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Abstract
High optical nonlinearities can be achieved at the single photon level

by coupling the photon states to strongly interacting Rydberg excitations
under the conditions of electromagnetically induced transparency. The
nonlinear response in Rydberg quantum optics comes as a direct result
of the long range dipole-dipole interactions via Rydberg blockade and
interaction induced dephasing.

In this thesis, Rydberg quantum optics experiments are performed with
two spatially separated mediums with a nonlinear response at the single
photon level. Two ultracold rubidium atomic clouds are tightly confined by
a pair of in-vacuo aspheric lenses such that only a few Rydberg excitations
can exist in each one of the clouds simultaneously. The long range character
of the dipole-dipole interactions leads to the generation of quantum states of
light. The effective photon-photon interactions are directly observed as an
anti-correlation in the simultaneous photon retrieval as a result of the non
resonant van der Waals interactions. The collective Rydberg excitations,
stored in the non-overlapping mediums, experience an additional spatial
non-uniform phase.
In addition, we experimentally characterize the cooperative optical re-

sponse of a cold atomic medium at a single photon level. This aims to
exploit the enhancement of the spontaneous emissions decay rate (su-
perradiance) as a dependence of the number of atoms involved in the
ensemble.
The observed atomic response in two different regimes gives a further

understanding of the system dynamics and unlocks a promising potential
route towards the implementation in scalable, multichannel quantum
optical devices.
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1. Introduction
The great interest in single-photon sources over the past few decades has

always been based on their application in the quantum-information science
[1], involving encoding, communication, manipulation, and measurement
of information. Photons allow information to be encoded in the quantum
state as polarization or momentum and are ideal carriers of classical or
quantum information due to their weak interaction with the environment
over long distances [2]. This results in lower levels of noise and losses.
However, the absence of interactions leads to the fact that photons are
relatively difficult to control at the single quantum object level. Single-
photon processes depend on probabilistic protocols, and consequently have
a very small probability of success.
Ideally, a single photon source should be deterministic or on-demand

with a 100% probability of emitting a single photon. Furthermore, the
emitted photons should be indistinguishable, and have a relatively fast
repetition rate. A wide variety of schemes have been explored to emit a
single photon at any arbitrary time defined by the user, based on color
centers [3–5], quantum dots [6–8], single atoms [9], single ions [10], single
molecules [11] and atomic ensembles [12]. Plenty of sources where the
creation of photon pairs is probabilistic, rather than deterministic have
also been investigated. In those cases the photons are created in pairs
by parametric downconversion in bulk crystals [13], waveguides [14] and
four-wave mixing [14, 15].
There are variety of approaches that lead to single quanta, in most

of which the system is driven to an excited state that will emit a single
photon. Unfortunately, in the case of a single emitter, this process is
not so controllable. When the photon is absorbed it will be scattered
spontaneously in a random direction and the system’s response will be
different for a second photon. Optical cavities have been used to engineer
the emission in a well-controlled environment, providing a response on a
single photon level [8, 16–18].
Single photon sources that use collective excitations in ensembles of

atoms have also been investigated [19–22], with the advantage of producing
directional emission.
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1. Introduction

Although the weak free-space direct interactions make photons ideal
carriers of information, they also make them difficult to implement in
quantum processes and quantum optical devices. Interactions between
photons can be mediated indirectly if the interaction is strong enough
to produce a non-linear response [23]. Effective interactions at a single
photon level can be achieved in high-Q cavities [24] or strongly interacting
atoms [25].

A single collective Rydberg excitation could change the optical response
of a whole ensemble of atoms [26]. This provides a large optical non-
linearity at the single photon level and therefore the potential to realize
fully deterministic protocols for manipulating photons.
In Rydberg nonlinear optics [27–29], an electromagnetically induced

transparency process is used as a coherent method to mediate photon-
photon interactions. As a result of the dipole blockade effect, the system
can be put in a regime of a non-classical state of light even when the input
pulse is a classical, coherent state [25, 30].
Most effective interaction schemes require photons that propagate in

overlapping optical modes inside a medium. Rydberg atoms long range
dipole–dipole interactions (over many micrometers) not only provide a de-
terministic single photon source, but at the same time provides an approach
to engineer effective contactless photon-photon interactions, removing the
requirement for the overlapping of optical modes [31].

This thesis aims to investigate a controllable response at the level of single
optical photons, by presenting a cooperative behaviour in an ensemble
of cold rubidium atoms. Initially it is demonstrated how an ensemble of
atoms in dimensions larger than the optical wavelength (outside the Dicke
limit) and driven by a classical external field, can collectively enhance the
emission decay rate. Furthermore two different system models are presented
and analysed in order to explain the observed, experimentally effective
contactless photon-photon interactions. The photons are stored as strongly
interacting collective Rydberg excitations in spatially separated cold atomic
mediums [31]. The single quanta level and the high indistinguishability of
the created photons (identical in spatial shape, wavelength, polarization
etc.) are the main requirements for implementation in optical quantum
technologies. The steps performed in taking the experiment to a single
photon regime are also discussed, as well as the future avenues which this
regime will unlock.
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Thesis structure
This thesis is structured as follows:

• Chapter 2 reviews and summarises both atom-light interactions and
the most important properties of Rydberg atoms.

• Chapter 3 introduces the experimental setup.

• Chapter 4 is focused on the collective enhancement of the directional
emission of a cold atomic ensemble.

• Chapter 5 covers different theoretical approaches in understanding
the contactless interactions between non-overlapping optical photons
in spatially separated mediums.

• Chapter 6 introduces the new improved experimental setup and what
to expect as a result of contactless interactions at a single-photon
level.
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1. Introduction

Publications arising from this work
• H. Busche, P. Huillery, S. W. Ball, T. V. Ilieva, M. P. A. Jones and
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Rydberg interactions”, Nat. Phys., 13, 655 (2017)
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Spong and C. S. Adams, Collective mode interferences in light–matter
interactions, arXiv:1808.08415, (2019)
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2. Atom-light interactions and
Rydberg atoms

The optical nonlinearities and non-local interactions between photons
are engineered using Rydberg electromagnetically induced transparency.
The combination of a three-level atomic system with Rydberg interactions
as well as collective emission effects create a rich platform for quantum
optics. In this section the main physical concepts are summarized.
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2. Atom-light interactions and Rydberg atoms

2.1. Two-level system

This section covers the interaction between a coherent light field and
an ensemble of atoms. The atom-light interaction will be considered in a
simple case of an oscillator with two levels, coupled by a resonant driving
classical field, with a frequency ωS, shown in figure 2.1. The expected
atomic response will be linear.

Figure 2.1.: Two-level atom. A signal laser field is used to excite from
|g〉 to |e〉. The field is detuned from resonance by ∆S and has a Rabi
frequency of ΩS. The decay rate is Γ0.

The resonant transition between the ground state |g〉 and the excited
state |e〉 is at a frequency ωge. The detuning of the resonant driving field
from this resonance frequency is given by:

∆S = ωS − ωge. (2.1)

The excited state |e〉 spontaneously decays with a decay rate of Γ0. For
rubidium, Γ0 is 2π·6.065 MHz [32]. In addition, there is another source
of decoherence - the finite linewidth of the driving laser field γS. The
coherence decay rate is given by [33]:

γge = Γ0

2 + γS. (2.2)

The time evolution of the atom-light system can be calculated using the
time-dependent Schrödinger equation:

i~
∂

∂t
|ψ〉 = Ĥtot|ψ〉 (2.3)
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2.1. Two-level system

where the Hamiltonian of the combined atom-light system is given by the
Hamiltonian for the atom and the Hamiltonian for the interaction with
the light field:

Ĥtot = Ĥatom + Ĥint. (2.4)

Only the interaction between the applied light field and the electric
dipole moment of the atom will be considered, higher order terms are
neglected. This approximation is known as electric-dipole approximation,
where the wavelength of the emitted light field is much larger than atomic
dimensions, therefore ei~k·r ≈ 1.
The unperturbed Hamiltonian of the atom can be written as:

Hatom = ~ωge

2 (|e〉〈e| − |g〉〈g|). (2.5)

And the interaction Hamiltonian is given by:

Ĥint = −d̂ · ~E, (2.6)

where d̂ is the electric dipole moment operator and in a two-level system
can be expressed as:

d = deg(|g〉〈e|+ |g〉〈e|), (2.7)
E is the classical laser field

E = E0 cos (ωSt) = E0

2 (eiωSt + e−iωSt). (2.8)

Combining equations (2.6) to (2.8) gives the interaction Hamiltonian:

Hint = deg
E0

2 (|g〉〈e|+ |g〉〈e|)(eiωSt + e−iωSt). (2.9)

Using the rotating wave approximation the total Hamiltonian can be
rewritten:

Ĥ = ~
2

(
0 ΩSe

iωSt

ΩSe
−iωSt 2ωge

)
(2.10)

where ΩS = dgeE0/~ is the angular Rabi frequency.
The time evolution of the system can then be calculated from the

time dependent Schrödinger equation, which for the density matrix ρ is
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2. Atom-light interactions and Rydberg atoms

equivalent to solving Liouville’s equation:

dρ

dt
= i

~
[ρ, Ĥtot]. (2.11)

The density matrix formalism does not account for decay in the system
or any decoherent processes, such as spontaneous emission. All of this
is added by a decay matrix L̂. The resulting equation is called Lindblad
master equation [34] and is given by:

dρ

dt
= i

~
[ρ, Ĥtot] + L̂. (2.12)

For the two-level system, this decay matrix is:

L̂ = 1
2

(
2Γ0ρee −Γ0ρ̃ge
−Γ0ρ̃eg −2Γ0ρee

)
(2.13)

where ρ̃ge = ρgee
−iωSt and ρ̃eg = ρege

iωSt.
The time evolution of the density matrix can be derived as a series of

coupled, first order equations, known as the optical Bloch equations for a
two-level system including only a spontaneous decay:

dρgg
dt

= i
ΩS

2 (ρ̃ge − ρ̃eg) + Γ0ρee, (2.14)

dρ̃ge
dt

= i
ΩS

2 (ρgg − ρee) + ρ̃ge(−i∆− Γ0/2), (2.15)

dρee
dt

= i
ΩS

2 (ρ̃eg − ρ̃ge)− Γ0ρee, (2.16)

dρ̃eg
dt

= i
ΩS

2 (ρee − ρgg) + ρ̃eg(i∆− Γ0/2). (2.17)

In the steady state dρ/dt = 0 and to conserve the population ρgg+ρee = 1.
Therefore ρ̃eg can be expressed as:

ρ̃eg = − iΩS/2
Γ0/2− i∆S

(ρgg − ρee). (2.18)

The optical response of the atomic system to an applied light field is
defined by the complex susceptibility χ and can be calculated from the
off-diagonal coherence terms of the density matrix. The susceptibility of
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2.1. Two-level system

the medium is given as:

χ =
−2Nd2

eg

E0~ΩS
ρ̃eg. (2.19)

where N is the number density.
In a weak probe limit ( ΩS � Γ0 ), the population remains mainly in

the ground state ( ρgg − ρee ≈ 1 ), the susceptibility can be expressed as a
function of the laser detuning ∆S:

χ =
iNd2

eg

E0~(Γ0/2− i∆S) = Re(χ) + Im(χ). (2.20)

The Re(χ) describes the dispersion and Im(χ) describes the transmission
and has a Lorentzian lineshape as shown in figure 2.2. The susceptibility
is normalized to the susceptibility on resonance. The refractive index, ñ,
of the medium is given by its susceptibility, where ñ =

√
1 + χ.

Figure 2.2.: The imaginary part which defines transmission (red solid
line) and the real part which defines the dispersion (red dashed line) of
the normalized optical susceptibility χ(∆S) of a two-level system.
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2. Atom-light interactions and Rydberg atoms

2.2. Three-level system

The three atomic states are arranged in a ladder configuration: a ground
state |g〉, an intermediate excited state |e〉, and upper excited state |r〉, in
our case a Rydberg state. A second laser field is added to the system to
couple the intermediate |e〉 and the upper excited state |r〉. The coupling
laser field Rabi frequency is ΩC, detuned by ∆C = ωC − ωer, where ωer
is the resonant transition frequency and ωC is the coupling driving field
frequency. The excitation scheme is shown in figure 2.3.

Figure 2.3.: Three-level atom. A signal laser field with Rabi frequency
ΩS and detuning ∆S is used to excite from |g〉 to |e〉 and a second laser
field with Rabi frequency ΩC and detuning ∆C is added to couple the lower
excited state |e〉 to the upper excited state |r〉 in a ladder scheme.

The interaction Hamiltonian of the three-level system is [35]:

Htot = Hatom +Hint = ~
2

 0 Ωge 0
ΩS −2∆S ΩC
0 ΩC −2(∆S + ∆C)

 . (2.21)

Again the time evolution of the system can then be calculated from the
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2.2. Three-level system

Lindblad master equation (2.12) with decay Lindblad operator[34]:

L̂ = 1
2

 2Γ0ρee (Γ0)ρ̃ge −Γ1ρ̃gr
−Γ0ρ̃eg 2(Γ1ρrr − Γ0ρee) −(Γ0 + Γ1)ρ̃er
−Γ1ρ̃rg −(Γ0 + Γ1)ρ̃re −2Γ1ρrr

 . (2.22)

In a weak probe limit ( ΩS ≈ 0 and ρee = ρrr ≈ 0 ), the coherence term
ρ̃eg in the steady state is given by:

ρ̃eg = − iΩS/2
γ1 − i∆S + Ω2

C/4(γ2 − i(∆S + ∆C)) (2.23)

where the decay rates are:

γ1 = Γ2

2 + γS (2.24)

and
γ2 = Γ2

2 + γS + γC. (2.25)

where γS and γC are the corresponding finite laser linewidths.

The susceptibility is calculated the same way as in a two-level system
by substituting the coherence term ρ̃eg:

χ =
Nd2

eg

E0~
1

γ1 − i∆S + Ω2
C/4(γ2 − i(∆S + ∆C)) . (2.26)

Again the real and imaginary parts of the susceptibility χ(∆S) give the
optical response of the system as in the two-level case. In the presence of a
coupling field, a narrow transparency window appears around resonance. In
figure 2.4, the change in imaginary and real part of the optical susceptibility,
for different Rabi frequency of the control field ΩC, is shown. ∆C is set to
0 so the two photon resonance appears at ∆S = 0. All the susceptibilities
are normalized to the imaginary part of the corresponding susceptibility on
resonance. For ΩC = 0, the system is the same as for the two-level case as
there is no coupling light. For ΩC = Γ0/2, a narrow transparency window
appears in the transmission, with a steep gradient in the dispersion, when
on resonance (∆S = 0). If the control Rabi frequency ΩC is increased
beyond the linewidth of the signal transmission Γ0, the absorption line
splits into two lines, separated by the coupling Rabi frequency ΩC [36].
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2. Atom-light interactions and Rydberg atoms

Figure 2.4.: The imaginary part which defines transmission (solid lines)
and the real part which defines the dispersion (dashed lines) of the nor-
malized optical susceptibility χ(∆S) of a three-level ladder system. For
ΩC = 0, there is no coupling field and the system is as in the two-level
case. Increasing the coupling ΩC = Γ0/2, a narrow transparency window
appears at resonance ∆S = 0 in the transmission (blue solid line) and a
steep gradient in the dispersion (blue dashed line).

Controlling the Rabi frequency of the control light ΩC in three-level
ladder system allows us to change the medium’s susceptibility to the signal
light. The transparency window at resonance frequency, in presence of the
control field coupling to the upper excited state, can be understood by
diagonalising the Hamiltonian Htot (equation 2.21) to get the eigenstates
on the two-photon resonance ∆S + ∆C = 0 [37].

|+〉 = sin θ sinφ|g〉+ cosφ|e〉+ cos θ sinφ|r〉,
|D〉 = cos θ|g〉 sin θ|r〉,
|−〉 = sin θ cosφ|g〉 − sinφ|e〉+ cos θ cosφ|r〉,

(2.27)
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2.2. Three-level system

where θ and φ are the mixing angles defined as:

tan θ = ΩS

ΩC
,

tan 2φ =

√
Ω2
S + Ω2

C

∆S

(2.28)

or can be written as:

θ = arctan
(ΩS

ΩC

)
,

φ = 1
2 arctan

(√Ω2
S + Ω2

C

∆S

)
.

(2.29)

The energy eigenvalues are:

E± = ~
2
(
∆S ±

√
(∆2

S + Ω2
S + Ω2

C)
)
,

ED = 0.
(2.30)

In the weak probe limit and on resonance (∆S = 0 and ΩS � ΩC), the
mixing angle θ → 0 and the eigenstates are:

|±〉 = (|r〉 ± |e〉)/
√

2,
|D〉 = |g〉.

