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Groundwater-surface water connectivity of heavily 
modified rivers, County Durham, UK 

Rebecca Smith 

Groundwater and surface-water systems have long been considered 

fragmentally, lacking a holistic integrated understanding that is considered 

essential for sustainable catchment management. The high heterogeneity of local 

systems and the influence on water quality is typically unaccounted due to limited 

monitoring of hydrologic and hydraulic variables, particularly of minor aquifers. 

Often there is a dearth in understandings of the system characteristics, 

consequently impacting on wider catchment management. This thesis focuses 

specifically on water bodies in County Durham that are heavy modified attributing 

to their industrial past, with the current water quality being compromised by a 

multitude of historic and contemporary pressures. The research employs a 

combination of desk- and field-based approaches to investigate flow and solute 

patterns and processes operating at the groundwater-surface water interface. 

The research demonstrates that through the collation of spatial data it is possible 

to assess the stream-aquifer connectivity by evaluating simple patterns in the 

landscape characteristics. In-turn challenging the local-scale connections and 

leading to subsequent investigations of the groundwater-surface water controls 

on water quality. Field-based investigations of the local systems highlight the 

integral role of near-stream sediments on the fate of flow and solutes from the 

surface and subsurface. Through the application of numerical modelling, flow 

pathways have been further interpreted, assessing the spatial and temporal 

interactions at the stream-aquifer interface in response to changing hydrological 

conditions. Findings indicate the likely role of the shallow groundwater having a 

detrimental effect on the cycling of flow, with dynamic responses reflecting 

variations in stream levels, thus highlighting the need to consider processes at 

the stream-aquifer interface that are typically overlooked. The findings of this 

research challenge the predominant targeted reductionist approaches to water 

management in systems of this sort, where the influence of the multitude of 

pressures pathways and their relation to the contemporary water quality has been 

overlooked. There is a need for practitioners to consider the freshwater systems 

over multiple dimensions and time to achieve sustainable water management. 
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Chapter 1 - Introduction 

1.1. Background and motivation 

There is a need to address water-quality issues, both in the present and in the 

foreseeable future (Wallace and Gregory 2002), considering the ever-increasing 

human and ecological demands for freshwater resources (Muller 2017). To meet 

such demands, it is imperative that water is of good quality. However, the quality 

of water, both at the surface and subsurface is increasingly threatened by 

pollution from historic industry (Younger et al. 2002, Potter et al. 2004, Gandy et 

al. 2007) as well as contemporary sources (Wheater and Evans 2009, Hering et 

al. 2015). The accumulation of pollutants and contaminants across surface-water 

(SW) and groundwater (GW) systems consequently results in a multitude of 

threats to freshwater resources attributing to the interactions and exchanges in 

flow and solutes across the streambed (Sophocleous 2002, Yu et al. 2006, 

Baldock et al. 2009, Kløve et al. 2011, Deb 2014, Harvey and Gooseff 2015, 

Johnson and Hallberg 2015). 

Traditionally the monitoring and management of water quality has been broadly 

segregated between hydrologists and hydrogeologists, individually focusing on 

the SW and GW systems respectively (Macleod et al. 2007, Staes et al. 2008, 

Muller 2017). The understanding and management of pollution and 

contamination has typically been prioritised at the source or point of impact as 

part of a reductionist or ‘command and control’ approach (Macleod et al. 2007, 

Staes et al. 2008, Heathwaite 2010, Li et al. 2016) overlooking the pathways and 

interactions from the source to receptor. Instead, addressing issues with a ‘black-

box’ or ‘pipe-system’ focus (Figure 1-1) in either the surface or subsurface 

regardless of the exchanges within and between the systems (Bencala 1993, 

Bencala et al. 2011, Harvey and Gooseff 2015, Magliozzi et al. 2017). 

Consequently, the segregated understanding of water resources has, and most 

often remains to be resulting in conflicting management and solutions with 

priorities and procedures to address issues being dispersed amongst 

organisations and stakeholders (McDonnell 2008). The fragmented arrangement 

and subsequent mismanagement are despite the likely coupling and connectivity 

between the systems, whereby the deterioration or improvement of the SW 

having the potential to impact on the GW body, and vice-versa (Baldock et 
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al.2009, Kløve et al. 2011, Figure 1-1). The stream needs to be considered as an 

integral part of the catchment system, as a conduit of inputs from the landscape 

with transport via flow paths downstream and across the streambed (Bencala 

1993, Bencala et al. 2011, Figure 1-1). 

 

Figure 1-1: (A) The stream’s function in a catchment considered as a pipe; (B) A 
contrasting view where the stream is an integral part of the catchment system (Source: 

adapted from Bencala 1993). 
 
GW/SW interactions are widely acknowledged in research (Cardenas 2015). A 

continually growing body of literature are looking at the GW/SW exchanges and 

the myriad of processes spanning hydrological to ecological disciplines with the 

mixing of GW and SW within the streambed interface referred to as the hyporheic 

zone (Winter et al. 1998, Sophocleous 2002, Buss et al. 2009, Cardenas 2015, 

Figure 1-2). The hyporheic zone is characterised by the mixing of GW and SW, 

as well as biogeochemical activity attributing to fluxes in oxygen (O2), nutrients or 
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organic carbon (Brunke and Gonser 1997, Bencala 2000, Hannah et al. 2009, 

Wondzell 2011). The high reactivity of the near-stream sediments (Smith and 

Lerner 2008) with the mixing of GW and SW and biogeochemical activity creates 

potential environmental hotspots (McClain et al. 2003, Lautz and Fanelli 2008). 

Within these hotspots, the cycling and fate of dissolved nutrients and 

contaminants of GW or SW origin are potentially enhanced by hydrochemical or 

biogeochemical processes (Ibrahim 2012). The GW/SW interactions result in a 

mosaic of pathways operating across the surface-subsurface interface and are 

dependent on a range of spatial and temporal controls, namely the geomorphic 

and hydrogeologic features of a catchment, as well as hydrometeorology and 

geomorphology dynamics operating over short- to long-term scales (Tetzlaff et al 

2007). 

 

 
Figure 1-2: Hydrological interfaces: the stream, GW and hyporheic zone (Source: 

adapted from Winter et al. 1998). 

 

Within academia there is a strong understanding of the GW/SW processes, and 

it is generally well documented that systems interact, with several comprehensive 

reviews on the stream-aquifer interactions (Cardenas 2015, Tanner and Hughes 

2015). However, there is often a lack of direct data to quantify the individual 

processes or structural geological information to establish GW/SW connections 

of local systems (Tanner and Hughes 2015). There is growing emphasis to 

develop an understanding of such processes operating at the local scale and 

integrate these understandings into the larger scale patterns of GW/SW 

interactions and hyporheic pathways within the catchment boundaries (Harvey 
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and Wagner 2000, Woessner 2000, Poole et al. 2008, Magliozzi et al. 2017). For 

effective water management there is a need to develop an understanding of the 

local-scale processes and link these understandings to the wider catchment, 

rather than assessing and managing the catchments broadly as closed systems 

with targeted efforts on specific pressures. The integrative understanding across 

the catchment is particularly relevant to the framing of recent legislative policy, 

including the European Union Water Framework Directive (2000/60/EC, CEC 

2000, Wheater and Peach 2004, Skeffington et al. 2015). The intended holistic 

and integrated management of water resources at the catchment scale according 

to the WFD requires an improved assessment of the GW/SW interactions 

operating within catchments (Smith 2005). 

1.1.1. Integrating GW/SW interactions into water management 

The WFD focuses on assessing the status of GW and SW bodies at the river-

basin (catchment) scale, while developing local networks of GW and SW 

monitoring sites (Teodosiu et al. 2003, Smith 2005). Promoting sustainable water 

management, the aim of WFD is for SW bodies to achieve ‘good’ ecological and 

chemical status, and GW bodies achieve ‘good’ quantitative and chemical status 

in accordance with the meeting of the defined objectives originally by 2015, and 

now 2027 (CEC 2000, DETR 2001, Schmedtje and Kremer 2011, Skeffington et 

al. 2015). Embedded within the principles of Integrated Catchment Management 

(ICM), the WFD is focussed on efforts to improve water quality at the catchment 

scale (Ferrier and Jenkins 2010, Rollason et al. 2018), with the intention of better 

managing the GW and SW systems, individually, and as one whole system 

(Alexander et al. 2007, Fenemor et al. 2011). The holistic and integrated 

management is prioritised given that the discharge of contaminated GW to an 

overlying stream may result in a significant decrease in the SW quality and 

therefore needs to be considered when defining the status of the attached GW 

body. 

Acknowledging the management of water resources at the catchment scale with 

the promotion of the protection and enhancement of aquatic ecosystems as 

connected systems is a positive step towards sustainable water management. 

However, the intended goals are challenging to meet, with the need for an 

improved understanding of the connected aquatic and terrestrial systems (Biswas 
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2005, Smith et al. 2008, Conant et al. 2019). Current practices reflect a lack of 

integration, arguably attributable to the dearth of understandings, particularly of 

local systems, as well as lacking collaboration in the disciplines of water 

management (Falkenmark et al. 2007, Conant et al. 2019). 

In this chapter, background to the research is presented, discussing the general 

relationships between streams and aquifers. Subsequently, a summary of the 

processes affecting the flow and solute fate at the GW/SW interface is presented, 

followed by a review of existing approaches to monitor GW/SW interactions. 

Finally, the aim and objectives of the research are developed through the 

identification of management issues within the study area of the River Wear 

catchment, County Durham, UK. 

1.2. Current understanding of GW and SW interactions 

1.2.1. General relationships between streams and aquifers 

GW and SW systems have long been considered as separate entities in 

hydrological specialisations (Barthel 2014), given their different physical, 

chemical and biological properties (Kalbus et al. 2006). However, for an 

integrated and holistic focus it is crucial to understand the interactions between 

GW and SW systems with respect to activities which threaten the quality of water 

(Bertrand et al. 2014). Two main directions of flow exchange occur between the 

GW and SW systems, attributing to the loss of stream water to the subsurface 

(influent [losing] conditions), and the upwelling of GW to the surface (effluent 

[gaining] conditions) (Winter et al. 1998, Sophocleous 2002, Figure 1-3). Along a 

river reach there are spatial variations in these exchanges, whereby stretches of 

stream waters may either be gaining or losing water to GW flow, or otherwise a 

combination of both (Krause et al. 2014). Several factors determine the 

exchanges, including; the hydraulic conductivity of streambed deposits, 

streambed topography, GW gradient and stream curvature (e.g. Keery et al. 

2007, Tetzlaff et al. 2007). Baseflow from GW sources can support stream when 

the stream levels are lower than the water table (Woessner 2017). 
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Figure 1-3: Schematic representation of (A) a gaining stream and (B) a losing stream 
(Source: adapted from Woessner 2017). 

 

In the UK, it is typical for high heterogeneity of GW/SW exchanges, which are 

related to the sediment deposition and erosion of alluvial valleys, resulting in 

strong differences in the patterns of water exchange between streams and 

aquifers (Lawler et al. 2009, Tellam 2009). Where glacial deposits are present in 

the floodplains and channels creates preferential pathways resulting in discrete 

patterns of discharge of GW from the aquifer to the stream (Stanford and Ward 

1988, Lawler et al. 2009). Where bedrock formations constrain channels, and are 

in direct contact with one-another, patterns of GW discharge are observed as 

point-discharges where rock is fractured, and diffuse discharge where there are 

inter-granular formations (Lawler et al. 2009, Tellam 2009). 

1.2.2. Development of hyporheic exchange flows 

The hydrological connectivity between the surface and subsurface allows the 

discharge and/or infiltration of water between streams and aquifers. Hyporheic 

exchange flows (HEFs) are superimposed on these processes, with the repeated 

infiltration of SW into the near-stream sediments and return to the SW along a 

reach (Harvey and Wagner 2000, Kasahara and Wondzell 2003). HEFs are 

driven by the saturated hydraulic conductivity of the streambed sediments, the 

spatial gradient of the energy head at the streambed, and the area of the cross-

section where water exchanges occur (Tonina and Buffington 2009). 

In-stream geomorphic features produce spatial changes in the streambed 

elevation and water depth causing HEFs to develop due to the change in head 

gradient of the stream (Kasahara and Wondzell 2003, Lawler et al. 2009, Tonina 

and Buffington 2009). Features such as riffles and pools are examples of features 
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where the streambed topography strongly influences the water surface 

topography (Lawler et al. 2009, Tonina and Buffington 2009). The difference 

between the head of these geomorphic features and that of the water surface 

drives flow under the riffle and into the streambed and banks (Tellam 2009, 

Tonina and Buffington 2009, Figure 1-4). Similarly, where meanders are present, 

head gradients are created in the downstream direction, with the infiltration of 

flow into the bed and banks (Lawler et al. 2009). The presence of small obstacles 

including boulders and wood can also create changes in the head gradients on 

the streambed due to the irregular stream water topography (Tonina and 

Buffington 2009). 

 

Figure 1-4: The hyporheic zone of a typical riffle-pool channel, showing hyporheic and 
GW flow (Source: from Tonina 2005 after Winter et al. 1998). 

 

The vertical and lateral extension of HEFs is partially determined by the sediment 

characteristics of the streambed and floodplain. In areas of large alluvial deposits, 

e.g. lowland chalk areas of SE England, HEFs are often extended (Lawler et al. 

2009, Allen et al. 2010). Whereas in upland parts of the UK, HEFs are most often 

restricted to the near streambed, close to the vicinity of the stream (Ibrahim 2012). 

Where there are patches of low-permeability sediment, HEF pathways can be 

potential diverted (Lawler et al. 2009). 
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1.2.3. Solute fate at the GW/SW interface 

The development of HEFs supports fluxes of nutrients, organic carbon and 

dissolved oxidants to infiltrate into the near-stream sediment and mix with GW of 

contrasting hydrochemistry (Ibrahim 2012). The movements in flow are 

associated with the mixing of GW and SW in the hyporheic zone, resulting in the 

degradation, transformation, precipitation and sorption of solutes (Kalbus et al. 

2006). Therefore, the loss and gain of water across the streambed are associated 

with movement of pollutants and contaminants derived from the surface and 

subsurface, spanning a range of sources which threaten the water quality of the 

respective systems. The fate of contaminants and nutrients is largely related to 

the near-stream sediment grain size and presence of organic carbon or minerals 

with a high absorption capacity, e.g. clay, iron (Fe) or manganese (Mn) 

oxyhydroxides (Smith 2008). Additionally, biotic activity can result in local 

changes to the reactivity of the streambed sediment, controlling the availability of 

organic matter, as well as influencing the precipitation or dissolution of the mineral 

phase (Hannah et al. 2009). During high flow events, the infiltration of fine 

sediments can have a similar effect, whereby the organic material alongside the 

disturbance of the streambed can impact on the mineral phase (Kaplan and 

Newbold 2000, Lawler et al. 2009). Spatial and temporal variations of the 

streambed reactivity mean that sorbed contaminants can be re-mobilised 

following the accumulation over time (Ibrahim 2012). 

Besides the contrasting nutrient and organic carbon concentrations of the GW 

and SW, they have distinct redox conditions. Such conditions, coinciding with the 

mixing of GW and SW through the development of HEFs results in an 

environment within the hyporheic zone which can enhance the microbial activity 

(Brunke and Gonser 1997). The intensification of microbial activity can 

correspond with the enhancement of cycling, attenuation or release of nutrients 

and contaminants due to reactions occurring within the hyporheic zone (Boulton 

et al. 2010). 

Biodegradation reactions occur under the influence of different redox potentials. 

The redox potentials indicate the dominant oxidant for respiration to occur in the 

system, and generally is oxygen, followed by nitrate (NO3-), Mn and Fe 

oxyhydroxides, sulphate (SO42-) and carbon dioxide (CO2) (Baker et al. 2000, 

Hannah et al. 2009, Pickup et al. 2009). Biodegraded organic contaminants have 
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the potential to act as electron donors or acceptors (Chapman et al. 2007). In-

turn these processes have the potential to decrease the concentration of organic 

contaminants and other soluble electron acceptors, e.g. SO42-, coinciding with the 

release of other heavy metals or phosphate, associated with the organic matter 

or Mn and Fe oxyhydroxides (Gandy et al. 2007). Meanwhile chemolithotrophic 

microorganisms have the potential to oxidise a wide range of inorganic materials, 

e.g. Fe, nitrite (NO2-) and Ammonium (NH4+) (Pickup et al. 2009). Such activity 

can then lead to the production of NO3- (Storey et al. 2004) as well as the 

formation of oxyhydroxides, thus enhancing the streambed sediment reactivity 

(Gandy et al. 2007). At the GW/SW interface, biogeochemical processes vary 

both spatially and temporally. That is in addition to the variations in solute transit 

time, attributing to flow path length, head gradient and hydraulic conductivity of 

the sediment deposits (Hannah et al. 2009). 

Developing an understanding of the movement of solutes is challenging, given 

that GW/SW exchanges can be highly variable even along small reaches, 

accounting to the bed heterogeneity and underlying geology (Cardenas et al. 

2004, Heeren et al. 2010, Heeren et al. 2014, Aubeneau et al. 2015, Harvey and 

Gooseff 2015). GW/SW exchanges are recognised as a key mechanism 

determining the fate of nutrients (Dudley-Southern and Binley 2015) and have 

been extensively studied over the last 20 years (Kaandorp et al. 2018). In this 

time, studies have been conducted across a range of spatial and temporal scales 

(Brodie et al. 2007). A range of techniques exist spanning relatively simple and 

low-cost approaches to more recent technologically advanced techniques to 

investigate fluxes. However, the choice of which to utilise is typically based on 

the scale and rate of measurements. Commonly studies adopt a selection of 

methods (Ibrahim 2012), accounting for the multi-scale processes at the GW/SW 

interface. 

1.2.4. Established GW/SW monitoring techniques 

The monitoring of fluxes in flow and solutes is achievable through the application 

of a plethora of sampling techniques (Table 1-1). Sampling is often carried out 

along the stream channel, taking measurements to assess the hydrology and 

hydraulic characteristics. Field-sampling approaches at the surface are long 

established and typically comprise spot sampling, making use of, e.g. portable 

meters for the measurement of pH, electrical conductivity, and temperature 
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(Mayes et al. 2008, Banks and Palumbo-Roe 2010, Palumbo-Roe and Dearden 

2013a). Water samples to characterise the water quality are typically by physio-

chemical laboratory analysis, including the determination of pH, alkalinity/acidity, 

specific conductivity, hardness, and major anions and cations (e.g. Singh, 1988, 

Ibrahim et al. 2010). A core purpose of sampling is often to investigate the 

changes in loadings (e.g. Mayes et al. 2008), assessing contributions from 

surface runoff and GW sources. GW sampling is somewhat more restricted 

relative to SW sampling and dependent on the existence of monitoring boreholes 

(Brodie et al. 2007). When boreholes are available, they allow for the recording 

of GW levels and often the acquisition of water samples, although are frequently 

restricted to regional aquifers (Jones et al. 2000). 

To account for temporal variations in water quality, studies resort to repeat 

sampling, with measurements obtained at different rainfall and hydrological flow 

regimes, to enable an understanding of the influences on contaminant 

concentrations and loadings. However, such methodologies are often costly and 

labour intensive. In-situ probes, samples and sensors partially alleviate the labour 

intensity with the ability to often collect high-resolution samples, e.g. temperature 

of the streambed (e.g. Bridge 2005). Numerical modelling approaches are 

growing in popularity to investigate processes by upscaling the understanding 

from point measurements (e.g. Niswonger and Fogg 2008), although are subject 

to potentially large datasets to parametrise the system studied. Typically, most 

studies looking at the stream-aquifer processes utilise a selection of approaches 

to capture the spatial and temporal variations (Brodie et al. 2007, Jankowski 

2007, Buss et al. 2009). 
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Table 1-1: Examples of approaches used to investigate GW/SW fluxes in flow and 
solutes. 
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1.3. EU Interreg TOPSOIL Project – UK-1 Pilot, Wear Catchment 

This thesis contributes to a wider project examining the way in which we look at 

and think about the management of land and water across Europe. The EU 

Interreg North Sea Region TOPSOIL project is focusing on working on the 

improvement of water quality and quantity, while supporting environmental, 

financial and human benefits (TOPSOIL 2019a). Special interest is being paid to 

the to the development of methods to describe and manage the uppermost 30 m 

of the subsurface in order to improve climate resilience of the North Sea region 

(TOPSOIL 2019a). TOPSOIL wishes to develop novel approaches to maximise 

the transferability of solutions, enhancing the sharing of knowledge and 

experiences of partnership working (TOPSOIL 2019a). The project is focused on 

looking at the GW/SW connectivity and its implication for water resource 

protection and management in 16 pilot areas in the North Sea Region (TOPSOIL 

2019b, Figure 1-5). In the UK, two pilot studies are being undertaken. UK-1 

(Figure 1-5) looks specifically at the tributary catchments of the River Wear in 

County Durham, and this thesis supports the investigations in two of the four 

study areas. 

 

Figure 1-5: TOPSOIL pilot areas (TOPSOIL 2019b). 
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In the Wear catchment, the key drivers behind the TOPSOIL project are: i) the 

poor-quality status of the Magnesian Limestone GW body, ii) bad to moderate 

ecological status of the SW, iii) rebounding GW of the Coal Measures and iv) the 

influence of minor aquifer systems on the SW bodies. There is a need to account 

for the multitude of pressures that may contribute to poor-water quality which 

include increasing urbanisation, wastewater management, surface water flooding 

and climate change, besides historical industrial contamination, including landfill 

and significant water abstractions supplying mainly urban populations; all of 

which have typically been subject to fragmented management strategies. 

Through collaboration between various organisations and stakeholders, including 

the Wear Rivers Trust, the Environment Agency, Northumbrian Water and 

Durham University, the interactions between the water bodies are to be 

investigated. The current understanding of the interactions at the interface 

between the GW and SW systems is limited at the local scale, with a poor 

understanding of the system characteristics and need to address water 

management at the catchment scale. The understanding and management of 

GW and SW is divided between practitioners in different disciplines, with data 

being held fragmentally between the organisations. Despite the recognition of the 

need to have a holistic understanding of the system to achieve more effective 

management and meet the requirements of the WFD, the links and implications 

are yet to be investigated with the specific catchments of interest. Ultimately, the 

intension of this doctoral research is to inform more joined up and holistic 

management interventions to protect water resources of interest encompassed 

within the scope of the TOPSOIL project. The findings of this research will feed 

into the interest areas of the TOPSOIL project, informing management in the 

Wear catchment, with emphasis on water quality. 

1.3.1. Identifying water management issues in the Wear 
Catchment 

Developments throughout the Wear catchment, including that of residential areas 

and industry has resulted in a multitude of pressures on the freshwater resources 

(TOPSOIL group, personal communication). Point and diffuse pollution from 

arising from contemporary and historic pressures are deterring the water quality 

of the GW and SW systems. There is a need to consider the attribution of pollution 
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of the stream water, but also the possible interaction with GW and thus the 

likelihood of exchanges in the near-stream sediments with HEFs, considering the 

reappearance and remobilisation of pressures, including sorbed contaminants 

further downstream, beyond the source points. 

Beyond the routine statutory sampling carried out by the Environment Agency to 

assess quantitative and qualitative status against the WFD objectives, the 

understanding of the water quality is limited, with GW insights restricted to 

selected boreholes (TOPSOIL Group, personal communication). The low 

economic importance of the local minor aquifers means that the hydrogeological 

importance of the aquifers and impact on the GW/SW interactions on attenuation 

of solutes is overlooked, however, it needs to be improved (TOPSOIL Group, 

personal communication). The improved understanding is essential to 

considering the future sustaining and management of the SW ecosystems and 

are currently under threat from a multitude of historic and contemporary pollution 

sources. Currently, stakeholders are focusing on individual issues, and 

consequently this is resulting in segregated mismanagement of the systems 

attributing to the fragmented understandings of the catchment systems. 

Additionally, there is a limited insight into the subsurface characteristics, thus 

further hindering understandings. There is a need to consider how connections 

exist within these catchments, from the surface to the subsurface, and the 

exchanges and interactions in flow and solutes which occur between them, 

providing the basis to the study of this thesis research. There is a need for a more 

comprehensive insight and understanding of the systems, supporting 

interdisciplinary and trans-disciplinary approaches to water resource 

management in the catchment. 

1.4. Challenging GW/SW management practices through 
scientific research 

Despite expansive research into hyporheic and GW processes, there is a lack of 

translation into water management practice due to disjointed and limited 

monitoring of water variables of the GW and SW hydrology and hydraulics, 

particularly at the local scale (Jones et al. 2000, Conant et al. 2019). The 

provision of basic hydrologic and hydraulic data is generally sufficient for major 

rivers and aquifers, however, the same is often rarely said for tributary streams 
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and minor aquifer systems, with the characterisation of the physical, chemical 

and biological elements of the water usually limited by irregular or infrequent 

sampling (Jones et al. 2000, McDonnell 2008). Thus, the high heterogeneity in 

the movement of flow and solutes within these settings fails to be effectively 

captured. Therefore, such heterogeneities are overlooked, with catchment 

management essentially looking at easy to solve issues, masking the 

complexities. However, cross-scale interactions in the landscape really matter 

(Green and Sadedin 2005). There is a need to challenge the tendency in complex 

catchments to discount the scale and degree of natural patterns, processes and 

variability (Harris and Heathwaite 2012). Harris (2007) emphasises the need to 

consider the emergence of large-scale processes, in this case the catchment- 

water quality attributing from fine interactions. Therefore, while there is a need for 

the wider catchment, this then needs to be downscaled to encompass local 

processes, and then linked back up to the wider processes; something which 

needs to be addressed in current water management practices. 

Currently, the understanding and management of water continues to prevail from 

individual sectors with targeted efforts as part of reductionist approaches rather 

than integrated approaches (Heathwaite 2010). The disaggregation between 

professional procedure and fragmented institutional roles is hindering the 

intended joined-up thinking and collaboration of water management in practice 

(Falkenmark 2004, Macleod et al. 2007, Staes et al. 2008). As a result, the focus 

of management continues most to be prioritised to individual pressures and 

drivers, and it is argued that the ICM principles of the WFD are neglected (Downs 

et al. 1991, Biswas 2005, Biswas 2008, McDonnell 2008). Thus, overlooking the 

processes and threats operating within the systems at various different spatial 

and temporal scales, with a prevailing one-dimensional insight into the systems, 

most often from the SW where it is relatively easier to describe and quantity and 

visualise the water relative to the GW bodies (Love et al. 2007, Bencala et al. 

2011). 

As a result of the lack of amalgamation in understandings, it is common practice 

to conceptualise systems to be either connected or disconnected at a broad 

scale, most often at a regional or catchment scale (Ransley et al. 2007). Typically, 

the focus of connections is between the SW and the major aquifers, despite the 

potential of more localised processes within catchments, including minor aquifer 
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systems (Jones et al. 2000, McDonnell 2008, Environment Agency 2013, Abbott 

et al. 2017). Therefore, the management led on behalf of water companies and 

NGOs focus on addressing specific issues such as wastewater asset failure 

without any consideration of wider processes and coinciding issues (McDonnell 

2008). Thus, emphasising the pipe-system focus, under the assumption that as 

the water passes from point A to B, and the pollutants disappear without a trace. 

The need to look more closely at the GW and SW systems is prompted by historic 

and contemporary challenges with diffuse pollution being a problem (Heathwaite 

2010). In heavily modified catchments there are a multitude of pressures acting 

on the systems, preventing the quality and quantity of the freshwater resources 

meeting human and ecological requirements, e.g. WFD objectives. Tackling 

multiple stressors that lead to diffuse pollution is essential for sustainable water 

management (Heathwaite 2010). However, as most environmental monitoring is 

focused on the statutory requirements, largely linked to point source 

measurements often results in major knowledge gaps of the GW and SW systems 

(Heathwaite 2010). There is a need to map the local-scale pressures to allow for 

targeted management (TOPSOIL Group, personal communication). Generally, 

there is a lack in the transfer of knowledge between science and practitioners 

(Lawrence et al. 2013). 

Ultimately, current practice is simplifying the systems to be essentially two 

homogeneous compartments of water separated by the streambed, which is too 

basic. There is a need to look beyond the broad assumptions and examine the 

systems more closely, acknowledging that there are multiple historic and 

contemporary pressures and drivers, which in turn result in the movement of 

water within and between the systems, with exchanges and interactions occurring 

across spatial and temporal dimensions, including those at the GW/SW interface 

(Figure 1-6). However, such a holistic and integrated approach requires a 

collaborative effort, with the communication and sharing of knowledge and 

understandings between and across disciplines and organisations (Smith 2005, 

McDonnell 2008). That is in addition to the feeding through of scientific 

understandings into practice, which are arguably lacking (Grigg 2008), with the 

need for an interdisciplinary and trans-disciplinary approach to water 

management.  



18 
 

The tendency to discount the scale and degree of natural patterns and processes 

operating within catchment is inherent to the ignorance of looking at simplifying 

the complexities, and that the emergence of patterns from fine-scale interactions 

accumulate to larger processes (Harris 2007). The use of classification metrics 

to assess connectivity, often used in the support of management decisions 

overlook the complexities, with management prevailing from individual sectors, 

despite the overlooking of the complex patterns in GW flow paths (Fuchs et al. 

2009). By looking at the finer scale processes in catchments and how they 

manifest is noted to be a key area to target efforts (Ryan et al. 2007), particularly 

with the need to sustain water resources, rather than have contradicting efforts 

and fragmented understandings. 

 

Figure 1-6: A simple conceptual diagram of GW, SW and hyporheic zone with 
examples of pollution sources in County Durham. Rebounding of major aquifers is not 

represented. 
 

Considering the continued fragmentation associated with water resource 

management, the thesis seeks to investigate how the connectivity between GW 

and SW can be investigated to improve the understanding of GW/SW exchanges 

and interactions in tributary catchments that are heavily modified and under 

stress from multiple pollution sources. There is a need to improve the conceptual 



19 
 

understanding, otherwise management will continue to address water issues with 

a closed systems approach (Niswonger and Fogg 2008). As a result, the stresses 

within and between the water systems will continue to be unaccounted, both 

spatially and temporally, consequently leading to unsustainable water 

management practices spanning the headwaters to downstream. To address 

water-related issues it is critical to address knowledge gaps (Wondzell 2015, 

Convino 2017), looking at the influences from the headwaters to downstream 

(Gomi et al. 2002, Leibowitz et al. 2018), as well as laterally and vertically across 

the streambed considering the GW and SW together (Wondzell 2015, Convino 

2017, Figure 1-6). A key challenge facing river corridor investigations is the 

application of knowledge and understandings gained across the different 

disciplines, scales and orders of magnitude across the surface and subsurface 

systems (Harvey and Gooseff 2015, Larned et al. 2016). The first step is realising 

the complexity of the systems (Heathwaite 2010) – then it is a case of then 

breaking it down and looking at the system characteristics and then the 

pressures, and then how they link together. 

Furthermore, the thesis looks to explore the current understanding of our water 

bodies and how water quality threats accumulate and disseminate in GW and SW 

systems. The focus is on developing an understanding of the GW and SW system 

connectivity where there is a lack of baseline monitoring. Such knowledge will, 

in-turn, enable an exploration of mechanisms by which interactions and 

exchanges in flow and solutes occur, with a key emphasis on the application of 

novel approaches to facilitate a spatial and temporal understanding. Specifically, 

the thesis seeks to explore the testing of the feasibility of using existing secondary 

data to inform assessment of water quality across the catchment where direct 

measurements of water variables are lacking. Subsequently leading onto field 

investigations from the conceptual understanding developed to assess the 

interactions and exchanges in flow and solutes, both in-stream and across the 

streambed. The research is undertaken at various scales, spanning the 

catchment to sub-reach scale, to point scales. Using the main findings from this 

research, this thesis will make recommendations as to how the water 

management in these stressed environments might be improved, working across 

disciplines and practices to achieve a more cohesive understanding of the 

systems. A key element is challenging how we look at two separate, yet 

connected environments, and move beyond the decoupling at the catchment 
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scale, and thinking about the processes that are likely operating spatially and 

temporally along river reaches. 

The research carried out in this thesis is on study catchments selected in the 

early stages of the TOPSOIL project as part of the UK-1 study. The catchments 

have been identified by water organisations and stakeholders with the need to 

address water quality. Including the failure to meet WFD objectives and limited 

understanding despite the strive for improvement of the environment, specifically 

the way we manage the water and the land in tandem as encompassed under 

the ICM principles and catchment-based approaches (CaBA, Deasy 2018). 

1.5. Aims and objectives of the research 

The aim of this thesis is to investigate the way in which GW/SW are connected 

and interact based on the application of a multi-method approach to assess the 

movement and fate of flow and solutes within, and between GW and SW systems 

in heavily modified streams of tributary catchments in the lower River Wear, 

County Durham. Throughout the thesis, the goal is to explore the use of novel 

approaches to conceptualise and characterise the connectivity and interactions 

between the GW and SW systems in situations where there is a fragmented 

understanding and thus subsequent decoupled management of the systems 

attributing the inadequacy of hydrologic and hydraulic data representative of the 

GW and SW systems. 

To achieve this aim, the thesis has the following objectives: 

Objective 1 – to assess the threats to GW and SW quality, identifying historic and 

contemporary sources through the application of desk- and field-based 

approaches, to give a primary assessment on the connectivity making use of 

reconnaissance walkover surveys and discussions with local water organisations 

and stakeholders. 

Objective 2 - to assess the likely controls on the water movement, testing the 

feasibility of utilising existing data to conceptualise the characteristics and 

linkages between the GW and SW systems to provide an understanding of the 

connectivity when baseline monitoring is lacking. In-turn, this will involve 

reviewing existing integrated assessment approaches and understanding what is 

missing. They will result in a proposed framework/tool to facilitate an integrated 
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assessment of the GW/SW system connectivity is to be recommended and 

introduced with the application to case study areas facing a multitude of on-going 

water quality threats. 

Objective 3 – to undertake field sampling to determine the fluxes of water and 

solutes within the stream water and across the streambed, to further test the 

understanding of the GW/SW connectivity following on from the initial 

conceptualisation. By doing so, it is with the intention to assess the role of GW in 

the potential attenuation and release of flow and solutes and the likely 

consequent impact on the water quality of the overlying stream. Currently such 

interactions are overlooked and are currently viewed to be disconnected due to 

the neglected assessment of the superficial systems between the stream and 

major aquifers. 

