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Abstract: I examine the dynamics of noncommutative instantons of instanton

number 2 and commutative instantons of instanton number 3 in 5d Yang Mills theory.

I begin by detailing the construction of the instanton solutions, their moduli space,

and the moduli space potential using an explicit parametrisation of the moduli space

coordinates in terms of the biquaternions. I then go on to numerically analyse the

dynamics on the moduli spaces I have constructed.
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Chapter 1

Introduction

1.1 Topological Solitons

The aim of this thesis is to present new solutions for the moduli space dynamics

of certain Instanton solutions. Instantons are a specific example of Topological

Solitions, which are nonlinear solutions to certain PDEs. Because the properties of

these solutions are tied to topological invariants of the spaces they are defined upon,

they are very stable- no continuous transformation (including time evolution) of the

solutions can cause these properties to change.

Solitons were first observed in nature by John Scott Russel in 1834, however they

first began to play a role in particle physics in Yukawa theory, where they are known

as Skyrmions [61]. Shortly afterwards, Coleman and Mandelstam discovered the

existence of solitons in Sine-Gordon Theory [14][47]. Since then, solitonic solutions

have been discovered in many theories. Perhaps the most prominent are Kinks in

one spatial dimension, Vortices in two spatial dimensions, and monopoles in three

spatial dimensions. [52].

In this thesis, we are interested in Instanton solutions. These are four dimensional

solitonic solutions, found in Yang Mills theory. Originally discovered in [6], their

applicability was massively increased by the discovery of the ADHM method for

constructing them [2]. They have many applications, from deriving semiclassical
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corrections to the Yang Mills path integral [21], to the fact that they appear as the

low energy limits of certain brane configurations in String Theory [58].

1.2 Outline of Thesis

The thesis is divided into two parts. In the first, I present an overview of the theory

which I use in the second part to calculate the particular instanton solutions.

In the first chapter, I give an overview of the theory of Fibre bundles, which provides

the mathematical underpinning to the study of Instantons. This largely follows the

presentation in [53] and [16]. I begin by defining a bundle itself, then move on to

considering the notions of Connections and Curvature on a bundle. Next, I briefly

discuss Characteristic classes and the Topological Degree of a map, and show how

these objects are connected.

In the second chapter, I introduce Instantons themselves. In the remainder of the

thesis we will be studying instantons defined upon both commutative and non-

commutative spacetimes. Therefore the next thing to describe is the nature of

noncommutative spacetime. This includes a brief discussion of the biquaternions –

the algebra C× H. I then look at how to calculate instantons in practice- this uses

the ADHM construction first developed in [2]. I conclude the chapter by showing

how the construction can be extended to include Dyonic Instantons, where there is

a scalar field upon the instanton background, following the method first outlined in

[21].

In the third chapter I introduce the Instanton Moduli space [48]. Once again, I il-

lustrate how this construction can be extended to dyonic instantons via introducing

a potential on the Moduli space, following the presentation in [22]. After explaining

the theoretical basis, I present a practical method for calculating the moduli space

metric and potential for noncommutative U(N) instantons, which generalises that

presented for SU(2) commutative instantons in [1]. This concludes the first section
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of the thesis.

In the second part of the thesis I use the results in the first part to calculate some

particular solutions. First (in the fourth chapter), I rederive the single noncommut-

ative U(2) instanton presented in [3]. I then move to the case of two U(2) instantons.

First, I rederive the commutative solution in [1], but starting from biquaternion

rather than quaternion parameters. Then I look for a solution to the noncommut-

ative two instanton case. I show that the solution presented in [37] does not satisfy

the full ADHM equations, however I was unable to find a full solution myself. I

was, however, able to find a solution defined on a subspace of the full moduli space

spanned by the C× C subgroup of C×H. This is a geodesic submanifold of the full

moduli space. After finding this solution, I use it to derive the metric and potential

on this subspace. I check the answers correspond to the commutative solution and

the one-instanton solution in the appropriate limits. In the fifth chapter, I use these

results to numerically evaluate scattering in this subspace. I compare these results

to the results for the commutative two-instanton in [1].

Finally, in the sixth chapter I look at the commutative three Instanton case. Again,

I was unable to find a solution to the ADHM equations for the full moduli space,

however I was again able to find one for the complex subspace spanned by the C

subgroup of H (In this chapter I was working with the quaternions, and not the bi-

quaternions). I used this solution to calculate the moduli space metric and potential

for that subspace. Numerical scattering calculations proved to be very computation-

ally expensive, however I was able to plot scalar field and topological charge density

profiles, and to get a some examples of the instanton scattering, which allowed me

to make some comparison to the two instanton case in the appropriate limits.





Part I

Background Material





Chapter 2

Fibre Bundles

In this chapter, I introduce some ideas from differential topology which are essential

for understanding Instantons. I begin by defining the notion of a Fibre Bundle, then

I introduce the idea of a Connection on the bundle. This leads into a discussion

of Curvature. After defining these things, I briefly discuss Homotopy Theory, and

then Characteristic classes. After explaining the relation between these concepts, I

am then ready to introduce Instantons themselves, which will be done in the next

chapter. This section mainly follows [16], with additions from [53] and [59].

2.1 Fibre Bundles

Now we introduce the notion fundamental to this section: The Fibre Bundle itself.

First, we will give the definition, then build up from the most familiar example – the

tangent bundle – to Principle bundles; and finally to associated vector bundles. We

conclude by defining sections of bundles.

A Fibre Bundle is a Manifold E, and triple {F,M,G}, where E is equipped with

an surjective map π : E → M . We call F the Fibre, M the base space, and G

the structure group, which has a left action on F . We require that the following

conditions are satisfied

• 1. We require that π−1(x) ∼= F ∀ x ∈M
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• 2. We require an open covering {Ui} of M , an associated set of maps φi :

Ui × F → π−1(Ui) satisfying π ◦ φi(x, f) = x for x ∈ Ui and f ∈ F . This is

not necessarily the same covering which is used to make M into a Manifold

[59]. These maps are called local trivialisations.

• 3. At each point x ∈ M , we have that the map φi(x, f) is a diffeomorphism

mapping F → Fx.

• 4. On the intersections Ui ∩ Uj , we define gij ≡ φ−1
i,xφj,x. We require gij to be

an element of G

The maps gij have a couple of properties worth noting. First, g−1
ij = gji. Second,

on triple intersections Ui ∩ Uj ∩ Uk we have gijgjk = gik. By the definition of the

local trivialisations φi we have that E is locally a direct product Ui × F . If we can

make all the transition functions identity maps, then it will also be true globally

that E = M × F . In this case, we call E a Trivial Bundle (hence the name, ‘local

trivialisation’ for the φi.

Now, the φi can be seen as providing local coordinates for the bundle. The question

as to whether or not a bundle is trivial becomes the question of whether we can

assign coordinates consistently across the whole bundle. This problem is familiar

from general relativity, and it is also the root of gauge theory – we will later see that

the choice of transition functions gij is linked to our choice of a gauge.

As well as changing coordinates between patches, we can also change coordinates

within patches. This corresponds to using a different trivialisation φ̃i. We can define

a coordinate changing map fi = φ−1
i,x ◦ φ̃i,x, and it follows that g̃ij = f−1

i gijfj.

2.1.1 Examples of Bundles

We now move into some examples

Example 2.1.1. The Mobius Strip and the Cylinder. A nice way to see how this

works is to consider these two spaces, as used in [53]. As manifolds E, the cylinder
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is definable as [0, 1]×S1 and the Mobius strip is given via the quotient construction

[0, 1] × [0, 1]/ ∼; where ∼ is defined by [0, t] ≡ [1, 1 − t]. Both spaces have base

space M = S1 and fibre F = [−1, 1], with a projection π from the total space E to

the central S1 of each space given by (x, y)→ x. We will see that we end up with

G = Z2 (A rare example where the structure group is not also a Lie group). We now

check the conditions

• 1. It is clear that π−1(x) ∼= [−1, 1]

• 2. For both the mobius strip and the cylinder, we can cover the S1 via

two open sets, U1 = (0, 2π); U2 = (−π, π). For ui ∈ Ui the corresponding

local trivialisations are given by φ−1
1 (u1) = (θ1, t); φ−1

2 (u2) = (θ2, t) where

θ1 ∈ (0, 2π), , θ2 ∈ (−π, π) and t ∈ [−1, 1]

• 3. This is clearly satisfied

• 4. The intersection U1 ∩ U2 has two components; IA = (0, π) and IB = (π, 2π).

As for the transition functions, tA defined on IA is the identity map, whereas

there are two choices for tB, the map on IB. For θB ∈ IB, either φ−1
1 = φ−1

2 =

(θB, t) or φ−1
1 = (θB, t); φ−1

2 = (θB,−t)

In the first case, tB is also the identity map, and we have the Cylinder, which

is a trivial bundle over S1. In the second case, we have tB : (θB, t)→ (θB,−t).

Since t2B is the identity, tB ∈ Z2, and so this is the structure group of the

Mobius strip considered as a bundle over S1.

Example 2.1.2. Tangent Bundle. Probably the most well known example of a

Fibre Bundle is the Tangent Bundle. This is the collection of all the tangent spaces

of a manifold M .

TM ≡ ∪p∈MTpM (2.1.1)

The base space here is the manifold M , the fibres are the tangent bundles at each

point, and we can choose the structure group G to be GL(N), where N is the

dimension of the tangent space. The projection π maps from TpM to the point
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p ∈M . Note that if we have coordinates xi on the manifold, then our tangent space

can be parameterised by
{

∂
∂xi

}
. Then

• 1. This is by definition

• 2. We can use the open sets Um used to define M as a manifold. Then we can

parameterise Um×F by
{
xi,

∂
∂xi

}
, since the coordinates xi are defined on each

set Um. It is then clear that we can define φ : (Um×TpM)→ Span
{
∂
∂x

}
∼ TpM

• 3. This also follows by definition

• 4. Coordinates on different tangent spaces
{

∂
∂xi

}
,
{

∂
∂xj

}
are related by gij = ∂xj

∂xi
.

Hence the structure group is GL(n,R)

Example 2.1.3. Vector Bundle. This is a simple generalisation of the Tangent

Bundle, in which the fibre is a k- dimensional vector space V rather than the tangent

plane. The structure group is Gl(k).

Example 2.1.4. Principle Bundle. A principle bundle P has a fibre equal to the

structure group G. These are sometimes called G − bundles. The action of the

structure group on the bundle becomes left multiplication of G on itself. If we define

the projection and local trivialisations by

φi(p) = (x, g−1p) ; π(p) = x (2.1.2)

then we can also define a right multiplication of p ∈ P by a ∈ G by

pa = φ(x, ga) (2.1.3)

Because multiplication in G is associative, the operations of left and right multiplic-

ation commute. In addition, the operation of right multiplication is independent of

the local coordinates, since

pa = φj(x, gja) = φj(x, gij(x)gi) = φi(x, gi) (2.1.4)
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so we can simply write the right action as P × G → P : p × a → pa. It can be

shown [53] that this action is free and transitive on each fibre.

Example 2.1.5. Associated Bundles. The final example to discuss is the building

block for gauge theories, Associated Bundles. These combine the ideas of Vector

bundles and Principle bundles. We start with a principle bundle P whose structure

group G has a faithful representation ρ(g), which acts on the left of an n dimensional

vector space V . We take the product P ×E, and then define the Associated Bundle

Eρ as

P ×ρ V ≡ P × V/ ∼ ; ∼ : (p, v) ∼= (g−1p, ρ(g)v) (2.1.5)

To understand what this means, consider that we can get every element of g from

e by multiplication with elements in G, with e the identity in G. If we rewrite the

equivalence relationship as (pg, v) ∼ (p, ρ(g)v), we can see that this makes every

element g in the fibre G at x congruent to its orbit in space V , via (pg, V ) ∼

(p, ρ(g)V ). This effectively replaces G by V as the fibre over M.

We can define new projections and local trivialisations on the equivalence classes.

First we define πE([p, v]) = π(p). This is well defined since π(pg) = π(p) under the

equivalence relation above. The new trivialisations are

φ−1
E : Eρ → P × V : [p, v]→ (π(p), ρ(g)v) (2.1.6)

It can be shown (see [53]) that this definition is independent of the choice of repres-

entative of the equivalence classes, and that the transition functions are changed, as

we might expect, from gij to ρ(gij)

2.1.2 Sections and Triviality

A local section is a smooth map Ui → E, satisfying π ◦ s(x) = x. The most common

example of a section is that of vector fields on the tangent bundle, which are maps

Ui → TpM . If we can extend the local section to a smooth map M → E, we call it

a Global Section. For vector fields, we have the following theorem
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Theorem 2.1.1. A vector bundle of rank n is trivial iff it admits n linearly inde-

pendent sections

Even nontrivial vector bundles have a trivial global section, which maps each point

to the origin in the fibre. For principle bundles, this is not possible, as we have to

have a well defined coordinate system on G to define what the zero element actually

is. This allows us to prove the following strong result (see [53])

Theorem 2.1.2. A Principle Bundle is Trivial iff it allows a global section

These two results together make Associated Bundles very useful, via

Theorem 2.1.3. A Vector Bundle is trivial iff its Associated Principle Bundle is

trivial

This means that we can use either of the two above theorems to verify the Triviality

of both a Vector bundle and its associated Principle bundle, as the triviality of one

implies the triviality of the other.

2.2 Connection

In this section, the structure group G will always be a Lie group. In the previous

section we defined a fibre bundle in terms of a large number of coordinate patches,

‘stitched together’ by the transition functions gij. If we begin in one coordinate

patch, we want to know how to cross over to another. To do this, we need a curve,

which is defined [53] by it’s initial point and starting tangent vector. What does it

mean to stay on, ‘the same curve’ as we move between patches? This is one way to

see what is meant by the idea of ,‘Connection’. Another is to ask how, if we move on

a curve γ in the base space, we move, if at all, in the fibre F . There turn out to be

four notions of connection, which are all equivalent and all of which are necessary

for a full geometric picture of what is going on. I will present them in a particular

order, following [16], but this fact should be born in mind.
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We will start by wanting some notion of Parallel Transport, that is to say, given

a vector v ∈ TpE, can I define a unique vector in TqE which corresponds to v in

the sense that it is the tangent vector to a curve γ beginning at p with tangent v.

The answer turns out to be, ‘Yes’, but to see this we need to construct some more

machinery.

We begin by looking at the action of Lie groups on themselves, in particular discussing

the Lie Algebra and its associated Maurer-Cartan forms. This allows us to define

the Horizontal and Vertical subspaces of a Principle bundle P , and in turn to define

the horizontal lift of a curve in the base space M . Finally, we combine these notions

to define the connection one form, or gauge field in physics language. This sets up

a discussion of the curvature in the next section.

2.2.1 Preliminaries

A Lie group has two actions on itself, a left and a right action, which I will denote,

as is standard, by

L(g)h = gh; R(g)h = hg (2.2.1)

respectively. These actions induce corresponding differentials on the tangent space

of the group, denoted by

Lg? : ThG→ TghG; Rg? : ThG→ ThgG (2.2.2)

We say that a vector field X is left invariant if Lg?(Xh) = Xgh. The space of all left

invariant vector fields on a Lie Group is called the Lie Algebra of G, and is denoted

g. A consequence of this definition is that the vector field at every point is defined

by its value A ∈ TeG. It is therefore common to identify g with TeG and define the

Lie algebra to be the tangent space at the origin. Another well known property of

Lie Algebras is that their generators Ta satisfy

[Ta, Tb] = f cabTc (2.2.3)
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Where the f cab are called the Structure Constants of the algebra. If we choose an

A ∈ g, this generates a one parameter subgroup of G via exponentiation- in geometric

terms, it gives a curve in G defined by

σt(g) ≡ g exp(tA) = Rexp(tA)g (2.2.4)

Using the fact that the vector field generated by A is left invariant, we can calculate

the tangent vector to the curve to be

dσt(g)
dt

= gA = Lg?A = XA|G (2.2.5)

This shows that, as we expect, the tangent vector at each point is the vector field

generated by A at that point. From here we can define a map from TgG to g = TeG

by pulling the vector back along the curve. If we have the basis Ta in TeG, so that

A = AaTa, and a basis Xa ∈ TgG, so that XA = AbXb, then we can define the

Maurer – Cartan form

Θ ≡ Ta ⊗ ηa (2.2.6)

where ηa is the dual basis to Xa, i.e. ηaXb = δab To see that this has the desired

property, we calculate

Θ(XA)|g = Ta ⊗ ηa
(
AbXb

)
= Taδ

a
bA

b = TaA
a = A (2.2.7)

as required. Note that the Maurer – Cartan form is not unique, and depends upon

our choice of A.

The final ingredient we need is the notion of the adjoint action

adG : G→ G : h→ ghg−1 (2.2.8)

This induces a corresponding differential

adg? : ThF → Tghg−1G (2.2.9)
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Which, when applied to TeG gives the adjoint representation of g

Adg : g→ g : V → gV g−1 (2.2.10)

2.2.2 The Connection

As it turns out, the specification of a Maurer-Cartan form is both necessary and

sufficient to define a connection on a principle bundle. However, it is easiest to

understand the meaning of a connection via the idea of horizontal and vertical

subspaces.

At every point in the principle bundle P , we can decompose TpP into two subspaces,

which we call the horizontal and vertical subspaces

TpP ∼ HpP × VpP (2.2.11)

These are defined by specifying TpV as those vectors tangent to G, and TpH as their

complement. We require this choice to satisfy the, ‘equivariance condition’

HpgP = Rg?HgP ∀g ∈ G (2.2.12)

This means that the choice of the horizontal subspace at p determines all the choices

in the sum of the orbit of the elements of the group g. Since we saw that we associated

a principle bundle to a vector bundle by using these orbits, this condition essentially

guarantees that the transformation applies consistently to that construction.

We can use this to define a Horizontal lift

Definition 2.2.1. Let P be a principle bundle over M, and let γ be a curve in M .

We define the horizontal lift of γ to be γp, where

• π(γp) = γ

• All tangent vectors to γp are horizontal; i.e. if Xp is a tangent vector then

Xp ∈ Hp.



16 Chapter 2. Fibre Bundles

Further, we have

Theorem 2.2.1. Suppose we have a curve γ ∈ M with p ∈ π−1(γ(0)). There is a

unique horizontal lift such that γp(0) = p

Note that, whilst we have here defined the Horizontal subspaces first, then required

the horizontal lifts to lie in them, we could have defined the lifts first and defined

the subspaces to be the span of their tangent vectors at every point.

The above definition and theorem give us what we want– given a point p ∈ P we

can define uniquely a parallel transport along the curves γp. We can extend this

definition from a principle bundle to its associated vector bundle. Suppose Eρ is the

vector bundle associated to P via the representation ρ. Given a horizontal lift γp(t)

on P , we define the horizontal lift in E as

γE(t) =
[
(γp(t), v)

]
(2.2.13)

i.e., the elements of the equivalence class

(γp(t), v) ∼
(
g−1γp(t), ρ(g)v

)
(2.2.14)

for g ∈ G. If we choose a different lift in P , this definition will still work, we will

just get a different lift in Eρ. Because of the equivalence condition, any other lift in

P would be written as γ′P (t) = γp(t)a for some a ∈ G. Then

γ′E(t) =
[
(γ′p(t), v)

]
=
[
(γp(t), ρ−1(a)v)

]
(2.2.15)

If we choose a local trivialisation φ−1
P for P , we can write γP (t) = φP (t)

(
γt, g(t)

)
.

This induces a local trivialisation φ−1
E on E, in which γP (t) = φE(t)

(
γt, ρ(g(t))

)
. We

see that if the paralell transport in P is determined by g(t), the transport in Eρ is

determined by ρ(g(t)).



2.2. Connection 17

2.2.3 The Connection One form

So far we have encountered three of the four definitions of connection. These are

Parallel Transport, division into Horizontal and Vertical subspaces and Horizontal

lifts. The fourth, and final is the connection one form, which is the definition that

matches up most easily to the standard presentation of gauge theories. Once again

we will begin by working in a principle bundle P .

Previously we have dealt mainly with the horizontal subspace – now we consider

the vertical subspace. We saw in (2.2.4) that an element A ∈ g generates a one

parameter subgroup (i.e. a curve) in G. We can modify this construction to generate

a one parameter subgroup in P , which will lie in the fibre at each point of the base

space M – recall that this fibre is isomorphic to G

σt(p) = Rexp(tA)p = p exp(tA) (2.2.16)

Under this definition, π(p) = π(σt), since elements of π(σt) arise from the right

action of G on p. This means that the tangent vectors to σt(p) are elements of the

vertical subspace VpP . This allows us to define a map g→ VpP by mapping A ∈ g

to d
dt
σt(p)|t=0. In terms of the action of the tangent vector on an arbitrary function

f , we can write

XA

(
f(p)

)
≡ π(σt) (2.2.17)

where we call XA the fundamental vector field associated with A. If we take the

set {T a} of basis elements of g, these generate a basis {XTa} for VpP . We can now

define the connection one form a projection from TpP to VpP :

Definition 2.2.2. Let ω be a Lie algebra valued one form– that is, ω ∈ ΛP ⊗ g.

Then ω is a connection if it satisfies

• ω
(
XA

)
= A, ∀A ∈ g

• R?
gω = Adg−1ω
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The first condition makes ω into a Maurer– Cartan form, whereas the second ensures

the horizontal subspaces are equivariant. We can define the horizontal subspaces as

HpP = {X ∈ TpP |ω(X) = 0} (2.2.18)

Suppose X ∈ HpP . Equivariance requires Rg?X ∈ HpgP . But by the second

condition above, we have

ω
(
RG?X

)
= R?

gω(X) = g−1ω(X)g = 0 (2.2.19)

Therefore Rg?X is horizontal, and by the action of g on p must lie in Hpg as required.

This shows that the connection one form, which first determines the vertical sub-

spaces, is equivalent to the horizontal lift construction, which begins by determining

the horizontal ones. This is clearly also equivalent to choosing the horizontal and

vertical subspaces at each point, and we have seen that the Horizontal lift construc-

tion gives a notion of parallel transport. Therefore the four definitions of connection

are equivalent.

To make the connection to physics, we note that most of the time in physical applic-

ations we are working over a manifold. Therefore we can define a local connection

one form Ai as

Definition 2.2.3. Ai ≡ s?i ∈ ΛUi ⊗ g

where si is a section. This differs from the above in that it is only defined on a

particular Ui, not on the whole of P . We have

Theorem 2.2.2. If Ai is a local connection one form, and si is a local section

defined on the same open set Ui, there is a unique connection one form ω ∈ π−1(Ui)

so that Ai = s?iω

How does it transform if we choose a different section sj? To see this we will need

to sketch a proof of the above theorem, following [16]

Proof. Given a section si on Ui, and a point p in the fibre π−1(Ui), we can always
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find a gi ∈ G so p = si(x)gi, for x ∈ π(p). We can then define a local trivialisation

φ−1 : π−1(Ui)→ Ui ×G : p→ (x, gi) (2.2.20)

With this definition, the section itself is written as si(x) = (x, e). On an overlap

Ui ∩ Uj, the sections transform as

si(x) = φi(x, e) = φ(x, gji(x)e) = φj(x, gji(x)) = φj(x, e)gij = sj(x)gji(x)

(2.2.21)

With these preparations, we can prove the theorem. This requires both proving that

ω exists, and that it is unique. I will give the outlines, and point the reader to [16]

or [53] for more details. First we must prove existence. To do this, one proposes the

definition

ω|Ui = g−1
i π?Aigi + g−1dPgi (2.2.22)

and shows that it satisfies two sets of conditions. First, it must actually satisfy

the condition s?iω|Ui(X) = Ai(X) from the theorem. Second, it must satisfy the

conditions 2.2.2 to actually be a connection one form. The details are straightforward

but not particularly illuminating and are given in the references above.

The second thing we need to check is the uniqueness of this definition. If we have

ω|Ui and ω|Uj then do these definitions agree on the intersection Ui ∩ Uj. Using our

proposed definition for ω we would require.

g−1
i π?Aigi + g−1

i dPgi = g−1
j π?Ajgj + g−1

j dPgj (2.2.23)

On the intersection we have gj = gijgi and sj = sigij. We can therefore start by

calculating

π?Aj = g−1
ij π

?Aigij + g−1
ij dPgij (2.2.24)

Noting that s?iπ? = IdM and that s?i commutes with dP , we can pull this back using

either one of the sections to give

Aj = g−1
ij Aigij + g−1

ij dgij (2.2.25)
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This establishes the equivalence (2.2.23) that we were looking for.

This result

Aj = g−1
ij Aigij + g−1

ij dPgij (2.2.26)

is actually a very interesting one from the point of view of theoretical physics. We

can write it in the form,

A′(x) = g(x)−1A(x)g(x) + g(x)−1dg(x) (2.2.27)

Then this should be very familiar as the expression for the gauge transformation of

the gauge potential from particle physics!

A final interesting consequence of the above theorem is that, if the same information

is contained in the globally defined ω as in the locally defined Ai, this means that

the global information about P is contained in the gauge transformations gij – gauge

freedom plays a vital role in the integrity of the construction.

2.2.4 Field Strength

We now move to talking about the Curvature of the bundle. To do this we define

the curvature 2- form. In physics terms, this is the Field Strength tensor, the object

which actually appears in the Yang Mills action (see below).

The first step is to define an exterior covariant derivative, in terms of the usual

exterior derivative, as

Definition 2.2.4. Dα(X1, ..., Xp+1) = dP (XH
1 , ..., X

H
p+1)

where XH
i ∈ HpP is the horizontal part of Xi, and dPα ≡ (dpαa) ⊗ Ta. Note that

because of the equivalence of the differing notions of connection, this construction is

equivalent to the usual definition of the covariant derivative in terms of Ai, Di(X) =

dX + i[Ai, X].

Now we can define the Curvature 2-form Ω of ω on P as

Definition 2.2.5. Ω = Dω ∈ Λ2P ⊗ g
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We now list, without proof, some properties of this object

Theorem 2.2.3. The following are true:

• DΩ = 0 (Bianchi’s Identity)

• R?
g = Adg−1Ω = g−1Ωg

• Ω = dPω + ω ∧ ω = dP + 1
2 [ω, ω] (Cartan Structure Equations)

Definition 2.2.6. As before, we define the object more familiar from particle physics

as the local pullback using a section si

Fi = s?iΩ ∈ Ω2Ui ⊗ g (2.2.28)

We have the well known formula

Fi =s?i dPω + s?i (ω∧ω) = d(s?i ) + s?iω ∧ s?iω (2.2.29)

=dAi + Ai ∧ Ai (2.2.30)

and, induced by the second of (2.2.3), if two sections are related as s′(x) = s(x)g(x),

F ′(x) = g(x)−1F (x)g(x) (2.2.31)

2.3 Some Algebraic Topology

We continue building up to the definition of an Instanton. First I will briefly overview

homotopy theory. This is essential for geometrically understanding how Instantons

work. I will then show the derivation of the Chern classes via De Rham Cohomology

along with certain results from the Theory of Invariant Polynomials. Finally I will

show how these notions coincide for the cases we are interested in.

2.3.1 Homotopy Theory

Homotopy is a useful topological invariant [33]. We will start by defining homotopies

of based loops, and use these to define the first homotopy group. We will state the
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definition of the higher homotopy groups, then move on to defining the Brouwer

map, or topological degree, which gives equivalent infomation for the spaces we are

interested in. Finally we will look at homotopy groups arising from the specific

examples of U(1) and SU(2) – the latter is the one we are interested in from the

point of view of Instantons.

Definition 2.3.1. Suppose α and β are both based loops onM – i.e. α : [0, 1]→M ,

with α(0) = α(1) = x ∈M . Then we say they are homotopic to one another if there

is a continuous map

H : I × I →M : (s, t)→ H(s, t) (2.3.1)

with the properties

H(s, 0) = α(s); H(s, 1) = β(s), ∀s ∈ I (2.3.2)

and

H(0, t) = H(1, t) = x (2.3.3)

We can show that this is an equivalence relation, and denote the equivalence class

of α as [α]. If we define the product α ◦ β of two loops to be tracing out first α then

β, and α−1 to be tracing out α in reverse order, then we can define a group whose

elements are the homotopy classes [α]. The homotopy classes are neccesary as whilst

α ◦ α−1 is clearly not the same as the constant loop α(t) = x, they are homotopic

to it. With this in mind we have

Definition 2.3.2. The Fundamental group or First Homotopy group, Π1(M,x)

is the group formed by the homotopy classes of loops based at x. If M is path

connected, then this definition is independent of the point chosen, and so we denote

it Π1(M).

We can define higher homotopy groups Πn in an analogous manner, by looking at

maps α : In →M , with the based condition that δM , the boundary of the manifold,
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maps to a single point X. In general calculating these groups is highly non- trivial;

however if the maps we are considering are between spaces of the same dimensions

(which is true in our case), we can get the same information by considering the

Brouwer degree of the map.

Definition 2.3.3. Let M and N be manifolds of dimension n, and let Ω be a

normalised volume form on N , so that
∫
N Ω = 1. Then the Brouwer degree, or

topological degree of a map φ : M → N is defined as

deg(φ) =
∫
M
φ?Ω (2.3.4)

This definition is independent of our choice of volume form Ω, and we can prove

that deg(φ) is both an integer and a topological invariant. To see how this works in

practice, we will look at Π1(U(1)), which arises from considering U(1) bundles over

S2, in the context of Dirac Monopoles [16].

First, note that Π1(U(1)) ∼= Π1(S1), which is therefore composed of maps from a

circle to itself. These are given by

gn,a : t→ exp(i(nt+ a) (2.3.5)

Two maps gn,a, and gn,b are homotopic, but gn,a and gm,a are not. So we need only

consider maps of the form

gn = exp(int) (2.3.6)

Therefore our homotopy classes are [gn], meaning that

Π1(U(1)) ∼= Z (2.3.7)

We call n the winding number of the map. We can take the volume form

Ω = 1
2πig

−1dg, g ∈ U(1) (2.3.8)

which gives

deg(φ) =
∫
M
φ?Ω = 1

2πi

∫
M
gn(t)−1dgn(t)

dt
dt = n (2.3.9)
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The topological degree is the winding number; and as expected it is an integer.

We now move on to the group we will be using throughout this document, Π3
(
SU(2)

)
.

Rather than calculating the group explicitly, we will use the fact that classes in the

group are classified by their Brouwer degree. We can take the following volume form

on SU(2)

Ω = 1
24π2Tr

(
g−1dg ∧ g−1dg ∧ g−1dg

)
(2.3.10)

where

g = c012 + ciτi; c2
0 + c2

i = 1 (2.3.11)

where the τi are the Pauli matrices. If we define g : S3 → SU(2) : x→ g(x) we can

define the topological degree as

∫
S3
g?Ω = 1

24π2

∫
S3

Tr
(
g′−1dg′ ∧ g′−1dg′ ∧ g′−1dg′

)
= n (2.3.12)

Where dg = ∂igdx
i. This tells us that Π3

(
SU(2)

)
= Z.

2.3.2 Chern Classes

Let g be a Lie Algebra and Xi ∈ g; i ∈ 1, ..., n. A Polynomial P (X1, ....Xn) is called

symmetric if

P
(
X1, ..., Xi, ..., Xj, ..., Xn

)
= P

(
X1, ..., Xj, ..., Xi, ..., Xn

)
; ∀i, j (2.3.13)

It is further called a symmetric invariant polynomial if

P
(
g−1X1g, ..., g

−1Xng
)

= P
(
X1, ..., Xn

)
(2.3.14)

where g ∈ G, the Lie group corresponding to g. Finally, we can take the, ‘diagonal’

of a symmetric invariant polynomial by taking all the Xi to be equal. This is simply

called an invariant polynomial (of degree n)

Pn(X) ≡ P (X, ..., X) (2.3.15)
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where it is understood that P has n arguments – this is what is meant by the

polynomial being of degree n.

We will want to extend this definition from polynomials in g to polynomials in

g-valued differential forms. We can write a g valued p-form as

αi = ηiXi (2.3.16)

where no sum over i is implied, ηi is a standard p-form (valued in R) and Xi ∈ g as

before. Then we get an object with analogous properties to the above by defining

an invariant polynomial of g-forms as

P (α1, ..., αn) = P (X1, ..., Xn)η1 ∧ ... ∧ ηn (2.3.17)

We can then define an Invariant polynomial of degree n analogously as

Pn(αn) ≡ P (αn) = P (Xn)η ∧ ... ∧ η (2.3.18)

We will be interested in polynomials in F , the field strength 2-form. These have the

following important properties. A proof can be found in [16].

Theorem 2.3.1. Let Pn(F ) be a an Invariant Polynomial in the Field Strength F .

Then:

• Pn(F ) is closed; i.e. dPn(F ) = 0

• If F and F ′ are two curvature 2-forms corresponding to different connections

on the same bundle, then the difference Pn(F )−Pn(F ′) is exact, i.e. Pn(F )−

Pn(F ′) = dQ2n−1(A′, A), for some dQ, where A′ and A are the connection one-

forms corresponding to F ′, F .

