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Abstract

In this thesis we study two fairly different aspects of gravity: vacuum decay

seeded by black holes and black hole thermodynamics. The first part of this work

is devoted to the study of black holes within the (higher dimensional) Randall-

Sundrum braneworld scenario and their effect on vacuum decay rates. We argue

that, in close parallel to the 4-dimensional case, the decay rate is given by the

difference in areas between the seeding and remnant black holes. We follow a brane

approach to study the effective equations on the brane and focus on the tidal solution

given by Dadhich et al. We solve numerically the equations of motion of a Higgs-

like scalar field and obtain its decay rate. We then compare it to the Hawking

evaporation rate and find that black holes of certain masses are likely to trigger

vacuum decay. Finally, we study decay in the absence of a black hole and determine

that, in close analogy to the 4-dimensional case, it is the presence of the black hole

that enhances vacuum decay rates.

The second part of this thesis discusses the thermodynamics of charged, rotating,

accelerating AdS black holes. We impose sensible physical restrictions to the black

hole metric and translate them into bounds of the black hole parameter space. We

discuss the implications of having an exothermic term in the definition of enthalpy.

We then focus on critical black holes, i.e. spacetimes in which at least one of the

sides of the black hole’s rotation axis has a conical deficit of 2π. Finally, we consider

the Penrose process for neutrally charged critical black holes and discuss about the

definition of efficiency in this process.
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Chapter 1

Introduction

At the beginning of the 20th century Max Planck, setting aside his suspicions about

Ludwig Boltzmann’s unpopular ideas (which theorised the energy states of physical

systems to be discrete), postulated in “an act of despair... ready to sacrifice any pre-

vious convictions about physics” that electromagnetic energy could only be emitted

in small packages or quanta. Although with some grief, Planck’s strong “belief in

the compelling force of logical reasoning from facts” [8] led him to seed one of the

greatest revolutions in science, giving birth to Quantum Mechanics (QM); a frame-

work in which a system is described by a mathematical object living in a Hilbert

space, known as the wave function (ψ), which bears all the information that can be

known about the system and whose evolution in time is generated by the hamilto-

nian operator H via a linear partial differential equation, known as the Schrödinger

equation.

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 .

Quantum mechanics superceeded its classical counterpart by reproducing its results

and providing an explanation to phenomena that classical theories could not unravel

(like the photoelectric effect and the ultraviolet catastrophe). Furthermore, this

theory proved to be far richer; it allowed new, highly non-intuitive phenomena.

One of the milestones of QM came in 1927, when Werner Heisenberg, using the

wave-like behaviour of partices, proposed the impossibility of measuring the position

and the momentum of a particle, thus introducing the uncertainty principle. This

principle would radically and forever change our understanding of nature, since



the impediment of measuring all the quantities of a system to an arbitrary degree

of precision invalidates determinism. Amongst other things, this principle implies

there are no system configurations with a probability of exactly zero (nor exactly

one). Tacitly, this meant that although classical theories do predict the most likely

configurations of a system, previously forbidden solutions might have negligible but

non-zero probability of happening. One of the most relevant and exciting examples

of these is the probability of a free particle encountering and penetrating an energy

barrier. This entirely quantum behaviour is known as tunnelling and it is the main

phenomenon underlying several important physical processes, like: nuclear fusion

in stars; cold emission of electrons (a phenomenon important in the design of solid-

state drives and flash memory devices); radioactive decay and false vacuum decay,

which will be studied in section 1.1.

By this moment, Einstein’s theory of special relativity [9], had already been

developed and from that moment on, it was clear that any fundamental theory had

to comply with it. It wasn’t until 1927 that Paul Dirac found a way to incorporate

relativity within the quantum mechanical framework [10] in a theory that described

the behaviour of the electron. As a byproduct he also predicted the existence of a

new (anti-) particle, now known as the positron [11].

Following Dirac’s success, attempts of a relativistic quantum mechanical theory

describing particles in general started to take place in physics. By making use of

field theory concepts, where space is demoted from being an operator in QM and

thus space and time stand on equal footing as labels of a quantum field, gave birth to

Quantum Field Theory (QFT). Without a doubt, one of the greatest achievements

of QFT has been the proper study of light and matter known as Quantum Electro-

Dynamics (QED), arguably the most successful theory in the history of science. Even

if multiplicity of particles renders general calculations in this theory rather hard, its

precision power when measuring quantities like the fine-structure constant α had

no precedent, making it (as Richard Feynman said himself) “the jewel of physics”.

Therefore, it was clear that any other fundamental forces should be approached

in a similar manner and during the second half of the 20th century, QFT would

also be used to explain the strong and weak forces, ultimately unifying them with

electromagnetism, establishing the Standard Model of particle physics, confirmed
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by many experiments at particle colliders.

However, there is another fundamental interaction between particles that up to

this date has been left out of the picture, one which governs the behaviour of large-

scale systems: the gravitational force. Despite its wide acceptance and its simple

principles, the special theory of relativity had a preferential state of motion and did

not account for gravity but after several efforts by Levi-Civita, Poincaré, Hilbert and

Nordström (amongst many others), in 1916 Einstein published ‘The Foundation of

the General Theory of Relativity’ [12], “probably the greatest scientific discovery

ever made”, as Dirac himself would later state. This beautiful approach to gravity,

based on Riemannian geometry, proposes spacetime as the fabric of the universe

and explains the relationship between the curvature of spacetime and matter. That

same year, Karl Schwarzchild discovered the first nontrivial solution to Einstein’s

equations [13] but it was only after the use of Eddington coordinates that David

Finkelstein [14] understood the singularity contained in the metric at its (now called)

Schwarzchild radius and provided its interpretation as a surface that can only be

traversed in one direction. Such a surface would later be known as the event horizon

which is the defining feature of black holes. Early tests of this theory include the

perihelion precession of Mercury and gravitational lensing, which showed GR could

predict and correctly explain phenomena that its Newtonian predecessor could not.

Furthermore, almost a century after general relativity was conceived, in 2015 grav-

itational waves coming from merging black holes were detected by the LIGO and

VIRGO collaborations [15], this test for GR in the very strong field limit techni-

cally had no deviations from theory. Moreover, earlier this year the Event Horizon

Telescope collaboration revealed the first image of a black hole [16].

Since classically, energy and matter can only fall into the black hole, for a long

time it was thought that the area of the event horizon could only ever increase.

Indeed, in 1971, Stephen Hawking’s upper bound on the amount of energy that can

be released through radiation after the collision of black holes led to the area theorem

[17]. This monotonically increasing behaviour of colliding black holes brought Jacob

Bekenstein to conjecture a proportionality between the area of the event horizon and

the entropy of the black hole [18, 19], and in 1973, Bardeen, Carter and Hawking

provided the four laws of black hole thermodynamics [20]. However, it wasn’t until



Hawking, studying QFT in a background curved spacetime showed that black holes

emit thermal radiation (rendering black holes not entirely black anymore) [21, 22],

that the analogy between black hole mechanics and classical thermodynamics was

complete.

This thesis is mainly devoted to the study of Higgs vacuum decay around black

holes in higher dimensions, an exciting idea combining QFT, GR and quantum

tunnelling. As it is expected when studying a topic that relates several ideas from

different fields that have grown so much individually, the key concepts and especially

the notation might render discussions on the topic rather unclear. Therefore, to

make the work presented in this thesis as clear and self contained as possible, we

will take the following approach: in section 1.1 we present a short review of a one

dimensional quantum mechanical system undergoing quantum tunnelling, which will

provide a way to calculate the probability rates of a configuration in which a particle

tunnels forth and back through an energy barrier, dubbed “the bounce”. Then, in

section 1.2, this idea will be applied in the context of QFT, where the symmetry we

will consider turns a bounce configuration into a “bubble” of true vacuum immersed

in a false vacuum configuration. Then, following the ideas of Coleman and Frank

De Lucia, in section 1.3 the effects of gravity on the nucleation rates of the bubble

will be taken into account.

In chapter 2 we proceed to review necessary concepts about geometry and we

briefly discuss the characteristics that make the Randall-Sundrum scenario such an

appealing higher dimensional model. This so-called braneworld scenario is one of

the pillars of chapter 3, where we show the work done in [1, 2], regarding Higgs

vacuum decay within the Randall-Sundrum model both around a black hole and

without it.

In chapter 4 we discuss recent work on the thermodynamics of critical black holes

[3] and the definition of efficiency for the Penrose process.

Finally, in the last chapter we make some remarks on the work presented in this

thesis.
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1.1 Vacuum decay in quantum mechanics

In Classical Mechanics, local minima of the potential of a particle are regarded as

stable states of the system, i.e. a particle sitting at a local minimum is considered

to remain at this position forever. However, the realm of QM renders this story far

more interesting, due to the so-called tunnelling effect [23, 24], commonly presented

as a semi-classical phenomenon which is often based on the WKB approach to solve

the Schrödinger equation for a small particle. The considered point-particle behaves

classically in vacuum but develops quantum behaviour when it encounters a (non-

infinite) energy barrier or “wall”: there is a non-zero probability for the particle to

traverse it, regardless of its energy. A different but equivalent approach to this well

known phenomenon comes from a more mathematical point of view, as the result of

a second order perturbations of the action, which provides corrections to the classical

path. As we will see, these perturbations dramatically change the description of the

particle.

We start by considering the path integral formulation of quantum mechanics

[23, 25–27], where the probability for a unit mass particle being in an initial position

qI and reaching a final position qF after a time T is given by

〈qF | e−(i/~)HT |qI〉 = N

∫
Dq eiS[q]/~, (1.1)

where N is a normalisation constant. The time evolution operator H = p̂2/2+V (q),

captures the behaviour of the system [23, 28, 29] and can be regarded as defining1

the action S[q]:

S[q] =

∫ T/2

−T/2
dt

[
1

2

(
dq

dt

)2

− V (q)

]
≡
∫ T/2

−T/2
dt L(q̇, q) . (1.2)

To study the ground state of this theory it is convenient to perform an analyt-

ical continuation of this action to imaginary time, given by a rotation of the time

coordinate in the complex plane (known as the Wick rotation) t = −iτ , will change

the sign of the time derivative and as a result will produce an overall factor of −i

1Since the Hamiltonian H and the Lagrangian L are related by a Legendre transformation, they
yield the same physical content [29].



to this action. Explicitly,

S = i

∫ τ ′

0

dτ

[
1

2

(
dq

dτ

)2

+ V (q)

]
= i

∫
dτ LE ≡ iSE . (1.3)

This equation defines the Euclidean action SE, which differs structurally from its

Lorentzian counterpart in that we have effectively “flipped” the sign of the potential

V cointained in the Euclidean Lagrangian LE with respect to the sign of the time

derivative.

In the path integral formulation of quantum mechanics, the probability of any

path considered in the Euclidean version of eq. (1.1) is weighted by the exponential

of (minus) its Euclidean action [28] and thus, according to the method of steepest

descent [25], the path minimising this action will dominate the behaviour of the

system, i.e. ∫
Dq e−SE [q]/~ ≈ e−SE [qcl]/~ , (1.4)

where qcl is the classical solution of δSE = 0. To find the field configuration φ that

minimises the variation of the Euclidean action we need to solve the Euler-Lagrange

equations of motion
d2q

dτ 2
− dV

dq
= 0 . (1.5)

Furthermore, if the Lagrangian does not depend explicitly on τ , one gets a constant

of motion

E =
1

2
q̇2 − V , (1.6)

where q̇ = dq/dτ . Again, notice how this expression only differs from the usual

definition of energy by a minus sign in V . This is helpful when attempting to

describe qualitatively the solutions to eq. (1.5).

To calculate the amplitude in eq. (1.1) we can define the measure in the Euclidean

version of the path integral using small deviations from the classical path qcl, i.e.

q(τ) = qcl(τ) +
∑
n

cnqn(τ) ≡ qcl + δq , (1.7)

where {qn} is a complete set of orthonormal functions that vanish at ±T/2:∫ T/2

−T/2
dτ qn(τ)qm(τ) = δmn. (1.8)
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The coefficients cn are constants and the measure becomes

Dq =
∏
n

Dcn√
2π~

,

where (2π~)(1/2) is only a normalisation factor. This means that we can write down

the Euclidean version of eq. (1.1) as

〈qF | e−HT/~ |qI〉 = N

∫ ∏
n

Dcn√
2π~

e−SE [q]/~ (1.9)

and make an approximation that might be regarded as a Taylor expansion around

the classical path:

SE[qcl + δq] ≈
∫ T/2

−T/2
L(qcl, q̇cl)dτ +

1

2

∫ T/2

−T/2

(
d2V

dq2
(qcl)δq − δq̈

)
δqdτ + . . . (1.10)

Choosing the functions qn to be eigenfuntions of the second variational derivative of

the action at qcl we have

− d2qn
dτ 2

+
d2V (qcl)

dq2
qn = λnqn , (1.11)

The first non-vanishing correction to the action of the classical path is

1

2

∫ T/2

−T/2

(
d2V (qcl)

dq2
δq − δq̈

)
δq dτ =

1

2

∑
n

λnc
2
n

and thus, the amplitude we are interested in reduces (to this order) to a product of

Gaussians:

〈qF | e−HT/~ |qI〉 = Ne−SE(qcl)/~
∫ ∏

n

Dcn√
2π~

exp

(
− 1

2~
∑
n

λnc
2
n

)
(1.12)

= Ne−SE(qcl)/~
∏
n

λ−1/2
n .

Therefore, with these choices for the functions qn, the calculation of the amplitude

becomes an eigenvalue problem2 which can be solved if the problem at hand is

simple, as we will shortly see.

2Since this is the eigenvalue of the differential equation eq. (1.11), in literature, it is customary
to write ∏

n

λ−1/2n = [det(−∂τ + V ′′)]
1/2

.



1.1.1 Simple Harmonic Oscillator

As is common practice in physics, we first illustrate our procedure with a related but

simpler problem. Consider the simple harmonic oscilator (SHO), whose potential is

simple enough to calculate the eigenvalue problem. We know that for a zero-energy

particle in the classical SHO, the only path one can take to start at qI = 0 and end

up in qF = 0 in a large time T is the trivial one. For the QM SHO however, we need

to find the ground state energy to make a similar statement. To do so, we define

ω2 = V ′′(0) and explicitly choose qn = sin(nπt/T ), we get

λn =
(nπ
T

)2

+ ω2.

Thus, substituting this in eq. (1.12), we obtain

N
∏
n

λ−1/2
n = N

∏
n

((nπ
T

)2

+ ω2

)−1/2

=

[
N
∏
n

(nπ
T

)−1
] ∏

n

(
1 +

(
ωT

nπ

)2
)−1/2

and since the term inside the square brackets is independent of ω, we choose N in

order to obtain the free particle case when ω = 0:

N
∏
n

λ−1/2
n

∣∣∣
w→0

=
1√

2π~T

Furthermore, the last term has a well-known limit3 and so,

N
∏
n

λ−1/2
n =

1√
2π~T

(
sinhωT

ωT

)−1/2

≈
( ω
π~

)1/2

e−ωT/2, (1.13)

where we have taken the first order approximation when T → ∞ in the last step,

to get the ground state.

As it has been pointed out already, for the classical simple harmonic oscillator

described by the squared potential shown in fig. 1.1, we only get the trivial solution

3To get this limit we may use ∏
n

(
1 +

α2

n2

)
=

sinhπα

πα
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Figure 1.1: In the SHO the only solution for a particle to start at
the bottom of the potential and remain there is the trivial one.

for the given initial conditions q(±T/2) = 0, i.e.

qcl(τ) = 0 ∀τ .

Hence, the action for this null solution is SE(qcl) = 0 and thus, for the QM SHO,

the ground state H = E0 is

〈0| e−E0T/~ |0〉 ∝ e−ωT/2,

which tells us the ground state energy of the SHO is E0 = ~ω/2, as expected c.f.

[23, 25, 28].

1.1.2 The bounce

After considering the SHO, we now focus on the more interesting case of a quantum

mechanical particle undergoing the tunnelling effect, given by solutions to eq. (1.5)

with a potential V (q) which has a local minimum, like the one sketched in fig. 1.2.

The classical path qcl with boundary conditions q(±T/2) = 0 is again the trivial

one, where the particle stays still at qcl(τ) = 0, ∀τ . This is tantamount to saying

that up to first order in the semi-classical limit of quantum mechanics, the theory

predicts that a particle lying in this false vacuum will behave like an isolated SHO.

In fact, at short times this is expected to be a good description of the behaviour of

the particle.

However, in quantum mechanics we are now able to consider the more interesting



case in which the particle, starting from q = 0 at −T/2, tunnels through the barrier4

and “touches” the “exit” point of the barrier q∗ at time T = 0 only to come back

to q = 0 at time T/2. This path in configuration space is known as the bounce

and as we shall see, it dominates the behaviour of the system at large times, i.e. its

probability becomes 1 as T → ∞. In more general settings, this classical solution

to the Euclidean equations of motion is known as an instanton5.

Figure 1.2: Potential energy as a function of position for a quantum
mechanical particle in a barrier. Notice that we have plotted −V ,
which has a false vacuum at q = 0 and an “exit” point q∗ s.t.
V (q∗) = 0.

From eq. (1.6), we know that the classical solutions have conservation of energy,

which we can always set to E = 0 and thus, dq/dτ =
√

2V . Substituting this in the

first term of the RHS of eq. (1.10), we get the action for the bounce B to be

B =

∫ q∗

0

dq
√

2V (q) . (1.14)

Moreover, we are interested in considering a single solution with n well separated

bounces, which we might treat as n different single bounces. The action of this

composite bounce would then be SE = nB.

We now look into the determinant problem of the bounce solution. Defining K

4It is important to remark that the particle does not go over the barrier classically, due to
fluctuations in energy, which is a different phenomenon. In tunnelling, the particle traverses the
barrier due to quantum fluctuations at exactly zero energy, materialising on the other side of the
barrier.

5The name instanton was coined by ‘t Hooft. It seems that the name comes from its similitudes
with solitons but since these these are (Euclidean) time structures, the prefix instant− was used.
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as the correction coming from one of these bounces to the SHO, we have

N
∏
m

λ−1/2
m =

( ω
π~

)1/2

e−ωT/2Kn . (1.15)

In addition, we must integrate over the location of the centre of these n indistin-

guishable bounces, which gives a contribution of roughly∫ T/2

−T/2
dτ1

∫ T/2

−T/2
dτ2 . . .

∫ T/2

−T/2
dτn =

T n

n!
. (1.16)

Therefore, considering the amplitude eq. (1.12) of all the possible solutions for n,

we get

〈0| e−HT/~ |0〉 =
( ω
π~

)1/2

e−ωT/2
∞∑
n=0

(
e−B/~TK

)n
n!

=
( ω
π~

)1/2

exp
(
−ωT/2 +Ke−B/~T

)
,

(1.17)

which allows us to read off6 the ground state energy:

E0 =
~ω
2
− ~Ke−B/~. (1.18)

This is an expected result: the correction to the energy of the SHO is proportional

to the barrier-penetration factor e−B/~.

To analyse the eigenvalue equation eq. (1.11) first consider a differentiation of

the Euler-Lagrange equation eq. (1.5) with respect to τ :(
dqcl
dτ
− V ′′(qcl)

)
q̇cl = 0 ,

which implies that q̇cl is a zero mode of the differential equation eq. (1.11) and the

normalisation condition eq. (1.8) tells us that

q1 = B−1/2 q̇cl , (1.19)

which corresponds to a time translation of qcl. Since q1 is proportional to the velocity,

this mode associated with the zero eigenvalue λ1 = 0 has a node when it reaches q∗

(at τ = 0). Thus, we have two remarks:

• Having a zero eigenvalue would give a disastrous infinite when integrating over

6The exponential on the right hand side of eq. (1.17) should be proportional to e−E0T/~.



its corresponding expansion coefficient c1 in eq. (1.12). Nonetheless, we have

fortituously already calculated this integration when we integrated over the

location of the center of the instanton in eq. (1.16). From the result we have

for q1 in eq. (1.19) and the definition for c1 eq. (1.7) we know that

dq

dτ1

=
dqcl
dτ

and
dq

dc1

= q1 ,

so we have

(2π~)−1/2dc1 = (B/2π~)−1/2dτ1 .

Hence, when evaluating the determinant, we should not include the zero eigen-

value, instead we should include in K a factor of (B/2π~)1/2. Thus, comparing

with the one-instanton case with the simple harmonic oscillator, we get

K =

(
B

2π~

)1/2
N
∏

m λ
−1/2
m SHO

N
∏

m 6=1 λ
−1/2
m

. (1.20)

• In quantum mechanics one always expects there to be a nodeless eigenfunction.

Therefore, since q1 has a node, we expect a negative eigenvalue λ0 correspond-

ing to a nodeless eigenfunction and a lower (negative) energy. That is to say,

the bounce is actually not a minimum of the action, but a saddle point7. More-

over, the existance of a negative mode is precisely what makes eq. (1.12) the

amplitude of a quantum particle undergoing a decay8, as it implies the exis-

tance of an imaginary part of the energy. Specifically, the decay probability

per unit time of the unstable state is given by

Γ = −2 ImE0/~ = 2e−B/~ImK , (1.21)

where we have made use of eq. (1.18). Nonetheless, we should point out that

the energy of an unstable state is not an eigenvalue of H and that the only way

to define the eigenstate corresponding to λ0 is through analytic continuation

(for more details see [31, 32]), which lets us extract the imaginary part of K

7 A saddle point can be recognised precisely by looking at the eigenvalues of the second derivative
operator. If all its eigenvalues are positive, we have a minimum, when all the eigenvalues are
negative, we have a maximum and when there is a mix, we have found a saddle point.

8Bounce configurations admit one and only one negative eigenvalue [30]. This means that
solutions with more than one negative eigenvalue will not be part of our study.
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(which differs from K only by a factor of a half):

ImK =
1

2

(
B

2π~

)1/2
N
∏

m λ
−1/2
m SHO

N
∏

m 6=0,1 λ
−1/2
m

. (1.22)

This decay rate9 is therefore given by

Γ =

(
B

2π~

)1/2

e−B/~
∣∣∣∣det′[−∂τ + V ′′(qcl)]

det(−∂τ + ω2)

∣∣∣∣−1/2

× [1 +O(~)] , (1.23)

where det′ is the standard, shorthand notation for taking only the positive, greater

than zero eigenvalues [32–34].

This concludes the analysis of decay of a quantum mechanical particle undergoing

tunnelling.

1.2 Vacuum decay in QFT

There are but a few conceptual and notational differences between the path integral

formulation of QM given by eq. (1.1) and that of Quantum Field Theory (QFT) [25].

In particular, we are now interested in the probability of having a system described

by the field φ, evolving from an initial state |φI〉 to a final state |φF 〉 in a time t,

given by

〈φF | e−iHt/~ |φI〉 =

∫
Dφ e

i
~S[φ(x)] , (1.24)

where the Hamiltonian operator is now defined as H = π̂2/2m + V (φ). In field

theory, the action is no longer a function but a functional of the field S[φ(x)].

Moreover, in flat spacetime there is a universal concept of a ground state |0〉 for

inertial observers [35–37] and if the system starts and ends in said vacuum i.e.

|φI〉 = |0〉 = |φF 〉 then eq. (1.24) is usually denoted by Z.

In this section, we will study the action of a scalar field φ with a potential

V (φ) on an n−dimensional flat spacetime using the mostly plus metric signature

(−,+, . . . ,+). Such an action can be written (see [38, 39]) in terms of the Lagrangian

9As a reminder, the mean lifetime of the state is equal to ~/Γ.



density L as

S[φ(x′)] =

∫ t′

0

dt

∫
d(n−1)x

√
−η L[φ, ∂φ]

=

∫ t′

0

dt

∫
d(n−1)x

[
1

2
(∂tφ)2 − 1

2
(∇φ)2 − V (φ)

]
, (1.25)

where η is the determinant of the Minkowski metric and underlined symbols repre-

sent purely spatial entities. Following the ideas presented in section 1.1, analytically

continuing to imaginary time t = −iτ will simultaneously change the sign of the

time derivative and produce an overall factor of −i in this action. The analogue of

eq. (1.3) is now

SE ≡ −iS,

with SE =

∫
dnxLE =

∫ τ ′

0

dτ

∫
d(n−1)x

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (1.26)

where we have made use of Einstein’s summation convention over greek indices

µ ∈ {0, . . . , n− 1}. In addition to what we have already studied in section 1.1, where

the effect of this analytical continuation effectively “flipped” the sign of the potential

in the Euclidean Lagrangian LE with respect to the sign of the time derivative; in

field theory, the most notable effect of the so-called Wick rotation is a change in the

metric signature, which may be regarded as a Euclideanization of the space-time10.

