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Abstract

The human eye has various aberrations that distort the image formed

on the retina. Monochromatic aberrations are the distortions present at

a single wavelength and chromatic aberrations are wavelength depend-

ent. Longitudinal chromatic aberration (LCA) describes the difference

in defocus at different wavelengths. The LCA of the human eye is ap-

proximately 2 dioptres (D) across the visible spectrum. Normally we are

unaware of these distortions, however, they do play an important role in

our vision. The aim of this thesis was to investigate the importance of

these aberrations in the context of the modern world.

The illuminant spectra that we are exposed to today are quite different

from 100 years ago. Because LCA results in a difference in defocus with

wavelength this means that the amount of defocus blur in the retinal

image will change depending on the spectrum of light. In this thesis

findings are reported indicating that there are certain illuminant spec-

tra for which the chromatic fringes due to LCA were more visible. We

also investigated how people accommodated to spectra made up of two

distinct narrowband LEDs. The findings suggest that people do not

accommodate optimally to these spectra.

There is also increasing interest in blurring stimuli realistically. This is

partly with the emergence of virtual reality, so that 3D scenes appear as

realistic as possible, but also has more clinical applications in trialling

the effects of different corrective lenses on vision before the lenses are

made (or inserted in the case of intraocular lenses). We investigated the

importance of including monochromatic aberrations when rendering out

of focus stimuli. It seems that monochromatic aberrations do make the

stimuli appear more realistic, however, they did not have a significant

impact on visual acuity.

Supervisors: Gordon D. Love and John M. Girkin
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Chapter 1

Introduction

The optics of the human eye are far from perfect, and as a result the light

entering the eye is distorted in a variety of ways. These distortions can be

classified as either chromatic aberrations (those that vary with the wavelength

of light), or monochromatic aberrations (the aberrations present at a single

wavelength). All eyes have both chromatic and monochromatic aberrations

that vary across individuals. However, one particularly dramatic aberra-

tion is longitudinal chromatic aberration (LCA), which is generally constant

across all individuals. LCA describes the difference in defocus at different

wavelengths. Across the range of visible wavelengths there is a difference in

defocus of about 2 dioptres (D) due to LCA. Given that people can be given

glasses for anything above 0.5 D of refractive error, this 2 D due to LCA seems

quite dramatic.

Since monochromatic and chromatic aberrations both blur the retinal image,

we might expect them to be detrimental to our vision. In fact, it has been

suggested that as well as correcting for refractive error and astigmatism, it

may be beneficial to correct for other monochromatic aberrations and even

chromatic aberrations using contact lenses, intraocular lenses (López-Gil and

Montés-Micó, 2007), or laser eye surgery (Seiler et al., 2000). A number

of studies have suggested that correcting monochromatic and/or chromatic

aberrations can result in significant improvements in visual acuity (Campbell

and Gubisch, 1967; Liang and Williams, 1997; Liang et al., 1997; Seiler et al.,

2000; Yoon and Williams, 2000, 2002; Benny et al., 2007; Schwarz et al., 2014).

However, it also seems that the visual system is able to adapt to the aberra-
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1.1. Modern illuminant spectra

tions of the eye. In fact as long as they are not too dramatic, the magnitude of

aberrations does not seem to correlate with visual acuity (Villegas et al., 2008;

Artal, 2014). There is also evidence that both chromatic and monochromatic

aberrations may actually be useful in some cases. For example, they both

increase the depth of focus of the eye (Campbell and Gubisch, 1967) and they

could also provide a cue for determining the direction of an accommodative

response.

In this thesis the aberrations of the eye are investigated in relation to modern

illuminant spectra and the possibility of realistically rendering blur in stimuli.

These are introduced briefly below.

1.1 Modern illuminant spectra

In the past humans would have mostly been exposed to broadband spectra

with relatively smooth intensity distributions as a function of wavelength,

whether these be from natural daylight or lamps. The top two panels of

Figure 1.1 show two examples of common broadband illuminants, one for a

standard daylight illumination (D65) and the other for a typical tungsten bulb

(Illuminant A).

However, in the modern world we are increasingly exposed to artificial il-

luminants and displays with more unnatural spectra. The bottom panel of

Figure 1.1 shows two examples of modern spectra with intensity distributions

that are much less smooth as a function of wavelength. What is particularly

noticeable is that these more modern spectra have a series of distinct peaks

in intensity at different wavelengths.

LCA results in different defocus values for different wavelengths and therefore

spectra with different wavelength distributions may result in different blur-

ring in the retinal images and different optimal accommodation responses. In

this thesis we investigate the effects of different spectra on the appearance of

chromatic fringes at object boundaries due to LCA and on people’s accom-

modation responses.
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Figure 1.1: The spectra of four example illuminants. The top left panel shows
D65, which is a CIE standard spectrum for natural daylight. The top right
panel shows Illuminant A, which is a CIE standard spectrum from a tungsten
filament bulb. The bottom left panel shows Illuminant F12 (CIE), which is
an example of a CIE florescent lamp spectrum. The bottom right panel shows
the spectrum of the white light coming from a MacBook screen. The spectra
have all been normalised to have a maximum intensity of one.

1.2 Rendering blur realistically

It is useful to be able to realistically render blur both for displaying 3D scenes

realistically such as in virtual reality, and in order to simulate the effects of

certain optical corrections for patients without the expense of making the

lenses. It seems logical to assume that in order to realistically render blur we
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would need to account for the ways in which the aberrations of the eye would

normally interact with stimuli in the real world. The final part of this thesis

investigates whether it is important to include monochromatic aberrations

when rendering blur.

1.3 Synopsis

This thesis investigates the impact of the aberrations of the eye on our vision

by referencing the work of previous studies and advancing this work through

both simulations and experiments. The following six chapters are summarised

below.

• Chapter 2 is an overview of the workings of the human eye. This chapter

has two main sections. The first describes the optics of the eye and the

second describes detection of the light within the eye by the photorecept-

ors and the subsequent processing into neural signals that are relayed to

the brain.

• Chapter 3 describes the accommodation response of the eye in greater

detail. Firstly, the accommodation response curve and some potential

reasons for the typical ‘lead’ and ‘lag’ in accommodation are discussed.

Secondly, some of the potential cues to accommodation are examined

the evidence for the use of each of these cues is discussed.

• Chapter 4 addresses the question of why it is that we do not generally

notice the effects of LCA, and, in particular, why we do not see the

chromatic fringes at image boundaries due to LCA. In this chapter the

effect of the spectrum of light on the visibility of chromatic fringes is

also investigated both through simulations and through an experiment

in which participants were asked to give subjective reports of whether

they could see chromatic fringes.

• Chapter 5 investigates whether different illuminant spectra alter our ac-

commodative accuracy. An experiment is described in which observers’

accommodative responses were measured for a selection of spectra made

up of various combinations of two narrowband LEDs. Simulations are

also described in this chapter predicting where observers would accom-

modate to the spectra using various potentials cues and rules for ac-
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1.3. Synopsis

commodation. These simulation results are compared to the measured

accommodation responses to evaluate which rule the observers might be

using to accommodate and whether they are accommodating optimally.

• Chapter 6 explores the question of whether it is possible to render blur

so that it is equivalent to real optical blur. A series of experiments are

described in this chapter, in which various types of rendered blur are

compared to real optical blur. These comparisons are made both in

terms of the effect on visual acuity and in terms of the appearance.

• Chapter 7 Summarises the findings from the other chapters and presents

ideas for future research.
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Chapter 2

The Human Eye and Chromatic

Aberration

This chapter gives an overview of the human eye and how it works. It covers

the optics of the eye and the way that the light is focussed, as well as the way

that the light is detected within the eye and processed into neural signals that

feed into the brain.

The human eye is an imaging system. Figure 2.1 shows a diagram of a cross

section of the human eye. As the light from an object in the environment enters

the eye it passes through the tear film, the cornea, the aqueous humour, the

lens, and the vitreous humour before reaching the retina. The cornea and the

lens refract the light bringing it into a focus on the retina.

The retina is a multilayered structure lining the inner surface of the eye. This

is where the photoreceptors which detect the light are located and where the

first stages of visual processing occur. A roughly 5o visual angle central region

of the retina is covered by a yellowish pigment known as macular pigment.

Within this macular region lies the fovea. The fovea is a pit in the retina

where the spatial resolution is greatest. When we fixate on an object in the

outside world, the image of the object comes to a focus at the fovea.

At the back of the eye, towards the nasal side, the optic nerve leaves the eye.

This is where axons carry the visual information towards the brain. The point

at which the optic nerve leaves the eye is known as the optic disc. At the optic

disc there is a gap in the retina which corresponds to a blind spot in our visual

field.
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Figure 2.1: A representation of the cross section of a human eye (not to scale).

The following sections describe first the optics and then the neural pathways

within the eye in greater detail.

2.1 Optics of the eye

Overall the eye has a refractive power of approximately 60 dioptres (D) when

it is in focus for far objects. This is needed in order to focus images onto the

retina. There are two main optical components of the eye that contribute to

this refractive power: the cornea, and the crystalline lens. The cornea is the

domed transparent layer right at the front of the eye. The crystalline lens is a

convex structure that sits within the eye just behind the iris and is suspended

in place by fibres called zonules (see Figure 2.1). The cornea has a fixed shape

and accounts for the majority of the refraction (approximately 40 D) whereas

the lens only accounts for about 20 D of the refraction when.

The lens is adjustable and responsible for fine tuning the focus of the eye

through a process called accommodation. The shape of the lens is controlled

by the ciliary muscle, which attaches to the zonules. When the ciliary muscle is
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2.1. Optics of the eye

Figure 2.2: The accommodation of the human eye. The left panel shows
a representation of the cross section of the front of a human eye in an ac-
commodated and relaxed state (not to scale). In the graph on the right the
solid line shows the amplitude of accommodation as a function of age for the
average case. The two dashed lines show the upper and lower limits of the
amplitude of accommodation as a function of age for normal cases. The data
in the graph was taken from Duane (1912).

relaxed, the zonules are taut. This stretches out the lens reducing its effective

power. In this state the accommodation is relaxed and the eye is focussed for

distant objects. When the ciliary muscle is contracted, the zonules become

slack and the lens forms a rounder shape. In the state the eye is focussed for

near objects. The left panel of Figure 2.2 shows diagrams of a cross section

of a relaxed eye (far vision) and an accommodated eye (near vision).

Myopia (short sightedness) and hyperopia (long sightedness) are accommod-

ative errors that can occur within the eye. Myopia is caused by the eye being

too long for the focal length of the lens. This means that even when the cil-

iary muscles are in their most relaxed state the eye is not in focus for 0 D.

Therefore, myopia results in an inability to bring far away objects into focus.

Hyperopia, on the other hand, is caused by the eye being too short for the

focal length of the lens. This means that when the ciliary muscles are in their

most relaxed state the eye is in focus for <0 D (i.e. beyond infinity). This

means that a hyperopic eye cannot bring close up objects into focus.

The lens also changes with age becoming less flexible (Glasser and Campbell,

1998) and less transparent (Pokorny et al., 1987; Weale, 1988). The loss of
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2.1.1. Image quality

flexibility results in a loss of accommodative range with age. Young people

have approximately 10-16 D of accommodation. However, by the age of around

50 the amplitude of accommodation is usually less than 2 D (Duane, 1912).

This loss of accommodation with age is know as presbyopia. The right panel

of Figure 2.2 shows the amplitude of accommodation as a function of age as

measured by Duane (1912).

The loss of transparency of the lens with age results in less light getting

through the lens to the retina. This particularly affects light in the blue part

of the spectrum meaning that the light reaching the retina becomes more

yellow. However, people adapt to this change so they do not notice colours

changing with age.

It is interesting to note that although the cornea has a single refractive index,

the refractive index of the lens actually varies throughout the structure so

that it is different in the centre than at the edge. This is known as a gradient

index (GRIN).

Another important part of the optics of the eye is the pupil. This is the

circular aperture that the light passes through between the cornea and the

lens. The pupil is formed by the circular iris muscle, which contracts and

relaxes to control the size of the pupil. The pupil size varies depending on the

amount of light entering the eye to limit the amount of light that reaches the

retina.

2.1.1 Image quality

The image formed by any optical system will not be a perfect representation

of the scene being imaged. This is because information will be lost as the light

travels through the optics of the system. The eye is no exception to this rule.

One good way of assessing the quality of the images produced by an optical

system such as the eye, is to examine the quality of the image that would be

formed of an infinitely small point of light. The image of a single point of

light is known as the point spread function (PSF). All images can be thought

of as a collection of single points of light. Therefore, the quality of any image

formed by an optical system is limited by the quality of the PSF of that optical

system. The PSF of an optical system can be calculated using the equation,

PSF(ri, θi) = |F(P (rp, θp)e
i 2π
λ
Z(rp,θp))|2, (2.1)
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2.1.1. Image quality

where PSF(ri, θi) is the PSF defined over the image plane (the retina) with

the radial coordinates ri and θi, F is a Fourier transform, P (rp, θp) is the

pupil function, which describes the shape of the pupil, Z(rp, θp) is the phase

function, which describes the phase distortions of the light across the pupil,

rp, θp are the radial coordinates in the pupil plane, and λ is the wavelength of

the light.

In order to approximate what the image formed on the retina (retinal image)

for a specific eye will look like, we can convolve the perfect 2D representation

of the scene being imaged with the PSF of the eye. This convolution can be

done in Fourier space using the equation

Image = F−1[F(Scene)×F(PSF)], (2.2)

where Image is the retinal image, Scene is a 2D representation of the scene

being imaged, and F−1 is an inverse Fourier transform. It is worth bearing

in mind that this approximation of the retinal image relies on the assumption

that the PSF remains constant across the field of view and as we will see in

the later sections on aberrations, this is not actually the case. Therefore the

approximation of the retinal image produced by this equation is more accurate

for small angles.

Another way of representing the quality of images produced by a particular

optical system is in Fourier (or frequency) space. This is based on the Fourier

theorem named after J. B. Fourier, which states that any image can be repres-

ented as the sum of a series of sinusoidal gratings (Fourier, 1808). Therefore,

instead of the image being represented as a series of intensity values over a

two dimensional space, it is transformed so that it is represented as a series of

amplitudes and phases each corresponding to a sinusoidal grating of a different

spatial frequency. These two representations are mathematically equivalent

and we can refer to the first as being the representation of the image in image

space and the second as the representation of the image in Fourier space. To

convert between these two representations a Fourier transform is needed. A

standard Fourier transform takes us from image space into Fourier space and

an inverse Fourier transform takes us back from Fourier space to image space.

If we take the Fourier transform of the PSF, we get the optical transfer function

(OTF). Therefore,

OTF = F(PSF). (2.3)
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2.1.1. Image quality

The OTF of an optical system contains information as to how the contrast

and phase of each spatial frequency component of the image will be altered

from the object plane to the image plane. By taking the absolute value of the

OTF we get the modulation transfer function (MTF). So

MTF = |F(PSF)|. (2.4)

The MTF contains just the contrast information for each spatial frequency

and not the phase information. Therefore, the MTF is simply a description

of the loss in contrast for each spatial frequency component of the image.

If the PSF is not radially symmetric then the MTF also won’t be radially

symmetric. In these cases it is standard to calculate the radially averaged

MTF as

rMTF(fi) =
1

2π

∫ 2π

0
MTF2D(fi, θi)dθ, (2.5)

where fi is the spatial frequency in the image plane and θi is the angle.

As well as the optics of the eye, neural factors also influence the quality of

the visual information that our brains can use. These factors include the

distribution of the photoreceptors in the retina, the receptive fields of the

post-receptoral pathways, and the way that the visual information is then

processed by the brain.

The combined effect of the optics of the eye and the neuronal influences can

be described in frequency space by the Contrast Sensitivity Function (CSF).

The CSF describes the sensitivity of the visual system as a function of spatial

frequency. In this way the CSF is very similar to the MTF just with the

neuronal influences also accounted for.

The CSF can be measured psychophysically by presenting sinusoidal gratings

to an observer at a range of spatial frequencies. At each spatial frequency the

contrast at which the stimulus is at threshold can be determined experiment-

ally to get the contrast threshold function. The CSF is simply the inverse of

the contrast threshold function.

The CSF can also be calculated for an eye with a known wavefront error using

the equation

CSF(fi) = MTF(fi)× nCSF(fi). (2.6)

From the wavefront error the MTF can be calculated. The MTF is essentially

the optical component of the CSF. Then all that is needed is the neural
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component of the CSF or the neural Contrast Sensitivity Function (nCSF).

The nCSF can be calculated by rearranging Equation 2.6 to get,

nCSF(fi) =
CSF(fi)

MTF(fi)
. (2.7)

Mannos and Sakrison (1974) modelled the CSF for the eye with the equation,

CSF(fi) = 2.6(0.0192 + 0.114fi)e
−(0.114fi)1.1 . (2.8)

This model was based on measurements taken with a pupil size of roughly

3mm. By assuming this eye to be diffraction limited, which is reasonable

given the small pupil size, we can estimate the MTF for this standard eye

by calculating the diffraction limited MTF for an eye with a 3mm pupil.

An estimation for the nCSF can then be calculated using Equation 2.7 as

was shown in Young (2011) and Parnell (2015). Once the nCSF has been

calculated in this way it can then be used to compute the CSF for any eye

with a known MTF using Equation 2.6.

The optical causes of degradation in the images formed by the eye can be

broken down into three main categories. These are the effects of diffraction,

the monochromatic aberrations of the eye, and the chromatic aberrations of

the eye. In the following subsections, each of these optical effects will be

described in turn.

2.1.2 Diffraction

The first source of optical error in the retinal image is diffraction. This is a

phenomenon that applies to any optical system, even one without any optical

imperfections or aberrations. Diffraction occurs when a wavefront of light

is obstructed. In the case of the eye this obstruction is the circular pupil.

After the light has travelled through the pupil, diffraction causes it to spread

out. The light from different points within the pupil will then interfere both

constructively and destructively resulting in diffraction rings in the image

formed on the retina. Because diffraction is unavoidable, the best possible

image that can be formed by an optical system is the diffraction limited image.

The effects of diffraction can be modelled in two ways. The Fresnel approxim-

ation describes diffraction effects in the near-field (i.e. when the image plane
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is close to the aperture) while the Fraunhofer approximation describes dif-

fraction in the far-field (i.e. when the image plane is far from the aperture).

In the case of the eye, the cornea and the lens combined result in an optical

power of approximately 60 dioptres. This optical power has essentially the

same effect as having a very large distance between the retina and the pupil.

Therefore, the Fraunhofer approximation is valid for the eye. Equation 2.1 for

calculating the PSF includes the Fraunhofer approximation of diffraction.

Figure 2.3: The profile of an

Airy disc for a diffraction lim-

ited eye with a 2mm pupil and

550nm light.

Using Equation 2.1 with a constant phase

function (no aberrations), the PSF of a dif-

fraction limited eye can be generated. This

diffraction limited PSF is known as an Airy

disc and consists of a central peak in intens-

ity with a series of successively fainter con-

centric rings surrounding it. The intensity

profile of a cross-section through the centre

of an Airy disc is shown in Figure 2.3.

The amount of diffraction that occurs within

an eye is dependent on both the size of the

aperture and the wavelength of the light.

The smaller the aperture and the longer the

wavelength, the greater the effect of diffrac-

tion, and therefore the more spread out the

PSF, will be. Figure 2.4 shows the Airy discs for different pupil sizes and

wavelengths. It is clear from these images that the PSF becomes more blurred

as the pupil size decreases and as the wavelength increases.

2.1.3 Monochromatic aberrations

The second source of degradation in the retinal image are the monochromatic

aberrations of the eye. These are caused by the structure and arrangement of

the optical components of the eye and cause distortions to the retinal image

that are not wavelength dependent. This means that they are present even in

monochromatic light.

There are a variety of monochromatic aberrations each of which have different

effects on the retinal image. In this section I will firstly describe the different

ways in which monochromatic aberrations can degrade the image formed of

13



Monochromatic aberrations for a single point

Figure 2.4: Images of Airy discs formed by an eye with pupil diameters of
2mm and 3mm and with wavelengths of 450nm, 550nm and 650nm. The scale
bar in the top left image applies to all of the images. In order for the scale
to be accurate the images would need to be viewed from approximately 31
meters.

a single point of light. I will then briefly describe some of the ways that

monochromatic aberrations can affect the image formed across the visual field.

Monochromatic aberrations for a single point

These aberrations alter the relative phase of the wavefront of light across the

pupil. This means that rays of light passing through different points on the

pupil will not all come into a focus at the same point on the retina.

Monochromatic aberrations can distort the light in many different ways. There-

fore, in order to characterise the monochromatic aberrations in a particular

eye it is useful to break them down into categories or modes. The standard

method for describing the monochromatic aberrations of human eyes is to

approximate them using Zernike modes (Zernike, 1934; Thibos et al., 2000).

Zernike modes describe the wavefront distortion in the pupil plane for a series

of different aberrations. They can be calculated using the Zernike polynomi-
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Figure 2.5: Representations of the phase functions described by the Zernike
polynomials up to n = 4. The greyscale colourmap shows the wavefront error
across the pupil. Darker areas have negative phase and lighter areas have
positive phase. The n and m parameter values are given for each Zernike
mode in the form Zmn .

als. One useful feature of the Zernike modes is that they are all orthogonal to

each other. This means that the magnitude of each Zernike aberration within

a wavefront can be determined independently of the other Zernike aberrations

within that wavefront.

The Zernike modes are grouped by two parameters, n, which corresponds

to the radial frequency of the aberration, and m, which corresponds to the

angular (azimuthal) frequency, where n ≥ 0 and −n ≤ m ≤ n. The order of a

Zernike mode is also given by its n value. The standard notation is to write

n as subscript and m as superscript, so each Zernike mode can be referred to

as Zmn . Figure 2.5 shows the phase functions for the first 4 orders of Zernike

polynomials.
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The Zernike modes can be calculated using the equation

Zmn (rp, θp) = Nm
n Rmn (rp) A

m
n (θp) (2.9)

where Zmn (rp, θp) is the Zernike mode defined over a unit circle with the polar

coordinates 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Nm
n is the normalisation term, which

makes the root mean squared (RMS) error equal to one, and is given by

Nm
n =

√
2(n+ 1)

1 + δ
, (2.10)

where

δ =

1 if m = 0,

0 otherwise.
(2.11)

Rmn (rp) is the radial component and is defined as

Rmn (rp) =

n−|m|
2∑

k=0

−1k (n− k)! rn−2kp

k! (n+|m|2 − k)! (n−|m|2 − k)!
. (2.12)

Amn (θp) is the angular component where

Amn (θp) =


sin(mθp) if m < 0,

1 if m = 0,

cos(mθp) if m > 0.

(2.13)

Some of the Zernike modes are more familiar, such as defocus (Z0
2 ), which

causes all of the rays from the pupil to come to a focus either behind or in

front of the focal plane. Astigmatism is also relatively well known (Z−22 and

Z2
2 ), and results in the rays of light along one axis in the pupil coming into

focus in a different plane to those along the orthogonal axis. However, the

Zernike modes include a whole host of other aberrations that distort the light

in different ways.

Using this standardised system the aberrations of a particular eye can be

described by giving a single coefficient for each of these Zernike modes up

to a certain order. Because the Zernike polynomials are normalised by the

normalisation function N(n,m), the coefficient for each aberration is also the

RMS error of that aberration.
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The monochromatic aberrations in the human eye are mainly caused by the

shapes of the lens and the cornea as well as the structure of the gradient index

within the lens (Marcos et al., 2001; Smith et al., 2008). The tear film, which

is a thin layer of fluid on the surface of the cornea, can also have an impact.

Individual variation in these factors cause monochromatic aberrations vary

dramatically between eyes (Marcos et al., 2001).

The monochromatic aberrations within an individual eye can also vary. This

can be caused by changes in the way that the light is passing through the

optics of the eye or by actual variations in the shape and structure of the lens,

cornea, and tear film.

The path that the light is taking through the optics of the eye changes with

field angle. Therefore, the monochromatic aberrations change with field angle.

We will come back to this when we describe monochromatic aberrations across

the visual field.

The path of the light also changes with pupil size. As pupil size increases the

effect of monochromatic aberrations increases too (Thibos et al., 2002; Wilson

et al., 2002). This is because the light reaching the retina has travelled through

a greater area of the lens and cornea and is therefore more aberrated by these

structures. With a small pupil of around 1.22mm the eye is approximately

diffraction limited (Thibos et al., 2002). However, as the pupil size increases,

as it does in dimmer lighting, the image formed on the retina becomes more

affected by the aberrations of the eye.

There are various processes that lead to changes in the shape and structure

of the lens, cornea and tear film. In order for the eye to accommodate the

lens changes shape and it has been found that the monochromatic aberrations

of the eye change as it accommodates (He et al., 2000). In particular, spher-

ical aberration has been found to vary linearly with accommodation in a way

that is consistent across individuals, with the Zernike coefficient for spherical

aberration becoming increasingly negative the greater the accommodation re-

sponse is (Plainis et al., 2005). The shape of the cornea and the lens, and

the gradient index of the lens also change with age (Smith et al., 2008). This

results in the wavefront error increasing with age (McLellan et al., 2001; Artal

et al., 2002; Plainis and Pallikaris, 2008). The tear film also changes with

every blink. It is worth noting, however, that Miranda et al. (2009) found

monochromatic aberrations to be relatively stable over the course of a week
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with any variation being too small to be clinically significant.

Monochromatic aberrations across the visual field

As was mentioned previously, the monochromatic aberrations described above

vary with field angle. This means that the blur in the image will vary across

the visual field. The variations can be in the amount and nature of the blur

in the retinal image, and in the magnification of the retinal image.

It has been shown that as field angle increases the monochromatic aberrations

of the eye also increase. This means that retinal image quality becomes worse

at greater eccentricities (Navarro et al., 1998; Guirao and Artal, 1999; Atchison

and Scott, 2002; Smith et al., 2008).

There can also be a difference in magnification across the image, known as

distortion. Although this could distort the image in a large number of ways,

typically the distortion introduced by optical systems is symmetrical and can

be described either as barrel or pincushion distortion, or as some combination

of the two. Barrel distortion is when the image has a greater magnification

in the centre of the field, with the magnification decreasing with eccentricity.

Pincushion distortion is the opposite of barrel distortion and results in the

magnification being the lowest at the centre of the image and increasing with

eccentricity. Distortion results in straight lines in the scene appearing curved

in the image.

2.1.4 Chromatic Aberrations

The refractive indices of the optical components of the eye are dependent on

the wavelength of light. This means that the aberrations of the eye are also de-

pendent on wavelength resulting in chromatic aberration. There are two types

of chromatic aberration that occur within the eye. These are longitudinal

chromatic aberration (LCA) and transverse chromatic aberration (TCA).

Longitudinal Chromatic Aberration

The wavelength dependence of the refractive indices of the optical components

of the eye results in different focal lengths for different wavelengths of light.

This difference in the focal length, and therefore defocus, with wavelength is

known as longitudinal or axial chromatic aberration (LCA).
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Figure 2.6: The LCA of the human eye as a function of wavelength calculated
from Equation 2.14. The reference wavelength is 580nm.

Many studies have been conducted to measure the LCA of the eye using vari-

ous techniques (e.g. Bedford and Wyszecki, 1957; Charman and Jennings,

1976; Howarth and Bradley, 1986; Marcos et al., 1999; Burns, 2000; McLellan

et al., 2002; Grieve et al., 2006). The general agreement is that LCA is es-

sentially the same across individuals, and that across the whole of the visible

spectrum the LCA of the human eye is approximately 2 D. Figure 2.6 shows

a plot of the LCA of the eye as a function of wavelength calculated from the

equation

D(λ) = 1.7312− 633.46

λ− 214.10
(2.14)

where λ is the wavelength of light in nanometres and D(λ) is refractive error

in dioptres. This equation was described by Marimont and Wandell (1994)

based on the work of Thibos et al. (1992). In this case the refractive error is

calculated relative to a reference wavelength of 580nm.
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Transverse Chromatic Aberrations

Transverse Chromatic Aberrations

Transverse or lateral chromatic aberration (TCA) describes lateral shifts in

the images produced on the retina at different wavelengths. This effect is

due to differences in the magnification power and aberrations of the optical

components of the eye at different wavelengths.

Unlike with LCA there is a large amount of variation in TCA between eyes

(Marcos et al., 2001). There is also evidence for a link between the TCA and

the monochromatic aberrations introduced by an eye. Marcos et al. (2001)

found that eyes with large amplitudes of monochromatic aberrations also ten-

ded to have more TCA as well.

Zhai et al. (2014) showed that TCA has a negligible impact on visual quality

relative to LCA. Therefore, the following chapters will focus on LCA rather

than TCA. It is also easier to study the effects of LCA because it does not

vary much between individuals.

2.2 Physiology of the retina

The retina is the structure that covers the back surface of the eye. It is made

up of a series of layers of cells know as plexiform layers. Within these layers,

the photoreceptors detect the light reaching the retina, and it is also where

the first stages of visual processing occur. This processing takes place in cells

which receive inputs from the photoreceptors and combine them in various

ways.

The structure of the retina is slightly counter intuitive because the layers

of cells responsible for processing the information from the photoreceptors

actually lie in front of the layer of photoreceptors. This means that the light

reaching the retina must first past through these processing cell layers before

it can reach the photoreceptors.

Behind the photoreceptors is the pigment epithelium. This is a layer of

cells containing pigment that absorbs the light that was not detected by the

photoreceptors. This prevents light that was not initially detected from scat-

tering and potentially being detected by photoreceptors elsewhere and con-

fusing the image.
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2.2.1. Photoreceptors

In this section I will firstly describe the types of photoreceptor in the eye. I

will then go on to describe the structure of the other plexiform layers and

some of the ways in which the visual information is processed in these layers.