(2.31)

The signal laser field only couples to the |e〉 component of the states
|±〉 as shown in figure 2.5. These two states have equal amplitude but
with opposite signs and as a result they will interfere destructively - the
signal laser field is suppressed or no longer absorbed, giving rise to the
transparency seen in figure 2.4. The state |D〉 is known as a dark state
or zero-energy eigenstate (zero-energy eigenvalue) and it is not coupled to
the light field.
On resonance, the coupling laser field switches the imaginary suscepti-

bility from a maximum to zero. These changes in the susceptibility lead to
changes in the signal light group velocity:

vg = dωS

dkS
≈ c

ñ(ωS) + ωS
dn
dωS

≈ c

ñg
(2.32)
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|g⟩

|e⟩

|-⟩

|+⟩

ΩS

ΩC

Figure 2.5.: The dressed states |±〉 are split by the Rabi frequency of the
coupling laser field ΩC. At the two-photon resonance, ∆S + ∆C = 0, the
probability to populate |+〉 destructively interferes with the probability to
populate |−〉. This results in a transparency.

As a result the group velocity is reduced on resonance and the light is
slowed. The group index increases:

ñg = 6πρc
k2
S

γ1

Ω2
C + γ2γ1/4

. (2.33)

The dependence of the group index ñg on the Rabi frequency of the
control field ΩC allows to control the signal light group velocity vg by
changing the intensity of the control field. If ΩC is reduced adiabatically
to 0, the signal field photons can be stored as a spin-wave in a collective
Rydberg atomic excitation [38–40].
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2.3. Rydberg atoms

2.3. Rydberg atoms

In order to observe effective photon-photon interactions, an introduction
to Rydberg atom physics should also be discussed, along with the effect of
the dipole-dipole interactions.

A Rydberg atom is an atom whose valence electron is excited in a state
with high principal quantum number n. The binding energies En are well
described by the Rydberg’s formula:

En = −Ry
n2 , (2.34)

which describes the convergence of spectral lines in hydrogen atom [41].
Ry is the Rydberg constant.
Many of the Rydberg properties can be concluded by the use of the

classical Bohr model (a point-like electron orbits a point-like proton). The
electron experiences a Coloumb potential dependent on the radius of its
orbit. As the radius increases the electron experiences a weaker potential.
The required ionisation energy becomes very small and the electron is
extremely sensitive to external electric fields. For atoms with a similar
electronic structure to hydrogen, like alkali metals, the difference from
hydrogen model is given by the quantum defect δnLJ. It depends on the
atomic species, the state’s orbital and total angular momentum, and the
principal quantum numbers n, L and J . The binding energy becomes:

En = − Ry

(n− δnLJ)2 . (2.35)

For rubidium, these quantum defects have been measured and are avail-
able in the literature [42–44].
The large electron radius gives rise to the dramatic scaling of various

properties, with the principal quantum number n, summarized in table
2.1.

The weak electric binding forces of the outer electron to the nucleus
makes Rydberg atoms sensitive to external electric fields. The polarisability
of a Rydberg atom scales with the seventh power of the principal quantum
number n, and the van der Waals interaction between atoms with the
eleventh power. The long lifetimes and the strong dipole-dipole interac-
tions makes Rydberg atoms very interesting for applications in quantum
simulation, quantum optics and quantum information processing [45–47].
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2. Atom-light interactions and Rydberg atoms

Table 2.1.: Scaling of Rydberg atom properties with principal quantum
number n for constant Ω

.

Binding energy n−2

Orbital radius n2

Polarisability n7

Radiative lifetime n3

Dipole moment n2

Van der Waals interactions (C6) n11

Van der Waals blockade radius r(6)
b n11/6

Resonant dipole interactions (C3) n4

Resonant dipole blockade radius r(3)
b n4/3

Let us consider two atoms separated by distance r as shown in figure 2.6.
The presence of the second atom results in a polarisation of the charge
distribution of the first atom and vice versa. The dipole-dipole interaction
energy between the two atoms is:

V (~r) = 1
4πε0

( ~d1.~d2

|~r|3
− 3(~d1.~r)(~d2.~r)

|~r|5
)
, (2.36)

where d1 and d2 are the induced dipole moments of these two atoms for
the transitions from |r〉 to |r′〉 and from |r〉 to |r′′〉 respectively.

r
d1

d2

Figure 2.6.: Dipole-dipole interactions between two atoms separated by
distance r with the induced dipole moments.

The energy shift as a result of the dipole-dipole interaction between
these two Rydberg atoms, both in states |r〉 initially (figure 2.7), can be
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2.3. Rydberg atoms

Pair StatesAtomic States

|r'⟩

|r⟩

|r"⟩

|rr'⟩

|r'r"⟩

|rr"⟩

|rr⟩

E

ΔE

Figure 2.7.: An atomic to pair state basis. The near-resonant states
coupled by the dipole-dipole interactions with an energy defect ∆E.

illustrated by considering the pair state basis |rr〉 and |r′r′′〉 [48]. The
energy separation between these levels is given by:

∆E = Er′′ + Er′′′ − 2Er. (2.37)

The dipole-dipole interaction depends on the separation between the
atoms. Depending on the energy difference, ∆E, and the chosen Rydberg
states there are two types of interactions:
Van der Waals interactions - when ∆E is large compared to the

interaction potential V (~r).
As a result the atoms interact via the van der Waals potential:

VV dW = − C6

|~r|6
, (2.38)

where the coefficient C6 describes the interaction strength and scales with
n11. Usually van der Waals interactions appear when two atoms are in the
same state, |r〉, or these two states are not directly dipole coupled.
The interaction strength for interactions between two rubidium atoms

in |rr〉 = |60S1/2, 60S1/2〉 is approximately −140 GHzµm−6 [35]. In high
S1/2 states, the interactions are repulsive as the coefficient C6 is negative.
Resonant dipole-dipole interactions - when the interaction potential

V (~r) is stronger than the energy shift ∆E.
As a result, at short distances r, the atoms interact via the resonant
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2. Atom-light interactions and Rydberg atoms

dipole-dipole potential [48]:

Vdd(~r) = ± C3

|~r|3
, (2.39)

where the coefficient C3 describes the interaction strength and scales with
n4.

Usually resonant dipole-dipole interactions appear when two atoms are
in non-dipole coupled states or another dipole coupled pair state is nearby.
Additional electric field can also be used to induce Stark shifts and put the
system into resonance (Förster resonance [49, 50]). Two atoms can also
be coupled to a nearby state of opposite parity using a microwave field.
The resulting state |r′r〉 is resonant with the initial state |rr′〉. Excitation
hopping processes appear over large distances [51] and are used to simulate
energy transfer in biological systems (photosynthesis).

 Separation r

rb

E
ne

rg
y

 

Ω

Ω

|rr〉

|rg〉
|gr〉

|gg〉

hγ

Ω

Ω

Figure 2.8.: The dipole-dipole interactions between Rydberg atoms lead
to an energy shift beyond the linewidth ~γ of the excitation laser field
Ω. For distances beyond r(k)

b , both of the atoms can be excited and for
distances less than r(k)

b only single excitation |gr〉 or |rg〉 can exist.

The strong dipole-dipole interactions induce significant energy shifts in
the µm range and, as a result, an excitation blockade. The excitation
blockade allows a single photon to change the optical response of an atomic
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2.3. Rydberg atoms

medium over a range of many µm [26, 52, 53]. The concept of the dipole
blockade was first proposed in [54, 55] as a way to create an universal
quantum gate between atomic qubits.

The Rydberg blockade energy shift mechanism is shown in figure 2.8 as
two atoms separated by a distance r. The interaction potential between
the two atoms shifts the energy of the pair state |rr〉 by more than the
linewidth ~γ of the excitation laser field. This leads to a region where only
a single Rydberg atom could exist within a volume defined by the blockade
radius rb:

r
(k)
b = k

√
Ck
~Ω , (2.40)

where Ω is the Rabi frequency of the excitation laser field.
For van der Waals interactions, k = 6, and the blockade radius is

r
(6)
b ∝ 6

√
C6 ∝ n11/6. For resonant dipole- dipole interactions, k = 3, and

the blockade radius is r(3)
b ∝ 3

√
C3 ∝ n4/3.

The dipole-dipole interactions play an important role in the system
dynamics. The scaling with the principal quantum number n allows an
easy control of the strength and the nature, attractive or repulsive, of the
interactions. These interactions, and the cooperative effect as a result of
them, will be explored in this thesis.
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3. Experimental Setup
In order to exploit the strong nonlinearity between ultra-cold Rydberg

atoms for quantum non-linear optics experiments, some requirements have
to be fulfilled. Most of them are shared with most other ultracold atomic
experiments, such as ultra-high vacuum conditions, various magnetic-fields,
light for laser cooling and trapping, or imaging systems for diagnostics.
However, there are some key requirements that had to be met in this
particular setup: a detection system with high sensitivity to detect single
photons; a control system to automate experiments; the capability to
perform and repeat individual experimental shots sufficiently quickly in
order to build up statistically meaningful data sets. Information on the
design, implementation, and characterisation of the experimental setup
is available in detail in several prior thesis from the Rydberg Quantum
Optics project [56, 57]. In this chapter only parts of the existing setup,
which are required for the work in this thesis, are documented.

Most single photon processes depend on probabilistic protocols and
have a small probability of success. That leads to the requirement of a
large number of measurements to gather enough photon statistics. A high
atomic density is also required to ensure a large optical depth on the signal
transition for experimental observation of cooperative optical effects.
The sequence used in each individual measurement is in order of µs

while the cold atomic ensemble preparation takes ≈ 550 ms. The main
goal of the setup is to increase the number of times an ensemble can be
recycled. This requires a speed up of the magneto-optical trap loading.
For that purpose, a two-dimensional magneto-optical trap [58] is used to
generate a slow atomic beam.

The main experimental apparatus has been designed and built by Hannes
Busche, Simon Ball and Paul Huillery and is described in detail in [56, 57].

The high optical resolution, close to 1 µm for photon-photon interactions
or close to the diffraction limit, required for the collective effects and
Rydberg atoms interactions [54, 59], explored in the performed experiments,
has been covered by a pair of high numeric aperture aspheric lenses. A
schematic of the science chamber aspheric lenses is shown in figure 3.1.
The lenses have an effective focal length feff = 10 mm, a working distance

39
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of fwd = 7.0 mm and a numeric aperture of NA = 0.5. All laser light used
for probing the cold atomic ensemble is along the axis defined by the pair
of lenses.
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Figure 3.1.: Schematic of experiment setup. Three pairs of orthogonal
beams (only axial are shown) overlap at the centre of a vacuum chamber
to form a magneto-optical trap that slows and traps atoms. The signal
light is overlapped with the dipole trap light and sent to the chamber. The
counter propagating coupling laser, overlaps with signal beam. To avoid
reflections on the aspheric lenses, the radial beam diameter is truncated
to 4mm in the radial plane. The axial magneto-optical trap beam and an
absorption imaging beam are overlapped due to limitation in the optical
access in axial plane.

The lenses are separated by twice their working distance, allowing re-
collimation of the signal and control laser beams, as well as the dipole trap
laser beam, after focusing. Magnetic coils outside the science chamber
provide a quantisation magnetic field along this axis. The sensitivity of
Rydberg atoms to electric fields [48] requires both the compensation and
minimization of any stray fields, which is achieved via a set of electrodes.
A pair of magnetic coils provide an anti-Helmholtz field required for the
magneto-optical trap [60].
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3.1. Laser systems

780nm laser systems

The laser system [56, 57] provides coherent, narrow-linewidth light for
cooling, trapping, and excitation of rubidium atoms.

A schematic of the transitions and hyperfine states of the 87Rb D2-line
is shown in figure 3.2.
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Figure 3.2.: Level scheme of the 87Rb D2 line, D. Steck [32]. For laser
cooling and repumping in the magneto-optical trap and the two-dimensional
magneto-optical trap, the used transitions are |5S1/2, F = 2〉 to |5P3/2, F

′ =
3〉 and |5S1/2, F = 1〉 to |5P3/2, F

′ = 2〉. Signal light for Rydberg excitation
uses |5S1/2, F = 2,mF = 2〉 to |5P3/2, F

′ = 3,mF ′ = 3〉 transition.
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The cooling light and the excitation light are provided by a Toptica DL
Pro diode laser. A Toptica BoosTA, seeded by the diode laser (around
40 mW), is used to provide high power (around 1.3 W) for the magneto-
optical trap and the large interaction cooling volume of the two-dimensional
magneto-optical trap. The diode laser is frequency stabilized to −140 MHz,
red-detuned from the |5S1/2, F = 2〉 to |5P3/2, F

′ = 3〉 transition by modu-
lation transfer spectroscopy [61, 62]. Small amount of the light provides
the signal for the Rydberg electromagnetically induced transparency and
red-detuned light (−140 MHz) for the 480nm laser system frequency sta-
bilisation [63, 64].
The red-detuned cooling transition used is not perfectly closed and,

due to the detuning, gives a non-zero probability to off-resonantly excited
atoms to |5P3/2, F

′ = 2〉, decaying to the lower |5S1/2, F = 1〉 hyperfine
ground state. These atoms need to be repumped [60]. The repumping light
is provided by a diode Toptica DL100 laser which is frequency stabilized
to the crossover resonance lines from |5S1/2, F = 1〉 to |5P3/2, F

′ = 1× 2〉
by frequency modulation spectroscopy [65, 66].

The light is delivered to the experiment using polarization maintaining
optical fibers.

480nm laser system
The atoms are excited to a high Rydberg state by a two-photon transition.

The first photon is at the same transition as the cooling transition from
|5S1/2, F = 2,mF = 2〉 to |5P3/2, F

′ = 3,mF ′ = 3〉, while the second
photon couples |5P3/2, F

′ = 3,mF ′ = 3〉 level with a Rydberg level |nS1/2〉.
A high power Toptica FALC 110 laser at 480 nm is used for that coupling.
The Rydberg manifold allows the use of the same laser for a wide range of
states. This laser is frequency stabilized by electromagnetically induced
transparency spectroscopy [64] to the Rydberg state relative to the first
photon excitation level.
The signal light detuning can be set independently, which allows com-

pensation for the electric fields (Stark shifts) between the vacuum chamber
and the Rubidium cell used for the locking.
The coupling light is switched by a polarisation switching electro-optic

modulator. As a result the switching on and off times are approximately
100 ns. During this work, the electro-optic modulator has been substituted
with a combination of acousto-optic modulators for faster switching times
and better extinction of the zero power level. None of the presented results
in this thesis has been taken using the acousto-optic modulators setup.
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910nm laser system
The dipole trap laser is an in-house built ECDL and is amplified by an

in-house built tapered amplifier [67]. The light is sent to the experiment
by a single mode polarization maintaining fiber acting as a mode filter,
providing a high purity TEM00 mode. The dipole trap is based on a
red-detuned far off-resonant 910 nm laser light. Throughout this work, the
dipole trap laser has been replaced with a 862 nm Toptica DL pro. The
new laser performance will be discussed in Chapter 6.

Preparation of the microscopic dipole traps
To prepare the microscopic dipole traps the magneto-optical trap is

loaded by the the two-dimensional magneto-optical trap, for typically
150 ms. The dipole trap is switched on at full power during the loading,
because the AC Stark shift induced by the trap light shifts the repumping
light off resonance at the trap position, creating an effective dark spot
where atoms are no longer subject to light-induced collisions [68].

MOT loading

Dipole trap power

Repump power 

Field gradient 

MOT detuning 

MOT cooling power

2D MOT

 MolassesCompressed
MOT

Kick

150 ms 12 ms 0.5 ms 5 ms Variable
 

Evaporation

20 mW

- 8.5MHz

34Gcm-1

150μW

60mW

2mW 20mW

-25MHz 7MHz

 48 Gcm-1

20μW 150μW

Repump

0.5 ms

Figure 3.3.: Sequence to prepare the atomic ensembles in the microscopic
dipole traps. The magneto-optical trap is loaded by the two-dimensional
magneto-optical trap for approximately 150 ms and compressed to increase
the atomic density. The dipole trap light is on throughout the whole
sequence.

In the second step the magneto-optical trap is compressed for 12 ms
by increasing the field gradient from 34 to 48 Gcm−1(axial) and ramping
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down the repumping and cooling power to reduce light assisted collisions.
At the end the magnetic field gradient is reduced to zero.

