann solvers.

After the Riemann solve, high-order finite volume methods, so called high-resolution schemes,

reconstruct polynomials from the volume averages of cells and a number of their neighbours

[98][35][62]. Discontinuities in the solution pose a difficulty for high-order variants of the FVM.

Discontinuous initial solutions introduce non-physical oscillations into the numerical solution

that evolve in time. For nonlinear problems, such discontinuities can form over time even

from smooth initial data; see e.g. [64]. Due to non-physical oscillations, physical quantities

can assume non-physical values during a simulation, too. Therefore, artificial oscillations must

be prevented or removed from the solution or at least damped. Such a procedure is called

limiting. A comparison of limiters for high resolution schemes can be found in [91].

The FDM (finite difference method) is a straightforward recipe to derive discretisations for

solving hyperbolic problems that admit smooth solutions. It is a grid-based method that

approximates the derivatives in the strong formulation of the PDE by finite differences.

Constructing difference stencils is simple for linear PDE systems; however, it becomes cum-

bersome for nonlinear problems. Moreover, if material parameters are strongly heterogeneous

or the geometry is complex, difference-stencil-based approximations to strong derivatives are

not well-defined or difficult to construct. Lastly, high-order FDM stencils enforce that the

numerical solution is more differentiable. This is not appropriate if the real solution contains

discontinuities.

Similar to the FVM, the continuous Galerkin FEM (finite element method) is derived from an

integral or weak formulation of the hyperbolic PDE system. The FEM weak formulation is a

variational formulation of the strong formulation that relaxes the differentiability assumptions

on the (numerical) solution by “moving” spatial derivatives from the solution (ansatz) to a

smooth test function. Like the FVM, FEM decomposes the computational domain into a

finite number of cells, which are named elements in the FEM context. Being based on a weak
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formulation, FEM imposes less strict requirements on the differentiability of the solution than

FDM. However, FEM still enforces continuity at the interface between cells. If we apply them

naively, FDM and FEM introduce spurious oscillations into the numerical solution in the

vicinity of discontinuities due to their in-built assumptions on the continuity of the solution.

This is known as Runge’s phenomenon or Gibbs phenomenon. Both methods can be applied

to simulate such phenomena if artificial viscosity is introduced to the original hyperbolic PDE

system [100]. Evolving the numerical solution with an explicit time stepping scheme requires

to compute the inverse of the FEM mass matrix. Here, a second difficulty arises: The FEM

mass matrix has multiple off-diagonals, i.e. its inverse is dense [64]. Therefore, inverting

the mass matrix is not feasible if the number of elements is large. In practice, this issue is

mitigated via mass lumping techniques that approximate the mass matrix or its inverse so

that the inverse is sparse. However, this requires care to not violate physically motivated

constraints such as the conservation of mass.

The DG method can be read as hybrid between FEM and FVM. It represents the solution as

polynomial in every cell similar to FEM, and it couples the solution polynomials of neighbour-

ing cells by means of numerical fluxes similar to the FVM. In comparison to FEM, DG does

not enforce continuity at cell interfaces. Therefore, ℎ-adaptive DG methods can be realised

with less effort compared to ℎ-adaptive finite volume or finite element methods [64]. Another

advantage of DG methods is that the mass matrices of DG discretisations are block diagonal

(non-orthogonal shape functions) or fully diagonal (simplices and quadrilaterals/hexahedrals)

as DG employs ansatz functions with compact support. This enables efficient explicit time

marching schemes [64]. Moreover, compared to FEM and FDM, DG has a compact com-

munication stencil as neighbour cells only communicate via the faces and not via edges and

corners.

The first DG method was introduced in 1973. It was used to solve the hyperbolic neutron

transport equation [82]. Since then, DG methods have been applied successfully to many

different hyperbolic conservation laws. Well-known is the papers series on RK-DG methods

for conservation laws by Cockburn and Shu [42][41][43][40][44], which provides a theoretical

foundation for the method. While DG methods satisfy a local entropy inequality and are

thus nonlinearly stable in the 𝐿2(Ω) norm [54], the numerical solution produced with these

methods also exhibit artificial oscillations in the vicinity of strong gradients. This can be
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attributed to the fact that the method’s cell-wisely polynomial ansatz is subject to Runge’s

phenomenon, too. Consequently, slope limiting approaches for the RK-DG method have been

presented. The first in [42][41]. An extensive overview of limiting approaches for DG is given

in [54].

ExaHyPE uses DG and FVM due to their nonlinear stability and robustness with respect

to discontinuities and shocks.

Temporal Discretisation

A spatial semi-discretisation must be paired up with an equally accurate temporal discretisation

to obtain optimal convergence of the approximation error with respect to the mesh resolution.

Therefore, an accurate discretisation of the temporal derivative is of high importance for the

numerical solution of time-dependent hyperbolic PDEs.

RK (Runge-Kutta) methods are a popular choice for the temporal discretisation. They

approximate the first elements of a Taylor series expansion in time. This yields a multi-

stage algorithm; see e.g. [32]. Up to the fourth-order method, the number of RK stages is

proportional to the order of the GTE (global truncation error) of the methods. Above this

Butcher barrier, the methods become more difficult to construct as more and more conditions

must be satisfied, and the number of RK stages grows faster than the order of the GTE.

Sixth order schemes, e.g., require seven stages [32][33].

The ADER (Arbitrary DERivative in time) temporal discretisation technique is a completely

different approach to obtain high-order accuracy in time [93][94]. This time discretisation is

tailored to FVM and DG methods that use a Riemann solver. The original ADER method

uses a Taylor expansion in space-time and the subsequent application of a CK procedure

for computing temporal derivatives from the spatial derivatives. The temporal derivatives

are used as initial values for the generalised Riemann problem that is solved at the interface

between cells.

Recently, an ADER approach was presented that uses a cell-local space-time DG method to

compute input data for the generalised Riemann problem [50]. The method is more easily

adapted to nonlinear problems than the original ADER method and has been successfully

applied to the FVM and DG; see e.g. [59][54]. Similar to the original ADER method,

which uses the CK procedure, the local space-time ADER-FVM and ADER-DG methods
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are one-step schemes. They perform only a single communication step per time step. See

[59] for a comparison of different ADER variants applied to the FVM and DG spatial

semi-discretisations.

ExaHyPE favours the ADER-DG method over the RK-DG method due to its in-built high

arithmetic intensity and genericity. High-order ADER-DG methods for linear and nonlinear

are constructed according to generic recipes and are not more complex than low order variants.

While the number of RK stages grows with increasing temporal approximation order [33], the

algorithmic complexity of ADER-DG does not change with increasing order. Moreover, there

exist generic recipes for constructing LTS (local time stepping) algorithms for the ADER-DG

method for both linear and nonlinear problems [53][86]. Such a recipe does not exist for

RK-DG methods.

A disadvantage of the ADER-DG methods is that they require to use smaller time step

sizes than equivalent RK-DG methods; see [44][48]. An 8-th order ADER-DG method, e.g.,

must use a roughly 3× smaller time step size than its RK-DG equivalent (see Table 5.1).

However, ADER-DG is efficient in exploiting modern hardware. Despite using a smaller

time step size, ADER-DG can yield a shorter time to solution due to the method’s higher

arithmetic intensity [85]. ADER-DG requires no more than three loops over the mesh

independently of the approximation order as opposed to RK-DG schemes, where the number

of RK stages grows with increasing temporal approximation order [32]. Being one-step

schemes, ADER-DG schemes are better suited for strong-scaling than RK-DG methods [51],

where one communication step is required per RK stage.

Table 5.1: Stable time step size of the ADER-DG method in comparison to the RK-DG

method’s time step size. Data up to and including order 4 stems from [Dumbser:08:Unified].

Data for higher order were found experimentally; they are taken from the ExaHyPE repository

[ExaHyPE:19:Download].

Order 0 1 2 3 4 5 6 7 8
Δ𝑇ADER-DG

Δ𝑇RK-DG
100.0 % 99.0 % 85.0 % 70.0 % 62.1 % 49.5 % 49.4 % 45.0 % 34.0 %
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Adaptive Mesh Refinement

Hyperbolic PDE systems are often characterised by multitudes of scales in space and time.

Small and large scale features of the conserved quantities evolve, appear, and disappear in time.

Therefore, an efficient numerical method requires a computational mesh that is dynamically

adapted to these features. Numerical methods working with uniformly refined meshes might

perform many unnecessary computations and approach memory limits in order to resolve

localised small scale features in the conserved quantities. Additionally, local time stepping is

required since different parts of the mesh will evolve in time with different time step sizes based

on the wave propagation speed in these cells and the multiple spatial scales that are introduced

by the adaptive mesh refinement to resolve small scale features in the conserved quantities.

Dynamic adaptive mesh refinement plus local time stepping for hyperbolic PDEs introduced in

the seminal papers [25][26]. Nowadays, very sophisticated adaptive mesh refinement codes are

available. State-of-the-art codes support distributed memory parallel programming [31][103]

as well as shared-memory parallel programming [103]. They are used to realise scalable

simulation codes that utilise thousands of CPU cores.

There is a large number of open-source AMR packages available [111]. They can be categorised

into block-structured and tree-structured AMR codes. In the hyperbolic PDE context, block-

structured AMR codes were employed first [26]. They work with a collection of overlapping

blocks of cells. Blocks with finer mesh spacing are introduced in areas where high resolution is

required [47]. They hold ghost layers that are filled from coarser blocks before all cells on the

fine grid block are updated. After the fine grid update, fine grid information is represented on

the coarser blocks to enable the next cell updates there. Block-structured AMR is typically

employed for the FVM and the FDM, which have a low computational cost per single cell or

grid node.

FEM and DG schemes, which have a larger memory footprint per cell, are typically imple-

mented on top of tree-structured AMR meshes. Here, the mesh is refined by splitting mesh

cells into 𝑘𝑑 child cells, where 𝑑 denotes the spatial dimension and 𝑘 the refinement factor. If

this procedure is run for multiple iterations, a mesh is created that exhibits a tree structure,

i.e. every mesh cell is subject to a unique parent-child relationship. Many tree-structured

AMR codes do not store refined parent cells in the adaptive mesh but just the leaf cell [103].

The tree-structured AMR code Peano is an exception in this regard.
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A merger of tree-structured and block-structured AMR codes are patch-based tree-structured

AMR codes. They use a tree-structured adaptive mesh as organisational structure for storing

regular blocks of cells. Tree-structured AMR codes are thus a well-suited data structure for

realising AMR codes for the FVM, too [97][30].

5.2 ExaHyPE in the Scientific Computing Landscape

With ExaHyPE, application scientists only require knowledge about the continuous model to

build a full simulation code as ExaHyPE prescribes the numerical scheme and in turn hides its

internals. ExaHyPE itself is realised upon the PDE framework Peano [103][105][102][101].

Framework-upon-framework approaches that decompose software into different abstraction

layers is a successful concept in scientific computing. Similar examples are PeanoClaw

[16][97][96] and ForestClaw [30][34], patch-based FVM codes for solving general hyperbolic

PDE systems, which extend the FVM package Clawpack with parallel, dynamic AMR.

PeanoClaw relies on Peano to create and traverse adaptive meshes, ForestClaw on p4est

[31].

An emerging trend is to tailor mature general-purpose frameworks to particular application

areas in order to build community codes. This is the approach of ASPECT [76][3] , which

builds a code for simulating convection processes in the Earth’s mantle and crust based on

deal.II, and of GeoClaw [71][17], which builds a code for simulating geophysical flows like

tsunami waves based on Clawpack and PETSc (via PyClaw). Other examples include ExWave

[113][87], a code for photo-acoustics that is based on deal.II, ExaSeis, which builds seismic

wave propagation codes upon ExaHyPE [4], and Dune-composite, which is built upon DUNE

[23][5]. Many community codes are able to outperform problem-tailored commercial software;

see e.g. [84]. This performance advantage is often attributed to the fact that open-source

software benefits directly from all advances in numerical methods, algorithms, and kernel

optimisation of their individual open-source components. A comparison of a wide range of

open-source FEM frameworks and closed-source commercial tools can be found at [1]. I

categorise scientific software into four categories (Fig. 5.2):

1. Community codes, in-house codes, and commercial tools,

2. PDE engines,
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3. generic, general purpose numerics frameworks plus scientific computing toolboxes, and

4. pure algorithm frameworks, e.g. standalone parallel mesh refinement and iterative solver

libraries.

The lines between different categories are often blurred. For example, a number of numerics

frameworks implement their own mesh refinement algorithms and iterative solvers. DUNE, e.g.,

implements its own collection of parallel iterative solvers [27][28]. Furthermore, specialised

software must not necessarily rely on components from the next more generic stack. Many

codes of the first category are written from scratch with a general-purpose programming

language such as C/C++ or Fortran.

1. Simulation Codes (Continuous Model is Hard-Wired)

2. PDE Engines

3. Numerics Frameworks

4. Algorithm and Meshing Frameworks/Engines

ExWave(deal.II) ASPECT(deal.II) ExaSeis(ExaHyPE) Dune-composites(DUNE)

Thousands Others ... Most Commercial Tools ...

Clawpack PyClaw GeoClaw PeanoClaw(Peano,PyClaw) OpenFOAM FEniCS Firedrake ...

ExaHyPE(Peano)

deal.II DUNE libMesh ...
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Fig. 5.2: An attempt to categorise the scientific computing landscape into four categories:

simulation codes, PDE engines, numerics frameworks, and algorithm frameworks. The

overview is not comprehensive at all. Application scientists and framework developers have

more flexibility if they start code development based on an algorithm or numerics framework.

However, they will be required to write more code to realise their application.

ExaHyPE, being a PDE engine, is highly specialised in comparison to general-purpose

numerics and algorithm frameworks. The question arises if ExaHyPE itself can be built upon

a more generic software package. Three requirements in the ExaHyPE agenda constrain the

search for a suitable framework [8]:

• ExaHyPE must be able to solve nonlinear PDE systems. Per cell, the ADER-DG

method for nonlinear PDE systems solves a locally-implicit equation system, which
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requires a number of Picard iterations that varies from cell to cell.

• To realise a novel multi-level approach to UQ, ExaHyPE must be able to solve multiple

wave propagation problems simultaneously on the same mesh. These simulations may

exhibit different refinement patterns, and individual simulations may be coupled in areas

where they use different mesh resolutions.

The local coupling of DG and FVM discretisations cannot be realised out-of-the-box with

high-level FEM engines and frameworks such as deal.II, FEniCS and Firedrake, or FVM

frameworks such as OpenFOAM [107][14]. To the best of my knowledge, it is not possible

in general-purpose FEM frameworks to apply nonlinear operators to a cell’s solution in a

straightforward way. Consequently, ExaHyPE is built on top of one of the more generic AMR

frameworks. To enable the multi-solver functionality required for the novel UQ approach,

ExaHyPE prefers the AMR framework Peano over other parallel meshing frameworks.

Peano keeps refined parent cells in the mesh and they are traversed by Peano’s mesh

traversal. Therefore, these cells can be relabelled as the leaf cells of a solver that operates on

a coarser grid. In addition, Peano provides callbacks for realising data exchange between

cells that reside on different mesh levels.

Use and Feel

Similar to the other PDE engines, ExaHyPE is more specialised than general-purpose

numerics frameworks and less specialised than codes of the first category. Compared to the

other engines, ExaHyPE offers a more guided approach to the development of simulation

codes. ExaHyPE inherits a programming paradigm named The Hollywood Principle from

Peano [103]: “Don’t call us! We’ll call you!”. Applications built upon ExaHyPE do not have

control over the order mesh cells are traversed, e.g. Instead, application scientists write a single

configuration file and implement pre-generated function stubs. They are guided via assertions

to the code sections that they need to implement. Configuration file verification code helps

them to specify all compile- and run-time parameters that are required to implement and run

their application. Consequently, application scientists do not need to have any knowledge

about fundamental data structures of ExaHyPE.
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Adaptive Mesh Refinement

In this chapter, I present ExaHyPE’s adaptive mesh refinement capabilities. Adaptive

mesh refinement is important for many of ExaHyPE’s application areas. While all fluid

dynamic problems require higher resolution around shock fronts and solution discontinuities,

diffuse interface methods, for example, additionally require high resolution in vicinity of the

approximated geometry. In this chapter, I detail ExaHyPE’s mesh refinement data structure,

its parallel decomposition, and the algorithms to build it. ExaHyPE uses Peano’s spacetree

as meta data structure and embeds arbitrarily spaced regular computational meshes into the

tripartitioned spacetree. On top of a given regular base mesh, ExaHyPE performs adaptive

mesh refinement according to a user-defined refinement criterion. ExaHyPE’s implementation

of the ADER-DG method is able to deal with arbitrary mesh resolution jumps. I realise

this in ExaHyPE via a regularisation of the spacetree where I place virtual subcells into the

spacetree. Moreover, I propose a procedure to eliminate local master-worker communication

for the prolongation and restriction of face data in ExaHyPE’s adaptive meshes. Finally, I

present two pre-refinement techniques that can tackle unpredictable and predictable mesh

adaptations. Their implementation is straightforward on top of the presented mesh data

structure.
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Contributions

I present a mesh data structure, the corresponding mesh adaptation algorithms and the

required kernels to implement unconstrained AMR with the DG method. ExaHyPE’s

mesh refinement algorithms prevent loss of fine grid information where possible– up to the

user’s refinement criterion. Based on this data structure, I propose a technique to eliminate

local master-worker communication in ExaHyPE’s distributed meshes that are built upon

Peano’s spacetree. I propose two novel mesh pre-refinement flavours, halo refinement and a

posteriori refinement. Halo refinement aims to reduce numerical issues and loss of information

at the interface between coarse and fine grid cells. It traces interesting features and ensures

that the mesh is pre-refined around them. A posteriori refinement allows to pre-refine the

mesh where new features emerge, e.g. where shocks form or where a wave travels into the

domain from the domain boundary. The fundamental assumption is here that a single step of

an explicit time stepping scheme is cheap. We can thus do a (wrong) step and rollback to the

previous solution if the mesh was not refined properly.

Related Work

In [24], the author emphasises the importance of pre-refinement when solving hyperbolic PDE

systems on adaptive meshes. He proposes to always keep the previous solution and to roll

back to it whenever the adaptive mesh did not suffice too keep the solution quality at the

desired level. In this case, the mesh should be further refined first. The a posteriori refinement

approach presented in this chapter realises such a scheme. I present detailed pseudocode for

all steps of the scheme. In particular, the coarsening was not covered in [24].

Structure

Section 6.1 gives an overview of Peano’s spacetree meshes. Furthermore, it addresses how the

tree is decomposed if a Peano application is run in parallel. Section 6.2 presents ExaHyPE’s

mesh data structure and detail the algorithms to build it. Section 6.3 details how ExaHyPE’s

mesh data structure is used to identify and eliminate local synchronisation points that can

arise in parallel simulations due to the spacetree partitioning. Section 6.4 discusses the two

pre-refinement techniques, a posteriori refinement and halo refinement. In Section 6.5, I

introduce inter-grid transfer operators that allows unconstrained jumps in the refinement

levels of neighbouring cells. ExaHyPE’s mesh data structure grid data structure is flexible

enough to realise this. Lastly, Section 6.6 discusses the presented techniques and links to
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subsequent chapters and future work.

6.1 Parallel Adaptive Spacetree Meshes

ExaHyPE plugs into Peano’s hierarchical Cartesian meshes to create and adapt the com-

putational mesh of a solver. For a spatial dimension 𝑑 ∈ {2, 3}, Peano forges these meshes

from a 𝑘𝑑-spacetree data structure [22]:

Definition (𝑘𝑑-Spacetree).

A tree is called a 𝑘𝑑 -spacetree if it has the following properties:

• Each node of the tree is either a leaf or has exactly 𝑘𝑑 children. Each child node is again

a 𝑘𝑑 spacetree.

• Each node represents a d-dimensional hypercube.

• Children hypercubes have edge lengths that are by a factor of 𝑘−1 smaller than edges of

their parent.

The process of splitting tree cells into 𝑘𝑑 smaller cells is called (mesh) refinement. The level

that a hypercube is associated with is called refinement level. The coarsest cell has level 0, its

children level 1 and so forth. If all unrefined cells, i.e. cells without children, are on the same

refinement level, the spacetree is called regularly refined. Otherwise, it is called an adaptive

spacetree [22]. The decision what cells are refined depends on the particular application.

The broad definition of 𝑘𝑑-spacetrees encompasses the well-known quadtree and octree data

structures, which are (𝑘 = 2)𝑑-spacetrees. Peano realises a (𝑘 = 3)𝑑-spacetree (Fig. 6.1). A

𝑘𝑑-spacetree 𝒯 can be decomposed into a mesh hierarchy:

𝒯 = 𝒯0 ∪ 𝒯1 ∪ . . . ∪ 𝒯𝑙max

where 𝑙max is the maximum refinement level. The level-wise meshes 𝒯𝑖, 𝑖 = 0, . . . , 𝑙max, must

not necessarily be connected, i.e. they may consist of isolated islands. Cells in mesh 𝒯𝑖+1 are

children of cells in mesh 𝒯𝑖 𝑖 = 0, . . . , 𝑙max − 1.

In terms of storage, (𝑘 = 3)𝑑-spacetrees can be efficiently encoded using a Peano SFC (space

filling curve) [102][22]. Storing the (𝑘 = 3)𝑑-spacetree requires only a single bit per cell that

encodes if the cell is refined or not. Peano realises a second aspect of PDE solvers aside from

the spacetree adaptation: the spacetree traversal. The spacetree traversal strictly follows the
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(a) Adaptive Mesh (b) Grid Hierarchy

(c) Neighbour Communication (d) Vertical Communication

Fig. 6.1: (a) An adaptive Cartesian mesh. (b) Its representation as hierarchy of regular

Cartesian meshes. The adaptive mesh exhibits a tree structure. In particular, it exhibits the

structure of a 𝑘𝑑-spacetree with 𝑘 = 3 and 𝑑 = 2. (c) – (d) Peano partitions a spacetree

by cutting off a subtree (red). (c) At the interface between two partitions, neighbour

communication is required; only communication between leaf cells is shown. (d) Processors

may be required to exchange mesh refinement flags and simulation data at the root of a

subtree.
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Peano SFC. User codes have no say on the order in which mesh cells and vertices are processed

in. They must subscribe to events triggered by Peano’s spacetree traversal automaton. Events

align with transitions of the traversal from one spacetree entity (cell or vertex) into another.

The start of a traversal (beginIteration) is an event, moving from one cell into another is

an event (enterCell or descend within the tree), loading a vertex for the first time is an

event (touchVertexFirstTime), and so forth.

In Peano, all modifications to the spacetree are triggered via the vertices: A cell is removed

from the spacetree if all adjacent vertices are flagged for erasing (logical and). A spacetree cell

is refined if at least one of its adjacent vertices is marked for refinement (logical or). In the

following sections, I hide this aspect as it unnecessarily complicates the algorithms. I assume

that cells can be refined or erased directly. Different to most other spacetree codes, Peano

stores and traverses interior nodes, i.e. refined cells, of the spacetree. All events triggered for

spacetree leaf cells are triggered for refined spacetree cells, too.

Spacetree Partitioning

To parallelise a simulation, computational work must be distributed among multiple processors.

In this chapter, I do not distinguish between the terms processor, process, or MPI rank. As

the majority of computational work in a mesh-based PDE simulation can typically be linked

to operations performed on the mesh cells or vertices, it is reasonable to use these entities as

measure for computational work. Therefore, mesh refinement and mesh partitioning are often

closely interlinked in spacetree codes. Having constructed a space-filling curve, it can be used

to distribute load among multiple processors by cutting the curve into roughly equally sized

sections. Each processor gets assigned mesh cells and vertices corresponding to one section.

Peano follows a different domain decomposition strategy. It cuts off subtrees from the

spacetree partition of a processor and deploys them to processors that do not have work yet

(Fig. 6.1). The processors that receive the subtrees are called workers of the original processor.

The latter is called master in this relationship. Peano’s tree partitioning introduces a tree

topology on the MPI ranks. As a processor’s partition ends at the boundary to another

processor’s partition, both neighbours have to exchange data at the interface of the partitions.

Peano realises a multi-scale non-overlapping domain decomposition. The projection property

of the Peano SFC ensures that neighbour communication is conducted in a deterministic order

[102]. Peano applications often transfer data between different levels of the tree. Depending
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on where the spacetree is cut, these applications may need to synchronise data between master

and worker at the root of a worker’s subtree, too. This vertical master-worker communication

comes on top of the horizontal neighbour communication at the interface between partitions

(Fig. 6.1). If Peano is asked to partition the spacetree, it will trigger additional events during

the spacetree traversal. User applications can subscribe to them in order to transfer data

between a master and its workers and between neighbours.

6.2 The Spacetree as Meta Data Structure

ExaHyPE relies on Peano’s spacetree as a meta data structure. There are two aspects to

this: ExaHyPE inherits Peano’s marker-based approach to resolve geometries. It works

only with cells that are at least partially in the interior of the computational domain; see

Section 6.2.1. In addition, I augment the grid with helper cells to facilitate the inter-grid

transfer operations of ExaHyPE’s ADER-DG method and to detect where master-worker

communication can be eliminated; see Section 6.2.2 until Section 6.2.8.

6.2.1 Embedding the Geometry

Peano starts building the spacetree from a single root cell and its 3𝑑 children. The central child

is called the bounding box as it embeds the computational domain (Fig. 6.2). Peano allows to

position and scale the bounding box arbitrarily. ExaHyPE’s computational domain is a simple

box-shaped geometry and its numerical methods build an adaptive mesh from a regular base

mesh that partitions the computational domain. I employ the bounding box scaling to control

the mesh spacing of this regular base mesh. As a consequence, ExaHyPE can construct

arbitrarily spaced regular base meshes even though Peano performs tripartitioning. For

ExaHyPE applications, this is important to enable a comparison to results in the literature,

where typically bipartitioned meshes are employed. ExaHyPE can handle other characteristic

subdivision schemes besides bipartitioning. However, Peano’s spacetree partitioning still

adheres to the tripartitioning rule. A scaling of the bounding box may lead to an unfair

distribution of work from the geometric perspective. Sometimes, the bounding box can be

shifted by a number of cells to obtain fairer partitions.