2.2.1 Photoreceptors

The photoreceptors in the eye are composed of an inner segment and an outer

segment. The outer segment absorbs photons and generates a neural signal.

It is composed of a highly folded membrane with a large surface area. This

membrane is where the photons are detected so the large surface area in-

creases the chance of photon detection. The inner segment is where the cell

body is located containing the nucleus of the cell. The inner segment also

includes an extrusion that carries the signal initiated in the outer segment to

a synapse with other cells. Figure 2.7 shows diagrams of the structures of the

photoreceptors in the retina.

Cone	cell Rod	cell

Outer
segment

Inner
segment

Figure 2.7: A diagram of the

cone and rod photoreceptors of

the human eye (not to scale).

There are two main types of photoreceptors

in the human eye, rods and cones. These

are named after the shapes of the outer seg-

ments. Cones have a more conical shaped

outer segment whereas rods have a long, rod

shaped, outer segment (see Figure 2.7).

There are many functional differences

between rods and cones. Rods work bet-

ter under dim lighting conditions and they

become saturated under bright light. The

cones, on the other hand, work better un-

der brighter conditions and they are not as

sensitive to dim light. The cones also have a

greater spatial resolution than the rods. This

is due to the fact that the cones are very

densley packed at the fovea. In fact, in the central fovea (foveola) there are

no rod cells at all, only cone cells.

Another difference between the rods and the cones is that they contain differ-

ent types of pigment. This results in rods and cones being sensitive to light

of different wavelengths.
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2.2.1. Photoreceptors

Figure 2.8: The standard spectral sensitivities of the L, M, and S cones for
the central 2o visual field, normalised so that the peak sensitivity for each
cone type is one. These standards were defined by Stockman et al. (1999) and
Stockman and Sharpe (2000) and were taken from www.cvrl.org.

There is only one type of rod cell with one type of photopigment. Therefore,

all of the rod cells in the eye have the same spectral sensitivity. The rods have

a peak sensitivity at around 498nm and their sensitivity drops of at about

640nm. There are, however, three types of cone cells each with a different

spectral sensitivity. These are referred to as short wavelength cones (S cones),

middle wavelength cones (M cones), and long wavelength cones (L cones),

after the wavelength ranges they are most sensitive to. Figure 2.8 shows the

spectral sensitivities of these three cone types.

Both rods and cones are univarient. This means that each type of receptor

can only alter the intensity of their signal and therefore they cannot disam-

biguate intensity of the stimulus from wavelength of the stimulus. However,

by comparing the signal between the three different types of cone cell we are

able to help solve this ambiguity between wavelength and intensity. The dif-
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2.2.1. Photoreceptors

ferences in the spectral sensitivities of these three cone types is therefore the

basis of our ability to perceive colour. As there is only one type of rod cell, we

cannot make these comparisons and therefore we cannot distinguish colours

when using the rod cells alone.

As rods and cones operate under different light levels, lighting conditions

can be broken down into three categories. These are scotopic, mesopic and

photopic from darkest to brightest. Under scotopic conditions, there is not

enough light for the cones to function and therefore it is the rods alone that

are responsible for our vision. Therefore under scotopic conditions we cannot

perceive colour. Under mesopic conditions, both the rods and the cones con-

tribute to our vision. Under photopic conditions, the light saturates the rods

so only the cones contribute to our vision. We can perceive colour in both

mesopic and photopic conditions since the cones are active in both.

The rods and cones also vary in terms of their distribution across the retina.

The cones are most concentrated at the fovea with the cone density trailing

off dramatically into the peripheral retina. The rods, on the other hand, are

not present at all in the central fovea, although there is a much higher density

of rods than cones in the periphery. This is the reason that our visual acuity

and colour vision are best at the fovea. It also is the reason that we often

can detect dimmer objects in our periphery which seem to disappear when we

fixate them.

The different cone types also have different distributions across the retina. The

S cones are a lot sparser in the photoreceptor mosaic, making up only about 5

to 10% of cones overall. There are also no S cones at all in the central fovea.

On average there are somewhere between 1.5 and 2 times more L cones than

M cones in the retina (Cicerone et al., 1994; Sharpe et al., 2005). However,

there are dramatic individual differences in the relative numbers of L and M

cones (Hofer et al., 2005).

There is also a third type of photoreceptor in the eye which contains the pig-

ment melanopsin. However, I will describe this in more detail in the following

section.
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2.2.2. Post-receptoral processing

2.2.2 Post-receptoral processing

Once the light has been detected by the photoreceptors, the photoreceptors

excite other cells to respond. This sets off a chain of responses that eventually

carries information via the optic nerve to the lateral geniculate nucleus (LGN),

and then to the visual cortex in the brain. For the purposes of this thesis we

are just concerned with the first few stages of this visual processing which

occur in the retina itself.

The processing in the human retina involves four main types of cell. These

are the amacrine cells, bipolar cells, horizontal cells, and the ganglion cells

(Kolb et al., 1992).

The bipolar cells are essentially the relay cells that carry information from

the photoreceptors to the ganglion cells. The amacrine and horizontal cells

mostly make lateral connections along the retina. The amacrine cells are

located next to the photoreceptors whereas the horizontal cells are located

next to the ganglion cells.

The ganglion cells make up the inner most layer in the retina and are the final

cells in the retinal processing chain. It is the axons of the ganglion cells that

make up the optic nerve to carry the information from the eye to the LGN.

There are many different types of ganglion cell, each of which makes different

comparisons and combinations of the signals from the photoreceptors. These

ganglion cells form the basis of important visual pathways in the early visual

system, with different pathways corresponding to different layers within the

LGN. Here I will be describing four key types of ganglion cells and their

associated pathways.

Parvocellular Pathway

The most common type of ganglion cell in the primate retina are those that

feed into the parvocellular layers of the LGN and form the basis of the parvo-

cellular pathway. For this reason these ganglion cells are sometimes referred

to as P-cells.

In the central retina these P-cells have very small receptive fields and are

known as midget ganglion cells (Rodieck et al., 1985). The midget ganglion

cells have spatially opponent receptive fields with a concentric structure. At
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Magnocellular Pathway

the centre of their receptive field they take an input from a single L or M

cone. In the surround they take an opponent input from a mixture of L and

M cones.

Because the central input comes from a single cone, whereas the surrounding

input is from a seemingly random combination of L and M cones, the average

spectral sensitivity is different for the centre and the surround of the receptive

field. As a result of this the midget ganglion cells are chromatically opponent

in the L−M colour direction. This means that they are sensitive to changes

along the red-green colour axis.

These features of the midget ganglion cells lead to properties that are charac-

teristic of the parvocellular pathway. These properties include a high spatial

resolution and an important role in colour vision. The midget ganglion cells

and the parvocellular pathway form the basis of the red-green or L−M di-

mension in human colour space.

Magnocellular Pathway

The second most common type of ganglion cells in the primate retina are

called parasol ganglion cells. These feed into the magnocellular layers of the

LGN. These are vastly outnumbered by midget ganglion cells in the retina

but are more common in the periphery.

The parasol ganglion cells also have spatially opponent, concentric receptive

fields. However, their receptive fields are much larger than those of the midget

ganglion cells (Rodieck et al., 1985), giving them a poorer spatial resolution. In

the parasol ganglion cells the input to both the centre and the surround of the

receptive field comes from a mixture of L and M cones. This means that unlike

the midget ganglion cells, the parasol ganglion cells are not chromatically

opponent.

These features of the parasol ganglion cells result in the magnocellular pathway

having a lower spatial resolution that the parvocellular pathway. The magno-

cellular pathway also has no chromatic opponency. It does have a greater

sensitivity than the parvocellular pathway though.

The magnocellular pathway has often been associated with the luminance

pathway, which is responsible for detecting changes in luminance and lumin-

ance boundaries. The luminance pathway has a much faster response than the
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Koniocellular Pathway

Figure 2.9: The 2o luminous efficiency as a function of wavelength expressed
in units of energy. These data were taken from www.cvrl.org.

chromatic pathways. It also has a spectral sensitivity, known as the luminous

efficiency function or V (λ) (shown in Figure 2.9), which combines the spectral

sensitivities of the L and M cones in the following equation

V (λ) = 0.68990272 L(λ) + 0.34832189 M(λ), (2.15)

where V (λ) is the energy based luminous efficiency function, and L(λ) and

M(λ) are the energy based L and M cone spectral sensitivity functions norm-

alised to have peak sensitivities of one (Stockman and Sharpe, 2000; Sharpe

et al., 2005; CIE, 2006; Stockman et al., 2008).

Koniocellular Pathway

Another type of retinal ganglion cell is the small bistratified ganglion cell

(Dacey and Lee, 1994). These project to the koniocellular layers of the LGN

and form the start of the koniocellular pathway.
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Intrinsically Photosensitive Retinal Ganglion Cells

The small bistratified ganglion cell has a very large receptive field with no

surround. This means that it is not spatially opponent. It receives excitatory

input from the S cones and an inhibitory input from L and M cones making

it chromatically opponent in the S−(L+M) or blue-yellow colour direction.

This pathway is important for colour vision as it allows for colour discrimin-

ation in the S−(L+M) or blue-yellow dimension. Combined with the parvo-

cellular pathway this forms the basis of human colour vision. However, the

koniocellular pathway has very poor spatial resolution.

Intrinsically Photosensitive Retinal Ganglion Cells

As was mentioned previously, there is also a third type of photoreceptor.

These are fundamentally different from rods and cones in that they are in fact

intrinsically photosensitive retinal ganglion cells (ipRGCs). The ipRGCs are

ganglion cells which contain a light sensitive photopigment called melanopsin.

The receptive field structure of the ipRGCs is similar to that of the small

bistratified ganglion cells in that they are very large and are not spatially

opponent. However, unlike the small bistratified ganglion cells, the ipRGCs

receive excitatory input for L and M cones and inhibitory input from the S

cones (Dacey et al., 2005). The melanopsin in the ipRGCs also contributes

an excitatory input to the cells. This means that they are also chromatically

opponent.

The ipRGCs show a very sustained light response (Wong, 2012). This suits

them to non-image forming visual functions. ipRGCs are thought to play a

key role in several non-image forming functions including the pupillary light

response (Gamlin et al., 2007; Spitschan et al., 2014) and the control of circa-

dian rhythms (Berson et al., 2002).

2.2.3 Summary

All optical systems are imperfect and therefore there is always some image

degradation. In the eye this degradation is caused by a combination of dif-

fraction, monochromatic aberrations, and chromatic aberrations.

There are various ways to represent the quality of the images formed by the

eye. The PSF is a representation of the image formed of an infinitely small
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2.2.3. Summary

point of light. The PSF can then be used to generate and approximation of

the retinal image of any given scene.

The OTF and MTF also represent the quality of the retinal image, but in

Fourier space. This means that they show the contrast (and phase for the

OTF) for each spatial frequency relative to the theoretical perfect image. The

CSF is another Fourier space metric, but it takes into account not only the

optical effects of the eye but neuronal effects as well.

Photoreceptors in the retina detect the light entering the eye. There are

two main types of photoreceptor: rods and cones. The rods work in darker

conditions and are saturated in bright light. There is only one type of rod and

therefore the rods have no colour discrimination. The cones work in brighter

conditions and are less sensitive to low light levels. There are three types of

cone and comparisons between these form the basis of human colour vision.

Ganglion cells received a combination of inputs from various photoreceptors

and carry this information from the eye to the LGN. Different types of gan-

glion cells compare and combine the signals from the photoreceptors differently

and form the basis of different visual pathways.

There are three main post-receptoral pathways. The magnocellular pathway

is responsible for the luminance dimension. The parvocellular pathway is re-

sponsible for the L−M colour dimension and has a very high spatial resolution

at the fovea. The koniocellular pathway is responsible for the S−(L+M) colour

dimension and has a low spatial resolution.
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Chapter 3

The Accommodation Response

This chapter goes into the accommodation response of the human eye in

greater detail. The first section describes the general shape of the accommod-

ation response function. The second section describes the potential optical

cues that the human visual system could use to accommodate and evaluates

the evidence for the use of each of these cues.

3.1 Accommodation response curve

When the steady state accommodation response is plotted as a function of the

stimulus distance there is not a simple linear relationship over the range of

values that the eye can accommodate to. Instead the slope of the accommoda-

tion response is less than one indicating over-accommodation to far stimuli and

under-accommodation to near stimuli. The accommodation response function

also tails off at the furthest and nearest distances. An example of this curve

can be seen in Figure 3.1. This characteristic shape of the accommodation

response function has been known for many years (Toates, 1972).

It has been suggested that this apparent ‘lead’ and ‘lag’ in the accommoda-

tion response function is due to a ‘laziness’ of the accommodation response.

Perhaps we ‘spare accommodation’ by not fully bringing the stimulus into

focus.

Leading on from this idea, it has been suggested that perhaps the longitudinal

chromatic aberration (LCA) of the eye results in a greater depth of field, which

in turns allows for this sparing of accommodation. Campbell and Gubisch
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3.1. Accommodation response curve

Figure 3.1: The dotted line shows a ‘perfect’ one to one relationship between
the stimulus distance and the accommodation response, and the solid line
shows a typical accommodation response function. This graph was adapted
from Bobier, Campbell, and Hinch (1992).

(1967) actually showed that there is a greater depth of focus for white light

than for monochromatic light. Perhaps the reason for the lead and lag in the

accommodation response function is that at closer distances the eye is in focus

for blue light while at further distances the eye is in focus for red light. This

way the eye is always in focus for some wavelength but the accommodation is

spared.

Ivanoff (1949) was the first to make the suggestion that at different distances

we may accommodate for different wavelengths. In his experiment subjects

accommodated to a white light source with various levels of defocus. For each

defocus level Ivanoff determined which wavelength of monochromatic light

was also in focus. He found that when the the eye was accommodating to a

white light source at infinity, red wavelengths of almost 700nm were in focus.

However, when the eye was accommodating to a white light source at 2.5

dioptres (D), wavelengths of approximately 500nm were in focus. Similarly

Bobier and Sivak (1978) found that red light is more out of focus when the

eye is accommodating to a near stimulus and green light is more out of focus

30



3.1. Accommodation response curve

when the eye is accommodating to a far stimulus.

These studies show that the apparent shape of the accommodation response

function along with the LCA of the eye result in the lowest defocus at longer

wavelengths for near objects and the lowest defocus at shorter wavelengths

for far objects. However, they do not show that it is because of the LCA of

the eye that the accommodation response curve has these ‘leads’ and ‘lags’

There is actually increasing evidence that the apparent ‘lead’ and ‘lag’ in the

accommodation response function is not due to the LCA of the eye. Charman

and Tucker (1978) compared the accommodation response function for white

and monochromatic light and found that the apparent ‘leads’ and ‘lags’ in

the accommodation response function were also present under monochromatic

light suggesting that LCA was not responsible for them. Similarly Bobier

et al. (1992) investigated whether the ‘leads’ and ‘lags’ in the accommodation

response function were still present when LCA was increased, reduced, or re-

versed. They found that varying LCA did not significantly affect the stimulus

response function, again indicating that LCA is not responsible for the shape

of the accommodation response function.

Therefore, it seems that there must be another explanation behind the shape

of the accommodation response function. One more recent idea is that rather

than resulting from a ‘sparing’ of accommodation, the shape of the accom-

modation response function actually represents the optimal response. It has

been shown that when the higher order aberrations of the eye, and in particu-

lar spherical aberration, are taken into account, the accommodation response

that optimises image quality is not actually the same as the one to one linear

accommodation response that eliminates defocus (Plainis et al., 2005; Buehren

and Collins, 2006; Tarrant et al., 2010; Thibos and Bradley, 2013). In fact,

it has been found that positive defocus can improve the image quality in an

optical system with positive spherical aberration and negative defocus can im-

prove the image quality in an optical system with negative spherical aberration

(Tarrant et al., 2010). Therefore, given that spherical aberration becomes in-

creasingly negative with accommodation (Plainis et al., 2005), it follows that

the optimal accommodation response would have a lag for near targets and a

lead for distant targets just as the actual measured accommodation response

does.
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3.2. Cues to accommodation

3.2 Cues to accommodation

When it comes to working out the accommodation response needed to bring

a defocussed image into focus, there are two pieces of information that the

visual system needs. Firstly, it needs the magnitude of the defocus, in order

to produce the correct magnitude of response, and secondly, it needs the sign

of the defocus, to produce the correct direction of response.

Generally, the greater the magnitude of defocus, the more blurred the image

formed on the retina will be, regardless of the sign of the defocus. Therefore,

working out the magnitude of the accommodation response needed should not

be too difficult a task. The more blurry the image is, the further it is from

focus, and therefore, the greater the necessary accommodative response is.

However, defocus is an even order aberration. This means that, all other

things being equal, the image formed by an eye with defocus of a dioptres will

be identical to the image formed by an eye with defocus of −a dioptres. This

is demonstrated in Figure 3.2. This means that defocus blur on its own is an

even-error cue, because it gives information about the magnitude but not the

sign of defocus. Therefore, the visual system must be using some other cue in

order to judge the direction of the accommodation response needed. This cue

must give an odd-error signal for accommodation.

Under natural conditions we tend to be confronted with scenes made up of

familiar objects where there are many pictorial cues that could be used to

determine the direction of an accommodation response. For example, we

know what the relative sizes of familiar objects should be and can use this to

judge whether an object is closer or further away. Surface textures can also

provide useful cues because there will be a gradient in the spatial frequency

of these textures as they become further away or closer to us.

Most of the time we will also be viewing scenes binocularly (with both eyes).

This means that there are also cues from the vergence of our eyes and from

binocular disparity that could help to guide the direction of our accommod-

ation responses. When we are fixated on an object with both eyes the angle

of the eyes, or the vergence, gives us a cue to how far away that object is.

Binocular disparity refers to the difference in the location of the images of

objects in the scene on both retinas. This provides cues to the depth within

the scene.
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3.2. Cues to accommodation

Figure 3.2: The top row shows greyscale images of the simulated PSFs for
both -1 D and 1 D of defocus, for 550nm light and a 5mm pupil. The bottom
row shows greyscale images of a daisy convolved with these PSFs to give the
generated retinal images of a daisy with -1 D and 1 D of defocus. The scale
bar in the top left image applies to all of the images. In order for the scale to
be accurate the images would need to be viewed from approximately 1 meter.

Another possibility is that the human visual system could be using a trial

and error approach by accommodating slightly in one direction. If it is the

correct direction, then the defocus blur should reduce slightly, whereas if it

is the wrong direction, then the defocus blur should increase slightly. From

this additional information it would then be possible for the visual system to

determine the actual direction of response needed.

It has, however, been found that the human visual system is capable of making

accurate accommodation responses for stimuli presented monocularly (to only

one eye) in the absence of any pictorial cues (Smithline, 1974). It has also been

found that these responses are initiated in the correct direction suggesting that

the visual system is not using a trial and error approach.

There must, therefore, be an odd-error optical cue that the visual system is
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3.2.1. Monochromatic Aberrations

using to accommodate. There are actually a number of potential candidates

for this cue. These include the monochromatic aberrations of the eye, the

chromatic aberrations of the eye, the microfluctuations of the eye, and the

Stiles-Crawford effect. All of these potential cues will be discussed below.

The studies investigating the accommodation response can be broken up into

two main categories. There are those that monitor accommodation responses

for a step change in defocus and those that monitor accommodation responses

to a sinusoidally modulating stimulus. The need for a directional cue most

obviously applies to the first type of study where the defocus step is in a

random direction. However, I will be discussing both types of study in this

chapter.

3.2.1 Monochromatic Aberrations

As was described in the previous section, the eye actually has many monochro-

matic aberrations of various magnitudes that distort the wavefront of light.

Although these aberrations are orthogonal in the pupil plane, they actually

interact in their effects on the retinal image. It has often been suggested that

these monochromatic aberrations could provide a directional cue to accom-

modation (Fincham, 1951; Campbell and Westheimer, 1959).

One result of these interactions is that although on its own, defocus only

provides an even-error cue, when it is combined with other even order aberra-

tions, a difference can be seen in the retinal images formed depending on the

sign of the defocus, providing a potential odd-error cue. This means that there

are a whole range of monochromatic aberrations that could contribute a direc-

tional cue for accommodation. Next I will describe the ways that astigmatism

and spherical aberration in particular might provide such a cue. I will then

discuss whether there is convincing evidence for monochromatic aberrations

being used as a directional cue for accommodation.

Vertical and oblique astigmatism (Z−22 and Z2
2 ) are even order aberrations.

These cause light from one axis in the pupil to come into focus at a different

depth from the orthogonal axis. When astigmatism is combined with defocus,

the sign of the defocus determines which axis has the best focus, this therefore

determines the orientation of the blur in the PSF. This results in a clear change

in the retinal image with the sign of defocus as can be seen in Figure 3.3.
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3.2.1. Monochromatic Aberrations

Figure 3.3: Simulated PSFs and retinal images of a daisy for defocus and
astigmatism with 550nm light and a 5mm pupil. The top 2 rows are for
vertical astigmatism and the bottom 2 rows are for oblique astigmatism. The
two columns are for -1 D and 1 D defocus respectively. The scale bar in the
top left image applies to all of the images. In order for the scale to be accurate
the images need to be viewed from approximately 1 meter.
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3.2.1. Monochromatic Aberrations

Figure 3.4: The top row shows greyscale images of the simulated PSFs for an
eye with spherical aberration and either -1 D or 1 D of defocus, for 550nm
light and a 5mm pupil. The bottom row shows greyscale images of a daisy
convolved with these PSFs to give the retinal images. The scale bar in the top
left image applies to all of the images. In order for the scale to be accurate
the images would need to be viewed from approximately 1 meter.

Although astigmatism would provide a clear cue for the direction of accom-

modation, it is not clear whether real eyes have enough astigmatism to provide

a strong cue. Astigmatism is also routinely corrected using spectacles or con-

tact lenses to below 0.25D. This means that those people with large enough

magnitudes of astigmatism to provide a cue to accommodation may have this

corrected.

Spherical aberration is also an even order aberration which could provide a cue

to the sign of defocus. The differences in the PSFs and retinal images with the

sign of defocus in an eye with spherical aberration can be seen in Figure 3.4.

However, although there is clearly a difference between the retinal images with

positive and negative defocus, it is not so clear what this difference is and how

it might be distinguished from the magnitude of the defocus.
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Figure 3.5: The solid lines show the CSFs generated for a an eye with a 3mm
pupil and 0.13 microns of spherical aberration. The black solid line is with 0
D defocus, the red lines are for positive defocus values in equal steps up to
0.5 D, and the blue lines are for negative defocus in equal steps down to -0.5
D. The black dotted line shows the diffraction limited CSF for an eye with a
3mm pupil. All of the CSFs were calculated for 550nm light.

The effect of defocus sign for an eye with spherical aberration can be seen

more clearly by plotting the Contrast Sensitivity Functions (CSFs). The CSFs

for an optical system with 0.13 microns of spherical aberration and various

amounts of defocus can be seen in Figure 3.5. These CSFs were calculated

using Equations 2.6, 2.7, and 2.8 as described in the previous chapter on pages

11 and 12. It can be seen from this figure that there is a reduced sensitivity to

higher spatial frequencies and increased sensitivity to lower spatial frequencies

as defocus becomes more negative. This effect was also shown by Parnell

(2015). Green and Campbell (1965) showed a similar effect with the measured

CSFs for an eye with natural aberrations. It is possible that this difference in

the shape of the CSF due to spherical aberration could be used by the visual

system to determine the direction for accommodation.

A number of studies have investigated whether the human visual system does

use cues from monochromatic aberrations to guide the accommodation re-
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sponse A selection of these studies are described below.

Campbell and Westheimer (1959) presented monochromatic stimuli both with

and without an annular pupil. The annular pupil was designed to remove the

spherical aberration. The target would then move out of focus by 0.5 or

1 dioptres in a random direction and the subjects’ task would be to adjust

the target until it was in focus again. In the condition without the annular

pupil, with enough practice all of the subjects could respond correctly on all

trials. However, with the annular pupil, even after a large number of trials the

subjects could not respond in the correct direction every time. There was also

another condition where a cylindrical lens was added as well at the annular

pupil. This introduced astigmatism to the stimulus. Once this astigmatism

was added all subjects were able to respond correctly after a few trials. This

experiment indicated that both spherical aberration and astigmatism can be

used by the visual system to determine the sign of defocus. However, as

this study did not measure accommodation it is not clear from these results

whether the odd-error signals from spherical aberration and astigmatism could

actually drive accommodation.

Wilson et al. (2002) presented a point source target to subjects with various

amounts of defocus. The subjects’ task was to indicate the sign of the defocus.

They performed this task at three different pupil sizes (1mm, 2mm and 5mm).

Measures were taken to minimise other potential cues, ensuring that the sub-

jects were using the cues from monochromatic aberrations. They found that

as the pupil size (and therefore the magnitude of the monochromatic aber-

rations) increased, so did the subjects’ ability to detect the correct sign of

defocus. This provides evidence that the visual system can use the cues from

monochromatic aberrations to work out the sign of the defocus. However,

this study also did not investigate the accommodation response itself so the

findings may not extend to the accommodative system.

There have also been studies that have measured the accommodation response

while manipulating the monochromatic aberrations using an adaptive optics

(AO) system. An AO system is an optical system that includes a wavefront

sensor and a device to manipulate the wavefront of light such as a deformable

mirror. The wavefront sensor measures the wavefront of the light that is

reflected back out through the optics of the eye and the deformable mirror

can manipulate the wavefront of the light entering the eye. This system can
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be used to alter or cancel out the aberrations introduced by the eye.

Chin et al. (2009a) used an AO system to manipulate monochromatic ab-

errations while observers accommodated to 0.5 D step changes in defocus.

The step changes were randomised so that the subject could not predict the

direction of the defocus shift. The monochromatic aberrations were either

unchanged, corrected or inverted following the change in defocus. They found

that, although correcting the aberrations had no significant effect on the ac-

commodation response, inverting the aberrations resulted in a reduction in

the accommodation response gain for outward steps in defocus and led to

more accommodation responses in the wrong direction. This suggests that

the visual system does, in part, use cues from monochromatic aberrations as

a directional cue for accommodation. However, it seems that in that in the

absence of a cue from monochromatic aberrations other cues can be used.

Gambra et al. (2009) also used an AO system to manipulate monochromatic

aberrations while subjects responded to step changes in defocus. However, in

this case the step changes were always in the same direction so the direction

of the required response was always the same. They found that correcting

aberrations actually tended to improve the accommodative response. This

may be because the subjects did not need to determine the direction of the

response but only the magnitude.

Chin et al. (2009b) measured the accommodation response to sinusoidal rather

than step changes in defocus while manipulating the monochromatic aberra-

tions using an AO system. However, they found that overall there was no

significant effect of correcting monochromatic aberrations on the accommoda-

tion response. Again this could be in part due to the more predictable nature

of the stimulus.

Similarly, Bernal-Molina et al. (2017) measured dynamic accommodation re-

sponses to sinusoidal accommodation stimuli under a range of aberration cor-

rection conditions. These ranged from natural aberrations to completely cor-

rected aberrations (except defocus) and included conditions where just spher-

ical aberration was left uncorrected and just astigmatism was left uncorrected.

They also found no significant differences in the gain or phase lag of the ac-

commodation responses between the conditions.

Cholewiak et al. (2018) used a different kind of approach to investigate whether
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cues from astigmatism or spherical aberration could drive accommodation.

Instead of optically manipulating the observers’ aberrations, they measured

their aberrations and then used these to render realistically blurred stimuli

for various step changes in defocus. For the astigmatism experiment there

were three subjects, two had uncorrected astigmatism with magnitudes of 1

D or more and the third had less than 1 D of astigmatism. The subjects’

accommodation responses were measured for three different conditions. For

the first condition there were real step changes in optical defocus with the

subjects’ astigmatism uncorrected. For the second condition the step changes

in defocus were rendered with the astigmatism in the image rendered correctly

for that specific subject. The third condition was the same as the second

condition with the only difference being that the rendered astigmatism was

rotated by 45o from normal. For the two rendered conditions the subjects’

actual astigmatism was corrected optically. It was found that the subjects

with 1 D or more of astigmatism were usually able to accommodate in the

correct direction for the rendered defocus when the rendered astigmatism was

in the correct axis, although the response was smaller than for a real defocus

change. However, when the rendered astigmatism was rotated by 45o there

was no consistent response. They concluded that astigmatic blur can drive

accommodation but the responses tend to be small and inconsistent. They

also conducted a similar experiment investigating whether spherical aberration

can drive accommodation. However, they found that none of the 3 subjects

showed consistent accommodation responses to a stimulus with their rendered

spherical aberration and step changes in defocus. This suggests that the odd-

error cue resulting from spherical aberration was not used by these subjects

to accommodate.

The general trend in the literature seems to be that removing the monochro-

matic aberrations does not impair the accommodation response, suggesting

that there are other important cues that the visual system can use. How-

ever, when the monochromatic aberrations are reversed, so that the cue from

the monochromatic aberrations conflicts with other potential cues, there is

an impairment in the accommodation response. This suggest that although

monochromatic aberrations are not the only cue used by the visual system

to guide the accommodation response, they are one of the cues that is used.

There may also be differences in the extent to which the cue from mono-

chromatic aberrations is used between individuals due to differences in the
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magnitude of monochromatic aberrations and therefore differences in the ef-

fectiveness of the cue.

3.2.2 Longitudinal Chromatic Aberration

The LCA of the human eye could also act as a cue for accommodation. This

is because each wavelength of light is defocussed by a different amount when

it is imaged by the eye. Therefore, for polychromatic images, instead of the

image on the retina representing a single focal plane, it essentially covers a

range of focal planes spanning approximately 2D across the range of visible

wavelengths.

