
Durham E-Theses

Numerical Simulation of Fluid Overpressure Driven

Faulting and Seismicity In Low Porosity Rocks

SNELL, THOMAS,ALAN

How to cite:

SNELL, THOMAS,ALAN (2019) Numerical Simulation of Fluid Overpressure Driven Faulting and

Seismicity In Low Porosity Rocks, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/13355/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13355/
 http://etheses.dur.ac.uk/13355/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

NUMERICAL SIMULATION OF

FLUID OVERPRESSURE DRIVEN

FAULTING AND SEISMICITY IN

LOW POROSITY ROCKS

Thomas Snell

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Durham University

Department of Earth Sciences, Durham University, UK

2019

~ i ~

Abstract

Pore fluid overpressures in active fault systems can drive fluid flow and cause

fault weakening and seismicity. In return, deformation accommodated by

different mode of failure (e.g. brittle vs. ductile) also affects fault zone

permeability and, hence, fluid flow and pore fluid pressure distribution. The

resulting non-linear, complex feedback between fluid flow, fluid pressure and

fault deformation controls the length of the nucleation phase of an earthquake and

the duration of the interseismic period.

In this thesis we: 1) model overpressured, supercritical CO2 fluid flow in natural,

exhumed faults in evaporite sequences, which represent an analogue of the

seismic sources at hypocentre depth of recent seismic events in the Northern

Apennines of Italy (e.g. Mw 6.0 1997-98 Colfiorito and Mw 6.5 2016 Norcia

earthquakes). 2) perform parameter studies on pore pressure diffusion and

earthquake nucleation, with realistic models of ductile failure, varying the

dimension of components of fault zone architecture and neighbouring lithology,

outer fault core width and the height of pressurised layers abutting the fault core.

Our results show that: 1) the duration of the nucleation phase is significantly

reduced, from a few years to a few months, when realistic models of fault zone

architecture and pore pressure- and deformation-dependent permeability are

considered. We implement a four-component model of fault zone architecture in

simulations (damage zone, outer fault core, inner fault core and primary slip

zone) in contrast to the one- or two-component models of fault zone architecture

previously considered. 2) For a given tectonic loading rate, a thinner fault core

results in a more effective fault weakening. The impact of fluid flow on the fault

~ ii ~

being more significant for faults with a thinner rather than thicker outer fault core.

In the absence of fluids, the base mechanical strength of the slipping portion of

the fault did not vary with thickness. Similarly, an increasing the thickness of an

overpressured aquifer intersecting a fault in the damage zone produces a higher

magnitude of pore pressure in the fault core, which weakens the principal slip

zone. Understanding the controls exerted on the duration of the nucleation phase

of earthquakes has important implications for premonitory signal detection, as

identifying extended nucleation phases of active faults would increase the

likelihood of detection of early seismicity warnings.

~ iii ~

Contents

1.1 Rationale and broad context .. 2

1.2 Aims and objectives .. 7

1.3 Methodology: Numerical modelling .. 9
1.3.1 Multiphysics Model .. 10
1.3.2 Numerical Simulation ... 12
1.3.3 Parameter Studies ... 13

1.4 Thesis Outline .. 14

2 A LITERATURE REVIEW OF FLUID FLOW, FAULTING AND

SEISMICITY IN NATURAL ROCKS ... 17

2.1 Introduction .. 17

2.2 Fundamental principles of fault and earthquake mechanics ... 19

2.3 Fault zone architecture and the role of pore fluid pressure during faulting 24

2.4 Pore pressure and natural seismicity .. 36

2.5 Pore pressure and human induced seismicity .. 42
2.5.1 Seismicity induced by subsurface carbon dioxide injection ... 45
2.5.2 Seismicity induced by wastewater injection into deep saline aquifers.............................. 45
2.5.3 Seismicity induced by hydraulic fracturing .. 50
2.5.4 Numerical Simulation of Induced Seismicity ... 59

