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Abstract 

Hawaiian eruptions are characterized by long-lived eruptions that produce lava 

fountains that last 300-10000 seconds and can reach 10s to 100s of meters high. 

During an eruption pyroclasts can fall back and accumulate proximal to the eruption 

site, forming ramparts or scoria cones that create topographic wells. Lava can 

accumulate within these topographic wells, creating lava ponds that may affect the 

behaviour of subsequent lava fountains. When a fountain ascends through a lava 

pond, it entrains previously erupted pyroclasts and accelerates them; this reduces 

the flow velocity of the ascending fountain, decreasing its overall height. Published 

studies have examined the relationship between ponding and variations in lava 

fountain heights from a theoretical perspective, though these studies have not yet 

received experimental verification. For this reason, an experimental kit is designed 

to conduct scaled analogue experiments to investigate the variation of fountain 

heights with ponding depth. Dimensional analysis is used to facilitate the 

comparison between laboratory and natural behaviours, while experiments are 

performed for varying parameters of; pressure head, ponding depth, conduit 

diameter and fluid viscosity. The collected dataset indicates that increasing 

volumetric flux corresponds to greater fountain heights, while increased ponding 

depth reduces fountain heights.  A dimensionless model is then identified between 

dimensionless fountain height and dimensionless ponding depth, which allows the 

reduction in fountain height due to ponding to be evaluated. 

 



 

The Road goes ever on 
 

by J.R.R Tolkien. 

 

 

Roads go ever ever on, 

Over rock and under tree, 

By caves where never sun has shone, 

By streams that never find the sea; 

Over snow by winter sown, 

And through the merry flowers of June, 

Over grass and over stone, 

And under mountains in the moon. 

 

Roads go ever ever on 

Under cloud and under star, 

Yet feet that wandering have gone 

Turn at last to home afar. 

Eyes that fire and sword have seen 

And horror in the halls of stone 

Look at last on meadows green 

And trees and hills they long have known. 
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1. Geological Context 

1.1 Motivation for study 

Basaltic volcanism produces the majority of the earth’s magma output and can 

occur in a wide variety of tectonic settings; forming in extensional, convergent, or 

intraplate settings (Crisp 1982, Valentine and Gregg 2008). Over 75% of volcanism 

on the planet occurs at mid ocean-ridges, while the remainder of volcanic activity 

occurs in subduction, intraplate or continental settings (Crisp 1982). In a continental 

setting, basaltic volcanoes are the most abundant type of volcano on the planet 

(Valentine and Gregg 2008).  

Basaltic eruptions typically initialize as fissures when a dyke intersects the earth’s 

surface (Fig 1.1), and can feature episodes of lava fountaining, where pyroclastic 

materials are ejected vertically from a vent several hundreds of meters into the air 

(Swanson et al 1979, Valentine and Gregg 2008, Orr et al 2015, Wolfe et al 2018). 

Well documented cases of lava fountaining behaviour exist for historic eruptions 

such as during the 2014 Holuhruan eruption in Iceland or the 1983 Pu’u ‘O’o 

eruption of Hawaii’s Kīlauea volcano (Swanson et al 1979, Witt et al 2018). 

Eruptions then localize over time due to solidification of magma within a fissure, 

eventually localizing to singular vents (Bruce and Huppert 1990). Ejected pyroclasts 

are deposited proximally to the eruption site, which accumulate to construct 

spatter ramparts or scoria cones (Fig 1.2) (Swanson et al 1979, Witt et al 2018, 

Wolfe et al 1988). Cones and ramparts create topographic wells within which lava 
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may pond, flooding the eruption site and consequently altering the behaviour of 

subsequent lava fountains (Swanson et al 1979, Wolfe et al 1988, Jones et al 2017). 

Lava ponds reduce lava fountain heights or may suppress lava fountaining entirely, 

such as during the 2015 Kamoamoa fissure eruption Hawaii’s Kīlauea volcano 

(Wilson et al 1995, Orr et al 2015). 

 

Figure 1.1: Basaltic fissure eruption undergoing an episode of lava fountaining. 

Photograph taken from the lower east rift zone of Hawaii’s Kīlauea volcano on the 

19th of May 2018 by the United States Geological Survey. 

Published theoretical models have examined how lava fountain behaviour varies 

with; gas content, volumetric flux, conduit geometry, viscosity, bubble coalescence 

and ponding depth (Head and Wilson 1987, Wilson et al 1995, Parfitt et al 1995. 

However, published models have yet to be validated by experimental means. 

Therefore, this study aims to produce a dataset against which published theoretical 

models (Wilson et al 1995, Parfitt et al 1995) could be validated. This approach 

Lava fountaining 
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intends to provide insight into the fundamental processes defining fountains using 

carefully scaled laboratory experiments. Scaled experiments provide insights into 

fountain behaviour which can’t otherwise be replicated through modelling or field 

observations. 

 

Figure 1.2: 50 m Lava fountaining from a localized vent. Accumulated spatter has 

formed a scoria cone around the vent. Photograph taken during eruption episode 8 

of the Pu’u ‘O’o eruption of Hawaii’s Kīlauea volcano, on the 6th of September 1983 

by the United States Geological Survey.  

 

 

 

 

Scoria cone 

Lava fountain 
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1.2 Basaltic eruptions 

Basaltic eruptions are the most common form of volcanic activity on the planet 

(Crisp 1982, Parfitt 2004). While many styles of eruptions exist, sub-aerial basaltic 

eruptions consist predominantly of 3 varieties; effusive eruptions, Strombolian 

eruptions and Hawaiian eruptions (Parfitt 2004, Valentine and Gregg 2008). 

Effusive eruptions are defined by lava flows emanating from a vent or fissure 

(Parfitt 2004, Valentine and Gregg 2008). Strombolian eruptions are characterized 

by mild, short-lived (<20 seconds) explosions from a vent due to the accumulation 

of gas beneath ascending magma within a conduit (Parfitt 2004, Valentine and 

Gregg 2008, Houghton et al 2016). Hawaiian eruptions occur along both fissures 

and vents, they are defined by long-lived eruptions that generate lava fountains 

that are 10s to several 100s of meters in height (Parfitt 2004, Valentine and Gregg 

2008). Hawaiian eruptions are distinguished from Strombolian eruptions by their 

increased mass flux and duration, lasting 300-10000 seconds longer on average 

than Strombolian eruptions (Parfitt 2004, Valentine and Gregg 2008, Houghton et al 

2016). 

Lava fountains are comprised of pyroclasts, as well as fragmented material 

consisting of ash, lapilli and spatter (Swanson et al 1979, Wolfe et al 1988, Sumner 

et al 2005). Pyroclasts within lava fountains undergo variable cooling rates, due to 

the presence of a thermal gradient within the fountain (Fig 1.3), pyroclasts at the 

fountain’s centre are thermally insulated, producing highly vesicular clasts due to 
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continued bubble coalescence, while clasts at the fountain edges are cooled much 

more quickly due to greater thermally diffusivity (Stovall et al 2010).  

 

Figure 1.3: A 300m high lava fountain during the 1969 Mauna Ulu eruption, photo 

taken on the 30th of December 1969, by the United States Geological Survey. Clasts 

at the centre of the fountain (brighter area) are thermally insulated while clasts at 

the fountain’s exterior (darker area) cool quicker. 

The type of clasts derived from fountains are dependent upon their position within 

the fountain, clasts produced in the interior are comprised of three predominant 

types (Sumner et al 2005). The three types of interior clasts are; fluid clasts, which 

stick together upon impact, fluidal clasts, that splash on impact and clasts with a 

brittle core/fluid rim formed from recycled pyroclasts (Sumner et al 2005). Clasts 

produced within the fountain exterior consist of brittle clasts (scoria) and clasts 

with viscous rims/fluid interiors (Sumner et al 2005).  

The continued accumulation of pyroclasts during an eruption can construct spatter 

ramparts along fissures, or form scoria cones when deposited proximally to a single 

Thermally insulated centre 

Colder exterior 
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vent. (Sumner et al 2005, Reynolds et al 2016, Swanson et al 1979, Wolfe et al 

1988). The geometry of spatter deposits is influenced by pre-existing local 

topography (Percheta et al 2012). Downslope transport and remobilization of 

previously erupted spatter can alter deposit structure, producing asymmetrical 

ramparts and cones (Swanson et al 1979, Percheta et al 2012, Witt et al 2018). 

1.3 Localization 

Over time fissure eruptions exhibit a shift in behaviour, with eruptions becoming 

increasingly localized to fewer localities along the length of a fissure (Bruce and 

Huppert 1990, Jones et al 2017). Localization is a well-documented process during 

basaltic fissure eruptions, such as during the 1969 Mauna Ulu, 1983 Pu’u ‘O’o and 

2011 Kamoamoa eruptions of Hawaii’s Kīlauea volcano (Swanson et al 1979, Wolfe 

et al 1988, Orr et al 2015). Localization occurs due to magma solidification within a 

dyke, either as a result of magma stagnation, or due to the volcanic conduit 

becoming blocked during an eruption (Swanson et al 1979, Bruce and Huppert 

1990, Jones et al 2017). 

Magma flowing through a dyke loses heat to the colder surrounding country rock as 

it ascends, causing it to stagnant and eventually solidify along the margins of the 

dyke (Bruce and Huppert 1989, Bruce and Huppert 1990). The rate at which 

solidification occurs is dependent upon dyke geometry, magma temperature and 

flow rate (Delany and Pollard 1982). Eruptions with low magma discharge may only 

be sustained for several hours before total solidification occurs within a conduit 

(Delany and Pollard 1982).  
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Solidification modifies the conduit shape, decreasing the diameter of the affected 

conduit, which restricts flow (Bruce and Huppert 1989).  The restriction of flow 

causes magma to ascends at reduced rates, which increases the amount of heat 

advection occurring and therefore increases the rate of solidification (Bruce and 

Huppert 1989).  

Continued discharge without the complete solidification of a conduit can reverse 

the solidification process by re-melting the solidified magma along the dyke’s 

margin, widening the conduit and promoting increased flow (Bruce and Huppert 

1989, Bruce and Huppert 1990).  

A fissure eruption is therefore comprised of several “fingers”, hot regions of 

continued discharge separated by colder regions which progressively solidify and 

clog the fissure, eventually restricting an ongoing eruption to a small number of 

vents or a single source (Helfrich 1995). 

1.4 Lava fountain mechanics 

Lava fountains are formed due to the decompression of magma during ascent 

within a conduit, causing fragmentation as gases exsolve from rising magma 

(Wilson et al 1995, Parfitt et al 1995, Parfitt and Wilson 1995). Exsolved gases 

expanded due to decreasing pressure as they ascend, accelerating the surrounding 

denser magma, which produces a lava fountain (Swanson et al 1979, Wilson et al 

1995, Parfitt and Wilson 1995).  

Fountains are defined as jets with a downward acting buoyancy force, driven 

upwards by momentum from a source till they reach a steady height about which 
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they fluctuate (Turner 1966, Lin and Linden 2005). The momentum of a fountain 

decreases with height till it becomes zero, where upon reaching this point fluid falls 

down around the upward flowing jet (Turner 1966). The interaction between these 

regions of up-flow and down-flow (Fig 1.5) within a fountain reduce the maximum 

achievable fountain height (Turner 1966, Bloomfield and Kerr 2002, Lin and Linden 

2005).  

 

Figure 1.4: Schematic drawing of a fountain, illustrating regions of up-flow and 

down-flow (modified from figure 1 of Turner 1966). 

Lava fountain height is a function of magma gas content, volumetric flux, bubble 

coalescence, viscosity and conduit geometry, with volumetric flux and gas content 

being considered the primary controls on fountain height and structure (Wilson et 

al 1995, Parfitt et al 1995, Head and Wilson 1998). Higher volumetric fluxes and gas 

content result in the formation of higher fountains (Fig 1.6), while higher viscosities 

decrease flow velocity, reducing fountain height (Wilson and Head 1981, Wilson et 

al 1995). Fountain temperature and the accumulation rate of pyroclasts are 

Source 

Up-flow 

Down-flow Down-flow 
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dependent upon volumetric flux and gas content, determining whether lava flows 

or spatter constructs are formed during an eruption (Head and Wilson 1998). 

 

Figure 1.5: Lava fountain height as a function of erupted mass flux and magma gas 

content (curves labelled in weight percentage of water), taken from Figure 2 of 

Wilson et al 1995. 

Lava fountain height has been observed to increase with ongoing localization, lava 

fountains during the 1969 Mauna Ulu eruption ranged from 10s of meters along the 

length of the fissure, to 100s of meters as localization continued, the largest 

fountain of the entire eruption reaching 540m in height and was confined to a 

single vent (Swanson et al 1979). This increase in fountain height is explained by the 

previously mentioned dependency of fountain height on volumetric flux, the 

ascending magma supply is confined to a smaller number of vents after localization, 

increasing the volumetric flux through the remaining open vents, which produces 

larger fountains (Wilson et al 1995). 
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1.5 Lava Ponding 

The accumulation of lava within topographic wells, also known as ponding, occurs 

when the discharge rate of lava from a vent exceeds the drainage rate of lava from 

the eruption site (Swanson et al 1979, Jones et al 2017, Witt et al 2018). Lava ponds 

consist of two varieties, active lakes; when formed directly on top of an active vent, 

or inactive lakes; when form by passive ponding within pre-existing local 

topographic wells (Tilling 1987). The depth of lava ponds can vary from 10s to 100s 

of meters during the course of an eruption and fluctuation over time (Tilling 1987, 

Orr et al 2015).  