The bounding box must be refined up to a level 𝐿 to accommodate regular base mesh and

bounding box shift. Given the desired number of mesh cells to resolve the computational

domain (𝑁inside) and a number of bounding box cells (𝑁outside,left) to shift the domain, it is
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Ω
BB

(a) Bounding Box embeds Domain

Ω

(b) 16× 16 Mesh in Bounding Box

Fig. 6.2: (a) Peano starts building a spacetree mesh from a tree with a single root cell

and its 3𝑑 children. The central child, the bounding box (“BB”), embeds the computational

domain. (b) Embedding of a 16 times 16 mesh in the bounding box. The siblings of the

bounding box are not shown.

computed as follows:

3𝐿 ≥ 𝑁inside + 𝑁outside,left ⇒ 𝐿 = ⌈log3(𝑁inside + 𝑁outside,left)⌉.

For bounding box scaling and shift, this yields

scaling = 3𝐿

𝑁inside
, shift = −𝑤 · 𝑁outside,left

𝑁inside
, (6.1)

where 𝑤 is the length of the longest edge of the computational domain.

In Fig. 6.2 (b), the bounding box is shifted by the equivalent of one bounding box cell to

obtain a fair distribution of interior cells among 22 ranks. Note that Peano will only employ

workers in areas where there is an overlap with the computational domain.

Meshes for Parallel Computations

With (6.1), weak scaling of a regular computational mesh with 3𝑙 cells per dimension can be

accomplished by choosing 𝑁inside = 𝑘 · 3𝑙, 𝑘 ∈ N+. Peano will then embed the resulting mesh

into the spacetree at the bounding box mesh level that hosts the required number of cells.

For example, a 9𝑑 mesh fits into the second bounding box mesh level, which has 32 cells per

dimension, while 18𝑑 and 27𝑑 meshes fit into the third bounding box mesh level.
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In parallel simulations, Peano starts building the spacetree with a single process, the global

master. After creating the root cell and the first 3𝑑 cells, it distributes the central element

to the first worker process. The latter continues with the mesh refinement and introduces

more and more workers where the computational load is high. Fig. 6.3 (a) shows an example

with six processes. Peano’s spacetree partitioning strategy implies that regular meshes are

only distributed fairly if 3𝑑, 9𝑑, 27𝑑, . . . worker ranks are employed. Equation (6.1) allows to

construct meshes where the first levels can be distributed by 2 and 4 processes per dimension

instead of the 3 and 9, respectively, which are expected from the tripartitioning rule. For

example, the 2D mesh in Fig. 6.2 (b) can be distributed among 4 workers with Peano.

Refining cells in Peano is done via refining the vertices. Due to implementational details,

this introduces additional outside cells on the global master if the boundary of the bounding

box aligns with the boundary of the computational domain [15]; see Fig. 6.3 (a). The global

master process runs through roughly half of its outside cells before communicating with the

first worker. Therefore, the global master’s traversal can become a bottleneck if the worker

partitions are small compared to the outside cells of the global master. As Peano removes

outside cells that are away from the domain boundary, this scalability bottleneck can be

reduced by moving the computational domain into the interior by exactly one bounding box

cell; see Fig. 6.3 (b). This can be accomplished via the bounding box scaling mechanism.

For example, if the mesh should have roughly 9𝑑 cells, then the choice 𝑁inside = 7 and

𝑁outside,left = 1 realises this. A disadvantage of this approach is that the load balancing for

regular meshes is not optimal. This effect is less severe the larger the partitions are; see Table

6.1. In general, we found it advantageous to ensure that mesh partition boundaries do not

align with domain boundaries to simplify the implementation and the load balancing.

6.2.2 Unconstrained Adaptivity via Virtual Cells

ExaHyPE puts an additional type marker into every spacetree cell that is inside of the

computational domain. It distinguishes between Empty, Leaf, Parent, and Virtual cells.

Together, they form the host mesh (Fig. 6.4 (b)), which ExaHyPE directly maps to Peano’s

spacetree. Leaf cells are the actual ADER-DG or FVM cells that allocate a solution vector.

Per solver, they form the computational mesh (Fig. 6.4 (a)). Parent cells do not allocate

any persistent memory at all. They indicate which cells have been adaptively refined and

further where to place Virtual cells. Empty cells are spacetree cells that are not used (yet)
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Table 6.1: The global master administers 3𝑑 workers on a regular spacetree. Parallel efficiency

if the bounding box is scaled such that 2 unrefined cells are placed outside of the domain per

coordinate direction.

Workers Bounding Box Cells Domain Cells Theo. Parallel Efficiency 3D (2D)

3𝑑 9𝑑 7𝑑 47.04% (60.44%)
3𝑑 27𝑑 25𝑑 79.37% (85.78%)
3𝑑 81𝑑 79𝑑 92.78% (95.11%)
3𝑑 243𝑑 241𝑑 97.56% (98.33%)
3𝑑 729𝑑 727𝑑 99.19% (99.44%)

P0

P1

P2 P3 P4

P5

(a) Domain Aligned With Bounding Box (b) Domain Inside Bounding Box

Fig. 6.3: (a) A mesh is distributed among six processes. The computational domain (thick

black square) is aligned with the bounding box. (b) The computational domain is moved into

the interior by one bounding box cell. The mesh resolution is reduced accordingly. One layer

of outside cells on the global master (P0) has been removed.
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by ExaHyPE. They might be introduced temporarily during ExaHyPE’s mesh refinement

operations, or persistently due to pre-refinement of the spacetree by Peano or ExaHyPE.

Only if a solver performs adaptive mesh refinement, ExaHyPE introduces Virtual cells

to the spacetree. They are placed around Leaf cells during the mesh adaptation phase. In

ExaHyPE, Virtual cells are used to facilitate the ADER-DG face integral between Leaf

cells that are located on different levels of the spacetree. Each Virtual cell has an attribute

ancestor that refers to their ancestor of type Leaf. We present details on the exact handling

of resolution transitions later.

Below, I modify the original ADER-DG algorithm (Algorithm 2.3) to distinguish between

Leaf and Virtual cell’s boundary DOFs (degrees of freedom) to the fine grid. A boundary

extrapolation of space-time predictor and volume flux is necessary beforehand. After the

Riemann solve, the traversal collects the result and performs the face integral on the interface

between coarse and fine grid Leaf cells. The resulting update vector is added to the coarse grid

Leaf cell’s solution vector. With these modifications, the ADER-DG algorithm is written as:

Algorithm 6.1 (Global ADER-DG Time Stepping With Virtual Subcells). ADER-DG time

stepping after introducing Virtual subcells to the grid. The algorithm distinguishes now

between Leaf cells and Virtual subcells (blue). Solving Riemann problems that involves the

latter requires a look up of a coarse grid Leaf cell parent (green). Global time stepping is

employed, i.e. the same fixed time step size Δ𝑇 is used on all mesh levels.

1 𝑇 ← 0
2 Δ𝑇 ← . . .

3 initialiseADERDG() # only leaf cells impose initial conditions
4

5 while 𝑇 < 𝑇𝑓𝑖𝑛𝑎𝑙 do
6 for level 𝑙 = 0, 1, . . . , 𝑙max do
7 for 𝐾 ∈ 𝒯𝑙 do
8 if type𝐾 ∈ {Leaf} do # only leaf cells perform prediction
9 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 ) ← predictor(𝑞ℎ(·, 𝑇 )|𝐾)

10 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾
11 end if
12 end for
13 end for
14

15 for level 𝑙 = 0, 1, . . . , 𝑙max do
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16 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯𝑙 do # Riemann solves
17 if type𝐾𝑎

∈ {Leaf} and type𝐾𝑏
∈ {Leaf} then

18 ( 𝑞*
ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
19 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
20 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
,

21 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎

, 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

22 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎

), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
23 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

24 else if type𝐾𝑎
∈ {Leaf} and type𝐾𝑏

∈ {Virtual} then
25 ( 𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
26 𝐾𝑐 ← ancestor𝐾𝑏

# look up leaf parent and interpolate boundary data
27 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑐

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑐
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑐

(𝑞*
ℎ|𝐾𝑐

, 𝐹 (𝑞*
ℎ)|𝐾𝑐

)
28 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
,

29 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎 , 𝑛𝐾𝑏

, 𝑛, Δ𝑇 )
30 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎 += faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

31 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑐 += faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

32 else if type𝐾𝑎
∈ {Virtual} and type𝐾𝑏

∈ {Leaf} then
33 # as above with reversed roles
34 # ...
35 else # do nothing
36 end if
37 end for
38 end for
39

40 for level 𝑙 = 0, 1, . . . , 𝑙max do
41 for 𝐾 ∈ 𝒯𝑙 do
42 if type𝐾 ∈ {Leaf} do # only leaf cells perform volume integral
43 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾+ = volumeIntegral(𝐹 (𝑞*

ℎ)|𝐾)
44 end if
45 end for
46 end for
47 𝑇 ← 𝑇 + Δ𝑇

48 end while

6.2.3 Building the Computational Mesh

ExaHyPE creates a regular base mesh as specified in the description of the user solver and

adapts it according to the user solvers’ mesh refinement criterion. Initially, this base mesh

is completely populated with Leaf cells. A user solver can implement a refinement criterion

specifying where the mesh should be further adapted. It is only evaluated in Leaf cells and

gives one of three answers:
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• Coarsen: The solution can be represented on a coarser mesh level.

• Keep: The solution is represented on the optimal mesh level.

• Refine: The solution must be represented on a finer mesh level.

While the time stepping works with just two states (Leaf and Virtual), the state space

grows significantly when performing mesh refinement operations. These operations consist of

multiple substeps that require a communication protocol between cells and their children. In

the algorithms presented in this section, I realise such protocols via the type attribute instead

of using multiple single attributes. This linearises the state space and, therefore, simplifies

logic depending on the state of a cell.

Notation. While the algorithms work with various states that the cell types Virtual, Leaf,

and Parent can attain, I typically omit these states in the textual description of the algorithms

in text body and algorithm captions.

6.2.4 Refinement Marking

Peano runs through the adaptive spacetree in a level-wise depth-first order and then tracks

back to the root cell [103]. The traversal automaton always pops 3𝑑 (children) cells at once

from the cell stack. All traversal events are issued for these cells before the automaton picks

the next refined cell to descend into. The procedure is repeated after loading the 3𝑑 children

of this cell. A very rough approximation of this traversal order is a traversal that traverses

all cells first in top-down and then in bottom-up direction. This approximation suffices to

describe all of ExaHyPE’s mesh refinement algorithms.

Algorithm 6.2 shows one iteration of the marking procedure in ExaHyPE. Typically, multiple

of such iterations are run in a row. Algorithm 6.2 requires one top-down and one bottom-up

traversal of the spacetree. Therefore, it can be mapped to a single Peano spacetree traversal.

ExaHyPE regards the evaluation of the refinement criterion as expensive, it is thus only

evaluated once and not every time the cell is accessed during the mesh adaptation phase.

Furthermore, the algorithm prevents multi-level coarsening as the refinement criterion might

indicate that an intermediate level is optimal to represent the solution. Therefore, coarsening

is performed level by level. The refinement procedure, in contrast, can add multiple levels in

one rush.
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Refining a Leaf cell introduces further Leaf cells to the mesh while the original Leaf cell is

transformed to a Parent cell. ExaHyPE uses a veto mechanism to determine which Parent

cells can be coarsened again: During a top-down mesh traversal, the coarse grid Parent cell

changes its state (ParentCoarseningRequested) indicating that it wants to coarsen all its

children. The children are traversed next and reset this state if their refinement criterion

does not return a coarsening request. In the following bottom-up traversal, the coarse grid

Parent cell collects the result. If its request was accepted, it changes its state accordingly

(ParentCoarsening). Otherwise, it changes its state such that it will not trigger the coarsening

procedure again in the coming marking iterations (ParentKeep).

Algorithm 6.2 (Marking). One iteration of the refinement marking procedure. Child cells

veto erasing events of their Parent if the refinement criterion returns a keep or refine request.

After the iteration, information is available if a Leaf cell needs to be refined or a Parent

cell coarsened. All subroutine calls with prefix Spacetime:: refer to the mesh back end, i.e.

Peano. A posteriori refinement adapts the mesh and then performs a rollback. Hence, the

previous solution must be checked, too (blue).

1 function marking(aposterioriRefinement)
2 # 1. Top down traversal (mark children)
3 for level 𝑙 = 0, 1, . . . , 𝑙max do
4 for cell 𝐾 ∈ 𝒯𝑙 do
5 if type𝐾 ∈ {Leaf} then
6 marker← refinementCriterion(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
7 if aposterioriRefinement = true and marker𝐾 ∈ {Coarsen} then
8 marker← refinementCriterion(𝑞ℎ(·, 𝑇 )|𝐾)
9 end if

10 # refine / keep / coarsen
11 type𝐾 ← LeafCoarsen
12 if marker ∈ {Refine} and 𝑙 < 𝑙max then
13 type𝐾 ← LeafRefineInitiated
14 Spacetree::refineIfUnrefined(𝐾) # introduces Empty cells to the mesh
15 else if marker ∈ {Keep} then
16 type𝐾 ← LeafKeep # do not evaluate refinement criterion again
17 end if
18 # support/veto coarsening
19 if 𝑙 > 0 and type𝐾 /∈ {LeafCoarsen} then
20 𝐾𝑐 ← Spacetree::getParent(𝐾)
21 type𝐾𝑐

← ParentKeep
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22 end if
23 else if type𝐾 ∈ {Parent} then
24 type𝐾 ← ParentCoarseningRequested
25 𝐾𝑐 ← Spacetree::getParent(𝐾)
26 if type𝐾𝑐

∈ {ParentCoarseningRequested} then
27 type𝐾𝑐

← Parent #veto multi−level coarsening
28 end if
29 else if type𝐾 ∈ {ParentKeep} then
30 𝐾𝑐 ← Spacetree::getParent(𝐾)
31 if type𝐾𝑐

∈ {ParentCoarseningRequested} then
32 type𝐾𝑐

← ParentKeep #veto coarsening
33 end if
34 end if
35 end for
36 end for
37 # 2. Bottom up traversal ( revisit parents)
38 for level 𝑙 = 𝑙max, 𝑙max − 1, . . . , 0 do
39 for cell 𝐾 ∈ 𝒯𝑙 do
40 if type𝐾 ∈ {ParentCoarseningRequested} then
41 type𝐾 ← ParentCoarsening
42 end if
43 end for
44 end for
45 end function

6.2.5 Refining

The marking iterations (see Algorithm 6.2) request the creation of new Empty cells from

Peano if a cell that is flagged for refinement has no Virtual children. ExaHyPE employs

an iteration of Algorithm 6.3 to finalise refinement operations. In the top-down traversal,

ExaHyPE interpolates the ADER-DG solution from the coarse grid Leaf cell to the new

fine grid Leaf cells. In the bottom-up traversal, the original coarse grid Leaf cell changes its

type to Parent. Marking a cell and refining it takes two mesh traversals in total.

Notation. I explicitly write “spacetree refinement” whenever I discuss the refinement of the

underlying spacetree. If I write “refinement” or “mesh refinement”, I refer to Alg. 6.3 and the

preceding refinement marking in Alg. 6.2, although mesh refinement often triggers spacetree

refinement.

Algorithm 6.3 (Refinement). Refinement procedure. If a cell was marked for refinement,
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new Leaf cells are created and data is interpolated from the coarse grid cell to the fine grid

children. A posteriori refinement adapts the mesh and then performs a rollback. Hence, the

previous solution must be interpolated, too (blue).

1 function refine(aposterioriRefinement)
2 # 1. Top down traversal (interpolate from coarse grid)
3 for level 𝑙 = 0, 1, . . . , 𝑙max do
4 for cell 𝐾 ∈ 𝒯𝑙 do
5 if type𝐾 ∈ {Empty, Virtual} then
6 assert: 𝑙 > 0
7 𝐾𝑐 ← Spacetree::getParent(𝐾)
8 if type𝐾𝑐

∈ {LeafRefineInitiated, LeafRefine} then
9 type𝐾𝑐

← LeafRefine
10 type𝐾 ← Leaf
11 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← interpolate𝐾⊂𝐾𝑐

(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑐
)

12 if aposterioriRefinement = true then
13 𝑞ℎ(·, 𝑇 )|𝐾 ← interpolate𝐾⊂𝐾𝑐

(𝑞ℎ(·, 𝑇 )|𝐾𝑐
)

14 end if
15 end if
16 end for
17 end for
18 # 2. Bottom up traversal (deallocate data on refined cells )
19 for level 𝑙 = 𝑙max − 1, ..., 0 do
20 for cell 𝐾 ∈ 𝒯𝑙 do
21 if type𝐾 ∈ {LeafRefine} then
22 type𝐾 ← Parent
23 end if
24 end for
25 end for
26 end while

6.2.6 Coarsening

AMR adapts the mesh resolution around interesting solution features, e.g. shock waves. If a

solution feature travels out of a certain area, the solution can be represented on a coarser

mesh in this area. Such a coarse grid representation requires less DOFs and thus less memory.

Moreover, less computations need to be performed. Therefore, dynamic AMR simulations

coarsen refined cells–i.e. the Parent cells in ExaHyPE’s host mesh–whereever possible.

Coarsening has to be performed with care due to the following observations; e.g. [96]:
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• Coarsening of cells may result in a loss of information.

• While adapting the mesh, the refinement criterion might flag a cell for refinement directly

after the same cell was coarsened.

The first point is especially a problem when goal-oriented refinement criteria are considered.

Here, it might not be possible to recover the lost information after the coarsening. The second

observed behaviour is sometimes caused by gradient-based refinement criteria where a cell is

refined because the gradient is measured too small in the fine grid cells and too large in the

coarse grid cell. Without countermeasures, the cell is then refined and coarsened over and

over again; e.g. [96].

ExaHyPE’s coarsening procedure (Algorithm 6.4) anticipates both issues and, therefore,

requires two mesh traversals. In the first traversal’s top-down part, Leaf cells whose Parent

has been marked for coarsening project their ADER-DG solution onto the Parent’s cell. They

do not deallocate the solution yet! In the traversal’s bottom-up part, the Parent evaluates the

refinement criterion on this projected solution. If the criterion returns a refinement request,

the coarsening procedure is stopped. Otherwise, the Parent cell becomes a Leaf cell in the

next traversal’s top-down part. Furthermore, the fine grid Leaf cells become Empty cells and

deallocate their solution. Empty cells are cleaned up by a later mesh refinement iteration.

Algorithm 6.4 (Safe Coarsening). Coarsening procedure. If none of the fine grid children

veto the coarsening request of their Parent, they restrict their solution up to the Parent in the

next traversal. To not lose fine grid information and to prevent refine-coarsen oscillations, the

refinement criterion is evaluated again on the restricted solution. Only if it does not indicate

refining, the coarsening procedure is finished. All subroutine calls with prefix Spacetime::

refer to the mesh back end, i.e. Peano. A posteriori refinement adapts the mesh and then

performs a rollback. Hence, the previous solution must be checked, too (blue).

1 function coarsenSafely(aposterioriRefinement)
2 # 1. Top down traversal (project on coarse grid)
3 for level 𝑙 = 0, 1, . . . , 𝑙max do
4 for cell 𝐾 ∈ 𝒯𝑙 do
5 if 𝑙 > 0 and type𝐾 ∈ {LeafCoarsen} then
6 𝐾𝑐 ← Spacetree::getParent(𝐾)
7 if type𝐾𝑐

∈ {ParentCoarsening} then
8 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑐

← project𝐾𝑐
(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
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9 if aposterioriRefinement = true then
10 𝑞ℎ(·, 𝑇 )|𝐾𝑐

← project𝐾𝑐
(𝑞ℎ(·, 𝑇 )|𝐾)

11 end if
12 end if
13 end for
14 end for
15 # 2. Bottom up traversal ( revisit parent cells )
16 for level 𝑙 = 𝑙max − 1, ..., 0 do
17 for cell 𝐾 ∈ 𝒯𝑙 do
18 if type𝐾 ∈ {ParentCoarsening} then
19 tempMarker← refinementCriterion(𝑞ℎ(·, 𝑇 + Δ𝑇 )𝐾)
20 if aposterioriRefinement = true and tempMarker ̸= Refine then
21 tempMarker← refinementCriterion(𝑞ℎ(·, 𝑇 )𝐾)
22 end if
23 if tempMarker ∈ {Refine} then
24 type𝐾 ← ParentKeep
25 else
26 type𝐾 ← Leaf
27 end if
28 end for
29 end for
30 # 3. Top down traversal (erase fine grid cells )
31 for level 𝑙 = 0, 1, . . . , 𝑙max do
32 for cell 𝐾 ∈ 𝒯𝑙 do
33 if type𝐾 ∈ {Leaf} and 𝑙 > 0 then
34 𝐾𝑐 ← Spacetree::getParent(𝐾)
35 if type𝐾𝑐

∈ {Leaf} then
36 type𝐾 ← Empty
37 end if
38 end for
39 end for
40 end functions

6.2.7 Building the Virtual Mesh

In this subsection, I present an algorithm to build up layers of Virtual cells around the

adaptively refined cells, i.e. cells of type Parent. Inspired by the limiting ADER-DG method’s

limiter status diffusion, I propose to use a similar mechanism to flag the Leaf children need

to be introduced. I further add a second integer status to determine on which Virtual cell to

interpolate boundary data from a coarse grid Leaf cell. I call the first “augmentation status”,
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(a) Adaptive Computational Mesh (b) Cell Types

(c) Augmentation Status (d) Communication Status

Fig. 6.4: (a) An arbitrarily adaptive computational mesh. (b) The host mesh contains Leaf

cells (red), Parent cells (green), and Virtual cells (magenta). Transparent cells are Empty

spacetree cells due to pre-refinement by Peano. (c) The augmentation status spreads from

the Parent cells. (d) The communication status spreads from the Leaf cells.

and the second “communication status”. The propagation of the integer flags is inspired by

heat diffusion. To diffuse the augmentation status, I use Parent cells as heat source (Fig. 6.4

(c)). For the communication status, I use Leaf cells as heat source (Fig. 6.4 (d)). Furthermore,

I store augmentation and communication status of a cell’s face neighbours. The information

in which direction a Leaf cell borders a Virtual cell allows to only interpolate boundary data

for specific interfaces.

The condition

type𝐾𝑎
∈ {Leaf} and type𝐾𝑏

∈ {Virtual}

in algorithm Algorithm 6.1 can then be brought into the following form:

communicationStatus𝐾𝑎 = MaxCommunicationStatus and

neighbourAugmentationStatus𝐾𝑎
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏] < MaxAugmentationStatus and

neighbourCommunicationStatus𝐾𝑎
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏] ≥ MaxCommunicationStatus− 1.
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Modelled as integers, the maximum communication and augmentation status can be tuned.

For example, increasing the maximum augmentation status introduces more Virtual cells

into the mesh. The spacetree can be pre-refined this way.

Algorithm 6.5 (Virtual Refinement). Diffusion of augmentation and communication status

and Virtual refinement. Any state of a Leaf cell serves as heat source for the communication

status diffusion. Any state of a Parent cell serves as heat source for the augmentation status.

Leaf cells may only introduce Virtual children if they are in the LeafKeep or LeafCoarsen

state. All subroutine calls with prefix Spacetime:: refer to the mesh back end, i.e. Peano.

1 function virtualRefinement()
2 # Top−down traversal
3 for level 𝑙 = 0, 1, . . . , 𝑙max do
4 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯𝑙 : type𝐾𝑎

, type𝐾𝑏
/∈ {Empty} do # loop over faces

5 neighbourAugmentationStatus𝐾𝑎
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏]← augmentationStatus𝐾𝑏

6 neighbourAugmentationStatus𝐾𝑏
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏]← augmentationStatus𝐾𝑎

7 neighbourCommunicationStatus𝐾𝑎
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏]← communicationStatus𝐾𝑏

8 neighbourCommunicationStatus𝐾𝑏
[𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏]← communicationStatus𝐾𝑎

9 end for
10 for cell 𝐾 ∈ 𝒯𝑙 do
11 # merge communication status
12 if type𝐾 ∈ {Leaf, LeafKeep, LeafCoarsen, . . .} then
13 communicationStatus𝐾 ← MaxCommunicationStatus
14 else if type𝐾 /∈ {Empty} then
15 communicationStatus𝐾 ← max(neighbourCommunicationStatus)− 1
16 end if
17 # merge augmentation status
18 if type𝐾 ∈ {Parent, ParentKeep, . . .} then
19 augmentationStatus𝐾 ← MaxAugmentationStatus
20 else if type𝐾 /∈ {Empty} then
21 augmentationStatus𝐾 ← max(neighbourAugmentationStatus)− 1
22 end if
23 # create virtual cells & link to leaf cell / erase virtual cells
24 if 𝑙 > 0 and type𝐾 ∈ {Empty, Virtual} then
25 𝐾𝑐 ← Spacetree::getParent(𝐾)
26 if type𝐾𝑐

∈ {Virtual, LeafKeep, LeafCoarsen} and
27 augmentationStatus𝐾𝑐

> 0 then
28 type𝐾 ← Virtual
29 # link to leaf cell
30 if type𝐾𝑐

∈ {LeafKeep, LeafCoarsen} then
31 ancestor𝐾 ← 𝐾𝑐
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32 else if
33 ancestor𝐾 ← ancestor𝐾𝑐

34 end if
35 end if
36 # erase virtual cells
37 else if type𝐾𝑐

∈ {Empty} or augmentationStatus𝐾𝑐
= 0 then

38 type𝐾 ← Empty
39 end if
40 end if
41 # trigger spacetree refinement
42 if type𝐾 ∈ {Virtual, LeafKeep, LeafCoarsen} and augmentationStatus𝐾 > 0 then
43 Spacetree::refineIfUnrefined(𝐾)
44 end if
45 end for
46 end for
47 end while

6.2.8 Refining and Coarsening at Master-Worker Boundaries

Peano ensures that it’s tree decomposition always preserves a logical master-worker tree

topology on the ranks (see Fig. 6.3) and adopts its mesh such that user (i.e. ExaHyPE’s) mesh

requirements are met at least. It might decide to use finer meshes than required. ExaHyPE

can in general not steer when and where Peano may cut off a subtree from a spacetree

partition that is deployed to another worker rank. Therefore, ExaHyPE’s mesh refinement

operations have to handle multiple scenarios that arise due to the spacetree partitioning:

• Refinement operations may not have completed at the time a subtree is deployed to a

worker rank. They need to be continued afterwards.

