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Abstract 
 
 
Triticum aestivum is the major food source in many parts of the world, providing 

approximately 20% of calories consumed by humans. The pathogen Zymoseptoria 

tritici that causes Septoria Tritici Blotch (STB), is currently the main threat to wheat 

production, with an average yield loss of 20%. Therefore, understanding the 

molecular mechanisms that underpin the Septoria-wheat interaction will be crucial for 

generating new control strategies against STB. WRKY transcription factors are 

important components of signaling in plants, regulating many molecular mechanisms 

in response to abiotic and biotic stresses. Published data demonstrate that there are at 

least 3 wheat WRKYs (TaWRKY) that show altered expression upon Septoria 

infection. The hormone jasmonic acid (JA) plays key role in biotic stress response, 

but also in a diverse array of plant processes including development, reproduction, 

and response to abiotic stress. Most of our understanding of the JA signaling pathway 

derives from the dicot model plant Arabidopsis thaliana, while corresponding 

knowledge in wheat is somewhat limited. 

Via bioinformatics analysis we identified TaWRKY10 and TaWRKY13 genes in wheat 

and validated the role of two of them during Septoria infection response. Moreover 

we have been able to demonstrate that TaWRKY10 is a key component of the JA 

signalling pathway. We specifically identified its role and downstream targets, as well 

as 6 putative regulators of its transcription. TaWRKY10 acting at the JA perception 

level couples growth and immunity. As growth and immunity are inversely correlated, 

investigating the molecular basis of their correlation could lead to the discovery of 

novel breeding tools.  
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Introduction 
 
World population is rapidly growing, consequently the food demand worldwide is 

dramatically increasing. The Food and Agriculture organization of the United Nations 

(FAO) estimates that 70% increment in food production is needed by 2050. This is the 

new challenge for plant scientists in this era.  

This goal can be achieved, from a crop production perspective, either by increasing 

yield or preventing yield losses. Therefore studying crops, and crop pathology, is 

gaining importance. In this work we attempted to gain a deeper understanding of  

hormonal and molecular wheat responses to the pathogen Zymoseptoria tritici. 

Triticum aestivum (bread wheat) is one of the major food sources in many parts of the 

world, providing approximately 20% of calories consumed by humans. Bread wheat 

has a hexaploid genome (AABBDD), which originates from inter species 

hybridization (Dvorak and Akhunov 2005; Chalupska et al., 2008). 

In 2013/14 world wheat production was expected to be around 708.5 million tonnes 

and the average amount of wheat consumed per capita is predicted to be 66.9kg 

(FAO). 

This represents the largest proportion of cereal crops farmed in the world (total 

predicted cereal production is 2,497.6 million tonnes and forecasted to be 152.4kg per 

capita consumed). After maize, wheat has the second highest usage for animal feed in 

2009, therefore wheat has a double role in food production. 

Although the crop is most successful between the latitudes of 30° and 60°N and 27° 

and 40°S (Nuttonson, 1955), wheat can be grown beyond these limits, from within the 

Arctic Circle to higher elevations near the equator. Development research by the 

International Maize and Wheat Improvement Center (CIMMYT) has shown that 

wheat production in much warmer areas is technologically feasible (Saunders and 

Hettel, 1994). The crop is grown from sea level to more than 3 000 m in altitude, and 

it has been reported at 4 570 m in Tibet (Percival, 1921).  
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The optimum growing temperature is about 25°C, with minimum and maximum 

growth temperatures of 3° to 4°C and 30° to 32°C, respectively (Briggle, 1980). 

Wheat is adapted to a broad range of moisture conditions from low to well watered. 

Although about three-fourths of the land area where wheat is grown receives an 

average of between 375 and 875 mm of annual precipitation, it can be grown in most 

locations where precipitation ranges from 250 to 1 750 mm (Leonard and Martin, 

1963). Optimal production requires an adequate source of moisture during the 

growing season; however, too much precipitation can lead to yield losses from disease 

and root problems. Cultivars of widely differing pedigree are grown under varied 

conditions of soil and climate and show wide trait variations. Although wheat is being 

harvested somewhere in the world in any given month, harvest in the temperate zones 

occurs between April and September in the Northern Hemisphere and between 

October and January in the Southern Hemisphere (Percival, 1921).Classification into 

spring or winter wheat is common and traditionally refers to the season during which 

the crop is grown. For winter wheat, heading is delayed until the plant experiences a 

period of cold winter temperatures (0° to 5°C). It is planted in the autumn to 

germinate and develop into young plants that remain in the vegetative phase during 

the winter and resume growth in early spring. This provides the advantage of using 

autumn moisture for germination and making effective use of early spring sunshine, 

warmth and rainfall. Spring wheat, as the name implies, is usually planted in the 

spring and matures in late summer but can be sown in autumn in countries that 

experience mild winters, such as in South Asia, North Africa, the Middle East and the 

lower latitudes. For this study only winter wheat varieties were used. This is due to 

the fact that winter wheat is more threatened by Zymoseptoria Tritici (the model 

pathogen employed in the study) because of the optimal climate conditions for the 

pathogen spread. The varieties of choice are KWS Lili  (Lili), as model more resistant 

cultivar, and KWS Santiago (Santiago) as more susceptible model cultivar. 

Eventhough both cultivars allow septoria to colonise and reproduce.  
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Zymoseptoria Tritici 
 
Zymoseptoria Tritici (also known as Mychosporella Graminicola, Septoria tritici or 

commonly known as Septoria) is the causal pathogen of Septoria Tritici Blotch 

(STB), one of the most threatening wheat foliar diseases across temperate regions, 

causing up to 40% yield loss if untreated with fungicide (Orton et al., 2011).  

It is predicted that around 70% of Europe’s fungicide volume is used to treat Septoria 

(Ponomarenko et al., 2011). Wheat is particularly vulnerable when sown upon straw 

debris and among early sown susceptible varieties. Septoria has become more 

damaging since the 1960’s with the increase in more commercial, early maturing, 

semi dwarf and higher yielding wheat cultivars that are more susceptible to the fungus 

(Eyal et al., 1987). 

At the beginning of the infection Septoria appears as irregular brown chlorotic spots, 

which expands as the infection progresses, developing into necrotic lesions on either 

side of the leaf. Developing with the lesions are the pycnidia, small brown raised 

fruiting bodies produced on the leaf, which go onto release the pycnidiospores (Eyal 

1999; Orton et al., 2011). A sticky medium that contains sugars and proteins is 

produced with the spores to protect them from drying out. The fungus spreads its 

spores by either wind or within rain splashes (Kema et al., 1996) infecting the bottom 

leaves of the wheat plant and potentially going onto infect upper leaves (Eyal 1999). 

When wheat crops are not present Septoria survives in plant debris as mycelium, in 

pycnidia and mainly as psuedothecia, which are activated to release the spores when 

the growth conditions are optimal (Ponomarenko et al., 2011). It infects in temperate 

regions with high rainfall, ideally needing moisture for >24 hours and a temperature 

of 10-20OC (McMullen and Adhlkarl 2009). 24-48 hours after the spores land on the 

leaf surface the Septoria hyphae infiltrate the leaf through the stomata, entering the 

apoplastic space, where it remains throughout its life cycle. During the early 

symptomless infection, first 12-18 days, the Septoria grows as a biotroph, using 

nutrients from the apoplastic space to grow its hyphae throughout the mesophyll 

tissue. It was suggested that the fungus relies more on the breakdown of proteins as 

opposed to carbohydrate degradation to avoid detection in the biotrophic phase 

(Goodwin et al., 2011). The next stage of growth is the necrotrophic phase where the 

host’s mesophyll cells collapse and die releasing nutrients, leading to leaf surface 

lesions (Eyal et al., 1987; Palmer and Skinner 2002; Ponomarenko et al., 2011). The 
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fungal mycelium rapidly proliferate upon host cell death, with an increase in gene 

expression of proteins involved in energy production within the fungal cells occurring 

at the same time as the release of intracellular nutrients (Orton et al., 2011). During 

the necrotrophic feeding stage symptoms start to appear on foliar tissue, in the form of 

chlorotic lesions that display characteristics of programmed cell death (Keon et al., 

2007, Rudd et al., 2008). This phase signals the start of reproductive stage in Septoria. 

In the reproductive stage, pycnidia (the reproductive organ of the fungus) filled with 

pycnidiospores, appear as black lesions on leave surfaces. The mature pycnidia 

release spores that allow Sepotria to colonise  the plant canopy, ultimately affecting 

flag leaf productivity by affecting its photosyntethic potential which ultimately 

impacts grain yield.  (Ponomarenko et al., 2011). 

The length of the biotrophic phase could vary depending on Septoria strain, the host 

variety, environment conditions. But still the key factors (molecular, genetical or 

environmental) that drive the life cycle shift are not yet identified. 

Current methods of controlling the infection include the use of chemical fungicides 

and resistance varieties (Griton et al 2011), nevertheless Septoria has become 

resistant to commercial fungicides. Maybe this is due to Septoria’s very high genome 

plasticity, in fact the fungus could go through two different types of reproduction: 

sexual (ascospore) and asexual (conidia) (Orton et al., 2011; Ponomarenko et al., 

2011). 

Wheat varieties have been bred to be resistant to different pathogens but these 

varieties do not yet have resistance to all the economically important diseases so the 

use of fungicides is still needed to prevent infection (Fraaije et al., 2001). 

General resistance to fungal pathogens occurs when pathogen-associated molecular 

patterns (PAMPs) such as eythlene-inducing xylnase (EIX) or chitins are recognised 

by plant recognition receptors (PRRs) on the cell surface (Ron and Avni 2004; Kaku 

et al., 2006). This recognition trigger a cascade of events that help arm the plant for 

defence and is known as PAMP-triggered immunity (PTI). Some pathogens have 

evolved resistance, via suppression or evasion, leading to successive rounds of 

evolution on both sides that result in specific defences to certain pathogens known as 

a gene-for-gene relationship (Flor 1942; Zipfel 2008). 

Specific resistance to plant pathogens at a species level involves a gene-for-gene 

interaction (Flor 1942) where a pathogen avirulence protein (Avr) is recognized by a 

plant resistance protein (R). This leads to something known as an incompatible 
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infection, which is a defence response that tries to contain the fungus to a small area 

of the plant (Thomma et al., 2005). Susceptible plant species do not have an R gene 

that corresponds with the pathogen Avr gene and therefore cannot mount a defence, 

as it does not recognise the pathogen. There has been evidence of a gene-for-gene 

relationship between resistant varieties of wheat and Septoria. Brading et al., 2002 

studied the resistant variety cv. Flame and found an R gene, that they designated Stb6, 

recognised a single gene of the M. graminicola isolate IPO323. They also showed a 

strong likelihood that cv. Hereward also expresses the same R gene, Stb6, through 

studies of progeny of the two varieties crossed and then studying the susceptibility of 

the plants to Septoria infection.  

Resistance to Septoria is one of the major targets in wheat breeding programmes. 

Currently 21 distinct genetic loci (Stb genes) as well as a large number of quantitative 

trait loci (QTL) that confer Septoria resistance have been identified in various wheat 

germplasm screening programs (Brown et al., 2015, Kettles and Kanyuka 2016, 

Saintenac et al., 2018). However, the molecular mechanisms underlying wheat 

resistance to STB is largely unknown. 

 

 

 

Jasmonic acid 
	
  
Jasmonic acid (JA) and its derivatives are fatty acid-derived hormones ubiquitously 

present in the plant kingdom (Creelman and Mullet, 1997; Wasternack, 2007). 

They act as regulatory molecules in many developmental processes that include 

fertility, sex determination, root elongation and fruit ripening (Mandaokar et al., 

2006: Yoshida et al., 2009). They are also signals activating plant defences against 

pathogens, herbivory, wounding and abiotic stress (Balbi and Devoto, 2008; Browse 

and Howe, 2008; Chico et al., 2008). 

 JA play a critical role when plants have to decide ‘to defend’ rather than ‘to grow’, 

transcriptionally reprogramming the cells to activate defence mechanisms and arrest 

the cell cycle and growth (Bodenhause et al., 2007; Pauwels et al., 2008; Zhang et al., 

2008). 

In comparison to Arabidopsis and rice, knowledge of JA biosynthesis and signaling in 

wheat is limited. JA biosynthesis begins in the chloroplasts where lipoxygenases 
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encoded by LOX genes oxygenate the phospholipids of linolenic acid. Linolenic acid 

is then liberated from membrane lipids and forms hydroperoxy octadecadienoic acid 

(HPODE). Under the action of an allene oxide synthase (AOS) and an allene oxide 

cyclase (AOC), respectively, encoded by AOS and AOC genes, HPODE is converted 

into 12-OPDA (Laudert et al., 1996, Stenzel et al., 2003) which is subsequently 

reduced to JAs via the catalysis of a peroxisome-localized enzyme, 12-oxo-

phytodienoic acid reductase 3 (OPR3), followed by 3 cycles of β-oxidation in the 

peroxisome (Stintzi et al., 2000, Strassner et al., 2002). 

Subsequently, JA-Ile, the JA bioactive form of JA, is formed through a conjugation of 

JA and isoleucine (Ile) under the action of the GH3 family amido synthetase 

Jasmonate resistant 1 (JAR1) (Staswick et al., 2001).  

The core of JA perception and signaling is currently defined by the 

SCFCOI1/JAZ/MYC2 module. 

COI1 is an F-box component of an SCF (SKIP–CULLIN–F-box) complex. These 

complexes are multiprotein E3 ubiquitin ligases catalysing the ubiquitination of 

proteins and their subsequent degradation. The F-box is the component conferring 

specificity for the substrate. JAZs are the repressors of the transduction whereas 

MYC2 is the transcriptional activator of JA response. 

In the absence of JA JAZs perform its repression via binding and sequestering MYC2, 

therefore preventing MYC2 association with the promoters of its targets. In presence 

of JA, COI1 recognize the JAZ proteins, and targets them to 26S proteasome 

degradation  (Thines et al., 2007, Chini et al., 2007). Once degraded, JAZ repressors 

release MYC2, a bHLH transcription factor that binds the G-box (CACGTG) or the 

T/Gbox (AACGTG) in the promoters of JA-regulated genes, triggering their 

activation (Yan et al., 2007). 

In comparison to Arabidopsis and other monocots such as rice and maize, knowledge 

on JA signaling and biosynthesis in wheat is limited and fragmented. However, JA-

dependent responses to diseases, biotic and abiotic stresses have been increasingly 

investigated in wheat during the last 2 decades.  The PR genes PR1.1 and PR1.2 were 

highly induced in 3 weeks post-emergence wheat by JA application (Hongwuei et al., 

2016), the same pattern of expression was detected on wheat infected with the fungal 

pathogens Tilletia tritici  and Tilletia laevis (Lu et al., 2006).   

Fusarium pseudograminearum infection, the causative agent of wheat crown rot 
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disease, leads to induction of 6 different PR genes (Desmond et al., 2006). 

Similarly, using a transcriptome-based method, it was revealed that JA biosynthesis 

genes such as LOX, AOS, AOC and OPR3 and JA signaling transduction genes, 

including COI1, JAZ, MYC2, were induced in a fusarium head blight resistant wheat 

variety (Xiao et al., 2013). These evidences strongly suggest the involvement of JA in 

wheat defense against pathogens. 

Moreover functions which are unrelated to defense have been recently proposed for 

some genes involved in the JA signaling pathway. For example, overexpression of 

TaAOC1 enhanced salinity tolerance in wheat via a JA pathway-dependent manner 

(Zhao et al., 2014).  

Recently transcriptomic studies established that JA biosynthetic genes are upregulated 

upon Septoria infection (Rudd et al., 2015) Nevertheless the mechanism underpinning 

the signal perception and transduction remains yet unclear. 

 

 

 

WRKY transcription factors 
 
WRKYs are one of the largest families of plant specific transcriptional regulators, 

with 72 representatives in Arabidopsis, more than 100 members in rice and 45 in 

barley (Eulgem et al., 2007, Mangelsen et al., 2008, Rushton et al., 2010, Agarwal et 

al., 2011); in this work 135 WRKYs have been identified in wheat. 

WRKYs can act as transcriptional activators or repressors, in various homo- and 

heterodimer combinations. WRKY transcription factors (TFs) are important 

components of a plant signaling web which regulate many plant processes such 

as biotic and abiotic stress response, but also in response to stimulus that 

triggers developmental processes, and include additional DNA-binding and 

non-DNA-binding proteins interactors (Ulker et al., 3004; Rushton et al., 2010; 

Agarwal et al., 2011; Bakshii and Oelmuller 2014). 

The WRKY members are characterized by displaying one or two WRKY domains. 

This domain is 60 amino acid long, and it contains a highly  conserved heptapeptide 

motif WRKYGQK at the N-terminus and a novel zinc-finger-like motif at the C-

terminus.  
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The WRKY domain consists of a 4-stranded β-sheet, with the zinc coordinating 

Cys/His residues forming a zinc-binding pocket. Both heptapeptide sequence and 

zinc-finger-like motif are required for the high binding affinity of WRKY TFs to the 

consensus cis-acting elements termed W box (TTGACT/C). 

Even though the presence of a highly conserved W box in the DNA sequence, 

WRKYs binding affinity could varies. This is mainly due to different peculiarieties 

among zinc-finger-like motifs. A classification based on this feature has been made, 

dividing WRKYs transcription factors in 3 different groups (Eulgem et al., 2006). 

Into group I we can find proteins with 2 WRKY domains, whereas protein with only 1 

WRKY domain belongs to group II. Group I and group II share the same potential 

zinc ligand pattern: C–X4–5–C–X22–23–H–X1–H, denominated C2-H2  pattern. 

Proteins with only 1 WRKY domain, but displaying different patterns of zinc finger 

motifs are classified into group III. Instead of a C2-H2 zinc finger motif, group III 

domain contains a C2-HC pattern (C–X7–C–X23–H–X1–C). 

The WRKYs can act up  or downstream of hormones, are involved in the 

antagonistic functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene 

(ET), control developmental processes via auxins, cytokinins, and 

brassinosteroids (Guo et al., 2005; Nillson et al., 2010; Rushton et al., 2010; Antoni 

et al., 2011). 

From a pathogen response point of view the main hormones involved are SA and JA, 

the first is associated with resistance to biotrophic pathogens, while the second is 

associated to the response against necrotrophic pathogens (Penninckx et al, 1997; 

Thomma et al., 2011). In this context the above-mentioned phytohormones have 

opposite effects on plant defence mechanisms that need to be integrated and 

coordinated by TFs activity, for example AtWRKY70 act as a repressor of JA-

associated genes transcription and simultaneously as activator of SA-elicited genes 

(Li et al., 2004). 

Rapid pathogen-induced WRKY33 expression does not require SA signaling, 

but is dependent on PAD4, a key regulator upstream of SA (Lippock et al., 

2007). WRKY33 is activated in the case of Botrytis cinerea infection, a 

necrotrophic pathogen, and its essential to coordinate SA and JA equilibrium 

during the infection (Birkenbihl et al., 2012). wrky33 loss of function mutant 

show abnormal activation of SA pathway and downregulation of JA associated 



	
   15	
  

response during Botrytis cinerea infection, increasing the plant susceptibility to 

the necrotrophic pathogen. This effect is due to over-activation of JA-ZIM 

domain repressor proteins (JAZ) (Birkenbihl et al., 2012). 

The expression profile of VvWRKY11 from grapevine in response to treatment with 

SA or the pathogen Plasmopara viticola is rapid and transient (Liu et al., 2011). 

Transgenic Arabidopsis overexpressing VvWRKY11 showed higher resistance to 

drought stress compared to their controls. These results demonstrated that VvWRKY11 

is involved in the response to dehydration stress, as well as pathogen response. This 

case demonstrates again how WRKYs have an important role in coordinating plant 

response to external stimuli.  

It has been demonstrated that double knock-out mutation of AtWRKY18 and 

AtWRKY40 increase Arabidopsis thaliana resistance to the biotrophic powdery 

mildew fungus Golovinomyces orontii (Schon et al., 2013). Resistance in wrky18 

wrky40 double mutant plants is accompanied by massive transcriptional 

reprogramming, imbalance in SA and JA signaling, altered ENHANCED DISEASE 

SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin 

camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as 

biosynthesis of the indole-glucosinolate 4MI3G as essential components required for 

increased resistance toward G. orontii in the above mentioned mutant background. 

The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin 

biosynthesis revealed an uncoupling of pre – from post-invasive resistance against G. 

orontii. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-

triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly 

susceptible toward the bacterial pathogen P. syringae DC3000 expressing the effector 

AvrRPS4 but not against other tested Pseudomonas strains. It appears that G. orontii 

depends on the function of WRKY18 and WRKY40 to successfully infect 

Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they 

are required to mediate effector-triggered immunity (Schon et al., 2013). 