• Given A and A′ as above, we can define a homotopy between them, At =

A+ tθ; θ = A′ − A. This induces a field strength homotopy

Ft = dAt + At ∧ At = F + tDθ + t2θ ∧ θ (2.3.19)
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In terms of these, we can find an explicit expression for Q

Q2n−1(A,A′) = n
∫ 1

0
dt P

(
A′ − A,F n−1

t

)
(2.3.20)

The third condition allows us to define the Chern-Simons Form. Suppose we are

working on one of the patches Ui of the bundle. Then we can always define a trivial

connection A′. Using the third part of the above theorem we can define the Chern-

Simons form as

Q2n−1(A) ≡ Q2n−1(A, 0) = n
∫ 1

0
dt P

(
A,F n−1

t

)
(2.3.21)

where

At = tA, Ft = tdA+ t2A ∧ A = tF + (t2 − t)A ∧ A (2.3.22)

Given a one- form connection we can always construct an associated Chern- Simons

Form using (2.3.21).

Invariant Polynomials are closed and non- trivial, therefore they represent a non-

trivial de Rham cohomology class
[
Pn(F )

]
∈ H2n(M,R). We call this the charac-

teristic class. Since the difference of two polynomials from two connections is exact,

this does not depend upon the choice of connection.

Definition 2.3.4. The Total Chern class of a principle bundle P with G a lie group

is

det
(

1 + i

2πF
)

(2.3.23)

where F is the field strength defined above. This is an invariant polynomial in F .

Definition 2.3.5. Since F is a two form, c(F ) is a sum of forms of degree 2n

c(F ) = 1 + c1(F ) + c2(F ) + ... (2.3.24)

We call cn(F ) ∈ Λ2nM the nth Chern class

It is important to note that chern classes of higher dimension than the base space

M vanish – i.e. if M has dimension m then cn = 0 ∀ 2n > m.
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In order to calculate this, it is usual to use a gauge transformation – in mathematical

terms a choice of section – to diagonalise F to a matrix with 2-forms xi on the

diagonal. Then

det(1 + F̃ ) = det
[
diag(1 + x1, ..., 1 + xk)

]
=

k∏
i=1

(1 + xi) (2.3.25)

=1 + (x1 + ...+ xk) + (x1x2 + ...+ xk−1xk) + ...+ (x1x2...xk)

=1 + TrF̃ + 1
2

[
(TrF̃ )2 − TrF̃ 2

]
+ ...+ detF̃

where F̃ = i
2πF . From this we can read off

c1 = TrF̃ = i

2πTrF (2.3.26)

c2 = 1
2

[
(TrF̃ )2 − TrF̃ 2

]
= 1

8π2

[
Tr(F ∧ F )− TrF ∧ TrF

]
(2.3.27)

...

ck = detF̃ =
(
i

2π

)k
detF (2.3.28)

We can use the fact that the Chern classes are independent of the connection to

define

Definition 2.3.6. The Chern numbers are defined by

cn ≡
(
[cn(F )],M

)
=
∫
M
cn(F ) (2.3.29)

It can be shown that on a complex manifold, these are always integers [16]

We can further define

Definition 2.3.7. For a Lie group G, the Total Chern Character is defined as

ch(F ) = Tr exp
(
i

2πF
)

=
∑
n

1
n!Tr

(
i

2πF
)n

(2.3.30)

Analagous to the case of the Chern classes, we can define

Definition 2.3.8. The Chern characters are defined as

chn(F ) = 1
n!Tr

(
i

2πF
)n

(2.3.31)
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We can relate them to the Chern classes as

ch0(F ) =k (2.3.32)

ch1(F ) =c1(F ) (2.3.33)

ch2(F ) =− c2(F ) + 1
2c1(F ) ∧ c1(F ) (2.3.34)

We now move on to some examples. Once more, we will start by looking at U(1) as

a test case, before moving to the SU(2) instantons we are interested in in the rest

of the thesis.

2.3.3 Examples

For a U(1) bundle over a two dimensional manifold, the only nonzero Chern class is

c1(F ). Locally, F = dA and so we have

c1(F ) = d
(
i

2πA
)

(2.3.35)

This implies that

Q1(A) = i

2πA (2.3.36)

Alternatively we could have calculated

Q1(A) =
∫ 1

0
dtP (A) =

∫ 1

0
dtc1(A) =

∫ 1

0
dt

i

2πA = i

2πA (2.3.37)

Now we move on to look at SU(2). Because, for SU(2), the trace vanishes, c1(F ) = 0.

This means that ch2(F ) = −c2(F ), so it is usual to use, ‘Chern class’ to refer to

both.

Instantons are usually defined in 4 dimensional Euclidean Space. We are interested

in solutions with finite Action. For this to be the case, we need the solution to

become pure gauge at infinity, which means

A|S3
∞ = g−1dg → F |S3

∞ = 0 (2.3.38)
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Where S3
∞ is the 3-sphere at infinity in R4. Therefore these solutions are classified

by maps g : S3
∞ → SU(2). We saw the topological degree of this map in (2.3.12).

We now show that this is linked to the Chern classes of this set- up.

As stated above c1 = 0, and so we need only look at c2. To calculate this, we use

the fact that c2(F ) = dQ3(A). This can be calculated from the definition (2.3.21) as

Q3 =3
∫ 1

0
dtP (A,Ft) = 1

4π2

∫ 1

0
dtTr(A ∧ Ft)

= 1
4π2

∫ 1

0
dtTr(tA ∧ dA+ t2A ∧ A ∧ A)

= 1
8π2Tr

(
A ∧ dA+ 2

3A ∧ A ∧ A
)

(2.3.39)

Incidentally, this is the well known Chern Simons form. We can now use this to

calculate c2 via

c2 =
∫
S4
c2(F ) =

∫
S3
∞

Q3(A) = 1
8π2

∫
S3
∞

Tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)

= 1
8π2

∫
S3
∞

Tr
(
F ∧ A− 1

3A ∧ A ∧ A
)

= − 1
24π2

∫
S3
∞

Tr
(
A ∧ A ∧ A

)
= − 1

24π2

∫
S3
∞

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
(2.3.40)

Up to a sign this is identical to the topological degree of the map, linking the

homotopy with the Chern classes. It is often convenient to add a point at infinity

to R4 – though in fact to do this consistently we need to define instantons via the

bundle construction. In this case, we have two open sets covering the sphere; the

north and south hemispheres, UN and US. On these sets we have

FN = dAN + AN ∧ AN , F S = dAS + AS ∧ AS (2.3.41)

where

AN = g−1ASg + g−1dg; which implies FN = g−1F Sg (2.3.42)

as we would expect for the transformations of these objects. Here the computation

of c2 splits into a sum of contributions for each Ui, but we eventually get

c2 = 1
24π2

∫
S3
∞

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
(2.3.43)
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This is precisely the degree of the map g, which is always an integer k. Therefore

the classification in terms of c2 is equivalent to the homotopy group Π3(SU(2)). The

reason we need to see both these formulations is that the Lagragian of the relevant

gauge theory is based around c2, but the geometric interpretation of instantons in

terms of transition functions between UN and US is a much easier thing to visualise.

We now have all the machinery we need to define instantons, which we will do in

the next chapter.



Chapter 3

Instantons

In this chapter we define what instantons are, and discuss their construction via

the ADHM method. Many of the instantons we discuss in this thesis are defined

over noncommutative space, so we must first introduce this concept. We also look

at the notation I will be using to describe the quaternions, and introduce their

complexification, the biquaterions.

3.1 Instantons

We can now finally define what an instanton is. Let F be the field strength of an

SU(2) bundle over R4. Writing F = 1
2Fij dx

i ∧ dxj, with the further understanding

that Fij = F a
ijTa, we have the following Yang Mills Lagrangian:

SYM = 1
4d

4xF a
ijF

ij
a = −1

2

∫
d4xTr

(
FijF

ij
)

= −
∫
d4xTr

(
F ∧ ?F

)
(3.1.1)

Here ?F is the Hodge dual of F , which is defined in flat space as

? Fij = 1
2εijklF

kl (3.1.2)

Noting that we can write

1
4

∫
(F a

ij ± ?F a
ij)(F ij

a ± ?F ij
a ) =−

∫
Tr
(
F ± ?F

)
∧ ?

(
F ± ?F

)
(3.1.3)
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=− 2
∫

Tr
(
F ∧ ?F

)
∓ 2

∫
Tr
(
F ∧ F

)

We can get a lower bound on the action as

SYM = −1
2

∫
Tr
(
F ± ?F

)
∧ ?

(
F ± ?F

)
±
∫

Tr
(
F ∧ F

)
≥ 8π2|k|2 (3.1.4)

where in this context, we call k the Instanton number and define it as

k = −c2(F ) = ch2(F ) (3.1.5)

We can see that this in achieved when F = ± ? F . We call such solutions selfdual

(SD) and anti selfdual (ASD) instantons respectively. In this thesis, we will be

calculating anti selfdual instantons, which correspond to positive k. Since instantons

are minima of the action, they are a solution of the equations of motion. This is

a specific example of a Bogomolny bound. These are named for the paper [8] for

Monopoles, but actually were first shown for instantons in [6]. Bogomolny bounds

are arguments, like the one above, which involve showing (usually by some kind of

completing the square) that the energy of a system is bounded from below. This can

also be understood in supersymmetric terms [60]. Supersymmetry considerations

imply that the Hamiltonian H acting on the supersymmetric vacuum |0〉 must be

zero, however it is sometimes possible to add an integer to the Hamiltonian to get

the equation. This integer comes from the central charge of the supersymmetric

algebra, and is a topological invariant.

(
H± Z

)
|0〉 = 0 (3.1.6)

This then allows solutions where H = ∓Z. Such solutions are called BPS states.

Instantons are a particular example of these states, where the central charge Z is

the Instanton number k. They break some amount of the supersymmetries of the

underlying theory. In particular, pure instantons break half, and so are known

as 1
2 -BPS states, whereas dyonic instanons break another half, preserving only a

quarter of the original supersymmetries, and so are known as 1
4 -BPS states. The
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final thing to consider is Derrick’s Theorem [20]. This is a non – existence theory

which gives a straightforward condition to check if solitons exist in a particular

theory [52]. Derrick’s theorem is valid for finite energy solutions in flat space. The

general idea is that a soliton solution, being a local minima of the energy, must be

invariant under any variation of the energy – this includes spatial rescalings. If there

are no fixed points of the transformation of the energy under spatial rescaling, then

there can be no stationary points of the energy as a whole, and therefore no solitions.

More specifically, if x ∈ Rd, then a spatial rescaling is a map x→ µx, were µ ∈ R>0.

The energy of the system will be a function of the fields in the system, E(ψi). Under

the spatial rescaling, there will be a one parameter family of these fields under that

rescaling. We label these Ψ(µ)
i . We can define the variation of the energy under these

rescalings as

e(µ) = E(ψ(µ)) (3.1.7)

Derrick’s theorem then states

Theorem 3.1.1. If, for a set of finite energy fields Ψi(x), the function e(µ) has no

stationary point (excluding the vacuum), then the theory has no static, finite energy

solutions (other than the vacuum)

It is necessary to explain what is meant by a static field. We can always make a

gauge choice so that A0 = 0. In this case, static means that there is no electric field

Fi0. Now, applied to Yang Mills theory in d + 1 dimensions (where d ≥ 4 ), the

general form of the energy functional will be

E =
∫ (
|F |2 + |DΦ|2 + U(φ)

)
ddx ≡ E4 + E2 + E0 (3.1.8)

Where φ is a scalar field, and U is a gauge potential. Looking at the mass dimensions

of the constituent parts under the rescaling we get

e(µ) = µ4−dE4 + µ2−dE2 + µ−dE0 (3.1.9)
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If d = 4, then this becomes

E4 + 1
µ2E2 + 1

µ4E0 (3.1.10)

This has no stationary point apart from the vacuum E4 = E2 = E0 = 0, and

therefore there are no static solutions in 4d Yang Mills with a scalar field. However

in pure Yang Mills, we only have e(µ) = E4. This is completely independent of the

scale, and therefore solitionic solutions are possible – i.e. Instantons as described

above. This limits Instantons to appear in pure Yang Mills in 4d, however the

presence of an additional length scale in noncommutative theories means that they

are not defined in flat Euclidean space, and therefore they are not subject to these

constraints.

In dimensions greater than 4 we can find a solution as follows. First, we multiply

both sides by µ4 to get

µ4E4 + µ2E2 + E0 = 0 (3.1.11)

This is a quadratic equation in µ2, and so we can solve for it as

µ2 =
−(2− d)E2 ±

√
(2− d)2E2

2 − 4(4− d)E4E0

2(4− d) (3.1.12)

Therefore we can have Solitonic solutions in Yang Mills with d ≥ 5

3.2 Noncommutativity

It is convenient to introduce the study of noncommutative spacetimes into the study

of Instantons. It is convenient because it allows us to resolve singularities on the

Instanton moduli space (see the next chapter). It was first show in [54] that this

was possible, and since then many examples have been constructed (see [12] for a

selection).

To construct a noncommutative version of R4, we simply impose an anti- commuta-

tion relation on the spacetime coordinates

[
xn, xm

]
= θmn (3.2.1)
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Here m,n are the Euclidean Lorentz indicies, and θmn is a real, antisymmetric,

constant matrix. We can always rotate it into the form

θmn =



0 θ12 0 0

−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0


(3.2.2)

There are several interesting subcases of this matrix [12]; but for the purposes of this

Thesis, I will consider the so called selfdual (SD) case, where θ12 = θ34 = 2ζ. This

does not involve any loss of generality however. This is becuase when one follows the

ADHM construction of Instantons (see section 3.3) however it turns out both that

anti selfdual (ASD) instantons on anti selfdual noncommutative R4 are equivalent to

commutative instantons (as are selfdual instantons on selfdual spacetime) and that

ASD instantons on SD spacetime are equivalent to SD instantons on ASD spacetime.

It turns out the noncommutativity of the spacetime coordinates forces us to modify

our notion of the multiplication of functions. Rather than the usual multiplication,

we use the Moyal Star Product. This was developed in 1947, long before the idea of

noncommutative spacetimes were thought up, to give a well defined notion of phase

space measure for noncommuting positions and momenta [49]. This is defined as

f(x) ? g(x) = exp
(
i

2θ
ij∂i∂

′
j

)
f(x)g(x′)|x=x′ (3.2.3)

This gives the following expansion on powers of θij

f(x) ? g(x) = f(x)g(x) + i

2θ
ij∂if(x)∂jg(x) +O(θ2) (3.2.4)

This becomes important when calculating the gauge potential and field strength to

be

Ai → g−1 ? Ai ? g + g−1 ? ∂ig (3.2.5)

This modifies the definition of the Field Strength to be

Fij = ∂[iAj] − i
[
Ai, Aj

]
?

(3.2.6)



36 Chapter 3. Instantons

Where [
Ai, Aj

]
?

= Ai ? Aj − Aj ? Ai (3.2.7)

as one might expect. This has two effects on our Instanton solutions. First of all,

it allows us to find solutions with no commutative equivalent, since the additional

length scale [ζ] = [length]2 and the fact we are not in Euclidean flat space means

Derrick’s theorem does not apply.

Secondly, and less positively, in theory it implies we have an infinite number of

terms to calculate. However we can avoid this thanks to an isomorphism between

the algebra of functions with the ?- product, and certain operators over Hilbert

space. This is more fully discussed in [25], however I will give a brief overview of

the argument here.

For simplicity, following [37] we consider the case where only x1 and x2 have a

nonzero commutation relation. Given a function f(x1, x2) defined on these variables,

we have an associated operator on the Hilbert Space of x̂1, x̂2, where these are the

quantised variables associated with x1 and x2. This operator is given by

Ôf (x̂1, x̂2) = 1
4π2

∫
d2α exp

(
− i(α1x̂1 + α2x̂2)

)
f̃(α1, α2) (3.2.8)

Where f̃(α1, α2) is the Fourier transform of f(x1, x2). Given two such functions, f, g,

changing variables, and using the Baker- Campbell- Hausdorff formula, we can now

calculate

ÔfÔg = 1
4π2

∫
d2γ exp

(
− i(γ1x̂1 + γ2x̂2)

)
f̃ ? g(α1, α2) (3.2.9)

This shows the algebra of functions on noncommutative space spanned by (x1, x2) is

isomorphic to the algebra of operators on the Hilbert space spanned by x̂1 and x̂2.

3.2.1 Quaternions and Biquaternions

There is one final ingredient we must look at before moving on to defining the ADHM

construction. This construction turns out to be describable in terms of either the

Quaternions, or their complexification, the biquaterions, and therefore I discuss these
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groups and the conventions which I am using here.

The group C×H, known as Complex Quaternions, Biquaternions and even Tessarions

has a long history [35]. To avoid confusion I will refer to the group as Biquaternions

in the rest of the thesis. As discussed in [51], the algebra is equipped with three

notions of conjugation. We write a general element of the group as

q = qR + iqI = qR0 + qR + i(qI0 + iqI) (3.2.10)

Where qR, qI ∈ H, and correspondingly qR0, qI0 ∈ R and qR,qI ∈ SU(2) considered

as the quaternion imaginary part of H. Then we have a Complex conjugation q?,

which takes

qR + iqI → qR − iqI (3.2.11)

We also have a quaternion conjugation q̄

qR + iqI → q†R + (iqI)† → q̄R + iq̄I = qR0 − qR + i(qi0 − qI) (3.2.12)

Finally we have a total conjugation q† which applies both these operations simultan-

eously

qR + iqI → q̄R − iq̄I = qR0 − qR − i(qi0 − qI) (3.2.13)

This group has several very interesting properties, which are sadly beyond the scope

of this thesis. First of all, they are isomorphic to Cl(3) [51], which itself is a repres-

entation of the Dirac algebra [26]. Second, we can describe Lorentz Transformations

in terms of the actions of biquaternions on themselves (these facts seem to be re-

discovered every few decades. A particularly interesting comparison can be drawn

between [42] and the line of thought reviewed in [34], which both use biquaternions

to rederive Dirac Theory, independently and via different methods). Finally, it has

been shown in [24] that the biquaternions contain all the representations of the

Lorentz group in the form of algebraic ideals.

These are indications that the Biquaterions have a more fundamental role in physics

than is usually recognised. Another arguement for this is provided in [9]. In this
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book, Bohm argues that the most appropiate mathematical object to describe reality

is the Algebra. This is because Algebras have both a notion of the action of one part

of reality on another, via their multiplication, and a notion of relative proportion,

via their addition. Bohm additionally argues that we should not want nilpotent

elements in the algebra we choose, since interactions corresponding to these elements

would not be observable on a macro level. Such algebras are called division algebras,

and over the real numbers, the only such algebras are R, C, and H, whereas over C

the only division algebra is C itself. So the group C× H ∼= C× CC is a very natural

object under this line of reasoning.

We conclude this section with some comments on notation. We use the basis σn for

the quaternions, with σn = (12, iτi), where the τi are the standard Pauli matrics.

We also define σ̄n = (12,−iτi). Further, we define the selfdual object

σmn = 1
4

(
σmσ̄n − σnσ̄m

)
(3.2.14)

and the anti- selfdual

σ̄mn = 1
4

(
σ̄mσn − σ̄nσm

)
(3.2.15)

With these definitions, we have

σ0 =

1 0

0 1

 , σ1 =

0 −1

1 0

 σ2 =

0 i

i 0

 σ3 =

i 0

0 −i

 (3.2.16)

Finally, the fact that the biquaternions have multiple notions of conjugation means

that there are multiple notions of the imaginary part. I will use ImH to denote the

quaternion imaginary part, defined for q = q0 + q ∈ H, with q0 ∈ R and q ∈ SU(2)

as

ImH(q) = q (3.2.17)

We also have the complex imaginary part, defined for z ∈ C, z = x+ iy as

ImC(z) = y (3.2.18)
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Note that ImC doesn’t include the factor i which we must add in by hand where it is

required- this is done to match with the usual definition of Im in the complex case,

however it does mean some care has to be taken when restricting from H to C, as i

then corresponds to the imaginary quaternion basis vector, which is included in ImH

but not in ImC.

In the case of a biquaternion q = qR + iqI we have

ImC(q) = qI ; ImH(q) = qR + iqI (3.2.19)

where qR and qI are the quaternion imaginary parts of qR and qI respectively. We

similarly define ReH and ReC.

3.3 ADHM

To actually calculate an Instanton solution, we can use the ADHM construction.

This was first devloped in [2] following a suggestion in [46]. There is a strong link

between the ADHM construction and Twistors, and this is dicussed in [59]. The

Twistor implications of noncommutative instantons are discussed in [39]. Another

mathematical motivation comes via the topic of Hyper- Kahler quotients, and this

is the approach taken by [22]. These treatments are beyond the scope of this thesis.

Instead I will first of all give a simple outline of the ADHM construction. I will

then go into more detail, presenting the ADHM solution as an Ansatz for the self

dual field strength, and showing how this motivates the construction, following

the presentation in [21]. I will finish by explaining in detail how to carry out the

construction in both the commutative and noncommutative cases, following [12].

The main ingredient in the ADHM construction is the ADHM Data ∆. This is an

(N + 2k) × 2k matrix, where N is the degree of the gauge group SU(N) or U(N),

and k is the Instanton number, or topological degree. In the commutative case the

entries are usually taken to be real, whereas in the noncommutative case they are

taken as being complex. However, as I will show we can take them to be complex
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in the commutative case too, and use the additional symmetry this gives to recover

the usual real solution. Therefore I will treat the entries as being complex in the

remainder of this thesis unless otherwise stated. With this in mind, we have

∆ =

Λ

Ω

 (3.3.1)

where Λ is an N × 2k complex matrix and Ω is a 2k × 2k complex matrix. It is

often useful for the purpose of performing calculations to treat these as being instead

biquaternion-valued matrices (or quaternion-valued, for real matrices). The matrix

Ω can always be treated as a k × k matrix of biquaterions. Λ is a bit tricker. For

some values of N and k there is a straightforward identification – for example, for

the U(2) instatons we will be considering in this Thesis, we can always write Λ as

a row of N quaternions. In general this might not be so obvious, however we will

always end up considering ∆†∆ in any practical calculation, and as we shall see

below, this can always be written in quaternion form. The reason we consider this

is that the commutative ADHM method involves solving the equation

∆†∆ = 12 ⊗ f−1 (3.3.2)

where f is an invertible k × k matrix, and we can think of 12 as the quaternion

identity. This also means we can look at the ADHM equation above as

ImH

(
∆†∆

)
ij

= 0 (3.3.3)

where ImH takes the quaternion imaginary part. In terms of Λ and Ω, the matrix

∆†∆ will look like

∆†∆ = Λ†Λ + Ω†Ω (3.3.4)

This is always a 2k × 2k complex valued matrix, so we can always think of it as a

k × k biquaternion matrix.

To calculate instantons over noncommutative space, we again use (3.3.2); however

the presence of the noncommutativity must be taken into account. Here I give the
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form we will be using in the rest of the paper, where the nonzero elements of θmn

are all chosen to be 2ζ. I will discuss the case of a more general θmn in a later

section. I will sketch the derivation of the noncommutative ADHM equation here,

and comment upon it more fully in the more detailed derivation in section 3.3.2.

To start with, we can always write the matrix ∆ as a+bx, where a and b are matrices

of the same dimension as ∆ and x are the space-time coordinates. This means that

the matrix ∆†∆ can be written as

a†a+ x(b+ b†) + x2b†b (3.3.5)

The linear part can be shown to be proportional to the identity and hence can be

neglected. In the commutative case this is also true for the quadratic part. However

in the noncommutative case there is an ambiguity in the definition of x2 because

the spacetime coordinates do not commute. This turns out to mean that this term

contributes a factor of 4iζσ3 to each of the diagonal components of ∆†∆. This means

we must modify the ADHM equation (3.3.2) to be

(∆†∆)ij = 12 ⊗ f−1
ij − 4ζσ3δij (3.3.6)

Once we have solved equation (3.3.2),or its noncommutative analogue, we can use it

to calculate the gauge potential and field strength in the following way.

We need to find zero eigenvectors U of ∆†, normalised so that U †U = 1, satisfying

U †∆ = ∆†U † = 0 (3.3.7)

This implies that U has dimension N + 2k as a complex vector. Once we have this

U we can use it to define the gauge potential as

Aµ = U †δµU (3.3.8)

and the field strength as

Fµν = −4U †bfσmnb†U (3.3.9)
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where b is a (N + 2k) × 2k matrix whose top N × 2k part is 0 and whose bottom

2k × 2k part is the identity, and σµν is as given in (3.2.15). This procedure works

for both the commutative and the noncommutative cases. We might worry whether

the presence of the Moyal product (see section 3.2) might make the above procedure

invalid for the noncommuative case, since the Field Strength is defined in terms

of the Moyal product rather than the usual wedge product (see equation (3.2.6)).

However, in that section we argued that the algebra of functions on noncommutative

space (including Aµ and Fµν) was isomorphic to the algebra of operators on the

Hilbert Space generated by the noncommutative position operations x̂i. If we think

of A and F as operators on this space in the non commutative case then, provided

there are no terms in [x̂i, x̂j] appearing, they will have the same structure as in the

commutative case , where we have the commutative versions of the operators A

and F on the Hilbert Space spanned by the commutative position operators. As

mentioned, the only changes would be if we had terms in [x̂i, x̂j] appearing in the

definition of A or F . However, it will be seen in the more detailed derivation that

we do not, and therefore can use the same definitions.

3.3.1 Motivating the Constuction

Now we have the outline of the construction, it makes sense to try and give an idea

where it comes from. To do this we will follow the presentation given in [21], to

motivate it as an ansatz. As in that paper, we will not consider the general U(N)

case, but will look at the SU(2) case where the motivation for the construction is

easier to see. After doing this, we will derive the construction rigorously using a

general U(N) gauge group.

In this section, the the index n refers to the spacetime coordinate (which can also be

thought of as labelling the SO(3,1) representation), whilst the indices α, β and α̇, β̇

are the usual dotted and undotted indices for representations of SU(2) or U(2). The

index corresponding to the instanton number k is given by the roman letters i, j, k or

l . The greek index λ or κ indicates the, ’ADHM index’, which goes in general from
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which here goes from 0 to k. This notation is possible because, as discussed above,

for N = 2, we can write all the tensors involved as quaternion valued matrices. This

is not possible for general U(N), so we will have to modify our notation for that

case; however initially looking at the U(2) case makes the principles involved much

clearer.

We start with a zero instanton solution of Yang Mills theory, which is pure gauge

by definition

Aα̇nβ̇ = Ū α̇α∂nUαβ̇; Ū α̇αUαβ̇ = δα̇β̇ (3.3.10)

In the usual commutative presentation, U ∈ SU(n) – we can take U ∈ U(n), however

the additional U(1) turns out to decouple. In the noncommutative case, however,

we must consider the U(n) case, since SU(n) is not closed under the Moyal product

[32].

The motivation for the ADHM construction comes from spotting that the single

instanton solution also has the very similar form

Aα̇nβ̇ = Ū α̇α
λ ∂nUλαβ̇; Ū α̇α

λ Uλαβ̇ = δα̇β̇ (3.3.11)

where λ is summed over 0 and 1, and, for the gauge choice called, ‘singular gauge’

(because it leads to a coordinate singularity at the centre of the Instanton [63])

U0αβ̇ =
√

x2

x2 + ρ2 · σ0αβ̇, U1αβ̇ = − ρ

x2

√
x2

x2 + ρ2xαα̇ū
α̇βσ0ββ̇ (3.3.12)

It is natural therefore to assume an ansatz for the n instanton solution to be

Aα̇nβ̇ = Ū α̇α
λ ∂nUλαβ̇; Ū α̇α

λ Uλαβ̇ = δα̇β̇ (3.3.13)

where λ is now summed from 0 to n. In this notation, the Field strength is defined

as

F α̇
mn β̇ ≡ ∂[mA

α̇
n] β̇ + A α̇

[m β̇A
γ̇

n] β̇ = ∂[mŪ
α̇α
λ

(
δλκδ

β
α − P

β
λκα

)
∂n]Uκββ̇ (3.3.14)

with

P β
λκα = Uλαα̇Ū

α̇β
κ (3.3.15)
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with this definition, P (and therefore 1− P) is a projection operator, and satisfies

0 = (1− P)U = Ū(1− P), P = P̄ (3.3.16)

The second part of the ADHM ansatz is to assume that we can factorize

1− P ≡ δλκδ
β

α − P
β

λκα = ∆λlαα̇f
α̇

lk β̇ ∆̄β̇β
kκ (3.3.17)

For some matrices ∆ and f , this second condition is called the, ’Completeness

relation’. It is trivial in the commutative case, however there are some complications

in the noncommutative case. The issue is that, wheras the normalisation of U(x)

is trivial in the commutative case, there is an ambiguity in the case where x is

itself an operator. We must therefore be careful to pick a good definition for this

normalisation. These issues were first discussed in [12]. They begin with the fact

that in the noncommutative case, 1 − P ≡ P ′ = δfδ†, a Hermitian projection

operator, is a [N + 2k] × [N + 2k] dimensional matrix of operators on some Foch

space H – that is

P ′ : HN+2k → P ′HN+2k ⊂ HN+2k (3.3.18)

They then consider the eigenvalues of this operator. Because it is a projection

operator, its eigenvalues are either 0 or 1. Following [12], we denote the zero-mode

eigenstates by |ψp〉 and the non zero-mode eigenstates as |φ〉r. This means we have

P ′ |ψp〉 , |ψp〉 ∈ HN+2k, 〈ψp|ψq〉 = δpq (3.3.19)

and

P ′ |φp〉 , |φp〉 ∈ HN+2k, 〈φp|φq〉 = δpq (3.3.20)

The set of the eigenstates of a Hermitian operator is automatically complete – i.e.

we have

1[N+2k]×[N+2k] =
∑
p

|ψp〉 〈ψp|+
∑
r

|φp〉 〈φp| (3.3.21)
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Since the eigenvalues associated to the |φr〉 are all 1 we have

∑
p

|ψp〉 〈ψp|+ ∆[N+2k]×[k]×[2]f[k]×[k]∆[2]×[k]×[N+2k] = 1[N+2k]×[N+2k] (3.3.22)

Therefore the ADHM completeness relation (3.3.17) will hold iff

∑
p

|ψp〉 〈ψp| = UU † (3.3.23)

This requires {
|ψp〉

}
=
{
U[N+2k]×[N ] |s[N ]〉

}
(3.3.24)

where the |su〉 are some arbitrary normalised states in H

This condition is not automatic, however. Any state of the form U |s〉 is automatically

a zero mode eigenstate of P ′, however in general it is not true that all zero mode

eigenstates have this form. In fact, we must carefully determine the precise form

of U in each case that will make the completeness relation true. This is rather non

trivial, however as it only affects the value of U , and not the validity of the remainder

of the solution, it is only necessary if one is constructing an explicit expression for

the gauge potential, which we are not. The only point we use U is in section 4.4,

and here we take it in a limit in which any noncommutative effects (which must be

proportional to ζ) are automatically neglected. Having taken note of this, we also

solve the conditions in (3.3.16) by assuming

0 = ∆̄β̇β
kκUκβα̇ = Ū β̇α

λ ∆λlαα̇, f̄ = f (3.3.25)

In terms of these new variables, and following an integration by parts, the field

strength becomes

F α̇
mn β̇ = Ūαα̇

λ ∂[m∆λlαγ̇f
γ̇

lk δ̇
∂n]∆̄δ̇β̇

kκUκββ̇ (3.3.26)

Now we can see from this that if ∂∆ is proportional to σm, and if σm commutes with

f , then the RHS of (3.3.26) is proportional to σmn, and therefore is automatically

self- dual, just as we want. Therefore we have the third and final part of the ADHM



46 Chapter 3. Instantons

ansatz, which assumes first that ∆ is linear in x

∆λlαα̇ = aλlαα̇ + b β
λlα xβα̇ (3.3.27)

where a and b are constant complex- quaternion valued matrices. Second, we assume

f α̇
lk β̇ = flkδ

α̇
β̇ (3.3.28)

This gives us the following self- dual expression for the field strength

F α̇
mn β̇ = 4Ū α̇α

λ b β
λlα σ γ

mnβ flkb̄
δ

kκγ Uκδβ̇ (3.3.29)

Comparing the dimensions of the null spaces of UŪ and 1−∆f∆̄, we find that ∆,

and hence a and b, are matrixes of dimension (N + 2k) × 2k as complex matrices.

If N is divisible by two, then we can think of these as are matrices of dimension

(N/2 + k)× k biquaternion matrices. However even if N is not divisible by two, the

matrix ∆†∆ is always a 2k × 2k complex matrix, and so can always be thought of

as a k × k biquaternion matrix. This will be important in the next section. Having

determined the form of the Ansatz, we must now look to solving it.

3.3.2 Solving the ADHM equations

In this section I will give the details of the method to solve the ADHM equations.

In this section I shall largely follow [12]. Here we move from the specific case of U(2)

instantons in the previous paper, to general U(N) instantons – this requires a slight

change in notation. Following [12], our indices are given by

Instanton number indices i, j 1 ≤ i, j ≤ k

Colour Indices u, v 1 ≤ u, v,≤ N

ADHM indices λ, µ 1 ≤ λ, µ ≤ N + 2k

Weyl/ Quaterionic indices α, β, α̇, β̇ = 1, 2

Lorentz indices m,n,= 0, 1, 2, 3
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In the commutative case the three parts of the Ansatz considered above are equivalent

to solving the equation. In the noncommutative case, as discussed above, there are

subtleties with the completeness relation. Checking the completeness relation is

rather non- trivial, so I will assume that the completeness relation holds in what

follows.