Objective 4 – to apply numerical modelling techniques to explore the system 

responses to changing hydrological conditions, interpreting the flow and solute 

patterns beyond the local-scale. Thereby extending the scope of the study and 

understanding beyond the spatial and temporal constraints of field sampling, 

upscaling the point-based understanding into the dynamics and processes 

operating in the wider systems. 

Objective 5 – to make recommendations of how the management of GW and SW 

systems could be improved in working practice to enhance the water quality and 

fitting into the wider catchment priorities. 

1.6. Research approach 

Desk-surveys and field-visits were carried out along with discussions during early 

stage TOPSOIL meetings (late 2015) to assist in the selection of two case study 

catchments for which this thesis would focus on the local-scale GW/SW 

connectivity, linking to the understanding of current water-quality issues. The 

mapping of potential pollution sources during reconnaissance walkovers allowed 

for the identification of sites within the study areas to base subsequent 

investigations. The study areas were chosen because of the multitude of 

pressures acting on the current water quality, with subsequent failure in meeting 

the WFD objectives. The study area selection coincides with priorities from local 

practitioners, with research supporting the local-scale understanding, overcoming 
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the limited insights. The research conducted for this thesis is on two of four study 

areas which the TOPSOIL group are focusing management on. 

1.6.1. Study catchments 

Study catchments were selected following discussions as part of the TOPSOIL 

project, with interlinking priorities and investigations into the water quality, 

including that from a regulatory and stakeholder perspective of the Environment 

Agency, Northumbrian Water, the Wear Rivers Trust and Durham University. The 

study catchments selected for this research are in the Lower River Wear 

catchment (length 96 km; catchment area 2280 km2) and are the Twizell Burn (19 

km2) and Herrington Burn (13 km2) (Figure 1-7). The streams form tributary 

catchments to the River Wear which rises in the Pennines and flows eastwards, 

discharging into the North Sea at Sunderland (Figure 1-7). Currently failing to 

achieve the WFD classification of ‘good’ status, the SW and GW of these 

catchment is currently impacted by historic and contemporary water pollution 

(TOPSOIL Group, personal communication), including those attributing to historic 

mining impacts. 

The central and east parts of the Wear Catchment were extensively mined until 

the late 1900s via surface and deep coal abstractions (Figure 1-8). Coal mining 

operations have since ceased (Younger 1995). Mining has led to major physical 

modifications to the subsurface and of the stream channels, altering the flow 

paths and head gradients. Dewatering in the central areas of the Coal Measures 

outcrop continues, meanwhile beyond the radius of the dewatering pumps, the 

water table is fully recovered with uncontrolled mine water discharges (Younger 

1993, 1995, Banks and Banks 2001). Predicting the rate and spatial variation in 

the GW rebound after the coal mine closures have been hindered by the lack of 

hydrogeological records, with GW investigations been most suited to the solution 

of operational problems (Sherwood and Younger 1994). The content of the GW 

discharges varies spatially. GW discharges are sometimes moderately 

mineralised and alkaline, with iron loadings resulting in thick iron ochre (Younger 

1993). Although, with oxidative weathering and dissolution of sulphide minerals, 
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especially pyrite means that surface discharges are often rich in iron, sulphate, 

aluminium and acidity (Gandy and Younger 2003). 

 

Figure 1-7: Thesis study areas in the River Wear catchment, County Durham, UK. 
 

 
Figure 1-8: Coal mining extent in the Wear catchment (Coal Authority 2018). 
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Towards the east of the Wear catchment, a Magnesian Limestone outcrop 

overlies the Coal Measures supporting an aquifer used to support the provision 

of water to surrounding residential areas (Figure 1-9). Elsewhere the Coal 

Measures are constrained by superficial drift deposits (Figure 1-10). Minor 

aquifers are believed to be present throughout the superficial deposits, 

supporting baseflow to rivers (DEFRA 2019), and thus having the potential to 

impact on the water quality. The current approaches have led to belief that the 

aquifers have had no influence on the SW, however, there is a need to look at 

the minor systems. There is a need for investigations into the hydrochemical 

characteristics, which requires the delineation of the flowpaths and quantification 

of solutes from the identified pressures (TOPSOIL group, personal 

communication). 

 

 Figure 1-9: Bedrock geology of the Wear catchment 1:625k (Source: BGS 
2010). 
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Figure 1-10: Superficial geology of the Wear catchment (Source: BGS 2010). 
 

The research presented in the thesis covers three principle research areas: 

1. Conceptualisation of GW/SW connectivity 

 
The understanding of GW and SW systems is typically limited to the perspective 

of either the surface or subsurface, with the systems deemed connected or 

disconnected, typically at the regional or catchment scale. Whilst the systems 

appear entirely connected or disconnected at the larger scale, this is often based 

on a coarse resolution insight, neglecting the possibility of variations in the 

connectivity according to finer spatial and temporal scales, including those with 

minor aquifer formations. Establishing an understanding of the connectivity 

operating within the catchment is typically overlooked, especially given limited 

baseline studies with the main priority of sampling often for objective-based 

assessments, such as the WFD (Jones et al. 2000), without looking at the 

movement and interactions of flow and solutes beyond the sampling points. 

The understanding of the system processes and dynamics over spatial and 

temporal scales is largely hindered by limited sampling, which is predominantly 

from the perspective of the SW, although often at infrequent sampling sites, and 

thus any potential changes in the chemistry, for example, go unaccounted, both 

throughout the system and across the streambed. Despite the anticipation for 

integration under ICM principles, the understanding of water quality across the 
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entirety of the catchment is based on singular points without knowledge of the 

processes occurring, both downstream and across the streambed. Further to the 

limited monitoring, limited discussions between hydrologists and hydrogeologists 

managing the SW and GW systems respectively results in conflicting 

understandings, with the need for conceptual understanding of the system, 

supported with the collaboration of data and information (Grigg 2008). 

2. Conceptualisation of GW/SW connectivity 

Despite extensive research over the last 50 years into GW/SW exchanges, 

empirically driven understanding of such exchanges in the practice of water 

management is typically neglected, often due to the complexity of the systems, 

and limited tools and frameworks to implement and assess the connections in 

local-scale contexts (McDonnell 2008, Cardenas 2015, Kaandorp et al. 2018). 

Frequently, management decisions are based on a very limited, basic 

understandings, whereby the systems are considered as closed pipe systems, 

with water transport from A to B, irrespective of the changes along the route of 

the water (Bencala 1993, Bencala et al. 2011). Exploring ways to develop the 

understanding of GW/SW connectivity and exchanges supports intentions to 

develop integrated, holistic understandings. 

However, at a local level, the focus is often prioritised to meeting targets as 

opposed to addressing the way in which the processes and interactions of drivers 

and threats are managed, lacking the quantification of the way in which threats 

disseminate and impact on the receiving water bodies, including those 

downstream. The fragmented prioritisation of addressing the different threats, 

such as effluent waste, results in the segmentation of the processes and drivers. 

With the focus on ensuring the achievement of statutory-based measures as 

opposed to capturing the processes and interactions. Such assessment often 

dictates the work of individual sectors, thus lacking the coherence between 

organisations. There is a need to look at the links between the processes and 

drivers themselves, as well as between them (Kaandorp et al. 2018), which 

dictates the threat at which pollution has on the systems. 
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3. Role of GW in the SW system 

Driven by changes in legislation as to how GW and SW systems should be 

considered and thus managed, there is an ever-increasing emphasis on the 

understanding of the influence of the respective systems on one another. 

Whereby in addition to establishing an understanding of the connectivity, there is 

also a need to determine the impacts of the flow and solutes on the quality of the 

systems. However, the fragmentation between the organisations who manage 

the water systems can hinder the translation of the intended integration, which is 

largely attributable to the complex nature of the systems, coinciding with the lack 

of monitoring. 

Although recent legislation theoretically strives for an integrated understanding of 

the GW and SW systems, established monitoring regimes do not reflect the 

integration, particularly beyond the constraints of major aquifers (Jones et al. 

2000). Arguably the sampling is suited to the assessment according to the 

statutory frameworks, assessing against standards, but tends to fail to gain an 

insight into the systems under changing hydrological conditions, and between the 

GW and SW systems. Understanding the way in which GW and SW systems 

interact supports the achievement of working towards improved water quality, as 

we may be bettering the SW, however, this could be detrimental on the respective 

system without an understanding of it. Without integrative monitoring, or at least 

an insight into the system dynamics, we are essentially managing the systems 

as closed, disconnected systems, and this might not be true. There is a need to 

overcome the complexity and develop an improved understanding looking at the 

local systems and processes within the scope of the larger catchment systems. 

The research presented in the thesis considers the intersection of the three 

themes outlined above, exploring current understanding and management of the 

freshwater systems, and seeks to quantify and evolve understanding, especially 

at the intersection across the two water systems and the interactions between 

them, both at spatial and temporal scales overlooked in routine assessments. 

The research adopts a multi-method approach (Table 1-2) to consider how we 

understand, investigate and manage water above and below the streambed, 

accounting to varies scales and pressures. In order to consider both the 

hydrology and hydrogeology of the SW and GW systems respectively, it is 
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necessary to consider the interdisciplinary approaches, namely the methods 

used to assess the water movement and also the bringing together of already 

existing data and information with the aim of increasing the understanding of 

processes and interactions across the streambed, attempting to bridge the gap 

between research understandings and those adopted in practice. 

The exact methods and data used at specific stages of the research are 

presented in the ‘Methods’ section of each of the Chapters 2-4. Here, a broad 

summary of the methods adopted throughout the research is presented below: 
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Table 1-2: Summary of the key approaches used throughout the research. 
 

 

Approach Description Pros Cons 

Desk-based 

Coinciding with 
walkover surveys, desktop 
analysis, e.g. using GIS 
allows for an insight into 
the system characteristics, 
making links between 
elements utilising existing 
datasets to derive 
information, looking 
across a range of spatial 
and often temporal 
dimensions, facilitating an 
assessment from the 
regional to catchment 
scales, and where data 
allows, local-scale 
assessments. 

• Increasing 
amount of 
freely 
available data 
in the public 
domain 

• Data resolution is 
often spatially and 
temporally limited 
depending on the site 
or study area 
• Sharing agreements 
need to be in place to 
allow for the 
dissemination of data 
held by organisations 

Field 
measurements 
- including 
hydrochemical 
sampling, 
flowpath 
characterisation, 
and water and 
solute fluxes 
quantification 

Establishing approaches 
to determine the 
hydrological changes and 
corresponding water 
chemistry through the 
obtaining of water 
samples through: 
i) SW spot sampling 
(grab-sampling); ii) SW 
quasi-continuous 
sampling and; iii) shallow 
pore-water sampling via 
piezometers. Allowing for 
a quantification of the 
chemistry as well as the 
fluxes in flow and solutes 
with hydraulic 
measurements. 

• Capturing the 
system at a 
specific point 
in time 

 

• Limited baseline data 
to draw comparisons 
for low order streams 
and minor aquifers 
 
• Laborious,  
requiring intensive  
and repeat surveys 

Numerical 
modelling 

To extend the spatial and 
temporal insight into the 
GW/SW system dynamics 
and processes, e.g. with 
changes in flow. 

• Extend the 
understanding 
from existing 
data 

• Increasing 
number of off- 
the shelf 
models 

• Parameterisation is 
challenging for 
heterogeneous 
systems 
• Simulation time 
increases with 
complexity 
• System 
representation is based 
on available data 



30 
 

1.7. Thesis structure 

The thesis is structured using the following five chapters: 

Chapter 2 presents an innovative approach, Integrated River Evaluation for 

Management (IREM), as a means of looking beyond the SW system, to evaluate 

how we explore GW/SW systems and the connectivity between them. Often 

tributary catchments have limited historical data, thus deterring the level of 

information which can be derived to understand the systems. IREM has been 

developed to test the feasibility of using existing data to provide a first-order 

assessment of the spatial and temporal dimensions. As a tool to investigate the 

GW/SW connections, IREM is applied to the Herrington Burn and Twizell Burn 

as a foundation for subsequent chapters. 

Chapter 3 examines the role of the GW on the water quality of a reach of the 

Twizell Burn. The stream is representative of a complex, heavily modified system, 

which has limited insights beyond routine sampling led by the Environment 

Agency. The system response to changing hydrological conditions is 

investigated, exploring the buffering and propagation potential of the minor 

aquifer system, considering the local scale processes. 

Chapter 4 seeks to extend the understanding of the system behaviour, upscaling 

the spatial patterns to investigate the response of the SW and shallow GW using 

numerical modelling approaches. Scenario-based simulations allow for an insight 

into the system dynamics and processes likely operating, dictating the hydraulic 

connections across the streambed in response to changing hydrological 

conditions, such an extreme rainfall events according to climate change 

scenarios. The purpose is to upscale the understanding from Chapter 3, linking it 

to the larger scale understanding developed in Chapter 2. 

Chapter 5 draws together the key findings presented in Chapters 2-4, addressing 

the research aim, bringing the findings into the wider research context. 

Chapter 6 contains the primary recommendations and conclusions of the 

research presented in the thesis. 

The thesis is written in a journal-paper format, with the intention of Chapters 2-4 

been published as stand-alone papers. In this way, the detailed literature and 

methods are presented in each chapter. Oral presentations of Chapters 2-4 have 
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been presented to gain feedback (see below). Additionally, I have presented 

elements of each of the chapters at plenary stakeholder and partner TOPSOIL 

meetings, as well as quarterly international TOPSOIL meetings in Europe. 

1.8. Summary 

To summarise, the aim of this research is to determine the occurrence and spatial 

extent of water-quality issues looking to establish the interrelationships between 

GW and SW bodies. To do so, this research is interdisciplinary, working with, 

supporting and informing organisations and stakeholders with the shared interest 

in the GW and SW systems as part of the TOPSOIL project, which will facilitate 

data sharing and discussions, shaping the empirical data collection of this 

research. Ultimately, by investigating the interactions between surface and 

subsurface systems it is anticipated that this will support improved 

understandings of the catchments and lead to recommendations of effective and 

sustainable water resource management, moving beyond fragmented reactions. 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 
 
 
 
 
 
 
 
 
 

 
[Page left intentionally blank] 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



33 
 

 

 

 

 

 

 

 

 

 

 

 
“Higher,  

Further,  

Faster!” 

Carol Danvers (Captain Marvel, 2019) 
  

 
 
 
 
 
 
 
 
 
 

 

 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

[Page left intentionally blank] 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Chapter 2 - Integrated River Evaluation for Management 
(IREM): A novel approach to mapping groundwater- 
surface water connectivity 

2.1. Introduction 

In science and in practice, water resources have traditionally been monitored and 

managed from the perspective of either the surface or subsurface (Barthel 2014, 

Li et al. 2016), coinciding with separate problems and priorities of each, and 

addressed with fragmented policies and frameworks (Macleod et al. 2007, Staes 

et al. 2008). Recognised as an unsustainable approach, it is only within the last 

two decades that efforts to address and manage water resources have shifted 

towards more holistic and integrated approaches (Watson and Howe 2006, 

McDonnell 2008, Staes et al. 2008, Allen et al. 2010). Such approaches are 

commonly referred to as Integrated Catchment Management (ICM, Lerner and 

Zheng 2011), by which the hydrological catchment is used to organise the 

interventions of the landscape and hydrological processes to deal with water 

resource issues (Fenemor et al. 2011). 

In recent years the application of ICM has grown, informing and shaping major 

policies, both nationally and internationally, including the WFD (2000/60/EC, CEC 

2000, Smith 2005, Macleod et al. 2007, Pascual 2007). Legislation such as the 

WFD provides the opportunity to identify new innovative solutions for water 

management (Pascual 2007). However, most environmental monitoring is 

focused on the statutory requirements, largely linked to sites of point-source 

pollution or temporal measurements taken at fixed points leaving major 

knowledge gaps (Heathwaite 2010). The irregular and infrequent collection of 

water variables including hydrological and hydraulic data of the river and aquifer 

systems, particularly of minor formations, deters the ability to establish an 

understanding of the interactions according to the connectivity within and 

between the GW and SW systems (Heathwaite 2010). Thus, failing to capture the 

system characteristics and fine scales, specifically the localised patterns and 

processes of flow and solutes, and thus their role in the larger system processes 

is withheld by such sampling and knowledge gaps. There is a need to gather 

evidence to develop an understanding of the systems overcoming the shortfall in 
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measurements, coinciding with the need for communication among those 

involved in water management (Holzkämper et al. 2012). 

The starting premise of integrated approaches is understanding the system 

characteristics, and from this there is the need to link the channel and aquifers 

with the surrounding catchment, with an understanding of the associated natural 

flows of water, energy, biota and chemistry (Neal et al. 2000, Falkenmark et al. 

2004, Ransley et al. 2007, McDonnell 2008, Rothwell et al. 2010). Such 

approaches require an amalgamation of knowledge and information, looking 

across various space and time scales, capturing the dynamics of the systems 

and processes across the surface and subsurface (McDonnell 2008). However, 

as many have argued, such as Biswas (2005) and Moss (2007, 2008), capturing 

the system dynamics and processes encompassed within the intended ICM 

framework is challenging to achieve, with the focus largely being on addressing 

and monitoring the symptoms of water quality. Additionally, it is difficult to 

implement the political and operational structures in the practice of water 

management to support the theoretical ideas, with various measurements set to 

be collected across various points throughout the systems by different 

practitioners. As a result, the sharing of data to derive information is often 

challenged by such structures and practices, meaning that data goes unused 

once it is used for its primary purpose, and the data is often not distributed 

(McDonnell 2008). Instead data and information are held by the individual or 

organisation and not used again, with understandings developed and held in the 

capacity of individuals. The integrated assessment of water quality across the 

GW and SW systems is reliant on the ability to pull together the available data to 

hand, assessing the connectivity, and in-turn the interactions and exchanges in 

flow and solutes. There is a need to somehow move aside the complexities 

associated with the high heterogeneity of heavily modified catchments if 

sustainable and effective management is to be achieved. 

The aim of Chapter 2 is to look at how bringing spatial data together can inform 

us of the GW/SW connectivity by looking at links and patterns of the catchment 

characteristics to move towards thinking about GW/SW interactions at the 

catchment scale, and then onto consider the integral role of the local scale within 

catchment boundaries. By recognising and mapping the connections provides a 

basis for discussions between organisations and stakeholders. A review of the 
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existing desk-based approaches to evaluate GW/SW connectivity is first 

presented. The application of approaches is then discussed in accordance with 

their usefulness in research and in practice with the assessment of connectivity. 

The feasibility of the application of these approaches is considered, particularly 

in relation to data availability and the output usefulness regarding the support of 

understanding local systems in favour of management decisions, e.g. water 

quality. Subsequent to this evaluation, gaps in current approaches are 

addressed, supporting the need for a revised framework to facilitate an integrated 

understanding of catchments. A proposed framework is introduced and tested 

using case study examples. 

2.2. Integrated assessment of GW and SW quality within 
catchments 

As ICM approaches have become more widely implemented, there has arguably 

been some recognised success in applying the principles (Rouillard and Spray 

2017) in shaping the priorities and approaches in scientific research and in 

practice to manage water-resource issues (Macleod et al. 2007). However, ICM 

is predominantly focussed at the larger catchment scale (Rollason 2019), 

assessing the overall status of the water within the defined boundaries of the SW 

and GW bodies (Smith 2005). Singular issues are addressed at an organisation 

level (McDonnell 2008), rather than the much-needed focus on multiple 

pressures operating within the catchment boundaries (Heathwaite 2010). 

Addressing and solving a multitude of pressures is challenging, and currently 

lacking the amalgamated attention that ICM seeks to bring to water management 

linking the processes of the land and water. There is a need to consider the cross-

scale interactions in landscape (Green and Sadedin 2005) overcoming the 

tendency to discount the natural patterns and processes and variability operating 

across various scales (Harris 2007, Harris and Heathwaite 2012). Most often, 

water managers are attempting to solve a multitude of problems without an 

improved understanding of the processes and pollution pathways operating 

within catchments. Consequently, they are lacking awareness of connections 

between systems as well as the pollution pressures and drivers and the links 

between them (Downs et al. 1991, Biswas 2008, Kaandorp et al. 2018). 
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Fragmented approaches frequently prevail due to the different types of data 

required and the level of useful information that can be derived from the available 

datasets to conceptualise the systems and processes operating by different 

practitioners involved in the water management (McDonnell 2008). With different 

actors at different levels of power and priorities, there is a need for a balance 

between the top-down governance with bottom-up approaches to water resource 

management such as those under the stakeholder-led CaBA (Deasy 2018). 

There is a need for more collaborative ways of working to develop a 

knowledgebase to support decision-making (McGonigle et al. 2012). Without 

such structures and approaches pressures on water quality are often audited, 

and little improvement in water quality is secured due to the lack of appropriate 

scientific methodologies and data to understand and access the full extent of 

problems across the wider catchment (Macleod et al. 2007). Therefore, water 

companies typically attend to anthropogenic pressures with end-of-pipe 

solutions, addressing the symptoms of issues (Moss 2007, Staes et al. 2008). 

Approaches prevail to manage the wider catchment and natural processes, with 

a lack of knowledge on the system processes and pathways (Ransley et al. 2007, 

Kaandorp et al. 2018). 

Typically, the level of information provided by regulatory sampling is spatially and 

temporally restricted, with the intention being to support the somewhat rapid 

assessment against statutory measures, for instance the WFD (CEC 2000, 

Heathwaite 2010, Skeffington et al. 2015). The sampling fails to consider other 

elements and processes and is typically at annual cycles at fixed sampling points 

(Heathwaite 2010, Environment Agency 2019). The low intensity of the sampling 

means that often the processes and dynamics operating within catchments are 

overlooked, despite their fitting and influence into the wider catchment. 

Across the surface and subsurface systems, threats accumulate, and it is with 

the multitude of threats that there is a need to conceptualise the links within and 

between the systems, considering the links between the pressures and drivers 

as a function of the catchment characteristics (e.g. Kaandorp et al. 2018). 

Ultimately, better management of pressures on water quality requires an 

integrated, conceptual understanding of the threats and systems, with a focus on 

the connections and interactions between them, specifically the landscape and 

the links with the SW and GW (Biswas 2004, Kaandorp et al. 2018). Thus, 
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facilitating a more holistic risk characterisation for ICM, linking individual 

stakeholders’ behaviour and decisions with catchment scale processes (Macleod 

et al. 2007). There is a need to consider the connectivity, from which the 

processes operating and driving the exchanges between the GW and SW 

systems can be considered, and the potential impacts on water quality for 

effective water resource management (Bracken et al. 2013). 

2.3. GW/SW connectivity 

Connectivity is described according to Wohl (2017) as the degree to which matter, 

and organisms can move in nature within spatially defined units. In streams, 

connectivity is typically thought of in terms of longitudinal, lateral and vertical 

dimensions, in which a channel is said to be connected or disconnected to the 

surrounding environment (Bencala et al. 2011, Wohl 2017). Connectivity between 

streams and the surrounding catchment has been intensively studied, with recent 

emphasis on the stream-subsurface connectivity, particularly in the last 50 years 

(Brunke and Gonser 1997, Sophocleous 2002, Fleckenstein et al. 2006, Bracken 

et al. 2013, Cardenas 2015). Conversely, GW/SW connections remain poorly 

understood when it comes to localised management, thus hindering the 

improvement of water quality. There is often a very broad understanding of the 

systems, for example, at the regional or catchment scales in accordance with 

defined spatial extent of water bodies, e.g. between the SW body and regional 

GW body. However, rarely does this understanding increase in resolution to that 

within the catchment boundaries. Primarily the short fall in the study resolution is 

because the systems are highly heterogeneous, complex and require an 

interdisciplinary focus, something that is not captured well under current 

legislative sampling, particularly where minor aquifers exist (Jones et al. 2000). 

Consequently, these difficulties result in the detailed understanding being poor 

due to the nature of any SW scale assessment often being cost prohibitive with 

limited obvious environmental benefit from a working practice perspective, 

balancing with other demands, e.g. water provision and regulation (Environment 

Agency NE, personal communication). 

Research on hydrological connectivity has largely focused on the stream-

catchment exchanges (Wohl et al. 2018), for example, linking to runoff and 

transport of solutes to streams, focusing on elements of linear pathways and 

processes. Hydrological connectivity can be very dynamic, particularly at the local 
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scale with increasing variability in the parameters due to spatial and temporal 

heterogeneity (Rassam 2011, Blume and van Meerveld 2015). 

Surface connectivity is often discussed in practice, particularly regarding flood 

management, whereas subsurface connectivity is more difficult to assess and 

has led to the development of a range of techniques to facilitate the assessment 

(Blume and van Meerveld 2015). While emphasis on connectivity continues to 

grow, it is with an ever-increasing focus on the stream-subsurface connectivity, 

linking the SW and GW systems, which is essential if we are to better understand 

the pressures depleting water quality and work towards more sustainable 

catchment management in accordance with WFD objectives (Fleckenstein et al. 

2010). Such management should join the views and understanding of individual 

practitioners, including hydrologists and hydrogeologists, with the need for 

interdisciplinary and trans-disciplinary communication and involvement. Working 

across disciplines is essential given that the quality of the SW or GW can deter 

efforts given the interactions and exchanges between the systems (Sophocleous 

2002, Kløve et al. 2011). Therefore, moving beyond traditional ‘black-box’ or 

‘pipe-system’ analogies of the transport of flow and solutes along a stream 

(Bencala 1993, Bencala et al. 2011). There is a need to overcome this restricted 

focus if we are to achieve sustainable water management, challenging how the 

SW and GW systems are viewed. 

The way in which GW is defined and considered has potential implications for the 

way that the systems are viewed and therefore the way they are managed in 

practice. Polices such as the WFD consider GW bodies as a distinct volume of 

water in an aquifer or aquifers (CEC 2000). The definition differs to the 

conventional definition of an aquifer, defined as a rock or sediment formation(s) 

that is saturated by water and permeable to transit water, e.g. to springs (Fetter 

2018). GW which is of stream-water origin and held below the streambed in pores 

or voids for a given time and is often overlooked by top-down management 

despite its ability to transmit flow and solutes. The way that GW is perceived 

therefore has an impact on the management attention. The only focus of GW is 

often from the WFD assessment, therefore challenging the understanding. 

Most often, less intensive sampling of GW results in the application of broad-

scale understandings of the processes operating between the GW and SW along 

a whole river reach, rather than attempting to understand the behaviour more 
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closely within a system. Consequently, streams are typically classified as gaining 

or losing to GW (Banks et al. 2011), despite the sub-reach and point-scale 

variations, which are omitted with coarse-resolution conceptual models 

(Wainwright et al. 2011). There is failure to link the local behaviour to that of the 

wider catchment, which limits the understanding of the interactions and 

exchanges along streams (Banks et al. 2011). Hence, often only the regional or 

wider catchment scale is considered of major rivers (e.g. Ransley et al. 2007; 

Environment Agency, personal communication). 

As the degree of connectivity and subsequent interactions and exchanges in flow 

and solutes are highly variable and wide ranging between the GW and SW 

systems, the choice of approaches is by no means straightforward and is 

ultimately dependent on the available data and information required. 

Nevertheless, to facilitate an integrated understanding of riverine environments 

requires an understanding of the system characteristics, processes and 

associated drivers both above and below the streambed, as well as connectivity 

between the systems to determine the state of the GW and SW, and thus better 

manage the systems (Kaandorp et al. 2018). Developing an integrated 

understanding is twofold, with the need to look at the interactions between threats 

relative to the landscape structure (structural connectivity) as well as the 

functional connectivity, which broadly encompasses the way in which the 

structural units of the systems are linked to which they can collectively affect the 

hydrological processes, e.g. on the stream flow (Wainwright et al. 2011). In the 

following section, approaches to assess the connectivity using spatial datasets to 

derive information on the connectivity are discussed. 

2.3.1. Relationships between catchment characteristics and 
water quality 

To facilitate the communication and decision-making processes with ICM, new 

tools of addressing the GW/SW bodies has been necessary (Matthies et al. 

2007). Such tools require the use of an array of datasets to derive information on 

the systems, relying on the collation of data across disciplines. The increasing 

availability of open source data has begun to ease the bottleneck problems of 

using secondary data held by other organisations (McDonnell 2008). However, 

when applying such tools, it is how the data is collated and information is derived 
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as to the extent that it is useful in supporting the decision-making process for 

water management. Often, organisations and stakeholders are targeting the use 

of such tools to look at the data to support individual, specific problems, e.g. to 

assess the status of the assets, and not necessarily where or how the water and 

pollutants travel further, be that downstream or exchanged with GW held in the 

underlying aquifers. As well as the likely interactions between pressures and 

drivers (Kaandorp et al. 2018). 

A key element to researching the riverine environment holistically requires an 

understanding of the water quality and the stressors, specifically the sources of 

the threats, e.g. point-source or diffuse pollution, and the drivers of the threats 

according to the landscape characteristics, e.g. the geology (Kaandorp et al. 

2018). Research has demonstrated that it is possible to make relatively simple 

links between catchment characteristics, namely the geology (bedrock and 

superficial deposit: composition, permeability and thickness), topography, soil 

hydrology, stream flow, and land cover and even predict future likely changes of 

the water quality (e.g. Rothwell et al. 2010). By doing so, this approach enables 

an initial insight into the impact of the surrounding system on the water quality, 

looking at the stream water in accordance to the characteristics of the SW and 

GW environments, thus facilitating a first-order integrated assessment. 

Water variables are often collected at the large scale as part of national initiatives, 

e.g. as part of the Land Ocean Interaction Study (LOIS) as discussed by Neal et 

al. (2000). Attempts to upscale the understandings using baseline data are 

outlined in recent work. Rothwell et al. (2010) demonstrated the application of the 

catchment-characteristic approach using Environment Agency monitoring data 

for North-West England. They undertook spatial analysis of the data in the Terrain 

Analysis System (TAS) (now known as Whitebox), a freely available package for 

spatial analysis (Lindsay 2005). Each of the respective catchment characteristics 

were assessed in turn to determine their relationship with water quality, with the 

intention of assessing the interaction and role of the respective stream water 

quality on the landscape (Rothwell et al., 2010). 

Whilst allowing for an understanding of the link between the source and point at 

which the samples have been obtained, the catchment characteristic approach 

does not consider the interactions between the threats or drivers and is simply 

looking at the patterns and likely controls on water quality on a factor-by-factor 
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basis, overlaying the water quality data onto various spatial data in GIS. Rather 

than drawing linear relations between the water quality and characteristics, it has 

recently been highlighted in the work of Lintern et al. (2018) who suggest that 

there is a need to consider the interactions of the key factors which drive the 

water quality, focusing on those that control the source, transportation and 

evolution of the solutes, and how they act. However, such an approach is only 

viable where there are extensive sampling data available. 

The need for integrated studies has resulted in a shifting focus more recently 

towards looking at the interactions between the stressors, and the role of 

respective systems on one another given the close coupling whereby poor status 

of the GW negatively impacts on the stream system (Kløve et al. 2011, Kaandorp 

et al. 2018). Research has focussed largely on the effect of stressors on the 

surface waters (e.g. Rothwell et al. 2010), and yet despite a wealth of research 

on GW/SW interactions (Woessner 2000, Sophocleous 2002), Kaandorp et al. 

(2018) provide evidence that the impact of multiple stressors on the integrated 

GW-SW systems is somewhat lacking, and therefore missing in terms of 

management decisions. Where the hydrological and hydraulic data is lacking for 

both the stream and aquifer, it is necessary to think beyond these constraints and 

think about how we can describe the systems to support decisions and 

management. 

As part of an integrated assessment of the water quality, it is vital to understand 

the role of GW on the buffering and propagation of stressors within the SW 

system. To facilitate a holistic assessment, we should consider the combination 

of stressors, including the catchment characteristics, scale and management 

practices which determine the effect of GW drivers and states on the SW, with 

the impact of the GW state on the SW state occurring in relation to the degree of 

the connectivity across the streambed (Kaandorp et al. 2018). The degree of 

connectivity is often assumed on the basis of the characteristics of the surface 

and subsurface environments, such as the depth to the water table, land use/land 

cover and use of geological and hydrogeological maps (Buss et al. 2009). 

Although, the infrequent and limited monitoring restricts such an approach where 

water variables are not available to align with the secondary data. Therefore, 

alternative approaches are necessary. 
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2.3.2. Connectivity-index approaches 

Jarvie et al. (2002) note the usefulness of spatial data to look at the empirical 

relationships between land characteristics and water quality. The increasing use 

of GIS to visualise and analyse spatial data has enhanced the ability to draw such 

relations. Considering the links between the land and water offers a basis to start 

and visualise the connections in the systems. Oyarzún et al. (2014) suggest 

several independent, but complementary approaches to assess the connections 

between GW and SW: the connectivity-index approach, as well as the use of 

hydrochemistry and water isotopic geochemistry. However, the latter two 

techniques require intensive field sampling, or the use of existing datasets, and 

are not discussed with the context of this chapter. Connectivity-index-based 

approaches, however, offer an initial screening assessment of the connectivity 

between the GW and SW systems through the consideration of several factors 

(Oyarzún et al. 2014). 

Initially developed by Ransley et al. (2007) for the Australian Government, the 

connectivity-index approach was intended to be used as a screening tool to 

rapidly assess the hydrological connectivity between the surface and shallow GW 

of rivers. Data used include water-table depth, the river-channel sediments, the 

dominant geology, and the site geomorphology (Table 2-1). Each category is 

assigned specific scores to determine the connectivity and are then combined to 

give a ranking index for overall potential stream-aquifer connectivity (Figure 2-1; 

Ransley et al. 2007). This mapping method builds on existing techniques that 

used only depth to water as an indication of potential connection (Braaten and 

Gates 2002, Ransley et al. 2007). The approach provides information to 

designate the streams as being connected or disconnected and is therefore 

useful as a precursor to follow-up approaches, such as hydrographic analysis or 

numerical modelling. 