Knock- down of the rice OsWRKY45 severely reduces SA/benzothiadiazole (BTH)-

induced resistance to the fungal pathogen Magnaporthe oryzae and the bacterial 

pathogen Xanthomonas oryzae. Conversely, overexpression of WRKY45 induces 

extremely strong resistance to both of these pathogens (Nakayama et al., 2013). A 

detailed analysis of the transgenic rice plants uncovered a central role of WRKY45 in 
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BTH-induced disease resistance. Furthermore, the SA-activated WRKY45 protein 

induces the accumulation of its own mRNA (Nakayama et al., 2013).  

Panicle blast 1 (Pb1) is a panicle blast resistance gene derived from the indica rice 

cultivar “Modan.” Pb1 encodes a coiled- coil-nucleotide-binding site-leucine-rich 

repeat (CC-NB-LRR) protein and confers durable, broad-spectrum resistance to M. 

oryzae races. The Pb1 protein interacts with WRKY45. Pb1- mediated panicle blast 

resistance is largely compromised when WRKY45 was knocked down in a Pb1-

containing rice cultivar. Leaf-blast resistance by Pb1 overexpression was also 

compromised in WRKY45 knockdown/Pb1 overexpressor rice. Blast infection induced 

higher accumulation of WRKY45 in the Pb1 overexpressor than in control 

Nipponbare rice. 

The involvement of WRKYs in JA defense pathway is still poorly understood in 

crops.  Overexpression of VvWRKY1 in grapevines induces expression of JA 

pathway-related genes and confers higher tolerance to the downy mildew (Marchive 

et al., 2013). On the other hand, it has been reported that dehydration-induced WRKY 

genes from tobacco and soybean respond to JA treatments in cell culture (Rabara et 

al., 2013). To fully understand the role of WRKYs and their involvement in hormonal 

pathways in crops, more investigations are required, maybe amplifying the spectrum 

of pathogens and cultivars analyzed. 

Published data demonstrate that there are at least 3 WRKYs that shows altered 

expression upon Septoria infection: 39, 53 and 68 (Lee et al., 2015) other microarray 

data collected from field samples strongly support the involvement of TaWRKY TFs 

in the wheat response to STB. 

We have identified a susbset of these WRKYs transcription factors which are 

responsive to Septoria infection in wheat. We would like to determine whether any of 

these identified TaWRKYs affect wheat immunity against STB. 
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Virus-Induced Gene Silencing (VIGS) 
 
Genetics and molecular biology studies on wheat are made harder due to the wheat’s 

large hexaploid genome (16,000Mb) (Flavell et al., 1974). The hexaploid genome is 

made up from three genomes designated A, B and D that are all closely related. For 

nearly all wheat genes there are three or n*three copies. This causes a problem with 

functional redundancy as many of these homeologous genes are expressed, therefore a 

mutation must be made across each of the three genomes to allow the study of the 

gene function. (Mochida et al., 2003; Travella et al., 2006).  

Reverse genetics is a very useful tool in molecular biology, it permits the study of 

protein function by modifying their coding gene expression or the gene itself. Those 

alteration in transcriptional profile leads to phenotypical changes, directly linked to 

the function of the target. Those results could be obtained by insertional mutations in 

the coding region of the gene (eg. T-DNA insertion), chemical mutagenesis (using 

ethyl nitrosurea or ethylmethane sulphonate) or posttranscriptional gene silencing (eg. 

Virus induced gene silencing). 

Virus-induced gene silencing (VIGS) is a particularly useful tool for plant functional 

genomics and reverse genetics because it permits knockdown of genes of interest and 

observation of elicited phenotypes within 2 to 3 weeks. VIGS avoids production of 

knockout mutants or stable RNA interference (RNAi) and can also be performed on 

species that are difficult to transform (Robertson 2004; Scofield and Nelson 2009). 

The VIGS principle is based on antiviral responses that target RNAs for degradation 

and is triggered by accumulation of double-stranded RNAs (dsRNA) appearing in the 

infection cycle (Baulcombe 1999). By inserting sequence fragments derived from 

‘‘genes-of-interest’’ into VIGS vectors, the corresponding mRNAs are selectively 

degraded during virus infection to result in transient silencing of the targeted gene.  

The first VIGS vectors were derived from Tobacco mosaic virus (TMV) (Kumagai et 

al., 1995), Potato virus X (PVX) (Himber et al., 2003) and Tobacco rattle virus 

(TRV) (Ratcliff et al., 2001), and these vectors were initially used for Nicotiana 

benthamiana and tomato (Solanum lycopersicum) gene silencing. Recently the use of 

VIGS has extended to multiple plant species, and 30 viruses have shown potential 

application as VIGS vectors (Yuan et al., 2011). Examples include Apple latent 

spherical virus (ALSV) (Igarashi et al., 2009), Bean pod mottle virus (BPMV) (Zhang 

et al., 2010), Brome mosaic virus (BMV) (Ding et al., 2006), Pea early browning 
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virus (PEBV) (Constantin et al., 2004), Rice tungro bacilliform virus (Purkayastha et 

al., 2010).  

Barley stripe mosaic virus (BSMV) vectors suitable for cereal VIGS have also been 

described (Holzberg et al., 2002; Tai et al., 2005). BSMV is a positive-sense RNA 

virus with a broad host range (Jackson et al., 2009). The tripartite genome consists of 

RNAs α, β and γ, and each of the genomic (g) RNAs has a methylated 59 cap and a 

39 polyadenylate sequence followed by a tyrosine accepting tRNA-like structure. 

RNAα of the BSMV ND18 strain encodes the methyltransferase/ helicase subunit of 

the RNA-dependent RNA polymerase (RdRp). RNAβ specifies the coat protein (CP) 

and three major triple gene block (TGB) proteins (TGB1, TGB2 and TGB3) that are 

essential for cell-to-cell movement of the virus (Jackson et al., 2009). RNAγ encodes 

the polymerase (GDD) subunit of the RdRp and the γb protein, which has significant 

roles in viral pathogenesis, long distance movement and suppression of host RNA 

silencing defenses. 

BSMV was first modified as a VIGS vector (Holzberg et al., 2002) for use in barley 

(Hordeum vulgare), and subsequently was used to down regulate expression of wheat 

(Triticum aestivum) genes (Scofield et al., 2005). Applications of BSMV-based VIGS 

include functional genomics research in wheat (Zhou et al., 2007; Campbell et al., 

2010), barley (Hu et al., 2009; Meng et al., 2009), Brachypodium distachyon 

(Demircan et al., 2010), a model organism for cereals. In these studies, fragments 

from genes-of-interest were initially inserted into RNAγ either downstream or 

upstream of the γb gene and shown to determine various phenotypes, or to function in 

morphogenesis or disease responses (Cakir et al., 2010). For example, BSMV VIGS 

has been used to disrupt several wheat resistance pathways, including Lr1-, Lr10- and 

Lr21-mediated leaf rust resistance (Scofield et al., 2005), stripe rust resistance (Zhou 

et al., 2007), functional alleles in the Pm3 powdery mildew resistance locus (Buhllar 

et al., 2009), and Stpk-V, a key member of the Pm21 powdery mildew resistance gene 

complex (Cao et al., 2011). Barley studies have focused on powdery mildew Mla13-

mediated resistance (Hein et al., 2005), stem rust Rpg5 R-gene regulation 

(Bruggerman et al., 2008) and the role of a susceptibility factor, HvBI-1, that 

modulates cell wall-associated defenses (Eichmann et al., 2010). In a novel approach 

that has been called ‘‘host-induced gene silencing’’ (HIGS), the possibility of down 

regulating pathogen genes with BSMV VIGS has been shown to reduce transcripts of 

a wheat powdery mildew (Blumeria graminis f. sp. tritici) or rust fungi (Puccinia 
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striiformis f. sp. tritici) gene and to result in effective interference with infection of 

wheat (Nowara et al., 2010; Yin et al., 2011). BSMV VIGS also has potential for 

determining aphid defence gene functions in wheat (van Eck et al., 2010). In this case 

TaWKRY53 transcription factor and an inducible phenylalanine ammonia-lyase (PAL) 

were shown to have key roles in resistance responses to aphid (Diuraphis noxia) 

infestations. In addition BSMV- VIGS has been adapted for studies of morphogenesis 

and development in crop plants (Wang et al., 2011).  

The first generation BSMV VIGS systems were under the control of the T7 promoter. 

Those viral vectors were requiring in-vitro RNA transcription to bulk them up prior 

plant inoculation. This limitation was resulting in a time consuming and expensive 

process because capped in vitro transcripts from the α, β and γ cDNA clones are all 

required for a successful infection (Cakir et al., 2010). The problem has been 

circumvented by engineering plasmids containing each of the cDNAs, and 

incorporating a double Cauliflower mosaic virus (CaMV) 35S promoter immediately 

upstream of the cDNAs and a Hepatitis delta virus (HDV) ribozyme immediately 

downstream of the cDNAs (Hu et al., 2009; Meng et al., 2009).  Inoculation via 

biolistic introduction of these plasmids into barley leaves resulted in replication of 

BSMV VIGS products containing candidate genes predicted to affect powdery 

mildew resistance, and sap from the systemically infected leaves was suitable for 

secondary inoculations to other cereals. However, a limitation of this method is the 

potential instability of gene inserts that can occur during systemic invasion of the 

primary inoculated plants (Lawrence and Jackson 2001).          To permit more 

effective use of BSMV VIGS for functional genomics experiments, it has been 

developed an approach with Agrobacterium tumefaciens strains harboring the BSMV 

α, β, and γ cDNAs in Ti plasmids for initiation of BSMV infections upon infiltration 

of N. benthamiana leaves. The Agrobacterium mediated BSMV VIGS vectors have 

been engineered by inserting BSMV cDNAs between the double 35S promoter and a 

ribozyme sequence (Rz) from Tobacco ringspot virus (TRSV) satellite RNA 

(Annamalai et al., 2005). In addition, it has been inserted a ligation independent 

cloning (LIC) site similar to that used for TRV VIGS (Dong et al., 2007) into BSMV 

to facilitate efficient cloning of desired gene fragments. Infiltrated N. benthamiana 

leaves accumulate high levels of BSMV and provided excellent sources for secondary 

infections to elicit VIGS in wheat, barley, and the model grass, B. distachyon (Vogel 

and Bragg 2009).  
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For this study we adopted the above mentioned technique, inoculating 10-15 days old 

wheat seedlings. In our conditions we are able to maintain a solid silencing 

throughout all the wheat growth stages, we have been able to asses silencing up to the 

flag leaf. The disadvantage of VIGS is that being transient, it gives rise to a mosaic 

silencing, different for every single cell. 

 

 

 
The main aims of the PhD programme  
 
WRKYs have been identified as major player in plants stress responses, in this work 

we will demonstrate how two of them are major player during wheat response to 

Septoria tritici infection. We divided our work in 3 main sections:  

 
1. Use bioinformatic tools to identify the WRKYs  gene family in wheat.  

2. Identify WRKY transcription factors that are important in defense against the 

hemibiotrophic pathogen Zymoseptoria tritici. 

3.  Identify factors that act downstream and upstream of the defence related WRKY 

transcription factors.    

 
Isolating novel components involved in wheat immune response  
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Chapter 1: WRKYs identificiation. 
 

1.1 Wheat WRKY gene family identification  
 

As a first step to discover the role of WRKYS in Septoria defence we decided to 

define the WRKY gene family in bread wheat. 

DNA sequences corresponding to the conserved domain in the WRKY gene family 

have been used as query to interrogate the PLANT ENSEMBL genomic database for 

wheat. The decision of utilizing DNA sequences rather than protein sequences was 

made because to date the nucleotide information for wheat genome was more 

complete then the proteome data. A total of 135 individual DNA sequences was 

retrieved from the  wheat PLANT ENSEMBL genomic database via this method. Not 

all of the DNA sequences were complete and fully annotated, some were partial, and 

others did not encode WRKYs after in silico translation. In order to refine the dataset 

obtained each sequence was translated in silico using the freely available on line 

protein translation software ExPASy translate (Gaisteger et al., 2003). 

Each translated DNA sequence was further analysed to ensure that I isolated only 

targets with complete coding sequences, from START (ATG) to STOP(TAA), as well 

as all the conserved domains that define WRKYs transcription factors (Bahksi and 

Oelmuller, 2014)(WRKY domain and Zinc finger domain). This in-silico screen 
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defined a subset of sequences designated as TaWRKYs with  71 complete sequences 

(fig 1.1). 

In fig 1.2 the conserved WRKY motifs in the sequences identified was created via 

GLAM2 (Bailey et al., 2009), which is an algorithm belonging to the MEME 

(Multiple EM for Motif Elicitation)  Suite web server (Bailey et al., 2006).  

MEME is a web-based tool that is freely available that enables the discovery of novel 

signals (motifs) in proteins or DNA sequences. The input data for MEME includes  

multiple sequences that share a conserved motif. MEME software permits the 

discovery of novel motifs via an algorithm that performs a local, gapless and multiple 

sequence alignment, searching for statistically significant similarities among the input 

sequences.  

GLAM2 is an upgraded version of MEME that enables alignments with gaps, 

enhancing the discovery power (Bailey et al., 2009). In our study the software was 

used in a slightly different way to validate the presence of at least a WRKY domain 

and a Zinc-finger motif in our subset of 71 complete WRKY encoding DNA 

sequences.  

As shown in fig 1.2 all the sequences that was used as input for the algorithm display 

both a WRKY domain (WRKYGQK) and one of the two possible Zinc-finger 

domains (C2-H2 or C2-HC). 

 

 

 

1.2 Prioritization of WRKYs Tfs 
 

In order to prioritize candidates for further analysis a preliminary bioinformatics 

analysis to ascertain WRKYs that respond to environmental stress was performed.  

This procedure was carried out in order as there was no transcriptomic analysis 

available at the start of the study for wheat WRKYs. Furthermore expression analysis 

via PCR on all the 71 complete sequences would be time and resource consuming. 

Initially I interrogated published data in Arabidopsis and rice on WRKYs involved in 

biotic stress response that showed protein sequence homology to the 71 complete 

wheat WRKYs. 
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From published literature I identified 21 Arabidopsis WRKYs and 8 rice WRKYs 

genes with a well-established role in defense (Table 1.1). I used these sequences as a 

query to interrogate NCBI-BLAST (Altschul et al., 1990) database, to identify 

putative homologs in wheat. Thirty wheat DNA sequences recognised as encoding 

WRKYs Tfs  were selected for in planta RNA expression analysis. 

A phylogenetic tree representing the chosen WRKYs is displayed in fig 1.3. The 

publically available CLUSTAL-OMEGAsoftware (Sievers et al., 2011) was used to 

generate the tree. 

 

 

	
  

 1.3 Expression Analysis of wheat WRKY genes. 
 

A gene expression evaluation was carried out to identify putative targets suitable for 

further investigation in any putative role in the defence response in wheat. 

The screen was perfrmed by semi-quantitative RT-PCR. Gene specific primers for 

each WRKY displayed in fig 1.3 was designed and optimized for the best 

amplification efficiency, the transcript abundance of the targets was quantified via the 

software ImageJ evaluating relative band intensity against the housekeeping genes; 

Elongation-factor-1 (TaEDF1). The RNA samples used for this analysis are from the 

wheat cultivar  Avalon. This cultivar was chosen because it was extensively 

phenotyped in Septoria pathology studies previously in the laboratory (Lee et al., 

2015; Millyard et al., 2016). Relative transcript abundance of our targets was 

compared between non-infected and infected leaf tissues, the template for the PCR 

was obtained by transcribing total RNA from Avalon leaves to cDNA. Only one 

critical time-point of Septoria infection was analyzed at this stage. The time-point 

chosen corresponded to 12 days post Septoria inoculation. This time point is exactly 

prior to Septoria switching to its necrotrophic life-cyle phase, or onset of necrotrophy 

(Palma-Guerrero et al., 2016). It has been previously demonstrated that perturbating 

specific  gene expression can delay the appearance of necrotic symptoms on wheat 

leaf surface, resulting in altered pathogen sporulation capability (Derbyshire et al., 

2015; Lee et al., 2015; Millyard et al., 2016). Therefore due to the importance of this 
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time point we chose it for transcriptional analysis of putative WRKY genes with a 

potential role in defence in our initial screen. 
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1.4 TaWRKY10 transcription decreases during Septoria infection in cv. 
Avalon. 
	
  
 
The first positive WRKY target with a transcriptional response to Septoria in wheat 

bearing homology to the 30 WRKYs published to have a role in defence in other 

plants was TaWRKY10. 

Semi-quantitative RT-PCR was performed comparing gene expression at 12 days post 

infection with non-infected tissue. The PCR amplification was performed for 28 

cycles. The housekeeping gene TaEDF1 was used as loading control as previously 

described. Fig 1.4 displays the relative transcript abundance quantification. Fig 1.4a 

indicates the band intensity quantification, obtained via ImageJ software (Schneider et 

al., 2012). The intensity of the band corresponding to TaWRKY10 transcript was 

normalized against TaEDF1 band intensity, averaged between the two technical 

replicates and then plotted to compare the intensity of the bands corresponding to the 

infected tissue with the non-infected tissue. Fig 1.3b shows the electrophoresis gel 

corresponding to the above mentioned PCR. The PCR experiment was replicated with 

3 different biological samples. At this stage of infection TaWRKY10 transcript level is 

downregulated about 10 fold in infected tissue compared to non-infected tissue.	
  	
  

The downregulation of WRKY10 transcript level is appreciable not only from the 

analysis plot but as well from a clear difference in the band intensity reported in fig 

1.4b. It can be speculated at this stage that TaWRKY10 transcription could be actively 

downregulated by wheat during pathogen infection, therefore TaWRKY10 could play 

a role as a repressor of wheat immunity, or its downregulation could be linked to 

Septoria activity, where TaWRKY10 could be a Septoria effector target. A deeper 

investigation into TaWRKY10 activity is going to be presented in the next chapter. 

TaWRKY10 at the protein sequence level is most similar to AtWRKY50 or AtWRKY51. 

AtWRKY50 and AtWRKY51 are involved in Jasmonic acid and Salicylic acid related 

pathways in Arabidopsis (Gao et al., 2011). TaWRKY10 belongs to WRKY sub-group 

2, defined by a single WRKY domain and a C2-H2 Zinc finger domain.
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1.5 TaWRKY13 is upregulated upon Septoria infection in cv. Avalon 
	
  

 
TaWRKY13 is the best blast hit in wheat proteome when I used AtWRKY46 seqeunce 

as a query. AtWRKY46 has been reported to be able to boost resistance against the 

pathogen P. syringae pv. Tabaci in N. benthamiana when transiently overexpressed, 

as well as being a target for MAPKs activity (Sheikh et al., 2016). TaWRKY13 is also 

well similar to AtWRKY70, which is directly involved in the regulation of the cross-

talk between Salycilic acid and Jasmonic acid (Sung Shim et al., 2013; Li et al., 

2013). 

The procedure to generate figures 1.4a and 1.4b are the same that was used to 

generate figure 1.3. The transcript level of TaWRKY13 is 8-fold higher in infected 

tissue compared to non-infected tissue at 12 days post infection. This evidence 

suggested that TaWRKY13 has a role in immunity against Septoria in wheat. 

TaWRKY13 protein carries a single WRKY domain and a C2-HC Zinc- finger domain, 

positioning it in WRKY group 3. 

 

 

	
  

1.6 TaWRKY13 shows expression variability among different elite 
varieties. 

 
Since TaWRKY13 showed altered expression upon Septoria infection, therefore I 

wanted to ascertain if this could be a source of variation in defence responses in 

different elite cultivars displaying different degrees of susceptibility to Septoria in the 

fields. Eight different varieties with well established in-field defence phenotypes were 

chosen: KWS Santiago, KWS Lili, , JB Diego, Gallant, Relay, Dunston and 

Sundance. The phenotypic evaluations and relative disease scores from field trials 

corresponding to the varieties of choice is deposited in the AHDB recommended list 

for cereals and oilseed 2017/18. 

The expression analysis was carried out under controlled conditions, using mRNA 

from 2-weeks old seedlings as template for qRT-PCR. As shown in fig 1.6 Lili and 

Relay are showing the highest gene expression, whereas Santiago and Sundance the 

lowest. The fold difference of gene expression between the varieties showing the 
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greatest changes in WRKY13 gene expression  is 3.1-fold.  Interestingly TaWRKY13 

gene expression correlated with resistance against Septoria. 

 

 

 

1.7 TaWRKY13 expression increase upon Septoria infection in elite 

cultivars. 