Under these changes, we now have a formulation of the action that pairs well with

the overall spirit of general relativity, in which the roles of space and time play

indistinguishable roles, in principle [39]. The partition function Z now reads

Z =

∫
Dφ e−SE [φ]/~. (1.27)

This means that the probability of any path considered in eq. (1.24) is weighted

by the exponential of (minus) its Euclidean action. Hence, the method of steepest

descent dictates that the path minimising this action will dominate the behaviour

of the system, i.e. ∫
Dφ e−SE [φ(x)] ≈ e−SE [φcl] , (1.28)

10This process is commonly known as Euclideanization because we have effectively gone from a
Lorentzian metric (with a unique time coordinate) to a Euclidean (purely spatial) one.
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where φcl is the solution of δSE = 0. The Euler-Lagrange equations of motion for a

scalar field described by eq. (1.27) are

∂µ∂µφ−
∂V

∂φ
= 0 . (1.29)

These equations of motion are essentially identical to eq. (1.5), which were obtained

from a Lagrangian undergoing barrier penetration of a metastable unit mass quan-

tum particle.

Vacuum decay in QFT is the result of considering a similar setting: a system

described by a potential V with a local extremum at φFV , and an absolute extremum

configuration at φTV as shown in fig. 1.3. Similar to what happened in section 1.1

when considering a classical particle, a classical field theory described by a potential

like this predicts that a field with zero energy, starting at rest at φFV would stay

inert in such state. Nevertheless, after section 1.1 we now know that quantum

effects might drastically change the behaviour of the system at large times. In fact,

in close parallel with section 1.1.2, the second order variational derivative of the

action introduces quantum corrections which describe a decay for the field, due to

the existance of a single negative eigenvalue11. Consequently, the system does not

stay still forever in the local minimum. On the contrary, this local minimum also

known as false vacuum (FV), decays12 to an equivalent energy state and then

evolves classically towards the absolute minimum, which is the truly stable state,

also known as the true vacuum (TV). The behaviour of such a decay is dominated

by the difference in actions between the bounce and the classical solution to the

equations of motion [41], where the field stays in the local minimum φFV everywhere.

In the flat spacetime case, this difference is given by

B = SE(φ)− SE(φFV ) . (1.30)

Vacuum decay has many interesting and well studied properties [31, 32, 42, 43],

11In an n-dimensional QFT it is much more involved to find a solution for the negative eigenvalue
problem analogous to eq. (1.11). However, the study of this topic is well beyond the scope of our
work and since it has been subject of many studies, we suggest the reader to consider the discussions
in [30, 32, 33, 40]

12There is an approach to possible changes of vacua, in which thermal fluctuations provide
enough energy to pass the top of the potential barrier classically.



which allow a wide variety of phenomena and always bring new, interesting physics

[44–54]

Hence, it is compelling to consider topologically stable solutions to eq. (1.29) that

take us from the false vacuum configuration φFV , in a certain region of spacetime,

to the true vacuum configuration φTV in a different region of spacetime. These

solutions are known as instantons.

Figure 1.3: A quantum field with energy E = 0 described by this
potential V will transition from the false vacuum to the true vacuum
state by tunnelling from φFV to φc and then evolving classically
towards φTV .

Based on the work of Kobzarev et al. [55], Sidney Coleman studied vacuum

decay for a field φ in a 4−dimensional Minkowski spacetime, invariant under 4-

dimensional Euclidean rotations and presented his conclusions on his 1977 seminal

papers [32, 41]13. The O(4) symmetry he considered reduces in great deal the

equations of motion for the field given in eq. (1.29) and it has been shown [58]

that even when there might be other less symmetric configurations, the spherically

symmetric is the most probable one. The dynamics of φ are given by its equation

of motion eq. (1.29) and the following boundary conditions:

lim
τ→−∞

φ(τ, x) = φFV ,

∂φ

∂τ
(0, x) = 0 . (1.31)

Since the equations of motion are invariant under a time reversal change, one must

13Even if the work of Coleman was preceeded by Stone’s [56] and Frampton’s [57], Coleman
provided the first complete Lorentz-invariant description of vacuum decay.
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have

lim
τ→+∞

φ(τ, x) = φFV .

Furthermore, making the sensible demand of having an Euclidean action eq. (1.26)

that is finite, we get a boundary condition at large spatial distances,

lim
|x|→∞

φ(τ, x) = φFV .

To sum up, we are interested in a topologically stable, non trivial solution of

eq. (1.29), that starts at φ = φFV , then changes to φ = φTV at some point in

spacetime and then comes back to φFV at large distances in spacetime. From what

we have seen in section 1.1, it is clear why Coleman called this configuration the

“bounce”. However, this name was inspired mainly on the analysis a quantum

particle in 1+1 dimensions and thus, since we are considering an O(4) symmetric

field, it seems more appropriate to call it a bubble. In this context, the boundary

conditions tell us that a bubble appearing at some point will not affect points that

lie far away, where the spacetime will remain in the FV.

We will denote the probability of materialization of a bubble by Γ and although

we have not mentioned it yet, one can realize that any translation of this bubble

is also a solution with the same value for its Euclidean action. Hence, we need

to integrate over the group of spatial translations to get the total probability of

nucleation, which suggests that in our analysis we should actually focus on the

probability density Γ/V .

Using the O(4) rotational invariance, we can define a Euclidean distance by

ρ =
√
gµνxµxν =

√
τ 2 + |x|2 , (1.32)

which will greatly simplify our analysis, since now φ is only a function of ρ. The

equations of motion eq. (1.29) in an n−dimensional flat Euclidean space are

d2φ

dρ2
+
n− 1

ρ

dφ

dρ
=
∂V

∂φ
(1.33)

and the boundary conditions can now be summarised by

lim
ρ→∞

φ(ρ) = φFV ,
dφ

dρ

∣∣∣∣
ρ=0

= 0 . (1.34)



Forgetting for a minute where they come from, we can reinterpret eq. (1.33) from

a classical mechanical point of view and understand this equation of motion as an

equation describing a particle at position φ and time ρ in a damping medium. In

this setting, we would be describing a particle moving in a potential −V , experi-

encing some sort of friction coming from the second term on the LHS of eq. (1.33),

with a coefficient inversely proportional to the “time” ρ. Abusing the language of

the analogy, the particle must be released at rest (as demanded by our boundary

condition eq. (1.34)) at ρ = 0 and one can show that, by choosing carefully the

initial position φ0 = φ|ρ=0 we can arrive to φFV at infinite time [31, 41].

Figure 1.4: Potential energy for the mechanical analogy to
eq. (1.33). Here φc is a zero of the potential −V and thus de-
termines an initial position that guarantees undershoot.

In this work we will not focus on the proofs of this so-called shooting method

and it should be sufficient to give a heuristic argument to show how this is possible.

From fig. 1.4 one can notice that if we release the particle from rest at a position

0 > φ0 > φc, we will “undershoot” the system and never reach φFV , beacuse the

damping factor in eq. (1.33) will only ever oppose movement. On the other hand,

by linearising eq. (1.33) Coleman proved that a starting value sufficiently close to

φTV one would be able to wait a long time until the friction is negligible and then,

the initial configuration would then overwhelm any damping and we would “over-

shoot” the system at time infinity, throwing us off the cliff to the right of φFV in

fig. 1.4. Consequently, we can induce that, by continuity, there must be a starting

configuration φ0 for which we precisely arrive to φFV when ρ→∞.

In the following section we will look at an exact solution to this problem by

making some assumptions on the region where the vacuum transitions.
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1.2.1 The thin-wall limit

To compute the action in closed form, let us consider a small difference in the

potential function between the true and false vacua, encoded by

ε = V (φFV )− V (φTV ) .

If ε is really small (in comparison to the height of the barrier), we can write V in

terms of a symmetric function in φ, V0 (that vanishes at both φFV and φTV ) and

corrections of order ε breaking the symmetry of V (φ):

V (φ) = V0(φ) +O(ε) . (1.35)

We can prevent a big loss of energy (from the damping factor) by choosing φ0

to be very close to φTV so that it stays close until a very large “time” ρ = R. Since

the damping term in eq. (1.33) is proportional to ρ−1, to a first order approximation

it is negligible at R. That is to say the particle starting at rest waits for a long

time, moves quickly14 through the valley of fig. 1.4 and finally slowly comes to rest

at φFV as ρ→∞. In Euclidean spacetime, this is interpreted as a bubble of radius

R separating the false vacuum of φ lying outside from the true vacuum inside it

as depicted in fig. 1.5. Furthermore, considering a small ε implies we can neglect

Figure 1.5: A bubble of true vacuum with a wall at radius R. In
the thin-wall limit, the transition region or thickness of the wall is
small compared to the radius of the bubble.

the small difference in the potential, and hence the equation of motion eq. (1.33)

14The term quickly is used to compare the “time” in which the particle rests close to the false
(or true vacua) with the “time” in which the system interpolates between vacua.



simplifies to
d2φ

dρ2
=
∂V0

∂φ
, (1.36)

which can also be written as

0 =
d

dρ

[
1

2

(
dφ

dρ

)2

− V0

]
. (1.37)

Now, to better understand how one obtains the thin-wall limit, it is useful to

consider a concrete example. For instance, take the potential

V0 =
λ

8

(
φ2 − µ2

λ

)2

, (1.38)

considered by Coleman and de Lucia in [59] and displayed in fig. 1.6 for λ = 1, R = 15

and two slightly different values of µ. Using this potential, we can solve for φ by

using eq. (1.37), which gives

φ =
µ√
λ

tanh
[µ

2
(ρ−R)

]
.
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Figure 1.6: The symmetric potential V0 and the profile of φ plotted
to illustrate their differences when µ = 4 (continuous line) and
µ = 1 (dashed line). In both cases, λ = 1, R = 15. Notice that as
µ grows, the interval in which φ changes gets smaller for a given R.

The thin-wall limit is obtained when one considers R to be much larger than

the interval in which φ changes, which is clear by looking at the sharp change in φ

around R in fig. 1.6 for the higher value of µ. For the potential given in eq. (1.38)

R� 1/µ ensures we are considering the thin-wall limit and, as we will shortly see,

this limit is justified for small ε.

In general, to determine the position of the wall R we need to compute the
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difference in action B defined in eq. (1.30)

B = Boutside +Binside +Bwall (1.39)

= 0− 1

2
π2R4ε+ 2π2R3S1 ,

where S1 = 2
∫
dρ[V0(φ)−V0(φFV )] and since we are studying vacuum decay, we are

only interested in the case in which S1 6= 0. This equation can be interpreted as the

gain of energy one would get from changing the inside of the bubble from the false

to the absolute minimum of the potential and the cost of creating a surface tension

separating the two vacua. The difference in action B has a minimum at a critical

radius Rc, obtained by demanding B to be stationary under variations of R,

Rc = 3S1/ε (1.40)

that separates bubbles that will grow after nucleation from bubbles that will collapse.

Note that R becomes large when ε becomes small, which justifies our thin-wall

approximation.

The approximate expression for the difference in action B for the example

eq. (1.38) is

B =
π2µ12

6ε3λ4
. (1.41)

It is worth noticing that since the difference in actions becomes very large in the

thin-wall limit (ε→ 0), the decay rate Γ = Ae−B/~ is exponentially small.

So far have used the Euclidean spacetime to provide the behaviour of the nu-

cleation rate of the bubble. However, this also sets the initial conditions for the

evolution after the materialization of the bubble at the time of nucleation t = 0 = τ

and thus, one can perform an inverse Wick rotation that takes us back to Minkowski

spacetime. The evolution of the bubble after nucleating, greatly depends on the ra-

dius of the bubble at the moment of its materialization, if the radius is smaller than

the critical value Rc, it collapses and leaves the configuration in its previous state

(in which everything was filled by the false vacuum). Nonetheless, if the radius of

the bubble is greater than Rc the bubble will trace the hyperboloid

−t2 + |x|2 = R2.



If R is small enough, the bubble grows almost instantly with almost light speed

soon after its nucleation [41]. Therefore, if a bubble was expanding towards us, we

wouldn’t even see it coming, quite literally.

Finally, it should be noted that we have studied the nucleation and growth of

the bubble in Minkowski space from the point of view of inertial (constant velocity)

observers. The considered O(4) symmetry translates into a symmetry under Lorentz

transformations after the inverse Wick rotation, i.e. O(3, 1), thus giving the same

results for any inertial observer.

1.3 Inclusion of gravity

Soon after his Annus Mirabilis papers in 1905, Albert Einstein started exploring

ways to include gravity in the framework he set for his beautiful and elegant Special

theory of Relativity (SR). Nevertheless, gravity has always been a one-of-a-kind

type of phenomenon and this proved to be far from being a simple task: Einstein’s

ideas and postulates changed drastically from year to year and the use of highly

geometrical tools to describe these concepts was practically uncharted territory,

even to leading physicists at the time. Finally, ten years later, in November of 1915,

Einstein presented what we know today as General Relativity (GR). This theory is a

robust and beautiful approach to the gravitational force that provides the equations

governing both the gravitational field and the motion of bodies under the influence

of this field, explaining the tight relationship between energy and spacetime, better

encoded in John A. Wheeler’s mantra [60]: “Spacetime tells matter how to move;

matter tells spacetime how to curve.”

Even though there are a few different approaches to a semi-classical treatment

of gravity, as Stephen Hawking pointed out [39], the path-integral approach seems

to be a natural choice. The Euclidean Einstein-Hilbert action15 describing general

relativity in an n−dimensional manifold M with metric g and boundary ∂M is

15After performing the usual Wick rotation t = −iτ .



1.3. Inclusion of gravity 25

usually taken to be

SE[φ, g] = − 1

16πGn

∫
M

(Rn − 2Λn)
√
g dnx+

∫
M
Lm
√
g dnx

+
1

8πGn

∫
∂M

K
√
h dn−1x ,

(1.42)

where K the denotes the extrinsic curvature of ∂MR (see section 2.1 for a formal

definition of the extrinsic curvature) necessary for bounded spacetimes and defined

with a spacelike normal vector nµ pointing into the bulk manifoldM; and in the flat

space-time case (g = η), the contribution from this term vanishes16. The induced

metric on the boundary is defined by hµν = gµν−nµnν , the n−dimensional Newton’s

constant is represented by Gn and the n-dimensional cosmological constant for a

maximally symmetric space with radius of curvature ` is given by

Λn = ± 1

`2

(n− 1)(n− 2)

2
. (1.43)

Furthermore, the matter Lagrangian for a real scalar field is given by

Lm =
1

2
gµν∂µφ ∂νφ+ V (φ) , (1.44)

which means the variation of the matter sector with respect to the metric, otherwise

known as the energy momentum tensor is

Tµν = ∂µφ ∂νφ − gµν

(
1

2
gαβ∂αφ ∂βφ+ V (φ)

)
. (1.45)

Again, notice that Euclideanization of spacetime, effectively flips the sign of the

potential with respect to the time derivative of the field φ.

It is important to notice that in the context of vacuum decay, when we consid-

ered a bubble without the presence of gravity in section 1.2, the potential in the

action eq. (1.26) did not have an absolute zero of energy density and thus, adding a

constant wouldn’t have changed physics at all. Nonetheless, the inclusion of gravity

drastically changes this fact. As one can see, adding a constant to the potential

in the matter lagrangian eq. (1.44) is tantamount to a shift in the cosmological

constant term in eq. (1.42). Thus, as Coleman pointed out: with the inclusion of

16For a more elaborated presentation of the contribution of this term, follow [39, 61] thoroughly.



gravity, “once the vacuum decays, gravitational theory changes; the cosmological

constant inside the bubble is different from the one outside the bubble” (see [59]).

Despite thinking that inclusion of gravity might pose a rather hard task, Sidney

Coleman and Frank de Luccia (CdL) deemed reasonable to consider that gravity

does not break the symmetries of the purely scalar case17 and so they studied an

O(4) symmetric bounce [59].

The most general Euclidean metric with rotational invariance in 4 dimensions

can be written down as

ds2 = dξ2 + ρ2(ξ) dΩ2
III , (1.46)

where dΩ2
III is the distance element of a unit 3-sphere and ρ is the radius of curvature

that depends on the radial distance ξ. The equation of motion coming from the

variation of the action eq. (1.42) with respect to the field φ is similar to eq. (1.29):

φ′′ +
3

ρ
ρ′φ′ =

∂V

∂φ
, (1.47)

where primes denote d/dξ. As expected, the O(4) symmetry has reduced the equa-

tion to a single differential equation of only one variable.

Furthermore, the only relevant Einstein equation, i.e. the equations of motion

(EOM) coming from the variation of the action SE with respect to the metric g, is

ρ′2

ρ2
=

1

ρ2
+

8πG

3

(
1

2
φ′2 − V

)
, (1.48)

where G ≡ G4 is the 4-dimensional Newton’s constant. This means we can rewrite

the Euclidean action eq. (1.42) in terms of a single integral

SE = 2π2

∫
dξ

[
ρ3

(
1

2
φ′2 + V

)
+

3

8πG

(
ρ2ρ′′ + ρρ′2 − ρ

)]
. (1.49)

In the thin-wall approximation the inclusion of gravity is a simple modification

of what we saw in section 1.2.1. One only needs to bear in mind that in eq. (1.47)

the independent variable is now ξ and that the coefficient in the “friction” term is

given by ρ′/ρ although this term vanishes in the thin-wall limit anyway. Thus, the

17If there exists a non-invariant bounce with lower Euclidean action, it will dominate the be-
haviour of vacuum decay contradicting these calculations.
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solution to eq. (1.47) is

ξ − ξ =

∫ φ

(φFV +φTV )/2

dφ [2(V0 − V0(φFV ))]−1/2 , (1.50)

with ξ an integration constant marking the ξ coordinate at which we have the average

of φFV and φTV . In principle, one should be able to solve this equation for φ and

obtain a solution for ρ from eq. (1.48). Since the differential equation for ρ is of

first order, one needs an integration constant, which we choose to be the radius of

curvature of the bubble’s wall ρ = ρ(ξ).

To determine ρ we need to compute the difference in action (c.f. eq. (1.30))

B and demand this to be stationary. Using the position of the bubble’s wall ρ to

separate the difference in action into the regions B = Boutside + Bwall + Binside one

can see that

Boutside = 0 , (1.51)

Bwall = 2π2ρ3S1 ,

Binside =
12π2

(8πG)2

{
V (φTV )−1

[(
1− 8πG

3
ρ2V (φTV )

)3/2

− 1

]

−V (φFV )−1

[(
1− 8πG

3
ρ2V (φFV )

)3/2

− 1

]}
,

with a definition of S1 similar to what we already had in Minkowski spacetime:

S1 = 2

∫
dξ[V0 − V0(φFV )]

on the second line. It can be verified that Binside reduces to what we had for the

inside region in eq. (1.39) in the weak gravity limit in which G → 0. Coleman and

de Luccia considered our current cosmological constant to be zero and examined the

following possible scenarios:

• We are living in a post-apocalyptic era, in which, we are living in the true

vacuum and thus, we experience the aftermath of vacuum decay. For the

potential function this sets the conditions V (φFV ) = ε and V (φTV ) = 0 and

in this scenario one obtains

ρ =
ρ0

1 + (ρ0/2Λ)2
and B =

B0

[1 + (ρ0/2Λ)2]2
, (1.52)



where ρ0 = 3S1/ε is the radius of the bubble in the absence of gravity, the

difference in energies is related to the difference in cosmological constants by

Λ−2 = 8πGε/3 and B0 is the decay coefficient in the absence of gravity.

• We are currently living in the false vacuum and are doomed to decay into a

negative energy density. In this case one considers V (φFV ) = 0 and V (φTV ) =

−ε. In these circumstances, one obtains

ρ =
ρ0

1− (ρ0/2Λ)2
and B =

B0

[1− (ρ0/2Λ)2]2
, (1.53)

These results are obtained in the thin-wall approximation, which will be valid

if “both ρ and Λ are large compared to the characteristic range of variation of φ ”

[59].

In the former case, the one in which we are living in a post-apocalyptic era,

the inclusion of gravity makes the materialization of the bubble more likely, as it

diminishes the action difference B and makes the radius of the nucleated bubble ρ

smaller than ρ0. This is interpreted as the nucleation of a flat spacetime bubble,

surrounded by de-Sitter spacetime (dS) In the latter case however, it is the exact

opposite as B increases and the radius of the bubble ρ is larger. In fact, at ρ0 = 2Λ

the decay probability vanishes (because the probability of decay is proportional to

e−B). This is the case in which our Minkowski universe eventually and tragically gets

eaten from its insides by an expanding Anti-de-Sitter (AdS) bubble. This scenario is

deemed distressing to say the least, since a new vacuum would imply new constants

of nature, deeply modifying our universe, changing physics, chemistry and even

life itself! Therefore, as Coleman put it: “vacuum decay is the ultimate ecological

catastrophe”.



Chapter 2

Branes

In this thesis hypersurfaces and extrinsic curvatures play a fundamental role. There-

fore, a careful review of the concepts that will be frequently used in this work is of

great importance for its clarity and coherence.

A brane is simply defined as a codimension one submanifold of a given manifold,

i.e. a generalization of the idea we have for a surface or a membrane, hence its

name. In other words, it is a slice of a given manifold. As a simple example, one can

think of an infinite plane (say y = constant in Cartesian coordinates). Even when

this simple example is indeed too simplistic, it already is helpful to understand the

idea that we will focus on a submanifold, which can be given by a constraint of the

type y = y(x, z).

2.1 Hypersurfaces

We start by considering an n−dimensional manifold M, equipped with a metric

tensor g defining a line element ds2 = gabdx
adxb, where a = 1, . . . , n. Within this

manifold, a hypersurface Σ can be understood as a constraint, given by f(x) = const.

The directional derivative of a function f along a tangent vector field T ∈ TpM

describes how a function changes as we move along said vector field and it is given

by

T (f) = T µ∂µf = 0 , (2.1)

where the last step comes from the fact that f is constant, that is, the vector field

is tangential to Σ ⊂M. Greek indices run from 1 to n− 1.



If we are not given a family of surfaces, we can’t really construct a normal vector

field on the whole manifold M. However we can define a 1-form on the surface by

n = nµ dx
µ ,

and demand that they be orthogonal to tangent vectors, i.e.

〈n(f), T (f)〉 = 〈nµdxµ, T ν∂ν〉 = T νnµ〈dxµ, ∂ν〉 = T νnµδ
µ
ν = T µnµ

!
= 0.

Now it is clear that a unit normal vector nµ of the hypersurface Σ described by

f = const is given by

nµ = ± ∂µf

|∂αf ∂αf |1/2
.

We define the norm of the normal vector to be

nµn
µ = k, (2.2)

with k = −1 for a space-like hypersurface with time-like normal vector and k = +1

for a time-like hypersurface with a space-like normal vector.

In general, we would like to make use of a special set of coordinates adapted to

our hypersurface Σ. To find out which one is convenient (c.f. [62]), we can take some

coordinates yµ living on the n−1−dimensional submanifold Σ and use the fact that

the surface has a unique unit normal vector na at each point. We can construct the

geodesic1 that goes through a point p in Σ and let z be the affine parameter that

moves us through such geodesic. We can do this same for every point in Σ and so,

when varying z we go from a hypersurface to a neighbouring one.

The coordinates {y1, . . . , yn, z} have associated basis vectors {∂1, . . . , ∂n, ∂z},

which can be written as

(∂z)
a = na,

(∂µ)a = Y a
(µ) .

(2.3)

The first line is clear, since ∂z is the extension along the geodesic defined by the

normal vector. So in these coordinates,

gzz = ds2(∂z, ∂z) = nana = k . (2.4)

1At least locally, for these geodesics could interesect away from Σ.
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From the construction of these coordinates, with nz normal to Σ, we have or-

thogonality with the z coordinate:

gµz = ds2(∂µ, ∂z) = Y a
(µ)na = 0,

which gives a metric that looks like

gab =

 γµν 0

0 k

 =

 gµν 0

0 k


where we have introduced γµν = gµν , i.e. the µν components of the metric are the

induced metric on Σ. This allows us to write the line element as

ds2 = k dz2 + γµν dx
µdxν , (2.5)

with γµν = ds2(∂µ, ∂ν) = gµν . The 2-form γµν can be regarded as the induced

metric on the brane. These are known as the Gaussian normal coordinates.

In these coordinates, we can come up with a tensor hab living in the manifold and

projecting any given vector (or tensor) to the hypersurface. To define it we need to

take the usual metric and remove the components normal to the hypersurface. Hence

it is known as the projection tensor or first fundamental form. This is achieved by

setting

hab ≡ gab − k nanb. (2.6)

By inspection, we can notice that since gzz = k, hab has the form

hab =

 γµν 0

0 0

 .