Individual vents are more prone to becoming flooded due to constructed spatter 

ramparts and scoria cones forming local topographic wells in which lavas may 

accumulate (Wilson et al 1995). Fissure eruptions are less susceptible to being 

flooded, due to the availability of additional lava drainage pathways (Wilson 1995, 

Jones et al 2017).  The formation of lava ponds alters the behaviour of subsequent 

lava fountains during an eruption, reducing the height of fountains that ascend 

through lava ponds (Swanson et al 1979, Wolfe et al 1988, Orr et al 2015).  

Variation in fountain heights with ponding depth is due to the effects of 

entrainment, the process by which an ascending lava fountain incorporates 

surrounding pre-erupted material into its up-flow, expending energy to accelerate 

the newly incorporated material (Wilson et al 1995, Parfitt et al 1995). Previously 

erupted pyroclasts are “recycled” into the ascending fountain, decreasing flow 

velocity and therefore decreasing fountain height. A fountain’s susceptibility to the 

effects of entrainment is related to the fountain’s volumetric flux (Fig 1.7), 
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increasing volumetric flux lessens the effects of entrainment (Wilson et al 1995, 

Parfitt et al 1995). Low volumetric flux fountaining can be suppressed entirely for 

sufficiently large ponding depths, such as during the 2011 Kamoamoa fissure 

eruption of Hawaii’s Kīlauea volcano (Wilson et al 1995 Orr et al 2015). Fountain 

suppression causes underlying magma to stagnate within a conduit, increasing 

magma viscosity and promoting localization (Jones et al 2017). Ascending magma 

within a fissure can laterally migrate to avoid areas of suppression and stagnation 

more readily than individual vents, causing progressive shifts in activity over the 

course of an eruption (Wolfe et al 1988, Jones et al 2017). 

 

Figure 1.6: Variation of lava fountain height with increasing ponding depth for a 

series of erupted mass fluxes (black curves) with a water content of 0.3 weight 

percentage (taken from Figure 5 Wilson et al 1995). 
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2. Experimental Scaling 

2.1 Introduction 

To investigate lava fountain behaviour in the laboratory, experiments must be 

conducted on a smaller scale than otherwise found in nature. When reducing the 

scale of the system, it is important that the processes observed within the 

laboratory are comparable to those that would be observed in the natural system. 

This is accomplished by utilizing scaling analysis for experiments. 

When adjusting experiments to a smaller scale, it is necessary to scale material 

properties, in this case fluid viscosity, to maintain dynamic similarity. 

This chapter begins with detailing how dimensional analysis facilitates drawing a 

relationship between laboratory data and the lava fountain behaviour in nature. 

Buckingham Pi theorem is then explored as a method of dimensional analysis, with 

a worked example of the calculations conducted. The chapter concludes with 

addressing the scaling of materials to emulate nature.  

Mathematical notation is defined at first use and a complete summary of notation 

is presented within Appendix A. 
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2.2 Dimensional analysis 

The comparison, addition or subtraction of quantities must be between quantities 

of the same dimension, i.e. time cannot be subtracted from length. When 

expressing the magnitude of quantities in identical units, such as length and 

diameter, those quantities are said to be dimensionally homogenous. 

Each physical quantity with both a magnitude and a dimension can be also be 

expressed in its basic units, the fundamental units from which other unit systems 

are derived. There are seven fundamental units; length (m), mass (kg), time (s), 

temperature (℃), ampere (A), candela (cd) and mole (mol). Dimensional analysis 

seeks to create dimensionless groups that detail the regimes of behaviour, as they 

are dimensionless, they are scale independent and can be used as a direct 

comparison between the laboratory and nature to garner insight into natural 

processes.  

One such dimensionless group is the Reynolds number, it represents the ratio of 

inertial forces to viscous forces within a fluid, which is a dimensionless measure of 

the ordering of flow streamlines within a fluid (Reynolds 1883). The Reynolds 

number, 𝑅𝑒, is defined by the following equation: 

 
𝑅𝑒 =

𝜌𝑉𝐷

𝜇
. 

2.1 

where 𝜌 (kg/mଷ) is the fluid density, 𝑉 (m/s) is the flow velocity, 𝐷 (m) is the pipe 

diameter and 𝜇 (Pas) is the viscosity. The technique for dimensional analysis utilized 

by this study is known as Buckingham Pi theorem and the method of doing so will 

now be discussed. 
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2.2.1 Buckingham Pi theorem 

The number of dimensionless groups, also known as Π groups, which describe the 

behaviour of a system are related to the number of governing parameters of a 

system and the number of independent dimensions present, as described by the 

following equation: 

 𝑚 = 𝑛 − 𝑘 2.2 

where 𝑚 is the number of dimensionless groups, 𝑛 the number of governing 

parameters and 𝑘 the number of independent basic units (Buckingham 1914). 

To determine the number of governing parameters that are relevant to this study, 

quantities that are expected to affect fountain height in the natural system must be 

considered and how they might affect the dependent variable. The dependent 

variable for this study is the fountain height ℎ (m), the measured quantity of 

interest.  

The governing parameters of interest to this study are expressed in terms of their 

fundamental units in table 2.1 (these parameters and their relevance to 

experiments are detailed in chapter 3). Having identified the governing parameters, 

the number of basic units present for the system must be determined. From table 

2.1 it is evident that that there are 3 basic units present: length [L], mass [M] and 

time [T]. Applying equation 2.2 for the 9 governing parameters detailed in table 2.1 

and their 3 basic units, indicates that there are six independent Π groups present. 

Next the repeating variables must be selected, these are a number of variables 

equal to the number of basic units represented amongst the governing parameters. 
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The following rules should be adhered to when choosing repeating variables: these 

variables must not form a Π group by themselves; all the basic units must be 

represented; no two repeating variables can have the same basic units, 

dimensionally simple variables should be prioritized (variables with only 1 basic 

unit); and the dependent variable, which is ℎ, must not be chosen (Buckingham 

1914).  

The chosen repeating variables for this analysis are: 𝜌, 𝑉 and 𝐷 and when 

expressed together in their basic units give a value with units Lିଵ𝑀Tିଵ, which is a 

non-dimensionless group.  The calculation for the first Π group will now be 

demonstrated while the remaining groups will simply be listed. 

To determine a Π group the repeating previously identified repeating variables are 

taken along with any of the other governing parameters, in this case fountain 

height, then raised by an unknown power. Therefore the first Π group becomes; 

 Πଵ = 𝜌𝑉𝐷ℎௗ 2.3 

 

Each variable is then expressed in terms of their basic units, so that: 

 Πଵ = [𝐿ିଷ𝑀][𝐿𝑇ି][𝐿][𝐿ௗ] 2.4 

 

Each dimension must sum to zero to produce a Π group, so the terms for each basic 

unit are grouped and evaluated as a set of 3 simultaneous equations: 

 𝑀: 𝑎 = 0 2.5 

 𝐿: −3𝑎 + 𝑏 + 𝑐 + 𝑑 = 0 2.6 
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 𝑇: −𝑏 = 0 2.7 

 

Table 2.1: dimension matrix with governing parameters for system of interest, 

detailed in SI units and their respective fundamental units. 

Equations 2.5-2.7 can then be solved such that 𝑎 =  0, 𝑏 =  0 and 𝑑 = −𝑐.  

Using these values to simplify equation 2.3 then gives: 

 Πଵ = 𝐷ିℎௗ 2.8 

Evaluating 𝑑 = −𝑐  for when 𝑐 = 1 then gives: 

 
Πଵ =

ℎ

𝐷
 

2.9 

 Length [L] Mass [M] Time [T] Description 

𝒉 (m) 1 - - Fountain height 

𝑫 (m) 1 - - Pipe diameter 

𝒛 (m) 1 - - Ponding depth 

𝝆 (kg/𝐦𝟑) -3 1 - Fluid density 

𝑷 (Pa) -1 1 -2 Pressure  

𝝁 (Pa s) -1 1 -1 Fluid viscosity 

𝑽 (m/s) 1 - -1 Flow velocity 

𝒈 (m/𝐬𝟐) 1 - -2 Gravitational acceleration 

𝑸 (𝐦𝟑/s) 3 - -1 Volumetric flux 
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Which is dimensionless conduit diameter. This same methodology is repeated to 

calculate the remaining Π groups. 

The second dimensionless group has ponding depth 𝑧 as the additional variable: 

 Πଶ =
𝑧

𝐷
 2.10 

The third dimensionless group has pressure 𝑃 as the additional variable: 

 
Πଷ =

𝑃

𝜌𝑉ଶ
. 

2.11 

The fourth dimensionless group has gravitational acceleration as the additional 

variable and is expressed as: 

 
Πସ =

𝐷𝑔

𝑉ଶ
. 

2.12 

Which is dimensionless gravitational acceleration. This group is known as the 

Froude number and more commonly expressed as: 

 
Πସ

ିଵ/ଶ =
𝑉

ඥ𝐷𝑔
. 

2.13 

 

The fifth dimensionless group has volumetric flux as the additional variable: 

 
Πହ =

𝑄

𝑉𝐷ଶ
. 

2.14 

The sixth dimensionless group has viscosity as the additional variable: 

 
Π =

𝜌𝑉𝐷

𝜇
, 

2.15 

Which is the Reynolds number as previously described previously for equation 2.1.   
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While Buckingham Pi theorem is an effective method of identifying dimensionless 

groups, other dimensionless groups can be determined by simply combining 

parameters with identical dimensions, such as two quantities that both have a basic 

unit of length [L]. 

 As this study seeks to investigate the variation in fountain height with ponding 

depth, it would be useful to have a means of quantifying reductions in fountain 

height experienced in the presence of ponding. A final dimensionless group is 

therefore introduced to do so, which is dimensionless fountain height: 

 
Π =

ℎ

ℎ
 

2.16 

Where ℎ is the measured fountain height (m) and ℎ is mean un-ponded fountain 

height (m). The mean un-ponded fountain height is calculated for a given pressure 

head and pipe diameter by firstly summing the heights of un-ponded fountains for 

these parameters, then averaging this value to obtain ℎ. This dimensionless group 

therefore indicates that when fountain height is unchanged,  Π ≅ 1 (due to minor 

fluctuations) and when fountaining is suppressed entirely Π = 0. 

While all the derived dimensionless groups and the method by which they are 

determined are included above for the sake of completeness, some of these groups 

are not examined within this thesis. The dimensionless groups which will be 

examined by this thesis are as follows; equations 2.10, 2.15 and 2.16.  
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2.3 Scaling materials 

Having identified the relevant dimensionless groups for scaling, the next challenge 

lies in properly scaling experimental materials, in this case fluid viscosity. It is 

apparent that the viscosity of the fluid will play a vital role in influencing fountain 

behaviour as it dictates the Reynolds number of the system. However, in nature the 

viscosity of basaltic lavas can range (Fig 2.1) from 10 to 10ହ Pas (Gonnermann and 

Manga 2007), which is impractical for use from the perspective of this study. 

Instead of using such viscous fluids, manipulation of the Reynolds number equation 

provides a method of scaling experimental materials to be consistent with values 

found in the natural system. This accomplished due to have experimental control 

over 3 parameters within the Reynolds number, pipe diameter, pressure head 

(which in turn varies flow velocity) and fluid viscosity. To determine the appropriate 

viscosities for laboratory experiments, the Reynolds number encountered for the 

natural system must be evaluated. Approximating the range of values for pipe 

diameter, flow velocity and viscosity present in the natural system based on 

parameters detailed in the literature, allows an estimation of the range Reynolds 

numbers likely to be encountered. 

Drawing from previously established studies, the ranges encountered for these 

parameters are assumed to be; an average density for basaltic lavas of 2750 kg/mଷ  

(Daly et al 1966, Chistensen and Wilkens 1982, Moore 2001); velocities of the 

magnitude 10ଵ-10ଶ m/s (Wilson et al 1980, Freret-Lorgeril et al 2018); viscosities of 



2. Experimental Scaling 

 

20 
  

the magnitude 10-10ହ Pas (Gonnermann and Manga 2007); and vent diameters of 

the magnitude 10-10ଵ m (Wilson et al 1980; Wilson et al., 1995).  

 

Figure 2.1: Viscosity as a function of temperature for a compositional range of lavas 

at a pressure of 1 bar, the temperature range is typical of eruptive temperatures for 

each composition (Taken from figure 5.4, page 123, Encyclopedia of volcanos) 

The largest encountered Reynolds numbers would be present when the magnitudes 

of velocity and diameter are at their greatest and viscosity is at its lowest, such that:  

 
𝑅𝑒 =

2750(10ଶ)(10)

10
, 

2.17 
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Evaluating this equation determines 275000 to be approximately the maximum 

value for Reynolds numbers expected in natural basaltic fountains. The lowest 

Reynolds numbers encountered would be present when the magnitudes of velocity 

and diameter are at their minimum and viscosity is at its maximum, such that: 

 
𝑅𝑒 =

2750(10ଵ)(10)

10ହ
, 

2.18 

Solving this equation indicates that 0.275 is approximately the minimum Reynolds 

number encountered. The effective range of the Reynolds number in nature is 

therefore 0.275-275000.  