The approach is useful as a first-order assessment of likely interactions across 

the streambed and provides a simple assessment of the connectivity. However, 

the approach is with limitations, particularly as the data is accumulated regardless 

of the resolution, thus failing to consider the connectivity at smaller scales and at 

dimensions, such as at the near-surface, or in response to changing hydrological 

conditions. The assigned metric value does not account for variations within a 
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catchment, and in small catchments, only one value would be assigned; the use 

of classifications is therefore an issue of generalisations between different 

estimates, such that, they assume the same level of vulnerability regardless of 

the combination of the attributing factors. Additionally, the understanding is very 

much limited to the specific point, considering only one form of structural 

connectivity, which in the case of Ransley et al. (2007) it is the geomorphology. 

However, there is a need to assess the connectivity more holistically, therefore 

there is a need to consider the interactions between multiple structural 

characteristics of the environment and of the processes (Oyarzún et al. 2014). 

 

Table 2-1: Connectivity index score table - water-table depth (dw), the river-channel 
sediments (rs), the dominant geology (ge), and the site geomorphology (gm) (Adapted 

from source: Ransley et al. 2007). 
 
CI = (3)(dw) + (5)(rs) + (5)(ge) + (2)(gm) 
 
Parameter Class Score 

Water-table depth 
<10 m 5 
10-20 m 3 
>20 m 0.5 

Channel bed sediment 

Sand/gravel 5 
Sandy loam/silty loam 3 
Silt clay loam -1 
Clay -4 

Geology 
Gravel/sand 5 
Clay/sand 3 
Clay -4 

Geomorphology 
Erosional environment 5 
Depositional environment 1 
Hill top 0 

 

2.3.3. Assessment of connectivity in practice 

Where there is less intensive collection of hydrologic and hydraulic data 

challenges how we look at the system and quantify the connectivity with regards 

to management decisions. In the UK, assessing the risk of GW/SW interactions, 

approaches are very similar to those adopted in Australia, and have been used 

to develop GW vulnerability maps, providing an estimate of the aquifer 

designation (Carey et al. 2017). Produced in late 2017 by the Environment 

Agency, the aquifer designation maps are also based on index-based 
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approaches, and used as a high-level screening tool to give practitioners an 

indication of whether a proposed development or activity is likely to be acceptable 

(e.g. located in an area of low vulnerability or over productive strata) or of 

potential concern (e.g. located in an area of high vulnerability on a principle 

aquifer) (Environment Agency, 2017). GW vulnerability is divided into three 

classes: high, medium or low. The classification of each 1-kilometre square 

depends on a calculated score, which considers the influence of each of the 

layers on pollutant loading and concentration of the water table (Figure 2-1). The 

score is dependent on a weighting factor and a calculated index score and is 

calculated as follows: 

Vulnerability score = Weighting factor × Index score (summed for all layers) 

 

 Figure 2-1: Data input into the groundwater vulnerability maps (Source: Carey 
et al.2017). 

 

The greater the score, the lower the risk of a pollutant affecting the aquifer 

(greater protection = lower vulnerability). These scores are then converted to 

vulnerability indices (low, medium or high) using the score bands. The bands vary 

according to whether the receptor is bedrock or a superficial aquifer and were 

determined through expert judgement and sensitivity analysis. The final scoring 

was integrated into a GIS tool to calculate vulnerability on a 1-kilometre grid 

across England and Wales. These scores were then combined with the bedrock 
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or superficial aquifer designation status to create the final GW vulnerability maps 

(Figure 2-2). 

While proving a useful tool to water managers, the coarse resolution of the 

outputs means that the systems are generally declared either connected or 

disconnected on the basis of the low-high risk of exchanges with the surface 

water body. The combination of datasets used provides a useful precursor to the 

connectivity at the catchment scale, however, as noted previously, the lumping 

of the data to give a generalised estimate of the connectivity is of limited use, 

particularly as one factor could be more effective than the other, therefore 

skewing the connectivity estimate (Harris 2003). There is no effort to understand 

the connectivity at a localised, point-scale, looking at the longitudinal, lateral and 

vertical dimensions associated with the connectivity (Wohl 2017). 

 

Figure 2-2: Screen-shot of GW-vulnerability map (Adapted from source: DEFRA 2019). 
 

Therefore, in practice, a tool of this sort is useful as a primary basis for thinking 

about management interventions. However, as noted above, the connectivity of 

the GW and SW is restricted to a simplified loss/gain along a river reach, therefore 

the pollution pathways are often subject to a limited understanding. As a result, 

practitioners are lacking a holistic sense of awareness and thus limiting 

integration in management practices across catchments, resulting in the top- 

down priorities, and overlooking processes and pathways within the catchment 

that could help better manage threats. 
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In order to better understand the pathways and processes operating at the 

GW/SW interface, it is necessary to develop the conceptual understanding of the 

systems, looking at the multi-dimensions, beyond a coarse catchment resolution. 

For instance, through personal communication with the NE Environment Agency 

they confirm that a conceptual model of the Magnesian Limestone GW body was 

prepared in 2009. In this the EA examine the links between the structural units of 

the region in contact with the GW body, and assess the potential routes of water 

movement, to and from the surface water, using spatial data (Environment 

Agency NE, personal communication). There is no similar conceptualisation for 

elsewhere in the Wear catchment. There is a need to further develop a 

conceptual understanding, looking across the multiple dimensions, assessing the 

connectivity within catchments and along river reaches, incorporating elements 

of directionality, rather than assuming systems are entirely connected or 

disconnected, with gains/losses to the GW body. 

2.3.4. Gaps in existing approaches 

It is evident that for a holistic, integrated assessment of water quality that there is 

a need to consider the interactions between multiple stressors acting on the GW 

and SW systems. The influence of the threats on the respective systems is 

attributable to the degree of connectivity, from which the impact of the GW on the 

SW can be evaluated, be that a buffering or propagation potential of the incoming 

threat. Assessing the interaction of multiple stressors is somewhat more complex 

than looking at individual stresses relative to the surrounding catchment 

characteristics and requires more extensive water quality data records than those 

available in several catchments in the UK. While index-based approaches offer a 

first-order insight into the potential locations of GW/SW connectivity based on the 

structural units of the landscape they are somewhat limited. It is not possible to 

assume that classifications of the GW/SW connectivity are characteristic of the 

patterns and processes in specific catchments. There is a need to look at the 

connectivity more specifically. However, classification scores for the broad scale 

often this is the only understanding of the connectivity that exists on which to 

base management decisions. Although, the low spatial resolution (e.g. 1 km) 

means that potential pathways between the GW and SW systems are omitted, 

instead looking only at the bigger picture of dominant flow paths, and therefore 

overlooking any smaller disconnected ones which arise as the combination of 
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structural units (Wainwright et al. 2011). Additionally, the functional connectivity 

between the structural units of the systems are unaccounted, and rarely are the 

data considered together. There is a need to look at the connections at multiple 

dimensions and time (see Figure 1-6) and use the understandings of connectivity 

for catchment management, something that is lacking (Heathwaite and Harris, 

2011), with the support of discussions across and between disciplines. 

While the index-based approaches utilise useful data, it is the way that it is 

brought together that is important, because an index score or classification does 

not facilitate an insight into the individual processes and links between drivers, 

and it cannot be assumed that the patterns and processes at the local scale are 

the same between catchments attribute to that same score of connectivity. The 

individual pieces of data in themselves can provide useful information about the 

surface and subsurface environments, it is a matter of exploring them individually 

and then together, constructing a more complex picture from simple links. There 

is a need to appreciate that when moving across scales within the catchment, 

from point to GW catchment scales that a low-resolution conceptual model may 

exhibit disconnectivity because one parameter becomes effective at a higher 

resolution. However, at a higher resolution the system may exhibit localised 

connectivity, which does not extend far enough to be evident at the coarse scale. 

As structural connectivity can emerge from a combination of different elements, 

and therefore, the lumping of the elements together is not so useful to assess for 

an integrated understanding. There is thus a need to look at the controlling 

elements in turn and bring the data together in a framework to make this 

assessment in more complex catchments. 

2.4. Introducing the Integrated River Evaluation for Management 
Approach 

If we are to work towards developing an integrated understanding of the systems, 

supporting management, there needs to be an improved understanding of the 

patterns and processes across multiple dimensions, and times if possible, 

beyond that of the catchment-unit scale. We need to find ways to amalgamate 

these data to inform understanding of SW GW interactions. Such an 

understanding is required to understand processes and pathways within the 

catchments to feed into management decisions in dealing with threats, which are 
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often currently managed based on treating the GW and SW as decoupled 

systems. 

IREM is proposed as a novel framework in which existing data can be brought 

together to assess linkages within catchments, and here I am looking to assess 

the hydrological connectivity within and between the GW and SW systems. In this 

approach I demonstrate the feasibility of using existing data to identify local links 

and pathways, where there is very limited simultaneous sampling of water quality. 

Bringing together such data supports the determination of the likely interactions 

in flow and solutes, in turn delineating the pollution pathways, which are largely 

unaccounted using current approaches. The IREM framework enables the 

consideration of multiple threats, both above and below the streambed moving 

away from the segmented viewpoints, with the aim of supporting further 

investigations and water management decisions. 

The key objectives of IREM are to: 

1. Identify and map the threats and drivers to the surface-water and GW 

systems, the former using walkover surveys and discrete water quality 

sampling, and the latter based on personal communication with regulating 

agencies, and map these using GIS; 

2. To infer flow and solute pathways, looking at the multiple threats; and 

3. Providing a framework to understand and look at the processes and 

water- quality issues. 

2.4.1. IREM concept 

IREM is proposed as a simple, first-order approach to provide an approximation 

of the characteristics and connectivity within catchments, providing a basis to 

then assess the likely GW/SW exchange pathways operating at the local reach 

and sub-reach scales. The novelty of IREM is that the approach is developed to 

utilise existing, freely available data, to assess the structural and functional 

connectivity within catchments, considering multiple spatial dimensions and time. 

The framework allows for the state of connectivity to be determined where 

intensive and simultaneous monitoring of the GW and SW has not been 

performed. As acknowledged previously, there is a range of existing data that can 

provide useful information about surface and subsurface environments, and here 
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I explore the collation of this data to develop a conceptual understanding of the 

systems. In practice these data, for instance, surface runoff and superficial 

deposit thickness are not typically brought together to investigate and 

conceptualise problems within catchments, instead there is typically a 

dependence on metric-based estimates, which offer limited insight, particularly 

when interested in smaller scale variations accounting to localised issues. 

IREM allows for a holistic assessment of the system behaviour and connections 

required to deal with contemporary fluvial challenges, a key priority, moving 

beyond the fragmented view of the systems (Staes et al. 2008) to bring together 

data that helps to understand interactions between SW and GW that influence 

water quality (Figure 2-3). Where there are multiple threats to the water quality, 

a point-source attribution is inappropriate, as the threats themselves and the 

pathways intertwine resulting in diffuse pollution from a multitude of sources 

(Heathwaite 2010). Previously, attempts have just focused on the threats and 

local-scale assets, failing to demonstrate the ICM principles, which overlooks the 

multiple stressors affecting the water quality. There is a need to develop an 

understanding of the local links, moving towards understanding the processes 

and pathways likely operating within catchments to then challenge the current 

management of water-quality issues with a holsitc and integrated focus. 

 

 
Figure 2-3: Data use in IREM, illustrating the links between elements/factors to derive 
patterns and pathways accounting to the overall conceptualisation of the catchment 

systems and resulting water quality. 
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2.4.2. The application of IREM 

IREM is operationalised as a series of phases, in which elements come together 

to allow for an evaluation of the management of the rivers in question. The four 

key phases of IREM are outlined in the following sub-sections. 

2.4.2.1. Phase 1 – Identification of threats 

Overview: Data collection and collation to facilitate the identification of pollution 

threats towards water quality, identifying the pressures and drivers from which 

connects the pollution source to receptor, in this case, the channel and 

subsurface environments. 

Within a GIS framework, existing spatial data are collated, allowing for 

visualisation and spatial analysis. Understanding the multiple threats to the 

system and water quality holistically requires a focus of the drivers and pressures, 

which are not typically routinely mapped across catchments. The former including 

factors such as the land use, land cover, discharge points, such as sewage 

treatment works and combined sewer overflows. Additional data mapped include 

topography, the channel evolution and geology, including the superficial deposit 

characteristics (e.g. the drift deposit thickness and composition) to consider the 

links between threats and the drivers between them (see Table 2-2 for the data 

used in IREM). In support of the identification of the threats to the SW, discrete 

water samples from the stream were obtained to provide a basis for 

understanding of the water (see Appendix A for grab-sampling procedure). 

Samples of GW are limited to boreholes, and are restrictive, mainly in minor 

aquifer systems. 
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Table 2-2: Data used in IREM, including details of the data source analysis. 
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2.4.2.2. Phase 2 – Structural connectivity 

Overview: Development of composite indicators (i.e. risk maps), inferring patterns 

and processes and links between the systems based on the catchment 

characteristics, looking at the structure of the landscape. 

Following the collection and collation of data in ArcMap, analysis of the data to 

infer pathways was performed, specifically the estimation of runoff pathways 

based on the topographical (DTM) data using the Hydrology Toolbox, as well as 

the generation of composite risk maps according to the superficial deposit 

thickness. Within ArcMap, the estimation of the runoff pathways is not without 

making several assumptions. Effectively the generation of the pathways is as a 

form of black-box modelling, because inputting the topography and getting an 

estimate of the flow path based on the smoothed, filled surface slope, thus 

overlooking, e.g. the soil storage capacity. Nevertheless, the output pathways are 

a useful proxy to delineate flow routes. 

The composite risk map was prepared in accordance to the methodology 

discussed through personal communication with the North-East Environment 

Agency. The relative thickness of the superficial deposits was used as a primary 

indication of the risk, whereby those less than 5 m were deemed to associate with 

a very high risk of connectivity, less than 10 m high risk, and greater than 10 m 

low risk, similar to those used by the Environment Agency (Carey et al. 2017, 

Environment Agency NE, personal communication). The level of risk of 

connectivity is associated with the deposit thickness as a proxy value of the zone 

over which GW and SW would have to travel across the superficial deposits to 

reach the respective systems. That is with the assumption that the water table is 

not rebounded through the superficial layer, and that the deposits separate the 

shallow and deep GW. 

2.4.2.3. Phase 3 – Conceptualisation of GW/SW connectivity 

Overview: The third phase of the IREM approach involves the scaling down of 

the focus from the catchment scale and looking at the links between the structural 

units likely operating within the catchment boundaries, against the specific 

issues/threats identified. At this stage discussions between practitioners would 

be encouraged. The links are considered here as potential pathways for the 
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 transport of flow and solutes. For example, pathways may be inferred and 

delineated by the historical channel change or the presence of geological faults, 

thus looking above and below the surface. 

2.4.2.4. Phase 4 – Revised understanding of GW/SW connectivity 

Overview: The final phase of IREM focussed on discussing the new 

understanding to the catchment as an integrated holistic system to guide 

management, and what the results mean in practice. 

The final phase of IREM involves evaluating the current understanding of the 

systems and management practices held by practitioners and stakeholders at 

present, and from this evaluating what the conceptual model developed in phase 

3 of IREM brings to and challenges this current approach. It is about assessing 

what the collation of existing data can bring to the way in which we view and 

conceptualise the processes within catchments, and what this means for water 

quality. 

2.5. IREM pilot test – Wear catchment 

The application of IREM is demonstrated using two case study examples in the 

River Wear catchment: the Herrington Burn and Twizell Burn (Figure 2-4). The 

Herrington case is written up in detail to illustrate the application of IREM and 

how results have shaped water resource management. The Twizell case is 

presented as a short summary to demonstrate how IREM works across heavily 

modified tributary catchments with the need to address a multitude of pressures 

in complex settings. The application to the Twizell provides the baseline study for 

the subsequent research presented in Chapters 3 and 4, looking at the 

interactions and exchanges in flow and solutes. It was not possible to proceed 

with intensive sampling on the Herrington due to the nature of the streambed and 

selection of appropriate long-term sampling sites. 

At present, water quality is managed in both catchments from a predominantly 

SW or GW perspective, despite the potential coupling with the respective system 

(Kløve et al. 2011). Through the application of IREM, pressures and the likely 

states of the GW and SW based on the connectivity between the systems will be 

identified, considering the four dimensions, spatially (x, y, z) and temporally, 

moving beyond the broad catchment-based understanding held at present. Both 
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catchments are heavily modified, with historical mining and contemporary water 

quality issues attributed to effluent releases and misconnections, with the focus 

for management on end-of-pipe solutions, bearing little thought to the GW/SW 

interactions, which have not previously been accounted beyond that of the 

Magnesian Limestone carried out for the Environment Agency. The underlying 

GW is also heavily modified due to both historical coal mining and current mine 

water level control – a mitigation measure required to protect the rivers from 

pollution of iron from rising mine waters, now that the mines are closed (Personal 

communication with the Coal Authority via the Wear Rivers Trust). 

 

 Figure 2-4: The Herrington Burn and Twizell Burn catchments relative to the 
River Wear, NE England. 

 

2.5.1. Case study 1: Herrington Burn 

The Herrington Burn (catchment area: 13 km2) is a heavily modified tributary of 

the River Wear (Figure 2-6; Figure 2-5). Underlain by the Pennine Middle Coal 

Measures and Magnesian Limestone (Environment Agency 2019b, 2019c, Figure 

2-5), the GW is classified ‘poor’ according to the WFD (Environment Agency 

2019b), and the overlying SW as ‘moderate’ (Environment Agency 2019d). There 

is an objective to move the assessment of the Magnesian Limestone and stream-

water quality to ‘good’ by 2027 (Environment Agency 2019b, 2019d). There is no 

similar objective for the Coal Measures, that is despite the extensive coal and 
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metal mining waste effluents, with GW quality set to remain of poor quality 

(Environment Agency 2019c). There is a need to extend the understanding of 

GW/SW interactions, particularly in the area of the Coal Measures (Figure 2-5), 

with the potential detrimental effect of GW on the connected SW. 

Water quality is a key challenge in the Herrington, especially regarding elevated 

nitrate concentrations in GW abstractions through the Magnesian Limestone at 

the borehole marked on Figure 2-5 (Northumbrian Water, personal 

communication). Currently, efforts are reductionist, targeting the impact at the 

receptor, in this case, the abstraction borehole, whereby prior to pumping as 

drinking water, the abstracted GW is blended to lower the nitrate levels for safe 

consumption. However, great costs are associated with the decontamination of 

the abstracted water. The reduction of such costs calls for more effective 

management with an exploration of potential sources and pathways of nitrate. 

Practitioners at the Environment Agency and Northumbrian Water initially 

believed that the nitrate source was attributable to the downwelling of poor-quality 

SW. Limited sampling and conceptualisation of the catchment inhibits the 

understanding and addressing of problems, such as that of the borehole. There 

is a need to conceptually understand the connectivity before it is possible to start 

thinking about the water movements and why the water at the borehole is 

contaminated, identifying potential pathways within the catchment, thus 

accounting for the local-scale characteristics, assisting in the addressing of a 

specific problem. 
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Figure 2-5: The Herrington Burn, tributary to the Lumley Park Burn and River Wear. 

Lower– borehole location and bedrock geology 1:625k (source: BGS 2010). 
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2.5.1.1. Identification of water quality threats/stresses 

Threats within the SW catchment boundary of the Herrington are broadly 

encompassed as historical and contemporary sources attributing to surface coal 

mining and waste-water effluent releases respectively (Figure 2-6). Whilst some 

effluent releases are consented, others are intermittent from combined sewer 

overflows (CSOs) and outfalls, with releases most likely during storm events 

(Northumbrian Water, personal communication). There is the added pressure 

from redevelopment in the catchment, with expanding residential areas in the 

middle and lower Herrington, however, the impacts are not explored in the scope 

of this study. Consequently, a multitude of threats are present, from which 

pollutants can enter the stream from the landscape, including diffuse pressures 

from the surface, including those from worked coal mines and associated spoil 

heaps (Figure 2-6), besides from contemporary land use (Figure 2-7), e.g. animal 

grazing and pastoral farming. 

 

Figure 2-6: SW network, showing mining and effluent threats (Source: Coal Authority 
2018, Northumbrian Water, personal communication), with elevation (Data sourced 

from: Environment Agency 2015). 
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Figure 2-7: Simplified land cover map of the Herrington Burn catchment (adapted from 
source: NERC - CEH 2007). Marked is the continuing residential redevelopment at 

Elba Park. 
 

SW quality is typified with localised spikes in sulphate and nitrate compounds, 

likely associated with the mining and effluent wastes respectively (Figure 2-8). 

Meanwhile GW monitoring of the abstractions from at the borehole (Figure 2-6) 

indicate elevated nitrate concentrations, around 80 mg/l – according to sampling 

conducted by Northumbrian Water (personal communication), The concentration 

is much higher than that in the stream. Initially practitioners suggested that the 

GW nitrate source was from the SW. Although, the quality of the stream water 

questions this (Figure 2-8), with the need to further consider the system 

characteristics. 
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Figure 2-8: SW sampling locations during September/October 2016. 
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2.5.1.2. Structural connectivity 

Initially the hydrological connectivity was assessed between the land and 

surface-water. Estimating the surface-stream runoff pathways using LiDAR DTM 

data and the ArcMap hydrological tools show several potential overland routes 

by which water enters the channel (Figure 2-6). Although they have not been 

validated during storm events, they are deemed potential routes through which 

the runoff could enter the channel as observed during walkover surveys. The 

stream is evidently well-connected to the surrounding hillslopes, with associated 

point-source releases, as well as sources of diffuse runoff, corresponding with 

localised chemical changes (Figure 2-8). 

The presumption from practitioners was originally that the stream was losing to 

GW, hence the loss of pollutants to the ground; this has been the working 

hypothesis, which overlooks the more localised patterns along the reach, which 

may be caused by sub-reach variations in the superficial deposit thickness and 

permeability. The connectivity across the streambed was deemed to be a function 

of the thickness of the superficial deposits, the likelihood of exchange is 

summarised by a composite risk map (Figure 2-9). Where the superficial deposits 

are less than 1 m, GW/SW exchange were considered highly likely (Environment 

Agency NE, personal communication). Looking at Figure 2-9, the thickness of the 

superficial deposits in the Herrington headwaters’, SW to GW losses appear likely 

(Figure 2-9). Thus, supporting the likelihood of loss of nitrates at the headwaters, 

with potential to enter the subsurface via discrete pathways, potentially entering 

the deeper strata via geological faults (Figure 2-9), or into the drainage network. 

Although such assumptions need to then be questioned with the addition of other 

data sources. 

As the depth of the water table in the upper aquifer of the superficial deposits is 

unknown, with no sampling boreholes in the vicinity, although it is probable that 

given the relative thickness of the deposits that there is no attenuated, or perched 

water in the superficial system (Environment Agency NE, personal 

communication). Perching of water is more likely in the artificially modified land, 

such as the spoil heaps and landfill, not directly below the stream (Environment 

Agency NE and Northumbrian Water, personal communication, Figure 2-9). 
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Assuming the stream is essentially ‘leaky’, with permeable silts and clays (Figure 

2-10) and that there is limited potential in the superficial deposits for perching of 

water it is highly probable that the stream-water leaks directly into the unsaturated 

zone below. The extent of the unsaturated zone is to a depth of 30 m below the 

streambed (Personal Communication with the Coal Authority via The Wear Rivers 

Trust), comprising bands of mudstones and sandstones, with geological faults 

lines intersecting the strata (Figure 2-10). Despite the potential of diffuse and 

direct pathways to the subsurface, via the superficial material and faults 

respectively (Lawler et al. 2009, Tellam 2009), the stream-water nitrate 

concertation is much too low (Environment Agency NE, personal 

communication). Further discussion with practitioners during the research and 

given the low nitrate concentrations in the SW, efforts were subsequently 

focussed beyond the channel, looking more closely at the subsurface. 

 

Figure 2-9: Superficial deposit thickness with inferred geological faults (Source: BGS 
2013) and SW connection (A to B). Rectangle shows the hypothesised nitrate source 

zone. 
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Figure 2-10: Superficial deposit composition and inferred geological fault lines (Source: 
BGS 2013). 

 

Collating additional data with the composite risk map, the nitrate source was 

reconsidered, taking a closer look at the subsurface environment. It was 

subsequently hypothesised that nitrates could be either entering directly into the 

subsurface via the hillslopes, e.g. from landfill (Figure 2-9) and flowing towards 

the borehole via a geological fault (marked B – Figure 2-9). Or, that polluted water 

was directly entering the system via fault A (Figure 2-9) and flowing towards fault 

B, and onto towards the borehole. The A-B fault connection was also considered 

to be via the surface. It was found that under collation of the historical channel 

maps, that there is a historical path of the Herrington (Figure 2-11). Now 

culverted, water drains from agricultural fields into the drainage system via this 

path, thus potentially transmitting polluted water from the Herrington headwaters. 

In the headwaters, SW sampling was indicative of nitrate enrichment (Figure 2-

8). However, subsequent interrogation of the drainage network led to discount 

any leaks in the system (Northumbrian Water, personal communication). 

While the investigations in the Herrington continue, IREM has proved insightful in 

re-evaluating the landscape, stressing the need to consider the multiple spatial 

and temporal dimensions when focusing on water quality problems. The 

 

Faults 



65 
 

complexity of the issue is high, however, bringing data together has facilitated 

several avenues of investigation. As Figure 2-11 shows, the accumulation of data 

supports the hypothesising and testing of several ideas, of which would not have 

been considered without inferring connections in the landscape 

 

Figure 2-11: Historical Vs. contemporary path of the Herrington Burn (Source EDINA 
Digimap © Crown Copyright and Landmark Information Group Limited 2018. All rights 
reserved. [1853-1995].) with contemporary and historic threats (Source: Northumbrian 
Water, personal communication), land cover - 2007 (Source: NERC - CEH 2007), mine 
entries (Source: Coal Authority 2018) and geological faulting (Source: (BGS 2013) and 

source-areas contributing runoff to the channel. 
 

2.5.1.3. Revised understanding of GW/SW connectivity in 
working practice 

By bringing together data and assessing the links between factors influencing 

exchanges between surface and subsurface systems, a more complete 

conceptual understanding of the systems can be derived and hence facilitates a 

more robust assessment, e.g. of the nitrate source problem in the Herrington. 

While it was initially thought that the nitrate was sourcing from the stream-water, 

subsequent explorations initiated on these research findings have led to this 

theory being discounted. A series of other sources were investigated in follow-up 
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to the enhanced insight into the connectivity. Specifically, the leakage from the 

urban drainage network at the head of the Herrington, runoff from landfill (based 

on the land-stream connectivity) and more recently to look more closely at 

potential damage to the borehole fabric. Site investigations are still on-going, with 

most recent efforts are focused bailing of water from the borehole for subsequent 

chemistry determination. From the testing, it appears that the source of nitrate is 

localised at around 50 mAOD (Northumbrian Water, personal communication). 

Only by understanding the four dimensions together using the IREM approach 

was it possible to challenge previously held assumptions and explore small scale 

vertical dimensional changes within the systems; if the vertical component of the 

system was constant would have meant such important findings would have 

previously been overlooked. Comparing data over a period, specifically historical 

information with current information, enables for a time dependent assessment 

to be undertaken. 

2.5.2. Case study 2: Twizell Burn 

A brief write-up of this case study is presented to illustrate the application of IREM 

to a second catchment: the Twizell Burn (catchment area: 19 km2, Figure 2-4). 

Similar to the Herrington, the Twizell is currently failing to meet the WFD 

objectives (Environment Agency 2019a). The Twizell has been exclusively 

managed from the SW environment. Threats to the SW comprise effluent 

releases associated with residential areas (CSOs and releases from the sewage 

treatment works) and historic coal mining spoil heaps (Figure 2-13). GW quality 

is poor due to mining impacts, attributing to the mobilisation of concentrated 

oxidised pollutants from mine water rebound and the saturation of old coal 

workings. The National Coal Board (precursors to The Coal Authority) predicted 

iron-rich mine water would discharge to the River Wear and its tributaries, the 

extent and impact, however, remains unquantified (Groundwork NE & Cumbria 

2015). Managed GW rebound through the Coal Measures has been achieved 

through pumping, thus effectively disconnecting the GW in the bedrock aquifer 

from the rivers. However, the role of perched GW in superficial deposits are now 

questioned as to the impact they have on the SW system (Environment Agency 

NE, personal communication). Practitioners have previously addressed the GW 

and SW systems of the Twizell to be disconnected, that is despite the heavy 

modifications. Discussions arising from the TOPSOIL partnerships have led to 
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question the connectivity of the Twizell, moving from the focus of the GW and SW 

systems been closed from one-another. 

2.5.2.1. Mapping of threats to water quality 

A multitude of stressors are affecting the stream-water quality of the Twizell 

(Figure 2-12). While effluent releases from assets are largely addressed by the 

water company, additional diffuse source, including coal mining effluents are not 

dealt with, therefore there is a need to quantify the threats and start thinking about 

the pathways and impacts (Groundwork NE & Cumbria 2015). As with the 

Herrington, the understanding of the systems within the catchment boundaries 

are deterred with the focus of monitoring and management from a prevailing 

statutory perspective. Thus, calling for the mapping of the threats to water quality 

as the starting premise of an improved understanding of the systems. As with the 

Herrington, the connectivity of the systems across the multiple dimensions has 

been interrogated, looking at the that the connectivity between the systems. 

 

 

 
Figure 2-12: Threats to the Twizell Burn catchment, including historic and 

contemporary sources, e.g. sewage treatment work (STW) and combined sewer 
overflows (CSOs) (Source: Northumbrian Water; Coal Authority, 2018). 
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Figure 2-13: SW sampling points across the Twizell Burn catchment. 
 

As part of the application of IREM, grab-samples of the SW were obtained across 

the catchment between September 2016 and September 2017 (Figure 2-14). The 

composition of the stream-water was variable, both spatially and temporally 

(Figure 2-14, Figure 2-15). The headwaters displayed elevated mining-related 

solutes, specifically SO42- , Mn and Fe. Meanwhile, in the central parts, elevated 

nitrate compounds aligned with waste-water effluents, namely NO3- and NH4+ in 

proximity to the sewage treatment works (Figure 2-13, Figure 2-14). The 

concentrations of NO3- remained elevated further downstream, coinciding with an 

accumulation of mining-related effluents. With increasing flows, such as during 

February 2017, the dilution of mining-related solutes was evident with 

enhancement in nitrate-rich waters. From the sampling it is apparent that there is 

an accumulation of diffuse pollution sources. Efforts to address pollution have 

largely focused on point-sources, yet there is a growing need to consider the 

diffuse sources, and the accumulated threat to the freshwater systems, 

specifically considering how the threats operate and impact on the water quality. 

 

 

STW 
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Figure 2-14: Ions sampled in the SW of the Twizell from Sept16 to Sept17. 
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Figure 2-15: Ions and trace metals sampled in the SW of the Twizell from Sept16 to 
Sept 17. 
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Flow pathways from the point and diffuse sources of pollution are considered as 

a function of the hillslope runoff as well as those across the stream-subsurface 

interface. The Twizell is well-connected to the terrestrial landscape, with several 

small tributaries and inflows joining the main channel (Figure 2-16). In addition to 

the high heterogeneity of the superficial sediments with potential preferential 

pathways with the subsurface system based on the thin superficial deposits 

(Figure 2-16). 

The superficial deposits are of variable thickness (Figure 2-16), comprising highly 

permeable gravel, sand and silts (BGS 2019, DEFRA 2019, Figure 2-17). The 

water table relative to the stream is also variable, in accordance with the pumping 

of the GW in the coal mining blocks (Coal Authority via the Wear Rivers Trust, 

Personal communication, Figure 2-16). It is thought that the Stanley mining block, 

the GW is connected to the stream, and in the Central Durham South mining 

block, there is an unsaturated zone (approximately 40 m depth) between the SW 

and GW systems (Personal communication with the Coal Authority via The Wear 

Rivers Trust). 

 

 

Figure 2-16: Composite risk map based on the superficial deposit thickness across the 
Twizell Burn catchment (Source: BGS 2013). 
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 Figure 2-17: Mining blocks and superficial geology types (Source: BGS 2013, 
Coal Authority 2018). 
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Up until this investigation is was thought that the Twizell was entirely 

disconnected from the deep GW, however, this view has since shifted, and in-

fact the presence of minor, perched water tables are now to be considered given 

the risk of connectivity (Figure 2-16). Perched water in the headwaters of the 

Twizell from the Stanley block and the perched water within the drift deposits 

underlying the stream reaches in the Central Durham South mining block are 

thought to be may be acting as a buffer/propagator to the identified threats, with 

the potential of discrete GW/SW movements. The thickness and composition of 

the superficial deposits suggests that there is a higher risk of connectivity with the 

stream-aquifer in the central and lower reaches (Figure 2-16; Figure 2-17). 

2.6. Evaluating the IREM approach 

The results of this study demonstrate the potential use of secondary spatial data 

as a way of exploring and developing a preliminary understanding of the 

connections between the terrestrial and aquatic systems where a paucity of 

monitoring data deters alternative approaches. By assessing the connections 

then allowed for thoughts to lead to the factors controlling and driving the 

evolution of water quality threats, which ultimately need to be better understood 

to facilitate more effective and sustainable management of water resources 

(Ivkovic et al. 2009, Bracken et al. 2013). 

The application of IREM allows for a relatively simple, first-order approximation 

of the characteristics and connectivity compared to alternative, more technical 

and intensive approaches, as outlined e.g. by Oyarzún et al. (2014). IREM offers 

a useful insight into the system links and pathways, looking at simple patterns, 

such as those associated with the superficial deposits that may have the potential 

to support downwelling stream water, and links these observations with other 

factors, e.g. the thickness of the potential perching material. From such simple 

patterns, there is the opportunity to start informing how multiple threats impact on 

the water quality, above and below the streambed, complying a more complex 

picture from simple links between pressures and drivers (Harris 2007, Kluger 

2008). 

Recognising the links between controlling factors is essential element when 

working towards the ICM principles (Macleod et al. 2007, Kanndorp et al. 2018). 

Until now, the understanding has been that the stream environments have been 
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closed to the GW, however, looking at the longitudinal, lateral and vertical, and 

temporal dimensions where relevant, and subsequent discussion with 

practitioners are indicative that the system connectivity is inherently complex and 

variable, requiring further investigations. Previously, such understandings of the 

connectivity having been omitted with high resolution screening studies 

(Wainwright et al. 2011). Applying IREM to the Herrington and Twizell catchments 

has proven insightful in terms of the next steps with management and research 

respectively. 