 
In order to have a complete picture of TaWRKY13 expression profile during Septoria 

infection a time-course experiment was carried out.  

Twelve different time points of infection was sampled to compare infected to non-

infected tissue, harvesting samples every 2 days after Septoria strain IPO323 

(Arraiano and Brown, 2006) infection, as performed by Lee et al., 2015. Total RNA 

was extracted from the tissue, reverse-transcribed to cDNA and then analysed via 

qRT-PCR. For this experiment 2 different cultivars were chosen: KWS Lili (Lili) and 

KWS Santiago (Santiago). Both varieties display high yield performance in field 

conditions, but Santiago is particularly susceptible to Septoria infection, Lili instead 

display a higher degree of resistance (AHDB recommended list for cereals and 

oilseed 2014/15, and recently AHDB recommended list for cereals and oilseed 

2017/18). 

Fig 1.7 shows the expression profile of TaWRKY13 in Lili.  

No difference of transcription can be noticed till 12 days post infection between 

infected tissue and the non-infected control, whereas a statistically significant 3 fold-

change upregulation appears at 14 days post infection for the infected samples. The 

upregulation reaches its peak at 16 days post infection, displaying a 4 fold-change 

increase. At 18 days post infection the transcript level decreases to a 2.5 fold-change 

upregulation compared to its own control and then returning to control levels at 20 

days post infection. The expression of TaWRKY13 shows no change throughout the 

time course in the non-infected control. 

The expression time-course of cultivar Santiago is shown in fig 1.8. 

The transcript level of WRKY13 does not change throughout the time-course in the 

non-infected controls. Upon Septoria infection TaWRKY13 expression level begin to 

increase significantly at 10 days post infection to 2 fold-change higher compared to 
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the control. The 12 days post infection time is to the peak of TaWRKY13 gene 

expression upregulation, with 4 fold-change increase. At 14 days post infection the 

transcript level starts to decrease, showing a 3 fold-change upregulation compared to 

its control, only 2 fold-change increment at 16 days post infection and finally back 

down to control levels at 18 days post infection. At 20 days post infection the infected 

tissue displays an even lower TaWRKY13 transcript level compare to the control, but 

the expression went back up to control levels at 22 days post infection. 

 

 

 

1.8 TaWRKY13 silencing leads to increase susceptibility to Septoria 

 

The upregulation of TaWRKY13 transcription upon Septoria infection led us  to 

speculate that it could be involved in wheat immunity response. 

In order to test this hypothesis post-transcriptional gene silencing (PTSG) technology  

using a virus based vector in wheat was employed (Baulcombe, 1999, refs), and 

subsequently the silenced plants were phenotyped for septoria infection.  

Virus Induced Gene Silencing (VIGS)(Watson et al., 2005) was employed to silence 

TaWRKY13. Barley Stripe Mosaic Virus (BSMV) has previously been modified to 

effectively silence many wheat genes (Matthew, 2004; Watson et al., 2005). Gene 

silencing vectors based on BSMV (Ratcliff et al., 2001; Burch-Smith et al., 2004; 

Wang & Metzlaff, 2005; Lee et al., 2012), carrying the 5’-UTR and 3’-UTR of 

TaWRKY13 mRNA, were used to induce sequence-specific degradation of the 

endogenous TaWRKY10 mRNA and therefore a knock down in its gene expression in 

the wheat varieties  Lili and Santiago. BLAST analyses confirmed that both DNA 

fragments (BSMV:TaWRKY13_1 and BSMV:TaWRKY13_2) were unique to 

TaWRKY13. The siRNA finder software si-fi predicted TaWRKY13 specific silencing 

(Millyard et al., 2015, Lee et al., 2014). The effectiveness of gene silencing was 

confirmed by qRT-PCR on mRNA from emerging leaves of plants 14 days after 

BSMV:TaWRKY13_1 and BSMV:TaWRKY13_2 inoculation (Fig1.9). This data 

indicated that BSMV:TaWRKY13_1 and BSMV:TaWRKY13_2 yielded 60% and 65% 

silencing of TaWRKY13 gene expression in Lilli and 66% and 68% silencing in 

Santiago respectively compared to empty vector controls .  
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Fourteen days after BSMV inoculation the emerging 3rd-5th leaves were infected with 

a Septoria spores solution (7.5 x 106 spores per ml), and necrotic symptoms 

appearance was recorded every day throughout the infection cycle with white light 

pictures. At the end of Septoria life cycle picnidia production and sporulation was 

quantified. 

Fig1.10 show the development of necrotic symptoms on infected leaves, comparing 

BSMV:00 inoculated empty vector control and BSMV:TaWRKY13_1 and 

BSMV:TaWRKY13_2 silenced plants. In Lili there are no visible differences between 

the treatment up to 14 days post infection, when necrotic symptoms start to appear in 

both silenced lines, 2 days prior to controls. The leaves appear completely blotched at 

18 days post infection for the silenced lines. 

In Santiago the same pattern is observed, but two days earlier than Lilli, due to its 

higher overall susceptibility. The first symptoms start to appear at 11 to 12 days post 

infection for the silenced lines, while no necrosis can be observed before 13 days post 

infection for the empty vector controls inoculated plants. 

After 30 days of infection picnidia start to appear on leaves surface, and spores get 

produced within them. Quantifying picnidia and spore production is the optimal way 

to assess the resistance of a wheat plant, because Septoria spread in the field is tightly 

correlated to its reproduction capability. Picnidia and spores wash experiments were  

performed as indicated in Lee et al., 2015. 

Fig 1.11a show the picnidia counted on leaves of Lili and Santiago 30 days post 

Septoria infection. For both varieties silencing TaWRKY13 leads to a slight but 

statistically significant increase in picnidia production.  For the controls an average of 

45.1 and 51.25 picnidia per leaf centimeter?  were counted respectively for Lili and 

Santiago.  

TaWRKY13 silenced Lili an average production of 58.3 picnidia per leaf centimeter 

(5.85% increase compared to the control) and 62.2 picnidia  per leaf centimeter 

(7.74% increase compared to the control) picnidia was observed in 

BSMV:TaWRKY13_1 and BSMV:TaWRKY13_2 silenced plants. 

Santiago silenced plants produced 65.25 picnidia per leaf centimeter, corresponding 

to a 7.1% increase, in BSMV:TaWRKY13_1 inoculated samples, and 70.3 picnidia per 

leaf centimeter in BSMV:TaWRKY13_2 inoculated samples, reaching a 9.7% 

increased picnidia production. 

Spore production showed the same pattern as picnidia production, as shown in figure 
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1.11b. Silenced lines in both cultivars exhibit an increase in spores production.  

Lili mock silenced produced an average of 122.25 spores/µl, while the TaWRKY13 

silenced lines; BSMV:TaWRKY13_1 and  BSMV:TaWRKY13_2 gave rise to 155.75 

spores/µl and 153.87 spores/µl, corresponding to an increase of 25% and 24% 

respectively. 

TaWRKY13 Santiago silenced lines showed an increase of 18% and 16% respective 

for BSMV:TaWRKY13_1 and BSMV:TaWRKY13_2 . Santiago BSMV:00 empty 

vector control produced on  average 222.25 spores/µl , BSMV:TaWRKY13_1 262.5 

spores/µl and BSMV:TaWRKY13_ 258.89 spores/µl. 

 

 

 

1.9 Discussion. 
 
WRKYs transcription factors are ubiquitously present in plant species, and they are 

part of the intricate signalling web developed to respond to both internal 

(developmental) and external (stress response) stimului (Bakshi and Oelmuller , 

2014). The involvement of WRKYs in crop immune response has been demonstrated 

in barley (Dey et al., 2014) and rice (Cheng et al., 2015). WRKYs role in abiotic 

stress response in non-model plants has been established in Triticum durum (Yousfi et 

al., 2017) and sheepgrass (Ma et al., 2014). Investigations on WRKYs role in wheat 

are not extensive to date, but still both Ding et al., 2014 and Lee et al., 2015 stated a 

role in immune response for WRKYs, in particular TaWRKY68 (Ding et al., 2014, 

Lee et al., 2015), TaWRKY53 and TaWRKY39 (Lee et al., 2015). 

Starting from there I decided to perform a deeper investigation of WRKYs in Septoria 

defense, in order to establish breeding targets for increased defence against pathogens. 

The first step was to identify WRKYs in wheat genome. Due to the lack of genomic 

data, we speculate that only a fraction of them have been identified and validated as 

WRKYs (71). We started with sequence based homology search with conserved 

WRKY and Zinc finger domains (Zhang et al., 1997) against the available wheat 

genome and proteome, and I was able to find complete DNA sequences as well as 

partial sequences and proceeded with complete sequences in order to have the highest 

possible confidence of establish WRKY genes in wheat. These sequences were  
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validated utilizing the online software GLAM2 (Baileyet al., 2009), the software 

showed that all our selected sequences contain at least one WRKY domain and at 

least one Zinc finger domain.The presence of partially annotated sequences allows us 

to speculate that the WRKYs gene family in wheat could be more than 71. 

In order to quickly screen for target WRKYs that show altered transcription upon 

Septoria infection, I decided to prioritise the 71 WRKYs. I identified in published 

literature 29 WRKYs showing a  well established role in immunity, both in 

Arabidopsis and rice. The protein sequences of these WRKYs were aligned (Clustal 

Omega, Sievers et al., 2011) against our WRKYs database, in order to find putative 

homologous WRKYs. 

TaWRKY13 is similar to AtWRKY46 and AtWRKY70, their roles are: defence against 

Pseudomonas and regulation of the SA-JA crosstalk respectively (Sheikh et al., 2016, 

Sung Shim et al., 2013; Li et al., 2013). These similarities in protein sequence led me 

to speculate a role for TaWRKY13 in Septoria defence. Moreover AtWRKY46 and 

AtWRKY70 have been both identified as regulators of brassinosteroid pathway in the 

same study (Chen et al., 2017), connecting their activity to development.  

Comparing TaWRKY13 expression among 7 different wheat varieties in control 

conditions, I detected a small but clear difference between them. The highest 

expressing variety is Riley while the lowest is Santiago, with a maximum 3 fold 

expression change between them. The expression level matches the field trial detected 

resistance to Septoria, in an inversely correlated fashion (field trial score source: 

AHDB recommended list for cereals and oilseed 2017/18). The variation of 

expression among elite varieties makes TaWRKY13 a suitable target for breeding for 

Septoria resistance, as this variation could be introgressed from a variety to another, 

providing that the single nucleotide polymorphism (SNP) associated with this 

molecular trait can be identified. 

The importance of TaWRKY13 in immunity was demonstrated in 2 ways: by its 

expression pattern, the transcript increase upon Septoria infection for 3 different 

varieties analyzed (Avalon, Lili and Santiago). The increase in transcription is variety-

specific: in Avalon we detected 7 fold change increase, in Lili and Santiago 3.5 and 4 

fold change increase respectively. We can speculate that the plant’s capability to 

upregulate TaWRKY13 expression upon Septoria has been bred out during the 

programs, as Avalon is an older variety. 
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In order to precisely correlate TaWRKY13 to Septoria defense reverse genetics and 

phenotyping are needed. VIGS-silenced WRKY13 lines were developed, and their 

defence phenotype  compared with their controls. The silenced lines show an earlier 

onset of necrotic symptoms, accompanied by a slight but significant increase in 

Septoria sporulation. Thus I demonstrated that TaWRKY13 plays a positive role in 

immunity in 2 elite varieties: Lili and Santiago. 

The Plant Homeodomain (PHD) TaR1, studied by Lee et al., 2015, shows a really 

similar expression pattern to TaWRKY13, but contrarily TaR1 knock-down leads to 

increased resistance (diminished sporulation), whereas TaWRKY13 silencing leads to 

increased susceptibility to Septoria (via increased sporulation), even though silencing 

the two genes give rise to the same leaf phenotype: earlier onset of Septoria 

necrotrophic growth (Lee et al., 2015).  

In Millyard et al., 2016, the role of the ubiquitin conjugating E2 TaU4 during Septoria 

infection was studied. Tau4 transcript level decreases during the crucial moment of 

Septoria switch to necrotrophic and reproductive life stage. In this case silencing the 

target give rise to a phenotype characterised by a delayed onset of necrosis symptoms 

and diminished sporulation.  

It is important to note that the same leaves phenotype could be connected to 

completely opposite Septoria fitness capability. In other words the same earlier onset 

of necrosis on leaves surface could be associate with increased or decreased spore 

production. Therefore, in order to precisely evaluate the resistance of a certain variety, 

the spore counts is the main quantitative data needed. 

Even though the gene silencing had been consistent and successful in downregulating 

the TaWRKY13 transcript at the 20% to 30% of the control level, the sporulation 

phenotype gave back a small difference between the controls and the silenced lines. 

We speculate that maybe a gene redundant to TaWRKY13 may be present in wheat 

genome I  could not identify yet. The new wheat genome assembly released by 

IWGSC (Appels et al., 2018) could be the resource needed to clarify this issue. 

So far we have been able to isolate, identify and localize 71 WRKYs transcription 

factors in wheat genome. This resource is really important for future work. 
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1.11 Figures legend chapter 1. 
 
 
 
Fig 1.1 Wheat WRKYs phylogenetic tree. 

Phylogenetic tree of all the WRKYs transcription factors mapped in the wheat 

genome. The tree was generated with ClustalOmega (Sievers et al., 2011). 

 
 

 

Fig 1.2 GLAM2 alignment verify that the sequences isolated all belonging to 

WRKY family of transcription factors. 

Peptide sequence logo plot of the WRKY sequences isolated from the wheat 

genome. The logo was made by constructing position-weighted Kullback Leibler 

logos of the multiple alignment of the cluster peptides, using the GLAM2 

webserver. Height corresponds to the amount of information contained in a specific 

position. Large symbols represent frequently observed amino acids. The GLAM2 

default amino acid colour coding is used. 

 

 

 

Table 1.1 Arabidopsis and rice gene references. 

Literature search was carried out to identify 21 Arabidopsis and 8 rice WRKYs with a 

role during biotic stress response. 

 

 

 

Fig 1.3 Phylogenetic tree of the putative targets. 

The amino acid sequences belonging to reference genes from Arabidopsis and rice  

have been used as a query to interrogate NCBI-BLAST database in order to find 

putative homologs genes in Triticum aestivum. The sequences isolated from wheat are 

represented as a phylogenetic tree generated via CLUSTAL-OMEGA.
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Fig 1.4 TaWRKY10 expression is down regulated upon Septoria infection. 

The level of gene expression of TAWRKY10 at 12 days post Septoria infection on 

cultivar Avalon. The relative level of expression was detected by semi-qRT-PCR. 

A 10-fold-change down regulation of expression was detected for this gene during 

Septoria infection. a) Relative fold-change differential calculated evaluating PCR 

band intensity with ImageJ software. b) electrophoresis DNA gel of the amplicons 

obtained by PCR of TaWRKY10 and housekeeping gene TaEF1.  

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. In 

the figure ‘H’ indicates helthy tissue, whereas ‘I’ indicates infected tissue. 

 

 

 

Fig 1.5 Septoria infection leads to increasing TaWRKY13 transcript level. 

The level of gene expression of TAWRKY13 at 12 days post Septoria infection on 

cultivar Avalon. The relative level of gene expression was detected by Semi-qRT-

PCR. 

TaWRKY13 is 6 fold-change upregulated upon Septoria infection, compared to non-

infected sample. a) Relative fold-change differential calculated evaluating PCR band 

intensity with ImageJ software. b) electrophoresis DNA gel of the amplicons obtained 

by PCR of TaWRKY10 and housekeeping gene TaEF1.  

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. 

 

 

 

Fig 1.6 TaWRKY13 gene expression is variable among different elite wheat 

varieties. 

qRT-PCR performed on leaves of 2 weeks old wheat seedlings from different 

varieties (KWS Lili, KWS Santiago , JB Diego, Gallant, Relay, Dunston Sundance). 

The data here demonstrate that TaWRKY13 transcript level varies between cultivars. 

Santiago shows the lowest expression of the gene, while Relay show the highest, with 

a 3 fold-change increase. TaEF1 was used as a housekeeping gene. 

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. 
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Fig 1.7 TaWRKY13 expression upregulated upon Septoria infection in Lili. 

A 22-day time-course experiment was performed in order to investigate the role of 

TAWRKY13 throughout Septoria infection in elite variety Lili. The transcript level 

starts to increase 12 days post infection, reaching its peak at 16 days post infection (3 

fold-change higher compared to its control). At 18 days post infection the expression 

starts to decrease, reaching back control level at 20 days post infection. 

TaEF1 has been used as a housekeeping gene. 

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. 

 

 

 

Fig 1.8 TaWRKY13 expression upregulated upon Septoria infection in Santiago. 

The same procedure adopted to analyze TaWRKY13 expression in Lili was used  for 

Santiago, obtaining similar results. In Santiago TaWRKY13 expression starts to 

increase at 8 days post infection, reaching a 3.9 fold-change induction at 12 days post 

infection. The transcript level then decreases to non-infected control level at 18 days 

post infection. In Santiago a decrease below control level has been observed at 20 

days post infection.TaEF1 was used as housekeeping gene. 

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. 

 

 

 

Fig 1.9 TaWRKY13 silencing in Lili and Santiago. 

qRT-PCR data shows the expression of TaWRKY13 is reduced in virus-induced gene 

silencing (VIGS) treated plants silenced by BSMV:TaWRKY13_1 and 

BSMV:TaWRKY13_2, compared to BSMV:00 empty vector control in both Lili and 

Santiago. The gene expression silencing observed is among 60% to 75% compared to 

non-silenced controls. 

The relative gene expression were all normalized to BSMV:00 treated KWS Lili. 

Error bars, ±SE of the mean of raw data.  
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Fig 1.10 TaWRKY13 silencing in Lili and Santiago leads to earlier onset of 

blotching symptoms. 

White-light image of a single leaf of BSMV:00 mock silenced, BSMV:TaWRKY13_1 

and BSMV:TaWRKY13_2 silenced plants for both Lili and Santiago from day 12 to 

day 18 and from day 9 to 15 after Septoria inoculation, respectively. The symptoms, 

namely necrotic lesions, in the silenced lines start to be visible 2 days earlier 

compared to the mock silenced controls, for both the varieties analyzed. 

 

 

 

Fig 1.11 TaWRKY13 silenced lines are more susceptible to Septoria infection 

compared to their controls. 

In order to address phenotypic change attributed to silencing TaWRKY13; picnidia 

and spores quantification analysis was performed comparing TaWRKY13 silenced 

lines and their control. Silencing TaWRKY13 leads to increase susceptibility against 

Septoria. 

a) The number of picnidia produced on the leaves of TaWRKY13 silenced plants 

shows 15% to 30 % increase compared to mock silenced plants, for both the varieties 

examined (Lili BSMV:TaWRKY13_1 15%, Lili BSMV:TaWRKY13_2 30%, Santiago 

BSMV:TaWRKY13_1 15, Santiago BSMV:TaWRKY13_2 27%) . Error bars, ±standard 

error (SE) of the mean of raw data. Student’s T-test show significance difference of 

the silenced lines compared to their own control (Lili BSMV:TaWRKY13_1 

P=2.12x10-4, Lili BSMV:TaWRKY13_2 P=8.14x10-3; Santiago BSMV:TaWRKY13_1 

P=3.05x10-6 Santiago BSMV:TaWRKY13_2 P=5.34x10-5 ) (b) Spore washes 

performed 32 days after Zymoseptoria infection show 16% to 25% increase in spores 

produced on TaWRKY13 silenced plants (Lili BSMV:TaWRKY13_1 25%, Lili 

BSMV:TaWRKY13_2 24%, Santiago BSMV:TaWRKY13_1 18%, Santiago 

BSMV:TaWRKY13_2 16%)  . Error bars, ±standard error (SE) of the mean of raw 

data. Student’s T-test show significance difference of the silenced lines compared to 

their own control (Lili BSMV:TaWRKY13_1 P=4.76x10-4, Lili BSMV:TaWRKY13_2 

P=6.34x10-4; Santiago BSMV:TaWRKY13_1 P=5.42x10-6 Santiago 

BSMV:TaWRKY13_2 P=3.78x10-5 ). 
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Chapter 2: TaWRKY10 is a novel component of wheat JA 
signalling. 
	
  
 

2.1 TaWRKY10 is a Pooideae-specific gene that shows differential gene 
expression across wheat cultivars that exhibit varying susceptibilities to 
Septoria.   
	
  
As first step to characterize TaWRKY10 its protein sequence was used as a query to 

interrogate PLANT-ENSEMBL database in order to find its closest homologs in 

different species, and with the data an alignment and a phylogenetic tree was created 

(Fig 2.1a and b). 