Based on the previous calculations, natural lava fountains experience two different 

regimes of flow, either laminar or turbulent flows (Reynolds, 1883). As both these 

regimes occur in nature it is necessary to reflect that in experimental design, with 

chosen fluids being able to generate a comparable range of Reynolds numbers. 

To accommodate this range, it is necessary to use fluids of differing viscosities 

within the laboratory to best capture the full suite of flow behaviour present in 

nature.  Two fluids were identified for usage in experiments, water was chosen as a 

fluid due to ease of usage, and will be used to emulate the turbulent regime. It has 

a known viscosity of 8.9x10ିସ Pa s. Golden syrup was identified as another suitable 

fluid, due to the ease with which it can be diluted with water to vary viscosity (this 

is further examined in chapter 4). 
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3. Experimental Methodology 

3.1 Introduction 

For carrying out experimental tests of fountain properties, an analogue 

experimental kit was constructed (Figure 3.1). A main consideration during design 

and construction was ensuring a functionally simple build, to allow for easy usage, 

while also allowing for tight controls to be placed on studied input parameters for 

experimental fidelity and easy measurement of output parameters. 

This chapter begins with an overview of the components that make up the 

experimental kit (Detailed descriptions and technical drawings are available in 

Appendix B), which can be broadly divided into three sections; the tower, tank and 

vent. This is followed by a description of the experimental procedure used for data 

collection. 

The remainder of the chapter details the methods employed for video analysis and 

data processing, with a description of the techniques used to extract usable data 

from recorded footage of fountain behaviour during testing (this data is available in 

chapter 5, Results and analysis). 

Mathematical notation is defined at first use and a complete summary of notation 

is presented within Appendix A. 
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Figure 3.1: Experimental setup for collecting data. The driving pressure for flow is 

determined by ∆𝑙 (m), the difference in elevation between the two fluid surfaces. 

The fountain height, ℎ (m), is captured on a Nikon camera, while the GoPro records 

the rate at which the tank empties. An overflow container allows for fluid to be 

collected and recycled if necessary. 

Nikon D7200 Camera 
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∆𝑙 
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Tank 

Vent 

GoPro Hero6 Camera 
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3.2 Tower 

While the volcanic system is driven by buoyancy arising from bubble growth 

attempting to achieve equilibrium, in the laboratory the driving pressure for flow is 

generated by creating a pressure head. This pressure head is the difference in 

height between two fluid surfaces, the surfaces within the tank and vent. This 

relationship between pressure and height is expressed by the following equation: 

 𝑃 = 𝜌𝑔∆𝑙 3.1 

Where 𝑃 (Pa) is the pressure, 𝜌 is the fluid density (kg/mଷ), 𝑔 is the acceleration 

due to gravity (m/sିଶ) and ∆𝑙 is the pressure head (m). 

The tank sits on an adjustable platform within the tower, allowing ∆𝑙  to be varied. 

The pressure heads examined were: 0.25, 0.75, 1 and 1.75m. 

The tower has a solid frame and roof for stability, joined by slotted angle iron 

lengths. Joist struts attached at intervals along the tower reduce twisting effects. 

3.3 Tank 

The header tank is transparent to allow for the fluid level to be observed and 

recorded during experiments. A ruler placed within the tank provides a scale bar. 

An outlet within the tank has a flexible pipe, which with a diameter of 5.08cm, 

attached with t-clamps, joining the tank and vent together. Around the outlet, 

fixtures have o-rings attached to prevent leakage. 
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3.4 Vent 

Pipe flow from the vent enters a plastic cylindrical tank mounted on a metal frame. 

This tank can be filled with liquid to create ponding, ponding depth is then varied by 

inserting pipes and affixing them in place at the desired depth. The pipe exit is 

positioned 8cm below the top of the tank, allowing for variation of ponding depth 

within that range. The ponding depths examined in this study were: 0 (the absence 

of ponding), 0.01, 0.02, 0.04 and 0.08 m. The pipe diameter can also be adjusted by 

inserting pipe lengths of smaller diameters and fixing them in place with plasticine, 

the pipe diameters used were 0.01, 0.018 and 0.03 m and were 0.15, 0.182 and 

0.17 m in length respectively. To maintain a constant ponding depth, the tank is 

constantly overflowing. 

A ball valve upstream of the pipe exit is used for controlling the flow of fluid from 

the tank to the vent. To prevent leakages, Polytetrafluoroethylene (PTFE) tape is 

placed around the threads of each plumbing fixture. 

3.5 Experimental procedure 

The apparatus is arranged as shown in figure 3.1 to the desired pressure head, 

checking that all structures are level and balanced. A ruler is secured against the 

side of the tank to measure the change in fluid level over time, with footage being 

recorded by a GoPro HERO6 camera (video footage shot at 1920x1080 pixels and 

240 frames per second) with a Theia SL1250M varifocal telephoto lens. 
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The appropriate pipe section is chosen for the desired testing diameter and fixed in 

place at the desired ponding depth (Figure 3.2). For capturing the fountain 

generated from the vent, a Nikon D7200 camera with a Nikon AF-S DX 18-140 

3.505.6G ED VR lens attachment is mounted on a tripod a sufficient distance from 

the vent so that the whole fountain body can be captured in frame (video footage 

shot at 1920x1080 pixels and 29.97 frames per second).  

 

Figure 3.2: Vent sketch showing variation of ponding depth 𝑧 (m) and pipe diameter 

𝐷 (m). Plasticine holds the smaller pipe in place. 

To determine this distance, preliminary runs are done using conditions identical to 

those being tested. With both cameras now in place, the focus and zoom functions 

are adjusted to provide the highest definition video with markings being clearly 

visible. A metre stick is then placed into the vent and held upright, while being 

recorded by the Nikon camera. This footage is used as a reference frame later 

during footage analysis to determine fountain height. 
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After completing the previous steps, the valve is closed to ensure no flow into the 

vent and fluid is then loaded into the tank, filling it to the desired level. After this 

initial period of filling the tank, the valve is opened slightly to fill the vent to the 

brim, allowing some overspill, after which the valve is closed again. The tank is then 

filled again until the fluid reaches the required level. 

All values for pressure head, pipe diameter, pipe length, ponding depth, fluid 

viscosity and respective timestamps are recorded in a notebook detailing 

experimental conditions. The air temperature within the laboratory is then 

measured and recorded using a thermocouple. 

After completing these setup preparations, a final visual inspection is conducted to 

ensure that all factors are properly controlled and recorded, both cameras then 

start recording. A whistle is blown to provide an audio cue to help with 

synchronization between both cameras, with recording continuing for the duration 

of fountaining. The inspection of both cameras continues during fountaining to 

ensure that the video quality is clear throughout. Overspill from the tank is 

collected in an overflow tank surrounding the vent. When the experiment has 

finished, the valve is closed and the header tank is refilled for the next experiment. 

3.6 Video analysis 

The video footage of experiments is necessary for extracting two important values, 

the fountain height, h and the volumetric flux, Q. To obtain these values from the 

captured video requires the combined use of the VLC media player and imageJ, an 

image processing software (Abramoff et al 2004). 
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3.6.1 Fountain Height 

A reference frame video (obtained as described in section 3.5) is loaded into the 

media player and examined by individual frames, searching for the clearest frames 

where the meter stick scale bar is visible. When finding the appropriate frame, a 

picture is taken using the media players snapshot feature, the picture is then 

opened in ImageJ to be examined. By measuring the height denoted by the ruler 

visible in the reference frame, a height scale can be determined for fountains 

recording using that respective reference frame (figure 3.3). 

To account for parallax, the number of pixels per 10 cm height above the ponding 

surface is recorded. This is plotted to produce a calibration curve, such as that 

presented in figure 3.4. In most cases calibration curves show a linear relationship, 

however, in a minority of cases, the curve is nonlinear, indicating that parallax 

effects are present in the respective acquired footage. 

Video footage from an experiment is then taken and examined in the media player 

software for periods of steady state fountaining, which is when the footage 

indicates that fountain behaviour is stable and height is not undergoing any major 

fluctuations. . The duration of these periods of steady state fountaining were 

dependent on the flow rate, varying anywhere between 1 second (during the 

highest flow rates) to 30 seconds in length (during the lowest flow rates). A 

snapshot of the fountain during this period (figure 3.5) is taken and then examined 

in the ImageJ software to determine the fountain height. 
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Figure 3.3: Example reference frame, where meter stick markings are clearly visible, 

with 10cm increments denoted by red markings. 
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3.6.2 Volumetric flux 

Video footage from the GoPro is examined to determine volumetric flux.  By 

measuring with a ruler, the tank was determined to have an area of 0.090475 ± 

4.5x10ିସmଶ (error was calculated using equations presented in section 3.8), 

multiplying this by the height of the column of fluid present within the tank gives 

the volume of fluid present within the tank. While running an experiment, the 

height of the fluid column decreases while the tank drains. By taking the difference 

between the height of the fluid column before and after a  

time interval, T, the change in volume can be determined. This is denoted by the 

following equation: 

 𝑄 =
𝑣

T
 3.2 

Where 𝑄 (mଷ/s) is the volumetric flux, 𝑣 (mଷ) is the volume of the tank and T (s) is 

the elapsed time interval.  

The time interval, T, varied depending on the rate of drainage from the header 

tank. When the flow rate was relatively low (such as using the narrow pipes), the 

time interval could be between 10-30 seconds in length. In instances with wider 

pipes the flow rate was much higher, the time interval was much shorter as a result, 

varying between 1-5 seconds in length. Error associated with this method was 

determined by taking a representative video and repeating the measurement 10 

times, examining the number of frames (with each frame being 0.004167 seconds 

due to the high frame rate) by which each attempt deviated. Using this method 

error on time was determined to be 0.25 seconds.  
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Figure 3.4: Calibration curve for reference frame displayed in Figure X.2. Best fit line 

of the form y = 16.551x + 1.153 (Rଶ=1). Plots for other reference frames display 

identical relationships in almost all cases. Error bars are smaller than data points. 

 

Figure 3.5: Image of fountain taken during steady state fountaining. Measurements 

for fountain height, ℎ, are taken from the pipe exit.  
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3.7 Data processing 

Taking the values for volumetric flux obtained through video analysis, the mean 

velocity of flow can be calculated using the following equation: 

 
𝑉 =

𝑄

𝐴
 

3.3 

Where 𝑉 is the flow velocity (m/s) and 𝐴 (mଶ) is the cross-sectional area of the 

inserted pipe. 

The pressure head determined using equation 3.1 is used to calculate a modelled 

flux to facilitate a comparison between modelled and measure flux values. Doing so 

provides a way of identifying potential anomalous experimental results. Performing 

this analysis requires calculation of the major and minor losses of pressure within 

the pipe system. Analysis of these losses are discussed in the next chapter. 

3.8 Error analysis 

It is necessary to account for uncertainties within collected data as these errors 

propagate through all calculations. Error analysis allows this uncertainty to be 

quantified. There are 3 equations by which this can be done: 

 𝑆 = 𝑎 + 𝑏 − 𝑐 → 𝛿𝑆 = ඥ(𝛿𝑎)ଶ + (𝛿𝑏)ଶ + (𝛿𝑐)ଶ 3.4 

 
𝑆 =

𝑎𝑏

𝑐𝑑
→   

𝛿𝑆

𝑆
= ඨ൬

𝛿𝑎

𝑎
൰

ଶ

+ ൬
𝛿𝑏

𝑏
൰

ଶ

+ ൬
𝛿𝑐

𝑐
൰

ଶ

+ ൬
𝛿𝑑

𝑑
൰

ଶ

 
3.5 

 
𝑆 = 𝑥  →   

𝛿𝑆

𝑆
= ฬ𝑛

𝛿𝑥

𝑥
ฬ 

3.6 
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where 𝑆, 𝑎, 𝑏, 𝑐 and 𝑑 are quantities, and 𝛿𝑆, 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 and 𝛿𝑑 are the 

uncertainties on each respective quantity.  The uncertainties on measured values 

are determined through replicated measurements or approximated based on the 

preciseness of measurement techniques. Measurements taken using a ruler were 

taken to have an assumed error of ± 0.01 m as this was smallest measurement the 

instrument was capable of making. Due to temperature measurements being made 

for the air temperature within the lab. rather than the fluid, errors on temperature 

adopted an overly conservative assumed error of ± 1 ℃ to compensate for any 

fluctuations that may have arisen while testing within the laboratory. 
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4. Mathematical Description of Flow 

4.1 Introduction 

Fluid dynamics is a branch of mathematics that details the flow of liquids and gases. 

It is used in a wide variety of disciplines, such as aerodynamics, hydrology and 

meteorology. With applications in such a wide variety of areas, a great deal of 

resources exist describing the governing conditions of fluid flow to better 

understand and predict associated phenomena. 

This study seeks to draw from the body of pre-established mathematics for 

describing the processes involved with fluid flow within a pipe and applying them to 

determine the pressure loss along a pipe with added fixtures and fittings. This 

approach allows the comparison of measured and modelled flow rates. 

The chapter starts with a description of the characteristic flow types; laminar and 

turbulent flow, along with the physical processes that define them. Then the 

chapter details the derivation and assumptions of the mathematical descriptions 

used when examining fluid flow to properly quantify the processes occurring within 

the experimental system. The chapter then examines the equations of pressure 

losses within a pipe due to the occurrence of friction and the presence of plumbing 

fixtures along the flow path. Equations to determine a modelled volumetric flux are 

addressed as a method of identifying anomalous experimental results. The chapter 

concludes with a description of scaling viscosity for golden syrup dilutions to 
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emulate laminar flow. Mathematical notation is defined at first use and a complete 

summary of notation is presented within Appendix A. 