Figure 3.6 shows an approximation of what the polychromatic PSFs and ret-

inal images would look like with the LCA of the eye and either positive or

negative defocus. What can be seen from these images is that when the defocus

is positive, the shorter wavelength, blue, light is the sharpest and the longer

wavelength, red, light is the most blurred. However, when the sign of the

defocus is negative it is the longer wavelength, red, light that is the sharpest

and the shorter wavelength, blue, light is the most blurred. This results in

a clear difference in the retinal images. Burge and Geisler (2011) actually

demonstrated that CA could fully resolve the sign ambiguity of defocus.

Crane (1966) described how the combination of the two factors of the LCA

of our eyes and the different spectral sensitivities of different cone channels,

essentially results in the different cone channels sampling retinal images on

different focal planes. This would mean that the relative blur in these three

channels could provide information about the sign and magnitude of the ac-

commodation response needed.

Flitcroft (1990) developed a computational model to explain how the visual

system might use the chromatic aberration of the eye to increase the accuracy

of accommodation. In this paper, Flitcroft suggested that double oppon-

ent neurons might allow for a comparison in image quality between different

wavelength ranges. This comparison of image quality could then be used to

guide the accommodation response in the correct direction. It could be that

the accommodation system aims to balance the level of blur in different cone

channels and in doing so brings wavelengths in the middle of the spectrum

into focus.
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Figure 3.6: The top row shows the simulated RGB PSFs for an eye with
normal LCA and either -1 D or 1 D of defocus. The second row shows RGB
images of a daisy convolved with the PSFs in the top row to give the retinal
images. These were calculated assuming wavelengths of 650nm, 550nm, and
450nm respectively for the R, G and B channels and a 5mm pupil. The scale
bar in the top left image applies to all of the images. In order for the scale to
be accurate the images would need to be viewed from approximately 1 meter.

Many studies have investigated the effect of manipulating LCA on subjects’

accommodative responses. Below the findings from some of these studies are

reviewed.

Campbell and Westheimer (1959) devised a task in which subjects were in a

fixed state of relaxed accommodation and had to bring a target into focus by

adjusting its axial position in an optical system. Although all subjects had

got to the stage where they were always adjusting the target correctly for

white light, they found that when the light source was switched from being

white light to monochromatic light some subjects started making errors again

for the first few trials. This suggests that these subjects were using LCA as

a cue to the direction of defocus for the white light stimuli. However, they
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were able to switch to using a different cue relatively quickly. Although this

experiment did not actually record accommodation responses, it does indicate

that the visual system can use the cue from chromatic aberrations.

Fincham (1951) actually recorded the accommodation response to step changes

in defocus under broadband and narrowband light. They found that some

subjects showed impaired accommodation performance under monochromatic

light. However, some subjects showed roughly the same responses for white

and monochromatic light. Very similar findings were obtained when they used

an achromatising lens with broadband light to cancel out the LCA of the eye,

instead of the monochromatic light condition. This indicates that at least

some of the subjects were using a cue from LCA in the white light condition.

However, it is clear that there were also other cues that the visual system was

able to use to accommodate, at least for some subjects.

Charman and Tucker (1978) found that although initially white light targets

allow more accurate accommodation responses for some people, after training

equally accurate responses can be made in monochromatic light. This suggests

that although LCA can be used as a cue for accommodation, it is not necessary

for accurate accommodation.

Rucker and Kruger (2004) also recorded accommodation responses for both

static stimuli and stimuli with a defocus step. The stimulus was made up of

a grating of yellow (580nm) light and a grating of blue (420nm) light super-

imposed. In one condition they eliminated the effect of LCA by altering the

optical defocus in the yellow grating to cancel out the LCA of the eye. They

found no significant difference in either the static or the dynamic accommod-

ation response between the normal LCA and the removed LCA conditions.

This indicated that the cue from LCA was not necessary for accommodation

under these conditions.

Many studies have also investigated the effect of manipulating LCA on accom-

modation responses to stimuli with sinusoidally modulated defocus. Several of

these studies have found some degree of impairment of the accommodation re-

sponse when the LCA cue is removed or reduced (e.g., Kruger and Pola, 1986;

Kruger et al., 1993; Stone et al., 1993; Aggarwala et al., 1995a,b; Kruger et al.,

1995, 1997).

Kruger et al. (1993) found that when LCA was eliminated, the gain of the
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accommodative response decreased and the phase-lag increased. They also

found that reversing the LCA substantially disrupted the accommodative re-

sponse. Similarly, Kruger et al. (1995) found that a normal amount of LCA

led to good accommodation. However, when LCA was reversed, the accom-

modation response was disrupted. Kruger et al. (1997) found that neutralizing

and reversing LCA led to a reduced accommodative gain, as did using mono-

chromatic as opposed to white light. However, they found that a few subjects

did still perform relatively well in monochromatic light, indicating that there

must be other cues that can be used for accommodation.

It has also been found that accommodative gain increases and phase lag de-

creases with increasing spectral bandwidth and, therefore, increasing LCA

(Aggarwala et al., 1995a). Aggarwala et al. (1995b) additionally found that

accommodation in white light with LCA corrected was similar to that in

monochromatic light. These too provide evidence that LCA is used as a cue

to accommodation.

In a different kind of study Cholewiak et al. (2017) investigated the effect

of rendering defocus with the LCA of the eye included. They found that in

stimuli with rendered defocus and LCA the cue provided by the rendered LCA

could actually drive the accommodation response.

Overall, there is substantial evidence suggesting that the visual system does

use LCA as a directional cue for accommodation. Although previous studies

also suggest that it is not the only odd-error cue that the visual system uses to

accommodate. This is interesting as it suggests that although LCA increases

the amount of blur in the retinal image, it actually could be advantageous to

vision in general as it could allow the visual system to accommodate more

effectively. This could also suggest why our eyes have not evolved to eliminate

LCA.

3.2.3 Microfluctuations

When the eye is accommodating on an object, rather than maintaining a con-

stant level of accommodation, it fluctuates. It has been found that there are

in fact two main temporal frequency components to these microfluctuations.

These are a low frequency component, which is at approximately ≤ 0.6 Hz,

and a high frequency component, which is somewhere between 1.0 Hz and

2.5 Hz.
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It has been suggested that these microfluctuations could provide a directional

cue, which could be used to initiate an accommodation response in the correct

direction (Alpern, 1958). The idea is that these microfluctuations allow for

a trial and error approach accommodation. Fender (1964) actually described

these microfluctuations as a “‘hunting” motion’ used to find the correct dir-

ection for the accommodation response.

The way this cue could work is that the microfluctuations result in the eye

covering a range of accommodative states between two limits. At one extreme

the accommodation will be further from the optimum point meaning that there

will be more defocus blur in the retinal image, and therefore a lower contrast.

At the other extreme the accommodation will be closer to the optimum point

meaning that there will be less defocus blur in the retinal image and a greater

contrast. It has been suggested that the visual system could compare the

retinal image contrast between the two extremes of the microfluctuations and

use this to determine the direction needed for the accommodative response.

The visual system can only use this contrast comparison technique if the

difference in contrast at the two extremes of the microfluctuations is above

threshold. Metlapally et al. (2014) measured the wavefront error over time

for four subjects. They used this to estimate the magnitude of the microfluc-

tuations and to calculate the higher order aberrations. They then simulated

modulation transfer functions (MTFs) for a range of defocus values. They

found that for each of the spatial frequencies they investigated there was a

range of defocus values for which the contrast difference between the two

extremes of the microfluctuations was above threshold. This was true re-

gardless of whether or not the higher order aberrations were included in the

simulations, although the signals were generally smaller when higher order

aberrations were included.

The next question is whether the visual system actually uses the odd-error cue

from these microfluctuations. This is difficult to test experimentally as no-

one has yet found a way to actually null or manipulate the microfluctuations

in real time. However, Metlapally et al. (2016) tried another simpler tactic,

which was to introduce simulated defocus noise to the stimuli with similar

temporal frequencies as the microfluctuations. The idea was that this noise

would mask contrast changes due to the actual microfluctuations and impair

the visual system’s ability to use this as a cue. They measured the observers’
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accommodative responses to step changes in defocus both with and without

the noise. They did find that accommodation performance was worse for the

noise condition compared to the control condition. This is consistent with

microfluctuations acting as a directional cue to accommodation. However, it

may be that the noise condition made the task more difficult for other reasons.

Therefore this study does not give conclusive evidence that microfluctuations

are used as a cue.

It has also been pointed out that the accommodation response is very fast with

a reaction time of about 0.4 seconds. This means that only the faster micro-

fluctuations could possibly provide a directional cue in time. However, there

is also evidence that these faster microfluctuations may just be a by product

of other functions such as the pulse. It is unclear how the visual system could

extract useful information from the direction of these microfluctuations if they

are not under active control.

An alternative suggestion is that the microfluctuations do play an import-

ant role for accommodation but not in determining the direction of the initial

accommodation response. Instead microfluctuations could play a role in main-

taining the average accommodation at the right level after the initial response

has been made rather than in actually driving this initial response. For this

the speed is not so important so the lower frequency fluctuations could be

used.

3.2.4 Stiles-Crawford effect

The Stiles-Crawford effect was first reported by Stiles and Crawford (1933)

who found that the eye is not equally sensitive to light entering at different

points on the pupil. They found that the peak sensitivity is towards the

nasal side of the pupil rather than right at the centre and the sensitivity tails

of towards the edges of the pupil. We now know that this effect is due to

the acceptance angle of the individual cones. In other words, each cone is not

equally sensitive to light from all angles, and therefore, is not equally sensitive

to light from all parts of the pupil.

Fincham (1951) suggested that the Stiles-Crawford effect may provide a dir-

ectional cue for accommodation. More recently Kruger et al. (2001) described

an updated model for the way that the Stiles-Crawford effect could provide

this cue. This model is based on the fact that when the light is focussed
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Figure 3.7: A demonstration of the way that the Stiles-Crawford effect could
provide a directional cue for accommodation (not to scale). The diagrams at
the top show an eye with hyperopic defocus (left) and an eye with myopic
defocus (right). The orange line represents the path of the light from the
nasal side of the pupil and the blue line represents the path of light from the
opposite side of the pupil. Below this is a representation of the profiles of
the blur discs formed on the retina. These are identical for the two types of
defocus. At the bottom the same profiles are shown but this time as they
might appear if they were weighted by a Stiles-Crawford effect biased to the
nasal side of the pupil. This is based on a diagram from Kruger et al. (2001).

behind the retina, the light from the nasal side of the pupil will fall on the

nasal side of the retina, and when the light is focussed in front of the retina,

the light from the nasal side of the pupil with fall on the opposite side of the

retina. They suggested that because the Stiles-Crawford effect is generally

biased towards the nasal side of the pupil, the photoreceptors will generally

be more sensitive to the light from the nasal side of the pupil. Therefore,

when the light is focussed behind the retina the photoreceptors will be more

sensitive to the nasal side of the blur circle and vice versa when the light is

focussed in front of the retina. This will lead to asymmetric blur circles which

could then be used to determine the direction of the accommodation response
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needed. A diagram illustrating this model is shown in Figure 3.7.

There is evidence that the human visual system is able to use a monochro-

matic cue for accommodation other than monochromatic aberrations. Kruger

et al. (1997) and Chen et al. (2006) both found that some subjects were able

to accommodate under narrowband light with very little signal from mono-

chromatic or chromatic aberrations. One suggestion is that these participants

could have been using a cue from the Stiles-Crawford effect in order to accom-

modate.

A few studies have investigated more directly whether the Stiles-Crawford

effect is in fact used by the visual system to accommodate. Kruger et al.

(2001) used apodising filters to either neutralise, reverse, or double the Stiles-

Crawford effect in a single participant while monitoring their accommoda-

tion response. They found no significant reduction in accommodative gain

for either the neutralised or reversed conditions as compared to the natural

Stiles-Crawford effect condition. In fact, for the 5mm pupil there was an in-

creased gain for the neutralised and reversed conditions, although this was

not significant.

Stark et al. (2009) measured the Stiles-Crawford functions and monochromatic

aberrations for 21 participants. They then used these to simulate retinal im-

ages for -1, 0, and 1 D of defocus with a 3mm pupil under 4 conditions. These

4 conditions were: no Stiles-Crawford effect or monochromatic aberrations,

Stiles-Crawford effect but no monochromatic aberrations, monochromatic ab-

errations but no Stiles-Crawford effect, or both Stiles-Crawford effect and

monochromatic aberrations. They then recorded the participants accommod-

ation responses as they viewed these stimuli through a pinhole. They found

that the Stiles-Crawford effect on its own did not provide a significant cue to

accommodation.

Neither of these studies show any evidence that the Stiles-Crawford effect is

used by the visual system to accommodate. Therefore, it seems unlikely that

this is an important cue for accommodation.

3.2.5 Summary

The visual system is able to accommodate accurately under very impoverished

conditions, where all of the pictorial and binocular cues are stripped away. In
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order to do this it must be using an odd-error signal from some optical cue.

There is strong evidence that people are able to use an odd-error cue from

LCA in order to accommodate. However, it has been found that many subjects

are able to accommodate accurately even in monochromatic light when the

cue from LCA is no longer available. This means that there must also be a

monochromatic cue. There are three main candidates for this cue. These are

the monochromatic aberrations of the eye, the microfluctuations of the eye,

and the Stiles-Crawford effect.

There is quite a bit of evidence suggesting that at least some people can use

the cue from monochromatic aberrations in order to accommodate. However,

some studies have shown that even in cases when the monochromatic aber-

rations are optically corrected or reduced by inserting a small artificial pupil,

and the light is near to monochromatic, some subjects are still able to accom-

modate. It may be that in these cases there is still a strong enough residual

signal from either the LCA or the monochromatic aberrations to drive accom-

modation. However, it may also be that in these cases the microfluctuations

or the Stiles-Crawford effect are being used.

There is no strong evidence that the odd-error cues from either the microfluc-

tuations or the Stiles-Crawford effect are used by the visual system to accom-

modate. More research in this area is needed to establish whether either of

these cues is actually used or whether there may be another cue that the visual

system is using when the signals from LCA and monochromatic aberrations

are impoverished.
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Chapter 4

Why can’t we see LCA?

As has been described in previous chapters, the human eye has a significant

amount of longitudinal chromatic aberration (LCA). LCA results in different

defocus values for different wavelengths and, therefore, different amounts of

blur at different wavelengths. We would expect this to result in chromatic

fringes in the retinal image. However, generally people do not notice these

chromatic fringes. This chapter addresses the question of why we don’t gen-

erally notice the LCA of our eyes and why we don’t generally perceive the

chromatic fringes that should result from this LCA.

There are three main explanations as to why people do not usually perceive

the LCA of their eyes. Firstly, it is possible that when the monochromatic

aberrations and other optical features of the eye are taken into account, the

chromatic fringes in the retinal image due to LCA are actually insignificant.

Secondly, it could be that the inherent way in which our visual systems process

the information in the retinal image results in any chromatic fringes being

lost. For example, it could that the inherent way in which colour is processed

prevents the detection of these chromatic fringes. Finally, it could be that our

visual systems have adapted to the specific chromatic aberrations of our eyes.

If this were the case then it may mean that a change in chromatic aberration

would result in the detection of the chromatic fringes formed on the retina.

Throughout this chapter the evidence for each of these explanations will be

evaluated. The results of simulations and an experiment will also be presented

in order to gain further insight into this question.
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Figure 4.1: The top image is the stimulus of a daisy. This stimulus was
multiplied by the R, G, and B primary spectra from a MacBook retina display
to give the HSI for the image viewed on the MacBook display. The bottom left
panel shows the retinal image calculated from the HSI of the daisy for an eye
with natural LCA and a 5mm pupil. The bottom right panel shows another
retinal image for the daisy but this time with monochromatic aberrations
measured from a real eye focussed at 3 D as well as the LCA. The one degree
scale bar in the top image applies to all three images. In order for the scale
to be accurate the images would need to be viewed from approximately half
a meter away.

4.1 Is LCA too insignificant to notice?

I will first address the possibility that the chromatic fringes formed on the

retina are actually too subtle to be seen. Although 2 dioptres (D) of LCA

across the visible spectrum sounds like a lot, it may be that once the other

optical effects in the eye have been taken into account, the fringes on the

retina are actually too subtle to detect.

Figure 4.1 shows the simulated retinal image formed of the daisy shown in

the top panel both with (bottom right panel) and without (bottom left panel)
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Figure 4.2: The top image is the stimulus of an ETDRS logMAR visual acuity
chart. This stimulus was multiplied by the R, G, and B primary spectra
from a MacBook retina display to give the HSI for the image viewed on the
MacBook display. The bottom left panel shows the retinal image calculated
from the HSI of the chart for an eye with natural LCA and a 5mm pupil. The
bottom right panel shows another retinal image for the chart but this time
with monochromatic aberrations measured from a real eye focussed at 3 D as
well as the LCA. The one degree scale bar in the top image applies to all
three images. In order for the scale to be accurate the images would need to
be viewed from approximately half a meter away.

monochromatic aberrations, using method 2 described in Appendix A. The

chromatic fringes do not seem to be particularly obvious in either of the retinal

images. Looking closely it is possible to see some fringing around the edges

of this petals, however this is very faint and the main difference between the

retinal images and the original, is that overall the retinal images are more

blurred. From these simulated retinal images it seems unsurprising that we

don’t generally notice the chromatic fringes as they are very subtle indeed.

Figure 4.2 shows the retinal images generated using method 3 described in

Appendix A for an ETDRS logMAR visual acuity chart (shown in the top
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panel) with a D65 spectrum. This scene has a lot more contrast than the

daisy, and the chromatic fringing in the retinal images shown in the bottom

two panels are a lot more obvious. There is, however, little difference between

the retinal image generated with monochromatic aberrations (bottom right)

and that generated without monochromatic aberrations (bottom left). This

makes it seem that monochromatic aberrations do not substantially reduce

the chromatic fringing in the retinal image. However, it is important to bear

in mind that the monochromatic aberrations included in the simulation above

were only measured at a single wavelength and there is evidence that the

aberrations of the eye actually change with wavelength (Marcos et al., 1999).

It is possible that if the aberrations of the eye were measured across a range

of wavelengths they could hide the fringes more.

To investigate the interaction between the monochromatic and chromatic ab-

errations of the eye, McLellan et al. (2002) measured the aberrations for real

eyes at a series of wavelengths. From this data they computed modulation

transfer functions (MTFs) for eyes with these aberrations. They found that,

although monochromatic aberrations reduce the resolution at the wavelengths

near focus, they actually improve the resolution at the spectral extremes. In

this way, the monochromatic aberrations result in the resolution for polychro-

matic light being roughly constant for all wavelengths. It is possible that this

could also reduce the appearance of fringes. In agreement with this, Raviku-

mar et al. (2008) found that the effect of LCA was greatly reduced in the pres-

ence of typical monochromatic aberrations. Unfortunately we were not able to

measure monochromatic aberrations separately at different wavelengths and

therefore we could not simulate the retinal images for those aberrations.

It has also been suggested that the macular pigment within the eye could

mitigate the effects of LCA. The macular pigment covers the fovea, which

is the region of the retina with the highest spatial resolution. This pigment

mostly absorbs blue wavelengths, where the defocus due to LCA is greatest.

Reading and Weale (1974) calculated the spectral transmittance necessary

to reduce the blur resulting from chromatic aberration to threshold level.

They found that the necessary characteristics were similar to those of macular

pigment. In the simulated retinal images shown above the effect of macular

pigment in the central 2 degrees of the retina was accounted for.

These findings and simulations indicate that the chromatic fringes formed on
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the retina may not be as dramatic as we initially suspected, especially when

factors such as the monochromatic aberrations and the macular pigment of

the eye are taken into account, and especially when the scene being viewed

is a complex colourful scene like the daisy above. However, it seems that

these effects do not completely eliminate the effects of LCA especially for

high contrast stimuli like the logMAR acuity chart. Therefore, it seems that

the optical factors of the eye cannot fully explain why we do not generally

notice the chromatic fringes due to LCA.

4.2 Does the inherent nature of visual processing

eliminate the chromatic fringes?

The second possibility is that the way in which the visual system processes

information, results in the chromatic fringes being lost. In this section evidence

for this hypothesis will be presented and evaluated.

One way of explaining this is at the level of the cone cells. There are three

different types of cone cell, each with a different spectral sensitivity. Most

of the blur due to LCA occurs at shorter wavelengths where the S cones

have the highest sensitivity. However, the S cones are also the most sparsely

distributed in the retina and therefore have the lowest spatial resolution. The

L and M cones, on the other hand, are distributed a lot more densely in the

retina and have a higher spatial resolution. However, both the L and M cones

have a relatively low sensitivity to the shorter wavelengths where the LCA

has the greatest impact. This could help to explain why we do not notice the

chromatic fringes on the retina.

Another way of addressing this is by looking at the roles of the different

postreceptoral pathways. There are three main postreceptoral pathways that

project from the retina into distinct layers in the lateral geniculate nuc-

leus (LGN). These are the magnocellular, parvocellular and koniocellular

pathways. The koniocellular pathway is responsible for the S − (L+M) col-

our discrimination. This colour dimension is the one that should be most

affected by LCA. Therefore it is in this colour dimension that we can expect

the majority of the chromatic fringing due to LCA to occur. However, the

koniocellular pathway also has a very low spatial resolution and has no spatial-

opponency in its receptive fields, so it seems reasonable to assume that the
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visual information in this pathway is not the key information used to detect

edges in an image. For this reason it may well be that the chromatic fringes

in this channel are not detected. The parvocellular pathway is responsible

for the L −M colour discrimination. This pathway does have a good spa-

tial resolution and its receptive fields are spatially as well as chromatically

opponent, meaning that it could be useful for detecting edges in the image.

However, the spectral sensitivities for the L and M cones are actually very

similar and largely overlap. This means that there may not be an obvious dif-

ference in defocus due to LCA between L and M channels and, therefore, the

chromatic fringes in the parvocellular pathway may be below threshold. The

magnocellular pathway is responsible for the L+M or luminance dimension

in colour space. This could provide useful information for edge detection as

it also has relatively good spatial resolution and spatially opponent receptive

fields. However, as this pathway does not compare the signals between cone

channels, it cannot detect colour differences. Therefore, the magnocellular

pathway could never detect chromatic fringes.

Figure 4.3 gives a rough indication of the information available in each of the

three cone channels and in each of the three main postreceptoral channels for

a simple luminance edge in D65 illumination. The top panel shows a profile

of the luminance edge of the scene. The second panel shows the relative

stimulation of the L, M, and S cone channels across the luminance edge. From

this we can see that the blur profile in the L and M channels is very similar,

with significantly more blur present in the S channel. The similarity between L

and M channels should be interpreted with caution though, as it is dependent

on the accommodative state of the eye. The simulations were run for an eye

focussed at 580nm, however, it is not clear which wavelength the eye actually

focusses on in natural daylight. The third panel shows the profile of the L+M

channels, an approximation of the information available to the magnocellular

pathway. All this pathway can detect is a blurred luminance edge, as it does

not make any comparisons between cone types. The fourth panel shows the

profile for the L−M channels, an approximation of the information available

to the parvocellular pathway. Differences in signal in this pathway represent

differences in colour along the L −M (approximately red-green) axis. There

is a colour difference around the luminance edge, but this is very subtle. The

fifth panel shows the profile for the S − (L + M) channels, approximating

the information available to the koniocellular pathway. Differences in signal
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Figure 4.3: The top panel shows the intensity profile of a luminance edge. The
retinal image was simulated for this luminance edge with the D65 spectrum,
for an eye with natural LCA and a 5mm pupil. The second panel shows the
profile of stimulation for the L (red), M (green), and S (blue) cone channels
resulting from the generated retinal image. The third panel shows the profile
of stimulation in the L + M channels. This roughly represents the informa-
tion available to the magnocellular or luminance pathway. The fourth panel
shows the profile of stimulation in the L −M channels. This represents the
information available to the parvocellular pathway. The bottom panel shows
the profile of stimulation in the S − (L + M) channels. This represents the
information available to the koniocellular pathway.
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here indicate differences in colour in the S − (L + M) (approximately blue-

yellow) axis. Here the colour difference around the luminance edge is a lot

more dramatic. However, as was mentioned above, the koniocellular pathway

has a much lower spatial resolution than the other pathways.

Figure 4.4: An example of the

Boynton illusion. When viewed

from close up a yellow rectangle

can be seen with a separate

wavy back line. However, when

viewed from far away the yel-

low colour seems to stop at the

wavy black line.

It is relatively well established that lumin-

ance information dominates the detection

of edges. Many studies have found evid-

ence for a phenomenon known as “filling

in” for certain stimuli. This is where a lu-

minance boundary appears to constrain col-

oured regions so people perceive a coloured

area filling the space defined by a luminance

boundary even when the chromatic bound-

ary is different.

One case of such an effect is the Boynton illu-

sion (Stockman and Brainard, 2009). An ex-

ample of this illusion is shown in Figure 4.4.

There is a clear luminance boundary defined

by the black wavy line. However, the boundary between the white and yellow

regions is a straight line. The yellow and the white parts of the image have a

very similar luminance and are also very similar in their L and M cone stim-

ulation. This means that the difference between the yellow and white areas

provides the strongest signal to the S cone channel. People tend to perceive

the yellow region filling in the area defined by the black line when viewing this

image from a distance. This suggests that there is a tendency for our visual

system to use the luminance boundaries in an image to indicate where the S

cone channel chromatic boundaries will be. This is relevant in the context of

LCA because, as was shown in Figure 4.3, it is in the S opponent colour axis

that the fringes due to LCA are most dramatic.

There is also evidence that luminance information dominates our detection of

blur. Wandell (1995) split up an image into a “light-dark” (luminance) chan-

nel, a “red-green” channel, and a “blue-yellow” channel. They then created

three separate images each with one of the channels blurred and the other two

sharp. The image where the luminance information was blurred looked notice-

ably blurry. However, the images where either the “red-green” or the “blue-
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yellow” information were blurred by the same amount did not look blurred.

Sharman et al. (2013) investigated this effect further by measuring blur detec-

tion thresholds. They found that the blur detection threshold in the chromatic

(isoluminant) channels increased significantly when sharp luminance inform-

ation was added compared with when the chromatic information was shown

with no luminance information. There was no equivalent masking effect when

sharp chromatic information was added to blurred luminance information.

This effect was found even when the stimuli were altered so that the threshold

for detecting chromatic blur on its own was not significantly different from

that for detecting luminance blur on its own. This could help to explain why

we do not perceive the chromatic fringes caused by chromatic blur at lumin-

ance edges, because the luminance edge information has a masking effect on

the chromatic edge information so that we cannot detect the chromatic blur.

The results discussed in this chapter do suggest that there are various features

in the way that our visual systems process information that could prevent us

detecting chromatic blur and chromatic fringes due to LCA. Not only does the

pathway most affected by LCA have the lowest spatial resolution, but even

when the chromatic fringing would be visible on its own, previous findings

suggest that when this fringing occurs at a luminance boundary, the sharp

luminance edge could mask the chromatic blur.

4.3 Does the visual system adapt to the specific

LCA of the eye?

As the LCA of our eyes generally remains constant throughout our lives an-

other possibility is that the reason we don’t notice the chromatic aberration

of our eyes is that our brains have adapted to it. If the visual system has

adapted to the specific LCA of our eyes, then if the chromatic aberrations

were to change suddenly, we should notice the chromatic fringes until we have

re-adapted to the new chromatic aberrations. One way that the chromatic ab-

errations affecting our eyes might change in an every day scenario is if we use

spectacles or contact lenses which introduce their own chromatic aberrations.

Many people do report noticing chromatic fringes when they put on or take

off their glasses or lenses, but generally report that these fade away relatively

quickly. This is presumably due to their eyes adapting to the new chromatic
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aberration.

A study carried out by Hay et al. (1963) supports the theory that the visual

system can adapt to specific chromatic aberrations. In this study six par-

ticipants wore prism glasses continuously for a ten day adaptation period.

These prisms caused chromatic dispersion which appeared to the participants

as coloured fringes. Every day the participants removed the glasses for an hour

in order to carry out some tests. In these tests the subjects viewed vertical

gratings through a variable prism and were required to adjust the power of the

prism in order to eliminate the apparent coloured fringes. These tests were

carried out under both narrowband and broadband (tungsten) light. Under

broadband light, the subjects were always able to find a prism setting that

eliminated the apparent fringes. Before the adaptation period the settings

to eliminate fringes were around 0 minutes of arc of chromatic dispersion.

However, once the subjects were in the adaptation period their prism settings

to eliminate the fringes became closer to those of the prisms that they were

adapting to. Interestingly, three subjects actually reported seeing chromatic

fringes for monochromatic light after they had been wearing the prism glasses

for 10 days. In these cases, adjusting the variable prism had no effect on the

perceived fringes so the subjects were not able to eliminate them. This shows

that the apparent fringes were not actually present in the retinal image but

resulted from visual processing. These findings suggest that people are able

to adapt to even quite dramatic changes in chromatic aberration and that this

adaptation is specific to the chromatic aberration present.

The evidence presented above suggests that the human visual system is cap-

able of adapting to chromatic fringing on the retina and can adapt to even

quite dramatic fringes over a relatively short space of time. If there were any

residual chromatic fringes after the optical factors and the inherent way that

the visual information is processed are taken into account then it seems likely

that the visual system would be able to adapt to these fringes.

4.4 The effect of the illuminant spectrum on

chromatic blur

As well as lenses or prisms with different chromatic aberrations influencing the

chromatic fringes on the retina, it seems logical that the spectral content of the
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light entering the eye could affect the chromatic fringes resulting from LCA.