During the molasses stage, the repumping laser is switched off, resulting
in the atoms being optically pumped into the lower ground state |5S1/2, F =
1〉. The measured temperatures after the molasses stage are below 50 µK.

During the kick stage untrapped atoms, which can lead to unwanted
absorption outside the dipole trap, are pushed out of the experimental
volume by reactivating the magneto-optical trap cooling beams and ramping
them to a blue detuning. The AC Stark shift of the atoms inside the dipole
trap should remove the blue-detuned cooling light effect and as a result
the atoms should stay unaffected.
The evaporation stage reduces the dimensions of the atomic cloud [69,

70]. Reducing the atoms temperature provides improvement of their
confinement and reduces cross-talk between the two spatially separated
channels. If no evaporation stage is applied, the untrapped atoms are
pushed out of the trapped region. The repumping laser is switched on to
pump atoms back into the upper ground state |5S1/2, F = 2〉. All hyperfine
Zeeman states are populated as no quantisation field is applied.
The entire preparation sequence is shown in figure 3.3.
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3.2. Optical Setup
The optical setup for two photonic channels is shown in figure 3.4. The

signal light is delivered to the experiment through polarization maintaining
optical fibers. The signal and the trapping light are overlapped on a
dichroic mirror and then split on a polarizing beam splitter (PBS). The
beam paths are later recombined on a non-polarizing beam splitter (BS)
which provides the same polarization for both signal beams so they can
drive the same atomic transitions. At the end the beams are sent to the
first in-vacuum lens which focuses them to 1/e2-waists of 1.0 ± 0.1 µm
(signal light) and 4.5± 0.3 µm (dipole trap), respectively.
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Figure 3.4.: Optical setup for two photonic channels. The signal beams
are overlapped with the trap light on a dichroic mirror. Later, they are
separated in a Mach-Zehnder interferometer and recombined on a non-
polarising BS. The separation between the channels can be adjusted by
changing the incident angle on the first in-vacuum lens. The lens focuses
the signal and trap beams to 1/e2-waists of 1.0± 0.1 µm and 4.5± 0.3 µm,
respectively.

The red-detuned trapping light creates microscopic cigar-shaped en-
semble of a few thousand cold rubidium atoms. The signal light is cir-
cularly polarized with detuning ∆ from the |5S1/2, F = 2,mF = 2〉 to
|5P3/2, F

′ = 3,mF ′ = 3〉 transition at λ = 780.24nm (figure 3.2) with a
natural linewidth of Γ0 = 2π · 6.601 MHz.
The separation between the two channels is adjusted by tilting and

translating a mirror in one of the interferometer arms. As a result the
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incident angle on the aspheric lens is changed.
The coupling laser light counter-propagates through the second in-

vacuum lens of the vacuum chamber as shown in figure 3.5. After the
coupling light fiber, there is an external lens used to focus in front of the
second in-vacuum lens and not onto the atomic ensembles. The beam is
approximately collimated among the overlapping volume with a waist of
approximately 25 µm. This waist is sufficiently larger compared to the
separation between the channels, that makes the applied Rabi frequency
almost spatially independent. The coupling Rabi frequency for each chan-
nel is equalized by measuring the Autler Townes splitting of the absorption
spectrum at low principle quantum number n and low photon number so
there are no interaction effects.

Aspheric lenses
Blue light

Dichroic
mirror

+400 mm lens

QWP

Figure 3.5.: The coupling light counter-propagates with respect to the
signal light beam. A lens focuses the light in front of the in-vacuum lens,
such that the beam is approximately collimated among the overlapping
volume with a waist of ≈ 25 µm.

The detection experimental setup is built to be able to detect optical non-
linearities at the level of individual photon[27–29, 71], as well as measure
the correlations between single photons. To detect extremely weak light
fields, the used photodetectors should be extremely sensitive and with low
noise levels.

The light emitted from the ensembles in the forward direction is collected
by a second, identical lens and separated with an edge mirror at the focus
of a 4:1 telescope. A schematic of the detection setup is shown in figure
3.6. The emitted photons are detected behind single-mode fibers. Each
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Figure 3.6.: Single photon Hanbury-Brown Twiss detection setup. The
signal modes are separated with an edge mirror at the focus of a 4:1
telescope. Each signal mode is coupled into a single mode fiber splitter. A
pair of filters is placed before each fiber to block the dipole trap at 910 nm,
the coupling light at 480 nm and any additional background light.

fiber is aligned onto the original signal mode, acting as a mode filter which
distinguishes target photons from those emitted elsewhere. A pair of filters,
placed before each fiber, block the dipole trap at 910 nm, the coupling
light at 480 nm and any additional background light.

A single detector setup is limited by its dead time and it can not count
photons that are too close in time. To overcome this limitation, the detec-
tion setup for each optical channel consists of two single photon sensitive
avalanche photo diodes (SPADs), arranged in Hanbury-Brown Twiss in-
terferometer [72]. The typical overall detection efficiencies, including the
quantum efficiencies of the detectors and transmission loss between the
focal plane of in-vacuum lens pair to the detectors is approximately 20%.
The SPADs’ quantum efficiencies is approximately 60%. The detection
efficiency is mostly limited by the in-vacuum lens pair coating, the filters
and the fiber coupling.

Each individual detected event is recorded using the fast digital inputs
of the FPGA based experimental control system DExTer [73] with a time
resolution of 5 ns. The gathered photon statistics is analysed using a
method described in Appendix C.
The experiments presented in Chapter 4 are carried out with signal

photons using one of the channels. The contactless effective photon-photon
interactions presented in Chapter 5 are carried out with signal photons
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3. Experimental Setup

using a two-channel setup.
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4. Superradiance and
collective mode interference

The interaction of light with an atom can be dramatically modified if
an atomic ensemble is used instead of a single atom. The atoms do not
act independently and as a result the response of each atom will depend
on the behavior of the rest of the ensemble. This phenomena is known as
collective or cooperative behaviour, and usually leads to effects such as
frequency shifts, modified decay rates, enhanced light–matter coupling and
collective transparency in systems ranging from atoms [74–78] and ions
[79] to quantum dots [80, 81]. The behaviour of these systems usually is
described by collective eigenmodes. The collective response of the ensemble
will depend on the orientation of the atoms as the dipole-dipole interaction
is both long range and anisotropic.
In 1954, Dicke first considered the behaviour of an ensemble of atoms

decaying in close proximity to each other [82]. In this case, the emission of
a single atom is influenced by the presence of a second one. He calculated
that a cloud of N two-level atoms, much smaller in size than a single
wavelength, initially all prepared in their excited states, will spontaneously
decay N times faster than just a single atom. All the atoms will be coupled
to the same mode of the electromagnetic field and be prepared in a fully
symmetric state. Over the past 60 years, enhanced superradiant decay has
been observed in many different physical systems [74, 80, 83–85].
However, Dicke ignored the resonant dipole-dipole interaction between

atoms separated by such small distances. As a result, the superradiant
decay is due to the emitted radiation of the individual atoms. For the case
where there are more atoms close enough to have an effect, then the light
emitted from the first atom can excite more dipoles in the neighbouring
atoms. This will lead to an ensemble of atoms, all scattering light back
and forth between themselves. The behaviour of such ensemble can be
very different compared to just a single atom.

Later, atomic samples with lower densities were investigated, where the
dipole-dipole interactions are weaker [86–88]. Depending on the relative
phases of the different atomic dipoles, the decay can still be superradiant,
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4. Superradiance and collective mode interference

although the decay rate is never as large as in the small sample limit. As
a result of the phased preparation, the spontaneous decay preferentially
occurs in the directions governed by the initial wavevector of the driving
field and the geometry of the atomic ensemble [89]. Other collective
interference effects also have been previously observed in many experiments
such as quantum interference beats between different quantum states [90]
or as a result of the relative motion of atoms [15].

In this chapter, we investigate a single-photon superradiant emission from
a microscopic ensemble of ultra-cold rubidium atoms with dimension larger
than the optical wavelength. The interference between simultaneously
excited collective eigenmodes leads to faster than expected superradiant
population dynamics and photon emission.
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4.1. Driving field and atom behaviour

4.1. Driving field and atom behaviour
This section will discuss the scattering behaviour of a single atom and

how this changes when there are two atoms. A simplified scenario of the
model is described in Appendix A and [91].
For a single atom, the magnitude of the total field is a combination of

the driving field EL and the emission ESC scattered from the dipole. The
intensity of the total field is proportional to the field amplitude squared:

|E|2 = |EL + ESC|2 = |EL +G(r)dgeρge(t)|2 (4.1)

where G(r)dge is the scattered field at distance r from the dipole and dge
is the dipole matrix element.

The behaviour of a single atom can be calculated using the optical Bloch
equations:

ρ̇ge(t) = (i∆− Γ0/2)ρge + i
|dge|
~
EL, (4.2)

where we assume that in the weak driving limit the excited state population
can be ignored, ρee ≈ 0. This reveals both a transient and a steady state
solution:

ρge(t) = ρssge(1︸ ︷︷ ︸
Steady state

− ei∆te−Γ0t/2) + ei∆te−Γ0t/2ρge(0)︸ ︷︷ ︸
Transient

. (4.3)

Substituting that in equation (4.1), and setting ∆ = 0 and ρge(0) = 0,
results in:

|E|2 = |EL|2
∣∣∣1 + α

|dge|
G(r)dge(1− e−γ0t)

∣∣∣2
= |EL|2

∣∣∣ (1 + α

|dge|
G(r)dge)︸ ︷︷ ︸

Steady state

− α

|dge|
G(r)dgee−γ0t

︸ ︷︷ ︸
Transient

∣∣∣2

∝ |A− e−Γ0t/2|2 = |A|2 − e−Γ0t/2(A+ A∗) + e−Γ0t.

(4.4)

where α is the atomic polarisability. This results in a decay of the initial
transient flash at a rate ∝ Γ0/2. The fast e−Γ0t term will not have any
effect after a few τ0 = 1/Γ0.

However, when the driving field is turned off, EL = 0, the magnitude of
the total field is defined only by the scattered field term:

|E|2 = |ρssgee−Γ0t/2|2 = e−Γ0t|ρssge|2 (4.5)
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4. Superradiance and collective mode interference

and is expected to decay twice as fast as compared to the initial transient
flash.
If a second two-level atom is introduced to the system, the behaviour

is described using collective eigenmodes, of which there will be two. One,
symmetric where both dipoles oscillate in-phase ↑↑ with each other, and
one anti-symmetric where they oscillate π out of phase with each other ↓↑.
Each atom is a driven classical electric dipole with fixed polarization.
As the atoms are moved further apart, the shift and width of the sym-

metric (dark blue) and anti-symmetric (light blue) individual eigenmode
changes as shown in figure 4.1. A uniform beam will excite only the
symmetric in-phase mode and not the asymmetric one, due to the fact that
the anti-symmetric mode is out of phase and does not overlap with the
symmetric driving field mode vector. Each individual eigenmode is a mode
of oscillation with distinct decay rate and resonance frequency. Still, some
of the decays will be superradiant and some of them will be subradiant, but
the overall system’s decay will be faster than any individual eigenmode’s
decay.

-0.5 0 0.5
0

0.5

1

1.5

2

/

/
0.2λ

0.2λ

Figure 4.1.: The decay rates Γ and frequency shifts ∆ of the individual
symmetric (dark blue dots) and anti-symmetric (light blue dots) eigenmodes
for two atoms with separation R varying in steps of 0.05λ [91].

The picture is significantly more complicated when there are more than
two atoms in a random configuration and different coupling to the Gaussian
driving field. That results in a time-dependent decay rate. As a result
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4.1. Driving field and atom behaviour

of all different oscillation frequencies, the measured intensity of the total
scattered electric field is a sum of the beating and interference between the
different eigenmodes. However, this does not affect the natural linewidth.
It stays independent from the whole beating process, which has been
observed experimentally and is discussed later in this chapter.
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4. Superradiance and collective mode interference

4.2. Experimental realization
The 87Rb D2 transition, |5S1/2, F = 2,mF = 2〉 to |5P3/2, F

′ = 3,m′F =
3〉, is used to measure linewidths and decay rates at different atomic densi-
ties and to observe the collective behavior in an ensemble of cold atoms (fig-
ure 4.2a). A tightly focused probe light (waist radius w0 ≈ 1 µm = 1.28λ0)
propagates through a microscopic cloud of optically trapped rubiduim
atoms, which acts as an optical medium (figure 4.2b). A weak coherent
Gaussian pulse is sent to the atomic ensemble and the resulting trans-
mission is detected using a Hanbury-Brown Twiss interferometer (setup
described in Chapter 3).

  t/τ00 20

Δ

Γ0

probe
780 nm

 

 

|g⟩

|e⟩

  t/τ00 20

a) b)

Figure 4.2.: a) A scheme of 87Rb transition - |5S1/2, F = 2,mF = 2〉 to
|5P3/2, F

′ = 3,m′F = 3〉. b) A probe beam is tightly focused to a 1/e2

waist radius w0 ≈ 1 µm = 1.28λ0 using high NA aspheric lenses into a
microscopic atomic ensemble confined in optical tweezers. The first red
pulse represents the signal sent to the microscopic atomic ensemble and
the second one represents the experimental signal after the microscopic
atomic ensemble.

350 ns

4550 ns

3050 ns
Channel A

Figure 4.3.: Experimental sub-microsecond sequence to measure signal
transmission through the microscopic atomic ensemble. The trapping light
is switched off while probing the ensemble to avoid AC Stark shifts.

The sub-microsecond sequence used to control the experiment is shown
in figure 4.3. Once the ensemble is prepared, the trap light is turned
off for 1.5 µs, during 0.35 µs of which the probe pulse can be applied in
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4.2. Experimental realization

absence of any AC-Stark shifts caused by the trap light. This procedure is
repeated between 4000 and 10000 times before reloading the atoms in the
magneto-optical trap. The number of repetitions depends on the measured
optical depth and atom loss inside the dipole trap.
Instead of applying a separate optical pumping pulse for state prepa-

ration, the atoms are optically pumped into the |5S1/2, F = 2,mF = 2〉
state by the probe light during the first 1000 to 1200 repetitions. This
number again depends on the measured optical depth and atom loss inside
the dipole trap. These initial repetitions are not taken into account in
our data analysis due to the rapid change of the optical depth during the
pumping process. In order to confine the atomic dynamics to just two
internal energy levels, we apply an external magnetic field to Zeeman shift
the states with different mF , and then optically pump the atoms into the
ground and excited maximal mF states, which are coupled by probe light
with circular polarization.

To measure linewidths and decay rates at different atomic densities,
we used the |5S1/2, F = 1〉 level of the 87Rb ground state which is not
addressed by the probe light. That allows us to control a fraction of
the atoms in |5S1/2, F = 2,mF = 2〉 state by changing the duration of
the repumping pulse (between 10 µs and 500 µs) that is applied on the
|5S1/2, F = 1〉 to |5P3/2, F

′ = 2〉 transition after loading the dipole trap.
As a result the atomic cloud dimensions stay the same and only the number
of atoms included in the experiment is changed.
To guarantee that the resonant optical depth remains similar during

each data set, it is split into subsets of 10 subsequent cycles which are
compared to one another.
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4. Superradiance and collective mode interference

4.3. Experimental results
Figure 4.4a and b shows the experimental signal before and after the optical
driving pulse for two different optical depths. The decay rates observed for
each optical depth, − ln (T (∆)), in the experiment are relatively constant
until masked by the noise.

a) b)

Figure 4.4.: The optical driving pulse for two different optical depths. a)
OD = 4.54 and b) OD = 2.91. The shaded pulse is the initial pulse sent
to the atoms.

a) b)
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Figure 4.5.: a) Experimental lineshapes at different optical depths. b)
Experimental lineshape at high optical depth OD = 4.54 (blue squares)
and the coresponding Lorentzian fit (red dashed line).
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The resonant optical depth within a measurement is determined by
calculating the transmission T (∆) = Ptot/P0 while the system is in the
steady state (the period where the transmission of the probe pulse through
the ensemble remains constant - figure 4.4). For a range of probe detunings
∆ (figure 4.5a), a Lorentzian fit of the lineshape of the resulting spectrum
OD(∆) = − ln (T (∆)) has been performed (as shown in figure 4.5b). The
resonant peak optical depth during steady state excitation is then given
by the amplitude.
The corresponding decay rates have been compared in four different

regimes.