∆̄β̇λ
i ∆λjα̇ = δβ̇α̇(f−1)ij (3.3.30)

Essentially this constraint means that the part of ∆†∆ proportional to the identity

is allowed to be arbitrary – the constraints only affect the imaginary quaternion

parts, which end up forced to be zero in the commutative case, and proportional to

some noncommutative deformation otherwise.

The matrix ∆ has dimension (N + 2k)×2k, where N is the order of the gauge group

U(N), and k is the instanton number. We assume it has the form a + bx, for the

spacetime parameter x, with a and b matrices of the same dimensions as ∆. We can

see (following [21]) that we can multiply ∆ on the right by a unitary matrix without

changing the value of ∆†∆, and hence without changing the solutions to the ADHM

equation (3.3.2). This corresponds to the transformation

∆λjα̇ 7→ Λλκ∆κjα̇, f 7→ f, Uλj 7→ Λλκ
αUκj, Λ−1Λ = 1

Since the matrix f is arbitrary, we can conjugate both sides of the equation by

an arbitrary matrix in GL(k) to get a physically equivalent set of solutions. This

corresponds to the transformation

∆λjα̇ 7→ ∆λkα̇Υkl, f 7→ Υ−1 · f · (Υ−1)†, U 7→ U

There is also an SU(N) gauge transformation we can apply to the vector U , but

this will be dealt with at a later stage in the proceedings. At this stage we use the

above transformations to put a and b into the following canonical forms:

a =

vN×2k

Ω2k×2k

 b =

0N×2k

12k×2k
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where the subscripts are dimensions of the submatrices over the real numbers. Using

the indices given above in (3.3.2), we write this as

∆λjα̇ = aλjα̇ + bαλjx̄αα̇ (3.3.31)

Where x̄αα̇ = xnσ̄
n
α̇α. We can see how much of the symmetries represented by Υ and

Λ are left by looking at which matrices preserve the canonical forms of a and b given

above. Noting that we apply both these transformations simultaneously, as

→ Λλκβ
α∆κkαβ̇Υkl (3.3.32)

it isn’t too hard to see that preserving the form of b requires that this transformation

takes the following form  q
−→0

−→0 RT

 ·∆ ·R (3.3.33)

Here, R belongs to SU(k) if we allow complex parameters, or SO(k) if we restrict

to real ones. The element q belongs to U(1) and so the whole thing represents an

action of U(k) on the matrix ∆. This fits with derivations from string theory (see

[63] and [39]). Defining

Q ≡

 q
−→0

−→0 RT

 (3.3.34)

and looking at the total transformations given above, we can see that the residual

symmetry we need to mod out is given by

∆ 7→

 q
−→0

−→0 RT

 ·∆ ·R, f 7→ RT · f ·R, U 7→ RU

Following [12] once more, we can further decompose a+ bx as

aλjα̇ = a(u+iα)jα̇ =

 ωujα̇

(a′αα̇)ji

 (3.3.35)

āλα̇j = ā
(u+iα)α̇
j =

[
ω̄α̇uj (ā′αα̇)ji

]
(3.3.36)
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bβλj = bβ(u+iα)j =

 0

δβαδij

 (3.3.37)

b̄λβj = b̄u+iα
βj =

[
0 δαβ δij

]
(3.3.38)

Using these we can write ∆̄∆ = δβ̇α̇(f−1)ij as

āβ̇λi aλjα̇ + xβ̇β b̄λβiaλjα̇ + āβ̇λi b
α
λjx̄αα̇ + xβ̇β b̄λβib

α
λjx̄αα̇ (3.3.39)

We can now solve the constraints. To do this, we split this expression into three

parts, the first term not containing x, the next two terms linear in x and the third

term quadratic in x.

With the first term, following [12] we simply write this as

(āβ̇aα̇)ij (3.3.40)

Next, the linear part. This is best dealt with by using the definition xβ̇β = xmσ
mβ̇β,

where the σmβ̇β are the quaternion basis for SU(2). Then we can factorise the terms

as

xm
(
σmβ̇β(a′βα̇)ij + (ā′β̇α̇)ijσ̄mαα̇

)
(3.3.41)

The ADHM constraints force the imaginary part of this expression to vanish. This

can only occur if we set a′ij = ā′ji. Then the linear part becomes

xm
(
σmβ̇β(a′βα̇)ij + hermitian conjugate

)
(3.3.42)

Which is proportional to δβ̇α̇, and so is proportional to the quaternion identity, and

does not enter into the constraints.

We now come to the third term, xβ̇β b̄λβibαλjx̄αα̇. Using the splitting of bαλj given above,

this becomes

xβ̇βx̄βα̇δji ≡ xmxn
(
σβ̇βm σ̄nβα̇

)
δij (3.3.43)

We can expand the term in the brackets as

1
2

(
σβ̇βm σ̄nβα̇ + σα̇βm σ̄nββ̇ + σβ̇βm σ̄nβα̇ − σα̇βm σ̄nββ̇

)
(3.3.44)
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The first two terms are proportional to the quaternion identity and so can be

disregarded. The second two terms are equal by definition to iηamnτa, where the η

are the ’t Hooft symbols introduced in [62]

η1µν =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, η2µν =



0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


, η3µν =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


(3.3.45)

and the τa are the Pauli matrices τi = iσi, i = 1, 2, 3. The ηamn are antisymmetric in

m and n so we can replace xmxn by 1
2 [xm, xn]. In the commutative case this vanishes;

here it is equal to half the matrix iθmn defined above. Therefore the third term is

equal to

− 1
2θmnη

a
mnτ

a αβ̇δij (3.3.46)

Putting this all together we find that the ADHM constraints are given by

(
āβ̇aα̇

)
ij

= fij1
β̇
α̇ + 1

2θmnη
a
mnτ

aβ̇
α̇ δij (3.3.47)

and

a′ij = ā′ji (3.3.48)

Equation (3.3.47) is in fact three equations, one for each of the imaginary quaternion

generators (we do not care about the arbitrary fourth component, proportional to

the identity). We can rewrite it by contracting with each of these generators. The

contraction with the identity element by definition gives the term proportional to

δα̇
β̇
, and the three imaginary generators give

τaα̇β̇

(
āβ̇aα̇

)
ij

= θmnη
a
mnδij (3.3.49)

Going back to our choice of θmn, with the nonzero entries equal to 2ζ (in fact, we

have θmn = 2ζηmn) this equation becomes

τaα̇β̇

(
āβ̇aα̇

)
ij

= −8ζδa3δij (3.3.50)
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It is convenient to re-express this in terms of the quaternion basis we are using. It

is also clearer to drop the explicit dotted quaternion indices.

σa ·
(
āβ̇aα̇

)
ij

= −8iζδa3δij (3.3.51)

i.e., the component of ∆†∆ proportional to the quaternion identity is arbitrary,

whilst the components proportional to the imaginary quaternions are equal to the

corresponding component of the non commutative deformation, and the only com-

ponent which is there in our case is the σ3 component. We can finally rewrite this

as

Im
(
(a†a)ij

)
= −4iζσ3δij (3.3.52)

Note that here we have used biquaterion components for both the commutative

and the noncommutative cases. Using these in principle adds three extra degrees

of freedom to each of the components of the matrix ∆†∆ (we don’t care about the

component proportional to the complex unit). However the symmetric nature of

the matrix means that in fact there are only 1
2n(n+ 1) additional degree of freedom.

This is counterbalanced by the fact that the matrix R in (3.3.2) is promoted from

SO(n) in the real quaternion case to SU(n) in the biquaternion case. Now, SU(n)

has n2− 1 components, whereas SO(n) has 1
2n(n− 1) components. This means that

there are an additional 1
2n(n+ 1) components in the symmetry group which cancel

out the apparent additional degrees of freedom in the constraints.

3.4 Dyonic Instantons

In this Thesis we will be looking not only at pure Instantons but at Dyonic instantons.

Here, following the presentation in [1] we modify the action introduced in (3.1.1) by

introducing a scalar field, so that it becomes

SYM =
∫
d5x

1
4F

a
ijF

ij
a + 1

2DuφD
uφ (3.4.1)
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This solution has Energy, Topological Charge, and Electrical Charge given respect-

ively by

E =
∫
d4xTr

(1
2Fi0Fi0 + 1

4FijFij + 1
2D0φD0φ+ 1

2DiφDiφ
)
,

k =− 1
16π2

∫
d4xεijklTr

(
FijFkl

)
,

QE =
∫
d4xTr

(
DiφFi0

)
=
∫
d4xTr

(
Diφ

)2
(3.4.2)

We use a Bogamolyni argument of the type discussed in section 3.1 to give us a

bound on the energy.

E =
∫
d4xTr

(1
2Fi0Fi0 + 1

4FijFij + 1
2D0φD0φ+ 1

2DiφDiφ
)

(3.4.3)

Completing the square gives us

E =
∫
d4xTr

(1
8
(
Fij ±

1
2εijklFkl

)2
+ 1

2
(
Fi0 ±Diφ

)2
+ 1

2DiφDiφ (3.4.4)

1
8εijklFijFkl ∓ Fi0Diφ

)

So we get

E ≥ 2π2|k|+ |QE| (3.4.5)

where

k = − 1
16π2

∫
d4x εijklTr(FijFkl), (3.4.6)

QE =
∫
d4xTr(DiφFi0) =

∫
d4x Tr(Diφ)2

The conditions for this bound to be satisfied are

Fij = 1
2εijklFkl (3.4.7)

Fi0 = Diφ

D0φ = 0

With the boundary condition on φ that it goes to the vev φ0 = iq at infinity

[43]. The second and third of these are satisfied provided the fields are static and

A0 = φ. This means that when φ = 0, the solution reduces to precisely that of a
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pure instanton, and such solutions are in one-to-one correspondence with the pure

instanton solutions discussed above. Therefore, we can use the ADHM method just

as before, and additionally try and solve the equation

D2φ = 0 (3.4.8)

We might wonder why this does not fall foul of Derrick’s Theorem, which we stated

forbade stable static solutions to the Yang Mills equations with a scalar field. The

answer is that this solution is only valid as the approximation to a non-static solution,

which would not fall under the conditions for Derrick’s theorem. As explained in,

e.g. [57], these are not exact solutions but are approximate solutions valid for small

values of the scalar field vev. The full equations equations of motion are

DiF
ij = [Φ, DjΦ] (3.4.9)

D2φ = 0 (3.4.10)

The first of which is not the equation of motion for an Instanton. However to first

order in the vev, that equation becomes

DiF
ij = 0 (3.4.11)

which is the Instanton equation of motion. The solutions to these non-static equations

to first order in the vev are the same as the above, expect with A0 = 0 (this will

be essentialy true anyway if the vev is small). Clearly these are in one-to-one

correspondence with the static solutions. We can therefore use these stable non-

static solutions to approximate the static solutions provided the vev is small. This

will be discussed further in section 4.2.

3.4.1 Solving the Scalar Field

The method outlined here is mainly based on Appendix 1 in [1], generalised to the

case of arbitrary non commutative instantons. The method used is based on that in
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[21]. It begins with the Ansatz

φ = iU †AU ; A =

q 0

0 P

 (3.4.12)

where φ is the scalar field we are trying to calculate and U is an element of the null

space of the ADHM Matrix ∆. Further, q ∈ u(N), where N is the degree of the

instaton gauge group, and P ∈ u(k), where k is the Chern- Simons number/ number

of instantons we are considering. In fact, iq is the vev of the scalar field. For the real

ADHM construction, we can use o(k) rather than u(k). In the biquaternion case in

theory there is an additional u(1), promoting the symmetry group to u(2, however

as we can choose the vev we will always choose this to lie in su(2) so this additional

u(1) will not in fact contribute.

Note that the equation for φ has the form of a rotation ofA by U . We can think of this

as follows. The matrix A belongs in u(n)×u(k). We can imagine it being defined on

a u(n)×u(k) bundle over R4. However we know the ADHM construction breaks the,

‘gauge group’ u(n)×u(k) down to u(n). We can therefore see the rotation as rotating

A into the u(n) subspace picked out by the ADHM constraints. This interpretation

can be confirmed by the straightforward observation that U †(1− UU †)AU = 0. A

long and algebraic justification for the ansatz is given in [21]. Regardless of the

justification for the Ansatz, once we have it, the problem of solving for φ becomes

the problem of solving for P above. It is shown in [21] that the equation of motion

for φ

D2φ = 0 (3.4.13)

expands as

D2φ = −4iU †{bfb†,A}U + 4iU †bfTr2(∆†A∆)fb†U = 0 (3.4.14)

Here, Tr2 refers to the quaternion trace on each element of a matrix, not to the

trace of the matrix itself, which is written Tr. Hence, applied to a (complex/ real)

quaternion valued matrix, Tr2 will give a complex/ real valued matrix, whereas Tr
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will give a (complex/real) quaternion.

With A written as above, the first term is −4iU †{f, p}U . For the second term, we

recall that ∆ can be written as

∆ =

 Λ

Ω− 1x

 (3.4.15)

Writing Ω′ = Ω− 1x, and using the ADHM constraint ∆†∆ = Λ†Λ + Ω′†Ω = f−1 we

can see

Tr2(∆†A∆) = Tr2(Λ†qΛ) + Tr2(Ω′†AΩ′)

= Tr2(Λ†qΛ) + 1
2Tr2

(
[Ω′†, P ]Ω′ − ω′†[Ω′, P ] + {P,Ω′†Ω}

)
= Tr2(Λ†qΛ) + 1

2
(
[Ω′†, P ]Ω′ − Ω′†[Ω′, P ] + {P, f−1} − {P,Λ†Λ}

)
= Tr2(Λ†qΛ) + 1

2
(
2Ω′†PΩ′ − {Ω′†Ω′, P}+ {P, f−1} − {P,Λ†Λ}

)
(3.4.16)

Now, note that x in the above expression is always the coefficient of 1. Therefore

the terms involving x in the above expression cancel, and we can everywhere replace

Ω′ by Ω (this is most easily seen from the third line above).

We can use these to rewrite (3.4.14) as

D2φ = −4i
(
U †{f, P−1

2Tr2(P )}U+U †bf
(
Tr2(Λ†qΛ)+1

2
(
2Ω′†PΩ′−{Ω′†Ω′, P}−{P,Λ†Λ}

)))
(3.4.17)

Since P has complex components, not quaternion- valued ones, Tr2(P ) = P and the

first term vanishes. Hence the e.o.m. D2φ = 0 is equivalent to

Tr2(Λ†qΛ) + 1
2
(
2Ω′†PΩ′ − {Ω′†Ω′, P} − {P,Λ†Λ}

)
= 0 (3.4.18)

This gives one equation for each component of P , allowing us to solve for P and

hence, by extension, for φ.





Chapter 4

The Moduli Space

4.1 The Moduli Space

This section follows [22] and [1]. Essentially, the Moduli Space of instanton solutions

is the space of inequivalent solutions to the self dual Yang Mills equations, (3.3.2).

Here, equivalent solutions mean those which differ by local gauge transformations –

solutions which can be transformed into each other by global gauge transformations

are considered inequivalent – the reasoning behind this is discussed in [15]. The gen-

eral idea is that we want to consider as equivalent any solutions which differ only by

a local gauge transformation, since we usually think of local gauge transformations

as describing mathematical redundancies rather than physically distinct solutions.

However fixing the local gauge so as to determine a specific form of the potential A

or the Field Strength F doesn’t fix any of the global symmetries, and so solutions

differing by a global gauge symmetry are seen as being inequivalent. The principle

of the construction turns out to be the same for commutative and noncommutat-

ive instantons, however the explicit construction of the moduli space and potential

requires modification in the noncommutative case, which will be discussed at the

appropriate points.

There are two particular properties these spaces have. The first comes from the

fact that Instanton solutions are classified by the instanton number k. This is a
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topological invariant and therefore the moduli space M splits into disconnected

components describing the solutions of charge k, Mk. The second property, which is

less obvious, is that M is in fact a manifold. Though here there is the subtlety that

M has conical singularities in the commutative case, formed when the instantons

shrink to zero size. In the noncommutative case the fact of noncommutativity means

that the instantons cannot shrink to zero size, and so the singularities are resolved

to 2-spheres. This is in fact a major motivation for studying noncommutative in-

stantons.

The moduli space is actually a special class of manifold called a HyperKahler Man-

ifold, and the proof that it is a manifold involves showing it satisfies these more

special conditions. This is beyond the scope of the thesis, however details are given

in [22]

Since the moduli space is a manifold, we can give it coordinates. These are called

Collective Coordinates. They have a complicated relationship to the symmetries

of the theory, which are discussed in [22]. In particular, there are 4 coordinates

denoting the position of the centre of mass of the instanton solution which arise out

of the fact that the instanton breaks the translational invariance of the theory. This

means that the moduli space is a direct product

Mk = R4 × M̂k (4.1.1)

where M̂k is the moduli space with the centre of mass component factored out,

known as the centred moduli space. We usually ignore the centre of mass part, and

work directly with M̂k. The remaining coordinates on the moduli space can be taken

to be the ADHM parameters. There are 4kN − 4 of these, where k is the instanton

number and N is the dimension of the gauge group (the full moduli space with the

centre of mass left in has 4kN coordinates). In the noncommutative case there is an

extra parameter, the noncommutative parameter ζ, however we do not treat this as

a collective coordinate.

As first described in [48], we can introduce a time dependence into the collective
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coordinates on the moduli space. If we label these coordinates as zr, then we

can write any instanton solution as Ai(z, x), where z is the vector of the moduli

space coordinates, and x is the usual spacetime coordinate. We can then introduce

dynamics by introducing a time dependence z(t). The instanton solutions then

become Ai(z(t), x). This allows us to approximate individual solutions involving

small velocities as slow motion between different instanton solutions on the moduli

space. For sufficiently small velocities, these dynamics can be described by geodesic

motion on the moduli space. This procedure was first developed for monopoles – a

review of which is given in [64]. To fully describe it we first have to develop the idea

of zero modes.

Each point on the moduli space is a solution to the self dual Yang Mills equations,

Ai(x). Now consider a fluctuation Ai(x) + δAi(x). If it is also to be a solution to

the equations (and hence lie in the moduli space), it must satisfy the linearised self

duality equation

DmδAn −DnδAm = εmnklDkδAl (4.1.2)

As well as this, we also want it not to be related to An(x) by a local gauge trans-

formation. We do this by requiring them to be orthogonal to gauge transformations.

We use the natural metric on the space of all solutions

g
(
δAi(x), δA′i(x)

)
=
∫
d4xTr

(
δAi(x)δA′i(x)

)
(4.1.3)

and then use this to induce a metric on the moduli space after quotienting out the

gauge-equivalent solutions. We then require that under this metric, zero modes

δAi(x) are orthogonal to all gauge transformations DiΛ

g
(
δAi(x), DiΛ(x)

)
= −

∫
d4xTr

(
Di(δAi)Λ

)
(4.1.4)

This is equivalent to satisfying

DiδAi = 0 (4.1.5)
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We get an interesting result if we write each of these conditions in a quaternion basis.

Firstly, (4.1.2), like the ADHM equations, is really three equations

τ̄ α̇β̇ /̄D
β̇α
δAαα̇ = 0 (4.1.6)

Where the τ̄ α̇
β̇
are the usual Pauli matrices (the dotted indices are the usual Weyl

SU(2) indicies, as discussed in section 3.2.1 and we have

/D ≡ σnDn; /̄D ≡ σ̄nDn; (4.1.7)

The gauge orthogonality condition, equation (4.1.4), can also be written as

/̄D
α̇α
δAα̇α = 0 (4.1.8)

we can then combine these equations to get

/̄D
α̇α
δAαβ̇ = 0 (4.1.9)

This is the Dirac equation in the instanton background, for a spinor ψα = δAαβ̇.

Note that because of the free β̇ index, this equation gives two Weyl spinors, or a

single Dirac spinor.

Now we have introduced the zero modes, we can go on to discuss the dynamics on

the moduli space, following [1]. Because our fields now have a time dependence, they

will no longer automatically satisfy the Yang Mills equations. In particular, Gauss’

law is modified to

DiFi0 = Di

(
DiA0 − żrδrAi

)
= 0 (4.1.10)

where i is a spacetime index, and r labels the moduli space coordinates. Therefore

δrAi refers to a zero mode on the quotient moduli space in the r direction. This is

distinct from ∂rAi. Following [1] this refers to the tangent vector in the r direction

on the unquotiented moduli space.

With this in mind, equation (4.1.10) is now solved by

A0 = żrεr (4.1.11)
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for a small perturbation εr satisfying

Di

(
Diεr − ∂rAi

)
= 0 (4.1.12)

This implies that, for the electrical components of the field strength

Fi0 = zrδrAi (4.1.13)

In terms of the zero modes

δrAi = ∂rAi −Diεr (4.1.14)

For slow moving instantons, this will be the only part of the Field Strength which

contributes. Substituting this into the Yang Mills action, we get the following

effective action on the moduli space

S = 1
2

∫
d5xTr(Fi0Fi0) = 1

2

∫
dtgrsż

rżs (4.1.15)

where

grs =
∫
d4xTr(δrAiδsAi) (4.1.16)

is the induced metric on the (quotiented) moduli space. We will discuss below how

to calculate this using the ADHM solution.

4.2 Moduli Space of Dyonic Instantons

We now move on to discussing the moduli space of dyonic instantons. This section

follows the relevant section in [1] very closely, as well as the discussion in [57]. As

discussed in section 3.4, each dyonic instanton has a unique underlying pure instanton.

We can therefore identify the moduli spaces pointwise. However, the fact that dyonic

instantons have an electric charge means that the moduli space structure is modified,

and the dynamics are altered by the addition of a potential. This method was first

used for monopoles in [4] and [5], and was extended to Instantons in [43].
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To recap: The action for dyonic instantons is

S = −
∫
d5x

(1
4Tr

(
FµνF

µν
)

+ 1
2Tr

(
DµφD

µφ
))

(4.2.1)

This leads to the equations of motion

DjF
ji + [A0, D

iA0]− [φ,Diφ] = 0

DjF
j0 − [φ,D0φ] = 0

DiD
iφ = 0 (4.2.2)

These are solved by taking Fij to be self dual, with A0 = φ; where φ is solved for

using it’s eom. In principle, to analyse their dynamics, we could explicitly construct

the moduli space and it dynamics. This would be rather difficult, so it is usual to

take advantage of the fact that these solutions, with non- zero φ are in one- to- one

correspondence to pure instanton solutions, where φ=0. This link allows us to use

the moduli space techniques developed for pure instantons and apply them to the

dyonic cases. We start with the equations of motion for 4d instantons with a scalar

field

DiF
ij = [φ,Djφ] (4.2.3)

D2φ = 0 (4.2.4)

with φ going to the vev on the boundary. As discussed in section 3.4, Derrick’s

theorem means that there are no actual instanton solutions to these equations.

However, to first order, we can solve these equations in the same way as 4.2.2, just

with A0 = 0. These approximate solutions are instantons, and lift in a one- to-one

correspondence to solutions of 4.2.2. We call these, ’constrained instanton solutions’.

As in the pure instanton case, we are interested in solutions modulo gauge invariance.

Because of the one to one correspondence between the two sets of solutions, the

cosets also lift to the dyonic case.

We now need to consider to consider how the zero modes are affected by this process.

Just as in the pure instanton case, we can introduce time dependence to the Instanton
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solutions via the collective coordinates. The same trick also works for the scalar

field, which we label as φ(z(t);x), corresponding to the gauge potential Ai(z(t);x),

where z(t) are the time-dependent moduli space coordinates, and x are the spacetime

coordinates. The presence of the scalar field modifies Gauss’ law to

Di0Fi0 + [D0φ, φ] = 0 (4.2.5)

which is no longer solved on the moduli space. However, we can approximately solve

it. This allows us to use the same methods as in the pure Instanton case to analyse

the moduli space motion. However because our solution is only approximate, there

is a restricted regime in which this analysis is valid. The approximate solution, as

before, is constructed by taking the static solution and perturbing it by some εr

A0 = φ+ żrεr (4.2.6)

This gives us

Fi0 = −(żrδrAi −Diφ) (4.2.7)

Why is this solution only an approximation? The first part of Gauss’ law poses no

problem, since the fact that D2 = 0 means that DiFi0 = 0. However the second

term in Gauss’ law, [D0φ, φ], is not zero, and hence the law is not satisfied. However,

this second term is of order żr|q|2, where q is the VEV of φ. This implies that there

might be some limit of small |q| and żr in which this approximation is valid.

To confirm this, recalling that the zero modes δrAi form a basis of the space of all

zero modes, we note that Diφ satisfies the linear self-duality equations (4.1.2) and

is also orthogonal to gauge elements, since D2φ = 0. This means that it is a zero

mode, and therefore we can write

Diφ = |q|KrδrAi (4.2.8)

for some vectors Kr.

It turns out that these vectors are not arbitrary, but are Killing vectors of the

metric. This is because, at infinity, Diφ must be pure gauge – it is a global U(N)
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transformation by q. Because this is a symmetry of the full Yang-Mills solution, it

induces a symmetry on the moduli space, and the associated vectors Kr are therefore

Killing vectors. In this notation, the electric component of the field strength becomes

Fi0 = −
(
żr − |q|Kr

)
δrAi = −ẏrδrAi (4.2.9)

for

yr = zr − |q|Krt (4.2.10)

The effective action on the moduli space is now

S = 1
2

∫
d5xTr

(
Fi0Fi0 −DiφDiφ+D0φD0φ

)
(4.2.11)

If we neglect terms of order ż2|q|2, we get the rather nice form

S = 1
2

∫
dt
(
grsẏ

rẏs − |q|2grsKrKs
)

(4.2.12)

This is the same as the pure instanton equation (4.1.15) but with the addition of a

potential

V = 1
2

∫
d5xTr(DiφDiφ) = |q|

2

2

∫
dtgrsK

rKs (4.2.13)

As stated above, this analysis is only valid in certain limits, in fact in the limit

ż2, |q| ≤ 1; (4.2.14)

where we can ignore terms of order ż2|q|2 and higher. The geometric interpretation

of this is both that the kinetic energy of the Instanton solution is sufficiently small,

and that the potential evaluated on the Instanton solutions, which lie on the moduli

space, is shallow compared to the potential on non-Instanton solutions evaluated off

the moduli space. This allows us to imagine our approximate solution as lying in a

steep valley given by the locally small potential around the moduli space solutions,

where the small kinetic energy prevents our dynamics from, ‘climbing away’ from

the moduli space.
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4.2.1 The Complex Subspace

There is one final technical point to discuss. The Moduli space has several subspaces,

which are preserved under the geodesic motion – i.e. a geodesic beginning in one of

these subspaces will remain in it throughout its motion.

The subspace we are interested in is as follows. The moduli space is a manifold

over the collective coordinates z. However, as we saw in section 3.3 these collective

coordinates are parametrised by the (bi)quaternions. That algebra can be thought

of as C × C × H = C × CC, where the last expression is to be understood via the

Cayley- Hamilton construction of the quaternions. The quaternions therefore contain

a complex subspace C, preserved under the action of the other C making up the

quaternions. Correspondingly the biquaternions have the subspace C× C. We can

therefore restrict from the full moduli space where the collective coordinates are

biquaternions, to a submanifold where they lie in C× C.

This corresponds to conjugating all the moduli space coordinates by a unit qua-

ternion q, e.g. τ → qτ q̄. This corresponds geometrically to a rotation about some

axis represented by q, and therefore imposing invariance under such rotations corres-

ponds to choosing a two dimensional plane within the four dimensional quaternions.

Because q̄q = 1, if we multiply two (bi)quaternions together and apply this rotation

to each of them then the result is that the entire product is rotated- e.g.

∆†∆→ q∆†q̄q∆q̄ = q∆†∆q̄ (4.2.15)

We can therefore think of all our equations and objects (for example the scalar field

and potential) as being rotated in the same overall way. In the commutative space,

for pure instantons we can see the invariance of this subspace automatically, since

the elements of C ∈ H automatically commute with all other elements, meaning that

they form an ideal within that group [24]. For Dyonic Instantons, we must choose

the imaginary direction to be the same as the vev in SU(2). In the noncommutat-

ive case, the presence of the noncommutative parameter means that the spacetime

coordinates do not automatically commute. The only complex subspace which is
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preserved in this case is the complex subspace spanned by {1, σ3}, as, since σ3 is the

direction associated with the non commutativity, it is preserved under rotations of

the space, and 1 commutes with everything. We must then align the plane within

H that we are preserving with this direction. Hence we see, as would be expected,

the presence of a noncommutative parameter reduces the symmetries of the theory.

It is necessary to define what is meant by a geodesic submanifold, particularly in

the presence of a potential. A geodesic submanifold is a submanifold which has the

property that any geodesic beginning in that submanifold, with motion tangent to

the submanifold, will remain in it. If there is a potential present then we require

that this potential is invariant under the symmetries defining the submanifold. We

then require that this submanifold has the property defined by the solutions of the

equations of motion with the potential which begin in the submanifold, with tangent

parallel to it, remain in that submanifold; in an analogous way to the concept of a

geodesic submanifold above.

Calculations on the full quaternionic moduli space are very computationally expens-

ive, and this subspace is often much easier to run simulations on. In addition, the

commutativity of this subspace makes solving the ADHM equations on this restricted

part of the theory much easier.

4.3 Constructing the Moduli Space Metric

Now we have outlined the theory behind the moduli space, we move on to practical

calculations. We start with the metric on the space. This section is based on

appendix 2 in [1], which is itself based on the method of [56] for calculating the

metric determinant. This technique was adapted in [57] for the moduli space metric

of two instantons, which they calculated to order |τ |−2. In [1] this is extended to the

full metric for 2 commutative U(2) instantons. I present the argument for arbitrary

gauge group and topological charge.
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As above, the metric on the moduli space is defined as

grs =
∫
d4x Tr?

(
δrAiδsAi

)
(4.3.1)

where

δrAi = ∂rAi −Diεr (4.3.2)

and

Tr?(q) = Tr2
(
Tr(q)

)
(4.3.3)

There is one mode for each of the 8k moduli space coordinates, labelled here by

the indices r and s. The index i refers to spacetime coordinates. Recall these zero

modes are orthogonal to gauge transformations by definition

Di(δrAi) = 0 (4.3.4)

We can use this fact to find an explicit expression for the metric. First, we need

an expression for ∂rAi|z=z0 in terms of the ADHM data. To do this, we recall that

Ai = U †∂iU , and use the identity U = PU with U the projection operator 1−∆f∆†

to derive

∂rU = −∆f∂r∆†U + P∂rU (4.3.5)

This allows us to get the necessary result

∂rAi|z=z0 = −iU †∂r∆f ēib†U + iU †beif∂r∆†U +Di(iU †∂rU) (4.3.6)

around an arbitrary point of the moduli space z0. The zero mode is then this

expression with the gauge dependent part removed. The third term above is explicitly

a gauge transformation, however we also need to ensure that there is no gauge part

implicit in the first two terms. To do this, we use the residual transformations

described in equation (3.3.2) to transform the ADHM data as

∆→ q∆R, U → QU, Q(z0) = 1, R(z0) = 1 (4.3.7)
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It can be seen that this transformation leaves Ai invariant, and that

∂rAi|z=z0 = −iU †Crf ēib†U + iU †beifC
†
rU +D(iU †∂r(Q†U)) (4.3.8)

with

Cr = ∂r∆ + ∂rQ∆ + ∆∂rR (4.3.9)

It turns out we can choose Cr so that the first two terms of δrAi have no gauge part

– i.e. they are a zero mode. To do so we must prove the following

Lemma 4.3.1. If we choose Cr to be independent of x with

∆†Cr = (∆†Cr)T? (4.3.10)

the expression

∂rAi = −iU †Crf ēib†U + iU †beifC
†
rU (4.3.11)

will be a zero mode

To do this, we first note that this condition is equivalent to the two conditions

a†Cr = (a†Cr)T?; b†Cr = (b†Cr)T? (4.3.12)

and then consider the expression (forming part of δrAi above)

ai := U †bfei (4.3.13)

We can then calculate

Diaj = ∂iaj − iAiaj = U †eibf∆†bfej + U †bf(ēib†∆ + ∆†bei) (4.3.14)

We then write ∆†b in terms of its quaternion components as ckēk, where the ck are

complex valued matrices. It is important to note that since ∆†b = Ω, the bottom

2k × 2k part of the ADHM data, the ck are hermitian, since Ω is hermitian by

construction. Keeping this fact in mind, we can write (4.3.14) as

Diaj = U †bfckf(eiēkej + ēiekej + ēkeiej) (4.3.15)
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Now, we use the identity ēiej = −ējei + 2δij to get

Diaj = −U †bfck(eiējek − 2δjkei − 2δikej) (4.3.16)

Then we can see aj satisfies both the linear self- dual field equation

D[iaj] = 1
2εijkl (4.3.17)

and the zero mode condition Diai = 0. What does this say about the full mode

δrAi? We calculate

Di(δrAi) = −iDiU
†CrDia

†
j + iajC

†
rDiU − iU †Cr(Diaj)† + iDiajC

†
rU

= −iU †bf
(
ei∆†Crēj − ejC†r∆ēi

)
fb†U − iU †CrDia

†
j + iDiajC

†
rU

− iU †CrDia
†
j + iDiajC

†
rU (4.3.18)

Here we have used the fact that

DiU
† − iAiU † = U †eibf∆† (4.3.19)

The discussion above of Diaj shows that the last two terms of (4.3.18) are a zero-

mode. We must therefore check the first two terms. The only parts of these which

depend on the moduli space coordinates are

ei∆†Crēj − ejC†r∆ēi ≡ Kij (4.3.20)

So the first two terms being a zero mode are equivalent to

K[ij] = 1
2εijklKij ; Kii = 0 (4.3.21)

and these are satisfied iff ∆†Cr = (∆†Cr)T?. This proves the above lemma. To use

this result, we must see what this condition says about the form of Cr. First we

recall the definitions

Cr = ∂r∆ + ∂rQ∆ + ∆∂rR (4.3.22)



70 Chapter 4. The Moduli Space

Q =

q 0

0 R−1

 (4.3.23)

Note that we can write Cr as

∂ra+ ∂rQa+ a∂rR +
(
∂rb+ ∂rQb+ b∂rR

)
x (4.3.24)

Next we set q = 1. This means it does not contribute to the variation of Q, which

means

∂rQ = −b∂rRb† (4.3.25)

Then we see that the part of Cr proportional to x is zero, since ∂rb is zero as b is a

constant matrix and the other two terms cancel. This leaves us with

Cr = ∂ra+ ∂rQa+ a∂rR (4.3.26)

With this form, and the fact that RT? = −R, since R is unitary, it is straightforward

that b†Cr = (b†Cr)T?. The second condition, a†Cr = (a†Cr)T?, is satisfied iff

a†∂ra−(a†∂ra)T?−a†b∂rRb†a−(a†b∂rRb†a)T?+a†a∂rR−(a†b∂rRb†a)T? = 0 (4.3.27)

We have therefore reduced the problem of finding the zero modes to solving the

above equation.