The application of IREM has challenges the fragmented views of two heavily 

modified systems, faced with the complex water-quality issues attributing to a 

multitude of pressures. Decoupled views of the systems have hindered the 

understanding and thus likely the improvement of the water quality with 

procedures focusing on the end-point monitoring and dealing with the 

consequences rather than looking at the heterogeneity of the systems, 

accounting to four dimensions over space and time. While it is tempting to 

assume that systems are homogenous, which effectively simplifies the way the 

water movement and interactions, this is simplification is at the cost of 

mismanaging the issues the environment faces at the cost of putting stress on 

the water resources for humans, ecology and the environment. There is a need 

to recognise the complexity of systems. In both case studies it is evident that the 

systems are likely to be variably connected as a function of the catchment 

characteristics, for example, the geology and the permeability of sedimentary 

deposits. The understanding requires an insight based on several pieces of data 

to derive useful information, essentially by removing one could significantly alter 

the findings. 

2.6.1. Further work 

The GW/SW connectivity in the Herrington is complex and inherently important 

to consider in dealing with the drinking water abstractions. The findings of the 

application of IREM have led to the discounting of the original hypothesis that the 

source of nitrate at the borehole was from the stream environment. Consequently, 

leading to investigating and interrogating the drainage system, however, it was 

also discounted, given the relatively low nitrate levels compared to those sampled 

in the borehole. Most recently, at the time of writing, investigations to look at the 

borehole fabric continue, with no definitive source having yet been found. Without 
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the application of an integrated approach such as IREM, the investigations were 

arguably at a stand-still, lacking coordination due to the missing of vital 

information, requiring the collaboration of data to make sense of a very complex 

system. 

In the case of the Twizell, the GW/SW system is more intricate in that the 

managed rebounding GW and shallow GW of the superficial systems is likely 

acting as a buffer and/or propagator to the pollution arising from coal mining and 

contemporary sources, e.g. effluent releases, thus requires further investigation. 

Dissimilar to the Herrington which is receiving targeted efforts as part of on-going 

work on behalf of Northumbrian Water, the Twizell remains somewhat of a black- 

box system, with scattered efforts to address water quality at various points 

throughout the catchment, looking at asset failure, for example (Personal 

communication with Northumbrian Water). However, there is no wider scope to 

look at accounting the impacts of industry with the contemporary threats, thus 

leading for the thesis to carry forward looking specifically at the superficial system 

of the Twizell. 

The primary investigations carried out in this chapter subsequently lead onto 

Chapter 3 – to look at the functional connectivity along the Twizell. In response 

to the changing hydrological conditions, the thesis investigates specifically the 

role of local scale processes of minor aquifers in the buffering/propagation 

potential of overlying streams, with the need to better understand local processes 

in the wide catchment understanding. 

2.7. Conclusions 

To summarise, using the existing spatial datasets has allowed for a more holistic 

understanding of the systems to be developed. Ultimately, IREM allows for a first-

order insight when there are no other data available, such as the possibility of 

intensive field campaigns, which are costly and may ultimately target the wrong 

areas to address the challenges. IREM also encourages discussion between 

practitioners to support collaborative management, something which has 

traditionally been lacking in management decisions (Downs et al. 1991). 

However, while IREM allows a first-order approximation of the connectivity to be 

conceptualised, for it to be rolled out in practice further refinements are required, 
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including the use of temporal data, such as flow and rainfall records to allow for 

changes over time to be factored into the understanding generated. 

As demonstrated throughout this chapter, we need to start thinking about the 

catchment systems in a different way, not just as that the pollution enters at 

points, but from this, how the system is and interacts with the landscape and other 

features around it. Moving beyond the mismanagement of water resources 

requires a holistic and integrated understanding, and this is unachievable under 

the current protocol and procedures by which we currently attempt to understand 

the systems. Over recent years, the movement towards collating data to derive 

information and infer understandings to illustrate the GW/SW connectivity has 

grown. There is now the need to then look at what is happening in specific 

catchments of interest where water challenges prevail. There is evidently a need 

for multi- dimensional focus by starting to establish the movements in flow and 

solutes and what such processes attribute to the way in which they deal with 

pollutants and contaminants. 
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“I still believe in heroes” 

Nick Fury (Avengers Assemble, 2012) 
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Chapter 3 - Developing an integrated perspective on 
water chemistry between the stream and subsurface 

3.1. Introduction 

The work presented in this chapter builds on the findings of Chapter 2, which has 

led to consider the processes operating at the reach-scale GW/SW interface. The 

chapter considers the role of the minor aquifer system acting as a potential buffer 

and/or propagator to pollutants resulting from the historic coal mining, besides 

contemporary effluent wastes. Moving beyond the initial assessment of the 

GW/SW water connectivity, this chapter seeks to explore the mechanisms by 

which water moves across the streambed, in-turn assessing the interactions and 

exchanges in flow and solutes attributing to the dynamics and processes 

operating at the reach-scale within the Twizell Burn catchment. 

The regulation of water quality has traditionally been undertaken from either a 

surface or subsurface perspective, with separate prioritisations and fragmented 

frameworks for managing each (Macleod et al. 2007, Staes et al. 2008, Li et al. 

2016). Now deemed unsustainable, there is a growing focus on the need for 

integrative and adaptive solutions (Watson and Howe 2006, Staes et al. 2008, 

Schoeman et al. 2014). A key driver of integrative management is the WFD (CEC 

2000), a novel approach based on policy, focusing on understanding and 

integrating all aspects of the water environment at the catchment-scale (Teodosiu 

et al. 2003, Voulvoulis et al. 2017, Varli et al. 2018). Promoting the protection and 

enhancement of SW and GW bodies, the aim of the WFD is to achieve the 

objective of ‘good’ status for all water bodies originally by 2015, and now 2027 

(DETR 2001, Schmedtje and Kremer 2011). An integral element to the holistic 

integrated management is developing an understanding of the interactions 

between the water bodies. There is emphasis on the local-scale processes 

operating within the boundaries of the catchments, and thus developing a more 

complete understanding, leading to an improved whole-systems approach to 

water management. 

GW/SW connectivity varies spatially and temporally in response to geomorphic 

and hydrogeologic features (Tetzlaff et al. 2007, Banks et al. 2011), including the 

geology, topography, climate, and the position of the stream-water body and 
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 water table with exchanges of the GW and SW occurring at the interface known 

as the hyporheic zone (Winter et al. 1998, Sophocleous 2002, Buss et al. 2009). 

Hyporheic flow paths are important drivers supporting the interconnection of 

surface and subsurface waters at certain locations (Malard et al. 2002, Tetzlaff et 

al. 2007), driving the exchanges and interactions of flow and solutes between the 

subsurface and stream-water systems with the mixing of stream water with deep 

GW and shallow GW of underlying aquifers. 

Minor aquifers which form in the permeable superficial layers underlying the 

surface are often capable of supporting water supplies at the local scale, in some 

cases forming an important source of base flow to rivers (Environment Agency 

2013). The vertical hydraulic conductivity of unconsolidated strata permits the 

loss and gain of stream-water and GW to and from the subsurface (Rains et al. 

2006). Assessing GW/SW interactions with minor aquifers is challenging, notably 

because of the heterogeneity along the bed and banks, and complex flows and 

hydrochemistry associated with these settings, but monitoring is much less 

intensive in comparison to more productive formations (Jones et al. 2000, Ibrahim 

et al. 2010, Abbott et al. 2017). As a result, interconnections between the SW and 

shallow GW are often poorly understood (Niswonger and Fogg 2008, Conant et 

al. 2019), regardless of the contribution to the quality and quantity of water 

resources of the overlying stream-water, for example, through the provision of 

baseflow (Soulsby et al. 2001, Ivkovic et al. 2009, Lerner and Zheng 2011, Lee 

et al. 2018). 

Emerging research has focussed on investigating the role and impact of minor 

aquifers on stream-water mainly using nested hierarchical approaches, often 

focusing on small scale, point features, such as riffles, pools and meanders (e.g. 

Soulsby et al. 2001, Malcolm et al. 2005, Käser et al. 2013), and nutrient 

dynamics (e.g. Dudley-Southern and Binley 2015). Yet in practice, despite the 

multiple threats to water quality, particularly in heavily modified tributary systems, 

the focus remains segmented, overlooking this stream-subsurface connectivity 

(McDonnell 2008). Most often the fragmented view of the SW and GW systems 

attributes to is a result of the lack of baseline studies and that there is no protocol 

to address and manage the minor superficial systems given that there is no 

provision of drinking water, for example, thus lack of need to prioritise from a 

management priority, hence lack of monitoring. However, as the GW/SW systems 
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are likely connected, it is necessary to account to what is happening, given that 

a deteriorating GW system could impact greatly on the SW (Kløve et al. 2011), 

Therefore potentially impacting on the water quality of the stream, as also 

elsewhere in the catchment, or neighbouring water bodies. There is a need to 

challenge the mismanagement, especially where multiple threats are acting on 

the GW and SW systems. There is the need to understand the processes 

operating locally within catchments and link these to the wider catchment 

understanding to facilitate a holistic and integrated focus to water management. 

3.2. Impact of minor aquifers on stream water 

Despite challenging the success of integrative system management, isolated 

monitoring and management strategies remain under current legislation (Kalbus 

et al. 2006, Shepherd et al. 2006, Barthel 2014). Consequently, where a regional 

water table drops below and separates from the saturated zone associated with 

the streambed, it is assumed that water seeps only in the direction towards the 

water table below (McDonald and Harbaugh 1988, Winter et al. 1998) . Once this 

disconnection is assumed, it is thought that any further changes in the water table 

are negligible on the stream, causing no additional seepage loses (Niswonger 

and Fogg 2008). While this conventional view is held, the SW and GW are 

typically viewed and managed as ‘black-box’ or ‘pipe’ systems (Bencala 1993, 

Bencala et al. 2011), assuming they are closed from one another with the local 

or regional water table behaving independently of the stream (Niswonger and 

Fogg 2008). The tendency in practice has thus remained to address and manage 

issues with end-of-pipe solutions (Staes et al. 2008), decoupling the stream from 

the GW systems, assuming no interaction across the streambed. 

However, such approaches do not consider the possibility of perched or mounded 

water supporting the formation of minor aquifers within the permeable strata 

underlying the streambed, which may diminish seepage loss and support gaining 

conditions in a stream (Soulsby et al. 2006, Niswonger and Fogg 2008). Often 

the downwelling stream water forms a saturated horizon within the porous 

medium, forming an inverted water table higher than the regional GW table 

(Leonhart 2005, Figure 3-1). The perched GW is often separated to the regional 

GW table by an unsaturated zone (Niswonger and Fogg 2008, Figure 3-1). 
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Figure 3-1: A perched hyporheic zone created only by infiltration of channel water 
beneath the stream bed (Source: Adapted from: Malard et al. 2001). 

 

Where minor aquifers appear disconnected to the regional water table by an 

unsaturated zone, it has been common practice to manage the stream water 

quality entirely from the surface, decoupled from the GW system (Niswonger and 

Fogg 2008). However, this decoupling assumes that the exchanges between the 

stream water and the minor aquifer are negligible, and that there are no losses 

or influences with the major aquifer (McDonald and Harbaugh 1988, Winter et al. 

1998), thus limiting the view exclusively to the stream water. Nevertheless, this 

simplified view inhibits an integrated understanding, because only managing 

catchments from the point-source threats at the surface, means that the 

integrative element of the management frameworks, such as the WFD, are lost, 

despite the potential exchanges between the GW and SW systems. 

As acknowledged by Niswonger and Fogg (2008), few studies have been carried 

out which focus on the role of perched GW underlying streams on the water 

quality, and instead the focus of minor aquifer exchanges has been beyond the 

stream channel in the floodplain sediments, for example, on the surface- 

subsurface exchanges in the vadose zone (e.g. Orr 1999, Ascott et al. 2015, 

Ascott et al. 2016). Recent studies, for instance by Ibrahim et al. (2010), have 

focused on the conceptualisation of hyporheic flow paths in minor aquifers, 

looking at the interplay of geomorphic and hydrogeologic features at the reach 
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scale. The understanding of these processes and interactions in systems in 

practice remains poorly addressed across tributary catchments, including those 

in County Durham. That is despite the multiple threats to the water quality in 

highly heterogeneous and complex systems. As discussed in Chapter 2, we need 

to consider the system in four-dimensions, with the lateral, longitudinal, vertical 

and temporal changes to develop an integrated perspective, and better manage 

water quality. 

The aim of this chapter is to assess water quality beyond the one-dimensional 

focus to investigate the role of minor aquifer systems in heavily modified 

catchments and to assess the influence of shallow GW/SW exchanges on stream 

water quality. The focus is on deducing the flow interactions and solute 

exchanges in-stream and at the GW/SW interface of minor aquifers, influenced 

by changes in stream flow and geomorphic constraints. The existing 

understanding of these systems and interactions, which frames this work, is 

explained in the following section. 

3.3. Assessing the near-surface exchanges between minor 
aquifers and stream water 

GW/SW exchanges occur across a range of scales, along a continuum of 

hyporheic flow paths, whereby water that originates from the stream enters and 

leaves the subsurface several times along a reach (Woessner 2017). Hyporheic 

flow paths within minor aquifers can extend laterally at considerable distances 

from the stream, especially where high hydraulic conductivities exist (Tetzlaff et 

al. 2007). The identification of hyporheic flow paths is often difficult, especially 

where they are well-developed (Woessner 2000). Often, investigations of the flow 

paths and position of the hyporheic zone are informed by the reach- and channel-

unit scale features (e.g. Ibrahim et al. (2010)). Also used are biogeochemical 

processes linked to organic matter in the riverbed which are interpreted from the 

distribution of relevant dissolved redox-sensitive species (dissolved organic 

carbon (DOC), O2, NO3-, SO42-, Mn and Fe), as well as pH and alkalinity (Baker 

et al. 2000), and ecological gradients (Boulton et al. 2010). 

Methods used to investigate the interactions between the stream and shallow GW 

are well-established and include point- to reach-scale approaches (Brodie et al. 

2007) with varying complexity and costs associated, as outlined previously in 



84 
 

Chapter 1. Examples include: in-stream piezometers/shallow wells, seepage 

meters, floodplain monitoring wells, steam gauging, tests to determine the 

hydrologic properties of saturated sediments, tracer studies, mapping of head 

distributions and flow directions, sampling of biota and geochemical constituents, 

modelling water exchange locations and rates, and defining geochemical cycling 

and heat exchange (e.g. Brodie et al., 2007; Woessner, 2017). 

Exchanges have the potential to result in gains or losses of stream-water to and 

from the subsurface and are evident through changes in the stream discharge 

established through seepage metre measurements and differential flow gauging, 

for example (Brodie et al., 2007). Fluxes in water are significant in that solutes 

are transported and exchanged within the hyporheic zone (Bencala et al. 2011, 

Krause et al. 2014, Freer et al. 2014). Solutes which originate from the surface 

or subsurface have the potential to cross the streambed, which in turn has 

implications for the ecology and nutrient dynamics of the respective systems 

(Boulton et al. 1998). 

Within the hyporheic zone, hydrological, biological, and chemical changes are 

known to occur within the interface, which acts as a source and sink of pollutants 

(Kalbus et al. 2006, Lawrence et al. 2013). The hyporheic zone has previously 

been investigated in dealing with mining-derived pollutants (e.g. Gandy and 

Jarvis 2006) and nutrients (Dudley-Southern and Binley 2015). Consequently, 

such processes can result in the degradation, transformation, precipitation and 

sorption of elements present in the water (Kalbus et al. 2006). Now, GW/SW 

water exchanges are recognised as key mechanisms for the fate and transport 

of solutes, including nutrients between the GW and SW bodies (Dudley-Southern 

and Binley 2015). Therefore, an understanding of the connectivity is required to 

then determine the impacts on water quality, quantity and ecology (Brodie et al. 

2007). 

As minor superficial aquifers are often localised, there is a need to return the 

focus to the empirical understanding, at the intermediate scale, investigating the 

impact of the hyporheic flow paths and the subsequent impact on solutes as water 

flows through catchments, particularly at the reach scale (10 m – 1 km) (Bencala 

et al. 2011). Rather than continuing with the assumption that pollutants enter and 

leave the channel via inflows, approximating channels as a black box without 

looking at what processes are occurring within the reach, it is crucial to 
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understand losses and gains to and from stream to the subsurface as a function 

of the minor aquifer system (Niswonger and Fogg 2008). The focus should be on 

the more localised changes in the solute chemistry across the streambed to 

develop integrated assessments of catchments, to then establish and quantify 

the stream-catchment connections and the solute transport and transformations 

(Bencala et al. 2011) feeding into the catchment-scale understanding, informing 

management under frameworks, e.g. the WFD. 

The purpose of this chapter is to: 

1. Quantitatively assess the role of the minor aquifer position through field 

sampling techniques; 

2. Assess the chemistry of the SW and shallow GW, where possible 

sampling through a range of hydrological conditions to allow for an insight 

into the interactions with the stream flow, facilitating a first-order flow and 

chemical budget; and 

3. Investigate the role of the minor aquifer as a source and sink of flow and 

solutes from multiple pressures. 

3.4. Study area 

3.4.1. Locations and SW resources 

The study area is in the Twizell Burn (19 km2), a tributary of the River Wear in 

County Durham, UK (Figure 3-2). The catchment is heavily modified; there are 

multiple threats to the water quality, including effluent discharges and historic 

pollution from the abandoned coal mines and contaminated land comprising 

waste spoil materials (Groundwork NE & Cumbria 2015; Personal communication 

within TOPSOIL Group; Figure 3-2). Previous understanding of the response and 

impacts to these perceived threats has been limited to regulatory spot sampling 

of the SW, assessing WFD compliance, with the extent of the historic industrial 

impact been largely unaccounted (Groundwork NE & Cumbria 2015) beyond that 

in the Twizell headwaters by Younger et al. (2002). 

This study focusses on a 1.3 km reach of the Twizell (Figure 3-2). The reach was 

selected for an intensive monitoring campaign (April-July 2017) to assess spatial 

variations and the temporal controls on the water quality, including the role of the 
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GW/SW interactions, considering the flow and chemistry exchanges between the 

stream and shallow pore-water of the minor aquifer. GW/SW exchanges have not 

previously been considered in this catchment, albeit previous studies in the upper 

Wear catchment in the Rookhope Burn have explored metal mining and its impact 

on the hyporheic zone (Palumbo-Roe and Dearden 2013b). This research gap 

remains despite the extent of pollution and abandoned industry, and the 

anticipated impact on the SW, streambed and GW. 

The reach is heavily modified, with adjusted channel form and artificial structures 

post-coal mining. The upper structure comprises a 150 m stepped weir (Figure 

3-2) to divert the channel to allow for the dumping of mine wastes in the 

neighbouring farmland (Hartley and Wright 1988). Flowing through meandering 

sections with a series of riffle-pools, the reach lies downstream of the sewage 

treatment works and has extensive iron-ochre staining, supporting the need for 

an investigation into the impact of historic industry and contemporary threats. 

Following the conceptualisation in Chapter 2 using the IREM framework, this 

particular reach was selected on the basis of the separation from the regional 

water table due to the pumping to manage the rebounding GW post-mining of the 

Middle Coal Measures Formation, and that the complex superficial strata which 

are thought by practitioners to support a minor aquifer (DEFRA 2019; Personal 

Communication with Environment Agency NE and Northumbrian Water via 

TOPSOIL project meetings). The reach therefore provides an opportunity for 

developing an understanding of the GW/SW interactions and exchanges and the 

impact on stream-water quality, something which has not been previously 

considered for this catchment, and also where multiple pressures prevail to 

impact on the water quality. This assessment and understanding will better inform 

the current understanding of the water quality and thus the management of the 

water resources in catchments such as the Twizell with multiple threats to the 

water quality, which have been exclusively considered from the stream-water 

perspective. 
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Figure 3-2:: (a) River Wear and Twizell Burn relative to the UK; (b) threats to the SW 
[Source: Northumbrian Water; Coal Authority 2018]; (c) reach-scale site showing 

threats and sampling sites; d) photos [i] sewage treatment works, [ii] stepped weir at 
upstream. 

 

3.4.2. Geology and hydrogeology 

The Twizell is underlain with highly permeable unconsolidated glaciofluvial 

superficial (drift) deposits formed during the Quaternary period, comprising 

coarse sand, silt, gravel and occasional clay deposits (BGS 2019; Figure 3-3). 

Superficial deposits are thought to support the formation of a minor aquifer, with 

the potential to sustain local water supply and baseflow (DEFRA 2019). 



88 
 

Underlying the superficial deposits are sedimentary bedrock, the Pennine Middle 

Coal Measures Formation comprising Mudstone, Sandstone and Siltstone (BGS 

Geology, 2018). Faulting of the bedrock strata is apparent upon review of 

geological records, although the inferred dip direction and water flows are 

unknown, thus require investigation beyond the scope of this study. Coals seams 

intersect the bedrock strata and have been extensively mined. Mining flourished 

in the catchment from the 1800s to late 1900s (Groundwork NE & Cumbria 2015). 

Since the ceasing of mining, rebound of GW through the sedimentary bedrock 

has been managed through pumping (Personal communication Coal Authority 

via the Wear Rivers Trust). GW levels in the Stanley mining block are fully 

rebounded, while those of the Central Durham South mining block continue to be 

pumped south-east of the Twizell catchment at Kimblesworth. Following the 

ceasing of pumping in the future, the time of which is not yet documented, the 

Coal Authority expect that artesian conditions will arise. The deep GW within the 

Coal Measures is classified as having poor status, failing to meet the WFD 

objectives, and deemed unrecoverable given the lasting impacts and time 

necessary to clean-up to pre-industrial conditions (Environment Agency 2019c). 

The impact of deep GW on the stream-water is unknown. The scope of this study 

is to, however, challenge the current understanding and role of the shallow 

system, looking at the influence of the near-stream sediments to the stream-water 

quality. 
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Figure 3-3: Coal mining blocks and superficial geology of the Twizell Burn and study 
reach (source: BGS, 2018 accessed via EDINA Digimap). 
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3.5. Methods 

The methodology used is the second element in a hierarchical multi-scale 

approach, following the conceptualisation of GW/SW connectivity in Chapter 2, 

where geological and geomorphological information, such as the catchment 

characteristics, geological units and structures and changes in streambed have 

been investigated to assess the role of connectivity. This reach was subsequently 

identified as having potential GW/SW interaction of the near-stream sediment 

with a minor aquifer, and subject to an accumulation of multiple threats to the 

water quality, including those from coal mining and contemporary effluent 

releases. The study reach provided the opportune basis for this study, with the 

potential to investigate a complex subsurface, with rebounding deep GW that is 

currently managed by pumping to sustain mine-water rebound in the Central 

Durham South mining block (Personal communication with Coal Authority via the 

Wear Rivers Trust), and superficial layers supporting a minor aquifer system. 

3.5.1. Stream flow 

As the Twizell is ungauged, stage was monitored using VanWalt LevelSCOUT 

diver loggers (15-min frequency, March to July 2017), compensated for 

atmospheric pressure using a VanWalt BaroSCOUT logger (45-min frequency) 

(accuracy +/- 0.10% FS at 0-40°C). Stream flow was estimated using the velocity- 

area method, whereby velocity measurements were taken using a hand-held 

Valeport EM flow meter at cross-sections at various stream stages, developing a 

stage-discharge rating curve (Figure 3-4). Velocity measurements could not be 

collected at higher flows due to limited channel accessibility when the stage rose 

above ~0.35 m which made conditions too dangerous to enter the channel due 

to the velocity of the flow. Stage and discharge were monitored at either end of 

the reach (Figures 3-2). The purpose of this was two-fold, first to allow for the 

contributions to the steam to be established, and secondly, to determine the 

change, if any, in the GW to SW gains/losses over the reach during the sampling 

campaign, thus determining the connectivity status of the reach to the GW 

system. It was suspected that based on the likely high permeability of the 

underlying strata that the stream was losing to the subsurface. 
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The rating curves are thus interpolated and are extrapolated to facilitate the 

estimate of discharge outside of the observations (Figure 3-4), looking specifically 

at the use of a second-order polynomial and power-law trends (Braca 2008). The 

R2 values were around 0.9. Both the polynomial and power trend lines arguably 

fit reasonably to the data, despite the noise associated, particularly at the 

upstream site with a greater standard error relative to the downstream site (Figure 

3-5; Figure 3-6). The choice of trend line fit to interpolate and extrapolate the data 

was nonetheless associated with some error, although with similar discharge 

estimates at the lower end of the curves, with greater uncertainty at the upper 

ends where flow gauging was not carried out. 

 

 

Figure 3-4:  Stage-discharge rating curves for the upstream and downstream stage 
gauging sites: (A) power-law, and (B) second-order polynomial. 

(A) 

(B) 
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 Figure 3-5: Standard error associated with interpolation of values using second-
order polynomial. 

 

 

 

Figure 3-6: Standard error associated with interpolation of values using a power-law fit. 
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3.5.2. Design and implementation of mini-piezometers 

A series of single mini piezometers were installed along the reach (Figure 3-7; 

Table 3-1). The piezometers were used to measure water depth and hydraulic 

heads, as well as hydraulic testing and collection of shallow subsurface pore-

water samples for laboratory analysis. Piezometers were situated at intervals 

along the reach to assess the stream-aquifer interactions at the point-scale.             

Sites were selected based on the presence of channel-unit features such riffles, 

pools and run sections. Piezometers were constructed from one-metre lengths of 

25 mm (ID) PVC piping, sealed at either end with rubber bungs, with a 0.3 m 

screen of drilled holes of 1 mm Ø following the design of e.g. Freeze and Cherry 

(1979), Lee and Cherry (1979), Ibrahim (2012) and Biddulph (2015). The design 

was relatively simple, with the screen length at least eight times the diameter 

(Watson 1993, Fetter 2018). The mid-point of the perforated sections represents 

a depth into the streambed sediments that was around 0.45 m below the 

streambed, facilitating an integrated sample of the pore-water across an interval 

of 0.3 m. 

The piezometers are cheap and useful apparatus to take measurements, 

although prone to clogging and being swept downstream in high flows. The 

coarseness of the sand layers below the bed, and the constant back-filling due to 

the water flow, meant that the use of an auger was not a feasible method of 

installation. Instead, a fencepost driver and crowbar were used to break through 

the deposits and the piezometers installed using a direct-push method (after 

Woessner, 2017). The piezometers were installed in the bed to a maximum depth 

of 0.5 m. Practicalities associated with the installation of the piezometers meant 

that nesting was not possible, thus single, individual piezometers were used. 

Disturbed sediment was left to backfill around the piezometers, and they were left 

to settle for a minimum of two weeks allowing for natural hyporheic flow to recover 

(Ibrahim et al., 2010). Initially, eight piezometers were installed, and were 

sampled to derive hydraulic parameter estimates and pore-water samples over 

the three-month spring-summer field campaign (Figure 3-7; Table 3-1). Later in 

the campaign, an additional four piezometers were installed (Figure 3-7; Table 3-

1), replacing those damaged or swept away in high flows in May, and to sample 

additional sites along the reach (Figure 3-7), however, there were only sampled 

once in June 2017 (Table 3-1). 
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 Figure 3-7: Reach sampling locations, showing the sites of piezometers and 
ISCO-3700 auto-samplers. 
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Table 3-1: Piezometer locations and sampling dates (red: hydraulic and chemistry 
measurements; black: hydraulic measurements only) *these piezometers were 

vandalised, and so only sampled on two occasions. 

Site 
ID 

Distance 
Downstream (m) 

Times of Description Sampling 

P1 0 
12/04, 25/04, 
03/05, 16/05, 
15/06, 01/07 

Run 

P1A 30 15/06, 01/07 Run 

  12/04, 25/04,  
P2 145 03/05, 16/05, End of pool 

  15/06, 01/07  

  12/04, 25/04,  
P3 170 03/05, 16/05, Riffle 

  15/06, 01/07  

  12/04, 25/04,  
P4 180 03/05, 16/05, Riffle head 

  15/06, 01/07  

P4A 250 15/06, 01/07 Run 

P4B 270 15/06, 01/07 Run 

  12/04, 25/04,  
P5 680 03/05, 16/05, Run 

  15/06, 01/07  

P6 730 12/04 and 15/06* Run 

P6A 760 15/06, 01/07 Run 

P6B 760 15/06, 01/07 Run 

P7 770 12/04 and 15/06* Run 

  12/04, 25/04,  
P8 1140 03/05, 16/05, Upstream of the Blindy Burn 

  15/06, 01/07  
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3.5.3. Streambed hydraulic gradients and fluxes 

Vertical hydraulic gradients (VHGs) were measured as a first-order 

approximation of the direction of flow at verticals along the reach at the site of 

each of the piezometers. They were estimated using the following Equation (1) 

(Dahm et al. 2006, Ibrahim et al. 2010): 

 

Where: 

hs is the difference between the top of the well and the stream stage (m);  

hp is the difference between the top of the well to the water level inside 

(m);  

L is the length of the piezometer buried beneath the stream bed (m). 

A positive or negative gradient represents the upwelling or downwelling of 

riverbed flow relative to the streamflow respectively (Niswonger and Fogg 2008, 

Ibrahim et al. 2010). The water level inside the piezometer was left to stabilise 

prior to the measurement of the hydraulic head using a Solinst tape (Ibrahim et 

al., 2010), and such measurements were taken prior to the collection of the 

pumping of the pore-water sample for laboratory analysis. 

Vertical hydraulic conductivity (Kv), assumed to be 10% of the horizontal 

hydraulic conductivity (Kh – Equation 2), was used to estimate specific discharge 

corresponding to the upwelling and downwelling across the stream bed (Dahm et 

al. 2006, Ibrahim et al. 2010). At each piezometer, a minimum of three rising slug 

tests was performed, by adding water to the well and recording the time to draw- 

down (Woessner 2017). The results were then interpreted using the Hvorslev 

equation (following e.g. Ibr ahim et al. 2010): 

 

 

 

(2) 

(1) 
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Where: 

Kh is the horizontal hydraulic conductivity [m/s]; r is the radius of the 

graduated tube[m]; 

L is the length of the screened section [m]; R is the radius of the screened 

section [m]; 

H1 and H2 are the respective draw-down ratios at time t1 and t2 [s]. 

Specific discharge was then calculated using the following Equation (3) (Dahm et 

al. 2006, Ibrahim et al. 2010): 

 

 

Where: 

q is the vertical specific discharge [m/s]; 

Kv is the vertical hydraulic conductivity [m/s]. 

 

3.5.4. Analysis of water chemistry 

3.5.4.1. In-situ measurements 

Instantaneous estimates of the water chemistry were recorded in the field using 

a hand-held multi-parameter YSI probe, calibrated prior to each field visit. 

Readings included: temperature (°C), DO (mg/l and %), EC (as specific 

conductivity, mS/cm at 25⁰C), pH, total dissolved solids (TDS, mg/l), pH and 

oxidation reduction potential (ORP, mV). For the collection of discrete grab 

samples of water, two 50 ml samples of water were collected using single-use 

polypropylene vials. Vials were pre-rinsed in sample water, filled and capped 

immediately. Samples were stored in a cool bag and transported to the 

laboratory, where on return they were refrigerated at 4⁰C until filtering within 24 

hours. 

The shallow pore-water samples were collected following the hydraulic head 

measurement. Samples were obtained to assess the solutes and deduce 

chemical gradients relative to the stream-water. A Nalgene® hand-operated 

(3) 



98 
 

vacuum pump was used to withdraw pore-water samples from the piezometers 

into a Nalgene® filter flask. Sampling equipment was pre-rinsed in sample-water 

prior to collecting two 50 ml samples for YSI composition measurements and 

laboratory analysis. To minimise contamination between sites, those which were 

deemed more polluted were sampled last. Physical mixing of GW and stream- 

water inputs is interpreted using dissolved Cl- and Br- which are assumed to be 

conservative (Hem 1989, Ibrahim 2012) and measurements of pore-water 

electrical conductivity (EC), which approximates the sum of anions and cations in 

samples (Appelo and Postma 2005). Biogeochemical processes linked to the 

biodegradation of organic matter in the riverbed are interpreted from the 

distribution of relevant dissolved redox-sensitive species (dissolved organic 

carbon (DOC), O2, NO3-, SO42-, Mn and Fe), as well as pH and alkalinity (Baker 

et al. 2000). To characterize the hydrochemical differentiation between the 

stream and riverbed, the pore water is expressed as a ratio against a mean value 

or concentration of the parameter in the stream at the study reach and for the 

period of sampling. Absolute values are used for pH. Ratios greater than 1.0 

indicate that the solute is more concentrated (or “enriched”) in the riverbed pore 

water, relative to the stream; ratios smaller than 1.0 indicate that the solute is less 

concentrated (or “depleted”) in the riverbed pore water, relative to the stream. 

3.5.4.2. Laboratory analysis of samples 

On return to the laboratory, samples were filtered through a 0.2 µm single-use 

filter (FisherbrandTM Polyvinylidene Fluoride Syringe Filter) to derive estimates 

of anions and cations via an ion chromatograph (Dionex), and 0.45 µm single-

use filter (FisherbrandTM Polyvinylidene Fluoride Syringe Filter) to analyse for 

trace metals via ICP-OES and ICP-MS, and non-purgable dissolved organic 

carbon (DOC) by acid sparging and combustion (TOC-L). Method detection limits 

are presented in Table 3-2. Analytical precision was considered as to how close 

the analytical value of the concentration of a determinand, in this case, that of a 

certificated lab control sample, was to that of the method detection limit, which is 

the level at which a substance can be detected (Table 3-2). Analytical precision 

was taken as twice the standard deviation divided by their mean (Table 3-2). For 

quality assurance, field blanks, laboratory blanks and laboratory replicates were 

analysed for each round of chemical analysis. This was to ensure the standard 

of equipment washing, preparation and transport. Concentrations of major and 
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trace elements were deemed minimal in the blanks, with levels lower than those 

of the reported data. 

Table 3-2: Estimated quantification limits and analytical precision for laboratory 
analysis. 