Monochromatic light will eliminate the chromatic fringes and it is conceivable

that a spectrum of light with most of its energy at the extremes of the visible

spectrum would enhance these fringes. Therefore, it is possible that, there are

certain types of spectrum for which people are more likely to see chromatic

fringes.

As was mentioned in Chapter 1, historically humans would have been exposed

to relatively broadband illuminant spectra. However, in the modern world we

are exposed to many different types of spectra, many of which do not have

such a smooth broadband intensity distribution as a function of wavelength.

Below simulations are shown of the retinal images with a variety of different

illuminant spectra.

The CIE standard illuminant, D65, is the standard spectrum for average day-

light conditions consisting of a mixture of sunlight and skylight with a colour

temperature of approximately 6500K. Figure 4.5 shows the spectrum of D65

light and the retinal image for a square patch of D65 light (as generated using

method 3 described in Appendix A with high wavelength resolution). Looking

closely at the simulated retinal image there is some chromatic fringing around

the edge of the square, with the inside edge of the square having a yellowish

colour and a blue halo just outside the edge of the square. However, when the

square is held at approximately half a meter away so that the scale bar is the

right size, the fringing is not very obvious.

Figure 4.6 shows the spectrum of Illuminant A, which is the CIE standard

illuminant for a typical tungsten lamp, and the retinal image of a square

with this spectrum. Illuminant A also has a broadband spectrum. Here the

chromatic fringing around the square is not visible even when viewed closely.

This may be due to the lack of shorter wavelengths in this spectrum.

Figure 4.7 shows the spectrum of one of the CIE standard fluorescent lamp

spectra (Illuminant F7) and the corresponding retinal image and Figure 4.8

shows the spectrum of a mixture of three narrowband LEDs (red, green, and

blue) and the corresponding retinal image. These spectra have very different

shapes from the D65 spectrum shown in Figure 4.5. Instead of having a

smooth broadband shape they are made up of a series of short sharp peaks.

However, even though the spectra are so different from D65, the retinal images

in all three look quite similar. They all have subtle chromatic fringing around
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Figure 4.5: The left panel shows the CIE D65 spectrum. The right panel
shows the retinal image of a square patch with this spectrum for an eye with
natural LCA and a 5mm pupil. The scale bar represents one degree of visual
angle. In order for the scale to be accurate the image would need to be viewed
from approximately half a meter away.

Figure 4.6: The left panel shows the CIE Illuminant A spectrum. The right
panel shows the retinal image of a square patch with this spectrum for an eye
with natural LCA and a 5mm pupil. The scale bar represents one degree of
visual angle. In order for the scale to be accurate the image would need to be
viewed from approximately half a meter away.
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Figure 4.7: The left panel shows the CIE Illuminant F7 spectrum. The right
panel shows the retinal image of a square patch with this spectrum for an eye
with natural LCA and a 5mm pupil. The scale bar represents one degree of
visual angle. In order for the scale to be accurate the image would need to be
viewed from approximately half a meter away.

the edge of the square with the inside edge appearing slightly yellowish and

the outside edge appearing slightly blue.

These simulations suggest that in fact the shape of the spectrum of light does

not have such a dramatic effect on the appearance of the chromatic fringes in

the retinal image. It is only when there is very little light at short wavelengths

that the fringes are noticeably reduced. However, the experiment described

below further explored this question by actually showing participants a variety

of spectra and testing whether they saw chromatic fringes more clearly with

some spectra than others.

4.5 Experiment

The aim of this experiment was to investigate whether the type of illuminant

affected the observer’s perception of the strength of chromatic fringes at the

edge of a square. This could help us to understand why it is that observers

don’t generally perceive the chromatic fringes at the edges of objects.

If the participants didn’t perceive fringes for any of the stimuli then this

would not tell us much. It could indicate that the fringes are too insignificant

on the retina to notice, or that the chromatic fringes are lost due to the
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Figure 4.8: The left panel shows the spectrum of a mixture of a red, green
and blue LED. The right panel shows the retinal image of a square patch with
this spectrum for an eye with natural LCA and a 5mm pupil. The scale bar
represents one degree of visual angle. In order for the scale to be accurate the
image would need to be viewed from approximately half a meter away.

inherent nature of the visual processing, or even that there is not enough

difference between the fringes for the different illuminants and therefore the

same adaptation works for all of the illuminants. If we were to find that it

was the spectra leading to the strongest fringes on the retina that resulted

in the greatest perception of chromatic fringes, this would be consistent with

some combination of the first two explanations described above but with there

being some limit to the strength of fringes that were eliminated by the other

optical factors of the eye and the visual processing. If, on the other hand,

it was not the stimuli with the strongest fringes, but rather the stimuli with

the most unusual fringes that had the highest ratings for the strength of the

fringes, this would suggest that there is some sort of adaptation to the specific

LCA of the eye taking place, and it is when the fringes deviate significantly

from this that the participants perceive fringes. This is in line with the Hay

et al. (1963) study where they found that once participants had adapted to

the prism goggles some perceived fringes even when looking at monochromatic

light because they had adapted to there being fringes on the retina.

This experiment could also be interesting from a more practical perspective.

If there are certain types of illuminant that lead to a significantly stronger

perception of fringes, we may wish to avoid using these types of illuminant.
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4.5.1 Methods

Participants

14 participants took part in this experiment. Their ages ranged from 19 to

34 (M = 26.5). None of the experimenters participated and the participants

were unaware of what spectra they were being shown. All of the participants

were able to see a stimulus placed at 40cm without any optical correction and

none of the participants wore glasses or lenses during the experiment. None of

the participants were aware of having any colour deficiencies. All participants

signed a consent form prior to taking part. The ethics for this experiment

were approved by the Department of Physics Ethics Committee at Durham

University.

Design

The independent variable in this experiment was the type of illuminant. There

were four different illuminants used. One was a single narrowband orange

LED (Orange), the second was a mixture of a red and blue narrowband LED

(Red+Blue), the third was a mixture of a red, green and blue narrowband

LED (LEDWhite), and the final one was a halogen bulb (Bulb). The spectra

for each of these illuminants are shown in Figure 4.9.

This experiment had a repeated measured design meaning that each parti-

cipant viewed each of the illuminants. The order in which the illuminants

were presented was randomised for each participant to avoid order effects.

The dependent variable was the rating from 0 to 5 that the participant assigned

to the stimulus based on whether they could see coloured fringes at the edge

of the square.

Apparatus

The participants viewed the stimulus monocularly with whichever eye they

preferred. The stimulus was placed in a metal enclosure with two openings,

one for the observer to look through and a second for the illuminant to be shone

on the stimulus. The inside of the enclosure was coated in non-reflective black

material (Metal velvet foil - Acktar ltd). The stimulus was a 14mm square

coated in Permaflect (Labsphere) which is lambertian and has a uniform,

diffuse reflectance.
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Procedure

Figure 4.9: The illuminant spectra for the four illuminants in the experiment.
The spectra have all been normalised to have peak intensities of 1.

For the LED illuminants, the LEDs were first combined in a custom built

integrating sphere made from a ballcock coated with barium sulphate. The

combined light from the integrating sphere was then shone into the enclosure

onto the stimulus.

Procedure

Prior to the experiment the observers were shown a selection of false colour

example images of chromatic fringes to give them an idea of what they were

looking for. They were dark adapted for 10 minutes, and then the illuminants

were presented one at a time in a random order. For each illuminant the
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Figure 4.10: The mean rating between 0 and 5 for each of the four illuminants.
The error bars represent the standard errors of the means.

participants were able to view the stimulus for as long as they wanted before

answering two questions. The first question was “Can you see coloured fringes

or halos at the edge of the square?”, which had a scale response from 0 to

5, with 0 representing “Not at all” and 5 representing “Definitely yes”. The

second question was simply “Please describe these fringes” where the observers

were given space to describe any fringes that they saw.

4.5.2 Results

The average responses for each condition are shown in Figure 4.10. Here we

can see that the Red+Blue illuminant got the highest average rating. The next

highest was the LEDWhite stimulus. The Bulb and the Orange illuminants

both got average scores below 1 with the very lowest rating for the Bulb.

Figure 4.11 shows a breakdown of the chromatic fringe scores given by each

participant for each pair of illuminants. Here the different coloured lines rep-

resent different participants. From this we can see that for some illuminant

pairs the trend is very consistent across participants. Participants always

rated the fringes with the LEDWhite illuminant as either the same or more
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Figure 4.11: The difference in the ratings given for different illuminants. Each
graph shows the responses for a different pair of illuminants. Each line colour
represents a different participant.

pronounced than with the Bulb illuminant. All participants also gave the

LEDWhite illuminant an equal or higher rating than the Orange illuminant.

The Red+Blue illuminant also always scored higher than the LEDWhite il-

luminant and only one participant gave the Orange illuminant a higher score

than the Red+Blue illuminant. However, the differences in ratings between

the LEDWhite and Red+Blue illuminants, and the Bulb and the Orange illu-

minants, varied a lot more between participants.

The data did not meet the assumption of normality necessary to conduct an

ANOVA. Therefore, a non-parametric, repeated measures Friedman test was

used instead. This showed that there was an overall significant difference

between the four conditions (X2 (3) = 25.71, p < .001).

Wilcoxon signed rank tests were used to compare each pair of conditions.
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These were Bonferroni corrected so that a result was classed as significant if

p ≤ 0.05

6
= 0.0083. (4.1)

Significant differences were found between 4 of the pairs. The ratings for the

LEDWhite were significantly higher than for the Bulb (Z = -2.99, p = .001),

and for the Orange (Z = -3.13, p < .001). The ratings for the Red+Blue were

also significantly higher than for the Bulb (Z = -2.95, p = .001), and for the

Orange (Z = -2.88, p = .002). There was, however, no significant difference

between the ratings for the Red+Blue and the LEDWhite (Z = -1.19, p =

.257), or between the ratings for the Bulb and the Orange illuminants (Z =

-0.33, p = 1.000).

4.5.3 Discussion

Out of all of the illuminants, the halogen bulb should be the one that the sub-

jects were most used to. Therefore if people have adapted to the chromatic

fringes that they normally see we might expect the lowest rating for the halo-

gen bulb. However, the orange LED was the most narrowband stimulus and

as it was near to monochromatic it should not have resulted in any chromatic

fringes in the retinal image. Therefore if it is simply that the chromatic fringes

are too subtle to detect or that the inherent nature of the way in which we

process visual information prevents us from detecting the chromatic fringes,

then we would expect the orange LED to have an equal or even lower rating

than the halogen bulb.

In fact, there was no significant difference between the ratings for the halogen

bulb and the orange LED. The average rating was slightly lower for the bulb,

which could suggest that the subjects had adapted to the specific chromatic

fringes in their eyes. However, looking at Figure 4.11 we can see that some of

the subjects rated both the halogen bulb and the orange LED illuminants the

same, some rated the halogen bulb higher, and some rated the orange LED

higher. This could just be down to random chance and order effects or it could

be that all three factors play into us not perceiving the chromatic fringes on

the retina and there may be individual differences in terms of how strong an

influence each of these factors have.

The fringes for the red and blue mixture and the white LED mixture are both

the strongest and also the most different from the chromatic fringes that we
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might generally be used to. Therefore, the finding that the ratings for the red

and blue mixture and the white LED mixture were significantly higher than

those for both the halogen bulb and the orange LED does not particularly

help us in narrowing down the reason for why we don’t generally see chromatic

fringes in everyday life. It may be that usually the fringes are too subtle to

be detected and it is only with these strange spectra that the fringes become

noticeable. Or it may be that because we have adapted to the chromatic

fringes for more broadband light, the fringes for these unusual spectra become

noticeable. However, what this finding does suggest is that whatever it is

that generally prevents us from detecting these chromatic fringes, does not

work for the whole range different spectra that we might be exposed to in the

modern world. The results of this study show that without altering the actual

LCA using lenses, the chromatic fringes on the retina can be made visible just

by changing the spectrum of the illuminant. This is an interesting finding

in itself as it suggests that we need to be careful when choosing illuminants

and primaries for displays, not just because of the colour appearance and

the colour rendering index, but also because some spectra may enhance the

appearance of coloured fringes across boundaries.

4.6 Stimuli which highlight the longitudinal

chromatic aberration of the eye

As has been discussed in the sections above, we do not generally notice the

effects of LCA in every day life. It was demonstrated in the previous section

that there are certain spectra of light that make the chromatic fringes due to

LCA more obvious. There are also certain stimuli which make the effects of the

LCA of our eyes more obvious. One good example of such a stimulus is a simple

black and white spoke pattern. Figure 4.12 shows a sinusoidal spoke pattern

(top left) and the retinal image of this spoke pattern (top right), generated

using method 3 described in Appendix A, for the CIE D65 spectrum. Looking

at the image on the left you may be able to see colours towards the centre of

the pattern even though the image is just black and white. This may be more

obvious if the image is viewed from a distance so that the spatial frequency

increases. In the image on the right, we can see that the colours in the retinal

image are actually quite dramatic. The reason for this chromatic effect is that,

as well as defocus in an image leading to a reduction in contrast, it can also
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Figure 4.12: The top left panel shows a black and white, sinusoidal, spoke
pattern. This is the scene that the retinal images were generated from. The
top right panel shows a simulated retinal image of the spoke pattern for a
5mm pupil and LCA but no other aberrations. The bottom left panel shows
the retinal image with -1 D of defocus and the bottom right panel shows the
retinal image with 1 D of defocus. The scale bar in the top left panel represents
one degree of visual angle and applies to all four panels. In order for the scale
to be accurate the images would need to be viewed from approximately half
a meter away.

lead to phase shifts. The spatial frequencies at which these phase shifts occur

depends on the amount of defocus present. In the spoke pattern, the spatial

frequency increases towards the centre of the image. Therefore, depending

on the level of defocus the phase shifts will occur at different eccentricities.

Due to the LCA of the eye, only one wavelength can be in focus at any one

time and every other wavelength will be defocussed by a different amount.

This means that for each wavelength the phase shifts will occur at slightly

different eccentricities resulting in the colour of the spoke pattern changing

with eccentricity.

If it is the case that one of the main reasons we do not generally notice
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chromatic fringes due to LCA is that we do not use the colour information to

detect the boundaries, especially when there is also a luminance edge present,

then this could help to explain why some people do see the chromatic effects in

the spoke pattern. This is because in the spoke pattern it is not just that for

some wavelengths the line is not as sharp but rather that for some wavelengths

it is the ‘dark’ rather than the ‘light’ regions that are coloured. This may mean

that even if the chromatic information is not used to define the boundaries

some of the wavelengths are actually in the ‘wrong’ part of the image defined

by the luminance boundaries. It seems unlikely that the inherent nature of

the way in which visual information is processed could account for these phase

shifts. This could explain why some people do notice the chromatic effects for

spoke patterns but not for other stimuli.

The chromatic effects in the spoke pattern become more obvious if there is

more defocus. You may be able to see this by looking at the top left image

of Figure 4.12 through a defocussing lens, or by focussing the eyes behind or

in front of the image while viewing it (if you can). You may notice that the

coloured rings come out to greater eccentricities making the coloured effects

more dramatic. The lower two images in Figure 4.12 show simulations of the

retinal images produced by the spoke pattern for -1 D and 1 D respectively.

From these images it is clear that the colours are a lot more dramatic when

the spoke pattern is out of focus.

Another situation in which people may become aware of the effects of the LCA

of their eyes is when viewing colourful LED or neon signs at night. Because

we are more myopic for shorter wavelengths you may notice that although you

can read red signs from far away, you will need to be a bit closer before you

are able to read the green signs, and closer still before you are able to read

the blue signs. Gordon Love developed an illusion based on this concept, in

which a red word and a blue word are overlaid. An example of this illusion is

shown at the top of Figure 4.13. When standing close the blue word is clearer

and easier to read, and when standing at a distance the red word is clearer

and easier to read. This effect is most obvious for people who are presbyopic

with not much residual accommodation. The bottom left panel in Figure 4.13

shows the retinal image formed with the red writing in focus, as it would be

if the person was far away from the image. The bottom right panel shows

the retinal image formed with the blue writing in focus, as it would be if the
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Figure 4.13: The top panel shows the scene that the retinal images were
generated for. This scene was multiplied by the R, G, and B primary spectra
from a MacBook retina display to give the HSI for the scene viewed on the
MacBook display. The bottom left panel shows the retinal image of the scene
for a 5mm pupil with LCA and no defocus. The bottom right panel shows the
retinal image of the scene for a 5mm pupil with LCA and 1 D of defocus. The
scale bar in the top panel represents one degree of visual angle and applies to
all three panels. In order for the scale to be accurate the images would need
to be viewed from approximately half a meter away.

person was standing close to the image. Both of these retinal images were

generated from RGB images using method 2 described in Appendix A.

In this case the LCA is more obvious because the stimulus is different for the

red and the blue stimuli. In most cases, when we are focussed on an object we

may be able to use the clearer information (e.g. from the luminance channel)

to detect the boundaries. This can then guide our perception of where the

other colours stop. However, in this case, we can either focus on the image

in red or on the image in blue and as the images are different one cannot be

used to guide our perception of the other making it more obvious when one is

blurred and the other is clear.
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4.7 Conclusions

At the start of the chapter three possible explanations were introduced as to

why people do not generally perceive the chromatic fringes resulting from the

chromatic aberrations of the eye. The first was that it may be that once the

other optical imperfections of the eye are taken into account, the chromatic

fringes on the retina actually become too subtle to detect. The second was

that the inherent nature of the visual processing causes the information about

the chromatic fringes to be lost. The third was that we may have adapted to

the specific chromatic aberration of our eyes.

Throughout this chapter the evidence for each of these explanations has been

explored and it seems that in fact it is some combination of all three. In most

everyday scenes and scenarios the chromatic fringes on the retina are actually

quite subtle. However, they are not subtle enough, not to be detectable at all,

especially for high contrast stimuli. To a certain extent it does seem that the

way in which information is processed by the visual system does further reduce

our ability to detect chromatic fringes. However, there is also evidence that our

visual systems are able to adapt to different chromatic fringes and that they

regularly do this (e.g. when we switch to wearing glasses or contact lenses).

Therefore it seems that only by some combination of all three explanations

can we explain why it is that we do not generally see the chromatic fringes

due to chromatic aberration.

The results of the experiment also suggested that changing the illuminant

spectra significantly alters the appearance of chromatic fringes. This may be

something that needs to be taken into account when choosing what types of

illuminants and display primaries to use.
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Chapter 5

Chromatic aberration and

accommodation to mixed

narrowband stimuli.

As has been described in Chapters 2 and 3, accommodation is the process

by which the crystalline lens within the eye changes shape and, in doing so,

changes the distance at which the eye is focussed. Due to the longitudinal

chromatic aberration (LCA) of the eye the defocus changes as a function of

wavelength and only one wavelength of light can be in focus on the retina at

any one time. For this reason it is conceivable that the eye could accommodate

differently for different chromatic stimuli. For example, for a stimulus mostly

composed of longer wavelengths it seems reasonable to assume that the eye

might bring longer wavelengths into focus and vice versa for a stimulus mostly

composed of shorter wavelengths. It is also conceivable that, depending on

the cues the eye uses to accommodate, there may be certain spectra for which

the eye does not accommodate optimally.

As was described in Chapter 1, in the modern world we are increasingly ex-

posed to unusual illuminant spectra which are often made up of a series of

narrowband peaks in intensity rather than having a smooth, broadband in-

tensity distribution as a function of wavelength. This was demonstrated in

Figure 1.1 on page 3.

One effect of these modern types of illuminant is that they may alter the

appearance of object colours and impair our colour constancy. This is of-
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ten considered when selecting illuminants and attempts have been made to

quantify this effect using a colour rendering index (CRI). However, what

has not been properly addressed is the effect that certain modern illuminants

might have on the optimal accommodation response, people’s actual accom-

modation responses, and ultimately on retinal image blur.

5.0.1 Previous Research

Accommodation to different spectra

In narrowband or monochromatic light it has been found that some observ-

ers can adjust their accommodation to compensate for the LCA of the eye

(Charman and Tucker, 1978). This means that the static accommodation re-

sponse will differ depending on the wavelength for stimuli presented at the

same distance.

There are mixed findings in the literature regarding the wavelength of light we

accommodate to under broadband white illumination. Ivanoff (1949) found

that the focussing wavelength in white light shifts with accommodation from

almost 700nm when the stimulus is presented at infinity to about 500nm when

the stimulus is presented at 2.5 D. However, it may be that in this case what

was in fact being measured is the apparent lead and lag in the accommodation

response function.

Both Charman and Tucker (1978) and Lovasik and Kergoat (1988) found that

the static accommodation position for white light was similar to that for green

light. However, in a different type of study DeHoog and Schwiegerling (2007)

allowed subjects to adjust the focus of a white light source and a series of

monochromatic sources and found that the selected best focus for white light

was generally equivalent to that for monochromatic light between 590 and

610nm, which is more in the orange or red part of the spectrum. It may be

that these differences in findings are due to the different white light spectra

used and different viewing distances.

We also measured the static accommodation responses for white light com-

pared to that for narrowband light at various wavelengths (unpublished data).

We found that the static accommodation responses for white light gener-

ally varied somewhere between that for green light (527nm) and orange light

(588nm). This wavelength range aligns roughly with the peak of the luminous
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efficiency function. Therefore, it seems reasonable to assume that in white

light we accommodate around the wavelengths that we are most sensitive to

in the spectrum.

In the modern world we are often exposed to spectra with multiple peaks

rather than a continuous broadband spectrum (e.g. LEDs and fluorescent

lamps). It is unclear how we might accommodate to such spectra. In the

past some research has been done investigating stimuli made up of two dif-

ferent coloured components. Lovasik and Kergoat (1988) ran an experiment

in which they investigated accommodation responses to blue letters on a red

background, blue letters on a green background and red letters on a green

background. They found no clear difference in the accommodative response

for these 3 stimuli. They also found that the static accommodation responses

for all three of these mixtures (even the blue letters on a green background)

was similar to that for red letters on a black background and sometimes even

greater. Charman (1989) also ran an experiment in which they measured ac-

commodation responses to a blue C on a red background and a red C on a

blue background. They found that observers always accommodated to either

the red light or the blue light and never in the middle of the two. From these

experimental data we might expect that for spectra made up of 2 peaks at

different wavelengths, observers will not focus in between the two wavelengths

but rather at around one wavelength or the other.

Accommodation to multiplane displays

Studies have also investigated the accommodation responses in relation to mul-

tiplane displays. Multiplane displays are display systems for which there are

a series of displays presented at different distances from the eye. Studies have

investigated whether it is possible to drive accommodation in between two

of the displays by manipulating the intensity ratio between the two displays.

This can, in fact, be done by a process known as depth-weighted filtering

(Watt et al., 2005). In this process the intensity of the image in each plane

is determined by the distance of the desired simulated image plane from the

actual display plane in dioptres.

MacKenzie and Watt (2010) found that for image separations up to 1.11

dioptres (D) the accommodation responses could be driven continuously and

almost linearly using depth-weighted filtering. However, at larger image plane
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separations they found the accommodation response to be biased towards one

of the two planes.

These findings can be applied to the topic of accommodation responses to dif-

ferent spectra if we think of the different focal depths for different wavelengths

due to LCA being analogous to the different planes of a multiplane display.

Therefore, for a spectrum with multiple narrowband peaks we can think of

each peak as a separate depth plane. For a spectrum with two peaks, as long

as the difference in LCA between the two peaks is less than 1.11 D, we would

expect the accommodation position to be somewhere in between the two peak

wavelengths and to vary with the relative intensity of the two peaks in line

with depth-weighted filtering.

5.0.2 Present Study

The aim of this study is to establish where people accommodate to spectra

made up of a mixture of two narrowband components. This is meant as a first

step to understanding how we might accommodate to modern spectra with

multiple peaks. It may also offer an insight into the cues and rules that the

human accommodation system uses.

Firstly, this chapter describes an experiment that was conducted measuring

observers’ static accommodation responses to a stimulus illuminated from be-

hind by various mixtures of narrowband LEDs. At any one time the stimulus

was only illuminated by one or two of the LEDs. Therefore, all of the spectra

had either one or two peaks in intensity as a function of wavelength.

There were two possible hypotheses as to where people would accommodate

for the mixed stimuli. The first was that people would accommodate to one of

the two individual LEDs. This is in line with the findings of Charman (1989).

The second hypothesis was that, as long as the dioptric separation between

the two wavelengths due to LCA was less than 1.11 D, as the intensity ratio

between the two LEDs changed, there would be a roughly linear accommod-

ation response between the two LEDs. This is in line with the findings of

MacKenzie and Watt (2010) on multiplane displays.

The paper then goes on to describe a series of simulations to predict where

accommodation might be driven for the stimuli used in the experiment. These
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simulations were run for a variety of different optimisation rules using a variety

of potential optical cues.

The aim of these simulations was to discover the best rule for predicting the

measured accommodation responses found in the experiment. Hopefully this

rule could then be used to predict the accommodation responses to different

chromatic stimuli.

5.1 Experiment

In this section the experiment where the observers’ accommodation responses

to various combinations of LEDs were measured is described.

5.1.1 Methods

Participants

Initially, 11 participants were recruited. However, six of these were excluded

as their refractive state could not be reliably measured by the autorefractor

resulting in large gaps in the data. Another participant who completed a

previous experiment showed no significant differences in accommodation for

the individual LEDs and therefore this participant was also excluded from this

experiment.

The 5 participants whose data was used were between the ages of 23 and

28 years (M = 26.2). They all had a visual acuity that was greater than

0.3 logMAR in each eye at both near and far distances without the need for

spectacles or lenses.

All participants signed a consent form prior to taking part. The ethics for this

experiment were approved by the Department of Physics Ethics Committee

at Durham University.

Apparatus

The stimulus was a black Maltese cross printed on transparency film and

mounted on a diffuser. This was positioned 3 D away from the observer. At

this distance the stimulus window subtended 2o visual angle. Figure 5.1 shows

an image of the Maltese cross and its spatial frequency content.

78



Apparatus

Figure 5.1: The fixation stimulus used in the experiment is shown on the left.
The spatial frequency power spectrum is shown on the right.

Figure 5.2: Radiance measures for each of the six LEDs. These have been
normalised to have peak values of one.

Behind the diffuser there were five narrowband LEDs. The spectra of these

LEDs is plotted in Figure 5.2). From now on these LEDs will be referred

to as red (peak: 660nm), orange (peak: 588nm), green (peak: 527nm), blue

(peak: 461nm), and violet (peak: 441nm). The stimulus was back illuminated

by various combinations of these five LEDs. The LEDs were controlled using

an Arduino and the intensities were adjusted using pulse width modulation

(PWM).

The refractive state of the eye was measured using the PlusOptix PowerRef

3 device while they were viewing the accommodation stimulus. A diagram of

the set up is shown in Figure 5.3
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Figure 5.3: A diagram (not to scale) showing the setup of the apparatus. The
periscope system, including a hot mirror, allows the participant to view the
stimulus while the PowerRef 3 measures the refraction of the eye. The only
difference in the set up for the calibration procedure was that the stimulus
was at 100cm and the fixation cross was larger to maintain the angular size.

Calibration

To ensure that the relative refraction measures were accurate for each of the

participants in this study, we calculated an individual-specific relative calib-

ration factor for each participant as suggested in Sravani et al. (2015).

The stimulus was presented at 1 D from the observer and illuminated from

behind by the green LED. The intensity of the green LED was adjusted using

PWM until the observers pupil size was roughly 6mm.

An infrared transmitting filter (Edmund Optics, Optical Cast Plastic IR Long-

pass Filter) was placed in front of the right eye in a trial frame. The observer

could not see through this filter but the refractive state of their eye could still

be measured. A series of lenses from -4 D to 5 D in 1 D steps were also placed

in front of the right eye. The refraction in both eyes was measured for 30

seconds with each of the 10 lenses.

The average difference in refraction between the two eyes was calculated for

each of the lenses. The difference in refraction was plotted against the power

of the lens and a regression line was fitted to the linear portion of this curve.

The slope of the line was taken as the individual-specific relative calibration
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factor and applied to all of the subsequent measures.

Procedure

As well as the five LEDs in isolation, six pairs of the LEDs were used to

generate the spectra. These were red and green, red and blue, red and violet,

orange and blue, orange and violet, and green and violet. For each pair there

were 7 mixtures, each with different relative luminances of the two LEDs. The

luminances of each of the individual LEDs was increased or reduced in steps

of 1.25cd/m2 while the overall luminance was kept constant at approximately

10cd/m2. This gave a total of 42 mixtures and 47 test spectra including the

five individual LEDs.

Before each trial the orange LED was presented for 2.5 seconds as a ‘pre-trial’

stimulus. This was followed by the ‘trial’ stimulus, in which any one of the 47

test spectra was presented for 2.5 seconds.

Each session contained one trial for each of the 47 test spectra in a randomised

order. There was no break between trials meaning that each session lasted for

3m 55s. Each participant completed at least 12 sessions, giving 12 repetitions

for each of the test spectra.

Participants viewed the target monocularly with their right eye (their left eye

was covered). They were instructed to look at the stimulus and keep the cross

clear using the same type of effort as when reading a book. There was a pause

button that they could press if they needed a break within a session. They

were told that they could blink whenever they needed to within the session

but that if their eyes were watering or they needed to blink a lot they should

use the pause button. Between sessions observers were given a break for as

long as they needed.

Data analysis

The data points where the pupil was not found were treated as blinks and

excluded along with 80ms before and 160ms after the blink. Data points with

a refraction measure that was clearly erroneous (< −20 D or > 20 D) were

also excluded. The first 1000ms of data within each trial and and the first

1500ms within each pretrial were excluded to allow the participant time to

accommodate.
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The static refraction values were calculated as the mean of the remaining

data for each trial and pretrial. The trial values were then normalised by

subtracting the preceding pretrial value from each. This was based on the

assumption that observers always accommodated to the same distance for the

pretrial ref and helped correct for longer term measurement errors such as

shifts in head position.