This tensor has obvious but important properties:

• As stated, it projects any vector Xa ∈ TpM to the hypersurface, i.e. its

product with a normal vector is nahab = 0.

• It is idempotent. Acting two times on something is the same as just taking

one: habh
b
c = hac .

• For vectors living on Σ, h acts purely as the induced metric γ.

If we are interested in the embedding of a hypersurface in a higher dimensional



space, we should ask ourselves how the projection tensor changes as we move Σ

along the normal vector na. This can be regarded as slicing the higher dimensional

manifold in terms of a family of hypersurfaces (slices defined by the constriction

z = const) and we can see how these surfaces deform as we evolve in values of z

along nA. The Lie derivative gives this rate of change of a manifold as we evolve

along the flow of a given a vector field (see [63]). So we define the extrinsic curvature

or second fundamental form Kab as

Kab =
1

2
£nhab. (2.7)

Although this is enlightening from a conceptual point of view, however this definition

is not very useful for computations. Nevertheless, one can see that

Kab = nc∇chab +∇an
chcb +∇bn

chac

= ∇(anb) − kn(aab) (2.8)

= hcah
d
b∇(cnd) ,

where we have defined aa ≡ nc∇cna and, as usual, parentheses in the subindices

mean symmetrization. Finally, notice that eq. (2.8) tells us that since Kab is pro-

jected in both its indices,

naKab = 0 .

2.2 Lower dimensional decomposition of General

Relativity

The covariant derivative of a tensor is a tensor itself and as a consequence, we can

project it to obtain a covariant derivative ∇̂a acting along the hypersurface2 :

∇̂aX
b
c = ha

′

a h
b
b′h

c′

c (∇a′X
b′

c′ ). (2.9)

For the remainder of this subsection, hatted quantities Â still live on the higher

2 This means we are projecting a tensor T bac = ∇aXb
c , i.e., T̂ bac, which should actually be

displayed as ∇̂aXb
c .
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dimensional manifold but are ‘restricted’ to the hypersurface.

To relate the Riemann tensor of the n−dimensional manifold M with that of a

lower (n− 1)−dimensional hypersurface embedded in it, we may take the definition

of the Riemann curvature tensor

Ra
bcdV

b = [∇c,∇d] V
a, (2.10)

where V is a vector living in Σ, and project it onto the hypersurface (see [64]). The

first part of the commutator is given by

∇̂c∇̂dV
a = ∇̂c(∇̂dV

a)

= hc
′

c h
d′

d h
a
a′ ∇c′

(
∇̂d′V

a′
)

= hc
′

c h
d′

d h
a
a′

[
hed′h

a′

f ∇c′∇eV
f +∇eV

f
(
hed′∇c′h

a′

f + ha
′

f ∇c′h
e
d′

)]
,

=
(
hc
′

c h
d′

d h
a
a′∇c′∇d′ + kKa

cKda′

)
V a′ ,

where we have used the fact that∇ch
a
b = −k(na∇cnb+nb∇cn

a) and that na∇aV
b = 0.

Hence,

R̂a
bcdV

b = hc
′

c h
d′

d h
a
a′ R

a′

ec′d′V
e + kKa

cKdbV
b − (c↔ d)

so the components of the Riemann tensor are related by

R̂a
bcd = haa′h

b′

b h
c′

c h
d′

d Ra′

b′c′d′ + k (Ka
cKdb −Ka

dKcb) . (2.11)

It is now easy to verify that the Ricci tensor of the higher dimensional manifold

is related to the Ricci tensor of the hypersurface by

R̂ab = ha
′

a h
b′

b

(
Ra′b′ − k Rc

a′db′ncn
d
)

+ k (KKab −Kc
aKbc) .

As previously mentioned, even though R̂ab has higher dimensional indices that indi-

cate it is defined in the entire manifold, it only has components on Σ because all its

components are either projected onto it or living on it. So the only non-vanishing

components can be expressed with greek indices

R̂µν ≡ (n−1)Rµν = haµh
b
ν

(
(n)Rab − k (n)Rc

adbncn
d
)

+ k
(
KKµν −Ka

µKνa

)
. (2.12)

We have defined R̂µν ≡ (n−1)Rµν and Rc
adb = (n)Rc

adb which is broadly used and

helps in remembering the number of dimensions. Another contraction with hµν tells



us the Ricci scalars are related by

(n−1)R = (n)R− 2k (n)Rabn
anb + k(K2 −Ka

µK
µ
a ). (2.13)

One can reduce eq. (2.12) by noticing that the second term on the right hand

side is actually

−k haµhbν (n)Rcadbn
cnd = −k haµhcνnd( (n)Rabcdn

b)

= −k haµhbνnd(∇[c(∇d]na)) (2.14)

= k
(
nd∇dKµν +Kd

νKdµ

)
.

Furthermore, we have extended the normal vector by solving the geodesic equation

and thus, we have set aa = nb∇bna = 0 in the definition of the extrinsic curvature

eq. (2.8). Hence, the Lie derivative is simply

(£nK)ca = nd∇dKca + 2Kb
aKbc.

Therefore,

−k haµhbν (n)Rcabdn
cnd = k

[
(£nK)µν −KµdK

d
ν

]
. (2.15)

Inserting this into eq. (2.12) we obtain

£nKµν = k

[
(n−1)Rµν − 8πGn

(
haµh

b
ν Tab +

1

2− n
T hµν

)
− Λhµν

]
+2Ka

µKaν−KKµν ,

(2.16)

where we have substituted the n−dimensional Ricci tensor with the energy momen-

tum tensor by means of the Einstein field Equations

Rab −
1

2
gabR + Λngab = 8πGnTab , (2.17)

which imply

Rab = 8πGn

(
Tab −

1

n− 2
Tgab

)
+

2

n− 2
Λn gab . (2.18)

The Lie derivative appearing in eq. (2.16) basically just tells us about changes

in our tensor with respect to the infinitesimal change in the affine parameter z.

Therefore, integrating eq. (2.16) with respect to the affine parameter will give the
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total change in Kµν as we move by an small amount ε away from the brane, i.e.∫ ε

−ε
dz£nKab = Kab

∣∣∣+ε
−ε
≡ ∆Kab .

However, if ε is infinitesimal, any well behaved function will present an infinites-

imal change, and thus, in the limit ε → 0, any change in smooth functions will be

of order O(ε). Consequently, any integrable function in eq.(2.16) vanishes3.

Nonetheless, we have said nothing about the distribution of matter, so we are

free to choose it as we please. In particular, one might choose it not to be a function

but a distribution so considering a domain wall (a setting in which all the matter is

located at the brane z = 0), the energy-momentum tensor yields a Dirac delta,

Tab =

 Tµν δ(z) 0

0 0

 ,

and we immediately see from (2.16) that

∆Kµν = −k 8πGn

(
Tµν −

1

n− 2
T hµν

)
. (2.19)

This equation provides the condition we must meet to be able to “stitch” two dif-

ferent spacetimes meeting at z = 0. Such equation is known as the Israel junction

condition [65]. Comparing ∆Kµν to the form of the Ricci tensor (n−1)Rµν in terms

of the energy momentum tensor eq. (2.18), we see that the change in extrinsic cur-

vature across the brane ∆Kµν , is somewhat similar to a Ricci tensor projected on

the brane.

2.3 Randall-Sundrum model

With the first grand unification of physical theories provided by Maxwell in the

19th century, it was established that phenomena that might seem to have different

fundamental explanations may be mere manifestations of a more fundamental force.

From there on, the unification of fundamental forces has been the holy grail of the-

oretical physics. Even if gravity has been elusive (to say the least) in this context,

3Even if Kµν is discontinuous, its integral will be continuous, and we are taking the limit to
zero of the integral.



there have been some very interesting ideas that seem to point in the right direc-

tion towards a grand unified theory of everything. Amongst the most interesting

of them, the one given by Theodor Kaluza4 in 1921 (based on ideas of H. Weyl)

had a major impact in how we approach gravity and its relation with the other

fundamental forces. In [66] he studied the behaviour of a gravitational theory with

the existence of a compact extra dimension. Kaluza realised that, by allowing the

metric components to be independent of this extra dimension, one obtains the usual

four dimensional Einsten field equations as well as the Maxwell equations. Later on,

Oscar Klein proposed to consider the extra dimension as a microscopic circle with

a given radius. This idea has inspired generations of physicists and with the string

theory revolution, the need for hidden extra spatial dimensions5 naturally revived

the ideas of compactified extra dimensions by Kaluza and Klein to “hide” the extra

dimensions.

However, the idea that we are living on an infinitesimal brane provides an alter-

native to the traditional Kaluza-Klein compactification [67–69]. Particularly, in the

late 90’s Arkani-Hamed et al. [70, 71], in an attempt to solve the hierarchy problem,

proposed a model where the large (but still compactified) extra dimensions consid-

ered effectively lowered the fundamental Planck scale. However, in this setting one

needs more than one extra dimension6 to get the observed experimental values. For

some early works on braneworld models and their implications see [67–69, 72].

Then, in 1999 Lisa Randall and Raman Sundrum proposed an alternative to solve

the hierarchy problem [73], where they considered a model consisting of 2 branes

with a higher dimensional AdS spacetime inbetween, which gives an exponential

warp factor in the metric. It is this warp factor that would solve the hierarchy

problem by ensuring the effective 4D Planck scale being lower than the fundamental

Planck scale. In this model, to recover 4D general relativity at low energies, one

needs to stabilize the distance between the branes, which corresponds to a scalar

4Apparently, Gunnar Nordström published work in parallel, but since these publications were
written in finnish, they did not get much attention.

5Bosonic string theory is only consistent in 26 dimensions although including supersymmetry
reduces the number of necessary dimensions to 10.

6In this brane-world model the extra dimensions considered were compactified, equivalent and
flat.
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field degree of freedom known as the radion [74–76]

A month later, Randall and Sundrum published an alternative to higher di-

mensional compactified theories [77], in which they considered now a single brane

model7: a 4−dimensional flat brane embedded in a Z2 symmetric, 5−dimensional

AdS spacetime with gravity “leaking” into the warped, infinite extra dimension. Al-

though this model does not solve the hierarchy problem, it posed a new paradigm

to approach brane-world theories, where the novelties arising from this model rely

on the fact that our access to the universe is naturally constrained to the brane due

to gravity (curvaure) instead of a straightforward compactification.

Figure 2.1: Warp factor of the RS model eq. (2.21).

Before discussing the model in more detail, it is important to remark that one of

the most relevant aspects of higher dimensional models is that by allowing gravity

to propagate into extra dimensions, one has to renormalise Newton’s constant. We

can calculate how to do so by dimensional analysis of the Einstein-Hilbert action

eq. (1.42) (c.f. [73]) or by looking at the Poisson equation. Either way, we can see

the result is that the relationship between the n−dimensional Newton’s constant

(Gn) and the 4−dimensional one (G) is given by8

[Gn] = [G][Ln−4] . (2.20)

7Since was presented after the 2-brane model, this single-brane model was originally known as
RS2, although we will simply call it RS.

8In literature it is common to compare the Planck masses instead. The relationship between
the n−dimensional gravitational constant and the Planck mass is [Gn] = [Mn]2−n.



This is an important implication of higher dimensional models because, in principle,

the fundamental Planck mass M5 could be much lower than the usual 4-dimensional

Planck mass MPl.

The RS model we will consider throughout this thesis is given by the metric

ds2 = gabdx
adxb = e−2|z|/` ηµν dx

µdxν + dz2, (2.21)

with the brane localized at z = 0, where we get Minkowski spacetime. This metric

is a 5-dimensional Anti-de Sitter spacetime (AdS5) in horospherical coordinates

(c.f. [78]), which means the higher dimensional spacetime, or bulk, has a negative

cosmological constant given by Λ5 = −6/`2, with curvature radius ` (c.f. eq. (1.43)).

Notice that the warp prefactor only depends on the extra dimension.

We shall assume that our universe is made of homogeneous and isotropic matter,

and hence its energy momentum tensor may be written as

Tµν = ρ uµuν + pPµν , (2.22)

where Pµν = hµν + uµuν gives us a decomposition with respect to a time-like vector

uµ, similar to the definition of hµν in eq. (2.6). For a domain wall, the energy density

ρ is equal to minus the pressure ρ = −p and hence, we say the brane has a positive

tension σ = −p > 0, and the Israel condition 2.19 becomes

∆Kµν = 2Kµν

∣∣∣
+

= −8πG5

3
σ hµν .

The factor of 2 comes from the Z2 symmetry of the RS model and since the normal

to the brane is space-like, we have set k = 1. Furthermore, from the definition of

the extrinsic curvature eq. (2.8), we get

Kµν

∣∣∣
+

= −Γzµν nz = −1

`
hµν (2.23)

and thus, the condition (2.19) needed to stitch two copies of the interior of an AdS5

at a flat, empty brane is that we fine tune the tension of the brane to be

σ =
6

8πG5`
. (2.24)

In general it is possible to have branes without fine tuning them, which means
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they have a tension different to the critical value given in eq. (2.24), which would

give bent-braneworlds [79–81] and we will not consider them. Furthermore, since we

consider an energy momentum tensor that can be described merely by a spatially

isotropic pressure term, we can solve the bulk solution and obtain the trajectory of

the brane [82].

As one expects from a model superseeding 4D GR, in the RS model one recovers

the 4D Newtonian potential. This was investigated by Garriga and Tanaka [83], who

considered small gravitational perturbations about eq. (2.21). This was achieved by

placing a point mass on the brane and solving the perturbation equations within

the RS gauge [77]. As a result one recovers the Newtonian potential for 4D gravity

at large distances on the brane9, with corrections at short distances O(`).

Shortly after the publication of the RS model, Chamblin, Hawking and Reall

modified the geometry of the RS model by substituting the flat metric (ηµν) in

eq. (2.21) with a Schwarzschild metric [78]. However, the black string they consid-

ered suffers from a Gregory-Laflamme instability [85, 86].

Even when exact brane-black hole solutions have already been found by Emparan

et al. in 4 dimensional settings [87, 88], to this day we still don’t have an exact

5-dimensional brane-black hole solution (see [89, 90] for a review on this topic).

Nevertheless, this thesis aims to help in gaining insight into these brane-black hole

solutions. To do so, in section 2.4 we will analyse the system from the brane’s

perspective by trying to find a self-consistent 4-dimensional solution.

2.4 SMS formalism

Taking a brane approach, Shiromizu, Maeda and Sasaki [91, 92] studied the effective

gravitational equations of a slightly more general brane than the flat one considered

in the RS model in section 2.3. These effective equations are the result of gravitation

in the higher dimensional spacetime, described by the 5D Einstein equation (2.18)

(5)Rab = 8πG5

(
Tab −

1

3
Tgab

)
+

2

3
Λ5 gab. (2.25)

9A detailed review can be found in [84].



As we know from eq. (2.12), the 4D Ricci tensor can be written as projections

of the 5D Riemann tensor and the extrinsic curvatures of the brane

(4)Rµν = haµh
b
ν

[
(5)Rab − (5)Rc

adbncn
d
]

+KKµν −Ka
µKνa, (2.12)

where we are considering a time-like brane with a space-like normal vector (thus we

have set k = 1) and an induced metric on the brane hab = gab − nanb.

In section 2.2 we identified the projected n−dimensional Riemann tensor with

contractions of the extrinsic curvature and its Lie derivative. However, since we now

want to relate the Einstein equations of different dimensions, we now proceed by

decomposing the Riemann tensor into the 5D curvature gab, the Ricci tensor (5)Rab

and the totally traceless Weyl curvature Cabcd

(5)Rabcd = (5)Cabcd +
2

3

(
ga[c

(5)Rd]b − gb[c (5)Rd]a

)
− 1

6
ga[c gd]b

(5)R . (2.26)

This means the 4D Einstein equations can be written as

(4)Gµν = (4)Rµν −
1

2
hµν

(4)R (2.27)

=
2

3
8πG5

[
Tabh

a
µh

b
ν + Tabn

anbhµν −
1

4
T hµν

]
− Eµν+

+KKµν −Ka
µKνa −

1

2
hµν

(
K2 −KαβKαβ + Λ5

)
,

where we have defined a projected Weyl tensor10

Eµν ≡ haµh
b
νn

cndCcadb . (2.28)

Moreover, we learned one can write the extrinsic curvature of a brane in terms

of its energy momentum tensor via the Israel junction conditions (2.19) in 5D

Kµν = −1

2
8πG5

(
Tµν −

1

3
Thµν

)
. (2.29)

The total energy momentum tensor may be decomposed as Tab = 5Tab + T brane
ab ,

where we have defined (in Gaussian normal coordinates (2.5)) the energy momentum

10Actually a more formal definition of this term should be limz→0 Eµν , i.e. the limit on the brane
of the projection of the totally traceless Weyl curvature.
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tensor of the brane, which lies at z = 0, hence we may write:

T brane
ab = hµah

ν
b T

brane
µν δ(z)

which we can arbitrarily decompose as

T brane
µν = τµν − σhµν , (2.30)

where σ acts like the tension of the brane.

Substituting all this into eq. (2.27), we obtain the effective 4D EE [74]

(4)Gµν = 8πG4τµν − Λ4hµν − Eµν + (8πG5)2 πµν +
4 (8πG4)2

σ
Fµν , (2.31)

with

G4 =
(8πG5)2

48π
σ ,

Λ4 =
1

2

[
Λ5 +

(8πG5)2σ2

6

]
,

πµν =
1

12
ττµν −

1

4
τaµτaν +

1

8
ταβταβ hµν −

1

24
τ 2hµν ,

Fµν = haµh
b
ν

5Tab +

(
5Tabn

anb − 1

4
5T

)
hµν .

In their work, SMS [91] considered 5Tab = 0 and thus the traceless tensor Fµν is also

zero, therefore, no corrections coming from this term were relevant. It is now clear

that since Λ5 = −6/`2, fine tuning the tension σ to have the critical value (2.24),

suppresses the effective cosmological constant Λ4 = 0, which could lure observers

constrained to the brane into thinking they live on flat space-time.

It is interesting to note that were it not for the projected Weyl tensor Eµν ,

eq. (2.31) would be determined entirely by objects living the brane, providing a

closed system of equations. Nevertheless, Eµν does enter the effective Einstein equa-

tion and bears information about the fifth extra dimension.

If we are interested in solving this effective equation from the perspective of an

observer living on the brane, we are limited to the information he/she has access

to. Therefore, we need to make a guess for the projected Weyl term eq. (2.28). For

instance, Dadhich et al. [93] studied a tidal ansatz that gave as a result a metric that

resembles a four dimensional Reissner-Nordström black hole but with a charge that



does not correspond to an electric potential and that may contribute with either

a positive or negative term in the metric function11. This will be treated in more

detail in section 3.2.2.

11In contrast to the strictly positive Reissner-Nordström charge term + r2Q/r
2.



Chapter 3

Vacuum Decay in Higher

Dimensions

After discussing the notion of vacuum decay in chapter 1 and reviewing key concepts

of gravity in braneworld scenarios in chapter 2, we now proceed to discuss the main

ideas that led us to the study of vacuum decay seeded by black holes within the

Randall-Sundrum braneworld model and explain technical details of the work done

in [1] and [2].

3.1 Motivation

Perhaps one of the most intriguing ideas coming from the application of gauge

theories with spontaneous symmetry breaking to describe fundamental forces is the

realisation that our universe could have been trapped in metastable vacua during its

evolution to the present time, a hypothesis that gave birth to inflation [44, 45, 48–

50, 94]. This possibility, together with the the discovery of the Higgs particle in

2012 with a measured mass of 125.18± 0.16 GeV and a top quark mass of 173.1 ±

0.9 GeV [6, 95], set the Standard Model to lie within the parameter range that

allows its potential to develop a metastability1 [4, 96, 97] (see fig. 3.1) and thus, a

careful analysis of phenomena that might trigger such an instability or that allow

1A vacuum state is said to be metastable if it has no perturbative instability but is not the
lowest energy state. This implies that the instability is nonperturbative.



an enhancement of the Higgs’ vacuum decay rate becomes rather important.

Figure 3.1: Phase diagram of the stability regions of the Standard
Model in terms of the Higgs and Top quark masses (figure taken
from [4]).

Previously, in section 1.3, we discussed the ideas that led Coleman and de Luccia

to conclude that if our universe is currently trapped in a metastable vacuum, its

decay through vacuum bubbles to a different universe would be so slow that the

lifetime of the universe would be greater than its current age. Notwithstanding the

overwhelming empirical evidence that this is the case, there is a plethora of work

exploring ways in which such lifetime would be shortened thus increasing the nu-

cleation rate of true vacuum bubbles. Since the transition between vacua studied

in section 1.2 has a close analogy to thermodynamical phase transition, it is hardly

surprising that ideas that have been well studied in thermodynamics inspired physi-

cists to search for parallel effects in vacuum decay. Of these, the most compelling

comes from the well known fact that phase transitions are far more likely to happen

when there are impurities in a substance (heterogeneous nucleation) than without

such impurities (homogeneous nucleation). In thermodynamics, this is because such
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impurities typically have cavities2 and thus the energy cost for a surface tension is

lowered greatly. A calculation of the rate of decay for common substances like water

shows that a homogeneous phase transition would actually be very unlikely at its

common freezing temperature of 0◦C and it would take either a very long time or a

temperature of about −42◦C for pure water (without impurities) to freeze [98, 99].

However, this is clearly not our everyday experience; thus, if we want to understand

how phase transitions happen in our world, we need to make a thorough consider-

ation of impurities. It is only when we incorporate them that we get the expected

results c.f. [100]. Impurities greatly enhance thermodynamical phase transitions.

Following this train of thought, in 1987 Hiscock [101] showed (in the thin-wall

limit), that uncharged, non-rotating black holes in the zero-temperature limit, could

act as impurities or inhomogeneities, enhancing the decay rate of the false vacuum3.

The underlying phenomenon of Hiscock’s idea is that a black hole immersed in a

field configuration that lies in its false vacuum everywhere could act as a seed of

nucleation and enhance the decay rate of the potential function of said field in the

region of spacetime near the event horizon. In his results, Hiscock claimed a possible

reduction in the action by a factor of 2, with respect to the O(4) symmetric case.

Although Hiscock considered the mass of the black hole to remain unchanged,

further studies by Berezin et al. [104, 105] considered the case in which the decay

would affect the black hole by changing its surface area and as a result, leave a

different remnant black hole behind. However, the black hole they studied was

surrounded by flat spacetime.

Furthermore, by making a careful analysis of the contribution coming from the

conical singularities that typically arise both at the event and the cosmological

horizons, Gregory et al. [106] showed a further enhancement of the effect that black

holes have as bubble nucleations sites. It is worth remarking that in their paper

it was shown that, in four dimensions, the difference in actions (which dominates

2Actually, any phase boundary or impurities coming from dust within the material or on the
container of the substance lower the effective surface energy facilitating nucleation.

3Admittedly, in the early 80s Hawking and Moss [102, 103] had already considered the case in
which a black hole could seed vacuum decay. Nonetheless, in this case instead of focusing on the
role of curvature, the black hole acted mainly as a source of thermal radiation (very much like a
hot stone in water), allowing the existence of a bubble of false vacuum surrounded by true vacuum
pushing inwards to collapse.



the behaviour of decay) can be translated to a difference between the event horizon

areas of the black hole seeding the nucleation and its remnant after nucleation.

Later on, in a series of papers, Burda et al. [107–109] showed that due to the

the difference in action being proportional to the difference between the seed and

remnant black hole areas, enhancement occurred specially for small black holes, with

the first candidates being evaporating primordial black holes : black holes created

in the early Universe due to its high density [110, 111], which lose mass due to

Hawking radiation [112, 113] until reaching a critical seeding mass of 105−109 MP ≈

10−3 − 10 kg, which would seed vacuum decay thus changing the lifetime of our

universe as we know it. A different physical interpretation of the enhancement

of decay rate around black holes is given by [114–116], where the enhancement is

thought to be a thermal effect due to the black hole temperature.

Even though primordial black holes have not yet been proven to exist, they

have not been discarded as possible and currently there are Telescopes aiming for

their detection: primordial black holes with a mass of around 1012 kg would be

completing their evaporation today and bursts of gamma rays are expected to be

observed by the Fermi Gamma-ray Space Telescope [117, 118]. Black holes with a

mass lower than 4.5× 1012 kg should have already evaporated. Thus, since we have

not seen an electroweak phase transition in the universe, the existance of primordial

black holes of up to 1012 kg is incompatible with the metastability of the Higgs

vacuum [107, 119]. Perhaps the resolution of such incompatibility lies in stabilising

contributions to the Higgs potential coming from physics beyond the standard model

[120]?