Substance EQL (mg/l) Analytical Precision (%) 
Fluoride (as F) 0.01 1.02 
Chloride (as Cl) 0.03 1.02 
Bromide (as Br) 0.02 2.21 
Sulphate (as S) 0.02 0.60 

Phosphate (as P) 0.02 1.62 
Nitrite (as N) 0.02 0.56 
Nitrate (as N) 0.04 1.57 

Sodium 0.05 0.98 
Ammonium (as NH4+) 0.02 1.04 

Potassium 0.01 1.26 
Magnesium 0.01 1.35 

Calcium 0.05 1.33 
 

Substance EQL 
(mg/l) 

Analytical 
Precision (%) 

 
Substance 

 
EQL (µg/l) 

Analytical 
Precision 

(%) 
Al 0.025 0.80 Li 1 3.00 
B 0.025 0.70 Be 1 4.10 
Ba 0.025 1.00 V 1 2.80 
Fe 0.002 1.10 Cr 0.5 1.80 
Mn 0.002 0.89 Co 1 2.40 
Ni 0.002 1.19 Cu 1 1.40 
S 0.5 1.43 Zn 2 2.00 
P 0.025 1.41 As 1 1.70 

 Sr 1 2.10 
Mo 2 1.10 
Cd 0.5 1.30 

DOC 1.00 2.62 Pb 0.5 1.30 
 

3.5.4.3. Evaluation of auto-samplers 

The storage of water samples in the field and laboratory can impact on the sample 

quality, and there is a need to minimise the degradation and contamination of 

samples. It is often impractical to analyse a large number of samples immediately. 

However, minimising the contamination and degradation of samples is essential 

for assessing the health of the aquatic ecosystem (Aston 1980, Gardolinski et al. 

2001). The most widely used methods of preservation are refrigeration, freezing, 

filtration and acidification to slow action of biotic processes (Avanzino and 

Kennedy 1993, Gardolinski et al. 2001). A rigorous cleaning protocol is also 

necessary to minimise contamination. Approaches include the use of sampling 

containers made of inert material such as HDPE (Nalgene®, (Gardolinski et al. 



100 
 

2001) and following correct handling and collection procedures, e.g. rinsing of the 

sampling vials in sample water prior to sample collection. 

Deploying automatic samples for time series acquisition challenges the typical 

storage and filtration procedures. Typically, samples are stored unfiltered for 

several days, depending on the duration of sampling and ability to return to the 

site. To account for the potential degradation, it is recommended that the 

degradation is quantified (Gardolinski et al. 2001, Bieroza and Heathwaite 2016). 

In recent years technological advancements have led to an increase use of in- 

situ sampling and nutrient analysis, however, the uptake is costly and limited to 

sites. 

When using automated sampling techniques, as in this study for quasi-

continuous (time-series) sampling using ISCO autosamplers, the field storage is 

often supported using a refrigeration unit or using blocks of ice in the centre of 

the sampler base (e.g. Teledene ISCO 1998). However, the former is power 

supply dependent, and the latter only feasible for short periods of time. Whilst 

grab-samples could be collected and stored at the laboratory, the automated 

sampling could not be facilitated in such a way, and daily visits to collect the 

samples were unfeasible, with the inability to implement a refrigeration unit or ice. 

A concern was therefore whether that the quality of the samples would degrade, 

particularly anions, and unstable cations such as ammonium (as NH4+). To 

investigate the sample deterioration, a degradation experiment was conducted, 

focussing on the quality of ions in the samples over the duration of the 

experiment, comparing the relative changes in the concentrations of samples 

stored in the field, and in the laboratories where samples were stored outside and 

in the fridge. Those stored at the laboratory provided an idea of the time frame 

within which to filter the discrete samples. 

In addition to the collection of discrete samples of the stream-water and pore- 

water, quasi-continuous sampling of the stream-water was undertaken with the 

intention of investigating the response and rate of changes in the hydrological 

conditions, specifically considering stream flow and runoff. At both ends of the 

reach, an ISCO 3700 auto-sampler was installed (Figure 3-7). Samples were pre-

programmed to collect a series of discrete samples of the stream-water at a range 

of intervals, including daily and hourly samples to assess the hydrochemical 

response to changing flow corresponding with baseflow and storm conditions, to 
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determine the stream-water response and transport rate of the incoming solutes 

from upstream and the changes over the reach. Autosampling is particularly 

useful to collect volumes of water without manual collection in the field, facilitating 

the understanding of nutrient dynamics in response to the hydrological conditions 

(Bieroza and Heathwaite 2015, 2016, Mellander et al. 2015). Although, limitations 

surrounding the sample storage are prevalent. As highlighted by Bieroza and 

Heathwaite (2016), fewer studies try to deal with the uncertainties associated with 

in-situ sampling, specifically associated with the limitations of storage 

transformations in unfiltered samples (Kotlash and Chessman 1998, Harmel et 

al. 2006, Bende-Michl and Hairsine 2010, McMillan et al. 2012). During baseflow 

conditions, nutrient export is limited, and in-stream processes become dominant, 

e.g. due to diel variations (Bieroza and Heathwaite 2016). The ability to detect 

the dynamics of the nutrient dynamics in response to such variations requires 

efficient and effective storage and analysis of samples. 

To investigate the impact of various storage options and the subsequent impact 

on the sample characteristics, six, one-litre samples of stream water were 

collected (three from each site – upstream and downstream end of the reach 

where autosamplers were installed) and stored in three different ways: 

1. In in the field in the ISCO base, with no lid – therefore subject to 

microbial degradation; 

2. Outside, in a dark cool bag in the laboratory shed, with lid; and, 

3. In the laboratory fridge, in a dark cool bag, with lid. 

An initial sample was obtained from the large sample to form the baseline of the 

experiment, from which sub-samples in following days were collected, and the 

relative concentrations assessed. 

Relative changes and coefficients of variation in the ion concentrations were 

calculated. As expected, samples taken from uncapped bottles were exposed to 

microbial decay, however, for the solutes of interest (Cl-, SO42- and NO3-), the 

relative change in the concentrations were minimal, and similar between the 

laboratory stored and field samples, with coefficients of variation <1.5% in those 

stored in the field for seven days, with refrigeration attributing to similar 

degradation (Figure 3-8). Considering the full set of data, some species were less 

stable, specifically NH4+ and PO43-, where coefficients of variation were >30% 
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after seven days, and P was not recorded, given the rapid decay. These variables 

are therefore not used in the remainder of the study when discussing the temporal 

trends. The decay of trace metals and DOC was not considered in the 

degradation experiment; it was not possible to acidify samples in the field to 

evaluate trace metal degradation and DOC samples were not possible to analyse 

in the time-frame due to laboratory running schedules. 

 

Figure 3-8: Percentage change in concentration according to the stated storage 
procedures outlined in the degradation experiment. 
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3.5.4.4. Events captured 

Samples of the stream water and subsurface water were obtained over the 

sampling period (Figure 3-9). Autosamplers (ISCO-3700) enabled the collection 

of stream-water samples to determine the relationship between the chemistry and 

flow. ISCO samplers were programmed to collect samples on a daily, and hourly 

basis (Figure 3-9). The former enabled determination of the stream response to 

changes in flow on a daily basis with varying rainfall and pollution inputs, and the 

latter to assess the response and rate of change in surface-water chemistry to 

inputs during a flashy storm event on 27th May 2017, where stream levels rose 

by 0.5-0.75 m over a 15-minute period (Figure 3-9). Corresponding with the three-

month auto-sampling regime, subsurface samples were collected at each of the 

piezometers, along with corresponding SW samples, allowing for first-order 

approximation into the role of the streambed in water chemistry, and changes 

along the reach, both in terms of the chemistry and the flow. 

3.6. Results 

3.6.1. Reach scale: hydrologic response 

Quasi-continuous sampling over three phases facilitated an insight into the 

spatial and temporal responses of the SW to various changes in stream-water 

levels. Figure 3-9 shows the variations in discharge over the spring-summer 

sampling campaign. Periodic fluxes were observed and initially thought to be 

erroneous, however, they were found to be attributable to waste- water releases 

from the sewage treatment works 2.5 km upstream, contributing, on average, a 

twice-daily rise in stage, typically of 0.05 m (Figure 3-10). These fluxes lasted 

one-hour to pass from the upstream to the downstream gauge. Manual field 

measurements of the stream stage confirm flux occurrence, where gradual rises 

in the stream-water were observed on the morning of 16th May 2017 (Figure 3-

10). Contributing flow from the adjoining tributaries was thought to be minimal, 

including that from the Blindy Burn, which is situated upstream of the lower 

gauging site on the Twizell (Figure 3-7). GW/SW flows were thought to be 

discrete. 
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Figure 3-9: Sampling events during three-month intensive field monitoring campaign. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Discharge (15-min frequency) at either end of the study reach and 
corresponding flux from the sewage treatment works on 16th May 2017. 
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3.6.2. Point-scale: vertical hydraulic gradients and specific 
discharge estimates for single piezometers 

For each of the piezometers, the corresponding vertical hydraulic gradients 

(VHGs) and specific discharges (q) are referred to as P1-P8 (Figure 3-11, Figure 

3-12), denoting each of the sites (Figure 3-7). VHGs were variable, both positive 

and negative, inferring connectivity across the streambed, corresponding with 

discrete occurrences of upwelling and downwelling of stream- and pore-water 

respectively (Figure 3-11). At the reach-scale, VHGs typically ranged within +30% 

to -20% (Figure 3-11). More positive gradients were recorded during lower flow 

conditions, relative to higher flows, where the VHGs were generally weaker and 

more negative (Figure 3-13), hence appearing responsive to the pressure head 

(hydrostatic pressure) of the stream water. Where the stream head was raised, 

for instance during or following the onset of heavy rainfall, the piezometric heads 

appeared to respond, with the resulting VHGs indicating downwelling (e.g. 

15/06/17; Figure 3-11) or indicating more neutral/very weak exchanges across 

the streambed, e.g. 01/07/17 (Figure 3-11, Figure 3-13). Besides the influence of 

the stream stage, geomorphic features also appeared to control the GW/SW 

exchanges, although to a lesser extent. With the measurements of the hydraulic 

heads there is anticipated to be associated error. Accounting for the error was a 

concern. To minimise human error, repeat measurements using a dip meter were 

obtained, however, with the associated water movement, error is likely to 

propagate, and therefore not entirely discounted. 

Looking at the site-specific VHGs, the most, and consistently positive VHGs were 

at site P4, located at a riffle crest (Figure 3-12). This corresponded with 

weaker/negative VHGs at the riffle head, site P3. Otherwise VHGs were 

inherently more variable, as expected, likely influenced by the stream head, or a 

function of the underlying unconsolidated drift material beneath the streambed, 

resulting in non-consistent patterns of upwelling/downwelling as discussed in the 

conceptual model by Ibrahim et al. (2010). 
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Figure 3-11: Intensity of VHGs – positive and negative VHGs respectively indicate 
upwelling and downwelling direction of streambed flow, relative to the stream. 

  

Figure 3-12: Intensity of VHGs at sites P2, P3 and P4 - positive and negative VHGs 
respectively indicate upwelling and downwelling direction of streambed flow, relative to 

the stream. 
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Estimates of the horizontal riverbed hydraulic conductivity (Kh) via falling head 

slug tests taken on 01/07/17 are shown in Table 3-3 and in relation to stream 

stage in Figure 3-13. Values of Kh varied along the reach and are similar to those 

observed for silt, sandy silts, and clayey sands (Fetter, 1994), indicative of high 

hydraulic conductivity; as expected of unconsolidated minor aquifer formations 

(Stanford and Ward 1988, Lawler et al. 2009, Ibrahim 2012). The subsequent 

specific discharges (qs) are also variable, fluctuating on a site-by-site basis, with 

average fluxes within the range of -5 to +4 m/day (Figure 3-13). There were no 

significant changes in the flow over the reach, suggesting no major gains or 

losses to, or from the deep GW, with a slight, but noticeable loss in stream-water, 

with inputs from runoff and inflows been minimal (Figure 3-9). Instead, site- 

specific fluxes are attributed to localised changes (e.g. Bencala et al. 2011), with 

deep GW upwelling/downwelling thought unlikely. 

 

 

Figure 3-13: Stream discharge (15-min frequency) along the study reach with 
corresponding specific discharge measurements from piezometers. 

 

 

 

 

 

 

 

 

 

 

Daily flow rate: 11.38 m3/day 
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Table 3-3: Sampling dates (red: hydraulic and chemistry measurements; black: 
hydraulic measurements only), with the screen depth and Kh estimates obtained on 

01/07/17. 

Date of sampling Site Screen depth (m) Kh (m/s) Kv (m/s) 

12/04, 25/04, 03/05, P1 
16/05, 15/06, 01/07 

 
0.45 

 
0.00085 

 
0.000085 

15/06, 01/07 P1A 0.45 0.00085 0.000085 

12/04, 25/04, 03/05, 
P2 

 
0.45 

 
0.00021 

 
0.000021 

12/04, 25/04, 03/05, 
P3 

 
0.45 

 
0.00019 

 
0.000019 

12/04, 25/04, 03/05, 
P4 

 
0.45 

 
0.00019 

 
0.0000019 

15/06, 01/07 P4A 0.45 0.00057 0.000057 

15/06, 01/07 P4B 0.45 0.00057 0.000057 

12/04, 25/04, 03/05, 
P5 

 
0.45 

 
0.00057 

 
0.000057 

12/04 and 15/06 P6 0.45 0.00085 0.000085 

15/06, 01/07 P6A 0.45 0.00085 0.000085 

15/06, 01/07 P6B 0.45 0.00085 0.000085 

12/04 and 15/06 P7 0.45 0.00085 0.000085 

12/04, 25/04, 03/05, 
P8 

 
0.45 

 
0.00135 

 
0.000135 

 

 

 

 

 

 

 

 

 

N.B. – P6, P6A, P6B and P7 were in close proximity and therefore, the hydraulic 
conductivities were very similar. 
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3.6.3. Reach-scale: temporal patterns in water chemistry 

Using quasi-continuous autosampling techniques to obtain daily time-series, it 

was possible to gain a first-order approximation of the changes in the stream-

water chemistry as a function of hydrological flow variations, from which the 

loading and fluxes of flow and solutes could be assessed over the reach in the 

SW. An array of stream-water samples were collected over the spring-summer 

sampling campaign, with samples obtained at both ends of the study reach 

(Figure 3-7). Samples comprised 200 ml daily, twice daily and hourly samples. 

The stream-water was typically alkaline, with near-neutral pH values. Throughout 

the sampling period, the water temperature reflected the ambient air temperature, 

and was characteristic of oxidising conditions, with ORP values >50 mV. Based 

on the degrading quality relating to the storage of samples, conservative 

elements including Cl-, B and EC, and stable non-conservative redox-sensitive 

species, including SO42- and NO3- were analysed, and used to assess the likely 

impacts of mine-water pollution and waste-water effluent releases respectively. 

The remaining ions from the daily and twice-daily samples were deemed unstable 

from degradation analysis, whilst trace metals and DOC were not included in the 

analysis, first due to the unknown degradation in the field, the former as the 

samples were not acidified to preserve the metals, hence were likely to rapidly 

decay. Secondly, due to laboratory constraints which meant that the testing of the 

rate of degradation was not possible, these samples were discounted from the 

analysis. However, all species were considered from the storm sampling event 

(Phase 3 – Figure 3-9), given that the samples were collected, refrigerated and 

analysed within a 24-hour window. 

3.6.3.1. SW sampling – Phase 1 

Concentrations of conservative ions in the stream-water, specifically electrical 

conductivity (EC), bromide (Br) and chloride (Cl-), were variable with the changes 

in discharge. Concentrations of B were generally too low to use as a conservative 

tracer. Cl- loads appeared responsive to rises in flow corresponding with 

increasing concentrations at both sites (Figure 3-14). The loss in Cl- corresponds 

with the observed loss in flow, with a net loss in the load indicating that there were 

no predominant influent conditions, e.g. from GW or tributaries, with minimal 
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 influence from the small adjoining tributary (Blindy Burn, Figure 3-7) near the 

downstream sampling site. 

 

Figure 3-14: Load of Cl- transported along the reach according to samples obtained 
once-daily (midnight) from 27/03/17 to 02/05/17. 

Under prevailing effluent conditions, and relatively stable stream flow conditions 

(27/03/17 to 02/05/17 [Figure 3-9]), the load of SO42- transported appeared to 

increase, with an average gain in load of 1850 mg/s transported over the reach 

(Figure 3-15). With the onset of more variable conditions, and relatively higher 

flows (Figure 3-15), there was an evident loss in SO42- load, accounting to an 

average net loss of 2743.11 mg/s at the downstream end of the reach, likely 

corresponding with the dilution and subsequent loss of ions. Generally, the 

downstream end of the reach was more enriched, with greater loadings, thus 

suggesting discrete inflows from the subsurface via the superficial deposits. 

Coinciding with this, the load of NO3- transported decreased over the reach, likely 

due to denitrification. Increases in the NO3- loadings were in accordance with 

relatively higher flows (Figure 3-16). Results therefore suggest that the system is 

responsive to changes in the flow, with a tandem of threats, alternating between 

mining and contemporary effluent-related sources in accordance with the stream-

water conditions, with no gains or losses to the deep GW, and instead restricted 

to the shallow GW in the minor superficial aquifer. 
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Figure 3-15: Load of SO4
2- transported along the reach according to samples obtained 

once-daily (midnight) from 27/03/17 to 02/05/17. 

 

 

Figure 3-16: Load of NO3
- transported along the reach according to samples obtained 

once-daily (midnight) from 27/03/17 to 02/05/17. 

 

3.6.3.2. SW sampling – Phase 2 

Subsequent sampling of the apparent mid-morning sewage treatment work flux 

was investigated with an additional stream-water sample collected at midday for 

two weeks (02/05/17 to 20/05/17) where there were no apparent fluctuations in 

stream stage, apart from those observed as a function of diel changes and the 

periodic releases from the sewage treatment works. Analysis of the chemistry 

indicated that changes were minimal and insignificant, with changes in discharge 
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low (~0.07 m3/s). The nutrient loadings in the stream-water samples were not 

impacted by the flux; NO3- remained enriched in the upstream samples relative 

to those downstream. 

3.6.3.3. SW sampling – Phase 3 

In addition to the daily sampling, hourly samples obtained before, during and after 

a storm (Figure 3-17), allowed for the further understanding of the hydrochemistry 

response of the SW. The rainfall led to a rapid rise in the stage (Figure 3-9) and 

corresponded with the dilution of the solutes in the stream-water, indicated by the 

sudden fall in conservative and inorganic elements, including SO42- and DOC, 

corresponding with dilution as marked by Cl- (Figure 3-17). Under flood 

conditions, the nutrients were enriched, specifically NH4+ and NO3- (Figure 3-17). 

The response of the system was notable flashy, with the rapid change in the 

chemistry. Over the duration of the storm it is evident that the mining-related 

effluents were muted by elevated waste-water effluents. 
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Figure 3-17: Load of solutes transported along the reach according to samples 
obtained hourly before, during and after the storm. 
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3.6.4. Stream-water chemistry 

From the sampling it is apparent that the processes operating along the reach 

are highly heterogeneous and complex, with additions and losses in flow and 

solutes in the stream-water chemistry. It is evident from the reach-scale quasi-

continuous sampling that changes in the effluent loadings are responsive to the 

stream discharge, with dilution of mining-derived solutes and corresponding 

nutrient enrichment during higher flows. Beyond the reach-scale patterns, 

localised discrete patterns of upwelling and downwelling of the SW to the 

subsurface has been understood based on the VHGs, marked with varying 

concentrations of solutes in the SW and shallow GW samples. Whilst it is 

challenging to assess the horizontal pathways and subsequent flow and solute 

movements occurring in the subsurface, the vertical patterns provide an insight 

into the system behaviour and potential hotspots in chemistry. Localised changes 

in the SW chemistry are likely attributable to surface leachates as well as 

upwelling from the subsurface. Conservative tracers, specifically Cl- and Br 

provide a means of assessing such points, which are typically associated with the 

enrichment and dilution at the local scale (Ibrahim et al., 2010). 

On average, it was found that SO42- was elevated at the downstream end of the 

reach relative to the upstream, corresponding with subsequent iron-ochre 

flushes/staining on the bed and banks of the channel, particularly at the lower 

stretch of the study reach. The raised concentrations are indicative of mining-

derived solutes (e.g. Younger et al. 2002). The identification of the relative solute 

sources would require the use of isotopes, for example (Engelhardt et al. 2011), 

and would require further work beyond the scope of this research. Using the 

knowledge gained from walkover surveys conducted as part of the research, an 

outfall from the Alma colliery spoil at the upstream end of the reach (Figure 3-18) 

was considered as a key contributor of mining-related effluent (SO42- > 450 mg/l 

and Mn > 0.9 mg/l). 

Assessing the SO42- to Br ratio, it would appear that SO42- was considered to be 

acting non-conservatively, with localised points of enrichment in the stream 

water, dissimilar to those observed from the mining-spoil drainage outfall (Figure 

3-19). Similarly, the enrichment in Mn over the reach, accounting to around 0.2 

mg/l again were likely attributing to localised sources, with an elevated ratio of 

Mn to Br (Figure 3-19). The relative ratios of SO42- and Mn showed no clear trends 
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with Cl- (Figure 3-20 and Figure 3-21). Concentrations of SO42- and Mn were 

relatively smaller to those from the selected spoil heap outfall yet are important 

in highlighting the localised contributions to the stream-water chemistry. 

 

 

Figure 3-18: SO42- and Br ratio for the piezometer SW samples, P1-P8. 

 

 

 

Figure 3-19: Mn and Br ratio for the piezometer SW samples, P1-P8. 
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Figure 3-20: SO42- and Cl- ratio for the piezometer SW samples, P1-P8. 

 

 

Figure 3-21: Mn and Cl- ratio for the piezometer SW samples, P1-P8. 

 

At the specific sites along the reach, comparing the solute concentrations in the 

SW and GW obtained from the piezometers, concentrations of solutes were 

indicative of the enrichment and depletion of mining-derived effluents, however, 

were behaving conservatively, with changes in concentrations operating by the 

same mechanisms, e.g. rise in stream levels. However, at some sites, specifically 

P1, P4 and P8 there was an enrichment of SO42- and Mn, and at P3, an 

enrichment of NH4+ with the localised hot-spots suggesting solute propagation. 

At these named sites, the non-conservative nature of the solutes against Cl- and 

Br- suggest that the sources of SO42-, and NH4+ at site P3, are from locations 
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beyond the channel water, e.g. leaching from the banks, with pathways extending 

beyond the points sampled. Ultimately the exchanges between the stream and 

subsurface are much more complex than water moving up and down across the 

streambed, with pathways interacting in complex ways. 

3.6.5. Pore-water chemistry 

From the sampling of the piezometers it is possible to infer changes in the pore-

water chemistry, relative to the stream-water (Table 3-4) to give an indication of 

the differences in chemistry across the streambed. The mean values used to 

normalise the pore-water samples are shown in Table 3-5 - absolute values of 

pH were used (mean values of other species were taken using the full reach of 

SW samples). Ratios of the concentrations between the stream and streambed 

were estimated, to determine the enrichment and depletion of species in the pore 

water (Table 3-6). Where stream-streambed ratios were greater or less than one 

respectively indicates the enrichment or depletion of species in the pore water 

relative to the stream water (Ibrahim et al. 2010). 

At the reach-scale, the temperature of the GW was similar to the ambient 

conditions at the surface, with prevailing anaerobic (anoxic) conditions denoted 

by the DO (%) falling, during the sampling period, to a minimum of around 20%. 

Interchanging oxidation-reduction conditions during the sampling period were 

evident, both along the reach, and between the stream- and pore water, however, 

estimates of the reducing/oxidizing potential is limited without the collection of Fe 

and Mn (hydr)oxides (as done, e.g. in the work of Ibrahim 2012). Values of pH 

were generally consistent along the reach, and between the stream- and pore- 

water, with pH values of 6.6 to 7.9 associated with alkaline/near-neutral 

conditions. The subsurface chemistry appeared responsive to both the site 

characteristics and the stream stage at the time of sampling. 
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Table 3-4: SW chemistry at piezometer sites (Figure 3-7) for sampling events: sample 
2 (12/04/17)/sample 4 (16/05/17)/sample 6 (15/06/17) – NA (not sampled); * (not 

analysed). 

 

 

Table 3-5: Stream-water average composition from SW grab samples obtained along 
the reach at the piezometer sites (Figure 3-7). 

 

  

 

 

 

(μS/cm) 

(μS/cm) 
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Table 3-6: Enrichment/depletion ratios of the GW chemistry relative to the SW 
averages (Table 3-5) for sampling events: sample 2 (12/04/17)/sample 4 

(16/05/17)/sample 6 (15/06/17). Where SW/GW ratios greater or less than one 
respectively indicates enrichment (yellow) or depletion (blue) of species in pore water 

relative to stream water. 

 

 

N.B.: *denotes that samples were not analysed; **piezometers were damaged 
when sampling was due to be conducted; NA sites that were not sampled, e.g. 
due to damage of piezometer. 

 

 

(μ
S/
cm

) 
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Conservative tracer (EC and Cl-) patterns between the stream-water and pore-

water displayed limited differentiation between the stream- and pore-water (Table 

3-6). SW/GW ratios of these tracers were generally around one, reflecting the 

cycling of stream-water, and no additional deep GW fluxes (Table 3-6). Limited 

differentiation was generally the case, apart from at site P1, where EC was 

enriched and depletion coinciding with downwelling and upwelling (Figure 10; 

Table 6). Relative to run and pool sites, EC ratios in riffle sites (P4) fluctuated 

more, indicating both slight enrichment of EC in the streambed associated with 

the upwelling of pore-water (Table 3-6). Based on the similar composition of the 

conservative tracers in the stream- and pore-water, it was difficult to assess any 

definitive pathways of the hyporheic flow paths, and instead the enrichment and 

depletion of redox-sensitive species were assessed (Table 3-6). 

Ratios of DOC between the streambed and surface generally showed limited 

differentiation during samples 2 and 4, with enrichment in DOC been more 

associated to sample 6, with depletion at run sites (P1, P2 and P5), however, 

dissimilar to riffle sites (P3 and P4) where concentrations indicated slight 

enrichment (Table 3-6). In all samples, O2 (sampled as DO%) was depleted in 

the streambed, with most severe depletion in sample 6 corresponding with the 

loss of conservative species. The pH of the stream- and pore-water was similar 

(Table 3-6), with values indicating near-neutral pH. 

The enrichment and depletion of redox-sensitive species was localised, varying 

site-by-site in accordance to the change in pressure head corresponding to the 

changes in stream stage. SO42- was notably enriched at P1, particularly in sample 

6. At other sites, SO42- was also evidently enriched, including P3 and P8, but was 

relatively weak enrichment in comparison to P1, especially sample 6 (Table 3-6). 

Depletion of SO42- - was evident in some instances, for example, during sample 

2 at sites P2 and P5 (Table 3-6). Otherwise there was limited differentiation 

between the stream- and pore-water. Meanwhile, NO3- ratios marked both 

enrichment and depletion in the streambed (Table 3-6). The greatest depletion 

was associated with predominant downwelling across all samples at site P3, and 

pore-water depletion with predominant upwelling at site P4 (Table 3-6). However, 

the concentration ultimately depends what is in the stream-water at the time of 

sampling. 
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 Concentrations of Mn were occasionally markedly enriched in the pore-water, 

coinciding with enrichment in SO42-. In some instances, the enrichment in SO42- 

and Mn corresponded with Zn enrichment, markedly observed during sample 6 

at site P3, and lesser so at sites P1 and P8, although with slight enrichment (Table 

3-6). Fe (total) concentrations were otherwise low, with Fe appearing to have 

precipitated on the streambed, observed during walkovers as bright-orange iron 

ochre staining (Figure 3-22). 

3.7. Discussion 

The monitoring network and sampling regime has enabled the investigation of the 

flow and solute fluxes, both in-stream and across the streambed, with the aim of 

making a first-order assessment of the influence of the minor aquifer formation 

and the likely impact of GW/SW exchanges on the stream-water quality. The 

findings and understandings are restricted to the events sampled over the three-

month campaign and the sites where the sampling was performed. However, I 

was also able to consider the role of stream discharge and geomorphological 

changes on the resulting stream-water chemistry, looking beyond the one-

dimensional understanding of the SW system upon which the WFD and 

management currently focus, assessing the potential system connectivity. 

Through reach- and point-scale sampling, the lateral, longitudinal, vertical and 

temporal changes in flow and solute fluxes have been broadly investigated, 

testing the following objectives for the Twizell: 1. to quantitatively assess the role 

of the minor aquifer position and contributions to stream-flow; and 2. to 

investigate the role of the minor aquifer as a source and sink of flow and solutes 

from multiple threats. Results suggest with water quality reflecting the proximity 

to these sources and changes in stream flow, with sampling providing a first-order 

insight into the complex nature of the subsurface and its likely impact on stream-

water. 
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3.7.1. Threat variations according to stream-water 
hydrochemistry 

In-stream solute concentrations vary in accordance with spatial and temporal 

changes, accounting to surface and subsurface contributions, such as land-use 

changes and hydrochemical processes linked to biotic activity (Ibrahim et al., 

2010). The variability in conservative solutes (EC and Cl-) over the reach appears 

to reflect the stream stage at the time of sampling (Rice and Hornberger 1998). 

Fluctuations in EC and Cl- are evident when looking at both the quasi-continuous 

sampling and discrete samples obtained along the reach at the piezometer sites. 

Between the upstream and downstream sampling sites of the reach, during 

relatively lower flows, the loss in load of conservative solutes (EC and Cl-) was 

evident, with the high hydraulic conductivity of the unconsolidated superficial 

deposits, likely facilitating the loss to the underlying system (Tetzlaff et al. 2007). 

The exchanges are likely occurring between the stream-water and the minor 

aquifer, with no deep GW contributions, given that there were no spikes in 

conservative solutes and that GW flow pathways would likely exhibit dominant 

upwelling or downwelling, contributing to the stream flow. GW flow paths are 

more likely in constrained reaches with no superficial layering (Ibrahim et al. 

2010). Whilst appearing disconnected to the deep GW, the role of the minor, 

perched aquifer system is nonetheless evidently interacting with the stream-

water, with VHGs and specific discharges, potentially attributing to localised SO42- 

loadings, corresponding with iron-ochre staining in the lower part of the reach. 

Elevated nutrient loadings were particularly problematic during rapid-onset, high 

flow events such as during the spring storm sampled at the end of May 2017, 

where nutrient levels were 35-times and 50-times greater respectively at the 

upstream and downstream ends of reach at peak of the storm corresponding with 

reductions in SO42- by half, likely due to dilution. Based on this observation, the 

historic and contemporary threats operate in tandem, with the impacts on the 

solutes present being a function of the lower and higher flows respectively. The 

solutes and loadings associated with the mining are therefore the priority for 

management interventions. 

Discrete sampling of the stream water at the same time as the pore-water 

sampling did not reflect the SO42-  fluxes, which is likely due to the locations and 

timing of sampling, with the sampling not matching the quasi-continuous 
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sampling, and the different time at which samples were collected, such as at 

midnight, which in turn were impacted potentially by the diel variability, as well as 

the inability to sample during high flows. The samples along the reach show little 

variation, with similar coefficients of variability for conservative and non- 

conservative solutes over the reach, suggesting the lack of surface and 

subsurface inputs over the reach. More detailed sampling is likely to be required 

to investigate the local-scale heterogeneity of the SO42- in relation to the iron-

ochre flushes (Holmes et al. 1994, Baker et al. 2000). Meanwhile, the quasi-

continuous dataset reflects the spatial and temporal variability over a range of 

flow events. Assessing the mixing ratios of SO42- to the conservative solutes, Cl-

and Br, indicate that it is non-conservative behaviour is indicative of upwelling 

along the reach, something which is to be further tested with numerical modelling 

approaches. 

Overall, from the stream-water sampling is indicative that the SW system is 

responsive to the stream stage variation, with threats operating in tandem, which 

accounts for changes in solute concentrations, with changes in conservative (EC 

and Cl-) and non-conservative solutes (SO42- and NO3-). During relatively higher 

flows, the stream appears more vulnerable to the impact of effluent releases, with 

the dilution of SO42- and disappearing of iron-ochre precipitates. During relatively 

lower flows, it appears that the mine-water is more problematic, with higher SO42- 

and iron-ochre flushes, particularly in the lower half of the reach. 

3.7.2. Interactions of the hyporheic flow paths and 
biogeochemical processes in the streambed 

VHGs and specific discharge results support the contention that there is the 

development of a minor aquifer in the vicinity of the stream. Limited differentiation 

in the chemistry between the stream and streambed indicate high hydraulic 

conductivity, associated with upwelling and downwelling gradients. Similar 

patterns of EC, Cl- and Br between the systems also support the high hydrological 

connectivity. Exchanges across the streambed are limited with increased flows, 

such as those observed during mid-June and early July 2017 (Figure 3-5). Low 

VHGs favour vertical hydrochemical differentiation of conservative and redox- 

sensitive species, for instance SO42- and Mn. However, it is not known if these 
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solutes coming from depth, i.e. below the piezometer depth sampled. These 

questions are investigated in Chapter 4. 

Relative depletion of DOC, NO3-, SO42- and O2 in the shallow pore-water is 

indicative that solutes are introduced into the bed by infiltrating stream-water, with 

increased depletion of these species when the VHGs are positive or neutral. 

Essentially the stream-water is entering and leaving the subsurface along the 

reach, with the biogeochemical process operating within the hyporheic zone 

(Baker et al. 2000, Sophocleous 2002). Dynamic conditions were observed at 

some of the points sampled, whereby the streambed evidently retains Mn, for 

example at P1, P4, P3 and P8, particularly when the hydrological connectivity 

across the streambed reduces during relatively higher stream flow events. The 

enrichment of Mn is likely attributable to reducing conditions, coinciding with the 

depletion of O2 and NO3- (Banks et al. 1997, Gandy et al. 2007). Where hyporheic 

flow paths are not evident, it is likely that the solutes are from beyond the sampled 

depth, or area, or from subsurface flow paths (Ibrahim et al. 2010). NO3- 

downwelling from the stream is more likely during high stream flows, as observed 

during sample 6, corresponding with effluent releases, with it been used in place 

of O2 for biodegradation of organic material, with the possibility of denitrification 

occurring in these anoxic conditions in the presence of pyrite (Kaandorp et al. 