5.1.2 Results

Figure 5.4 shows the average static accommodation measures across all of the

participants for each of the spectra. There is a clear difference in the average

accommodation between the two individual LEDs (plotted at either end of

each of the graphs). It also appears that for many of the mixtures the average

accommodation lies in between the accommodation for the two individual

LEDs. The dashed lines show the accommodation responses needed to reduce

the defocus for the peak wavelength of each of the LEDs to zero. The average

static accommodation measures for each individual participant can be found

in Appendix B.

ANOVAs were performed for each pair of LEDs for each participant. In all

cases these showed a significant main effect.

If individual participants were switching their accommodation between the

two LEDs for the mixed illuminants, the average results could still show this

trend. In order to ensure that this was not the case we calculated the within

trial variance and the between trial variance for each spectrum for each ob-

server. The average variances for all observers are shown in Figures 5.5 (within

trial) and 5.6 (between trial). If the observers’ accommodation responses were

switching between the two LEDs then we would expect a symmetrical trend in

the variance with an increased variance towards the centre where the mixtures

are most even. However, there is no clear symmetrical trend in the variances

so we can assume that the accommodation results were not due to switching.

Levene’s tests were also used to assess the difference in variances for each

pair of LEDs, for each of the participants. Six out of the 24 tests showed an

overall significant difference between variances across the different luminance

mixtures. A linear contrast was then performed on the Z values to compare

the variances for the mixed spectra with those for the single LEDs. This was

insignificant in all cases.
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Figure 5.4: The black circles show the relative mean static accommodation
responses of all 5 subjects plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.

5.1.3 Discussion

The first hypothesis was that there would be a step like pattern in the accom-

modation responses. With the accommodation always around one of the two

LEDs in the mixture and never in the middle of the two. This would align

with the findings of Charman (1989). However, looking at the data in Fig-
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Figure 5.5: The bars show the within trial variances averaged across all five
observers for each of the spectra. The different graphs are for the different
LED pairs: red and green (top left), red and blue (top middle), red and violet
(top right), orange and blue (bottom left), orange and violet (bottom middle),
and green and violet (bottom right). The error bars represent the standard
error of the mean.

ure 5.4, we can see that for each of the LED pairs there are mixtures for which

the accommodation response is clearly in the middle of the responses for the

two individual LEDs. This is unsurprising as in the stimuli used by Charman

(1989) the red and the blue primaries were not mixed. There was either a red

C on a blue background or vice versa. In our stimuli, on the other hand, the

two wavelength components were mixed with a diffuser so accommodating to

one of the individual components was not such an obvious response.

The second hypothesis was that as long as the difference in defocus between

the two LEDs due to LCA was less than 1.11 D, there would be a linear

transition in the accommodation response through the mixtures. For the red

and green, orange and blue, orange and violet, and green and violet mixtures,

the separation between the peak wavelengths due to LCA is less than 1.11

D. Therefore we would expect a linear transition in accommodation across

the mixtures. However, Figure 5.4 shows that although there is a smooth

transition in accommodation across the mixtures, in most cases there is an
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Figure 5.6: The bars show the between trial variances averaged across all five
observers for each of the spectra. The different graphs are for the different
LED pairs: red and green (top left), red and blue (top middle), red and violet
(top right), orange and blue (bottom left), orange and violet (bottom middle),
and green and violet (bottom right). The error bars represent the standard
error of the mean.

asymmetry in the responses towards the longer of the two wavelengths mean-

ing that the response is not quite linear. The smallest dioptric separation is

between the red and green LEDs and in this case the transition in the accom-

modation responses across the mixtures does seem to be roughly linear. For

this reason the findings do at least somewhat agree with the predictions based

on the MacKenzie and Watt (2010) study.

Often the measured accommodation responses don’t seem to align particularly

well with these dotted lines. This may be because the calibration we used only

accounted for the relative refraction measures and not the absolute measures.

Another possibility is that the optimal accommodation response is not actually

the one that minimises the defocus. Certain monochromatic aberrations of

the eye, such as spherical aberration, interact with defocus so that a certain

magnitude of defocus actually helps to cancel out the blur in the retinal image

caused by the other aberrations. Spherical aberration also varies with the

accommodative state of the eye and therefore the optimal amount of defocus
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will vary depending on the accommodative state. This could also help to

explain the offset between the measured accommodation responses and the

hypothetical responses for minimising defocus for each of the individual LEDs

(as shown by the dotted lines).

5.2 Simulations

In addition to measuring accommodation responses, we ran simulations to

attempt to explain these findings. A series of simulations were run using

different potential cues to accommodation and employing different rules to

determine the eventual focus position. All of the simulations were run in

Python using the wave approximation to model the eye.

In the rest of this section a collection of these simulations are described. The

results of each simulation is then compared to the measured data.

5.2.1 Maximising Overall Image Quality

The first set of simulations were based on the assumption that the aim of

the accommodation response was to maximise the retinal image quality. In

the first instance we used visual Strehl Ratio (VSR) calculated from the

modulation transfer function (MTF) as our measure of image quality, as this

has been shown to be a very good predictor of visual acuity (Cheng et al.,

2004; Marsack et al., 2004; Thibos et al., 2004).

The VSR is an image quality metric calculated from the simulated retinal

image. It is based on Strehl ratio, which is the peak intensity of the point

spread function (PSF) of the optical system divided by the peak intensity of

a diffraction limited PSF for the same pupil size. This can be defined as

SR =
max(PSF)

max(PSFDL)
, (5.1)

where max(PSF) is the maximum intensity of the PSF and max(PSFDL) is

the maximum intensity of the diffraction limited PSF for an optical system

with the same pupil size.

Another version of the Strehl ratio can be calculated in the Fourier domain

from the MTF using the equation

SRMTF =

∫∞
−∞MTF(fi)dfi∫∞
−∞MTFDL(fi)dfi

, (5.2)
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where MTF(fi) is the MTF and MTFDL(fi) is the MTF for the equivalent

diffraction limited eye. fi is the spatial frequency in the image plane. This is

based on the idea that the volume underneath the MTF is equal to the central

value of the PSF.

The VSR used for these simulations was computed in the same way as the

Strehl ratio is computed from the MTF. However, the MTF was weighted

by the neural Contrast Sensitivity Function (nCSF) before integrating. This

integrated value was then normalised by the equivalent value for a diffraction-

limited system. This can be expressed as

VSR =

∫∞
−∞ nCSF(fi)MTF(fi)dfi∫∞
−∞ nCSF(fi)MTFDL(fi)dfi

, (5.3)

where the nCSF was calculated using Equations 2.7 and 2.8 on page 12.

The advantage of the VSR over the Strehl ratio is that as well as taking into

account the effect of the optics of the eye on the resultant image quality, it

aims to capture the effect of the subsequent neural processing that occurs.

In order to simulate the accommodation responses needed to maximise the

overall image quality polychromatic PSFs were calculated for a series of defo-

cus values (-1.5 D to 1.5 D in steps of 0.01 D). The polychromatic PSFs were

calculated by generating the monochromatic PSFs at a series of wavelengths

(400nm to 700nm in 5nm steps) with the LCA and defocus included. The

LCA for each wavelength was calculated using Equation 2.14 on page 19 as

described in Marimont and Wandell (1994), which gives the LCA of the eye

relative to 580nm. Each set of monochromatic PSFs were then weighted by

the relevant test spectrum and the luminous efficiency function, and summed

across all wavelengths to give the polychromatic PSF.

For each defocus value, the absolute Fourier transform of the polychromatic

PSF was then taken to give the polychromatic MTF (see Equation 2.4 on page

11). The VSR was then calculated from the MTF using Equation 5.3. The

predicted focus position for each test spectrum was taken to be the defocus

value resulting in the peak VSR.

Figure 5.7 shows the calculated VSR as a function of defocus for the test

spectra of various mixtures of the red and blue LEDs. It is clear from these

graphs that there are two separate peaks in VSR, one around where the peak

wavelength of the red LED is in focus and the other around where the peak

87



5.2.1. Maximising Overall Image Quality

Figure 5.7: Visual Strehl ratios calculated from a wave optics model of the
eye with a 5mm pupil over a range of defocus values. The visual Strehl ratios
were calculated from polychromatic MTFs weighted by each of the test spectra
and the luminous efficiency function. The test spectra are mixtures of the red
and blue LEDs. The luminance ratio of these two sources was varied in nine
equal steps from completely red (top left) to completely blue (bottom right).
The red and blue dashed lines indicate the accommodative response needed
to correct the LCA at the peak wavelengths of the red and blue LEDs.

wavelength of the blue LED is in focus. As the luminance of the blue LED

increases the peak in the VSR at the blue wavelengths also increases, and vice

versa.

In this case we are assuming that the accommodation system finds and ac-

commodates to the overall peak in VSR, which is the highest of the two peaks
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Figure 5.8: The predicted accommodation responses for maximising visual
Strehl ratio in the luminance channel for a 5mm pupil. The x axis represents
the luminances of the two LED sources. The different graphs are for the dif-
ferent LED pairs: red and green (top left), red and blue (top middle), red and
violet (top right), orange and blue (bottom left), orange and violet (bottom
middle), and green and violet (bottom right). The dashed lines indicate the
accommodative response needed to correct the LCA at the peak wavelengths
of the LEDs.

typically shown in Figure 5.7. However, if the visual system was using a trial

and error method, for example by using the microfluctuations in defocus to

judge the direction of the accommodation response needed, it is conceivable

that the actual accommodation response could get stuck in a local maximum

rather than reliably finding the overall peak in image quality. Either way,
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using this rule we predict a focus position where either the red or the blue

LED is focus and not a position between the two.

Figure 5.8 shows the predicted accommodation for each of the LED mixtures.

The x-axes of these graphs corresponds to the relative luminances of the two

LEDs. The y-axes of these graphs are equivalent to the x-axes from Figure 5.7

although in this case just the defocus value corresponding to the peak VSR is

plotted as the predicted accommodation response. The predicted focus values

for all of these combinations show the same step pattern as the red and blue

mixture, meaning that in all cases the VSR is optimised when one of the two

LEDs is in focus.

If observers were accommodating to maximise image quality we would ex-

pect that for all of the mixtures, the static accommodation response would

be roughly the same as for one of the two individual LEDs making up that

mixture and not somewhere in the middle. This is because there is actually

a dip in image quality in the middle, as is shown in Figure 5.7. However,

looking back to the measured accommodation results in Figure 5.4, it is clear

that participants are accommodating in between the two LEDs for some of

the mixtures. This suggests that observers may not actually be maximising

image quality.

Different Image Quality Metrics

It is possible that the simulation results described above are just due to the

specific image quality metric chosen. Perhaps if we used an image quality

metric other than VSR we would see different results. In order to ensure that

this was not the case we ran exactly the same simulation as that described

above but with different image quality metrics.

Firstly we tried using a measure of encircled energy known as ‘light-in-the-

bucket’ (LIB) (Thibos et al., 2004). Encircled energy is defined as the per-

centage of the total energy falling within a circle that is centred at the peak

of the PSF. In the case of LIB the region of interest is the area taken up by

the core of the diffraction limited PSF. This can be defined as

LIB =

∫ 2π

0

∫ DL core

0
PSF(ri, θi)dridθi, (5.4)

where the domain of integration is the core of the diffraction limited PSF for

the same pupil diameter and PSF is the normalised PSF (sum of energy = 1).
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Another metric we tried is one we will refer to as R50. This metric stems from

the same principle as encircled energy. However, the value of interest is the

radius of the circle containing 50 percent of the energy in the PSF. A smaller

value of R50 indicates a more compact PSF and, therefore, a better image

quality.

Thibos et al. (2004) defined R50 as being equal to the radius, r, when∫ 2π

0

∫ r

0
PSF(ri, θi)dridθi = 0.5. (5.5)

We ran the same simulations as described above but this time defining the

predicted accommodation response as either the point at which the LIB value

was the highest or the point at which the R50 value was lowest. The results

were very similar to the VSR predictions. There was generally a reduced

image quality in between the two LEDs, and the predicted accommodation

was always around one of the individual LEDs and not in between the two.

These findings further support the idea that the way that observers were

accommodating to these mixed chromatic stimuli was not maximising the

image quality.

5.2.2 Maximising Contrast at Different Spatial Frequencies

The image quality metrics employed in the section above did not break the

visual information down into its component spacial frequencies and instead

reduced the information from all of the spatial frequencies down to a single

measure of image quality. To calculate VSR the MTF was weighted by the

nCSF, which places different weights on different spatial frequencies based on

real measurements of contrast sensitivity. However, although this weighting of

spatial frequencies may describe our ability to detect and distinguish gratings

of different spatial frequencies, the same weightings may not be appropriate

for the accommodation response.

There is some controversy in the literature as to which spatial frequencies are

most important for the accommodative response. One suggestion has been

that when there is a large amount of defocus, the lower spatial frequencies are

most important, whereas the high spatial frequencies play an important role

in fine tuning the response.
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Figure 5.9: Modulation transfer as a function of defocus plotted for 2
(magenta), 4 (purple), 8 (cyan) and 16 (green) cpd.

Figure 5.9 shows modulation transfer as a function of defocus. For higher

spatial frequencies the first minimum occurs at a relatively low defocus value.

Contrast information at defocus values greater than this first minimum will

not be useful because an increase in contrast does not always imply mov-

ing closer to the correct focus and there are many local maxima in contrast.

However, the lower spatial frequencies provide a reliable cue to the required

direction of the accommodation response even at relatively large defocus val-

ues. This, therefore, fits with the theory that lower spatial frequencies are

more important than high spatial frequencies in guiding the accommodation

response for large values of defocus.

For small defocus errors, on the other hand, the contrast gradient at the lower

spatial frequencies becomes very shallow. However, the contrast gradient at

the high spatial frequencies is very steep for these small defocus errors sup-

porting the idea that the high spatial frequencies could still play an important

role in fine tuning the accommodation response. The idea that high spatial

frequencies play an important role was supported by an experiment by Char-

man and Tucker (1978) who measured accommodation responses to sine wave

gratings and found that in general responses were more accurate to gratings
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with higher spatial frequencies.

There is also evidence to suggest that high spatial frequencies actually have

little importance for accommodation. Studies have investigated accommoda-

tion responses to sinusoidal gratings with various spatial frequencies and found

that optimal accommodation performance was achieved at low to intermedi-

ate spatial frequencies (between 3-5 or 1-7 cpd) (Owens, 1980; Stone et al.,

1993; Mathews and Kruger, 1994). Similarly Walsh and Charman (1988) in-

vestigated participants’ sensitivity to blur both for sinusoidal grating targets

and for images with a broad spatial frequency bandwidth. They found that

the blur sensitivity for the broadband images was most similar to that for

gratings at around 5 cpd.

In a very different type of study (Burge and Geisler, 2011) used a set of natural

images, and a model of the human eye and early visual system to find a set

of optimal filters for extracting defocus information from the environment.

They found that these optimal filters were predominantly sensitive to spatial

frequencies between 5-15 cpd.

MacKenzie and Watt (2010) measured accommodation to multiplane displays

as well as calculating the positions at which the retinal image contrast would

be optimised for a range of spatial frequencies. The calculations showed that

the optimum focus positions were different for different spatial frequencies,

creating a conflict between the information from low and high spatial frequen-

cies. They found that the measured accommodation responses aligned best

with optimising retinal image contrast for lower spatial frequencies. This sug-

gests that spatial frequencies above around 6-8 cpd were not contributing to

the accommodation response in this case.

It is still unclear which spatial frequencies are most important for accommod-

ation. However, a large amount of the research seems to indicate that lower

spatial frequencies between around 3-6 cpd play the most crucial role. It may

be that although high spatial frequencies are useful in fine tuning the ac-

commodative response if there is no conflict between the high and low spatial

frequencies, when there is a conflict we use the low frequency information over

the high frequency information. This makes sense if we look at Figure 5.9,

because the higher spatial frequencies give a less reliable cue.
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Simulations

The set of simulations described here were carried out in the same way as the

ones described above. However, once the polychromatic MTFs had been cal-

culated, instead of calculating the VSRs from these, the contrasts were simply

read off for a series of discrete spatial frequencies. The predicted accommod-

ation response for each of these spatial frequencies was then calculated by

finding the defocus value at which the contrast for that spatial frequency was

at its maximum.

Figure 5.10 shows the simulated retinal image contrasts at 2, 4, 8, and 16 cpd

for mixtures of the red and blue LEDs. For each of the LEDs on their own the

optimum focus point for maximising spatial frequency was almost identical

for all of the spatial frequencies and corresponded roughly to the plane where

the peak wavelength of that LED was in focus.

For the mixtures, the general pattern for the higher spatial frequencies of 8

and 16 cpd was similar to that found for the VSR. For these higher spatial

frequencies there were always two main peaks in contrast corresponding to

the two peaks in the spectrum. As with the VSR the peak corresponding to

the red LED increased as more red was added, and vice versa for the peak

corresponding to the blue LED.

However, as the spatial frequency reduces, the lines become smoother and the

peaks merge into one, so there are no longer two distinct peaks in contrast. For

2 cpd there was just a single peak that moved more towards red wavelengths

when more red light was added and towards blue wavelengths when more blue

light was added. For the mixture with equal luminances of red and blue, the

optimum focus position for maximising contrast at 2 cpd is actually right in

the middle of the two LEDs.

This is interesting because the point at which we might focus if we were

maximising contrast in the low spatial frequencies actually corresponds to a

dip in the contrast for the higher spatial frequencies. This means that, for

these types of stimuli, accommodating in order to maximise contrast in lower

spatial frequencies, a tactic that would normally maximise contrast across

all spatial frequencies, actually results in a loss of contrast at higher spatial

frequencies and, therefore, a degradation in the fine details of the image.

Figure 5.11 shows the predicted focus positions for maximising contrast at
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Figure 5.10: Contrast ratios calculated from a wave optics model of the eye
with a 5mm pupil over a range of defocus values, at 2 (magenta), 4 (purple), 8
(cyan), and 16 (green) cpd. The contrast ratios were calculated from polychro-
matic MTFs weighted by each of the test spectra and the luminous efficiency
function. The test spectra were mixtures of the red and blue LEDs. The
luminance ratio of these two sources was varied in nine equal steps from com-
pletely red (top left) to completely blue (bottom right). The red and blue
dashed lines indicate the accommodative response needed to correct for the
LCA at the peak wavelengths of the red and blue LEDs.

each of the four spatial frequencies. The separate graphs are for different

LED combinations. Here we can see a clear step function for the higher spatial

frequencies of 16 cpd and sometimes 8 cpd. As the spatial frequency decreases

there is a slightly smoother sigmoid shape, and at 2 cpd the transition is even
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Figure 5.11: The predicted accommodation responses for maximising retinal
image contrast in the luminance channel for spatial frequencies of 2 (magenta),
4 (purple), 8 (cyan), and 16 (green) cpd with a 5mm pupil. The x axis rep-
resents the luminances of the two LED sources. The different graphs are for
the different LED pairs: red and green (top left), red and blue (top middle),
red and violet (top right), orange and blue (bottom left), orange and violet
(bottom middle), and green and violet (bottom right). The dashed lines in-
dicate the accommodative response needed to correct the LCA at the peak
wavelengths of the LEDs.

smoother and almost linear for some combinations. The only real difference

between the different LED combinations is that the less dioptric separation

there is between the two wavelengths due to the LCA of the eye, the smoother

the curves tend to be, and the greater the dioptric separation is, the more
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step-like the curves tend to be.

The measured accommodation responses in Figure 5.4 show a relatively smooth

line across the mixtures. This seems to correspond best to the lower spatial

frequencies of 2 or 4 cpd. There are a number of test spectra for which par-

ticipants accommodated in between the average responses for the two LEDs

alone. This means that they would have had very low contrast for the higher

spatial frequency components of the image.

As was mentioned above, it may be that when there is a disagreement between

the directions suggested by the high and the low spatial frequencies, the lower

spatial frequencies tend to be favoured as they are generally more reliable (see

Figure 5.9). Most of the mixed spectra used in this experiment did lead to dis-

agreements in the optimum focus point for different spatial frequencies. This

could explain why the behaviour corresponds more closely to the predictions

from lower spatial frequencies as these are generally more reliable. However, it

is worth noting here that the depth of focus is much lower for the higher spatial

frequencies than it is for the lower spatial frequencies. Therefore, arguably,

optimising the focus position for high spatial frequencies is more important

than optimising for low spatial frequencies. Looking at the middle panel of

Figure 5.10 we can see that if we focus at the peak in contrast for 2cpd this

would result in a dramatic reduction in contrast at 16cpd. However, if we

were to focus at the peak contrast for 16cpd, the reduction in contrast at

2cpd would be much less dramatic.

5.2.3 Accounting for Monochromatic Aberrations

All of the simulations described so far have been based on a model eye that is

diffraction limited (other than the LCA and induced defocus). However, real

eyes also have monochromatic aberrations, which generally reduce the quality

of the retinal image and increase the depth of field.

We measured the monochromatic aberrations up to and including the 4th

order for 3 of the participants. We then reran the simulations both for max-

imising VSR and for maximising contrast at discrete spatial frequencies for

each of these sets of aberrations.

For this set of simulations we also made another alteration, aimed at mak-

ing the results more realistic. All of the simulations described above were
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for a fixed pupil size of 5mm. However, measures of the participants’ pupil

sizes during the experiment indicate that they varied for the different spectra.

The average pupil size across participants for each of the spectra is shown

in Figure 5.12. These changes in pupil size with the changing spectra make

sense because although we equated the luminance for the different spectra, the

pupillary light reflex has been shown to have different spectral response char-

acteristics than the luminance channel (Bouma, 1962; Gamlin et al., 2007). In

order to account for this we used the average pupil size for each test spectrum

for each observer as the baseline pupil size in these simulations.

Pupil size is also known to change with accommodation. Therefore, if the

different defocus values are to represent different accommodation values, the

simulated pupil size should also change with defocus. Plainis et al. (2005)

found that the pupil constricts by 0.18mm for every dioptre of accommodation.

We used this value to vary the pupil size with defocus from the baseline for

each spectrum in the simulations.

Spherical aberration has also been found to vary systematically with accom-

modation, becoming more negative as accommodation increases. Plainis et al.

(2005) found that spherical aberration varied linearly with accommodation

for all subjects. They found the average change in spherical aberration to

be 0.048 µm per dioptre of accommodation. We used this value to predict

changes in spherical aberration away from a baseline determined by the ob-

servers’ measured spherical aberration in our simulations.

Visual Strehl Ratio

Here the simulation results are shown for maximising VSR with monochro-

matic aberrations.

As well as the alterations described above, with these VSR simulations the

MTF was weighted by the spatial frequency content of the Maltese cross stim-

ulus in addition to the nCSF.

Figure 5.13 shows the visual Strehl ratios for the blue and red mixture with

the aberrations and pupil sizes measured from observer 1. The main difference

between these results and those without monochromatic aberrations shown in

Figure 5.7 is that the curves are broader and the two peaks are not so distinct.

This is because monochromatic aberrations increase the depth of field.
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Figure 5.12: The average pupil size across all observers for each of the LED
mixtures. The x axis represents the luminances of the two LED sources. The
different graphs are for the different LED pairs: red and green (top left), red
and blue (top middle), red and violet (top right), orange and blue (bottom
left), orange and violet (bottom middle), and green and violet (bottom right).
The error bars show the standard error of the mean.

The same simulations were also run for all of the other LED mixtures. The

main difference between the different LED combinations was that the greater

the dioptric separation between the two peak wavelengths due to LCA, the

more of a dip in image quality could be seen between the two peaks, and the

smaller the dioptric separation, the more the peaks merged into one. However,

it is worth noting here that even in cases where there are two peaks with a dip

in VSR in between, this dip is very subtle so there would not be a dramatic
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Figure 5.13: Visual Strehl ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 1 over a range of defocus
values. The visual Strehl ratios were calculated from polychromatic MTFs
weighted by each of the test spectra and the luminous efficiency function.
The test spectra are mixtures of the red and blue LEDs. The luminance
ratio of these two sources was varied in nine equal steps from completely red
(top left) to completely blue (bottom right). The red and blue dashed lines
indicate the accommodative response needed to correct the LCA at the peak
wavelengths of the red and blue LEDs.

reduction in image quality if the participants were to accommodate in the

middle of the two peaks.

Figure 5.14 shows the predicted focus for each of the LED mixtures based

on maximising the visual Strehl ratio with the aberrations measured from
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Figure 5.14: The predicted accommodation responses for maximising visual
Strehl ratio in the luminance channel with the monochromatic aberrations for
Participant 1. The x axis represents the luminances of the two LED sources.
The different graphs are for the different LED pairs: red and green (top left),
red and blue (top middle), red and violet (top right), orange and blue (bottom
left), orange and violet (bottom middle), and green and violet (bottom right).
The dashed lines indicate the accommodative response needed to correct the
LCA at the peak wavelengths of the LEDs.

observer 1. In comparison to the predicted accommodation responses with no

monochromatic aberrations shown in Figure 5.8, these are generally less step

like and there is a smoother transition across the mixtures for each of the LED

pairs. However, at least for the red and blue, red and violet, and orange and

violet LED pairs, the position of optimal focus is still always closer to one or

101



Contrast Ratios

other of the LEDs and never directly in the middle.

These same simulations were also run using the measured aberrations and

pupil sizes of two other participants. The results of these are shown in the

Appendix C. The pattern of results for each of these was very similar to

those shown above for Participant 1. The main difference for the other two

participants was that the curves were even smoother with less of a dip in image

quality between the two peaks.

For Participant 5 it is also clear that there is an offset between the two peaks in

image quality and the expected best focus for the peak wavelengths of the two

LEDs. The most likely explanation for this is that certain aberrations interact

with defocus so that the optimum image quality no longer corresponds to the

minimum amount of defocus. For example, in an eye with positive spherical

aberration, the image quality is better when there is also some positive defo-

cus rather than no defocus. The dotted lines indicate where the defocus will

be zero for the peak wavelengths of the two LEDs. However, when mono-

chromatic aberrations are present the optimum defocus at a given wavelength

needed for that wavelength to be in focus may be different from 0 D.

If we compare these predicted accommodation values with the actual meas-

ured accommodation responses they are slightly more similar than the equi-

valent predicted accommodation for maximising VSR without monochromatic

aberrations. However, generally, if the participants were accommodating to

maximise image quality we still would not expect them to accommodate right

in the middle of the two LEDs. It is however worth noting that once the

monochromatic aberrations have been taken into account, accommodating in

between the two LEDs does not have as detrimental an effect on image quality

as was initially thought.

Contrast Ratios

Figure 5.15 shows the simulated contrast ratios at a series of spatial frequencies

calculated with the aberrations and pupil sizes measured from observer 1. As

with the equivalent simulations without monochromatic aberrations shown in

Figure 5.10 on page 95, at the higher spatial frequencies there are two distinct

peaks in the contrast, corresponding roughly to the best focus positions for

each of the two individual LEDs, while for the lower spatial frequencies, there

is just a single peak in contrast which moves between the best focus positions
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Figure 5.15: Contrast ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 1, over a range of defocus
values, at 2 (magenta), 4 (purple), 8 (cyan), and 16 (green) cpd. The contrast
ratios were calculated from polychromatic MTFs weighted by each of the test
spectra and the luminous efficiency function. The test spectra are mixtures of
the red and blue LEDs. The luminance ratio of these two sources was varied
in nine equal steps from completely red (top left) to completely blue (bottom
right). The red and blue dashed lines indicate the accommodative response
needed to correct for the LCA at the peak wavelengths of the red and blue
LEDs.

for each of the two individual LEDs as the luminance ratios are changed. The

most noticeable difference when the monochromatic aberrations are included

is that the shapes of the curves are different at the higher spatial frequencies

with reduced and less well defined peaks in contrast.
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Figure 5.16: The predicted accommodation responses for maximising retinal
image contrast in the luminance channel for spatial frequencies of 2 (magenta),
4 (purple), 8 (cyan), and 16 (green) cpd with the monochromatic aberrations
for Participant 1. The x axis represents the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The dashed lines indicate the accommodative response needed
to correct the LCA at the peak wavelengths of the LEDs.

The contrast ratios were also calculated in the same way for each of the other

LED combinations. The general pattern was the same in all cases. For each

spectrum the predicted focus position was taken for each spatial frequency as

the defocus position resulting in the peak contrast at that spatial frequency.
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These predicted focus positions are shown in Figure 5.16. If we compare these

to the predictions without monochromatic aberrations in Figure 5.11 they

are actually very similar. This means that it is the lower spatial frequencies

of 2cpd and 4cpd that are the best predictors of the actual accommodation

responses.

In this case there was a lot more variation in the predicted accommodation

depending on which observers aberrations were used. In the case of Participant

4 the predicted responses as a function of luminance ratio were generally a

lot smoother with less of a defined step at the higher spatial frequencies. In

the case of Participant 5 on the other hand, there were still clear steps in the

predicted accommodation at the higher spatial frequencies. However, as the

spatial frequency increased, all of the predicted accommodation positions also

seemed to increase. We suspected that this was due to the interaction between

the higher order aberrations and defocus.