However, primordial black holes are not the only small black holes expected

to exist, indeed there is another type of micro black hole that, if proven to exist,

might enhance vacuum decay. As it has been noted in section 2.3, in a higher

dimensional model like the RS, our four dimensional Planck scale is the result of a

higher dimensional, fundamental Planck mass which would be close to the standard

model scale, allowing small semiclassical black holes to be created in high energy

processes even at LHC energy scales [121–123]. Given this possibility for new small

black holes, we will discuss the work done in [1], where we focus on the study of

the effect of higher dimensional micro black holes on vacuum decay in section 3.2.
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Then, in section 3.3 we study the effect of higher dimensions on Higgs vacuum decay

within the RS model but without a black hole, which helps understanding if any

enhancement is due to the higher dimensional model or the presence of a black hole

in it.

3.2 Vacuum decay around higher dimensional

black holes

In this section we will review the work done in [1], where we studied the effect of an

“impurity” in the form of a black hole within the warped large extra dimensional RS

model on vacuum decay. To recollect our conclusions it will prove useful to mention

some of the features we will be using for the remainder of the chapter. Let us start

by recalling the geometry of the RS model, which is that of a flat brane immersed

in an AdS5, given by the metric (2.21) which we rewrite here for pragmatic reasons:

ds2 = e−2|z|/`ηµνdx
µdxν + dz2.

The usual Standard Model lives on a brane located at the cusp of the warp factor

e−2|z|/`, which lies at z = 0. Moreover, the bulk geometry, given as an AdS5 is char-

acterised by a negative cosmological constant Λ5, related to its radius of curvature

` by

Λ5 = − 6

`2
. (3.1)

By allowing our accessible universe (constrained to the brane) to have its own cosmo-

logical constant σ, we produce a “dispute” between the brane and bulk cosmological

constants, giving rise to an effective cosmological constant Λ4 (c.f. eq. (2.31)), which

is set to zero by “fine tuning” the value of the brane tension σ to be

σ =
6

8πG5`
. (2.24)

Other values for σ different to this critical value are admissible but the natural

embeddings become either space- or time-like [64, 79]. Nonetheless, as long as the

brane energy-momentum is approximately homogeneous (i.e. having a spatially

isotropic pressure term only), the bulk solution can be fully integrated and hence



we can find the tajectory of the brane [82].

Obviously the presence of the brane breaks spatial homogeneity and even when

we are only considering a codimension-1 scenario, an exact solution for a brane black

hole system has not been found yet (for an extensive list of references on this topic,

see [64, 124, 125]). A natural geometry of a Schwarzschild black hole extending off

the brane, into a black string, was found by Chamblin et al. [78] shortly after the

appearance of the RS model, however, this black string has two main problems: it is

not representative of matter localised on the brane and it has a Gregory-Laflamme

instability [86]. Even when exact 4-dimensional solutions of a brane-black hole

system have been found by Emparan et al. by slicing a 4-dimensional C-metric

[87, 88], there are no analogue solutions for a 5-dimensional C-metric and thus,

there is no template for constructing a braneworld black hole plus bulk analytically.

To mantain an analytic approach, we explore the effective gravitational equations

for an observer living on the brane, given by Shiromizu et al. [91, 92] and presented

in section 2.4.

Now let us consider the instanton from a higher dimensional perspective. Al-

though the thin-wall limit we have studied in section 1.2.1 is not completely adec-

quate to describe the Higgs vacuum decay [107] due to its very wide and gentle vac-

uum interpolation, it has a straightforward generalization to gravity and it proves

to be a useful visualisation tool to understand the idea behind it.

In their original work, CdL consider a highly symmetric setting and assumed that

both the initial and final states were devoid of features. Nonetheless, a relaxation of

this assumption, allowing for a black hole modifies the equations of motion for the

instanton. These modifications can have an important impact on the action, and

particularly for thick scalar domain walls, appopriate to describe Higgs decay from

the shape of its potential, tunnelling rates are significantly enhanced. As we have

mentioned, Burda et al. [109] showed this enhancement is so great that in fact, if

there are primordial black holes, false vacuum decay will happen.

The extension of the CdL instanton to a RS model was done by Gregory and

Padilla [5]. They showed that one can represent the decay from flat spacetime to an

AdS true vacuum by a flat brane (representing flat spacetime) with a spherical-slice,

representing the true vacuum. The region at which the flat and the “sub-critical”
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branes meet is the bubble wall (appearing as a codimension 2 object) in the thin-

wall limit and is shown as the white ring of fig. 3.2. As the RS model demands, two

copies of these images are identified with each other.

Figure 3.2: In the upper picture, we show a cartoon of the thin-
wall limit of vacuum decay in a brane black hole system, similar
to figures in [5]. In the bottom one we have an idealisation of the
same figure but where we now consider a black hole seeding vacuum
decay. The flat brane is shown in red, whereas the sub-critical brane
is depicted in yellow. The white region where they meet is the wall
of the bubble.

Ideally, we would like to have a similar picture with a black hole, however,

as already pointed out, the lack of an exact brane black hole solution makes the

formation of this picture rather difficult [90]. Even when dropping one dimension to

have a 2 + 1 dimensional braneworld, to obtain the brane black hole exact solution

found by Emparan et al. with the use of the C-metric [87, 88], we would deal with

the issue that the C-metric has a unique slicing for the braneworld [126], preventing

us from patching together an equatorial sub-critical slice to a flat brane as in the no

black hole case [5]. This forbids a configuration represented by the bottom figure

in fig. 3.2 even for lower dimensional cases. However, since we are interested in a

situation described by a thick wall, perhaps fig. 3.3 helps more to have a clearer

picture.



Figure 3.3: A sketch of the expected geometry of vacuum decay in
a brane black hole system in the thick wall case.

Since a direct attempt to find the instanton solution seems problematic, we fol-

lowed a more pragmatic approach: instead of looking for an exact analytical solution,

we consider what a black hole instanton might approximately look like. From the 4D

case [106, 109], we expect small black holes to be the ones enhancing vacuum decay

the most and we also expect the dominant instanton to be static. Then, we use

the higher dimensional Schwarzschild-AdS solution as an approximation to the local

bulk black hole, which allows us to construct a method of calculating the instanton

action formally. Finally, to identify the asymptotics of our instanton, we need a way

of interpolating between the solutions near and far from the horizon. To do so, we

have to make a choice for the braneworld solution and we consider the tidal solution

by Dadhich et al. [93]. Particularly this solution has the advantage of having the

correct asymptotic form at large brane radius and still look like a 5-dimensional

Schwarzschild black hole for a small radius.

3.2.1 Brane-black hole action

As discussed in chapter 1, the behaviour of the decay rate

Γ = Ae−B/~

is dominated by the difference in Euclidean actions between the “before” and “after”

nucleation states, denoted by B.

In this section we will show that, in great analogy to the four dimensional case

[101, 107–109], the Euclidean action of a 5-dimensional static black hole solution can

be expressed entirely by surface terms. This remarkable result applies to the vacuum



3.2. Vacuum decay around higher dimensional black holes 51

black hole as well as to the case where one considers a cosmological constant, matter

and even a conical singularity at the horizon.

Let us start by recalling the properties of the Euclidean Schwarzschild black hole

in four dimensions, described by the metric

ds2 = f(r) dτ 2 + f(r)−1 dr2 + r2dΩ2
II , (3.2)

where the metric function f is defined by

f(r) = 1− 2GM

r
. (3.3)

When studying the geometry near the event horizon rh = 2GM , it can be useful to

define a new coordinate to expand the metric around the horizon

% =

√
2(r − rh)

κ
, (3.4)

where κ = f ′(rh)/2 is the surface gravity. In terms of this new variable, we can

make an expansion of the metric function f about % = 0

f = κ2%2 +O(%4),

to leading order. Therefore, in the vicinity of the event horizon, the metric is

ds2 = d%2 + %2d(κτ)2 + r2
h dΩ2

II . (3.5)

This means that close to the horizon the metric is the product of a disk4 (coming

from the τ, % section) with a 2−sphere. Notice that by taking the periodicity of the

time coordinate to be ∆τ = 2π/κ, we avoid possible conical singularities at rh. The

Euclidean Schwarzschild metric is regular other than this, although it only covers the

exterior region of the original black hole. The event horizon of the original Lorentzian

geometry is encoded in the topology of the Euclidean solution: the surface % = 0 is

a 2−sphere of radius rh.

In the five dimensional case, the metric is extended into the additional dimension,

which is parametrised by χ in the numerical construction of a brane black hole

by Kudoh et al. [127]. In their work, the metric was written in homogeneous

4Or a cone, in general, depending on the period of the time coordinate τ .



coordinates:

ds2 =
1

(1 + ρ
`

cosχ)2

[
T 2dτ 2 + e2B(dρ2 + ρ2dχ2) + e2Cρ2 sin2χdΩ2

II

]
, (3.6)

where the metric functions T,B and C depend on ρ and χ. In these coordinates,

the brane sits at χ = π/2 and χ 6 π/2 is kept as the bulk. In the small black hole

limit, `→∞, Kudoh et al. show the metric functions converge to

T (ρ) =
ρ2 − ρ2

h

ρ2 + ρ2
h

and B(ρ) = C(ρ) = log

(
ρ2 + ρ2

h

ρ2

)
, (3.7)

and thus, in the small black hole limit they recover the five dimensional Schwarzschild

black hole5:

ds2 =

(
ρ2 − ρ2

h

ρ2 + ρ2
h

)2

dτ 2 +

(
ρ2 + ρ2

h

ρ2

)2 [
dρ2 + ρ2dΩ2

III

]
(3.8)

written in homogeneous coordinates. The local Euclidean horizon coordinate is

% = 2(ρ− ρh), and the horizon has an area of A = 4ρ2
h and surface gravity

κ = e−B(ρh)T ′. (3.9)

The black hole is corrected at order ρ/` by the conformal factor, and at order

ρh/` in the other metric functions close to the horizon. Kudoh and collaborators

integrated the functions T,B and C numerically, and found the T function to a very

good approximation extends hyperspherically off the brane. Even though B and C

are not precisely the same, their difference is roughly of order ρh/`. At large ρ, the

metric functions T,B,C → 1, and the metric is asymptotically AdS in the Poincaré

patch.

As a matter of fact, we will not use the explicit form of the metric eq. (3.6).

However, we will use some features from the analysis of [127], namely, that the

event horizon is topologically hyperspherical with a constant surface gravity, and

that the braneworld black hole asymptotes the Poincaré patch of AdS.

The coordinate transformation between the local black hole coordinates and the

5This was to be expected, since the small black hole limit is ` → ∞ and the brane tension
σ ∝ `−1 and the cosmological constant Λ5 ∝ `−2. Therefore, in this limit, the lack of brane and
cosmological constant lets us recover the full symmetry.
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Poincaré RS coordinates is

ρ2 = r2 + `2(e|z|/` − 1)2, tanχ =
r

`(e|z|/` − 1)
(3.10)

and we expect that the ‘trajectory’ of the brane will bend slightly in response to the

presence of black hole at ρh, giving rise to a four dimensional Newtonian potential as

described in [83]. From the perspective of the {ρ, χ} coordinates, in which the brane

sits at χ = π/2, this correction to T,B,C will be of the order of 1/ρ. Therefore, our

asymptotic metric will be of the form

ds2 = e−2|z|/` [F (r, z)dτ 2 + F (r, z)−1dr2 + r2dΩ2
II

]
+ dz2, (3.11)

with F ∼ 1 − 2GNM(z)/r + O(r−2). One can think of M(z) as coming from the

brane bending term of M/ρ in the original coordinates.

3.2.1.1 Computing the action

Since an AdS spacetime is infinite, the action of the brane black hole combination is

not compact and, consequently, it naturally diverges. Therefore, we have to find a

way to regulate it. We do this by truncating the five dimensional manifold at large

distances from the black hole, taking a surface at large radius R on the brane, and

extending it along the geodesic in the ±z directions, orthogonal to the brane and

producing an outer boundary surface ∂MR shown in fig. 3.4.

As previously discussed in section 1.3, the gravitational equations on a manifold

MR with boundary ∂MR are obtained by the extremisation of the usual Einstein-

Hilbert action plus a Gibbons-Hawking surface term (see eq. (1.42)):

I =

∫
MR

d5x
√
g

[
− 1

16πG5

(R5 − 2Λ5) + Lm
]

+
1

8πG5

∫
∂MR

d4x
√
hK, (3.12)

where Lm is the matter Lagrangian, hab = gab − nanb is the induced metric and

K = gabKab = gabha
chb

d∇cnd is the trace of the extrinsic curvature of the boundary

∂MR with normal vector na pointing in toMR. The integral is understood to cover

the entire range of z.

We will now show that the tunnelling exponentB, given by the difference between

the actions of the instanton geometry with a remnant black hole, and the false

vacuum geometry with the seed black hole: B = Iinst − IFV, is finite in the limit



Figure 3.4: A representation of the Euclidean black hole and the
cut-off surfaces. Here the coordinates τ and θ are suppressed. The
cut-off surface is indicated relative to the brane and bulk black hole
horizon. Only one half of the Z2 symmetry is shown for clarity.

R→∞.

The first step to deal with any possible conical deficits coming from a generic

periodicity in Euclidean time, is to introduce a small ball, H, which extends a proper

distance O(ε) away from the black hole event horizon (as shown in fig. 3.4), which

splits the action eq. (3.12) into two terms:

IR = Ihor
R + Iext

R ,

where

Ihor
R =

∫
H
d5x
√
g

[
− 1

16πG5

(R5 − 2Λ5) + Lm
]

+
1

8πG5

∫
∂H
d4x
√
hK , (3.13)

Iext
R =

∫
MR−H

d5x
√
g

[
− 1

16πG5

(R5 − 2Λ5) + Lm
]

+
1

8πG5

∫
∂MR+∂H

d4x
√
hK . (3.14)

With all the matter bound to the intersection of the brane B with the manifoldMR.

It is important to stress that the extrinsic curvature in the Gibbons-Hawking term

is computed with an inward pointing normal, hence we have the same sign when

considering the extrinsic curvature of the boundary ∂H in each expression.
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3.2.1.2 Interior of H

In order to deal with the near-horizon contribution, we express the metric eq. (3.6)

in coordinates that are better suited to describe the metric near the horizon, similar

to what was done in eq. (3.4) to transform the Euclidean Schwarzschild metric. We

will work with the metric

ds2 ≈ d%2 + A2(%, ξ)dτ 2 +D2(%, ξ)dΩ2
II +N2(%, ξ)dξ2, (3.15)

where % < ε inside the ball H. In this metric we have defined

A =
T

1 + ρ
`

cosχ
and D =

ρ sinχ eC

(1 + ρ
`

cosχ)

with the variables % and ξ given by

% ≈ 2(ρ− ρh)
1 + ρh

`
cosχ

, ξ = χ+O(%2)

In these coordinates the brane sits at ξ = π/2 and, on the horizon, ξ ∈ [0, π].

Considering an expansion of eq. (3.15) about %→ 0, we realise that this metric

has a natural periodicity of τ for which the Euclidean metric is nonsingular. This

natural periodicity is given by β0 = 2π/κ, where the surface gravity κ can be given

either in the original coordinates (ρ, χ) κ = e−B(ρh)T ′ as we have seen in eq. (3.9),

or in horizon coordinates where it is simply ∂A/∂%. From nonsingularity of the

geometry, we deduce N ∼ N0(ξ) +O(%2), D ∼ D0(ξ) +O(%2), and A ∼ κ%+O(%2).

For a general periodicity β for the Euclidean time τ , we have a conical singularity

at % = 0. In order to compute the action, we smooth this out by modifying the A

function (as done in [106]) so that A′(ε, ξ) = κ, but A′(0, ξ) = κβ0/β. Computing

the curvature for this smoothed metric we obtain

√
g5(R5 − 2Λ5) = −2N0(ξ)D0(ξ)2A′′(%) +O(%), (3.16)

which gives a contribution to Ihor
R of

− 1

16πG5

∫
H

(R5 − 2Λ5)
√
g5 +

∫
B∩H
Lm
√
g4 =

β

2G5

[A′(ε)− A′(0)]

∫
N0D

2
0dξ +O(ε2)

=
κ

8πG5

[β − β0]A5, (3.17)



where

A5 = 4π

∫
N0D

2
0dξ (3.18)

is the area of the braneworld black hole horizon extending into the bulk (on both

sides of the brane). Since the term on the left of eq. (3.16) does not have a singularity

at ρ = 0, the matter Lagrangian gives no contribution to this term.

Now, to obtain the Gibbons-Hawking boundary term, we note that the normal

to ∂H is n = −d%, therefore, the extrinsic curvature is given by

K = −A−1A,% +O(ε) (3.19)

and so

1

8πG5

∫
∂H
K
√
h = − A5

8πG5

A′(ε, ξ)

∫ β

0

dτ = −κβA5

8πG5

. (3.20)

Hence, the overall contribution to the action from the region near the horizon is

Ihor
R = −κβ0A5

8πG5

= − A5

4G5

. (3.21)

3.2.1.3 Exterior of H

Inspired by the ideas of Hawking et al. we reviewed and extended the ideas in [37,

61, 106, 128], which provide a decomposition of a manifold (in our case a Euclidean

one) in a foliation of space-like hypersurfaces Στ to recast the gravitational action in

its Hamiltonian version. This provides a way to calculate the contribution of Iext
R to

the action eq. (3.12). We start this endeavour by making a foliation of the spacetime

M in codimension one time-slices Στ , labelled by a periodic Euclidean time function

τ , with periodicity β. Since na already describes a normal vector pointing into the

surface that encloses the manifold MR within a surface ∂MR, we will use ua to

denote a unit vector, normal to the slice Στ with induced metric

hab = gab − uaub. (3.22)

As it is shown in fig. 3.5, (∂/∂τ)a and ua are not necessarily aligned and hence, we

may decompose ∂/∂τ into components along the normal and tangential directions
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u
a

n
a

Figure 3.5: An illustration of the foliation of the Euclidean {τ, r}
section of the brane black hole. The normals ua and na of, respec-
tively, the foliation Στ and manifold boundaries are shown, together
with the codimension two surfaces CR and CH, which may be re-
garded as codimension one submanifolds of the Στ surfaces. Since
Στ is not necessarily a ray (dashed line), in general (∂τ )

a and ua

are not always pointing in the same direction.

of the hypersurface Στ , (
∂

∂τ

)a
= Nua +Na. (3.23)

The lapse function N measures the rate of flow of proper time with respect to the

coordinate time τ as one moves through the family of hypersurfaces. It will prove

to be convenient to construct our time-slices Στ so that they meet orthogonally the

boundary ∂M (which is composed of both ∂MR and ∂H). In the case of the region

outside H, the boundary ∂M for the external part of the action Iext
R is composed

of two surfaces of constant radius, namely ∂H near the horizon, and ∂MR at large

radius.

As we have already shown in section 2.2 there is a way to relate the five dimen-

sional Riemann tensor coming from gab to the four dimensional Riemann tensor of

hab and the extrinsic curvatures of the constant time slices

Kab = hcah
d
b∇cud,



by making use of eq. (2.11) we can relate the Riemman tensors by6

(4)Ra
bcd = haa′hb

b′hc
c′hd

d′ (5)Ra′

b′c′d′ +KacKdb −KadKcb. (3.24)

Notice that since the extrinsic curvature K is built from a vector normal to the time

slices, it is different from the extrinsic curvature K appearing in eq. (3.12), which is

related to the normal vector of the boundary. Contracting (3.24) gives

(5)R = (4)R + 2 (5)Rabu
aub − (K2 −KabKab), (3.25)

and thus, using eq. (3.24), we obtain the desired relationship between higher and

lower dimensional Ricci scalars:

(5)R = (4)R− (KabKab −K2)− 2 [∇a(u
a∇cu

c)−∇c(u
a∇au

c)] , (3.26)

which forms the basis of all canonical decompositions of the Einstein-Hilbert action.

When substituted in the action (3.12), the last two terms of eq. (3.26) are reduced

to boundary contributions on ∂M. The first of these vanishes by constrution due to

orthogonality between ∂M and Στ , whereas the second combines with
∫
∂M

√
hK

from the original action and gives an interesting result. For example, on ∂MR this

combination gives

1

8πG5

∫
∂MR

d4x
√
h
(
∇an

a + nbu
a∇au

b
)

=
1

8πG5

∫
∂MR

d4x
√
h(gab − uaub)∇anb

=
1

8πG5

∫
∂MR

d4x
√
h hab∇anb, (3.27)

but this four dimensional integral can be understood as an integral over τ of a three

dimensional integrand, that is precisely the three dimensional extrinsic curvature

3K of a family of surfaces CR(τ) = ∂MR ∩ Στ living in the boundary ∂MR (c.f.

fig. 3.5). This extrinsic curvature is defined by

3K = hab∇anb. (3.28)

A similar contribution arises from the surface ∂H close to the horizon.

The decomposition in eq. (3.23) implies that7 √g = N
√
h, and introducing a

6We use (5)R instead of R5 for the sake of clarity in the indices.
7The time lapse function N represents the rate of flow of proper time, and thus, the factorisation
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metric 3h on CR, we can separate the spacetime integral into space and time, to

express the exterior contribution to the action (3.12) as

Iext
R = −

∫
Ndτ

{
1

16πG5

∫
Στ

√
h
[
R4 − (KabKab −K2)− 2Λ5 − 16πG5Lm

]
− 1

8πG5

∫
CR

√
3h 3K − 1

8πG5

∫
CH

√
3h 3K

}
. (3.29)

Moreover, from the definition of the extrinsic curvature (2.7) as the Lie derivative

of the intrinsic metric with respect to τ via (3.23), we have

Kab =
1

2
£uhab =

1

2N
(£τhab −£Nhab) =

1

2N

(
ḣab − 2D(aNb)

)
, (3.30)

where ḣab = hcah
d
b£τhcd and Da is the derivative associated with hab.

To obtain the Hamiltonian form of the action I, we define the canonical momen-

tum πab conjugate to the intrinsic metric:

πab ≡ δI

δḣab
=
√

h (Kab −Khab). (3.31)

This allows us to recast (3.29) in terms of the canonical momentum

Iext
R = −

∫ β

0

Ndτ

{
1

16πG5

∫
Στ

√
h

[
R4 −

1

h

(
πabπab −

1

3
π2

)
− 2Λ5 − 16πG5Lm

]
− 1

8πG5

∫
CR

√
3h 3K − 1

8πG5

∫
CH

√
3h 3K

}
. (3.32)

With these definitions, we may proceed to perform a Legendre transformation

of the Lagrangian. Using (3.30) and (3.31) we obtain the Hamiltonian formulation

Iext
R =

1

8πG5

∫ β

0

dτ

{
1

2

∫
Στ

√
h

(
1√
h
πabḣab −NH−NaHa

)
+

∫
CR

√
3h(N 3K +Naπabn

b) +

∫
CH

√
3h(N 3K +Naπabn

b)

}
,

(3.33)

with the Hamiltonian constraint function H and the momentum constraint function

of the volume density
√
g as is presented is quite natural.



Ha given by

Ha = −2Db

(
1√
h
πab
)

(3.34)

H = R4 − 2Λ5 − 16πG5Lm −
1

h

(
πabπab −

1

3
π2

)
.

Finally, for a static spacetime we have ḣab = 0 and in the non-rotating case,

Na = 0. The metric is a solution to the field equations, so we have the constraint

equations H = Ha = 0. The only non-vanishing part of the exterior part of the

action comes from the boundary terms 3K,

Iext
R =

1

8πG5

∫ β

0

dτ

(∫
CR

3K
√
h+

∫
CH

3K
√
h

)
. (3.35)

Close to the horizon, we use the metric eq. (3.15) and find that

3K = 2D−1D,% +N−1N,% → 0, (3.36)

at the horizon %→ 0. This is because N ∼ N0(ξ) +O(%2) and D ∼ D0(ξ) +O(%2)

close to the horizon, as previously discussed. Therefore, there is no contribution to

the action from this boundary term.

At large distancesR the metric approaches the perturbed Poincaré form eq. (3.11),

and so

3K = − 2

R
e3|z|/` F 1/2,

√
h = R2 e−3|z|/` F 1/2 sin θ, (3.37)

which implies

Iext
R = − β

GN`

∫ ∞
0

dz
[
2R− 4GNM(z) +O(R−1)

]
. (3.38)

Ideally, we would like to regulate this action, however, the counterterms of [129]

do not regulate this action. Nonetheless, since we are interested in a difference of

actions, it will suffice to note that the Higgs fields on the brane in any instanton

solution dies off exponentially for large r, so from the intuition that at large distances

M(z)

r
∼ M∞

ρ
=

M∞√
r2 + `2(e|z|/` − 1)2

,

(with ρ defined in eq. (3.10)) we deduce that the mass function M(z) will be the

same at leading order for both the false vacuum with the seed brane black hole
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and the instanton solution. Hence, the exterior terms will cancel when we take the

difference between the instanton action and the false vacuum action. In consequence,

the tunnelling rate, given by

B = Iinst − IFV =
AFV

5

4G5

− A
inst
5

4G5

+ lim
R→∞

[
Iext
R

∣∣∣
inst
− Iext

R

∣∣∣
FV

]
,

is translated to a simple difference of areas8

B =
AS
4G5

− AR
4G5

, (3.39)

whereAS andAR refer to the seed and remnant black hole horizon areas respectively.