• Peano might deploy subtrees that consist only of Virtual or Empty cells. ExaHyPE’s

mesh refinement procedure might later on decide to replace them with Parent and Leaf

cells.

• Leaf and Parent cell might get coarsened at a master-worker boundary.

To handle such situations, ExaHyPE introduces master-worker communication into its

refinement and coarsening protocols. Peano’s spacetree traversal triggers communication

events that ExaHyPE subscribes to. The master’s fine grid spacetree cell is placed at the

master-worker boundary, its coarse grid spacetree cell is placed one level above; see Fig. 6.1
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(d). In the top-down part of every mesh refinement iteration, ExaHyPE plugs into one

of Peano’s master-to-worker exchange callbacks to send the master’s coarse and fine grid

spacetree cell state to the worker. During ExaHyPE’s mesh refinement iterations, workers

are thus aware of the states of the master’s coarse grid and fine grid spacetree cell.

The master takes over control during mesh refinement operations. If the master introduces

a new fine grid Leaf cell, it sends the cell’s state and solution to the worker. The worker,

which is aware of the master’s fine grid cell’s state, replaces its Empty or Virtual cell with

the received Leaf cell and allocates memory to store the interpolated solution.

If the master’s coarse grid Parent cell attempts to coarsen its children, it obtains the worker’s

Leaf cell’s state back in the bottom-up part of a mesh traversal. The state LeafCoarsen

indicates that the worker’s Leaf cell does not veto the coarsening procedure. If the worker’s

Leaf cell, or any of the other Leaf cells on the master, do not veto the coarsening request,

the coarsening procedure is started for the master’s coarse grid Parent cell. In the top-down

part of the next mesh traversal, the worker receives the updated state of the master’s coarse

grid cell. In the bottom-up part of the same traversal, the worker represents the Leaf cell’s

solution on the geometry of the master’s coarse grid cell and sends the result of this projection

up to the master.

6.3 Eliminating Local Master-Worker Communication

Coarser Leaf cells communicate with finer Leaf cells at mesh resolution transitions. Peano’s

spacetree partitioning might introduce a master-worker boundary right at a resolution transi-

tion. ExaHyPE uses the Virtual cells/markers in its mesh meta data structure to identify

where such a partitioning has occurred. It realises the communication between adjacent coarse

and fine grid Leaf cells via Virtual cells. Virtual cells that neighbour a fine grid Leaf cell

interpolate boundary data to the fine grid and send face integral contributions to the coarse

grid. If the spacetree partitioning cuts the spacetree vertically above such a Virtual cell, this

data flow is interrupted. It must then be reestablished via local master-worker communication!

In ExaHyPE, I circumvent such local master-worker communication by artificial mesh

refinement, i.e. ExaHyPE’s mesh refinement introduces Leaf cells wherever local master-

worker communication is required. This is done via the augmentation status: The master

process checks if the worker’s cell is a Virtual cell and if its augmentation status is one less
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than the maximum. In this case, the Virtual cell is next to a Leaf cell. Then, the master

looks up the next Leaf cell on coarser level of its spacetree partition and marks it for refining.

The mesh refinement algorithm picks this refinement request up and refines the marked Leaf

cell.

Note that the top-most cell of the master’s spacetree could be a Virtual cell, too. However,

due to the construction procedure of the Virtual mesh, this cell has also an augmentation

status one less than the maximum. Therefore, the above procedure becomes active here, too.

Virtual cells do not only reveal information where to refine but also where not to erase cells:

Assume the worker cell is a Leaf cell and its Parent cell belongs to the master. Furthermore,

assume the worker cell has an augmentation status one less than the maximum. Then, this

implies that some of its descendants are adjacent to a Leaf cell. In this case, the worker’s Leaf

cell must not be erased i.e. coarsening attempts initiated by the Parent cell that resides on

the master process must be vetoed. The grid coarsening is constrained by the communication

pattern. If in doubt, ExaHyPE works with a too fine mesh rather than a too adaptive mesh.

6.4 Pre-Refinement Techniques

This section presents two novel mesh refinement techniques I introduced into ExaHyPE. I

originally implemented them to reuse the limiter indicators of the a posteriori subcell limiting

ADER-DG method as mesh refinement indicators. If an indicator becomes active in a cell, i.e.

the cell becomes troubled, a rollback and FVM recomputation is required as the ADER-DG

solution is troubled in this case. Therefore, refinement according to the limiter indicators is

not straightforward and requires a rollback, too. I call the resulting mesh adaption procedure a

posteriori refinement. Furthermore, ExaHyPE’s implementation of AMR for the a posteriori

limiting ADER-DG method requires that a number of neighbour cells around the troubled

cells is refined, too. For this purpose, I introduce a technique I name halo refinement. In this

section, I generalise both refinement techniques and apply them to classic dynamic AMR for

the sole ADER-DG method.

A Posteriori Refinement

If a cell on a coarser tree level requests mesh refinement, it is often already too late: Fine grid

information may have been destroyed or spurious oscillations have been introduced because the

solution representation has been chosen too coarse. Inspired by the recomputation procedure

6.4. Pre-Refinement Techniques 88



Chapter 6. Adaptive Mesh Refinement

of the a posteriori limiting ADER-DG method, I propose to use a similar rollback mechanism

for classic dynamic AMR. The idea is to adapt the mesh according to the current solution,

and then rollback to the previous solution state. Afterwards, the time step is rerun with a

mesh that is refined where the solution will be.

In the previously presented mesh adaptation algorithms, the blue highlighted lines indicate

where the algorithms must be changed to support a posteriori refinement. The marking

procedure (Algorithm 6.2) must ensure that Parent cells are not coarsened where their fine

grid children’s previous solution will be required after the rollback. The coarsening procedure

(Algorithm 6.4), must check if a cell that gets coarsened in the current time step would have

also get coarsened in the previous time step.

Halo Refinement

Halo refinement allows to introduce additional Leaf cells around Leaf cells that have been

refined to resolve interesting solution features, e.g. to prepare the mesh to host a propagating

wave. ExaHyPE realises halo refinement by diffusing another integer status, the halo status.

Whenever the refinement criterion is evaluated on a Leaf cell and returns Keep, this implies

that the Leaf cell resolves an interesting feature on the current mesh level. The same is

the case if the criterion returns Refine on the maximum user-prescribed level. ExaHyPE

assigns a Leaf cell in both cases the maximum halo status. The halo status is then diffused

just like the limiter, augmentation, and communication status. The maximum halo status can

be tuned to add an arbitrary number of halo cells around interesting solution features.

Implementing halo refinement on top of ExaHyPE’s mesh meta data structure is straightfor-

ward: If a Virtual cell carries a halo status greater than zero, it notifies its Leaf ancestor

to refine (Fig. 6.5 (top left)). This is done repeatedly until the Virtual cell is replaced by a

Leaf cell (Fig. 6.5 (top right)). The halo refinement procedure terminates if no Virtual cell

carries a halo status greater zero anymore. I want to emphasise that halo refinement can also

be realised without Virtual cells. The key ingredient is that a coarse grid Leaf cell knows if

its fine grid Leaf cell neighbours want to keep their solution representation.

Combining Halo and A Posteriori Refinement

Halo refinement refines the mesh around interesting features. As a tracked solution feature

will likely propagate into one of the adjacent cells, halo refinement can be classified and used
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Fig. 6.5: Top left: A virtual cell (magenta) carries a halo status greater zero. This triggers

refinement of its Leaf cell ancestor. Leaf cells are filled grey and Virtual cells are filled

white. Top right: The mesh is refined such that no virtual cell carries a halo status greater

zero. Bottom: Aggressively refined mesh that employs halo refinement along a shock front.
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as a very crude pre-refinement procedure. A posteriori refinement, on the other hand, is

well-suited to deal with situations where an interesting feature suddenly emerges somewhere in

the mesh. The classical example is wave steepening and shock formation as they are observed

with nonlinear hyperbolic PDE systems. If both techniques are used together, it is important

to keep a record of the old halo status from before the mesh adaptation. Coarsening a Parent

cell must only be allowed if its Leaf cell children are not flagged for halo refinement in the

current and previous time step.

6.5 Inter-Grid Transfer Operators

Inter-grid transfer operators are necessary to compute the DG face integral at mesh resolution

transitions. In the context of dynamic AMR, inter-grid transfer operators are required to

represent the solution on finer or coarser mesh levels if a cell is refined or an ensemble of 3𝑑

cells is coarsened into one cell, respectively. In this section, I derive all required operators

for arbitrary mesh resolution jumps and demonstrate that they can be constructed from 1D

single-level operators that can be pre-computed for a given polynomial order 𝑝.

6.5.1 Preliminaries

ExaHyPE’s adaptive meshes consist of cubes (or squares in 2D). Each cell 𝐾 can be

represented as an affine mapping of the unit cube. The Jacobian determinant of the cells

is space independent and equals their volume. A mapping for each face of a cell can be

derived from the cell mapping by fixing a single one of the mapping parameters to 0 or 1.

ExaHyPE’s ADER-DG solver employs a nodal DG spatial discretisation [64]. The DG

solution is discontinuous at the cell interfaces but smooth within each cell, where the solution

is approximated as polynomial of order 𝑝. Per cell, basis functions of trial and test space

are constructed as tensor products of 𝑝 + 1 Lagrange basis functions whose support points

coincide with the quadrature nodes of a Gauss Legendre quadrature. Basis functions with

support in cell 𝐾 are defined such that they evaluate to the same value at point 𝑥 ∈ 𝐾 as

their reference cell equivalent at the reference coordinate 𝑥̂ ∈ [0, 1]𝑑 that maps to 𝑥 ∈ 𝐾. As

the nodal basis functions are constructed from Lagrange polynomials, it holds that

𝜙𝑖(𝑥𝑗) = 𝜙𝑖(𝑥̂𝑗) = 𝛿𝑖𝑗 ,

where 𝜙𝑖 and 𝜙𝑖, 0 ≤ 𝑖 ≤ 𝑝, denote basis and reference basis functions, respectively. Their

respective support points are denoted by 𝑥𝑗 and 𝑥̂𝑗 , 0 ≤ 𝑗 ≤ 𝑝. The Kronecker delta 𝛿𝑖𝑗 is
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defined as follows:

𝛿𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1 𝑖 = 𝑗,

0 else.

Let 𝑓 be a polynomial of order 𝑝 with support in cell 𝐾. The 𝐿2 product between the basis

function and 𝑓 can be exactly integrated with a Gauss-Legendre rule with 𝑝 + 1 quadrature

nodes [13][19],

(𝑓, 𝜙𝑖)𝐿2(𝐾) =
∫︁

𝐾
𝑓 𝜙𝑖 d𝑥 = |𝐾|

𝑝∑︁
𝑗=0

𝑤𝑗 𝜙𝑖(𝑥𝑗) 𝑓(𝑥𝑗) = |𝐾|
𝑝∑︁

𝑗=0
𝑤𝑗 𝑓(𝑥𝑗) 𝛿𝑖𝑗

= |𝐾|𝑤𝑖 𝑓(𝑥𝑖), 𝑖 ∈ {0, 1, . . . , 𝑝}.
(6.2)

If 𝑓 is one of the basis functions itself, it holds that

(𝜙𝑙, 𝜙𝑖)𝐿2(𝐾) = |𝐾|𝑤𝑖 𝛿𝑖𝑙, 𝑖, 𝑙 ∈ {0, 1, . . . , 𝑝}. (6.3)

Remark on Gauss-Lobatto Quadrature and Support Points

Note that the continuous and numerical integral in (6.2) and (6.3) are not identical if a Gauss-

Lobatto quadrature is used as this quadrature only integrates polynomials with maximum

degree 2 (𝑝 + 1)− 3 = 2 𝑝− 1 exactly. The product of two basis functions has the maximum

degree 2 𝑝.

In the remainder of this section, I assume that Gauss-Legendre support points are used in

combination with a Gauss-Legendre quadrature rule. I emphasise that all derived operators

are exact in this case. Note that if Gauss-Lobatto nodes are used as support points for the

basis functions in combination with a Gauss-Lobatto quadrature rule, these operators are

only approximations.

6.5.2 Interpolation

Both the refinement of a cell and the representation of coarse grid DOFs on the fine grid

before the face integral require that coarse grid DOFs are interpolated to a subset of the

respective grid entity. In ExaHyPE, coarse grid DOFs associated with a cell volume or face

can always be exactly represented on finer grids as the polynomial order 𝑝 is not adapted

(Fig. 6.6 (a)).

An interpolation operator represents coarse grid DOFs in terms of fine grid DOFs on a subset

of the coarse grid entity, which may be a face or cell. For nodal DG, it can be derived by
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l = 0:

l = 1:

(a) Coarse-to-Fine Interpolation

l = 0:

l = 1:

(b) Fine-to-Coarse Projection

Fig. 6.6: Spatial coarse-to-fine interpolation (a) and fine-to-coarse projection (b) visualised

using third order polynomials (nodal Gauss-Legendre basis). The interpolation samples the

coarse grid polynomial to represent it on the fine grid (level 1). The fine-to-coarse projection

operation projects multiple fine grid polynomials onto a single polynomial on the coarse grid

(level 0).

evaluating the coarse grid representation at the support points of the fine grid DOFs (see

also Fig. 6.6 (a)),

𝑄fine
𝑖 =

∑︁
𝑗

𝑄coarse
𝑗 𝑃 Δ𝑙

𝑖𝑗 . (6.4)

where the 𝑖 = (𝑖𝜉)𝜉=0,1,...,𝜉max and 𝑗 = (𝑗𝜉)𝜉=0,1,...,𝜉max index the fine and coarse grid DOFs,

respectively. Their components run from 0 to 𝑝. If volume data is interpolated, 𝜉max = 𝑑. In

case of boundary data, 𝜉max = 𝑑− 1. Equation (6.4) naturally introduces the interpolation

operator 𝑃 Δ𝑙, which depends on the level difference Δ𝑙 between fine and coarse grid,

𝑃 Δ𝑙
𝑖𝑗 = 𝜙coarse

𝑗 (𝑥fine
𝑖 ) = 𝜙coarse

𝑗 (𝑥̂fine
𝑖 ), (6.5)

where 𝜙coarse
𝑗 denotes a basis function associated with the coarse grid entity, and 𝜙coarse

𝑗

denotes its reference domain representation. Furthermore, 𝑥fine
𝑖 and 𝑥̂fine

𝑖 denote a support

point on the fine grid and the corresponding reference coordinate. Note that 𝑥̂fine
𝑖 must be

expressed with respect to the coarse grid entity’s reference domain.

The interpolation operator is identical to the 𝐿2 projector that projects the coarse grid DOFs
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onto the fine grid basis, i.e.,

𝑃 Δ𝑙
𝑖𝑗 =

(𝜙coarse
𝑗 , 𝜙fine

𝑖 )𝐿2(𝐸)

(𝜙fine
𝑖 , 𝜙fine

𝑖 )𝐿2(𝐸)
=
|𝐸|∑︀𝑙 𝑤𝑙 𝜙coarse

𝑗 (𝑥̂fine
𝑙 ) 𝜙fine

𝑖 (𝑥̂fine
𝑙 )

|𝐸|∑︀𝑙 𝑤𝑙 𝜙fine
𝑖 (𝑥̂fine

𝑙 ) 𝜙fine
𝑖 (𝑥̂fine

𝑙 )

=
∑︀

𝑙 𝑤𝑙 𝜙coarse
𝑗 (𝑥̂fine

𝑙 ) 𝛿𝑖𝑙∑︀
𝑙 𝑤𝑙 𝛿𝑖𝑙 𝛿𝑖𝑙

=
𝑤𝑖 𝜙coarse

𝑗 (𝑥̂fine
𝑖 )

𝑤𝑖

= 𝜙coarse
𝑗 (𝑥̂fine

𝑖 ) = 𝜙coarse
𝑗 (𝑥fine

𝑖 )

(6.6)

where for an interpolation of volume DOFs, 𝐸 = 𝐾coarse ∩𝐾fine, and for boundary DOFs,

𝐸 = 𝜕𝐾coarse∩𝜕𝐾fine. In (6.6), I use the fact that the 𝐿2 product can be exactly integrated with

a Gauss-Legendre quadrature rule that uses 𝑝 + 1 quadrature nodes per reference coordinate

direction. Due to the tensor product structure of the basis functions, interpolation operator

𝑃 Δ𝑙 has tensor product structure, too. Furthermore, multi-level interpolation operators 𝑃 Δ𝑙

can be constructed by recursively applying a single-level operator (Fig. 6.7).

In summary: Interpolation of coarse grid degrees of freedom to arbitrary fine grid levels can be

conducted by recursively applying tensor products of 1D single-level interpolation operators.

The single-level operators are independent of a cell’s geometry and can be pre-computed.

l = 0:

l = 1:

l = 2:
P̂ 2

5

P̂ 1
1

P̂ 1
2

Fig. 6.7: If the level difference is greater than one, the interpolation operator can be

constructed by chaining single-level operators 𝑃 1. The subscript of the interpolation operators

indicates the subinterval from the perspective of the respective coarse grid.

6.5.3 Face Integral at Mesh Resolution Transitions

The same 1D reference operators can be reused to add fine grid face integral contributions to

a coarse grid cell’s solution. Let 𝐾𝑎 be a mesh cell, and 𝒱(𝐾) = {𝐾 ′ ∈ 𝒯 : 𝜕𝐾 ′ ∩ 𝜕𝐾 ′ ̸= ∅}
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be the set of its direct neighbours. The surface integral can be decomposed into contributions

from the interfaces that a cell shares with its direct neighbours:∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝜕𝐾𝑎

𝑣ℎ 𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) 𝑛 d𝑠(𝑥) d𝑡

=
∑︁

𝐾𝑏∈𝒱(𝐾)

∫︁ 𝑇 +Δ𝑇

𝑇

∫︁
𝜕𝐾𝑎∩𝜕𝐾𝑏

𝑣ℎ 𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) 𝑛 d𝑠(𝑥) d𝑡,
(6.7)

where the Riemann solution is denoted by 𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) · 𝑛 and the spatially varying DG

test function by 𝑣ℎ. The latter is drawn from the same function space as the ADER-DG

solution. The Riemann problem between cells is then solved as in Algorithm 6.6. Here,

the extrapolate substep involves the coarse-to-fine interpolation discussed in the previous

section. After the Riemann solve, the faceIntegral substep adds the result of the DG face

integral to the coarse grid solution.

ExaHyPE’s ADER-DG method extrapolates the space-time predictor and the normal

component of the volume flux onto the faces before solving the Riemann problem. The

implementation represents these boundary-extrapolated quantities using a Lagrange basis of

the same order 𝑝 that is used to represent the DG solution. In contrast to the DG solution,

there are only 𝑚 (𝑝 + 1)𝑑−1 spatial DOFs per face. However, there is one such array of spatial

DOFs for each of the (𝑝+1) time integration points. This makes 𝑚 (𝑝+1)𝑑 DOFs in total per

face and per extrapolated flux and predictor. The following paragraphs focus on interpolation

and projections of spatial DOFs from one mesh resolution to the other. The concepts are

applicable to any DG method not only ADER-DG. Therefore, I do not discuss the time

dependence of ADER-DG boundary data further in the remainder of this section.

Algorithm 6.6 (The DG Face Integral). The DG face integral between cells, which may

be on different levels, can be decomposed into the substeps extrapolate, Riemann, and

faceIntegral.

1 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # Riemann solves
2 ( 𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎 , 𝐹 (𝑞*

ℎ)|𝐾𝑎)
3 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
4 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
,

5 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎 , 𝑛𝐾𝑏

, 𝑛, Δ𝑇 )
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6 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎

), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
7 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

8 end for

At the interface of a coarse and fine grid cell, the Riemann solution is always expressed in

terms of the fine grid DOFs. Therefore, it is straightforward to derive the contributions of

the face integral to the fine grid cell’s solution. However, the face integral contributions to the

coarse grid cell’s solution must be expressed in terms of the coarse grid DOFs. This requires

applying another inter-grid transfer operator. Riemann solution and boundary-extrapolated

coarse grid test function can be expanded as follows:

𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) 𝑛 =
∑︁

𝑗

𝐺𝑗 𝜙fine
𝑗 , 𝑣ℎ|𝜕𝐾𝑎𝜕𝐾𝑏

=
∑︁
𝑘,𝑖

𝑣𝑘,𝑖 𝐹𝑘 𝜙coarse
𝑖 ,

where I used that one of the reference coordinates remains constant on interface 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏.

I number the respective one-dimensional basis functions with index 𝑘. The coefficients 𝐹𝑘 are

evaluations of these basis functions on the interface. Expanding equation (6.7) then leads to:∫︁
𝜕𝐾coarse∩𝜕𝐾fine

𝐺(𝑞*,−
ℎ , 𝑞*,+

ℎ ) : (𝑣ℎ ⊗ 𝑛) d𝑠(𝑥)

= (
∑︁

𝑗

𝐺𝑗 𝜙fine
𝑗 ,

∑︁
𝑘,𝑖

𝑣𝑘,𝑖 𝐹𝑘 𝜙coarse
𝑖 )𝐿2(𝜕𝐾coarse∩𝜕𝐾fine)

=
∑︁
𝑘,𝑖

𝑣𝑘,𝑖 𝐹𝑘

∑︁
𝑗

𝐺𝑗 (𝜙fine
𝑗 , 𝜙coarse

𝑖 )𝐿2(𝜕𝐾coarse∩𝜕𝐾fine)

=
∑︁
𝑘,𝑖

𝑣𝑘,𝑖 𝐹𝑘 |𝜕𝐾coarse ∩ 𝜕𝐾fine|
∑︁

𝑗

𝐺𝑗 𝑤𝑗 𝜙coarse
𝑖 (𝑥fine

𝑗 )

= |𝜕𝐾coarse ∩ 𝜕𝐾fine|
∑︁
𝑘,𝑖

𝑣𝑘,𝑖 𝐹𝑘

∑︁
𝑗

𝐺𝑗 𝑤𝑗 𝑃 Δ𝑙
𝑗𝑖

(6.8)

where I have substituted the interpolation operator (6.5) in the last step. Note the transposed

indices. Equation (6.8) reveals that conducting face integrals between cells at mesh resolution

transitions requires to apply transposed interpolation operator to the fine grid degrees of

freedom. Therefore, the DG face integral at arbitrary mesh resolution transitions can also be

computed via the 1D single-level interpolation operator (6.5).

The face integral performs an (non-normalised) 𝐿2 projection of fine grid boundary DOFs

onto coarse grid boundary DOFs. This fine-to-coarse 𝐿2 projection might remove information

from the find grid representation as it smooths it out (Fig. 6.6 (b)).
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6.5.4 Coarsening

In ExaHyPE, the fine-to-coarse projection of the ADER-DG solution is defined as 𝐿2

projection. The solution of coarse grid leaf cell 𝐾𝑐 is constructed as follows from the fine grid

DOFs:

𝑄𝐾𝑐
𝑖 =

∑︁
𝐾𝑓 ∈𝒯 : 𝐾𝑓 ⊂𝐾𝑐

∑︁
𝑗

𝑄
𝐾𝑓

𝑗

(𝜙𝐾𝑐
𝑖 , 𝜙

𝐾𝑓

𝑗 )𝐿2(𝐾𝑐∩𝐾𝑓 )

(𝜙𝐾𝑐
𝑖 , 𝜙𝐾𝑐

𝑖 )𝐿2(𝐾𝑐)
,

where 𝑖 and 𝑗 are 𝑑-dimensional multi indices for the basis function and their support points.

Furthermore,

(𝜙𝐾𝑐
𝑖 , 𝜙

𝐾𝑓

𝑗 )𝐿2(𝐾𝑐∩𝐾𝑓 )

(𝜙𝐾𝑐
𝑖 , 𝜙𝐾𝑐

𝑖 )𝐿2(𝐾𝑐)
= |𝐾𝑓 |
|𝐾𝑐|

𝑤𝑗 𝜙𝐾𝑐
𝑖 (𝑥̂𝐾𝑓

𝑗 )
𝑤𝑖

= 1
3𝑑

𝑃 1
𝑗𝑖.

Again, the physical extents of the cell do not play a role in the projection, and the projector

can be constructed from the single-level 1D reference domain interpolation operators (see

(6.5)).

6.6 Discussion

In this chapter, I presented ExaHyPE’s dynamic AMR machinery. ExaHyPE uses the

adaptive mesh that it builds from Peano’s spacetree as meta data structure. This has

two implications: First, Peano allows to position ExaHyPE’s box-like geometries within a

bounding box, where the bounding box governs the mesh resolution. ExaHyPE uses this

flexibility to realise arbitrary regular base meshes for its solvers. Second, to handle the DG

methods data flow between coarse and fine grid cells at arbitrary adaptivity boundaries,

ExaHyPE places virtual helper cells into the spacetree.

The proposed mesh data structure can be generalised to other applications and other fea-

tures can be built on top of it. Peano’s spacetree partitioning introduces a master-worker

relationship between processes that might require master-worker communication to realise

the Riemann solve data flow at the interface between coupled coarse and fine grid cells. The

proposed mesh data structure allows to identify points in the spacetree where local master-

worker is necessary due to the ADER-DG method’s Riemann solves. I use this information

in ExaHyPE to decouple master and worker at these points via artificial mesh refinement.