The metric is then derived from the inner product of two zero modes. To find this,

we use the following result from ([56])

Tr?(δrAiδsAi) = −1
2∂

2Tr?
(
C†rPCsf + fC†rCs

)
(4.3.28)

Where P = 1−∆f∆†. We can then use Stoke’s Theorem to find the metric

grs = −1
2

∫
d4x ∂2Tr?

(
C†rPCsf + fC†rCs

)
=
∫
d4x Tr?

(
C†rP∞Cs + C†rCs

)
ij

= 2π2Tr?
(
C†rP∞Cs + C†rCs

)
ij

= 2π2Tr?
(
∂ra
†(1 + P∞)∂sa−

(
a†∂ra− (a†∂ra)T

)
ij
∂sR

)
(4.3.29)
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Here

P∞ = limx→∞P = 1n+2k×n+2k − bb†

=

1n/2×n/2 0

0 0k×k

 (4.3.30)

Remembering

∆(x) =

 Λ

Ω + ρ̃1k×k

− x
 0

1k×k

 (4.3.31)

(Note – the term in ρ̃ gives the center of mass, and is usually absorbed into the

x component by a suitable choice of coordinates, but it is there, and therefore we

consider it here – albeit briefly). The first term above then gives

2π2Tr?
(
da†(1 + P∞)da

)
= 2π2Tr

(
2Λ†Λ + Ω†Ω + 2dρ̃†dρ̃

)
(4.3.32)

The dρ̃†dρ̃ directions are flat (by which I mean isomorphic to R4) and so we ignore

them. This gives the first part of the metric

ds2
1 = 2π2Tr?

(
da†(1 + P∞)da

)
= 2π2Tr?

(
2Λ†Λ + Ω†Ω

)
(4.3.33)

Now for the second part of the metric

ds2
2 = 2π2Tr?

((
a†da− (a†da)T?

)
dR
)

(4.3.34)

To find an explicit expression here, we write dR in terms of its components considered

as a U(k) matrix, and solve for them using (4.3.27). We get one equation for each

component, and solving them gives dR in terms of the ADHM parameters in a. We

will see this explicitly in the specific cases below. Once we have done this, we can

put all these parts together to get the full metric

ds2 = ds2
1 + ds2

2 = 2π2
(
Tr?

(
da†(1 + P∞)da

)
= 2π2

(
Tr?

(
2dΛ†dΛ + dΩ†dΩ

)
+ Tr?

((
a†da− (a†da)T?

)
dR
))

(4.3.35)
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4.4 Constructing the Potential

Now we have the metric, we look at how to calculate the potential for the dyonic

instanton moduli space. This makes use of the solution for the scalar field in section

3.4.1. Recall the definition of the potential

V =
∫
d4x Tr(DiφDiφ) (4.4.1)

Integrating by parts and using the fact that D2φ = 0 via its equation of motion we

get

V = limR→∞

∫
|x|=R

dS3x̂iTr(φDiφ) (4.4.2)

Using the facts that φ = U †AU,Di = ∂i − iAi and Ai = U †∂iU , a moderately long

calculation gives

Diφ = iU †eibf∆†AU + iU †A∆f ēib†U (4.4.3)

To fully evaluate this integral, we need an expression for U . In general this would

be rather complicated, however we only need the value of U on the boundary, in the

limit R→∞. For a general ADHM matrix

v1 v2 v3 . . . vk

τ1 − x σ?1 σ?2 . . . σ?k−1

σ1 τ2 − x σ?k . . . σ?2k−3
... . . . ...

σk−1 σ2k−3 σ3k−4 . . . τk − x


(4.4.4)

the condition ∆†U = 0 gives k +N equations

v†lU1 + (τ †l − x)Ul+1 +
∑
i,j∈A

σ†iUj +
∑
i,j∈B

σ†?i Uj (4.4.5)

for some index sets A and B. These are solved to leading order in |x| by

U1 7→ 1; Ui 7→
x

|x|2
v†i−1, i 6= 1 (4.4.6)
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We might worry here about the issue discussed in section 3.3, where U may or may

not satisfy the completeness relation (3.3.17). In general we would need to worry

about this, however if we expand in powers of ζ, any terms including a correction of

order ζn would, by dimensional analysis, also have to go as |x|−2n, and are therefore

neglected in this limit. We also need these two results for the behaviour of other

quantities in this limit

∆ 7→

 Λ

−x1k


f 7→ 1

|x|2
1k (4.4.7)

We can use these to expand equation (4.4.3), and then multiplying by x̂i we get, to

leading order

x̂iDiφ = 2i
|x|3

(
qΛΛ† − ΛPΛ†

)
+O

( 1
|x|4

)
(4.4.8)

Remembering that φ = iq on the boundary, we can then write, to leading order

V = limR→∞

∫
|x|=R

dS3x̂iTr(φDiφ)

= −2limR→∞

∫
|x|=R

dS3 1
|x|3

(
q2ΛΛ† − qΛPΛ†

)
+O

( 1
|x|4

)

= −4π2Tr
(
q2ΛΛ† − qΛPΛ†

)
(4.4.9)

Now we have these general expressions and methods for the ADHM solutions, moduli

space metric, and potential, we can give specific solutions for different instanton

configurations. We will be interesting in U(2) Yang Mills, and the 2 and 3 Instanton

sectors in particular.





Part II

Particular Solutions





Chapter 5

One and Two Instantons

In this chapter, I derive one of the main results of the thesis- a solution of the

noncommutative U(2) 2 instanton theory. First, I review the single U(2) instanton

as presented in [3]. This is necessary to test the two instanton solution in the appro-

priate limits.

Next I derive the ADHM equations for the two Instanton case, using biquaterion co-

ordinates. I briefly look at the commutative biquaternion equations, and investigate

how their solution can be rotated into the quaternion solution found in [1] using the

increased symmetry in this case. I explicitly show that this is possible.

Then I move on to the noncommuative biquaternion equations. I begin by showing

that the solution derived in [37] is incorrect, and then explore alternate strategies to

solve the equations. I was unable to find a solution for the full moduli space, however

I was able to find a solution for the geodesic submanifold discussed in section 4.2.1.

After finding this solution I use it to derive the metric and potential for the rel-

evant moduli space. I show that the metric and potential behave suitably in the

commutative limit and in the limit of the instantons being far separated.
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5.1 The Single U(2) Instanton

First, we derive the solution for a single U(2) instanton in noncommutative space. I

then use this solution to derive the moduli space metric and potential. This is useful

as it allows us to check the two instanton solution behaves correctly in various limits.

We will follow the presentation of the solution in [3], however for their purposes they

use a very different notation to the one developed here, and even a different method

of calculating the metric, which I will discuss below. I rederive their solution in the

notation I have used elsewhere. Other discussions of the solution can be found in

[12] and [17]. First, for the single noncommutative U(2) instanton, the ADHM data

has the form  v

X − x′

 ; v,X, x′ ∈ H (5.1.1)

We can define X − x′ = −x, and write

∆ =

 v

−x

 (5.1.2)

Then, using the method outlined in section 3.3.2, in particular equation (3.3.52), the

noncommutative ADHM equation is

v†v = A1− 4iζσ3 (5.1.3)

where v = vR + ivI . We can solve this by

vI = −2ζvRσ3

|vR|2
; vR ∈ H (5.1.4)

The solution in [3] (in the form from Appendix E) is

v = ĝ


√
ρ2 + 2ζ ′ 0

0
√
ρ2 − 2ζ ′

 (5.1.5)
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where ĝ is a unit quaternion and the relation between their ζ ′ and our ζ is ζ ′ = 2ζ.

After some calculation it turns out that this is

vI = −2ζvRσ3

|vR|2
; vR ∈ H (5.1.6)

Now we have this, we can try and calculate the metric and potential using our

method developed in sections 3.4.1 and 4.4

5.1.1 The Potential

The first step is to calculate the scalar field. We use the ansatz (3.4.12), which in

this case is

φ =

q 0

0 ψ

 (5.1.7)

Where q ∈ U(2), and ψ ∈ U(1). Then we find the equation of motion for φ, (3.4.18),

reduces to

2Tr2(Λ†qΛ) = Tr2({ψ,Λ†Λ}) (5.1.8)

In our case, Λ = v, and ψ commutes with everything, so we have

Tr2(v†qv) = ψTr2(v†v) (5.1.9)

This is solved by

ψ = iq0(|vR|2 + |vI |2) + 2iRe(v̄RqvI)
|vR|2 + |vI |2

(5.1.10)

We now use this to calculate the potential. Note that, as |x| tends to infinity,

∆U = 0 (5.1.11)

is solved by

U1 7→ 1; U2 7→
x

|x|2
v† (5.1.12)
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Note that, specifically in the U(1) case, this is true not just in the infinite limit, but

for all x. As outlined in section 4.4, we can use this solution for U to calculate

x̂iDiφ = i

|x|3
(
vv†q + qvv† − 2vψv†

)
(5.1.13)

which can be expanded into real and imaginary parts as

i

|x|3
(

2q(|vR|2 + |vI |2) + 2iqIm(vI v̄R) + 2iIm(vI v̄R)q− 2ψ(|vR|2 + |vI |2 + 2iIm(vI v̄R)
)

(5.1.14)

So

V = −limR 7→∞

∫
|x|=R

d3S

|x|3
Tr
(
2q2(|vR|2 + |vI |2) (5.1.15)

+ 2iq2Im(vI v̄R) + 2iqIm(vI v̄R)q − 2ψq(|vR|2 + |vI |2 + 2iIm(vI v̄R)
)

evaluating the integral, this becomes

V = −8π2Tr
(
q2(|vR|2+|vI |2)+iq2Im(vI v̄R)+iqIm(vI v̄R)q−ψq(|vR|2+|vI |2+2iIm(vI v̄R)

))
(5.1.16)

Using the properties of the trace, this becomes

V = 8π2Tr
(
(|q|2+q2

0)(|vR|2+|vI |2)+4q0qIm(vI v̄R)+iψ
(
q0(|vR|2+|vI |2)+2qIm(vI v̄R)

)
(5.1.17)

which we can rearrange as

V = 8π2
(

(q2
0+|q|2)(|vR|2+|vI |2)+4q0Re(v̄RqvI)−

(q0(|vR|2 + |vI |2) + 2Re(v̄RqvI))2

|vR|2 + |vI |

)
(5.1.18)

Now, note that the parts proportional to q0 cancel and so we are left with

V = 8π2
(
|q|2(|vR|2 + |vI |2)− 4Re2(v̄RqvI)

|vR|2 + |vI |

)
(5.1.19)

Putting in the expression for vI and taking q = |q|σ3 we get

V = 8π2|q|2
(
ρ2 − 4ζ2

ρ2 Re2(ˆ̄vRσ3v̂Rσ3
))

(5.1.20)
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where

ρ2 = |vR|2 + |vI |2 = |vR|2 + 4ζ2

|vR|2
(5.1.21)

and v̂R is the unit vector in the vR direction. Now, q ∈ SU(2) and so q̄ = −q.

Therefore qv̂Rq = −q̄v̂Rq, and the latter expression is a rotation of v̂R by q. If we

set q = |q|σ3, we can therefore express this rotation as v̂R
(
cos(θ) + i sin(θ)

)
, where

θ is the rotation around the σ3 axis. Then the potential is equal to

V = 8π2|q|2
(
ρ2 − 16ζ2

ρ2 cos2(θ)
)

(5.1.22)

which is exactly the potential in [3] with 16ζ2 = 4ζ ′2.

5.1.2 The Metric

We start by splitting ∆ into

a =

v
0

 ; b =

0

1

 (5.1.23)

with v = vR + ivI , we find that a†b = 0 and so we have to solve

a†da−
(
a†da

)T?
= −a†a(dR) +

(
a†a(dR)

)T?
(5.1.24)

In this case, dR ∈ U(1), as we have a single instanton, and if we write dR = idξ, we

can solve for it as

dξ = vRdvI − v̄IdvR
|vR|2 + |vI |2

(5.1.25)

We use the method in section 4.3. It is worth pointing out here that the method

used is an alternative to that in [3]. When considering the residual symmetries

3.3.33, recall we set the rotation q to be locally constant (note that this q is a

residual symmetry and is not to be confused with q the scalar field vev!). I have

used a slightly different method – that considered in section (4.3). This method is

mentioned in [3] and they confirm it gives the same answer as the one they calculate.
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Regardless, if we use our formula

ds2 = ds2
1 + ds2

2 = 2π2
(
Tr?

(
2dΛ†dΛ + dΩ†dΩ

)
+ Tr?

((
a†da− (a†da)T?

)
dR
))

(5.1.26)

We get the final result, noting that the i from dR cancels the i from a†da− (a†da)T?

ds2 = 8π2
(
dv2

R + dv2
I −

(
vRdvI − v̄IdvR

)2

|vR|2 + |vI |2

)
(5.1.27)

5.2 Two U(2) Instantons

We now move on to the case of two U(2) instantons. In the commutative case, a

solution was found for the real quaternions (and with gauge group SU(2)) in [1].

I begin by showing that a solution can also be found for the commutative case

with gauge group U(2) beginning with the Biquaternions and then enforcing reality

conditions via the symmetries. This provides a specific example of the equivalence

of these two approaches, discussed in the abstract in section 3.3.2. Next I move on

to the noncommutative U(2) case. Here a solution was put forward in [37], however

I will show that this solution is not in fact correct.

I was unable to find the solution for the full moduli space, however I was able to find

a solution for the geodesic submanifold discussed in section 4. After outlining this

solution, I will go on to derive the scalar field, moduli space metric and potential as

discussed above.

5.3 ADHM Constaints

We begin with solving the ADHM equations. For the case of two U(2) instantons,

the ADHM data has the form

∆ = a− bx; a =

Λ

Ω

 =


v w

τ σ?

σ −τ

 , b =


0 0

1 0

0 1

 (5.3.1)
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Note that here Ω is constrained to be hermitian (under complex conjugation) rather

than symmetric, as in the real ADHM construction. v, w and σ lie in the biqua-

ternions, however due to the requirement that Ω be hermitian, τ remains a member

of H. Proceeding as in section (3.3.2), equation (3.3.2) gives the following. We begin

by looking at the commutative equations, so ζ = 0. First, the diagonal equations

v†v + |τ |2 + σ†σ = f−1
11 1

w†w + |τ |2 + (σ†σ)? = f−1
11 1 (5.3.2)

Next, the off diagonal constraints are given by

v†w + τ̄σ? − σ†τ = f−1
12 1

w†v + (σ†)?τ − τ̄σ = f−1?
12 (5.3.3)

This information can be put into a more convenient form – we shall look at the

off-diagonal equations first. Again, we expand into quaternion real and imaginary

parts

v̄RwR + v̄IwI + i
(
v̄RwI − v̄IwR

)
+ τ̄σR − σ̄Rτ + i

(
σ̄Iτ − τ̄σI

)
= f−1

12 1

w̄RvR + w̄IvI + i
(
w̄RvI − w̄IvR

)
−
(
τ̄σR − σ̄Rτ

)
+ i

(
σ̄Iτ − τ̄σI

)
= f−1∗

12 1

We can add these two equations together to get

v̄RwR+w̄RvR+v̄IwI+w̄IvI+i
(
v̄RwI−w̄IvR+w̄RvI−v̄IwR

)
+2i

(
σ̄Iτ−τ̄σI

)
= 2ReC(f−1

12 )1

(5.3.4)

This is equivalent to

ReH(w̄RvR) + ReH(w̄IvI) + i ImH(w̄RvI + v̄RwI) + 2i ImH(σ̄Iτ) = 2f−1
12 1 (5.3.5)

Since f is arbitrary we don’t care about the real quaternion part of the constraints,

so this gives us the equation

ImH(τ̄σI) = ImH(w̄RvI + v̄RwI)
2 (5.3.6)
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As before we can also take the two equations away to get

v̄RwR−w̄RvR+v̄IwI−w̄IvI+i
(
v̄RwI+w̄IvR−v̄IwR−w̄RvI

)
+2
(
τ̄σR−σ̄Rτ

)
= f12−f ∗12

(5.3.7)

This is

ImH(w̄RvR) + ImH(w̄IvI) + i
(
ReH(w̄RvI − ReH(w̄IvR)

)
− 2ImH(σ̄Rτ) = 2ImC(f)

(5.3.8)

Where ImC(f) is the complex imaginary part of f , which is a complex function. We

can therefore again ignore the real quaternion part of this equation, which is a purely

imaginary number. This leaves us with the following equation for the quaternion

imaginary part:

ImH(τ̄σR) = ImH(w̄RvR + w̄IvI)
2 (5.3.9)

We now look at the diagonal equations. Expanding the biquaternions into their real

and imaginary parts, we can rewrite them as

|vR|2 + |vI |2 + i
(
v̄RvI − v̄IvR

)
+ |τR|2 + |σR|2 + |σI |2 + i

(
σ̄RσI − σ̄IσR

)
= f221

|wR|2 + |wI |2 + i
(
w̄RwI − w̄IwR

)
+ |τR|2 + |σR|2 + |σI |2 − i

(
σ̄RσI − σ̄IσR

)
= f111

(5.3.10)

Since f is arbitrary we don’t care about the real quaternion parts of these equations.

Adding them and taking the quaternion imaginary part we get

ImH(w̄RwI) + ImH(v̄RvI) = 0 (5.3.11)

Taking them away and again taking the quaternion imaginary part we have

2ImH(σ̄RσI)− ImH(w̄RwI) + ImH(v̄RvI) = 0 (5.3.12)

This gives a total of four equations for the complex ADHM constraints. For com-

pleteness we list them here

2ImH(σ̄RσI)− ImH(w̄RwI) + ImH(v̄RvI) = 0



5.3. ADHM Constaints 85

ImH(w̄RwI) + ImH(v̄RvI) = 0

ImH(τ̄σI) = ImH(w̄RvI + v̄RwI)
2 ≡ Υ

2

ImH(τ̄σR) = ImH(w̄RvR + w̄IvI)
2 ≡ Λ

2 (5.3.13)

Note that these are complex equations for the commutative ADHM solutions, not

the noncommutative ones. In the noncommutative case, only one of these equations

changes – the second one, which becomes

ImH(w̄RwI) + ImH(v̄RvI) = −4ζσ3 (5.3.14)

As a check, if we assume that our solutions to the ADHM equations are entirely real,

we have the complex imaginary parts of all our variables being 0, and we have only

the one equation which is not trivially satisfied (just as in [1])

ImH(τ̄σR) = ImH(w̄RvR)
2 (5.3.15)

It should be noted, as discussed in section 3.3.2, that no new degrees of freedom

are introduced compared to the real ADHM equations. Complexifying v, w and σ

adds twelve degrees of freedom. However, each of the 3 new equations affecting the

imaginary part of an expression adds 3 constraints, giving 9. Recall that we have a

residual O(2) symmetry on our solutions to the ADHM equation in the quaternion

case, which is promoted to a U(2) symmetry in the biquaternion case allows us to

remove a further three degrees of freedom. This gives a total of 12 degrees of freedom

removed, cancelling the number of new parameters and showing that there are no

new solutions.

5.3.1 Finding biquaternion solutions

That being said, any quaternion solution should be able to be turned into a biqua-

ternion solution by a different choice of the U(2) symmetry, implemented by an
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SU(2) rotation as in equation (3.3.34) with R ∈ SU(2). The rotation is SU(2) rather

than U(2) as the standard solutions in the real case have already have O(2) (= U(1))

fixed. That is what I shall proceed to show explicitly. I begin by giving a general

form of the transformation under R. I then show how a particular solution to the

biquaternion equations can by rotated to a pure quaternion form, exactly corres-

ponding with [1].

The reason this is worth doing is that the non-commutative ADHM equations only

have complex solutions, and having the commutative solutions in a complex form

might make it easier to spot a generalisation, or to construct a solution via deform-

ation.

We start with the standard real solution to the commutative ADHM equations [1],

where ∆ is put in the canonical form, a+ bx, with b as in equation (3.3.2) and

a =

 v

Ω2×2

 =


v w

τ τΛ
4|τ |2

τΛ
4|τ |2 −τ

 (5.3.16)

where the entries are all quaternions. To get the form of the complex solutions

we undo our specification of the real line by rotating with an arbitrary element so

SU(2), given by either  a b

−b̄ ā

 , a, b ∈ C; |a|2 + |b|2 = 1 (5.3.17)

or  y0 + iy3 y1 + iy2

−y1 + iy2 y0 − iy3

 , yi ∈ R;
∑

y2
i = 1 (5.3.18)

The first of these is easier to work with, as there are less symbols, however the second

seems to me more illuminating since we are thinking of the (complex) quaternions

as modules over R rather than C. I will therefore give the general solution in terms

of both parametrisations of SU(2). Applying
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∆ 7→

 1 −→0
−→0 RT

 ·∆ ·R, f 7→ RT · f ·R, U 7→ RU

with R as given above, we find the general complex solution is given by
av − b̄w bv + āw(

|a|2 − |b|2 − (ab+ āb̄) Λ
|τ |2

)
τ 2ābτ + (ā2 − b2) τΛ

|τ |2

2b̄aτ + (a2 − b̄2) τΛ
|τ |2 −

(
|a|2 − |b|2 − (ab+ āb̄) Λ

|τ |2

)
τ

 (5.3.19)

We can see that this has the correct form
v′ w′

τ ′ σ′?

σ′ −τ

 (5.3.20)

which we would expect for a complex solution to the ADHM equations. Using the

real representation for SU(2) the solutions cannot be usefully put into matrix form

as they are too long, but are given by

v′ =
[
(y0 + iy3)v − (y1 − iy2)w (y1 + iy2)v + (y0 − iy3)w

]
τ ′ =

((
y2

0 + y2
3 − y2

1 − y2
2

)
+ 2

(
y2y3 − y0y1

)
Λ
|τ |2

)
τ

σ′ =
(

2
(
y0y1 + y3y2 − i(y0y2 − y3y1)

)
+
(
y2

0 + y2
2 − y2

1 − y2
3 + 2i

(
y0y3 + y1y2

))
τΛ
||2

)
τ

5.3.2 Using the Symmetries

The above expressions are not particularly illuminating, not least because they are

in terms of the old parameters, not the new ones. Ideally, we want σ′ in terms of σ.

However I was unable to use the above expressions to do this. I next tried directly

solving the equations (5.3.13). Again, I could not find a full solution. Solving the

last two equations we get

σR = τ

|τ |2
(
α + Λ

2

)
(5.3.21)

and

σI = τ

|τ |2
(
γ + Υ

2

)
(5.3.22)
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For arbitrary real functions α and γ. We can then use the second equation to get

w̄RwI = β + v̄RvI (5.3.23)

which can then be used to define

wI = βwR + wRv̄RvI
|wR|2

(5.3.24)

For some arbitrary real function β. However trying to use these to solve the first

equation has not met with success thus far, and therefore we adopt the method of

finding the infinitesimal forms of the transformation, and using these to show we

can set the functions α and γ to be zero. We will then use an expansion in 1
|τ |2 to

solve the remaining equations, before using the remaining 2 degrees of freedom to

arrive back at the real solution we are familiar with. This ensures the consistency of

our equations with the existing real ADHM equations, and enables us to extend the

solutions of those real commutative equation to the complex noncommutative case.

To start with, we consider the infinitesimal form of our transformation (3.3.2). To do

this, we first note that R ∈ SU(2) can be written as exp(rt), r ∈ su(2), and similarly

for u(1).We write an element of u(1) as a phase iθ, and an element of su(2) as ai b+ ci

−b+ ci −ia

 (5.3.25)

Then the transformation, to linear order is given by

∆ 7→

1− iθ −→0
−→0 1 + r†

 ·
v

Ω

 · (1 + r) (5.3.26)

Then to linear order

δ−→v = −iθ−→v +−→v r (5.3.27)

and

δΩ = r†Ω + Ωr (5.3.28)
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First of all, we look at δ−→v . Expanding into components, we find that this is equal

to [
i(a− θ)v + w(−b+ ci) (b+ ci)v − i(a+ θ)w

]
(5.3.29)

We now write v = vR + ivI , and the same for w, and group the (complex) real and

imaginary parts to get (separately now for v and w)

(
(θ − a)vI − bwR − cwI

)
+ i
(

(a− θ)vR − bwI + cwR

)
≡ δvR + iδvI (5.3.30)

and

(
wI(a+ θ) + bvR − cvI

)
+ i
(
− (a+ θ)wR + bvI + cvR

)
≡ δwR + iδwI (5.3.31)

Now we look at δΩ. Componentwise, this turns out as−b(σ + σ?) + ic(σ? − σ) −2iaσ? + 2τ(b+ ci)

2iaσ + 2τ(b− ci) b(σ + σ?)− ic(σ? − σ)

 (5.3.32)

As a consistency check we can note that this matrix has the formτ ′ (σ′)?

σ′ −τ ′

 (5.3.33)

Using σ = σR + iσI , we can immediately read off that

δτ = −2bσR + 2cσI (5.3.34)

Note that this is a real quaternion, as expected. As for δσ, expanding and collecting

(complex) real and imaginary parts, we get

2
(
bτ − aσI

)
+ 2i

(
aσR − cτ

)
≡ δσR + iδσI (5.3.35)

We want to show that we can always make the symmetry choice α = γ = 0. Therefore

we want expressions for δα and δγ, as these are the quantities we want to set to zero.

We can combine finding them with a check of consistency. Looking first at δα, if we
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write

σR = τ

|τ |2
(
α + Λ

2

)
(5.3.36)

Then we get

δ(τ̄σR) = δα + δΛ
2 (5.3.37)

We can then compare this to δ(τ̄σR) calculated directly from δΩ as

(δτ̄)σR + τ̄ δσR (5.3.38)

There is one unknown between the two equations, δα, and by comparing the two we

can determine what this is (in fact, as Λ is imaginary quaternionic, the real part of

equation will be δα). The consistency check comes in comparing 2ImH

(
δ(τ̄σR)

)
to

δΛ, as these should be identical. That is what we will now proceed to do. We start

with

δΛ = ImH

(
(δw̄R)vR + w̄RδvR + (δw̄I)vI + w̄I(δvI)

)
(5.3.39)

Looking at each individual part we find

(δw̄R)vR = (a+ θ)w̄IvR + b|vR|2 − cv̄IvR

w̄RδvR = (θ − a)w̄RvI − b|wR|2 − cw̄RwI

(δwI)vI = −(a+ θ)w̄RvI + b|vI |2 + cv̄RvI

w̄IδvI = (a− θ)w̄IvR − b|wI |2 + cw̄IwR (5.3.40)

Putting this all together we get

δΛ = 2aImH(w̄IvR − w̄RvI) + 2cImH(v̄RvI − w̄RwI) (5.3.41)

Note that the terms depending on θ, which only acts on v and not Ω, cancel. This is

a good sign that the two forms might be consistent. Using the equations in (5.3.13),

we can rewrite this as

δΛ = −2aΥ + 4cImH(v̄RvI) (5.3.42)
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Now we compare this to δ(τ̄σR) calculated directly. We find

δτ̄σR = 2b(|τ |2 − |σR|2)− 2aτ̄σI + 2cσ̄IσR (5.3.43)

and the part we are interested in for the comparison

ImH(δτ̄σR) = −2cImH(σ̄RσI)− 2aImH(τ̄σI) (5.3.44)

Now, note that by the constraints (5.3.13), ImH(τ̄σI) = Υ
2 and ImH(σ̄RσI) =

−ImH(v̄RvI). Therefore

2ImH(δτ̄σR) = −2aΥ + 4cImH(v̄RvI) (5.3.45)

in perfect agreement with the result for δΛ in (5.3.42). Therefore this part of the

transformation is consistent, and we can define

δα ≡ ImH(δτ̄σR) = 2b(|τ |2 − |σR|2)− 2aγ − 2cReH(σ̄RσI) (5.3.46)

where I have used the fact that ReH(τ̄σI) = γ. The next stage is to derive a similar

result for δγ. This is, in fact, not too hard. In a similar way we calculate

δΥ = 2aΛ + 4bImH(v̄RvI) (5.3.47)

and

δ
(
τ̄σI

)
= 2c(|σI |2 − |τ |2) + 2aα + aΛ− 2bσ̄RσI (5.3.48)

Again using ImH(σ̄RσI) = −ImH(v̄RvI) we can see that the imaginary parts of these

equations are consistent, and so we can define

δγ = 2c(|σI |2 − |τ |2) + 2aα− 2bReH(σ̄RσI) (5.3.49)

The final check at this stage is to make sure that δα and δγ are linearly independent,

so that we can set both γ and α simultaneously to zero. Considering the combination

Aδα +Bδγ and finding the coefficients of a, b and c, we find that the only way the



92 Chapter 5. One and Two Instantons

combination can be zero is if we have everywhere that

γ

α
|σI |2 = α

γ
|σR|2 − |τ |2

(γ
α

+ α

γ

)
= 0 (5.3.50)

But σR and σI depend on v and w, and τ is independent from them. Hence this

expression cannot be identically zero and so the variations are linearly independent.

Alternative, looking at the expression for δα, (5.3.46), we see that we can tune it

using a in order to set α to be zero. Then we have ,‘used up’ the variable a, so it

does not contribute to the variation of γ. Instead we can use one of b or c to tune γ

to be zero too.

Therefore we can set δα and δγ to be anything we want, using the parameters b and c.

In particular we can set α and γ themselves to zero using successive transformations.

For completeness we list all the useful transformations here

δvR = (θ − a)vI − bwR − cwI

δvI = (a− θ)vR − bwI + cwR

δwR = wI(a+ θ) + bvR − cvI

δwI = −(a+ θ)wR + bvI + cvR

δτ = −2(bσR + cσI)

δα = 2b(|τ |2 − |σR|2)− 2aγ − 2cRe(σ̄RσI)

δΛ = −2aΥ + 4cIm(v̄RvI)

δγ = 2c(|σI |2 − |τ |2) + 2aα− 2bRe(σ̄RσI)

δΥ = 2aΛ + 4bIm(v̄RvI) (5.3.51)

We now attempt to solve the second of equations (5.3.13) using an expansion in 1
|τ |2 .

We do this because if we expand the left hand side in terms of our solutions for σR

and σI we get

ImH(σ̄RσI) = ImH

(
− ΛΥ
|τ |2

+ 1
2|τ |2 (αΥ− γΛ)

)
= ImH(v̄RvI) (5.3.52)
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The right hand side must also depend on 1
|τ |2 and so we expand

vI = A0vR +
∞∑
i=1

Âi
|τ |2i

(5.3.53)

where the Âi are quaternions, but A0 is a real function. Note that the A0 term does

not depend on |τ |2, however this does not matter since Im(v̄RA0vR) = 0 and so it

does not appear explicitly in the RHS of the equation. The fact that the LHS is one

power of 1
|τ |2 higher than the RHS does mean that we can try and solve the equation

iteratively, as when we match the terms in 1
|τ |2i we find that the LHS depends on

1
|τ |2(i−1) whenever the RHS depends on 1

|τ |2i . First of all, we substitute vI = AvR into

the LHS to find ImH(v̄RÂ1).

A somewhat long and not very illuminating calculation tells us in this case ImH(ΛΥ) =

0. Then we have ImH

(
αΥ− γΛ

)
= −2ImH(v̄RÂi). Expanding using the definitions

of Λ and Υ, and equation (5.3.24), we get that

Âi =
(
α(A0 −K)− γ(1 +KA0)

)
wR ≡ mwR; K = β + A0|vR|2

|wR|2
(5.3.54)

Repeating the process by plugging Â1 = mwR into the LHS, we find that again

ImH(ΛΥ) = 0. But this time, there is not such a simple form for Â2:

Â2 = (m− 1)γwR − αm w̄RvRw̄R (5.3.55)

I decided that continuing the series expansion would not be particularly illuminating.