Since the entropy of a black hole is proportional to its event horizon area,

eq. (3.39) may be understood simply as a reduction in entropy ∆S caused by the

decay process, and the tunnelling rate is identified as the probability of an entropy

reduction proportional to e∆S. The difficulty we face when applying (3.39) is that

we have to relate the black hole area to the mass of the black hole triggering the

vacuum decay and the physical parameters in the Higgs potential, which requires

explicit solutions for the gravitational and Higgs fields.

3.2.2 Tidal black hole bubbles

As we have already mentioned, the lack of an analytical brane-black hole solution

poses the main difficulty when finding tunnelling instantons. Even when numerical

solutions exist [127], introducing non-trivial Higgs profiles on the brane would modify

these equations and a new full numerical brane-black hole solution would need to

be computed. Instead, in [1] we took a more practical alternative by considering the

tidal black hole solution, found by Dadhich et al. [93].

As we have explained in section 2.4, the SMS formalism gives us a way to solve

the induced Einstein Equations on the brane by using the Gauss-Codazzi projection

8In usual RS, the 4D Minkowski limit is reached conformally with ` → 0, however, in the
presence of a 5D black hole, one cannot really recover the analogous limit.



of the Einstein tensor. In section 2.4 we showed that these equations are given by

(4)Gµν = 8πGτµν − Λ4hµν − Eµν + (8πG5)2 πµν ,

G4 =
(8πG5)2

48π
σ, (2.31)

Λ4 =
1

2

[
Λ5 +

(8πG5)2σ2

6

]
,

πµν =
1

12
ττµν −

1

4
τaµτaν +

1

8
ταβταβhµν −

1

24
τ 2hµν ,

where hµν is the induced metric on the brane, τµν is the energy momentum tensor of

the brane matter, πµν yields all the contributions of the second order in the energy

momentum tensor and Λ4 is the brane’s effective cosmological constant given in

terms of the bulk cosmological constant Λ5 = −6/`2 and the brane tension σ =

6/8πG5` so that the effective cosmological constant on the brane Λ4 vanishes. The

projected Weyl tensor Eµν satisfies

Eµµ = 0 and ∇µEµν = 0

and its symmetry allows us to decompose it irreducibly in terms of a given 4-velocity.

For a perfect fluid (or minimally coupled sclar field) we may write (c.f. [64, 130,

131]):

Eνµ = diag

(
U ,−(U + 2Π)

3
,
(Π− U)

3
,
(Π− U)

3

)
, (3.40)

which is clearly tracefree. The Bianchi identity translates into a condition for U and

Π. For a spherically symmetric static brane metric with intrinsic metric

ds2
brane = f(r) e2δ(r)dτ 2 + f(r)−1dr2 + r2dΩ2

II , (3.41)

the conservation equation implies9

(U + 2Π)′ +

(
f ′

f
+ 2δ′

)
(2U + Π) +

6Π

r
= 0, (3.42)

where f ′ = df/dr. As we can see, we don’t have a closed system of equations, even

in the vacuum brane case. Hence, one has to make a choice to solve this equation

9To clarify, the function δ appearing in the metric (3.41) is not the Dirac delta.
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of state [132]; the tidal solution corresponding to the choice

Π = −2U ,

for which the solution to eq. (3.42) is given by U ∝ r−4. Setting δ(r) = 0 gives the

tidal black hole solution found by Dadhich et al. [93]. This solution is given by the

induced metric on the brane (3.41) with metric function

f(r) = 1− 2GM

r
−
r2
Q

r2
, (3.43)

and the Weyl tensor

Eµνdxµdxν = −
r2
Q

r2

(
f(r)e2δ(r)dτ 2 + f(r)−1dr2 − r2dΩ2

II

)
, (3.44)

where rQ is a constant10. Now our interest in this solution is manifest: on the one

hand, at small distances, the last term of eq. (3.43) dominates the behaviour of

the metric and we recover the 5D Schwarzchild-Tangherlini [133] potential; on the

other hand, at large radii, the second term of eq. (3.43) dominates and we recover

the conventional Newtonian potential due to a “brane-bending” term identified by

Garriga and Tanaka [83], which may be interpreted as a shift of the brane with

respect to the bulk in response to matter on the brane. The name of this solution

is now evident, from eq. (3.43) it is clear how the event horizon is distorted by the

Weyl tensor, which encodes the tidal force. Other choices for the Weyl tensor give

different brane solutions (see for example, [134, 135]), however, these tend to have

either wormholes or singularities and thus, we shall not consider them.

To obtain our bubble solution, we need to find the equations of motion of the

brane coupled to the Higgs field in the spherically symmetric gauge eq. (3.41), and

use the same tidal ansatz for the equation of state Π = −2U . The advantage of

considering the tidal ansatz is that even with the Higgs field taking a non-trivial

bubble profile, the conservation equation for the Weyl tensor eq. (3.42) is still solved

by U ∝ −r2
Q/r

4.

In order to gain some information about the form of the tidal black hole solution

at a proper distance z away from the brane, we make a Taylor expansion of the

10The parameter rQ is related to the tidal charge Q of [93] by r2Q = −Q.



metric [74] in Gaussian Normal Coordinates:

g̃µν(z) = gµν(0)− (8πG5Sµν) z+
[
(4πG5)2SµσS

σ
ν − 8πG5Sµν − Eµν

]
z2 + . . . (3.45)

where Sµν = τµν − 1
3
− τgµν .

In the false vacuum state, we have τµν = 0 and the metric eq. (3.41) away from

the brane reduces to

ds2 ≈ e−2|z|/` (gµν − Eµνz2
)

+ dz2 (3.46)

≈ e−2|z|/`
{(

1 +
r2
Qz

2

r4

)(
fdτ 2 + f−1dr2

)
+

(
1−

r2
Qz

2

r4

)
r2dΩ2

II

}
+ dz2,

which tells us the horizon area decreases as z grows. Therefore, the horizon becomes

a true bulk black hole when the area vanishes at some distance zh which is of order

r2
h/rQ.

However, not everything is perfect and even when the tidal solution is attractive

to find bubble solutions for the aforementioned reasons, one still has the problem of

determining the tidal charge (rQ). For a nonsingular tidal black hole, one expects

a relation between the asymptotic mass measured on the brane, M , and the tidal

charge r2
Q. Actually, for very large black holes, the horizon radius is expected to

be predominantly determined by M , and thus, the ambiguity is not worrisome.

Nonetheless, for the small black holes we are interested in, the behaviour of the

horizon radius is dominated by the r2
Q/r

2 term in eq. (3.41), and so we must address

this ambiguity.

To deal with this ambiguity, we first notice that within the RS model, the fine-

tuned brane tension σ vanishes in the limit `→∞, which gives us a 5D Minkowski

spacetime and thus, the black hole should be identical to a 5D Schwarzschild-

Tangherlini black hole and we must recover the O(4) symmetry. Now, since G =

G5/`, the second term in eq. (3.43) vanishes and thus r2
Q → r2

h in the limit `→∞.

Furthermore, one expects that small black holes should look like a five dimensional

black hole near the horizon i.e. r2
Q → r2

h as r2
h → 0. Hence, assuming analyticity in

rh/`, we may write

r2
Q = r2

h

[
1− brh

`
+O

(
r2
h

`2

)]
(3.47)

for small rh/`. The constant b we just defined is independent of rh and ` and is
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expected to be of order unity. All we have done in eq. (3.47) is parametrise the

ambiguity of rQ for small black holes in terms of b but we have done it in a way in

which the relation between the mass of the black hole measured on the brane (M)

and the horizon radius will factor in such ambiguity. By looking at eq. (3.43) we see

that

M =
b r2

h

2G5

(3.48)

and thus it is now clear that this uncertainty can be absorbed into a redefinition of

the low energy Planck scale in the tunnelling rate.

The starting configuration of our tunnelling process has a field in its (uniform)

false vacuum φFV and a black hole with mass MS, seeding nucleation. This false

vacuum configuration resembles the tidal black hole on the brane, and a slightly

perturbed 5D Schwarzschild solution in the bulk [127]. The bubble solution repre-

sents the decay process to another state, in which the field asymptotically reaches

the false vacuum at large distances and approaches its true vacuum near the horizon

of a different, remnant black hole with mass MR.

The main result of section 3.2.1.1 taught us that the tunnelling exponent is given

by

B =
1

4G5

(AS −AR) , (3.39)

where AS represents the area of the black hole seeding nucleation and AR the area

of the remnant black hole after nucleation. Since to leading order in rh/`, the small

black hole horizon has a hyperspherical shape, the horizon area can be approximated

by 2π2r3, hence making use of eq. (3.48), we may write

B =
π2

2G5

(r3
S − r3

R) =
π2r3

S

2G5

[
1−

(
MR

MS

)3/2
]
. (3.49)

If the difference between the masses is small, δM = MS −MR �MS then

B ≈ 3

4

(
πMS

bM5

)3/2
δM

MS

, (3.50)

where we have used the relationship between the 5D gravitational constant and the

5D Planck mass 8πG5 = M−3
5 . Fortuitously, the uncertainty in the value of the tidal

charge parameter b can be absorbed into our uncertainty of the low-energy Planck



scale, and so we let bM5 →M5.

3.2.2.1 Higgs bubbles on the brane

The Higgs bubble corresponds to a solution of the SMS equations with a scalar field

described by the usual matter lagrangian in its Euclidean form (1.44):

Lm =
1

2
gµν ∂µφ ∂νφ+ V (φ), (3.51)

with the potential V (φ) having a metastable false vacuum11. From this lagrangian

it follows (c.f. eq. (1.45)) that the energy momentum tensor for a scalar field that

only depends on on the radial coordinate on the brane i.e. φ = φ(r) is

τµν = φ′2δrµδ
r
ν − hµν

(
1

2
fφ′2 + V (φ)

)
, (3.52)

where primes denote derivatives with respect to r.

To solve the equations of motion of the bubble, we need to calculate the Einstein

tensor Gµν coming from the induced metric eq. (3.41), and a Weyl tensor similar to

that of eq. (3.44). Both the metric and the Weyl tensor are given in terms of the

metric function

f(r) = 1− 2Gµ(r)

r
−
r2
Q

r2
, (3.53)

where we have defined a “mass” function µ(r), for comparison with case without

the field φ eq. (3.43). At infinity µ(r)|r→∞ this function corresponds to the seeding

mass MS, however, at the horizon radius it is typically different from the remnant

black hole mass MR, as will be clearer after looking at the EOM. Nevertheless,

determining µ(rh) lets us to determine the mass MR (and hence the tunnelling

exponent B), which is given in terms of the seed mass MS, the potential V and the

AdS5 radius `.

The relevant components of the Einstein tensor Gµν are

Gτ
τ = −2Gµ′

r2
+
r2
Q

r4
and Gr

r −Gτ
τ =

2f

r
δ′ (3.54)

11This potential will is described in more detail in eq. (3.56).
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and thus, the equations of motion for the field φ and the functions µ and δ are

fφ′′ + f ′φ′ +
2

r
fφ′ + fδ′φ′ − ∂φV = 0, (3.55a)

µ′ = 4πr2

{
1

2
fφ′2 + V − 2πG

3
`2(

1

2
fφ′2 − V )(

3

2
fφ′2 + V )

}
, (3.55b)

δ′ = 4πGrφ′2
{

1− 4πG

3
`2(

1

2
fφ′2 − V )

}
. (3.55c)

Figure 3.6: In this image, taken from [6], the running couple con-
stant for the Higgs field of the Standard Model is shown as a
function of the instability scale, here represented by µ (not to
be confused with our mass function µ(r)). Here the values of
a Higgs mass of Mh = 125.18 ± 0.16GeV, a Top quark mass of
Mt = 173.1 ± 0.9GeV and a strong coupling constant given in
terms of αS(MZ) = 0.1181 ± 0.0011 were used. Very roughly,
λeff(φ) ∼ λ(φ).

We proceed to integrate these equations numerically from the black hole hori-

zon rh where the the Higgs does not necessarily lie in its true vacuum, as will be

explained shortly, to infinity, where the field φ lies close to its false vacuum. For the

numerical integration, a ‘shooting’ method similar to the one heuristically explained

in section 1.2 was used. In this method, the value of φ at the horizon is varied until

a regular solution is found12.

The detailed form of the Higgs potential is determined by renormalisation group

12We remark that at the horizon rh the field φ does not necessarily reach its true vacuum.



methods13 and depends on low-energy particle masses, with strong dependence on

the Higgs mass and top quark mass. Of these, the top quark mass is less well known

and, as shown in fig. 3.6, for top quark masses in the range 172 − 174 GeV, Higgs

instability sets in at scales starting approximately at 108 GeV, i.e. the effective

running coupling constant (λ(µ) in fig. 3.6) becomes negative [120].
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Figure 3.7: The Higgs potential calculated numerically at one loop
order for a top quark mass of 172 GeV and the effective potential
coming from eq. (3.57), with values of g and Λφ chosen for the best
fit. Even though this potential does have an absolute minimum, it is
obtained at high values of φ. For this potential the potential energy
difference between the metastable and true vacua is not small with
respect to the barrier height and thus will be described by a thick
wall. Image taken from [1].

The numerical results we obtained in [1] are based on a Higgs-like potential,

assuming that the standard model holds for energy scales up to the low-energy

Planck mass M5. The Higgs potential can be expressed in terms of the overall

magnitude of the Higgs, φ and an effective coupling λeff

V (φ) =
1

4
λeff(φ)φ4. (3.56)

To be more precise, λeff(φ) is a running coupling constant that becomes negative at

13For a nice and detailed review of Higgs vacuum metastability see Markkanen et al. [6] and
Moss [120].
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some crossover scale Λφ. Since vacuum decay depends on the profile of the potential

barrier in V around this instability scale, it proves useful to explore the likelihood

of decay by making use of an analytic fit to λeff .

In their work, Burda et al. [107] made a two parameter analytic fit to the two-

loop calculations of the running coupling [97], with one of the parameters closely

related to the crossover scale Λφ. The instanton action was observed to be strongly

dependent on the potential crossover scale but very weakly dependent on the other

parameter (which turned out to be more related to the shape of the potential at

low-energy). Hence, for the sake of clarity, we make a one parameter analytic fit to

λeff , where the single parameter is the crossover scale itself:

λeff = g(Λφ)

{(
ln

φ

Mp

)4

−
(

ln
Λφ

Mp

)4
}

(3.57)

and g(Λφ) ∼ 10−5 is chosen to fit the high energy asymptote of λeff and varies very

little across the range of Λφ of relevance to the Standard Model λeff .

Figure 3.7 shows the analytic fit of the Higgs potential used in [1] to the actual

λeff computed for Mt = 172GeV.

In four dimensions, we can have a Higgs instability scale close to the Planck

scale. However, with large extra dimensions, new physics could potentially enter at

the low-energy Planck scale M5. Therefore, we should restrict our parameters to

the range Λφ < M5 < Mp.

Typical profiles for the bubble centred on the black hole after decay and for the

mass term µ(r) beyond the horizon radius rh are shown in fig. 3.8. In these plots

we notice the field is close to its true vacuum at the horizon and approaches the

false vacuum as r →∞ with a characteristic thick wall profile (in section 3.3 we will

discuss more about the typical profiles of thick wall bubbles). Notice that the first

plot of fig. 3.8 tells us the bubble radius greatly exceeds the horizon of the black

hole.

In fig. 3.8 we have made use of a change in mass term, defined by ∆µ(r) =

µ(r)−µ(rh). Near the horizon, ∆µ(r) is negative due to the negative potential V in

equation eq. (3.55b). Then, as the radial distance r increases, µ(r) becomes positive

due to the positive contribution coming from the kinetic term and hence ∆M is

positive.



0

1

2

3

4
φ
Λ
φ

0 200 400 600 800 1000
r rh

-40

-20

0

20

40

Δ
µ
(r
)
Λ
φ

0 200 400 600 800 1000
r rh

Figure 3.8: Profiles for the bubble and the mass term µ(r) out-
side the horizon rh with M5 = 1015GeV, Λφ = 1012GeV and
rh = 20000/Mp. This particular solution has tunnelling exponent
B = 4.3. Taken from [1]

3.2.2.2 Branching ratios

The calculation of the vacuum decay rate assumes a stationary background, which

only makes sense when the decay rate exceeds the Hawking evaporation rate. The

brane black hole can radiate in the brane or into the extra dimension, but if we con-

sider a scenario as close as possible to the standard model, then most of the radiation

will be in the form of quarks and leptons (radiated mainly into the brane [122]), sim-

ply because these are the most numerous particles. Hawking evaporation rates were

calculated in [136]. For a review of Hawking evaporation rates in higher dimensional

models see [124] and references within14.

The radiation coming from a black hole is similar to that of a black body radiating

at the Hawking temperature but with additional grey body factors representing the

14Also see [122, 125, 137–140].
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effects of back-scattering of the radiation from the space-time curvature around the

black hole. Following [124], we express the energy loss rate due to evaporation by Ė,

where on dimensional grounds (since rh is the only relevant dimensionful parameter)

|Ė| = γ r−2
h , (3.58)

for some constant γ. The Hawking decay rate ΓH of the black hole we are considering

is

ΓH =
|Ė|
MS

=
4πγM3

5

M2
S

, (3.59)

where we have made use of eq. (3.48) to substitute rh. On the other hand, the

vacuum decay rate is given by

ΓD = Ae−B

and as pointed out in section 1.1.2, the pre-factor A contains a factor (B/2π)1/2

from the zero mode. However, in our case, rather than evaluating the determinant

factor representing the time translation symmetry, we use the only scale of the

configuration, given by the inverse of the bubble radius r−1
b to provide a rough

estimate (c.f. [6, 107]):

ΓD ≈
(
B

2π

)1/2
1

rb
e−B.

Since we are considering small black holes, vacuum decay is relevant only if their

decay rate due to bubble nucleation overwhelms their Hawking evaporation rate,

i.e. when the branching ratio between ΓD and ΓH :

ΓD
ΓH
≈ 1

4πγrb

(
B

2π

)1/2
M2

S

M3
5

e−B , (3.60)

is greater than one.

In the case of small rh/`, the five-dimensional black hole has a temperature of

T ≈ 1

2πrh
, (3.61)

which is double the temperature of a black hole solely in four dimensions. We

therefore expect to have an energy flux on the brane roughly ∝ T 4 ∼ 16 times the

flux solely in four dimensions. Numerical calculations by Harris and Kanti [137]

show an enhancement by a factor of 14.2 in the (5−dimensional case) in the power

spectra for the emission of fermions, which ultimately give the largest contribution



to the decay (the reason being simply that these fields are the most abundant).

Furthermore, taking the energy loss due to a single fermion in four dimensions

contributing with a factor of 7.88×10−5 for each degree of freedom15 to γ. Thus, for

the standard model where we have 6ν + 12e+ 72q = 90 fermion degrees of freedom,

we obtain

γ ≈ 14.2× 90× 7.88× 10−5 = 0.10. (3.62)

Λφ = 1 × 1012 GeV
Λφ = 2 × 1012 GeV
Λφ = 5 × 1012 GeV

100 101 102 103 104 105 106
seed mass MS M5

100

101

102

103

104

ΓD
ΓH

Figure 3.9: Branching ratio of the false vacuum nucleation rate to
the Hawking evaporation rate as a function of the seed mass for a
selection of crossover scales for the Higgs, with a 5D Planck scale
M5 = 1015GeV. Figure taken from [1]

The branching ratio is plotted in figure 3.9 for M5 = 1015GeV and a Higgs

instability scale around 1012 GeV (corresponding to a top quark mass of 172 GeV).

Note that the decay rates in this parameter range are larger than the M3
5/M

2
S factor

15Taken from the work by Page [136], which gives an emission power of

1.969× 10−5(GM)−2 = 1.969× 10−5 × 4r−2h = 7.876× 10−5.
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dictating the behaviour of Hawking radiation eq. (3.59), i.e. although decay due

to Hawking radiation for small black holes is fast, vacuum decay around such black

holes is faster. The figure shows an example where black holes with masses between

1017 GeV and 1020 GeV, or 10−7 g to 10−4 g, would seed rapid Higgs vacuum decay.

Even when we have shown that, in comparison with the four dimensional case,

the RS braneworld model allows for less massive black holes to seed Higgs vacuum

decay, it should be noted that the energies needed to create such black holes are

well outside the range probed by the LHC (104GeV). However, there have been

observations of Ultra High Energy Cosmic Rays (UHECR) with an excess of energy

of 1011GeV. Moreover, Piet Hut and Martin Rees [141] have shown that we have at

least 105 cosmic ray collisions with center of mass energy exceeding 1011GeV in our

past light-cone. Therefore, provided the higher dimensional Planck scales are below

M5 . 109GeV, black holes could be formed in a cosmic ray collision.

In the context of the Higgs field, the standard model potential is only valid at

best for energy scales below the scale of new physics, M5; therefore the instability

scale should satisfy Λφ < M5. In addition, the lowest value for the instability scale

consistent with experimental limits is Λφ ∼ 108GeV (as can be seen from fig. 3.6)

and thus, we cannot use a higher dimensional Planck scale lower than this value. We

therefore take the 5D Planck scale to be M5 ∼ 109GeV on which black holes of mass

MS ∼ 1011GeV are likely to cause vacuum decay. Notwithstanding these values are

below those for which we were able to obtain numerical results, an approximation

can be made by taking the exponent from vacuum decay from eq. (3.50) and the

mass of the instanton δM ∼ Λφ, which gives an estimated value of B = O(1),

implying rapid Higgs decay.

3.3 Vacuum decay on a brane

Naturally, after computing the probability of vacuum decay seeded by small black

holes that appear in particle collisions within the Randall-Sundrum braneworld

model in section 3.2, one might wonder about a similar situation without a black

hole, thus focussing on the effects of the brane tension on decay rates for a Higgs field.

Even though there is currently a vast literature about instantons on braneworld mod-



els, most of the work done in this field usually considers the thin-wall limit [5, 142–

144] or focusses on nucleation from a de Sitter false vacuum [145] and thus, Higgs

vacuum decay from flat spacetime to AdS had not been computed. Therefore, in

this section we show the work done in [2], where we considered the braneworld

equivalent of the CdL instanton, i.e. an O(4) symmetric instanton constrained to

the brane. This means the instanton can be described by the brane’s proper time

τ and a coordinate perpendicular to the brane that keeps track of the warping. As

proven in [82, 142], the general bulk admitting an O(4) symmetric brane solution

is a Schwarzschild-AdS black hole and thus, since we are interested in a situation

without black holes, we focus on a pure Euclidean AdS5 bulk spacetime:

ds2
bulk = h(r)dt2 +

1

h(r)
dr2 + r2dΩ2

III , (3.63)

where h(r) = 1+r2/`2. Embedded in a five dimensional spacetime, the brane traces

a timelike hypersurface that may be parametrised by intrinsic coordinates τ, θα (with

α ∈ {1, 2, 3}). The position Xµ of this brane is given by

Xµ =
(
t(τ) , a(τ) , θα

)
(3.64)

and the condition on τ to be the proper time of this brane is given by

hṫ2 +
ȧ2

h
= 1, (3.65)

where dotted quantities mean derivative with respect to τ . Subsituting this equation

in eq. (3.63), gives us an induced brane metric

ds2
brane = dτ 2 + a2(τ) dΩ2

III , (3.66)

which is identical to the geometry considered by CDL [59].

The scalar field we consider is described by the same lagrangian considered in

last section 3.51. The τ and angular sectors of the energy-momentum tensor are

Tττ = σ + V − 1

2
φ̇2 =

3E
4πG5

Tαβ = [σ + V +
1

2
φ̇2] gαβ =

3T
4πG5

gαβ.