4.2 Internal flow 

An incompressible fluid flowing along a pipe has a characteristic velocity profile, the 

shape of which is dependent on the Reynolds number, and it is considered to be 

“fully developed” when displaying such a profile. When analysing fluid flow 

mathematically in this study, an important assumption is that flow is fully 

developed within a pipe. However, when initially entering a pipe, a fluid does not 

adopt this profile, it instead gradually develops across a characteristic development 

length.   This entrance region where a flow lacks its full definition is referred to as 

the hydrodynamic entry region, while the area of fully developed flow is called the 

hydrodynamically fully developed region.  

When entering the pipe, fluid particles moving in streamlines in contact with the 

pipe walls come to a stop due to frictional forces, causing them to have a velocity of 

zero. This process is known as the no-slip condition and has a significant impact in 

determining the shape of a fluid’s velocity profile. The now stationary particles 

along the boundary walls also slow adjacent fluid streamlines within the pipe, so to 

uphold the conservation of mass principle, the velocity at the centreline of flow 

increases (When the fluid is incompressible). 

Flow can then be separated into two regions within a pipe (Fig 4.1). The first region 

is the boundary layer, the region of flow where shearing forces due to viscous 

effects and large changes in velocity are experienced perpendicular to the flow 
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direction. The second region is known as the core flow region, where frictional 

effects are considered negligible and velocity is constant. For laminar flow, 

boundary layer thickness increases in the direction of flow and eventually occupies 

the entire pipe, becoming “fully developed”. The entrance of a pipe is an area of 

high-pressure loss, due to the boundary layer being at its minimum area. 

 

Figure 4.1: Developing velocity profile within a pipe for a low Reynolds number 

flow, the core flow region (coloured in blue) decreases with flow direction, while 

the boundary layer (coloured in white) increases till it occupies the entire pipe. The 

average velocity of flow is represented by 𝑉 and 𝑟 is the radius of the pipe.  

Flow regimes within a pipe are characterised primarily as two types of flow: 

Laminar and Turbulent flow. Both describe the relative motion of fluid streamlines 

within them and are dependent upon several factors, such as: velocity, geometry, 

density and the viscosity of the fluid used (Reynolds 1883). These are reflected in 
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the Reynolds Number, a dimensionless number that expresses the ratio of inertial 

to viscous forces in a fluid. It is denoted by the equation: 

 
𝑅𝑒 =

𝜌𝑉𝐷

𝜇
 

4.1 

where 𝑅𝑒 is the Reynolds number, 𝜌 is the density of the fluid (kg/mଷ), 𝑉 is the 

average velocity of the flow (m/s), 𝐷 is the diameter of the pipe (m) and 𝜇 is the 

viscosity of the fluid (Pa s).  

4.2.1 Laminar flow 

Flow is considered to be laminar for an incompressible fluid in a circular pipe for 

Re ≤ 2300, where the viscous forces are sufficient to keep fluid particle motion 

restricted to highly ordered parallel streamlines (Figure 4.2). Laminar flow adopts a 

parabolic velocity profile when flow is fully developed, due to the effects of the no-

slip condition as previously discussed. There is no radial motion and the velocity 

profile is unchanged along the flow direction. 

4.2.2 Turbulent flow 

Flow is considered to be turbulent for an incompressible fluid in a circular pipe for 

Re ≥ 4000, turbulent flow is characterized by chaotic motion with areas of swirling 

fluid, called eddies (Figure 4.3), present throughout. Unlike laminar flow, there is 

radial motion present in turbulent flow, with eddies transporting mass, momentum 

and energy across streamlines. This increased mixing has a higher degree of friction 

associated with it, leading to turbulent flow being defined by a flatter velocity 

profile. 
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Figure 4.2: The characteristic laminar flow parabolic velocity profile for fully 

developed flow in a pipe of radius r. The flow pattern is highly organized, with fluid 

particles moving parallel to one another in streamlines. The parabolic profile 

develops due to the effects of the no-slip condition, where fluid particles at the 

pipe wall are at rest.  

 

Figure 4.3: Visual representation of chaotic motion of fluid particles in fully 

developed turbulent flow in a pipe of radius r. Eddies within the fluid body 

distribute mass, momentum and energy, increasing friction effects and causing a 

flatter velocity profile to develop.  

4.3 Major pressure losses 

For any fluid flowing through a pipe there is an associated pressure drop due to 

frictional effects. Due to these losses, the apparent pressure head for flow within 
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the experimental system differs from the actual pressure determining flow. 

Calculating the actual pressure head is important as it is this pressure that drives 

flux, which this study later seeks to relate to fountain height. Several pre-existing 

equations are available to assist in this process. 

4.3.1 Darcy-Weisbach equation 

A general equation exists for calculating the major pressure losses along a pipe 

system that is suitable for either laminar or turbulent flow (Weisbach 1845), it is 

expressed by the equation:  

 
∆𝑃 = 𝑓

𝐿𝜌𝑉ଶ

2𝐷
 

 

4.2 

where ∆P is the pressure (Pa), 𝑓 is the darcy friction factor, a dimensionless 

quantity for friction along a pipe. In instances of laminar flow, the value of the 

friction factor can be found by using the equation: 

 
𝑓 =

64

𝑅𝑒
 

4.3 

For cases dealing with turbulent flow, a different equation is required to calculate 

the friction factor (See section 4.3.3).  

4.3.2 Hagen-Poiseuille equation 

Alternatively, the major pressure loss in a system can be calculated using the 

Hagen-Poiseuille equation. This relationship exists for a cylindrical pipe (figure 4.4) 

and is only valid in instances of laminar flow (Poiseuille 1840), it is given by the 

equation: 
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𝑄 =

∆𝑃𝜋𝑟ସ

8𝜇𝐿
. 

 4.4 

 

 

Figure 4.4: Laminar flow for an incompressible fluid within an impermeable, 

inelastic cylindrical pipe, demonstrating Hagen-Poiseulle law.  

4.3.3 Colebrook equation: 

While a simple solution for the friction factor exists for flow within the laminar 

regime, no such relationship exists for flow within the turbulent regime. Instead, 

the friction factor is determined by using the Colebrook equation (Colebrook 1939) 

which is given as: 

 
1

ඥ𝑓
= −2.0log ቌ

𝜀
𝐷

3.7
+

2.51

𝑅𝑒ඥ𝑓
ቍ 

4.5 

where 𝜀 is the roughness of a pipe (m). This can be visually represented as the 

Moody chart (figure 4.5), which plots the friction factor as a function of the 

Reynolds number and ఌ


.  

 

 

𝑸 
𝒓 

∆𝑷 

𝑳 
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4.3.4 Haaland equation: 

While the Colebrook equation requires an iterative solution to determine the 

friction factor, an approximate solution exists for friction factor valid to within 2 

percent of values given by those of the Colebrook equation (Haaland 1981). 

The Haaland equation for friction factor is defined as: 

 
1

ඥ𝑓
≅ −1.8𝑙𝑜𝑔 ൦

6.9

𝑅𝑒
+ ቌ

𝜀
𝐷

3.7
ቍ

ଵ.ଵଵ

൪. 

4.6 

By using this equation to calculate the friction factor, then substituting into the 

Darcy-Weisbach equation, it allows for major pressure losses to be calculated for 

turbulent flows. Two types of pipes were used in experiments, which were made of 

plastic and steel, these have respective roughness’s of 0 and 0.045𝑥10ିସm (values 

taken from page 350, Cengel, Y.A., and Cimbala, J.M., Fluid Mechanics: 

Fundamentals and Applications. 3rd ed. Mc Graw Hill India: 2014). 

4.4 Minor pressure losses 

Aside from the major pressure losses across a system, minor losses also occur due 

to the presence of plumbing fixtures within the pipe network that disturb flow. 

Individual minor losses can generally be expressed by following equation: 

 
ℎ = 𝐾

𝑉ଶ

2𝑔
 

4.7 

where ℎ is the head loss (m) due to the presence of the component, g is the 

acceleration due to gravity (m/sଶ) and 𝐾 is the loss coefficient, determined 
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experimentally by manufacturers. Losses tend to be expressed in head loss for 

convenience, they can be converted to pressure loss like so: 

 ∆𝑃 = 𝜌𝑔ℎ  4.8 

where ∆𝑃 is the minor pressure loss (Pa).  The total minor pressure losses for 

all components present within a system is the sum of all the minor pressure losses, 

such that: 

 ∆𝑃 =  ∆𝑃ଵ + ∆𝑃ଶ … + ∆𝑃 4.9 

where the subscripts each denote a separate component within the system.  

There are two exceptions to experimentally determined loss coefficients, these are 

instead determined mathematically, they arise when a sudden contraction or a 

sudden expansion within a system is present. 

The loss coefficient for a sudden expansion is calculated by following equation: 

 
𝐾 = ቆ1 −

𝑑ଶ

𝐷ଶ
ቇ

ଶ

 
4.10 

where 𝑑 is the diameter (m) of the narrower pipe and 𝐷 is the diameter (m) of the 

wider pipe. For sudden contractions the loss coefficient can be determined by using 

figure 4.6. The complete list of areas of minor loss within the experimental 

configuration used to produce this research are available in table 4.1. 
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Figure 4.5: The relationship between the friction factor 𝑓, the Reynolds number, and roughness 𝜀 for fully developed pipe flow (Taken 
from figure 1, Moody 1944). It is a visual representation of the Colebrook Equation. While neater graphical forms exist, this 
relationship is still utilized in modern fluid dynamics. 
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Figure 4.6: Chart for determining the loss coefficient for a sudden contraction 

within a pipe network (obtained from page 350, Cengel, Y.A., and Cimbala, J.M., 

Fluid Mechanics: Fundamentals and Applications. 3rd ed. Mc Graw Hill India: 2014.). 

By summing all the individual minor losses as well the major pressure losses, the 

total pressure drop over the entirety of the experimental system can be found for, 

which can be expressed by the following general equation: 

 ∆𝑃௧௧ = ∆𝑃 + ∆𝑃 4.11 

where each subscript denotes the respective sums of the type of pressure loss 

experienced. For all experiments, calculated values for minor losses are sufficiently 

small when compared to the overall pressure head that they can be considered 

negligible. 

4.5 Calculation of pressure losses 

While equation 4.10 provides a general equation for determining pressure loss, the 

actual calculation is slightly more complex, due to the experimental system being 
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comprised of two sections of pipe, each of a different diameter, length and 

material. 

Component Loss coefficient Equation 

Pipe inlet 0.5 
ℎ = 0.5

𝑉ଶ

2𝑔
 

Open Ball valve 0.05 
ℎ = 0.05

𝑉ଶ

2𝑔
 

𝟗𝟎° Threaded elbow 0.9 
ℎ = 0.9

𝑉ଶ

2𝑔
 

Pipe exit 𝛼 
ℎ = 𝛼

𝑉ଶ

2𝑔
 

Sudden expansion See equation 4.10 
ℎ = 𝐾

𝑉ଶ

2𝑔
 

Sudden contraction See figure 4.6 
ℎ = 𝐾

𝑉ଶ

2𝑔
 

Table 4.1: Complete list of minor loss causing components, with their respective 

loss coefficients and equations. For a pipe exit, loss coefficient is dependent upon 

whether the flow is turbulent or laminar, 𝛼 = 2 for laminar flow and 𝛼 = 1 for 

turbulent flow. 

These calculations express flux as a function of pressure head and losses within the 

pipe, allowing the comparison of measured and modelled flow rates. This method 

allows any potential erroneous experimental setups to be identified, providing a 

legitimate reason to omit them from further analysis.  

Taking the relationship for the continuity equation (Q=VA=constant), the velocity of 

flow within a pipe can be expressed as: 
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𝑉 =

4𝑄

𝜋𝐷ଶ
. 

 4.12 

Substituting equation 4.12 into equation 4.2 and simplifying then gives the 

expression: 

 
𝑄ଶ =

𝜋ଶ𝐷ହ∆𝑃

8𝑓𝜌𝐿
. 

4.13 

Equation 4.13 gives a general expression for the volumetric flux for a pipe in terms 

of the respective losses within a pipe. Taking the definition of the continuity 

equation, that the volumetric flux within a pipe is constant, then the volumetric flux 

in both sections of pipe are equal to one another, such that Qଵ = Qଶ. This can be 

expressed as: 

 𝜋ଶ𝐷ଵ
ହ∆𝑃ଵ

8𝑓ଵ𝜌𝐿ଵ
=

𝜋ଶ𝐷ଶ
ହ∆𝑃ଶ

8𝑓ଶ𝜌𝐿ଶ
 

4.14 

 with the subscripts 1 and 2 denoting the larger and smaller pipes respectively. 