To realise limiter indicator based refinement for the a posteriori subcell limiting ADER-DG

method, I proposed two novel mesh pre-refinement approaches in this chapter that I generalised
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to classic dynamic AMR for the sole ADER-DG scheme. Here, I conceptually decompose

mesh refinement events into events that can be predicted, e.g. a wave travels from a fine

grid cell into a coarse grid cell, and events that cannot be predicted, e.g. a shock or an

interesting solution feature forms on a coarser grid or travels in from a boundary. To address

refinement events that can be predicted, I introduced halo refinement, which ensures that there

is always one (or more) additional layers of cells around interesting solution features. I have

demonstrated that this feature can be integrated straightforwardly into ExaHyPE’s mesh

refinement procedures. To address unpredictable refinement events, I introduced a posteriori

refinement. With this technique, the mesh is first refined according to a solution feature that

has newly appeared, but then a rollback to the previous solution state is performed and the

time step is rerun with the now prepared mesh. The presented techniques are essential for

ExaHyPE’s realisation of the a posteriori limiting ADER-DG method on adaptive meshes

(see Chapter 7).

Impact of This Work

ExaHyPE’s adaptive mesh refinement techniques have been an important ingredient to obtain

competitive simulation results in the context of seismic wave propagation, cloud formation

processes, and shallow water flow [92][75][83].

Outlook

In a next step, ExaHyPE could integrate halo refinement into the time stepping iterations,

i.e. run mesh refinement on-the-fly while ADER-DG time steps are run. Concerning a

posteriori mesh refinement for unlimited DG methods, it must be evaluated if it pays off

to store the previous solution vector as this reduces the maximum problem size that can be

tackled by the method.
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In this chapter, I transform the a posteriori limiting ADER-DG method into a hybrid

ADER-DG-FVM solver to reduce the number of communication phases of the method. The

well-suitedness of a numerical scheme for massively parallel machines depends to a large degree

upon the number of data exchanges required by the scheme per time step. The a posteriori

ADER-DG method requires up to four neighbour-communication steps per time step due to

the additional recomputation with a robust FVM. Two cannot be hidden behind computations

and might become a bottleneck in the strong-scaling limit. In the first part of this chapter,

I reformulate the a posteriori limiting ADER-DG method as a hybrid ADER-DG-FVM

solver. In the best case, this reduces the number of neighbour communication steps to a single

one per time step. In the worst case, the original four communication steps are required as the

scheme is still as robust as the original approach. The limiter criteria detect shocks and other

discontinuities. These solution features can only be resolved with a high mesh resolution. In

the second part of this chapter, I present a mesh adaptation procedure that reuses the limiter

criteria of the a posteriori limiting framework as refinement criterion. In some scenarios, this

frees users completely from specifying a separate refinement criterion.
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Contributions

I present two communication-avoiding hybrid solver realisations of the a posteriori limiting

ADER-DG method. Detailed pseudocode is presented for both algorithms. Moreover, I detail

how the limiter criteria of the a posteriori limiting ADER-DG framework can be reused as

refinement indicators based on the halo refinement and a posteriori refinement techniques from

Chapter 6. To the best of my knowledge, this is the first time that this has been presented in

such a detailed form.

Related Work

The authors of [77] present an DG-FVM hybrid solver that utilises a priori indicators. The

method has been shown to work well for challenging problems; however, there still remains

the chance that the indicators fail if shock formation cannot be predicted. Being based on

[54], the hybrid method that I present in this chapter is more resilient as it uses a posteriori

indicators that are applied to the updated solution. It recomputes the solution with robust

FVM if numerical instabilities are detected after the time step. Reusing the limiter criteria

as refinement indicator has been explored briefly in [51], but implementational aspects have

not been discussed there.

Structure

This chapter is organised as follows: Section 7.1 introduces the hybrid ADER-DG-FVM solver,

which requires only a single communication step if ADER-DG and FVM subdomains remain

unchanged. This is, for example, guaranteed when solving the diffuse interface formulation of

the elastic wave equations; however, it is usually not the case when solving the compressible

Euler equations. Here, the FVM solver is applied on shock fronts that move through the

computational domain. To also reduce communication in such scenarios, I merge additional

operations into the time stepping iterations; see Section 7.2. In Section 7.3, I employ the halo

and a posteriori refinement techniques developed in Chapter 6 to realise mesh refinement that

is guided by the hybrid solver’s shock detection criteria. Section 7.4 ends the chapter with a

discussion and an outlook on a third hybrid solver variant that allows a limited growth of the

FVM domain during the time stepping iterations.
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(a) Recomputation Stencil (b) Subdomains of the Hybrid Method

Fig. 7.1: (a) The recomputation stencil of the original a posteriori subcell limiting as

presented in [54]. (b) Subdomains of the hybrid method: The red cells compute with the

FVM, the orange cells compute with the FVM and project the result onto a ADER-DG

polynomial, the yellow cells compute with ADER-DG and project the result onto an FVM

patch, and the white cells compute solely with ADER-DG.

7.1 A Hybrid ADER-DG-FVM Solver

In this section, I reformulate the a posteriori limiting ADER-DG method as hybrid solver. To

highlight my modifications, I shortly reiterate principal program flow of the original method.

After every ADER-DG time step, the a posteriori limiting ADER-DG method uses a robust

finite volume method to recompute the solution in cells where the ADER-DG solution

exhibits numerical instabilities or is not physical; see Algorithm 2.5. The assessment whether

an ADER-DG solution exhibits such defects is done a posteriori, i.e. after the ADER-DG

solution update; see Algorithm 2.6. The cells where such defects are present in the ADER-DG

solution are marked as troubled. If at least one cell is troubled after the ADER-DG time

step, the recomputation procedure is started. Before the FVM recomputation, a posteriori

limiting ADER-DG creates FVM subdomains. This requires to diffuse a limiter status for

two iterations; see Algorithm 2.4. In this algorithmic phase, troubled cells get assigned the

maximum limiter status 𝐿max, while face-connected neighbours and second degree neighbours

get assigned the limiter status 𝐿max − 1 and 𝐿max − 2, respectively. All cells with limiter

status ≥ 𝐿max − 2 roll back to the previous time step. They either project a previous stable

ADER-DG solution onto an FVM patch or reuse the FVM patch from the previous time
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step if the ADER-DG solution was already not stable back then. Afterwards, all cells that

carry a limiter status ≥ 𝐿max − 2 exchange patch boundary layers. Finally, troubled cells and

their face-connected neighbours (limiter status ≥ 𝐿max−1) evolve the solution with the FVM,

while second-degree neighbours simply roll forward in time again (limiter status = 𝐿max − 2).

Numerical instabilities in the ADER-DG solution are typically caused by discontinuities such

as shock waves. As long as these are present, there is an FVM recomputation necessary in the

majority of time steps. In my experiments, I observed that a posteriori recomputation is often

applied to the same set of cells for multiple time steps in a row. I assume that this observation

is linked to the time step size restrictions that apply to high-order ADER-DG schemes; see

e.g. the CFL condition (2.8). The high subcell resolution of these schemes requires that a

small time step size must be chosen. Consequently, it takes a wave a proportional number of

time steps to pass through the cell.

After the FVM recomputation step, the a posteriori limiting ADER-DG method continues as

follows: In all previously troubled cells and their face-connected neighbours, the ADER-DG

solution polynomial is recreated as projection of the FVM solution; see Algorithm 2.5. In

the next time step, all cell solutions are then evolved again with the ADER-DG method.

The information if a cell was troubled in the previous step is not used. Motivated by my

observation, I make the following assumption:

Assumption 1. Once an ADER-DG cell is marked as troubled, it likely remains troubled for

a number of time steps.

Under Assumption 1, I propose to reformulate a posteriori limiting ADER-DG as hybrid

solver that connects FVM and ADER-DG subdomains. The original method’s troubled

cells and their face-connected neighbours belong to an FVM subdomain (limiter status

≥ 𝐿max − 1) whilst ADER-DG cells and second degree neighbours of troubled cells belong to

an ADER-DG subdomain (limiter status < 𝐿max−1). Following the recomputation procedure

(Algorithm 2.5), the FVM and ADER-DG subdomains are interfaced by projecting the FVM

solution patches onto a ADER-DG polynomial in face-connected neighbours of troubled cells

and doing the reverse in second degree neighbours of troubled cells (Fig. 7.1 (b)). Where

Assumption 1 holds, the cell updates performed by the hybrid ADER-DG-FVM solver are

identical to the ones performed by the original approach [54]. Contrary to the latter, a single

additional step of the dissipative FVM will be run in cells where the assumption does not
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hold.

Notation. In the algorithms presented in this chapter, I do not include the predictor step

of the ADER-DG method as it is not relevant in this chapter. In fact, the concepts and

algorithms presented in this chapter are more general than presented; other numerical methods

could be substituted for ADER-DG and FVM.

Having defined the subdomains and the operations performed by the cells in the interface

layers, I present the hybrid ADER-DG-FVM scheme in Algorithm 7.1, where I omit most

technical details of ADER-DG and FVM.

Algorithm 7.1 (A Posteriori Limiting Hybrid ADER-DG-FVM Method). The algorithmic

phases of the a posteriori limiting hybrid ADER-DG-FVM method. The limiter status is taken

into account when performing neighbour exchange and cell updates (blue). Cells with troubled

status recompute the local minimum and maximum again with the FVM solver after evaluating

limiter criteria with the ADER-DG values (green). If a cell becomes newly untroubled or

newly troubled, a limiter status diffusion is triggered (red). In the latter case, an FVM cells

recomputation is triggered, too.

1 function staticHybridSolverTimeStep(Δ𝑇 )
2 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # loop over faces
3 if limiterStatus𝐾𝑎

< troubledStatus and limiterStatus𝐾𝑏
< troubledStatus:

4 exchange DG Riemann solver input data
5 end if
6 if limiterStatus𝐾𝑎

> 0 and limiterStatus𝐾𝑏
> 0:

7 copyBoundaryLayers(𝑞ℎ,FV(·, 𝑇 )|𝐾𝑎
, 𝑞ℎ,FV(·, 𝑇 )|𝐾𝑏

)
8 end if
9 neighbourMin𝐾𝑎

← min(neighbourMin𝐾𝑎
, localMin𝐾𝑏

)
10 neighbourMax𝐾𝑎

← max(neighbourMax𝐾𝑎
, localMax𝐾𝑏

)
11 neighbourMin𝐾𝑏

← min(neighbourMin𝐾𝑏
, localMin𝐾𝑎

)
12 neighbourMax𝐾𝑏

← max(neighbourMax𝐾𝑏
, localMax𝐾𝑎

)
13 end for
14

15 recomputeFVCells← false
16 updateSolverDomains← false
17 for cell 𝐾 ∈ 𝒯 do # loop over cells
18 if limiterStatus𝐾 ≥ troubledStatus− 1 then
19 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 ← updateFV(𝑞ℎ(·, 𝑇 )|𝐾)
20 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← represent 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 as polynomial
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21 else if limiterStatus𝐾 = troubledStatus− 2
22 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← updateDG(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
23 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 ← average polynomial 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 in 𝑉 , ∀𝑉 ∈ 𝐾

24 else
25 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← updateDG(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
26 end if
27 # evaluate the limiter criteria
28 (localMin𝐾 , localMax𝐾) ← evalMinAndMax(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
29 isTroubled← ¬DMP(localMin𝐾 , localMax𝐾 , neighbourMin𝐾 , neighbourMax𝐾) or
30 ¬PAD(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
31 if limiterStatus𝐾 = troubledStatus then
32 (localMin𝐾 , localMax𝐾) ← evalMinAndMax(𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾)
33 end if
34 neighbourMin𝐾 ← localMin𝐾

35 neighbourMax𝐾 ← localMax𝐾

36 # update limiter status
37 oldLimiterStatus𝐾 ← limiterStatus𝐾

38 if isTroubled = true and limiterStatus𝐾 ̸= troubledStatus then
39 limiterStatus𝐾 ← troubledStatus
40 updateSolverDomains← true
41 recomputeFVCells← true
42 else isTroubled = false and oldLimiterStatus𝐾 = troubledStatus
43 limiterStatus𝐾 ← 0
44 updateSolverDomains← true
45 end if
46 end for
47 return ( updateSolverDomains, recomputeFVCells )
48 end function

The hybrid solver triggers an update of the ADER-DG and FVM domains if a previously

troubled cell is not troubled anymore. To this end, Algorithm 2.4 is employed plus a routine

for deallocating the FVM patches (not shown). Continuing to compute with the FVM in

these cells would introduce unnecessary numerical dissipation. The algorithm also triggers

an update of the domains if previously untroubled cells become troubled. Additionally, it

triggers an FVM recomputation with Algorithm 2.5. Under Assumption 1, this is exactly

the behaviour of the original method. Contrary to the original approach, the local solution

minimum and maximum is computed from the FVM patch in troubled cells. The ADER-DG

polynomials in these cells contain spurious oscillations which could deteriorate the accuracy

of the DMP.
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7.2 Dynamic Curing

I next extend Algorithm 7.1 such that it dynamically transforms previously troubled cells, i.e.

cells that compute with finite volumes, back into ADER-DG cells. To this end, the proposed

scheme builds the limiter status diffusion into the time stepping iterations. The scheme still

requires that an FVM recomputation step is run when a cell becomes troubled, i.e. when this

cell wasn’t troubled before.

The method works as follows: If a troubled cell is free of artificial oscillations after a time

step, the dynamic curing procedure first transforms this cell into an ADER-DG-to-FVM

projection cell (limiter status = 𝐿max− 2). During the neighbour exchange at the begin of the

next time step, the cells now also exchange their limiter status. If the previously cured cell, i.e

the new ADER-DG-to-FVM projection cell is informed that one face-connected neighbour

is troubled, it raises its limiter status to 𝐿max − 1, i.e. it becomes an FVM-to-ADER-DG

projection cell. If all surrounding cells are FVM-to-ADER-DG projection cells or pure

ADER-DG cells, then the new ADER-DG-to-FVM projection cell decreases its limiter

status again and becomes a pure ADER-DG cell. In the last remaining case, i.e. no neighbour

is troubled and one neighbour is an FVM-to-ADER-DG cell (limiter status = 𝐿max − 1), the

new ADER-DG-to-FVM projection cell keeps it limiter status of 𝐿max − 2.

Algorithm 7.2 (Dynamically Curing Hybrid ADER-DG-FVM Method). Algorithmic phases

of the time step of the dynamically curing hybrid method. No limiter status diffusion step is

necessary when a cell is cured, i.e. is not troubled anymore (blue). The method exchanges the

limiter status between neighbours at the begin of every time step and uses this information to

decide what update to perform (green).

1 function curingHybridSolverTimeStep(Δ𝑇 )
2 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # loop over faces
3 if limiterStatus𝐾𝑎

< 𝐿max and limiterStatus𝐾𝑏
< 𝐿max:

4 exchange DG Riemann solver input data
5 end if
6 if limiterStatus𝐾𝑎 > 0 and limiterStatus𝐾𝑏

> 0:
7 copyBoundaryLayers(𝑞ℎ,FV(·, 𝑇 )|𝐾𝑎 , 𝑞ℎ,FV(·, 𝑇 )|𝐾𝑏

)
8 end if
9 neighbourMin𝐾𝑎

← min(neighbourMin𝐾𝑎
, localMin𝐾𝑏

)
10 neighbourMax𝐾𝑎

← max(neighbourMax𝐾𝑎
, localMax𝐾𝑏

)
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11 neighbourMin𝐾𝑏
← min(neighbourMin𝐾𝑏

, localMin𝐾𝑎
)

12 neighbourMax𝐾𝑏
← max(neighbourMax𝐾𝑏

, localMax𝐾𝑎
)

13 # exchange limiter status
14 mergedLimiterStatus𝐾𝑎

← max(mergedLimiterStatus𝐾𝑎
, limiterStatus𝐾𝑏

)
15 mergedLimiterStatus𝐾𝑏

← max(mergedLimiterStatus𝐾𝑏
, limiterStatus𝐾𝑎

)
16 end for
17

18 recomputeFVCells← false
19 updateSolverDomains← false
20 for cell 𝐾 ∈ 𝒯 do # loop over cells
21 if mergedLimiterStatus𝐾 ≥ 𝐿max − 1 then
22 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 ← updateFV(𝑞ℎ(·, 𝑇 )|𝐾)
23 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← represent 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 as polynomial
24 else if mergedLimiterStatus𝐾 = 𝐿max − 2
25 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← updateDG(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
26 𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾 ← average polynomial 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 in 𝑉 , ∀𝑉 ∈ 𝐾

27 else
28 deallocate any FV patch # here it is safe
29 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← updateDG(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
30 end if
31 # evaluate the limiter criteria
32 (localMin𝐾 , localMax𝐾) ← evalMinAndMax(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
33 isTroubled← ¬DMP(localMin𝐾 , localMax𝐾 , neighbourMin𝐾 , neighbourMax𝐾) or
34 ¬PAD(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)
35 if limiterStatus𝐾 = 𝐿max then
36 (localMin𝐾 , localMax𝐾) ← evalMinAndMax(𝑞ℎ,FV(·, 𝑇 + Δ𝑇 )|𝐾)
37 end if
38 neighbourMin𝐾 ← localMin𝐾

39 neighbourMax𝐾 ← localMax𝐾

40 # update limiter status
41 oldLimiterStatus𝐾 ← limiterStatus𝐾

42 if isTroubled = true and limiterStatus𝐾 ̸= 𝐿max then
43 limiterStatus𝐾 ← 𝐿max

44 updateSolverDomains← true
45 recomputeFVCells← true
46 else isTroubled = false and oldLimiterStatus𝐾 = 𝐿max

47 limiterStatus𝐾 ← limiterStatus𝐾 − 2
48 end if
49 mergedLimiterStatus𝐾 ← limiterStatus𝐾

50 end for
51 return ( updateSolverDomains, recomputeFVCells )
52 end function
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Experimental Evidence

First, I validate that the implementation of the curing hybrid scheme is computing correctly

and does not add too much dissipation. To this end, I consider the Shu-Osher 1D benchmark

for compressible Euler codes [88]. Here, a domain with bounds [−5, 5] is separated at 𝑥 = −4

into two regions: In the left region, density and velocity are initially chosen 𝜌L = 3.8571 and

𝑣L = 2.6294, respectively. The pressure is chosen as 𝑝L = 10.333. In the right region, the

initial values are 𝜌R = 1 + 0.2 · sin(5 𝑥), 𝑣R = 0, and 𝑝R = 1. The EOS is chosen as the one of

an ideal gas. The simulation is run until non-dimensional time 𝑇final = 1.8.

Shu-Osher is considered a difficult benchmark as the interaction of the harmonic density

perturbation with the shock generates high-frequent oscillations behind the main shock. If

a scheme applies too much numerical dissipation to capture the shocks, it will damp out

these oscillations. If a scheme does not use enough numerical dissipation, spurious oscillations

develop around the main shock and around secondary shocks that form at the end of the

simulation. To treat the shock in the Shu-Osher benchmark, I use ExaHyPE’s MUSCL-

Hancock method in combination with a Koren slope limiter [74]. The reference solution for this

test was computed with a third-order ADER-WENO (“Weighted Essentially Non-Oscillatory”)

scheme on a very fine mesh. The reference data was kindly provided by Franceso Fambri. In

order to enable a comparison with [54], I employ 40 mesh cells along the 𝑥 direction via the

bounding box scaling mechanism presented in Ch. 6.

The solution computed with ExaHyPE’s 9th-order hybrid ADER-DG-FVM solver matches

both reference solutions well even though ExaHyPE uses a coarse mesh with only 40 cells, a

second-order FVM limiter, and a simple Rusanov flux for ADER-DG and FVM (Fig. 7.2). It

seems not to be necessary to use a higher-order WENO (Weighted Essentially Non-Oscillatory)

scheme as limiter and the more expensive generalised Osher flux as Riemann solver that

the authors of [54] used. However, I found that it is essential to use a good slope limiter

such as the Koren limiter. The classic minmod limiter leads to significantly more numerical

dissipation in this test.

Figure 7.3 shows the number of communication steps when the curing limiting scheme is used

instead of the original implementation. Three standard benchmark scenarios are considered:

The first two, the Sod shock tube and the Shu-Osher problem, are 1D problems while the third
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Fig. 7.2: In the Shu-Osher test, a shock and a smooth harmonic wave interact. (a) Troubled

cells (red) at time 𝑇 = 1.8 superimposed on the warped density profile. (b) Troubled FVM

cells (red) and interface cells (orange and yellow) surrounded by ADER-DG cells (white) at

time 𝑇 = 1.8. (c) Comparison of results obtained with ExaHyPE’s hybrid ADER-DG-FVM

solver against a third-order ADER-WENO result that was computed on a very fine mesh.
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models circular two-dimensional explosion. In all experiments, the limiter is active in every

time step; see [54] for a detailed description of the explosion problem and the Sod shock tube.

Therefore, the original approach requires four communication steps in every time step, i.e. one

ADER-DG communication step, 2 limiter status diffusion iterations, and one exchange of

FVM boundary layers. The curing scheme works well for the 1D Riemann problems; however,

it is less successful if the 2D explosion problem is considered. As expected, the curing scheme

is more successful if a high-order ADER-DG method is employed. It seems less effective if

the spatial resolution of the 2D problem increases while no such trend can be spotted for the

1D problems.
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Fig. 7.3: Averaged number of neighbour communication steps per time step of the curing

hybrid ADER-DG-FVM solver. The original method requires 4 steps for these problems where

limiting is necessary in every time step. The minimum possible number of communication

steps is the number of communication steps of the unlimited ADER-DG method, which is 1.

7.3 Limiter-Criteria-Guided Refinement

ExaHyPE realises limiter-criteria-guided refinement via a combination of the halo and a

posteriori refinement techniques proposed in Chapter 6. High order polynomial approximations

can resolve most smooth features on a rather coarse resolution. A fine mesh resolution is

typically only required in the vicinity of strong gradients, discontinuities, and complicated
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(a) Density at 𝑇 = 0.0 (b) Density at 𝑇 = 0.1

(c) Density at 𝑇 = 0.2 (d) Mesh and Subdomains at 𝑇 = 0.2

Fig. 7.4: Simulation of a circular explosion in an ideal gas. A 7th-order a posteriori

limiting ADER-DG was used and the computational mesh was adapted according to the

limiter criterion that detects oscillations in density and pressure. To visualise the high-order

polynomials in plot (a) – (c), the density solution in the ADER-DG cells is interpolated onto

an uniform 8× 8 subgrid. The actual computational grid corresponding to plot (c) is shown

in plot (d) along with the hybrid solver subdomains. At 𝑇 = 2.0, the simulation used 1572

cells that computed primarily with ADER-DG and 236 that computed primarily with FVM.
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geometries. As the admissibility checks of the a posteriori limiting ADER-DG method

identifies shock waves, it makes sense to (re-)use them as refinement criterion. However, if

a shock has been detected in a cell via the limiter criteria, this cell does contain a troubled

ADER-DG solution. We must go back in time. This links to a posteriori refinement. The

authors of [109] observe spurious oscillations in the neighbours of cells that resolve a shock.

To prevent these oscillations, they suggest to artificially refine a number of additional cells in

a radius around every shock. This links to halo refinement.

ExaHyPE’s limiter-criteria-guided refinement is realised as follows: If troubled cells are

detected on a coarser grid, the respective cells are refined to the finest adaptive mesh level

of the grid (Fig. 7.4). Then, halo refinement is employed on top to bring face-connected

and second-degree neighbours onto the finest mesh level. To accomplish this, the maximum

halo status is chosen equal to the maximum limiter status 𝐿max. On the one hand, this halo

refinement prevents pre- and post-shock oscillations. On the other hand, it simplifies the

implementation of the FVM limiter as no inter-grid transfer operators are required. In the

last step, a global rollback is performed, i.e. all cell solutions, if troubled or not, are rolled

back to their state of the previous time step. The whole time step is then rerun with the new

effectively pre-refined mesh.

7.4 Discussion and Outlook

In this chapter, I reformulated the a posteriori limiting ADER-DG method as a hybrid

ADER-DG-FVM solver based on the observation that the set of cells that hold a troubled

ADER-DG solution often remains unchanged over multiple time steps. I then extend the

hybrid solver algorithm such that the process of curing FVM cells, i.e. the transitioning of

these cells from being evolved with the FVM back to being evolved with ADER-DG, is

merged into the time stepping iterations. I demonstrated that this solver significantly reduces

recomputations and thus the communication steps of the a posteriori limiting ADER-DG

method for problems with dynamically evolving FVM domain. In particular, it worked well if

the ADER-DG scheme uses a high approximation order. The dynamically curing solver only

stops its time stepping iterations when the limiter domain grows, i.e. a shock travels into

the next cell. In the last part of this chapter, I detailed how limiter-criteria-guide refinement

can be realised for this hybrid solver using the halo refinement and a posteriori refinement
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techniques developed in Chapter 6.

As a minor unforeseen result, I demonstrated that the a posteriori subcell limiting ADER-

DG method achieves very competitive results in the Shu-Osher benchmark with a simple

second-order MUSCL-Hancock method in combination with a cheap but dissipative Rusanov

flux if the MUSCL-Hancock scheme uses a Koren slope limiter [74].

Lastly, I want to stress that the proposed horizontal coupling concepts are more general

as they are presented in this chapter. ADER-DG and FVM can be readily replaced with

any other numerical method. Furthermore, the coupling mechanisms can be applied to

applications other than treating shocks and discontinuities. ExaHyPE uses it, e.g., to realise

diffuse interface methods that require a high resolution along the interface. At their core, the

presented algorithms realise a dynamic coupling of a macroscopic and a microscopic model.

Future research could generalise the presented two-level schemes to multi-scale schemes that

couple more than two different models.