• when the driving pulse is on resonance with the atoms (presented in
figure 4.6a (blue));

• when the driving pulse is −2 MHz detuned from the resonant fre-
quency (presented in figure 4.6a (gold));

• for four different detunings - 0 MHz, +2 MHz, +3 MHz, +4 MHz
(presented in figure 4.6a (cyan));

• for different driving field strength when the driving pulse is on
resonance with the atoms (presented in figure 4.6a (purple)).

Both experimentally and numerically, there is a clear positive correlation
between the decay rate and the optical depth (figure 4.6a). The observed
increase, as the cloud dimensions remain similar, is further evidence that
superradiance is a collective effect and not just single atom behaviour [87].

All errorbars stated for each optical depth correspond to the uncertainty
in the Lorentzian fits of the lineshapes (as shown in figure 4.6(c and d)
calculated by splitting each measurement to 10 subsets.
Normally, a change in the decay rate should also result in a change of

the linewidth, because the decay rate and the full width at half maximum
(FWHM) linewidth for any given eigenmode are both Γ. In this case
however, despite the significant increase in the initial decay rate, both
experimentally and numerically, there is a relatively small increase in
the linewidth - figure 4.6b. This seems counterintuitive, but it should
be considered that the linewidth – decay rate correspondence does not
account for the interferences between the different eigenmode frequencies.
Furthermore, unlike the decay rate, its observation is not restricted only to
the first one or two lifetimes Γ0. The overall linewidth should contain all
eigenmodes excited by the laser. The superradiant modes do not dominate
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Figure 4.6.: a) Experimental and numerical decay rates on resonance
(blue), −2 MHz detuned from resonance (gold), for four different detunings
(cyan) and for three different mean photon numbers (purple) as a function
of steady state optical depth. The numerics highlight the decay rate
immediately after (squares) and τ0 (circles) the pulse was turned off. b)
Full width at half maximum on resonance (blue), −2 MHz detuned from
resonance (gold), for four different detunings (cyan) and for three different
mean photon numbers (purple) as a function of peak optical depth during
steady state excitation for experiment and numerics (red squares). c) and
d) Lineshapes at high (OD = 4.89) and low (OD = 0.84) optical depth
for the experiment on resonance (blue doted lines) and the corresponding
Lorentzian fit (red dashed lines).
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4.3. Experimental results

these various components. They only contribute at the beginning of the
decay process. Experimentally, it is possible to observe decay rates over a
much longer time [77, 92]. In that case the linewidth should start increasing
as well.

Varying the detuning (between 0 MHz and 4 MHz) for the same optical
depth (OD = 3.69) is shown in figure 4.6 (in cyan) as well as in figure 4.7.
It is easy to see that a detuning change in such a small range does have a
small impact on the decay rate of the coherent flash.

Figure 4.7.: Experimental decay rates for four different detunings (0 MHz,
+2 MHz, +3 MHz, +4 MHz).

The experimental results outlined above, were all performed in a weak
driving regime, as the mean number of photons per pulse is approximately
1.5. As shown in figure 4.6 (in purple) as well as in figure 4.8, the experiment
was also repeated for different driving fields. Results are shown for different
photon mean numbers of 0.5, 1.5 and 4. The figure clearly shows that
there is no change in the decay rate as a function of the driving field, where
the optical response remains in the linear regime. The steady state optical
depth is OD = 4.54.
The second-order correlation function g2(0) has also been analyzed for

different durations within the flash pulse, as shown in figure 4.9 for the
whole pulse, and figure 4.10 for two different time slots within the pulse.
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4. Superradiance and collective mode interference

Figure 4.8.: Experimental and numerical decay rates for three different
mean photon numbers 0.5, 1.5 and 4.
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Figure 4.9.: The single correlation function g2(0) as a function of time
duration for the whole pulse. a) The blue line represents the flash pulse
while the red vertical lines represent the region within which g2(0) has
been calculated. b) The calculated value of g2(0) within that region and
the corresponding error.
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Figure 4.10.: The single correlation function g2(0) as a function of time
duration for two different time slots within the pulse. a) The blue line
represents the flash pulse while the red vertical lines represent the region
within which g2(0) has been calculated. b) The calculated value of g2(0)
within these regions and the corresponding errors.

Splitting to more then one time slot needs a sufficient amount of data and a
good signal-to-noise ratio. This is the reason why the second region in figure
4.10b gives a g2(0) less than one, and also the much larger errorbars. The
approximate value of the single correlation function g2(0) remains 1 and
as expected the flash emission is classical state of light. The method used
to analyze the photon measurements and calculate the single correlation
function g2(0) is described in Appendix C.
It is also interesting to have a look at the initial transient peak which

appears before the system is settled down into a steady state (figure 4.11).
The region of interest is marked with the two blue dashed lines. This flash
should be a result of interference between the driving field EL and the
scattered dipoles emission ESC.

As expected the overall behaviour of the ensemble can be very different
from the behaviour of a single atom, and its expected decay rate propor-
tional to Γ0/2. Again the overall decay is a combination of all individual
dipoles decays, which are shifted off-resonance with respect to each other.
Figure 4.12 shows the calculated decay rates of the initial peak on resonance
as a function of steady state optical depth. The decay rate is calculated
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4. Superradiance and collective mode interference

Figure 4.11.: A slice of the optical driving pulse for optical depths OD
= 4.54. The shaded pulse is the initial pulse sent to the atoms. The blue
dotted lines correspond to the region within which the decay rates have
been calculated.
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Figure 4.12.: Experimental decay rates of the initial transient peak on
resonance, immediately after the driving field is turned on and before the
system is settled down into a steady state, as a function of steady state
optical depth.

62



4.3. Experimental results

immediately after the pulse was turned on and before the system is settled
down into a steady state. The increase of the decay rate when increasing
the optical depth is further proof that this is a collective effect and not a
single atom response.
Although there is good agreement in the obtained decay rates of the

coherent superradiant flash between experiment and numerical simulations,
there are still factors which can contribute and affect the measured optical
depth such as the exact number and positions of the atoms in the cloud,
and Gaussian beam misalignment. Atomic dephasing also may reduce the
experimental optical depth, whilst not affecting the decay rate.
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4. Superradiance and collective mode interference

Summary
The interference between eigenmodes of collectively excited ensembles of

optical dipoles can lead to a decay faster than any individual, superradiant
eigenmode. The decay is not only due to the decay of the individual
eigenmodes but also depends on their frequency shifts. In the future, a
Rydberg character could be introduced to the flash which should result
in decay rates proportional to the Rabi frequency of the dressing field
and proportional to the lifetime of the used Rydberg state. The Rydberg
character should also suppress the g2(0) within the dressed flash. Numerical
simulations and experimental data of a Rydberg dressed flash could provide
a different approach in which to exploit collective mode engineering in
quantum technology applications.
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5. Storage and retrieval of
optical photons, Blockade
vs. Dephasing model.

5.1. Introduction
Photons have been deemed ideal carriers of quantum information due to

their weak free-space interactions [93]. Consequently, photons very rear
interact with each other in vacuum. A solution to make individual photons
interact is to convert one photon into an atomic excitation. Rydberg
atoms, due to their strong interactions, can be used to achieve strong
photon-photon interactions by mapping the photon states onto Rydberg
excitations [27, 37]. The dipole-dipole interactions give rise to the Rydberg
blockade suppression effect and limit additional excitations. Additionally,
the relatively long lifetime of Rydberg atoms allow the observation of these
photon-photon interactions. The ability to vary the interaction strength
between Rydberg atoms unlocks the potential to develop scalable quantum
information networks.

This chapter is based on experiments with two spatially separated atomic
clouds (figure 5.1), performed in collaboration with Hannes Busche, Simon
Ball and Paul Huillery. In Sections 5.4 and 5.5, different models are
introduced to simulate and explain the experimentally gathered photon
statistics.
Contactless photon-photon interactions depend on the amount of Ry-

dberg excitation, within a single medium, and on the distance between
the spatially separated mediums containing these excitations. The first
condition is related either to the Rydberg blockade radius, which can be
controlled by; either changing the linewidth of the control laser, changing
the effective size of each cloud, controlled by the focus of the signal light, or
by only exciting some of the atoms to the intermediate |5P3/2〉 state. In the
desired regime only a single Rydberg excitation would be possible in each
of the clouds. The interaction effect can then be read out by measuring
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

the sub-Poissonian statistics of the retrieved photons. This is defined by
the simplified second order spatial correlation function g(2)(t), expressed
by the number of detected retrieved photons [94].
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5.2. Storage and retrieval of optical photons
The single Rydberg excitation state is a superposition of quantum states

characterized by a single atom being excited into a Rydberg state. For
example a collective superposition state with a single atomic excitation is:

|R〉 = 1√
N

∑
j

(
|rj〉 ⊗k 6=j |gk〉

)
(5.1)

where |rj〉 and |gk〉 correspond to a state in which a single atom j is excited
to the Rydberg state and all other atoms are left in the ground state. N
is the number of entangled atoms sharing the Rydberg excitation.
The excitation of a doubly-excited state is excluded as a result of the

blockade mechanism. The many-body character of the excitation can be
treated by introducing an entangled collective state. The collectiveness
of this excited state leads to a collective enhancement of the oscillation
between ground and excited state - the Rabi frequency -

√
NΩ [95, 96].

This collective state |R〉 should also include the specific phase of the
photons φ(~rj), which originates from the phase of the excitation lasers at
the position of each atom j excited to the Rydberg state, and the excitation
probabilities ε(~rj) at position ~rj. This ensures that the retrieved photon
will be in its originally imprinted spatial mode. The collective spin-wave
state is defined as:

|R〉 = 1√∑
j ε(~rj)2

∑
j

ε(~rj)eiφ(~rj)
(
|rj〉 ⊗k 6=j |gk〉

)
. (5.2)

To understand better the storage process in the experiment using elec-
tromagnetically induced transparency, we should discuss the propagation
of the signal photon through this atomic medium. This can be described
in terms of quasi-particles, known as polaritons [38], and corresponds to
superpositions of atomic coherence and electromagnetic excitations. Using
electromagnetically induced transparency scheme for storing signal pho-
tons, restricts the population in the intermediate level |e〉. The dark-state
polariton field is:

ψ(z, t) = cos θεS(z, t)︸ ︷︷ ︸
Electromagnetic part

− sin θ
√
Nρgr(z, t)ei(kS+kC)z︸ ︷︷ ︸

Atomic part

(5.3)

where the signal field is εS(z, t), the wave vector of the spin-wave is given by
(kS + kC), the mixing angle θ comes from the group index as tan θ2 = ngr,
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and ρgr(z, t) is the coherence between the states |g〉 and |r〉. The coherence
term also represents the direct coupling between these two states.

The group velocity is given by vg = c cos θ2 and for θ → 0 the character
of the dark state polariton is dominated by the photonic component and
vg → c. If θ → π/2, the group velocity vg → 0 and the electromagnetic
field is completely transferred to the atomic coherence.

Controlling the group velocity vg in the range between 0 and c, by
controlling the Rabi frequency of the coupling beam ΩC (equation (2.28)),
allows the storage of photons as stationary collective Rydberg excitations.
The shape and the coherence of the photon are imprinted in the phase and
amplitude of this spin-wave.

The stored photons can be later retrieved from the atomic medium
by increasing ΩC . The group velocity vg will increase and transfer back
the atomic coherence into an electromagnetic excitation. The phase of
the signal photons, previously imprinted and conserved in the spin-wave,
should lead to a retrieved electromagnetic field emission with the same
spatial mode as the original signal field.

To understand this directionality in the retrieval process, we now look
at an example of a spin-wave with a single atomic excitation:

|ψ〉 = 1√
N

N∑
j=1

eiφj |rj〉, (5.4)

where |rj〉 = |g1g2 . . . rj . . . gN〉 correspond to a state in which a single atom
j is excited to a Rydberg state and all other atoms are left in the ground
state |g〉. The phase factors are given by φj = (~kS + ~kC) · ~rj, where ~rj is
the position of atom j.

Since the directionality of the retrieval relies on constructive interference
between each term, it should increase with the number of atoms used to
imprint the photon or the optical depth of the medium. The retrieval
efficiency is mainly reduced by motional dephasing of the atoms during
the storage time. Such motion disturbs the phase pattern imprinted into
the medium. As long as the phase factors φj remain in relative phase,
the photon will be collectively emitted back into its original signal spatial
mode. The retrieval efficiency κret decays exponentially with time [97]:

κret = e−(t2/τ2), (5.5)
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where τ is the 1/e lifetime of the spin-wave, given by:

τ = 1
(~kS + ~kC) · ~v

(5.6)

with v as the velocity of the atoms.
The electromagnetically induced transparency storage scheme gives an

additional requirement related to the finite width of the transparency
window, γS < ∆EIT , where γS is the linewidth of the signal photons.
Frequency components outside this window are scattered by the medium.
Reducing ΩC leads to a reduction in the bandwidth of the signal pulse
that is transmitted.
On the other hand, the initial storage of the signal light pulse requires

spatial compression, such that it spatially fits inside the medium. That
gives a requirement of either a minimal length l > vgtS, a very short pulse
time tS, or a low value of ΩC .

As a result, to have enough atoms to store the signal light pulse and get
better retrieval efficiency, the optical depth (OD) of the medium should
be OD � 1 and the control light should be switched off adiabatically.
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

5.3. Experimental realization
The level digram required for the experiments outlined in this chapter is
highlighted in figure 5.1a. A weak Gaussian coherent pulse at 780 nm drives
the transition |g〉 = |5S1/2, F = 2,mF = 2〉 to |e〉 = |5P3/2, F

′ = 3,m′F = 3〉
while a strong coupling beam at 480 nm drives |5P3/2, F

′ = 3,m′F = 3〉
to |nS1/2〉 transitions. The beams are counter-propagating with opposite
circular polarisation. Part of the signal photons are stored as polaritons in
the Rydberg state.

signal
780 nm

|5S1/2⟩

|5P3/2⟩

control
480 nm

|nS1/2⟩
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Figure 5.1.: A schematic of the spatially separated channels. a) The
Rydberg electromagnetically induced transparency ladder scheme in 87Rb.
b) A schematic of two spatially separated channels. The sent and retrieved
signal light detected in the experiment is represented by the pulses before
and after the atomic clouds. A signal light beam is tightly focused into
a cigar-shaped cloud of cold 87Rb atoms which are trapped with a far
red-detuned 910nm optical tweezers. The distance between the channels is
adjustable.

The signal light is tightly focused (waist 1/e2 radius w0 ≈ 1 µm = 1.28λ0)
and propagates independently through two microscopic clouds of optically
trapped 87Rb atoms, acting as two spatially separated optical media. A
schematic of the two mediums is shown in figure 5.1b. The corresponding
optical setup for this experiment is described in Chapter 3. The estimated
dimensions of each cigar-shaped atomic ensemble is 1.5 µm in radial size
and 20 µm in axial size. The dimensions of the atomic ensembles are
difficult to measure in the current experimental setup, but the atoms
should occupy a fraction of the volume defined by the size of the dipole
trapping beam. For these experiments, the trapping beam has a waist 1/e2
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radius of 4.5 µm and Rayleigh range of 70 µm.

350 ns

4550 ns

3050 ns
Channel A

Channel B

t stControl

Figure 5.2.: The micro-second storage sequence for the electromagneti-
cally induced transparency signal and control fields and the optical trap.

The storage protocol is shown in figure 5.2. Once the ensembles are
prepared, the trap light is switched off for 1.5 µs. During that time the
atoms are probed with a 350 ns square pulse of signal light. As a result
the signal pulse is applied in the absence of any AC-Stark shifts due to
the trap light. The control light power is reduced to zero, converting
the signal photons into collective Rydberg excitations. The incoming
signal pulses contain a mean of 2.2± 0.2 photons. After the storage time
tst, the photons are retrieved by restoring back the control field. The
switching of the control field is controlled by a polarization switching
electro-optic modulator, with response time of approximately 100 ns. The
measured control light Rabi frequency is ΩC/2π = 9±1 MHz. The resulting
transmission is detected using the Hanbury-Brown Twiss interferometer
setup, described in Chapter 3. Each one of the data points is obtained
over 25 million storage and retrieval cycles with 25,000 repetitions within
a single magneto-optical trap loading.
The minimum separation between the two atomic ensembles is 10 µm.

Any separation smaller than that results in cross-talk between the channels.
The absorption cross-talk is measured by observing the effect on the
transmission of the signal light on the neighbouring channel while there
are no atoms in that particular one. The trap light was filtered and only
the signal light was transmitted for this specific channel. The cross-talk
data for the minimum allowed separation is shown on figure 5.3. Increasing
the separation reduces the cross-talk. The two channels are spatially
independent after 10 µm. Any separation less than that value leads to a
cross-talk greater than 5%.