Rearranging these equations and substituting (for ∆𝑃ଶ = ∆𝑃 − ∆𝑃ଵ): 

 
∆𝑃ଵ =

𝑓ଵ𝐿ଵ𝐷ଶ
ହ∆𝑃

𝑓ଶ𝐿ଶ𝐷ଵ
ହ + 𝑓ଵ𝐿ଵ𝐷ଶ

ହ. 
4.15 

Substituting this equation into 4.13 then gives: 

 
𝑄ଶ =

𝜋ଶ𝐷ଵ
ହ𝐷ଶ

ହ

8𝜌

∆𝑃

𝑓ଶ𝐿ଶ𝐷ଵ
ହ + 𝑓ଵ𝐿ଵ𝐷ଶ

ହ. 
4.16 

 
Equation 4.16 allows for the calculation of flux as a function of pressure head and 

losses within both the small and large pipe. 
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4.6 Rheology 

Having discussed the scaling of materials, experimental parameters and pipe flow 

equations, it is now necessary to examine the appropriate viscosity required to 

emulate the laminar flow regime during experiments. As previously addressed in 

chapter 2, scaling material properties is important when analysing natural 

processes in the laboratory. In chapter 2 the range of Reynolds numbers 

encountered for natural lava fountains was approximated to be 0.275-275000. 

Water and syrup solutions were chosen as suitable fluids to capture the turbulent 

and laminar regimes respectively. The appropriate solution viscosity was 

determined by creating a system of equations in an excel spreadsheet to generate 

model fluxes and their corresponding Reynolds numbers for various experimental 

conditions. Experimentation with the configured system of equations revealed a 

viscosity of 0.1 Pa s as the most appropriate value, spanning a wide range of 

Reynolds numbers for the laminar flow regime. 

4.6.1 Golden syrup 

As previously mentioned in chapter 2, the viscosity of golden syrup can be varied by 

diluting it with water. Having identified a suitable viscosity for experiments, the 

next task is to determine the required amount of water to add to achieve the 

required viscosity. Drawing from a previous study by Jones 2018, which examined 

how golden syrup viscosity varies for water dilutions (Fig 4.7), a solution of 20% 

weight percent of water (which has a viscosity of 0.8654 Pas) was identified as 
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starting point from which to develop an appropriate solution. Successive iterations 

found that 22% weight percent produced the desired viscosity of 0.1 Pas. 

 

Figure 4.7: Viscosity of golden syrup and dilutions as a function of temperature. 

Graphical inset details golden syrup as a function of water dilution at a constant 

temperature of 22℃. (Taken from figure 4.3, page 78, Jones 2018). 

Having determined the correction weight percentage of water to produce the 

required the solution, it was then necessary to determine the density of this 

solution. The previously mention study by Jones 2018 also developed a general 

equation for determined solution density as a function of temperature and weight 

percentage of water (Fig 4.8). This equation states that: 
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 𝜌 = −0.58724𝑡 − 5.3542𝑋௪௧ + 1450.5 4.17 

Where 𝑡 is temperature (℃) and 𝑋௪௧ is the percentage of water dilution. Given 

that the density of this solution contains temperature as a variable, it is then 

necessary to examine the dependency of solution viscosity upon temperature. 

 

Figure 4.8: Density of golden syrup and dilutions as a function of temperature 

(Taken from figure 4.7, page 83, Jones 2018). 

When using water as an experimental fluid, variation in viscosity as a function of 

temperature can be considered negligible.  However, pure golden syrup viscosity is 

a function of temperature (Figure 4.9).  
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Figure 4.9: Viscosity of pure golden syrup as a function of temperature (Taken from 

figure 4.3, page 64, Llewellin 2002). 

4.6.2 Rheometry 

Accounting for the dependency of viscosity on temperature for golden syrup 

requires combining documentation of laboratory temperatures during experiments 

and rheometry of the manufactured solution. Samples were taken daily during use 

for analysis, the results of which are presented in figures 4.10-4.13. 

Solution viscosity was determined using a Haake rotational rheometer with a 

temperature control function. The rheometer functions by applying a shear stress 

(Pa) and measuring the corresponding strain rate (sିଵ) through a series of sensors. 

It does this in a series of incremental steps, with 30 second pauses between each 
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measurement. The associated computer software allows tight control over all input 

values during the course of analysis.   

The syrup dilutions were loaded into a container embedded into the rheometer 

stage, then a motorized sensor was lowered into the container, upon which a cap 

was placed to create an airtight seal. After loading a sample, it was allowed to rest 

for 6 minutes to reach the selected temperature before starting analysis. 

Temperatures selected for analysis were: 21℃, 22℃ 23℃ and 24℃, which is the 

temperature range encountered within the laboratory.  

The range of applied stresses were between 0 and 100 Pa in a series of 15 

incremental steps, after completing this series, the rheometer would then repeat 

these measurements in reverse order. For all tested temperature values, stress was 

proportional to strain rate, indicating a Newtonian rheology. 

 

Figure 4.10: Viscosity of golden syrup as a function of temperature, sampled on the 

15/8/18. Best fit line is of the form 𝜇 = 0.3975𝑒ି.ଶ௧, (Rଶ = 1). 
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Figure 4.11: Viscosity of golden syrup as a function of temperature, sampled on the 

16/8/18. Best fit line is of the form 𝜇 = 0.3596𝑒ି.௧, (Rଶ = 0.9998). 

 

 

 

Figure 4.12: Viscosity of golden syrup as a function of temperature, sampled on the 

23/8/18. Best fit line is of the form 𝜇 = 0.4653𝑒ି.ହ௧, (Rଶ = 0.9853). 
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Figure 4.13: Viscosity of golden syrup as a function of temperature, sampled on the 

28/8/18. Best fit line is of the form 𝜇 = 0.7711𝑒ି.ଵ௧, (Rଶ = 1). 
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5. Results and Analysis 

5.1 Introduction 

This chapter details the quantitative dataset collected using the previously 

described methodology in chapter 3. A qualitative description of fountain behaviour 

is presented, examining how changing experimental setups produce visible changes 

in fountain behaviour. 

The collected dataset is then used to quantitatively analyse the variation in fountain 

behaviours with changing experimental setup. A modelled volumetric flux is 

calculated using the equations pipe flow equations previously discussed in chapter 

4. These modelled values are compared to measured values for volumetric fluxes 

during experiments as a method of identifying outlier values. The effectiveness of 

the ballistic equation is evaluated as a means of determining fountain height with 

increasing ponding depth. The dimensionless groups previously derived in chapter 2 

are then re-introduced, allowing a dimensionless relationship between 

dimensionless fountain height and dimensionless ponding depth to be identified. 
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5.2 Qualitative description 

Visual observations during the course of experimentation allow for the inference of 

behavioural trends in collected data. A common trend was observed at the 

beginning of experiment, where produced fountains rapidly reached an initial 

maximum height, before undergoing a slight height reduction. This is interpreted to 

be due to the interaction between up-flowing and down-flowing elements. 

Fountains then achieved steady state behaviour (with some minor fluctuations) at 

this new height till flow ceased. Changing experimental conditions; ponding depth 𝑧 

(m), pipe diameter 𝐷 (m), pressure head ∆𝑙 (m) and fluid viscosity 𝜇 (Pa s), 

produced noticeable changes in fountain behaviour such as greater fountain 

heights, reductions in fountain height or increased lateral dispersion. 

5.2.1 Water 

Fountains produced using water achieved greater heights with increasing pressure 

head (Fig 5.1). Changing pipe diameter had no effect on un-ponded fountain 

heights for 0.75 and 1.75 m pressure heads, while decreasing pipe diameter 

produced higher fountains for a 1 m pressure head (Fig 5.2). For a 0.25 m pressure 

head, increasing pipe diameter corresponded with an increase in fountain height. 

Fountain height noticeably decreased as ponding depth increased, with fountains 

generated by narrower pipes experiencing a greater reduction in height than wider 

pipes (Fig 5.3).  
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Figure 5.1: Two un-ponded fountains produced using water for a pipe of 𝐷 = 0.03 

m at two different pressure heads. A) A 0.49 m fountain produced at ∆𝑙 = 1 m B) A 

0.94 m fountain produced at ∆𝑙 = 1.75 m 

           

Figure 5.2: Two un-ponded fountains produced using water at ∆𝑙 = 1 for two 

different pipe diameters. A) A 0.49 m fountain produced using a 𝐷 = 0.03 pipe B) A 

0.58 m fountain produced using a 𝐷 = 0.01 m pipe. 

A. B. 

A. B. 
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Figure 5.3: Two fountains produced using water for at 𝑧 = 0.08 m at ∆𝑙 = 1 for two 

different pipe diameters. A) A 0.3 m fountain produced using a 𝐷 = 0.03 m pipe B) 

A 0.16 m fountain produced using a 𝐷 = 0.03 m pipe. 

5.2.2 Syrup solution 

Fountains produced using a syrup solution also achieved greater heights with 

increasing pressure heads (Fig 5.4). Using larger pipe diameters produced greater 

fountain heights (Fig 5.5). Increasing ponding depth reduced fountain height as 

previously observed with water, with fountains generated by narrower pipes 

experiencing a greater reduction in height (Fig 5.6). In comparison to water, the 

produced fountains had overall lower heights when compared at identical 

conditions. 

A. B. 
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Figure 5.4: Two un-ponded fountains produced using a syrup solution for a pipe of 

𝐷 = 0.03 m at two different pressure heads. A) A 0.3 m fountain produced at ∆𝑙 =

1 m B) A 0.6 m fountain produced at ∆𝑙 = 1.75 m 

         

Figure 5.5: Two un-ponded fountains produced using a syrup solution at ∆𝑙 = 1 for 

two different pipe diameters. A) 0.3 m fountain produced using a 𝐷 = 0.03 pipe B) 

A 0.19 m fountain produced using a 𝐷 = 0.01 m pipe 

A. B. 

A. B. 
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Figure 5.6: Two fountains produced using a syrup solution at 𝑧 = 0.08 at ∆𝑙 = 1  

for two different pipe diameters. A) 0.21 m fountain produced using a 𝐷 = 0.03 m 

pipe B) A 0.05 m fountain produced using a 𝐷 = 0.01 m pipe. 

5.2.3 Lateral dispersion 

When increasing both pressure head and ponding depth, higher pressure fountains 

underwent a more noticeable reduction in fountain height with increased ponding 

depth relative to that experienced by low pressure fountains. This greater reduction 

in fountain height was accompanied by increased lateral dispersion of fountains 

with increasing pressure head. The effects of this are illustrated in figures 5.7-5.10 

for both water and syrup solution fountains. Higher pressure fountains underwent 

increased lateral dispersion with ponding depth in comparison to their low-pressure 

counterparts. The most pronounced occurrences of this lateral dispersion where 

observed when producing water fountains. 

 

A. B. 
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Figure 5.7: Three fountains produced using water at ∆𝑙 = 0.25 m with a 𝐷 = 0.03 

m pipe at 3 different ponding depths. A) A 0.17 m fountain for 𝑧 = 0 m B) A 0.13 m 

fountain for 𝑧 = 0.04 m C) A 0.12 m fountain for 𝑧 = 0.08 m. 

              

Figure 5.8: Three fountains produced using water at ∆𝑙 = 1.75 m with a 𝐷 = 0.03 

m pipe at 3 different ponding depths. A) A 0.94 m fountain for 𝑧 = 0 m B) A 0.70 m 

fountain for 𝑧 = 0.04 m C) A 0.58 m fountain for 𝑧 = 0.08 m. 

A. B. C. 

A. B. C. 
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Figure 5.9: Two fountains produced using a syrup solution at ∆𝑙 = 0.25 m with 

a 𝐷 = 0.03 m pipe at 2 different ponding depths. A) A 0.09 m fountain for 𝑧 = 0 m 

B) A 0.07 m fountain for 𝑧 = 0.08 m. 

 

                

Figure 5.10: Three fountains produced using a syrup solution at ∆𝑙 = 1.75 m with 

a 𝐷 = 0.03 m pipe at 3 different ponding depths. A) A 0.57 m fountain for 𝑧 = 0 m 

B) A 0.46 m fountain for 𝑧 = 0.04 m C) A 0.38 m fountain for 𝑧 = 0.08 m. 

 

A. B. C. 

A. B. 
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5.3 Quantitative analysis 

A quantitative analysis allows the identification of numerical patterns present 

within a dataset that a qualitative description would not otherwise reveal. 

Quantitative measurements were performed using image processing software to 

determine fountain heights and variations in liquid volume within the tank during 

experiments. The mathematical equations previously presented in chapters 2, 3 & 4 

allow the calculation of measured and modelled volumetric fluxes as well as the 

non dimensionalization of experimental parameters. 

5.3.1 Modelled volumetric flux 

While very precaution was taken during the experimental procedure, it is still 

important to inspect the collected dataset for outliers. Anomalous results within 

the collected data may be due to errors in experimental procedure or mistakes in 

data collection. The equations for pipe flow presented in chapter 4 are used to 

calculate model flux values, which are compared to measured flux values to help 

identify outliers in the collected dataset. 

Modelled fluxes were calculated using an excel spreadsheet and a solver function 

add on. The spreadsheet was optimized to address that the experimental system 

consists of two pipes, each of different diameter, length and material. Initial values 

for modelled volumetric flux were computed using the equations for pipe flow 

detailed in chapter 4. The excel solver function was then applied to minimize the 

difference between measured and modelled values. The solver function 
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accomplishes this by checking for solutions where the difference between 

measured and modelled values is at a minimum. 

Measured volumetric flux for water is generally consistent with values expected 

from modelled fluxes (Fig 5.11), though for lower measured fluxes (𝑄 ≤

0.001 mଷ/s) there is a slight deviation between measured and modelled values for 

volumetric flux. Measured fluxes are slightly higher than anticipated by calculations, 

these discrepancies between measured and modelled values possibly indicate that 

the model is unable to fully reproduce all the pressure losses occurring with the 

pipe. 