2.6 Conclusion ... 64

3. SIMULATING FLUID OVERPRESSURE IN LOW-POROSITY

FAULTS WITH BRITTLE AND DUCTILE MODE OF FAILURE AND

EARTHQUAKE NUCLEATION .. 67

3.1 Introduction .. 67

3.2 Governing Equations ... 69

3.3 Multiphysics model .. 75

3.4 Fault zone architecture and model setup ... 77

3.5 Numerical Method ... 81
3.5.1 Technical Considerations .. 85
3.5.2 ODE Solver Selection and Numerical Stability .. 89
3.5.3 Parallelisation ... 91

3.6 Model Testing and Verification .. 92
3.6.1 Constant permeability ... 93

~ iv ~

3.6.2 Pressure-dependent permeability...95
3.6.3 Discontinuous permeability transition ...97

4. MODELLING FLUID FLOW IN COMPLEX NATURAL FAULT

ZONES: IMPLICATIONS FOR NATURAL AND HUMAN-INDUCED

EARTHQUAKE NUCLEATION.. 100

Abstract ...100

4.1. Introduction ...102

4.2. Numerical method ...104
4.2.1. Porous media flow and numerical solution ..104
4.2.2. Model input parameters ..105

4.2.3 Model setup ..113

4.3. Results ...114

4.3.1 Pore pressure evolution and onset of failure ...118
4.3.1.1 Simple Case A scenario ..118
4.3.1.2 Complex and more realistic Case B scenario ...119

4.3.2 Pore pressure evolution and earthquake nucleation ..120

4.3.3 Pore fluid factor control ..124

4.4. Discussion and Conclusions ..125
4.4.1 Mode of failure controls pore pressure diffusion and earthquake recurrence interval125
4.4.2 Implications for fluid induced earthquake nucleation ...126

5. FAULT ZONE ARCHITECTURE AND DIMENSIONS CONTROL THE

EVOLUTION OF THE PORE PRESSURE FIELD DURING THE

SEISMIC CYCLE ... 132

5.1. Introduction ...135

5.2. Fault zone architecture controls fluid migration ..138

5.3. Numerical Method ...139
5.3.1. Porous media flow and numerical solution ..140
5.3.2. Model input parameters ..141

5.4. Results ...147
5.4.1 Outer Fault Core Width ...153
5.4.2 Intersecting overpressured aquifer thickness ...165

5.5. Discussion and Conclusions ..167
5.5.1 Dimensions of fault zone architecture and lithological variations in the protolith control

pressure diffusion and earthquake recurrence interval ...167
5.5.2 Ductile deformation in the fault core controls pore pressure diffusion during the seismic

cycle ...169

6. FINAL DISCUSSION AND CONCLUSIONS ... 175

~ v ~

6.1 Introduction .. 175

6.2 Summary and comparison of main findings .. 176
6.2.1 Mode of failure controls pore pressure diffusion during the seismic cycle and earthquake

recurrence interval ... 177
6.2.2 The role of pore-fluid pressure during the earthquake nucleation phase 179

6.3 Broader implications of main findings ... 180
6.3.1 Implications for fluid-induced seismicity and earthquake forecasting 180
6.3.2 Implications for earthquake nucleation phase duration and premonitory signal detection

 ... 183

6.4 Future modelling .. 185

6.5 Conclusions ... 186

Bibliography .. 190

Appendix: MATLAB Scripts ... 218

~ vi ~

FIGURE 1.1: “CUMULATIVE COUNT OF EARTHQUAKES WITH M≥ 3 IN THE CENTRAL AND EASTERN

UNITED STATES, 1967–2012.THE DASHED LINE CORRESPONDS TO THE LONG-TERM RATE OF

21.2 EARTHQUAKES/YEAR. (INSET) DISTRIBUTION OF EPICENTERS IN THE REGION

CONSIDERED HERE.” (ELLSWORTH, 2013).SUBSURFACE PORE FLUID PRESSURE GRADIENTS

(COX, 2010; SIBSON, 1990, 1992) AND FLUID MIGRATION (COLLETTINI ET AL., 2009; COX,

1995; COX ET AL., 1987; DE PAOLA ET AL., 2008; HICKMAN ET AL., 1995; MILLER, 1996;