Outlook: Dynamically Growing FV Domains

As wave speeds are limited, shock propagation can often be anticipated. Therefore, a natural

next step would be to allow the FVM domain to also grow dynamically during the time

stepping iterations. However, this cannot be accomplished by a simple extension to the

dynamically curing hybrid solver as this could lead to situations where untroubled ADER-DG

cells and troubled FVM cells would communicate directly with each other via the DG solver. In

this case, the untroubled ADER-DG cell’s solution could get polluted by spurious oscillations

in the ADER-DG Riemann input data provided by the troubled cell. Additionally, troubled

cells and their face-connected neighbours require FVM boundary data from neighbouring

cells. Therefore, troubled cells and their neighbours cannot be placed directly next to a pure

ADER-DG cell.

A dynamic growth of the FVM domain can be accommodated if at least one additional

layer of ADER-DG-to-FVM and FVM-to-ADER-DG projection cells is introduced around

troubled cells. The more of these layers are introduced the more freely the FVM domain can

grow but the more numerical dissipation is introduced in areas where it is not required and

potentially harmful. Therefore, a high-order finite volumes schemes or limiter-criteria-guided

AMR should be used to keep the numerical dissipation under control. The cartoon Fig. 7.5
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(a) FVM Cell and 2-Cell Helper Layers (b) FVM Cells Spread Gradually

(c) FVM-to-ADER-DG Layers Recover (d) ADER-DG-to-FVM Layers Recover

Fig. 7.5: Diffusive Approach: Expansion of FVM subdomain and recovery of helper layers

within 3 time steps. The communication between the cells is never interrupted. (a) Initial

configuration. (b) The FVM subdomain (red) grows but its cells are surrounded by FVM

and FVM-to-ADER-DG cells (orange). Therefore, no FVM recomputation step is necessary.

The time stepping can continue. (c) The FVM-to-ADER-DG has recovered. The FVM-to-

ADER-DG cells are only surrounded by ADER-DG-to-FVM (yellow) and FVM cells. The

time stepping can continue. (d) The ADER-DG-to-FVM layers have recovered, too.
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shows how such a growth of the limiter domain could play out.

Outlook: Balanced Cost

The hybrid solvers in this chapter have been presented under the assumption that the

computational cost of an FVM cell update is lower or at least equal to the cost of the

ADER-DG cell update (including predictor and Riemann step). However, in practice, the

FVM update can be significantly more expensive than the ADER-DG update; see Fig. 7.6.

If a recomputation is run after most time steps, the time to solution of the hybrid solver might

be above that of the original approach.

However, note that the results shown in Fig. 7.6 have been collected on a Skylake-X machine

that supports AVX512 instructions. (The exact setup and the used software is described

in Sec 9.3.) While ExaHyPE aggressively optimises the ADER-DG kernels, it currently

completely relies on automatic compiler optimisations for the FVM kernels (state: June

2019). A vectorisation of the FVM compute kernels should thus be subject of future work. In

addition, this study could investigate if the FVM kernels can be multi-threaded. Another

study could investigate FVM patch sizes other than (2 𝑝 + 1)𝑑 where 𝑝 is the polynomial order

of the ADER-DG scheme and 𝑑 the space dimension. To enable these studies, ExaHyPE

could provide a specification file option to choose the FVM patch size arbitrarily.

Outlook: DMP Tuning Parameters

The discrete maximum principle (DMP) in the a posteriori limiting ADER-DG framework

is generic up to two tuning parameters. In the framework and ExaHyPE’s hybrid solver

implementation, they appear as an order- and mesh-independent constant; however, they

show a dependence on both and the dynamic range of the solution in many experiments.

Different choices of these parameters can lead to a vastly different behaviour of the method.

An investigation of the dependence of the DMP tuning parameters on the other named

discretisation parameters should be subject to further research.

7.4. Discussion and Outlook 114



Chapter 7. Limiting Hybrid ADER-DG-FVM
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Fig. 7.6: Compressible Euler: Typical cost of the MUSCL-Hancock cell update in comparison

to the cost of optimised ADER-DG operations. In the best case, ADER-DG runs a single

predictor iteration. In the worst case, 𝑝 + 1 iterations are run. Data was collected on

SuperMUC-NG. Shown is the average out of 50 measurements per operation.
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8
Communication-Avoiding Low-Storage

ADER-DG

In this chapter, I present ADER-DG realisations that are efficient in terms of memory

footprint and memory access. The ADER-DG method is a generic recipe for writing explicit

high-order discretisations in space and time that lends itself straightforwardly to adaptivity

in space and time However, the space-time memory footprint of the method limits the size of

problems that can be solved as the method’s memory footprint is dominated by space-time

quantities. To address this issue, the first part of this chapter presents a low-storage realisation

of ADER-DG that reduces the method’s memory footprint significantly for approximation

orders 𝑝 ≥ 3. I accomplish this by moving the volume integral and boundary extrapolation

substeps of ADER-DG into the earlier predictor phase. This requires to store the boundary-

extrapolated predictor and normal flux, but it has the advantage that space-time predictor and

volume flux become temporary variables. I then apply a second storage optimisation on top:

If the used Riemann solver acts linearly on its inputs, the boundary-extrapolated space-time

predictor and volume flux, both can be averaged in time directly after the predictor substep;

i.e. the time integration of the ADER-DG corrector’s face integral is moved into the earlier

predictor step, too. To the best of my knowledge, all of ExaHyPE’s applications use a linear

Riemann solver. On top of the storage optimisations, I construct communication-avoiding
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ADER-DG variants. These variants minimise data movement between CPU and main

memory additionally.

Contributions

In this chapter, I propose communication-avoiding low-storage realisations of ADER-DG

and compare them in terms of their memory footprint and memory access behaviour. The

presented realisations reduce the memory footprint of ADER-DG by more than a factor of

10 for high polynomial orders. This chapter provides detailed pseudocode for all discussed

algorithms. The majority of my optimisations apply to other predictor-corrector schemes, too.

In ExaHyPE, I have applied them to the FVM and the hybrid ADER-DG-FVM solver.

The preprint [39] presents parts of this chapter.

Related Work

Low-storage Runge-Kutta methods are a topic of research since the 50s [60]; a comprehensive

overview is given in [70]. These methods reduce the vectors required to store the outcome of

the individual Runge-Kutta stages, which reduces memory footprint and can improve cache

usage. These techniques are not applicable to the ADER-DG method, which has always

two stages for any chosen temporal approximation order: the predictor stage followed by the

corrector stage. The output of both stages cannot be swapped. Different techniques need to

be developed for ADER-DG.

Structure

Section 8.1 discusses the memory requirement of the straightforward ADER-DG realisation

from Chapter 2, the baseline. Section 8.2 presents my storage optimisations for the ADER-

DG methods. Section 8.3 presents communication-avoiding fused ADER-DG realisations.

Section 8.4 provides a theoretical analysis of all proposed algorithms. In Section 8.5, I

demonstrate that the presented schemes correctly implement the ADER-DG method by

means of a convergence test. Furthermore, I compare the performance of the sole low-storage

implementation of ADER-DG against the performance of the fused variant. This chapter

concludes with a discussion in Section 8.6.
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8.1 Memory Analysis of the Baseline

The memory analysis conducted and the algorithms proposed in this chapter are motivated by

an idealised hardware model. In this external memory machine [20], each CPU accesses their

local main memory not directly but via a cache. The model assumes that access to the main

memory and receiving data from other CPUs via a network is magnitudes more expensive

than access to the cache [21]. The cache is assumed to implement an idealised write-back

policy: When running a loop over the ADER-DG cells or faces, ADER-DG solution and

auxiliary fields are assumed to be held in cache until the last modification to them has occured

during that loop. Only then, these data are written back to main memory.

While Chapter 9 presents a hybrid parallelisation that hides network communication

behind computations, this chapter is concerned with minimising the communication

between CPU and main memory. To obtain optimal performance, data movement

between main memory and CPU must be minimised. Once data is loaded into one of

the CPU caches, it must be reused as often as possible.

Algorithm 8.1 extends Algorithm 2.3 with additional lines indicating read and write access to

persistently stored data during the time stepping loops. Here and in the following, I assume

that the cells and faces of a mesh are traversed in a cache-aware order that ensures that the

data associated with these mesh entities are read and written only once per loop. Furthermore,

I assume that temporary variables such as quadrature weights stay always in cache.

Algorithm 8.1 (Straightforward Invariant-Time-Step-Size ADER-DG). One time step of

the simplest version of ADER-DG without limiter as pseudo code. The original algorithm is

extended by read and write operations (green) during the three characteristic ADER-DG time

stepping phases, predictor, Riemann solves, and corrector.

1 𝑇 ← 0
2 initialiseADERDG( )
3

4 while 𝑇 < 𝑇final do
5 for cell 𝐾 ∈ 𝒯 do
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6 read 𝑞ℎ(·, 𝑇 )|𝐾
7 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)← predictor(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 )

8 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾
9 write 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 # assumes 𝑞ℎ(·, 𝑇 )|𝐾 is reused

10 end for
11 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do
12 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎

, 𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

(if not already cached)
13 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

, 𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

(if not already cached)
14 ( 𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
15 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
16 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
,

17 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎

, 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

18 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎

), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
19 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

20 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎 (if all faces done)
21 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

(if all faces done)
22 end for
23 for cell 𝐾 ∈ 𝒯 do
24 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 , 𝐹 (𝑞*

ℎ)|𝐾
25 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += volumeIntegral (𝐹 (𝑞*

ℎ)|𝐾 , Δ𝑇 )
26 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾
27 end for
28 𝑇 ← 𝑇 + Δ𝑇

29 end while
30

31 function initialiseADERDG( )
32 for cell 𝐾 ∈ 𝒯 do
33 𝑞ℎ(·, 0)|𝐾 ← represent 𝑞(·, 0)|𝐾 as polynomial
34 end for
35 end function

Algorithm 8.1 is not optimal for solving nonlinear PDE systems. For these, the admissible

time step size can change. Using Algorithm 8.1 would require us to use a minimum time step

size throughout the whole simulation to ensure that we do not violate the CFL condition.

This introduces unnecessary numerical dissipation and makes the simulation take longer than

necessary. Therefore, it is better to adapt the time step size throughout the whole simulation.

To this end, Algorithm 8.2 extends Algorithm 8.1 with additional lines that compute a

CFL-stable time step size Δ𝑇adm. Furthermore, Algorithm 8.2 introduces more lines for

reducing the time step size when multiple cores are used plus further lines that highlight
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where the neighbour exchange starts and ends. The latter are wrapped around the predictor

and Riemann loops as the boundary-extrapolated space-time predictor and space-time flux

are inputs to the Riemann substep. Depending on the implementation, the neighbour process

may send the full space-time predictor and space-time volume flux, which are then stored in a

ghost cell, or only the Riemann inputs for a particular face (i.e. the boundary-extrapolated

space-time data). In Algorithm 8.2, some overlap between computations and neighbour

exchange is assumed. If no overlap is realised by the hardware or by a polling thread, the

neighbour exchange must be conducted after the predictor loop and before the Riemann solve

loop.

Algorithm 8.2 (Straightforward Variable-Time-Step-Size ADER-DG). One time step of

ADER-DG. The algorithm is extended by time step size computation code, global communication

(green), and neighbour communication (blue). If the latter is performed asynchronously, it

is conducted between begin and end point. Otherwise, neighbour communication starts and

finishes after the predictor loop, right before the Riemann solves.

1 𝑇 ← 0
2 Δ𝑇 ← initialiseADERDG()
3

4 while 𝑇 < 𝑇𝑓𝑖𝑛𝑎𝑙 do
5 begin neighbour exchange # either ghost cells or extrapolated values
6 for 𝐾 ∈ 𝒯 do # prediction
7 read 𝑞ℎ(·, 𝑇 )|𝐾 , 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾

8 ( 𝑞*
ℎ|𝐾 , 𝐹 (𝑞*

ℎ)|𝐾)← predictor(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 )
9 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾

10 write 𝑞*
ℎ|𝐾 , 𝐹 (𝑞*

ℎ)|𝐾
11 end for
12 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do # Riemann solves
13 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎

, 𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

(if not already cached)
14 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

, 𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

(if not already cached)
15 ( 𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
16 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
17 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
,

18 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎 , 𝑛𝐾𝑏

, 𝑛, Δ𝑇 )
19 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎 += faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑎), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )

20 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑏

), 𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏, Δ𝑇 )
21 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎 (if all faces done)
22 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

(if all faces done)
23 end for
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24 end neighbour exchange
25 Δ𝑇adm ←∞
26 for cell 𝐾 ∈ 𝒯 do # correction
27 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 , 𝐹 (𝑞*

ℎ)|𝐾
28 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += volumeIntegral (𝐹 (𝑞*

ℎ)|𝐾 , Δ𝑇 )
29 Δ𝑇adm ← min{Δ𝑇adm, calcTimeStep(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)}
30 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾
31 end for
32 𝑇 ← 𝑇 + Δ𝑇

33 begin global reduction (Δ𝑇adm) end global reduction
34 Δ𝑇 ← Δ𝑇adm

35 end while
36

37 function initialiseADERDG()
38 Δ𝑇 ←∞ # compute first time step size
39 for 𝐾 ∈ 𝒯 do
40 𝑞ℎ(·, 0)|𝐾 ← represent 𝑞(·, 0)|𝐾 as polynomial
41 Δ𝑇 ← min{Δ𝑇, calcTimeStep(𝑞ℎ(·, 0)|𝐾)}
42 end do
43 begin global reduction (Δ𝑇 ) end global reduction
44 return Δ𝑇

45 end function

Table 8.1 lists the individual ADER-DG substeps and their memory reads and writes with

respect to the number of state variables 𝑚, the space dimensions 𝑑, and the polynomial order

𝑝. Let us introduce 𝑀𝑑 := 𝑚 (𝑝 + 1)𝑑 as the typical number of DOFs per ADER-DG cell.

Definition In this chapter, memory footprint always refers to the storage required to store the

ADER-DG scheme’s solution data plus the scheme’s auxiliary variables such as the space-time

predictor and space-time volume flux.

The straightforward ADER-DG realisations Algorithm 8.1 and Algorithm 8.2 require to

persistently store the auxiliary variables of ADER-DG, i.e. space-time predictor and the

space-time volume flux, for all cells since these information have to be kept till the third loop,

the corrector loop. If we neglect time stepping and grid metadata, the footprint per cell of
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both ADER-DG realisations is thus (in doubles):

MEMADER-DG = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 )|𝐾

+ 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝑞*

ℎ
|𝐾

+ 𝑑 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝐹 (𝑞*

ℎ
)|𝐾

= 𝑚
(︀
(𝑝 + 1)𝑑 + (𝑑 + 1) · (𝑝 + 1)𝑑+1)︀

= (𝑑 + 1)𝑀𝑑+1 + 𝑀𝑑.

Despite the explicit character of the scheme, the memory footprint MEMADER-DG of straight-

forward realisations of ADER-DG is dominated by the space-time term (𝑑 + 1)𝑀𝑑+1. Not

surprisingly, the memory reads and writes are dominated by the same term. I break them

down into reads RADER-DG and writes WADER-DG per cell per time step. The straightforward

realisation’s memory reads and writes are (in doubles):

RADER-DG,predictor = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 )|𝐾

+ 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝑞*

ℎ
|𝐾

+ 𝑑 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝐹 (𝑞*

ℎ
)|𝐾

= (𝑑 + 1) 𝑀𝑑+1 + 𝑀𝑑,

WADER-DG,predictor = 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝑞*

ℎ
|𝐾

+ 𝑑 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝐹 (𝑞*

ℎ
)|𝐾

= (𝑑 + 1) 𝑀𝑑+1,

RADER-DG,Riemann = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 +Δ𝑇 )|𝐾

+ 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝑞*

ℎ
|𝐾

+ 𝑑 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝐹 (𝑞*

ℎ
)|𝐾

= (𝑑 + 1) 𝑀𝑑+1 + 𝑀𝑑,

WADER-DG,Riemann = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 )|𝐾

= 𝑀𝑑,

RADER-DG,corrector = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 +Δ𝑇 )|𝐾

+ 𝑑 𝑚 (𝑝 + 1)𝑑+1⏟  ⏞  
size of 𝐹 (𝑞*

ℎ
(·,𝑇 )|𝐾)

= 𝑑 𝑀𝑑+1, +𝑀𝑑,

WADER-DG,corrector = 𝑚 (𝑝 + 1)𝑑⏟  ⏞  
size of 𝑞ℎ(·,𝑇 )|𝐾

= 𝑀𝑑.

The total memory reads and writes are consequently (in doubles):

RADER-DG = RADER-DG,predictor + RADER-DG,Riemann + RADER-DG,volumeIntegral

= (3 𝑑 + 2) 𝑀𝑑+1 + 3 𝑀𝑑,

WADER-DG = WADER-DG,predictor + WADER-DG,Riemann + WADER-DG,volumeIntegral

= (𝑑 + 1) 𝑀𝑑+1 + 2 𝑀𝑑.

The large space-time arrays will result in frequent bandwidth-intense access to the main

memory. This pushes straightforward ADER-DG realisations towards the memory-bandwidth-

bound regime.
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Table 8.1: Read and written doubles per ADER-DG substep. The data is normalised per

cell or per cell pair (Riemann). Quadrature weights are assumed to be held in cache. The

substeps are grouped along the three main steps predictor, Riemann and corrector.

Task in out Remarks

predictor:
predictor 𝑚 · (𝑝 + 1)𝑑 (𝑑 + 1) ·𝑚 · (𝑝 + 1)𝑑+1 determine 𝑞*

ℎ|𝐾 and
𝐹 (𝑞*

ℎ)|𝐾
Riemann:
extrapolate𝑒⊂𝜕𝐾 (𝑑 + 1) ·𝑚 · (𝑝 + 1)𝑑+1 2 ·𝑚 · (𝑝 + 1)𝑑 extrapolate 𝑞*

ℎ|𝐾 and
𝐹 (𝑞*

ℎ)|𝐾 · 𝑛 to the face 𝑒

with normal 𝑛 of cell 𝐾

Riemann 2 · 2 ·𝑚 · (𝑝 + 1)𝑑 2 ·𝑚 · (𝑝 + 1)𝑑 solve Riemann problem
and obtain numerical flux

corrector:
faceIntegral 𝑚 · (𝑝 + 1)𝑑 𝑚 · (𝑝 + 1)𝑑 perform face integral with

numerical flux
volumeIntegral 𝑑 ·𝑚 · (𝑝 + 1)𝑑+1 𝑚 · (𝑝 + 1)𝑑 integrate predicted

𝐹 (𝑞*
ℎ)|𝐾

calcTimeStep 𝑚 · (𝑝 + 1)𝑑 1 calculate a time step size
with updated solution
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8.2 Low-Storage ADER-DG

Clearly, we can easily reduce the memory footprint of the ADER-DG method if we do not

allocate space-time predictor and volume flux at all, but instead recompute them from the

ADER-DG solution whenever we need them. However, experimental data indicates that the

predictor substep dominates the runtime of medium- and high-order ADER-DG methods;

see Fig. 8.1. (Section 9.3 provides information on the setup and used software.) Therefore, I

constrain my search to low-storage implementations where the predictor substep is only run

once per cell per time step. In addition, I focus on problems where the ADER-DG solution

snapshots 𝑞ℎ(·, 𝑇 ) do not fit into the CPU caches entirely while a cell’s space-time predictor

𝑞*
ℎ|𝐾 and space-time volume flux 𝐹 (𝑞*

ℎ)|𝐾 fit.
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Fig. 8.1: Typical cost of the ADER-DG substeps and their contribution to the cost of a

single ADER-DG time step when solving the nonlinear compressible Euler equations. In the

best case, the scheme runs a single predictor iteration. In the worst case, 𝑝 + 1 iterations are

run. Data was collected on SuperMUC-NG. Shown is the average out of 50 measurements per

operation.

The processing of ADER-DG substeps (see Table 8.1) must adhere to a partial temporal

order, which can be expressed in the form of a task graph; see Fig. 8.2. Additional secondary
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tasks may enter this graph on demand: For example, a plot task might be inserted after

the calcTimeStep task. If an adaptive mesh is used, a refinementCriterion task may be

inserted behind the calcTimeStep task and so on.

The graph Fig. 8.2 reveals that the volumeIntegral substep that is associated with the

ADER-DG method’s corrector step needs not to be performed after the Riemann solve but

can be run directly after the predictor substep. From a comparison with Table 8.1, we

observe that the volume integral requires the (predicted) space-time volume flux 𝐹 (𝑞*
ℎ) as

input. Furthermore, space-time predictor 𝑞*
ℎ and flux 𝐹 (𝑞*

ℎ) are required as input to the

extrapolate step that is run directly after the predictor and before the Riemann substep.

The central observation of this section is:

Observation. Both space-time predictor and volume flux are not required anymore after the

substeps extrapolate and volumeIntegral.

Motivated by this observation, I transform Algorithm 8.1 and Algorithm 8.2 into low-storage

algorithms by applying two techniques to the ADER-DG task graph:

Technique 1. Move tasks from one logical step into an earlier step such that they are run as

early as possible.

Technique 2. Store face-centered data instead of cell-centered data.

I apply Technique 1 by moving the volumeIntegral and extrapolate substeps into the

predictor phase/loop. This technique is data-centric as it helps to avoid capacity and conflict

cache misses and register spilling. Moving the extrapolate substep out of the Riemann loop

requires to store the boundary-extrapolated space-time predictor and the normal component

of the space-time volume flux per cell. As the corresponding cell-centered quantities 𝑞*
ℎ and

𝐹 (𝑞*
ℎ) are not required anymore after running the triad of predictor, volumeIntegral, and

extrapolate, they can be deallocated. This realises Technique 2.

The calculation of the surface integral in the ADER-DG method’s corrector step requires

to integrate the (approximate) Riemann solution in time and over a cell’s boundary. If the

Riemann solver acts linearly on its inputs, i.e. the boundary-extrapolated space-time predictor

and normal fluxes, the time integral can be directly applied to these inputs. This is a second

application of Technique 1. However, note that this requires that neighbouring cells know the

time stamp and time step size of their neighbours. This is the case for Algorithm 8.1 and
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corrector(Kb)

Begin/End Time Step

predictor(Ka) predictor(Kb)

extrapolate∂Ka∩∂Kb
(Ka) extrapolate∂Ka∩∂Kb

(Kb)

Riemann(Ka, Kb)

volumeIntegral(Ka) volumeIntegral(Kb)

faceIntegral(Ka) faceIntegral(Kb)

calcTimeStep(Ka) calcTimeStep(Kb)

Begin/End Time Step

Fig. 8.2: An excerpt from the ADER-DG method’s task graph, which showcases in which

order tasks need to be run and where neighbouring cells need to synchronise. Only a single

time step and only the tasks for two cells are shown. Imposition of boundary conditions and

secondary tasks, e.g. plotting tasks, are not shown either. For brevity, only the respective

cells are used to parameterise the tasks. Forking paths denote a broadcast while merging

paths denote a reduction. The tasks forming the corrector step for cell 𝐾𝑏 are drawn on top

of a grey background.
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Algorithm 8.2, which are both global time stepping schemes. Without a second neighbour

communication step, it is in general not the case if anarchic local time stepping is used [53].

I summarise the first result of this section as follows:

Result (Low-Storage ADER-DG).

The space-time predictor 𝑞*
ℎ|𝐾 and the space-time volume flux 𝐹 (𝑞*

ℎ)|𝐾 , have a combined

memory footprint of

(𝑑 + 1) 𝑚 (𝑝 + 1)𝑑+1

doubles per cell. Instead of storing these vectors, it suffices for an ADER-DG realisation

to store the boundary-extrapolated space-time predictor and flux in the mesh persistently

which have a combined memory footprint of

4 𝑑 𝑚 (𝑝 + 1)𝑑

doubles per cell. This footprint can be reduced to

4 𝑑 𝑚 (𝑝 + 1)𝑑−1

doubles per cell if the Riemann solver acts linearly on its inputs and if cells know the

time stamp and time step size of their neighbours before the predictor substep.

Next, I apply two communication-avoiding techniques on top of the storage minimisation.

The mesh traversals performing the tasks calcTimeStep, Riemann, and faceIntegral can

be merged: Whenever the mesh traversal enters a cell to perform the calcTimeStep task, it

analyses all of the cell’s 2 𝑑 adjacent faces whether they have been accessed before. For those

that have not yet been accessed, it performs the Riemann and faceIntegral tasks. This

realises the third technique:

Technique 3. Run different tasks on different grid entities concurrently.

Algorithm 8.2 is one particular way to realise the ADER-DG task graph (Fig. 8.2). An

algorithm could also start each time step with the Riemann loop, continue with the corrector
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loop, and finish with the predictor loop. Of course, it then requires a kick-off predictor loop

before the first time step. This yields the fourth technique:

Technique 4. Shift the tasks by half a step.

Technique 3 and 4 make the solve require 2 𝑁 + 1 loops in total. The second and final result

of this section is the following low-storage ADER-DG algorithm that applies Technique 1,2,3,

and 4:

Algorithm 8.3 (Low-Storage ADER-DG). Low-storage variant of Algorithm 8.2 applying

Techniques 1 – 4. The predictor loop is run last (blue) and the Riemann loop first per time

step. The scheme requires a kick-off predictor loop (also blue). The faceIntegral sweep

has been merged into the loop computing the next time step size (red). The volumeIntegral

and extrapolate substeps are inserted directly after the predictor substep and thus, a cell’s

cell-centered space-time data can be directly deallocated after the volumeIntegral This comes

at the cost of allocating 2 𝑑 extrapolated space-time predictor and normal flux arrays, i.e. one

per face and 4 𝑑 arrays in total (green).