One particular noteworthy data point has a lower than expected flux compared to 

other experiments for identical experimental conditions. This data point has been 

highlighted in figure 5.11 and is considered to be due to errors in either 

experimental conditions or data collection, it is therefore omitted from further 

quantitative analysis.  

Comparing modelled and measured fluxes by the factor for which they differ from 

one another (Fig 5.12) highlights a trend of increasing divergence between 

observed and modelled values with decreasing modelled flux. There 4 data points 

highlighted in figure 5.12 differ by approximately a factor of 6 when using this 

method, which is a significantly higher difference than other volumetric fluxes for 

identical experimental conditions. The values obtained for these 4 data points may 

have arisen either due to errors in experimental conditions or data collection. These 

data points are therefore excluded from further quantitative analysis, making it a 

total of 5 water experiments out of 211 that were discarded from further analysis. 
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Any remaining systemic divergence present within the remaining data points, 

where measured values are greater than modelled values, possess measured values 

that are consistent for identical conditions and therefore is considered valid for 

continued analysis. This divergence is inferred to indicate that the modelled flux is 

unable to fully reproduce all the pressure losses occurring within the pipe. 

 

Figure 5.11: Comparison of measured and modelled volumetric fluxes (blue data 

points) for water. The orange line denotes the modelled volumetric flux (Rଶ = 1). 

Data point highlighted within red square diverges significantly from values for 

identical experimental conditions, indicating errors in either experimental 

conditions or data collection. Error bars denote propagated uncertainties due to 

assumed errors in measurements. 
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Figure 5.12: Factors by which measured and modelled volumetric fluxes for water 

differ from one another. Data points highlighted by red square indicate a significant 

divergence from expected fluxes, indicating possible errors in experimental 

conditions or data collection. Error bars denote propagated uncertainties due to 

assumed errors in measurements. 

Comparing measured and modelled volumetric fluxes for the syrup solution 

displays a systemic divergence between measured and modelled values with 

increasing flux (Fig 5.13). In contrast to water experiments, the values by which 

measured and modelled fluxes differ reveals a large yet consistent divergence 

between measured and modelled values for the 𝐷 = 0.01 m pipe, with measured 

values differing by a factor of 10 compared when compared to modelled values. 
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Figure 5.13: Comparison of measured (blue data points) and modelled volumetric 

fluxes for syrup solution experiments. The orange line denotes the modelled 

volumetric flux (Rଶ = 1). Error bars denote propagated uncertainties due to 

assumed errors in measurements. 

As seen previously for modelled fluxes utilizing water, these discrepancies indicate 

that the modelled flux does not fully reproduce all the pressure losses occurring 

within the pipe. As the measured values obtained for syrup solution dataset are 

otherwise consistent when considering repeated experiments, it is considered valid 

for further quantitative analysis. 

An interesting observation is for either laminar or turbulent flow, the most 

significant divergences between measured and observed fluxes occur for the lowest 

measured fluxes, again indicating that the modelled flux does not fully reproduce all 

the pressure losses occurring within the pipe. 
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5.3.2 Experimental data 

Have identified and removed anomalous experiments from further analysis, 

fountain height is then plotted as a function of flow velocity for both water (Fig 

5.14) and syrup solution (Fig 5.15) fountains. For both water and syrup the highest 

fountains generally possessed the greatest flow velocities. Fountains produced 

using water had overall both greater flow velocities and fountain heights. 

 

Figure 5.14: Variation in fountain height with flow velocity for water. Error bars 

denote propagated uncertainties due to assumed errors in measurements. 
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Figure 5.15: Variation in fountain height with flow velocity for syrup solution. Error 

bars denote propagated uncertainties due to assumed errors in measurements. 

5.3.3 Ballistic equation 

When modelling lava fountain behaviour, an important assumption is that the 

erupted mass is only considered to be comprised of pyroclasts (Wilson et al 1995). 

Although this assumption neglects the presence of gas within a natural lava 

fountain, it facilitates the use of the ballistic equation as a simplest method of 

calculating fountain height (Wilson et al 1995). This equation is expressed as: 

 
ℎ =

𝑉ଶ

2𝑔
 

5.1 

Where is 𝑉 is the volumetric flux divided by the conduit cross sectional area (m/s), g 

is the acceleration due to gravity (m/sଶ) and ℎ is fountain height (m). This section 

seeks to examine how effective this assumption is for determining fountain heights 

and how its effectiveness might vary with changing ponding depth, pipe diameter, 
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pressure head or fluid viscosity. Comparing measured un-ponded fountain heights 

for water to the ballistic equation (Fig 5.16), indicates that measured values are 

consistent with those expected from calculations. However, when comparing 

measured un-ponded syrup solution fountain heights to those of the ballistic 

equation (Fig 5.17), it is apparent there are discrepancies between measured and 

expected values.  

 

Figure 5.16: Modelled ballistic equation for a projectile (black line) compared to 

measured fountain height and flow velocity for water (blue data points). Error bars 

denote propagated uncertainties due to assumed errors in measurements 

The explanation for this discrepancy is due to the parabolic velocity profile of 

laminar flow within a pipe (see chapter 4 for a full description of laminar flow). The 

flow velocity at the centreline of flow is twice that of the average flow velocity 

within the pipe. Therefore, when flow within a pipe has not adopted its full velocity 

profile, there is a significant portion of the fountain that has a velocity higher than 

the average velocity within the pipe. A correction factor can be applied to 
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determine the corrected average flow velocity within the pipe for the syrup 

solution experiments. Examining the discrepancy between measured and 

anticipated values indicates that a correction factor of 1.37281 be applied to 

affected measured flow velocities. Plotting the corrected flow velocity against 

fountain height (Fig 5.18) indicates that measured values are consistent with those 

expected from calculations. When evaluating the remainder of the dataset in 

comparison to the ballistic equation (Fig 5.19), it is evident that there is a deviation 

between anticipated and measured fountain heights for identical flow velocities.  

This deviation is due to the effects of ponding upon fountain height. 

 

Figure 5.17: Modelled ballistic equation for a projectile (black line) compared to 

measured fountain height and flow velocity for syrup solution (blue data points). 

Error bars denote propagated uncertainties due to assumed errors in 

measurements. 
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Figure 5.18: Modelled ballistic equation for a projectile (black line) compared to 

measured fountain height and corrected flow velocity for syrup solution (blue data 

points). Error bars denote propagated uncertainties due to assumed errors in 

measurements. 
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Figure 5.19: Modelled ballistic equation for a projectile (black line) compared to 

measured fountain height and corrected flow velocity for water (yellow data points) 

and syrup solution (red data points). Error bars denote propagated uncertainties 

due to assumed errors in measurements. 

Indeed, characterizing the dataset according to ponding depth (Fig 5.20) shows that 

the ballistic equation is an accurate way of evaluating un-ponded fountains. 

However, with increased ponding depth measured values for height do not adhere 

to modelled values from the ballistic equation for identical flow velocities. The 

greatest divergences from expected values occur for the largest ponding depth of 
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Figure 5.20: Ballistic equation for a projectile (black line) compared to measured 

fountain height and flow velocity for ponding depths of 0 (grey data points), 0.01 

(yellow data points), 0.02 (blue data points), 0.04 (green data points) and 0.08 m 

(red data points). Error bars denote propagated uncertainties due to assumed 

errors in measurements. 
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pipe for  ∆𝑙 = 1.75 went from a height of approximately 1 m when un-ponded to a 

height of 0.7 m when subjected to 𝑧 = 0.04 m. In comparison, for otherwise 

identical conditions, the same fountain went from a height of approximately 1 m 

when un-ponded to a height of 0.4 m when produced using the 𝐷 = 0.01 m pipe. 

 

Figure 5.21: Ballistic equation for a projectile (black line) compared to measured 

fountain height and flow velocity for pipe diameters of 0.01 m (grey data points), 

0.018 m (yellow data points) and 0.03 m (blue data points). Error bars denote 

propagated uncertainties due to assumed errors in measurements. 

Filtering the data by pressure head (Fig 5.22) shows that increasing pressure head 

relates to an increase in flow velocity and fountain height, with the highest 

fountains and flow velocities corresponding to the largest pressure heads. 
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Figure 5.22: Ballistic equation for a projectile (black line) compared to measured 

values obtained for fountain height and flow velocity for pressure heads of 0.25 

(grey data points), 0.75 (yellow data points), 1 (blue data points) and 1.75 m (green 

data points). Error bars denote propagated uncertainties due to assumed errors in 

measurements. 

5.3.4 Dimensional analysis 

As discussed in chapter 2, dimensional analysis allows for the comparison of 

analogue experiments and behaviours present in the natural volcanic system. 

Recalling from chapter 2, the equations for dimensionless ponding depth (equation 

2.10) and dimensionless fountain height (equation 2.16), the relationship between 

both these groups will now be examined.  

Plotting these two dimensionless groups together produces a visible systemic trend 

(Fig 5.23) that is identical for both water and syrup solution (Fig 5.24), which is 

expected when non-dimensionalization is successful. 
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Figure 5.23: Variation of dimensionless fountain height with dimensionless ponding 

depth. Best fit line is of the form 


 = 𝑒ିଵ.ଵ



 , (Rଶ =0.8539). Error bars denote 

propagated uncertainties due to assumed errors in measurements. 
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Figure 5.24: Variation of dimensionless fountain height with dimensionless ponding 

depth for water (blue data points) and syrup (orange data points). Best fit line is of 

the form 


 = 𝑒ିଵ.ଵ



 , (Rଶ =0.8539). Error bars denote propagated uncertainties 

due to assumed errors in measurements. 

Characterizing according to ponding depth (Fig 5.25) indicates that increasing 

dimensionless ponding depth correlates to a decrease in dimensionless fountain 

height, with the greatest reductions in height ቀ 


≅ 0.2ቁ occurring when 

dimensionless ponding depth is at its maximum value ቀ
௭

ௗ
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ௗ
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≅ 1. 
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Figure 5.25: Variation of dimensionless fountain height with dimensionless ponding 

depth for ponding depths of 0 (orange data points), 0.01 (grey data points), 0.02 

(yellow data points), 0.04 (blue data points) and 0.08 m (green data points). Best fit 

line is of the form 


 = 𝑒ିଵ.ଵ



, (Rଶ = 0.8539). Error bars denote propagated 

uncertainties due to assumed errors in measurements. 

Characterizing this relationship for pipe diameter indicates that narrower pipes 
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diameter pipe for otherwise identical physical conditions. When considering this 

data alongside the relationship presented in figure 5.27, it is apparent that pipe 

diameter is important when examining fountain behaviour. For a constant pressure 

head and viscosity, the reduction in height ቀ 


≅ 0.6ቁ experienced for a fountain 

produced using a 𝐷 = 0.03 m pipe at 𝑧 = 0.08 m is less than the reduction 

ቀ



≅ 0.4ቁ undergone by a fountain produced using a 𝐷 = 0.01 m diameter pipe at 

𝑧 = 0.04 m. The range of values for which 


  spans with increasing ponding depth 

for a 0.03 m diameter pipe ቀ0.5 ≤



≤ 1ቁ is lower than the ranges spanned by the 

𝐷 = 0.018 m ቀ0.3 ≤



≤ 1ቁ and 𝐷 = 0.01 m ቀ0.2 ≤




≤ 1ቁ pipes respectively.  
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Figure 5.26: Variation of dimensionless fountain height with dimensionless ponding 

depth for pipe diameters of 0.01 (orange data points), 0.018 (grey data points) and 

0.03 m (yellow data points). Best fit line is of the form 


 = 𝑒ିଵ.ଵ



, (Rଶ = 0.8539). 

Error bars denote propagated uncertainties due to assumed errors in 

measurements. 
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pressure fountains again undergoing a greater a reduction in height with increased 

ponding depth in comparison to their lower pressure counterparts.  

 

Figure 5.27: Variation of dimensionless fountain height with dimensionless ponding 

depth for pressure heads of 0.25 (orange data points), 0.75 (grey data points), 1 

(yellow data points) and 1.75 m (blue data points). Best fit line is of the form 




 = 𝑒ିଵ.ଵ



, (Rଶ = 0.8539). Error bars denote propagated uncertainties due to 

assumed errors in measurements. 
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6. Discussion and Conclusions 

6.1 Introduction 

The intention of this thesis was to experimental investigate the interaction between 

fountain height and ponding depth, using carefully scaled experiments to facilitate a 

direct comparison between experimental fountains and natural lava fountains. Many 

processes were observed and recorded during the course of this study, leading to the 

creation of a model for dimensionless fountain height against dimensionless ponding 

depth.  

This chapter discusses these findings in the context of modelled and natural fountain 

behaviour. Theoretical models for lava fountains are examined first, evaluating the 

key factors determining fountain height in published literature versus those 

determined experimentally during this study. Comparisons to natural lava fountains 

are then considered for several fountaining episodes of the Puu Oo eruption of the 

Kilauea volcano in Hawaii, between 1983 and 1984.  

The implications of these findings and how they might better inform observations of 

lava fountains in nature is then discussed, followed by possible avenues of future 

work that could be explored to build upon the initial findings presented in this thesis. 