As was mentioned in the previous section, certain aberrations interact with

defocus in such a way that in an eye with those aberrations the defocus value

that optimises image quality is not 0 D. We will refer to the level of defocus

that optimises image quality in these cases as the baseline defocus. The find-

ings for Participant 5 seem to indicate that this baseline defocus is dependent

not only on the monochromatic aberrations present, but also on the spatial

frequency. To test this we ran another simulation with just 0.2 µm RMS spher-

ical aberration and a varying level of defocus and calculated the contrast ratio

at a series of spatial frequencies for each defocus value. We found that even

in this simplified case, the optimal defocus value changed with spatial fre-

quency. Figure 5.17 shows the results of this simulation. This effect has been

reported before by Green and Campbell (1965). This is an interesting finding

as we had assumed that in general the higher and lower spatial frequencies

should agree on the position of best focus and therefore that any apparent dis-

agreement would usually be due to the higher spatial frequency information

being unreliable at higher levels of defocus. However, these findings suggest

that with sufficient spherical aberration (and possibly other aberrations too)

there can be a disagreement in the best focus positions for the high and low

spatial frequencies even with monochromatic light where LCA has no effect.

Given that spherical aberration has been shown to change by approximately

0.048 µm per dioptre of accommodation (Plainis et al., 2005), this is likely to
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Figure 5.17: The retinal image contrasts calculated for an eye with 0.2 µm
RMS spherical aberration and defocus ranging from -1.5 to 1.5 D. The cal-
culations were made for monochromatic 580nm light and a 5mm pupil. The
retinal image contrast is plotted for 2, 4, 8, and 16cpd. The vertical lines
indicate the defocus values resulting in the optimal contrast at each of the
four spatial frequencies.

affect most people. This means that the assumption that generally a conflict

between the apparent directions for accommodation at high and low spatial

frequencies indicated that the high spatial frequencies were incorrect may be

false. In fact there may be many cases in which the high and low spatial

frequencies really do have different optimal responses.

5.2.4 Using LCA as a cue

For the simulations described above we have made the assumption that the

visual system is able to find the point at which the contrast or the overall

image quality is at its highest. However, it is likely that instead of maxim-

ising contrast or image quality directly, the visual system uses some other rule

to estimate the optimal accommodation response. If the eye was using mi-

crofluctuations or monochromatic aberrations as a cue to accommodation, we

would expect these to be just as effective under the experimental spectra as

under normal lighting conditions. This is because these two types of cue are

not wavelength dependent. However, if they were using a cue provided by the

LCA of the eye, it may not be so effective for the experimental spectra as it is
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wavelength dependent. Therefore, it is possible that under the experimental

conditions this cue would not lead to a good approximation for the point of

best focus. In this section simulations are described to explore where people

might accommodate to the experimental stimuli if they were using LCA as a

cue.

Under natural circumstances objects in the environment tend to be illumin-

ated by relatively smooth, broadband spectra. In these cases we can ima-

gine that the optimal accommodation response would involve focussing in the

wavelength range that we are most sensitive to (i.e. wavelengths around the

peak of V (λ)). Because V (λ) is a combination of the spectral sensitivities of

the L and M cones, this means that the ideal focus point would probably be

somewhere in between the optimal focus for the L cone channel and the op-

timal focus for the M cone channel. Therefore, the point at which the image

quality or contrast in the L and M cone channels is roughly balanced may

provide a good approximation for the optimal focus position for natural illu-

minants. This will be referred to as the EquateLM rule. If the eye is focussed

in front of this then the image quality or contrast would be better in the L

cones than the M cones and if the eye is focussed behind this then the image

quality or contrast would be better in the M cones than the L cones. A model

along similar lines to this was proposed by Flitcroft (1990).

Here I will not go into what exact comparison the visual system may be able

to make or how this comparison might be implemented. Instead I will just use

the points at which the image quality or contrast in the L and M channels are

equal as a rough guide to where the eye might accommodate if it was LCA

driving that accommodation response.

Comparing image quality for L and M cone channels

The simulations described in this section were run in a similar way to those

for maximising overall image quality described above. However, instead of

weighting the spectra by the luminous efficiency function, they were weighted

by the L and M cone spectral sensitivities. Then, instead of finding the peak

to predict accommodation, we found the point at which the image quality

values for the L and M cones crossed over. In cases where there were multiple

crossings, this was treated as ambiguous and there were multiple possible focus

predictions.
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Figure 5.18: The visual Strehl ratios for a range of defocus values with a D65
spectrum. The solid black line in the left graph shows the simulated visual
Strehl ratio as a function of defocus for the standard D65 spectrum weighted
by the luminous efficiency function. The black dotted line indicates the peak
of this function and therefore the predicted accommodation response if the
accommodation system were to maximise the visual Strehl ratio in the lumin-
ance pathway. The solid red, green and blue lines in the graph on the right
show the simulated visual Strehl ratio for the standard D65 spectrum weighted
by the L, M, and S cone spectral sensitivities respectively. The dashed orange
line indicates the defocus value at which the visual Strehl ratio is equal in the
L and M cone channels and therefore the predicted accommodation response
for a visual system equating image quality in the L and M cone channels. All
of these simulations are for an eye with natural LCA and a 6mm pupil.

Before running the simulations for our test spectra we tested the assumption

that the EquateLM rule would provide a good approximation for maximising

image quality in the luminance channel under natural illuminants. This is

because it is natural illuminants such as skylight that humans have been ex-

posed to as we’ve evolved so it makes sense that any rule used by the visual

system to accommodate should be effective under these spectra. In order to

do this we compared the simulated accommodation needed to equate L and M

image quality with the simulated accommodation needed to maximise image

quality in the luminance channel with the D65 illuminant spectrum (the CIE

standard daylight).

The left panel of Figure 5.18 shows the VSR for the D65 illuminant spectrum

weighted by V (λ) as a function of defocus. The dashed vertical line shows
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Figure 5.19: The visual Strehl ratios for a range of defocus values with the
Illuminant A spectrum. The solid black line in the left graph shows the sim-
ulated visual Strehl ratio as a function of defocus for the standard Illuminant
A spectrum weighted by the luminous efficiency function. The black dotted
line indicates the peak of this function and therefore the predicted accom-
modation response if the accommodation system were to maximise the visual
Strehl ratio in the luminance pathway. The solid red, green and blue lines in
the graph on the right show the simulated visual Strehl ratio for the standard
Illuminant A spectrum weighted by the L, M, and S cone spectral sensitivities
respectively. The dashed orange line indicates the defocus value at which the
visual Strehl ratio is equal in the L and M cone channels and therefore the
predicted accommodation response for a visual system equating image quality
in the L and M cone channels. All of these simulations are for an eye with
natural LCA and a 6mm pupil.

the predicted accommodation if the VSR was optimised for the luminance

channel, which is at -0.100 D. The right panel of Figure 5.18 shows the VSR

for the D65 illuminant spectrum weighted by the L, M, and S cone sensit-

ivities as a function of defocus. The orange dashed line shows the predicted

accommodation for the EquateLM rule for VSR, which is at -0.102 D, almost

identical to the accommodation value required to optimise image quality in

the luminance channel.

Figure 5.19 is equivalent to Figure 5.18 just using the CIE standard Illuminant

A instead of D65. Here the predicted accommodation responses for the two

rules are also very similar. This suggests that the EquateLM rule is not just

effective for D65 but also for other common broadband spectra. Given that
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Figure 5.20: Visual Strehl ratios calculated from a wave optics model of the
eye with a 5mm pupil over a range of defocus values. The visual Strehl
ratios were calculated from polychromatic MTFs weighted by each of the test
spectra and the L (red) and M (green) cone spectral sensitivities. The test
spectra were made up of the spectra of the red and blue LEDs. The luminance
ratio of these two sources was varied in nine equal steps from completely red
(top left) to completely blue (bottom right). The red and blue dashed lines
indicate the accommodative response needed to correct for the LCA at the
peak wavelengths of the red and blue LEDs.

the EquateLM rule seemed to give a good approximation for maximising the

image quality in the luminance channel under natural illuminants. We used

this rule to predict where people would accommodate for the experimental

stimuli.
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Figure 5.21: The predicted accommodation responses for equating visual
Strehl ratio in the L and M channels with a 5mm pupil. The x axes rep-
resent the luminances of the two LED sources. The different graphs are for
the different LED pairs: red and green (top left), red and blue (top middle),
red and violet (top right), orange and blue (bottom left), orange and violet
(bottom middle), and green and violet (bottom right). The dashed lines in-
dicate the accommodative response needed to correct the LCA at the peak
wavelengths of the LEDs.

Figure 5.20 shows the VSR in the L and M cone channels for each of the

mixtures of the red and blue LEDs. For the red and blue LEDs on their own,

shown in the top left and bottom right panels respectively, it is clear that the

image quality in the L and M channels is almost identical at all defocus values.

This indicates that in cases where the illumination is monochromatic or very
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narrowband, LCA cannot provide useful cues to accommodation. For the

mixtures, there are two peaks in image quality for both the L and the M cone

channels, one corresponding to the blue LED and the other to the red LED.

However, the blue peak is more pronounced in the M cone channel as this is

more sensitive to shorter wavelengths and the red peak is more pronounced

in the L cone channel as this is more sensitive to longer wavelengths. For the

mixtures the image quality in the two channels always seems to cross almost

directly in the middle of the two peaks.

The black filled circles in Figure 5.21 show the predicted accommodation re-

sponses for each of the experimental stimuli for the EquateLM rule with VSR.

For some of the stimuli there were multiple crossings, which are shown as mul-

tiple predicted accommodation responses. For the individual LEDs there are

often multiple crossings as the image quality is very similar for the two cone

channels at all defocus values. Therefore, for the individual LEDs it is not

clear where observers would accommodate if they were using the EquateLM

rule. However, for the mixtures, the predicted accommodation response tends

to be almost exactly in between the peak wavelengths for the two LEDs re-

gardless of the relative luminances of the two LEDs. Therefore, the predicted

image quality with the EquateLM rule corresponds to a dip in overall image

quality.

If we compare the simulation results in Figure 5.21 to the actual measured

results it seems that the predicted accommodation responses don’t fit the

actual responses particularly well. This is because for the actual measured

values the accommodation responses for the mixtures depend on the relative

luminances of the two LEDs with a gradual slope in accommodation as the

relative luminance changes. However, for the EquateLM rule the predicted

focus position for the mixtures seems to be largely independent of the relative

luminances of the two LEDs.

5.3 Conclusion

When viewing stimuli with spectra composed of two distinct peaks at distinct

wavelengths, the static accommodation response tends to fall somewhere in

the middle of that for each of the two peaks on their own. The focus position

also changes as a function of the relative intensities of the two peaks. This
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aligns relatively well with the findings of MacKenzie and Watt (2010) for

multiplane displays.

Simulations were run to predict the accommodation responses for the following

three rules:

1. maximising the overall image quality in the luminance pathway,

2. maximising the contrast at a specific spatial frequency,

3. or equating the image quality in the L and M channels.

Out of all of these it seemed to be maximising the contrast at lower spatial fre-

quencies (e.g. 2 and 4cpd) that best fitted with the observed accommodative

response. However, it is worth noting that once the monochromatic aberra-

tions were accounted for, the predicted accommodation positions for maxim-

ising the overall image quality in the luminance pathway did not provide such

a bad fit to the data.

These findings suggest that the accommodation responses for these chromatic

stimuli made up of two distinct wavelength peaks do not generally optimise the

overall image quality and may optimise the contrast at low spatial frequencies

at the expense of higher spatial frequencies. It may be that, because the depth

of focus is increased by the monochromatic aberrations of the eye, this does

not have a major affect on visual acuity. However, it is still something that

warrants further investigation and something that we may want to consider

when designing and selecting lighting and display primaries.
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Chapter 6

Is it possible to realistically

render blur?

There are two different ways of presenting blurred stimuli. Firstly, the blur

can be introduced optically, so that it interacts naturally with the aberrations

of the observers eye. For example, this can be done using lenses or a deform-

able mirror, or even by simply altering the distance between the target and

the observer. In this chapter I will refer to blur introduced in this way as

optical blur (it has also been described as “observer blur” in past literature).

Alternatively, the blur can be rendered in the stimulus itself, for example by

convolving the stimulus with a blur disc or point spread function (PSF). The

blur presented by this second method will not interact naturally with the ab-

errations of the eye and may not result in a realistic retinal image depending

on how the blur is rendered. In this chapter I will refer to this as rendered

blur (it has also been described as “source blur” in some papers).

It would be very useful to be able to render blur realistically as an alternative

to introducing the blur optically. This is because in many ways it is simpler

to render blur than to optically induce blur. Optically blurring a stimulus

requires specialised equipment such as lenses or a deformable mirror. There

is also the issue that the eye can accommodate to counteract the optically

induced defocus blur meaning that often the accommodation of the eye will

need to be controlled or prevented to get the desired blurred image on the

retina. Typically, optically blurred images can also only be presented to one

observer at a time as the observer will need to be aligned with the optical
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set-up. Rendered blur, on the other hand, could potentially avoid these com-

plications.

The ability to render blur effectively could be useful in creating realistic sim-

ulations of scenes (e.g. for virtual reality). In real scenes not all objects will

be in focus at one time. Therefore to make a two dimensional scene appear

realistic the objects that are not in the focal plane will need to be blurred. It

may be that the more realistic this blurring is, the more realistic the scene ap-

pears to be. In fact Cholewiak et al. (2017) found this to be the case when the

rendered blur in a scene was made more realistic by including the chromatic

aberration of the eye.

Creating realistic blur could also be useful in more clinical settings. For ex-

ample, when fitting glasses, contact lenses, or even intra-ocular lenses, it could

allow patients to view how certain types of optical correction might affect their

vision before they are manufactured and, in the case of intra-ocular lenses, in-

serted.

Making comparisons between optical and rendered blur is also of interest from

a more theoretical perspective. By exploring which factors must be accounted

for in order to render blur realistically, we can develop an understanding of

how much of an impact different optical features have on our perception of

blur and our visual acuity (VA), and which types of blur we are more able to

tolerate. It may also give us an insight into which features improve the eye’s

tolerance to blur.

6.1 Previous Studies

A number of previous experiments have been conducted comparing the effects

of optical and rendered blur on VA (Smith et al., 1989; Jacobs et al., 1989; De

Gracia et al., 2009; Dehnert et al., 2011; Ohlendorf et al., 2011; Remón et al.,

2014). The general trend in these studies has been that we appear to be more

tolerant to optical blur than rendered blur, with rendered blur reducing the

VA more than the supposedly equivalent amount of optical blur. However,

this effect was not always significant.

We have created a table to summarise a selection of previous studies (Table 6.1).

This table is colour coded according to whether or not a significant difference

was found between rendered and optical blur. The ones highlighted in green
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Table 6.1: Summaries of a selection of previous studies. The table is colour
coded to indicate whether a significant difference was found in the effect on VA
between the two blurring methods. Green indicates that there was a significant
difference found, red indicates that there was no significant difference found
and orange indicates that there were mixed results with significant effects
found for some experiments but not others.

found that the VA was significantly better for optical than rendered blur.

The ones highlighted in amber found mixed results, with some experiments

showing a significant difference between rendered and optical blur and others

showing no significant difference. However, for all of the studies highlighted

in amber, the trend, even in the non-significant experiments, was for rendered

blur to reduce VA more than optical blur. The Dehnert et al. (2011) study,

highlighted in red, is the one exception to this rule. In this study no significant

effect was found, and VA was actually slightly better for rendered blur than

for optical blur, which is opposite from the trend shown by the other studies.

Another trend from this data is that there was a greater difference between

optical and rendered blur for astigmatism than for defocus. Both Ohlendorf

et al. (2011) and Remón et al. (2014) found significant effects for astigmatism
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and astigmatism plus defocus. However, for defocus alone the results were not

generally significant. Dehnert et al. (2011) only investigated defocus and not

astigmatism. This could help to explain the differences in their findings from

other studies.

In the cases where rendered blur reduced VA more than optical blur, there

must have been some aspect of the optically induced blur not captured by

those methods for rendering blur, making us more tolerant to the optical

blur. Smith et al. (1989) and Jacobs et al. (1989) used a simple blur disc with

a uniform luminance as the blur kernel. This is quite different from the actual

PSF of an eye and therefore it is not surprising that there was a discrepancy

between the effects of the rendered and optical blur. De Gracia et al. (2009),

Dehnert et al. (2011), Ohlendorf et al. (2011) and Remón et al. (2014), on

the other hand, all generated PSFs based on the magnitude of the defocus

(or astigmatism) and the pupil size. It is therefore necessary to investigate

further why all but Dehnert et al. (2011) still found a significant difference

between the effects of optical and rendered blur. A number of different factors

have been suggested as the cause for this discrepancy. These possible factors

are discussed below.

1. One possible explanation is that the observers were able to partially ac-

commodate to the stimuli. This could have reduced the blur from the

optical defocus and also potentially from the optical astigmatism. Three

of the experiments described above did not paralyse the accommodation,

and instead relied on the stimulus being presented at or near the far limit

of the observers’ accommodative range (Dehnert et al., 2011; Ohlendorf

et al., 2011; Remón et al., 2014). However, if this distance was incor-

rect then the observer may have been able to reduce the optical blur by

accommodating. Accommodating differently to the rendered stimulus,

on the other hand, would not reduce the blur at all as optical defocus

can only add to the rendered blur and cannot cancel it out. Remón

et al. (2014) presented their stimuli at a distance of 5m, which is 0.2

dioptres (D) from infinity. Similarly, Ohlendorf et al. (2011) presented

their stimuli at 4m distance from the observer which is 0.25 D from in-

finity. Dehnert et al. (2011), on the other hand, accounted for the screen

distance in the correction of the refractive error of the eye so that (as-

suming the refractive correction was correct) the screen was actually at
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the limit of the observer’s accommodation. It may be that this explains

why there was no significant difference between the two types of blur

in the Dehnert et al. (2011) study but there was in both the Ohlendorf

et al. (2011) and Remón et al. (2014) studies where the stimulus wasn’t

quite at infinity, leaving room for some residual accommodation.

2. The human eye also has microfluctuations in accommodation, mean-

ing that the accommodative state is not constant even when the eye

is fixated at a single distance. It could be that even if the stimulus is

aligned to the average far point of the observer’s accommodative range,

the microfluctuations in one direction actually reduce the optical blur.

3. In three of the studies described above, the optical blur was introduced

by placing a lens in a trial frame worn by the observer. These lenses

were between 10mm and 16mm away from the cornea and therefore they

were not actually in the pupil plane. This means that the aberrations

of the lens would not simply add to the aberrations of the eye. Dehnert

et al. (2011) placed the lenses at a distance of 16mm from the cornea and

accounted for the difference in lens power due to the lens offset from the

pupil plane by slightly altering the power of the actual lens so that the

effective power for the eye was correct. For 8 D of defocus they actually

used a 7 D lens and for the 4 D condition they used a 3.75 D lens. Neither

Ohlendorf et al. (2011) or Remón et al. (2014) included an equivalent

correction, although they did also have shorter distances between the

cornea and the lens of 10mm and 12mm respectively. It is possible that

this is one of the factors contributing to the significant effects found in

the Ohlendorf et al. (2011) or Remón et al. (2014) studies. Perhaps there

was a difference between optical and rendered blur because the optical

blur they were introducing was not of the right magnitude due to the

offset of the lens from the pupil plane.

4. The separation between the lens and the pupil plane can also cause mag-

nification effects. If this was not accounted for then these magnification

effects would affect the retinal image in the optical blur condition but

not in the rendered blur condition and therefore may cause some dis-

crepancy between the two conditions. It seems that neither Ohlendorf

et al. (2011), Dehnert et al. (2011), or Remón et al. (2014) accounted for
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the magnification effects. Ohlendorf et al. (2011) calculated these mag-

nification effects as being less than 5% and concluded that they should

not have a significant impact. It therefore seems unlikely that this could

account for the significant effects found in the Ohlendorf et al. (2011)

and Remón et al. (2014) studies.

5. Most of the studies described above did not account for the longitudinal

chromatic aberration (LCA) of the eye so the LCA may have affected

the optical blur but not the rendered blur. Because the LCA of the

eye increases its depth of field this could help to explain why the VA

was better for the optical blur. In fact, one of the differences between

the Dehnert et al. (2011) experiment and other similar experiments was

that they accounted for the effects of chromatic aberration by using

a very narrowband source. It may be because chromatic aberration

was not accounted for in other experiments, that there were significant

differences between rendered and optical blur. Both Ohlendorf et al.

(2011) and Remón et al. (2014) used a broadband light to present all

of the stimuli but a monochromatic approximation to generate the PSF

for the rendered blur stimuli.

6. The higher order aberrations of the eye also interact with the defocus

and astigmatism. It has been shown that these higher order aberrations

can increase the depth of focus of the eye (Zhai et al., 2014). Certain

aberrations can also help to cancel out other aberrations. For example,

it has been shown that when positive spherical aberration is present, the

PSF is actually better when there is some positive defocus than when

there is no defocus. However, these interactions can only occur with

optical defocus. Therefore the higher order aberrations of the eye may

interact with the optical defocus and possibly reduce its effect on VA,

but the same effect would not be seen for rendered defocus. Ohlendorf

et al. (2011) argued that this factor would be too small to explain the

magnitude of the difference between the VA for rendered and optical

blur found in their study. De Gracia et al. (2009) measured the actual

aberrations of the observers’ eyes and corrected these optically in the

rendered case as well as rendering the images with these aberrations

included and still found a significant difference between rendered and

optical blur.
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7. As well as the aberrations introduced by the eye, diffraction also has a

blurring effect on the retinal image. In the case of the rendered blur,

generally this diffraction effect is included in the generation of the PSF

or blur disc. However, the blurred image is then viewed through the

actual optics of the eye which means that the diffraction effects within

the eye further distort the image. It may be that this double effect

of diffraction reduces the VA in the rendered case to below that in the

optical case. However, this effect would have been similar in the Dehnert

et al. (2011), Ohlendorf et al. (2011), and Remón et al. (2014) studies.

Therefore, it seems unlikely that this could be the main cause of the

difference between the rendered and optical blur in the Ohlendorf et al.

(2011) and Remón et al. (2014) studies.

8. The rendered stimuli have to be created for a particular pupil size. Some

studies, such as Ohlendorf et al. (2011), used an artificial pupil in order

to ensure the pupil size was correct and stayed constant. However, if

an artificial pupil is not used then it is possible that the pupil size will

vary in the optical condition or not be quite the same as that used to

generate the PSF. The larger the pupil size is, the smaller the depth of

field is, and the greater effect the defocus and other aberrations have on

the retinal image. Dehnert et al. (2011) and Remón et al. (2014) used

natural pupils and calculated the PSFs for the measured pupil size.

Since Dehnert et al. (2011) did not control for the pupil size and found

no significant difference between the two blur types it seems unlikely

that this could explain the difference found in the Remón et al. (2014)

study.

9. Another possible explanation is that the observers could have been

squinting their eyes in the optical condition. This could have a sim-

ilar effect to reducing the pupil size and therefore increase the depth of

field and reduce the impact of the aberrated wavefront on the retinal

image. In the Remón et al. (2014) study the participants were specific-

ally instructed not to squint their eyes to try and see the stimuli better.

However, even in this case it cannot be ruled out as a possibility.

10. When the PSFs are generated, various assumptions and approximations

must be made. For example, if the PSF is generated using the wave-

optics model, Fourier transforms must be taken. Generally this is done
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using an fft (fast Fourier transform) which is an approximation of a

true Fourier transform. The Fraunhofer approximations of diffraction

are also inherent in the calculations of the PSFs. It may be that the

approximations that go into the generation of the PSF cause the PSF

to be inaccurate. However, the Dehnert et al. (2011), De Gracia et al.

(2009), Ohlendorf et al. (2011), and Remón et al. (2014) studies all will

have relied on these same (or similar) assumptions and therefore it seems

that this cannot explain the significant findings of the De Gracia et al.

(2009), Ohlendorf et al. (2011), and Remón et al. (2014) studies.

11. Even if the process by which the rendered blur was generated was perfect,

there are still limitations as to how accurately the display can present

these images. Firstly, the display will only have a limited dynamic range,

which may mean that it looses some of the information in the original

image. The display may also not be linear. This could mean that some

parts of the image are brighter than they should be while other parts are

dimmer than they should be. These factors of the display could result

in differences between the rendered and optical blur. However, most of

the studies described above did at least correct for the non-linearity of

the displays.

It is worth noting that the fact that Dehnert et al. (2011) did not find any

significant difference in VA between the optical and rendered blur does not

necessarily mean that the rendered blur was accurate. In fact the two types

of blur could still have looked completely different and just happened to have

the same effect on VA. In order to ensure that the rendered blur is actually

resulting in the same retinal image as the optical blur, a variety of tests using

a variety of different stimuli would be needed. The two types of blur may

happen to have the same effect on VA for a particular stimulus, but it is

possible that this effect would not be robust for different types of stimuli and

for different tasks. A subjective test of how similar the different types of blur

look would also help to determine whether the rendered blur is equivalent to

the optical blur.
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6.2 Present Experiment

In this study we have conducted a series of experiments comparing rendered

and optical blur for 1 D of defocus. We have investigated the impact of various

factors including whether an artificial pupil is used, the use of a pinhole in the

rendered condition, and the effect of including monochromatic aberrations in

the rendering. In addition to the VA tests, we also conducted a subjective

similarity test to check that the conditions that were having the most similar

effects on VA were also subjectively the most similar.

There were three main experiments in this study. The first investigated the

effects of artificial pupils, pinholes, and monochromatic aberrations on VA for

both rendered and optically blurred stimuli. The second experiment, invest-

igated the effect of rendering with the monochromatic aberrations in more

detail. The final experiment was a similarity test to investigate which types

of rendered blur were subjectively the most similar to the optical blur.

6.3 General Methods

6.3.1 Participants

A single participant participated in all of the experiments described below.

This participant was female and 25 years old. The participant was also the

experimenter. The ethics for this experiment were approved by the Depart-

ment of Physics Ethics Committee at Durham University.

6.3.2 Apparatus

A DLP projector (Texus Instruments DLP LightCrafter Display 4710 EVM-

G2) was used to present the stimuli to the observer. The primaries in this

projector were not as narrowband as was required for the experiment. There-

fore, in order to make the primaries narrower, a short pass filter (Omega

Optical 535SP) was placed in front of the green LED within the body of the

projector, and a multi bandpass filter (Chroma 69002m) was placed at the

output of the projector. Figure 6.1 shows the spectra of the three projector

primaries with both filters in place. The projector formed an image on a

screen positioned 825mm away, as shown in Figure 6.2.
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Figure 6.1: The spectra of the red, green, and blue projector primaries after
passing through the filters.

The projector display was linearised for each of the colour channels separately.

Firstly a ThorLabs power meter was used to measure the power of the light

emitted by the projector for each primary at every intensity value from 0 to

255. At each intensity level the power was calculated as the average of 10

measures. These measured intensities were then used to make a lookup table

to linearise the display. Figure 6.3 shows the linearity of the display after the

linearisation with the lookup table.

The observer viewed the screen monocularly through a relay lens system. The

relay was made up of two achromatic doublets with focal lengths of 150mm.

The first was positioned 150mm from the observer’s eye and the second was

positioned 300mm from the first, resulting in a plane conjugate to the pupil

at 600mm from the eye. These lenses were aligned in an interferometer to

ensure the spacing was correct. This means there should be no unwanted

magnification or defocus term introduced. A ThorLabs dual position slider

was mounted in the conjugate pupil plane. A 1 D defocusing lens was mounted

in one position of the slider and apertures could also be mounted in both pos-

itions of the slider depending on the condition. The lens (and any apertures)

could then be switched in and out with a command from the computer running

the experiment to switch between the optical and rendered blur conditions.

Placing the lenses and apertures in the conjugate pupil plane eliminated any
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Figure 6.2: A diagram (not to scale) showing the optical layout for the ex-
periments. The projector displayed the stimuli onto a screen at 2800mm from
the observer. The observer viewed this screen through a relay lens system
composed of two achromatic doublets with focal lengths of 150mm each. This
resulted in a plane conjugate to the observer’s pupil at 2200mm from the
screen. In this plane either a defocus lens, or an artificial pupil, or both, could
be placed and switched in and out during the course of the experiments using
a ThorLabs dual position slider. The green lines indicate the path of the light
from a point on the screen and the blue lines highlight the positions of the
conjugate planes.

magnification effects or changes in power due to lens offset. In cases where

an aperture and a lens were used they were placed as close as possible to the

pupil plane so any offset was minimal. The set-up of the relay lens system is

shown in Figure 6.2.

A chin rest was used to keep the observer’s head still. To check that the

observer was aligned with the relay lens system, the slider switched between a

1 D lens and no lens to ensure the observer could not detect any magnification

difference. The observer always viewed the stimulus with her right eye and

her left eye was covered with an eye-patch. The conjugate pupil plane was

2200mm from the screen meaning that, without a lens, the screen was at 0.45

D. The observer was slightly myopic and their latest prescription was 0.5 D

for their right eye. Therefore, for the rendered case no lens was used and the

screen was assumed to be at the far point of the observer’s accommodation.
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Figure 6.3: The relative measured intensity of the red, green, and blue pro-
jector primaries for each input value from 0 to 255 after the linearity correction
had been applied. The linearity correction was part of the calibration of the
display

6.3.3 Equating luminance

Some of the conditions involved using a smaller pupil for the rendered case

than for the optical case. It was therefore important to ensure that the ap-

parent luminance remained the same across all conditions. A simple scaling

factor for the difference in pupil area is not sufficient in this case as it does

not take into account the Stiles Crawford effect.

A “which is brighter” task was used to determine the exact scaling factor

needed for the observer for each pupil size. In this task the observer was

shown two stimuli each through a different sized pupil and asked to indicate

which was brighter. The two stimuli were generated by illuminating the entire

projector screen with the green channel, which, when viewed through the relay

lens system, appeared to the observer as a circle of green light. For the larger

of the two pupil sizes the intensity of the stimulus was multiplied by the pupil
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scaling factor.