Instead notice that if α and γ are zero, then we have

ImH(v̄RÂ1) = 0 =⇒ Â1 = A1vR (5.3.56)

Where A1 is again a real function. But by iteration, this tells us that Âi = AivR, ∀i ∈

Z and therefore

vI = vR
∞∑
i=0

Ai
|τ |2

≡ AvR (5.3.57)

where we are assuming that the sum converges to a real function A. So

v = vR(1 + iA) (5.3.58)
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Using (5.3.24), we find also that

w = wR(1 + iB), B = β − A|vR|2

|wR|2
(5.3.59)

Now the goal is to use the remaining parameters a and θ to set A and B to zero,

whilst keeping α and γ zero. If this is the case, we will have recovered the solution

to the real AHDM equations in [1] as a solution to the complex equations when the

U(2) symmetry is modded out, as expected. To see if this is possible, first we write

the intermediate solution:

v = vR(1 + iA)

w = wR(1 + iB)

τ = τ

σR = τΛ
|τ |2

, Λ = (1 + AB) ImH(w̄RvR)

σI = τΥ
|τ |2

, Υ = (A−B)ImH(w̄RvR) (5.3.60)

We also give the relevant transformations

δvR = A(θ − a)vR − (b+ cB)wR

δ(AvR) = (a− θ)vR − (bB − c)wR

δwR = wRB(a+ θ) + (b− cA)vR

δ(BwR) = −(a+ θ)wR + (Ab+ c)vR

δτ = −2(bσR + cσI)

δα = 2b(|τ |2 − |σR|2)− 2AcRe(σ̄RσI)

δΛ = −2aΥ

δγ = 2c(|σI |2 − |τ |2)− 2bARe(σ̄RσI)

δΥ = 2aΛ (5.3.61)

Where we can simply insert our solutions into the transformation formulae as we

showed above that the transformations were consistent with our constraint equations.
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At first sight there seems to be an issue with consistency, as

δA = v̄R
|vR|

(
δ(AvR)− AδvR)

)
(5.3.62)

This gives

δA = (a− θ)(1 + A2) + v̄RwR
(
b(B − A)− c(1 + AB)

)
(5.3.63)

The problem is that A is a real function, and therefore δA should be real. But here

δA is a quaternion. In fact, we have

ImH(δA) = bΥ + cΛ (5.3.64)

The solution to this difficulty is that the validity of this intermediate solution depends

on α and γ remaining zero. However we can only make their variations vanish

everywhere by setting b and c equal to zero. This follows from the linear independence

of δα and δγ. Then we have

δA = (a− θ)(1 + A2) (5.3.65)

which is real, as required. If b and c are zero, the remaining transformations become

δvR = A(θ − a)vR

δ(AvR) = (a− θ)vR

δwR = wRB(a+ θ)

δ(BwR) = −(a+ θ)wR

δτ = 0

δα = 0

δΛ = −2aΥ

δγ = −0

δΥ = 2aΛ (5.3.66)
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Then we can also see that

δB =
w̄R
(
δ(BwR)−BδwR

)
|wR|2

= (a+ θ)(1 +B2) (5.3.67)

There are two more consistency checks we must perform. First of all, are δA and

δγ independent? Second, is δB to linear order the same as we’d get by varying

the definition of B in equation (5.3.59)? It is not too difficult to see the first of

these is true – one simply multiplies out the expression CδA + DδB and looks at

the coefficients of a and θ. The second condition is also guaranteed because we can

simply define

δβ ≡ δ(|wR|2B) + δ(A|vR|2) = Bδ|wR|2 + (δB)|wR|2 +Aδ|vR|2 + (δA)|vR|2 (5.3.68)

The only thing we require of δβ is that it be real, but this is guaranteed as all the

quantities on the RHS, and hence their variations, are real. Therefore we can use

the two parameters a and θ to set A and B equal to zero. This gives us the solution

v, w, τ, σ = τΛ
|τ |2

; Λ = ImH(w̄v) (5.3.69)

This is the same as the solution in [1]. We now move on to trying to solve the

noncommutative equations.

5.4 The Noncommutative solution

In this section I explore the solution to the noncommutative deformation of the

above ADHM equations. The first step is to review the solution suggested in [37]. I

show that this solution is incorrect, and outline several strategies I used to try and

find a full solution. I was unable to find such a full solution, however I was able

to find a solution on a subspace of the full moduli space. Once I have this partial

solution, I use it to calculate the metric and potential for this subspace of the moduli

space, as well as the scalar field.

To begin with , consider the noncommutative ADHM equations. As stated above,
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they are very similar to the commutative ones and are given by

2ImH(σ̄RσI)− ImH(w̄RwI)ImH(v̄RvI) = 0

ImH(w̄RwI) + ImH(v̄RvI) = −4ζσ3

ImH(τ̄σI) = ImH(w̄RvI + v̄RwI)
2 ≡ Υ

2

ImH(τ̄σR) = ImH(w̄RvR + w̄IvI)
2 ≡ Λ

2 (5.4.1)

Where the second equation is the one which has changed, and σ3 is the quaternion

basis element i 0

0 −i

 (5.4.2)

We can try to solve this using the same method we used for the complex commutative

equations. The initial steps are the same. We can solve the third and fourth equations

as

σR = τ

|τ |2
(
α + Λ

2

)
(5.4.3)

and

σI = τ

|τ |2
(
γ + Υ

2

)
(5.4.4)

just as before. We can use the second equation to deduce that

w̄RwI = β − v̄RvI − 4iζσ3 (5.4.5)

and so

wI = wRβ − wRv̄RvI − 4iζwRσ3

|wR|2
(5.4.6)

Getting any further than this, however, is rather non trivial.

5.4.1 Checking the previous solution

A good starting point is checking the solution given in [37]. There the solution

for the biquaternionic noncommutative parameters w′ & v′ is given in terms of the
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quaternions w and v as

w′ = w

|w|


√
|w|2 + αζ 0

0
√
|w|2 − αζ

 (5.4.7)

and the obvious equivalent for v′ in terms of v. In the notation we’ve been using

this is

v′ = v(A+ iCσ3)

w′ = w(B + iDσ3) (5.4.8)

where

A =

√
|v|2 − αζ +

√
|v|2 + αζ

2|v|

C =

√
|v|2 − αζ −

√
|v|2 + αζ

2|v|

B =

√
|w|2 − αζ +

√
|w|2 + αζ

2|w|

D =

√
|w|2 − αζ −

√
|w|2 + αζ

2|w| (5.4.9)

This gives

v′R = Av

v′I = Cvσ3

w′R = Bw

w′I = Dwσ3 (5.4.10)

The claim in [37] is that propagating these definitions through σ solves the noncom-

mutative ADHM equations. However I want to check if this is true, using the more

rigorous method of splitting into complex real and imaginary parts defined above.

First of all, we need to work out what Λ and Υ are. We can solve equations 3 and 4

of (5.4.1) to get

Λ = ImH(w′Rv′R + w′Iv
′
I) = ABImH(w̄v) + CDImH(σ̄3w̄vσ3)
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Υ = ImH(w̄′Rv′I + v̄′Rw
′
I) = BCImH(w̄vσ3) + ADImH(v̄wσ3) (5.4.11)

What about the other equations? First we look at the second one. Then

− 4ζσ3 = ImH(w̄′Rw′I) + ImH(v̄′Rv′I) =
(
BD|w|2 + AC|v|2

)
σ3 (5.4.12)

We can see that

BD|w|2 = AC|v|2 = −αζ2 (5.4.13)

and so we have

α = 4 (5.4.14)

Now for the final equation. Assuming that, as in [37], we have used the symmetries

to set σR = τΛ
2|τ |2 and σI = τΥ

2|τ |2 , this equation becomes

ImH(σ̄RσI) = − 1
4|τ |2 ImH(ΛΥ) = ImH(v̄′Rv′I)− ImH(w̄′Rw′I) (5.4.15)

But this left hand side is equal to

(
AC|v|2 −BD|w|2

)
σ3 = (−2ζ + 2ζ)σ3 = 0 (5.4.16)

So we are trying to solve

ImH(ΛΥ) = 0 (5.4.17)

Using (5.4.11), we can expand ΛΥ as

ACB2ImH(w̄v)Im(w̄vσ3)

+BDA2ImH(w̄v)Im(v̄wσ3)

+BDC2ImH(σ̄3w̄vσ3)ImH(w̄vσ3)

+ACD2ImH(σ̄3w̄vσ3)ImH(v̄wσ3) (5.4.18)

For convenience of notation, we write this as

ACB2X +BDA2Y +BDC2W + ACD2Z (5.4.19)
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and look at each term, one at a time. In general, we’ll use (5.4.13), as well as the

facts that

A2 = 1
2 +

√
|v|4 − α2ζ2

2|v|2

C2 = 1
2 −

√
|v|4 − α2ζ2

2|v|2

B2 = 1
2 +

√
|w|4 − α2ζ2

2|w|2

D2 = 1
2 −

√
|w|4 − α2ζ2

2|w|2 (5.4.20)

Then

ACB2X = −
(1

2 +

√
|w|4 − α2ζ2

2|w|2
)
αζ

2|v|2
(
w̄vw̄vσ3 − |v|2|w|2σ3 − w̄vσ̄3v̄w + v̄wσ̄3v̄w

)

BDA2Y = −
(1

2 +

√
|v|4 − α2ζ2

2|v|2
)
αζ

2|w|2
(
|w|2|v|2σ3 − v̄wv̄wσ3 − w̄vσ̄3w̄v + v̄wσ̄3w̄v

)

BDC2W = −
(1

2 −

√
|v|4 − α2ζ2

2|v|2
)
αζ

2|w|2
(
σ̄3w̄vσ3w̄vσ3 − σ̄3v̄wσ3w̄vσ3 − σ̄3|w|2|v|2 + σ̄3v̄wv̄w

)

ACD2Z = −
(1

2 −

√
|w|4 − α2ζ2

2|w|2
)
αζ

2|v|2
(
σ̄3w̄vσ3v̄wσ3 − σ̄3v̄wσ3v̄wσ3 − σ̄3w̄vw̄v + σ̄3|w|2|v|2

)
(5.4.21)

We can group these terms as

− αζ

4|v|2 (X+Z)− αζ

4|w|2 (Y+W)+−
αζ
√
|w|4 − α2ζ2

4|w|2|v|2 (X−Z)−
αζ
√
|v|4 − α2ζ2

4|w|2|v|2 (Y−W)

(5.4.22)

We can Taylor expand

√
|v|4 − α2ζ2 ≈ |v|2 + α2ζ2

|v|2
+ ... (5.4.23)

and similarly for
√
|w|2 − α2ζ2. Then

σ̄RσI ≈ −
αζ

2

( X
|v|2

+ Y
|w|2

)
− α3ζ3

4|v|2|w|2
(X− Z
|w|2

+ Y−W
|v|2

)
+ . . . (5.4.24)
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Now, to show that the solution doesn’t work, we need only show that the term linear

in ζ is non- zero, that is, we need to show that it cannot be the case that

ImH

( X
|v|2

+ Y
|w|2

)
= 0 (5.4.25)

Now,
X
|v|2

+ Y
|w|2

= Im(w̄v)
(
Im(w̄vσ3

|w|2
) + Im( v̄wσ3

|v|2
)
)

(5.4.26)

Now, (5.4.25) being satisfied implies that either (5.4.26) is identically zero, or that

it is always a real number. We look at the former case first. Since the quaternions

are a field, there are no zero divisors, so (5.4.25) being satisfied implies either that

ImH(w̄v) ≡ 0 (5.4.27)

or

ImH(w̄vσ3

|w|2
) + Im( v̄wσ3

|v|2
) ≡ 0 (5.4.28)

The first of these clearly cannot be true in general, so we look at the second. We

can rewrite it as

ImH

((
w̄v

|w|2
+ v̄w

|v|2
)
σ3

)
(5.4.29)

The above expression can only vanish if w̄v
|w|2 + v̄w

|v|2 ∝ σ3 which will not be true for

general v and w. Therefore (5.4.26) cannot be identically zero.

We now have to check the case where (5.4.26) is real. This requires that

w̄v

|w|2
+ v̄w

|v|2
∝ w̄vσ3 (5.4.30)

so that

Im
(( w̄v
|w|2

+ v̄w

|v|2
)
σ3

)
∝ ImH(w̄v) (5.4.31)

and
X
|v|2

+ Y
|w|2

∝ Im2
H(w̄v) ∈ R (5.4.32)

multiplying both sides of (5.4.30) by v̄w and rearranging, we find this would imply

that

v̄wv̄w = −|v|41 + κ|w|2|v|4σ3 (5.4.33)
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For some real function κ. Again, this will not be true for arbitrary v and w. So we

see that the solution given in [37] is not a solution to the noncommutative ADHM

equations

5.4.2 The Noncommutative Case

If this is not the solution, then what is? I tried many methods, but was unable to

find a solution for the full quaternion moduli space. However I was able to find a

solution on a complex subspace, which I present here. This subspace comes from

restricting the the quaternions to the subspace consisting of elements z ∈ C written

as x+ yσ3, for x, y ∈ R and σ3 the usual Pauli matrix

σ3 =

i 0

0 −i

 (5.4.34)

Note that σ2
3 = −1H, and therefore σ3 can play the role of the imaginary unit. We

start with the second ADHM equation, now for complex variables

ImC(v̄RvI) + ImC(w̄RwI) = −4ζσ3 (5.4.35)

Recall that we are using the notation ImH to mean the imaginary quaternion part

of an element of H; e.g. for q = q0 + q ∈ H,

ImH(q) = q (5.4.36)

On the other hand, ImC takes the imaginary component of an element of C. If

z ∈ C; z = a+ ib

ImC(z) = b (5.4.37)

With these definitions in mind, we can solve this for wI and vI in terms of the other

variables by finding a particular solution, then by adding the null space, found by

solving

ImC(v̄RvI) + ImC(w̄RwI) = 0 (5.4.38)
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It isn’t too hard to see that a particular solution is given by

vIp = −2ζvRσ3

|vR|2
; wIp = −2ζwRσ3

|wR|2
(5.4.39)

We already know the solution to the null equation; it is

ṽI = vR
|vR|2

(
β − w̄Rw̃I

)
(5.4.40)

For arbitrary real β and arbitrary quaternion w̃I . Therefore we have the general

solution

vI = −2ζvRσ3

|vR|2
+ vR
|vR|2

(
β − w̄Rw̃I

)
(5.4.41)

wI = −2ζwRσ3

|wR|2
+ w̃I

To complete this general solution we need to solve for w̃I . This is done by solving

the first ADHM equation

ImC(σ̄RσI) = ImC(v̄RvI)− ImC(w̄RwI) (5.4.42)

We can use two of the symmetries to set Re(τ̄σ) = 0, by analogy to [1]. This

corresponds to removing any component proportional to τ from σ. If we do this,

then the equation becomes

− ImC(ΛΥ)
|τ |2

= ImC(v̄RvI)− ImC(w̄RwI) (5.4.43)

In general I have been unable to find a solution, however if we restrict to the

complex plane spanned by 1 and σ3 the LHS becomes zero, since Λ and Υ are both

proportional to σ3, and hence their product is real and ImC(ΛΥ) = 0. Putting the

solutions in (5.4.41) into the RHS we get

ImC(w̄Rw̃I) = 0 (5.4.44)

This leads to the solution

vI = −2ζvRσ3

|vR|2
+BvR (5.4.45)
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wI = −2ζwRσ3

|wR|2
+ AwR

Following the discussion in section 5.3.2, we can use the remaining two symmetries

to set A and B above to zero, we get the full solution for the complex subspace

vI = −2ζvRσ3

|vR|2

wI = −2ζwRσ3

|wR|2

σR = τ Im(w̄RvR + w̄IvI)
2|τ |2 = (|vR|2|wR|2 + 4ζ2)

2|τ |2|vR|2|wR|2
τ ImC(w̄RvR)σ3

σI = τ ImC(w̄RvI + v̄RwI)
2|τ |2 = −ζ(|wR|2 + |vR|2)

|τ |2|vR|2|wR|2
τ ImC(w̄RvRσ3)σ3 (5.4.46)

We can check our assumption about the symmetries by checking both that our solu-

tion really does solve the ADHM equations, and that there are no residual symmetries

remaining. By this I mean that there should be no symmetry transformations of the

solution which also solve the ADHM equations, since this would imply that there

were degrees of freedom which our solution had not accounted for. It is straightfor-

ward to check the first part. To show there are no residual symmetries remaining,

we consider a general linear order U(2) transformation, as discussed earlier

∆ 7→

1 0

0 R†

∆R; R =

 a b

−b̄ ā

 ; a, b ∈ C, |a|2 + |b|2 = 1 (5.4.47)

This generates the transformation
v w

τ σ?

σ −τ

 7→


av − b̄w bv + āw

(|a|2 − |b|2)τ − abσ − āb̄σ? 2ābτ − b2σ + ā2σ?

2ab̄τ + a2σ − b̄2σ? −(|a|2 − |b|2)τ + abσ + āb̄σ?

 (5.4.48)

Now, to preserve the symmetry we require two things. First, we require that

ReC(τ̄σ) = 0 has no component proportional to τ . We also require that w̄RwI = v̄RvI .

The first of these conditions requires that

(
|a|2 − |b|2

)
ab̄ = 0

a3b− āb̄3 = 0 (5.4.49)
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If we write

a = cosχ
(
cosθ + isinθ

)
b = sinχ

(
cosφ+ isinφ

)
(5.4.50)

Then the first of the conditions in equation 5.4.49 gives the equation

1
2 cos(2χ) sin(2χ)

(
cos(θ − φ) + i sin(θ − φ)

)
= 0 (5.4.51)

This requires that χ = nπ
4 . We can now look at the second equation of (5.4.49),

which gives

sin(χ) cos3(χ)
(

cos(3θ+φ)+i sin(3θ+φ)
)
−sin3(χ) cos(χ)

(
cos(θ+3φ)+i sin(θ+3φ)

)
(5.4.52)

When χ = nπ
4 with n even then this will vanish automatically, however when n is

odd we have

(
cos(3θ+φ)−cos(θ+3φ)+i

(
sin(3θ+φ)+sin(θ+3φ)

))
−
(

cos(θ+3φ)+i) (5.4.53)

For this to vanish we require θ = −φ. Thus satisfying the condition on ReC(τ̄σ)

gives the constraints

χ = nπ

4 ; θ = −φ (5.4.54)

for n from 1 to 7. The condition on χ gives the dihedral group of order 16 as a group

of discrete rotations. The implications of this are discussed in [1]. Now, we look at

the second part of our symmetry. After the transformation,

w̄RwI = |b|2v̄RvI + |a|2w̄RwI + b̄ā v̄RwI + ab w̄RvI

w̄RwI = (|a|2 − |b|2)w̄RwI + b̄ā v̄RwI + ab w̄RvI

Keeping w̄RwI = −v̄RvI requires

2abw̄RwI = 0 (5.4.55)
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This requires ab = 0, which is satisfied if cos(2θ) + i sin(2θ) = 0. This leads to

θ = 0, π2 , π,
3π
2 (5.4.56)

θ = nπ
2 multiplies a, b by ±1 and so does not change the symmetries in [1]. If we set

θ = 0, π we multiply a and b by ±i and ∓i respectively. This doesn’t change τ , but

sends σ → −σ. It also interchanges the complex real and imaginary parts of v′ and

w′.

5.5 The Scalar Field

Once we have the solution to the constraints, the next step is to calculate the scalar

field. Insofar as we do not substitute in the solutions in the above section, 5.4.2,

this solution for the scalar field is valid for the whole quaternion subspace, albeit

with vI , wI , σR, σI as unspecified functions of the moduli space coordinates vR, vI

and τ , as well as the parameter ζ. If we substitute in the solutions from section 5.4.2

then the scalar field derived would only be valid for the complex subspace. This also

applies to the Potential and Metric derived below.

With these comments in mind, our anzatz is

φ = U †AU ; A =

q 0

0 P

 (5.5.1)

Here q is in the odd graded part of C × H; i.e. q = iq0 + q, where q0 ∈ R and

q ∈ ImHH. This is isomorphic to U(2). The matrix P is given by ai ci− b

ci+ b di

 (5.5.2)

Following the method in section 3.4.1 we arrive at the equation of motion for the

scalar field:

2Tr2(Λ†qΛ) + Tr2([Ω†, P ]Ω− Ω†[Ω, P ])− Tr2({P,Λ†Λ}) = 0 (5.5.3)
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Solving the equation is a lengthy calculation, which I have therefore relegated to

appendix A. The solution is

a =− 1
Θ

(
A(3)

(
g2NAI − f 2NAR

)
+ A(2)w(4gP − fNAR) + A(1)w(4fP − gNAI)

−
(
(16P 2 −NARNAI

)(
A(3)(2s+ w) + wA(4)

))

b = 1
2Θ

(
A(1)

(
f 2(v + w)− 2NAI(sv + sw + vw)

)
+ A(2)(fg(v + w) + 8P (sv + sw + vw))

+ (4fP + gNAI)
(
A(3)(v − w)− A(4)(v + w)

))

c = 1
2Θ

(
A(1)

(
fg(v + w)− 8P (sv + sw + vw)

)
+ A(2)

(
g2(v + w) + 2NAR(sv + sw + vw)

)

+ (fNAR + 4gP )
(
A(3)(v − w) + A(4)(v + w)

))

d =− 1
Θ

(
A(3)

(
f 2NAR − g2NAI

)
+ A(2)v(4gP − fNAR) + A(1)v(4fP − gNAI)

+ (A(3)(2s+ v)− A(4)v)
(
16P 2 −XY

))
(5.5.4)

where

A(1) = 4q0ReH(v̄RwI − v̄IwR)− 4ReH(v̄RqwR + v̄IqwI)

A(2) = 4q0ReH(v̄RwR + v̄IwI) + 4ReH(v̄RqwI − v̄IqwR)

A(3) = q0
(
|vR|2 + |vI |2 − |wR|2 − |wI |2

)
+ 2ReH(v̄RqvI − w̄RqwI)

A(4) = q0
(
|vR|2 + |vI |2 + |wR|2 + |wI |2

)
+ 2ReH(v̄RvI + w̄RqwI)

f = ReH(w̄RvR + w̄IvI)

g = ReH(w̄IvR − v̄IwR)

x = |σR|2

y = |σI |2

P = ReH(σ̄RσI)

v = |vR|2 + |vI |2

w = |wR|2 + |wI |2

NAR = |vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σR|2)
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NAI = |vR|2 + |vI |2 + |wR|2 + |wI |+ 4(|τ |2 + |σI |2)

Θ = (v + w)
(
f 2NAR − g2NAI

)
+ 2

(
16P 2 −NARNAI

)
(sv + sw + vw) (5.5.5)

In the commutative limit from [1], that is, ζ = 0 and the imaginary quaternion parts

qI set to zero, this becomes

b = −2ReH(v̄qw)
Σ+ + 4(|τ |2 + |σR|2) ; a, b, d = 0 (5.5.6)

which is precisely the result in that paper.

Another useful limit is that in which |τ | 7→ ∞. In this case

a = q0(|vR|2 + |vI |2) + 2Re(v̄RqvI)
|vR|2 + |vI |2

d = q0(|wR|2 + |wI |2) + 2Re(w̄RqwI)
|wR|2 + |wI |2

(5.5.7)

With b, c = 0. This corresponds to the two instantons being far seperated. In this

case we would expect them to look like two single U(2) instantons, and we see from

comparison with (5.1.10) that this is precisely the case.

5.6 The Potential

The next step is to use this to explicitly calculate the potential. Recall from section

4.4 that the potential is given by

V =
∫
d4xTr(DiφDiφ) (5.6.1)

Integrating by parts, and using the equation of motion for φ

D2φ = 0 (5.6.2)

We get

V = limR 7→∞

∫
|x|=R

dS3x̂iTr
(
φDiφ

)
(5.6.3)
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We know that the vector U , being a null vector of ∆, must solve

v†U1 + (τ † − x†)U2 + σ†U3 = 0

w†U1 + σ†U2 − (τ † + x†)U3 = 0 (5.6.4)

This is solved on the boundary by

U1 7→ 1

U2 7→
x

|x|2
v†

U3 7→
x

|x|2
w† (5.6.5)

The full calculation is in the appendix B. The result is

8π2

|q|2(|vR|2 + |vI |2 + |wR|2 + |wI |2
)

+ 4q0ReH(v̄R~qvI + w̄R~qwI)− a
(
q0(|vR|2 + |vI |2 + 2ReH(v̄RqvI)

)
− d

(
q0(|wR|2 + |wI |2) + 2ReH(w̄R~qwI)

)
+ 2bReH(v̄R~qwR + v̄I~qwI)

− 2bq0ReH(wI v̄R − wRv̄I)− 2cq0ReH(wRv̄R + wI v̄I)− 2cReH(v̄R~qwI − v̄I~qwR)


(5.6.6)

Since we can choose the q0 to be zero by requiring the vev to lie in SU(2) (as

discussed in section 4), we can make this choice and simplify to

8π2

|q|2(|vR|2 + |vI |2 + |wR|2 + |wI |2
)
− a

(
2Re(v̄RqvI)

)
− d

(
2Re(w̄R~qwI)

)

+ 2bRe(v̄R~qwR + v̄I~qwI)− 2cRe(v̄R~qwI − v̄I~qwR)
 (5.6.7)

Where a, b, c, d are given above.
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5.6.1 The Large τ limit

If we go back to the large τ limit, using (5.5.7)

V = 8π2

|q|2(|vR|2 + |vI |2 + |wR|2 + |wI |2
)

+ 4q0Re(v̄R~qvI + w̄R~qwI)

−

(
q0(|vR|2 + |vI |2 + 2Re(v̄RqvI)

)2

|vR|2 + |vI |2
−

(
q0(|wR|2 + |wI |2) + 2Re(w̄R~qwI)

)2

|wR|2 + |wI |2


(5.6.8)

In this case, the q0 parts cancel explicitly, and we get

V = 8π2|q|2
q̂(|vR|2+|vI |2+|wR|2+|wI |2

)
−4Re2(v̄Rq̂vI)
|vR|2 + |vI |2

−4Re2(w̄Rq̂wI)
|wR|2 + |wI |2

 (5.6.9)

We would expect this is the potential for two copies of the single U(1) instanton, and

if we compare to the result in section 5.1.1 we can easily see that this is the case.

5.7 The Metric

As in section 4.3, we begin by calculating, a†δCr, and impose the condition

a†δCr =
(
a†δCr

)T?
(5.7.1)

Once again, we carefully note that T involves taking the transpose considered as a

2× 2 matrix of complex quaternions. It does not affect the quaternions themselves.

The operation ? takes the complex conjugate of each element, which again does not

affect the quaternions but only their complex coefficients.

This should give us one equation for each component. We can expand δR in the u(2)

basis as  idφ idψ − dθ

idψ + dθ idχ

 (5.7.2)

this should give 3 simultaneous equations for the derivations in the different gauge

directions. We can then solve these to find δR in full. The details of the calculation

are in appendix C, however the result is
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dφ = 1
Φ

(
− 2B(1)(2s+ w)(4fP − gNAI) + 2B(2)((2s+ w)(4gP − fNAR)

− (B(3)(2s+ w) +B(4)w)
(
16P 2 −NARNAI

)
− 2B(4)

(
f 2NAR − 8fgP + g2NAI

))

dθ = 1
Φ

(
2B(1)

(
f 2(4s+ v + w)−NAI(sv + sw + vw)

)
+ 2B(2)(fg(4s+ v + w)− 4P (sv + sw + vw))

+ (B(3)(4s+ v + w)−B(4)(v − w))(4fP − gNAI)
)

dψ = 1
Φ

(
− 2B(1)(fg(4s+ v + w)− 4P (sv + sw + vw))

− 2B(2)
(
g2(4s+ v + w)− 2NAR(sv + sw + vw)

)
+ (B(3)(4s+ v + w)−B(4)(v − w))(4gP − fNAR)

)

dχ = 1
Φ

(
− 2B(1)(2s+ v)(4fP − gNAI) + 2B(2)(2s+ v)(4gP − fNAR)

−
(
16P 2 −NARNAI

)
(B(3)(2s+ v)−B(4)v) + 2B(4)

(
f 2NAR − 8fgP + g2NAI

))

(5.7.3)

Where the terms are defined in (5.5.5) with the addition of

B(1) =v̄RdwR + v̄IdwI − w̄RdvR − wIdvI + 2(τ̄ dσR − σ̄Rdτ)

B(2) =v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2(σ̄Idτ − τ̄ dσI)

B(3) =v̄RdvI − v̄IdvR + w̄RdwI − w̄IdwR

B(4) =v̄RdvI − v̄IdvR − w̄RdwI + w̄IdwR + 2(σ̄RdσI − σ̄IdσR)

Φ =4
(
(4s+ v + w)

(
f 2X − 8fgP + g2Y

)
+
(
16P 2 − XY

)
(sv + sw + vw)

)
(5.7.4)
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5.7.1 The metric itself

Once again we have our formula

ds2 = ds2
1+ds2

2 = 2π2
(
Tr?

(
2dΛ†dΛ+dΩ†dΩ

)
+Tr?

((
a†da−(a†da)T?

)
dR
))

(5.7.5)

First we have that a†da− (a†da)T? is[
0 v̄RdwR + v̄IdwI − w̄RdvR − w̄IdvI + 2(τ̄dσR − σ̄Rdτ)

−
(
v̄RdwR + v̄IdwI − w̄RdvR − w̄IdvI + 2(τ̄dσR − σ̄Rdτ)

)
0

]

+ i

[
2
(
v̄RdvI − v̄IdvR + σ̄RdσI − σ̄IdσR

)
v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2

(
σ̄Idτ − τ̄dσI

)
v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2

(
σ̄Idτ − τ̄dσI

)
2
(
w̄RdwI − w̄IdwR − σ̄RdσI + σ̄IdσR

) ]
(5.7.6)

Once we have this it is fairly straightforward to calculate the metric as

8π2
(
d2vR + d2vI + d2wR + d2wI + d2τ + d2σR + d2σI

− ReH

((
v̄RdvI − v̄IdvR + σ̄RdσI − σ̄IdσR

)
dφ+

(
w̄RdwI − w̄IdwR − σ̄RdσI + σ̄IdσR

)
dχ

+
(
v̄RdwR + v̄IdwI − w̄RdvR − w̄IdvI + 2(τ̄ dσR − σ̄Rdτ))

)
dθ

+
(
v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2

(
σ̄Idτ − τ̄ dσI

))
dψ
)

(5.7.7)

5.7.2 Checking the Solution

We can check the behaviour of this solution in various limits. First of all, the

commutative real limit, where the various imaginary quaternion parts qI and the

noncommutative parameter ζ are set to zero. In this limit we have

dφ = dψ = dχ = 0; dθ = v̄RdwR − w̄RdvR − w̄RdvR + 2(τ̄ dσR − σ̄Rdτ)
|vR|2 + |wR|2 + 4(|τ |2 + |σR|2) (5.7.8)

This allows us to calculate the metric to be

8π2
(
d2vR + d2wR + d2τ + d2σR −

dk2

NA

)
(5.7.9)

with

NA = |vR|2 + |wR|2 + 4(|τ |2 + |σR|2) (5.7.10)
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dk = v̄RdwR − w̄RdvR − w̄RdvR + 2(τ̄ dσR − σ̄Rdτ)

exactly as in [1]. The second limit we can check is the limit in which |τ | 7→ ∞.

Since this corresponds to the two instantons becoming far separated, in this limit,

we would expect to get two copies of the solution for a single U(2) instanton. We in

fact get

dφ = vRdvI − v̄IdvR
|vR|2 + |vI |2

; dχ = wRdwI − w̄IdwR
|wR|2 + |wI |2

(5.7.11)

This gives the metric

ds2 = 8π2
(
d2vR + d2vI + d2wR + d2wI −

(
vRdvI − v̄IdvR

)2

|vR|2 + |vI |2
−

(
wRdwI − w̄IdwR

)2

|wR|2 + |wI |2

)

(5.7.12)

This is precisely the sum of two copies of the form in section 5.1.2 above, equation

(5.1.27).

5.8 Conclusion

I shall end the chapter by reviewing the main results. I have explicitly derived

biquaterion valued ADHM equations for the commutative and non-commutative

U(2) 2 instanton case. I have shown that a solution to the commutative biquaternion

valued equations can always be rotated to a purely quaternion valued form.

I have then moved on to the noncommutative case. I showed that the existing

solution in [37] was incorrect. I then derived a partial solution for the complex

valued subspace of the whole Instanton moduli space. I used this to calculate the

metric, scalar field and potential for this subspace, and checked that in the correct

limits my solutions matched up with the solutions in [1] and [3]. Now I will go on

to investigate the dynamics on the moduli space via numerical methods.





Chapter 6

Two Instanton Dynamics

In this section we discuss the dynamics of the instantons on the noncommutative

two Instanton moduli space we have constructed. The graphs in this section were

produced using the same basic code as [1], but modified for the non commutative

metric and potential we derived.

6.1 The Setup

I will now give a general overview of the method we used to scatter two Instantons.

The parametrisation is as shown in figure 6.1. As stated in section 4.2.1, we are

working on the subspace of the total moduli space with the collective coordinates

in C × C rather than C × H. Therefore the coordinates shown in the diagram are

complex numbers. In the noncommutative case, the instanton size ρi is defined as

ρ̃i =
√
ρ2
i + 4ζ

ρ2
i

(6.1.1)

Where the index i in ρi is either 1 or 2, referring to the magnitude of v or w

respectively. Calculating the scattering with general ρ1 and ρ2, and with general

gauge embedding is very computationally expensive for the noncommutative case.