The chapter then concludes with a recap of the key findings of this study. 
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6.2 Comparison to fountain models 

As discussed previously in chapter 5, the ballistic equation has been used in published 

theoretical studies as a simplistic method of calculating lava fountain heights, with 

the assumption that the erupted mass is only comprised of pyroclasts (Head and 

Wilson 1987, Wilson et al 1995). The data collected by this investigation indicates 

that this a suitable method of calculating lava fountain heights in the absence of 

ponding, as experimentally derived values are consistent with those calculated by 

the ballistic equation. However, there are increasing discrepancies between 

experimental values and calculated fountain heights as ponding depth increases. This 

relationship suggests that the ballistic equation is an ineffective method by which to 

examine scenarios where lava fountains and ponding are present together, as 

calculated values will diverge from observed values for fountain height. 

Existing lava fountain models indicate that fountain height is determined by a 

complex function of several parameters, namely; gas content, volumetric flux, 

conduit geometry and entrainment (Wilson et al 1995, Parfitt et al 1995, Head and 

Wilson 1987, Wilson and Head 1981). Of these parameters, the most impactful in 

determining fountain behaviour are volumetric flux and entrainment, a relationship 

which appeared consistent with results obtained during the course of this study via 

laboratory experiments and subsequent data analysis (Wilson et al 1995, Parfitt et al 

1995, Witt et al 2018).  Increasing volumetric flux in experiments corresponded to 

increased fountain heights, with the largest fountains being produced by the largest 

volumetric fluxes. In contrast, entrainment had the opposite effect on fountain 

height, with increasing entrainment corresponding to decreasing fountain heights, 
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due to incorporating pre-erupted material into the ascending fountain, reducing the 

flow velocity (Wilson et al 1995, Witt et al 2018).  

Altering conduit geometry during experiments also influenced fountain heights, 

fountain height was found to increase when increasing conduit diameter, as this 

allowed for higher degrees of volumetric flux and reduced frictional effects within 

the conduit, a relationship which is consistent with previous work (Wilson et al 1995, 

Parfitt et al 1995, Witt et al 2018). Published studies also indicate that volumetric flux 

decreases with increasing fluid viscosity, as more viscous fluids act to hinder flow 

within a conduit, this phenomenon was evident during the course of data analysis, 

with fountains produced using a syrup solution displaying lower degrees of 

volumetric flux in comparison to those produced using water (Wilson and Head 1981, 

Giberti and Wilson 1990). 

An interesting result identified within this study, is the interaction between 

increasing volumetric flux and ponding (and therefore increasing entrainment) and 

how that affects fountain heights. Published findings indicate that fountains become 

less susceptible to the effects of entrainment with increasing volumetric flux (Wilson 

et al 1995). When examining this relationship using the dimensionless model 

presented in chapter 5, larger volumetric fluxes would therefore be expected to 

correspond to lesser reductions in fountain height, in comparison to fountains 

produced using lower volumetric fluxes for otherwise identical ponding depths. 

However, the findings presented within this study instead point towards a more 

complicated relationship between volumetric flux and entrainment.   
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When producing experimental fountains with increasing conduit diameter and 

ponding depth (with all other parameters kept constant) the relationship between 

volumetric flux and entrainment proposed by the Wilson et al 1995 model is found 

to be accurate, fountains produced using larger conduit diameters are less affected 

by the entrainment process. However, this relationship does not hold when varying 

pressure head as an experimental parameter (which also changes the volumetric 

flux). Increasing pressure head corresponds to an increase in volumetric flux, but for 

increasing pressure head and increasing ponding depth (with all other factors kept 

constant), higher pressure head fountains underwent a greater reduction in vertical 

fountain height in comparison to their lower pressure head counterparts.  

Despite this seemingly conflicting fountain behaviour, an explanation may exist when 

considering the phenomenon of lateral dispersion discussed previously in chapter 5.  

Figures 6.1 and 6.2 below are sampled from chapter 5 for the purposes of providing 

a reminder of this behaviour to supplement this explanation. 

 

Figure 6.1: Three fountains produced using water at ∆𝑙 = 0.25 m with a 𝐷 = 0.03 

m pipe at 3 different ponding depths. A) A 0.17 m fountain for 𝑧 = 0 m B) A 0.13 m 

fountain for 𝑧 = 0.04 m C) A 0.12 m fountain for 𝑧 = 0.08 m. 

A. B. C. 
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Figure 6.2: Three fountains produced using water at ∆𝑙 = 1.75 m with a 𝐷 = 0.03 

m pipe at 3 different ponding depths. A) A 0.94 m fountain for 𝑧 = 0 m B) A 0.70 m 

fountain for 𝑧 = 0.04 m C) A 0.58 m fountain for 𝑧 = 0.08 m. 

As is evident from these figures, although the fountains produced using the higher 

pressure head undergo a greater reduction in fountain height with increased 

ponding, this reduction is accompanied by an increased lateral thickening of the 

fountain body. This process is perhaps an indicator that these fountains only appear 

more susceptible to entrainment when strictly considering vertical fountain height 

and that the relationship between volumetric flux and entrainment proposed by 

Wilson et al 1995 is still a valid one, given that such a relationship remains accurate 

when varying conduit diameter. 

 

A. B. C. 
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6.3 Comparison to natural fountains 

Much like for theoretical fountain models, experimental fountains possess several 

behavioural similarities to those documented in nature. The previously discussed 

relationship between volumetric flux and fountain height is consistent with observed 

behaviour of historical eruptions such as; Mauna Ulu and Puu Oo of Kilauea, Hawaii, 

or Holuhraun in Iceland (Richter et al 1970, Swanson et al 1979, Wolfe et al 1988, 

Witt et al 2018). In 1983 over the course of several fire fountaining episodes at Puu 

Oo, a consistent pattern emerged whereby increasing volumetric flux from an active 

vent would correspond to increased lava fountain heights, with fountains reaching 

several hundred meters in height (Wolfe et al 1988). Likewise, for the 1969-71 

eruption of Mauna Ulu, peak eruption rates coincided with the largest fountains, 

reaching up to 540m in height (Swanson et al 1979). 

Altering conduit diameter is also documented to have similar effects upon natural 

fountains to those witnessed within the laboratory. During the 1959-1960 eruption 

of Kilauea, slumping material within a cone with an active vent partially clogged the 

conduit, leading to a noticeable reduction in fountain height during successive 

fountain episodes while the blockage persisted (Richter et al 1970). Analysis of 

several simultaneously active vents during the 2014-2015 eruption of Holuhraun saw 

a similar relationship, whereby vents fed by wider conduits generally achieved 

greater fountain heights than those with narrower conduits (Witt et al 2018).  

The effects of entrainment are also apparent when examining historical eruptions, 

the 2011 Kamoamoa saw fountaining behaviour suppressed entirely due to ponding 
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at various points during the eruption, while active vents at Holuhruan achieved lower 

fountain heights where great ponding depths were present (Orr et al 2015, Witt et al 

2018). 

The effectiveness of the dimensionless fountain height model will now be examined 

for several initial episodes of the historic 1983 Puu Oo eruption. Fountaining episodes 

from this period were chosen due to variations in fountain height being attributed 

almost entirely to the effects of volumetric flux and entrainment (Parfitt et al 1995).  

The Puu Oo eruption began on the 3rd of January 1983 as a fissure eruption, following 

a series of seismic swarms, and has since been an ongoing eruption within the east 

rift zone of Kilauea for over 30 years (Heliker et al 2003, Orr et al 2015). Localization 

of the eruption occurred over time and led to the formation of a central vent, which 

underwent many episodes of lava fountaining through ponded lavas (Wolfe et al 

1988, Heliker et al 2003) 

The heights of these lava fountains are well documented (see figures 1.23 and 1.24 

of Wolfe et al 1988) throughout these early episodes by Wolfe et al 1988, though 

several adjustments are required to make the available data suitable for analysis 

using the dimensionless model. The Wolfe et al 1988 dataset does not accurately 

record how ponding depth fluctuated during each episode, with the only available 

data indicating that ponding depths were typically 10 – 20 meters deep while 

fountaining occurred (Wolfe et al 1988). The only exception to this is during episode 

3, where ponding was completely absent (Wolfe et al 1988). Therefore, for the 

purpose of this analysis it is assumed that the highest fountains during an episode 

correspond to maximum flux and minimal ponding (when z = 0), while the lowest 
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fountain heights correspond to minimum flux and maximum ponding depth. While 

this assumption may not strictly be accurate, it serves as a useful first approximation 

that is consistent with established fountain behaviour. 

The mean unponded of fountain height can now be identified as the highest 

fountains during each episode with this assumption, allowing dimensionless fountain 

height to be calculated. The conduit geometry remained relatively constant 

throughout episodes 1-20 of the Puu Oo eruption, measuring approximately 20m in 

diameter (Wolfe et al 1988, Heliker et al 2003).   Ponding depth for each fountain 

can’t be determined by normal means due to the vague data available for ponding 

depths, though an alternative solution is available. Recalling from chapter 5, the line 

of best for the dimensionless model is of the form: 


 = 𝑒ିଵ.ଵ



, which allows ponding 

depth to be calculated if all other variables are known (The ponding depth for 

fountains where 


 ≥ 1 is considered to be zero and does not need to be calculated, 

as these fountains are assumed to undergo no reduction in height). If the calculated 

values for ponding depth are found to be consistent with values for ponding depth 

referenced in the literature, the dimensionless model could be considered a 

successful method for explaining the variation in fountain height with ponding depth 

for natural lava fountains.  

The results of these calculations are presented in figure 6.3, and indicate that while 

there is some overlap between values calculated using the dimensionless model and 

the <20 m ponding recorded in the literature, the majority of ponding depths fall into 

the 0-10 m range instead, which only captures the lower range of ponding depths 

observed during eruption episodes. These discrepancies maybe the result of dynamic 
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changes during each episode, or perhaps due to errors in the loose assumptions 

preceding these calculations, which were necessary due to the difficultly with 

correlating fountain heights and ponding depths for the Wolfe et al 1988 data set.  

 

Figure 6.3: Variation of fountain height with calculated values for ponding depth for 

episodes 4 (orange), 6 (grey), 13 (yellow) and 15 (blue) of the 1983 Puu Oo eruption 

(values for fountain heights obtained from Wolfe et al 1988).   

 Additionally, although using the calculated values for ponding depth to produce a 

dimensionless model (figure 6.4) will give a perfect curve (given that the line of best 

fit was used to calculate ponding depth values) it also highlights a further discrepancy 

between natural processes and laboratory models. Episode 3 is documented in the 

literature as being devoid of ponding during the course of the eruption, yet the 

fountain heights varied considerably over the course of the episode, a behaviour for 

which the dimensionless model is unable to account for. 

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

Fo
un

ta
in

 h
ei

gh
t (

m
)

Calculated ponding depth (m)



6. Discussion and Conclusions   
 

91 
  

 

Figure 6.4: Variation of dimensionless fountain height with dimensionless ponding 

depth for episodes 3 (orange), 4 (grey), 6 (yellow), 13 (blue) and 15 (green) of lava 

fountaining during the 1983 Puu O’o eruption of Kilauea, Hawaii 

6.4 Implications of findings 

These findings document the pivotal role volumetric flux and entrainment play in 

defining fountain behaviour through extensive experimental testing, while also 

providing support to previously published theoretical studies that have suggested 

similar relationships. These results formed the basis of a dimensionless model, 

intended to replicate occurring within natural lava fountains, though was unable to 

fully do so. Potential future iterations of this model may have more success in 

completely capturing natural lava fountain behaviour. Nevertheless, this model 
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serves as a useful tool to approximate the impact that ponding may have on 

subsequent lava fountain heights in the field, potentially identifying scenarios where 

lava fountains may be prone to suppression. The consequences of conduit 

suppression can alter ongoing basaltic eruptions, due to solidification and eventual 

shutdown within a conduit, shifting the eruptive focus to alternative vents (Delaney 

and Pollard 1982. Witt et al 2018). Similarly, pre-existing topography presents 

scenarios in which ponding and consequently suppression may occur (Jones et al 

2017). As a result, identifying areas of potential stagnation may allow for more 

informed decision making when monitoring ongoing eruptions, such as providing 

insight into underlying changes of conduit geometry. 

6.5 Future Work 

While this study has provided insight into how fountains behave for a cylindrical 

conduit geometry, many avenues of research remain open for analysing lava 

fountain behaviour. One such possible direction of continued research could be to 

examine fountain mechanics for a fissure geometry. Given the common occurrence 

of lava curtains during basaltic fissure eruptions, quantifying fountain behaviour for 

a fissure geometry would be of great practical use when examining future basaltic 

eruptions (Swanson et al 1979, Wolfe et al 1988, Orr et al 2015). This could then be 

further expanded upon by investigating how the shift from a fissure to cylindrical 

vent due to localization progressively impacts upon fountain behaviour. The lack of 

detailed data sets documenting variations of lava ponding and fountain height from 

active eruptions also presents an interesting challenge. Live monitoring of a central 
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vent eruption with ongoing lava ponding, combined with a methodical approach to 

data collection may provide even greater insights in fountain behaviour. 

6.6 Conclusions 

Over the course of this investigation a large data set comprising of over 300 

experiments has been produced, providing a wealth of data available for analysis. 