This evolutionary tree indicated that TaWRKY10 (Fig 2.1b), is a Pooideae-specific 

WRKY transcription factor with no known homologs in other lineages except in 

Hordeum Vulgare (HvWRKY10). As TaWRKY10 showed altered gene expression 

during Septoria infection we wanted to determine if its gene expression could be a 

source of variation in susceptibility to Septoria observed in wheat varieties. Seven 

different varieties (KWS Santiago, KWS Lili, , JB Diego, Gallant, Relay, Dunston 

and Sundance) with known variation in susceptibility to Septoria under field 

conditions (AHDB recommended list for cereals and oilseed 2017/18) were chosen 

for transcriptional analysis to determine TaWRKY10 expression. Under control 

conditions messenger RNA from 2-weeks old seedlings was used as a template for 

qRT-PCR analysis. As indicated in Fig 2.1c, KWS Lili (Lili) (less susceptible) 

showed the least TaWRKY expression and KWS Santiago (Santiago) (highly 

susceptible) showed the highest expression with the latter displaying 2 fold higher 
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TaWRKY10 transcription indicating that TaWRKY10 gene expression correlates to 

Septoria susceptibility.  

2.2 Wheat varieties Lili and Santiago show differential susceptibilities to 
Septoria that correlates with TaWRKY10 gene expression. 
  

The AHDB Septoria susceptibility scores reflect yield losses and foliar damage at 

adult plant stage.   However we observed differential TaWRKY10 gene expression in 

4 week old growth stage and therefore to reconcile these differences and to ascertain 

if we can observe the same susceptibility phenotypes in 4-6 week old plants as 

observed in field conditions we decided to perform Septoria infection assays in wheat 

varieties under controlled conditions in the laboratory. Since the greatest amplitude of 

variation in TaWRKY10 transcription among the different wheat varieties was 

observed in Santiago and Lilli we used these varieties to quantify the levels of 

susceptibility to Septoria in controlled conditions in the laboratory.  

Both varieties were infected with virulent Septoria isolate, IPO323 (Arraiano and 

Brown, 2006). White light pictures were taken daily with pycnidia and spores count 

performed after 30 days of infection as previously described (Lee et al., 2015).  

Lili leaves start to show the first symptoms of Septoria mediated necrotic lesions after 

14 days post infection (DPI), while for Santiago these necrotic lesions were observed 

earlier at 12 DPI (Fig 2.2). To provide a better quantification of STB symptoms,  the 

percentage of blotched area in the leaves was determined from the white light pictures 

using ImageJ software with the data analyzed by exploiting the “Area Under Disease 

Progession Curve (AUDPC)” method (Madden et al., 2007). The AUDPC 

quantification shown in fig 2.3a,b indicate a significant difference in disease severity 

and progression between Lili and Santiago post infection. The AUDPC was 

calculated from 11 to 17 DPI comparing the two varieties, giving a value of 251.84 

for Lili and 413.25 for Santiago.  This data indicated that the spread of the lesions is 

slower in Lili compared to Santiago. It has been established that Septoria sporulates 

within necrotic lesions containing pycnidia on the surface of leaves (Keon et al., 

2007). Therefore we proceeded to quantify Septoria sporulation by performing 

pycnidia and spore counts via the spore wash technique (Lee et al., 2014). Septoria 

infection in Santiago produced up to 40 pycnidia per leaf and 250 spores/μl, while 

on Lili, Septoria only produced on average 30 pycnidia per leaf and 200 spores/ μl 
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(fig 2.4 a,b). The quantification data demonstrate that Lili produces significantly less 

pycnidia and spores per leaf indicating that Septoria is less effective in causing STB 

in Lili compared Santiago (Fig 2.4 a,b).  

A Septoria infection time-course experiment indicated that TaWRKY10 gene 

expression is downregulated in both varieties, 2 days prior to the switch to the 

symptomatic  necrotrophic phase (fig 2.5 a,b). Taken together with the differential 

susceptibility to Septoria in Lili and Santiago out data strongly suggests a novel role 

for TaWRKY10 in wheat defence against Septoria. 

 

 

 

2.3 Silencing TaWRKY10 gene expression leads to increased resistance to 
STB. 
 

Since Santiago showed the greatest  expression of TaWRKY10, and was the most 

susceptible, we wanted to ascertain if TaWRKY10 gene activity could contribute to the 

differences in susceptibities between Lili and Santiago.  Furthermore  we have also 

established  that field observed differential susceptibility to Septoria can be 

recapitulated in younger plants in controlled laboratory conditions therefore providing 

a tractable means to ascertain the role TaWRKY10 in STB.    

Due to the large hexaploid wheat genome isolating single gene knockouts are 

currently not feasible. Therefore, Virus Induced Gene Silencing (VIGS)( Watson et 

al., 2005) was employed to silence TaWRKY10. Barley Stripe Mosaic Virus (BSMV) 

has previously been modified to effectively silence many wheat gene expression 

(Matthew, 2004; Watson et al., 2005). Gene silencing vectors based on BSMV 

(Ratcliff et al., 2001; Burch-Smith et al., 2004; Wang & Metzlaff, 2005; Lee et al., 

2012), carrying the 5’-UTR and 3’-UTR of TaWRKY10 mRNA, were used to induce 

sequence-specific degradation of the endogenous TaWRKY10 mRNA and therefore a 

knock down in its gene expression in the wheat varieties  Lili and Santiago. BLAST 

analyses confirmed that both DNA fragments (BSMV:TaWRKY10_1 and 

BSMV:TaWRKY10_2) were unique to TaWRKY10. The siRNA finder software si-fi 

predicted TaWRKY10 specific silencing (Millyard et al., 2015, Lee et al., 2014). The 

effectiveness of gene silencing was confirmed by qRT-PCR on mRNA from emerging 

leaves of plants 14 days after BSMV:TaWRKY10_1 and BSMV:TaWRKY10_2 
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inoculation (fig 2.6 a,b). This data indicated that BSMV:TaWRKY10_1 and 

BSMV:TaWRKY10_2 yielded 70% and 65% silencing of TaWRKY10 in Lilli and 68% 

and 60% silencing in Santiago respectively compared to empty vector controls .  

Fourteen days after silencing treatment the 3rd− 5th wheat leaves were subjected to 

Septoria infection (7.5 x 106 spores per ml) and symptom development was recorded 

for 28 days (fig 2.7) before pycnidia and spore counts were performed to measure 

fungal development (fig 2.8 a,b). White light pictures of disease progression were 

taken daily. As shown in fig 2.7 silencing TaWRKY10 leads to an earlier onset of 

disease symptoms compared to the controls, for both varieties. In Lili no difference in 

symptom development was observed till 15 DPI, after which the TaWRKY10 silenced 

lines begin to show necrotic lesions however these appear 2 days later for the empty 

vector inoculated control Lili plants. For Santiago the same pattern of earlier onset of 

symptoms was observed.   The empty vector control leaves start to show blotching 

phenotype at 14 DPI, while in the TaWRKY10 silenced plants Septoria symptoms 

appear at 11 DPI. After 30 days Septoria in the infected leaves start to sporulate 

through pycnidia production. The pycnidia production across multiple plants over a 2 

cm leaf sections was quantified. Figure 2.8 a indicates that in TaWRKY10 silenced 

leaves Septoria pycnidia formation was significantly reduced, with 45% reduction in 

pycnidia on BSMV:TaWRKY10_1 and a 43% reduction on BSMV:TaWRKY10_2 

infected plants compared to empty vector BSMV:00 control. As expected from the 

reduced number of fruiting bodies there is also a significantly reduced number of 

spores produced in the TaWRKY10 silenced wheat leaves (fig 2.8 b) with a 50% 

reduction on BSMV:TaWRKY10_1 and a 46% reduction on BSMV:TaWRKY10_2 

infected plants when compared to the BSMV:00 control. BSMV:TaWRKY10_1  is 

more efficient at silencing TaWRKY10 than BSMV:TaWRKY10_2. Strikingly the 

spore production from Septoria in the BSMV:TaWRKY10 silenced Santiago lines was 

equivalent to spore produced from BSMV:00 control Lili plants (Fig 2.8 b). This data 

indicates that TaWRKY10 is a major factor contributing to the difference in 

susceptibility between Lili and Santiago. Furthermore silencing TaWRKY10 can 

further enhance resistance to Lili to Septoria.   
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2.4 Silencing TaWRKY10 leads to root growth inhibition. 
 

To ascertain whether TaWRKY10 silencing leads to any changes in morphology we 

ascertained plant height and root length in the silenced lines and compared it to empty 

vector controls. Plants from both varieties were pre-germinated on filter paper for 3 

days and subsequently moved to sand filled pots, and grown for 10 days before 

BSMV inoculation . Seven weeks after germination the sand was washed away, the 

roots and the shoots were photographed and the length was quantified via ImageJ 

software. No significant difference was observed in plant height in 7-week old 

TaWRKY10 silenced plants compared to controls (fig 2.9 a,c).   However in Lili we 

observed a root growth inhibition of 25%  (fig 2.9 a,b) compared to empty vector 

controls. This phenotype was also observed in Santiago (fig 2.9 c,d) . This evidence 

suggests a role for TaWRKY10 in regulating root growth as well as immunity against 

Septoria.  

The sessile nature of plants dictates that growth must be integrated with changes in 

the natural environment. Modulation of hormone signalling pathways plays a key role 

in this process. Our data suggests that TaWRKY10 may play a role in regulating 

hormone responses that play a role in growth and immunity.  

 

 

 

2.5 Lili is more sensitive to JA compared to Santiago. 
 

It is well established that JA is a growth regulator as well as a key hormone in defence 

signaling (Chini et al., 2016, Shinegaga et al., 2016, Goossens et al., 2015). JA is well 

known to inhibit root growth. Indeed, this growth inhibitory effect of JA was 

exploited in many genetic screens for plants with altered JA sensitivity (Staswick et 

al., 1992). 

To ascertain if the JA response was affected in the varieties that showed the greatest 

differential TaWRKY10 expression, we germinated seeds of both Lili and Santiago 

varieties on MS agar plates then transferred 2 day old seedlings to plates that were 

supplemented with 10µM JA to monitor root growth daily. As shown in fig 2.10 a,b 

seedlings of Lili show root growth inhibition after 24 hours (percentage root growth 
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inhibition 40%) compared Santiago. Indeed under these conditions Lili roots barely 

elongate at all for the first 24 hours of JA treatment indicating dramatic JA-mediated 

root growth inhibition response .  At 48 hours after JA treatment there was similar 

root growth inhibition in both varieties. Whereas we observed that Santiago roots 

remain unresponsive to JA and elongate at the rates comparable to untreated seedlings 

in the first 24 hours of JA treatment, after which they exhibit growth inhibition as 

observed at 48 hours.  Our data indicates that Lili was more sensitive to JA then 

Santiago.  

JA treatment is also known to induce anthocyanin accumulation in plants (Shan et al., 

2009, Chini et al., 2016) and this was observed to a much greater extent in Lili 

compared to Santiago, 3-fold and 1.8-fold more accumulation respectively compared 

to the controls (fig 2.11 a,b). 

Our data demonstrate that Lili is more responsive to JA resulting in greater root 

growth inhibition and with more pronounced anthocyanin accumulation compared to 

Santiago. The evidence indicates that the observed sensitivity to JA between the 

varieties might explain the greater resistance to Septoria in Lili.  

 

 

 

2.6 JA signaling markers respond to treatment earlier in Lili than in 
Santiago. 
 

To investigate the molecular basis of the differential JA responses in Lili and 

Santiago, we performed qRT-PCR analysis of JA marker genes (Gossens et al., 2015) 

in these varieties. Established molecular markers for JA biosynthesis, perception and 

signaling were analyzed. JA biosynthesis was monitored by analyzing expression of 

genes encoding Allene Oxide Synthase (TaAOS) and Lipoxygenase 2 (TaLOX2). JA 

perception was monitored ascertaining gene expression of the  JA receptor 

Coronatine-Insensitive 1(TaCOI1)  and signal transduction through  expressiong of 

genes encoding Jasmonate-Insensitive1( TaJIN1-TaMYC2) and Jasmonate-Zim-

domain (TaJAZ6). Downstream response markers were monitored by analyzing 

expression of genes encoding Plant-Defensin 1.1 (TaPDF1.1) and Tyrosine-

Aminotransferase (TaTAT1). 

 Tissue samples from leaves and root of JA treated or mock treated Lili and Santiago 
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were used to extract mRNA at 0, 24 and 48 hours time points where we observed the 

greatest differential JA response in root growth. For both genes encoding JA  

biosyntethic enzymes a drop in expression was observed in JA treated samples 

compared to untreated controls (fig 2.12 a, b, c, d). Remarkably the downregulation in 

Lili is detected at 24hrs while in Santiago at 48hrs after treatment (fig 2.12 a, b, c, d).  

Intriguingly gene expression of JA receptor TaCOI1 were upregulated in both shoot 

and root dramatically in Lili at 24h after the treatment, 6-fold and 8-fold respectively 

(fig 2.12 e), while in Santiago TaCOI1 gene is not significantly  upregulated even 48h 

after JA treatment (fig 2.12f). The JA signal transduction marker gene TaMYC2, was 

not upregualted significantly in either varieties. The JA signaling repressor TaJAZ6 is 

upregulated 14 fold and 10 fold in Lili shoot and root tissues respectively but only 7-

fold and 4-fold in Santiago shoot and root tissues after 48 hours of JA treatment (fig 

2.12 g, h, I, l). The downstream JA response genes TaTAT1 is more active in Lili at 24 

hours post JA treatment and  TaPDF1.1 gene activity is greater in Lili at 48 hours post 

JA treatment (fig 2.12 m, n, o, p).  

Our data indicate that JA perception and response is dampened in Santiago compared 

to Lili. We demonstrate a novel inverse correlation between JA response and 

TaWRKY10 gene expression in Lili and Santiago wheat varieties. 

 

 

 

2.7 TaWRKY10 gets downregulated after JA treatment. 
 

In order to investigate the relationship between TaWRKY10 and JA, gene expression 

analysis of TaWRKY10 upon JA treatment has been performed, in both Lili and 

Santiago. The same time points sampling as indicated before was performed.  

The results are displayed in fig 2.13 a for Lili and 2.13 b for Santiago. 

A similar pattern of expression was detected for both the varieties examined; there 

were no changes for the untreated samples over the time course, but a remarkable 

downregulation of TaWRKY10 upon JA treatment compared to controls. This 

downregulation of gene expression increases over time. 
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2.8 Silencing TaWRKY10 leads to the upregulation of the JA receptor 
TaCOI1 gene expression and increased JA response. 
 

Given that TaWRKY10 silencing leads to altered JA response in wheat and cultivars 

that show altered TaWRKY10 levels have differential JA response, we wanted to 

explore the molecular mechanism underlying this TaWRKY10 linked altered JA 

response. We performed qRT-PCR analysis of JA markers genes on 4-week old 

TaWRKY10 silenced plants. Well established molecular markers for JA signaling has 

were chosen for gene expression analysis . We analyzed genes affecting biosynthesis 

(TaLOX1), hormone perception (TaCOI1), signaling transduction (TaMYC2) and 

downstream response (TaPDF1.1) markers. The results shown in fig 2.14 demonstrate 

there is no significant difference in expression of TaLOX1, the gene encoding 

components of JA biosynthesis between the TaWRKY silenced lines and non-silenced 

control (fig 2.14a). Surprisingly we detected a 4 fold increase in TaCOI1 transcript in 

the TaWRKY10 silenced lines (fig 2.14 b). We also noticed that TaCOI1 transcript is 

present at 10 fold higher level in Lili compared to Santiago in the empty vector 

controls.  The upregulation of TaCOI1 transcription is known to induce the expression 

of the downstream JA responsive transcriptional activator MYC2 (Gossens et al., 

2015)  and we duly observed this in the TaWRKY10 silenced lines (fig 2.14 c).  Not 

surprisingly, TaPDF1.1, a downstream target gene of MYC2 was also upregulated in 

the TaWRKY10 knock down plants (fig 2.14 d). Our data indicate that TaWRKY10 

acts as a repressor of TaCOI1 gene expression. We demonstrate that manipulating 

TaWRKY10 gene expression in wheat cultivars leads to altered JA perception via 

changes in the JA receptor COI1 gene expresison.  Since JA is a major hormone that 

regulates defence against necroptrophic pathogens, our data provides a plausible 

mechanistic explanation for the differential Septoria susceptibility phenotypes 

observed in the wheat cultivars with altered TaWRKY10 expression. 
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2.9 TaCOI1 is involved in Septoria defense in both Lili and Santiago. 
	
  
In order to validate the involvement of TaCOI1 in the wheat immune response during 

Septoria infection, its expression profile was analyzed in a time-course fashion after 

pathogen inoculation. 15 days old seedlings were infected with Septoria and then 

TaCOI1 expression was evaluated via qRT-PCR, as described by Lee et al., 2015 and 

Millyard et al., 2016, comparing infected and non-infected tissue, for both varieties 

Lili and Santiago. 

Due to the results displayed in fig 2.15 a and 2.15 b it is indeed possible to conclude 

that TaCOI1 plays a key role in immunity against Septoria. 

In Lili (fig 2.15 a) there is no change in  gene expression compared to controls until 

day 14 post infection, when the infected tissues show an upregulation of 3 fold-

change compared to their control. TaCOI1 maximum expression was detected at 16 

days post-infection, in which an upregulation of 6 fold-change was observed. The 

level of expression then decreases at 18 days post infection, showing no difference 

compared to its own control at 20 days post infection. In Santiago (fig 2.15 b) the 

expression of TaCOI1 follows the same pattern as seen in Lili. 

TaCOI1 upregulation in Santiago starts at 12 days post infection, after 2 days the 

maximum peak is detected at 6 fold-change higher compared to its control, matching 

the control level of expression at 18 days after infection. A relatively small decrease 

in expression compared to the control is detected at 20 days post infection. 

The data confirm the involvement of TaCOI1, validating its involvement during the 

necrotrophic phases of pathogen lifecyle (Chini et al., 2016). In both the varieties 

analyzed TaCOI1 expression starts to increase  which corresponds to the switch to the 

necrotrophic lifecyle in Septoria. 
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2.10 Lili shows a higher JA-Ile biosynthesis, but a lower SA level  when 
compared to Santiago. 

 

Phytohormones play key role in plants response to biotic stresses. 

Jasmonic acid (JA) and salicylic acid (SA) have been associated with response against 

necrotrophic or biotrophic pathogens respectively, and it is a well established 

paradigm (Glazebrook et al., 2005, Seilaniantz et al., 2007). Therefore hormones 

produced by a certain cultivar could be informative on its own biotic stresses response 

capability. To asses one of the key factors that can describe immunity potential of the 

target varieties we quantified the amount of hormones present in control conditions, in 

2 week-old seedlings. Rapid quantitative determination of hormone abundance by 

LC-MS/MS from crude plant extract was performed as described by Forcat et al., 

2008. 

Figure 2.16 displays the results of this quantification experiment, in which the 

absolute quantity of JA (fig 2.16 a), JA-ile (fig 2.16 b), abscissic acid (ABA) (fig 2.16 

c) and SA (fig 2.16 d) have been evaluated. 

Lili shows on average a higher but not statistically significant production of JA 

compared to Santiago (fig 2.16 a). 

The measurements are not robust enough throughout the biological repeats to draw 

any major conclusion from this part of the experiment. This precision problem could 

have been due to the really low amount of JA producted by the plants at this particular 

growth stage. 

JA-ile is the active compound of the JA, it is actually JA-ile that interact with COI1 

receptor triggering JAZs degrading process (Wasternack et al., 2018).  

Lili show a 4 times higher quantity of the above-mentioned phytohormone compared 

to Santiago (fig 2.16 b). This evidence led us to conclude that Lili is more resistant 

compared to Santiago not only because of a higher sensitivity to JA, but also because 

a higher JA-ile production.  

ABA levels shows no noticeable differences between the varieties (fig 2.16 c). 

Santiago shows a statistically significant higher SA production compared to Lilli (fig 

2.16 d). It is possible to conclude that Lili and Santiago present  inversely correlated 

JA-SA ratio and could their differential defence responses, as expected and previously 

reported for other plant species (Shinegaga et al., 2016). 
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2.11 Discussion. 
 

STB is one of the most devastating wheat foliar diseases worldwide. Currently all 

elite wheat varieties show varying degrees of susceptibly to Septoria and STB is 

solely controlled by fungicide treatment. In recent years, outbreaks of fungicide 

resistant strains of Septoria have become more prevalent indicating that new control 

measures are vital for sustainable wheat production. A better understanding of wheat 

defence mechanism could lead to the discovery of novel components that could be 

exploited as STB resistance breeding targets.  