2018), hence the accumulation of Mn. Otherwise N-species were depleted, 

indicating nitrification was not occurring, or occurring quickly (Duff and Triska 

2000). 

3.7.3. Shallow hyporheic zone 

In this unconstrained reach, flow and solute exchanges are evident across the 

streambed and are complex, operating as a function of the stream flow and 

vertical hydraulic gradients, with inputs from historic and contemporary sources. 

VHGs typically ranged between +30 and -20 %, indicative of upwelling and 

downwelling, although were slightly higher in comparison to other studies for 

unconstrained reaches, for example (Ibrahim et al. 2010). Ratios of the solute 

concentrations between the stream and subsurface water confirm that 

enrichment and depletion is occurring, and it is proposed that the source of this 

water is most likely that from the stream, rather than solutes rising from the deep 

GW. Analysis of the research results has led to the working hypothesis that 

downwelling SW mixes with stagnant or low-flow water in the interface of the 
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surface hyporheic zone (perched), as observed previously in the upper Wear 

catchment at Rookhope Burn by (Palumbo-Roe and Dearden 2013a). The 

composition of water in the hyporheic zone is dominated by SW and the temporal 

changes of the pore-water thus reflect those of the SW (Benner et al. 1995, 

Palumbo-Roe and Dearden 2013a), with hot-spots of enriched species, such as 

SO42- and Mn occurring under changing conditions. 

3.7.4. Monitoring implications for management 

Following the monitoring of the flow and solute patterns, an initial insight into the 

system dynamics suggests that the minor aquifer in the vicinity of the stream is 

acting as a source and sink of flow and solutes, associated with effluent and mine-

water discharges. Whilst results reflect the sampling events throughout the 

sampling campaign, the study has allowed an insight beyond that of the one-

dimension of the stream-water, instead looking across spatial and temporal 

scales. Whereas previous regulatory sampling has been restrictive, with limited 

spatial and temporal sampling points, this study has evolved the understanding 

of the contemporary flows and chemistry to include GW/SW interactions. It is 

proposed that the spatial proximity to threats and variable stream-flow are key 

factors in controlling the SW quality. The role of the streambed then adds 

complexity and it appears that the hyporheic zone acts as a source and sink for 

pollutants, whereby they are attenuated, resulting in the enrichment of the pore- 

water, or degraded, occurring as a function of several processes, including the 

flow direction, oxidation-reduction potential, for example. Hence conceptualising 

the reach as a black box where the inputs and outputs in chemistry are a function 

of the flow along the stream alone is incorrect and not appropriate. The findings 

emphasise that local processes are key to evaluate when considering the larger, 

catchment-scale water movements, further supporting the need for hierarchal 

approaches as outlined by Magliozzi et al. (2017). 

3.7.5. Further investigations 

The findings from this study have provided a foundation for several areas of 

further exploration, which leads onto the next chapter in this thesis. The intention 

of Chapter 4 is to extend the understanding the reach scale results monitoring 

through the application of modelling. Specifically, looking at the likely responses 

to changes in stage, including flood conditions, which were not possible to sample 
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and to further explore the spatial and temporal responses over the study reach, 

upscaling from point-sampling to further interpret flow patterns. 

3.8. Conclusions 

From the sampling it is evident that historic and contemporary threats negatively 

impact on the stream-water quality. To better understand and manage the 

impacts requires an investigation beyond the standard measurements, e.g. the 

WFD, assessing both spatial and temporal variations and likely drivers and 

controls, both above and below the streambed. The streambed interactions are 

complex, and not just a function of the hydraulic conductivity, or the 

upwelling/downwelling across the streambed, and here I have provided an insight 

from selected sites, which show the response to a limited, however, insightful 

range of events allowing for an investigation into the changes in stream flow and 

solute loadings. From the findings presented in Chapter 3, it is suggested that the 

streambed plays a key role in the cycling of the water chemistry. This study has 

relied on the use relatively of low-cost methods to give a first-order insight into 

the system dynamics, nevertheless demonstrating the importance of looking at 

the subsurface connectivity, which will be further explored in the next chapter. 
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“I would rather be a good man than a great king.” 
 

Thor (Thor: The Dark World, 2013) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Page left intentionally blank] 
 

 

 

 

 

 

 

 

 

 

 

 



129 
 

Chapter 4 – Using numerical modelling to understand 
the role and impact of groundwater-surface interactions 
on in-stream water quality 

4.1. Introduction 

Predominantly there has been a limited understanding of the links between 

drivers and how processes interact within and between the GW and SW systems, 

looking at water quality problems with a one-dimensional focus at limited points 

of the stream-water and subsurface environments. There is a need to better 

understand the connectivity and exchanges to enable more sustainable water 

management particularly in heavily modified tributary catchments, which are 

typically structurally heterogeneous, with modifications to the channel planform 

and deposition of man-made materials. Developing an integrated focus is not 

trivial, and as demonstrated in preceding chapters, in which utilising the existing 

data to derive information and linking it with field data is one way of achieving an 

understanding of the links within and between these relatively unexplored 

systems. In this chapter I remain focussed on the 1.3 km reach of Twizell Burn, 

and specifically consider the interactions and exchanges between the stream and 

shallow GW comprising a discontinuous minor aquifer with variably saturated 

unconsolidated superficial (drift) deposits (see Figure 3-7). The purpose of this 

chapter is to apply the understanding from the field sampling conducted in this 

research and upscale the insight beyond point measurements. The aim is to 

further challenge the understanding of the system behaviour over spatial 

dimensions and time, upscaling point-based system sampling of the 

hydrochemistry and hydraulics to investigate the flow and solute pathways, 

patterns and processes between the SW and GW systems. 

Field sampling over an intensive three-month campaign (March-July 2017, see 

Chapter 3) indicates that the shallow GW system is interacting with the stream 

water, with the subsurface thought to be acting as a source and sink of flow and 

solutes, with attenuation in the near-stream sediment. Given the large vertical 

extent of the unsaturated zone of the fractured and faulted bedrock extending 

below the superficial system, connection of the stream with the deeper GW is 

thought to be unlikely (supported with personal discussions with the Environment 

Agency and Northumbrian Water), leading this research to scale the focus 
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entirely on the shallow GW, near-stream pathways within a shallow hyporheic 

zone interactions attributing to the loss and return of stream water along the reach 

(Figure 4-1). The impacts of the stream and shallow GW system variability is 

reflected through the physio-chemical characteristics of the stream and shallow 

pore water, with the chemistry appearing responsive to the stream stage at the 

time of sampling and the bed geomorphology, with hydraulic head changes and 

subsequent variations in the flow and solutes. However, the insight into the 

system dynamics and processes operating within and across the streambed are 

restricted both spatially and temporally to specific sampling events and points 

along the reach. To extend the understanding, looking at the system behaviour 

in response to changing hydrological conditions, one such approach is through 

the application of numerical modelling to derive estimates of the hydraulic heads 

in the aquifer based on the data and information collated throughout this research 

to better inform and thus understand the system behaviour, further interpreting 

the flow patterns observed (Gooseff et al. 2006, Magliozzi et al. 2017). The 

research presented in this chapter is driven with the need to understand GW/SW 

connections and processes with the intention of better understanding and 

managing the water resources of a local scale, and how they fit into the wider 

system processes. 

 

 

Figure 4-1: Conceptual cross-section of the Twizell Burn GW/SW systems, highlighting 
direct inputs into the systems and the shallow hyporheic exchanges within the minor 

aquifer. 



131 
 

The setting up and testing of a first-order numerical model, which has been 

implemented using the available spatial data, as well as primary field data 

collected in the spring-summer 2017 field sampling campaign will be used as an 

exercise to provide an upscaled understanding of the reach system. The intention 

is to investigate the system response to varying hydrological conditions, testing 

the response to observed events where it was not possible to sample, and 

scenario-based test simulations, such as with the onset of flooding as well as the 

likely extreme conditions with future climate change. 

From the field sampling I have two main questions which require further 

investigation: 

1. How do the hydraulic gradients across the streambed respond to 

changing hydrological conditions over space and time? 

It is typical that with studies of this sort the nature of the sampling is at periodic 

intervals of weeks, or months. As a result, the sampling is demonstrative of a 

snapshot in time during which the samples are obtained, nevertheless this leaves 

a gap in the understanding between sampling events. Without the implementation 

of in-situ sampling apparatus, the ability to capture the hydrological response and 

associated chemical changes are not possible. Extending the insight into the 

system behaviour thus requires an extrapolation of the current understanding, 

which can be achieved through numerical modelling approaches (Gooseff et al. 

2006). Modelling facilitates the possibility of estimating/representing the 

conditions, e.g. before and after storm events, looking at the trends over the reach 

and with time. 

2. Are there any return fluxes (i.e. upwelling of GW/return of SW) along the 

reach, and if so, are they likely associated with the presence of iron-ochre 

flushes and staining as observed from the walkover surveys and 

sampling? 

The possibility of sampling along the reach entirety would have required an 

extremely costly approach. The ability to identify return flows, however, requires 

the insight of the system at a higher spatial resolution than that achieved through 

the relatively small number of piezometers installed. Without continuous 

monitoring of the system, the system response is limited to the sites sampled, 

therefore, further upwelling and downwelling of GW/SW is likely missed. By 
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upscaling the understanding from the piezometric measurements via numerical 

modelling offers a potential of identifying return flows based on the estimation of 

the hydraulic properties of the streambed material. 

The research presented in this chapter: 

1. Demonstrates the use of existing secondary data and field data to 

implement a numerical model approach representing the reach-scale 

system, with emphasis on linking together data and methods (see 

Magliozzi et al. 2017); 

2. Tests the response and role of the near-surface, minor aquifer system 

in the cycling of water and solutes in response to changing hydrological 

conditions under observed and scenario-based events. 

The following section outlines why there is a need to model GW/SW interactions 

and exchanges given the likelihood of the stream and shallow GW connectivity. 

Following on, the chapter outlines how the findings from Chapters 2 and 3 have 

been brought together with a focus on the collation of findings from the 

conceptualisations based on existing spatial data and subsequent field data. 

 

4.2. Stream-aquifer exchanges 

Stream-aquifer exchange is an important process in riparian systems 

(Sophocleous 2002), with the mixing of GW and SW in the near-surface 

environment referred to as the hyporheic zone (Winter et al. 1998, Brooks et al. 

2015). Hyporheic flow paths extend from centimetres to kilometres in length and 

are nested within the GW flow system, beginning in the stream and returning to 

the channel often several times along a river reach (Kasahara and Wondzell 

2003, Lautz and Siegel 2006, Boano et al. 2014). Hyporheic flows are 

increasingly recognised as a vital factor in controlling the transport and exchange 

of water and solutes along river reaches between aerobic (oxic) and anaerobic 

(anoxic) environments (Buss et al. 2009), with exchanges varying spatially and 

temporally relative to the system characteristics, such as the geologic 

heterogeneity and water table position (Fleckenstein et al. 2006, Krause et al. 

2007). Emerging research continues to focus on the controls and rates of 

hyporheic exchanges, and the impacts on nutrient fluxes, in-turn assessing the 
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fate and impact of flow and solute fluxes from catchment- to point-scales looking 

beyond the stream-water environment (Wöhling et al. 2018). 

Understanding GW flows and hyporheic flows is largely based on field 

techniques, which include measurements of hydraulic gradients between the river 

and adjacent GW. Dilution tests using conservative solutes or heat tracers, 

pumping or slug tests, and mass balance approaches to determine losses and/or 

gains to GW from the SW are commonly applied approaches (Brodie et al. 2007, 

Rosenberry et al. 2008). Field techniques are covered in more depth in earlier 

chapters (see Chapters 1 and 3), and are therefore not further discussed here, 

apart from the emphasis that some techniques are more elaborate than others, 

with greater costs and labour intensity to yield results even over short study 

reaches (Wöhling et al. 2018). Consequently, GW/SW studies are often 

prioritised to sub-reach and point-scales, focusing on specific events and 

geomorphic features including riffle-pools and meanders; zones often associated 

with ecological impact assessments. 

More extensive studies are instead typically reliant on baseline studies, the latter 

been problematic in tributary catchments given the lack of contemporary and 

historical datasets. Often studies are relatively short, with restricted time and 

space intervals they address, consequently meaning the drivers of the exchanges 

are often unexplored in response to the changing river levels or GW levels. 

Additionally, when focussed at the point-scale, studies often overlook the lateral 

and longitudinal responses between sampling points along reaches which means 

that studies often only consider the vertical gradients at a given point along the 

river reach, overlooking the wider system response, both spatially and temporally. 

Also, since high resolution approaches often require huge investment, the focus 

is typically on major aquifer systems, and those with a baseline dataset. Such 

approaches deter the understanding of smaller, yet important systems, 

specifically minor aquifers such as those comprising perched water tables in 

superficial formations beneath channels and hillslope, with the potential of 

discrete flow paths to the surface. The limited account of these systems is 

challenging the progression towards the intended sustainable catchment 

management and ICM principles associated with contemporary policy and 

frameworks such as the WFD and understanding and managing the water quality 

of low order headwater streams which are impacted by industry, looking beyond 
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pristine streams which are often homogenous (Cardenas 2015). Beyond pristine 

headwater streams, those which are heavily modified and thus structural 

heterogeneous often have a more variable spatial and temporal turnover of 

nutrients. Thus, require a combination of laboratory, field and numerical 

modelling-based exercises to quantify the impacts in variability in the physical 

streambed at the stream reach and sub-catchment scales, looking beyond the 

wider catchment-scale focus (Magliozzi et al. 2017). 

4.2.1. Stream-aquifer exchanges 
Assessing and quantifying the impacts in variability along stream reaches and 

sub-catchment comprising minor aquifers is challenging with the lack of pre-

existing field monitoring (Jones et al. 2000, Ibrahim et al. 2010). The state of 

connectivity between the streams and shallow GW systems is known to be highly 

variable (Brunner et al. 2009, Brunner et al. 2011), with the connectivity 

responding to changing hydrological conditions (Krause et al. 2014). Despite the 

likely influence, minor aquifer systems are often taken to be uninfluential on the 

stream water quality, and it is often assumed that they are impermeable and thus 

disconnected to the major aquifer, or overlying stream. Therefore, they are 

thought to have no impact on the stream or deeper GW systems (TOPSOIL group 

discussions). Such assumptions are evident in working practice, particularly in 

terms of management, with water managers dealing with the systems as 

compartments despite decades of research evidencing the streambed 

interactions occurring across several orders of magnitude. However, it is 

necessary to overcome this fragmentation due to the need for a holistic, 

integrated understanding of the systems, considering the impact and interactions 

of multiple threats acting on the systems simultaneously to better manage water 

quality. 

Recent research continues to challenge the decoupling of the GW and SW 

systems, with an ever-increasing focus on delineating the flow pathways across 

the streambed in the hyporheic zone (Cardenas 2015). Despite the need to 

encompass the findings into working practices, the prevailing focus of 

management displays an unwillingness to adapt and move forward with the new 

understandings. Research thus needs to demonstrate what is happening in 

specific locations which are under threat from deteriorating water quality, and 

hence continue to result in the failure to achieve defined WFD objectives. 
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As demonstrated in the previous chapters, the Twizell Burn exhibits complex 

behaviour, and capturing the system dynamics and processes is by no means an 

easy procedure. Field monitoring captures the processes at given points and 

space, however, for a wider spatial and temporal understanding, numerical 

modelling is one such approach that can be applied. By doing so leads to 

question the current perception that the GW and SW systems are disconnected, 

and not homogeneous, accounting to the sediment lithology and thus hydraulic 

connectivity. Beyond the established field- and laboratory-based approaches to 

investigate the interactions, numerical modelling is increasingly used as a tool to 

derive a generalised understanding of the systems and variability of the impacts 

in combination with more traditional approaches (e.g. Niswonger and Fogg 2008, 

Krause, Boano, et al. 2014, Wilson et al. 2017). 

In the following sections, established approaches used for the modelling of GW- 

SW interactions are outlined, with emphasis on bridging the gap between 

datasets to facilitate an understanding of interactions across the streambed. The 

application of the numerical models for the purpose of supporting GW-SW 

understanding are discussed, considering their suitability to look at shallow GW- 

SW exchanges at the near-stream environment, and the possibility of using such 

models with limited historical baseline data. 

4.2.2. Bridging the gap between datasets and understanding 
interactions across the streambed 

As previously mentioned, assessing the state of connectivity between the SW 

and GW requires large and dedicated field efforts (Wöhling et al. 2018). The 

systems are notoriously complex, with the direction of flow being influenced by 

several factors, ranging across regional to point scales. Field measurements offer 

only an insight into the variations over time and space, with the hydraulic head 

changes being highly variable, even over very short distances, in accordance with 

bed topography and pressure head attributing to the stream stage. Additionally, 

the heterogeneity of minor aquifer systems means that the pathways and 

exchanges are often intricate, based on the hydraulic properties of the bed 

material, thus heads vary largely even along short river reaches (Tetzlaff et al. 

2007) making the mapping of the pathways and likely drivers particularly 

challenging, especially where the water table falls below the streambed. The 

lowered water table position results in the stream and the aquifer becoming 
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variably saturated with the perching of water in unconstrained aquifers above the 

regional water table or water table of the major aquifer of the sedimentary 

bedrock. Although the lowered water table position is misleading because it 

implies a lack of feedback between the systems (Fleckenstein et al. 2010) and is 

often not the case (Bencala et al. 2011), with potential exchanges between the 

stream and minor aquifer, and with the major aquifer across the unsaturated 

zone. Often it is assumed that the whole reach is losing to the subsurface, 

however, localised head changes can occur, with heterogeneity in the 

characteristics in the streambed and floodplain (Lawler et al. 2009). It is the 

heterogeneity within catchments, and along streams that needs to be considered, 

to better establish an understanding of water quality. 

 

In areas of high permeability, seepage losses can be high, even over relatively 

short reaches (Fleckenstein et al. 2006), thus resulting in the loss of solutes which 

have the potential to attenuate and react in the subsurface compartment 

comprising minor aquifer systems. The importance of these heterogeneities at 

the GW/SW interface have been highlighted in several recent studies (e.g. 

Fleckenstein et al. 2006; Ibrahim 2012). Whereas in the past such 

heterogeneities have been overlooked and assumed disconnected from the wider 

processes. The work of Brunner et al. (2011) has emphasised the need to focus 

on dealing with the impact of disconnection, hence this means looking at the 

minor, perched aquifer systems. This call has subsequently led to a recently 

emerging focus on the near-surface hyporheic exchanges, including those by 

(von Gunten et al. 2016), the latter focusing on gravel-bed rivers in New Zealand 

to name one such recent example. 

While recent innovative field approaches allow for the assessment of hyporheic 

exchanges, the application to investigate the state of connection requires a large 

experimental field effort, with the likelihood of the connectivity been controlled by 

the nature of the river and GW levels, bed topography and hydraulic properties 

and GW pumping (Wöhling et al. 2018). Where the water table and/or hydraulic 

heads in the minor aquifer are highly variable, field efforts would need to be large 

to capture spatial and temporal variations at multiple sampling points. Due to 

difficulties with field measurements, the estimation of GW/SW exchanges is often 

complemented by numerical modelling (Fleckenstein et al. 2010). Numerical 

models are used to integrate field results of various types (surface and 
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subsurface) and offer the potential to investigate the response of the systems and 

GW/SW exchanges under various scenarios. Several models are currently 

readily available as off-the-shelf tools, and include those which look at the GW 

exclusively, the GW/SW at the near-surface, stream and landscape, of which 

have differing levels of complexity, associated running time and input data 

requirements. Examples of such models are discussed in the following sections. 

4.2.3. GW/SW numerical modelling approaches 
Traditionally, the focus of modelling GW/SW exchanges has been on the stream-

aquifer interactions at the regional or watershed scale, with a coarse 

representation of the stream-aquifer interface. This understanding has been 

attributing to a somewhat broad understanding that the hydraulic conditions are 

assumed to be homogeneous over large river reaches. Now, it is widely 

recognised that models need to consider the relatively local, smaller scale 

patterns and the dynamics of stream-aquifer exchanges at the near-surface (Dahl 

et al. 2007), such as those operating within catchment boundaries, specifically 

SW and GW boundaries. 

Recent advances in the computational capabilities has led to the development of 

finer resolution models, enhancing the way in which systems are understood, 

including fully integrated models that simulate both saturated and unsaturated 

flow, as well as the SW, GW and the full coupling between them in a physical way 

(Brunner et al. 2010), which can be highly accurate (Wöhling et al. 2018). 

Although it is noteworthy that such models require high levels of data, and 

parameterisation can be extremely difficult, thus restricting their application 

beyond intensively monitored sites. At present there are several competing 

numerical models, each with associated pros and cons. Ultimately, the choice of 

model depends on the application of the model and inputs, which in turn are 

dependent on the data availability and simulation intensions. The ability to 

simulate the near-stream GW/SW interactions is a key aim of this chapter, and 

from reviewing the available software, MODFLOW (Harbaugh 2005, Harbaugh et 

al. 2017) offers a possibility of potential solution, with the ability of simulating 

heads and drawdowns of the water table, providing estimates of the system 

behaviour. Noting, however, that this research is not a modelling-based exercise, 

but instead part of a multi-method approach to investigate the GW/SW of tributary 
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streams, thus modelling is used a tool to extend the current system understanding 

as established from the previous chapters. 

4.2.4. MODFLOW 
The research presented here uses MODFLOW, the United States Geological 

Survey (USGS) modular hydrologic model (McDonald and Harbaugh 1988, 

Harbaugh 2005, Niswonger et al. 2011). MODFLOW is an open-access finite-

difference GW code (Harbaugh and McDonald 1984). MODFLOW was chosen 

because of the ability to simulate the near-stream environment making use of 

direct measurements and parameter estimates to represent the GW and SW 

environments (Harbaugh 2005). MODFLOW is considered an international 

standard for simulating and predicting GW conditions and GW/SW interactions, 

with numerous options to represent the GW flow (Harbaugh 2005). Originally 

developed and released solely as a GW-flow simulation code when first published 

in 1984, MODFLOW's modular structure has provided a robust framework for 

integration of additional simulation capabilities that build on and enhance its 

original scope. The family of MODFLOW-related programs now includes 

capabilities to simulate coupled GW/SW systems, solute transport, variable- 

density flow (including saltwater), aquifer-system compaction and land 

subsidence, parameter estimation, and GW management. MODFLOW is most 

often used to simulate GW/SW interactions (Furman 2008), with system stresses 

represented through the addition of a series of packages, e.g. river and stream 

flow routing (McDonald and Harbaugh 1988). 

 

MODFLOW can distinguish between hydraulically connected and disconnected 

states and generally constitutes a good compromise between fully coupled 

models and conceptual models (Wöhling et al. 2018). Although, several 

assumptions are often required to be made. For example, rivers are always 

assumed entirely connected or disconnected to the underlying system (Brunner 

et al. 2010). Ultimately, the complexity of the model implemented using 

MODFLOW is variable, depending on the data availability and resolution of the 

outputs, which comes at a cost of parameterisation, calibration and simulation 

running times. There are several variants of MODFLOW, the choice ultimately 

depending of the level of user experience and model complexity. Beyond the 

capability to simulate and predict the fluxes in water, additional packages are 
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supported, allowing for particle tracking and analysis (Harbaugh 2005, Pollock 

2016). 

Over the last 25 years, several versions of MODFLOW have been developed and 

revised (Hunt and Feinstein 2012). Early versions of MODFLOW were inflexible 

in the way that the unconfined finite-difference aquifer cells were handled when 

the water table drops below the bottom of the cells, resulting in cells remaining 

as ‘dry cells’ for the remainder of the simulation (Hunt and Feinstein 2012). 

MODFLOW is notoriously known for its inability to handle wet-dry problems 

robustly (Painter et al. 2008), and has led to the solving of GW flow problems 

using a Newton-Raphson solution rather than a Picard method, as used in 

previous versions of MODFLOW, e.g. MODFLOW-2005 (see Harbaugh 2005, 

Niswonger et al. 2011, Hunt and Feinstein 2012), where the re-wetting of dry cells 

results in numerically unstable models, preventing model convergence (Doherty 

2001, Painter et al. 2008). MODFLOW-NWT uses the upstream weighting (UPW) 

package as a way of calculating intercell conductance (Painter and Seth 2003) 

and is considered as a powerful and sophisticated open-source software for 

research and practitioners to simulate the GW/SW environment (Hunt and 

Feinstein 2012). However, as with any numerical modelling there are the 

unavoidable challenges associated, e.g. with parameterisation, with the need of 

making often several assumptions, and the overall ability to reproduce simulated 

conditions which are representative of observations from the field. Nonetheless, 

numerical modelling is often the only way to investigate relatively unexplored 

systems, providing an insight into heterogeneous systems. 
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4.3. Approaches and methodology 

The approach adopted in this chapter is outlined in Figure 4-2, which details the 

steps taken to develop a numerical model to represent and simulate the near-

stream environment. 

 

Figure 4-2: Steps taken to develop a numerical model representing the Twizell Burn 
reach using MODFLOW-NWT. 

4.3.1. Study reach 
The study reach is in the lower Twizell Burn (catchment area: 19 km2), a heavily 

modified catchment with poor water quality attributing to historic coal mining and 

contemporary effluent releases from wastewater assets (Figure 4-3). GW 

rebound continues post-mining following the cessation of draining of the deep 

coal mining blocks (Personal communication with Coal Authority via the Wear 

Rivers Trust). Rebound has fully occurred in the neighbouring Stanley minewater 
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block, meanwhile, along the study reach, in the Central Durham South minewater 

block, rebound is currently managed through pumping of water in the Middle Coal 

Measures, with GW levels maintained by the Coal Authority. Besides the impact 

from the deep coal mining, remnants of waste spoil materials from the surface 

mining are evident throughout the catchment, with iron ochre staining on the bed 

and banks of the channel. 

In this chapter, the focus remains on the 1.3 km reach of the Twizell between 

Grange Villa and the Blindy Burn confluence (Figure 4-3). The stream and 

surrounding floodplain have been heavily modified, with artificial ground 

comprising mining spoil and concrete, stepped weir and culvert structures 

constructed following the coal mine abandonment allowing for the dumping of 

mining waste in neighbouring land (Hartley and Wright 1988). There is an 

accumulation of the threats along this reach as it is situated downstream of the 

sewage treatment works as well as inflows from reclaimed land comprising 

mining spoil. The stream-water quality has been managed exclusively from a SW 

perspective, yet with no monitoring downstream of the Grange Villa steps. A key 

focus has been addressing phosphates from the wastewater assets and sewage 

treatment works (Personal communication with Northumbrian Water). This focus 

has been sustained, despite the rebounding mine water from the coal measures 

in the upstream section (Stanley Mining Block), and inputs from open cast mining 

spoil sites. It has been assumed that the streambed is disconnected to the deep 

GW, however, the role of the shallow GW in the superficial layer remains 

questionable. Previous understanding and management have overlooked the 

potential role of the shallow hyporheic zone having an influence on the source 

and fate of solutes present in the system. The variability of the physical structure 

of the system, which is thought to be heterogeneous requires an assessment of 

the impacts to the SW quality. 
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Figure 4-3: Study reach showing the geological faults (direction/dip unknown, Source: 
BGS 2013), with coal minewater blocks (Source: Coal Authority 2018) – star marks the 

Grange Villa stepped weir. 

 

4.3.2. Application of MODFLOW-NWT: model implementation 
In this chapter, MODFLOW-NWT is used as part of a numerical modelling 

exercise to quantify the impacts of variability in the physical streambed on the 

cycling of water, and with it, solutes from historical and contemporary effluent 

releases. In the following sections, the model implementation is discussed, 

considering the ability to represent and capture both the dynamics and processes 

operating within the systems as a function of the elevation, hydraulic conductivity 

and storage coefficients. Following on from the initial model set-up, 

parameterisation of the model is based on the use of primary field and secondary 

datasets utilising inverse modelling techniques to calibrate the model. Steady- 

state (stationery) calibration is performed based on the representation of head 

observations and simulations, followed by the testing of the model under 

observed events, leading onto scenario-based runs to investigate the model 

sensitivity as well as considering the likely system response to extreme events, 

attributing to changes in precipitation, including likely climate change scenarios. 
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4.3.3. Representing the near-stream GW/SW system 
A shallow 3D GW/SW model was set-up using MODFLOW-NWT within the 

Graphical User Interface (GUI) ModelMuse (Winston, 2009) to assist with the 

delineation of the model domain, aquifer layers and setting of cell values using 

data imported from ArcGIS, including shapefiles and ASCII files representing, 

e.g. the hydraulic conductivity and streambed features such as riffle-pools. The 

intention of the model was to represent the shallow GW system, looking at the 

near-surface GW/SW environment, specifically the exchanges along the study 

reach, making use of the hydraulic head and hydraulic conductivity 

measurements obtained in the field. The ‘Upstream Weighting package’ (UPW) 

was selected to represent the GW flow, allowing for an assessment of the flow 

between cells representing the systems, with the ability to set cell values using a 

combination of direct measurements and parameter estimates, e.g. hydraulic 

conductivity (Kx and Kz). Using the UPW package, aquifer layers are defined as 

confined or convertible. In this instance, the model layers by default were set as 

convertible, which means the flow package automatically assigns the layer as 

confined or unconfined depending on the elevation of the water table in the 

simulation. Throughout the model, the units of the measurements are set to 

metres for length. 

4.3.3.1. Geology 

The Twizell is underlain by variable thickness superficial (drift) deposits, 

comprising unconsolidated river terrace and glaciofluvial gravel, sand and silt 

(BGS 2019), which are evidently capable of supporting the perched of water, as 

concluded in Chapter 3. Beyond the broad-scale classifications of the superficial 

geology, analysis of the borehole fabric reveals that the upper parts of the 

superficial strata are heavily modified, and comprise man-made materials, for 

example colliery waste discarded from the coal abstractions. Boreholes drilled 

prior to the construction of the Grange Villa stepped weir provide a small insight 

into the superficial geology. Borehole depths extend up to a maximum of 30 m, 

with the majority available under public access via the BGS Onshore Geology 

Index (BGS 2019). Since there are no available borehole records exist to 

interrogate geology along the channel, the decision was made to assume that the 

floodplain area consisting of river terrace deposits were homogeneously 
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comprising sand, silt and gravel, inferred from 1:50,000 BGS geology maps 

(Figure 4-4). Characterising the geology is notably challenging given the sparsity 

of available borehole records. Originally it was intended that a solid model of the 

geology was to be generated using Rockworks16 (RockWare Incorporated 

2018), which could then be connected to the ModelMuse to delineate the aquifer 

layers (Harbaugh 2005). However, given the ‘block-like’ appearance of the 

generated geology, the initial proposal added little value to the understanding. 

Thus, the geology is assumed characteristic of sand, silt and gravel, with the 

localised hydraulic properties derived from the field sampling and published 

sources are instead used to characterise the system in the model set-up. 
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Figure 4-4: Superficial lithology according to the BGS 1:10,000 scale geology maps 
(Source: BGS 2013). 
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4.3.3.2. Spatial discretisation of the model domain 

A plan view of the model domain is shown in Figure 4-5. For the purposes of 

simulation, only the channel and floodplain areas were defined to be ‘active’ as 

variable head cells. Beyond the floodplain, there was great uncertainty regarding 

the water table position and thus the support of the heads and given the lack of 

measurements and likelihood of been less influential on the channel processes, 

the remaining cells were set to be ‘inactive’, thus with the focus entirely on the 

channel processes, looking at the influences of the bedform and stream 

discharge on the hyporheic exchange flows. Sampling sites (as used in Chapter 

3) are shown in Figure 4-5, where the piezometers were installed to obtain 

samples of the shallow GW and estimate the hydraulic properties of the bed 

material. Only five sites were selected based on the remaining sites having no 

hydraulic measurements, due to damage via high flows or vandalism. 

The influence of external boundaries on the model domain is uncertain, and 

therefore the representation is based on the current understanding of the 

catchment. The western boundary of the model is located at the edge of the 

Central Durham South coal block, which adjoins the Stanley mining block. The 

connection between the blocks is unknown, meaning the impact of the 

rebounding water in the upstream block may or may not bear an influence on the 

downstream block, which is currently managed through pumping (Personal 

communication with the Coal Authority via the Wear Rivers Trust). Additionally, 

the flow direction and rate along the bedrock faults is unknown, although 

assumed permeable. Hence, for the initial model set-up and simulations for this 

research the boundary between the blocks is assumed to be a no-flow edge as 

is that of fault line (Figure 4-3). Thus, the focus of the model presented in this 

research is exclusively on the minor superficial aquifer system, comprising the 

unconsolidated glacial drift material underlying the streambed, which appears to 

have an influence on the accumulation of flow and solutes, as observed during 

the field sampling campaign. The eastern boundary of the model is drawn at the 

point of the downstream flow gauging site, approximately 1.3 km from the 

upstream gauging site. Here, the superficial deposits are around 4 m thinner 

along the streambed relative to the most upstream point sampled. The northern 

and southern boundaries are considered as no-flux boundaries. The intention of 

the modelling presented in this chapter is with the aim of producing reasonable 
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estimates of the heads in the superficial system, and thus while it would be 

possible to produce a relatively complex representation of the system, 

considering multiple elements and avenues of the points noted above, would 

require extensive efforts beyond the scope of this study as part of a model-based 

exercise. 
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Figure 4-5: Representation of the model domain, with the red and blue shading 
representing the active and inactive cells respectively. Piezometer sampling sites from 

which the hydraulic properties are estimated from field sampling are denoted P1-8. 
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4.3.3.3. Representing the GW and SW systems 

Model top and channel - The top elevation of the model is represented by a 

high-resolution 1 m composite LiDAR DTM (2010-2016) (accessed via 

Environment Agency 2015), which was interpolated at the central nodes of the 

MODFLOW computational grid cells. The channel representation according to 

the grid cells is challenging, particularly as the channel cuts across cells 

diagonally and it is not possible to discretise the channel horizontally resulting in 

a uniform exchange flux under the river (Brunner et al. 2010). It is acknowledged 

that because a river can only be tied to one grid cell, there is often a mismatch 

between the channel width and cell width (Brunner et al. 2010). With the need to 

capture the heterogeneity of the bed topography to represent the system 

dynamics therefore requires the use of finer grid cells than those representative 

of the width of the channel, for example 4 m, thus focusing on the centre of 

channel where the piezometric measurements were obtained. 