1 𝑇 ← 0
2 Δ𝑇 ← initialiseADERDG()
3 begin neighbour exchange
4 prediction() # kick off time stepping
5

6 while 𝑇 < 𝑇𝑓𝑖𝑛𝑎𝑙 do
7 Δ𝑇adm ←∞
8 for cell 𝐾 ∈ 𝒯 do # fused face integral and time step calc. loop
9 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 (if not already cached)

10 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do # Riemann and face integral
11 if interface 𝐾 ∩𝐾𝑏 touched first time then
12 read 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

13 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏
, 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

14 𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ )← Riemann(𝑞*
ℎ|𝜕𝐾∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝜕𝐾∩𝜕𝐾𝑏

,
15 𝑞*

ℎ|𝜕𝐾∩𝜕𝐾𝑏
, 𝐹 (𝑞*

ℎ)|𝜕𝐾∩𝜕𝐾𝑏
, 𝑛𝐾 , 𝑛𝐾𝑏

, 𝑛, Δ𝑇 )
16 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )

17 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏
+= faceIntegral(𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ ) (𝑛 · 𝑛𝐾𝑏

), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )
18 end if
19 end for
20 Δ𝑇adm ← min{Δ𝑇adm, calcTimeStep(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)}
21 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 , 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

22 end for
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23 end neighbour exchange
24 𝑇 ← 𝑇 + Δ𝑇

25 begin global reduction (Δ𝑇adm) end reduction
26 Δ𝑇 ← min{Δ𝑇adm, 𝑇final − 𝑇}
27 if Δ𝑇 > 0 then
28 begin neighbour exchange
29 prediction()
30 end if
31 end while
32

33 function prediction()
34 for 𝐾 ∈ 𝒯 do
35 read 𝑞ℎ(·, 𝑇 )|𝐾
36 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 ) ← predictor(𝑞ℎ(·, 𝑇 )|𝐾)

37 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do
38 read 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

39 ( 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

) ← extrapolate𝜕𝐾∩𝜕𝐾𝑏
(𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)

40 write 𝑞ℎ(·, 𝑇 )|𝐾 , 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

41 end for
42 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾 + volumeIntegral(𝐹 (𝑞*

ℎ)|𝐾)
# next volume integral; reuse 𝑞ℎ(·, 𝑇 )|𝐾

43 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾
44 end for
45 end function

8.3 Communication-Avoiding ADER-DG

This section presents communication-avoiding ADER-DG variants that reduce the memory

reads and writes of the low-storage ADER-DG scheme further. I first consider the simplified

scenario where the time step size remains invariant throughout the simulation or in between

mesh adaptations. In this case, the predictor loop can be straightforwardly fused with the

corrector loop, i.e. only a single loop over the mesh is required. If the resulting scheme is

realised on top of a mesh traversal that exhibits good spatial and temporal locality [101]

and the cache is sized appropriately, then this increases the chance that a cell’s solution and

auxiliary fields are loaded only once into the caches per time step. The first result of this

section is:
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Result (Fused Invariant-Time-Step-Size ADER-DG).

If the time step size remains invariant throughout a simulation or between mesh adaptions,

then the ADER-DG time step can be realised with a single loop over the mesh that

fuses the corrector and predictor loop of the low-storage ADER-DG method, i.e. the

solution data is read only once per time step.

A time step of this algorithm is given below:

Algorithm 8.4 (Fused Invariant-Time-Step-Size ADER-DG). Using Techniques 1 – 5, all

phases of Algorithm 8.1, where the time step size is invariant, are merged into a single loop.

1 function fusedTimeStepForInvariantTimeStepSize()
2 begin neighbour exchange (if not already started)
3 for cell 𝐾 ∈ 𝒯 do # a single cell−wise traversal
4 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 (if not already cached)
5 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do # Riemann and face integral
6 if interface 𝐾 ∩𝐾𝑏 touched first time then
7 read 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

8 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏
, 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

9 𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ )← Riemann(𝑞*
ℎ|𝐾 |𝜕𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾 |𝜕𝐾∩𝜕𝐾𝑏

,
10 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛𝐾 , 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

11 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )
12 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )

13 end if
14 end for
15 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 ) ← predictor(𝑞ℎ(·, 𝑇 + Δ𝑇 ), Δ𝑇 ) # use fixed known time step size

16 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do
17 ( 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾 , 𝐹 (𝑞*

ℎ)|𝐾)
18 write 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

19 end for
20 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾 + volumeIntegral(𝐹 (𝑞*

ℎ)|𝐾)
# anticipate next correction

21 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎

22 end for
23 end neighbour exchange
24 end function

When simulating nonlinear PDE systems, the admissible time step size Δ𝑇adm may change in
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each and every time step. Hence, the time step size Δ𝑇 must be adapted continuously. Global

adaptive time stepping and classic local adaptive time stepping [25] both require the reduction

and broadcast of a CFL-stable time step size. Due to this a synchronisation mechanism, a

fifth technique is required to rephrase the ADER-DG method as a single-touch algorithm. In

this case, I advise to

Technique 5 Hope for the best (but prepare for the worst).

I propose to construct an estimate Δ𝑇 * for the next time step size based on the current

time step size Δ𝑇 . With this estimate, the predictor substep can be run directly after the

substeps of the corrector step. A moving average that approaches the admissible time step

size or choosing the time step size slightly smaller than the previous admissible time step size,

have shown to be good time step size estimators for many problems.

The observation that motivates Technique 5 is that wave speeds do not change dramatically

during a simulation from one time step to the other. Still, any estimate may violate the

CFL condition. Therefore, a scheme applying Technique 5 may need to rerun the predictor

substep in a number of time steps, which requires an additional loop over the cells. As

running the predictor substep does not modify the solution 𝑞ℎ(·, 𝑇 ) but only auxiliary fields

(boundary-extrapolated space-time predictor and volume flux normal), it can be run twice

without causing issues. Moreover, an update vector Δ𝑞ℎ|𝐾 must be allocated per cell 𝐾 as

the volume integral contribution must be discarded if the time step size estimate did violate

the CFL condition. The predictor substeps are more computationally intense than any

other ADER-DG substep; however, their processing is embarrassingly parallel. A time step

of the scheme is given below:
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Algorithm 8.5 (Fused Variable-Time-Step-Size Time Step). ADER-DG time step for variable

Δ𝑇 relying on all introduced optimisation techniques. Only a single loop over the cells is

employed. The face integral is performed directly before the time step size calculation. The

time step size calculation is followed by the prediction which anticipates the next time step and

directly computes the volume integral. Space-time volume flux and predictor are deallocated

after this step. A persistently stored update vector (green) is introduced as the volume

integral contribution might be discarded if the estimated time step size is not admissible. This

information is available after the time step.

1 function fusedTimeStep(Δ𝑇 , Δ𝑇 *)
2 begin neighbour exchange (if not already started)
3 Δ𝑇adm ←∞
4 for cell 𝐾 ∈ 𝒯 do # a single cell−wise traversal
5 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 (if not already cached)
6 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do # Riemann and face integral
7 if interface 𝐾 ∩𝐾𝑏 touched first time then
8 read 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

9 read 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾∩𝜕𝐾𝑏
(if not already cached)

10 𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ )← Riemann(𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

,
11 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑏
|𝜕𝐾∩𝜕𝐾𝑏

, 𝑛𝐾 , 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

12 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )
13 read 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

(if not already cached)
14 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑏

+= faceIntegral(𝐺(𝑞*,+
ℎ , 𝑞*,−

ℎ ) (𝑛 · 𝑛𝐾𝑏
), 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )

15 end if
16 end for
17 read Δ𝑞ℎ|𝐾
18 𝑞ℎ(·, 𝑇 + Δ𝑇 )𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾 + Δ𝑞ℎ|𝐾
19 Δ𝑇adm ← min{Δ𝑇, calcTimeStep(𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾)}
20 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 ) ← predictor(𝑞ℎ(·, 𝑇 + Δ𝑇 ), Δ𝑇 *) # directly run next prediction

21 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do
22 read Δ𝑞ℎ|𝐾 , 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

23 ( 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

) ← extrapolate𝜕𝐾∩𝜕𝐾𝑏
(𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)

24 write 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

25 end for
26 Δ𝑞ℎ|𝐾 ← volumeIntegral(𝐹 (𝑞*

ℎ)|𝐾) # anticipate next correction
27 write 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 , Δ𝑞ℎ|𝐾
28 end for
29 end neighbour exchange
30 begin global reduction (Δ𝑇adm) end global reduction
31 return Δ𝑇adm
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32 end function

I propose that the FusedTimeStep loop should not be stopped as soon as the chosen

time step size Δ𝑇 * was deemed inadmissible. As the loop also runs Riemann and corrector

substeps, an early termination of the loop would require rerunning these substeps, too. An

early termination may further result in rippling loop restarts, where FusedTimeStep and the

predictor loop are restarted and run, respectively, multiple times in a row. Once we follow this

convention, i.e. complete a whole sweep and then evaluate whether one space-time predictor

has violated the CFL condition, the fused ADER-DG scheme for variable Δ𝑇 requires at

maximum two loops over the mesh, i.e. the solution data is at maximum read twice:

Result (Fused Variable-Time-Step-Size ADER-DG).

The ADER-DG method for variable Δ𝑇 can be realised with 1 + 𝐶 ≤ 2 reads of

the solution data per time step, where 𝐶 ∈ [0, 1] is the fraction of predictor reruns

per simulation time steps. In particular, 𝐶 = 0 if the admissible time step size is

non-decreasing throughout the simulation.

The implementation is realised by fusing the corrector and predictor loop of the low-

storage ADER-DG variant where the predictor substep uses a time step size estimate.

If this estimate is not stable according to the CFL-condition, which is checked after the

time step, the predictor loop is rerun.

The full algorithm that combines the FusedTimeStep loop from Algorithm 8.5 with the

rerun mechanism is given below:

Algorithm 8.6 (Fused Variable-Time-Step-Size ADER-DG Time Stepping). The ADER-DG

variant that applies all five optimisation techniques. If the time step size estimate was not

admissible, the predictor step must be run again with a stable time step size. This stable time

step size is available after the fused time step.

1 𝑇 ← 0
2 Δ𝑇 ← initialiseADERDG()
3 Δ𝑇 * ← Δ𝑇
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4

5 begin neighbour exchange
6 predictionForFused(Δ𝑇 ) # kick off time stepping
7 while 𝑇 < 𝑇final do
8 Δ𝑇adm ← max{fusedTimeStep(Δ𝑇, Δ𝑇 *), 𝑇final − 𝑇}
9 # end neighbour exchange −− is done at the end of the function call

10 if Δ𝑇adm < Δ𝑇 * and 𝑇 < 𝑇final then
11 begin neighbour exchange
12 predictionForFused(Δ𝑇 )
13 end if
14 𝑇 ← 𝑇 + Δ𝑇

15 Δ𝑇 ← Δ𝑇adm

16 Δ𝑇 * ← 𝛼 Δ𝑇

17 end while
18

19 function predictionForFused(Δ𝑇 )
20 for 𝐾 ∈ 𝒯 do # prediction
21 read 𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑞|𝐾
22 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾 ) ← predictor(𝑞ℎ(·, 𝑇 ), Δ𝑇 )

23 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do
24 read 𝑞*

ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

25 ( 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

) ← extrapolate𝜕𝐾∩𝜕𝐾𝑏
(𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)

26 write 𝑞*
ℎ|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

27 end for
28 Δ𝑞ℎ|𝐾 ← volumeIntegral(𝐹 (𝑞*

ℎ)|𝐾) # anticipate next correction
29 write Δ𝑞|𝐾
30 end for
31 end function

8.4 Theoretical Comparison

Next, I compare memory footprint of access of the straightforward and the proposed low-

storage and fused ADER-DG realisations. Furthermore, I identify where it makes sense to

employ the fused variants over the low-storage realisation from the memory access perspective.

From the annotated pseudocode, I calculate memory footprint and memory access of the

low-storage ADER-DG realisations; see the algorithms in Section 8.2 and Section 8.3. In

general, low-storage ADER-DG and both fused ADER-DG variants are superior to the

straightforward in terms of memory footprint and access for polynomial orders 𝑝 ≥ 3; see

Fig. 8.3. For fused variable-time-step-size ADER-DG, this holds for any predictor rerun
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factor 𝐶 as it holds for 𝐶 = 1.0; see Fig. 8.3. This scheme uses an additional persistently

stored update vector with cardinality 𝑚 · (𝑝 + 1)𝑑 in comparison to low-storage ADER-DG

and fused ADER-DG for invariant Δ𝑇 . The consequence is a larger memory footprint that

is more noticeable if time-averaging is employed. Furthermore, the scheme requires a rerun of

the prediction step every time the CFL condition was violated. Depending on the ratio of

reruns per time step 𝐶, the memory reads and writes of fused variable-time-step-size ADER-

DG might surpass those of low-storage ADER-DG; see Fig. 8.4. If boundary-extrapolated

predictor and flux are time averaged on top, the break-even point decreases with the order 𝑝

in favour of the low-storage scheme; see Table 8.2.

Table 8.2: The ratio of reruns per time step from which on the memory access of the fused

variable-time-step-size ADER-DG surpasses that of low-storage ADER-DG. TA indicates that

boundary-extrapolated data is averaged in time.

𝑝 0 1 2 3 4 5 6 7 8 9 10 11 12

2D 84% · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 84%
2D, TA 84% 73% 64% 57% 52% 47% 43% 40% 37% 35% 33% 31% 29%
3D 89% · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 89%
3D, TA 89% 80% 73% 67% 62% 57% 53% 50% 47% 44% 42% 40% 38%

8.5 Experimental Comparison

The theoretical memory analysis reveals that low-storage ADER-DG and fused invariant-

time-step-size ADER-DG are superior to the straightforward realisation for all approximation

orders 𝑝 ≥ 3. The picture is less clear for fused variable-time-step-size ADER-DG as this

scheme allocates an additional update vector and may need to perform a rerun of the predictor

step in a number of time steps. Moreover, the analysis reveals that the impact of these

modifications is more severe when time-averaging of boundary-extrapolated data is employed.

In this section, I try to answer the question whether fused variable-time-step-size ADER-DG

time stepping can improve performance in practice.

Correctness

Before running performance studies, I validated that the implementation of all presented

methods is correct via a compressible Euler convergence test from [65]. In this benchmark, a
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Fig. 8.3: (a) – (b): Theoretical 2D and 3D memory footprint of the proposed ADER-DG

realisations in relation to the straightforward realisation and the lock-free realisation from

Section 9. (c) – (d): Theoretical memory reads and writes of the proposed ADER-DG

realisations in relation to the straightforward realisation. The worst-case (𝐶 = 1.0) is shown

for fused variable-time-step-size ADER-DG.

8.5. Experimental Comparison 136



Chapter 8. Communication-Avoiding Low-Storage ADER-DG

0 1 2 3 4 5 6 7 8 9 10 11 1210−1

100

p

No
rm

.R
ea

ds
an

d
W

rit
es

(T
he

o.
)

low-storage time-avg. —"—
fused var. (C = 0.0) time-avg. —"—
fused var. (C = 0.3) time-avg. —"—
fused var. (C = 0.6) time-avg. —"—
fused var. (C = 1.0) time-avg. —"—

(a) Memory Access vs. Reruns 2D

0 1 2 3 4 5 6 7 8 9 10 11 1210−1

100

p

No
rm

.R
ea

ds
an

d
W

rit
es

(T
he

o.
)

low-storage time-avg. —"—
fused var. (C = 0.0) time-avg. —"—
fused var. (C = 0.3) time-avg. —"—
fused var. (C = 0.6) time-avg. —"—
fused var. (C = 1.0) time-avg. —"—

(b) Memory Access vs. Reruns 3D

Fig. 8.4: (a) – (b): Theoretical memory access of the 2D and 3D fused variable-time-step-

size ADER-DG realisation vs. low-storage ADER-DG. Different polynomial orders 𝑝 and

numbers of reruns per time step 𝐶 are considered.

constant velocity field advects a sinusoidal density profile:

𝜌(𝑥, 𝑦, 𝑡) = 1 + 0.1 · sin(𝜋 · ((𝑥− 𝑣𝑥 𝑡) + (𝑦 − 𝑣𝑦 𝑡))),

𝑣𝑥 = 2.5,

𝑣𝑦 = 2.4.

The background pressure of the ideal gas remains invariant throughout the simulation, 𝑃 = 1.

I run the simulation till 𝑇 = 1.0 non-dimensional time and use the analytical solution as

Dirichlet boundary conditions. Both the low-storage and the fused variable-time-step-size

ADER-DG method converged with optimal rates in this test; see Fig. 8.5. The latter used

time step size estimates of the form Δ𝑇 * = 𝛼 Δ𝑇 , where the time-step-size-under-estimation

factor 𝛼 was chosen as 𝛼 ∈ {0.5, 0.7, 0.99}. The choice of 𝛼 appears not to have a significant

impact on the discretisation errors in this test. However, I emphasise that the test used

Dirichlet boundary conditions as ExaHyPE does currently not support periodic boundary

conditions. The latter are better suited to investigate the numerical dissipation of numerical

methods.

Hardware and Build Environment

I ran my performance studies on up to 4 nodes of LRZ’s SuperMUC Phase 2 [80]. Each node

is equipped with 64 GB of RAM (random access memory) and two Intel Xeon processors of
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Fig. 8.5: Left: Discretisation errors measured in the 𝐿∞(Ω) norm for the low-storage

ADER-DG scheme and the fused scheme for variable Δ𝑇 . The latter was tested with a time

step size estimate of the form Δ𝑇 * = 𝛼 Δ𝑇 , where 𝛼 ∈ {0.5, 0.7, 0.99}. The dashed lines

indicate the theoretical convergence with rate 2, 3, and 4 for orders 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3,

respectively. Right: Initial solution of the entropy wave benchmark problem.

type E5-2697 v3, which run their 14 cores at 2.6 GHz. ExaHyPE was configured to switch

off Peano’s recursion unrolling feature (see Section 9.1) as this feature does not necessarily

preserve the locality properties of the mesh traversal. Turning off the feature makes Peano

traverse the mesh along the space-filling curve, which interweaves the access of cells with that

of their adjacent faces. Otherwise, Peano might extract regular subgrids where it traverses

all faces before the cells.

Software Version or Revision

ExaHyPE (git branch and revision) master – e5249766
ExaSeis (git branch and revision) master – 826b554d
Peano (git branch and revision) master – fa5dfda4
Intel Compiler 18.0.2 20180210
GNU Compiler 5.4.0
IBM MPI 1.4

The applications have been compiled according to the following ExaHyPE-specific environ-

ment variables:

• EXAHYPE_CC=mpiicpc
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• COMPILER=Intel

• MODE=Release

• DISTRIBUTEDMEM=MPI

• SHAREDMEM=None

• USE_IPO=on

All experiments were performed with optimised ADER-DG kernels as generated by the

ExaHyPE toolkit, which tailor all vectorisation to the AVX2 instructions of the Intel Xeon

processors. On top, I used the Intel compiler with its most aggressive optimisation. I

configured it to eliminate expensive virtual function calls within the compute-intense routines.

Performance Comparison

The first experiment used ExaSeis’s linear elastic wave equations solver that employs geometry-

aligned meshes to approximate the material distribution and the Cauchy-Kowalewsky proce-

dure to construct the space-time predictor. I ran the LOH.1 benchmark [2] with this solver.

The second experiment simulated an entropy wave, a sinusoidal density perturbation moving

in a constant velocity field, with the compressible Euler equations (𝑚 = 5). The nonlinear

PDE system was discretised in time with the local space-time DG procedure [52]. The

procedure requires more Picard iterations in the vicinity of strong gradients of the solution.

As the time step size remains constant during the simulation, fused variable-time-step-size

ADER-DG requires no reruns in this test and fused invariant-time-step-size ADER-DG can

also be employed. Per considered polynomial order and mesh, I ran the experiments once in

serial and once with 28 MPI (Message Passing Interface) ranks.

In both experiments, the fused methods obtain a robust speedup over low-storage ADER-DG

for most 𝑝 and mesh sizes except for the Euler 3D test with 𝑝 = 7; see Fig. 8.6 and Fig. 8.7. The

experimental data implies that the fully-fused schemes pays off the most for small meshes and

lower polynomial orders. The largest speedups have been measured in the MPI experiments.

The optimisation is tailored towards upscaling.
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Fig. 8.6: Speedup of the two fused ADER-DG vs. low-storage ADER-DG for the linear

elastic wave equations benchmark. In the MPI experiments, the computational work was

distributed among 27 ranks; one additional rank was used to perform administrative tasks.
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Fig. 8.7: Speedup of the two fused ADER-DG vs. low-storage ADER-DG for the

nonlinear compressible Euler test problem. In the MPI experiments, the computational work

was distributed among 27 ranks; one additional rank was used to perform administrative

tasks.
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8.6 Discussion

In this chapter, I presented efficient realisations of ADER-DG in terms of memory footprint

and memory access. The memory footprint of straightforward ADER-DG realisations is

dominated by space-time predictor and volume flux fields, which have a memory footprint

that is proportional to (𝑑 + 1) · (𝑝 + 1)𝑑+1. I proposed to store the boundary-extrapolated

predictor and normal flux instead. They have a memory footprint that is proportional to

4 𝑑 · (𝑝 + 1)𝑑. If the boundary-extrapolated data is additionally averaged in time, the saving

in storage is even more significant: For polynomial orders 𝑝 ≥ 7, an ADER-DG scheme that

applies both optimisations requires more than 10× less memory compared to a straightforward

realisation. Memory reads and writes are reduced by roughly the same factor. They key idea

for this optimisation is to move the volume integral and boundary-extrapolation substeps of

the ADER-DG method into the earlier predictor phase.

On top of the storage optimisation, I investigated fusing all algorithmic phase of the ADER-

DG method to minimise data movement further. The key idea is to directly run the predictor

after the corrector step. For the linear ADER-DG scheme, where the time step size remains

constant as long as the mesh does not change, this was an straightforward exercise that is able

to reduce memory access by a further margin. The task is more difficult for the ADER-DG

method for nonlinear PDE systems. Adaptive time stepping variants reduce an admissible

time step size after every time step. Wave speeds–and thus the global admissible time step

size–can change from time step to time step when simulating nonlinear PDE systems. To

realise a fully-fused variant of ADER-DG also in this case, I proposed an optimistic approach

where the time step size for the next predictor computation is estimated based on the previous

value. Per cell, the predictor is then run with this estimate directly after the corrector step.

After the time step, the maximum wave speed in the domain is available and the algorithm

checks if the used estimated time step size is stable with respect to the CFL condition. If this

is not the case, the computationally costly but embarrassingly parallel predictor phase of the

ADER-DG scheme is rerun. I supplied analysis to determine up to what number of predictor

reruns the scheme still yields an performance improvement over the low-storage ADER-DG

method.

In the last part of the chapter, I provided experimental evidence for the correctness of the
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methods. Furthermore, I showed experimental evidence where the fused ADER-DG variants

yield a robust speedup over the low-storage ADER-DG scheme. This speedup is more

pronounced for lower approximation orders and coarser meshes. Arithmetic intensity is lower

in the first case, i.e. the code is more memory sensitive. As the fused ADER-DG realisations

use half as many loops over the mesh as low-storage ADER-DG in the best case, they are

less affected by overhead linked to the mesh traversal.

Limitations of the Presented Analysis

The theoretical analysis that I present in this chapter only focuses on memory aspects. A

comprehensive analysis of the fully-fused ADER-DG variant for variable Δ𝑇 should take the

computational cost into account, too. Moreover, the additional numerical dissipation of the

scheme due to the time step size underestimation should be investigated more carefully.
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9
Hybrid Parallelisation

In this chapter, I discuss how ExaHyPE’s algorithms leverage multi-core CPUs to parallelise

computation and to hide communication. Modern supercomputers connect multiple single

compute nodes via a network. Each compute node hosts one or more multi-core CPUs.

Therefore, modern supercomputers support (at least) three levels of parallelism. First, every

CPU core has a number of large SIMD registers to apply the same instruction simultaneously

on multiple data values. Second, each compute node’s processors have multiple CPU cores to

process multi-threaded programs in parallel on the compute node. Third, the supercomputer’s

network provides the communication infrastructure to distribute substeps of an application

among multiple nodes. A program must leverage all of them for optimal performance.

Distributed-memory computing allows running applications that require more memory than

available on a single compute node. In regimes where communication cost is low compared

to computational work, distributed-memory computing can be used to speedup program

execution, too. This chapter presents ExaHyPE’s hybrid distributed-memory shared-memory

parallelisation, which is realised via Peano and its technical infrastructure that rely on MPI and

TBB (Threading Building Blocks) internally. While Chapter 6 discusses Peano’s spacetree

partitioning procedure, which introduces distributed-memory concurrency into ExaHyPE,

this chapter is concerned with introducing shared-memory concurrency into the code and how
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this interplays with the spacetree partitioning.

Contributions

I propose a task-based parallelisation that introduces shared-memory concurrency into MPI-

only PDE solvers [38]. A concurrent priority queue ensures that critical solver operations

along the boundary to a remote rank are processed before less critical work. This allows

overlapping communication with communication. I regard the invasiveness of the approach as

small as targeted codes only need to express existing function calls as prioritised tasks. This

chapter presents pseudocode for the implementation on top of the ADER-DG method.

Note: This is joint work with Tobias Weinzierl and Benjamin Hazelwood. We published

a preprint on aspects of this chapter [38]. My contribution is twofold: I rephrase all PDE

solvers of the ExaHyPE engine in a task language, and I interface these tasks with Peano’s

priority tasking system. To realise the latter, I specify which tasks have to be spawned with

what priority during the spacetree traversal and where to wait for the completion of tasks –

and what to do in the meantime.

Note: To be able to make statements about the scalability of a code requires that the code’s

single-core performance reasonably high relative to the theoretical peak. ExaHyPE uses highly

optimised compute kernels that rely on compiler-induced SIMD parallelism and inlined assem-

bler instructions via LIBXSMM [68]. Jean-Matthieu Gallard develops a generic code generator

that generates optimised compute kernels for the ADER-DG method and the projectors between

ADER-DG and FVM solution that are required for the limiting ADER-DG method [58]. I rely

on his work in this thesis. At the stage of writing this thesis, there were no optimised compute

kernels available for the Godunov and MUSCL-Hancock finite volume methods in ExaHyPE.

Hence, I solely relied on automatic compiler optimisations in the experiments discussed in

this thesis. In the meantime, optimised FVM kernels have been contributed to the ExaHyPE

repository.