(3.67)
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Therefore, the Israel junction equations (2.19) are

K+
ττ =

1

hṫ

(
ä− h′(r)

2

)
= 2E − 3T (3.68)

K+
αβ = − ṫ h

a
gαβ = −Egαβ

and by making use of eq. (3.65), these can be expressed as a Friedmann equation

and an energy conservation equation:(
ȧ

a

)2

=
1

a2
+

1

`2
− E2 (3.69)

0 = Ė +
3ȧ

a
(E − T ). (3.70)

For numerical integration however, it is more useful to use eq. (3.68). Using

eq. (3.67) and we can substitute the energy momentum tensor thus obtaining the

equations of motion for the brane-scalar instanton equations:(
ȧ

a

)2

=
1

a2
− 8πGN

3

(
V − 1

2
φ̇2

)
−
(

4πGN`

3

)2(
V − 1

2
φ̇2

)2

ä

a
= −8πGN

3

(
V + φ̇2

)
−
(

4πGN`

3

)2(
V − 1

2
φ̇2

)(
V +

5

2
φ̇2

)
0 = φ̈+

3ȧ

a
φ̇− ∂V

∂φ
.

(3.71)

These equations are tantamount to the SMS equations with vanishing Weyl term,

which have been also analysed by Demetrian [143] for the Hawking-Moss instanton.

Notice that the 4D instanton equations are recovered as ` → 0, i.e. when gravity

becomes more strongly localised on the brane.

Furthermore, notice that the critical RS brane (with V = 0, φ̇ = 0) has ȧ ≡ 1.

This leads to the brane trajectory

r = a(τ) = τ , t(τ) =
`

2
log(1 + τ 2/`2) (3.72)

in terms of the original coordinates eq. (3.63). This less familiar form for the critical

RS brane is obtained because we are solving for the brane in bulk global coordinates,

rather than the usual Poincare patch. The trajectory in horospherical coordinates



(2.21) can be obtained by using

ez/` =
et/`√

1 + r2/`2
, xi = ez/`rni4 (3.73)

where n4 is the unit vector in 4 dimensions.

3.3.1 The Scalar Brane Instanton

Since we are interested in investigating Higgs vacuum decay, we consider the Higgs

potential we already studied in section 3.2 (see eq. (3.56)), which has one local

minimum and a barrier16. This potential was

Vh(φ) =
1

4
λeff(φ)φ4,

with the effective coupling

λeff = g

{(
ln

φ

Mp

)4

−
(

ln
Λ

Mp

)4
}

and g ∼ 10−5 is a constant used to tune to the potential to closely fit the standard

model Higgs potential.

In addition, we will also consider a standard quartic potential Vq, with a potential

barrier between a false and true vacuum, parametrised in terms of the field value at

the top of the barrier φ = φM and its value at the global minimum φ = φV :

Vq(φ) = g

[
φ4

4
− φ3

3
(φV + φM) +

φ2

2
φV φM

]
, (3.74)

where g is now a free parameter that is allowed to have different values17. The

potential vanishes at the false vacuum φ = 0 and the value at the true vacuum is

Vq(φV ) =
g

12
φ3
V (2φM − φV ). (3.75)

Furthermore, since Vq(φV ) < 0, then φV > 2φM .

In either case, when considering Vq or Vh, we integrate the EOM (3.71) from the

centre of the instanton at τ = 0, with boundary conditions a = 0, ȧ = 1 , φ̇ = 0

16This potential indeed has a second minimum but it only arises at very high field values.
17The parameter g is now allowed to vary in order to show its influence in the difference in

actions, which will be shown in fig. 3.13.



3.3. Vacuum decay on a brane 77

0.5 1

-0.06

-0.04

-0.02

0.02

Figure 3.10: The potential Vq with false vacuum at φ = 0 and true
vacuum at φV = 1 (with Mp = 1) shown for three different values of
the position of the local maximum φM : in black we have the thin-
wall limit (c.f. section 1.2.1) for φM = .49; in blue the maximum
is φM = 0.4 and can still be interpreted as a thin-wall bubble; in
red, the potential is parametrised by φM = 0.1 and corresponds to
a thick-wall bubble. Notice how the red curve resembles the shape
of the Higgs potential fig. 3.7 more closely.

and look for a solution that asymptotes the flat critical RS trajectory (3.72), i.e.

φ → φfv = 0, where V = 0 and thus a → τ + c. This means that integrating

through the bubble wall produces an offset in the value of r relative to t. While

this is not particularly relevant to the form of the bubble solution, for which a(τ)

is important, it is a crucial observation that we will use when computing the action

in section 3.3.2.

The quartic potential Vq defined in (3.74) serves as a probe to understand the

variation from thin to thick bubble walls, which also have different backreaction

strengths. To illustrate this, we examine the results coming from two different sets

of values for this potential. The first one gives a strongly backreacting thin wall, with

parameter values g = 1, φV = Mp, φM = 0.4Mp and is depicted by the blue curve

in fig. 3.10 notice that this setting has a considerable energy barrier between vacua.

The second one represents a weakly backreacting thick wall with parameter values

g = 1/2, φV = Mp and φM = 0.1Mp. This potential resembles the Higgs potential

more closely and is shown in red in fig. 3.10, where one can clearly recognise its small

energy barrier. The 5D and 4D Planck scales are M5 = 0.4 and Mp = 1 respectively,



hence the bulk AdS lengthscale is ` = 1/M3
5 = 125/8.
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Figure 3.11: The corresponding scalar field solution for the poten-
tials shown in figure 3.10. The blue curve on the left shows how the
field φ changes rapidly in a small interval of the parameter τ , and
consequently, it corresponds to the thin-wall bubble. The red curve
on the right portrays a thick wall bubble. Figure taken from [2].

The obtained scalar field solution is depicted in 3.11, and demonstrates clearly

the distinction between the potentials: the thin wall has a clear, sharp transition

from false to true vacuum around τ ∼ 25, whereas the thick wall does not even reach

the true vacuum by the centre of the bubble. Furthermore, the effect of the bubble

on the embedding of the brane is shown in figure 3.12. The strongly backreacting

thin-wall brane shows the transition between the flat RS critical asymptotic false

vacuum brane, and the sub-critical true vacuum AdS embedding in the interior

of the brane (c.f. [5]). The weakly interacting thick wall has a lower significant

displacement, and does not reach the spherical shape of the sub-critical brane.

3.3.2 Computation of the action

After obtaining the brane bubble solutions to the equations of motion (3.71), we

proceed to compute their action and thus the tunnelling probability. The Euclidean

Einstein-Hilbert action (1.42) becomes

S =

∫
M+

d5x

πG5`2
+

∫
∂M+

d4x

[
φ̇2

6
− 1

3
(V + σ)

]
. (3.76)

As we have already discussed, in section 3.2.1.1, this action will diverge because of

the infiniteness of the spacetime and thus we need to regularise it. We proceed by

making a cutoff at a(τR) = R, which is far from the radius of the bubble. This
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Figure 3.12: The geometry of the brane with bubble embedding
shown in Poincare coordinates, as is usual for the flat RS brane.
Here we have defined the radial distance on the brane by ρ2 = xix

i.
Figure taken from [2].

means that the r coordinate of the bulk lies in the range [0, R). Furthermore, from

the Israel equations (3.68) we know that

dt

dτ
=
E a(τ)

1 + a2`2
(3.77)

which after being integrated allows us to find the value of t on the brane at τR and

which will be denoted by tb. Hence, the t coordinate is constrained to the range

( tb(0), tb(R) ). This enables us to find the result for the action on both the bulk

(which is naturally expressed in terms of r and t) and the brane (which only depends

on τ). Therefore, the action becomes

SR =
2π

G5`2

∫ tb(R)

tb(0)

dt

∫ R

0

dr r3 + 2π2

∫ τR

0

dτa3(τ)

[
φ̇2

6
− 1

3
(V + σ)

]

=
π2

3

∫ τR

0

dτ
a3

1 + a2/`2

[
φ̇2 − 2V − 2σ

]
, (3.78)

where in the last step we have written it as an integral with respect to τ , thus

making it easier to insert in the solutions of the scalar instanton equations. To

subtract the background false vacuum, it is crucial to realise that what actually



changes is the brane proper time τ at which a(τR) = R, and thus the false vacuum

action is not obtained simply by setting φ̇ = 0 = V . We must therefore perform

one final manipulation to get the instanton action. The critical false vacuum brane

action is

SFV =
−2π2

3

∫ τ ′R

0

a3(τ ′)σdτ ′

1 + a2(τ ′)/`2
=
−2π2

3

∫ R

0

a3σda

1 + a2/`2
, (3.79)

where we have expressed the action as an integral over a to compare with the action

of the bubble at the same radius. Similarly, for the bubble solution, the action is

given by

Sbub =
π2

3

∫ R

0

da

ȧ

a3

1 + a2/`2

[
φ̇2 − 2V − 2σ

]
, (3.80)

and thus, the tunnelling exponent B, given by the difference in action between the

bubble and false vacuum solutions, is

B = Sbub − SFV =
2π2

3

∫ R

0

da

ȧ

a3

1 + a2/`2

[
φ̇2

2
− V + (ȧ− 1)σ

]
(3.81)

=
2π2

3

∫ τR

0

dτ
a3

1 + a2/`2

[
φ̇2

2
− V + (ȧ− 1)σ

]
. (3.82)

Even though we have used integral with respect to the position a of the brane to sub-

tract the false vacuum from the bubble solution, in the last step we have expressed

the difference as an integral over the time-coordinate (and numerical integration

parameter) τ to simplify.

The result for the tunnelling exponent B is shown in fig. 3.13, with the param-

eter sets considered in section 3.3.1, plotted as a function of the mass parameter

M5 = M
2/3
p `−1/3, which determines the strength of gravity in five dimensions and

for different values of g. These test case examples show a reduction in B, hence

an increase in the vacuum decay rate, due to the increasing influence of the extra

dimension. Notice that lower values of g mean a lower reduction in action.

In fig. 3.13 it is clear to see that there seems to be a minimum value of M5. Be-

yond this minimum numerical solutions cease to exist. The reason is that the total

surface tension on the brane becomes negative near the centre of the bubble close

to this value of M5. Furthermore, notice that even though the 4D limit is strictly

recovered when ` → 0 i.e. when M5 → ∞, the action difference is already close to
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Figure 3.13: The vacuum decay exponent B for Vq, plotted as a
function of M5 for different values of g. The thin-wall solution has
a barrier determined by φM = 0.4Mp (blue) and the thick wall
bubble by φM = 0.1Mp (red). Note that the allowed range of M5 is
narrow thus corresponding to a small hierarchy difference. Figure
taken from [2].

the 4D value when M5/Mp → 1 because V and φ̇ are already small and the extra

dimensional terms in eq. (3.71) are given as squared quantities of these. In conse-

quence, adding an extra dimension only affects the decay rate in very specialised

situations.

The results for the Higgs-like potential Vh with parameters chosen to get a better

fit of the Standard Model Higgs potential is shown in fig. 3.14. Since the Higgs

potential is small at the Planck scale (because the parameter g ∼ 10−5 in the

potential is small) the vacuum decay rates show no obvious dependence on the

extra dimensions.

3.4 Discussion

In this chapter we have studied the effect that warped extra dimensions have on

vacuum decay. Following the work of Burda et al., in section 3.2 we focused on

the enhancement produced by small black holes but now within higher dimensional

braneworld models. We showed in detail the work done in [1], where we chose the

the Randall-Sundrum braneworld scenario as a concrete example of warped extra
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Figure 3.14: The vacuum decay exponent B plotted as a function
of M5 for Higgs potentials with a range of values or the instability
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dimensions and computed the Higgs profile on the brane for vacuum decay based

on the tidal ansatz of Dadhich et al. [93]. One of the main results of our work was

given in section 3.2.1, where we show that the action for the tunnelling, in parallel

to the 4-dimensional case, is given by the difference in areas of the before and after

nucleation configurations of the black hole horizon. Since in 4-dimensions it is small

black holes that are the most likely to be vacuum decay seeds, we focused on small

brane-black holes and used qualitative features of the numerical solutions of Kudoh

et al. [127] to argue that the black hole area is well approximated by the area of

a hypersphere. Then, by making use of the tidal solution, we expanded the brane

black hole metric for small masses and obtained a relation between the black hole

mass measured from the 4-dimensional brane and the horizon radius, which allowed

us to compute the amplitude for tunneling.

Then, to determine the relevance of vacuum decay we compared the black hole’s

decay probability with its evaporation rate due to Hawking radiation. In order to do

so, we estimated the net evaporation rate by taking the integrated flux calculated

by Harris and Kanti [137], which is dominated by fermion radiation of the standard

model particles on the brane. The numerical results shown in fig. 3.9 showed another

important result: similarly to the 4-dimensional case, black holes that belong to a
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certain range of mass are likely to initiate vacuum decay. Admittedly, when one

considers black holes within the RS model, one expects to find their energies to

be reachable at LHC energy levels. However, in section 3.2.2.1 we remarked that

the energy needed to create black holes relevant for Higgs vacuum decay are well

outside the energy range probed by the LHC. Nonetheless, we also point out that

there have been observations of Ultra High Energy Cosmic Rays with an enough

excess of energy to cause vacuum decay.

Naturally, one might wonder to what extent Higgs vacuum decay around black

holes might rely on the presence of the black hole and to what extent it relies on

the presence of higher dimensions. Therefore, in section 3.3 we followed the analysis

of [2], where we studied the effect of the higher dimensions (of the RS model) on

vacuum decay but this time without a black hole. We explored instanton solutions

for a brane scalar field and considered 2 different types of potentials: one that

allows to understand the effect of weak/strong backreacting bubbles and one that is

closer to the Higgs potential of section 3.2. In [2] we determined that the influence

of the fifth dimension on tunnelling rates is minor, with the exception of strongly

backreacting bubbles.

Since the extra dimension showed a negligible effect on the decay when we con-

sidered the Higgs-like potential, we concluded that in close similarity to the 4D case,

black holes are essential in the enhancement of decay rates.





Chapter 4

Critical Black Hole

Thermodynamics

Black hole thermodynamics represents a fascinating insight into the interaction of

quantum physics with gravity. In classical terms, a black hole is defined by an

event horizon which can only be traversed in one direction, this implies there are no

classical phenomena in which anything can escape from the region delimited by the

event horizon, not even light, hence their name. Nonetheless, after quantum effects

are taken into account, their very essence changes drastically.

The first important result of studying QFT on curved background spacetimes

came towards the end of 1974, when Stephen Hawking presented definitive proof

that black holes emit thermal radiation at a characteristic temperature, now known

as the Hawking temperature T = κ/2π (in natural units), thus rendering black holes

not entirely black [112]. With this new understanding of the temperature of a black

hole, the thermodynamic behaviour of black holes passed from being an interesting

analogy to be taken as a genuine thermodynamic system1.

The four laws of black hole mechanics, originally given in [20] by Bardeen, Carter

and Hawking can be summarised as:

0. The surface gravity κ of a stationary black hole is constant.

1 Before Hawking’s work [112], several authors (including Hawking himself) remarked that even
though there was a nice parallel between thermodynamics and black hole mechanics, one should
be careful not to interpret a black hole to have a bona fide temperature.



1. For a charged, rotating black hole of mass M , area A, angular momentum J

and charge Q,

δM =
κ

8π
δA+ ΩδJ + ΦδQ (4.1)

where Ω is the angular velocity and Q the electric potential of the black hole.

2. The area A of a black hole never decreases δA > 0.

3. It is impossible to reduce the surface gravity κ to zero in a finite number of

steps.

Using Hawking’s Temperature and comparing the first law of black hole me-

chanics (4.1) with the first law of thermodynamics we can see that the (Bekenstein-

Hawking) entropy of a black hole is related to its area (in Planck units) by

S =
A

4
, (4.2)

and hence, according to Bardeen et al., the first law (4.1) becomes

δM = TδS + ΦδQ+ ΩδJ . (4.3)

It is important to remark that this version of the first law does not consider

a pressure-volume PdV term, ubiquitous in usual thermodynamics. Early work

proposed that the cosmological constant could fulfil this role [146–149], however

this was largely unexplored until the importance of anti-de Sitter (AdS) spacetime

came to the fore in the context of the gauge-gravity duality in string theory [150–

152]. A crucial conceptual insight was that the ‘mass’ term M for the black hole

should more properly be interpreted as the enthalpy of the black hole, the pressure

identified with the (negative) cosmological constant P = −Λ/(8π), and the black

hole volume with the corresponding conjugate quantity V = ∂M/∂P . With these

identifications the subject enjoyed a renaissance and the first law (4.3) was extended

(see [153] for a review).

Within the context of extended black hole thermodynamics there has been an

interesting conjecture - the Reverse Isoperimetric Inequality [147], which is a state-

ment about the relation between the thermodynamic volume of the black hole and its

entropy (area). In mathematics, the Isoperimetric Inequality states that the surface
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area enclosing a given volume is minimised for a spherical surface, and indeed the

area can be unboundedly large if a suitably deformed or wrinkly surface is chosen.

From the physical perspective of black hole thermodynamics however, this would be

a disturbing inequality if true, since the second law would imply that a black hole

would “want” to be as deformed as possible to maximise its entropy, thus indicating

a classical instability of black holes. However, in Cvetic [147], it was demonstrated

that in all (then) studied black hole solutions, the reverse of this inequality held,

hence the Reverse Isoperimetric Inequality Conjecture.

Not long after, Gnecchi et al. [154] presented a non-compact black hole horizon

with finite area and it was later explained by Klemm [155] that the solution given

by Gnecchi et al. can be interpreted as the ultra-spinning limit of the Kerr-AdS

solution by taking the rotation parameter to be critically large. This limit, however,

is sensible only after admitting the existence of conical defects running along the

axis of revolution. As a result, the shape of this black hole is roughly spherical

near its equator, with sharp conical deficits at both the north and the south poles.

Actually, all “r = const.” surfaces are non-compact after removing the poles from

the spacetime.

In a series of papers, Hennigar et al. [156–158] considered the thermodynamic

implications of this peculiar spacetime. These papers argued a distinct definition

of thermodynamic variables from the standard Kerr-AdS variables, and intriguingly

discovered that the black hole appeared to be super-entropic. Specifically, the reverse

isoperimetric conjecture [147, 159], that establishes an upper bound on the entropy

for any black hole given its thermodynamic volume reached only for spherical black

hole solutions, was found to be violated by the ultra-spinning black hole, leading

the authors to impose more stringent conditions under which the bound might be

valid.

In this chapter, we discuss the content of [3], which aims to determine the unique-

ness of this latter discovery. A curious feature of the ultra-spinning spacetime is that

it is seemingly isolated from regularly-spinning black holes by any physical process.

It is interesting therefore to ponder whether it truly is a special case, or whether

this violation is present in further extensions of this solution. One way in which

the set of black hole solutions can be extended beyond the usual generalisations to



charged and/or rotating solutions is to consider acceleration.

The solution that describes the accelerated black hole is known as the C-metric

[160–163]. It is similar in form to Kerr-AdS, but has conical defect(s) along the polar

axes that are different in magnitude, the differential deficit providing a net force on

the black hole, hence acceleration. The form of the metric is also modified, and the

boundary is offset from the usual “r =∞”, if one treats r as a generic radial coor-

dinate. While the characteristic feature of the ultra-spinning black hole is the pair

of maximal deficits at each pole, the accelerated solution has by default one deficit

greater than the other, which means that we may only have one such maximal defect.

Further, because the conical defects are present a priori, it is possible to maximise

one simply by choosing a suitable values of the mass parameter, independent of

whether the black hole is charged or rotating [164–166]. The term “ultra-spinning”

therefore is no longer appropriate to designate these special solutions, therefore we

will use the term critical (for lack of an original word) to designate any black hole

solution which exhibits a single (or a pair of) 2π-conical deficit(s).

In order to explore the Reverse Isoperimetric Inequality of these critical black

holes, we need a description of their thermodynamics. The thermodynamic proper-

ties of black holes in AdS have been known for a while [167–172]. However, in the

ultra-spinning case, thermodynamics quantities cannot be simply obtained by taking

the a→ ` limit of the thermodynamic quantities of the Kerr-AdS black holes, since

they would diverge. Instead, the thermodynamics of ultra-spinning black holes were

constructed ‘afresh’ by taking the super-entropic metric and applying ‘standard pro-

cedures’ to find new thermodynamic quantities, which are disconnected from those

of the Kerr-AdS black holes. On the contrary, we find that when accelerated black

holes are critical, their thermodynamic quantities can be obtained as a smooth limit

of the original thermodynamic quantities for the accelerated black holes [173, 174].

It then follows that the reverse isoperimetric conjecture, shown to be valid for the

accelerated black holes [175], remains true also for the critical black holes. In ad-

dition, we will also consider a thermodynamic process by which the energy of a

rotating black hole could be harvested, known as the Penrose process.

In the next section we review the accelerating black hole geometry, focussing

on the slowly accelerating black hole [176] that has only a single, black hole, event
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horizon. This solution is static, with the time coordinate corresponding (up to a

rescaling) to the time parameter on the boundary. We derive parametric restrictions

for the existence of a black hole horizon, and the lack of existence of an acceleration

horizon, noting the allowed range of coordinates. We also discuss the physics of the

conical deficits.

In section 4.3 we first review the thermodynamics of the C-metric, as well as the

Kerr-AdS metric with conical defects. We then compare and contrast the thermo-

dynamics of the ultra-spinning Kerr-AdS with the critical accelerating black hole,

explicitly considering the role of charge, rotation and acceleration.

Then we turn to the Penrose process for an uncharged critical black hole and

compare with the Kerr-AdS solution and finally we sum up.

4.1 Accelerated black holes

4.1.1 The generalized C-metric

In 1918 Levi-Civita discovered a large class of mathematical solutions to Einstein

equations [177] whose physical meaning remained unknown until 1961, when this

metric was seen under a new light of understanding about black holes [160, 178].

In fact, the work of Ehlers and Kundt [160] provided a classification of degenerate,

static vacuum fields and the axisymmetric vacuum solution to Einstein’s equations

describing an accelerating black hole happened to fall under the “C”-type, thus

giving its rather arcane name to the C-metric.

Later on, Kinnersley and Walker provided an interpretation of this solution as an

accelerated black hole [161] and in 1976, Plebański and Demiański [162] presented a

more general metric that allowed to obtain the accelerating C-metric as well as the

Kerr metric as specific limits of it.

We begin by introducing the generalised asymptotically AdS C-metric solution

derived from the Plebański–Demiański metric to include rotation and charge, and



the corresponding gauge potential as given by Anabalon et al. [179]:

ds2 =
f(r)

ΣH2

[dt
α
− a sin2 θ

dφ

K

]2

− Σdr2

f(r)H2
− Σr2

g(θ)H2
dθ2

− g(θ) sin2 θ

Σr2H2

[adt
α
− (r2 + a2)

dφ

K

]2

,

(4.4)

where the metric functions are

f(r) = (1− A2r2)

[
1− 2m

r
+
a2 + e2

r2

]
+
r2 + a2

`2

g(θ) = 1 + 2mA cos θ + (Ξ− 1) cos2 θ ,

Σ = 1 +
a2

r2
cos2 θ ,

H = 1 + Ar cos θ ,

Ξ = 1 + e2A2 − a2

`2
(1− A2`2)

(4.5)

and the electromagnetic potential is given by

F = dB, B = − e

Σr

[dt
α
− a sin2 θ

dφ

K

]
+ Φtdt, Φt =

er+

α(a2 + r2
+)
. (4.6)

This is the metric for an accelerating black hole in anti de Sitter (AdS) spacetime,

where ` =
√
|Λ|/3 is the AdS lengthscale. The remaining parameters, a, e, m,

A > 0 are related to the angular momentum, charge, mass and acceleration of the

black hole, respectively.

Since the range of the angular parameter φ in the metric (4.4) is taken to be 2π,

the parameterK partially encodes the conical deficits along each axis. Likewise, note

that the time coordinate has been rescaled by α. It might seem therefore that a new

parameter has been introduced, however, the time coordinate is non-compact and

thus the rescaling by α represents a gauge degree of freedom: time is usually chosen

relative to an asymptotic observer and for an accelerating black hole, this poses a

rather hard task. Nonetheless, by using holographic renormalization techniques, the

value of α was found to be (see [179])

α =

√
(Ξ + a2/`2)(1− A2`2Ξ)

1 + a2A2
. (4.7)

The conformal factor, H, sets the location of the conformal boundary at rbd =

−1/A cos θ, that lies “beyond infinity” for θ < π/2. Therefore, even if the coordi-
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nates in (4.4) are an intuitive way to extend the Kerr metric to include acceleration,

they do not cover the full spacetime, although we can easily find a change of coor-

dinates that does extend beyond this “infinity” (see section 4.1.2).