The WRKY domain-containing transcription factor gene family is universally present 

in plants and is an integral part of plant defence signalling pathways (Bakshi et al., 

2014). Several recent studies confirm the role of WRKYs as major regulators of 

immune responses in crop plants (Vo et al., 2018, Lee at al., 2018, Satapathy et al., 

2018). 

Here we identify TaWRKY10 as a novel component of wheat immunity against 

Septoria. Among the TaWRKYs identified to date in wheat, TaWRKY10 shows 

homology to only a single WRKY factor from Hordeum vulgare, indicating that 

TaWRKY10 is pooidae-specific gene in Triticum aestivum and is only the second such 

gene to be characterised (Perochon et al., 2015).  Interestingly the other pooidae 

specific-gene ,TaFROG, is also reported to be involved in immunity against a wheat 

pathogen suggesting that these genes may have evolved to play a common role in 

wheat.  

Basal gene expression analysis of TaWRKY10 across commercial elite wheat varieties 

indicates a pattern of variability that correlates with susceptibility to Septoria under 

field conditions. Two different varieties with extreme variability, Santiago (high) and 

Lili (low) were selected to understand the role of TaWRKY10 in more detail. Initially, 

we demonstrate that these varieties show different degree of resistance to Septoria in 

laboratory conditions as well as in the field. Lili (low TaWRKY10 transcript levels) is 

more resistant to Septoria than Santiago (high TaRWKY10 transcript levels), 

mirroring the publicly available field scoring data (AHDB recommended list for 

cereals and oilseed 2017/18). This result confirms the capability of laboratory studies, 

such as the current report, to be a potent tool to understand molecular mechanisms 

that underpin phenotypes that occur in field conditions.  These studies can pave the 
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way to the development of wheat varieties that show field effective Septoria 

resistance in the field.   

To assess if TaWRKY10 expression level decrease has direct correlation with wheat 

defence against Septoria, we performed gene silencing experiments to downregulate 

TaWRKY10 expression. Silencing TaWRKY10 in both Lili and Santiago varieties led 

to reduced sporulation but an earlier onset of the necrotrophic phase in Septoria 

similar to what we observed for another negative regulator of immunity TaR1 in 

wheat (Lee et al., 2015). Thus, for both of the varieties the resistance to STB has 

increased as a consequence of silencing TaWRKY10 underlining the importance of 

TaWRKY10 for Septoria defence TaWRKY10 mRNA levels are downregulated during 

Septoria infection approximately  2-3 days prior to the onset of the  necrotrophic stage 

of Septoria. Since TaWRKY10 is a negative regulator of JA signalling this suppression 

of gene expression indicates a response by wheat to upregulate JA-mediated defence. 

Hormone signalling pathways play a pivotal role in plant response to environmental 

stimuli. JA is one of the main hormones involved in plant - pathogen interaction, and 

the presence of JA receptor COI1 is necessary to propagate the hormonal signal and 

thus the plant response (Gossens et al., 2015, Gimenez-Ibanez et al., 2015 Chini et al., 

2016, Shigenaga et al., 2016). Despite the wealth of knowledge of hormone signalling 

pathways in the model dicot Arabidopsis thaliana, little is known about hormone 

signalling in monocots, especially in wheat. The current study sheds new light into 

regulation of JA signalling in wheat.   

It has been previously reported that different WRKYs play opposite roles in the JA 

mediated defence against the same necrotrophic pathogen. For example over-

expressing a Wild Grape WRKY in Arabidopsis could lead to a downregulation of JA 

response during Botrytys cinerea infection leading to increased susceptibility (Wang 

et al., 2017). Whereas over-expressing of Populus trichocarpa WRKY40 in poplar 

trees leads to increased JA response and increased resistance to Botrytis cinerea 

(Karim et al., 2015).  This evidence indicates species specificity and functional 

diversity within the WRKY gene family.  

The inhibitory effect of JA on root growth is well established (Staswick et al., 1992). 

We demonstrate that silencing TaWRKY10 leads to root growth inhibition, mimicking 

the effect of enhanced JA signalling on root growth inhibition. Taken together with 

TaWRKY10 silenced plants exhibiting increased defence our data demonstrate a 
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negative role in JA signalling both in defence and also in growth control for 

TaWRKY10. 

Moreover via qPCR, we have been able to demonstrate that the downregulation of 

TaWRKY10 transcript level leads to the upregulation of the JA receptor TaCOI1 gene 

transcription, establishing an inverse correlation between the expression patterns of 

these two genes. It has been demonstrated that COI1 transcript abundance is directly 

correlated with JA sensitivity in rice (Yang et al., 2012). In the current study  

upregulation of TaCOI1 transcription has a consequence of activating JA signalling 

pathway due to increased sensitivity, leading to both root growth inhibition and 

increased resistance to Septoria.  Therefore, TaWRKY10 exerts a negative effect on 

JA signalling in wheat by suppressing TaCOI1 gene expression. Since TaWRKY10 

only exists in the genus pooidea this is a novel mechanism for regulating JA 

signalling in wheat.  

I demonstrated that not only JA sensitivity is a source of variation among our 

examined varieties, but also we detected a significant difference on the active JA 

biosynthesis. Lili is more effective at converting JA to its active form JA-ile 

compared to Santiago. This effect could be due to the increased activity of 

JASMONATE RESISTANT 1 (JAR1) (Staswick et al., 2002). JAR1 is the enzyme 

that converts JA to JA-ile. The higher level of active JA-ile and the higher JA-ile 

sensitivity explain the higher degree of resistance detected in Lili (Chini et al., 2016). 

Until now there are no studies that examine the sensitivity of different wheat varieties 

to phytohormones. We have been able to demonstrate that a more rapid JA perception 

regulated by TaWRKY10 mediated suppression of the JA receptor gene expression is 

coupled with best disease resistance performance, both in the lab and in the field. Our 

data suggests that breeding programmes that target improved JA perception 

mechanisms could lead to novel wheat germplasms better suited to withstand Septoria 

infestation resulting in greater yield.  
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2.12 Figures chapter 2. 
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Figure 2.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 
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Figure 2.13 
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2.13 Figures legend chapter 2. 
	
  
	
  
Fig 2.1 Characterisation of TaWRKY10. 

(a) Multiple sequence alignment of TaWRKY10 aminoacid sequences with its own 

nearest blast hits from other plants (Arabidopsis, Rice, Maize, Barley and Brassica). 

Alignment was obtained using ClustalOmega and then WRKY consensus sequence 

and zinc finger was recoloured. TaWRKY10 belongs to the subfamily of type II 

WRKy TFs. (b) Phylogenetic tree generated exploting ClustalOmega. TaWRKY10 

display only one homolog in Hordeum Vulgare. (c) qRT-PCR performed on leaves of 

2-week old wheat seedlings from different varieties (KWS Lili, KWS Santiago, , JB 

Diego, Gallant, Relay, Dunston Sundance). The data here demonstrate that 

TaWRKY10 transcript level varies between cultivars. KWS Santiago display a 3 fold 

higher expression of TaWRKY10 compared to KWS Lili. Error bars, ±standard error 

(SE) of the mean of raw data for 3 biological replicates. 

	
  

	
  

	
  

Fig 2.2 Zymoseptoria tritici disease symptoms appear earlier in Santiago than Lili. 

White light picture of a single leaf of KWS Lili and KWS Santiago respectively 

infected with Septoria. The pictures represent an infection timecourse from day 9 to 

day 17. It is clear that necrosis symptoms start to appear in KWS Santiago at day 12 

DPI, while on KWS Lili the symptoms become clear at 14 DPI.  

 

 

 

Fig 2.3 Area Under the Disease Progress Curve (AUDP) is higher in Santiago 

compared to Lili. 

Area Under the Disease Progress Curve (AUDP) corresponding to KWS Lili (a) and 

KWS Santiago respectively. (b). The AUDPC was calculated by evaluating the 

percentage of blotched leaf area of both cultivars. We demonstrate that disease 

progression is quicker in Santiago compared to Lili. The mathematical calculation 

was performed exploiting the R package AUDPC (Madden et al., 2007).  
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Fig 2.4 Lili show an impaired picnidia formation and sporulation compared to 

Santiago  

a) Average number of picnidia per leaf in KWS Lili and KWS Santiago. There is a 

significant difference in the picnidia production, demonstrating that KWS Lili is more 

resistant to Septoria than KWS Santiago. Error bars corresponding to standard error 

relative to 3 different biological replicates. Student’s T-test p=0.0031 (statistically 

significant). 

b) Spore wash was performed 32 days after initial Septoria inoculation. KWS Lili 

show and average of 50% less sporulation if compared to KWS Santiago.  

Error bars corresponding to standard error relative to 3 different biological replicates. 

Student’s T-test p=2.20x10-4 (statistically significant). 

 

 

 

2.5 TaWRKY10 expression is downregulated upon Septoria infection for both Lili 

and Santiago. 

Level of expression of TaWRKY10 gene over a 22 days of Septoria infection time 

course, in both cultivars Lili (a) and Santiago (b).  For both cultivars we identified a 

down regulation up to 10 fold in TaWRKY10 transcript level. Error bars, ±standard 

error (SE) of the mean of raw data for 3 biological replicates. 

 

 

 

Fig 2.6 TaWKY10 can be effectively silenced. 

qRT-PCR data shows that expression of TaWRKY10 is reduced in virus-induced gene 

silencing (VIGS) treated plants silenced by BSMV:TaWRKY10_1 and 

BSMV:TaWRKY10_2, compared to BSMV:00 empty vector control in both Lili (a) 

and Santiago (b). The relative expressions are all normalized to BSMV:00 inoculated 

samples. Error bars, ±SE of the mean of raw data for 3 biological replicates. 
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Fig 2.7 Silencing TaWRKY10 leads to earlier onset of symptoms for both studied 

varieties. 

A single leaf of BSMV:00 mock silenced, BSMV:TaWRKY10_1 and 

BSMV:TaWRKY10_2 silenced plants for both Lili (from day 12 to 18 post infection) 

and Santiago (from day 9 to day 15 after Septoria inoculation). The symptoms, 

namely necrotic lesions, in the silenced lines start to be visible 2 days earlier 

compared to the mock silenced controls for both the varieties analyzed. The 

experiment has been repeated for 3 biological replicates. 

 

 

 

Fig 2.8 Silencing TaWRKY10 leads to increased resistance against Septoria. 

a) The number of picnidia produced on the leaves of TaWRKY10 silenced plants 

shows about a 50% reduction compared to mock silenced plants for both the varieties 

examined. Error bars, ±standard error (SE) of the mean of raw data. Student’s T-test 

show significance difference of the silenced lines compared to their own control (Lili 

BSMV:TaWRKY10_1 P=3.47x10-6, Lili BSMV:TaWRKY10_2 P=6.95x10-4; Santiago 

BSMV:TaWRKY10_1 P=2.52x10-9 Santiago BSMV:TaWRKY10_2 P=7.82x10-7 ). b) 

Spore washes performed 32 days after Zymoseptoria infection show 50% reduction in 

spores produced on TaWRKY10 silenced plants. Error bars, ±standard error (SE) of 

the mean of raw data. Student’s T-test show significance difference of the silenced 

lines compared to their own control (Lili BSMV:TaWRKY10_1 P=5.67x10-10, Lili 

BSMV:TaWRKY10_2 P=3.22x10-8; Santiago BSMV:TaWRKY10_1 P=8.33x10-13 

Santiago BSMV:TaWRKY10_2 P=2.31x10-9 ). 

 

 

 

Fig 2.9 TaWRKY10 silencing leads to root growth inhibition. 

a) white light picture of 7-week old plant cultivar Lili. Wheat has been germinated 

and then moved into sand pots. Virus-induced gene silencing has been performed at 

10 days after germination. Silencing TaWRKY10 leads to root growth inhibition in 

Lili. The effect is conserved also on cultivar KWS Lili (c). b,d) Root length quantified 

via ImageJ software on TaWRKY10 silenced lines compared to control. The 

experiment has been repeated 3 times measuring root of 12 plants for each biological 
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repeat. Error bars, ±standard error (SE) of the mean of raw data. Student’s T-test 

show significance difference of the silenced lines compared to their own control (Lili: 

BSMV:TaWRKY10_1 P=1.1x10-4 , BSMV:TaWRKY10_2 P=4.33x10-4 ; Santiago: 

BSMV:TaWRKY10_1 P=5.25x10-4 , BSMV:TaWRKY10_2 P=3.78x10-4  ). 

 

 

 

Fig 2.10 Lili is more sensitive to JA compared to Santiago. 

(a) white light pictures of wheat seedling exposed to JA compared to their controls, 

for both KWS Santiago and KWS Lili cultivars. Seeds has been germinated on MS for 

2 days, imaged (0h) and then moved either to MS or MS supplemented with 10 µM 

JA. Pictures were taken after 24 hours and 48 hours of treatment. (b) quantification of 

root elongation during JA treatment. Data was obtained by analyzing white light 

picture with ImageJ software. KWS Santiago is insensitive to JA treatment for the 

first 24h. 

 

 

 

2.11 Lili displays enhanced anthocyanin production compared to Santiago. 

a) white light picture of seedlings after 5 days of JA treatment. Lili show a more 

pronounced JA-dependent anthocyanin accumulation compared to Santiago. b) 

relative quantification of anthocyanin accumulation in seedlings via 

spectrophotometer. Error bars, ±standard error (SE) of the mean of raw data of 3 

different biological replicates.  

 

 

 

Fig 2.12 JA markers respond to treatment promptly in Lili but not in Santiago.  

(a-d) There is no significant change in expression of genes that are implicated in JA 

biosynthesis between the two varieties after JA treatment.(e-f) expression of receptor 

TaCOI1 is upregulated in both shoot and root dramatically in KWS Lili at 24h after 

the treatment, 6-fold and 8-fold respectively (e), in KWS Santiago TaCOI1 gene is 

not significantly  upregulated even 48h after JA treatment (f). (g-l) The JA signal 

transduction marker gene TaMYC2 gets upregulated in KWS Lili by2.5-fold by 24h, 
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in KWS Santiago it reaches this upregulation level at 48h (g-i). The JA signaling 

repressor TaJAZ6 is upregulated 14 fold and 10 fold in KWS Lili shoot and root 

tissues respectively. In KWS Santiago only 7-fold and 4-fold in shoot and root tissues 

after 48 hours of JA treatment(h-l). (m-p) JA response genes TaTAT1 is more 

transcribed in KWS Lili at 24 hours post JA treatment but TaPDF1.1 gene activity is 

greater in KWS Lili at 48 hours post JA treatment. 

 

 

 

Fig 2.13 TaWRKY10 is downregulated upon JA treatment. 

(a) Relative expression of TaWRKY10 in JA treated seedlings, in Lili variety. 

(b)Relative expression of TaWRKY10 in JA treated seedlings, in Santiago variety. In 

both varieties TaWRKY10 expression is downregulated promptly after JA application. 

We speculate this is needed to boost JA perception. The experiment has been repeated 

for 3 biological replicates. 

 

 

 

Fig 2.14 TaWRKY10 silencing  causes perturbation on JA signaling pathway. 

(a) qRT-PCR data shows the expression of TaLOX1, a gene involved in JA 

biosynthesis pathway. There is no change in the expression of this gene between the 

control and the silenced lines, demonstrating that TaWRKY10 silencing has no 

impact on the hormone synthesis. (b) The expression profile of the JA receptor 

TaCOI1 is altered upon TaWRKY10 silencing. TaCOI1 transcription is upregulated by 

4 times in KWS Lili and 3 times in KWS Santiago. This evidence demonstrates that 

TaWRKY10 act as transcriptional repressor of TaCOI1. This fact leads to JA signaling 

boost. (c-d) As a consequence of TaCOI1 upregulation we can detect as well a 

TaMYC2 and TaPDF1.1 gene expression upregulation in the TaWRKY10 silenced 

lines.  
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2.15 TaCOI1 expression is upregulated upon Septoria infection in both Lili and 

Santiago. 

Level of gene expression of TaCOI1 changes during Septoria infection in Lili (a) and 
Santiago (b). 
 
 
 
2.16 JA-ile and SA content are inversely correlated in Lili and Santiago. 

Hormonescontent in  uninfected control conditions could be used as a good proxy to 

analyse plant disease resistance capability. JA, JA-ile, ABA and SA were quantified 

in 2-week old Lili and Santiago seedlings. a) there is no statistically significant 

difference between Lili and Santiago JA content. b) Lili displays a 4 times higher 

production of active compound, JA-ile, compared to Santiago. c) no difference could 

be detected in ABA production among the two varieties analysed. d) Santiago show a 

higher content of SA than Lili, this evidence is in line with the general paradigm of 

inverse correlation between SA and JA phytohormones in plant. All data have been 

calculated with 3 different biological repeats, error bars represent Standard Error 

deviations. Each repeat consisted of 8 leaves from 8 different seedlings. 

Phytohormones content are represented as x10-3  ng/mg of tissue fresh weight, 

quantified by LC-MS/MS. 
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Chapter 3: Yeast-One-Hybrid screen 
 

3.1 Yeast-one-hybrid. 
	
  
Yeast one-hybrid screening (Y1H) is a powerful method to rapidly identify 

heterologous transcription factors that can interact with a specific regulatory DNA 

sequence of interest (the bait sequence). In this technique, the interaction between two 

proteins (bait and prey) is detected via in-vivo reconstitution of a transcriptional 

activator that turns on expression of a reporter gene. 

Several biochemical methods have been developed to identify protein-DNA 

interactions, including gel shift, DNAse I footprinting, and chromatin-

immunoprecipitation (ChIP) assays (Latchmann 1998; Orlando 2000). The above 

mentioned technique can address the question of which specific promoter is targeted 

by the protein of interest, contrarily Y1H can give information on which particular 

transcription factor interact with a specific DNA sequence, including cis-regulatory 

elements, origins of DNA replication, and telomeres (Li and Herskowitz, 1993; 

Lehmin et al., 1994; Kim et al., 2003). 

Y1H relies on the general principles of the yeast two-hybrid assay (Y2H). In short, 

mammalian proteins are exogenously expressed in yeast and their interactions in 

vivo are measured by the downstream activation of reporter gene constructs. The main 

difference between Y1H and Y2H is in the interactions that are being measured.  Y2H 

measures protein-protein interactions (Fields and Song 1989), while Y1H measures 

protein-DNA interactions. 
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In the Y2H system, two hybrid proteins are used. The bait protein (X) is fused to a 

DNA-binding domain (DB), and the prey protein (Y) is fused to a transcription 

activation domain (AD). When X and Y physically interact with each other, a 

functional TF is reconstituted and reporter gene expression is activated. In the Y1H 

system, a single hybrid protein, AD-Y, is used, and reporter gene expression is 

activated when Y interacts with the DNA bait. Although many predicted regulatory 

TFs contain an intrinsic AD, several TFs have a repressor domain or no 

activation/repressor domain at all. In addition, DNA-binding proteins that do not 

function in transcription (e.g., replication and DNA repair proteins) do not contain an 

AD. To enable the identification of a variety of DNA-binding proteins, a strong, 

heterologous AD is added to the prey protein. 

This method is based on yeast mating. Saccharomyces cerevisiae (yeast) can stably 

exist as either a diploid or a haploid. Both haploid and diploid yeast cells reproduce 

by mitosis, with daughter cells budding off of mother cells. Haploid cells are capable 

of mating with other haploid cells of the opposite mating type (an a cell can only mate 

with an α cell, and vice versa) to produce a stable diploid cell (Haber 2012). 

A cDNA library is cloned and transformed in haploid yeast of a specific mating type, 

while the prey is cloned into a vector (in our case pTUY1H), driving the expression of 

a specific auxotrophic marker (eg. HIS), and transformed in yeast of the opposite 

mating type. Both transformants for bait and preys are maintained by selective 

pressure of different auxotrophic markers in drop-out media (Reece-Hoyes and 

Walhout 2012). 

The preys and the bait are forced to mate. While mating they exchange the genetic 

material they are carrying, so the bait and prey become in contact in the same cell. If 

plated on appropriate drop-out media selection of mated clones occures. The media is 

lacking the aminoacid that can be produced only by the protein whose gene 

expression is driven by the bait DNA sequence. In this case the surviving colonies are 

those in which the prey interact with the bait. 

In this work a normalized and publicly available Arabidopsis TFs array library, called 

RR library, has been used (Castrillo et al., 2011), in order to investigate the existence 

of putative Arabidopsis homologs TFs that are capable to interact with TaWRKY10 

promoter. The use of an Arabidopsis normalized library can be useful to make the 

screen faster. There is no need to create a cDNA library, the procedure can be time 

consuming and complicated. Moreover When cDNA expression libraries are used as 
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preys, a limitation is that low abundant messengers, such as those derived from many 

TF encoding genes, tend to be underrepresented.  