Structure

In the first section of this chapter, I detail how ExaHyPE introduces shared-memory concur-

rency into its numerical methods via Peano’s recursion unrolling technique. This parallelisa-

tion is well-suited for parallelising regular spacetree partitions. If the spacetree partitions are

highly adaptive or small, the technique is less effective. Small, very adaptive mesh partitions
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per process are common for high-order discretisations such as ADER-DG, which have a large

memory footprint per cell. Therefore, I introduce additional shared-memory concurrency

into ExaHyPE’s algorithms via Peano’s tasking infrastructure (Section 9.2). Operations

associated with the mesh cells are not directly run by the thread(s) traversing the mesh.

Instead, they are put into a background queue. The traversal becomes a producer thread or

multiple producer threads where it is run in parallel. Other consumer threads consistently

check the queue for new tasks and run the ones they find. A priority system ensures that time

critical operations whose results serve as input to inter-process communication or inter-grid

transfer operations are completed first. Peano’s existing tasking infrastructure is extended

for this purpose. Furthermore, I identify local synchronisation points where the traversal

threads have to wait for the completion of tasks before they can continue. During the wait

time, they progress MPI communication or steal tasks of the type that hinder their progress.

The presented scheme does not introduce global synchronisation points. Hence, work from

previous algorithmic phases can be overlapped with the phase that is currently run by the

traversal threads. The chapter concludes with experimental evidence (Section 9.3) and a

discussion (Section 9.4).

9.1 Hybrid Parallelisation via Recursion Unrolling

ExaHyPE is built upon the Peano framework. Peano provides distributed-memory and

shared-memory concurrency “out of the box”. It further abstracts the corresponding pro-

gramming models such that they can be used via pre-generated user callbacks. While Peano

realises a distributed-memory parallelisation via its spacetree partitioning procedure, it can

instrument its user applications with shared-memory concurrency in two ways:

1. Peano provides a mechanism for identifying regular subgrids in the adaptive mesh

[55][102]. It can then be instrumented to run parallel for-loops on these subgrids, while

the code by default uses a recursive depth-first traversal of the spacetree otherwise.

Data races are prevented either via semaphores or colouring. The implementational

burden for Peano user applications to use this feature is very low.

2. Peano comes with tasking infrastructure. User applications such as ExaHyPE are

then required to actively identify tasks and to delegate them to the tasking infrastructure

of Peano. The latter then ensures that the tasks are run by the appropriate multi-
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threading backend.

The internals of Peano’s shared-memory parallelisation can be configured to use TBB,

OpenMP (Open Multi-Processing), or C++ threads. Compared to previous Peano releases

[105], this thesis extends Peano’s tasking infrastructure to take priorities into account [38].

9.1.1 Recursion Unrolling

A shared-memory parallelisation of ExaHyPE applications can be realised via Peano’s

recursion unrolling feature [55]. This feature detects regular mesh regions in the spacetree that

can be processed in parallel. Regular mesh regions found by the feature always consist of 3𝑑·𝑙

cells where 𝑙 is the depth of the corresponding regular subtree (Fig. 9.1). Wherever Peano’s

spacetree traversal automaton encounters a regular subtree during the top-down part of the

traversal, it does not descend into the subtree cell by cell. Instead, it invokes a parallel for loop

for each level in the subtree starting from the coarsest level. During the bottom-up traversal

part, the traversal automaton runs the level-wise parallel for loops in reversed order. Peano

applications (such as ExaHyPE) plug into Peano’s spacetree traversal via adapter classes

called mappings. These mappings subscribe to traversal events triggered by the traversal

automaton. For example, whenever the automaton loads a cell, it invokes the enterCell

method of all mappings registered for the current spacetree traversal. Peano applications

can request that spacetree traversal events are processed concurrently in regular subtrees.

Recursion unrolling, i.e. treating regular regions within the mesh as Cartesian array traversed

by parallel for loops, has high impact for setups where the mesh is topologically smooth [104].

In the context of hyperbolic PDE solvers, this holds for example for many finite volumes

schemes [97].

9.1.2 Multi-Threaded Finite Volumes and ADER-DG

All algorithmic phases of ExaHyPE’s finite volumes solvers are embarrassingly parallel. This

also applies to the neighbour exchange loop (see Algorithm 2.2). During the neighbour

exchange loop, the solvers copy boundary layers from one patch to the other’s ghost layers. At

no time, two threads write to the same ghost values, or read from the same boundary layers.

No data race is possible. The predictor and corrector step of the ADER-DG method are

embarrassingly parallel, too. However, the Riemann phase of the ADER-DG implementation

in Algorithm 2.3 is not. Here, the Riemann solution is added directly to the solution vector of

two neighbouring cells via the faceIntegral operation. Data races might occur if multiple
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(a) Adaptive Mesh 1 (b) Adaptive Mesh 2 (c) Partitioned Mesh

Fig. 9.1: Mesh regularity and spacetree partitioning impact recursion unrolling. (a) The

recursion unrolling feature detects one regular grid of size 32·𝑑 at the center of the mesh. (b)

Recursion unrolling detects one subgrid of size 31·𝑑 for a slightly different mesh. (c) A regular

mesh is distributed among 9 processes. They all border the global master at the domain

boundary. Recursion unrolling detects one subgrid of size 31·𝑑 on each mesh partition.

Riemann solves are processed in parallel by different threads. They might overwrite each

others contribution to a cell’s solution vector.

Sequentialising write access to a cell’s solution vector prevents data races during the Riemann

solve loop in Algorithm 2.3. This can be accomplished with a locking mechanism: The first

thread that tries to compute a face integral acquires a lock, performs the face integral, and

then frees the lock again. Other threads have to wait until the first thread is done, which

is signalled by the freed lock, before they can run a face integral that writes to the same

solution vector. The performance gain achievable with this implementation depends on how

time demanding the face integral is, i.e. how long the sequentialised code section is. An

alternative implementation allocates additional arrays per face of the ADER-DG cell to store

the Riemann solution for that face. While the Riemann problems are still solved during the

loop over the faces, the face integral can be moved into the loop over the cells that runs the

volume integral; Applying these modifications to Algorithm 2.3 results in Algorithm 9.1, which

maps ADER-DG to three Peano spacetree traversals and fits perfectly to the recursion

unrolling paradigm. I will focus on this algorithm in the remainder of this chapter. However,

note that the optimised ADER-DG algorithms presented in Chapter 8 store Riemann data

per face too and thus do not need locks either.

Notation. The algorithms in this chapter only consider leaf cells, i.e. cells that hold an
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ADER-DG solution or finite volumes patch.

Algorithm 9.1 (A Lock-Free ADER-DG Scheme). The Riemann solve result is written back

to the boundary flux arrays (blue) and the face integrals are moved into the volume integral

loop (green). An invariant time step size is assumed.

1 𝑇 ← 0
2 initialiseADERDG( )
3

4 while 𝑇 < 𝑇final do
5 for cell 𝐾 ∈ 𝒯 do
6 ( 𝑞*

ℎ|𝐾 , 𝐹 (𝑞*
ℎ)|𝐾)← predictor(𝑞ℎ(·, 𝑇 )|𝐾 , Δ𝑇 )

7 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 ← 𝑞ℎ(·, 𝑇 )|𝐾
8 end for
9 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do

10 ( 𝑞*
ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎

, 𝐹 (𝑞*
ℎ)|𝐾𝑎

)
11 ( 𝑞*

ℎ|𝐾𝑏
|𝜕𝐾𝑏∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑏

, 𝐹 (𝑞*
ℎ)|𝐾𝑏

)
12 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
,

13 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎

, 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

14 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
← 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )

15 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
← 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )

16 end for
17 for cell 𝐾 ∈ 𝒯 do
18 for 𝐾𝑏 ∈ 𝒯 : face−connected to 𝐾 do
19 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾𝑎

+= faceIntegral(𝑛 · 𝐹 (𝑞*
ℎ)|𝐾 |𝜕𝐾∩𝜕𝐾𝑏

, 𝜕𝐾 ∩ 𝜕𝐾𝑏, Δ𝑇 )
20 end for
21 𝑞ℎ(·, 𝑇 + Δ𝑇 )|𝐾 += volumeIntegral (𝐹 (𝑞*

ℎ)|𝐾 , Δ𝑇 )
22 end for
23 𝑇 ← 𝑇 + Δ𝑇

24 end while
25

26 function initialiseADERDG( )
27 for cell 𝐾 ∈ 𝒯 do
28 𝑞ℎ(·, 0)|𝐾 ← represent 𝑞(·, 0)|𝐾 as polynomial
29 end for
30 end function

Limited Concurrency for High-Order Methods

Peano’s recursion unrolling technique excludes cells along spacetree partition boundaries

from the search for regular mesh regions as messages along partition boundaries must be sent
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Ω

Fig. 9.2: Riemann solves between ADER-DG cells must be performed via the vertices in

Peano as no faces exist as grid entities. In ExaHyPE’s ADER-DG implementation, every

vertex only performs a Riemann solve for the faces to its left and below (highlighted). Due

the lock-free implementation, all vertices can be processed in parallel without the chance of

data races. Faces that lie outside of the domain are skipped by the processing thread.

out and received in order. In addition, the order of fine grid and coarse grid operations at mesh

resolution transitions is important for the implementation of a number of algorithms. Therefore,

Peano also excludes fine grid and coarse grid cells along mesh resolution transitions from

the search [55]. As high-order ADER-DG and patch-based finite volumes have a significant

memory footprint per cell, our number of cells per partition is typically small. Due to memory

limitations on commodity cluster nodes (typically around 32 – 64 GB) the spacetree partitions

seldom have more than 273 cells in 3D. A brief thought experiment demonstrates that the

recursion unrolling feature does not introduce sufficient shared-memory concurrency into

ExaHyPE’s algorithms if it is applied on top of a distributed-memory parallelisation: When

Peano’s spacetree partitioning procedure distributes the tree among a number of processes,

it is common that the spacetree partition of a process is completely surrounded by partitions

of other processes. In this case, there is a partition boundary on every side of the spacetree

partition. Amdahl’s Law clarifies that the additional speedup that can be achieved on such a

mesh partition is limited; see Table 9.1. For the partition of size 273, we can expect a speedup

of less than 2× from an additional shared-memory parallelisation.

The combination of AMR plus MPI in the high-order world of ADER-DG renders the
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Table 9.1: Assume a process’s spacetree partition is surrounded by the partitions of other

processes. The tables gives the maximum achievable additional speedup if a shared-memory

parallelisation is realised via Peano’s recursion unrolling technique on top of Peano’s

distributed-memory parallelisation.

Cells Serially Proc. Cells 3D (2D) Serial Fraction 3D (2D) Maximum Speedup 3D (2D)

9𝑑 702 (72) 0.963 (0.889) 1.04 (1.13)
27𝑑 10,422 (288) 0.529 (0.395) 1.89 (2.53)
81𝑑 109,566 (936) 0.206 (0.143) 4.85 (7.01)

243𝑑 1,036,854 (2,880) 0.072 (0.049) 13.84 (20.50)
729𝑑 9,487,422 (8,712) 0.024 (0.016) 40.84 (61.00)

potential of recursion unrolling limited. I therefore use Peano’s tasking infrastructure to

improve shared-memory concurrency where recursion unrolling is not sufficient. Furthermore,

my approach explicitly overlaps communication and computation.

9.2 Enclave Tasking

Peano’s recursion unrolling technique introduces limited concurrency into ExaHyPE’s time

stepping algorithms. These run patch-based finite volumes and the high-order ADER-DG on

distributed, adaptive meshes where the spacetree partition per process is small and does not

exhibit much regularity. In [38], we propose a hybrid programming model, enclave tasking,

that introduces more shared-memory concurrency under such conditions.

9.2.1 Tasking Runtime

The standard way to overlap inter-process communication and computational work is to use an

additional background thread [108]. Per process, one CPU core is booked solely for exchanging

data with other processes (Fig. 9.3 (a)). This core is not available for computations and mesh

refinement operations. It idles while no messages come in or need to be sent. The applicability

of this approach to ExaHyPE is limited as Peano’s recursion unrolling technique typically

does not introduce enough shared-memory concurrency into ExaHyPE’s meshes. Therefore,

the parallel for loops initiated by Peano’s mesh traversal would employ only a fraction of

the available CPU cores while the rest would idle due to insufficient work.

To move the computations into the background instead of the communication could be regarded

9.2. Enclave Tasking 150



Chapter 9. Hybrid Parallelisation

as the inverse approach to the standard approach. Here, the traversal threads instantiate

tasks during the spacetree traversal and puts them into a background queue. Other consumer

threads run in the background and continuously check the queue for new tasks. While the

computations are performed in the background by the consumer threads (Fig. 9.3 (b)), the

traversal threads run through the spacetree and perform mesh refinement operations and

spawns further tasks. While the traversal threads wait for the computations to complete, they

complete all inter-process communication and then start the next time step. No additional core

must be booked for inter-process communication. If a simulation runs on multiple nodes, it is

advantageous that tasks whose outcome are input to a communication routine are performed

before other tasks. The inverse approach can be extended straightforwardly to take task

priorities into account. ExaHyPE accomplishes this by storing tasks in a priority queue

before delivering them to the consumer threads. When consumer threads try to take tasks

from the queue, it serves them the tasks with highest priority. This sums up the description

of the runtime that is required to realise the enclave tasking approach (Fig. 9.3 (c)). In the

following, I will outline how ExaHyPE’s ADER-DG implementation interfaces with this

runtime.

9.2.2 Enclave Tasking for ADER-DG

In this section, I wrap the original cell-wise ADER-DG operations into tasks. The producer

threads spawn these tasks during the mesh traversal, i.e. they push them to the enclave

tasking priority queue. They are then available to the consumer background threads that

continuously check the queue. I introduce a PredictorTask𝐾 per leaf cell 𝐾 that wraps the

cell-wise predictor substep of the ADER-DG method plus the swapping or copying of old

and new cell-wise solution (cf. Algorithm 9.1). Similarly, I introduce a CorrectorTask𝐾

task that wraps the ADER-DG corrector substeps faceIntegral and volumeIntegral. The

space-time-predictor computation along the boundary of a process’s spacetree partition must

be completed before the ADER-DG solver can send out Riemann solve input data to a

neighbouring process. I assign predictor tasks that are spawned from the cells along an MPI

boundary a high priority (Fig. 9.4). I assign other predictor tasks a low priority.

Corrector tasks have high priority, too, as their execution might overlap with the next

predictor loop. They should be prioritised versus newly spawned low priority predictor tasks.

In ExaHyPE’s enclave tasking implementation, the face-wise Riemann problems are solved
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Begin/End Time Step

Wait for MPI Comm.

Post Sends/Receives

Begin/End Time Step

Process HP Tasks Process HP Tasks

Process LP Tasks Process LP Tasks

MPI Comm.

(a) MPI Thread

Begin/End Time Step

Wait for HP Tasks

MPI Comm.

Wait for LP Tasks

Spawn HP Tasks

Spawn LP Tasks

Begin/End Time Step

Process TasksProcess Tasks

(b) Task-based

Begin/End Time Step

Process/Wait for HP Tasks

MPI Comm.

Process/Wait for LP Tasks

Spawn Tasks

Begin/End Time Step

Process HP Tasks

Process LP Tasks

Process HP Tasks

Process LP Tasks

(c) Enclaves

Fig. 9.3: Hybrid parallelisation approaches sketched for a setup with 3 threads per process.

(a) The standard approach that uses a communication background thread. It processes the

computational work with parallel for loops. High priority tasks are processed first before

the low priority ones. (b) The inverse approach that uses background threads that process

tasks in any order. Therefore, the traversal thread has to spawn tasks according to an order

that aligns with the task priorities. (c) The proposed enclave tasking approach where the

background threads take task priorities into account. The traversal thread does not need to

spawn tasks in an order that aligns with the priorities as the tasks are stored in a priority

queue, which delivers high priority tasks first to the background threads. Moreover, it allows

the traversal thread to steal tasks and process them itself.
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Partition Partition

Partition

Partition

(a) Adaptive Mesh

Partition Partition

Partition

Partition

(b) Traversal Order and Priorities

Fig. 9.4: (a) The adaptively refined mesh partition of a process is surrounded by partitions

belonging to other processes. Neighbouring processes exchange data associated with the

ADER-DG cells adjacent to the boundary between the partitions. (b) The spacetree traversal

automaton processes cells in an immutable order along the Peano SFC. ExaHyPE employs

enclave tasking to spawn prioritised tasks along the spacetree traversal. It assigns cells

adjacent to the partition boundary (red) a higher priority than cells in the interior. Tasks

adjacent to adaptivity boundaries (blue) are prioritised in ExaHyPE, too.
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by the traversal threads. Their parallelisation relies on the recursion unrolling technique.

Spawning them as tasks would introduce dependencies between the tasks that are difficult

to model with priorities when algorithmic phases overlap. The Riemann solves require that

the predictor task in adjacent cells has completed, while spawning a predictor task requires

that the corrector task for the same cell has completed. If spacetree traversal threads would

wait here, this would slow down the production of the next tasks. Traversal threads also have

access to the task queue. Therefore, they can steal tasks of the same priority that they are

waiting for. If a hybrid parallelisation is used, they can perform inter-process communication

at these waiting points, too.

Algorithm 9.2 introduces enclave tasking to Algorithm 9.1. Per face, it places two of the

aforementioned waiting mechanisms in front of the Riemann solve. One for each cell adjacent

to the face. Another is placed right before the predictor tasks are spawned. Additionally, the

algorithm indicates where neighbour communication begins and ends and where Riemann

input data needs to be retrieved from a communication buffer.

Algorithm 9.2 (Lock-Free Enclave Tasking ADER-DG). Predictor tasks are spawned as

high priority if the corresponding ADER-DG cell is adjacent to a partition boundary or a

finer grid (blue). Corrector tasks are spawned with high priority as their execution might

overlap with the next predictor loop (green). Before a new predictor task can be spawned or a

Riemann solve can be performed, the previous corrector or predictor task must be completed,

respectively. While the main thread waits for the completion, it can steal and run tasks itself

or perform inter-process communication (red). The neighbour communication phase starts

with the predictor loop and ends before the Riemann solve loop. Riemann input data from a

neighbour partition is stored in a communication buffer. There exist one such buffer per face

along the partition boundary.

1 while 𝑇 < 𝑇final do
2 begin neighbour exchange
3 for cell 𝐾 ∈ 𝒯 do
4 while CorrectorTask𝐾 not completed do
5 progress inter−process communication
6 steal and run tasks with high priority
7 end while
8 if 𝐾 adjacent to partition boundary or finer grid then

9.2. Enclave Tasking 154



Chapter 9. Hybrid Parallelisation

9 spawn PredictorTask𝐾 with high priority
10 else
11 spawn PredictorTask𝐾 with low priority
12 end if
13 end for
14 while not all high priority jobs completed do
15 progress inter−process communication
16 steal and run high priority tasks
17 end while
18 end neighbour exchange
19

20 for face−connected cells 𝐾𝑎, 𝐾𝑏 ∈ 𝒯 do
21 if 𝐾𝑎 belongs to neighbour partition then
22 ( 𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← readFromCommBuffer(𝜕𝐾𝑎 ∩ 𝜕𝐾𝑏)

23 else
24 while PredictorTask𝐾𝑎 not completed do
25 progress inter−process communication
26 steal and run tasks with low priority
27 end while
28 ( 𝑞*

ℎ|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛 · 𝐹 (𝑞*

ℎ)|𝐾𝑎 |𝜕𝐾𝑎∩𝜕𝐾𝑏
) ← extrapolate𝜕𝐾𝑎∩𝜕𝐾𝑏

(𝑞*
ℎ|𝐾𝑎 , 𝐹 (𝑞*

ℎ)|𝐾𝑎)
29 end if
30 if 𝐾𝑏 belongs to neighour partition then
31 # similar as above
32 # ...
33 end if
34 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )← Riemann(𝑞*

ℎ|𝐾𝑎
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
,

35 𝑞*
ℎ|𝐾𝑏
|𝜕𝐾𝑎∩𝜕𝐾𝑏

, 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
, 𝑛𝐾𝑎

, 𝑛𝐾𝑏
, 𝑛, Δ𝑇 )

36 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑎

|𝜕𝐾𝑎∩𝜕𝐾𝑏
← 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )

37 𝑛 · 𝐹 (𝑞*
ℎ)|𝐾𝑏

|𝜕𝐾𝑎∩𝜕𝐾𝑏
← 𝐺(𝑞*,+

ℎ , 𝑞*,−
ℎ )

38 end for
39

40 for cell 𝐾 ∈ 𝒯 do
41 spawn CorrectorTask𝐾 with high priority # run face and volume integral
42 end for
43 𝑇 ← 𝑇 + Δ𝑇

44 end while

9.3 Experimental Evidence

In this section, I compare the performance of tasking without priorities and enclave tasking, i.e.

tasking with priorities and the possibility to steal tasks, against the sole recursion unrolling
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(b) Elastic (Adaptive) – Single-Node
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(c) Euler (Regular) – 28 Processes
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(d) Elastic (Adaptive) – 28 Processes

Fig. 9.5: Single-node and multi-node speedups for applications that simulate the compressible

Euler and the linear elastic wave equations. Both applications used a regular base grid of

size 273. The 27 worker processes that participated in the multi-node experiments with 28

processes obtained a base grid partition of size 93. Additional adaptive refinement was added

on top of the regular base grid in three experiments. The hybrid parallelisation approaches are

indicated via the marker symbol while the polynomial order is indicated via the line colour.

“pfor”, “tasks”, and “priorities” refer to recursion unrolling, tasking without priorities, and

enclave tasking, respectively.
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technique. In my experiments, I used an ADER-DG implementation that is a merger of the

enclave tasking scheme Algorithm 9.2 and the memory-efficient fused ADER-DG method

that I present in Chapter 8. I ran a single-node experiment using 1 MPI process and a

multi-node experiment using 28 MPI processes. In both experiments, I increased the number

of TBB threads that are available to each rank. I considered two applications: A spherical

explosion modelled with the compressible Euler equations [54] and the LOH.1 benchmark for

the linear elastic wave equations [2]. A static mesh was used for both applications and used

up to 1 level of AMR. The compressible Euler equations are a nonlinear PDE system where

shocks are present. Hence, I solved the application with local space-time ADER-DG method

plus a posteriori subcell limiting. I ran the LOH.1 benchmark with the Cauchy-Kowalewsky

formulation of ADER-DG.

Hardware and Build Environment

I performed all experiments in this chapter on one or more nodes of SuperMUC-NG [79]. Each

node is equipped with two 24 core Intel Xeon Platinum 8174 processors and 96 GB memory.

The 48 processor cores are clocked with 3.10 GHz (base frequency) [9]. Each core has 64 KB

of L1 and 1024 KB of L2 cache. The cores of a socket share 33 MB of non-inclusive L3 cache,

i.e. data in a core’s L2 cache must not necessarily be found in the socket’s L3 cache [18]. I

used the following software to build and run the experiments:

Software Version or Revision

ExaHyPE (git branch and revision) master – 9e1d39a2
ExaSeis (git branch and revision) master – 3c50ca73
Peano (git branch and revision) master – e027f18e
Intel Compiler 19.0.3.199 20190206
GNU Compiler 7.3.0
Intel TBB TBB 2019 Update 4 (interface version: 11004)
Intel MPI Update 4 Build 20190429 (id: cbdd16069)

For hybrid MPI + TBB experiments, the applications have been compiled according to the

following ExaHyPE-specific environment variables:

• EXAHYPE_CC=mpiicpc

• COMPILER=Intel

• MODE=Release
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• DISTRIBUTEDMEM=MPI

• SHAREDMEM=TBB

• USE_IPO=on

For TBB-only experiments, I used the same options but set DISTRIBUTEDMEM=None, while

I set SHAREDMEM=None for MPI-only experiments. For serial runs, I set both environment

variables to None. All experiments are performed with optimised ADER-DG kernels and

optimised projectors between ADER-DG solution and finite volumes patch as generated

by the ExaHyPE toolkit. All vectorisation is tailored to the AVX2 instructions of the Intel

Xeon processors. The auto-generated Makefiles of the applications, added the following

performance-related compiler and linker flags:

• COMPILER_CFLAGS+=-xCORE-AVX512 -fma -O3 -ip

• COMPILER_LFLAGS+=-xCORE-AVX512 -fma

Results

I collect the results of the experiments in Fig. 9.5. Both tasking approaches perform significantly

better than the baseline, the sole recursion unrolling technique (“pfors”). This is true for

the single-node and especially for the multi-node experiments. In both compressible Euler

experiments and the single-node linear elastic wave equation experiment, enclave tasking

(“priorities”) appears superior in the low core count regime to tasking without priorities

(“tasks”). This trend is less pronounced in the multi-node experiment that I ran for the linear

elastic wave equations. The performance of the baseline in the multi-node experiments agrees

with the theoretical estimates in Table 9.1.

9.4 Summary

In this chapter, I presented two hybrid distributed-memory shared-memory parallelisation

approaches for ExaHyPE’s ADER-DG and finite volume method. I highlighted the limita-

tions of the first approach that relies on the identification of regular subtrees in the adaptive

spacetree. ExaHyPE’s meshes are small as it uses the high-order ADER-DG method and

patch-based finite volumes, which both have a large memory footprint per cell. To introduce

more concurrency into the code, I proposed enclave tasking. In this approach, computationally

intense cell-wise operations of ADER-DG and the finite volume method are not run directly
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by the threads that traverse the spacetree. Instead, they are spawned as prioritised tasks

that are put into a concurrent priority queue. In the background, consumer threads monitor

the queue and grab a fair share of the available tasks. I provided experimental evidence that

the application of this producer-consumer pattern can indeed increase the concurrency in

ExaHyPE’s implementations of ADER-DG and of the finite volumes methods. In compari-

son to an implementation that directly assigns tasks to cores without an intermediate priority

queue, enclave tasking showed superior performance in the low core count regime. In this

regime, the ability of the traversal threads to steal tasks with a certain priority whenever

they have to wait has the biggest impact. The other tasking variant does not allow such

stealing. Further experiments have to show if the priorisation or the stealing is the cause of

the superior performance of enclave tasking in this regime.