RICE, 1992; SIBSON, 2000) IN THE SUBSURFACE CAN SIGNIFICANTLY ALTER THE FRICTIONAL

STRENGTH OF FAULTS AND INDUCE SEISMICITY. NATURAL FLUID FLOWS (DI LUCCIO ET AL.,

2010; MAHESH ET AL., 2012; MILLER ET AL., 2004; MIZOGUCHI ET AL., 2008; PAROTIDIS ET

AL., 2003; TERAKAWA ET AL., 2013; YOSHIDA ET AL., 2016, 2003) AND A NUMBER OF

HUMAN SUBSURFACE INJECTION ACTIVITIES (DAVIES ET AL., 2013) CAN INDUCE THESE PORE

PRESSURE GRADIENTS IN THE FAULTED CRUST.. 2
FIGURE 2.1: “MOHR DIAGRAM WITH COMPOSITE FAILURE ENVELOPE FOR INTACT ROCK WITH

TENSILE STRENGTH, T, ILLUSTRATING THE STRESS CONDITIONS AND ORIENTATIONS WITH

RESPECT TO THE STRESS FIELD OF: (A) EXTENSIONAL FAILURE; (B) HYBRID EXTENSIONAL-

SHEAR FAILURE; AND, (C) COMPRESSIONAL SHEAR FAILURE, FOR A PARTICULAR ROCK-TYPE.”

(SIBSON, 1996) ..19
FIGURE 2.2: “COMPARISON BETWEEN GRANITE AND DOLOMITE MARBLE BEHAVIOUR FOR A LOAD

POINT VELOCITY JUMP FROM 0.1 TO 1M/S. (A) GRANITE SHOWS A TRANSIENT INCREASE IN

FRICTION FOLLOWED BY A DECAY TO A LOWER STEADY STATE FRICTIONAL STRENGTH,

RESPONSE TERMED "VELOCITY WEAKENING." (B) MARBLE SHOWS THE SAME INCREASE IN

FRICTIONAL STRESS, WITH A SMALL PEAK, BUT THIS IS FOLLOWED BY A DECAY TO A HIGHER

FRICTIONAL STRENGTH, FOR AN OVERALL "VELOCITY STRENGTHENING”.” (WEEKS AND

TULLIS, 1985) ..22
FIGURE 2.3: “SCHEMATIC SECTION ACROSS THE NORTH BRANCH SAN GABRIEL FAULT

ILLUSTRATING POSITION OF THE STRUCTURAL ZONES OF THE FAULT. THE DIAGRAM IS NOT TO

SCALE.” (CHESTER ET AL., 1993) ...25
FIGURE 2.4: “CONCEPTUAL MODEL OF FAULT ZONE WITH PROTOLITH REMOVED (AFTER CHESTER

AND LOGAN, 1986; SMITH ET AL., 1990). ELLIPSE REPRESENTS RELATIVE MAGNITUDE AND

ORIENTATION OF THE BULK TWO-DIMENSIONAL PERMEABILITY (K) TENSOR THAT MIGHT BE

ASSOCIATED WITH EACH DISTINCT ARCHITECTURAL COMPONENT OF FAULT ZONE.” (CAINE ET

AL., 1996). ...26
FIGURE 2.5: “SUMMARY OF LABORATORY PERMEABILITY DATA OBTAINED AT PE=15 MPA (CLOSED

CIRCLES CORRESPONDING TO A DEPTH OF APPROXIMATELY 1 KM OF OVERBURDEN UNDER

HYDROSTATIC PRESSURE) AND PE=90 MPA (OPEN CIRCLES CORRESPONDING TO A DEPTH OF

APPROXIMATELY 5 KM) AS A FUNCTION OF POSITION WITHIN THE FAULT ZONE. IN SITU

ESTIMATES MADE BY BARTON ET AL. (1997)AT A DEPTH OF 2.5 KM ARE SHOWN AS THE

SHADED BAR THAT SPANS THE DAMAGE ZONE AND FAULT CORE.” (SERONT ET AL., 1998)27
FIGURE 2.6: “PROFILES OF MATRIX PERMEABILITY MEASURED AT 50 MPA EFFECTIVE CONFINING