The TFs showing interaction can be match by homology to wheat TFs, in order to 

investigate how our target is transcriptionally regulated. 

The Y1H system has shown great power in the field of biological research since it 

was established in 1993 by Wang and Reed. Application Y1H system has verified a 

number of known interactions between DNA and proteins and found a variety of new 

transcription factors. With the development of Y1H system, it will be more and more 

widely used in scientific research. 

 

 

 

3.2 TaWRKY10 promoter. 
 

Previously we have been able, via genetic and molecular evidence, to establish a role 

of TaWRKY10 and to define the targets of its transcriptional-regulation activity. 

Subsequently we wanted to investigate how TaWRKY10 gene is itself regulated, in 

order to establish a hierarchical pathway. The first step was to isolate a sequence of 2 

Kb DNA upstream of the start codon. I used the Plant Ensemble and the dedicated 

JBrowse software to identify this sequence in the wheat genome. The sequence was 

analyzed using the freely available online software PLACE (Plant cis-acting 

regulatory DNA elements) (Higo et al., 1999), to identify the conserved binding sites 

for different transcription factors (TFs) which could potentially interact with the 

WRKY10 promoter (fig 3.1). 

As shown in fig 3.1, and as expected, there are no particular TF binding site which 

predominates on the WRKY10 promoter. The more represented binding sites are 

those corresponding to WRKY, MYB, DOF, ERF and GATA TFs. 

The most efficient way to ascertain which TF could interact with specific cis-elements 

of a designated promoter region is to perform a (Yeast 1 hybrid) Y1H screen. A Y1H 

experiment using 2KB of the WRKY10 promoter was performed taking advantage of 

a previously existing, and publicly available, Arabidopsis TFs library (Castrillo et al., 

2011). This approach is somehow limiting, as we did not use a Triticum aestivum TF 

library. However given the sequence conservation of the cis-elements it is likely to 
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identify Arabidopsis orthoglogs of wheat TFs that bind to WRKY10 promoter. 

Therefore any TFs identified in the screen will have to be exploited to identify the 

wheat orthologs.  

 

 

 

3.3 pTaWRKY10-pTUY1H bait plasmid generation. 
 

A 2 kb promoter region fragment upstream from the START codon of  TaWRKY10 

was cloned in the Y1H bait vector pTUY1H (Castrillo et al., 2011). Primers used are 

listed in the primers table T1.  

The subsequently generated bait plasmid pTaWRKY10-pTUY1H was first introduced 

into E.coli DH5-α for sequencing validation, and then in S.cerevisiae Y187α (mating 

type α). In the construct pTaWRKY10-pTUY1H TaWRKY10 promoter drives the 

expression of the auxotrophic selection marker –HIS3 gene. 

 

 

 

3.4 RR TFs array library. 
 

The normalized and arrayed TFs library generated by Castrillo et al., 2011 (RR 

library) was obtained from NASC.  

The use of an arrayed library gives advantages such as a fast and standardized 

protocol, using a 96-well format (replicates and liquid culture can be performed using 

the 96-replicator and 96-well standard plates for liquid culture propagation of yeast 

clones). More importantly such a library provides normalized representation of the 

different TFs, whereas in a cDNA derived library the TFs with a lower level of 

transcription are underrepresented, increasing the possibility to miss positive 

interactions of Tfs with low gene expression. The TF librabry clones were generated 

in pDEST22 plasmid, and then inserted into Saccharomyces cerevisiae YM4271 

(mating type A). 
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3.5  Library screen. 
 

The library has been screened as described by Castrillo et al., 2011. The protocol has 

been reported in the material and methods chapter. 

The key step in this experimental procedure is the mating of the 2 different S. 

cerevisiae strains, containing respectively the bait plasmid (pTaWRKY10-pTUY1H) 

and the different clones of the RR library. The method exploited provide a high level 

of efficiency in mating. The outcome is represented in fig 3.2. 
After the mating 10 positive interactions were isolated in the triple drop-out  plates (-

TRP -LEU -HIS) 11 and 15 (fig. 3.3). Series of negative controls was also included in 

order to rule out the possibility of contaminations during the earlier steps of the 

experimental setup. These controls consist of re-plating the isolated prays and the 

bait, before the mating, on double (-TRP –LEU) and triple drop-out (-TRP -LEU –

HIS) medium. The outcomes are shown in figure 3.4, and as expected there is no 

notable yeast cell growth where is no interaction of promoter with TF. 

 

 

 

3.6 Target validation via 3-Amino-1,2,4-triazole (3-AT) treatment. 
 

Since positively identified yeast cells could be due to leaky expression of the HIS3 

gene in S.cerevisiae, a subsequent sub-culture of the positive clone cells was plated 

out  on 3-Amino-1,2,4-triazole (3-AT)	
   containing media. 3-AT is a competitive 

inhibitor of the HIS3 gene product. The net effect of supplementing 3-AT to 

S.cerevisiae growing media is to suppress the effect of a low HIS3 expression that can 

occur even in the absence of direct pray-bait interaction (Catrillo et al., 2011). Liquid 

cultures of the 10 positive colonies were grown on triple drop-out media. After 24 

hours of growth 10μl of the culture was spotted on triple drop-out plates 

supplemented with increasing concentrations of 3-AT up to 60 mM (0, 5, 25, 60 mM). 

The outcome is to reduce the false positives and identify strong interactors on 

WRKY10 promoter which was narrowed down to six positive colonies, corresponsing 

to 6 positive interactions. The table 3.1 shows the TFs associated with a positive 

interaction with the bait.
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3.7 Interactor clone 1: ZAT5 - C2H2.  
 
Zinc finger proteins play a critical role in many cellular functions, including 

transcriptional regulation, RNA binding, regulation of apoptosis, and protein-protein 

interactions. They are classified according to the number and order of the Cys and His 

residues that bind the Zinc ion in the secondary structure of the finger (Klug et al., 

1995, Mackay et al., 1998). According to in silico studies 0.7% of all Arabidopsis 

genes encode for a C2H2 zinc finger proteins (Englbrecht et al., 2001). 

C2H2-type zinc finger proteins contain one of the best-characterized DNA-binding 

motifs found in eukaryotes. This motif consists mostly of about 30 amino acids and 

includes two conserved Cys and two conserved His residues bound to one zinc ion 

tetrahedrally, and is represented as CX2 – 4CX3FX5- LX2HX3 – 5H (Pabo et al., 

2001). 

In Arabidopsis 176 different proteins contain the zinc finger domain, our target, 

AtZat5, belongs to the C1-2i subclass, together with other 19 representatives 

(Meissner et al., 1997, Pabo et al., 2011).   

C2H2-type zinc finger proteins play a crucial role in many metabolic pathways as well 

as in stress responses and defense activation in plants. Recent studies emphasized the 

importance of C2H2-type zinc finger proteins with a putative repression activity to the 

defence and stress response of plants (Pabo et al., 2011, Ciftci-Yilmaz and Mittler 

2008). 

Other than the zinc finger domains, most members also share several putative nuclear 

localization sequences and an EAR motif [L/FDLNL/F(x)P] (that is thought to have 

an active repression activity and is found at the C terminus of the proteins (Ciftci-

Yilmaz and Mittler 2008). The EAR motif was first identified in the AP2/ERF 

domain proteins (Ohta et al., 2001). AP2/ERF (or ERF proteins) domain proteins are 

plant-specific transcription factors that consist of a DNA-binding domain named the 

ERF domain (Allen et al., 1998, Hao et al., 1998). ERF proteins bind to the core 

sequence of a conserved ethylene-responsive element (GCC box) that is found in the 

promoters of many defence and stress response genes (Ohme-Takagi et al., 1995, 

Kazan et al., 2006). Studies suggested that EAR-motif containing repressors play a 

key role in plant defense and stress- response mechanisms by transcriptional 

repression of different defense or stress-response-related genes in the absence of 

stress (Kazan et al., 2006). For instance, the EAR repressor AtERF4 negatively 



	
   78	
  

regulates the expression of PDF1.2 that encodes an antifungal peptide belonging to 

the family of plant defensins by modu- lating ethylene and jasmonic acid responses 

(McGrath et al., 2005, Yang et al., 2005). 

Despite extensive studies on key member of the C1-2i subgroup such as Zat6, Zat7, 

Zat10/STZ, Zat12, AZF1, AZF2, and AZF3 (Ciftci-Yilmaz and Mittler 2008), very 

little is known about AtZat5. AtZat5 is closely related to another member of the 

family: AtZat18. AtZat 18, according to in-silico studies performed by Ciftci-Yilmaz 

and Mittler, 2008, could be implicated in immune response against P. Infestans. 

Recently AtZat18 has been linked to plant response to drought stress (Yin et al., 

2017) But up to date there aren’t any other exhaustive studies in literature about this 

gene. 

 

 

3.8 Interactor clone 2: ABF1 . 
	
  
Abscisic acid (ABA) is a vital mediator of responses in plants to various adverse 

environmental conditions like salinity, cold, drought, etc. Some of the ABA-­‐‑mediated 

physiological responses are regulated by a group of basic leucine zipper (bZIP) 

transcription factors (Landschultz et al., 1988) that interact with a class of cis-­‐‑acting 

DNA elements, collectively known as abscisic acid response elements (ABREs) 

(Busk et al., 1996). ABRE binding factor -1 (ABF1) is a transcripton factor that binds 

to promoter ABRE sequences in response to ABA, activating downstream responses 

(Sarkar and Lahiri, 2013). 

In response to water deficit, ABA, a well-known stress phytohormone, is rapidly 

induced, leading to the expression of stress-responsive genes and the activation of 

plants’ cellular physiological adaptation to water stress (Fujii and Zhu, 2009; Cutler et 

al., 2010; Weiner et al., 2010).  

On the other hand Salicylic acid is a phytohormone that plays a key role during plant 

developmental processes and responses to abiotic and biotic stress (Raskin, 1992; 

Bandurska and Stroinski, 2005; Khan et al., 2013). Surprisingly it has been reported 

that water deficit induces SA biosynthesis (Miura and Tada, 2014). Exogenous 

treatment with SA modulates plant drought resistance through multiple pathways such 
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as oxidative stress (Alam et al., 2013), stomatal conductance (Hao et al., 2010; 

Khokon et al., 2011; Habibi, 2012), antioxidant defense system (Hayat et al., 2008; 

Saruhan et al., 2012), and NO production (Hao et al., 2010; Khokon et al., 2011). 

Some Arabidopsis mutants that accumulate endogenous SA (adr1, acd6, cpr5 myb96-

1d, and siz1) show both SA-mediated disease resistance and water deficit tolerance 

(Miura et al., 2013). Additionally, some SA- responsive genes are involved in plant 

response to water deficit such as those encoding MPK3, MPK4, MPK6, PR1, PR2 

and PR5 (Ichimura et al., 2000, Ahlfors et al., 2004, Gudesblat et al., 2007, Liu et al., 

2013). 

Wang et al., 2018 proposed a model in which SA- and ABA-mediated responses are 

interconnected by PCaP2. PCaP2 is a plasma membrane-associated Ca2+-binding 

protein, through its activity it can activate both ABA and SA response, activating not 

only water deficit response but also PRs and defense genes. 

ABA signaling could be linked to plant response to biotic stress as well through JA 

pathway. The essential requirement for the transcriptional induction of JA-dependent 

genes is a functional ABA-signaling mechanisms (Anderson et al., 2004; Lorenzo & 

Solano, 2005; Niu, Figueroa, & Browse, 2011; Liu et al., 2014; Liu et al., 2016). 

ABA is absent in undamaged tissue but its synthesis is triggered by herbivore 

damage, which provides a direct link between the expression patterns of defense 

genes and the absence/presence of ABA (Erb et al., 2011, Consales et al., 2012, Vos 

et al., 2013). The JA- and ABA- signaling pathways can interact both synergistically 

and antagonistically (Anderson et al., 2004; Kilian et al., 2007; Huang, Wu, Abrams, 

& Cutler, 2008; Kazan and Manners, 2013; Savchenko et al., 2014; Rieman et al., 

2015).  In particular ABA-activated drought stress response is able to prime JA biotic 

stress responsive genes (Avramova, 2018). Those literature evidences, together with 

the capability of AtABF-1 to interact with TaWRKY10 promoter, make a putative 

TaABF1 as an interesting target to investigate the network underpinning the 

correlation between biotic and abiotic stresses. 
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3.9 Interactors clones 3 and 4: GATA19 and GATA23. 
 

GATA factors are evolutionarily conserved transcription regulators that were named 

after their DNA-binding preference to the consensus sequence X-GATA-Y (X could 

be either thymidine (T) or an adenosine (A); Y could be either guanidine (G) or 

adenosine (A) (Reyes et al., 2004).  

All GATA transcription factors from Arabidopsis have a type IV zinc finger with the 

consensus C-X2-C-X17-20-C-X2-C (C, cysteine; X, any residue) followed by a highly 

basic amino acid stretch (Reyes et al., 2004). 

GATA motifs are enriched in promoters of light-regulated genes and of genes 

controlled by the circadian clock (Arguello-Astorga and Herrera-Estrella, 1998). On 

top of that the GATA factor AreA from the fungus Aspergillus nidulans is a key 

regulator of nitrogen signaling, which suggested that studies of plant GATAs may 

also lead to advances in understanding nitrogen signaling in plants (Daniel-Vedele 

and Caboche, 1993; Scazzocchio, 2000). GATAs were initially defined following 

studies with the paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON 

METABOLISM-INVOLVED) and GNL (GNC-LIKE/CYTOKININ-RESPONSIVE 

GATA FACTOR1) (Richter et al., 2010; Behringer and Schwechheimer, 2015). 

In Arabidopsis 30 GATA transcription factors are present, they are further subdivided 

into 4 different sub-families, from A to D (Reyes et al., 2004).  

GATA-19 belongs to the B-GATA family. This subgroup is defined by their highly 

conserved DNA binding domain and the presence of either an LLM- or a HAN-

domain (Behringer and Schwechheimer, 2015). HAN-domain B-GATAs were first 

described in the Arabidopsis floral development regulators HAN (HANABA 

TARANU) and GATA19 (HAN-LIKE) (Zhao et al., 2004; Zhang et al., 2013). On 

the other hand GATA23 is a regulator of lateral root initiation from Arabidopsis that 

is closely related to GNC and GNL but has a degenerate LLM-domain that is 

seemingly specific for the Brassicaceae family (CLL instead of LLM) (De Rybel et 

al., 2010). GATA23 is induced by auxin, and it controls lateral root founder cell 

identity in the Arabidopsis root.  

Since the expression of GATA23 is impaired in gain-of-function mutants of 

the AUX/IAA gene IAA28, which is defective in lateral root formation, and since 

IAA28 interacts with several ARFs including ARF7 and ARF19, a model was 
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proposed, according to which auxin promotes lateral root initiation through 

degradation of the AUX/IAA IAA28 and subsequent ARF 

mediated GATA23 expression (DeRybel et al., 2010). HAN containing B-GATA 

mutants display altered floral identity and impaired embryo development (Zhao et al., 

2004, Nawy et al., 2010). 

The biological role of the HAN domain is not clarified yet, but it is speculated that the 

domain could play a role in protein-protein interactions (Behringer and 

Schwechheimer, 2015). 

 

 

 

3.10 Interactor clone number 5: CIB1. 
 

The basic helix-loop-helix (bHLH) proteins form a large superfamily of 

transcriptional regulators that are found in organisms from yeast to humans and 

function in critical developmental processes as well as stress responses (Jones, 2004). 

These proteins are defined by displying the bHLH domain which is composed of 

approximately 60 amino acids (Ferre-D’Amare et al., 1993). The basic region, an N-

terminal stretch of approximately 15 to 20 residues typically rich in basic amino 

acids, is involved in DNA binding. Certain conserved amino acids in the basic region 

determine recognition to the so-called core E-box hexanucleotide consensus sequence 

5′-CANNTG-3′, whereas other residues would provide specificity for a given type of 

E-box (e.g. the G-box [5′-CACGTG-3′]). In addition, flanking nucleotides outside the 

core have also been shown to play a role in binding specificity (Shimizu et al., 

1997; Atchley et al., 1999; Martinez-Garcia et al., 2000; Massari and Murre, 2000). 

The domain function is to promote protein-protein interactions, enabling the 

formation of hetero- or homodimers (Massari and Murre, 2000). 

Currently 119 bHLH have been mapped in Arabidopsis genome (Bailey et al., 2003). 

bHLH class is sub-divided in 6 groups, according to their DNA-binding specificities 

and dimerization potential, conservation of residues in the other parts of the motif, 

and the presence or absence of additional domains (Murre et al., 1994, Ledent et al., 

2002). 
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To date, 4 subclades of the bHLH family have been shown to play a role in JA 

signalling in Arabidopsis. Best characterized is the bHLH IIIe subclade, the members 

of which positively contribute to the general JA response, such as the centre of JA 

response, MYCs family (Pauwels and Goosens, 2011, Chini et al., 2016). In contrast, 

the recently characterized bHLH IIId subclade seem to exert a negative role in many 

JA-related responses. Members of this subclare are the proteins containing a the JA-

ASSOCIATED MYC2-LIKE (JAM), the JAMs lack the canonical activator domain 

present on MYCs, therefore they act as JA response negative regulators (Fonseca et 

al., 2014, Qi et al., 2015) 

Finally, bHLH IIIf subclade play a major role in JA-mediated anthocyanin 

accumulation and trichome initiation. Anthocyanin production is regulated by the 

R2R3 MYB proteins PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), 

PAP2, MYB113 At1g66370 and MYB114 (Gonzalez et al., 2008, Qui et al., 2011). 

JA-induced trichome formation is driven by the activity of  R2R3 MYB proteins 

MYB23 (At5g40330) and GLABRA1 (GL1) (At3g27920) (Matsui et al., 2008, Zhu et 

al., 2009) 

 

 

 

3.11 Interactor clone 6: EDF3. 
 

At3G25730, corresponding to ETHYLENE RESPONSE DNA BINDING FACTOR 3 

(AtEDF3), is among the positive interactors. It is an ethylene-responsive TF that is not 

well studied. 

It belongs to the superfamily of APETALA2/Ethylene Responsive Factor (AP2/ERF). 

The AP2/ERF family is composed of 4 subgroups: ERFs, AP2, RAV and Soloist 

(Licause et al., 2013). EDF3 belongs to the RAV subgroup, defines by displaying an 

AP2 domain plus a B3 DNA binding domain (Swaminathan et al., 2008, Kagale et 

al., 2010, Licausi et al., 2013). 

In its amino acid sequence  a conserved RLFGV sequence motif , similar to that 

found in ERF/AP2 repressor proteins (Ikeda and Ohme-Takagi, 2009) was identified 

at its C-terminal. The presence of this sequence indicated that the EDF3 gene could 

encode a transcriptional repressor that operates in presence of ethylene (Chen et al., 
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2015). Previous studies demonstrated the synergistic connection between JA and 

ethylene, both during plant development and biotic stress response (Lorenzo et al., 

2002; Zhou et al., 2005; Wunsche et al., 2011; Lahlali et al., 2014). 

 

 

 

3.12 Homology analysis. 
 

In order to try to couple the hits from this screen on Arabidopsis TFs with putative 

wheat targets, we carried out a basic homology analysis, blasting Arabidopsis hits 

proteins sequences against wheat proteome. Figures 3.6 to 3.11 represent the results 

of the protein sequence homology analysis between the positive Arabidopsis TFs and 

wheat TFs. 

The protein sequences of Arabidopsis TFs were recovered from TAIR database and 

queried in PLANT ENSEMBLE BLAST-release 40 (Siever et al., 2011). The amino 

acid sequences from Arabidopsis was seracehd against the wheat proteome, and the 

sequences corresponding to the best hits were recovered from PLANT ENSEMBLE-

JBrowse. The results are reported in table 3.2. The resulting sequences were fully 

aligned with the query sequences using Clustal-Omega (Siever et al., 2011).  

In the figures the scores corresponding to the Blast analysis and the alignment are 

shown. The displayed scores correspond to: Blast score, E-value and %Identity shown 

correspond to the results obtained by blasting the Arabidopsis sequences against 

wheat proteome utilizing Plant-Ensemble Blast v40; the %Identity calc. represents the 

crude percentage calculated counting the amino acids displaying a perfect match in 

the 2 sequences. It has to be taken into account that this procedure was performed 

only to assign priorities among the putative interactors. To ascertain undoubtedly the 

homology between the proteins further investigation is needed.  