Grid cells and aquifer layers - In MODFLOW, the system is represented by a 

discretised domain consisting of an array of nodes and associated finite 

difference blocks, represented as grid cells. Figure 4-5 shows the spatial 

discretization scheme in ModelMuse with a mesh of cells and nodes at which 

hydraulic heads are calculated. The nodal grid forms the framework of the 

numerical model, with cell values assigned at the centre of each cell according to 

direct measurements and parameters. Hydrostratigraphic units can be 

represented by one or more model layers representing the aquifer systems. The 

thickness of each model cell and the width of each column and row may be 

variable. As noted, the top elevation of the model domain is derived from a high-

resolution LiDAR image, a 1 m DTM, to represent the dynamic nature of the bed 

geomorphology and grain size distribution. Below the model top, the model 

comprised two layers (Figure 4-6), representing the unconsolidated superficial 

material and sedimentary bedrock systems respectively. In order to avoid dry 

model cells, a coarse vertical discretisation of the aquifer is often used, therefore 

assuming that the hydraulic head does not vary vertically (Brunner et al. 2010). 

The first layer, the superficial aquifer, is representative of the superficial drift 

thickness (BGS 2013) relative to the elevation of the surface. The second layer, 

the bedrock, is somewhat more challenging to define, where the bottom of the 

model domain is set at 0 m AOD, with the base of the bedrock layer been 
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unknown. Given that there is no available data of the hydraulic properties of the 

bedrock, it is assumed homogenous. The upper portion of the bedrock that is 

unsaturated, although assumed permeable with the presence of faults and 

fractures, with the hydraulic properties defined through the use of parameter 

estimates (e.g. Fetter 1994). 

 

Figure 4-6: Screen-shot from ModelMuse showing the discretisation of the aquifer 
layers, the upper layer representing the superficial system with thickness according to 
the advanced superficial thickness model (BGS 2010c), with the lower, the bedrock 

extending to 0 m AOD. 

4.3.3.4. Internal boundary conditions 

In MODFLOW, the representation of water fluxes is based on a series of 

boundary conditions, considering the movement of water between the cells within 

and between the SW and GW systems. The boundary conditions are defined 

using a series of packages, requiring the estimation of the specified head, 

specified fluxes and head-dependent fluxes. As the aim of this research is to 

focus on storm-based events, occurring over relatively short time-scales relative 

to those with the deep GW, the fluxes considered were those between the stream 

and the superficial system, thus a combination of specified head and head-

dependent fluxes, and beyond the channel considering aquifer recharge as a 

function of effective rainfall. Evaporation and evapotranspiration were not 

considered, given the focus of the modelling exercises on storm-based events. 

The model implementation is based on several assumptions made regarding the 

flow into and out of the systems. The upper superficial layer is presumed to be 

variably saturated, with a dynamic water table as evidenced from the field 

monitoring, which appears to be responsive to the pressure head of the stream, 

as well as the bed morphology, e.g. riffles, pools and run sections. The vertical 

and horizontal extent of the saturation is uncertain given the piezometric sampling 
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having been limited to a maximum of eight points along the reach. Meanwhile, 

the sedimentary bedrock layer is assumed homogenous, with the water table 

maintained under the current GW pumping regime and assumed at a specified 

head according to the GW contours, as discussed with the Coal Authority (via the 

Wear Rivers Trust, personal communication). The unsaturated zone between the 

stream and water table is assumed permeable, given the presence of fractures 

and faults. The north and south model edges were deemed no-flow boundaries, 

with no measurements of the water table depth beyond those obtained in the 

channel, thus assuming no fluxes from the surrounding land represented within 

the boundaries of the model domain (Figure 4-5). 

To enable the solving of the GW flow equations, the model requires a set of initial 

and boundary conditions, the latter accounting to with a combination of specified 

head (e.g. time-variant head), specified flux (e.g. recharge) and head-dependent 

fluxes (e.g. with overlying rivers and streams) (Collins 1961, Coelho et al. 2017). 

With the lack of baseline monitoring, defining the location and numerical 

representation is critical, with the mathematical representation of the physical 

features determining the ability of the model to make reasonable and accurate 

predictions (Reilly 2001). Determination of the representative boundary 

conditions is an essential step of numerical modelling, although the selection of 

conditions should not be trivial, the choice is ultimately dependent on the 

knowledge of the simulated system. As there was no pre-existing knowledge of 

the system that could be used to represent the boundary conditions, I developed 

my study focusing on the evaluation of the effects of a combination of two 

boundary conditions, specifically the ‘constant-head boundary’ (CHD) and ‘river’ 

(RIV) package on numerical hydrological simulations of the unconfined superficial 

aquifer, looking at the average and extreme responses to changing hydrological 

conditions. The representation of the system is therefore based on the current 

understanding and data, with the system representation as a ‘best-fit’ 

combination of the according to the elevation, particle size and morphology of the 

channel to replicate observed conditions through inverse modelling techniques. 

Specified Heads: The water-table position beyond the sampling points is 

unknown, and therefore the initial heads are based on linear interpolation from 

the field sampling at the piezometers as presented in Chapter 3. Based on field 

sampling, the water table is thought to be shallow, and near to the streambed, 
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typically expected of lowland streams (Ibrahim 2012). Constant head boundaries 

(CHD package) at either end of the study reach were implemented, assuming 

that at either end of the study reach, where the streambed is lined with concrete, 

with the downstream (western) boundary been drawn at the location of the 

artificial section (Figure 4-3). Constant head boundaries were applied to 

represent the edge conditions at either end of the reach, with the reference head 

as the model top, assuming saturation of the concrete lined sections. The heads 

at either end of the reach were held constant throughout the stress periods. 

Underlying the superficial layer is a sedimentary bedrock sequence. Based on 

the current pumping regime, the head in the Coal Measures is at 20 m AOD, and 

thus represented by a specified head (CHD package), with the assumption that 

the water table (head position) is otherwise thought to be constant, both spatial 

and temporally within the model domain. The unsaturated zone is not considered 

to bear influence, with the properties, specifically the characteristics and role of 

the faulting/fracturing in water movement being unknown. 

Stream representation: The Twizell flows eastwards, with contributions from 

tributaries deemed minimal. Using the RIV package (a head-dependant flux 

boundary) the stream is represented, however, assuming no routing of the water 

downstream and that the stream stage is a kinematic wave, where the water is 

routed through the system, and the stage is parallel to the elevation of the model 

top, in this case, the streambed. In the RIV package, the user specifies two 

elevations. One represents the elevation of the bottom of the riverbed. The other 

represents the head in the river. If the head in the cell connected to the river drops 

below the bottom of the riverbed, water enters the GW system from the stream 

at a flux or a constant rate. If the head is above the bottom of the stream, water 

will either leave or enter the GW system depending on whether the head is above 

or below the head in the stream. A conductance term, which is multiplied by the 

streambed thickness (m) and vertical hydraulic conductivity is used to determine 

the flux of water between the systems according to the respective head positions. 

The streambed thickness is input as a global variable into the model. 

Note, that a detailed parametrization of the stream geometry is possible, although 

impractical, given the associated high experimental costs. Therefore, for the 

reach entirety, based on the sensitivity to the parameterisation the streambed 

thickness is assumed 0.35 m. 
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To derive estimates of stage along the channel, the US Army Corp software, 

HEC-RAS (U.S Army Corps of Engineers 2010) was used to simulate water 

depths for each of the grid cells. The time-step of the model was set at 15-minute 

intervals, with 2D model outputs, from which the floodplain could be delineated 

(Figure 4-7). The 1 m LiDAR DTM was used and estimates of the channel 

parameters determined, including slope and channel roughness according to 

Manning’s n, estimated using Chow (1959). Depths were simulated based on the 

incoming flow at the upstream point of the reach (Figure 4-5), with the resulting 

depths a function of the slope and roughness as the effective flow is routed 

through the model for various event sizes. The flow estimates were made using 

the stage-discharge rating curve as presented in Chapter 3. It is therefore likely 

that based on the standard error associated with the interpolation and 

extrapolation of flow estimates that this in turn feeds into the depth estimates (see 

Figure 3-5 and Figure 3-6). Simulated depths were validated against those 

observed at the stilling wells and piezometer sites along the channel and deemed 

reasonable to proceed with the modelling simulations. As there is no established, 

long-term monitoring of the shallow GW system, the recharge of the shallow 

aquifer system is unaccounted. Nevertheless, with the onset of rainfall, it is 

inevitable that there will be runoff from the surface. 
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Figure 4-7: Floodplain extent for 1-in-100-year event using HEC-RAS. 

4.3.4. Model parameterization 
The parametrization of the model was based on the best-estimate of the initial 

head conditions and hydraulic properties of the superficial and bedrock systems. 

The initial heads were taken from the piezometric head measurements (Figure 4-

6). Interpolating the heads along the channel through the application of the 

inverse distance weighting (IDW) techniques in ArcMap facilitated an initial value 

of the heads along the channel and floodplain. Where heads were lower than the 

base of the superficial layer bottom, the cells were set as ‘inactive’, as they were 

effectively dry, which would have resulted in subsequent issues with the model 

simulations. Estimates of the hydraulic conductivity were a combination of field 

measurements made at the piezometers and published records, from which 

representative values for the unconsolidated materials and sedimentary rocks 

were selected (e.g Domenico and Schwartz 1990, Fetter 1994), where 

measurements were not obtained, such as beyond the channel in the floodplain 

area. 

Along the channel, horizontal (Kx) and vertical (Kz = Kx/10) hydraulic conductivity 

estimates were obtained via falling-head slug tests. Similar to the initial head 

estimation, using these conductivity estimates, the IDW technique was applied to 

generate estimates of the hydraulic conductivity along the subsequent 
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unsampled parts of the reach (Figure 4-6). It was assumed that the estimates of 

hydraulic conductivity were reflective of the streambed material. Additionally, riffle 

and pool features were considered to have varying hydraulic conductivities, with 

riffles expected to have conductivities favouring downwelling at the riffle head and 

upwelling at the riffle tail. Estimates of the riffle-pool hydraulic conductivities were 

a combination of field measurements and published values. Parameterization of 

the riffle-pools was performed via co-kriging of the riffle-pool conductivities with 

locations of the features in ArcMap. 

Estimates of the hydraulic conductivity of the underlying geology are according 

to previous studies (e.g. Domenico and Schwartz 1990, Fetter 1994). For 

unconsolidated drift material, the hydraulic conductivity (m/s, horizontal – Kx and 

vertical, Kz = Kx/10) are typically within the range of 9x10-7 and 6x10-3 m/s 

(Domenico and Schwartz 1990). The hydraulic conductivity of the sedimentary 

bedrock material comprising mudstones and sandstones is typically in the range 

of 3×10-10 to 6×10-6 m/s (Domenico and Schwartz 1990). Regarding the 

streambed conductivity, the values were trial-and-error in the calibration process, 

with the streambed conductivity having not been measured directly in the field 

and would require very extensive field efforts beyond the scope of this study. 

Parameters included in the model set-up: 

• Stream stage 

• GW levels 

• Hydraulic conductivity of the bed material  

4.3.5. Model calibration 
Model calibration general involves adjustments initial values and parameters to 

minimize the discrepancy between model simulations and observed data through 

inverse modelling techniques. Calibration is achieved by altering the horizontal 

and vertical hydraulic conductivities in the case of stationery (steady-state) 

calibration and checking the output simulated heads relative to observed heads 

in MODFLOW using the ‘head observation’ (HOB) package (Barnett et al. 2012, 

Wöhling et al. 2018). Model calibration is an iterative process, and is a balance 

between simplicity and complexity, and can be achieved through manual trial-

and-error or automated procedures (Barnett et al. 2012). During trial-and-error 

calibration it involves changing a model parameter by a small amount and 
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establishing how model predictions are affected by that change. It rests on the 

ability of the modeller, after each run, to identify and consider the differences in 

the predicted heads visually and statistically, the latter using the HOB package, 

with the ability to look at residual changes and error, e.g. root mean square error 

(Barnett et al. 2012). Alternatively, calibration can be achieved via automated 

parameter estimation codes such as PEST (Anderson and Woessner 1992). With 

the use of observed hydraulic parameters from the field sampling, it was decided 

that trial-and-error calibration would be preferred, with these estimates 

considered the suitable to represent the system. The trial-and-error method is 

adopted as it incorporates site-specific knowledge and ensures a gained insight 

into the behaviour of the model during the calibration period (Hassan et al. 2014, 

Bakar 2015) 

During the calibration procedure, it is difficult to obtain exact model parameter 

values due to the different sources of uncertainty in the model (Bakar 2015). 

Sources of uncertainty enter the model from a range of sources, including the 

representation of the boundary conditions and observation data (Wu and Zhang 

1994). Based on the only available data to calibrate the model been that from the 

piezometer measurements there was a considerate uncertainty, especially 

without the possibility of a transient calibration, thus reducing the confidence of 

predictions. Nevertheless, based on this being a first-order modelling approach 

to represent the dynamics and processes occurring at the GW/SW interface, the 

model was intended to allow for a general understanding of the time and spatial 

scales (Barnett et al. 2012). It is therefore emphasised that the model is 

worthwhile to gain an understanding which could not otherwise be achieved, 

linking the local processes to the wider system. However, it is with a lower degree 

of confidence in its ability to represent the system given the standard of calibration 

(Barnett et al. 2012). Measures to assess the calibration were the root mean 

square error (RMSE) and percentage discrepancy to assess the observed and 

simulated heads, and water budget respectively. A percent discrepancy less than 

1% is deemed acceptable (Anderson and Woessner 1992) and applied in this 

study. 
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4.4. Results and discussion 

4.4.1. Steady-state model calibration 
Steady-state calibration was performed with the model assumed to be 

representative of average conditions with no stresses acting on the systems, with 

observed heads from 13/04/17 used to assess the simulated heads (Figure 4-8). 

As no historical measurements were available for the Twizell and relying entirely 

on the field measurements means that calibration is somewhat challenging. 

However, as noted above, this does not imply that the modelling is not worthwhile, 

it simply means that the simulated conditions are associated with a lower degree 

of confidence (Barnett et al. 2012), especially when stresses are applied. 

Nevertheless, the model allows for a gain in the general understanding of time 

and spatial scale changes of a system which has been unexplored until now, thus 

any advancement is better than none at all (Barnett et al. 2012). 

 

Figure 4-8: Observed stream stage (April-July 2017) at either end of the study reach 
(Figure 4-3), showing the calibration period and 48-hour scenario-based event. 

 

The initial simulation under steady-state conditions comprised of direct 

measurements and parameter estimates of the horizontal hydraulic conductivity 

(Figure 4-9). The floodplain was denoted to have a value of 0.00016 m/s, 

representative of a homogenous sand and gravel system (Domenico and 

Schwartz 1990), and the riffle and pools of 3.6 and 0.0042 m/s respectively. The 
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 bedrock aquifer was set with a hydraulic conductivity of 1.8e-4 m/s, typical of 

sandstone formations (Domenico and Schwartz 1990) with the heads specified 

according to the GW contours and therefore maintained throughout the 

simulation. As the focus was on the near-stream, the bedrock was considered of 

little influence, with no need to consider the head flux given that the water table 

is maintained through pumping and unlikely to bear any short-term influence on 

the stream environment, thus GW upwelling from the bedrock aquifer was 

unexplored in this instance. 

 

Figure 4-9: Horizontal hydraulic conductivity in m/minute for the channel and floodplain 
area. 

Based on the conditions, predicted heads were reasonable, with an RMSE of 

0.12. Heads simulated at the piezometers varied, although were reasonable 
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given the noise and uncertainties in the system, with the model conditions 

according to the best understanding of the system (Figure 4-10; Table 4-1). The 

simulated values at each of the piezometer sites is, however, an interpolation of 

the surrounding heads, thus resulting in an over- or under-estimation of the 

heads. Because the calibration was limited to the piezometer sites, the 

uncertainty increases with distance from the sampled sites. 

The observed and predicted heads at the piezometer sites are shown in Figure 

4-10 and Table 4-1. The simulation of the vertical hydraulic gradients (VHGs) 

relative to the stream stage were estimated (Table 4-1). The VHGs were 

representative of the upwelling and downwelling direction of flow, although of a 

magnitude less in most cases. Sites P2 and P8 were considered intensive to 

changes in the horizontal hydraulic connectivity, and therefore, resulted in 

simulations which were higher than the observed heads, and thus near-neutral 

VHGs as opposed to the observed downwelling (Table 4-1). The cause of the 

higher value is attributable to the surrounding cell influence; however, further 

measurements would be needed to increase the certainty of the cause. 

 

 

Figure 4-10: Observed and simulated values of the hydraulic heads at the piezometer 
sites under steady-state conditions with relative fit to 1:1 line. 
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Table 4-1: Observed and simulated values of the hydraulic heads and vertical hydraulic 
gradients (VHGs) at the piezometer sites under steady-state conditions, with residual 

errors. 

 

 

 

 

 

 

 

 

 

 

4.4.2. Sensitivity analysis of the steady-state model results 
Sensitivity of the model was analysed by examining the response of the hydraulic 

heads to changes in the model representation and parameters. The former 

referring to the bed topography and grid cell size, and the latter referring to the 

horizontal hydraulic conductivity (Kx), which also impacts on the vertical hydraulic 

conductivity (Kz) and riverbed fluxes; and the representation of the system. While 

it is possible to test the sensitivity of the model to variations in the river flux, the 

inability to directly measuring this parameter would likely result in great 

uncertainty, and therefore is evaluated as a function of the hydraulic conductivity 

of the streambed material and streambed thickness. 

4.3.3.5. System representation 

The model implementation is based on the ability of representing the dynamics 

and processes of GW/SW flow. With regards to the dynamics, the ability to 

simulate the observed patterns based on the bed topography requires 

considering the scale of the grid cells to capture enough detail of the local-scale 

changes in elevation. To represent both the stream stage at that point and thus 

the relative hydraulic heads according to the bed-scale features, specifically 

riffles, pools and run sections. Calibration of the model was based 1 m2 grid cells, 

which was a compromise between capturing the local scale head changes, 

against the ability to represent the system over a larger spatial scale (Brunner et 

Piezometer Observed 
Head 

(m AOD) 

Simulated 
Head 

(m AOD) 

Observed 
VHG 
(%) 

Simulated 
VHG 
(%) 

P1 70.90 70.96 -23 -15 

P2 68.64 68.81 -34 2 

P3 68.80 68.79 -27 -27 

P4 68.21 68.32 26 56 

P5 60.00 60.02 9 2 

P8 54.17 54.35 -43 3 
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al., 2010). Either the grid cell exceeds the width of the channel, thus losing the 

ability to simulate the heads, given the loss of the resolution of the local scale bed 

topography at the metre-scale. Alternatively, the width of the channel simulate is 

reduced to focus on the central part of the channel, as done in this research, 

looking at the local-scale changes, requiring the use of a grid cell finer than that 

of the channel width. With an increase in the grid cell size, resulted in an 

increasing residual error, largely attributable to the piezometers, P2 and P8. 

Thus, suggesting that the residual error associated with the representation of the 

heads at these sites was likely due to sub-metre changes in the bed topography, 

as opposed to been sensitive to the horizontal hydraulic conductivity, which when 

altered, resulted in minimal changes to the head simulated at these sites, with 

changes to fourth-order scale changes. It was a balance between capturing the 

dynamics at the piezometer sites with the ability to represent the likely processes 

operating beyond these systems across time and space. 

4.3.3.6. Horizontal hydraulic conductivity 

Rather than a full-scale sensitivity analysis, the parameters values were altered 

by known amount, and the impact on the simulated heads assessed as a function 

of the residual and RMSE change (Figure 4-11). Varying the horizontal hydraulic 

conductivity   impacted   also   on    the    vertical    hydraulic    conductivity (Kz = 

Kx/10). The varying of the hydraulic conductivity parameter allowed a first-order 

approximation of the sensitivity to be established from the estimated hydraulic 

measurements made both in the field and from published data. Since there was 

only one estimate of the conductivity for each piezometer, it was not possible to 

assess the confidence intervals. Values of the horizontal hydraulic conductivity 

were varied for the surrounding floodplain, the riffles and pools and at the 

individual piezometer sites. Figure 4-11 shows the resulting RSME for the 

changing of the conductivity values by an order of 50% in the floodplain, riffles 

and pools. In the case of the floodplain, the RSME change is linear, with an 

increase in the conductivity accounting to a slight reduction in overall error (Figure 

4-10). Changes to the riffle and pool conductivities resulted in non-linear changes 

to the simulated heads (Figure 4-11). The impact of the hydraulic conductivity 

changes of the floodplain, and channel features on the heads was small (Table 

4-2). 
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 Figure 4-11: RMSE according to percentage change in horizontal hydraulic 
conductivity (Kx). 

Table 4-2: RMSE at piezometer sites accounting to percentage change in parameter 
values. 

 

 

Therefore, the insensitive to changes in the conductivity variations is indicative 

that the heads are responsive to other factors, e.g. the bed topography and 

stream stage. Working with the model implemented is therefore with 

uncertainties, unknowns and noise in the data, something that is inevitable in the 

modelling process. While the model is useful as a tool to gain generalised 

understandings of the streambed exchanges across space and time, it is with a 

lower degree of confidence than systems with historical baseline data. Small 

changes in the residual error suggests that the modelled hydraulic heads are 

likely sensitive to other factors not considered in the model set-up (Bear and 

Cheng 2010). Therefore, it would be necessary to investigate the system beyond 

 Piezometer Site (Pn) with simulated head values (m AOD) 
% change in parameter 

value 
 

P1 
 

P2 
 

P3 
 

P4 
 

P5 
 

P8 

50 70.961 68.812 68.799 68.312 60.017 54.352 

0 70.963 68.816 68.792 68.316 60.021 54.353 

-50 70.966 68.818 68.786 68.319 60.025 54.353 

RM
SE
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this research in order to develop and improve the simulation ability and thus 

prediction capabilities of the model. 

4.4.3. Model testing – challenging the current understanding of 
GW/SW system behaviour 

Following model calibration, the ability of the model to simulate heads beyond 

those observed was tested, looking at the system behaviour under average 

conditions, specifically assessing the hydraulic heads and the VHGs along the 

study reach. In-turn it was possible to evaluate the model performance in its ability 

to represent the system at the measured points. Subsequent to this analysis, the 

model was tested in its ability to simulate the system behaviour in response to 

changing hydrological conditions, challenging how we understand the GW/SW 

system over space and time through transient simulations, looking at: 

1. An observed 48-hour event looking to assess the changes in stream 

stage in response to the observed mid-morning flux from the sewage 

treatment works (as discussed in chapter 3), followed by a localised storm 

attributing to bankfull conditions; 

2. Design flood events representative of 1-in-100-year rainfall event 

generated using the FSR/FEH rainfall-runoff method (Kjeldsen 2007); and 

3. Climate change scenarios – based on the UKCP09 Weather Generator 

outputs for 2030s medium emissions scenario (Hadley Centre for Climate 

Prediction and Research 2017). 

4.4.3.1. Model performance under average conditions 

In response to the first of the defined research questions at the start of the chapter 

to assess the hydraulic gradients over space, the resulting VHGs delineated from 

the simulated heads along the reach are shown in Figure 4-12. As expected, 

upwelling and downwelling is variable along the reach, with localised changes 

reflecting the bed geomorphology in the presence of riffles and pools, associated 

with downwelling at the riffle head, and upwelling at the riffle tail. The VHG 

patterns reflect those observed in the field, specifically at sites P3 and P4, 

representative of a riffle and pool respectively (Figure 4-12). Beyond the 
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measured points at the piezometers the uncertainty in the validity of the VHGs 

patterns grows, given that there are based on the estimations of the conditions at 

few points along the reach. Nevertheless, the trends provide insight into the 

system dynamics and processes operating which have not been accounted for 

previously. 

The upper portion of the reach, it appears that SW is lost to the GW system at a 

greater rate relative to that in the lower section, which appears to have greater 

gains in flow marked by the upwelling from the subsurface relative to upstream 

(Figure 4-12). It is in the lower section where the iron flushes were observed 

under what I considered from my experience to be representative of normal flow 

conditions. With such conditions, iron-ochre was observed to stain the bed and 

banks. The findings from the modelling support the assertion that the iron flushes 

are attributing to the upwelling of water rich in metals, which precipitate on the 

bed of the channel due to an increase in the partial pressure. These processes 

result in an oxygen-rich, aerobic environment in the stream resulting in the 

precipitation of metals, hence the ochre staining, and the enrichment of sulphates 

in the stream water as observed from the SW sampling discussed in chapter 3. 

Ultimately, such patterns of upwelling and downwelling are expected, it is likely 

that some of the variations and trends were unaccounted given that every 

factor/condition(s) operating was not unlikely to be captured in the model set-up. 

However, based on the steady- state representation of the system with no 

external or internal stresses, it is evident that the hydraulic heads in the superficial 

system are representative of a combination of localised losses and gains to and 

from the stream water (Figure 4-12). 
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Figure 4-12: GW/SW patterns along the channel representative of average steady-
state conditions. Zoom-in windows show the upwelling and downwelling associated 
with (a) the riffle-pool sequence observed by the piezometers P3 and P4 (left); and 

(b)the iron-ochre upwelling sub-reach (right). 
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In Chapter 3, it was hypothesised that the superficial system is acting as a near-

stream buffer and propagator to solutes from the SW and GW systems. Whilst it 

is not possible to determine the time at which solutes are held in the bed material, 

or the lag time response in accordance to the upwelling and downwelling of flow, 

it is likely that the iron flushes observed along the lower half of the study reach is 

attributing to the upwelling of the shallow GW (Figure 4-12). The upwelling of 

sulphate and metal-rich (e.g. manganese) water from the subsurface accounts to 

the reduction in partial pressure, where in the presence of relatively higher 

oxidised water compared to the superficial system results in the dissolution of the 

metal solutes in the water, hence the iron-ochre staining on the bed . The source 

of the mining wastes is unknown, with tracing requiring the use of isotopes, for 

example (Engelhardt et al. 2011), and would require further investigations beyond 

the scope of this research. Nevertheless, based on these findings, the upwelling 

of mining water is therefore the likely source of the iron-ochre on the bed, as well 

as the enrichment and load increase of sulphate as observed during the field 

sampling over the reach. As outlined in Chapter 3, at the time of sampling the 

enrichment in sulphate was not in correspondence with the chloride:sulphate 

ratio, which lead to question localised sources attributing to upwelling along the 

streambed, thus the mobilisation of sorbed elements and return flows from the 

subsurface. 

During average, baseflow conditions, the water quality of stream is likely 

impacted by the mining-derived solutes, associated with the aesthetical impacts 

of the system. With increasing discharge, it was highlighted in Chapter 3 that 

there was an effective tandem-effect, where dilution of the mining-derived 

solutes, e.g. sulphate, and reduced GW upwelling coincides with the enrichment 

of nutrients likely attributing to effluent releases from upstream of the reach. The 

understanding of the system response to these changing hydrological conditions 

was not measured at the piezometer sites, thus the system response was further 

explored with the modelling exercises. 

4.4.3.2. System response to changing hydrological conditions 

Beyond the average conditions, the response of the system to changing 

hydrological conditions was tested in response to a small flux (around 0.05 m3/s) 

representative of that observed from the sewage treatment works (Figure 4-13). 

Followed by a localised storm event which was representative of bankfull 
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conditions (Figure 4-13) measured via stage gauging on 27/05/17 to 28/05/17. 

The storm peak illustrated the ‘flashy’ flood response of the catchment, with a rise 

in stage of around 0.6 m over a 15-minute interval. For the running of the transient 

simulation, the storage conditions of the aquifers were assumed homogenous, 

with estimates of the specific yield and specific storage from published sources 

(Domenico and Schwartz 1990). 

 

Figure 4-13: 48-hour event, with a flux from the sewage treatment works and a 
localised storm event between 27/05/17 and 28/05/17. 

 

As discussed in Chapter 3, the flux from the sewage works resulted in a minimal 

change in the water chemistry, nevertheless it is interesting to see the response 

of the system to a relatively small increase in flow. Figure 4-13 shows the VHGs 

every 100 m along the study reach, from which it is indicative that the general 

increase in the heads is in response to the slight rise in stream stage. 

Measurements at the piezometer sites would be required before and after the 

sewage works flux to validate this finding. Meanwhile, at bankfull conditions, the 

majority of positive VHGs denoting upwelling become weakened and more 

negative indicating downwelling (Figure 4-14). Increased downwelling is 

expected in response to the rise in stream stage, accounting to the greater 

distance between the stream stage and water table of the superficial system, thus 

influencing downwelling given the sediment permeability. Under such conditions, 

the downwelling and trapping of water in the superficial layer results in the 
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accumulation of solutes held in pore water. For example, manganese and 

sulphates, which were found to be greatly enriched post-storm events, 

corresponding with the loss of iron flushes at the surface, as outlined in Chapter 

3. 

 

 

Figure 4-14: Intensity of VHGs every 100 m along the study reach under average 
conditions, as well as following a flux from the STW, and at bankfull conditions – 
positive indicates upwelling and negative indicates downwelling respective to the 

streambed topography (blue line). 

4.4.3.3. Model testing under design scenarios 

Extending the focus beyond the sampled events, using the FSR/FEH rainfall-

runoff method (Kjeldsen 2007), design events were generated to represent 

hydrological conditions to explore and challenge the understanding of the system 

behaviour in response to more extreme events. An event representative of a 1-

in-100-year event was generated, and subsequently routed through the model as 

a transient simulation. Figure 4-15 shows the hydrograph generated for the 100-



169 
 

year event. As the FSR/FEH method generates hydrographs for the full 

catchment using the FEH catchment descriptors, it was necessary to scale the 

output hydrograph to the model domain area. At the start of the simulated storm, 

stage was similar to that under the average conditions, rising over the duration of 

the storm to a peak of 3.5 m. It is with the assumption that this change in stage 

would occur uniformly over the reach. 

 

 Figure 4-15: Hydrographs generated using the FSR/FEH rainfall-runoff method 
representative of a 1-in-100-year event. 

 

Over the duration of the 100-year design event, the heads generated over time 

appeared responsive to the stage changes with a 2-4 m change in head across 

the piezometer sites (Figure 4-16). As stage returned to near-average conditions, 

the heads fells, although remaining elevated relative to the initial positions (Figure 

4-16). 
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Figure 4-16: Heads simulated at piezometer sites P1-P5 and P8 during a design 100-
year event. 

 

Under average conditions (Figure 4-17) the upwelling and downwelling along the 

reach suggests that there is a movement of water from the surface to the 

subsurface and back again, likely coinciding with the precipitation of metal oxides 

on the bed attributing the partial pressure change as sulphide and metal rich 

waters move from the anaerobic subsurface to the surface (Buss et al. 2009). As 

the stage rises, downwelling from the stream to the subsurface is enhanced 

(Figure 4-17), coinciding with the loss of metal oxides from the bed, and 

enrichment of manganese and zinc in the bed, for example, as discussed in 
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Chapter 3. At the peak of the storm, and shortly after, it is likely that there is no 

movement of water across the streambed interface attributing to the saturation of 

the bed material. It would be necessary to then also consider the losses beyond 

the channel via the banks and floodplain to further assess the transport and 

cycling of flow and solutes. With conditions nearing return to those of average 

conditions at the end of the storm simulation, the VHGs appear to gradual return 

to those observed at the start of the storm, although with generally enhanced 

upwelling along the reach as the heads exceed the stream stage (Figure 4-17). 

In which the riffle-pools start to then predominate the upwelling and downwelling 

patters with the return of the upwelling along reach with the iron-ochre flushes 

(Figure 4-17). 
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 Figure 4-17: Upwelling and downwelling of GW respective to the SW over the 
streambed according to a 100-year design storm event, at the peak of the storm, and at 

the end of the storm. 

 

 

 

 

 

 

 

 

 



173 
 

4.4.3.4. Model testing under climate change scenarios 

Daily rainfall time series generated at a 5 km resolution using the UKCP09 

Weather Generator under a medium emissions scenario for the 2030s (CESER 

2016, Research 2017) were used to investigate the system response to 1-in-100-

year flood events according to future climate change projections. A total of 1000 

scenarios were generated. The recurrence intervals of the 100-year events were 

assessed using the method of moments, assuming the maximum values fit a 

Gumbel distribution, from which the location and scale parameters were 

calculated using the mean and standard deviation. The cumulative averages of 

the location and scale parameters were calculated for each of the scenarios and 

are shown to converge within the 95% confidence intervals at around the point of 

300 scenario runs (Figure 4-18). 

 

Figure 4-18: Cumulative averages of the location and scale parameters estimated for 
the 1000 scenarios for the 2030s, shown with 95% confidence intervals. 
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Based on the convergence, a total of 300 event-based simulations were 

completed. Scaling the simulated rainfall to that of the FSR/FEH rainfall-runoff 

100-year event hydrograph (see section 4.4.3.3.) a series of stream-stage time-

series were generated and ran through MODFLOW-NWT. The model simulations 

were based on the same initial and boundary conditions as used in earlier 

simulations, albeit varying the stream stage, producing simulations of hydraulic 

head changes. Over the duration of each design 100-year events, the simulated 

heads at each of the monitored piezometers sites were variable, with heads 

varying over 4 m between the minimum and maximum simulated heads (Figure 

4-19). Head changes associated with higher rainfall events were around two-

order of magnitude greater relative to those associated with comparable lower 

rainfall (Figure 4-19). 