Therefore we did a lot of the simulations in the, ‘Orthogonal’ case where ρ1 = ρ2 and

the relative gauge angle between the two instantons is π/2. The relation between
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y

x
b

ω

χ

ρ̃2

Figure 6.1: The setup of the Instantons. The instantons are located
at ±(x, b) =

(
ωcos(χ), ωsin(χ)

)
. They have size ρ̃i =√

ρ2
i + 4ζ2

ρ2
i
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the new coordinates ρi, θi, ω, χ and v, w, τ is given by

v = ρ1
(

cos(θ1) + i sin(θ1)
)

w = ρ2
(

cos(θ2) + i sin(θ2)
)

τ = ω
(

cos(χ) + i sin(χ)
)

(6.1.2)

The relation between the coordinates b, x and ω, χ is

x = ω cos(χ)

b = ω sin(χ)

ω =
√
b2 + x2

χ = arctan(b/x) (6.1.3)

There are several technical issues which emerged. First of all, around the point of

collision there is a discontinuous jump between the different, ‘paths’ the instantons

can take – there is no a priori reason why any two of the paths should be connected

rather than the alternative option. This can be seen on several of the graphs around

the origin.

The second issue is with the parameterisation of the Instanton position in terms of

τ . The position of the Instanton is given by the eigenvalues of the submatrixτ σ?

σ −τ

 (6.1.4)

of the ADHM data [1]. Recall that

σR = Im(w̄RvR + w̄IvI)
2 = (|vR|2|wR|2 + 4ζ2)

2|τ |2|vR|2|wR|2
τ Im(w̄RvR)

σI = Im(w̄RvI + v̄RwI)
2 = −ζ(|wR|2 + |vR|2)

|τ |2|vR|2|wR|2
τ Im(w̄RvRσ3) (6.1.5)

In the subspace under discussion, and in the coordinates we are using, this becomes

σR =
i
(
ρ2

1ρ
2
2 + 4ζ2

)(
cos(χ) + i sin(χ)

)
sin(θ1 − θ2)

2ρ1ρ2ω
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σI =
−iζ

(
ρ2

1 + ρ2
2

)(
cos(χ) + i sin(χ)

)
cos(θ1 − θ2)

ρ1ρ2ω
(6.1.6)

At large τ , the matrix is effectively diagonal, and so the positions of the two Instan-

tons can be approximated by τ and −τ respectively. At small values of τ , however,

σ becomes very large and therefore ±τ is no longer a good description. A better

approximation is to diagonalise the full matrix which gives the parametrisation
√
τ 2 + σ2 for the position (note that this is in general a complex number), though

this can give a discontinuity at the origin to the presence of the square root, with

both positive and negative values. In practice, different plottings are clearly better

for different cases – usually for the noncommutative case it made more sense to use

the more complicated parametrisation, as the presence of ζ in σ means that this

becomes more important (as shown in figure 6.2).

6.1.1 Numerical Checks

We performed several checks on the numerical accuracy of our results. There were

two basic programmes used. The first was developed from the code used for [1], and

was used for the orthogonal instantons. The second was used for the 6-parameter

case, and was written by Mr. Joseph Farrow. In both cases, I made sure that I

could reproduce the results from [1] when I set ζ = 0. I also made sure that the

second code reproduced the results of the first when I set the six parameters to

the same values as individual graphs in the four parameter case. Additionally, I

checked that, e.g. there was no interaction when the instantons were far seperated.

Finally, I checked that for small values of ζ there was no observable change from the

commutative case.

I also looked at how changing the numerical precision of the method affected the

results. For the first code, I implemented this by changing the precision of the

NDSolve algorithm in Mathematica. Here it turned out that the standard precision

was enough – there was no appreciable change from increasing the precision beyond

this. For the second code, I checked this by manually changing the step size and
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Figure 6.2: Scattering of Dyonic instantons with b = 0.5 and ζ =
1.15. The upper plot shows the |τ | parametrisation, the
lower shows

√
|τ |2 + |σ|2. The radii of the instantons are

not shown. In this case the σ behaviour dominates and
after the interaction the position of the instantons goes
as 1
|τ |2 – the τ case had to be run for many more time

steps (50000 as opposed to 2400). This is presumably
because the size of the instantons becomes very large
and so σ continues to dominate τ in the definition of
the instanton position
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number of steps. I increased it until further changes no longer seemed to have any

effect on the graphs produced.

6.2 Pure Instantons

We start with the four parameter orthogonal instantons. The first thing we could

do is look at the scalar field profiles for the instantons. This will give us an idea

whether the interpretation of the parameters for the noncommutative instantons

makes sense in terms of the interpretation for the commutative instantons. This

is made more difficult by the fact that the calculation of the scalar field involves

the Moyal product. We used a first order expansion in the Moyal product, which

ought to be valid for small ζ. We found that for small zeta (up to about 0.025) there

was no observable difference with the commutative case (See figures 6.3 and 6.4)

However, if we increased ζ even as far as 0.1, some differences emerged. The first is

the presence of a discontinuity in the left hand graph. This is almost certainly an

error due to only going to first order in the Moyal product. The second difference

is the presence of a ring structure in the separate peaks in figure 6.5. This can

be seen more clearly if we plot a two dimensional plot as in figure 6.6. Increasing

ζ increases the size of the rings, as in figure 6.7. I think that this is less likely

to be numerical error and may be a genuinely new feature of the noncommutative

case, however future work caluculating the Moyal product to higher orders in the

scalar field would be required. Now we move to look at the scattering. We will

first compare some particular scattering cases for different values of ζ, then I will

conduct a more systematic analysis and search for interesting behaviour. Choosing

a value for the noncommutative parameter ζ sets an overall scale, so we can, ‘scan’

the parameter space by changing one of the other parameters at a time to look for

abrupt changes in the scattering angle. We can then focus on these areas to look

at the scattering behaviour around these points on the moduli space. It should be

noted that this scanning process is not in itself sensitive to periodic ambiguities
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Figure 6.3: The scalar field profile for the Commutative instantons.
The left graph is when they are nearly coincident, the
right when they are seperated. The solid line shows the
profile along the imaginary direction of the complex sub-
space; the dotted line shows the profile off the complex
subspace we are elsewhere considering.

Figure 6.4: The scalar field profile for the Noncommutative instan-
tons with ζ=0.025. The left graph is when they are
nearly coincident, the right when they are seperated.
The solid line shows the profile along the imaginary dir-
ection of the complex subspace; the dotted line shows
the profile off the complex subspace we are elsewhere
considering.

Figure 6.5: The scalar field profiles for coincident (left) and seper-
ated (right) Instantons with ζ = 0.1. The dotted and
solid lines have the same meaning as before. As dis-
cussed in the main text these graphs are probably not
reliable due to being calculated only to first order in the
Moyal product



122 Chapter 6. Two Instanton Dynamics

Figure 6.6: A top down 2D contour plot of the noncommutative
part of figure 6.5. The brighter circles in the dark spots
show that the splitting of the two peaks really does
indicate a ring structure

Figure 6.7: The scalar field profiles in 1D and 2D for the case in
figure 6.5, but with ζ=0.15. Note that increasing ζ has
increased the size of the rings.
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in the scattering angles – e.g. instantons moving parallel and not interacting and

instantons reflecting directly off each other would both register a scattering angle of

zero. Therefore we must supplement this scanning by looking at individual plots to

check the interpretation of the scattering angles we have found.

To begin with, I will look at how a typical example of scattering in the com-

mutative case changes as we turn the noncommutativity on. In this case, the

parameters {ρ, θ, b, x} take the values {1, 0, 0.5, 50} and their initial derivatives are

{0, 0, 0,−0.03}. The change in scattering angle as we change the value of ζ from 0

to 5 is show in figure 6.8. The presence of the peak itself is notable and bears further

examination.

The first thing to note is that the peak is quite hard to resolve numerically – there

seems to be a discontinuity. To analyse this we can zoom in on that section of the

graph (figure 6.9). Then there seem to be two parts to the discontinuity. The first

moves between ±π/4 faster than the scanning programme can pick up. The second

seems to jump between ±π/2. This second one seems to be an artificial discontinuity

since the code is not always able to consistently identify the instantons in the same

way before and after the solution. This would cause just such a jump of π radians to

be observed. The first discontinuity seems to be a genuine feature of the scattering

behaviour, where the angle changes too fast to be resolved correctly by the graph.

This interpretation is borne out by looking at individual scattering graphs. In figure

6.10 we can look at the behaviour to the left of the peak and around the peak in

figure 6.8. At the peak itself the τ description of the position breaks down and it is

essential to use the combined σ and τ definition for the position. The behaviour at

the peak itself is shown in figure 6.11 We analyse the behaviour to the right of the

peak in figure 6.12.

The overall effect of the noncommutativity is to increase the repulsion between the

instantons; however this is done in a non- linear way. Initially, the instanton scat-

tering angle seems to rotate anticlockwise, going from glancing off each other, to

moving parallel, to crossing over. This first change occurs rapidly as ζ changes from
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0.85 until about 0.88 (figure 6.10).

At the first apparent discontinuity, the instantons change from moving across each

others paths, to repelling and turning back on themselves, so that their paths form

a loop near the interaction point. This change happens between ζ = 0.8818695 and

ζ = 0.88187 however I have been unable to capture any intermediate behaviour. The

beginnings of the looping behaviour can be seen in the first graph in figure 6.11,

however as can be seen in the second graph there seems to be some kind of numerical

difficulty in assigning the trajectories to different instantons. I think on examination,

one can discern the two instantons looping and deflecting however.

The second part of the discontinuity seems to be artificial due to inconsistently

identifying the instantons, as can be seen from the bottom two graphs in figure 6.11,

where the loops are joined in two different ways. Comparison to the behaviour on

the right of the peak, and in the first graph in figure 6.11 leads me to conclude

that the correct behaviour is shown in the final graph – the particles loop back on

themselves – and therefore the discontinuities in the scattering angle graph 6.9 are

based on a breakdown (at least numerically) of the notion of the instanton positions.

Increasing the numerical precision does not seem to affect these results.

After the peak (figure 6.12), the scattering angle appears to rotate clockwise – the

loop at the interaction point is, ‘unwound’.This leads to them then repelling entirely

before the angle widens to about π/4, with the instantons repelling rather than

glancing off each other as they did at the start.

Another thing we can do is to start off with a commutative case where there is no

interaction, and see what happens when we turn on the noncommutative parameter.

The overall plot is given in figure 6.13, and the scattering is shown in more detail

for particular cases in 6.15. The behaviour is similar to the previous case. As zeta is

increased the force between the instantons increases, until they begin to cross over.

Then, at the peak, there is a rapid change in behaviour where the instantons loop

back on themselves. As ζ is further increased, the loop unwinds until the instantons

are now fully repelled by one another. A new feature is the apparent presence of
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Figure 6.8: Change of scattering angle (left) with noncommutative
parameter ζ for b = 0.5, with the other parameters as
discussed in the main body of the text. On the right is
the commutative case, with ζ = 0. Increasing either b
or the parameter ρ moves the peak to higher values of ζ.
In the case of b this is because we need a larger size, and
hence larger ζ to compensate for the same seperation.
It is less clear what the explanation is in the case of ρ,
though the nonlinear dependence of the instanton size
on both ρ and ζ almost certainly plays a role.

Figure 6.9: Zooming in on the discontinuity in figure 6.8. Individual
scattering examples from this graph are shown in figure
6.11
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Figure 6.10: Scattering for two instantons with b = 0.5, and, moving
in each row from left to right, ζ = {0.1, 0.86, 0.87, 0.88};
This corresponds to the region to the left of and around
the peak in figure 6.8. Where the sizes are not shown
this is in order to make the trajectories clearer. Note
that the instantons go from glancing off one another, to
moving parallel, to crossing over, and then deflecting
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Figure 6.11: Graphs of the interaction around the peak, zoomed in
at the center, with ζ = {0.8187, 0.882, 0.89, 0.9}. The
vertical lines on the graph are the results of confusion
about which parts of the trajectory belong to which
instanton, and can be ignored. More detailed interpret-
ation of the graphs is given in the main text, however
I think that the description of the position is breaking
down somewhat, and this explains the discontinuities
in the scattering angle graph. I conclude that the cor-
rect behaviour is the looping behaviour in the first and
last graphs, which rotates in a clockwise direction, and
that the connection of the two loops is an error in the
plotting.
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Figure 6.12: Scattering for two instatons with b = 0.5, and ζ =
0.9, 1, 1.15, 2. This corresponds to the right side of the
peak. Note that the Instanton angle begins to turn
back on itself, until the scattering becomes a direct
repulsion ζ = 1.15, then opens to about π/4
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Figure 6.13: Plot of scattering angle vs. noncommutative para-
meter ζ for the initial parallel scattering, shown for
particular cases in figure 6.15. The jump at ζ = 6 is
a discontinuity similar to those analysed in figure 6.9,
and is shown in more detail in figure 6.14

rapid oscillation of the scattering angle once the loops form, as shown in figure 6.16

An overall feature of all this graphs is that whereas in the commutative case the

instantons shrink through zero size then expand again, in the noncommutative case,

as we would expect, they shrink to a finite size before expanding; since due to the

noncommutativity the zero size point cannot be reached.

We now move onto a systematic analysis of the other parameters. Fixing ζ fixes the

length scale of the system, therefore I will investigate the behaviour of the system

keeping ζ at a constant value of 1, and looking at how the scattering angle of the In-

stantons depends on the other parameters. Plotting the scattering angle for differing

values of the impact parameter b shows some interesting behaviour which seems to

be unique to the noncommutative case. There is a distinctive spike for a particular

value of b (figure 6.17). This spike is mirrored if we plot the scattering angle for

varying ζ whilst keeping b fixed – the spike appears at the same (b, ζ) coordinates in

both cases. In fact, this is the same spike as was found in the above cases. These are

the points at which the Instantons change from glancing off one another, to repelling

one another. From the above cases it seems like there is sometimes some interesting
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Figure 6.14: Plot of scattering angle vs. noncommutative parameter
ζ for the initiall parallel scattering, zooming in on the
discontinuity. Note the splitting on the left hand side-
this is analysed in figure 6.16

behaviour at the transition point (i.e. the peak) however the difficulties in defining

the positions of the Instantons in cases of very strong interaction make it hard to

be too precise. If we plot the graphs of scattering angle vs. impact parameter for

different values of ζ we see that the overall behaviour stays the same, however the

position of the peak moves to the right as ζ increases as shown in figure 6.17. There

is also evidence of the rapid oscillatory behaviour observed in the b = 4 case as we

increase ζ.

The next case we will look at is the case where the scattering is orthogonal in the

commutative case (so b = 0). This remains consistently orthogonal in the noncom-

mutative case. Examples of this scattering in individual graphs are shown in figure

6.20. Overall the scattering keeps its perpendicular character. We can explain this

analytically in a similar way as in the commutative case in [1]. As discussed above,

the location of the instantons is described by a combination of τ and σ. Because σ

goes as 1/|τ |, the change in which parameter dominates happens at τ = 0. Going

through the point τ = 0 involves as change in the sign of τ 2 +σ2. Since the positions

are given by the square root of this quantity, they are rotated by π/2 in the complex

plane. This corresponds to a 90 degree rotation of the instanton trajectory on the
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Figure 6.15: Scattering behaviour for the setup in 6.18, for ζ =
{0, 5.5, 8.85, 9.5, 8.85}. The Instantons begin by not
interacting in the commutative case, then begin to in-
teract as the noncommutative parameter is increased.
At the peak at ζ = 5.85, the interaction is complic-
ated and even the

√
σ2 + τ 2 description seems to break

down. As in the original case, figure 6.12, the instan-
tons then completely reflect off one another. The ex-
planation for this behaviour seems to be that increasing
ζ increases the size of the instantons, so that they are
no longer separated and begin to interact
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Figure 6.16: Zoomed in graphs showing rapid oscillatory behaviour
of in the splitting on the left of figure 6.14. We have
ζ = {5.7757, 5.78, 5.8, 5.9}. The instanton trajectories
rotate a full circle over a very small parameter range.
This seems to correspond to the removal of a second
set of loops from the centre of the interaction. As
before, the vertical lines are due to errors in constantly
identifying the instanton positions
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Figure 6.17: Plot of scattering angle vs. impact parameter for
different values of ζ. From left to right we have
ζ = {0.65, 1.5, 3}

plane plotted in the graphs here. Recall the definitions of τ and σ in equation (6.1.6).

For the case of orthogonal scattering, χ = 0. Therefore τ = ω, and so lies entirely

on the x axis. On the contrary, σ is proportional to i and so lies on the y axis.

Therefore, as the instantons pass through the origin, their motion goes from the x

axis to the y axis and so the scatter orthogonally.

There is an interesting behaviour where for very small values of b the scattering

stops being orthogonal for a small range of the parameter ζ, before returning to the

orthogonal behaviour as ζ increases. This is shown in figures 6.18 and 6.19. As shown

in figure 6.19, this region gets larger as ρ increases. Individual examples are shown

in figure 6.21. I have not been able to determine an analytic reason for this behaviour.

The next thing to consider is the effect of varying θ. It turns out however that the

effect on the scattering angle has no discernible pattern (figure 6.25). Therefore I

moved onto considering ρ. There is potentially in issue here as in the noncommutative

case, ρ is not directly the size of the instanton, which is given by

ρ̃ =
√
ρ2 + 4ζ2

ρ2 (6.2.1)
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Figure 6.18: Plot of scattering angle vs. noncommutative parameter
ζ for the near orthogonal scattering, with b = 0.1

Figure 6.19: Plot of scattering angle vs. noncommutative parameter
ζ for the nearly orthogonal scattering with ρ = 2 and
b = 0.1 , note that the plateau at the start is wider
than figure 6.18, where ρ = 1
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Figure 6.20: Examples of scattering behaviour for the orthogonal
scattering with b = 0 for ζ = {0, 2}.

Figure 6.21: Examples of scattering behaviour for the near ortho-
gonal scattering with b = {0.1, 0.01}. Note that the
scattering becomes almost completely repulsive for the
smaller values of b
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However if ζ is small these will be very similar and we can do an approximate analysis

provided that 2ζ/ρ is small. There are in theory three separate cases; where ζ is

small compared to the distance between the instantons (which is twice the impact

parameter), where it is comparable to the impact parameter, and where it is large.

These are shown in figures 6.22 and 6.23. It turned out the pattern of behaviour

was similar in all these cases, and is discussed in figure 6.24 Finally, I conducted a

similar analysis varying both ρ̇ and θ̇. This showed similarly interesting behaviour

in both cases, and so I will discuss them together. As can be seen in figures 6.26

and 6.28, in both cases, a small pertubation in ρ̇ and θ̇ causes almost orthogonal

scattering, no matter what the initial scattering angle. The difference is that, as

shown in figure 6.29, there is a jump in the chirality of the scattering for positive

and negative θ̇, which is not present for ρ̇. Even if there is no scattering in the,

‘base’ case where both are zero, as in figure 6.13, we still get the same orthogonal

scattering behaviour (figure 6.27), however there is not the same jump in chirality at

the origin. The reason for this behaviour seems to be that changing either of these

parameters from zero makes the instanton size very large, causing a high degree of

interaction (and hence orthogonal scattering) no matter what the initial separation

is. There is a subtlety in that ρ̇ is not the variation in the actual size, but only in

the parameter ρ. The variation in the actual size is give by

˙̃ρ =
ρ̇ρ− 4ζ2ρ̇

ρ3√
ρ2 + 4ζ2

ρ2

(6.2.2)

Therefore ρ̇ is a good approximation when 2ζ/ρ is small. I have been careful to only

consider such cases

6.3 Dyonic Instantons

If we move to consider Dyonic Instantons, we again see that the noncommutative

parameter initially introduces a repulsive effect (figures 6.30 and 6.31). Here, the

basic values of the parameters are as in the pure case, except that we give θ a
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Figure 6.22: Graphs of scattering angle vs. initial Instanton size for
ζ = 0 (above), and ζ = 0.3 (below). As the distance
between the Instantons is 1, this represents the case
where ζ is small compared to the separation. The
true size of the Instanton is within 12% of the ρ after
ρ = 0.6, which is about the top of the peak in the
below graph. I therefore assume the graph is reliable
after this point.
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Figure 6.23: Graphs of scattering angle vs. initial Instanton size
for ζ = 0.3, and b = 0.05 . This represents the cases
where ζ is greater than the separation. This is shown
specifically in figure 6.24. Again, after the initial peak.
After the peak, the true size is within 17% of the para-
meter ρ, and so the graph is a good description. Hence
the qualitative behaviour is the same as in the non-
commutative case in figure 6.22

small initial velocity of 0.1 in order to avoid numerical issues. Any changes to

these parameters will be discussed in the captions to the graphs. As discussed in

[1], Dyonic Instantons oscillate along their motion, and this effect is much more

observable with the non commutativity turned on. The repulsion seems to be strong

enough to significantly change the behaviour (figure 6.32). For higher values of zeta

there seems to be a lot of variation in the scattering angle, though this may just

be numerical noise (see figure 6.33). In this graph, there does not seem to be any

equivalent to the spike which appeared when plotting the scattering angle vs. impact

parameter for the pure instanton. However general features of plotting scattering

angle vs. ζ for different values of the impact parameter are initial spikes – which do

not seem to correspond to anything interesting, an extended period of little change

where the instantons repel almost completely, and a region of large variation in angle,

in which there is a mix of behaviour – including orbiting behaviour. This is shown

for the case b = 0.5 in figure 6.34.



6.3. Dyonic Instantons 139

Figure 6.24: This is the evolution of the ζ = 0.3 system introduced
in figure 6.23, for ρ = {0.8, 1.2, 4}. As seen in that
figure, the scattering angle decreases slightly to begin
with , then increases with the parameter ρ

Figure 6.25: Graph showing variation of scattering angle vs. gauge
angle θ for b = 0.5 and ζ = 2. As can be seen, there
is very little change in the angle for different θ – the
overall change is of the order of 0.0001. This is almost
certainly just numerical noise, and the true scattering
angle remains effectively constant
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Figure 6.26: Graph showing variation of scattering angle vs. gauge
angle θ for b = 0.5 and ζ = 1. As show in figure 6.29
the jump at the origin is real, and involves a switch in
the chirality of the scattering

Figure 6.27: Graph showing variation of scattering angle vs. gauge
angle θ for b = 4 and ζ = 1. Note that here there is
no jump in the chirality. I have checked this explicitly
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Figure 6.28: Graph showing variation of scattering angle vs. gauge
angle θ for b = 0.5 and ζ = .1. Note that here there is
no jump in the chirality, unlike in the case of θ̇

Figure 6.29: Graph showing examples of scattering for cases from
figure 6.26. Here, θ̇ = −0.2 on the left, and 0.2 on the
right. Note the chirality of the scattering has reversed,
confirming the discontinuity shown in figure 6.26 is
physical
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Figure 6.30: Plot of dyonic instanton scattering for b = 0.5, |q| =
0.1, ζ = 0 (above), ζ = 0.5 (below)

However there are some more noteworthy features when plotting the scattering

angle vs. the magnitude for the potential |q|. Recall that for the Dyonic Instanton

solutions to be valid we require q � 1. For small zeta, there seems to be no discernible

pattern, similar to the commutative case (figure 6.35). However, if we increase ζ

a distinctive pattern emerges (figure 6.36). I have observed it at ζ = {0.2, 0.5, 1}

However, the pattern disappears and becomes random noise again by ζ = 2. For

the graphs where the pattern is present, after some initial fluctuation, the instanton

scattering angle increases rapidly and becomes very stable. Zooming in on the very

small q region where the fluctuation occurs, we find a high variation in scattering
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Figure 6.31: Plot of dyonic instanton scattering for b = −1, |q| =
0.1, ζ = 0 (above), ζ = 1 (below). Note the visible
oscillations on the right hand graph.
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Figure 6.32: Plot of dyonic instanton scattering for b = 2.9, |q| =
0.1, ζ = 0 (above), ζ = 1 (below).
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Figure 6.33: Graph of scattering angle vs. noncommutative para-
meter ζ for b = 0.5. Particular scattering examples
from this graph are discussed in figure 6.34

angle, as seen in figure 6.37, though with an overall increasing pattern. Investigation

reveals a certain amount of orbiting behaviour, of which the most spectacular example

is in figure 6.38.

We can then systematically look for interesting behaviour amongst the remaining

parameters. In the Dyonic case, the length scale is still set by the ζ, however the

scale of the time dimension is no longer arbitrary, but is set by |q|. Therefore we

must consider both.

I started by looking at varying θ, but this did not yield any interesting systematic

behaviour – only random noise. I then looked at ρ. Here there seemed to be a

window where the behaviour matched the commutative case, e.g. with ζ = 0.1 and

q = 0.1, as shown in figure 6.39 which has the same kind of shape as in figure 6.22.

Exploring around that point showed that the behaviour persisted with roughly ζ < 1

and with q > 0.08

I then moved onto looking at b. Here there was similar behaviour. At low ζ there

did not seem to be any overall pattern, however increasing ζ led to graphs having

a linear pattern, as in figure 6.40. I think that these are two examples of the same

phenomenon, with very different scaling caused by the differences in the relative
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Figure 6.34: Scattering behaviour for the system presented in figure
6.33, for ζ = {1, 2, 4, 5}. At ζ = 1, corresponding to
the flat part of that graph, the particles are almost com-
pletely reflected. Once the behaviour becomes more
chaotic, there is a variety of behaviour with no clear
pattern. Examples include deflection at ζ = 2, some
kind of orbiting at ζ = 4, and repulsion at ζ = 5
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Figure 6.35: Graph showing scattering angle vs. magnitude of po-
tential, q, in the commutative case (ζ = 0). The graphs
for small ζ (below 0.3 at most), and large ζ (at least
above 2) show the same behaviour. Note that these
bounds are not the cut-off points, merely the lowest
and highest points I have observed this behaviour.

Figure 6.36: Graph showing scattering angle vs. q for ζ = 0.5.
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Figure 6.37: Graph showing scattering angle at very low values of
q for ζ = 0.5.

Figure 6.38: Graph of scattering with orbiting behaviour, with ζ =
0.5, b = 0.5, q = 0.00438
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Figure 6.39: Scattering angle vs. parameter ρ for ζ = q = 0.1.
As in figures 6.22 and 6.23 I expect ρ to be a good
approximation to the true initial size after the peak

values of ζ. The magnitude of q did not seem to have a major effect on whether

the patterned or non patterned behaviour was observed past a certain point, but

continuing to make ζ larger caused the non patterned behaviour to return.

The final thing is to look at ρ̇ and θ̇. Bear in mind thought that as we have stated ρ̇

is the variation in the moduli space parameter ρ, not the actual size of the instanton.

It is only a good approximation when 2ζρ is small. However, I was unable to find any

non- chaotic behaviour in the region where this approximation was valid. Finally, I

did not find any discernible patterns for θ̇ either. I think this difference as compared

to the pure case is because the potential prevents the instanton size from growing

large in the dyonic case, and therefore the transition to orthogonal scattering cannot

occur.

6.3.1 Orbiting Behaviour

We conclude this section by looking at the stability of the orbiting behaviour for

some of the graphs we have found in the dyonic case. To clarify, here by, ‘orbiting

behaviour’ I mean cases where the trajectory of one or both instantons moves in

a roughly circular pattern around the middle of the interaction, with at least one
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Figure 6.40: Scattering angle vs. Impact parameter for ζ = q = 0.5

rotation being completed. By stability, I mean the range of parameters for which

such orbiting behaviour persists. We are interested in the stability with respect to

an orbit we have already found, so are most interested in varying θ̇ and ρ̇. I will also

see how sensitive the orbit is to the length scale set by ζ and the time scale set by

q. It should be noted that there is nothing particularly special about any of these

parameters – my aim is to see, having found a solution with orbiting behaviour, how

stable that solution is when we move away from it in the parameter space.

We start with the graph first found in figure 6.34. We first vary θ̇. Increasing or

decreasing it slightly from 0.1 causes the orbit to vanish by 0.102 and 0.098. It was

also very similar for ρ̇. Here there was a definite asymmetry between positive and

negative ρ̇. The orbit vanishes by ρ = 0.005 in the positive direction ( though with

complicated behaviour shown in figure 6.41) but not until -0.012 in the negative one.

We now vary ζ. The orbiting exists inside a region bounded by ζ in the range

(3.993, 4.004). This includes a rather more spectacular orbit at ζ = 0.4.003, shown

in figure 6.41. Finally, I found that the orbit is very sensitive to changes in q,

only existing within the range (0.0998, 1.002). We now repeat this analysis for the

case found in figure 6.38. First, the orbit existed for ρ̇ within (−0.21, 0.32) to two

decimal places. It therefore seems more stable than the previous one under changes

in ρ̇. There is also greater stability under changes in θ̇, though here there was a
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Figure 6.41: The behaviour as described in the text, varying around
the first of these graphs. In that graph, ζ = 4,
q = 0.1, b = 0.5. The second shows the complicated
repulsion behaviour for ρ̇ = 0.005, and the third shows
the orbit at ζ = 0.4003
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Figure 6.42: Graph of scattering with orbiting behaviour, for the
case ζ = 0.5, b = 0.2.9, q = 0.00438.

much greater stability if we decreased the value of θ̇, with scattering in the region

(−0.44, 0.28). Finally, we look at changing the scale via varying ζ. Here again,

this scattering seems much more stable, with orbiting observed (albeit of decreasing

complexity) until ζ = 3.1 in on direction, and ζ = 0.23 in the other. This greater

range of orbiting as ζ is increased fits with the behaviour in figure 6.33 where the

scattering angle seemed to vary rapidly as we increased ζ. Finally, we look at varying

q. Here, the orbit exists for a a region within (0.0038, 0.00525).

6.4 The Six Parameter Space

We now move on to look at the full six parameter space, where the Instantons are free

to have different sizes and to vary in their gauge angle. The additional parameters

add greatly to the complexity of the numerics, and we were unable to get results
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using the modified code from [1] as we had in the four parameter case. Fortunately I

was able to use some code written by Mr. Joe Farrow, which reformatted the metric

and potential and used a more optimised method to find the moduli space geodesics,

to run some simulations for this part of the moduli space. I have graphs for the pure

instanton case, but was not able to make any for the Dyonic case.

There are two parameters to examine here. These are the relative gauge angle

φ and the relative sizes of the instantons. Unless otherwise stated, the initial

conditions for {ρ1, ρ2, θ, x} take the values {1, 1, 0, 50}, and the initial derivatives of

all parameters are zero, except x′ = −0.03. In the noncommutative case it is tricky

to systematically explore the latter as the Instanton sizes are nonlinear functions of

ζ and the ρi. Therefore I chose to keep ζ fixed to set the overall length scale, and

to vary the impact parameter rather than the instanton size, looking at cases where

the separation was much smaller than, larger than and of the same order as the sizes

of the instantons. Initially I kept the instantons the same size. I then checked how

the behaviour in three cases ρ1 < b < ρ2, b < ρ1 < ρ2 and ρ1 < ρ2 < b.

In the commutative case, varying the gauge angle produces a clear sinusoidal variation

(figure 6.43). This pattern held for different values of the impact parameter, however

when the impact parameter was small compared to the instanton size, the varation

takes on more of a, ‘square’ shape (figure 6.44). As can be seen both from these

two figures and from the scattering angles in figure 6.45, at φ = nπ, where the

instantons are parallel in the gauge group, the interaction between the instantons

disappears and they just move past one another. Conversely, the instantons interact

most strongly at φ = nπ/2, where they are orthogonal in the gauge group. Changing

the relative sizes of the instantons did not seem to affect this sinusoidal behaviour,

but it did change the strength of the interaction, with the scattering angle decreasing

when the Instantons were different sizes, with smaller sizes making the scattering

angle smaller (figure 6.46).

The behaviour in the noncommutative case is not so simple. The outline of

the sinusoidal pattern is still present, but it is significantly disrupted, as in figure
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Figure 6.43: Graph showing variation of scattering angle φ with
ζ = 0, ρ1 = ρ2 = 1 and b = 0.5.

Figure 6.44: Graph showing variation of scattering angle φ with
ζ = 0, ρ1 = ρ2 = 1 and b = 0.1.
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Figure 6.45: Graph showing scattering examples from figure 6.47,
with φ = π above and φ = 3π/2 below. Note that the
scales are different on the two graphs, and that the
behaviour is extremely different.

6.47. Increasing the impact parameter somewhat restores the behaviour (figure 6.48).

There is therefore much less variation in the scattering angle for the noncommutative

case, as can be seen in figure 6.49. The Instantons also no longer stop interacting

when they are parallel in the gauge group, instead oscillating between minimum

and maximum scattering angles, as in figure 6.50. Making one of the instantons

smaller than the other and the impact parameter did not seem to have too much of

an effect, however, making one larger than the impact parameter further disrupted

the sinusoidal pattern, as in figure 6.51.