To maintain a relatively constant coupling Rabi frequency ΩC , through-
out each different measurement, an Autler-Townes splitting of the absorp-
tion line is made at |nS1/2〉 = |30S1/2〉 because of the high power required
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Figure 5.3.: Cross-talk between the two channels. The signal light trans-
mission in channel A (red) and channel B (blue) for 10 µm separations.
For the spectra shown as solid lines both atomic media are present. The
corresponding colored dashed lines represents a case where the dipole trap
in this channel is blocked and the signal detected comes from the nearby
channel’s atomic cloud.

for such measurements at higher Rydberg levels, such as |80S1/2〉. Figure
5.4 shows Autler-Townes splitting for various laser powers. The obtained
Rabi frequencies, ΩC/2π = 0 MHz (red), ΩC/2π = 7.92± 0.98 MHz (blue)
and ΩC/2π = 14.59 ± 0.11 MHz (black), are calculated using the Beer-
Lambert law and the three-level susceptibility from equation (2.26). The
overlapping of the coupling light and the channels is also checked before
each measurement to ensure that the control light intensity is equal for
both channels.
The control light is switched on and off before and after the signal

light pulse to ensure that its Rabi frequency ΩC stays relatively constant
throughout the entire duration of the signal pulse.
Figure 5.5 shows a storage-retrieval histogram of photon events for

Rydberg state |80S1/2〉. The grey trace shows the signal laser pulse in the
absence of atoms, the red trace shows the signal laser light in the presence
of atoms and the detected retrieved photons and the blue one shows the
coupling intensity recorded on a photodiode. The discussed collective flash
emission in Chapter 4 is also visible, and appears just after the signal light
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Figure 5.4.: Autler-Townes splitting at |30S1/2〉 as a function of the signal
light detuning for three different coupling powers. The calculated values
are ΩC/2π = 0 MHz (red), ΩC/2π = 7.92± 0.98 MHz (blue) and ΩC/2π =
14.59± 0.11 MHz (black).

is switched off.
Two influences on the photon-photon interactions were explored initially:
• the separation between the clouds,

• the interaction strength at a fixed distance between the clouds.
After the results were gathered it was only natural to look for a theoretical

model, that could describe the system. The first step was to create a model
based on the Rydberg blockade effect described in Section 5.4. Due to
the experimentally observed suppression even beyond the blockade radius,
a research was made in a different direction to explain this particular
observed behaviour - Section 5.5. To additionally provide proof of the
chosen method, the storage time dependence of the retrieved photons was
taken into consideration. The data gathered from the experiment was
processed using the method described in Appendix C. The second order
correlation function of the retrieved photons was used as an estimation
criteria for a single channel and for both channels:

g
(2)
A/B = 〈NA/B(NA/B − 1)〉

〈NA/B〉2
, (5.7)

73



5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

Figure 5.5.: A histogram of detected photon events at Rydberg state
|80S1/2〉. The grey trace shows the signal laser pulse in the absence of
atoms, the red trace shows the signal laser light in the presence of atoms
and the detected retrieved photons and the blue one shows the coupling
intensity recorded on a photodiode.

g
(2)
AB = 〈NANB〉

〈NA〉〈NB〉
(5.8)

where N is the number of detected retrieved photons, the indices A/B and
AB indicates measurements from two different channels, either A or B, or
AB simultaneously.
In the absence of interactions, g(2) = 1. If the interaction strength

is strong enough to influence a nearby stored photon, the second order
correlation function g(2) < 1 which indicates the retrieval of non-classical
light with sub-Poissonian photon counting statistics. A g(2) = 0 means
a retrieval of no more than a single photon. The timing resolution is
the width of the retrieval window. Errors in the second order correlation
functions g(2) are calculated by splitting each dataset into multiple subsets,
calculating g(2) for each subset and calculating the standard error over all
subsets. In case of simultaneous retrieval, the presence of a photon stored
in the first cloud should effect the storage in the second one.
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5.4. Rydberg blockade simulation

5.4. Rydberg blockade simulation
The effect of the Rydberg blockade can be easily explained as a spatial

extension of a restricted medium, in which a single excitation in the medium
entirely prevents other excitations. For cases where the clouds are in scale
with the blockade radius rb (the blockade radius is big enough) only one
photon can be stored in either of the two photonic channels. On the other
hand, if the length of the atomic cloud exceeds the blockade radius rb, the
number of photons stored in each channel is only partially reduced by the
blockade, although the channel separation is less than the blockade radius.

Figure 5.6.: A schematic of the Rydberg partial blockade regime. The
experimental cigar-shaped cloud dimensions allow more than a single
excitation in each cloud to exist.

A fully blockade regime between the two spatially separated mediums
could not be achieved, due to the cross-talk which appears in separations
less than 10 µm, and at the same time the tuning range of the coupling
laser which limits the high Rydberg states that can be reached. Still,
the partial blockade regime as shown in figure 5.6 is of interest for us as
the experimental cigar-shaped cloud dimensions allow more than a single
excitation in each cloud to exist.
The numerical simulation used to explain the experimental results is

relatively simple compared to the complex theory which describes the
experiment. The steps of the simulation are presented in figure 5.7.
Initially two clouds with Gaussian distributed atoms are created. The

number of atoms in each cloud is limited to 1000. The clouds are shifted
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

Figure 5.7.: A scheme of the Rydberg blockade model used to simulate
the photon statistics gathered from the experiment.

at the required distance given by the different separations used in the
performed measurements - figure 5.8.
Photons with a Poisson distribution are sent to both clouds. In order

to replicate the experiment, the photons are randomly split and sent to
either one of the clouds, to simulate a beam splitter behaviour.

Each one of the atoms inside the clouds can absorb, scatter or transmit
a photon with a given rate (for the results presented later in this section
the absorption and scattering probability rates are fixed at 0.001). Each
absorbed photon results in a blockade as shown in figure 5.9 and within its
radius the atoms cannot absorb anymore, although can still scatter future
photons. If the sent photon is not absorbed or scattered by any of the
atoms, it is simply transmitted by the cloud.
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5.4. Rydberg blockade simulation

Figure 5.8.: Two clouds with Gaussian distributed atoms shifted from
one another at a distance of 10 µm.

The calculation of the second order correlation function g(2) requires
a large number of coincidences so that the described sequence should be
repeated hundreds of thousands of times per each experimental data point,
before the target precision is reached.
The model contains many free parameters which require some initial

estimation. Since the basic calculation requires hours, a fitting process
of these parameters is not feasible. One of the unknown parameters
currently in the experiment is the cloud size which varies between each g(2)

measurement. A simple solution to that was to examine the calculated
second order correlation function g(2) for different longitudinal sizes between
30 µm and 60 µm (figure 5.10) of the clouds. Based on the experimental
results, for single channel and for both channels simultaneously, we were
able to approximate the effective cloud size. The channels’ separation
distance is set at 10 µm, and rb = 10 µm is used for the Rydberg blockade
radius, as this is the approximate blockade radius at Rydberg state |80S1/2〉.
From figure 5.10, it is clear that the cloud size has a major impact on both
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Figure 5.9.: Two clouds with Gaussian distributed atoms shifted from
one another at a distance of 10 µm with excited Rydberg atoms and a
corresponding blockade radius of 6 µm.

single-correlation and cross-correlation functions as it defines how many
photons can be stored simultaneously. The effective longitudinal cloud size
was estimated to be in a range between 25 µm and 30 µm.

Next we investigated the influence of the Rydberg blockade radius
at two different cloud sizes - figure 5.11. The obtained results for the
cross-correlation function g(2)

AB show that better agreement occurs between
experiment and theory for a theoretical blockade radius of 14.6 µm (com-
pared to the experimental value of approximately 10 µm). It is also clear
that a small change in the cloud size does not affect the reproducing of
the data when varying the separation between the two channels.

Similar behaviour can be observed in the calculated dependence between
the single-correlation function g(2)

A and the Rydberg blockade radius (figure
5.12). Again better agreement occurs between experiment and theory for
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5.4. Rydberg blockade simulation

Figure 5.10.: Calculated cross-correlation function g(2)
AB (red circles) and

single-correlation function g
(2)
A (blue circles) dependence on the clouds

length for four different longitudinal cloud sizes between 30 µm and 60 µm.
The Rydberg blockade radius is fixed at 10 µm and the distance between
the clouds is 10 µm.

Figure 5.11.: Cross-correlation function g(2)
AB measured in the experiment

(blue squares) for different clouds separation at level |80S1/2〉 and the
calculated cross-correlation function g(2)

AB (blue, red and black circles) for
two different longitudinal cloud sizes and two different Rydberg blockade
radii.
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a theoretical blockade radius of 14.6 µm. The consistently constant values
for different runs of the simulation gives a validation of that the model is
stable.

Figure 5.12.: Single-correlation function g(2)
A measured in the experiment

(blue and red squares) at level |80S1/2〉 and the calculated single-correlation
function g(2)

A (blue and red circles) for two different Rydberg blockade radii.

The numerical model allows us to investigate different influences over
the cross g(2)

AB and single-correlation function g
(2)
A/B. In figure 5.13, the

g2 function is calculated as a function of the number of photons initially
sent to the atomic cloud. The results are shown for the Rydberg state
|80S1/2〉, where the cloud size is fixed at 27 µm(3 µm) in the longitudinal
(radial) direction. The numerical results for the cross-correlation function
g(2) are in a good agreement with the mean number of photons used in the
experiment which is 2.2± 0.2.
The effect of the interaction strength for a single channel and two

channels (figure 5.14) has also been investigated. The calculated results
from the simulation for different Rydberg states (between |50S1/2〉 and
|95S1/2〉 show very good agreement with the obtained experimental data
points. A small change in the cloud size should not affect the reproduction
of the experimental data.
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Figure 5.13.: Calculated cross-correlation function g(2)
AB for different num-

ber of photons sent to the clouds at Rydberg state |80S1/2〉. The clouds
have a longitudinal size of 27 µm and a radial size of 3 µm.

Figure 5.14.: Cross-correlation function g(2)
AB (blue squares) and single-

correlation function g(2)
A individually (blue and red squares(channel A and

channel B respectively)) measured at different Rydberg states for a fixed
clouds separation of 10 µm. The result from the theoretical model for the
cross (blue circles) and single (red circles) correlation function corresponds
to a cloud longitudinal size of 27 µm and a radial size of 3 µm.
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In both cases, for the single and cross-correlation function g(2), the
theory does not vary significantly with the cloud size between 25 µm and
27 µm. As a result the effective longitudinal cloud size has been set to
27 µm because both experimental single and cross-correlation functions
show best agreement with theoretical fit, as shown in figure 5.14 with red
and blue circles respectively.

Figure 5.15.: Cross-correlation function g(2)
AB (blue squares) and each one

of the clouds individually (blue and red squares) measured in the experiment
at a fixed |80S1/2〉 Rydberg state for different clouds separations. The
result from the model for the cross (blue circles) and single (red circles)
correlation function corresponds to Rydberg blockade radius of 14.63 µm
for level |80S1/2〉, a cloud longitudinal size of 27 µm and a radial size of
3 µm.

In figure 5.15 the combined calculated results for a fixed interaction
strength and different clouds separation are shown. As previously observed
in figures 5.11 and 5.12, a bigger blockade radius of 14.6 µm is required in
the theoretical model compared to the experimental value of approximately
10 µm. Despite the good reproduction of the experimental data points
within a single cloud, there is a significant deviation form the experimental
data in the two clouds case.
In conclusion, the idea of a hard sphere that represents a Rydberg
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blockade was sufficient in reproducing the cross correlation function g(2)
AB

measured in the experiment for different Rydberg states at fixed distance of
10 µm between the atomic clouds. However, it is apparent from the results
shown in this section, that a hard sphere model is not a good solution
when the Rydberg state is fixed and the separation is varied (figure 5.15).
The experimentally obtained data can not be entirely covered by a hard
sphere model. The interaction induced phase shifts caused by the van der
Waals interactions can not be simply neglected and should be included in
the theoretical explanation.
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5.5. Dephasing simulation
The model referred to in this section was developed in collaboration

with Paul Huillery based on the work published in [98], where a theory
for interaction induced dephasing within one atomic ensemble has been
explored. As mentioned previously, photons stored as collective excitations
are sensitive to interaction induced phase shifts. Based only on the addi-
tional phase shift of the imprinted spin-wave pattern, due to the van der
Waals interactions, it allows the successful reproduction of the obtained
experimental data.

Single channel
Let us consider an atomic ensemble within a single channel. The number

of photons that can be detected simultaneously in a Hanbury-Brown Twiss
interferometer is limited to two in each cloud, which limits the number of
excitations used to the same number. The superposition of these collective
states with different numbers of stored photons (between 0 and 2) is then:

|ψ〉 = c0|ψ0〉+ c1|ψ1〉+ c2|ψ2〉 (5.9)
where the coefficients cn describe the distribution of the signal photons.
The collective ground state is |ψ0〉.

The state containing one collective Rydberg excitation is defined as:

|ψ1〉 = 1√∑
j
E(~rj)2

∑
j

E(~rj)eiφ(~rj)|rj〉 (5.10)

where E is the electric field amplitude of the signal mode and φ is the
imprinted signal and control field phase. ~rj is the position of atom j, and
|rj〉 is the state where atom j is in the Rydberg state while the other atoms
are in the ground state.
The state containing two collective Rydberg excitations is given by:

|Ψ2〉 = 1√ ∑
j,k>j

(E(~rj)E(~rk))2

∑
j,k>j

E(~rj)eiφ(~rj)E(~rk)eiφ(~rk)|rj, rk〉 (5.11)

where ~rj and ~rk are the position of atom j and k and |rj, rk〉 is the state
where atoms j and k are in the Rydberg state while the other atoms are
in the ground state.
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During the storage time tst, the components of |ψ2〉 experience an addi-
tional induced phase factor due to interactions between the two Rydberg
excitations. This evolution can be expressed through the operator Û(tst):

Û(tst) =
∑
j,k>j

e−iVjktst/~|rj, rk〉〈rj, rk| (5.12)

where Vjk = VV dW (~rj, ~rk) = C6/|~rj − ~rk|6 is the van der Waals potential.
The interaction-induced dephasing reduces the probability with which

two photons are retrieved from the state Û(tst)|ψ2〉, in the same spatial
mode as the initial signal photons. The overlap D(2) between the initial
collective ground state |ψ2〉 and the collective ground state after a photon
storage and retrieval cycle Û(tst)|ψ2〉, which determines the probability to
retrieve signal photons in the original spatial mode, should be calculated
for two pairs of control and signal photons.

D(2) = 〈ψ2|Û(tst)|ψ2〉 = 1∑
j,k>j

(E(~rj)E(~rk))2

∑
j,k>j

(E(~rj)E(~rk))2e−iVjktst/~

(5.13)
Overlap D(2) = 1 means that there is no interaction induced dephasing.

This overlap D(2) can be relayed to the second order single-correlation
function in the experiment as:

g(2) = 2|D(2)|2|c2|2

(|c1|2 + 2|D(2)|2|c2|2)2 (5.14)

where |c1|2 and |c2|2 are the probabilities to store one or two photons. A
single stored photon is not affected by the interaction-induced dephasing
and as a result the probability to retrieve two stored photons in the original
signal mode is given by |D(2)|2.

The incoming signal pulse is a classical light and the number of incoming
photons should follow a Poisson distribution. The decay of the Rydberg
excitations is neglected as their lifetime is long compared to the storage
times tst used in the experiment.
To simulate the data for a single cloud we create a cigar-shaped en-

semble of N = 1000 randomly positioned rubidium atoms with Gaussian
distributions. The value of the axial width, previously concluded from the
blockade model, has been changed to 22 µm, as this value seems to be in
a better agreement using this theoretical model. In the next step D(2) is
calculated for the given atomic positions and the interaction potential Vjk.
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The obtained result and the coefficients cn (for a specific initial photon
number distribution) are used to calculate the single-correlation function
g(2). This procedure is repeated for multiple randomly generated ensembles
and the results are averaged to obtain the final g(2). A schematic of the
model for two channels case is shown in figure 5.18.

This model does not include any free parameters, but some experimental
parameters, such as the number of atoms and longitudinal size of the
atomic cloud, are known only as a rough approximation. The number
of excitations stored in each channel follows Poissonian statistics with a
mean n = 0.01. The low value of n ensures that the truncation to two
excitations has negligible effects on the calculated quantities.

|cn|2 = 1
n!e
−nnn (5.15)

The number of photons and the number of atoms can be varied to verify
that they do not affect the results. g(2) shows no impact as long as the
mean number of photons n� 1� N .