This task was carried out for a range of possible pupil scaling factors with

20 repetitions of each. This was then repeated for a series of intensity values

and for all of the relevant pupil size combinations. In each case, the average

response was plotted against the pupil scaling factor. A curve was fitted

to this distribution and the 50% threshold of that curve was taken as the

optimum correction factor. The correction factors were then averaged across

all intensity values. A separate correction factor was used for the different

pupil size combinations.

6.3.4 Measuring the wavefront

The observer’s wavefront was also measured prior to the experiments. This

was done using the custom built wavefront sensor shown in Figure 6.4. An

infrared superluminescent diode (SLD) with a peak wavelength of 875nm was

used as the light source so that it was barely visible to the observer and the

observer would not accommodate to it. This was collimated and stopped down

with an aperture before being directed into the eye. This formed a point source

at the back of the eye which was then re-imaged by the wavefront sensor. The

wavefront sensor used a Shack-Hartmann design with a 20× 20 lenslet array

(aµs: APO-Q-P500-R6.3) and CMOS detector behind. The lenslet array was

positioned in a plane conjugate to the pupil. The observer focussed on a

stimulus of a red cross presented on a monitor screen while the measurements

were taken. A tunable lens (optotune) was also placed in a plane conjugate to

the pupil. This was adjusted prior to the wavefront measurement so that the

stimulus the observer was accommodating to was at the limit of the observer’s

accommodation. The pupil camera shown in Figure 6.4 was used to help align

the observer prior to the measurement.

A series of at least 50 images were taken with the wavefront sensor. These

were then analysed using Python to find the best fit of Zernike polynomials

up to the 4th order. The averages for each of these Zernike coefficients was

taken across all of the images. These average Zernike coefficients were then

used to generate the observer’s wavefront.
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Figure 6.4: A diagram (not to scale) of the wavefront sensor used to measure
the aberrations of the observer’s eye. The light from the SLD (indicated
by the red lines) passed through a collimating lens and an aperture before
being directed into the observer’s eye with a beam splitter. The light that
returned from the eye (still indicated by red lines) was then directed through
a relay lens system made up of two achromatic doublets with focal lengths
of 100mm. Two mirrors in a periscope arrangement, then guided the light
through an tunable lens (optotune) which was in a plane conjugate to the
observer’s pupil. The third beam splitter then directed the light from the eye
up through a second relay made up of one 75mm focal length lens and one
50mm focal length lens. A Shack-Hartmann wavefront sensor consisting of a
lenslet array and a CMOS detector was placed in a second conjugate plane
to the pupil. A fixation stimulus was displayed on a monitor screen and the
path that the light from the screen took to reach the observer’s eye is shown
by the pale red shaded region. The blue lines highlight the conjugate planes.

6.4 Experiment 1

The aim of this experiment was to investigate the effects of the following four

factors on the VA for blurred stimuli.

1. The type of blur, which was either optical or rendered.

2. Whether or not an artificial pupil was used. An artificial pupil ensures

that the pupil size is constant and that the rendered blur has been

calculated for the correct pupil size. However, if the artificial pupil is
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too different from the pupil plane it may cause artefacts in the retinal

image.

3. The aperture size through which the rendered stimulus is viewed. If the

rendered stimulus is viewed though a pinhole, then the real aberrations

of the eye cannot affect the image optically. This is important as the

aberrations would not interact with the rendered defocus as they would

with the optical defocus. However, the smaller the pinhole is, the greater

the effect of diffraction will be as well.

4. Whether or not the monochromatic aberrations of the eye were included

in the rendering of the blur.

We hypothesised that when there was a difference between rendered and op-

tical blur it would be the rendered blur that resulted in a poorer VA. Because

the artificial pupil was conjugate (or at least almost conjugate) to the pu-

pil plane, we hypothesised that the rendered and optical blur would be more

similar with an artificial pupil than without. We ran some simulations to

attempt to find the optimal aperture size for viewing the rendered stimuli

through. From these it seemed that a 3mm pupil might give the best com-

promise between diffraction and aberrations and therefore we expected that

the rendered and optical blur would be most similar when the rendered stimuli

were viewed through a 3mm aperture. We expected the rendered and optical

blur to be least similar when the rendered stimuli were not viewed through a

reduced aperture. We expected that including the monochromatic aberrations

would improve the rendering and therefore that the rendered and optical blur

would be more similar when the monochromatic aberrations were included in

the rendering than when the blur was rendered just for the defocus.

6.4.1 Methods

Design

This experiment investigated four different independent variables. The first

was the blur type, which was either optical blur or rendered blur. The second

was the pupil type, which was either a 5mm artificial pupil or the observer’s

natural pupil (i.e. no artificial pupil). The third independent variable was

the aperture size through which the rendered stimulus was viewed, and was
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Table 6.2: Experiment 1 conditions.

only applicable when the pupil type was an artificial pupil and when the blur

type was rendered. This had three levels, 5mm, 3mm, or 1.5mm. The final

independent variable was the higher order aberrations (HOAs). Either the

blur was rendered for defocus only, or the rendering also accounted for the

observer’s measured aberrations.

There were 10 conditions in this experiment. Each was a unique combination

of the independent variables described above, as can be seen from Table 6.2.

There were 10 repetitions for each of the 10 conditions. The order of the trials

was pseudo-randomised so that there were 10 sessions, each with 1 trial for

each of the 10 conditions. Across the 10 sessions each of the 10 conditions

came first once, and each came second once, and so forth.

The dependent variable was the visual acuity (VA). This was measured by

altering the stimulus size in a staircase procedure to find the threshold for

performance in the task. The VA was calculated as,

VAlogMAR = log10(gapsize), (6.1)

where VAlogMAR is the VA expressed as the logarithm of the minimum angle of

resolution (logMAR), and gapsize is the angular size of the smallest detail to

be detected, in this case the gap in the Landolt C, in minutes of arc (arcmin).

Stimuli

The stimuli were standard Landolt C stimuli generated in Python. These

were displayed using only the green channel of the display. The intensity of

the C was set to 90% of the maximum and the background was also green at
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Figure 6.5: Examples of stimuli from Experiment 1. The optical stimulus with
no blurring is shown on the left. In the middle is the rendered blur stimulus
with a 5mm pupil, 1 D of defocus, and no HOAs. On the right is the rendered
blur stimulus with a 5mm pupil, 1 D of defocus and the observer’s higher
order aberrations up to the 4th order. The 40 arcmin scale bar applies to all
three images. In order for the scale to be accurate the images would need to
be viewed from approximately 1 meter.

45% of the maximum. The reason for using a green background was that the

projector did not have a spatially uniform black background and had some

residual light from the projector primaries. This gave the stimuli a Weber’s

contrast of 0.99. The orientation of the C was randomised so that on each

trial the gap was either on the left, right, top, or bottom.

In the optical blur condition the normal Landolt C was presented with a 1 D

defocussing lens in the conjugate pupil plane. In the rendered blur condition

the Landolt C was first convolved with a PSF. The PSF was generated us-

ing the wave-optics model accounting for the pupil size and 1 D of defocus,

or in the HOAs condition, accounting for the pupil size, magnitude of defo-

cus, and other monochromatic aberrations of the eye. Figure 6.5 shows an

example of an optical blur stimulus (left), a rendered blur stimulus with no

HOAs (middle), and a rendered blur stimulus with the observer’s measured

aberrations (right).

Procedure

The observer’s pupil size was measured prior to the experiments using a Ximea

MQ022RG-CM camera. An infrared LED with a peak wavelength of 890nm

was used to illuminate the pupil without affecting the pupil size. The observer

viewed the experimental stimuli and performed a mini version of the task while
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their pupil was imaged. The average pupil size of 6.18mm (taken from over 30

images) was used to generate the PSFs for the rendered blur conditions with

a natural pupil. The measured pupil size did not drop below 5mm therefore

it was never smaller than the artificial pupil.

The task was a 4 alternative forced choice (4afc) task where the observer was

asked to indicate the orientation of the Landolt C using the arrow keys on

a keyboard. Each stimulus was shown for as long as it took the observer to

respond. After the response, the C disappeared and the observer could press

the space bar when they were ready for the next stimulus. During this period

the observer could also indicate if they had made an error in their response

and if they did so that the previous response was discounted.

The thresholds were determined using the accelerated stochastic approxim-

ation method or ASA staircase as described in Lu and Dosher (2013). The

initial step size for the staircase was set to 0.1 degrees of visual angle and the

convergence accuracy level was set to 0.625 (halfway between chance perform-

ance and 100% correct). When the observer correctly identified the orienta-

tion of the C, the stimulus size decreased, and when they gave an incorrect

response, the stimulus size increased. At the end of each staircase the VA

estimate was calculated from the size that the next stimulus would have been.

6.4.2 Results

The average VA values across the 10 repetitions are shown in Figure 6.6.

From this graph the general trends are that the VA is better when the blur is

rendered with HOAs than when the blur is rendered without HOAs. For each

blur type the natural pupil always led to the poorest VA. For the rendered

blur, the VA continued to improve as the viewing aperture size was reduced

with the 1.5mm aperture leading to the best VA. It appears that the VA

for the optical blur falls somewhere between those for the various types of

rendered blur.

A one-way ANOVA was conducted for all 10 conditions. This showed an over-

all significant difference in the logMAR scores between conditions (F (9, 90) =

108.78, p < .001). The differences between conditions were investigated fur-

ther using Bonferroni corrected t-tests. There were 16 t-tests in total meaning
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Figure 6.6: The average logMAR values from each of the 10 conditions in
Experiment 1. Each bar represents one of the conditions listed in Table 6.2.
The error bars show the standard error of the mean.

that a result was classed as significant if

p ≤ 0.05

16
= 0.0031. (6.2)

First we investigated, whether there was a significant difference between rendered

and optical blur. We compared each of the rendered conditions with the equi-

valent optical condition and the difference was found to be significant for six

out of the eight rendered conditions. In the conditions without monochro-

matic aberrations there was a significant difference for the natural pupil (1

vs 9: t(18) = 3.83, p = .001), with better VA in the optical case (M = 0.57,

SD = 0.06) than in the rendered case (M = 0.66, SD = 0.03). There was no

significant difference between optical and rendered blur with either the 5mm

or the 3mm viewing aperture in the rendered condition (2 vs 10: t(18) =

2.62, p = .017; 3 vs 10: t(18) = -0.84, p = .410). With the 1.5mm viewing

aperture in the rendered condition, there was a significant difference between

the optical and rendered blur (4 vs 10: t(18) = -4.48, p < .001). However,

this time the VA was significantly better for the rendered blur (M = 0.41, SD

= 0.02) than for the optical blur (M = 0.50, SD = 0.06). In the conditions
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with HOAs there was always a significant difference between the optical and

rendered blur (5 vs 9: t(18) = -6.14, p < .001; 6 vs 10: t(18) = -5.74, p <

.001; 7 vs 10: t(18) = -11.37, p < .001; 8 vs 10: t(18) = -13.18, p < .001). In

every case the blur rendered with monochromatic aberrations led to a better

VA than the optical blur.

Secondly we tested whether the use of a smaller physical aperture size for view-

ing the rendered stimuli (while rendering the blur for the same optical pupil

size of 5mm) had a significant impact on the VA. We conducted 4 t-tests

comparing the conditions with the 5mm viewing aperture for the rendered

stimuli with both the 3mm and the 1.5mm viewing apertures rendered con-

ditions for both the no HOA and the HOA rendering methods. All of these

t-tests showed significant results (2 vs 3: t(18) = 3.69, p = .002; 2 vs 4: t(18)

= 14.22, p < .001; 6 vs 7: t(18) = 5.07, p < .001; 6 vs 8: t(18) = 8.93, p <

.001) with the smaller aperture size resulting in a better VA in every case.

Finally the effect of including HOAs when generating the PSF for the rendered

blur condition was investigated. This was done by comparing each of the 4

conditions rendered without HOAs with their equivalent conditions rendered

with HOAs. In all cases there was a significant difference in the VA (1 vs 5:

t(18) = 13.81, p < .001; 2 vs 6: t(18) = 11.15, p < .001; 3 vs 7: t(18) =

10.10, p < .001; 4 vs 8: t(18) = 13.07, p < .001) with the VA being better in

the conditions with HOAs than without HOAs in every case.

6.4.3 Discussion

Only two of the rendered conditions showed no significant difference from the

equivalent optical condition. These were conditions 2 and 3, neither of which

included HOAs in the rendering and both of which used an artificial pupil.

For condition 2 the aperture size in the rendered case was 5mm (the same as

the optical pupil size that the blur was generated for) and for condition 3 the

rendered stimuli were viewed through a 3mm aperture. However, just because

these two cases were the ones where the VA was not significantly different

from the optical case, this does not mean that these two cases resulted in the

most accurate retinal images.

One unexpected finding was that in most of the cases where there was a

significant difference between optical and rendered blur, it was in fact the

rendered blur that led to the better image quality. As was discussed in the
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introduction, in similar previous studies, when a significant difference was

found between the VA for rendered and optical blur it was always the case

that people were more tolerant to optical blur. This suggests that in this case

there is actually something in the optical blur making the image quality worse

that we are missing from the rendered blur.

From the results it is clear that there are various factors that worsen the VA

and various factors that improve it. For example, it is to be expected that

(once the pupil is large enough that diffraction does not have a dramatic effect

on the retinal image) a larger pupil size should result in a greater impact of

aberrations and therefore a poorer image quality. It is unsurprising, therefore,

that there is a trend for the VA to be better with the artificial pupil than with

the natural pupil in both the rendered and optical cases because the artificial

pupil is smaller than the natural pupil. There is also a significant effect that as

the viewing aperture size for the rendered stimuli is reduced, the VA improves.

Although in these cases the PSFs are always generated for a 5mm pupil, the

images are still affected by the real aberrations of the eye when they are viewed

and therefore the VA still improved as the artificial pupil was stopped down.

This finding actually suggests that as the VA was best for the 1.5mm aperture,

there must have been less distortion to the retinal image from the optics of the

eye for the 1.5mm aperture than for the 3mm or 5mm apertures. It follows

that the retinal image would have been closer to the stimulus being presented

for the 1.5mm aperture. Because the image being presented was generated as

what the retinal image should look like, the less distortion there is from the

real optics of the eye when it is viewed the better. Therefore, these findings

suggest that the best way to present a rendered blur stimulus to the observer

is through a 1.5mm aperture, as opposed to a 3mm or 5mm aperture.

Another finding was that the VA was significantly better in the cases where

the rendering included HOAs than when the rendering was for defocus alone.

This could be because although the HOAs reduce the image quality for an in

focus object, they also increase the depth of focus making us more tolerant to

defocus and increasing the image quality for out of focus objects.

The stopping down of the aperture for presenting the rendered stimuli and the

inclusion of HOAs in the rendered blur should both bring the retinal image

in the rendered blur case closer to that for the optical blur. However, in this

experiment both of these factors actually seemed to increase the difference in
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VA when compared with the equivalent optical blur condition. For every one

of the rendered HOA conditions the VA was significantly better than in the

equivalent optical condition and for both of the conditions with the 1.5mm

pinhole the VA was also significantly better than in the equivalent optical

condition. In fact, the only cases where there was no significant difference

between optical and rendered blur, were for the 5mm and 3mm aperture sizes,

when the HOAs weren’t taken into account. We would expect these conditions

to lead to a relatively poor approximation of the optical blur. There must,

therefore, be another explanation as to why the conditions that we would

have expected to give the best approximation of the optical blur lead to a

significantly better VA.

There are two explanations which, when combined, could explain this pattern

of results. The first is that perhaps rather than the stimulus being presented

at the limit of the observers accommodation (infinity for a corrected eye), it

was in fact presented beyond this point, meaning that the eye would need to

accommodate beyond its limit to bring the stimulus into focus. If this was the

case then as well as the desired rendered or optical defocus there would be an

additional optical defocus term. This additional optical defocus term would

affect the optical and rendered cases differently because optical + optical

defocus is different from optical + rendered defocus. However, at least for

the rendered cases with the same aperture size as the optical conditions (i.e.

the natural pupil or the 5mm aperture), the magnitude of this defocus should

be the same and the effect on the retinal image should not be too different

from in the optical condition. On the other hand, in the conditions where the

rendered stimuli were presented through a smaller aperture, this additional

optical defocus would have a less of an effect on the resultant retinal image.

If this was the case then this would account for the significantly improved VA

in the rendered conditions viewed through a smaller aperture.

The rendered blur with HOAs also led to a significant improvement in the

VA compared to the equivalent optical case. This was the case not only

with the smaller viewing apertures but even for the natural pupil and 5mm

aperture. Therefore this unexpected finding cannot be explained purely by the

unintentional defocus offset suggested above. In order to render the defocus

blur with the HOAs included 1 D of defocus was used alongside the other

aberrations to generate the PSFs. However, this is not actually appropriate.
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Defocus interacts with the other aberrations of the eye and therefore in an

eye with HOAs the defocus term required to bring an object into best focus

is not necessarily 0 D, in fact it generally isn’t. One example of an aberration

that interacts with defocus in this way is spherical aberration. In an eye

with positive spherical aberration, the best image quality is actually obtained

with some positive defocus to balance out the spherical aberration. Therefore,

when simulating an in focus retinal image for an eye with HOAs the defocus

term should not be zero but should instead be that which best balances out

the HOAs of the eye. It follows that to simulate the retinal image for an out

of focus eye with HOAs the desired defocus should be added to the defocus

value which best balances out the other aberrations.

6.5 Experiment 2

The aim of this experiment was to further investigate the effects of rendering

blur with and without accounting for the HOAs while correcting the potential

issues in Experiment 1.

The first potential issue with Experiment 1 was that the stimulus may not

have been presented at the far limit of the observer’s accommodation. Due to

the experimental setup we were not able to adjust the actual distance of the

screen. Therefore, in order to account for the potential offset, the experiment

was run both with the green primary (as in Experiment 1) and with the red

primary. The eye is less myopic for red light than for green light due to LCA,

and in this case the separation between the red and the green primaries was

approximately 0.5 D. If the green stimulus was beyond the accommodative

range by approximately 0.5 D or less, then the red stimulus should be just

within the accommodative range.

The second potential issue with Experiment 1 was that the defocus term used

in the simulations with HOAs was the same as the defocussing power of the

lens. However, in an eye with monochromatic aberrations the position of best

focus is often not actually 0 D defocus. In this experiment the optimal focus,

or baseline defocus, was first established for the given aberrations using a

simulation. The induced defocus was then added to this baseline defocus to

give the defocus value used to generate the PSF.

This experiment also investigated whether the HOAs used in the rendering
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needed to be the observer’s own. This is because in many situations when

rendered blur is used, the observer’s HOAs will not be known, or the same

stimuli will be presented to multiple observers and therefore cannot be per-

sonalised. It would therefore be useful to know if including HOAs generally

improves the similarity of the rendered blur with the optical blur even when

the HOAs are not the specific HOAs of the observer.

6.5.1 Methods

Design

This experiment had one independent variable, which was the type of blur.

There were 4 different conditions corresponding to 4 different types of blur.

These were optical blur, rendered blur, rendered blur with HOAs, and rendered

blur with another participant’s HOAs (other HOAs). The conditions and their

corresponding numbers are shown in Table 6.3. In the final condition the PSF

was still generated for an eye with HOAs but they were actually the HOAs

of another observer measured using the same wavefront sensor. This other

participant was male and 29 years old.

Table 6.3: Experiment 2

conditions.

There were 10 repetitions for each of the 4 con-

ditions. The order of the trials was pseudo-

randomised so that there were 10 sessions each with

1 trial for each of the 4 conditions. Across the 10

sessions each of the 4 conditions came first at least

twice, and each came second at least twice, and so

forth.

The dependent variable was the VA. As in Experi-

ment 1, this was determined using an ASA staircase

and converted to logMAR using Equation 6.1.

The experiment was carried out three times. The

first time was with the green primary and with a 5mm artificial pupil used in

the optical case and a 1.5mm pinhole used in the rendered case. The second

time was with the red primary and with a 5mm artificial pupil used in the

optical case and a 1.5mm pinhole used in the rendered case. The final time

was also with the red primary but with a 5mm artificial pupil used in both

the optical and the rendered case.
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Figure 6.7: The calculated Strehl ratios across a range of defocus values for
the observer’s own aberrations (left) and the aberrations measured from the
other participant (right). The Strehl ratios were calculated assuming a 5mm
pupil and a wavelength corresponding to the peak wavelength of the green
projector primary. The blue lines indicate the defocus value corresponding to
the optimum Strehl ratio. The value indicated by this blue line was taken as
the baseline defocus.

Baseline Defocus Simulation

A simulation was carried out for each set of HOAs to determine the defocus

value which best balanced out the aberrations. In this simulation the PSFs

were generated for the given aberrations and a series of different defocus values

in steps of 0.01 D. For each of these PSFs the Strehl ratio was calculated using

Equation 5.1. The baseline defocus for that wavefront was then taken as the

defocus value that resulted in the highest Strehl ratio. The simulated Strehl

ratios and baseline defocus values for each set of aberrations are shown in

Figure 6.7.

Stimuli

The stimuli were standard Landolt C stimuli generated in Python as described

for Experiment 1. The only difference here was that for two of the experiments

the stimuli were rendered for and displayed using the red primary rather than

the green.

As in Experiment 1, in the rendered blur conditions the Landolt C was con-
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Figure 6.8: Examples of stimuli from Experiment 2. On the left is the rendered
blur stimulus with 1 D of defocus and no HOAs. In the middle is the rendered
blur stimulus with the observer’s higher order aberrations up to the 4th or-
der and 1 D of defocus plus the baseline defocus to best compliment those
aberrations. On the right is the rendered blur stimulus with another parti-
cipant’s higher order aberrations up to the 4th order and 1 D of defocus plus
the baseline defocus to best compliment those aberrations. The 40 arcmin
scale bar applies to all three images. In order for the scale to be accurate the
images would need to be viewed from approximately 1 meter.

volved with a PSF. In the case with no aberrations, the PSF was gener-

ated for the 5mm pupil size and 1 D of defocus. However for the HOA

conditions the PSF was generated for the measured HOAs with 1 D of de-

focus plus the baseline defocus for those aberrations. Figure 6.8 shows ex-

amples of a rendered blur stimulus with no monochromatic aberrations (left),

a rendered blur stimulus with the observer’s measured aberrations (middle),

and a rendered blur stimulus with the other participant’s measured aberra-

tions (right).

Procedure

The task was the same 4afc task as described for Experiment 1 above and

the thresholds were determined using the same ASA staircase. At the end of

each staircase the VA estimate was calculated from what the size of the next

stimulus would have been.

6.5.2 Results

The first stage of the experiment involved displaying the stimuli with the

green primary of the projector and displaying the optical stimuli through a
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Figure 6.9: The average logMAR values for the 4 blur conditions in shown
in Table 6.3. The left hand graph is for the green stimulus with a 1.5mm
aperture used to present the rendered blur stimuli. The middle graph is for
the equivalent condition with the red stimulus. The right hand graph is for
the red stimulus with both the optical and rendered blur stimuli presented
through the 5mm pupil. The error bars show the standard error of the mean.

5mm artificial pupil, and the rendered stimuli through a 1.5mm pinhole. The

average logMAR scores for each of the 4 conditions can be seen in the left

panel of Figure 6.9. This shows that the VA is worst in the optical blur

condition (1). Out of the rendered blur conditions, the VA was best when the

rendering included the observer’s own aberrations (3), and was worst when

the rendering did not include any HOAs (2).

An ANOVA showed there to be a significant effect of the type of blur on VA

for this first stage of the experiment (F (3, 36) = 20.13, p < .001). Bonfer-

roni corrected t-tests were then carried out on all 6 possible combinations of

conditions to evaluate this effect. With the Bonferroni correction a t-test was

classed as significant if

p ≤ 0.05

6
= 0.0083. (6.3)

The t-tests showed that all three of the rendered blur conditions were signi-

ficantly different from the optical blur condition (1 vs 2: t(18) = 5.06, p <

.001, 1 vs 3: t(18) = 6.43, p < .001, 1 vs 4: t(18) = 6.13, p < .001). In every

case the VA was significantly better in the rendered condition than the optical

condition.

The t-tests showed no significant differences between any of the different

140



6.5.3. Discussion

rendered blur conditions (2 vs 3: t(18) = 2.59, p = .019; 2 vs 4: t(18) =

1.27, p = .219; 3 vs 4: t(18) = -1.60, p = .127).

The second stage of the experiment also involved displaying the optical stimuli

through a 5mm artificial pupil and the rendered stimuli through a 1.5mm

pinhole, but this time the stimuli were displayed with the red primary. The

average logMAR values from this part of the experiment are shown in the

middle panel of Figure 6.9. Here, optical blur condition (1) seems to have

the best VA and the rendered blur condition with the HOA’s from another

participant (4) seems to have the worst VA.

The Levenes test for the second part of the experiment showed that the vari-

ances varied significantly between conditions (F (3, 36) = 3.04, p = .041) and

although there seemed to be an overall significant effect with the standard

ANOVA (F (3, 36) = 3.47, p = .026) there was not a significant effect with

the Welch ANOVA (F (3, 18.16) = 3.14, p = .051). To be certain we also ran

Bonferroni corrected t-tests for each of possible combinations of conditions

and none of these came out as significant.

The third stage of the experiment also used the red primary but this time a

5mm artificial pupil was used to present both the optical and the rendered

stimuli. The average logMAR values for this part of the experiment are shown

in the right panel of Figure 6.9. The VA in all four conditions is very similar

with the best performance in the optical blur condition (1) and the worst

performance in the rendered blur condition with the HOAs from another ob-

server (4). Here an ANOVA showed no significant difference between any of

the conditions (F (3, 36) = 1.35, p = .274).

6.5.3 Discussion

As was found in Experiment 1, when the green primary was used, with the

1.5mm pinhole to present the rendered stimuli, the rendered blur always res-

ulted in significantly better image quality than the optical blur. This was the

case regardless of whether or not HOAs were included in the rendering and

whether the HOAs were the observer’s own.

Unlike in Experiment 1, there were no significant differences found between

any of the rendered blur conditions. This may be because this time the baseline

defocus was included for the HOA conditions so that the level of blur was more
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similar to that in the rendered condition with no HOAs. This suggests that

the main reason for the dramatic difference between the rendered condition

with no HOAs and the rendered condition with HOAs in Experiment 1 was

that the baseline defocus was not accounted for.

When the red primary was used instead, there was no significant difference

between the optical and rendered blur. This was true regardless of whether

or not HOAs were included in the generation of the rendered blur and regard-

less of whether or not a pinhole was used to present the rendered blur. In

Experiment 1 using a pinhole for the rendering had a dramatic effect on the

VA. The findings from this experiment support the idea that the reason for

this dramatic difference in Experiment 1 was that there was some additional

optical defocus for both the optical and rendered conditions resulting from the

stimulus being placed beyond the far limit of the observer’s accommodative

range. Therefore, stopping down the pupil was not just lessening the effects of

the observer’s HOAs but also lessening the effects of this defocus. Using the

red primary had the equivalent effect to bringing the stimulus 0.5 D closer to

the observer and it seems that this was sufficient to eliminate this additional

defocus.

These findings seem to suggest that it does not really matter whether or not

the HOAs are included in the rendering and whether a pinhole is used to

present the rendering because none of these factors significantly change the

resultant VA. In fact, when the red primary was used the VA was not sig-

nificantly different for the optical versus rendered blur regardless of whether

the rendered blur included HOAs, whether the HOAs were those measured

from the observer, and whether a pinhole was used. However it is important

to remember when interpreting these findings that even if these different con-

ditions do have a very similar effect on VA this does not mean that they are

qualitatively the same and they may in fact still appear very different to the

observer.

6.6 Experiment 3

In this final experiment, instead of investigating the effects of various types of

blur on VA we investigated which type of rendered blur looked qualitatively

most similar to the optical blur. We hypothesised that the rendered blur with
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the observer’s own HOAs would be judged as most similar to the optical blur

and that the rendered blur with no HOAs would be the least similar to the

optical blur.

6.6.1 Methods

Design

There were two independent variables in this experiment. The first was the

types of rendered blur being compared. The types of rendered blur were

the same as those used in Experiment 2 and every possible pairing was tested.

Therefore, this first variable had three levels: no HOAs versus HOAs, no HOAs

versus other HOAs, and HOAs versus other HOAs. The second independent

variable was the diameter of the stimulus. This had 4 levels 0.3, 0.5, 0.7, and

0.9 degrees of visual angle. This made 12 different conditions in total.

There were 20 repetitions for each condition. The order of presentation for

the two types of rendered blur was counterbalanced so of the 20 repetitions,

10 were for one order of presentation and 10 for the opposite order. In each

session there were 24 trials: one for each of the two orders of presentation for

each of the 12 conditions. The order of these trials was randomised for each

session.

The dependent variable was the type of rendered blur chosen as appearing

most similar to the optical blur.

Stimuli

The stimuli were standard Landolt C stimuli generated in Python exactly as

described for the Experiment 2. However, for this experiment the 1.5mm pin-

hole was used to view all of the rendered blur stimuli. The experiment was

run twice, once with the green primary and again with the red primary. As in

Experiment 2 there were 3 types of rendered blur stimuli: those rendered with

no HOAs, those rendered with the observers own HOAs, and those rendered

with another participant’s HOAs. As with Experiment 2 the baseline defo-

cus values were added to the desired defocus value of 1 D when HOAs were

included in the rendering.
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Procedure

Procedure

For each trial three stimuli were shown. The first stimulus was always the

optically blurred stimulus. This was presented with a 5mm artificial pupil.

This was displayed for 0.5 seconds followed by a black screen for 0.5 seconds.

While the black screen was presented the 1 D lens and 5mm artificial pupil

were exchanged for a 1.5mm pinhole using the dual position slider. Next the

first of the rendered blur stimuli was shown for another 0.5 seconds followed

by another black screen for 0.5 seconds. Finally the second rendered blur

stimulus was shown for 0.5 seconds followed by a black screen. At this point

the subject was able to indicate which, out of the two rendered stimuli, looked

most similar to the first, optical blur stimulus, by pressing either the number

1 (for the first rendered stimulus) or 2 (for the second rendered stimulus) on

the keyboard.