6.5 Conclusions

I shall end this section by reviewing the main results. I looked at both the full

six parameter space, and also a four parameter subspace where the instantons were

orthogonally embedded in the gauge group. This was necessary to analyse the dyonic
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Figure 6.46: Graph showing variation of scattering with gauge angle
φ, where ζ = 0 and b = 0.5. In both graphs ρ1 = 1. In
the top graph, ρ2 = 5, and in the bottom graph ρ2 =
0.1. Note that the scattering angle is much smaller in
this case.
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Figure 6.47: Graph showing variation of scattering angle φ with
ζ = 1, ρ1 = ρ2 = 1 and b = 0.5. The true instanton
size is therefore

√
2, and so is roughly comparable to

the separation. The splitting of the left peak appears
to be a numerical error.

Figure 6.48: Graph showing variation of scattering angle φ with
ζ = 1, ρ1 = ρ2 = 1 and b = 4. The true instanton
size is therefore

√
2, and so is much smaller than the

separation. Note that the sinusoidal form is much more
preserved, but now oscillates around zero rather than
away from it
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Figure 6.49: Graph showing scattering examples from figure 6.47,
with φ = π above and φ = 3π/2 below. Note that
there is very little difference.

Figure 6.50: Graph showing scattering examples from figure 6.48,
with φ = π above and φ = 3π/2 below
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Figure 6.51: Graph showing variation of gauge angle φ with ζ = 1,
ρ1 = 1; ρ2 = 5 and b = 0.5. The true instanton sizes
are
√

2 and just over 25 respectively.

case. Overall, increasing the noncommutative parameter ζ increases the repulsion

between the instantons. The form this takes is not straightforward, and in the pure

instanton case involves a peak with strange behaviour which requires a future, more

detailed analysis with more sophisticated plotting programmes. However in general

even if the instantons begin by not interacting, they move from glancing off each

other, to reflecting entirely as the parameter ζ increases.

We found that orthogonal scattering was present in the noncommutative case as well

as the commutative case, and postulated an analytical reason for this. Systematically

looking at the other parameters, We saw that, as expected, increasing ρ strengthens

the repulsive effect of the scattering, and increasing the separation b decreases it.

Further interesting behaviour was observed seeing how the scattering changed when

the quantities ρ̇ and θ̇ were varied. For any non- zero value of these initial velocities,

the scattering rapidly became almost orthogonal. This seems to be because making

these parameters nonzero causes a rapid increase in the instanton size, and hence a

very strong interaction.

This behaviour is not found in the dyonic case; probably because the presence of the
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potential suppresses the instanton size. In the dyonic case there was the additional

feature of orbiting behaviour, some of a high winding number and great complexity.

Finally, we were able to use the six parameter pure instanton case to analyse changing

the gauge embedding. In general we found that the scattering oscillated with the

gauge angle, but that this was suppressed as ζ was increased.



Chapter 7

Three Instantons

We now move on to the case of three instantons in SU(2) Yang Mills. Here we only

consider a commutative background, not a noncommutative one. We also use the

usual version of the commutative ADHM construction with the quaternions rather

than the biquaternion construction outlined above. This is because the additional

complexity of the three instanton case means it makes sense to use the simplest

version of the equations. As before, we begin by solving the ADHM constraints. We

then calculate the scalar field for the dyonic case and use this to calculate the moduli

space potential. Finally, I then calculate the moduli space metric. The results in

this section are completely original. There is, however, some related work in [13]

and its related papers. Here, some three monopole solutions are found, using two

methods involving writing the solution as a reduction of the ADHM equations. The

first method is to use the JNR ansatz. This corresponds to taking Ω to be diagonal

in our notation. The second is to calculate Axial monopoles using ADHM data

which has axial symmetry imposed on it via the Manton- Sutcliffe method. In our

notation, there is a non-diagonal but specific form for Ω, and the instnaton size v is

chosen to be zero. These specific symmetries do not seem to match the ones I have

chosen, and hence it it not immediately clear how the results in that thesis relate to

those presented here, but it would be interesting and worthwhile to pursue this in

future work.
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7.1 Solving the O(3) equations

Since we are in the commutative case,we need to solve the equation ∆†∆ = 0. For

three instantons in SU(2) Yang Mills, the ADHM data ∆ is

Λ

Ω

 =



u v w

τ1 σ1 σ2

σ1 τ2 σ3

σ2 σ3 τ3


(7.1.1)

where the entries of ∆ all lie in H. With ∆ as given above, we have three equations,

one for each component of o(3). These are

ImC

(
ūv + (τ̄1 − τ̄2)σ1 + σ̄2σ3

)
= 0

ImC

(
ūw + (τ̄1 − τ̄3)σ2 + σ̄1σ3

)
= 0

ImC

(
v̄w + (τ̄2 − τ̄3)σ1 + σ̄1σ2

)
= 0 (7.1.2)

Note that these are now nonlinear in the ADHM data. I was unable to find a solution

on the full quaternion moduli space; however, if we restrict to the complex subspace

as in the noncommutative 2 instamton case, and use the three residual symmetries

to set the real parts of the σi to zero,the terms in Im(σ̄iσj) vanish, and we can solve

as

σ1 = τ1 − τ2

|τ1 − τ2|2

(
α− ImC(ūv)

)

σ2 = τ1 − τ3

|τ1 − τ3|2

(
β − ImC(ūw)

)

σ1 = τ2 − τ3

|τ2 − τ3|2

(
γ − ImC(v̄w)

)
(7.1.3)

For constants α, β, γ. These are then constrained by the condition ReC(σi) = 0 to

be

α = −ImC(τ1 − τ2)ImC(ūv)
Re(τ1 − τ2)

β = −ImC(τ1 − τ3)ImC(ūw)
Re(τ1 − τ3)
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γ = −ImC(τ2 − τ3)ImC(v̄w)
Re(τ2 − τ3) (7.1.4)

The minus sign comes from the fact that each ImC comes with a σ3, which multiply

together to give −1. The above equations give a solution for the complex subspace.

We can now move on to the scalar field

7.2 The Scalar Field

As in the 2 Instanton case the expressions derived here for the scalar field, metric

and potential are in principle valid for the full quaternion parametrisation. However

when we substitute in the solutions for the σi derived above, that is only valid for

that particular complex subspace. Keeping this in mind, we use the same method

as before. This time the ansatz is given by

A =

q 0

0 P

 (7.2.1)

Where q ∈ su(2), and P ∈ o(3), parametrised as
0 −a b

a 0 −c

−b c 0

 (7.2.2)

The ADHM data ∆ is given, in this case, by

u v w

τ1 σ1 σ2

σ1 τ2 σ3

σ2 σ3 τ3


(7.2.3)

Where τ1+τ2+τ3 = 0. Now the elements are all quaternions, not complex quaternions.

The equation we want to solve is still

2Tr2(Λ†qΛ) + Tr2([Ω†, P ]Ω− Ω†[Ω, P ])− Tr2({P,Λ†Λ}) = 0 (7.2.4)
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Proceeding as in the previous cases (see Appendix D for more details), we can solve

for the components of A as

a = 1
Υ

(
C3(2Ψ2MA2 −Ψ1Ψ3) + C2(2Ψ1MA3 −Ψ2Ψ3) + C1

(
−
(
4MA2MA3 −Ψ2

3

)))

b = 1
Υ

(
− C3(Ψ1Ψ2 + 2MA1z) + C1(2Ψ1MA3 −Ψ2Ψ3)− C2

(
4MA1MA3 −Ψ2

2

))

c = 1
Υ

(
− C3

(
4MA1MA2 −Ψ2

1

)
− C2(Ψ1Ψ2 + 2MA1Ψ3) + C1(2Ψ2Y −Ψ1Ψ3)

)

(7.2.5)

Where

C1 =4ReH(v̄qu)

C2 =4ReH(ūqw)

C3 =4ReH(w̄qv)

MA1 =|u|2 + |v|2 + 3|σ1|2 + Σ2 + |τ1 − τ2|2

MA2 =|w|2 + |v|2 + 3|σ2|2 + Σ2 + |τ1 − τ3|2

MA3 =|w|2 + |v|2 + 3|σ3|2 + Σ2 + |τ2 − τ3|2

Ψ1 =ReH

(
3(τ̄1σ3 − σ̄2σ1)− w̄v

)
Ψ2 =ReH

(
3(τ̄2σ2 − σ̄1σ3)− ūw

)
Ψ3 =ReH

(
3(τ̄3σ1 − σ̄3σ2)− v̄u

)
Υ =2

(
Ψ2

1MA3 + Ψ1Ψ2Ψ3 − 4MA1MA2MA3 +MA1Ψ2
3 + Ψ2

2MA2
)

(7.2.6)

7.3 The Potential

We can now use this to calculate the potential, using the formula

V =
∫
d4xTr(DiφDiφ) (7.3.1)

We can now follow the standard method. Integrating by parts, and using the equation

of motion for φ

D2φ = 0 (7.3.2)
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We get

V = limR 7→∞

∫
|x|=R

dS3x̂iTr
(
φDiφ

)
(7.3.3)

We know that the vector U , being a null vector of ∆, must solve ∆†U = 0, which

gives the equations

ūU1 + (τ̄1 − x̄)U2 + σ̄1U3 + σ̄2U4 = 0

v̄U1 + σ̄1U2 + (τ̄2 − x̄)U3 + σ̄3U4 = 0

w̄U1 + σ̄2U2 + σ̄3U3 + (τ̄3 − x̄)U4 = 0 (7.3.4)

These can be solved in the |x|2 7→ ∞ limit as

U1 7→ 1 ; U2 7→
xū

|x|2
; U3 7→

xv̄

|x|2
; U4 7→

xw̄

|x|2
(7.3.5)

We can continue to calculate the potential as in the previous cases. The details are

in Appendix E, however the result is

V = 8π2
(
|q|2

(
|u|2+|v|2+|w|2

)
−2aReH(v̄qu)−2bReH(ūqw)−2cReH(w̄qv)

)
(7.3.6)

with a, b, c given as above.

7.4 O(3) Metric

The final thing to calculate is the metric. As in the previous case, we need to

calculate aT δCr, and impose the condition

aT δCr =
(
aT δCr

)T?
(7.4.1)

Note that here we have the operation T rather than † as we are dealing with the usual,

real Quaternions rather than the Complexified version. Since in this commutative 3-
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instanton case, the remaining symmetry is o(3), we can write

δR =


0 −dφ dθ

dφ 0 −dψ

−dθ dψ 0

 (7.4.2)

We should end up, analogously to the previous case, with three simultaneous equa-

tions. As before, we have

a†dCr = a†da− a†b(dR)b†a+ a†a(dR) (7.4.3)

We now follow the same method as before. Again, the details are in Appendix F.

The solution is

dφ = 1
Ξ

(
D1

(
MA2MA3 + Ψ2

3

)
+D2(MA3Ψ1 −Ψ2Ψ3)−D3(MA2Ψ2 + Ψ1Ψ3)

)

(7.4.4)

dθ = 1
Ξ

(
−D1(MA3Ψ1 + Ψ2Ψ3)−D2

(
MA1MA3 −Ψ2

2

)
+D3(MA1Ψ3 + Ψ1Ψ2)

)

dψ = 1
Ξ

(
D1(Ψ1Ψ3 −MA2Ψ2) +D2(MA1Ψ3 −Ψ1Ψ2) +D3

(
MA1MA2 −Ψ2

1

))

Where

D1 =ūdv − v̄du+ τ̄1dσ1 − σ̄1dτ1 + σ̄1dτ2 − τ̄2dσ1 + σ̄2dσ3 − σ̄3dσ2

D2 =ūdw − w̄du+ τ̄1dσ2 − σ̄2dτ1 + σ̄1dσ3 − σ̄3dσ1 + σ̄2dτ3 − τ̄3dσ2

D3 =v̄dw − w̄dv + σ̄1dσ2 − σ̄2dσ1 + τ̄2dσ3 − σ̄3dτ2 + σ̄3dτ3 − τ̄3dσ3

MA1 =|u|2 + |v|2 + 3|σ1|2 + Σ2 + |τ1 − τ2|2

MA2 =|w|2 + |v|2 + 3|σ2|2 + Σ2 + |τ1 − τ3|2

MA3 =|w|2 + |v|2 + 3|σ3|2 + Σ2 + |τ2 − τ3|2

Ψ1 =ReH

(
3(τ̄1σ3 − σ̄2σ1)− w̄v

)
Ψ2 =ReH

(
3(τ̄2σ2 − σ̄1σ3)− ūw

)
Ψ3 =ReH

(
3(τ̄3σ1 − σ̄3σ2)− v̄u

)
Ξ =MA1MA2MA3 +MA1Ψ2

3 −MA2Ψ2
2 −MA3Ψ2

1 (7.4.5)
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Once more we use our formula, modified for real quaternions

ds2 = ds2
1 +ds2

2 = 2π2
(
Tr?

(
2dΛ†dΛ+dΩ†dΩ

)
+Tr?

((
a†da−(a†da)T

)
dR
))

(7.4.6)

which enables us to calculate the metric as

8π2
(
d2u+ d2v + d2w + d2τ1 + d2τ2 + d2τ 3 + d2σ1 + d2σ2 + d2σ3 (7.4.7)

−
(
D1dφ+D2dθ +D3dψ

))

7.5 3 Instanton Dynamics

The next logical thing to do is to use the metric and potential given above to analyse

the dynamics numerically, as was done in the case of two instantons. Unfortunately

I was unable to generate enough simulations to carry out a full analysis, however I

was able to observe some particular behaviours.

First, I was able to plot the scalar field profiles. When the instantons are far

separated, this gives three peaks at the positions of each Instaton, with the position

defined as τi (figure 7.1). This confirms the interpretation of that parameter. If we

move one instaton far away from the others (off to the right of the plot, in fact)

then we see two peaks which look a lot like the two instanton case (figure 7.2).

The splitting in the right peak increases the closer the third instanton gets. In the

graph in question, the two instantons shown are at (±1, 0) and the third is at (0, 40).

Finally, I was able to approximate some aspects of the scattering by plotting the

Topological charge Density (figure 7.3). Here, if one instanton is kept, ‘stationary’

at the origin, and the other instantons are plotted at successively closer values of

τi, there appears to be the kind of right angled scattering that is a familiar part

of Soliton Dynamics. The fact that the instantons are moving away at very small

values of τi is a function of the fact that the position depends both upon τi and σi,

as in the two instanton case.

Finally, I was able to use Joe Farrow’s code, as in the case of the six parameter
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Figure 7.1: Plot of the scalar field profile for three separated instan-
tons

Figure 7.2: Plot of the scalar field profile for two instatons, with
the third far separated off to the right
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Figure 7.3: Plot of the topological charge density with one instanton
at the origin and the other two at decreasing values of
τi. Note the apparent right angled scattering

instantons, to get several plots of the scattering – though only for the case where

the potential was zero. It turns out that plotting the scattering is very numerically

difficult. When the instantons become very close, the factors in 1/(τi − τj) become

very large, leading in various methods to the solution either blowing up, or getting

stuck at certain points.

I was able to examine the case where one of the instantons is far away from the other

two, and to compare it to the two instanton case I had already derived. There was

excellent agreement, as can be seen in figures 7.4 and 7.5. Additionally, I was able to

generate one graph with all three instantons interacting – in all my other attempts

the instanton trajectories plotted were discontinuous. I think this is because the

trajectories are dominated by the off-diagonal elements σi, which goes as 1/(τi− τj).

As the difference becomes small, the numerical programme is trying to take smaller

increments of the variables τi to compensate – which leads to large leaps in the

actual plotted position between step sizes. Trying to resolve this would be a obvious

direction for future work.
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Figure 7.4: Comparison of scattering in three instanton case with
one instanton far away from the other two (top), with
the 4 parameter (orthogonal) case for two instantons.
This is with b = 0.1. Note the orthogonal scattering
in both cases. Here the three instanton initial para-
meters are {τ1R, τ1Iτ1R, τ1I , uR, uI , vR, vI , wR, wI} are
{10,−0.01, 20, 0.01, 1, 0, 0, 1, 1, 1}, and their initial ve-
locities are {0.03, 0,−0.03, 0, 0, 0, 0, 0, 0, 0}. This means
that the two instantons which are interacting are ortho-
gonal in the gauge group, and the third is at (-30,0),
which is sufficiently separated not to qualitatively affect
the interaction
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Figure 7.5: Comparison of scattering in three instanton case
with one instanton far away from the other two
(top), with the 4 parameter (orthogonal) case
for two instantons. This is with b = 0.5.
{10,−0.5, 20, 0.5, 1, 0, 0, 1, 1, 1}, and their initial velo-
cities are {0.03, 0,−0.03, 0, 0, 0, 0, 0, 0, 0}. This means
that the two instantons which are interacting are ortho-
gonal in the gauge group, and the third is at (-30,0),
which is sufficiently separated not to qualitatively affect
the interaction
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Figure 7.6: Three Instantons scattering. One begins
stationary at the origin, whilst the other
two move in with equal and opposite posi-
tions. {τ1R, τ1Iτ1R, τ1I , uR, uI , vR, vI , wR, wI} are
{10, 0.01,−10,−0.01, 1, 0, 0, 1, 1, 1}, and their initial
velocities are {0.05, 0,−0.05, 0, 0, 0, 0, 0, 0, 0}. The two
instantons that come in from the sides are orthogonal
in the gauge group to each other, but not to the
stationary one at the origin
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Conclusion

In the first part of my Thesis, I reviewed certain topics in mathematics and physics

which underpinned the general topic of Instantons. First I looked at the theory of

Fibre Bundles. I explained what they were, I outlined the notion of a connection

on a bundle, and I showed how this let us define the curvature. The definition of

an Instanton relies on the link between the Topological degree of a map, and the

definition of Characteristic classes. This was therefore the topic of the next part of

that chapter.

After these more general concepts, the second chapter looked at Instantons them-

selves. After defining what an instanton was, I gave an overview of noncommutative

spacetimes, as a large part of the rest of the thesis dealt with Instantons defined

over these spacetimes. I also introduced the biquaternion algebra, and outlined the

notation and calculation methods I was using. Once this had been done, I looked

at how to actually derive Instanton solutions, using the ADHM construction. Not-

ably, I showed that even in the commutative case one could still begin with the

biquaternions. The solution one gets is Complex rather than Real, but the residual

symmetry is also complexified from SO(2) to SU(2). This symmetry allows us to,

‘rotate’ our complex solution into a real one. I then looked at Dyonic instantons, and

gave a general method for calculating the scalar field for general noncommutative

U(N) instantons.
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In the third chapter I reviewed the topic of the Instanton Moduli Space and the

Potential which is induced upon it in the Dyonic case. Again, I gave a method for

calculating both these for noncommutative U(N) Instantons. This concluded the

first part of my thesis.

The second part of the thesis began with an rederivation of the solution for a single

noncommutative instanton in [3]. This was done primarily to enable me to check the

solution I derived for the two instanton case. First of all, I rederived the commutative

solution which was found in [1], but using biquaternions rather than quaternions.

This allows us to check for a specific case that the procedure outlined in chapter 2 for

doing this works in practice. I then tried to find a solution for the noncommutative

case. First of all I checked the solution presented in [37] and showed that this was

not a full solution to the ADHM equations. I then looked for a solution. I was unable

to find a full solution, however I was able to find one for the subspace of the moduli

space spanned by the C× C subalgebra of C× H. I used this solution to calculate

the metric and potential for that subspace. I checked that in the commutative limit

ζ → 0 the noncommutative solution gave the commutative solution in [1], and that

in the limit τ →∞ where the Instantons become far seperated, the solution became

two copies of the single noncommutative U(2) instanton.

Once I had these two solutions, I investigated the dynamics on the noncommutative

moduli space numerically. First I plotted the profile of the scalar field for separated

and nearly-coincident instantons. This showed the same qualitative behaviour as in

the commutative case, showing that it made sense to give the various components of

the ADHM data the same interpretation in the noncommutative as in the commut-

ative case. With this established, we investigated the scattering of two instantons,

both for pure and for Dyonic Instantons. I began with the four parameter subspace

of the moduli space where the two instantons have the same initial size and are

orthogonal. In both cases, pure and dyonic, the presence of the noncommutative

parameter seemed to increase the repulsion between the two instantons compared

to the commutative case. Additionally, as one might expect, whereas in the com-
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mutative case the instantons shrink through zero size then begin to increase, in the

noncommutative case they instead shrink (then grow) through a finite minimum

size which increases with ζ. In the case of pure instantons, if we plot the scattering

angle vs. the impact parameter, there is a peak at a specific value of ζ. At this

peak, there seems to be some kind of orbiting behaviour involving the instantons,

however the difficulties in giving a meaningful interpretation to very small instanton

seperation given the presence of the noncommutative parameter makes it hard to be

too certain. In the pure instanton case, varying θ̇ and ρ̇ away from zero gave very

strong orthogonal scattering, since doing this made the instanton size very large.

However the presence of the potential prevents this from occuring, and therefore

I did not observe this behaviour in the dyonic case. I then looked at the 6 para-

meter case where the relative gauge angle and size could freely vary. There was a

clear oscillatory behaviour in the commutative case with the gauge angle, where the

behaviour went in some cases from no interaction to orthogonal scattering. This

was surpressed when the noncommutativity was turned on. Though some limited

sinusoidal behaviour could still be observed, it did not cover such a wide range of

angles, and the overall shape was not nearly so distinct.

In the case of dyonic instantons, I was restricted to looking at the four parameter

case. Unlike in the commutative case, there is no peak in the scattering angle vs

impact parameter graphs. There is, however, some interesting orbiting behaviour

for very low values of the potential, though the same issues regarding interpretation

arise as in the pure case. A key difference is that there are two scales to set, the

length scale via ζ and the time scale via q, the magnitude of the potential. There

was some evidence that there was a particular region where ζ was not too large,

and q was not too small, where the scattering behaviour became considerable less

chaotic.

Finally, I looked at the case of three U(2) instantons. Here, to make the calculations

easier, I did not use the biquaterions, but specialised to quaternion ADHM data

from the beginning. I was again unable to find a solution for the full moduli space,
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however I was, again, able to find a solution on the submanifold of the moduli space

spanned by the C subgroup of H. This solution once more allowed me to calculate

the metric and potential on that submanifold. First I was able to numerically graph

the scalar field profiles, allowing me to interpret the components of the ADHM data

in an analogous way to the two instanton case. I was also able to plot the topological

charge density, and for the case of one stationary instanton colliding with two moving

in opposite directions, plotting this for discreet values of the instanton seperation

seems to show the orthogonal scattering that is a common feature of solition dynam-

ics. Finally, I was able to look at examples of the scattering where one instanton

was too far away to interact. I showed that these reproduced the behaviour of the

two instanton case. Finally, I showed a single example of the scattering of three

instantons.

8.0.1 Further work

In terms of further work, the most obvious thing to do is to try and improve the

efficiency of the numerical evaluations so that we can explore the dyonic six parameter

case for the noncommutative two instantons, and to access more of the three particle

scattering in the three instanton case. Analytically, we could try and extend our

ADHM solutions from the subspaces of the moduli spaces to the full moduli spaces.

This would also allow us to calculate the partition functions on the moduli space. To

do this, we would analyse the quantum mechanics around the zeros of the potential

and calculate its superconformal index. This can be used to count the BPS states

in the theory, and it can be argued – as for the single instanton case in [3] – that

it also determines the partition function of the theory. The value of this method is

that it not only allows for an independent check of the partition function calculation

from the field theory point of view, but also could allow us to construct specific

wavefunctions, which could not be done from the field theory partition function alone.

In the noncommutative U(2) case the equivalent field theory partition function was
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calculated in [40], and this is what we would want to compare any result we derived

to.





Appendix A

The Two- Instanton Scalar Field

Here Re and Im refer to ReH and ImH unless otherwise stated. We have the equation

of motion for the scalar field

2Tr2(Λ†qΛ) + Tr2([Ω†, P ]Ω− Ω†[Ω, P ])− Tr2({P,Λ†Λ}) = 0 (A.0.1)

We shall now solve this equation. We will calculate each term separately, then derive
an equation for each basis element of the resulting SU(2) matrices. We will then
solve this for a, b and c in the ansatz (5.5.2). First, we look at Tr2(Λ†qΛ). A long
calculation shows this is

2

[
0 Re(v̄RqwR + v̄IqwI)− q0Re(v̄RwI − v̄IwR)

−Re(v̄RqwR + v̄IqwI) + q0Re(v̄RwI − v̄IwR) 0

]
(A.0.2)

+i

[
2q0(|vR|2 + |vI |2) + 4Re(v̄RqvI) 2qORe(v̄RwR + v̄IwI) + 2Re(v̄RqwI − v̄IqwR)

2qORe(v̄RwR + v̄IwI) + 2Re(v̄RqwI − v̄IqwR) 2q0(|wR|2 + |wI |2) + 4Re(w̄RqwI)

]

Next, we calculate Tr2({P,Λ†Λ}). This is equal to[
0 −2bΣ− (a+ d)α

2bΣ + (a+ d)α 0

]
+ i

[
4a(|vR|2 + |vI |2) + 4bα+ 4cβ 2cΣ + (a+ d)β

2cΣ + (a+ d)β 4d(|wR|2 + |wI |2) + 4bα+ 4cβ

]
(A.0.3)

Where

Σ = |vR|2 + |vI |2 + |wR|2 + |wI |2

α = Re(w̄IvR − w̄RvI)

β = Re(v̄RwR + v̄IwI) (A.0.4)
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Finally, we have Tr2([Ω†, P ]Ω−Ω†[Ω, P ]). To calculate this we expand it as 2Ω†PΩ−

PΩ†Ω−Ω†ΩP . Here, we use our choice of symmetry that Re(τ̄σR) = Re(τ̄σI). First,

we get PΩ†Ω + Ω†ΩP as

4
(
|τ |2 + |σR|2 + |σI |2

)
P (A.0.5)

and then Ω†PΩ is

2
[

0 b(|τ |2 + |σR|2 − |σI |2) + 2cRe(σ̄RσI)

−b(|τ |2 + |σR|2 − |σI |2)− 2cRe(σ̄RσI) 0

]

+2i
[

a|τ |2 − d(|σR|2 + |σI |2) −2bRe(σ̄RσI) + c(|σR|2 − |σI |2 − |τ |2)

−2bRe(σ̄RσI) + c(|σR|2 − |σI |2 − |τ |2) a(|σR|2 + |σI |2) + d|τ |2

]
(A.0.6)

Putting them together, we get

8
[

0 b(|τ |2 + |σR|2) + cRe(σ̄RσI)

−b(|τ |2 + |σR|2)− cRe(σ̄RσI) 0

]

+4i
[

−(a+ d)(|σR|2 + |σI |2) −2bRe(σ̄RσI)− 2c(|σI |2 + |τ |2)

−2bRe(σ̄RσI)− 2c(|σI |2 + |τ |2) (a+ d)(|σR|2 + |σI |2)

]
(A.0.7)

We can now extract one equation for each of the quaternion components and then

use Mathematica to solve them.

A.0.2 Solving the equations

The

0 −1

1 0

 component gives

4q0Re(v̄RwI − v̄IwR)− 4Re(v̄RqwR + v̄IqwI) =

2b
(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σR|2)

)
− (a+ d)Re(w̄RvI − w̄IvR) + 8cRe(σ̄RσI)

(A.0.8)

For the

0 i

i 0

 component we have

4q0Re(v̄RwR + v̄IwI) + 4Re(v̄RqwI − v̄IqwR) =

8bRe(σ̄RσI) + 2c
(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σI |2)

)
+ (a+ d)Re(w̄RvR + w̄IvI)

(A.0.9)
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Now we look at

i 0

0 0

, which gives

2q0(|vR|2 + |vI |2) + 4Re(v̄RqvI) = 2a
(
|vR|2 + |vI |2 + |σR|2 + |σI |2

)
+2d(|σR|2 + |σI |2) + 2bRe(w̄IvR − w̄RvI) + 2cRe(v̄RwR + v̄IwI) (A.0.10)

Final, we have the new equation from

0 0

0 −i

 which is

2q0(|wR|2 + |wI |2) + 4Re(w̄RqwI) = 2d
(
|wR|2 + |wI |2 + |σR|2 + |σI |2

)
+2a(|σR|2 + |σI |2) + 2bRe(w̄IvR − w̄RvI) + 2cRe(v̄RwR + v̄IwI) (A.0.11)

To make progress, we get two new equations from adding and taking away the pairs

of diagonal and off diagonal equations. Adding the diagional equations gives

q0
(
|vR|2 + |vI |2 + |wR|2 + |wI |2

)
+ 2Re(v̄RvI + w̄RqwI) =

a(|vR|2 + |vI |2) + d(|wR|2 + |wI |2) + 2(a+ d)(|σR|2 + |σI |2)

2bRe(w̄IvR − w̄RvI) + 2cRe(v̄RwR + v̄IwI) (A.0.12)

Taking them away we get

q0
(
|vR|2+|vI |2−|wR|2−|wI |2

)
+2Re(v̄RqvI−w̄RqwI) = a(|vR|2+|vI |2)−d(|wR|2+|wI |2)

(A.0.13)

We can use (A.0.13) to write

d =
a(|vR|2 + |vI |2)− q0

(
|vR|2 + |vI |2 − |wR|2 − |wI |2

)
− 2Re(v̄RqvI − w̄RqwI)

|wR|2 + |wI |2
(A.0.14)

Solving these gives the solution in the main text, in (5.5.4).
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The Two Instanton Potential

As a first step to solving (5.6.3), we calculate

x̂iDiφ = x̂i
(
iU †eibf∆†AU + iU †A∆f ēib†U

)
(B.0.1)

in the limit |x| 7→ ∞, using the following (see section 4.4)

∆ 7→


v w

−x 0

0 −x


fkl 7→

1
|x|2

δkl (B.0.2)

Then we can write

x̂iDiφ 7→
i

|x|2
(
x̂U †b12

v† −x̄ 0

w† 0 −x̄

AU + ˆ̄xU †A


v w

−x 0

0 −x

 12b
†U
)

(B.0.3)

Where A, as above, is 
q 0 0

0 ai ci− b

0 ci+ b di

 (B.0.4)
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and

b =


0 0

1 0

0 1

 (B.0.5)

This gives

i

|x|2
(
x̂U †


0 0 0

v†q −aix̄ −(ci− b)x̄

w†q −(ci+ b)x̄ −dix̄

U + ˆ̄xU †


0 qv qw

0 −aix −(ci− b)x

0 −(ci+ b)x −dix

U
)

(B.0.6)

which contracts as

x̂iDiφ = i

|x|2

(
x̂
(
U †2v

†qU1 + U †3w
†qU1

)
+ ˆ̄x

(
U †1qvU2 + U †1qwU3

)
−2|x|

(
aiU †2U2 + diU †3U3 + b

(
U †3U2 − U †2U3

)
+ ci

(
U †3U2 + U †2U3

)))
(B.0.7)

Substituting in the limiting values for the Ui in (5.6.5) we have

x̂iDiφ = i

|x|3

((
vv† + ww†

)
q + q

(
vv† + ww†

)
− 2

(
aivv† + diww† + b

(
wv† − vw†

)
+ ci

(
wv† + vw†

)))
+O

( 1
| x|4

)
(B.0.8)

Finally, we can expand into real and imaginary parts

x̂iDiφ = i

|x|3

(
2q
(
|vR|2 + |vI |2 + |wR|2 + |wI |2

)
− 2i

(
Im(vRv̄I + wRw̄I)q + qIm(vRv̄I + wRw̄I)

)
− 2

(
ai
(
|vR|2 + |vI |2 − 2iIm(vRv̄I)

)
+ di

(
|wR|2 + |wI |2 − 2iIm(wRw̄I)

)
+ 2b

(
Im(wRv̄R + wI v̄I) + iRe(wI v̄R − wRv̄I)

)
+ 2ci

(
Re(wRv̄R + wI v̄I) + iIm(wI v̄R − wRv̄I)

)

+O
( 1
| x|4

)
(B.0.9)

We now combine this result with the fact that the scalar field φ tends to iq at infinity,

to get

V = lim|x|2 7→∞ −
∫
d3S

1
|x|3

Tr
2q2

(
|vR|2 + |vI |2 + |wR|2 + |wI |2

)
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− 2i
(
qIm(vRv̄I + wRw̄I)q + q2Im(vRv̄I + wRw̄I)

)
− 2q

(
ai
(
|vR|2 + |vI |2 − 2iIm(vRv̄I)

)
+ di

(
|wR|2 + |wI |2 − 2iIm(wRw̄I)

)
+ 2b

(
Im(wRv̄R + wI v̄I) + iRe(wI v̄R − wRv̄I

)
+ 2ci

(
Re(wRv̄R + wI v̄I) + iIm(wI v̄R − wRv̄I)

)+O
( 1
| x|4

)
(B.0.10)

Here and elsewhere in this appendix Re and Im refer to ReH and ImH unless otherwise

stated. To simplify the trace, we split q = iq0 + q and ignore any of the purely

imaginary quaternion terms, which go to zero. Then, also evaluating the integral,

we have

V = −4π2Tr
2(−|~q|2 − q2

0)
(
|vR|2 + |vI |2 + |wR|2 + |wI |2

)
+ 8q0q Im(vRv̄I + wRw̄I)

+ 2a
(
q0(|vR|2 + |vI |2)− 2qIm(vRv̄I)

)
+ 2d

(
q0(|wR|2 + |wI |2)− 2q Im(wRw̄I)

)
− 4bq Im(wRv̄R + wI v̄I) + 4bq0Re(wI v̄R − wRv̄I)

+ 4cq0Re(wRv̄R + wI v̄I) + 4cq Im(wI v̄R − wRv̄I)
 (B.0.11)

Taking the trace we get the solution (7.3.3)





Appendix C

The Two Instanton Metric

In this appendix Re and Im refer to ReH and ImH unless otherwise stated. To start

with, note

a†dCr = a†da− a†b(dR)b†a+ a†a(dR) (C.0.1)

We will calculate this term by term. First, a†da is v†dv + τ †dτ + σdσ v†dw + τ †dσ? − σ†dτ

w†dv + σ?†dτ − τ †dσ w†dw + σ?†dσ? + τ †dτ

 (C.0.2)

which we can expand asv̄RdvR + v̄IdvI + σ̄RdσR + σ̄IdσI + τ̄ dτ v̄RdwR + v̄IdwI + τ̄ dσR − σ̄Rdτ

w̄RdvR + w̄IdvI + σ̄Rdτ − τ̄ dσR w̄RdwR + w̄IdwI + σ̄RdσR + σ̄IdσI + τ̄ dτ



+i

v̄RdvI − v̄IdvR + σ̄RdσI − σ̄IdσR v̄RdwI − v̄IdwR + σ̄Idτ − τ̄ dσI

w̄RdvI − w̄IdvR + σ̄Idτ − τ †dσI w̄RdwI − w̄IdwR + σ̄IdσR − σ̄RdσI


(C.0.3)

Now we look at the term a†b(dR)b†a. Expanding dR as in (5.7.2), we get |τ |2 τ †σ?