Figure 5.16.: Simulation results for single-correlation function g
(2)
A at

different storage times for different principal quantum numbers. The cloud
has an axial size of 22 µm and a radial size of 3 µm. The lines are only
drawn as a guidance.
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The signal light mode is Gaussian with a waist of 1 µm, focused in the
center of the channel.
As the interaction induced dephasing is storage time dependent, the

influence on the photon retrieval while the storage time has been varied
(between 100 ns and 800 ns) for different collective Rydberg states |nS1/2〉
(between n = 40 and n = 90) has been investigated. It is clear in figure 5.16,
that increasing either the principle quantum number n or the interaction
time tst, leads to an increase of the anti-correlation in the expected photon
retrieval. The van der Waals potential scales with VV dW ∝ n11 and also
the interaction time dependence leads to a stronger suppression.

Figure 5.17.: Simulation results for single-correlation function g
(2)
A for

different for different collective Rydberg states |nS1/2〉 with n from 40 to
80 and different axial cloud widths from 14 µm to 22 µm. The storage time
used to gain this results is 170 ns, which is approximately the storage time
used in the experiment. The cloud is with a constant radial size of 3 µm.
The lines are only drawn as a guidance.

As in the blockade model, the dependence of anti-correlations in the
photon retrieval on the axial length of the cloud has also been studied, as
shown in figure figure 5.17. The axial length of the cloud has been varied
(between 14 µm and 22 µm) for different collective Rydberg states |nS1/2〉
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(between n = 40 and n = 80). The theoretical anti-correlations in the
photon retrieval become stronger as the medium becomes denser. This
increase in the interaction-induced dephasing is due to the fact that the
van der Waals interactions depend on the distance between the Rydberg
excitations. As the length of the cloud is one of the unknown parameters,
this result again can give us a clue to the approximate dimensions of the
cloud in our experiment. The storage time used to obtain these results is
equal to the storage time in the experiment tst = 170 ns.

Two channels

In the case of two channels, after between 0 and 2 photons are stored,
the system will be in a state defined as:

|ψ(AB)〉 = c00|ψ(AB)
00 〉+ c10|ψ(AB)

10 〉+ c01|ψ(AB)
01 〉+ c11|ψ(AB)

11 〉 (5.16)

with

|ψ(AB)
nm 〉 = |ψ(A)

n 〉 ⊗ |ψ(B)
m 〉 (5.17)

where A and B refer to the two spatially separated channels. Similar to
the single channel case, the coefficients cnm describe the distribution of the
signal photons. A schematic of the model is shown in figure 5.18.
During the storage time tst, the components of |ψ(AB)

11 〉 experience an
additional phase factor due to interactions between the two Rydberg exci-
tations. This evolution can be expressed through the operator Û (AB)(tst):

Û (AB)(tst) =
∑
jA,jB

e−iVjAjB
tst/~|rjA〉〈rjA| ⊗ |rjB〉〈rjB | (5.18)

where VjAjB = VV dW (~rjA , ~rjB ) = C6/|~rjA − ~rjB |6 is the van der Waals
potential.

The interaction-induced dephasing reduces the probability to retrieve a
photon from the state Û (AB)(tst)|ψ11〉 simultaneously in the signal photon
mode from each channel.
To get to the second order cross-correlation function g(2)

AB, the overlap
between the ground state |ψ(AB)

11 〉 and the state resulting from the emission
from Û (AB)(tst)|ψ(AB)

11 〉 should be calculated for a pair of control and signal
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Figure 5.18.: A scheme of the dephasing model used to simulate the
photon statistics gathered from the experiment.

photons.

D
(11)
AB = 〈ψ(AB)

11 |Û (AB)(tst)|ψ(AB)
11 〉 =

= 1∑
jA,jB

(EA(~rjA)EB(~rjB ))2

∑
jA,jB

(EA(~rjA)EB(~rjB ))2e−iVjAjB
tst/~

(5.19)
This leads to g(2)

AB defined as:

g
(2)
AB = |D(11)

AB |2|c11|2

(|c10|2 + |D(11)
AB |2|c11|2)(|c01|2 + |D(11)

AB |2|c11|2)
(5.20)

where |c01|2, |c10|2 and |c11|2 are the probabilities to store one photon in
A, one photon in B or one photon in each simultaneously. A single stored
photon is not affected by the interaction-induced dephasing and as a result
the probability to retrieve two stored photons in the original signal mode
is again given only by |D(11)

AB |2.
To simulate two clouds, two cigar-shaped ensembles of N = 1000 ran-

domly positioned rubidium atoms with a Gaussian distribution based on
experimentally determined cloud parameters have been created. Their
centers are separated by a distance dAB. The signal photon modes of both
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channels are Gaussian with a waist of 1 µm, parallel to each other and
focused in the centers of the clouds. The number of excitations stored in
each channel follow a Poissonian statistics with a mean n,m = 0.01. Again
this value has no effect on the results as long as n,m� 1� NA, NB.
In the next step D(11)

AB is calculated for the given atoms positions and
the interaction potential VjAjB . The obtained result and the coefficients
cmn, given by:

|cnm|2 = |cn|2|cm|2 (5.21)
for a specific initial photon number distribution, are used to calculate the
cross-correlation function g(2). This procedure is repeated for multiple
random generated ensembles and at the end the results are averaged to
obtain the final g(2).

Figure 5.19.: Simulation results for cross-correlation function g
(2)
AB at

10 µm clouds separation for different storage times and different principal
quantum numbers. The cloud is with axial size of 22 µm and a radial size
of 3 µm. The lines are only drawn as a guidance.

Figure 5.19 shows simulation results for g(2)
AB for different storage times

(between 100 ns and 800 ns) as the principal quantum number n is varied
(between 40 and 90). As expected the anti-correlation in the photon
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retrieval increases with n as the van der Waals potential in principal scales
with VV dW ∝ n11. Additional phase shifts depend also on the storage time,
and as a result, increasing the interaction times will lead to a stronger
suppression of photons retrieved from both channels simultaneously.

Figure 5.20.: Simulation results for cross-correlation function g
(2)
AB at

different clouds separation for different collective Rydberg states |nS1/2〉
with n from 40 to 90. The storage time used to gain this results is 170 ns
which is approximately the storage time used in the experiment. The cloud
is with axial size of 22 µm and a radial size of 3 µm. The lines are only
drawn as a guidance.

The van der Waals potential is distance dependent and in case of two
channels the cloud separation defines the distance between the Rydberg
excitations. Figure 5.20 shows simulation results for g(2)

AB for different clouds
separations (between 5 µm and 20 µm) as the Rydberg state |nS1/2〉 is
varied (between |40S1/2〉 and |90S1/2〉). The interaction time is tst = 170 ns.
The anti-correlation in the photon retrieval increases with n due to the van
der Waals potential scales with VV dW ∝ n11. Because it is also distance
dependent, that leads to a suppression of photons retrieval from both
channels simultaneously as the distance descends.
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

Figure 5.21.: Simulation results for cross-correlation function g
(2)
AB at

clouds separation of 10 µm for different collective Rydberg states |nS1/2〉,
with n from 40 to 80, and different axial cloud lengths, from 14 µm to 22 µm.
The storage time used to gain this results is 170 ns, which is approximately
the storage time used in the experiment. The cloud is with a constant
radial size of 3 µm. The lines are only drawn as a guidance.

As mentioned previously one of the uncertain parameters in the dephasing
model is the cloud longitudinal size. Unlike the single channel case, where
both excitations are within a single cloud and the separation between
them depends on the cloud size, for the two channels case (shown in figure
5.21) both excitations are expected to be symmetrically centered in each
of the clouds. For a fixed cloud separation the cloud size should not have
a significant effect. As expected, there is no obvious suppression in the
photon retrieval from both channels simultaneously. The two channels
case can not be used as an estimation of the effective cloud size in the
experiment.
Comparing the experimental single and cross-correlation functions g(2)

with the simulation results in figure 5.22, we find that they are in good
agreement. The additional dephasing effect appears earlier in the case of
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5.5. Dephasing simulation

Figure 5.22.: The effect of the interaction strength over the retrieved
photon statistics. The cross-correlation function g(2)

AB measured for photons
retrieved from storage in Rydberg state |nS1/2〉 (red squares). The channel
separation is 10 µm. The measured single-correlation functions g(2)

A/B is
represented by the blue squares and circles (for each one of the two channels)
and shows signs of earlier suppression. The dashed grey lines represent
results of the dephasing model.

a single channel, as the distance between the excitation within the cloud
is not restricted. For the two channels case it is fixed at 10 µm and the
interaction potential will start suppressing the simultaneous retrieval after
gaining some particular strength. The interactions lead to a suppression
of g(2)

AB after n = 60.
Figure 5.23 shows experimental and numerical results for the single

and cross-correlation function g(2) at different separations with collective
Rydberg state |nS1/2〉 = |80S1/2〉. As expected, the measured and nu-
merically calculated single-correlation functions g(2)

A/B in absence of the
second channel remain approximately constant. For the two channel case
the suppression stays even beyond the range of the excitation blockade,
rb ≈ 10 µm for |80S1/2〉. With the descending of the separation distance the

93



5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

Figure 5.23.: The effect of the clouds separation on retrieved photon
statistics. The single g(2)

A/B (blue circles and squares) and cross-correlation
function g(2)

AB (red squares) at different separations with collective Rydberg
state |nS1/2〉 = |80S1/2〉. The dashed grey lines represent results of the
dephasing model.

cross-correlation function g(2)
AB starts to approach the results of the single

correlation function g(2)
A/B. This result is also expected, as the g(2) functions

of both cases should become equal at distances similar to the corresponding
blockade radius. The simulation results are in good agreement with the
experimentally gathered data.
The advantage of using the imprinted phase model before the dipole

blockade mechanism model to interpret the experimental photon statistics
is mostly visible when varying the storage time. In the case of a dipole
blockade, there should be no time dependence (the time dependence is
not included in the blockade model). The experimental results for two
different Rydberg states, while the separation distance is constant, show
clear dependence on the storage time. These results are shown in figure
5.24 for Rydberg state |70S1/2〉 and separation distance, d = 11.5 µm (blue
circles), and for Rydberg state |80S1/2〉 and separation distance, d = 11 µm
(red circles). The lower Rydberg state shows a weaker time dependence in
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Figure 5.24.: The effect of the interaction time on retrieved photon statis-
tics. The cross correlation function g(2)

AB at different storage times tst with
collective Rydberg state |nS1/2〉 = |70S1/2〉 (blue circles) and separation of
d = 11.5 µm, and collective Rydberg state |nS1/2〉 = |80S1/2〉 (red circles)
and separation of d = 11 µm. The dashed grey lines represent results of
the dephasing model.

agreement with the model. The uncertainties in the experimental data are
due to the strong dependence between the photon storage and retrieval
efficiency and the storage time.
This result shows again that the interaction-induced phase shifts are

the main contribution to the behaviour observed in the experiment and
cannot be neglected and substituted by a hard blockade sphere model.

For better understanding of the dephasing mechanism, the phase pattern
as a result of interaction phase shifts, and the perturbations in the origi-
nal signal modes, have also been calculated for different scenarios. The
amplitude and direction of the emitted light by the first cloud in presence
of a stored excitation in the second one is defined by the laser phase and
Rabi frequency at each atom’s position and the accumulated interaction
phase for some defined storage time.
The evolution of the imprinted spin-wave phase in the presence of a
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

second cloud, represented as a single Rydberg |80S1/2〉 excitation (10 µm
away) is shown in figure 5.25. The different interaction times show how
the additional phase modifies the original mode pattern over time. Due to
the van der Waals interaction and its time dependence, the results show
bending of the original stored pattern. This should lead to an emission
spatially different from the original signal photon mode.

t=0ns t=100ns

t=300ns t=500ns

Figure 5.25.: The evolution of the imprinted spin-wave phase pattern
during storage. The second cloud is represented as a Rydberg excitation
at |80S1/2〉 and it is 10 µm away. The different interaction times show the
additional phase perturbation due to the van der Waals interaction. The
cloud’s radial size is 3 µm and 22 µm longitudinal size.

The emitted photon modes, as a result from the modified spin-wave
pattern, are shown in figure 5.26. The additional angle and the fact that
the cloud is longitudinally bigger than a blockade radius should result in a
suppression of the simultaneously detected retrieved photons in the original
signal mode from both channels. The phase pattern becomes increasingly
distorted with longer storage times due to the additional van der Waals
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Figure 5.26.: The emitted phase pattern of the stored photons at |80S1/2〉
and separation of 10 µm. The cloud’s radial width is 3 µm and the axial is
22 µm.

dephasing and gets more difficult for detection with a single mode fiber.
The colorbar represents normalised peak intensity.

Figure 5.27.: A schematic of the Rydberg dephasing regime. The experi-
mental cigar-shaped clouds dimensions allow the single excitation position
to not be localized in the cloud.
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5. Storage and retrieval of optical photons, Blockade vs. Dephasing model.

As discussed previously, the van der Waals interaction is also distance
dependent and as a result the position of the nearby Rydberg excitation is
important. The experimental cigar-shaped clouds’ dimensions allow the
single excitation position not to be localized in each cloud’s center, as
shown schematically in figure 5.27.

t=0ns t=100ns

t=300ns t=500ns

Figure 5.28.: The evolution of the imprinted spin-wave phase pattern
during storage. The second cloud is represented as a Rydberg excitation
at |80S1/2〉 and it is 10 µm away and shifted in axial direction with 5 µm
from the center. The different interaction times show the additional phase
perturbation due to the van der Waals interaction and how this axial shift
affect just partially the spin-wave stored pattern. The cloud’s radial size is
3 µm and 22 µm longitudinal size.

The evolution of the imprinted spin-wave phase in the presence of a
second cloud, represented as a single Rydberg |80S1/2〉 excitation (10 µm
away), shifted from the center of the cloud, is shown in figure 5.28. The
different interaction times show how the additional phase modifies the orig-
inal mode pattern over time. Due to the van der Waals interaction, and its
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time and distance dependence, the results show only partial bending of the
original stored pattern. This should lead to an emission not only spatially
different from the original signal mode, but with a blurred Gaussian profile
due to the fact that only some of the atoms’ phase will be modified.

The evolution of the imprinted spin-wave phase pattern, when the Ryd-
berg excitations are not localised in the center of each cloud, starts showing
significant perturbations at storage times longer than the experimentally
used one of 170 ns. This leads to the conclusion that the experimentally
observed suppression in the simultaneous photon retrieval should not be
affected by the Rydberg excitation position within the cloud.

The dephasing model seems to be a more accurate and flexible solution to
interpret the experimental results. The theoretical model for two channels
shows less sensitivity to the only unknown parameter - the longitudinal
cloud size. Additionally, it allows only the effective size of the cloud to be
used in the radial direction as this represents the experimental conditions
more accurately.
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5.6. Summary
This chapter has introduced two different models to interpret experimen-

tal results gathered from two spatially separated atomic mediums. It has
shown that the idea of a hard sphere model is not a sufficiently accurate
solution and the additional van der Waals interactions dephasing can not be
simply neglected when explaining contactless interactions between photons
stored as collective Rydberg excitations in spatially separate mediums.
The dephasing model seems a better more flexible solution and is in a
better agreement with the Rydberg excitation interactions. Additionally,
it allows only the effective size of the cloud, instead of all atoms in the
dipole trap, to be used.
The demonstration of contactless effective photon interactions unlocks

the potential for future improvements of the experimental setup which
will allow the experiment to reach a single excitation regime. The van
der Waals interactions between the collective excitations lead to spatial
phase shifts which will be interesting to investigate both theoretically and
experimentally. The first step to achieve that is to improve the longitudinal
confinement of the microscopic atomic clouds. This whole topic will be
discussed in the Chapter 6.
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6. Towards single Rydberg
excitation

6.1. Introduction

Optical nonlinearities allow for the realisation of strong effective photon
photon interactions. The best way to make individual photons interact
is to convert one photon into an atomic excitation. Unfortunately, this
process is not so easy to control. When a photon is absorbed it will be
scattered spontaneously in a random direction and the response of the
medium to a second photon will be different (as shown in figure 6.1a). At
the same time, a single atom does not strongly influence the propagation
of a second photon. It is also hard to get good coupling between the
photon and the emitter. A single atom could be strongly coupled to a
single photon in a well-controlled environment using a cavity (figure 6.1b),
providing a response on the single photon level [16–18]. The probability to
absorb a photon can be improved by using an atomic ensemble instead of

a) b) c)

an atom coupled
to a cavity

single atom collective Rydberg
 excitation

Figure 6.1.: Different configurations for effective photon photon interac-
tions. a) A single atom as an emitter, b) a single atom strongly coupled to
a single photon in a well-controlled environment using a cavity and c) a
single collective Rydberg excitation.
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6. Towards single Rydberg excitation

a single atom. On the other hand, a single collective Rydberg excitation
could change the optical response of a whole ensemble of atoms (figure
6.1c). This provides a large optical nonlinearity at the single photon
level and therefore a potential to realize fully deterministic protocols for
manipulating photons.
This chapter covers the steps that have been performed to improve

the longitudinal confinement of the microscopic atomic clouds in the
experiment. A stronger confinement should allow for the exploration of a
regime in which both microscopic atomic clouds can be fully blockaded by
a single stored photon (figure 6.2). The presence of one photon in either
of the mediums restricts the storage of a second photon. This regime has
a direct technical applications in quantum optical devices such as switches
[99], transistors [52, 53], or phase shifters [100]. The optical response of
the blockaded volume is discrete in the presence or absence of a single
stored photon.