Finally, we remark that even when a uniformly accelerating observer usually has

an acceleration horizon, if A` < O(1) (again, see section 4.1.2), the function f is

found to be positive everywhere outside the black hole event horizon, suggesting that

there is no acceleration horizon and that the black hole is simply suspended in AdS

at a finite displacement from the centre. This is known as a slowly accelerating

black hole [176], and will be the focus of our study, although the actual bound on A`

is slightly modified to account for the lack of an acceleration horizon beyond r =∞,

as will be described in the next section. We now turn to this, and other parametric

restrictions before discussing the conical deficit structure and the critical limit.

4.1.2 Coordinate ranges and parametric restrictions

When exploring critical black holes, it is vital to understand both the parametric

restrictions in the metric and its coordinate ranges. To do so, we must translate

the physical restrictions of the black holes we want to study into statements about

the functions f(r) and g(θ) and thereby obtain constraints on the parameters in the

metric.

For the metric eq. (4.4), the event horizon of our black hole lies at a zero of f(r)

that corresponds to 2m in the limit that `→∞, e, a, A→ 0, and that lies entirely

inside the AdS bulk. Demanding the black hole to not have an acceleration horizon

(i.e. to be slowly accelerating) means that we forbid another relevant zero of f .

Finally, if we want θ to correspond to the angular coordinate on the (deformed)

2-sphere we need g(θ) ≥ 0 on [0, π].

These three constraints will be clearer after making a consistent redefinition of

the black hole parameters by using the acceleration A to set their scale:

r̃ = Ar , m̃ = Am , ẽ = Ae , ã = Aa , ˜̀= A` . (4.8)

• For a black hole horizon to exist there must be an r+ such that f(r+) = 0,

with f ′(r+) ≥ 0. Furthermore, we demand this black hole horizon to fully

lie within the spacetime. The former requirement is relevant in the case



of a charged or rotating black hole, and corresponds to the black hole being

sub-extremal, or extremal if f ′(r+) = 0.

Using eq. (4.8) we solve the extremality condition f(r+) = f ′(r+) = 0. This

leads to constraints on two parameters, which we choose to be the mass and

cosmological constant (i.e. `) expressed in terms of the charge and angular

momentum. These can conveniently be parametrised in terms of the horizon

radius r+:

m̃ =
(r̃2

+ + ã2)2 + ẽ2(ã2 − r̃4
+ + 2r̃2

+)

r̃+ (ã2(1 + r̃2
+) + r̃2

+(2− r̃2
+))

˜̀2 =
r̃2

+(r̃2
+ − ã2r̃2

+ − 3r̃2
+ − ã2)

(1− r̃2
+)2(r̃2

+ − ã2 − ẽ2)

Furthermore, demanding the horizon to lie fully within the spacetime trans-

lates to Ar+ < 1; as otherwise it would be possible that 1/Ar+ = − cos θ+ for

some θ+, hence the event horizon would reach the boundary.
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Figure 4.1: Bounds for m̃ = mA. The blue and black lines cor-
respond to Ξ/2 and

√
Ξ− 1, respectively. The shaded gray region

between the bounds corresponds to the allowed parametric region
for m̃ with no real roots in the range [0, π) but still allowing for a
root at θ = π.

• For the coordinate θ to be an angular coordinate on the deformed 2−sphere,

we must impose the function g defined in eq. (4.5) to be positive for all θ, i.e.

g(θ) ≥ 0 on [0, π].

This gives us a set of conditions which we may choose to translate into bounds
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for the parameter m̃ in terms of a, e and ` as

m̃ ≤

Ξ/2 Ξ ≤ 2

√
Ξ− 1 Ξ > 2

(4.9)

The former comes from demanding g(π) > 0 and the latter comes from de-

manding that there are no real roots of g(θ), which is equivalent to demanding

that there are no roots of

P (y) = 1 + 2m̃y + (Ξ− 1) y2 (4.10)

over −1 < y < 1, with y = cos θ. The shaded region in fig. 4.1 corresponds to

scenarios where g(θ) might have a root at θ = π.

However, the requirement that Ar+ < 1 implies that the term in f(r+) inside

square brackets is negative:

r̃2
+ − 2m̃r̃+ + ẽ2 + ã2 < 0 (4.11)

For this quadratic function of r+ to have real roots, its discriminant needs to

be positive:

m̃2 > ẽ2 + ã2 = Ξ− 1 +
ã2

˜̀2
≥ Ξ− 1 (4.12)

which is in clear contradiction with (4.9) for Ξ > 2. Thus, the constraints

arising from the angular coordinate require

Ξ < 2 and m̃ ≤ Ξ/2. (4.13)

This bound on m̃ corresponds to the shaded area in fig. 4.1 and is the only

parametric region that simultaneously allows positivity of g and yields a hori-

zon for f .

• Finally, in order to explore the slow acceleration constraint, note that out-

side the black hole horizon f(r) is positive, but while r is a familiar coordinate

for describing the properties of the black hole, it does not cover the full space-

time, instead y = −1/Ar, running from −1/Ar+ on the horizon to cos θ on the

boundary proves to be a better coordinate. The region of spacetime beyond

r =∞ is now covered by positive values of y, and the lack of an acceleration



Figure 4.2: The admissible parameter space for a fixed value of
the charge ẽ = 0.2 is restricted by a blue upper limit for m̃, coming
from demanding positivity of g. The red lower bound comes from
demanding f to have a horizon hidding the singularity. The green
curve forming the boundary to the right of the allowed parameter
space corresponds to the slowly accelerating limit, preventing the
formation of a horizon at the boundary.

horizon in this region corresponds to F (y) > 0, where

F (y) = ˜̀2y2f(−1/Ay) = 1 + ã2y4 − ˜̀2(1− y2)
(
1 + 2m̃y + (Ξ− 1)y2

)
(4.14)

F has a minimum on [0, 1], so the borderline case as the acceleration horizon

forms is F (y0) = F ′(y0) = 0, giving

m̃ = y0
(1 + ã2y2

0)2 − ẽ2(1− 2y2
0 − ã2y4

0)

1− y2
0 (3 + ã2(1 + y2

0))
,

˜̀2 =
1− 3y2

0 − ã2y2
0(1 + y2

0)

(1− y2
0)2 (1− y2

0(ã2 + ẽ2))

(4.15)

To sum up: the constraint from g(θ) gives an upper bound on m̃, the constraint

from extremality gives a lower bound on m̃, and the constraint from slow acceleration

gives an upper bound on ˜̀, that is m̃−dependent. These bounds on m̃ are shown in

fig. 4.2 for a fixed value of the charge ẽ = 0.2 and in fig. 4.3 for fixed values of both

ẽ and ã.
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4.1.3 The conical defect

The presence of a conical deficit in the spacetime is parametrised (in part) by K.

Whether there is acceleration or not, if K 6= 1, the metric will not be flat along at

least one of the axes. In fact, we may introduce such defects to simpler spacetimes.

For instance, one may write the Schwarzschild metric with gSchφφ ∝ K−2. For K > 1,

the result is a black hole with a string running through its core. In this case, the

defect along both the θ = 0 and θ = π axes is the same. On the contrary, the

C-metric has unequal deficits and the resulting string tension imbalance implies an

acceleration. To understand this better, expand the angular part of the metric in

(4.4) near the poles by setting θ = θ±± ρ (with θ+ = 0 and θ− = π) near each axis:

ds2 ∼ 1

H2

Σr2

g(θ±)

[
dρ2 +

g2(θ±)ρ2

K2
dφ2

]
. (4.16)

The deficit on each axis is then read off as:

δ± = 2π

[
1− g(θ±)

K

]
= 2π

[
1− Ξ± 2mA

K

]
. (4.17)

If A = 0 then both deficits are identical and this situation can be interpreted as a

cosmic string running through the black hole [180, 181] with a tension given by

µ =
δ

8π
=

1

4

[
1− Ξ

K

]
(4.18)

If A is nonzero however, then there is an asymmetry in the spacetime, with a dif-

ference in deficits between the north and south poles:

µ± =
1

4

[
1− Ξ± 2m̃

K

]
(4.19)

which produces a net force on the black hole which is the origin of acceleration.

It is now evident that if we choose K to obtain a particular value of the conical

deficit on one side of the axis, that choice of K has a global impact on the spacetime.

It is also worth mentioning that although a negative deficit (otherwise known as an

excess) is possible, it would be sourced by a negative energy object and would

be associated with instabilities; we therefore restrict ourselves to positive energy

sources, thus K > Ξ + 2m̃ (taking A > 0). In most of the literature on accelerating

black holes, the deficit along one of the axes is chosen to vanish, i.e. K = Ξ + 2m̃
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(e) ã = 1/3, ẽ = 0
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Figure 4.3: Allowed values of m̃ in terms of ˜̀ given for different
values of the parameters ã and ẽ . The figures on the right are slices
of fig. 4.2 at the given values of ã.
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(a) (b)

Figure 4.4: Embeddings of the non-rotating C-metric in E3, for
the black hole with ˜̀ = 0.01, m̃ = 9and (a) K = Ξ + 2m̃, (b)
K = 1.5(Ξ + 2m̃). Notice that (a) has no conical deficit on the
North pole.

(for our north pole). However, we will not make this restriction here, unless stated

explicitly.

In fig. 4.4 we illustrate the effect of making different choices for K in an embed-

ding in R3 of the event horizon coming from the metric (4.4).

4.2 Critical black holes

After discussing the slowly accelerating C-metric, and the parametric restrictions

that this geometry requires, we now turn to the critical black holes we are interested

in exploring.

The term critical is used to describe a geometry in which at least one of the

tensions has its maximal value of 1/4, i.e., where the deficit becomes 2π (as in the

ultra-spinning black hole [155]). For the ultra-spinning Kerr-AdS black hole, this

corresponds to saturating an upper bound on rotation, however, in our accelerating

black hole metric, the deficit along one axis can become 2π even in the absence of

rotation2. Hence we can think of criticality as saturation of an upper bound for the

2These critical black holes have also been considered by Chen and Teo in [165, 166].
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Figure 4.5: A parametric plot of the allowed values of ˜̀ and ẽ
(parametrised by either r+ or y+): The upper bound for ẽ from
extremality is shown in black/grey, and the upper bound for ˜̀ from
the slow acceleration limit is shown in red/pink for sample values
of ã as labelled. The upper bound for ã is ã2 = 3− 2

√
2.

mass parameter m̃:

m̃ = Ξ/2. (4.20)

With this choice, the south pole axis is removed from the spacetime, while the

north pole axis may still suffer from a conical deficit, determined by the ratio of

K/Ξ (as shown in fig. 4.6).

Since taking the critical limit eliminates one parameter by imposing eq. (4.20),

we have a three-parameter family of critical accelerating black holes parametrised

by ẽ = eA, ã = aA, and ˜̀ = A`, with the mass given by (4.20). Once again, these

parameters are constrained by g(θ), and the slow-acceleration / extremal limits for

the black hole. Since the critical condition is readily given by eq. (4.20) in terms of

m̃, we now write the extremality and slow acceleration bounds as conditions on ẽ

and ˜̀ in terms of r̃+ and ã:

extremal limit


˜̀2
ext =

ã2 + 3ã2r̃+ + 4r̃3
+ + r̃4

+ − r̃5
+

(1− r̃+)3(1 + r̃+)2

ẽ2
ext =

−ã4 − 3ã4r̃+ + 2ã2r̃2
+ − 2ã2r̃3

+ + 3r̃4
+ + r̃5

+

ã2 + 3ã2r̃+ + 4r̃3
+ + r̃4

+ − r̃5
+

slow acc. limit


˜̀2
acc =

1 + y+ − 4y2
+ − 3ã2y4

+ + ã2y5
+

(1− y+)2(1 + y+)3

ẽ2
acc =

−1 + 3y+ + 2ã2y2
+ + 2ã2y3

+ + 3ã4y4
+ − ã4y5

+

1 + y+ − 4y2
+ − 3ã2y4

+ + ã2y5
+

.

(4.21)

Note that the constraint coming from g(θ) is automatically satisfied due to the
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(a) (b)

Figure 4.6: Horizon embeddings in R3 of critical black holes. We
display the horizon embeddings of the critical C-metric for (a) K =
2Ξ and (b) K = 3Ξ. These are the equivalent horizons of fig. 4.4
in the critical limit 2m̃ = Ξ.

choice of m̃. The allowed values of ẽ and ˜̀ are shown in fig. 4.5 for different choices

of ã. Notice there is an upper bound for ã after which the slowly accelerating and

extremal limits would not meet.

In figure 4.6 we show the event horizon of critical black holes for different values

of K.

4.3 Thermodynamics of Critical Black Holes

4.3.1 Thermodynamics of accelerated black holes

As we have alread pointed out in the introduction of this chapter, the original

version of the first law (4.3) did not consider a pressure-volume term ubiquitous

in usual thermodynamics. In fact, this term was obtained only after Teitelboim

and Brown [182–184] proposed the cosmological constant to be a thermodynamical

variable, which led to a proper association between the pressure and the cosmological



constant given by Kastor, Ray and Traschen [146]. Then, in a series of papers [173,

174, 179, 185, 186] the inclusion of conical defects and accelerating black holes was

explored and refined and, as a result, an extended first law was obtained by Anabalón

et al. [179, 186]:

δM = TδS + ΦδQ+ ΩδJ + V δP + λ+δµ+ + λ−δµ− ,

where the enthalpy of the black hole is identified with its mass

M =
m (Ξ + a2/`2) (1− A2`2Ξ)

KΞα (1 + a2A2)
(4.22)

(with α defined in (4.7)). Likewise, the six thermodynamic charges S,Q, J, P, µ±

together with their corresponding potentials T,Φ,Ω, V, λ± are given in terms of the

six black hole parameters A, a,m, e, `,K by

T =
f ′+r

2
+

4πα(r2
+ + a2)

, S =
π(r2

+ + a2)

K(1− A2r2
+)
,

Q =
e

K
, Φ = Φt =

er+

(r2
+ + a2)α

,

J =
ma

K2
, Ω = ΩH − Ω∞ =

(
Ka

α(r2
+ + a2)

)
−
(
−aK(1− A2`2Ξ)

`2Ξα(1 + a2A2)

)
,

P =
3

8π`2
, V =

4π

3Kα

[
r+(r2

+ + a2)

(1− A2r2
+)2

+
m[a2(1− A2`2Ξ) + A2`4Ξ(Ξ + a2/`2)]

(1 + a2A2)Ξ

]
,

λ± =
−r+

α(1± Ar+)
+
m

α

[Ξ + a2/`2 + a2

`2
(1− A2`2Ξ)]

(1 + a2A2)Ξ2
± A`2(Ξ + a2/`2)

α(1 + a2A2)
.

(4.23)

These charges also satisfy a Smarr relation [187]

M = 2(TS + ΩJ − PV ) + ΦQ. (4.24)

A description of how these potentials were obtained using both conformal and holo-

graphic techniques is given in Anabalon et al. [179].

Despite the fact that the tensions µ± are natural variables and indeed correspond

to physical objects (cosmic strings emerging from the event horizon [180]) they do

not reflect the natural thermodynamic dependences once the charges and potentials

are expressed in terms of extensive variables [175]. Instead, we use the equivalent

parametrisation of an overall conical deficit ∆ and a differential conical deficit C
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[175], given by:

∆ = 1− 2(µ+ + µ−) =
Ξ

K
,

C =
µ− − µ+

∆
=

m̃

∆K
=
m̃

Ξ
.

(4.25)

Since the tensions are bounded from below by the positivity of energy, and above

by the maximum conical deficit of 2π, we have

0 6 µ+ 6 µ− 6 1/4, (4.26)

which translates into bounds for C:

0 6 C 6 min

{
1

2
,
1−∆

2∆

}
(4.27)

How to write the expressions eq. (4.23) in terms of extensive variables was worked

out in [175]; the expressions are:

M2 =
∆S

4π

[(
1 +

πQ2

∆S
+

8PS

3∆

)2

+

(
1 +

8PS

3∆

)(
4π2J2

∆2S2
− 3C2∆

2PS

)]
,

V =
2S2

3πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)
+

2π2J2

(∆S)2
+

9C2∆2

32P 2S2

]
,

T =
∆

8πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)(
1− πQ2

∆S
+

8PS

∆

)
− 4π2J2

(∆S)2
− 4C2

]
,

Ω =
πJ

SM∆

(
1 +

8PS

3∆

)
,

Φ =
Q

2M

(
1 +

πQ2

S∆
+

8PS

3∆

)
,

λ± =
S

4πM

[(
8PS

3∆
+
πQ2

∆S

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
− (1∓ 2C)2 ± 3C∆

2PS

]
.

(4.28)

These expressions have been rewritten in terms of better suited parameters that

keep track of the overall and differential conical deficits and are useful for exploring

the general thermodynamical properties of the black holes, specially because (as we

will see in section 4.3.4) the critical limit is reached only by the making a choice for

C. Nonetheless, we will refer to the parametric expressions (4.23) when discussing

the ‘super-entropic’ black hole.



4.3.2 Thermodynamics of super-entropic black holes

The charged Kerr-AdS black holes are given by setting A = 0 in the metric (4.4).

This implies that for the remainder of this subsection we are focusing on C = 0.

Since A = 0, we have that

Ξ = 1− a2/`2 .

Typically, one sets K ≡ Ξ, so that there is no conical deficit in the spacetime. The

thermodynamics of these black holes was worked out definitively by Gibbons et al.

[167] (for the uncharged case), with the key insight being that the boundary has a

non-zero angular velocity,

Ω∞ = lim
r→∞
− gtφ
gφφ

= −aK
`2Ξ

(4.29)

implying that the total angular velocity ought to be re-normalised. Further, a

computation of the mass of the spacetime, using an appropriately normalised Killing

vector, yielded M = m/Ξ2 for the enthalpy. These results are entirely consistent

with (4.22), (4.23), once one sets K = Ξ. Crucially, when considering a varying Λ,

the inclusion of these normalisations for enthalpy and angular momentum leads to

an enthalpy dependent correction term in the thermodynamic volume:

V = V0 + V1 =
4πr+(r2

+ + a2)

3K
+

4πMa2

3
(4.30)

that provides a baseline for the parameter.

The ultra-spinning limit is obtained by taking the limit in which a → `, but

because of the identification of K with Ξ, there is now some subtlety with the

angular part of the metric. In Hennigar et al. [157], a new angular coordinate is

defined: ψ = φ/Ξ, so that ψ formally becomes noncompact in the ultra-spinning

limit. This new angular coordinate is then given a finite range, ∆ψ = µS, and

consistency is used to derive the thermodynamic parameters:

MS =
µSm

2π
, SS =

µS
2

(r2
+ + `2) , TS =

f ′(r+)r2
+

4π(r2
+ + `2)

JS = Ms` , ΩS =
`

r2
+ + `2

, VS =
2µSr+

3
(r2

+ + `2)

QS =
µse

2π
, ΦS =

er+

r2
+ + `2

, λS =
m

4π

(`2 − r2
+)

(r2
+ + `2)

(4.31)
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where the subscript S is used to denote these specific ‘super-entropic’ definitions,

and we have relabelled the thermodynamic length parameter, denoted K in [157] as

λS, which is dual to a variation of the parameter µS.

Crucially, there is no renormalisation of angular momentum, nor of the time-

like Killing vector, in consequence, there is no adjustment of the angular potential

Ω, nor an ‘M ’ correction to the thermodynamic volume. As a result, the volume

is simply the geometric volume, thus the standard mathematical Isoperimetric in-

equality applies, and the entropy is now minimised by the contained volume. This

fascinating result has caused some puzzlement, as the thermodynamic parameters

are not obtained as an “a → `’ limit of the conventional parameters, nor does it

seem possible to obtain one of these black holes by some sort of continuous process.

In addition, the idea that the entropy can be unbounded for a fixed volume suggests

that super-entropic black holes should be somehow unstable, a notion explored (in

a different context) by Johnson [188]. Thus the super-entropic black hole is worthy

of further study.

One of the problems of the thermodynamic parameters of [157] is that setting

a ≡ ` means that the angular momentum and thermodynamic pressure are no longer

independent variables. In other words, the first law no longer has full cohomogeneity.

Further, the discrete alteration of the periodicity of the angular coordinate is equiv-

alent to a sudden shift of the conical deficit from 0 to 2π, as one is setting K = Ξ

for the sub-rotating black holes (giving µ = 0) but for a = `, the periodicity of the

original φ coordinate, set to µΞ by Hennigar et al. [157], now vanishes. However,

since we have a set of thermodynamic variables that include potential variations

in the conical deficit, we can now examine this super-entropic ultra-spinning limit

afresh, and try to understand what lies behind this phenomenon.

Consider approaching the limit a → ` from a more continuous perspective, by

taking a family of black holes with a/` fixed, but less than unity, i.e. Ξ is constant,

but nonzero. Using the expressions (4.23) with A = 0, and the fact that δa/a = δ`/`,

the combination of the adjustment to the angular potential and the variation of

enthalpy can be manipulated into a form that will lead to the Hennigar et al. results.



Consider

δM + Ω∞δJ =
1

Ξ
δ
(m
K

)
− aK

Ξ`2
δ
(ma
K2

)
= δ

(m
K

)
+
ma2

Ξ`2

δK

K2
− ma2

KΞ

δ`

`3

= δ
(m
K

)
+

4ma2

Ξ2`2
δµ+ V1δP

(4.32)

i.e. because of the constraint between a and `, the renormalisation of Ω in the first

law cancels with the renormalisation of V :

δM − ΩδJ − V δP = δ
(m
K

)
− ΩHδJ − V0δP +

4ma2

Ξ2`2
δµ (4.33)

and one can then further reduce the angular momentum pieces:

ΩHδJ =
a

r2
+ + a2

[
δ
(ma
K

)
+
ma

4Ξ
δµ
]

(4.34)

Finally, making the identification

µS =
2π

K
=

2π

Ξ
(1− 4µ) (4.35)

Gives a new set of “thermodynamic parameters”

MS =
µSm

2π
, JS = MSa , ΩS =

a

r2
+ + a2

,

VS =
2µS

3
r+(r2

+ + a2) , λS =
Ξr+

4π
− m

4π

(r2
+ − a2)

(r2
+ + a2)

(4.36)

that are identical to those of Hennigar et al. in the Ξ→ 0 limit. Thus, the thermody-

namics presented in [157] is indeed consistent, however, there has been a nontrivial

reworking of the various contributions that results in a lack of renormalisation of

V and Ω. Naturally, without this renormalisation, the volume is simply its geomet-

ric form, and thus the mathematical Isoperimetric inequality holds, rendering these

thermodynamics super-entropic.

4.3.3 The Reverse Isoperimetric Inequality

To explore the Reverse Isoperimetric Inequality in the context of critical black holes,

we need to consider the relation between volume and entropy. For simplicity set
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Q = 0 then, from (4.28), we see that

4πM2

∆S
=

(
1 +

8PS

3∆

)2

+ 4

(
1 +

8PS

3∆

)(
π2J2

∆2S2
− C2 3∆

8PS

)
=

(
3πMV

2S2
− 2C2

(
3∆

8PS

)2
)2

− 4

(
πJ

∆S

)4

− 4C2

(
1 +

3∆

8PS

)
≤
(

3πMV

2S2

)2

,

(4.37)

where we have used the expression for V to substitute for 1 + 8PS/3∆ in M2. In

turn, this implies that(
A

4π∆

)1/2

=

(
S

π∆

)1/2

≤
(

3V

4π∆

)1/3

, (4.38)

with equality only for J = 0 = C. This is the so-called Reverse Isoperimetric

Inequality of Cvetic et al. [147] and is, roughly, a statement that black holes like to

be round3. Notice that any value of C different to zero increases the inequality and

since a value of C = 1/2 (which as we will see in section 4.3.4 is related to criticality)

can be reached smoothly, the fact that the solution found by Hennigar et al. does

not follow the reverse isoperimetric inequality seems to isolate it completely from

this family of solutions.

4.3.4 The critical limit

The critical black holes constructed in section 4.2 are now simply obtained by setting

2m̃ = Ξ which, from (4.25) implies

C =
1

2
(4.39)

and corresponds to µ− = 1/4. As a result, ∆ = 1
2
− 2µ+ and its allowed range is

thus ∆ ∈ [0, 1/2], with the lower (upper) bound corresponding to the upper (lower)

value that µ+ can take; thus µ+ = 0←→ ∆ = 1/2, and µ+ → 1/4←→ ∆→ 0.