σ?†τ σ?†σ?

 idφ+

 τ †σ + σ†τ σ†σ? − |τ |2

σ†?σ − |τ |2 −σ†?τ − τ †σ?

 idψ

+

−τ †σ + σ†τ |τ |2 + σ†σ?

−σ?†σ − |τ |2 σ?†τ − τ †σ?

 dθ +

 σ†σ −σ†τ

−τ̄σ |τ |2

 idχ (C.0.4)
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We can further expand this as  |τ |2 τ̄σR − iτ̄σI

σ̄Rτ + iσ̄Iτ |σR|2 + |σI |2 + i(σ̄RσI − σ̄IσR)

 idφ

+

 i(τ̄σI − σ̄Iτ) |σR|2 − |σI |2 − |τ |2 − i(σ̄RσI + σ̄IσR)

|σR|2 − |σI |2 − |τ |2 + i(σ̄RσI + σ̄IσR) i(τ̄σI − σ̄Iτ)

 idψ
 σ̄Rτ − τ̄σR |τ |2 + |σ|2 − |σI |2 − i(σ̄RσI + σ̄IσR)

|σI |2 − |σR|2 − |τ |2 − i(σ̄RσI + σ̄IσR) σ̄Rτ − τ̄σR

 dθ

+

|σR|2 + |σI |2 + i(σ̄RσI − σ̄IσR) −σ̄Rτ + iσ̄Iτ

−τ̄σR − iτ̄σI |τ |2

 idχ
(C.0.5)

Now we calculate the term a†adR. First note that due to the ADHM equations, we

have

a†a =

A1 + 4iζσ3 C1

C?1 B1 + 4iζσ3

 (C.0.6)

Where A,B,C are real functions. We can calculate them to be|vR|2 + |vI |2 + |σR|2 + |σI |2 + |τ |2 1
2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
1
2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
|wR|2 + |wI |2 + |σR|2 + |σI |2 + |τ |2



+i

 4ζσ3
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
−1

2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
4ζσ3


(C.0.7)

expanding dR as above, we can write a†adR as


|vR|2 + |vI |2 + |σR|2 + |σI |2 + |τ |2 0

1
2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
0

+ i

 4ζσ3 0

−1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0


idφ

+

 1

2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
|vR|2 + |vI |2 + |σR|2 + |σI |2 + |τ |2

|wR|2 + |wI |2 + |σR|2 + |σI |2 + |τ |2 1
2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)


+i

1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
4ζσ3

4ζσ3 −1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)

idψ
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+

 1

2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
−
(
|vR|2 + |vI |2 + |σR|2 + |σI |2 + |τ |2

)
|wR|2 + |wI |2 + |σR|2 + |σI |2 + |τ |2 −1

2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)


+i

1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
−4ζσ3

4ζσ3
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)

dθ

+

0 1

2

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
0 |wR|2 + |wI |2 + |σR|2 + |σI |2 + |τ |2

+ i

0 1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0 −4ζσ3


idχ

(C.0.8)

We can now take each of these away from their conjugate transpose. First, we look
at a†a dR− (a†a dR)T?, which is
([

0 − 1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0

]

+ 2i

[
|vR|2 + |vI |2 + |σR|2 + |σI |2 + |τ |2 1

4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
0

])
dφ

+ i

[
v̄RwR + w̄RvR + v̄IwI + w̄IvI |vR|2 + |vI |2 + |wR|2 + |wI |2 + 2(|σR|2 + |σI |2 + |τ |2)

|vR|2 + |vI |2 + |wR|2 + |wI |2 + 2(|σR|2 + |σI |2 + |τ |2) v̄RwR + w̄RvR + v̄IwI + w̄IvI

]
dψ

+
([

0 −
(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 2(|σR|2 + |σI |2 + |τ |2)

)
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 2(|σR|2 + |σI |2 + |τ |2) 0

]

i

[(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0

−0
(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)])dθ
+
([

0 − 1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0

]

2i

[
0 1

4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
|wR|2 + |wI |2 + |σR|2 + |σI |2 + |τ |2

])
dχ (C.0.9)

Next we look at a†bdRb†a− (a†bdRb†a)T?

2i

|τ |2 0

0 |σR|2 + |σI |2

 dφ+ 2i

|σR|2 + |σI |2 0

0 |τ |2

 dχ

+
2

 0 σ̄RσI + σ̄IσR

−(σ̄RσI + σ̄IσR) 0

+ 2i

 0 |σR|2 − |σI |2 − |τ |2

|σR|2 − |σI |2 − |τ |2 0


dψ

+
2

 0 |τ |2 + |σR|2 − |σI |2

|σI |2 − |σR|2 − |τ |2 0

+ 2i

 0 −(σ̄RσI + σ̄IσR)

−(σ̄RσI + σ̄IσR) 0


dθ

(C.0.10)
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Now we put them together as

a†adR− (a†adR)T? − a†bdRb†a+ (a†bdRb†a)T? (C.0.11)

which becomes

 0 −1

2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0



+ 2i

 |vR|2 + |vI |2 + |σR|2 + |σI |2 1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
−|σR|2 − |σI |2


dφ

+
2

 0 −σ̄RσI − σ̄IσR − 4ζσ3

4ζσ3 + σRσI + σ̄IσR 0



+ i

 v̄RwR + w̄RvR + v̄IwI + w̄IvI |vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|σI |2 + |τ |2)

|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|σI |2 + |τ |2) v̄RwR + w̄RvR + v̄IwI + w̄IvI


dψ


 0 −

(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σR|2)

)
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σR|2) 0



+

 0 −1

2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
1
2

(
v̄RwI + w̄IvR − v̄IwR − w̄RvI)

)
0



2i

 −|σR|2 − |σI |2 1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
1
4

(
v̄RwR + w̄RvR + v̄IwI + w̄IvI

)
|wR|2 + |wI |2 + |σR|2 + |σI |2+


dχ

(C.0.12)

Now we calculate a†da−
(
a†da

)T?
[

0 v̄RdwR + v̄IdwI − w̄RdvR − w̄IdvI + 2(τ̄dσR − σ̄Rdτ)

−
(
v̄RdwR + v̄IdwI − w̄RdvR − w̄IdvI + 2(τ̄dσR − σ̄Rdτ)

)
0

]

+ i

[
2
(
v̄RdvI − v̄IdvR + σ̄RdσI − σ̄IdσR

)
v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2

(
σ̄Idτ − τ̄dσI

)
v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2

(
σ̄Idτ − τ̄dσI

)
2
(
w̄RdwI − w̄IdwR − σ̄RdσI + σ̄IdσR

) ]
(C.0.13)

We are now in a position to solve (5.7.1). To do this we solve

a†da−
(
a†da

)T?
= a†b(dR)b†a−

(
a†b(dR)b†a

)T?
− a†a(dR) +

(
a†da

)T?
(C.0.14)
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This gives us several equations from the different components of the matrix. First,

the

0 −1

1 0

 component gives

v̄RdwR + v̄IdwI − w̄RdvR − wIdvI + 2(τ̄ dσR − σ̄Rdτ) = 4
(
Re(σ̄RσI)

)
dψ

+
(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|τ |2 + |σR|2)

)
dθ + Re(v̄RwI − w̄IvR)(dφ+ dχ)

(C.0.15)

Next, from the

0 i

i 0

 component, we have

v̄RdwI − v̄IdwR + w̄RdvI − w̄IdvR + 2(σ̄Idτ − τ̄ dσI) =

−
(
|vR|2 + |vI |2 + |wR|2 + |wI |2 + 4(|σI |2 + |τ |2)

)
dψ − 4

(
Re(σ̄RσI)

)
dθ

− Re(v̄RwR + v̄IwI)(dφ+ dχ) (C.0.16)

The

i 0

0 0

 component gives

v̄RdvI − v̄IdvR + σ̄RdσI − σ̄IdσR = −Re
(
v̄RwR + v̄IwI

)
dψ − Re

(
v̄RwI − v̄IwR

)
dθ

−
(
|vR|2 + |vI |2 + |σR|2 + |σI |2

)
dφ+ (|σR|2 + |σI |2)dχ (C.0.17)

and finally the

0 0

0 i

 component gives

w̄RdwI − w̄IdwR − σ̄RdσI + σ̄IdσR = −Re
(
v̄RwR + v̄IwI

)
dψ − Re

(
v̄RwI − v̄IwR

)
dθ

−
(
|wR|2 + |wI |2 + |σR|2 + |σI |2

)
dχ+ (|σR|2 + |σI |2)dφ (C.0.18)

If we add (C.0.17) and (C.0.18) we get

v̄RdvI − v̄IdvR + w̄RdwI − w̄IdwR =

−
(
|wR|2 + |wI |2

)
dχ−

(
|vR|2 + |vI |2

)
dφ− 2Re(v̄RwR + v̄IwI)dψ − 2Re(v̄RwI − v̄IwR)dθ

(C.0.19)
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If we take them away, we get

v̄RdvI − v̄IdvR − w̄RdwI + w̄IdwR + 2(σ̄RdσI − σ̄IdσR) =(
|wR|+ |wI |2 + 2(|σR|2 + |σI |2)

)
dχ−

(
|vR|+ |vI |2 + 2(|σR|2 + |σI |2)

)
dφ (C.0.20)

We can solve (C.0.15), (C.0.16), (C.0.19), (C.0.20) using Mathematica to get the

result in the main text, (5.7.7)



Appendix D

The Three Instaton Scalar Field

The equation we want to solve is still

2Tr2(Λ†qΛ) + Tr2([Ω†, P ]Ω− Ω†[Ω, P ])− Tr2({P,Λ†Λ}) = 0 (D.0.1)

Note that in this appendix Re and Im refer to ReH and ImH unless otherwise stated.

We now work out what each of these terms are equal to. First of all, we have

Tr2(Λ†qΛ) This turns out to be

2


0 −Re(v̄qu) Re(ūqw)

Re(v̄qu) 0 −Re(w̄qv)

−Re(ūqw) Re(w̄qv) 0

 (D.0.2)

Then we also have Tr2{P,Λ†Λ}
0 bRe(w̄v) + cRe(ūw)− 2a(|u|2 + |v|2) 2b(|w|2 + |u|2)− aRe(v̄w)− cRe(ūv)

2a(|v|2 + |u|2)− cRe(ūw)− bRe(w̄v) 0 aRe(ūw) + bRe(v̄u)− 2c(|w|2 + |v|2)

aRe(v̄w) + cRe(ūv)− 2b(|u|2 + |w|2) 2c(|v|2 + |w|2)− bRe(v̄u)− aRe(ūw) 0


(D.0.3)

Next, we calculate Tr2([Ω†, P ]Ω− Ω†[Ω, P ]) in sections, as Tr2
(
2Ω†PΩ− {P,Ω†Ω}).

First, we have 2Tr2(Ω†PΩ)

2a


0 2|σ1|2 − Re(τ̄1τ2) Re(σ̄1σ2 − τ̄1σ3)

Re(τ̄2τ1)− 2|σ1|2 0 Re(τ̄2σ2)− Re(σ̄1σ3)

Re(σ̄3τ1)− Re(σ̄2σ1) Re(σ̄3σ1)− Re(σ̄2τ2) 0
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+2b


0 Re(τ̄1σ3)− Re(σ̄2σ1) Re(τ̄1τ3)− 2|σ2|2

Re(σ̄1σ2)− Re(σ̄3τ1) 0 Re(σ̄1τ3 − σ̄3σ2)

2|σ2|2 − Re(τ̄3τ1) Re(σ̄2σ3)− Re(τ̄3σ1) 0



+2c


0 Re(σ̄2τ2)− Re(σ̄1σ3) Re(σ̄2σ3)− Re(σ̄1τ3)

Re(σ̄3σ1)− Re(τ̄2σ2) 0 2|σ3|2 − Re(τ̄2τ3)

Re(τ̄3σ1 − σ̄3σ2) −2|σ3|2 + Re(τ̄3τ2) 0

 (D.0.4)

Next we look at Tr2({P,Ω†Ω})

a


0 −2

(
2|σ1|2 + |σ2|2 + |σ3|2 + |τ1|2 + |τ2|2

)
−Re(σ̄1σ2)− Re(τ̄2σ3)− Re(σ̄3τ3)

2
(
2|σ1|2 + |σ2|2 + |σ3|2 + |τ1|2 + |τ2|2

)
0 Re(τ̄1σ2) + Re(σ̄1σ3) + Re(σ̄2τ3)

Re(σ̄1σ2) + Re(τ̄2σ3) + Re(σ̄3τ3) −Re(τ̄1σ2)− Re(σ̄1σ3)− Re(σ̄2τ3) 0



+b


0 Re(σ̄2σ1) + Re(σ̄3τ2) + Re(τ̄3σ3) 2

(
2|σ2|2 + |σ1|2 + |σ3|2 + |τ1|2 + |τ3|2

)
−Re(σ̄2σ1)− Re(σ̄3τ2)− Re(τ̄3σ3) 0 Re(τ̄1σ1) + Re(σ̄1τ2) + Re(σ̄2σ3)

−2
(
2|σ2|2 + |σ1|2 + |σ3|2 + |τ1|2 + |τ3|2

)
−Re(τ̄1σ1)− Re(σ̄1τ2)− Re(σ̄2σ3) 0



+c


0 Re(τ̄1σ2) + Re(σ̄1σ3) + Re(σ̄2τ3) −Re(τ̄1σ1)− Re(σ̄1τ2)− Re(σ̄2σ3)

−Re(τ̄1σ2)− Re(σ̄1σ3)− Re(σ̄2τ3) 0 −2
(
2|σ3|2 + |σ1|2 + |σ2|2 + |τ2|2 + |τ3|2

)
Re(τ̄1σ1) + Re(σ̄1τ2) + Re(σ̄2σ3) 2

(
2|σ3|2 + |σ1|2 + |σ2|2 + |τ2|2 + |τ3|2

)
0


(D.0.5)

Finally we put them together to get Tr2([Ω†, P ]Ω− Ω†[Ω, P ]) as

a

 0 2
(

3|σ1|2 + Σ2 + |τ1|2 + |τ2|2
)
− 2Re(τ̄1τ2) 3Re(σ̄1σ2) + Re

(
(τ̄3 + τ̄2 − 2τ̄1)σ3)

)
−2
(

2|σ1|2 + Σ2 + |τ1|2 + |τ2|2
)

+ 2Re(τ̄1τ2) 0 Re((2̄τ2 − τ̄1 − τ̄3)σ2)− 3Re(σ̄1σ3)

−3Re(σ̄1σ2)− Re
(

(τ̄3 + τ̄2 − 2τ̄1)σ3)
)

−Re((2τ̄2 − τ̄1 − τ̄3)σ2) + 3Re(σ̄1σ3) 0


+b

 0 Re
(

(2τ̄1 − τ̄2 − τ̄3)σ3
)
− 3Re(σ̄2σ1) 2Re(τ̄1τ3)− 2

(
3|σ2|2 + Σ2 + |τ1|2 + |τ3|2

)
−Re
(

(2τ̄1 − τ̄2 − τ̄3)σ3
)

+ 3Re(σ̄2σ1)) 0 Re
(

(2τ̄3 − τ̄2 − τ̄1)σ1
)
− 3Re(σ̄3σ2)

−2Re(τ̄1τ3) + 2
(

3|σ2|2 + Σ2 + |τ1|2 + |τ3|2
)
−Re
(

(2τ̄3 − τ̄2 − τ̄1)σ1
)

+ 3Re(σ̄3σ2) 0


+c

 0 Re
(

(2τ̄2 − τ̄3 − τ̄1)σ2
)
− 3Re(σ̄1σ3) 3Re(σ̄2σ3)− Re

(
(2τ̄3 − τ̄2 − τ̄1)σ1

)
3Re(σ̄3σ1)− Re

(
(2τ̄2 − τ̄3 − τ̄1)σ2

)
0 2

(
2|σ3|2 + Σ2 + |τ2|2 + |τ3|2

)
− 2Re(τ̄2τ3)

−3Re(σ̄2σ3) + Re
(

(2τ̄3 − τ̄2 − τ̄1)σ1
)
−2
(

2|σ3|2 + Σ2 + |τ2|2 + |τ3|2
)

+ 2Re(τ̄2τ3) 0


(D.0.6)

where

Σ = |σ1|2 + |σ2|2 + |σ3|2 (D.0.7)
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We can now write down three equations, one for each component of (7.2.4). First,

the


0 −1 0

1 0 0

0 0 0

 component , together with the identity τ1 + τ2 + τ3 = 0, gives

4Re(v̄qu) = 2a
(
|u|2 + |v|2 + 2|σ1|2 + Σ2 + |τ1|2 + |τ2|2 − Re(τ̄1τ2)

)
+ b

(
3Re(τ̄1σ3)− 3Re(σ̄2σ1)− Re(w̄v)

)
+ c

(
3Re(τ̄2σ2)− 3Re(σ̄1σ3)− Re(ūw)

)
(D.0.8)

Next, we have the


0 0 1

0 0 0

−1 0 0

 component, which results in

4Re(ūqw) = −a
(
3Re(σ̄1σ2)− 3Re(τ̄1σ3) + Re(v̄w)

)
+ 2b

(
|w|2 + |v|2 + 3|σ2|2 + Σ2 + |τ1|2 + |τ3|2 − Re(τ̄1τ3)

)
− c

(
3Re(σ̄2σ3)− 3Re(τ̄3σ1) + Re(ūv)

)
(D.0.9)

Finally, we have the equation resulting from


0 0 0

0 0 −1

0 1 0



4Re(w̄qv) = a
(
3Re(τ̄2σ2)− 2Re(σ̄1σ3)− Re(ūw)

)
+ b

(
3Re(τ̄3σ1)− 3Re(σ̄3σ2)− Re(v̄u)

)
+ 2c

(
|w|2 + |v|2 + 2|σ3|2 + Σ2 + |τ2|2 + |τ3|2 − Re(τ̄2τ3)

)
(D.0.10)

We can then use Mathematica to solve for the solutions give in (7.2.5)





Appendix E

The Three Instanton Potential

In this appendix Re and Im refer to ReH and ImH unless otherwise stated. First, we

look at

x̂iDiφ = x̂i
(
iU †eibf∆†AU + iU †A∆f ēib†U

)
(E.0.1)

in this |x| 7→ ∞ limit. We will make use of these results:

∆ 7→



u v w

−x 0 0

0 −x 0

0 0 −x


fkl 7→

1
|x|2

δkl (E.0.2)

Then we can write

x̂iDiφ 7→
i

|x|2

x̂U †b13


ū −x̄ 0 0

v̄ 0 −x̄ 0

w̄ 0 0 −x̄

AU + ˆ̄xU †A



u v w

−x 0 0

0 −x 0

0 0 −x


13b
†U



(E.0.3)
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Where A, as above, is 

q 0 0 0

0 0 −a b

0 a 0 −c

0 −b c 0


(E.0.4)

and

b =



0 0 0

1 0 0

0 1 0

0 0 1


(E.0.5)

This gives

i

|x|2

x̂U †


0 0 0 0

ūq 0 x̄a −x̄b

v̄q −x̄a 0 x̄c

w̄q x̄b −x̄c 0


U + ˆ̄xU †



0 qu qv qw

0 0 ax −bx

0 −ax 0 cx

0 bx −cx 0


U

 (E.0.6)

which contracts as

x̂iDiφ = i

|x|2

(
ˆ̄xU †1quU2 + x̂U †2 ūqU1 + x̂U †3 v̄qU1 + ˆ̄xU †1qvU3 + ˆ̄xU †1qwU4 + x̂U †4 w̄qU1

+2a|x|
(
U †2U3 − U †3U2

)
+ 2b|x|

(
U †4U2 − U †2U4

)
+ 2c|x|

(
U †3U4 − U †4U3

))

(E.0.7)

Expanding the Ui we get

x̂iDiφ = 2i
|x|3

(
q
(
|u|2 + |v|2 + |w|2

)
+a(uv̄−vū)+b(wū−uw̄)+c(vw̄−wv̄)

)
(E.0.8)

We now combine this result with the fact that the scalar field φ tends to iq at infinity,

to get

V = lim|x|2 7→∞−
∫
d3S

2
|x|3

Tr
(
q2
(
|u|2+|v|2+|w|2

)
+q

(
a(uv̄−uw̄)+b(wū−uw̄)+c(vw̄−wv̄)

))
(E.0.9)



199

Evaluating the integral, we have

V = −8π2Tr
(
q2
(
|u|2 + |v|2 + |w|2

)
+ q

(
a(uv̄ − vū) + b(wū− uw̄) + c(vw̄ − wv̄)

))
(E.0.10)

Finally, we can evaluate the trace to get the solution in (7.3.6)





Appendix F

The Three Instanton Metric

In this appendix Re and Im refer to ReH and ImH unless otherwise stated. First, we
have a†da. This is

ūdu+ τ̄1dτ1 + σ̄1dσ1 + σ̄2dσ2 ūdv + τ̄1dσ1 + σ̄1dτ2 + σ̄2dσ3 ūdw + τ̄1dσ2 + σ̄1dσ3 + σ̄2dτ3

v̄du+ σ̄1dτ1 + τ̄2dσ1 + σ̄3dσ2 v̄dv + τ̄2dτ2 + σ̄1dσ1 + σ̄3dσ3 v̄dw + σ̄1dσ2 + τ̄2dσ3 + σ̄3dτ3

w̄du+ σ̄2dτ1 + σ̄3dσ1 + τ̄3dσ2 w̄dv + σ̄2dσ1 + σ̄3dτ2 + τ̄3dσ3 w̄dw + τ̄3dτ3 + σ̄3dσ3 + σ̄2dσ2

 (F.0.1)

Next we look at the term a†b(dR)b†a. As before, we split dR into the sum of its

components, and so we have
Im(σ̄1τ) |σ1|2 − τ̄1τ2 σ̄1σ2 − τ̄1σ3

τ̄2τ1 − |σ1|2 Im(τ̄2σ1) τ̄2σ2 − σ̄1σ3

σ̄3τ1 − σ̄2σ1 σ̄3σ1 − σ̄2τ2 Im(σ̄3σ2)

 dφ+


Im(τ̄1σ2) τ̄1σ3 − σ̄2σ1 τ̄1τ3 − |σ2|2

σ̄1σ2 − σ̄3τ1 Im(σ̄1σ3) σ̄1τ3 − σ̄3σ2

|σ2|2 − τ̄3τ1 σ̄2σ3 − τ̄3σ1 Im(σ̄2τ3)

 dθ

+


Im(σ̄2σ1) σ̄2τ2 − σ̄1σ3 σ̄2σ3 − σ̄1τ3

σ̄3σ1 − τ̄2σ2 Im(σ̄3τ2) |σ3|2 − τ̄2τ3

τ̄3σ1 − σ̄3σ2 τ̄3τ2 − |σ3|2 Im(τ̄3σ3)

 dψ (F.0.2)

Finally, a†a(dR) is given by
|u|2 + |τ1|2 + |σ1|2 + |σ2|2 ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3 ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3

v̄u+ σ̄1τ1 + τ̄2σ1 + σ̄3σ2 |v|2 + |τ2|2 + |σ1|2 + |σ3|2 v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3

w̄u+ σ̄2τ1 + σ̄3σ1 + τ̄3σ2 w̄v + σ̄2σ1 + σ̄3τ2 + τ̄3σ3 |w|2 + |τ3|2 + |σ2|2 + |σ3|2

 dR
(F.0.3)
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Because of the ADHM equations, this matrix must be real and symmetric, so this

expression must be equal to
|u|2 + |τ1|2 + |σ1|2 + |σ2|2 Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3)

Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) |v|2 + |τ2|2 + |σ1|2 + |σ3|2 Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3)

Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) |w|2 + |τ3|2 + |σ2|2 + |σ3|2

 dR
(F.0.4)

Expanding in the components of dR, we get
Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) −

(
|u|2 + |τ1|2 + |σ1|2 + |σ2|2) 0

|v|2 + |τ2|2 + |σ1|2 + |σ3|2 −Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) 0

Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) −Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) 0

 dφ

+


−Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) 0 |u|2 + |τ1|2 + |σ1|2 + |σ2|2

−Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) 0 Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3)

−
(
|w|2 + |τ3|2 + |σ2|2 + |σ3|2

)
0 Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3)

 dθ

+


0 Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) −Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3)

0 Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) −
(
|v|2 + |τ2|2 + |σ1|2 + |σ3|2

)
0 |w|2 + |τ3|2 + |σ2|2 + |σ3|2 −Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3)

 dψ (F.0.5)

The next step is to take the difference of each term and its transpose. We start with
a†da. This is

0 ūdv − v̄du+ τ̄1dσ1 − σ̄1dτ1 + σ̄1dτ2 − τ̄2dσ1 + σ̄2dσ3 − σ̄3dσ2 0

−
(
ūdv − v̄du+ τ̄1dσ1 − σ̄1dτ1 + σ̄1dτ2 − τ̄2dσ1 + σ̄2dσ3 − σ̄3dσ2

)
0 0

0 0 0



+


0 0 ūdw − w̄du+ τ̄1dσ2 − σ̄2dτ1 + σ̄1dσ3 − σ̄3dσ1 + σ̄2dτ3 − τ̄3dσ2

0 0 0

−
(
ūdw − w̄du+ τ̄1dσ2 − σ̄2dτ1 + σ̄1dσ3 − σ̄3dσ1 + σ̄2dτ3 − τ̄3dσ2

)


+


0 0 0

0 0 v̄dw − w̄dv + σ̄1dσ2 − σ̄2dσ1 + τ̄2dσ3 − σ̄3dτ2 + σ̄3dτ3 − τ̄3dσ3

0 −
(
v̄dw − w̄dv + σ̄1dσ2 − σ̄2dσ1 + τ̄2dσ3 − σ̄3dτ2 + σ̄3dτ3 − τ̄3dσ3

)
0


(F.0.6)
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Next we have a†b(dR)b†a, which gives

2


0 |σ1|2 − Re(τ̄1τ2) Re(σ̄1σ2 − τ̄1σ3)

−(|σ1|2 − Re(τ̄1τ2)) 0 Re(τ̄2σ2 − σ̄1σ3)

−Re(σ̄1σ2 − τ̄1σ3) −Re(τ̄2σ2 − σ̄1σ3) 0

 dφ

+2


0 Re(τ̄1σ3 − σ̄2σ1) Re(τ̄1τ3)− |σ2|2

−Re(τ̄1σ3 − σ̄2σ1) 0 Re(σ̄1τ3 − σ̄3σ2)

|σ2|2 − Re(τ̄3τ1) −Re(σ̄1τ3 − σ̄3σ2)) 0

 dθ

+


0 Re(σ̄2τ2 − σ̄1σ3) Re(σ̄2σ3 − σ̄1τ3)

−Re(σ̄2τ2 − σ̄1σ3) 0 |σ3|2 − Re(τ̄2τ3)

−Re(σ̄2σ3 − σ̄1τ3) Re(τ̄3τ2)− |σ3|2 0

 dψ (F.0.7)

The final one is the terms from a†a(dR)- remembering that dR is antisymmetric,
this gives

0 −
(
|u|2 + |v|2 + |τ1|2 + |τ2|2 + |σ1|2 + Σ2

)
−Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3)

|u|2 + |v|2 + |τ1|2 + |τ2|2 + |σ1|2 + Σ2 0 Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3)

Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) −Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) 0

 dφ

+


0 Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) |u|2 + |w|2 + |τ1|2 + |τ3|2 + 2|σ2|2 + Σ2

−Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3) 0 )

−
(
|u|2 + |w|2 + |τ1|2 + |τ3|2 + 2|σ2|2 + Σ2

)
−Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) 0

 dθ

+


0 Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) −Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3)

−Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3) 0 −
(
|v|2 + |w|2 + |τ2|2 + |τ3|2 + |σ3|2 + Σ2

)
Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3) |v|2 + |w|2 + |τ2|2 + |τ3|2 + 2|σ3|2 + Σ2 0

 dψ
(F.0.8)

Where Σ2 = |σ1|2 + |σ2|2 + |σ3|2. Now we can solve (5.7.1), using

a†dCr = a†da− a†b(dR)b†a+ a†a(dR) (F.0.9)

, by expanding and rearranging it into the form

a†da− (a†da)T = a†b(dR)b†a− (a†b(dR)b†a)T − (a†a(dR) + (dR)a†a) (F.0.10)
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This gives three equations, one for each of the basis elements of o(3). First, the
0 1 0

−1 0 0

0 0 0

 component gives

ūdv − v̄du+ τ̄1dσ1 − σ̄1dτ1 + σ̄1dτ2 − τ̄2dσ1 + σ̄2dσ3 − σ̄3dσ2 =(
|u|2 + |v|2 + |τ1|2 + |τ2|2 + 3|σ1|2 + Σ2 − 2Re(τ̄1τ2)

)
dφ

+
(
2Re(τ̄1σ3 − σ̄2σ1)− Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3)

)
dθ

+
(
2Re(σ̄2τ2 − σ̄1σ3)− Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3)

)
dψ (F.0.11)

Next, the


0 0 −1

0 0 0

1 0 0

 component gives

ūdw − w̄du+ τ̄1dσ2 − σ̄2dτ1 + σ̄1dσ3 − σ̄3dσ1 + σ̄2dτ3 − τ̄3dσ2 =(
2Re(σ̄1σ2 − τ̄1σ3) + Re(v̄w + σ̄1σ2 + τ̄2σ3 + σ̄3τ3)

)
dφ(

2Re(τ̄1τ3)− (|u|2 + |w|2 + |τ1|2 + |τ3|2 + 3|σ2|2 + Σ2)
)
dθ

+
(
2Re(σ̄2σ3 − σ̄1τ3) + Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3)

)
dψ (F.0.12)

Finally, we have the


0 0 0

0 0 −1

0 1 0

 component

v̄dw − w̄dv + σ̄1dσ2 − σ̄2dσ1 + τ̄2dσ3 − σ̄3dτ2 + σ̄3dτ3 − τ̄3dσ3 =(
2Re(τ̄2σ2 − σ̄1σ3)− Re(ūw + τ̄1σ2 + σ̄1σ3 + σ̄2τ3)

)
dφ(

2Re(σ̄1τ3 − σ̄3σ2)− Re(ūv + τ̄1σ1 + σ̄1τ2 + σ̄2σ3
)
dθ

+
(
|v|2 + |w|2 + |τ2|2 + |τ3|2 + 3|σ3|2 + Σ2 − Re(τ̄2τ3)

)
dψ (F.0.13)

A bit of rearrangement gives

ūdv − v̄du+ τ̄1dσ1 − σ̄1dτ1 + σ̄1dτ2 − τ̄2dσ1 + σ̄2dσ3 − σ̄3dσ2 = (F.0.14)
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(
|u|2 + |v|2 + |τ1 − τ2|2 + 3|σ1|2 + Σ2

)
dφ

+
(
3Re(τ̄1σ3 − σ̄2σ1)− Re(v̄w)

)
dθ +

(
3Re(σ̄2τ2 − σ̄1σ3)− Re(ūw)

)
dψ

ūdw − w̄du+ τ̄1dσ2 − σ̄2dτ1 + σ̄1dσ3 − σ̄3dσ1 + σ̄2dτ3 − τ̄3dσ2 = (F.0.15)(
3Re(σ̄1σ2 − τ̄1σ3) + Re(v̄w)

)
dφ−

(
|u|2 + |w|2 + |τ1 − τ3|2 + 3|σ2|2 + Σ2

)
dθ

+
(
3Re(σ̄2σ3 − σ̄1τ3) + Re(ūv)

)
dψ

v̄dw − w̄dv + σ̄1dσ2 − σ̄2dσ1 + τ̄2dσ3 − σ̄3dτ2 + σ̄3dτ3 − τ̄3dσ3 = (F.0.16)(
3Re(τ̄2σ2 − σ̄1σ3)− Re(ūw)

)
dφ+

(
3Re(σ̄1τ3 − σ̄3σ2)− Re(ūv)

)
dθ

+
(
|v|2 + |w|2 + |τ2 − τ3|2 + 3|σ3|2 + Σ2

)
dψ

We can now use Mathematica to solve these to get the solution in the main text,

(7.4.4)
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