6.6.2 Results

The frequency with which each type of rendered blur was selected as being

closest to the optical blur for each of the 3 comparisons is shown in Figure 6.10

for both the green and the red primary.

Looking at the results for the green primary, for the comparison of the no

HOAs condition with the observer’s HOAs condition (top left panel), the

observer’s HOAs condition was chosen as being more similar to the optical

blur with a higher frequency for every stimulus size. For the comparison of

the no HOAs condition with the other HOAs condition (top middle panel),

the other HOAs condition was selected with a higher frequency for 3 out of

the 4 stimulus sizes. For the final comparison of the observer’s HOAs against

the other HOAs condition (top right panel), the results seem to be a lot more

mixed.

Looking at the results for the red primary, for the comparison of the no HOAs

condition with the observer’s HOAs condition (bottom left panel), for the

0.3o and 0.5o stimuli there is a clear trend for the rendered stimuli with the

observer’s HOAs to look more similar to the optical blur stimuli than the

rendered stimuli with no HOAs. However, for the 0.7o and 0.9o stimulus dia-

meters there is no clear trend. For both the comparisons of the no HOAs con-

dition with the other HOAs condition (bottom middle panel) and the HOAs
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6.6.2. Results

Figure 6.10: The frequencies with which the observer selected each rendered
blur conditions as closer to the optical blur stimulus for both the green and
the red projector primary. Each graph is for a different comparisons. The
results are plotted for each of the 4 stimulus diameters tested.

condition with the other HOAs condition (bottom right panel), there is a clear

trend for the other HOAs condition to be judged as more similar to the optical

blur condition.

A chi-squared test was carried out for each of the comparisons for both the

green and the red primary to determine whether there was a significant dif-

ference in the frequencies for the two blur types. A chi-squared test of inde-

pendence was also carried out for each of the comparisons to establish whether

stimulus diameter had a significant effect on the result.
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Green primary

Green primary

For the green primary, there was a significant difference between the frequen-

cies for the no HOAs versus HOAs comparison (X2 (1, N = 80) = 24.20, p <

.001), with the HOAs condition being selected significantly more times (62)

than the no HOAs condition (18). The frequency with which each of these

conditions was selected did not differ significantly with the stimulus diameter

(X2 (3, N = 80) = 4.87, p = .246).

There was also a significant difference between the frequencies for the no HOAs

versus other HOAs comparison (X2 (1, N = 80) = 14.45, p < .001), with

the other HOAs condition selected significantly more times (57) than the no

HOAs condition (23). For this comparison there was a significant interaction

between the type of rendered blur selected and the stimulus diameter (X2 (3,

N = 80) = 10.43, p = .018). To investigate this interaction further, individual

chi-squared tests were run for each of the 4 stimulus diameters. There was a

significant difference between the no HOAs and the other HOAs frequencies

for both the 0.5o stimulus (X2 (1, N = 20) = 9.80, p = .003) and the 0.9o

stimulus (X2 (1, N = 20) = 9.80, p = .003) with the higher frequency for

the other HOAs condition in both cases. However, the difference was not

significant for the 0.3o stimulus (X2 (1, N = 20) = 0.20, p = .824), or for the

0.7o stimulus (X2 (1, N = 20) = 3.20, p = .115).

There was no significant difference between the frequencies for the HOAs

versus other HOAs comparison (X2 (1, N = 80) = 0.20, p = .738). Al-

though the frequency was slightly higher for the HOAs condition (42) than

the other HOAs condition (38). There was, however, a significant interaction

with stimulus diameter (X2 (3, N = 80) = 14.64, p = .002). To investigate

this interaction further, individual chi-squared tests were run for each of the

4 stimulus diameters. There was a significant difference found for the 0.5o

stimulus (X2 (1, N = 20) = 7.20, p = .012), with a higher frequency in the

other HOAs case (16) than the HOAs case (16). There was also a significant

difference found for the 0.9o stimulus (X2 (1, N = 20) = 7.20, p = .012).

However, in this case the frequency was higher for the HOAs condition (16)

than the other HOAs case (4). There was no significant difference found for

either the 0.3o stimulus (X2 (1, N = 20) = 0.20, p = .824) or the 0.7o stimulus

(X2 (1, N = 20) = 0.20, p = .824).
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Red primary

Red primary

For the red primary, there was a significant difference between the frequencies

for the no HOAs versus HOAs comparison (X2 (1, N = 80) = 9.80, p =

.002), with the HOAs condition chosen significantly more times (54) than the

no HOAs condition (26). However, there was also a significant interaction

between the type of blur chosen and the stimulus diameter (X2 (3, N =

80) = 23.93, p < .001). Individual chi-squared tests were run for each of

the 4 stimulus diameters to investigate this interaction further. There was a

significant difference between the frequencies with which the two blur types

were chosen for both the 0.3o stimuli (X2 (1, N = 20) = 16.20, p < .001) and

the 0.5o stimuli (X2 (1, N = 20) = 12.80, p < .001). In both cases the HOAs

condition was chosen significantly more times than the no HOAs condition.

There was, however, no significant difference for either the 0.7o stimuli (X2

(1, N = 20) = 0.00, p = 1.000), or for the 0.9o stimuli (X2 (1, N = 20) =

1.80, p = .263).

There was a significant difference between the frequencies for the no HOAs

versus other HOAs comparison (X2 (1, N = 80) = 42.05, p < .001), with

the other HOAs condition chosen significantly more (69) than the no HOAs

condition (11). In this case there was no significant interaction with stimulus

diameter (X2 (3, N = 80) = 7.91, p = .050).

There was also a significant difference between the frequencies for the HOAs

versus other HOAs comparison (X2 (1, N = 80) = 26.45, p < .001), with the

other HOAs condition chosen significantly more times (63) than the HOAs

condition (17). There was no significant interaction with stimulus diameter

in this case (X2 (3, N = 80) = 0.82, p = .931).

Overall results

Figure 6.11 shows the overall frequencies for each of the three types of rendered

blur for both the green and the red primary. From this we can see that in both

cases the no HOAs condition was clearly selected fewer times than either of

the HOA conditions. For the green primary the HOAs condition was selected

with a slightly higher frequency than the other HOAs condition. However, for

the red primary the other HOAs condition was selected more times than the

HOAs condition.
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6.6.3. Discussion

Figure 6.11: The overall number of times that each of the three types of stimuli
were selected as being closer to the optical blur stimulus across all of the trials
for both the green and the red projector primary.

6.6.3 Discussion

For both the green primary and the red primary the observer judged the HOAs

condition to be to more similar to the optical blur than the no HOAs condition.

This finding was significant in both cases and in the case of the green primary

it was robust regardless of the stimulus size. However, it is worth noting that

for the red primary this trend was not seen for the 0.7o and 0.9o stimulus

sizes. In fact, for the 0.9o stimulus size there was a non-significant trend for

the no HOAs condition to be chosen with a higher frequency than the HOAs

condition. These findings indicate that in general rendering with HOAs leads

to a more realistic image. However, this effect does seem to be somewhat

dependent on stimulus size.

Another interesting question is whether it is important that the aberrations

used in the rendering are the observer’s own aberrations as there are many

cases when the observer’s own aberrations will not be known. For both the red

and the green primaries, the observer judged the other HOAs condition to be

more similar to the optical blur than the rendered blur with no HOAs. This

was a significant effect in both cases and it was only for the green primary at

the smallest stimulus size that this trend was not seen. This indicates that

even in cases when the aberrations used are from another observer this can

still make the image appear more realistic.
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6.7. Conclusions

For the green primary, there was no overall significant difference between the

frequencies with which the HOAs condition was chosen and the other HOAs

condition was chosen, indicating that the important factor in making the

rendered stimuli appear more similar to the optical stimuli was that HOAs

were included and it didn’t actually make much of a difference whether these

aberrations were the observer’s own or not. For the red primary, the stimuli

rendered with other HOAs were actually chosen with a significantly higher

frequency than those rendered with the observer’s own HOAs. This was un-

expected and may be due to the fact that the experiment with the red primary

was carried out a few months after the observer’s aberrations were measured.

More experiments are required testing a range of observers with a range of

aberrations to get a better understanding on whether there is a benefit to

using the observer’s own aberrations or whether any aberrations can be used.

If these findings are repeatable, this would suggest that HOAs could be used

to make rendered blur that appears more realistic even when the stimuli are

presented to multiple different people at once or when the specific aberrations

of the observer are not known.

6.7 Conclusions

Experiments 1 and 2 indicated that if the distance at which the stimulus is

presented is not actually the far point of the observer’s accommodative range

this can alter the results quite dramatically and lead to significant effects

which, when the effective distance is changed slightly, disappear.

They also demonstrated the importance of finding a baseline defocus value

when rendering with HOAs and adding the desired defocus term to this

baseline defocus. It is relatively well established that the point of best fo-

cus for a real eye with HOAs is not actually at 0 defocus, and this is a good

example of a practical case where this needs to be accounted for.

Once these two factors above were corrected for in Experiment 2, by using the

red primary to effectively bring the stimulus closer to the observer and adding

the defocus to a baseline level in the HOA conditions, there was actually no

significant difference found between the VA for optical and rendered blur.

This was the case regardless of whether or not the rendered stimuli were

presented through a pinhole and regardless of whether HOAs were included in
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6.7. Conclusions

the rendering. It was even the case when the HOAs used in the rendering were

measured from another participant’s eye. It may seem sensible to conclude

from this that it does not really matter whether or not HOAs are included and

whether or not the rendered stimuli are viewed through a pinhole. However,

just because there was not a significant difference in the VA, this does not

mean that there was no significant difference in the stimulus appearance.

Experiment 3 actually indicated that there was a significant difference in how

similar to the optical blur the different types of rendered blur appeared. When

the rendered blur included HOAs this was chosen significantly more frequently

as being closer to the optical blur compared with when the stimulus had no

HOAs. This was true regardless of whether or not the HOAs used to render

the blur were the observer’s own. What was less clear from these results was

the effect of using the observer’s own aberrations as compared with other

aberrations. For the green primary there was no overall significant difference

between the frequencies with which the observer selected the two different

HOA conditions. This seems to indicate that whether the aberrations are

the observer’s own does not make a significant difference to how similar the

rendered stimuli look to the optical stimuli. For the red primary, on the other

hand, the observer selected the stimuli with the other aberrations significantly

more times than the ones with their own aberrations. It is unclear what might

have caused this affect.

Overall these results suggest that, at least for the two eyes measured in this

experiment, the HOAs of the eye don’t significantly alter the VA for Landolt

C stimuli. However, the images blurred with HOAs are qualitatively different

from those blurred without HOAs and the observer judged those blurred with

HOAs as more closely resembling the real optically blurred stimuli in almost

all cases. This suggests that, in cases where the aim of the rendered blur is

to make a stimulus appear to be as realistic as possible, HOAs may well be

important. This also shows that there is a lot that a simple comparison of VA

will not tell us about how accurate a stimulus with rendered blur is.

Following on from this more experiments are needed testing a greater number

of observer’s to establish how robust these effects are. A range of different

HOAs could also be tested to see whether there is a particular set of HOAs

(such as the HOAs for a “standard” observer) which could improve the realism

of rendered blur for the majority of the population.
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Chapter 7

Conclusions

In this chapter a summary is given of the work and key findings presented in

this thesis. This is followed by suggestions for areas of future research.

7.1 Summary

This thesis investigated the monochromatic and chromatic aberrations of the

human eye and how they affect our vision. The focus was on updating our

understanding of the way that these aberrations affect our vision in the context

of the modern world.

7.1.1 Modern illuminant spectra

Increasingly illuminants are being favoured to be more energy efficient and

in displays primaries are often chosen to be more narrowband to allow for a

wider colour gamut. These modern illuminant spectra are advantageous for

many reasons, however, not much research has been done investigating how

different illuminant spectra might interact with the longitudinal chromatic

aberration (LCA) of our eyes. This thesis aimed to begin investigating this

question and explore issues that might arise from certain illuminant spectra

due to the LCA of the eye. The focus was particularly on illuminant spectra

with one or multiple narrowband peaks.

The question of whether we might see chromatic fringing due to LCA un-

der some illuminant spectra was addressed in Chapter 4 and the question of

151



Is LCA visible under certain illuminant spectra

whether our accommodation response is compromised under illuminant spec-

tra made up of two narrowband peaks was addressed in Chapter 5.

Is LCA visible under certain illuminant spectra

The simulations presented in Chapter 4 do not give a conclusive answer to the

question of whether the fringes due to LCA are more obvious under certain

types of illuminant as compared with more natural broadband illuminants.

However, the experimental results did indicate that there are certain spectra

for which the ratings of the visibility of chromatic fringes were significantly

higher. These findings suggest that the chromatic fringes on the retina due

to LCA are more obvious under illuminants made up of 2 or 3 narrowband

LEDs as compared to the broadband spectrum of a halogen bulb or the near

monochromatic spectrum of a single narrowband LED.

Is accommodation compromised under certain illuminant spectra

The measured static accommodation responses for various spectra were presen-

ted in Chapter 5. From these it is clear that for mixtures of two narrowband

LEDs the accommodation responses tend to be somewhere in the middle of

the responses for the two LEDs individually. This suggests that neither of the

two peak wavelengths in the spectrum were actually in focus.

Simulations suggested that the image quality is generally better if the focus

is nearer to one of the two individual LEDs rather than in the middle of the

two. However, the measured accommodation responses show that even for the

greatest LED separations every participant was accommodating in between

the two LEDs for at least some of the mixtures. This suggests that they were

not accommodating optimally.

The accommodation responses aligned better with optimising contrast at lower

spatial frequencies than the higher spatial frequencies. It was suggested that

this may be because the contrast gradient at the lower spatial frequencies is

more reliable at directing accommodation towards the overall peak in contrast

over a greater range of defocus values than the higher spatial frequencies.

This is potentially problematic as the higher spatial frequencies contain the

information relating to the fine detail in the image. The depth of focus is

also much lower at the higher spatial frequencies compared to the low spatial
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7.1.2. Realistically rendering 3D scenes

frequencies and therefore arguably accurate accommodation is more important

at the higher spatial frequencies.

It is therefore important to consider the spectrum of an illuminant in terms

of how much defocus due to LCA there will be in the retinal image and how

optimally people can accommodate to that spectrum.

7.1.2 Realistically rendering 3D scenes

Another area that is constantly growing in the modern world is that of dis-

playing very realistic images and scenes. Cinema is becoming more and more

realistic with 3D films now commonplace and virtual reality is becoming in-

creasingly popular. In order for a scene presented on a 2D screen to appear

realistic and 3D it is not simply a case of getting the best resolution and the

highest image quality. In reality objects at different distances are distorted

differently by the chromatic and monochromatic aberrations of our eyes and

therefore for a scene to appear realistic it seems likely that we will need to

attempt to mimic these effects. The ability to render blurred stimuli realistic-

ally could also be useful in a more clinical setting, in helping patients to decide

which sorts of optical corrections they prefer without going to the expense of

manufacturing the lenses. In Chapter 6 a series of experiments were described

investigating what is required in order for a stimulus with rendered defocus to

have an equivalent effect on visual acuity (VA) and an equivalent appearance

to a stimulus with real optical defocus.

One key finding presented in Chapter 6 was that when monochromatic ab-

errations are included in the rendering of blur it is important to shift the

amount of defocus used in the rendering so that instead of being relative to

0 dioptres (D) defocus, it is relative to the baseline level of defocus for those

aberrations, where the baseline defocus is the amount of defocus that leads to

the best image quality when combined with the aberrations.

There was no evidence that including monochromatic aberrations in the ren-

dering is important in order for rendered defocus to have the same effect on

VA as optical defocus. However, the findings did indicate that the rendered

stimuli were subjectively more similar to the optically blurred stimuli when

monochromatic aberrations were included in the rendering. Interestingly, this

effect was still significant even when the aberrations used in the rendering were

not the observer’s own. This indicates that including monochromatic aberra-
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7.2. Future research

tions in the rendering of blur could improve realism even when the individual’s

aberrations are not known or when the same stimuli are being shown to many

different people.

7.2 Future research

The work presented in this thesis points to many different areas that could be

investigated further. Some suggestions for future research are given below.

7.2.1 How different types of illuminant spectrum interact

with the LCA of the eye

In this thesis we investigated how participants accommodated to illuminant

spectra composed of two individual LEDs. However, more experiments are

needed to understand how people accommodate to the full range of different

illuminant and display spectra that are used in the modern world.

It would also be useful to determine whether certain types of illuminant spec-

tra and the way we accommodate to them really does have a detrimental effect

on the quality of the retinal image. In order to establish this the contrast sens-

itivity could be measured for a series of different illuminants and compared

with that for natural daylight.

Ideally enough research would be done in this area so that we could have a

quantifiable scale to indicate how good our vision is under various illuminants

and how obvious the chromatic fringes due to LCA are. The colour rendering

index (CRI) indicates how similar the colours of objects appear under a given

illuminant compared with how the colour of that object would look under

natural lighting. However, nothing equivalent exists for how blurred objects

appear to be under different illuminants due to the LCA of the eye.

7.2.2 Is it possible to realistically render blur?

The work presented in this thesis only scratched the surface of the question

of how to realistically render blur. A lot more work is needed before we can

render blur to be indistinguishable from optical blur and it may be that this

is not even possible to achieve.
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7.2.2. Is it possible to realistically render blur?

The experiments described in Chapter 6 only tested one participant. This was

due to limitations in the optical setup. It would be interesting to carry out

the same experiment on multiple participants and see whether the findings are

consistent. In particular it would be interesting to know whether it is always

the case that including monochromatic aberrations in the rendered blur results

in the rendered stimulus looking more realistic even when the aberrations are

not the observer’s own.

Moving forwards the next step would be to move away from monochromatic

light and address realistically rendering blur for RGB displays. This would

introduce the question of how to best account for the LCA of the eye in the

rendered images. Similar experiments could also be done with more complex

scenes, with objects at a range of depths, to see whether the manipulations

that made the rendered blur more realistic for a simple scene are still effective.
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Appendix A

Simulation method

We made a number of simulations of polychromatic retinal images for Chapter 4.

Three different methods were used to simulate the retinal images. Two of these

methods were for generating the retinal image for an RGB scene and the third

was for generating the retinal image from a greyscale scene.

The first and most simple method (method 1) involved assigning a single

wavelength to each of the red, green, and blue channels. In this case 650nm

was used for red, 550nm was used for green, and 450nm was used for blue.

The point spread functions (PSFs) were then generated for each of the three

wavelengths with the appropriate defocus value for the LCA of that wavelength

using equation 2.1. Each PSF was then convolved with the relevant channel

from the scene bitmap to get the blurred image for that channel using equa-

tion 2.2 (i.e. the 650nm PSF was convolved with the R channel of the scene).

These blurred images then became the R, G, and B components of the simu-

lated retinal image. The top right panel in figure A.1 shows the retinal image

simulated using this method for a scene comprising a simple white square as

shown in the top left panel of figure A.1.

Method 2 involved converting the RGB image of the scene into a hyperspectral

image. In order to do this the spectra of the red, green and blue primaries

from a MacBook Pro (Retina display, 2015) were measured using a USB 2000

spectrometer (Ocean Optics). Using these spectra, a spectrum was calculated

for each pixel in the RGB scene as

Spectrum = R× SpectrumR +G× SpectrumG +B × SpectrumB, (A.1)

156



A. Simulation method

Figure A.1: The top left panel shows a simple 2 degree white square on a
black background. This is the scene that the retinal images are based on.
The top right panel shows the retinal image of the square generated from a
simple 3 wavelength approximation (method 1). The bottom left panel shows
the retinal image of the square generated by converting an RGB image to a
hyperspectral image using the measured R, B and B spectra from a MacBook
display (method 2). The bottom right panel shows the retinal image of the
square generated by multiplying the greyscale image by the D65 spectrum and
using this as the hyperspectral image (method 3). All of the retinal images
were generated for an eye with natural LCA and a 5mm pupil. The 1 degree
scale bar for the top left image applies to all of the images. In order for the
scale to be accurate the images would need to be viewed from approximately
half a meter away.

where R, G, and B are the intensity values for each pixel, SpectrumR is the

spectrum of the red primary, SpectrumG is the spectrum of the green primary,

and SpectrumB is the spectrum of the blue primary. Once this process was

completed for every pixel in the scene, instead of having an image array with

3 different values for each pixel (R, G, and B) we had an image array with 61

values for each pixel going from 400nm to 700nm in 5nm steps (or in the high

resolution case 941 values from 360 to 830 in 0.5nm steps) this is known as a
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A. Simulation method

hyperspectral image (HSI).

Once the HSI of the scene had been generated, this was then converted into the

HSI of the retinal image. As before a PSF was generated separately for each

wavelength and then convolved with the slice of the scene HSI corresponding

to that wavelength. This stack of blurred images made up the HSI for the

retinal image. Finally, the retinal image HSI needed to be converted back into

an RGB format so that it could be viewed on a regular screen. The spectrum

for each pixel in the HSI was multiplied by the CIE 1931 2 degree X, Y and

Z colour matching functions (CIE, 1932) to give,

X = Spectrum×Xcmf,

Y = Spectrum× Ycmf,

Z = Spectrum× Zcmf, (A.2)

where Xcmf, Ycmf, and Zcmf, are the X, Y, and Z colour matching func-

tions. These X, Y, and Z values were then multiplied by a matrix defined

at www.brucelindbloom.com to give the R, G, and B values, so thatRG
B

 =

 3.2404542 −1.5371385 −0.4985314

−0.9692660 1.8760108 0.0415560

0.0556434 −0.2040259 1.0572252


XY
Z

 . (A.3)

The R, G, and B values were calculated in this way for each pixel to give

the RGB retinal image. The bottom left panel in figure A.1 shows the RGB

retinal images calculated in this way for a simple stimulus made up of a white

square.

Method 3 used a simple greyscale image, which could then be multiplied by

any wavelength spectrum to give an HSI. Once the HSI was generated from

the greyscale image, the retinal image was then generated in exactly the same

way as described for method 2 above and converted to an RGB image using

equations A.2 and A.3 so that it could be displayed. The bottom right image in

figure A.1 shows the RGB retinal images calculated in this way for a stimulus

made up of a white square with a D65 spectrum.
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Appendix B

Individual observers’ static

accommodation responses

In this section the average static accommodation response measures described

in Chapter 5 are plotted separately for each of the five participants. Fig-

ures B.1 to B.5 show the accommodation responses for participants 1 to 5

respectively.
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B. Individual observers’ static accommodation responses

Figure B.1: The black circles show the relative mean static accommodation
responses of Participant 1 plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.
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B. Individual observers’ static accommodation responses

Figure B.2: The black circles show the relative mean static accommodation
responses of Participant 2 plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.
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B. Individual observers’ static accommodation responses

Figure B.3: The black circles show the relative mean static accommodation
responses of Participant 3 plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.
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B. Individual observers’ static accommodation responses

Figure B.4: The black circles show the relative mean static accommodation
responses of Participant 4 plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.
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B. Individual observers’ static accommodation responses

Figure B.5: The black circles show the relative mean static accommodation
responses of Participant 5 plotted against the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The error bars represent the standard error of the mean. The
dashed lines indicate the accommodation needed to bring the defocus for the
peak wavelength of each LED to zero.
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Appendix C

Visual Strehl Ratio simulations

with monochromatic aberrations

Here the visual Strehl Ratio (VSR) simulations described in Chapter 5 are

plotted for the measured monochromatic aberrations of participants 4 and

5. Figure C.1 shows the simulated VSR values for the red and blue LED

pair with the measured aberrations from Participant 4. Figure C.2 shows the

predicted static accommodation responses for maximising the VSR with the

aberrations measured from Participant 4 for all of the different LED pairs.

Figure C.3 shows the simulated VSR values for the red and blue LED pair

with the measured aberrations from Participant 5. Finally, Figure C.4 shows

the predicted static accommodation responses for maximising the VSR with

the aberrations measured from Participant 5 for all of the different LED pairs.

Scales are the same for both participants but the axes have been shifted to

fit in all of the data. In some cases this means that some of the dashed lines

indicating the LCA of the two LEDs cannot be seen.

165



C. Visual Strehl Ratio simulations with monochromatic aberrations

Figure C.1: Visual Strehl ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 4 over a range of defocus
values. The visual Strehl ratios were calculated from polychromatic MTFs
weighted by each of the test spectra and the luminous efficiency function.
The test spectra are mixtures of the red and blue LEDs. The luminance
ratio of these two sources was varied in nine equal steps from completely red
(top left) to completely blue (bottom right). The red and blue dashed lines
indicate the accommodative response needed to correct the LCA at the peak
wavelengths of the red and blue LEDs.
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C. Visual Strehl Ratio simulations with monochromatic aberrations

Figure C.2: The predicted accommodation responses for maximising visual
Strehl ratio in the luminance channel with the monochromatic aberrations for
Participant 4. The x axis represents the luminances of the two LED sources.
The different graphs are for the different LED pairs: red and green (top left),
red and blue (top middle), red and violet (top right), orange and blue (bottom
left), orange and violet (bottom middle), and green and violet (bottom right).
The dashed lines indicate the accommodative response needed to correct the
LCA at the peak wavelengths of the LEDs.
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C. Visual Strehl Ratio simulations with monochromatic aberrations

Figure C.3: Visual Strehl ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 5 over a range of defocus
values. The visual Strehl ratios were calculated from polychromatic MTFs
weighted by each of the test spectra and the luminous efficiency function.
The test spectra are mixtures of the red and blue LEDs. The luminance
ratio of these two sources was varied in nine equal steps from completely red
(top left) to completely blue (bottom right). The red and blue dashed lines
indicate the accommodative response needed to correct the LCA at the peak
wavelengths of the red and blue LEDs.
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C. Visual Strehl Ratio simulations with monochromatic aberrations

Figure C.4: The predicted accommodation responses for maximising visual
Strehl ratio in the luminance channel with the monochromatic aberrations for
Participant 5. The x axis represents the luminances of the two LED sources.
The different graphs are for the different LED pairs: red and green (top left),
red and blue (top middle), red and violet (top right), orange and blue (bottom
left), orange and violet (bottom middle), and green and violet (bottom right).
The dashed lines indicate the accommodative response needed to correct the
LCA at the peak wavelengths of the LEDs.
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Appendix D

Contrast Ratio simulations with

monochromatic aberrations

Here the simulations described in Chapter 5 for optimising contrast at various

spatial frequencies are plotted for the measured monochromatic aberrations of

participants 4 and 5. Figure D.1 shows the simulated contrast values for the

red and blue LED pair with the measured aberrations from Participant 4. Fig-

ure D.2 shows the predicted static accommodation responses for maximising

the contrast at various spatial frequencies with the aberrations measured from

Participant 4 for all of the different LED pairs. Figure D.3 shows the simulated

contrast values for the red and blue LED pair with the measured aberrations

from Participant 5. Finally, Figure D.4 shows the predicted static accommod-

ation responses for maximising the contrast at various spatial frequencies with

the aberrations measured from Participant 5 for all of the different LED pairs.

Scales are the same for both participants but the axes have been shifted to

fit in all of the data. In some cases this means that some of the dashed lines

indicating the LCA of the two LEDs cannot be seen.
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D. Contrast Ratio simulations with monochromatic aberrations

Figure D.1: Contrast ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 4, over a range of defocus
values, at 2 (magenta), 4 (purple), 8 (cyan), and 16 (green) cpd. The contrast
ratios were calculated from polychromatic MTFs weighted by each of the test
spectra and the luminous efficiency function. The test spectra are mixtures of
the red and blue LEDs. The luminance ratio of these two sources was varied
in nine equal steps from completely red (top left) to completely blue (bottom
right). The red and blue dashed lines indicate the accommodative response
needed to correct for the LCA at the peak wavelengths of the red and blue
LEDs.
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D. Contrast Ratio simulations with monochromatic aberrations

Figure D.2: The predicted accommodation responses for maximising retinal
image contrast in the luminance channel for spatial frequencies of 2 (magenta),
4 (purple), 8 (cyan), and 16 (green) cpd with the monochromatic aberrations
for Participant 4. The x axis represents the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The dashed lines indicate the accommodative response needed
to correct the LCA at the peak wavelengths of the LEDs.
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D. Contrast Ratio simulations with monochromatic aberrations

Figure D.3: Contrast ratios calculated from a wave optics model of the eye
with the monochromatic aberrations for Participant 5, over a range of defocus
values, at 2 (magenta), 4 (purple), 8 (cyan), and 16 (green) cpd. The contrast
ratios were calculated from polychromatic MTFs weighted by each of the test
spectra and the luminous efficiency function. The test spectra are mixtures of
the red and blue LEDs. The luminance ratio of these two sources was varied
in nine equal steps from completely red (top left) to completely blue (bottom
right). The red and blue dashed lines indicate the accommodative response
needed to correct for the LCA at the peak wavelengths of the red and blue
LEDs.
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D. Contrast Ratio simulations with monochromatic aberrations

Figure D.4: The predicted accommodation responses for maximising retinal
image contrast in the luminance channel for spatial frequencies of 2 (magenta),
4 (purple), 8 (cyan), and 16 (green) cpd with the monochromatic aberrations
for Participant 5. The x axis represents the luminances of the two LED
sources. The different graphs are for the different LED pairs: red and green
(top left), red and blue (top middle), red and violet (top right), orange and
blue (bottom left), orange and violet (bottom middle), and green and violet
(bottom right). The dashed lines indicate the accommodative response needed
to correct the LCA at the peak wavelengths of the LEDs.
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