The first protein that was analyzed is the C2H2 transcription factor ZAT5.  It shows a 

score of 153, 2.9E-12 E-value and a 81.3% of identity. The %Identity calculated is 

20.3% (fig 3.6).  

Figure 3.7 display the results of the alignment of ABF1. The score is 245, 2.5E-24 the 

E-value and a 71% of identity. The calculated percentage correspond to 34.9%. 



	
   84	
  

The transcription factor GATA23 is the one that shows the lowest values in terms of 

score, percentage of identity, E-value and calculated percentage of identity. The 

results are: 193 score, 1.5E-18 E-value and 55.7% of Identity and the calculated 

identity is 15.7% (fig 3.8).  

GATA19 alignment scores are: score 220, E-value 2.7E-22 and %Identity 97.4, while 

calculated identity is of 22.5% (fig 3.9).  

bHLH-CIB1 alignment display a score of 446, an E-value of 3.1E-51, a %identity of 

80.9; the calculated percentage of identity is 33% (fig 3.10). 

The alignment with the highest score is the one regarding EDF3 transcription factor. A 

score of 379, E-value 1.3E-43 and %Identity of 77.9. Also the calculated percentage 

of identity is the highest among the different putative interactors: 76%. 

The results obtained via Plant-Ensembl BLAST v4 and ClustalOmega need to be 

validated via further experiments, such as direct interaction assay between the 

interactors and the target promoter or via silencing the interactor and estimating the 

target gene expression.  

 
 
	
  
	
  

3.13 TaEDF3 is upregulated upon Septoria infection. 
 

TaEDF3 is the putative interactor displaying the highest score in both the Blast search 

and the alignment, therefore it has been chosen for further analysis. In order to start 

assessing TaEDF3’s role in Septoria wheat defence, an expression analysis of 

TaEDF3 transcript level during a Septoria infection time course was carried out. Lili 

and Santiago were both infected with virulent Septoria isolate, IPO323 (Arraiano and 

Brown, 2006). The transcript level of TaEDF3 was evaluated in Lili and Santiago via 

qPCR (fig3.12 and 3.13). The expression pattern of TaEDF3 appears to be rhythmic 

in both cultivars, in non infected control condition. This evidence can lead us to 

speculate that TaEDF3 could be a gene involved in ethylene response during 

development (no stresses were applied in this conditions), these findings are 

consistent with previously published data (Lahlali et al., 2014). 

The gene rhythmic transcription pattern leads us to think that it is regulated through a 

negative feedback loop system. During biotic stress, namely Septoria infection in this 

case, TaEDF3 expression is upregulated during the early stages of infection (day 6 for 
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Lili and day 4 for Santiago) compared to non infected controls. The upregulation is 

consistent for both cultivars throughout the infection time-course. 

Figure 3.14 indicates the level of expression by qPCR during Septoria infection for 

both TaEDF3 and TaWRKY10 in both cultivars, in order to make comparisons easier.  

In Lili it is notable that there is an upregulation of TaEDF3 gene expression of 2-fold 

change, starting from day 6 post-infection up to day 10. Notably TaWRKY10 starts to 

downregulate its transcript level at day 10 in Lili, 2 days prior to the switch to 

necrtrophic growth in Septoria and 2 days after TaEDF3 upregulation. At 12 days 

post infection there is the maximum variation of transcription between stressed and 

control tissue in Lili: 6 fold-change higher gene expression in favour of the stressed 

plant tissue. At day 14 the difference among infected and non-infected tissue is again 

2 fold. At day 16 there is a difference of 2.5 fold. Interestingly at day 18 there is no 

different between infected and control, and this particular time-point is corresponding 

to the lowest reported level of TaWRKY10 transcript. At day 20 a 6-fold change 

difference was detected. 

In cultivar Santiago there is no perturbation of TaEDF3 expression for the first 2 

days, a 1.5 fold upregulation was detected at day 4 and 2 fold-change upregulation 

from day 6 (corresponding to the beginning of TaWRKY10 gene expression drop). 

At 8 days post infection TaEDF3 expression is still 2 times higher in infected tissue 

compared to its own control, but no difference is detected at day 10. At day 12 there is 

only 1.5 fold-change difference, at day 14 a 2-fold change. Remarkably at day 16 the 

transcript level in the infected sample is lower compared to the control, but at day 18 

an upregulation of 6 fold-change is detectable in the infected tissue compared to its 

own non infected control, the same difference is present at day 20. The first TaEDF3 

transcription upregulation peak is 2 days prior to the downregulation of TaWRKY10 

expression, for both cultivars. 

As TaEDF3 contain the repressor motif  RLFGV (Ikeda and Ohme-Takagi, 2009), I 

suggest  that this TF is a repressor of TaWRKY10 expression. Even though during 

infection TaEDF3 maintains a rhythmic expression profile, we can conclude that it 

has a role in immunity response because the upregulation of expression is statistically 

significant and consistent throughout the time course of this experiment. 
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3.14 Discussion. 
 

Y1H screening is a widely used method for functional genomics studies (Sun et al., 

2017), due to its capability to perform screening of cDNA libraries quickly. In the 

recent past the technique has improved, since a lot of different arrayed libraries are 

created and made publicly available by and for the research community (Mitsuda et 

al., 2010; Gaudinier et al., 2011; Ou et al., 2011; Castrillo et al., 2011). The array 

libraries enable one to adopt fast protocols (cDNA libraries preparation is avoided), 

and the avoidance of under-evaluation of less expressed TFs (Castrillo et al., 2011). 

Y1H screening has not been used only in Arabidopsis but as well in crops (Lopato et 

al., 2006; Xu et al., 2017) and ornamental plants (Han et al., 2017). 

As TaWRKY10 promoter region does not display any particular feature, nor 

enrichment of specific TFs binding sites, only a TFs library screen could give any 

detailed information on putative regulators of TaWRKY10 expression. In this study 

the Arabidopsis arrayed RR library available from NASC and developed by Castrillo 

et al., 2011 was used. 

A 2kb fragment upstream of TaWRKY10 gene START codon was cloned into 

pTUY1H plasmid, giving rise to pTaWRKY10-pTUY1H construct, in which our target 

promoter drives the expression of –HIS3 selection marker. 

Mating was carried out successfully, after that the auxotrophic selection on triple 

drop-out media permitted the isolation of 10 putative positive interactors. The 

increasing stringency of the selection, with 3-AT supplemented media confirmed the 

interaction of 6 Arabidopsis TFs with TAWRKY10 2kb promoter region. 

The 6 above mentioned transcription factors are: ZAT5, ABF1, GATA23, GATA19, 

CIB1 and EDF3. The common theme in this group seems to be that all of the targets 

are involved in Arabidopsis development, but they all seem to be connected to the JA 

response or biotic stresses. 

ZAT5 and EDF3 seem to be connected to the ethylene response (Ciftci-Yilmaz and 

Mittler 2008, Ikeda and Ohme-Takagi, 2009). Previous studies demonstrated the 

synergistic connection between JA and ethylene, both during plant development and 

biotic stress response (Lorenzo et al., 2002; Zhou et al., 2005; Wunsche et al., 2011; 

Lahlali et al., 2014). 
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ABF1 transcriptional regulation activity is triggered by ABA presence (Sarkar and 

Lahiri, 2013).  

It has been repeatedly reported that a functional and active ABA signal transduction 

machine is essential for a successful JA signal transduction (Anderson et al., 2004; 

Lorenzo & Solano, 2005; Niu, Figueroa, & Browse, 2011; Liu et al., 2014; Liu et al., 

2016). Even though to date the mechanism of the reciprocity between the two 

pathways is not completely clarified. 

GATA19 and GATA23 are respectively involved in flower development regulation 

and lateral root emergence (Zhao et al., 2004, DeRybel et al., 2010, Zhang et al., 

2013). It has been proposed that JA has a key role in flower development (Mandaokar 

et al., 2008, Peng et al., 2013, Jibran et al., 2017).  Even though has been reported 

that JA is a master regulator involved in root elongation control (Srivastava et al., 

2018), this hormone is not yet been linked to lateral root formation. 

Bioinformatics tools were used to identify putative homologous genes in wheat. 

Plant-Ensemble v40 BLAST (IWGSC consortium) has been used to isolate proteins 

that share similarity with the Arabidopsis proteins used as queries. The best BLAST 

search hit in wheat proteome was aligned with its putative Arabidopsis homologous 

protein sequence using ClustalOmega (Siever et al., 2011). 

It needs to be remembered that all the BLAST algorithms perform only local 

alignments, therefore it is fundamental to understand that the score they calculate is 

locally based.  

The effect is that sometimes sequences that share maybe only the conserved domains 

that define them could display a really high score, even if only a small part of the 

sequences is actually matching (Siever et al., 2011). 

Due to the above-mentioned fact is important to take into account that the only way to 

define homology in our case is by performing further experiments to validate 

functional orthology. These experiments could be: direct interaction assays between 

the transcription factor and TaWRKY10 promoter. This could be done as direct Y1H, 

prior to cloning the chosen transcription factor. Another possibility could be to 

perform an Electro Mobility Shift Assay (EMSA) (Hellman and Fried, 2009). 

Moreover the best method to ascertain if a certain transcription factor activity can 

perturbate TaWRKY10 transcript level (or one of the other putative targets) is to 

generate VIGS lines of the chosen target, and compare TaWRKY10 transcription level 

with their own controls. 
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TaEDF3 was chosen for further study due to its higher BLAST search scores. 

Analyzing its expression upon Septoria infection we have been able to detect a 

specific expression pattern in both infected and non-infected conditions. Interestingly 

the expression is constantly upregulated in the Septoria infected samples. The fact that 

we have been able to detect differences in TaEDF3 expression during Septoria 

infection is an evidence of TaEDF3 involvement in necrotrophic pathogen response. 

TaEDF3 contains the repressor motif  RLFGV (Ikeda and Ohme-Takagi, 2009), 

therefore we can speculate that its role is to repress TaWRKY10 expression, in order to 

boost JA signalling. It has been reported that AtEDF3 is activated by the presence of 

ethylene (Chen et al., 2015), we moreover speculate that, in wheat, TaEDF3 

activation in infected condition could play a key role in fine tuning the interactions 

between JA and ethylene pathway, as those two pathways are intimately 

interconnected and act synergistically in both response to necrotrophic pathogens and 

response to developmental cues (Lorenzo et al., 2002; Zhou et al., 2005; Wunsche et 

al., 2011; Lahlali et al., 2014). 
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3.15 Figures chapter 3. 
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Figure 3.7 
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   94	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 
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Figure 3.13 
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3.16 Figures Legend chapter 3. 
	
  

	
  

Fig 3.1 cis element analysis of the TaWRKY10 promoter region. 

A 2kb fragment of the region upstream of the START codon of TaWRKY10 was 

submitted to the free online available software PLACE (Plant cis-acting regulatory 

DNA elements by Higo et al., 1999). The TFs binding site was quantified and plotted. 

The most represented binding sites are those corresponding to WRKY, MYB, DOF, 

ERF and GATA TFs binding sites.  

 

 

 

Fig 3.2 Mating control on double drop-out media. 

As described by Castrillo et al., 2011 the mating between preys and the bait has been 

carried out in liquid YPAD rich media, and then plated on synthetically defined 

AGAR medium. As the preys carry a –TRP and the bait –LEU auxotrophic markers, 

the cultures was plated on DOB-LEU-TRP, letting growth only on mated cultures. 

The figure shows that both in plate 11 and 15 all the clones have grown, proving the 

success of the mating procedure. 

 

 

 

Fig 3.3 10 prey clones are able to activate –HIS3 reporter gene. 

The positively mated clones was replica-plated on triple auxotrophic selection 

medium. TaWRKY10 promoter drives the expression of  -HIS3 gene, therefore the 

selection for interactions was carried out on triple drop-out media (DOB-LEU-TRP-

HIS). 10 positive interactions were isolated. 
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Fig 3.4 Negative controls. 

The positive preys from the RR library as well as the bait only has been plated on 

double drop-out (DOB-LEU-TRP) as well as triple drop-out (DOB-LEU-TRP-HIS). 

Those controls were carried out in order to rule out the possibilities of leaky 

expressions on any of the auxotrophic markers gene as well the possibility of 

contaminations. 

 

 

 

Table 3.1 Summary of positive interactors. 

Table provides the list of the 10 positive interactors, with gene ID, gene name and GO 

terms associated with it if available. Enlighted in green the 6 positives to 3-AT 

treatment. 

 

 

 

Fig 3.5 Six interactors are positive to 3-Amino-1,2,4-triazole (3-AT) screen. 

In this procedure is essential to re-plate the positive interactions on triple drop-out 

plates supplementit ed with increasing amount of 3-Amino-1,2,4-triazole. A liquid 

subculture of the 10 positive interactors has been made in triple drop-out, and then 

drop-inoculated on plates supplemented with increasing concentrations of 3-AT as 

shown in figure. After two days 6 colonies were still able to grow on the higher 

concentration of 3-AT, allowing us to conclude that those are the strongest interactors 

of our promoter target region. 

 

 

 

Table 3.2 Arabidopsis-wheat correspondences. 

Once the prey-bait has been validated, Arabidopsis sequences has been recovered 

from TAIR database and then blasted against wheat proteome. The table is reporting 

the best BLAST hits obtained via PLANT-ENSEMBL v40 release (IWGSC). 
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Figs 3.6-3.10 protein alignements wheat-arabidopsis sequences. 

The protein sequence alignement between the Arabidopsis positive interactor and the 

correspondant wheat best Plant Ensembl Blastv40 is shown. The alignement has been 

performed utilizing Clustal Omega (Sievers  et al., 2011). 

The score, E-value and %Identity shown correspond to the results obtained by 

blasting the Arabidopsis sequences against wheat proteome utilizing Plant-Ensemble 

Blast v40; the %Identity calc. represents the crude percentage calculated counting the 

amminoacids displaying a perfect match in the 2 sequences. 

3.6. The alignement between Arabidopsis C2H2-ZAT5 and its wheat correspondant 

display a score of 153, a  2.9E-12 E-value and a 81.3% of identity. The %Identity calc 

is 20.3%. 3.7. ABF1 alignement show as results 245, 2.5E-24 and 71.0% for score, E-

value and %Identity respectively. The calculated percentage correspond to 34.9%. 3.8. 

GATA23 analysis display the lowest score among the group analyzed: 193 score, 

1.5E-18 E-value and 55.7% of Identity and the calculated identity is 15.7%. 3.9. The 

output of the alignement of AtGATA19 against TaGATA19 harvests the subsequent 

results: score 220, E-value 2.7E-22 and %Identity 97.4, while calculated identity is of 

22.5%. 3.10. bHLH-CIB1 alignement display a score of 446, an E-value of 3.1E-51, a 

%identity of 80.9; the calculated percentage of identity is 33%. 3.11. The blast search 

against wheat proteome and the subsequent alignment between Arabidopsis and wheat 

EDF3 protein is the one that show the highest score. A score of 379 , E-value        

1.3E-43 and %Identity of  77.9. Also the calculated percentage of identity is the 

highest among the different putative interactors: 76%. 

 

 

 

Fig 3.12 TaEDF3 transcription is constantly upregulated during Septoria 

infection in cultivar Lili. 

TaEDF3 expression analysis has been carried out comparing non-infected and 

infected Lili leaves. A wavy pattern can be identified in non-infected controls tissues, 

suggesting a role in development and a negative feedback loop based regulation. 

If infected the plant tissue show an upregulation of TaEDF3 mRNA level, the rhythm 

in conserved, but is visible an increase of transcript of at least 2-fold, starting from 

day 8. Notably at 18 days post infection the infected and the control tissues display 
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the same amount of TaEDF3 transcript, but it increase again suddenly at 20 days post 

infection.  

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates.  

 

 

 

Fig 3.13 TaEDF3 mRNA level is higher during Septoria infection in cultivar 

Santiago. 

In order to establish if TaEDF3 plays a key role during Septoria defence in wheat 

cultivar Santiago, a qPCR transcript analysis has been carried out throughout a 22 

days infection time-course. The expression pattern remains similar to that of a non-

infected tissue, but with a slight but constant upregulation in all of it, a part on day 16 

post infection. Interestingly between day 18 and 20 in both infected and non infected 

samples the transcript level remain the same within the same sample, but in the 

infected tissue we detected a TaEDF3 expression 8 fold change higher compared to 

the control.  

Error bars, ±standard error (SE) of the mean of raw data for 3 biological replicates. 

 

 

 

Fig 3.14 Comparison of transcript levels of TaEDF3 and TaWRKY10 for both 

cultivars Lili and Santiago. 

In order to facilitate reading and data interpretation an extra figure has been created 

reporting together the expression patterns of TaEDF3 and TaWRKY10 for both 

cultivars Lili and Santiago. TaWRKY10 data has been collected from the previous 

chapter. 
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Discussion. 
 
 
World population is rapidly growing, consequently the food demand worldwide is 

dramatically increasing. The Food and Agriculture organization of the United Nations 

(FAO) estimates that 70% increase in food production is needed by 2050. Agriculture 

plays a key role in food production, therefore plant science plays a fundamental part 

in this major challenge. 

Triticum aestivum (bread wheat) is one of the major food sources in many parts of the 

world, providing approximately 20% of calories consumed by humans (Dvorak and 

Akhunov 2005). This aspect makes clear that it is fundamental to perform in depth 

investigations utilizing wheat as a model plant, in order to generate knowledge that 

could be rapidly translated to elite cultivar improvement. 

Zymoseptoria Tritici (also known as Mychosporella Graminicola, Septoria tritici or 

commonly known as Septoria) is the causal pathogen of Septoria Tritici Blotch 

(STB), one of the most threatening wheat foliar diseases across temperate regions, 

causing up to 40% yield loss if untreated with fungicide (Orton et al., 2011).  Due to 

its considerable genome plasticity Septoria is indeed a rapidly evolving pathogen 

(Siah et al., 2013). This trait enables the pathogen to quickly overcome the genetic 

resistance of elite wheat varieties (Kettles and Kanyuka 2016). Understanding the 

molecular mechanisms that underpin Septoria-wheat interaction will be crucial for 

generating new control strategies against STB.  

Plant hormones are essential regulators of growth and immunity (Shinegaga et al., 

2016). In particular, Jasmonic acid (JA) plays a central role during defence against 
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necrotrophic pathogens (Okada et al., 2015). JA-dependent defence has been widely 

studied in the model system Arabidopsis thaliana challenged with the necrotrophic 

pathogen Botrytis cinerea (Zhang et al., 2017, Wang et al., 2017, Smirnova et al., 

2017) and in Oryza sativa against Magnaportha oryzae (reviewed by Nasir et al., 

2017). It is widely accepted that growth regulation is intimately and inversely linked 

to plant immunity (Bergelson and Purrington, 1996). 

JA in recent years is emerging as a critical agent acting to modulate the growth–

defence trade-offs (Bodenhause et al., 2007; Pauwels et al., 2008; Zhang et al., 2008). 

Therefore JA and its signalling pathway components are good targets to identify  

mechanisms  to improve resistance against pathogens without paying the plant fitness 

costs associated with defence activation. Unlike Arabidopsis or rice, the knowledge 

on JA pathway and JA-triggered events are not well studied in wheat.  

WRKYs transcription factor gene family is one of the largest and plant specific 

transcriptional regulators (Bakshi and Oelmuller, 2014). WRKYs are part of an 

intricate plant signaling web and regulate  multiple  pathways from stress responses to 

growth (Bakshi and Oelmuller, 2014). It has been established through multiple studies 

that WRKY Tfs are central regulators of innate plant immunity in plants (Rushton et 

al., 2010). 

Here we have been able to identify two members of the WRKY family in wheat and 

establish their role in immunity against Septoria. For one of them, namely 

TaWRKY10, we have been able to identify the hormonal pathway that is affected by 

its activity, along with 6 putative regulators of WRKY10 transcription. 

Initially we identified and mapped the WRKY gene family in the wheat genome. 

It is important to state that during this procedure the information available on the 

wheat genome and proteome was limited.  Genomic databases and search algorithms 

that are freely available use incomplete genome information. Therefore in order to 

obtain a complete set of WRKYs in wheat we had to utilize and compare different 

databases such as PLANTTFDB, NCBI GenBank, Plant-Ensemble (Jin JP et al., 

2013, Benson et al., 2005, Kinsella et al., 2011). Consequently we have been able to 

isolate a total of 135 amino acid sequences possessing a WRKY domain via BLAST 

search algorithm.  

Only 71 WRKY genes had complete DNA sequences. In the near future  a similar 

bioinformatic analysis will result in a much better and more complete genomic 
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information on the WRKY gene family. A new and complete assembly of wheat 

genome and proteome has just been released by IWGSC in August 2018, and all the 

information have been gathered together in Plant-Ensemble v40 website(Kersey et al., 

2018). This is going be the best genomic tool in the future to gain insight into wheat 

genomic and proteomic information.  