Parameters were varied systemically for pressure head ∆𝑙 (m), pipe diameter 𝐷 (m), 

fluid viscosity 𝜇 (Pa s), and ponding depth 𝑧 (m).  The key findings of this thesis can 

be summarized as follows: 

 Evaluated the effectiveness of the ballistic equation for determining lava 

fountain heights. It was found to be an effective method of determining the 

fountain height of un-ponded fountains for both laminar and turbulent flow. 

Experimental findings indicate that the ballistic equation is ineffective when 

evaluating fountains that interact with ponded fluids, due to the effects of 

entrainment. Therefore, the experimental findings are in agreement with 

published models for un-ponded fountains (Wilson et al 1995). 

 Verified that volumetric flux is a key control in determining fountain height 

for viscous fluids, which is in agreement with previously published models 

(Wilson et al 1981, Wilson et al 1995, Parfitt et al 1995). 

 Demonstrated that fountains with lower volumetric fluxes can be more 

susceptible to the effects of entrainment compared to those of higher 

volumetric fluxes, which is supported by previously published literature 

(Wilson et al 1995, Parfitt et al 1995).  
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 Identified that there are also scenarios where higher volumetric flux 

fountains appear more susceptible to the effects of entrainment, and that 

this process may be linked to lateral dispersion. 

 Identified a potential dimensionless model for evaluating the reduction in 

fountain height encountered with increasing ponding depth. This model was 

then applied to several fountain episodes of the 1983 Puu Oo eruption of 

Kilauea, though was unable to fully replicate natural occurring processes, 

suggesting issues with the model when tackling dynamic changes in sub-

surface volcanic processes.
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Appendix A – Mathematical Notation 

 

 

 

 

𝐴 Pipe cross-sectional area mଶ 
𝐷 Pipe diameter m 
𝑔 Acceleration due to gravity 9.81 m/𝐬𝟐 
𝑓 Darcy friction factor dimensionless 
ℎ Fountain height m 
ℎ Head loss m 
ℎ mean un-ponded fountain height m 
𝑘 Number of independent basic units dimensionless 

𝐾 Loss coefficient dimensionless 
L Length m 
M Mass kg 
𝑚 Number of dimensionless groups dimensionless 
𝑛 Number of governing parameters dimensionless 
𝑃 Pressure Pa 
𝑸 Volumetric flux mଷ/s 
𝑟 Pipe radius m 

𝑅𝑒 The Reynolds number dimensionless 
T Time s 
t Temperature ℃ 
𝑉 Flow velocity m/s 
𝑣 Tank volume  mଷ 

𝑋௪௧ Weight percentage of water dimensionless 
𝒛 Ponding depth m 
∆𝑙 Pressure head m 
∆𝑃 Pressure loss Pa 
Π Pi group dimensionless 
𝜋 Pi 3.14 
𝜀 Roughness of a pipe m 
𝜌 Density kg/mଷ 
𝜇 Viscosity Pa s 
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Appendix B – Experimental Apparatus 

This section details the physical descriptions and important dimensions of the 

components that make up the experimental apparatus. Detailed sketches are 

presented of the tower (figure B.1), tank (figure B.2) and vent (figure B.3). 

B.1 Tower 

[101]: MDF (medium-density fibreboard) boards form part of the roof and 

baseplate of the tower structure. MDF was chosen due to its flexibility and ease 

with which it can be shaped. To prevent moisture absorption, it is treated with 

varnish.  

[102]: Construction timber lengths are arranged to form square frames to which an 

MDF board can be attached. Screws are placed vertically through the MDF into the 

oak timber lengths. 

[103]: Zinc plated wood screws are used when needed to fasten wooden 

components together. The zinc plating prevents corrosion. Metal washers are 

placed between the head of the screws to better distribute the load of the screw on 

the wood. 

[104]: Dexion slotted angle iron lengths are affixed to the baseplate and roof. 

Attached to the interior of the base plate and roof are 4 shorter angle iron lengths, 

to increase structural stability. 
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[105]: Herringbone joist struts are fixed to the slotted angle iron lengths around 

the structure reducing any torque forces and providing lateral support to the 

construct. 

[106]: Steel footplates provide structural stability when secured to the base of the 

tower. A galvanised finish prevents rusting. 

 

Figure B.1: Technical sketch detailing the components of the tower. It is made up of 

the following components: [101] mdf (medium-density fibreboard) boards, [102] 

construction timber, [103] Zinc plated wood screws, [104] dexion slotted angle iron 

lengths, [105] herringbone joist struts and [106] steel footplates. 
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B.2 Tank 

 

Figure B.2: Technical sketch detailing the components of the tank. It is made up of 

the following components: [107] transparent tank, [108] pvc (polyvinyl chloride) 

threaded male hosetails, [109] pvc threaded female backnut and [110] o-rings. 

 [107]: Transparent tank stores fluid to fuel experimental runs. 

[108]: PVC (polyvinyl chloride) threaded male hosetails can be screw into any 

female socket to provide an area for attaching a hose pipe. To securely attach the 

pipe, a might t-clamp is placed over the pipe and tightened until firm. This prevents 

leakages of fluid at the junction between both components. 

[109]: PVC threaded female backnut affixes to the threaded male hosetail fitting 

and compresses against the bulkhead of the tank. It has a hexagonal shape and the 

large surface area of the backnut allows for a more even distribution of pressure, to 

prevent any possibility of bulkhead fracturing when tightly screwed. 
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[110]: O-rings are a synthetic rubber ring, preventing unwanted leakages from the 

tank. They create an impermeable boundary when inserted between the junctions 

of pipe fittings and compressed. 

B.3 Vent 

 

Figure B.3: Technical sketch detailing the components of the vent. It is made up of 

the following components: [108] pvc (polyvinyl chloride) threaded male hosetails, 

[111] cylindrical plastic tank, [112] heavy duty chrome shelving unit, [113] pvc 

threaded female socket, [114] pvc threaded male nipple, [115] 90 female 

threaded elbow and a [116] pvc ball valve EPDM threaded. 
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[111]: Cylindrical plastic tank with an opening cut into the base of the tank allows 

fluid to be fed by a pipe with attached plumbing fixtures. Silica sealant is applied 

around the perimeter of the opening to ensure the tank maintains a constant fluid 

level when filled. 

[112]: Heavy duty chrome shelving unit provides a stable base with two metallic 

shelves; the upper shelf has an opening created to accommodate the cylindrical 

plastic tank. The second shelf is spaced below the upper shelf such that a ball valve 

and other pipe fixtures rest upon it. 

[113]: PVC threaded female socket creates a bridge between two male fittings 

when they are inserted into the socket. Polytetrafluoroethylene (PTFE) tape is 

placed on the threads of the male fittings, preventing fluid from leaking along the 

threads of the fitting. 

[114]: PVC threaded male nipple screws into two female plumbing fittings to create 

a junction between them. PTFE tape is laced along the threads of the nipple. 

[115]:  𝟗𝟎𝟎 female threaded elbow directs fluid upwards from the horizontal ball 

valve and pipe into the artificial vent. 

[116]: PVC ball valve EPDM threaded at the base of the vent controls the flow of 

fluid. The valve is manually operated and prohibits flow when closed. Opening the  

[117]: 2” PVC flexible light duty hose connects the tank and vent. The interior of 

the pipe is smoothed to reduce friction and the exterior is bound by rigged plastic 

rings, preventing any expansion or contraction of the pipe. 
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Appendix C – Mathematical Derivations  

This section contains the complete derivations for the equation of maximum flow 

velocity and the Hagen-Poiseuille equation, as discussed in chapter 4. 

C.1 Maximum flow velocity: 

For an incompressible fluid, undergoing steady state flow along an impermeable, 

inelastic circular pipe of radius 𝑅, a cylindrical element of fluid with radius  𝑑𝑟 and 

length 𝑑𝑥 moves within a parallel streamline with a constant velocity (Figure C.1) 

 

Figure C.1: A fluid element of incompressible fluid with radius 𝑑𝑟 and length 𝑑𝑥 

travelling in the direction of flow within a pipe of radius 𝑅. Velocity as a function of 

radial position within the pipe is denoted by 𝑢(r). 

As the velocity of the fluid element remains constant, acceleration is zero and the 

forces acting upon the element must balance. Performing a force balance (Figure 

C.2) of the fluid element then gives the following equation: 

 (2𝜋𝑟𝑑𝑟𝑃)௫ + (2𝜋𝑟𝑑𝑥𝜏) = (2𝜋𝑟𝑑𝑟𝑃)௫ାௗ௫ + (2𝜋𝑟𝑑𝑥𝜏)ାௗ C.1 

where 𝑑𝑟 is the radius of the fluid element, 𝑃 is the pressure acting on the fluid 

element, 𝑟 is the radial distance of the element from the centreline of flow and 𝜏 is 

the wall shear stress (Pa). The subscripts denote the relative positions of each force 

𝒅𝒓 

𝒅𝒙
𝑹 

𝒖(𝒓) 
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relative to one another, with 𝑥 + 𝑑𝑥 being the force acting on the element at a 

distance 𝑥 plus the element length 𝑑𝑥 and 𝑟 + 𝑑𝑟 being the force acting on the 

element at a radial distance 𝑟 plus the element radius 𝑑𝑟. 

 

 

 

Figure C.2: Force balance on a fluid element of radius 𝑑𝑟 and length 𝑑𝑥. Where 𝑃 is 

the pressure acting on the fluid element and 𝜏 is the wall shear stress acting on the 

element. The subscripts denote relative positions of each force to one another in 

the lateral and radial directions. 

Dividing by 2𝜋𝑑𝑟𝑑𝑥, then rearranging the equation and taking the limits when 𝑑𝑟 

And 𝑑𝑥 are equal to zero gives: 

 
𝑟

(𝑑𝑃)

𝑑𝑥
+ 𝑟𝜏

𝑑

𝑑𝑟
= 0. 

C.2 

Taking the relationship between shear stress and viscosity ቀ𝜏 =  −𝜇
ௗ௨

ௗ
ቁ and 

substituting: 

 
𝑟

(𝑑𝑃)

𝑑𝑥
− 𝜇𝑟

𝑑𝑢

𝑑𝑟

𝑑

𝑑𝑟
= 0. 

C.3 

Then dividing by 𝜇, rearranging the equation and evaluating the second indefinite 

integral with respect to 𝑟 gives: 

𝝉𝒓 + 𝒅𝒓 

𝝉𝒓 

𝑷𝒙 𝑷𝒙 + 𝒅𝒙 
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𝑢(𝑟) = −

𝑑𝑃

𝜇𝑑𝑥
ቈ
𝑟ସ

4
+ 𝐶ଵ𝑙𝑛𝑟 + 𝐶ଶ 

C.4 

as pressure decreases in direction of flow, ௗ

ௗ௫
 is negative. 

By applying the boundary conditions of 𝑢 = 0 when 𝑟 = 𝑅 (due to the effects of the 

no slip condition and ௗ௨

ௗ
= 0 when 𝑟 = 0 , as velocity remains unchanged at the 

centre of flow due to minimal viscous effects, the equation becomes: 

 
𝑢(𝑟) = −

𝑑𝑃

4𝜇𝑑𝑥
[𝑅ଶ − 𝑟ଶ]. 

C.5 

Then taking the equation for the average velocity of flow: 

 
𝑉 =

2

𝑅ଶ
න 𝑢(𝑟)𝑟𝑑𝑟

ோ



 
C.6 

and substituting equation C.6 into equation C.5, then rearranging, simplifying and 

taking the integral with the limits 𝑟 = 𝑅 and 𝑟 = 0 (which are the pipe radius and 

the centreline of flow respectively), equation C.6 then becomes: 

 
𝑉 = −

𝑑𝑃𝑅ଶ

8𝜇𝑑𝑥
. 

C.7 

Rearranging equation C.7 to solve for ௗ

ௗ௫
 and substituting into equation C.6 gives: 

 
𝑢(𝑟) = 2𝑉 ቆ1 −

𝑟ଶ

𝑅ଶ
ቇ. 

C.8 

To determine the maximum value of velocity, 𝑟 = 0 at the centreline of flow where 

viscous effects are their minium, equation C.8 then becomes: 

 𝑢௫ = 2𝑉. 

 

C.9 
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C.2 Hagen-Poiseuille Equation: 

Taking a general expression for the difference in pressure between two points for 

an incompressible fluid, in an impermeable, inelastic, circular pipe, 𝑃ଵ and 𝑃ଶ, 

where 𝑃ଶ > 𝑃ଵ , across a pipe of length L: 

 𝑑𝑃

𝑑𝑥
=

𝑃ଶ − 𝑃ଵ 

𝐿
. 

C.10 

Then by substituting equation C.10 into the equation for average velocity (equation 

C.7) and rearranging for pressure yields: 

 
∆𝑃 =

8𝜇𝐿𝑉

𝑟ଶ
. 

C.11 

By rearranging equation C.11 to solve for velocity and then substituting into the 

formula for volumetric flux (𝑄 = 𝑉𝐴), the equation for flux then becomes: 

 
𝑄 = ቆ

∆𝑃𝑟ଶ

8𝜇𝐿
ቇ 𝐴. 

C.12 

Then multiplying out the equation, where 𝐴 = 𝜋𝑟ଶ for circular pipes, gives the 

equation: 

 
𝑄 =

∆𝑃𝑟ସ

8𝜇𝐿
 

C.13 

which is the Hagen-Poiseuille equation. This equation is only valid for fluid flow 

within the laminar regime (Re ≤ 2300). 
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