PRESSURE. THE THREE UPPER FAULT CROSSINGS SHOW A LOW PERMEABILITY FAULT CORE

(FINE-GRAINED MATERIAL CONTAINING SOME CLAY FRACTION) SURROUNDED BY HIGH

PERMEABILITY DAMAGE ZONES (INTERLOCKED GRAINS WITH NUMEROUS OPEN

MICROFRACTURES). THE DEEP SHEAR ZONE IS PARTIALLY SEALED AND WAS APPARENTLY NOT

ACTIVATED BY THE KOBE EARTHQUAKE.” (MIZOGUCHI ET AL., 2008)28
FIGURE 2.8: (LEFT) MACROSCOPIC LARGE FAULT ZONE STRUCTURE OF THE ROCCASTRADA

OUTCROP. (RIGHT) LINE DRAWING OF THE FAULT ZONE SHOWN DISPLAYING THE INTERNAL

FAULT CORE ARCHITECTURE. ...29
FIGURE 2.9: “VARIATION OF THE EFFECTIVE STRESS RATIO, R =Σ1′/S3′ AS A FUNCTION OF THE

COEFFICIENT OF STATIC FRICTION, µS, WITH A REACTIVATION ANGLE ΘR OF 63°. THE LIGHT

GREY SHADED AREA DEFINES THE DOMAIN WHERE THE FAULT IS FAVOURABLY ORIENTED,

THE GREY AREA WHERE THE FAULT IS UNFAVOURABLY ORIENTED (UO) AND THE WHITE AREA

WHERE THE FAULT IS SEVERELY MISORIENTED.” (LECLÈRE ET AL., 2012)32
FIGURE 2.10: “FORESHOCKS OF 6 APRIL 2009 MW 6.3 L’AQUILA EARTHQUAKE. LIGHT BLUE DOTS

REPRESENT EARTHQUAKES THAT OCCURRED FROM JANUARY TO 30 MARCH 2009. DARK

BLUE DOTS INDICATE EARTHQUAKES THAT OCCURRED FROM 30 MARCH TO THE MAIN SHOCK.

SMALLER YELLOW STAR IS ML = 4 FORESHOCK THAT OCCURRED ON 30 MARCH. LARGER

YELLOW STAR IS MAIN SHOCK HYPOCENTER. TRIANGLES ARE SEISMIC STATIONS, USED TO

LOCALIZE EARTHQUAKES, BELONGING TO ISTITUTO NAZIONALE DI GEOFI SICA E

VULCANOLOGIA NATIONAL (RED TRIANGLES) AND REGIONAL (PINK TRIANGLES) PERMANENT

SEISMIC NETWORKS. PURPLE BOX IS UNIFORM SLIP FAULT (ATZORI ET AL., 2009). TRACES OF

~ vii ~

CROSS SECTIONS ARE REPRESENTED BY BLUE LINES. GREEN ROSE DIAGRAM REPRESENTS

FREQUENCY DISTRIBUTION OF SPLITTING FAST DIRECTIONS MEASURED AT STATION AQU

(LENGTH OF EACH PETAL IS PROPORTIONAL TO NUMBER OF MEASURES IN EACH DIRECTION

INTERVAL). RED ARROW INDICATES DIRECTION OF MINIMUM HORIZONTAL STRESS IN AREA

(FROM MONTONE ET AL., 2004). STAR IN INSET IS LOCATION OF MAIN SHOCK ON MAP OF

ITALY FORESHOCKS OF 6 APRIL 2009 MW 6.3 L’AQUILA EARTHQUAKE. LIGHT BLUE DOTS

REPRESENT EARTHQUAKES THAT OCCURRED FROM JANUARY TO 30 MARCH 2009. DARK

BLUE DOTS INDICATE EARTHQUAKES THAT OCCURRED FROM 30 MARCH TO THE MAIN SHOCK.