Figure 6.2.: Fully blockaded regime. For a channel separations r < rb,
simultaneous storage of photons as collective Rydberg excitations in both
channels is forbidden.

On the other hand, it allows for the investigation of effective photon-
photon interactions in spatially separated mediums, in a regime where each
microscopic atomic cloud can contain a single photon at the same time
- figure 6.3. The atoms in the collective Rydberg excitation experience
additional interaction-induced dephasing which disturb the spatial mode
of the emitted photons.
A solution to achieve the longitudinal confinement of the microscopic
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Figure 6.3.: Effective photon-photon interactions regime. For a channel
separations r > rb.

atomic clouds was the implementation of a crossed optical dipole trap [101].
As a result the optical depth of the microscopic atomic clouds should also
improve.

The investigated suppression in the detection of simultaneously retrieved
photons, from both channels, covers only the overlap between the retrieved
and the original signal mode. It will be interesting in the future to also
map out the emission pattern after the van der Waals dephasing.
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6. Towards single Rydberg excitation

6.2. Experimental improvements

Two-channel setup

In this work, the whole two-channel setup before the chamber has been
rebuilt to allow independent control of the trapping beams. The in-house
910 nm laser has been switched with a 862 nm Toptica TA-PRO laser with
3.5 W output power. This allows for enough power to split between the
tweezers and the new additional crossed trap.
The new pre-chamber setup is shown in figure 6.4. An additional pre-

chamber waist measuring system (shown as Reference in 6.4) allows to
conduct signal light and trapping light waist measurements, providing
information for the waist sizes inside the science chamber. The signal
beams are overlapped with the trap light on dichroic mirrors. Later, they
are combined on a non-polarising BS. The separation between the channels
can be adjusted by changing the incident angle on the first in-vacuum lens
by rotating the non-polarising beam splitter (BS). The trap light waist
radius and position are controlled using an adjustable telescope right after
the trapping light fiber. The lens focuses the signal and trap beams to
1/e2-waists of 1.4± 0.1 µm and 4.6± 0.4 µm respectively.

As mentioned previously the limitations on the quality of the emitted
mode is set by the geometry of the atomic cloud which depends entirely
on the trapping geometry [101] that confine the atoms. The potential of
the dipole force is given by:

Utrap = −1
2〈Re(d).E〉 (6.1)

where d is the transition dipole moment and E is the electric field amplitude.
For a focused Gaussian laser beam, the potential is described by:

U(r, z) = U0
ω2

0
ω2(z)e

−(2r2/ω2(z)), (6.2)

where ω0 is the 1/e2 waist radius, r and z are the radial and axial coordi-
nates and ω(z) is the 1/e2 radius of the beam at a distance z:

ω(z) = ω0

√
1 +

( z
zR

)2
(6.3)

with zR = πω2
0/λ the Rayleigh range.
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Figure 6.4.: Optical setup for two photonic channels. The signal beams
are overlapped with the trap light on dichroic mirrors. Later, they are
combined on a non-polarising BS. The separation between the channels
can be adjusted by changing the incident angle on the first in-vacuum lens.
The lens focuses the signal and trap beams to 1/e2-waists of 1.4± 0.1 µm
and 4.6± 0.4 µm respectively.

The radial and axial size of a thermal cloud at temperature T in a
harmonic potential is given by [101]:

σradial =
√
kBTω2

0
4U0

(6.4)

and

σaxial =
√
kBTz2

R

2U0
. (6.5)

The previous experimental setup was based on two 910 nm optical
tweezers focused to a waist of 4.5 µm ± 0.3 µm. This results in a high
trapping frequency in the radial direction but poor confinement in the
axial direction. The tightly focused traps result in cigar-shaped clouds
with a large aspect ratio. The length can be compressed by narrowing the
waist, but a reduction in the waist will result in small radial size of the
atomic ensemble since both directions are dependent on the waist w0.
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6. Towards single Rydberg excitation

The tight confinement in the propagation direction makes overlapping
of the signal light and the tweezers extremely difficult. Wider traps would
make this alignment less sensitive. The first implementation of a crossed
dipole trap was at 1064 nm. This trap requires power ≈ 10 W due to the
lower polarisability of rubidium atoms at this specific wavelength. The
specific acousto-optic modulator’s requirements, of fast switching (in the
order of hundreds of nanoseconds) and at the same time maintaining such
high power, led to the need for substituting the laser with a 862 nm laser.
An 862 nm dipole trap has the advantage of a higher polarizabilty of the
rubidium atoms at this wavelength.

+500mm
 

+500mm
 

Glass
Prism

HWP

Beam 
translation

QWP

Figure 6.5.: A schematic of the setup of the crossed dipole trap. The
two inch 500 mm lenses focus the crossed trap beams in the centre of
the chamber to a waist of 27 µm ± 1 µm. The crossed trap beams are
overlapped with the two-channel tweezers. Translation of the incoming
beam can be used to change the crossing angle of the incoming and retro
reflected trap beams in order to improve the confinement of the atoms in
the axial direction.
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The crossed trap setup geometry is shown in figure 6.5. Two 500 mm
achromatic two-inch lenses were chosen to focus the crossed trap beam in
the centre of the chamber to a waist of 27 µm ± 1 µm. The beam waist
was measured in free space before setting the alignment into the science
chamber. A further reduction of the trapping volume can be achieved
by using the retro reflected dipole trap beam. The incoming and counter
propagating trapping beams cross inside the chamber. This gives relatively
low trapping frequencies in the propagation direction. As a result, the
atoms should be more tightly confined in the crossing region.

The crossed trap is aligned to overlap with the tightly focused tweezers
and should result in a higher density of atoms in these regions (as shown
in figure 6.8). The new geometry allows for more efficient loading of the
optical tweezers as well as providing the desired confinement, estimated by
using the single-correlation function within a photonic channel.

To be able to implement the crossed trap, a fluorescence imaging setup
has been used. The ratio of the trapping beam powers and the alignment
were optimised by detecting the absorption signal using the single-photon
counters.

The imaging of microscopic ensembles requires a high optical resolution
which makes the process very difficult to accomplish. The chamber setup
allows optical access to the dipole traps only along the radial axis through
the in-vacuum lenses. The schematic of the fluorescence imaging setup is
shown in figure 6.6.
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Figure 6.6.: Fluorescence imaging system. Fluorescence from the ensem-
ble is imaged using x39 magnification telescope onto an electron-multiplied
CCD Andor Ixon camera.
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The small cloud sizes require µs exposure times to let the atoms expand
before imaging. The fluorescence images taken are not focused and can not
be an estimation for the size of the atomic ensembles or the temperature.
To accurately calculate the number of atoms additional measurement and
calibration should be performed in the future. Despite its disadvantages,
the fluorescence imaging provides not real-time visualization of the dipole
traps and can be used for alignment and initial overlapping of the tweezers
and the crossed trap. The fluorescence images in figure 6.7, show the
optical traps after a 100 µs exposure time.

a)

c) d)

b)

Figure 6.7.: Fluorescence imaging of the optical traps after a 100 µs
exposure time. a) the ensemble created by the tweezer trap, b) the
ensemble created by the tweezer trap and the crossed dipole trap, c) the
ensemble created by the tweezer, the crossed dipole trap and its retro
reflected beam, d) the ensemble created by the crossed dipole trap and its
retro reflected beam.

From figures 6.7a and 6.7b, it is easy to see the improvement in the density
of the microscopic ensemble created by the tweezer trap and the ensemble
created by the tweezer and the crossed dipole trap. Adding the retro
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reflected beam shows no significant improvement in the radial axis but
also shows how the atoms spread among the crossed-retro reflected trap
plane (figure 6.7c), probably due to bad alignment of the retro reflection.
Figure 6.7d shows the ensemble created by the crossed dipole trap and its
retro reflected beam. Each image is a combination of 400 individual images
which makes it extremely time consuming and impossible to use for real-
time alignment. However, the optimal method for real-time improvement
of the overlap between the tweezers and the crossed trap, is the detected
absorption signal on the single-photon counters. An absorption signal
from the tweezer and the crossed trap after 25,000 repetitions is shown
in figure 6.8. The calculated optical depth (OD) of the atomic medium
confined by the tweezer trap is 5.15 ± 0.1 and 5.48 ± 0.1 for the atomic
medium confined by the tweezer and crossed trap. For this measurement
the crossed trap power is fixed at 734 mW.

Figure 6.8.: An absorption signal from the tweezer trap (red) and over-
lapped with the crossed trap (blue). The calculated opticlal depth (OD) is
5.15± 0.1 and 5.48± 0.1 respectively. The crossed trap power is fixed at
734 mW.

Additionally, some steps have been taken towards balancing the power
ratio between the crossed trap and the tweezers. Figure 6.9 gives some
initial information about the ratio of the power needed in both traps. The
crossed trap power is fixed at 600 mW.
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Figure 6.9.: Optical depth versus power in the tweezers. The crossed
trap power is fixed at 600 mW.
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6.3. Expected behaviour of the retrieved
single photon pattern

The dephasing model discussed in chapter 5 can be used to predict a
spin-wave stored pattern when the excitations are centered in the clouds
and each cloud holds just a single Rydberg excitation.

t=0ns t=100ns

t=300ns t=500ns

Figure 6.10.: Evolution of the imprinted spin-wave phase pattern during
storage. The second cloud is represented as a Rydberg excitation (10 µm
away from the center) at state |80S1/2〉. The different interaction times
show the additional phase perturbation due to the van der Waals interaction
and how this axial shift just partially affects the spin-wave stored pattern.
The cloud’s radial size is 4 µm and the longitudinal size is 10 µm.

The evolution of the imprinted spin-wave phase pattern during storage
is shown in figure 6.10. The second cloud is represented as a Rydberg
excitation (10 µm away from the center) at state |80S1/2〉. The different
interaction times show the additional phase perturbation due to the van
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der Waals interaction and how this axial shift just partially affects the spin-
wave stored pattern. The cloud’s radial size is 4 µm and the longitudinal
size is 10 µm.

A projection of the expected photon pattern in xy (radial) plane for two
different storage times (180 ns and 280 ns) is shown in figure 6.11. Atoms
experience bigger dephasing with the increasing of the storage time and
at the same time the Gaussian profile is spatially smeared. An additional
peak looks to appear, probably due to the distance dependence of the
van der Waals interactions. The colorbar represents the normalised peak
intensity.

t = 180ns t = 280ns

x x

y y

Figure 6.11.: Projections of the expected photon pattern in xy (radial)
plane retrieved from an atomic cloud, spatially separated by 10 µm from a
Rydberg excitation at state |80S1/2〉, for two different storage times (180 ns
and 280 ns). Atoms experience bigger dephasing with the increasing of
the storage time and at the same time the Gaussian profile is spatially
smeared.

A more in-depth investigation of the photon pattern could be made in
the future. A prediction of the deflection angle of the mode distribution
of emitted photons can also be made by fitting a Gaussian profile and
calculating the separation between the two fits. This will provide some
information where to look for the perturbed retrieved photons in the
spatial domain. Figure 6.12 shows the deflection angle dependence of the
interaction time.
In the future, it is intended to implement piezo-actuators to translate
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Figure 6.12.: Dependence of the deflection angle on the interaction time.

the single-mode fibre tip in the detection system. This will allow for
the creation of a multi-pixel imaging array. Alternatively, an electron-
multiplied CCD camera with very low read noise for direct spatial imaging
can be used.

The model predicts that the collective mode remains relatively directional
for small storage times but the Gaussian profile starts blurring significantly
after ≈ 350 ns. The storage efficiency will also play a huge role in future
experiments. The current storage efficiency is approximately 5%. The
predicted displacement at 350 ns is approximately 0.6 µm, which makes
it almost impossible to distinguish between the initial signal light profile
and the retrieved collective mode pattern. A single correlation g2(0)
has been taken at Rydberg state |60S1/2〉 for two different dipole trap
configurations. The calculated result for the second order correlation
function in the presence of the cross trap is g2(0) = 0.35 ± 0.09. That
shows a significant improvement compared to the previously obtained one
of g2(0) = 0.43± 0.07.

In an absence of the cross trap, the correlation function g2(0) = 0.52±
0.08. This result is expected considering that the effective cloud size,
defined by the probe waist radius and the Rayleigh range of the tweezer,
is bigger in radial direction compared to the previously used setup.

These results show promise in reaching a regime of single photon excita-
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tion at a Rydberg state of |80S1/2〉 or higher.
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6.4. Summary
Although a lot of experimental improvements have been implemented in
order to enter the single photon regime, some unpredicted failures of the
laser systems limited the progress in that direction. However, a single
correlation g2(0) measurement has been taken at Rydberg state |60S1/2〉.
The obtained result of g2(0) shows significant improvement in comparison
to those previously obtained. The single photon excitation regime can
be probably reached at Rydberg state |80S1/2〉 or higher. Unfortunately
no measurements have been performed at that level in the new setup
configuration, thus comparison with the previously obtained result of
g2(0) = 0.17± 0.03 is impossible [31].
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7. Conclusion and Outlook
This thesis includes an experimental and theoretical investigation of

collective behavior in an ensemble of cold atoms. It presents system models
to cover the effective long-range interactions between photons stored as
collective excitations in separate and non-overlapping spatial modes. This
work also reports on the initial implementation of an experimental setup
dedicated to move quantum non-linear optics with cold Rydberg atoms
towards a single photon regime.

In chapter 4, both the experimental and theoretical work regarding the
collective behaviour of an ensemble of cold atoms is discussed. The provided
investigation shows clear dependence between the optical depth and the
decay rate of the directional emission, by varying different experimental
parameters. It also shows that the superradiant emission is not intensity
dependent and the system response on the single photon level is linear.

Theoretical models, describing the experimentally observed [56, 57] effec-
tive long-range interactions between photons stored as collective excitations
in separate and non-overlapping spatial modes, have been introduced and
discussed in chapter 5.
The experimental setup used for contactless effective photon interac-

tions has been improved to open up opportunities for studying photon
interactions on a single photon level. A longitudinal confinement of the
microscopic atomic clouds [70, 101] has been demonstrated in chapter 6.
The atom number in the clouds has also been increased. The confinement
should unlock regimes where each of the ensembles can be fully blockaded
by a single stored photon [26].

Although the results from the performed experiments are not explicitly
conclusive, the improvement in the single correlation g2(0) function, mea-
sured at Rydberg state |60S1/2〉, shows that there is a good possibility the
desired regime can be achieved.
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7. Conclusion and Outlook

Outlook
In the future, Rydberg character could be introduced to the collective

flash, discussed in chapter 4, which should result in decay rates proportional
to the Rabi frequency of the dressing field and proportional to the lifetime
of the used Rydberg state. The Rydberg character should also limit the
possible simultaneous photon events inside the atomic medium and as
a result a suppression in the single-correlation function g2(0) within the
dressed flash should be observed. Numerical simulations and experimental
data of a Rydberg dressed flash could provide a different approach in which
to exploit collective mode engineering in quantum technology applications.

Figure 7.1.: A single-correlation function g(2)(t) within the retrieved pho-
ton pulse. Each one of the time bins is 100 ns long. The calculation is
based on 350 million runs.