Outlook: A Second Load Balancing Layer

In the ExaHyPE project, we currently work on a second layer of load balancing on top of

Peano’s spacetree partitioning. This additional layer uses task-offloading, i.e. ADER-DG

predictor and corrector tasks are not run directly on overloaded processes but they and

associated data are sent to processes that have less computational work (victims). In order

to be successful this approach requires that the tasks are executed with high priority on the

victim processes and sent back immediately before a Riemann solve on the original process

requires the outcome of the tasks. ExaHyPE’s enclave tasking infrastructure already provides

a priority system. Therefore, it is well-suited to support this load balancing scheme.

Outlook: Multi-Solvers

An additional embarrassingly parallel dimension of parallelism can be introduced to simulations

if the mesh does not only hold the cell-wise solution of one but of multiple solvers. Every

time the spacetree traversal touches a cell or face, it runs solver operations in a parallel for

loop or spawns these operations as tasks. This reduces overhead of the mesh traversal and

speeds up the task production in the enclave tasking approach. I wrote ExaHyPE such that

it supports multi-solver simulations.
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In this chapter, I aim to study the performance of ExaHyPE. However, studying the

performance of an engine like ExaHyPE is not a well-defined problem. Its performance

depends on the characteristics of the particular application that is considered. ExaHyPE

is able to solve a very diverse range of applications that differ in their PDE terms —

flux, non-conservative product, etc. ExaHyPE supports two different generic ADER-DG

implementations for linear and nonlinear PDE systems plus two FVM solvers, approximation

order and FVM patch size can be chosen freely. Moreover, mesh adaptivity and dynamic

limiting can change the compute characteristics of ExaHyPE applications significantly. This

list is not complete. Covering this vast parameter space demands substantial compute

resources. Therefore, I focus on examining the performance of three applications that have

been realised on top of ExaHyPE. Two applications solve the linear elastic wave equations.

Both are of practical importance and will be developed further after the ExaHyPE project

ends [4]. They both rely on the CK procedure to construct the space-time predictor but

differ in their strategy to model topography and material distribution. One application relies

on ExaHyPE’s hybrid ADER-DG-FVM solver (see Chapter 7), the other on ExaHyPE’s

implementation of the plain ADER-DG method. The third application is from the fluid

dynamics area. It solves the compressible Euler equations. I selected this application as it

160
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uses the local space-time ADER-DG predictor instead of the CK procedure.

Structure

This chapter is structured as follows: Section 10.1 introduces the three applications, Section

10.2 presents the results of the performance studies, and Section 10.3 discusses them.

Hardware and Build Environment

I performed all experiments in this chapter on one or more nodes of SuperMUC-NG [79].

The same build setup as described in Chapter 9 was used. I briefly reiterate the hardware

details: Each node of SuperMUC-NG is equipped with two 24 core Intel Xeon Platinum 8174

processors and 96 GB memory. The 48 processor cores are clocked with 3.10 GHz (base

frequency) [9]. Each core has 64 KB of L1 and 1024 KB of L2 cache. The cores of a socket

share 33 MB of non-inclusive L3 cache.

General Test Parameters

Due to the large number of features and parameters to test, I focus my performance studies

on the performance of ExaHyPE’s time stepping phase. Furthermore, I focus on the

fused variable-time-step-size ADER-DG method presented in Chapter 8 plus the hybrid

parallelisation enclave tasking from Chapter 9. The performance of other building blocks such

as the mesh refinement and limiter recomputation phases will be subject of future studies.

10.1 Applications

This section details the ExaHyPE applications that I examined.

10.1.1 Seismology

I solve the linear elasticity problem with two methods: a diffuse interface hybrid ADER-DG-

FVM method and a geometry-aligned ADER-DG method, which models complex topography

via cell-wise curvilinear transformations. Mesh generation for complex topographies is one of

the main difficulties in seismology simulations [92]. It is typically done in a semi-automatic

fashion, which can take weeks to months for realistic scenarios. The methods discussed in

this section aim to automate this aspect. The implementations have been obtained from the

ExaSeis repository created and maintained by Leonhard Rannabauer. The development of

the geometry-aligned ADER-DG method was driven by Leonhard Rannabauer and Kenneth

Duru, while the diffuse interface method was developed by Maurizio Tavelli and then ported
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to C++ by Leonhard Rannabauer.

Problem Description

I ran the layer over halfspace problem (LOH.1) [2]. The governing equations take the form

𝜕𝜎

𝜕𝑡
− 𝐸(𝜆, 𝜇) · ∇𝑣 = 𝑆𝜎,

𝜕𝑣

𝜕𝑡
− 1

𝜌
∇ · 𝜎 = 𝑆𝑣.

(10.1)

In this test, the material parameters are distributed specified in terms of compressional and

shear velocity (P- and S-waves) ;see Table 10.1. Stress 𝜎 and velocity 𝑣 are initially set to

zero. Wave propagation is initiated by a point source 𝛿0 placed at (0, 0, 2km)𝑇 . The ExaSeis

implementation of the benchmark uses outflow boundary conditions, i.e. state variables and

flux from the outside are chosen as copies of the inside data. It performs static AMR such

that a third of the computational domain around the point source location is refined to the

maximum user-specified refinement level. In my performance studies, I used zero or one levels

of AMR, and I switched off all receivers as I was only interested in the performance of the

solvers.

Table 10.1: Material Distribution.

𝑣𝑝 =
√︁

𝜆+2 𝜇
𝜌 / (m/s) 𝑣𝑠 =

√︁
𝜇
𝜌 / (m/s) 𝜌 / (kg/m3)

Layer (depth < 1 km) 4,000 2,000 2,600
Halfspace (depth > 1 km) 6,000 3,464 2,700

Geometry-Aligned ADER-DG Method

The geometry-aligned ADER-DG method applies curvilinear transformations to map each

cell of an adaptive Cartesian mesh over the unit cube to a subset of the modelled geometry.

In ExaSeis’s implementation of the LOH.1 benchmark, the transformations are used to align

the mesh to the material distribution of the LOH.1 problem. Let 𝐹𝐾 : 𝐾̂ → 𝐾 denote such a

transformation from a reference cell 𝐾̂ to physical cell 𝐾 that is continuously differentiable

and invertible. Given 𝑥̂ ∈ 𝐾̂ and 𝑥 = 𝐹𝐾(𝑥̂) ∈ 𝐾, define spatial ADER-DG basis functions

𝜑 and reference basis functions 𝜑 such that 𝜑(𝑥) = 𝜑(𝑥̂). Then, the gradient on the physical

cell 𝐾 transforms as follows:

𝜕𝜑(𝑥)
𝜕𝑥

= 𝜕𝜑(𝑥̂)
𝜕𝑥

= 𝜕𝜑

𝜕𝑥̂

𝜕𝑥̂

𝜕𝑥
= 𝜕𝜑

𝜕𝑥̂

𝜕𝐹 −1
𝐾 (𝑥)
𝜕𝑥

.
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The inverse function theorem links the derivatives of the inverse mapping to the inverse of the

mapping’s Jacobian matrix D𝐹𝐾 , which is straightforward to compute:

𝜕𝐹 −1
𝐾 (𝑥)
𝜕𝑥

= D𝐹 −T
𝐾 .

The mapping and its first derivatives are known and can be pre-computed. ExaSeis’s

geometry-aligned ADER-DG method stores them as additional material parameter per

degree of freedom, i.e. per support point of the spatial Lagrange basis functions. The

ExaSeis implementation stores 13 additional material parameters per degree of freedom, i.e.

it requires twice as much storage as an implementation on cuboid cells. They are set during

the initial mesh creation phase.

Diffuse Interface Method

ExaSeis’s diffuse interface method utilises a plain adaptive Cartesian mesh. Instead of

shaping the mesh according to the geometry it embeds the geometry within the mesh. This

is done with a colouring function 𝛼 ∈ [0, 1] that assumes the value 1 inside of the solid and

0 inside of the air. Along the solid-air interface, there is a smooth transition between the

two states. ExaSeis uses ExaHyPE’s hybrid ADER-DG-FVM method to solve the linear

system. Far away from the solid-air interface, it solves (10.1) with the ADER-DG method

without applying any transformations, i.e. no derivatives need to be stored. In the vicinity of

the interface, it places FVM patches. On these FVM patches, a different PDE is solved [92],
𝜕𝜎

𝜕𝑡
− 𝐸(𝜆, 𝜇) · 1

𝛼
∇(𝛼 𝑣) + 1

𝛼
𝐸(𝜆, 𝜇) · 𝑣 ⊗∇𝛼 = 𝑆𝜎,

𝜕𝛼𝑣

𝜕𝑡
− 𝛼

𝜌
∇ · 𝜎 − 1

𝜌
𝜎∇𝛼 = 𝑆𝑣,

𝜕𝛼

𝜕𝑡
= 0,

𝜕𝜆

𝜕𝑡
= 0,

𝜕𝜇

𝜕𝑡
= 0,

𝜕𝜌

𝜕𝑡
= 0,

(10.2)

that takes the smooth interface parameter 𝛼 into account.

Per nodal ADER-DG degree of freedom and per volume on each FVM patch, the diffuse

interface method stores only 13 doubles, i.e. half of the 26 doubles the geometry-aligned

method stores per ADER-DG degree of freedom. If the number of FVM patches is small,

this allows the method to run larger problems with the same amount of compute resources.

10.1.2 Compressible Euler

As fluid dynamics test case, I consider a spherical gas explosion, which essentially simulates a

multi-dimensional Riemann problem; see [54]. The flow is modelled by the compressible Euler
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Fig. 10.1: Typical simulation snapshots of the two benchmark problems. Mesh resolution

and approximation order were chosen significantly lower than in the performance studies. Left:

Snapshot of the wave field when running the LOH.1 benchmark with the diffuse interface

method. Reprinted from [83]. Right: Snapshot of the initial condition of the spherical explosion

benchmark simulated with the Euler solver. The finite volumes patches are highlighted in

green (troubled cells: dark shade, face-connected neighbours: lighter shade).

equations,

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎝
𝜌

𝜌 𝑣

𝜌 𝐸

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
𝜌𝑣

𝜌 𝑣 ⊗ 𝑣 + 𝑃 𝐼𝑑×𝑑

𝑣(𝜌𝐸 + 𝑃 )

⎞⎟⎟⎟⎟⎠ = 0, (10.3)

where the conserved state variables are constructed from mass density 𝜌, velocity 𝑣 and energy

density 𝐸. The square matrix 𝐼𝑑×𝑑 with size 𝑑 is the identity matrix. The pressure 𝑃 is

computed according to the EOS of an ideal gas with adiabatic index 𝛾:

𝑃 = (𝛾 − 1) (𝜌𝐸 − 1
2 𝜌𝑣 · 𝑣).

I ran this test with ExaHyPE’s hybrid ADER-DG-FVM solver. Figure 10.2 shows the

density initial condition plus the initial configuration of the FVM subdomain for a typical

setup.
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10.2 Results

I measured the scalability of the applications in single-node and multi-node studies. The

latter always employed 28 or 731 ranks. Both rank numbers achieve a fair distribution of

the spacetree leaf cells for regular spacetrees, i.e. in setups where the AMR levels are 0; see

Chapter 6 for details. The largest runs used 731 nodes. All experiments where run for 10

time steps. The reported measurements are based on the average time these time steps took.

Seismology

Fig. 10.2 compares the performance of diffuse interface hybrid ADER-DG-FVM solver and

geometry-aligned ADER-DG method for orders 3,5, and 7. The performance study considered

meshes of size 253 and 793 plus 0 or 1 levels of AMR. Note that the usage of 731 ranks with

the smallest mesh with 253 cells results in very coarse partitions with approximately 22 cells

per rank (see Table 10.2 in the discussion). The figure shows the degree of freedom (DOF)

updates the schemes performed per second. The geometry-aligned method reaches an at least

10 times higher DOF throughput than the diffuse-interface method in this study. However, the

diffuse interface method shows a better scalability. The scalability of both methods improves

with increasing order; see also Fig. 10.3.

I present the measurements for the compressible Euler application for orders 𝑝 = 5 and 𝑝 = 7

in Fig. 10.4. Compared to the seismology diffuse interface method, the method achieves a

higher maximum DOF throughput. Both hybrid solver applications show good scalability.

Fluid Dynamics

I present the measurements for the compressible Euler application for orders 𝑝 = 5 and 𝑝 = 7

in Fig. 10.4. Compared to the seismology diffuse interface method, the method achieves a

higher maximum DOF throughput. Both hybrid solver applications show good scalability.

10.3 Discussion

In this chapter, I investigate the scalability of three applications that have been realised

upon ExaHyPE. Two are from the seismology area while the other is from fluid dynamics.

One seismology application relies on the sole ADER-DG method while the other utilises

ExaHyPE’s hybrid ADER-DG-FVM solver. The fluid dynamics application is built upon

ExaHyPE’s hybrid solver, too. Moreover, it uses the local space-time DG predictor as the
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Fig. 10.2: Scaling of the seismology codes for the polynomial orders 𝑝 = 3, 𝑝 = 5 and

𝑝 = 7 from top to bottom. The hybrid parallelisation used 1, 28, or 731 multi-threaded MPI

processes. Left: Geometry-aligned ADER-DG method. Right: Diffuse interface method.
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Fig. 10.3: Scaling of the geometry-aligned ADER-DG method for 𝑝 = 9. The hybrid

parallelisation used 1, 28, or 731 multi-threaded MPI processes.
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Fig. 10.4: Strong Scaling of the compressible Euler application. The hybrid parallelisation

used 1, 28, or 731 multi-threaded MPI processes. Left: Order 𝑝 = 5. Right: Order 𝑝 = 7.
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flux is nonlinear. The ADER-DG method of both seismology applications construct the

space-time predictor via the Cauchy-Kowalewsky (CK) procedure. While the local-space time

DG predictor requires up to 𝑝 + 1 iterations to converge, the CK procedure always performs

the same number of operations. The number of iterations of the former varies from cell to

cell. The seismology applications can use the CK procedure because the solved PDE systems

is linear in areas where the ADER-DG method is used. The seismology diffuse interface

method employs the FVM where the diffuse interface formulation is nonlinear, i.e. along the

interface between solid and air.

In my experiments, all three applications were realised as a fused variable-time-step-size

ADER-DG method (see Chapter 8). The schemes were parellelised via the enclave tasking

hybrid parallelisation from Chapter 9. In general, I observed weak scaling for all applications,

i.e. an increase of the problem size and a simultaneous increase of the compute resources

resulted in an increase of processed degrees of freedom per second. However, the weak

scaling behaviour of the applications has not been ideal. Good shared-memory scalability

over multiple cores has been observed for the diffuse interface and Euler application. For

the seismology application that used the sole ADER-DG solver, I only observed limited

shared-memory scalability. The scalability recovered for very high orders. This is in line with

the results from my preliminary studies in the results section of Chapter 9.

ExaHyPE’s fused time stepping algorithm for adaptive meshes is mapped to two Peano

mesh traversals per time step. I suspected that the strong-scaling bottleneck discovered with

the geometry-aligned seismology application is linked to the traversal time. To follow up on

this suspicion, I measured the performance of Peano’s grid traversal and the cost of the

substeps of the used considered solvers. To determine the mesh traversal cost, I constructed

the grid according to the refinement criterion that the geometry-aligned ADER-DG LOH.1

implementation employs and then ran an empty mesh traversal, i.e. a traversal where the

spacetree cells and faces of the mesh are traversed but none of ExaHyPE’s data structures. I

ran the experiments with 28 and 731 processes where the spacetree leaf levels were distributed

among 27 and 729 ranks, respectively. This achieves a fair distribution of the spacetree leaf

cells for regular spacetrees, i.e. in the setups where the AMR levels are 0. The experimental

data reveals that the processing of a cell can take a couple of microseconds up to a couple of

milliseconds; see Table 10.2. For the majority of experiments, the measured time is in the
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microsecond range.

Table 10.2: Empty traversal cost: Time spent within a single mesh traversal that performs

no operation despite the reduction at the end of the traversal. The mesh was created according

to the refinement criterion of the geometry-aligned ADER-DG method. The number of cells

includes only leaf cells. The listed timings are the average out of 50 iterations.

Base Mesh AMR Levels Cells Ranks Cells/Ranks Time / s Time/(Cells/Ranks) / µs

2413 0 14M 28 500k 7.15 s 14.30
2413 0 14M 731 19k 0.46 s 24.02
793 0 493k 28 17k 0.29 s 16.47
793 0 493k 731 675 0.22 s 326.1
793 1 1.2M 28 44k 2.16 s 49.03
793 1 1.2M 731 1.69k 0.28 s 165.9
253 0 16k 28 558 0.04 s 71.68
253 0 16k 731 22 0.21 s 9,825
253 1 58k 28 2.09k 0.19 s 90.90
253 1 58k 731 81 0.21 s 2,623
253 2 621k 28 22.2k 1.96 s 88.33
253 2 621k 731 850 0.24 s 282.3

The measured runtimes for the isolated solver substeps of the diffuse interface method are

collected in Fig. 10.5. Each timing was computed as the average out of 500 runs. Noteworthy

is that the runtime of the predictor substep is for low polynomial orders in the range of the

time that it takes empty mesh traversals to process a cell. For enclave tasking, this implies

that the production of predictor tasks takes approximately as long as their consumption.

Consequently, concurrency is limited for low polynomial orders. Furthermore, we observe that

the FVM update substep can be orders of magnitude more expensive than the CK predictor

(Elasticity) or than a Picard iteration of the local space-time DG predictor (Euler). Even if it

takes the predictor 𝑝 + 1 Picard iterations to converge, the FVM update is still at least 3

times more expensive (Euler, 𝑝 = 9); see Fig. 7.6. We can expect that applications that use

the sole ADER-DG solver have lower runtimes; however, applications that use the hybrid

ADER-DG-FVM solver show better scalability with the enclave tasking procedure from

Chapter 9 as the cell-wise update task is significantly more expensive than any ADER-DG

task.

As the traversal speeds up the more processes are employed, it appears to be a good strategy
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Fig. 10.5: Diffuse interface method: Minimum measured Peano cell processing time (14.4

𝜇s) from Table 10.2 versus typical cost of the FVM patch update and of the (optimised)

ADER-DG operations that are performed per cell. The plot cuts off the bars corresponding

to the FVM measurements; the measurements are 4,407 𝜇s, 14,006 𝜇s, 31,887 𝜇s, and 63,344

𝜇s for orders 𝑝 = 3, 5, 7, 9, respectively. Order 𝑝 corresponds to an FVM patch with 2 𝑝 + 1

cells per coordinate direction. Data was collected on SuperMUC-NG. Shown is the average of

500 measurements per FVM and ADER-DG operation.
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to have a large number of MPI processes plus a limited number of TBB tasks to work in

the performance sweet spot where enough tasks are generated to keep the background task

consumer threads busy.

Future versions of ExaHyPE might not run the mesh traversal at all and instead memorise

all solver operations as tasks. If the mesh is adapted, tasks are added to the task set or

removed. The tasks can then be distributed equally among the consumer threads at the begin

of every time step.
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11
Conclusion

This chapter summarises the main achievements of this thesis and gives an outlook on future

research directions.

11.1 Summary

This thesis describes the development of the core algorithms of the software engine ExaHyPE.

ExaHyPE enables the rapid development of parallel simulation codes for hyperbolic partial

differential equations in first-order form. The main vision of ExaHyPE is: Users focus solely

on the physics, while the engine takes care of the parallelisation and hides the algorithmic

complexity of its advanced numerics. This approach cleanly separates the concerns of applica-

tion scientists, developers of data structures and algorithms, and performance engineers. The

engine has been applied to a wide range of applications including elastic wave propagation,

shallow water flow and general relativity [83]. ExaHyPE is built upon numerical methods and

algorithms that have been selected based on their accuracy and their excellent performance

on today’s petascale machines. It combines the high-order ADER-DG method with parallel

dynamic adaptive mesh refinement to improve the accuracy locally and applies a posteriori

limiting to treat discontinuities in the solution. Discontinuities introduce non-physical oscilla-

tions and solution values into the ADER-DG solution. A posteriori limiting recomputes the
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solution with a robust FVM method in areas where this is the case.

Within the next five years, supercomputing will advance to the exascale era, where massively

parallel machines are able to perform more than 1018 floating point calculations per second.

To obtain optimal performance on these machines, it is mandatory that software is written in

a communication-avoiding way. Memory access and inter-process communication must be

as minimal and overlapped with computations. ADER-DG is a predictor-corrector method.

Straightforward realisations of the method allocate a space-time predictor vector in addition

to the solution vector. In case of nonlinear PDE systems, they further allocate a space-time

volume flux. These auxiliary variables have a memory footprint that is by at least a factor

of 𝑝 + 1 larger than that of the solution, where 𝑝 is the approximation order of ADER-DG.

I identified the large memory footprint of ADER-DG due to the allocation of these space-

time fields as a roadblock to optimal performance of the method on exascale machines. To

tackle this issue, I present three communication-avoiding low-storage ADER-DG variants in

Chapter 8 of this thesis. For the a posteriori limiting ADER-DG method, I accomplished

an additional significant reduction in communication steps by reformulating the scheme as a

hybrid ADER-DG-FVM method. This is covered in Chapter 7 of this thesis.

Chapter 9 presents enclave tasking, a hybrid parallelisation for ExaHyPE’s numerical meth-

ods. ExaHyPE is built upon the meshing framework/PDE engine Peano, which was

originally developed for realising multigrid solvers for low-order finite difference and finite

element discretisations. Peano’s shared-memory parallelisation is well-suited to parallelise the

execution of such solvers. ExaHyPE’s ADER-DG and FVM methods store a large number

of degrees of freedom per cell. Hence, the meshes are in general smaller than those of low-order

discretisations. I demonstrated that Peano’s on-board shared-memory parallelisation does

only introduce limited shared-memory concurrency into the code in this case. The proposed

enclave tasking technique introduces additional shared-memory concurrency by spawning

computationally intense ADER-DG and FVM substeps as tasks. In the background, con-

sumer threads process the spawned tasks. To enforce that tasks along MPI subdomain are

processed first, the presented parallelisation required to tweak the underlying TBB runtime

to take priorities into account.

Dynamic adaptivity is important for ExaHyPE’s numerical algorithms to resolve complicated

geometries and solution features such as shock waves. I present ExaHyPE’s mesh data
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structure and mesh adaptation algorithms in Chapter 6 of this thesis. This mesh data

structure allows to realise ADER-DG on arbitrarily adaptive meshes and further allows

to identify vertical communication synchronisation points in the underlying spacetree data

structure that is powered by Peano. These are then eliminated consequently. To merge the

concepts of a posteriori limiting and adaptive mesh refinement, I introduced two novel mesh

refinement techniques called halo refinement and a posteriori refinement that pre-refine the

mesh around interesting existing and emerging solution features.

11.2 Outlook

My personal conclusion is that ExaHyPE has not shown its full potential yet. In particular,

the parallelisation requires further work. However, I also think that we have not fully

exploited ExaHyPE’s already existing potential yet. Especially multi-solver and hybrid

solver functionality offer potential for new interesting applications such as multi-level Monte

Carlo methods or fluid-particle hybrid solvers. This section lists further ideas to improve

ExaHyPE.

Features

The integration of a number of important features is still ongoing work. Infrastructure for

supporting more efficient time stepping variants, such as local time stepping and anarchic

local time stepping, was provided. However, the last implementation steps have not been

performed yet. Furthermore, ExaHyPE can already run multiple simulations simultaneously

on the same mesh; however, the coupling of different solvers was not addressed so far.

Performance

There is ongoing work on task offloading mechanisms where overbooked ranks offload some of

their computationally intense work, e.g. space-time predictor tasks, to ranks with less work.

This is a second order load balancing strategy that works on top of Peano’s existing spacetree

partitioning procedure. The latter and AMR in general might lead to severe load imbalances.

Moreover, work per rank might not be predictable due to limiting and the variable number of

predictor Picard iterations that ADER-DG requires when solving a nonlinear PDE system.

The number of iterations may vary from cell to cell.

The performance studies in Chapter 9 and Chapter 10 reveal the limitations of the presented
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enclave tasking hybrid parallelisation. Here, the computationally efficient mesh-aligned ADER-

DG method showed limited shared-memory scalability compared to two other applications that

coupled ADER-DG to a more expensive FVM solver. I identified Peano’s mesh traversal as

scalability bottleneck of the mesh-aligned ADER-DG solver. It has to be avoided and tasks

have to be distributed directly at the beginning of a time step to improve scalability for this

solver. I propose that Peano should extend its specification file language to support such

algorithms.

Hybrid Solver Performance

ExaHyPE’s hybrid ADER-DG-FVM solver shows good shared-memory and distributed-

memory scalability. However, this can be to the most extent attributed to the costly FVM

updates. Updating an FVM patch with 2 𝑝 + 1 subcells per dimensions can be up to 3 to 4

times slower than running 𝑝 + 1 iterations of an ADER-DG method’s predictor computation.

This cost imbalance should be tackled from two directions: First, ExaHyPE’s finite volumes

methods should be optimised with as much care as the ADER-DG method. They have not

been subject to optimisations yet as it was not anticipated in the original project proposal

that the FVM patches are that costly. Second, ExaHyPE should offer the possibility to

choose smaller (or larger) FVM subgrid sizes if the a posteriori limiting ADER-DG method

is used. The ExaHyPE toolkit can generate appropriate ADER-DG-to-FVM and FVM-to-

ADER-DG projectors. Other researchers likely made similar observations. The authors of

[77] use a FVM subgrid size of 𝑝 + 1 in their hybrid DG-FVM method.

Future of ExaHyPE

ExaHyPE has been selected as one of ten European Union flagship codes by the consortium

of the Center of Excellence (CoE) for Exascale in Solid Earth (SE) (ChEESE) [4]. They

will investigate how ExaHyPE’s seismology applications can be developed into seismology

services.
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