SMALLER YELLOW STAR IS ML = 4 FORESHOCK THAT OCCURRED ON 30 MARCH. LARGER

YELLOW STAR IS MAIN SHOCK HYPOCENTER. TRIANGLES ARE SEISMIC STATIONS, USED TO

LOCALIZE EARTHQUAKES, BELONGING TO ISTITUTO NAZIONALE DI GEOFI SICA E

VULCANOLOGIA NATIONAL (RED TRIANGLES) AND REGIONAL (PINK TRIANGLES) PERMANENT

SEISMIC NETWORKS. PURPLE BOX IS UNIFORM SLIP FAULT (ATZORI ET AL., 2009). TRACES OF

CROSS SECTIONS ARE REPRESENTED BY BLUE LINES. GREEN ROSE DIAGRAM REPRESENTS

FREQUENCY DISTRIBUTION OF SPLITTING FAST DIRECTIONS MEASURED AT STATION AQU

(LENGTH OF EACH PETAL IS PROPORTIONAL TO NUMBER OF MEASURES IN EACH DIRECTION

INTERVAL). RED ARROW INDICATES DIRECTION OF MINIMUM HORIZONTAL STRESS IN AREA

(FROM MONTONE ET AL., 2004). STAR IN INSET IS LOCATION OF MAIN SHOCK ON MAP OF

ITALY.” (LUCENTE ET AL., 2010A) .. 33
FIGURE 2.11: “A: VERTICAL SECTION ACROSS VP/VS (RATIO BETWEEN COMPRESSIONAL-WAVE

AND SHEAR-WAVE VELOCITY) SYNTHETIC MODEL FOR CONDITIONS BEFORE 30 MARCH. B:

VERTICAL SECTION ACROSS VP/VS SYNTHETIC MODEL FOR CONDITIONS AFTER 30 MARCH.

GREEN INDICATES UNPERTURBED VOLUME OF MODEL (TABLE DR1 [SEE FOOTNOTE 1]). RED

TRIANGLES ARE SEISMIC STATIONS. RED DOTS ARE HYPOCENTERS OF FORESHOCKS. BLUE

CURVES INDICATE SEISMIC WAVE PATHS. ORANGE AND LIGHT BLUE FILLED AREAS REPRESENT

P- AND S-WAVE VELOCITY ANOMALIES, RESPECTIVELY. FAULT IS REPRESENTED BY THICK

GRAY LINE. SMALLER STAR ON PANEL A INDICATES LOCATION OF ML= 4 FORESHOCK; LARGE

STAR IN PANEL B IS MAIN SHOCK HYPOCENTER. C: COMPARISON BETWEEN TIME SERIES OF

SYNTHETIC (LEFT) AND OBSERVED (RIGHT) VP/VS VALUES.” (LUCENTE ET AL., 2010A) 34
FIGURE 2.12: “COMPARISON OF AFTERSHOCK DATA TO STRESS CHANGES IN THE DCFS