Literature and bioinformatics analysis enabled us to generate a shortlist of WRKYs 

likely to be involved in immune response. Experimentally 2 WRKY targets were 

identified  as major role players during Septoria infection of wheat, namely 

TaWRKY13 and TaWRKY10. 

TaWRKY13 shows a clearly perturbated transcription upon Septoria infection.  

However when TaWRKY13 VIGS-silenced lines were generated, the phenotype 

detected, even though statistically significant, was only marginally different compared 

to the controls. In particular the knock-down of TaWRKY13 lead to only a small 

increase in susceptibility, a phenotype that is different from reported effects on 

Septoria resistance of other genes knock-down (Lee et al., 2015, Millyard et al., 

2016). Thus we speculate the existence of an another gene/s orthologous to 

TaWRKY13, function which is compensating for the decrease in TaWRKY13 activity. 

This is definitely one of the scenarios where the new IGWSC gene assembly could be 

really helpful in order to boost better our understanding of WRKY gene family 

function. 

On the other hand TaWRKY10 shows a more prominent role during plant immunity. 

TaWRKY10 is a poieadae- specific WRKY, it is present only in wheat and barley.  

Barley is particularly susceptible to a fungal pathogen closely related to Septoria: 

Rhynchosporium commune. Rhyncosporium is the causal agent of barley leaf blotch. 

It is important to note that both Septoria and Rhyncosporium are hemibiotrophic 

fungus, with the same life cycle, and both are specific to wheat and barley 

respectively (Zhan et al., 2008, Walters et al., 2012). Therefore we speculate that 

TaWRKY10 and HvWRKY10 both evolved in order to influence Septoria and 

Rhyncosporium induced immune response in wheat. 

TaWRKY10 is downregulated prior to Septoria’s switch to necrotrophic growth. 

Silenced lines that knock down TaWRKY10 transcript level display an increased 

resistance to Septoria, reducing its sporulation capability therefore impairing the 

pathogen fitness, even though the necrosis in infected leaves gets anticipated 

compared to the controls. 
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Wheat grain filling is a critical step to obtaining high yields (Monpara, 2011). 

The majority of the photosynthetic potential needed in this phase is mainly produced 

by the flag leaf (Sanchez-Bragado et al., 2014, Borril et al., 2015, Carmo-Silva et al., 

2017).  In fact Septoria becomes a real threat to the yield when it reaches the flag leaf 

(Ponomarenko et al., 2011). Therefore limiting Septoria sporulation, even at the cost 

of diminishing the plant photosynthetic potential during the seedling stage via 

reducing TaWRKY10 expression, could be an interesting crop protection strategy to 

investigate further. Moreover TaWRKY10 silenced lines were phenotypically similar 

to Arabidopsis plants artificially supplemented with JA or genetically hypersensitive 

to JA (Chini et al., 207, Srivastava et al., 2018). 

Further investigations on the transcriptional profile of specific components of the JA 

signalling pathway on the silenced lines, will allow us to demonstrate that TaWRKY10 

exerts its activity via regulating TaCOI1 receptor transcription. In particular 

TaWRKY10 is a transcriptional repressor of TaCOI1 expression, limited TaCOI1 

expression leads to JA insensitivity (Gossens et al., 2016). TaWRKY10 silencing leads 

to a higher transcription of TaCOI1, which in turns leads to a higher activation of all 

JA pathway, therefore an enhanced resistance against necrotrophic pathogens (Yang 

et al., 2012, Chini et al., 2017). To date it is not demonstrated yet if TaWRKY10 

transcription factor acts directly on TaCOI1 promoter or if the interaction is indirect. 

In order to better understand TaWRKY10 and JA biological roles in wheat we used to 

two different wheat varieties in parallel for our experiments. The two varieties were 

chosen based on their variability in Septoria resistance and in TaWRKY10 

transcriptional profile. 

The variety Lili (low TaWRKY10 transcript levels) is more resistant to Septoria than 

the variety Santiago (high TaRWKY10 transcript levels), mirroring the publicly 

available field scoring data (AHDB recommended list for cereals and oilseed 

2017/18). Utilizing two different varieties with different traits, we have been able to 

demonstrate that their different degree of susceptibility to Septoria is correlated with 

their TaWRKY10 expression, which leads to a higher or lower JA pathway activation. 

To further uncover the pathway that regulates JA signalling upstream of TaWRKY10, 

Y1H screen was performed. Y1H enables us to determine which transcription factors 

specifically interact with a given promoter region of a gene (Kim et al., 2003). 

Taking advantage of a publicly available arrayed Arabidopsis transcription factors 

library (Castrillo et al., 2011), the screen was performed utilizing TaWRKY10 
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promoter region. Six putative interactors were isolated, all of them correlated with 

developmental cues connected to phytohormone signalling . Each one  of them seem 

to possess a putative homolog in wheat, but their activity needs to be further 

investigated in order to understand their specific roles in mediated any potential 

effects on Septoria defence. 

Among the identified interactors we have major player in developmental response as 

well as biotrophic stress response, all of them driven by different but correlated 

hormonal activity.  

At this stage we decided to further investigate only one of them, the one that showed 

the higher score after our homology analysis: TaEDF3. 

We examined the transcriptional profile of TaEDF3 during Septoria infection. 

TaEDF3 mRNA level is always higher in infected sample compared to non-infected 

controls. This is only a first step to validate its role, but this very promising result 

asserts the potency of Y1H screening as well the possibility to perform Y1H utilizing 

well established resources meant to be used in Arabidopsis and then generating 

parallelism with wheat. 

Taken all the results together we can affirm that the main objectives of this thesis 

work have been accomplished. 

We have been able to identify and map WRKYs in wheat genome, and investigate in 

depht the function of one of them, utilizing both new and well established molecular 

and phenotyping techniques.  

Moreover we established an inverse correlation between TaWRKY10 expression in 

control condition and Septoria resistance. This demonstrated intimate relationship can 

be exploited to assess quickly the performance of novel varieties prior the field 

experiments.  

In any case larger scale validating experiments need to be performed to further 

enhance the specificity and sensitivity of the proposed tool. 

Putative upstream targets regulating TaWRKY10 expression have been identified, but 

further studies are required. 

To date in depht studies that investigate the sensitivity of different varieties to 

phytohormones are lacking. 

With this work we have been able to establish a precise correlation between hormone 

sensitivity and immunity in wheat. 
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We are confident that innovative breeding programs that target both JA production 

and perception can improve the elite varieties output both in terms of pathogen 

resistance and yield.  

Subsequently we present a model resuming this work. 
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Experimental procedures 
 

 

Plant materials and growth conditions  

Nicotiana benthamiana plants were grown in environmentally controlled cabinets at 

24°C at long day conditions (16 h : 8 h, light:dark cycles). Triticum aestivum cvs 

KWS Lili and KWS Santiago plants were grown in a temperature controlled room at 

24°C at long day conditions (16 h : 8 h, light : dark cycles).  

The samples for transcription analyses were collected at 8 hour into the 16 hours light 

cycle.  

 

 

 

Quantitative Real-time PCR (qRT-PCR)  

All quantitative real-time polymerase chain reactions (qRT-PCRs) were performed in 

a 10μl volume reaction containing Agilent SYBR Green PCR Master Mix (Qiagen) 

with (1 : 10 v/v) first-strand cDNA as template. The reactions were carried out in a 

ABI one step plus machine (Applied biosysthem). The endogenous control mRNA 

used for normalization were those encoding TaEF1 and Ta26S, the geometric mean of 

the Ct value of the two were used to normalize the samples. Three independent 
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biological repeats and three independent technical replicates were performed for each 

of the time points. Primers used are listed in Supplementary table1. 

 

 

Pathotests  

 

Zymoseptoria tritici isolate IPO323 was used for all pathology assays as described 

previously by Keon et al., 2007. Spores were grown on YPD  (yeast extract peptone 

dextrose plates) for 7 d at 18°C. For plant infection, spores were suspended in water 

containing 0.1% (v/v) Tween20 at a density of 7.5 x 106 spores ml-1. Wheat plants 

were inoculated with Septoria spores 15 days after VIGS silencing. Replicates of five 

leaves each were used to determine the de novo spore production within pycnidia 

after 28 days of infection. Spores counts was carried out using a light microscope and 

a haemocytometer after spores washing as previously described by Lee et al., 2014. 

Area Under the Desease Progression Curve has been obtained on the average leaf 

blotched area displayed by the leaves, and calculated using a AUDPC calculation R 

package.  

 

 

 

Sequence analysis 

To retrieve genes and protein sequences used in this study the public available 

databases GenBank, SwissProt, PLANTTFDB, NcbiBlast, Plant-Ensembl were used 

(Jin JP et al., 2013, Benson et al., 2005, Kinsella et al., 2011, Kersey et al., 2018). 

Domain sequences were aligned using ClustalOmega (Sievers et al., 2011).  
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Virus induced gene silencing (VIGS)  

Reverse genetics studies in Triticum aestivum were carried using the virus-induced 

gene silencing (VIGS) platform (Baulcombe, 1999). based on the Barley Stripe 

Mosaic Virus (BSMV) as previously described (Yuan et al., 2011). Two independent 

silencing fragments were designed for each gene, in order to minimize the off-target 

effect. Primers used to generate the BSMV construct are listed in Supplementary 

table1. At the moment of silencing wheat seedlings were 10 days old. 

 

 

 

Hormone treatments 

Wheat seeds were germinated on Murashige and Skoog medium (Duchefa) and grown 

for 3 days. After germination the seedling were moved individually into glass test 

tubes containing either MS or MS supplied with Jasmonic acid (Sigma) at the 

concentration of 10μM. Samples for transcriptional analysis and pictures to evaluate 

root elongation were taken daily. Three independent biological replicates have been 

performed. Root growth inhibition was calculated using the software ImageJ. 

Regarding the root growth evaluation, 25 plants each treatment for each genotype 

have been analyzed. 

 

 

 

Root growth measurement 

 

To evaluate the effect of TaWRKY10 silencing on root growth, wheat seeds were 

germinated on plates as previously described, and then moved to sand pots. The 

nutrients were supplied using ½ Hoagland. 7 weeks after germination the sand was 

removed by washing with tap water and pictures were taken and analyzed using 

ImageJ software. 
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Anthocyanin relative quantification. 

 

Anthocyanin extraction and quantification has been done collecting 3 gr of tissue each 

sample, then extraction and quantification has been done as previously described by 

Neff et al., 1998. Three biological replicates have been performed, with three 

technical replicates each. Anthocyanin extraction has been performed by incubating 

the samples overnight in 150 µL of methanol acidified with 1% HCl. After addition of 

100 µL of distilled water, anthocyanins and clorophilles were separated by adding 250 

µL of chloroform. 

Total anthocyanins were determined by measuring theA 530and A 657 of the aqueous 

phase using a spectrophotometer (Gene Quant 1300, GE). By subtracting 

the A 657 from the A 530, the relative amount of anthocyanin per sample was calculated. 

The experiment has been performed for 3 biological repeats, with 2 technical repeats 

for each biological replica. 

 

 

 

	
  
TaWRKY10 promoter cloning. 

 

TaWRKY10 regulatory region sequence was obtain by free online software JBrowse 

implemented by TGAC (reclover 2.1 assembly). A pair of primers was designed to 

amplify a region 2 kb upstream of the gene START codon (primers are listed in 

Primer table T1). The primers were designed with restriction sites of XmaI and XbaI  

respectively for forward and reverse primer, to clone the desired region upstream the 

HIS3 reporter gene. Genomic DNA extracted from Lili was used as template.  

Amplification has been carried out with Q5 proof-reading enzyme (NEB) as the 

manufacturer’s instructions. The resulting product, once tested via gel electrophoresis 

for correct size, was gel-purified via Zymo clean PCR recovery kit (Zymo). After a 

double digestion with the restriction enzymes (NEB), performed following 

manufacturer’s guidelines, the amlicon was ligated (via T4 DNA ligase, NEB) into 

pTUY1H vector, previously digested with the same restriction enzymes. The resultant 

construct, pTUY1H-pTaWRKY10, has been transformed in E. coli DH5α strain, and 
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plated onto LB supplemented with ampicillin for selection. Positive colonies were 

sequenced. 
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Saccharomyces cerevisiae transformation.  

 

A single sequencing-positive clone was used to transform S. cerevisiae Y187α, using 

the small scale LiAC method. The method is schematically described below, 

including the preparation of S. cerevisiae competent cells, as they need to be freshly 

prepared and transformed: 

1. Inoculate 1 ml of YPD or SD with several S. cerevisiae colonies, 2–3 mm in 

diameter.   

2. Vortex vigorously for 5 min to disperse any clumps.   

3. Transfer this into a flask containing 50 ml of YPD or the appropriate SD 

medium.   

4.Incubate at 30°C for 16–18 hr with shaking at 250 rpm to stationary phase 

(OD600>1.5).   

5.Transfer 30 ml of overnight culture to a flask containing 300 ml ofYPD. 

Check the OD600 of the diluted culture and, if necessary, add more of the 

overnight culture to bring the OD600 up to 0.2–0.3.   

6. Incubate at 30°C for 3 hr with shaking (230 rpm). At this point, the OD600 

should be 0.4–0.6. ��� 

7. Place cells in 50-ml tubes and centrifuge at 1,000 x g for 5 min at room 
temperature ���(20–21°C). ��� 

8. Discard the supernatantsa nd thoroughly resuspend the cell pellet in sterile 
TE. Pool the cells into one tube (final volume 25–50 ml). ��� 

9. Centrifuge at 1,000 x g for 5 min at room temperature. ��� 

10. Decant the supernatant. ��� 

11. Resuspend the cell pellet in 1.5 ml of freshly prepared, sterile 1XTE/1X 
LiAc. ��� 

12. Add 0.1 μg of plasmid DNA and 0.1 mg of carrier DNA to a fresh 1.5-ml 
tube and mix. ��� Add 0.1 ml of yeast competent cells to each tube and mix well 
by vortexing. ��� 

13. Add 0.6 ml of sterile PEG/LiAc solution to each tube and vortex at high 
speed for 10 sec to mix. ��� 
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14. Incubate at 30°C for 30 min with shaking at 200 rpm. ��� 

15. Add 70 μl of DMSO. Mix well by gentle inversion. ��� 

16. Heat shock for 15 min in a 42°C water bath. ��� 

17. Chill cells on ice for 1–2 min. ��� 

18. Centrifuge cells for 5 sec at 14,000 rpm at room temperature. Remove the 
supernatant. ��� 

19. Resuspend cells in 0.5 ml of sterile 1XTE buffer. ��� 

20. Plate 100 μl on each DOB agar plate that will select for the desired 
transformants (DOB- 

in our case). 

21. Incubate plates, up-side-down, at 28°C until colonies appear (, 2–4 days). ��� 

S. cerevisiae selecting plates preparation. 

The selective auxotrofic marker for pTUY1H plasmid is LEU for integration of the 

plasmid, the prey library carry a TRP marker and the bait marker associated with 

TaWRKY10 promoter is HIS3.  

The minimum defined yeast media used was DOB, obtained from MP Biomedicals, 

the reagents to prepare the media lacking the selected amminoacid/s were obtained as 

well from MP Biomedicals, and all the selective plates has been prepared as 

manufacturer’s instruction.  

The plates with their selection and objective are described below schematically. 

-TRP : RR library propagation. 

-LEU : S. cerevisiae transformants carrying to pTUY1H-pTaWRKY10. 

-LEU -TRP (2DO) used to asses the positive mating between prays and bait. 

-LEU -TRP -HIS (3DO) to screen positive interaction between the prey and the 

promoter analyzed. 
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RR library. 

 

The normalized array used in this work TFs library is supplied by NASC, deposited 

by Castrillo et al., 2011. 

The library is in the format of 96-wells plates, each well containing a different prey 

clone, maintained in Saccharomyces cerevisiae strain YM4271, auxotrofic marker 

associated is TRP. To propagate it a specially designed replicator stamp with 96 pins 

has been used, to replicate the glycerol plates provided by NASC. The replicator has 

been used throughout all the screen procedure, to make sure to always identify the 

clones associated with a certain coordinate in every single plate. 

The library has been replicated out from the glycerol stocks on agar supplemented 

DOB-TRP, growth at 28°C for 3 days and then utilized. 

 

 

 

 
Library screen. 

 
Library and bait clones were grown for three days on DOB-TRP and DOB-LEU (MP 

Biomedicals) plates from their corresponding frozen stocks. A 1 L flask containing 

200 ml of YPAD medium was inoculated with  bait cells and incubated overnight at 

28°C with shaking (200 rpm). In parallel, 100 ml of YPAD was aliquoted into 96-flat 

bottom well plates (Starlab) by using a multichannel pipette and a replicator was used 

to inoculate them with their corresponding library colonies. After overnight 

incubation with vigorous shaking (500 rpm) at 28°C (HiGro shaker; Genemachines), 

100 ml of the bait culture was added to each well of the 96-well plates with a 

multichannel pipette and mating was allowed 48 h by incubating at 28°C without 

shaking. Settled cells were resuspended by hitting the bottom of the wells with the 

pins of the replicator and used to inoculate another set of 96-flat bottom well plates 

containing 200 ml of diploid selection media (DOB-LEU-TRP). The replicator was 

able to transfer about 5 μl of liquid in each pin and each well was inoculated twice, 

always sterilizing by flaming with 70% ethanol between plates (3 minutes after the 

flaming was allowed to cool the replicator). After one day of growth at 28°C and 
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vigorous shaking, the cells were plated on two different plates: 2DO (mating control) 

and 3DO (promoter Tf interaction selection) each of them. 

The colonies showing a positive interaction (visible growth on both 2Do and 3DO) 

were spotted later on increasing concentration of 3-amino-1,2,4-triazole (3AT, 

Sigma), in order to rule out false positives due to leaky expression of the HIS3 gene. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
Primers table 

 

Gene Forward Reverse Purpose 
TaWRKY13 AAG GAA GTT TAA 

GGTCACTTACTTCAACCATC     

AAC CAC CAC CAC CGT 

GAAACTGGTGACCGTAAG 

BSMV:TaWRKY13_1 

TaWRKY13 AAG GAA GTT TAA 

CTTACGGTCACCAGTTTC 

AAC CAC CAC CAC 

CGTGAAAGTACTCGATGCATCTC 

BSMV:TaWRKY13_2 

TaWRKY13 TTC CTA CCC CAG CGA CCT G TTG TTT TGT CGC AGG GCA CTT C qPCR 

TaWRKY10 AAGGAAGTTTAA 

CCTACTGAACTGAGCTACTGATC 

AACCACCACCACCGT TCGTGTACA 

TGCATCCGTGA 

BSMV:TaWRKY10_1 

TaWRKY10 AAG GAA GTT TAAAGCTCGTCT 

GTGCAGTGCAC 

AACCACCACCACCGT   

TCACCGGCTTGGAAGTTGTA 

BSMV:TaWRKY10_2 

TaWRKY10 TTATGGCAGCTTCGCTGGGAC TACATGTTCATCGCCTCGCC qPCR 

Ta26S GGGTCAACCTATGGTGTA ACGAGAACTTGTATAGAGAGGGATTT qPCR 

TaEF1 ACCTGAAGAAG GTCGGCTACAA ATCTGGTCAAGCGCCTCAAG qPCR 

TaLOX1 TGTTGATAGACTGGTGCTGTG TGAGGATTAACGCTTAGGATCG qPCR 

TaAOS TCCCGAGAGCGCTGTTTAAA GACGATTGACGGCTGCTATGA qPCR 

TaCOI1 CATTGTGCGAGTGAACTGTGACA CGCGGAAACCAGACAAGCT qPCR 

TaMYC2 CCGGGGAAAACACCTAAAAT TGCTCCAGGCTCTCTTTCTC qPCR 

TaJAZ6 CCGTAGCACGGTCTTACCAT ATATGAGGCGAGCAACTTGG qPCR 

TaTAT1 GTGGCAGAGCACTTGTCG TTTATGATGACCATCGCAGTT G qPCR 

TaPDF1.1 ATG GCA TCC CCT CGT CGC AT GAAAGTTCTCGGTGCGGCA qPCR 

TaWRKY10 CCCCCCGGGGGGGTA CTA ATT 

ACT ACT CGC AAC 

TGCTCTAGAGCA AAG TGC ACT GCA 

CAG ACG A 

Promoter cloning 

TaEDF3 AGC TAG GCG GCG GTT TTT G GGA TAT GCT TCA GTT TTT GAC AAG qPCR 
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