The photons distribution within the retrieved pulse has also been a
subject of interest [67]. The great amount of data required for such
investigation has always been a limitation. In figure 7.1 the calculated
experimental single-correlation function g(2)(t) within the retrieved photon
pulse is shown. The whole pulse is separated in four, 100 ns long bins.
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The calculation is based on 350 million runs. It is clear by the size of the
errorbar that the amount of data is insufficient.
Further investigation, for more accurate processing of the gathered

photon statistics has been planned for the future. This will include the
dead time of the single photon detectors.
Taking the experiment to a single photon regime will allow investiga-

tion of the indistinguishability of the experimental single photons. The
coincidence counts should drop to zero for cases where the photons are
absolutely identical and overlapped perfectly in time (also known as the
Hong–Ou–Mandel dip) [102]. Two separate blue coupling lasers should
address each one of the photonic channels, which allows independent con-
trol of the storage time tst. It will be also interesting to observe how the
induced interaction dephasing affects such indistinguishability.
Previous work of photon shaping (shown in figure 7.2) [57], using ad-

ditional microwave (MW) field to couple the Rydberg state |nS1/2〉 to a
dark state |nP 〉 for the coupling laser, can also benefit in a single photon
regime.
Appropriate spatial and temporal modes are preferable for optimal

performance of the single photons used in quantum communication or
quantum cryptography. Similarly, in cavity QED quantum communication,
single photons in the waveform of temporally symmetric pulses are used
to minimize cavity-coupling losses. Furthermore, photons in rising expo-
nential pulses (the photon mode should match spatially and temporally
the time-reversed spontaneously emitted photon mode) are more efficient
for quantum-state transfer between light and matter. Additionally, pho-
tons modes could be modified, for three level systems or for interacting
molecules, depending on what the system dynamics requires. And finally,
single Gaussian spatial modes are preferable for quantum information
processes applications [103].
Controlling the spatial and temporal modes of a single photon has

been observed in cavity experiments by a direct phase or an amplitude
modulation [104–106]. Figure 7.2 shows photon retrieval shaping from Ry-
dberg state |80S1/2〉 for four different microwave Rabi frequencies ΩMW/2π
(0 MHz (a), 2.6 MHz (b), 8 MHz (c) and 16 MHz (d)) coupling Rydberg
state |80S1/2〉 to |79P1/2〉 state. The photon retrieval model is based on a
spontaneous emission from the intermediate state |e〉 to the ground state
|g〉.

Using MW field allows to modify the spatial and temporal modes with
almost no losses and it will be interesting to examine further in the single
photon regime.
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Figure 7.2.: Intensity modulation of optical photons at microwave fre-
quency given by ΩMW/2π for a) 0 MHz, b) 2.6 MHz, c) 8 MHz and d)
16 MHz. The dashed red line represents a photon retrieval model [57].
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A. Modelling the
superradiance behavior

The described system model is based on the work of Rob Bettles [107].
An ensemble of atoms is driven by a weak field El. Each atom is an

oscillating electric dipole with particular frequency and decay rate Γ0. The
response dj of the oscillating dipole j is a combination of both the driving
laser field El as well as the scattered fields from every other dipole in the
ensemble.

ḋj =
(
i∆− Γ0

2

)
dj + i |D0|2

~
(
E`(rj) +

∑
`6=j

Gj`d`
)

(A.0.1)

where ∆ is the detuning of the laser field from the atomic resonance
frequency, Γ0 is the spontaneous decay rate, D0 is the dipole matrix
element, ~ is the reduced Planck constant, rj is the position of dipole j,
and (Gj`d`) is the scattered field at rj from dipole d`.
The equation of motion for all the dipoles in the system can be solved

numerically by taking a particular number of atoms and placing them
into a configuration similar to the experimental one described in chap-
ter 4. Gaussian distributed 400 atoms have been used to simulate the
experimental data presented in chapter 4.
As well as looking at the dynamics of the dipoles, we can also look at

the steady state. To do that, we can set the time derivative ḋj = 0, which
rearranges equation A.0.1, to a combination of the driving field and all the
fields scattered by the other dipoles:

dj = αE`(rj) + α
∑
`6=j

Gj`d`

1
α
dj −

∑
6̀=j

Gj`dl = E`(rj),
(A.0.2)

where α = −(D2
0/~)/

(
∆ + i(Γ0/2)

)
is the atomic polarisability.
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A. Modelling the superradiance behavior

This can be written down in a matrix representation: 1
α

1−
∑
` 6=j

G
 ~d ≡ M̂~d = ~EL. (A.0.3)

The driving field terms 1/α and G (which describes all the couplings {Gj`}
between the dipoles) can be combined in a matrix M̂ as:

1
α

−G12 −G13
−G21

1
α

−G23
−G31 −G32

1
α


︸ ︷︷ ︸

M̂

d1
d2
d3


︸ ︷︷ ︸

~d

=

E`(r1)
E`(r2)
E`(r3)


︸ ︷︷ ︸

~EL

(A.0.4)

where ~d and ~EL are column vectors of all the dipole and laser field vectors.
Knowing the driving field, each dipole experiences, we can calculate the

dipole-dipole interactions based on the position of each atom. This also
allows to investigate the dipoles behaviour by looking at the eigenvectors
and the eigenvalues of M̂ .

M̂~mq =
 1
α

1−
∑
6̀=j

G
 ~mq =

( 1
α
− gq

)
~mq = µq ~mq. (A.0.5)

where µq = 1/α− gq, in which gq is the q-th eigenvalue of G.
We can use the eigenvector mq as a basis and write down ~d and ~EL as a

combination of ~mq and coefficients aq and bq:

~d =
∑
q

aq ~mq,

~EL =
∑
q

bq ~mq.
(A.0.6)

Applying and substituting equation A.0.6 in equation A.0.3 results in:

M̂
∑
q

aq ~mq =
∑
q

aq(M̂~mq)

=
∑
q

aqµq ~mq

=
∑
q

bq ~mq,

(A.0.7)

From this we can express the coefficients aq and bq using the eigenvalues
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µq as:
bq = aqµq,

aq = bq
µq

.
(A.0.8)

For a single atom the dipole moment is proportional to the driving
field EL with a constant of proportionality the polarizability. Using equa-
tion (A.0.6) shows that there is an effective polarizability for each q-th
eigenmode:

~d = αEL =
∑
q

aq ~mq

=
∑
q

bq
µq
~mq.

(A.0.9)

The coefficient bq as E0 does not depend on the detunning ∆ and
therefore is only dependent on the atomic configuration.

Each eigenvector gives an effective polarizability αq with a complex form.
The eigenvalues µq are complex and defined as:

µq = 1
α
− gq = − ~

D2
0

(
∆ + iΓ0

2

)
− gq =

= − ~
D2

0

(
(∆−∆q) + iΓ0 + Γq

2

)
,

(A.0.10)

which has the same form as the inverse atomic polarisability with modified
detuning and linewidth. The real part of gq produces a resonance shift
∆q = (~/D2

0)Re(gq) and the imaginary part produces a modification to the
decay rate Γq = −(~/D2

0)Im(gq).
Next, the fiber coupling should be taken into account. The experimental

signal is proportional to the coupling of the total electric field into a single
mode optical fibre. This coupling can be written as

ε =
∫

(E(r).l∗(r))dS (A.0.11)

where the total field E(r) = EL(r) +∑
j Ej(r) is sum of the driving field

and the total scattered field. l(r) is the mode of the single-mode fiber at
position r, integrated over an area S perpendicular to the optical axis.
This mode is matched to the laser field l ∝ EL.
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B. Two-channel depahsing
model with spin-wave
operators

This appendix covers the depahasing model presented in chapter 5 using
spin-wave operators.
In the atomic medium the photons are stored as collective Rydberg

excitations. The atomic ensemble collective state can be expressed as:

|ψ〉 =
∑
n

cn|ψn〉 (B.0.1)

where |ψn〉 is the state containing n collective Rydberg excitations and can
be defined using the creation operator Ŝ†:

|ψ〉 = (Ŝ†)n|G〉 (B.0.2)

where |G〉 is the collective ground state.
The creation operator Ŝ† holds the imprinted signal amplitude E and

the combined phase φ:

Ŝ† = 1√∑
j
E(~rj)2

∑
j

E(~rj)eiφ(~rj)|rj〉〈gj| (B.0.3)

where ~rj is the position of atom j.
During the storage time tst, the components of |ψn〉 acquire different

phase factors due to interactions between Rydberg atoms. This evolution
can be expressed through the operator Û(tst):

Û(tst) =
∑
j,k>j

e−iVjktst/~|rj, rk〉〈rj, rk|. (B.0.4)

The collective state acquires an additional phase, leading to a reduction
of the probability of photon retrieval in the signal mode from the state
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B. Two-channel depahsing model with spin-wave operators

Û(tst)|ψn〉.
For two pairs of photons in the control and signal modes, the overlap

between the collective ground state |G〉 and the state Û(tst)|ψn〉 using the
annihilation operator Ŝ, can be expressed as:

D(2) = 〈G|Ŝ
2Û(tst)Ŝ†2|G〉
〈G|Ŝ2Ŝ†2|G〉

. (B.0.5)

In absence of interactions, photons should be retrieved in their original
spatial modes. The overlap D(2) can be used to calculate the experimentally
measured single-correlation function g(2):

g(2) = 2|D(2)|2|c2|2

(|c1|2 + 2|D(2)|2|c2|2)2 . (B.0.6)

In case of two spatially separated mediums, the situation is very similar.
The collective state can be expressed as:

|ψAB〉 =
∑

n,m∈[0,1]
cnm|ψABnm 〉 (B.0.7)

where |ψABnm 〉 is the state containing n collective Rydberg excitations in
channel A and m collective Rydberg excitations in channel B, given by:

|ψABnm 〉 = |ψAn 〉 ⊗ |ψBm〉 (B.0.8)

This state can be defined using the creation operators Ŝ†A and Ŝ†B :

|ψAn 〉 = (Ŝ†A)n|GA〉,
|ψBm〉 = (Ŝ†B)m|GB〉

(B.0.9)

where |GA〉 and |GB〉 are the collective ground state. The creation operators
Ŝ†A and Ŝ†B hold the imprinted signal amplitudes EA and EB as well as the
combined phases φA and φB.
During the storage time tst, the components of |ψABnm 〉 acquire different

phase factors due to interactions between Rydberg atoms stored in the
separated channels. This evolution can be expressed through the operator
Û (AB)(tst):

Û (AB)(tst) =
∑
jA,jB

e−iVjAjB
tst/~|rjA〉〈rjA| ⊗ |rjB〉〈rjB |. (B.0.10)
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The collective state acquires an additional phase, leading to a reduction
in the probability of photon retrieval in the signal mode from the state
Û (AB)(tst)|ψ(AB)

nm 〉.
For a pair of photons in the control and signal modes in each of the

two channels, the overlap between the collective ground state |ψ(AB)
00 〉 and

the state Û(tst)|ψ(AB)
nm 〉 using the annihilation operators ŜA and ŜB can be

express as:

D
(11)
AB = 〈ψ

(AB)
00 |ŜAŜBÛ (AB)(tst)Ŝ†AŜ

†
B|ψ

(AB)
00 〉

〈ψ(AB)
00 |ŜAŜBŜ†AŜ

†
B|ψ

(AB)
00 〉

. (B.0.11)

The overlap D(11)
AB allows the calculation of the cross-correlation function

g(2) as:

g
(2)
AB = |D(11)

AB |2|c11|2

(|c10|2 + |D(11)
AB |2|c11|2)(|c01|2 + |D(11)

AB |2|c11|2)
. (B.0.12)
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C. Photon statistics
The experiments discussed in this thesis are based on detection of single

photon events and the second order auto-correlation function g(2) is used
as an estimation factor.
In the experiment a Hanbury-Brown Twiss detection setup is used to

detect the number of identical photons and their distribution within a
pulse of light. It consists of two sensitive avalanche photo diodes (SPADs)
which allow the detection of single photon events with relatively small
single to noise ratio. These two detectors limits the possible physical
photon events in the system to 2 (no more than 2 photons can be detected
simultaneously). This defines the second order auto-correlation function
g(2) as:

g(2)(0) = 〈n(n− 1)〉
〈n2〉

=

= 0(−1)P (0) + 1(0)P (1) + 2(1)P (2)
(0P (0) + 1P (1) + 2P (2))2 =

= 2P (2)
(P (1) + 2P (2))2 .

(C.0.1)

The possible photon events configurations inside the Hanbury-Brown
Twiss interferometer are shown in table C.1. If there is 1 photon it can go
to detector A or B. And in case of 2 photon event, both photons can go to
A or B, or to A and B.

The photon event counting efficiency of each of the two detectors (SPAD
A and SPAD B) is defined as:

εA = nA
nA + nB

,

εB = nB
nA + nB

(C.0.2)

where nA and nB are the number of counts on SPAD A and SPAD B
respectively.

The probability table C.1 connects the physical events in the experiment
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C. Photon statistics

Figure C.1.: Photon events possible configurations inside the Hanbury-
Brown Twiss interferometer.

(the number of photons arriving on the detection system, between 0 and 2)
with the detected events (clicks on the detectors, between 0 and 2).

From the probability table, we can express the physical events as a
function of the measured photons:

P (2) = 1
2εAεB

P (AB),

P (1) =
(
εBP (A) + εAP (B)− (2− 3

2(εA + εB)P (AB)
)
/2εAεB.

(C.0.3)

Substituting equation C.0.3 in equation C.0.1, the second order auto-
correlation function g(2) can be defined only by the detected photon events
as:

g(2)(0) = εAεB4P (AB)(
P (A)εB + P (B)εA + 3P (AB)/2

)2 . (C.0.4)

The detection efficiency in the g(2) expression appears only through the
relative efficiency of the two detectors.
Each of the two detectors has 38 ns death time and for further deeper

analysis it should also be taken into account.
The two channel second order auto-correlation function g(2) is calculated
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SPADs
Events P (0) P (A) P (B) P (AB)

0 1 0 0 0

1
(1− P (A)) P (A) 0 0
(1− P (B)) 0 P (B) 0

1 0 0 0

2
(1− P (A))2 P (A)(2− P (B)) 0 0
(1− P (B))2 0 P (B)(2− P (A)) 0

(1− P (A))(1− P (B)) P (A)(1− P (B)) P (B)(1− P (A)) P (A)P (B)

Table C.1.: Probability table that connects the possible physical events
in the experiment (the number of photons arriving on the detection system)
with the detected events (click on a detector).

Finally, I am incredibly lucky to have such an amazing family. My
husband Iliya who has always supported me in the choices I have made,
and have allowed me to pursue all my dreams. Thanks for always being
there whenever I needed you. I must also thank my parents, who have
always believed in me and love me unconditionally. My cousin, Cveta,

whose frequent calls always cheer me up. Last, but definit

using the same method for two possible physical photon events in each
channel and two identical Hanbury-Brown Twiss detection setups. The
possible physical photon events P (i, j) (for i, j between 0 and 2) are defined
by the detected photon events in the experiment ( SPAD A, SPAD B,
SPAD C and SPAD D) and substituted in the cross-correlation g(2) formula:

g(2)(0) = 〈ninj〉
〈ni〉〈nj〉

=

= P (1, 1) + 2(P (1, 2) + P (2, 1)) + 4P (2, 2)(
P (1, 0) + P (1, 1) + P (1, 2) + 2(P (2, 0) + P (2, 1) + P (2, 2))

) .
1(

P (0, 1) + P (1, 1) + P (2, 1) + 2(P (0, 2) + P (1, 2) + P (2, 2))
) .
(C.0.5)

The second order cross-correlation function g(2), defined only by the
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detected photon events, is given as:

g(2)(0) =
(εBεDP (A,C) + εBεCP (A,D) + εAεDP (B,C) + εAεCP (B,D)

(εBP (A) + εAP (B) + 3P (AB)/2)(εDP (C) + εCP (D) + 3P (CD)/2)

+ 3(εDP (AB,C) + εCP (AB,D) + εBP (A,CD) + εAP (B,CD))/2
εBP (A) + εAP (B) + 3P (AB)/2)(εDP (C) + εCP (D) + 3P (CD)/2)

+ 9P (AB,CD)/4
εBP (A) + εAP (B) + 3P (AB)/2)(εDP (C) + εCP (D) + 3P (CD)/2)

(C.0.6)
where εA, εB, εC and εD are the corresponding photon event counting
efficiencies of each of the two sets of detectors ((SPAD A and SPAD B)
and (SPAD C and SPAD D)).
Finally, I am incredibly lucky to have such an amazing family. My

husband Iliya who has always supported me in the choices I have made,
and have allowed me to pursue all my dreams. Thanks for always being
there whenever I needed you. I must also thank my parents, who have
always believed in me and love me unconditionally. My cousin, Cveta,
whose frequent calls always cheer me up. Last, but definit
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