The critical condition eq. (4.39) is hard to impose at the parametric level (4.23)

3Note that in the case without deficits, ∆ = 1.



but very simple for the expressions (4.28). The limit is smooth and yields

M2 =
∆S

4π

[(
1 +

πQ2

∆S
+

8PS

3∆

)2

+

(
1 +

8PS

3∆

)(
4π2J2

∆2S2
− 3∆

8PS

)]
,

V =
2S2

3πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)
+

2π2J2

(∆S)2
+

9∆2

128P 2S2

]
,

T =
∆

8πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)(
1− πQ2

∆S
+

8PS

∆

)
− 4π2J2

(∆S)2
− 1

]
,

Ω =
πJ

SM∆

(
1 +

8PS

3∆

)
,

Φ =
Q

2M

(
1 +

πQ2

S∆
+

8PS

3∆

)
,

λ∆ = − S

8πM

[(
8PS

3∆
+
πQ2

∆S

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
+

3∆

4PS

]
,

(4.40)

where λ∆ is the relevant combination of thermodynamic lengths for the remaining

degree of freedom ∆. These quantities obey a full cohomogeneity first law,

δM = TδS + ΦδQ+ ΩδJ + V δP + λ∆δ∆ , (4.41)

together with the corresponding Smarr relation (4.24).

The above proof of the reverse isoperimetric inequality for the accelerated black

holes goes through even for the critical family of these black holes. This means that

the reverse isoperimetric inequality remains valid, despite the fact that the horizon

of a critical black hole is, similar to the superentropic case, non-compact.

4.4 The Penrose process for critical black holes

The Penrose process was the first classical method by which energy could be ex-

tracted from an uncharged, rotating black hole by exploiting the existence of an

ergoregion: a region of spacetime outside of the event horizon, where the timelike

Killing vector (measured by an observer at infinity) becomes spacelike. The energy

harvested in this way comes at the expense of the angular momentum of the black

hole and, considering the extreme situation in which one starts with the critical

(pure) Kerr black hole and ends up with a Schwarzschild black hole of its irreducible

mass, one can extract as much as 29% of the total energy of the black hole.

Turning to the accelerated black hole, perhaps its most distinctive feature is
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that the enthalpy now contains a negative or exothermic term that might cause the

enthalpy to vanish for very small black holes (see eq. (4.28)). To see whether this

is possible within the family of slowly accelerating black holes, one must check the

condition for vanishing enthalpy (˜̀2Ξ = 1 from eq. (4.22)) against the slow accel-

eration values for ẽ, ˜̀, and ã for the critical black hole. Interestingly, the enthalpy

is positive for all critical black holes within the slow acceleration limit, except for

the non-rotating extremal critical black hole, that is at the slow acceleration limit

and has zero enthalpy. However, even though the enthalpy is non-vanishing, it can

become small, which leads to large values of the thermodynamic volume and thus

have an interesting implication for the Penrose process.

For simplicity we will consider an uncharged (Q = 0), critical (C = 1/2), slowly

accelerating black hole, for which the relevant thermodynamic parameters eq. (4.40)

are reduced to:

M2 =
∆S

4π

(
1 +

8PS

3∆

)[
1 +

8PS

3∆
+

4π2J2

∆2S2
− 3∆

8PS

]
V =

2S2

3πM

[
1 +

8PS

3∆
+

2π2J2

∆2S2
+

9∆2

128P 2S2

]
,

T =
∆

8πM

[
32PS

3∆
+

64P 2S2

3∆2
− 4π2J2

∆2S2

]
,

Ω =
πJ

SM∆

(
1 +

8PS

3∆

)
,

λ∆ = − S

8πM

[(
8PS

3∆

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
+

3∆

4PS

]
.

(4.42)

Notice that the exothermic (negative) term in these equations would not appear in

the absence of acceleration C = 0.

Since there are many notions of energy in thermodynamics, in black hole thermo-

dynamics there is a potential ambiguity when considering the efficiency of a process:

should one use the change in internal energy, or in enthalpy? This is particularly

pertinent for the Penrose process. When it was first considered in extended ther-

modynamics in [149], Dolan proposed a formula for its efficiency that involved the

internal energy, mirroring the Penrose process for the asymptotically flat Kerr black

hole. The efficiency considered is given by the ratio of the change in internal energy



U to the enthalpy M :

ηD =
U(S, Jmax, P )− U(S, 0, P )

M(S, Jmax, P )
, (4.43)

with Jmax being a function of S, P,Q (and in our case ∆) and the internal energy

given by U = M−PV . The justification of the expression for the efficiency (4.43) is

that the internal energy of the black hole determines what energy can be extracted.

Furthermore, as Dolan points out, when Λ < 0 the maximal efficiency of the Penrose

process increases with respect to the Λ = 0 case because the system can be pushed

to higher Jmax.

However, in a recent paper [? ] Hu et al. show that considering the energy of

a particle absorbed by a black hole to change the internal energy of the black hole

leads to a violation of the 2nd law of thermodynamics. Furthermore, they proved

that if one assumes that the energy of a particle absorbed by a black hole changes

its enthalpy instead, there is no such a violation to the second law. Therefore, the

definition of efficiency for a black hole undergoing an isobaric process should be

given entirely in terms of the enthalpy [153, 189]:

ηM =
M(S, Jmax, P )−M(S, 0, P )

M(S, Jmax, P )
, (4.44)

hence, we will analyse both formulae for the efficiency of the Penrose process of the

black hole.

When studying the Penrose process we first need to know the maximum allowed

value of J , which is given by demanding the temperature to be non-negative T ≥ 0,

which gives an upper bound for J :

J2
max =

∆2S2

4π2

[
32PS

3∆
+

64P 2S2

3∆2

]
=

(
3∆2x

16πP

)2 (
3x2 + 4x

)
, (4.45)

where we have conveniently defined

x =
8PS

3∆
. (4.46)

Substituting the maximum value of J in (4.44), we obtain the maximum efficiency

ηM = 1−
[

1 + x− x−1

1 + 3x2 + 5x− x−1

]1/2

, (4.47)
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which is shown in fig. 4.7. Notice that in fig. 4.7 we have made a cutoff at xsa = 2/3,

which is the smallest value of entropy (for given P and ∆) that ensures both the

rotating and static black holes lie within the allowed parameter space dictated by

the extremal and slow acceleration limits. Notice that at large values of x (i.e. large

values of S), this efficiency tends to 1. Indeed, by looking at eq. (4.45), we can see

that the dominating term of the enthalpy M (4.42) at large values of the entropy

comes from the J2 term, which means most of the energy available for extraction of

a maximally rotating black hole will be stored in its angular momentum.

On the other hand, the efficiency ηD defined in eq. (4.43) is related to ηM by

ηD = ηM +
P

M(Jmax)

[
V (0)− V (Jmax)

]
= ηM +

3∆2x2

32πPM(Jmax)

[(
1 + x+

1

2x2

)(
1

M(0)
− 1

M(Jmax)

)

− 1

2M(Jmax)

(
3x2 + 4x

) ]
.

(4.48)

From the definition of the mass term given in (4.42) it is clear that M(Jmax) > M(0)

and thus the first term inside the square brackets is always positive. Furthermore,

since M vanishes at some value x0 (which is less than xsa), the efficiency ηD defined

in eq. (4.43) becomes greater than 1 close to this value. However, this would imply

that in the Penrose process one could extract an amount of energy greater than the

black hole’s initial mass. The efficiency ηD is shown as a red curve in fig. 4.7.

Notice that in this figure, the minimum value xsa allowed by our parameter space

is greater than the critical value x0 at which M = 0 (shown at the gray vertical line).

It is clear that it is the appearance of an exothermic term (coming from a dif-

ferential conical deficit) in eq. (4.42) that makes ηD greater than 1 for small black

holes. Since the thermodynamics of accelerating black holes has only recently been

developed, it is not surprising that this problem was not noticed earlier4. We claim

that it is ηM that should be considered when describing the amount of energy that

can be extracted from the black hole by an isobaric, isentropic process such as the

Penrose process.

4Without conical deficits, C = 0, ∆ = 1 eq. (4.28) reduces to the expressions given by Dolan.
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Figure 4.7: Efficiencies of the Penrose process as a function of x,
for a configuration of P = 1, ∆ = .45 and c = .5. The enthalpy
efficiency ηM is shown in blue whereas the external energy efficiency
ηD corresponds to the red curve.

Hu, Ong and Page considered a similar question in the context of particle ab-

sorption by black holes [? ], where it was shown that for a black hole at constant

pressure, it is the enthalpy (and not the internal energy) that is increased by the

amount of heat into the system, which in the case of particle absorption would be

given by the energy of the particle. Similarly, in the Penrose process the energy of

the particle goes into changing M by changing both the internal energy U and the

thermodynamic volume V , while resisting the pressure.

As we know from regular thermodynamics, there are several notions of “ener-

gies” and even though both the enthalpy and the internal energy are indeed energy,

it is important to distinguish which is the one that would change under particle

absorption.

4.5 Conclusions

In this chapter we have analysed critical accelerating black holes with the initial

motivation of studying the phenomenon of super-entropicity, the reason being that

the manifestation of any phenomenon due to acceleration would have paramount

importance at criticality. We have verified that the Reverse Isoperimetric Inequality
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holds, as expected from [175]. Furthermore, we also considered the Penrose process

and realised that the formula given in [149] for the efficiency does not seem to give

a sensible result in the accelerating black hole case since it gives values larger than

1 for small black holes. In contrast if we consider a consistent definition of efficiency

given purely in terms of the enthalpy of the black hole, we find that the efficiency

of the Penrose process is always less than unity.





Chapter 5

Concluding remarks

The research done for the completion of this thesis covered two fairly different as-

pects of gravity which required concepts of vacuum decay, quantum field theories,

braneworld models and thermodynamics.

The first topic considered in this thesis is the role of gravity in vacuum decay,

we began its study chapter 1 with a narrative that aimed to provide a clear and

self-contained discussion by starting from basic ideas of vacuum decay in QM and

QFT and then studying the gravitational effects on vacuum decay, which led us

to highlight that in fact gravity renders the decay of our (almost flat) universe

less likely [59]. Nonetheless, further considerations of impurities of spacetime (most

naturally mimicked by black holes) showed that we should make a thorough study on

the role of black holes as seeds for vacuum decay [101, 101, 105–109]. The dramatic

enhancement on bubble nucleation rates provided by evaporating small black holes

(like the primordial ones) in 4 dimensions inspired us to explore the nucleation of

bubbles around a different type of micro black holes, which might appear in higher

dimensional models of our universe. We discussed some of the characteristics of the

Randall-Sundrum scenario [73, 77] that make it appealing as a higher dimensional

model. We then saw how gravity for an observer constrained to the brane in the RS

scenario relates to usual 4D GR via the SMS formalism [91, 92] and remarked that

information about the extra dimension is encoded in the Weyl tensor.

Then, after pointing out that the measured values of the Higgs boson and top

quark masses set the Standard Model to lie within the parameter range that allows

its potential to develop a metastability [4, 6, 95–97] our motivation to study Higgs



vacuum decay near black holes within the RS scenario became clear.

When studying tunnelling the most important thing to calculate is the difference

in actions between the before and after nucleation configurations and to calculate the

action, one usually needs a solution. However, one of the main issues one confronts

when studying tunnelling in higher dimension is that, up to this day, an exact brane-

black hole solution for a brane black hole system has not been found [64, 124, 125].

Notwithstanding the lack of an analytical solution, we were able to construct an

argument that, in close parallel to the 4-dimensional case [106], shows that the

action for tunnelling is given by the difference in areas between the seeding and

remnant black holes. Based on qualitative features of the numerical solutions we

estimated the area of the small brane black holes by the area of a hypersphere and

used the freedom in the Weyl tensor [91] to choose the tidal model [93]. We then

obtained a relation between the black hole mass measured from the 4-dimensional

brane and the horizon radius, which let us compute the amplitude for tunneling.

We integrated numerically the EOM of a Higgs-like scalar field, obtained its decay

rate and determined that black holes within a certain range of mass are likely to

initiate vacuum decay. In the context of the Higgs field, the standard model potential

is only valid at best for energy scales below the scale of new physics; therefore M5

should always be greater than the instability scale Λφ. Furthermore, the lowest

value for the instability scale consistent with experimental limits is Λφ ∼ 108GeV

and thus, we have a lower bound for the higher dimensional Planck scale. Explicitly,

for the 5-dimensional Planck scale to be consistent with experimental limits of the

instability scale, we must have M5 > 108GeV, which “unfortunately” is well outside

the range probed by the LHC. Nonetheless, we highlighted the possibility of having

Ultra High Energy Cosmic Rays that would reach the energy levels required for the

creation of these micro black holes [141].

Then, for the sake of completeness, we focused on the extent to which Higgs

vacuum decay around black holes depends on the presence of the black hole or to

the presence of higher dimensions. To do so, we explored instanton solutions for a

brane scalar field in the absence of black holes and studied different potentials to

understand the effect of weak or strong backreacting bubbles. As a result of this,

we determined that the influence of the fifth dimension on tunnelling rates is minor,
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with the exception of strongly backreacting bubbles. Therefore, since the Higgs-like

potential is associated with a very weakly backreacting bubble, we concluded that

(again, in close analogy to the 4-dimensional case) it is the presence of black holes

that enhances vacuum decay rates.

The second topic studied in this thesis was covered in chapter 4, where we intro-

duced the generalised asymptotically AdS C-metric solution given by Anabalón et

al. [179, 186]. We imposed physical restrictions on the metric and translated them

into bounds of the black hole parameter space. We then examined conical defects,

their physical meaning and discussed the critical limit for the rotating, accelerating,

charged AdS black holes. We briefly reviewed the main ideas of black hole thermody-

namics, expressed the thermodynamic potentials in terms of parameters well suited

to describe overall and differential conical deficits and remarked that the enthalpy of

an accelerating black hole has an exothermic term that could cause it to vanish for

small black holes. Then, by considering the Penrose process for uncharged, ultra-

spinning, slowly accelerating, small AdS black holes, we showed that a definition

of efficiency given in terms of the internal energy gives rise to an efficiency greater

than 1 for small black holes, which is inconsistent. In contrast, a definition of the

efficiency of the Penrose process given entirely in terms of the enthalpy, does have

admissible values for the maximum efficiency. Our work indicated that the notion of

efficiency for black hole processes in AdS should be re-examined critically in a more

complete fashion. Finally, it would also be interesting to consider other Penrose-like

processes for the extraction of energy such as bleeding off acceleration from the black

hole.





Bibliography

[1] L. Cuspinera, R. Gregory, K. Marshall and I. G. Moss, Higgs Vacuum Decay

from Particle Collisions?, Phys. Rev. D99 (2019) 024046 [1803.02871].

[2] L. Cuspinera, R. Gregory, K. M. Marshall and I. G. Moss, Higgs vacuum

decay in a braneworld, International Journal of Modern Physics D (2019)

2050005.

[3] M. Appels, L. Cuspinera, R. Gregory, P. Krtous and D. Kubiznak, Are

Superentropic black holes superentropic?, 1911.12817.

[4] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio

et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013)

089 [1307.3536].

[5] R. Gregory and A. Padilla, Brane world instantons, Class. Quant. Grav. 19

(2002) 279 [hep-th/0107108].

[6] T. Markkanen, A. Rajantie and S. Stopyra, Cosmological Aspects of Higgs

Vacuum Metastability, Front. Astron. Space Sci. 5 (2018) 40 [1809.06923].

[7] L. Cuspinera, R. Gregory, K. M. Marshall and I. G. Moss, Higgs Vacuum

Decay in a Braneworld, 1907.11046.

[8] M. Born, Max karl ernst ludwig planck, 1858-1947, Obituary Notices of

Fellows of the Royal Society 6 (1948) 161.

[9] A. Einstein, Zur elektrodynamik bewegter krper, Annalen der Physik 322

(1905) 891.

https://doi.org/10.1103/PhysRevD.99.024046
https://arxiv.org/abs/1803.02871
https://doi.org/10.1142/s0218271820500054
https://doi.org/10.1142/s0218271820500054
https://arxiv.org/abs/1911.12817
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://arxiv.org/abs/1307.3536
https://doi.org/10.1088/0264-9381/19/2/308
https://doi.org/10.1088/0264-9381/19/2/308
https://arxiv.org/abs/hep-th/0107108
https://doi.org/10.3389/fspas.2018.00040
https://arxiv.org/abs/1809.06923
https://arxiv.org/abs/1907.11046
https://doi.org/10.1098/rsbm.1948.0024
https://doi.org/10.1098/rsbm.1948.0024
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1002/andp.19053221004


[10] P. A. M. Dirac, The quantum theory of the emission and absorption of

radiation, Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 114 (1927) 243.

[11] P. A. M. Dirac, The quantum theory of the electron, Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 117 (1928) 610.

[12] A. Einstein, Die grundlage der allgemeinen relativittstheorie, Annalen der

Physik 354 (1916) 769.

[13] K. Schwarzschild, On the gravitational field of a mass point according to

Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)

1916 (1916) 189 [physics/9905030].

[14] D. Finkelstein, Past-future asymmetry of the gravitational field of a point

particle, Phys. Rev. 110 (1958) 965.

[15] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese,

K. Ackley et al., Observation of gravitational waves from a binary black hole

merger, PRL 116 (2016) 061102 [1602.03837].

[16] Event Horizon Telescope collaboration, First M87 Event Horizon

Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys.

J. 875 (2019) L1.

[17] S. W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev.

Lett. 26 (1971) 1344.

[18] J. D. Bekenstein, Black holes and the second law, Lettere Al Nuovo Cimento

(1971–1985) 4 (1972) 737.

[19] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.

[20] J. M. Bardeen, B. Carter and S. W. Hawking, The four laws of black hole

mechanics, Communications in Mathematical Physics 31 (1973) 161.

[21] S. W. Hawking, Black hole explosions, Nature 248 (1974) 30.

https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://arxiv.org/abs/physics/9905030
https://doi.org/10.1103/PhysRev.110.965
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/bf01645742
https://doi.org/10.1038/248030a0


BIBLIOGRAPHY 119

[22] S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43

(1975) 199.

[23] J. J. Sakurai, Modern Quantum Mechanics (Revised Edition). Addison

Wesley, 1993.

[24] G. V. Dunne, Functional determinants in quantum field theory, J. Phys. A41

(2008) 304006 [0711.1178].

[25] A. Zee, Quantum Field Theory in a Nutshell. Princeton University Press,

2nd ed., 2010.

[26] L. H. Ryder, Quantum Field Theory. Cambridge University Press, 2nd ed.,

1996.

[27] S. Weinberg, The Quantum Theory of Fields, vol. Volume I: Foundations.

Cambridge University Press, 1995.

[28] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals.

McGraw-Hill College, 1965.

[29] H. Goldstein, P. C.P. and S. J.L., Classical Mechanics. Addison-Wesley,

3rd ed., 2002.

[30] S. Coleman, Quantum tunneling and negative eigenvalues, Nuclear Physics B

298 (1988) 178.

[31] S. Coleman, Aspects of symmetry. Cambridge University Press, 1985.

[32] C. G. Callan, Jr. and S. R. Coleman, The Fate of the False Vacuum. 2. First

Quantum Corrections, Phys. Rev. D16 (1977) 1762.

[33] G. V. Dunne, Functional determinants in quantum field theory, 0711.1178v1.

[34] T. Banks, C. M. Bender and T. T. Wu, Coupled anharmonic oscillators. i.

equal-mass case, Phys. Rev. D 8 (1973) 3346.

[35] S. Hawking and G. Ellis, The Large Scale Structure of Space-Time. Cam,

1973.

https://doi.org/10.1088/1751-8113/41/30/304006
https://doi.org/10.1088/1751-8113/41/30/304006
https://arxiv.org/abs/0711.1178
https://doi.org/10.1016/0550-3213(88)90308-2
https://doi.org/10.1016/0550-3213(88)90308-2
https://doi.org/10.1103/PhysRevD.16.1762
https://arxiv.org/abs/0711.1178v1
https://doi.org/10.1103/PhysRevD.8.3346


[36] F. Dowker, “Black holes.” 2014.

[37] R. Wald, General Relativity. The University of Chicago Press, 1984.

[38] R. Wald, Quantum Field theory in Curved Spacetime and Black Hole

Thermodynamics. The University of Chicago Press, 1994.

[39] W. Israel, General Relativity; an Einstein Centenary Survey. Cambridge

University Press, 1979.

[40] A. Andreassen, D. Farhi, W. Frost and M. D. Schwartz, Precision decay rate

calculations in quantum field theory, 1604.06090v2.

[41] S. Coleman, Fate of the false vacuum, Phys. Rev. D (1977) .

[42] J. Langer, Theory of the condensation point, Annals of Physics 41 (1967)

108.

[43] S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses

and the stability of the electroweak vacuum, Phys. Lett. B716 (2012) 214

[1207.0980].

[44] A. A. Starobinsky, Spectrum of relict gravitational radiation and the early

state of the universe, JETP Lett. 30 (1979) 682.

[45] A. H. Guth, Inflationary universe: A possible solution to the horizon and

flatness problems, Phys. Rev. D 23 (1981) 347.

[46] A. Vilenkin, Singular instantons and creation of open universes, Phys. Rev.

D57 (1998) 7069 [hep-th/9803084].

[47] A. Vilenkin, A Measure of the multiverse, J. Phys. A40 (2007) 6777

[hep-th/0609193].

[48] A. D. Linde, Is the Lee constant a cosmological constant?, JETP Lett. 19

(1974) 183.

[49] D. Kirzhnits and A. Linde, Symmetry behavior in gauge theories, Annals of

Physics 101 (1976) 195 .

https://arxiv.org/abs/1604.06090v2
https://doi.org/10.1016/0003-4916(67)90200-x
https://doi.org/10.1016/0003-4916(67)90200-x
https://doi.org/10.1016/j.physletb.2012.08.024
https://arxiv.org/abs/1207.0980
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.57.R7069
https://doi.org/10.1103/PhysRevD.57.R7069
https://arxiv.org/abs/hep-th/9803084
https://doi.org/10.1088/1751-8113/40/25/S22
https://arxiv.org/abs/hep-th/0609193
https://doi.org/https://doi.org/10.1016/0003-4916(76)90279-7
https://doi.org/https://doi.org/10.1016/0003-4916(76)90279-7


BIBLIOGRAPHY 121

[50] A. Linde, Inflationary cosmology, in Inflationary Cosmology, pp. 1–54,

Springer Berlin Heidelberg, DOI.

[51] A. D. Linde, On the Vacuum Instability and the Higgs Meson Mass, Phys.

Lett. 70B (1977) 306.

[52] A. D. Linde, Phase Transitions in Gauge Theories and Cosmology, Rept.

Prog. Phys. 42 (1979) 389.

[53] A. Linde, Decay of the false vacuum at finite temperature, Nuclear Physics B

216 (1983) 421.

[54] J. Braden, M. C. Johnson, H. V. Peiris and S. Weinfurtner, Towards the cold

atom analog false vacuum, JHEP 07 (2018) 014 [1712.02356].

[55] I. Yu. Kobzarev, L. B. Okun and M. B. Voloshin, Bubbles in Metastable

Vacuum, Sov. J. Nucl. Phys. 20 (1975) 644.

[56] M. Stone, Lifetime and decay of ”excited vacuum” states of a field theory

associated with nonabsolute minima of its effective potential, Phys. Rev. D

14 (1976) 3568.

[57] P. H. Frampton, Consequences of vacuum instability in quantum field theory,

Phys. Rev. D 15 (1977) 2922.

[58] S. R. Coleman, V. Glaser and A. Martin, Action Minima Among Solutions to

a Class of Euclidean Scalar Field Equations, Commun. Math. Phys. 58

(1978) 211.

[59] S. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay,

Phys. Rev. D 21 (1980) .

[60] J. A. Wheeler, Geons, Black Holes, and Quantum Foam: A Life in Physics.

W. W. Norton & Company, 2010.

[61] S. W. Hawking and G. T. Horowitz, The Gravitational Hamiltonian, action,

entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487

[gr-qc/9501014].

https://doi.org/10.1007/978-3-540-74353-8_1
https://doi.org/10.1016/0370-2693(77)90664-5
https://doi.org/10.1016/0370-2693(77)90664-5
https://doi.org/10.1088/0034-4885/42/3/001
https://doi.org/10.1088/0034-4885/42/3/001
https://doi.org/10.1016/0550-3213(83)90293-6
https://doi.org/10.1016/0550-3213(83)90293-6
https://doi.org/10.1007/JHEP07(2018)014
https://arxiv.org/abs/1712.02356
https://doi.org/10.1103/PhysRevD.14.3568
https://doi.org/10.1103/PhysRevD.14.3568
https://doi.org/10.1103/PhysRevD.15.2922
https://doi.org/10.1007/BF01609421
https://doi.org/10.1007/BF01609421
https://doi.org/10.1088/0264-9381/13/6/017
https://arxiv.org/abs/gr-qc/9501014


[62] S. Carroll, Spacetime and Geometry. An introduction to General Relativity.

Addison Wesley, 1st ed., 2003.

[63] G. F. T. del Castillo, Differentiable Manifolds. Birkhäuser Boston, 2011.
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