 

Figure 4-19: Hydraulic heads at the piezometer sites (P1-P8) within the 95% 
confidence interval as shown by the dotted lines. 
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Upscaling these findings along the channel reach, it is likely that in response to a 

100-year rainfall event representative of the rainfall according to average climate 

change conditions in the 2030s, that at storm peak, the stream stage would be 

expected to rise by around 5 m, accounting exclusively to downwelling conditions 

along the reach (Figure 4-20). According to the simulations, downwelling 

conditions prevail with a fall in stream stage, although corresponding patterns of 

upwelling of GW are observed too (Figure 4-20). Such patterns of upwelling and 

downwelling are indicative that return flows of SW are likely occurring attributing 

from the saturation of the streambed. Relative to the initial conditions, the 

upwelling of GW post-storm is on average twice as strong, therefore providing a 

greater potential of solute movement over the streambed, particularly in the 

second half of the reach where the iron-ochre flushes have been observed. The 

response of the system post-storm under such conditions corresponds with 

exaggerated and more dynamic conditions relative to those observed under 

present-day conditions. The enhanced upwelling has potential to therefore 

transport greater flow and solutes to the stream, and thus deterring the SW 

quality. 

 

Figure 4-20: VHGs estimated according to an average 100-year storm event according 
to the 2030s UKCP09 rainfall scenario. 
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Looking at the extreme end of the climate scenarios, assuming the maximum 

rainfall were to occur for a 100-year event, corresponding with a maximum rise in 

stage to 8 m, the system response is greatly similar along the reach (Figure 4-

21). As expected, the storm peak corresponds with predominant downwelling. 

However, the return to normal conditions is somewhat more gradual, and would 

likely take significantly longer relative to those under lesser extreme rainfall 

events. Figure 4-21 shows the simulated VHGs for such an event at the storm 

peak and following a fall in stage to less than 1 m. Such an occurrence could 

likely enhance the attenuation potential of the subsurface, although further 

investigations would be necessary. 

 

 

 Figure 4-21: VHGs estimated according to an extreme 100-year storm event 
according to the 2030s UKCP09 rainfall scenario. 
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4.5. Concluding remarks: Challenging the current GW 
assumptions 

The implementation of a numerical modelling approach has allowed an upscaled 

understanding of the general processes operating across time and space 

between the GW and SW systems. Hydraulic head changes are responsive to 

the changes in stage, with the extent of upwelling and downwelling operating as 

a function of the location and degree of change in stage. The simulated system 

responses are not without large uncertainties; however, they are insightful, 

particularly when thinking about the system response following the onset of large 

rainfall events which were impossible to sample the piezometers throughout the 

field sampling campaign. Returning to the two original research questions, the 

hydraulic gradients are responsive to changing hydrological conditions, and the 

iron-ochre flushes are likely attributing to return flows, although further testing, 

e.g. via isotopic analysis would be required to confirm this source. 

Under average, baseflow conditions, the gains and losses to and from the stream 

are inherently variable along the reach likely owing to the bed characteristics. 

Gains and losses to the stream are supportive of the patterns observed in 

Chapter 3. Increasing discharge through the system attributes to the 

enhancement in the downwelling and associated loss of stream water to the 

subsurface, resulting in solute enrichment, e.g. manganese. Implying the 

understanding from the modelling to how we have otherwise understood this 

system. While it is evident that under baseflow conditions, the stream is impacted 

by the mining-derived solutes, which are lost from the subsurface. Meanwhile, 

during storm events, the subsurface becomes effectively cut-off from the stream 

with reduced vertical upwelling, and as a result solute concentration are likely to 

become enriched. 

The Twizell is nevertheless a complex system, with dynamic changes in the water 

fluxes and chemistry. Traditionally assumed disconnected to the subsurface, this 

is unlikely to be the case, particularly here with reference to the shallow, near 

stream GW/SW system. It is important to consider and challenge how we look at 

these systems, as without coordinated joined-up understandings and 

management, the impacts can be further detrimental. For instance, as observed 

post-storm events throughout field sampling, the sulphide and metals are highly 

enriched in the streambed. If after a storm this is true, then when the upwelling of 
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these enriched waters rises, coinciding with phosphate-rich waters from 

upstream could potentially result in the mobilisation of the entrained phosphate 

(Smolders and Roelofs 1993), leading to significant issues downstream. Such a 

concern has been pointed-out by Northumbrian Water; however, this is the first 

time that we have looked at the role of the streambed in having an attenuating 

and release potential. 

Ultimately, the modelling is a useful exercise for challenging how the way we look 

at and think about the GW systems and the interaction with stream-water across 

various spatial and temporal scales. Modelling suggests that the hydraulic heads 

of the superficial system are responsive to changes in stream stage, with various 

patterns and dynamic changes in the upwelling and downwelling as a function of 

the bed geomorphology, but also the conditions. In this chapter I have looked at 

the response of the system to changing hydrological conditions as a result of 

periodic releases from the sewage treatment works and rainfall events of various 

orders of magnitude. With reference to the Twizell, where field sampling only 

provided a snapshot of the dynamics and processes, modelling has facilitated an 

assessment beyond these constraints. Without the application of modelling as a 

tool to better understand these systems, the prevalent understanding of the 

cycling and exchanges in flow and solutes would be continued from a one- 

dimensional focus, with a reliance on limited monitoring. Ultimately, there is a 

need to look beyond such limits and gain a fuller understanding of the system 

dynamics and processes, linking together the local- and larger-scale processes 

(Magliozzi et al. 2017). 
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“I can’t control their fear, only my own.” 

Scarlet Witch (Captain America: Civil War, 2016) 
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Chapter 5 - Discussion 

This chapter draws together the key findings presented in Chapters 2-4, 

addressing the original research aim by evaluating the connectivity and 

processes operating at the GW/SW interface of heavily modified rivers in County 

Durham. The development and application of methods to conceptualise and 

capture the system dynamics and processes has been demonstrated via a 

combination of desk- and field-based approaches. In doing so I express the need 

for water resource practitioners to consider local-scale GW/SW interactions as 

an integral part of the wider catchment management approaches, moving beyond 

the focus of the systems as decoupled and disconnected. 

5.1. Key research findings 
5.1.1. Developing an integrated understanding of GW/SW 

systems 

The shift towards developing a holistic integrated understanding is emphasised 

by overarching policy frameworks such as the WFD, as well as individual 

challenges in catchments, which are typically addressed with fragmented 

reactions within and across disciplines (Cosgrove and Loucks 2015). That is 

despite the likelihood of interactions between the systems (Kløve et al. 2011). 

There are several notable attempts discussed throughout research and in 

practice which endeavour to establish a more holistic understanding of the 

system characteristics and in-turn the GW/SW connectivity (e.g. Ransley et al. 

2007). However, limited and infrequent data collection and baseline studies tend 

to inhibit the application of several of these approaches in their application to 

more complex catchments (Conant et al. 2019), particularly those as considered 

in this research which have been heavily modified. 

The high heterogeneity of the system characteristics and multiple pollution 

pressures are typically unaccounted in heavily modified systems, with a paucity 

in the understandings. The need to between understand such systems to achieve 

more effective water management requires a focus of the wider systems, as well 

as the local processes operating within the catchment boundaries (Magliozzi et 

al. 2017). There is great emphasis on looking across multiple dimensions, moving 

from the wider understanding to more specific processes, and upscaling them 
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back to develop a holistic integrated focus (Magliozzi et al. 2017). While such 

investigations are challenging, especially with the dearth of understandings in 

practice, it is nonetheless essential to start and develop an improved 

understanding of the system characteristics, particularly where poor water quality 

is key to address. There is a need to move from reductionist approaches to water 

management (Heathwaite 2010), considering the links in the landscape (Bencala 

et al. 2011, Kaandorp et al. 2018). While emphasis on these areas has been 

recognised, approaches are somewhat limited to more complex systems such as 

those in this study. 

While classification/index-based approaches are useful for a broad assessment, 

the inability to compare and consider specific pathways limits their subsequent 

application to further consider the mechanisms by which pollution pressures 

impact on the water quality (Harris 2003). Instead such approaches generally 

allow for a broad assessment of the connected or disconnected state of whole 

catchments, thus limiting their usefulness in the application to smaller areas, and 

those which are heavily modified, facing a multitude of threats to water quality. 

With emphasis on the need to consider the links between pressures and drivers 

in-light of deteriorating water quality the work by Kaandorp et al. (2018) begun to 

show ways of linking the pressures and drivers and the likely connectivity 

between systems. However, there is also prominence on the need to consider 

the larger system, but also within it the mechanisms by which the systems interact 

(Magliozzi et al. 2017). Therefore, this thesis presented the application of 

methods to assess the larger scale links, and from this work towards assessing 

the role of local processes. 

Chapter 2 took on board the need to establish an improved understanding of the 

catchment characteristics and likely connections between the systems. The 

chapter explored ways of developing an integrated understanding of GW and SW 

at the catchment-scale, focusing on the conceptualisation of connectivity within 

and between the systems, looking across the streambed and surrounding 

landscape within the catchment boundaries using existing spatial data.  Chapter 

2 primarily focussed on developing an improved understanding of the 

characteristics of catchments, utilising existing spatial datasets as part of a 

proposed framework. The aim was to demonstrate and test the feasibility of using 

the data available at present. 
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Chapter 2 introduced the concept and application of a tool of which I termed 

‘Integrated River Evaluation for Management’ (IREM). IREM looked to establish 

a combined understanding of the GW and SW systems, with the basis of the 

approach been to collate existing spatial data on the catchment characteristics. 

The intention of the research was to show how collating often relatively sparse 

spatial data, e.g. superficial deposit thickness combined with additional datasets 

and empirical field sampling provides the ability to build up a complex picture of 

the likely links within and between the systems, emerging from the assessment 

of a series of simple inferences (Harris 2007, Kluger 2008). By mapping the 

pressures alongside the characteristics and inferring links between them enables 

for a more complete conceptual understanding of the systems within the 

catchment boundaries. The IREM approach is one way to move beyond 

assumptions that the systems are disconnected and instead begin to think about 

how the systems are connected within the catchment boundaries, based on their 

specific characteristics. 

Connections were assessed according to the pathways between the hillslopes 

and water bodies, for instance, by looking at the geology composition, including 

the thickness and permeability. Looking exclusively at the surface provides only 

part of the understanding of the systems, it is necessary to expand the 

understanding below the surface, looking at the lateral and vertical dimensions. 

IREM demonstrated that by assessing the patterns and links across multiple 

dimensions is essential to proceed and think about the challenges within 

catchment boundaries. By mapping known water-quality pressures against the 

catchment characteristics it is possible to start and think about the potential flow 

pathways and processes, considering the stream water as an integral part of the 

connections between the SW and GW systems. Whereas reductionist 

approaches have tended to focus on masking such pathways (Heathwaite 2010), 

IREM challenged the understanding, looking beyond the point source attribution, 

thinking about how flow and solutes moves, rather than assuming it is 

encapsulated in either the surface or subsurface. 

 It was through the application of IREM that I was first able to begin to visualise 

the likely connections in the landscape of the study areas, namely the Herrington 

Burn and Twizell Burn. Initial mapping of the water-quality pressures was 

insightful. Most often this is not done in practice, with practitioners focusing on 
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individual pressures, e.g. asset failure/compliance. To then map the drivers of the 

likely connections between the pressures and the links to the GW and SW 

systems challenged the current perceptions towards the systems. Flow pathways 

within and between the systems are largely unexplored in practice, with 

interactions across the surface-subsurface interface been discounted due to the 

dearth of understandings and masked by the complexity of the systems. 

In its application to the study catchments, IREM was utilised in the producing of 

simple links and maps of the data it is possible to develop improved 

understandings, supporting discussions amongst practitioners addressing 

current water-quality issues in the Herrington and Twizell catchments. Not only 

did the composite maps produced allow for the communication with non-

academic audiences, they also allowed for an evaluation of the likely threats to 

the water quality, alleviating the paradigm lock between science and practice, 

which has been a key step to progression in water management (Falkenmark 

2004). Discussions were scoped from the outputs of IREM between practitioners 

and are arguably leading to more structured approaches - as personally observed 

during subsequent meetings with participants of the TOPSOIL group. Breaking 

down the barriers between institutions and stakeholders is somewhat 

challenging, with contrasting ideas as to how best approach and manage issues. 

Throughout this research, it is apparent that part of alleviating this challenge is 

about how data is used to communicate, and IREM did that. This was achieved 

through the use of maps to clearly communicate the story, and displaying a more 

complete set of data, rather than taking elements as practitioners have evidently 

done in the past. With the IREM approach is was effectively about mapping out 

a story, from the pressures, to the drivers and how they likely operate over space 

and time. Bringing the elements together, something that had not been achieved 

in the Wear catchment to date. From the application of IREM to the case study 

areas, it is emphasised that there needs to a focus across the multiple dimensions 

and time. 

 Following the application of IREM to the Herrington and Twizell, practitioners 

have started to question the current understanding of the systems, in-turn 

reconsidering their approaches and management practices. Discussions 

between practitioners have since taken place and continue with the shaping the 

next steps in thinking about how to investigate and address issues such as the 
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abstraction challenge at the Herrington. Through the application of a relatively 

simple approach as IREM has led to more complex findings, including those 

continued at the Herrington by Northumbrian Water, and in this research. The 

remainder of the thesis focused on the Twizell where the likely connectivity 

between the stream and near-stream sediment was further explored in relation to 

the water chemistry attributing to historic and contemporary pollution pressures. 

The research led to demonstrate how it is possible to move beyond initial 

conceptualisations, with the need to then look also at the mechanisms by which 

flow, and solutes move in catchments. In heavily modified and stressed systems 

such as the Twizell, fragmented reactions typically fail to consider the complexity. 

There is a need to develop an insight of the multi-scale processes operating, 

looking across multi-dimensions in space and time (Magliozzi et al. 2017). 

5.1.2. Near-stream GW/SW interactions and exchanges 

Alongside SW, the coinciding GW quality is an integral element to consider for 

effective water management. Encompassing the local-scale processes into the 

wider catchment understanding is now encouraged, however, is challenging 

where there are limited baseline studies. For catchments such as the Twizell, 

GW/SW processes are therefore overlooked, instead focusing on specific sites 

as part of reductionist approaches (Heathwaite 2010). A reach of the Twizell was 

selected given the heavily modifications to the channel planform and 

accumulation of water pressures from the historic mining legacy besides 

contemporary effluent releases from upstream sources. The research looked to 

investigate the movement of flow and solutes across spatial dimensions, as well 

as assess the processes operating, looking beyond the pristine sites in which 

understandings are typically established (Cardenas 2015). 

In Chapter 3 I reported the use of relatively low-cost field approaches to 

investigate the interactions and exchanges in flow and solutes during an intensive 

field sampling campaign over the spring-summer 2017 of the Twizell. The Twizell 

is an example of a catchment that is threatened by multiple pollution pressures 

yet given the high heterogeneity and complexity of the systems, as hindered by 

infrequent quantification of the flow and solutes, is typically treated as a black-

box system, with reductionist approaches to water management. The sampling 

challenged the perception that the stream was effectively decoupled with the 
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underlying subsurface. A view held in practice, and thus hindering effective 

management. 

Sampling across the surface and subsurface over a range of time periods 

provided an insight into potential flow and solute pathways via the obtaining of 

discrete grab samples and quasi-continuous time-series of the SW. Sampling of 

the SW at the reach scale was indicative of the impact of pollutants on the SW 

chemistry in accordance to mining and waste-water effluents. The 

hydrochemistry of the SW reflected the impacts, with elevated nutrients during 

high flow events. While upwelling of GW to the stream was unlikely from the Coal 

Measures, given that there we no significant changes in stream flow over the 

reach, discrete pathways between the stream and superficial system were 

evident from the piezometric sampling. 

The stream-water chemistry is likely impacted by returning stream water in 

addition to hillslope runoff entering the channel via riparian and subsurface flow 

paths. Through sampling of the shallow GW, the enrichment of solutes in the 

subsurface was evident, particularly SO42- and Mn, coinciding with the 

downwelling of SW. Enrichment of solutes is indicative of the biogeochemical 

reactions occurring in the shallow sediments, with HEFs mixing oxidised SW with 

reduced GW. The accumulation of solutes in the subsurface implies that at the 

local scale, the subsurface is acting as a potential source and sink of solutes, with 

the dynamics and processes of the flow exchanges and solutes apparent to be 

operating as a function of the stream-water levels and bed geomorphology. The 

complex patterns and heterogeneity along the reach makes interpretation and 

thus management challenging. However, it is key that such patterns and 

processes are identified, from which the role of local-scale processes can be 

accounted in the wider management scheme. By assuming that the water quality 

in the subsurface has little influence on the stream-water quality is an over- 

simplification. The local-scale patterns and processes are essential in the wider 

understanding of the system. A small reach may only have been investigated but 

it adds to the knowledge that spatial and temporal dimensions cannot be 

overlooked. 

A schematic conceptualisation of the processes identified along the study reach 

are shown in Figure 5-1. The superficial deposits are thought to be acting as a 

shallow hyporheic zone, with the attenuation of mining-derived pollutants. The 
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downwelling of SW coincides with the enrichment of SO42- and Mn in the pore 

water and the precipitation of iron-oxides along the bed of the channel. Further 

downstream, upwelling is thought to be occurring. This upwelling is potentially 

return flows of the downwelling surface water from upstream. The movement of 

water and solutes into the unsaturated zone is likely, however, inconclusive from 

this study. Additionally, the influence of the rebounding GW through the water 

quality along the reach is unknown. 
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Figure 5-1: Schematic diagram of flow pathways along the Twizell Burn study reach. 
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5.1.3. Spatial and temporal variations in GW/SW behaviour and 
responses 

In Chapter 4, the implication of changing hydrological conditions on the GW/SW 

interactions, specifically accounting to the movement in the hydraulic heads of 

the minor aquifer were investigated through numerical modelling simulations. In 

doing-so, the spatial and temporal GW/SW responses were further interpreted 

for the Twizell, bringing together the conceptual connectivity of the wider 

catchment, with an understanding of localised processes with the and the field 

measurements, interpreting the processes and dynamics of the systems beyond 

the localised understandings, and into the wider catchment response. Such links 

are largely missing in research and practice (Magliozzi et al. 2017), and this work 

showed one way that the link between local and wider patterns and processes 

could be achieved using modelling to bridge the gap between understandings. 

The dynamic nature of the shallow water table position in the superficial deposits 

was evidently responsive to changes in stream-water levels. The simulation of 

hydraulic head patterns and associated vertical hydraulic gradients denoting 

upwelling and downwelling across the streambed under a range of scenarios 

were insightful, revealing that the high level of connectivity between the shallow 

GW and SW is something that should not be overlooked. Relatively small 

changes in stream levels accounted to little variation in the flow and 

hydrochemistry of the stream and subsurface, with the bed geomorphology and 

hydrogeology of the underlying superficial sediments driving any exchanges, with 

discrete flow pathways. Small fluxes in stream levels such as those observed 

during field sampling from the sewage treatment works had little impact on these 

discrete flows. Meanwhile, under flood conditions and extreme event scenarios, 

the system dynamics were greatly enhanced. The enhanced downwelling and 

subsequent upwelling of the GW highlight the integral behaviour of the 

interactions between the GW and SW systems. 

Findings highlight that it is the cycling of the solutes with the movement of flows 

that determine the quality of the overlying systems, not only in the vicinity, but 

upstream and downstream. Localised exchanges in the flow and solutes do not 

just impact on the vicinity, and therefore an understanding of the local processes 

is central to the way in which water is effectively managed. This research only 
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looked at a singular reach, however, further investigations beyond would be 

necessary to explore additional links. Ultimately, the stream should not be 

considered as a closed system, and instead as an integral part of the catchment 

(Bencala 1993, Bencala et al. 2011). As demonstrated in this work, despite the 

challenging systems, connections should not be overlooked when it comes to 

management decisions. 

5.2. Reimagining water-resource management 

Collectively, the findings of this research support that the stream-water quality is 

inherently intertwined to the characteristics and processes operating above and 

below the streambed, resulting in a complex and dynamic situation. To facilitate 

a more effective approach to managing the water quality requires the way in 

which we investigate and describe the water and systems to reflect this 

integration. An understanding of the larger system is essential, with the mapping 

of the pressures to water quality, not at least because then the source attribution 

can be considered, but to then also start and think about how pressures may 

impact and interact elsewhere in the catchment. The need to then look at the 

larger- and local-scale processes operating is emphasised greatly throughout 

literature (e.g. Ryan et al., 2007). 

 

The understanding of GW/SW processes has largely been at the more pristine 

sites (Cardenas 2015). While studies on the role of the hyporheic zone on the 

cycling of pollutants are evident, they often focus only on the role of singular 

pressures (e.g. Palumbo-Roe and Dearden, 2013). Looking at multiple pressures 

is with difficulties, however, these catchments, such as those in County Durham 

cannot be overlooked. These findings of this research have opened an alternative 

perspective on tributary catchments that were lacking an insight beyond the 

stream and has led practitioners to re-think current problems and approaches. 

 

A whole systems approach, as envisioned by ICM requires the connections within 

and between the surface and subsurface systems to be mapped. Incidentally the 

high heterogeneity of catchments makes the connections likely complex. Making 

simple inferences, such as demonstrated with the use of IREM are essential to 
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facilitate discussions between practitioners, without them the problems are likely 

to prevail. Trying to envision and manage the systems via top-down approaches 

overlooks the smaller processes. The fragmentation within and across disciplines 

with a vested interest in managing the water resources can be alleviated by 

stepping back from the complexity and looking at the simple patterns to begin 

with. 

 

The thesis has demonstrated a new understanding of these tributary systems in 

the Wear Catchment, considering the local-scale changes and water quality, 

which has otherwise been limited to routine sampling and high-resolution 

screening studies. The research and findings presented feed into the wider efforts 

coordinated as part of the TOPSOIL project. Through the presentation at local 

partner meetings as well as international plenary meetings, the need for the 

integrated thinking is evident, requiring the need to bridge together the scientific 

findings into working practice. However, a key concern is that with the GW/SW 

studies across the pilot studies within the TOPSOIL project is the dealing with 

uncertainty. Specifically, when communicating to stakeholders who often prefer 

a definite answer or solution. Recent discussions during a plenary TOPSOIL 

project meeting in March 2019 highlighted that the uncertainty is something that 

must be demonstrated to stakeholders, and that uncertainty is something that 

cannot be avoided as we are dealing with unknown systems, especially since the 

GW is not easy to imagine or picture given it is below the surface. In the past, the 

uncertainty has associated with the ignorance to the subsurface systems, and 

this work has challenged this, addressing the need as to how to develop 

collaboration in water management (Conant et al. 2019). 

5.3. Recommendation for catchment management 

The research findings support the need to look more closely at the GW and SW 

systems, challenging how we currently monitor and thus manage them. Looking 

beyond the case study examples, there is potential to apply the same principles 

and procedures to address the freshwater resources elsewhere in the Wear 

catchment, and beyond. The need is underlined by the increasing pressure on 

water resources to meet human and ecological demands. The examples used in 

the thesis demonstrate that the stream systems are often extremely complex, and 

it should not be assumed that they are homogeneous. Each catchment is likely 
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to be different, but it is about applying similar principles and approaches in 

bringing data together to start and think about these catchments in an alternative 

way, with the intention of instigating more sustainable, integrated and holistic 

management. In-turn demonstrating the use of existing and new data, assessing 

the roles of the SW and GW, and ultimately how threats operate within 

catchments, moving beyond looking at the wider catchment response, something 

that ICM approaches are currently missing (Biswas, 2005; Rollason et al. 2018). 

There is a need to link the local-scale processes into the larger catchment 

understanding. 

The development of conceptual understandings of catchments, investigating the 

potential pathways of flows and solutes is at the minimum required to start and 

achieve the intended integration. Besides the conceptualisation, there needs to 

be an appreciation for the spatial and temporal variations in water quality. Routine 

sampling at present fails to achieve this, however, the interactions between the 

GW and SW are dynamic, and to better manage we need to enhance the 

understanding. Additionally, it is necessary to consider the role of multiple threats 

to the water quality. Focusing on specific issues is beneficial at the point of source 

or impact, but those managing the systems from an organisational to an informal 

level need to consider the upstream and downstream, and well as vertical 

movements. 
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“Whatever happens tomorrow you must promise me one thing. 
That you will stay who you are. Not a perfect soldier, but a good 

man.” 

Dr Erskine (Captain America: The First Avenger, 2011) 
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Chapter 6 – Conclusions and recommendation for 
further work 

 

This thesis has presented research which addresses GW/SW connectivity of 

tributary catchments with the need to address the poor-quality freshwater bodies 

with an integrated and holistic approach. In doing so the research explores the 

impacts of multiple threats acting on the systems attributing to the interactions 

and exchanges of flow and solutes across the streambed interface. In tributary 

catchments, despite the deteriorating water quality, and growing emphasis from 

policy and frameworks for interdisciplinary focus on addressing water quality, 

fragmentation and mismanagement of GW and SW continues to prevail. Such 

gaps in understanding are attributing to limited process knowledge and 

segmented procedures in addressing water quality issues. 

The unexplored connections between the GW and SW systems has implications 

for their management, thus hindering any attempt at the surface or subsurface 

because efforts can be detrimental on each other. Therefore, management at one 

point in the system has the potential to deter efforts further downstream, as well 

as beyond the catchment. Developing conceptual understandings of the systems 

supports the potential of this communication and requires the integration of data, 

demonstrated through the IREM approach and subsequent investigations, with 

assessment across four dimensions (x, y, z and t), looking beyond the singular 

dimension of the SW or GW systems being connected or disconnected. From 

these conceptualisations, there is a need to capture the local-scale changes and 

examine processes operating within the catchment boundaries, specifically the 

movement in flow and solutes within and between the GW and SW systems. 

Linking the local-scale processes back to the wider system is essential, otherwise 

fragmented understanding prevail. Through the application of numerical 

modelling exercises, it was demonstrated that the patterns and processes could 

be linked. 
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6.1. Principal conclusions from the research 

The research has found that: 

1. Despite a shift in policy and frameworks to assess and shape how we 

manage water quality at the catchment scale, we need to start thinking 

about the systems in a different way, not just as that the pollution enters 

the stream channel via point and diffuse sources, but also how the GW 

and SW systems interact with the landscape and other features around it. 

Moving beyond the mismanagement of water resources requires a holistic 

and integrated understanding, and this is unachievable under the current 

protocol and procedures by which we currently attempt to understand the 

systems. Sustainable GW/SW management requires considering the 

connections between drivers and factors likely influencing the movement 

of flow and solutes. Considering subsurface connectivity as well as 

landscape connectivity is vital in making advancements in the addressing 

of water quality. Looking beyond the focus of the stream system, however, 

requires the integration of data and information, to then step beyond and 

target efforts to investigate the sources which threaten the water quality. It 

is then about taking this knowledge and disseminating it to stakeholders 

who can then make re-informed decisions on ways to manage the water 

quality. 

2. From the sampling conducted in this research it is evident that historic 

and contemporary threats impact on the stream-water quality. To better 

evaluate the impacts requires an investigation beyond the routine 

measurements, assessing both spatial and temporal variations and likely 

drivers and controls, both above and below the streambed. Do-make 

evaluations simply ignore the historic dimensions in favour of instrumental 

data (which are often very limited). Most legislation is based on data that 

cannot possibly be obtained from instrumental records, and so it is to then 

question how we better use the available data. In data sparse situations, 

it is most feasible to accumulate the existing secondary data and then 

move forward with empirical investigations, rather than collecting data as 

done under routine sampling which is not linked to the already existing 

data. 
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 3. The streambed interactions are complex. A combination of factors adds 

to the high heterogeneity, with the propagation of factors within the 

channel, catchment, and beyond, including the likelihood of extreme 

rainfall events. This study has relied on the use relatively of low-cost 

methods to give a first-order insight into the system dynamics. Due to the 

low-cost nature of the techniques applied thus enables for a much greater 

coverage capturing detail across the wider system, e.g. catchment scale, 

both spatially and temporally which can be more useful than an expensive 

approach which then lacks coverage. The replicability of intensive 

approaches is unfeasible. Nevertheless, demonstrating the importance of 

looking at the subsurface connectivity, which is partly responsible for the 

SW quality. 

4. Traditionally, decisions as to how water resources are managed are 

based on a snap-shot insight into the systems. While field sampling is a 

useful approach to quantifying the water chemistry, it needs to be linked 

with other approaches, specifically laboratory work, existing data and 

modelling to extend the understanding providing a generalised 

understanding of the systems. Customarily, the prevalent understanding 

of the cycling and exchanges in flow and solutes would be continued from 

stream-system focus looking at the system at a given time and place, with 

a reliance on limited monitoring. However, there is a need to look beyond 

such limits and gain a fuller understanding of the system dynamics and 

processes and work with the available resources and supplement 

additional findings to them. 

Ultimately, the impact of the fragmented views of the GW and SW systems from 

stakeholders has resulted in a disparate focus on different issues. Traditionally 

such an approach was accepted, however, emphasis from international policy, 

e.g. the WFD seek to move beyond these. Not only is there a lack of cohesion in 

the holistic investigation of how water and solutes move across the streambed, 

but it comes also from the lack of disciplinary connectivity. The shift requires 

coordinated efforts to gain an understanding of the systems, with collaboration 

between those responsible for managing the resources. Projects such as 

TOPSOIL are providing a platform to facilitate such a movement, yet it remains 

particularly challenging to implement, and has some way to go. In practice, 
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through EU projects like TOPSOIL have been going on for decades, so the 

question is, why are they not any further forward in addressing the connections 

between disciplines? It is likely because they are not re-evaluating the systems 

and attempting to break-down the complexities. As ultimately this has 

implications for the learning process and understanding. 

6.2. What the findings of this research mean for management 

The traditional assumption that the GW and SW systems are disconnected has 

been held for some time. However, over the last 25 years, the shift in research to 

look at the GW/SW interface has highlighted the potential in changing how we 

should think about and manage water resources. There is the need to avoid 

targeted, black-box approaches. To facilitate the development of an integrated 

understanding is by no-means straight-forward and is associated with high costs 

if high resolution methods are chosen, for example, the use of in-situ recording 

devices. Regardless of the elaborate nature of selected methods, there is a 

growing pressure to address the GW/SW interactions, with complex 

interpretations of the systems possible to derive from simple analysis, as 

demonstrated in this research. With regards to management, this research has 

demonstrated that is feasible to look beyond the fragmented views of the SW 

system, from which it is possible through innovative approaches to start and gain 

a general understanding of the system dynamics and processes. As 

demonstrated at the study catchments, the way in which we start and think about 

how water moves through a system, and where it attenuates, for instance can 

start and lead to new intentions as to how we should this about issues. 

One of the greatest challenges facing the integrated evaluation of water systems 

is the visualisation of the GW environment, which is difficult due to the lack of 

data available. However, it is then a matter of how we chose to work around these 

challenges. Using the available data resources, it is possible to derive 

information, which then supports subsequent investigations. Despite the lack of 

baseline water quality data, it is still possible to make links between factors, 

inferring potential flow routes, which can then be tested. 
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6.2.1. What the findings of this research mean for management 
in the Wear catchment 

In the Wear Catchment, the limited insights and assessments of large- and local-

scale processes within the catchment boundaries has hindered progress for 

sustainable management. Stepping aside from approaches that mask the threats 

to water quality, it is evidently needed that processes and pathways within and 

between the surface and subsurface systems need to be explored. In-turn looking 

at the interactions between the pollution pressures, considering both the historic 

and contemporary effluents. Such explorations require the need to step-back 

from the complexities of the systems and start by evaluating simple links in the 

landscape characteristics. Simple patterns and links can then be explored, as 

done at the Twizell reach, from which it has been demonstrated as to how the 

local processes likely fit into the wider system. The accumulation of threats in the 

Twizell appeared to intertwine, however, required an insight across the spatial 

and temporal dimensions to develop a greater understanding as to how water-

quality issues are impacting on the system. 

6.3. Recommendations for further research 

In order to extend this research, the following areas for further research are 

suggested: 

1. To test the IREM approach in other catchments, including those of the 

TOPSOIL UK-1 project, and elsewhere to allow for developments in the 

tool, including as a communication tool to stakeholders; 

2. To assess the upwelling and downwelling mechanisms in other heavily 

modified catchments, which are structurally heterogeneous, allowing to 

compare the mechanisms of GW/SW exchanges, looking beyond pristine 

environments and looking at the role of multiple pressures to water quality; 

and 

3. To increase the ability to calibrate and thus simulate the heads changes 

via numerical modelling requires larger integrated monitoring, beyond the 

routine sampling of the SW, e.g. the use of ground penetrating radar 

(GPR) and/or the drilling of boreholes, as well as interpolation of the faults 

to further determine direct GW flowpaths. 
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6.4. Summary 

The findings of this research support that GW/SW systems need to be considered 

holistically to allow for more sustainable management of water resources, with 

evidence of the interactions of flow and solutes across the streambed. They will 

support management within County Durham, within the Wear Catchment, and 

inform of how we should conceptualise and better derive information from 

available data resources to support in the decision-making process in other 

tributary catchments. The ability to make such assessments and monitor water 

quality beyond limited points in the catchment is reliant on the collaborations and 

workings of stakeholders responsible for managing the water resources, with 

scientific findings informing working practice. 
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“…Love yourself, forgive yourself… 
Go on a journey…” 

Delilah – The Odyssey (Chapter 8) - Florence + the Machine (How 

Big, How Blue, How Beautiful, 2015) 
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Appendices 

 

Appendix A: SW grab-sampling procedure. 

Secondary data was supplemented by instantaneous estimates of the water 

chemistry recorded in the field using a hand-held multi-parameter YSI probe, 

calibrated prior to each field visit. Readings included: temperature (°C), DO (mg/l 

and %), EC (as specific conductivity, mS/cm at 25⁰C), pH, total dissolved solids 

(TDS, mg/l), pH and oxidation reduction potential (ORP, mV). For the collection 

of discrete grab samples of water, two 50 ml samples of water were collected 

using single-use polypropylene vials. Vials were pre-rinsed in sample water, filled 

and capped immediately. Samples were stored in a cool bag and transported to 

the laboratory, where on return they were refrigerated at 4⁰C until filtering within 

24 hours. 

On return to the laboratory, samples were filtered through a 0.2 µm single-use 

filter (FisherbrandTM Polyvinylidene Fluoride Syringe Filter) to derive estimates 

of anions and cations via an ion chromatograph (Dionex), and 0.45 µm single-

use filter (FisherbrandTM Polyvinylidene Fluoride Syringe Filter) to analyse for 

trace metals via ICP-OES and ICP-MS, and non-purgable dissolved organic 

carbon (DOC) by acid sparging and combustion (TOC-L). Method detection limits 

are presented in the Appendix A. 
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