FORMULATION AND PORE PRESSURE CHANGES. A) THERE IS NO CORRELATION BETWEEN

POSITIVE OR NEGATIVE DCFS REGIONS AND THE AFTERSHOCK LOCATIONS. IN CONTRAST, B,

THE SAME AFTERSHOCK DATA COMPARED TO THE CALCULATED FLUID PRESSURE STATE

AFTER 11 DAYS, SHOWS A VERY STRONG CORRELATION WITH THE ENTIRE AFTERSHOCK

SEQUENCE.” ... 38
FIGURE 2.13: “COMPARISON OF MODEL RESULTS WITH INITIAL CONDITIONS (TOP) TO THE

HYPOCENTRES OF AFTERSHOCKS (BOTTOM)” ... “A–G, MODEL RESULTS PLOTTED AS THE RATE

OF PORE PRESSURE INCREASE TO HIGHLIGHT PROPAGATION OF THE PRESSURE FRONT (LEFT

COLUMN), AND THE CORRESPONDING EVOLUTION OF THE ENTIRE FLUID PRESSURE FIELD

(RIGHT COLUMN). THE LEFT COLUMN COMPARES THE EVOLUTION OF THE PORE PRESSURE

FRONT TO THE AFTERSHOCKS OCCURRING DURING THE TIMES INDICATED. THE OVERALL

FLUID PRESSURE FIELD IS SUPERPOSED WITH THE CUMULATIVE AFTERSHOCK CATALOGUE.

THE LARGEST EVENT IN THE SEQUENCE (EVENT 3) AND SUBSEQUENT LARGE AFTERSHOCKS IN

THE HANGING WALL (EVENTS 4 AND 5) ARE INDICATED IN A, D AND E.” (MILLER ET AL., 2004)

 .. 41
FIGURE 2.14: “UPPER: INSTRUMENTALLY RECORDED SEISMICITY AND DAMAGING HISTORICAL

EARTHQUAKES IN THE CENTRAL AND EASTERN UNITED STATES AND SOUTHEASTERN

CANADA. RED DOTS INDICATE SITES OF RESERVOIR-INDUCED SEISMICITY. LOWER :

SEISMICITY OF SOUTH AND EAST ASIA AND SITES OF RESERVOIR-INDUCED SEISMICITY.”

(ZOBACK AND GORELICK, 2012). .. 45
FIGURE 2.15: “EARTHQUAKES IN OKLAHOMA BETWEEN 1976 AND 2014. 46
EARTHQUAKES ARE M > 1 FROM THE NEIC CATALOG (10). BLACK LINES ARE FAULTS (26–28).

SMALL AND LARGE DASHED GRAY BOXES OUTLINE THE AREAS USED FOR ANALYSIS OF THE

JONES SWARM AND OF CENTRAL OKLAHOMA, RESPECTIVELY, IN INSET B. OKC: OKLAHOMA

CITY. INSET A: COMPARISON OF M3+ EARTHQUAKE RATE IN OKLAHOMA AND CALIFORNIA,

NORMALIZED BY AREA. CALIFORNIA IS ~2.3 TIMES LARGER THAN OKLAHOMA. 2014

EARTHQUAKES ARE THROUGH THE FIRST 4 MONTHS. INSET B: EXPANDING AREA OF THE

JONES AND THE BROADER CENTRAL OKLAHOMA SWARMS. REGIONS WERE DIVIDED INTO 5

KM BY 5 KM GRID CELLS, AND ANY CELL WITH AN EARTHQUAKE WAS CONSIDERED PART OF

~ viii ~

THE SWARM. SWARM AREA PER YEAR IS INCLUSIVE OF ALL PRIOR YEARS.” (KERANEN ET AL.,

2014). ..46
FIGURE 2.16: “ASSOCIATED EARTHQUAKES IN THE [CENTRAL AND EASTERN UNITED STATES] FROM

1973 TO 2014. MAP SHOWING THE LOCATIONS OF M ≥ 0.0 EARTHQUAKES IN THE [ADVANCED

NATIONAL SEISMIC SYSTEM’S COMPREHENSIVE EARTHQUAKE CATALOGUE] FROM 1

JANUARY 1973 THROUGH 31 DECEMBER 2014. WHITE DOTS DENOTE EARTHQUAKES THAT

ARE NOT SPATIOTEMPORALLY ASSOCIATED WITH INJECTION WELLS. RED DOTS DENOTE

EARTHQUAKES THAT ARE SPATIOTEMPORALLY ASSOCIATED WITH INJECTION WELLS.

FOLLOWING ELLSWORTH” … “THE U.S. MID-CONTINENT IS DEFINED BY THE DASHED LINES

INSIDE OF THE GREATER CENTRAL AND EASTERN UNITED STATES.” (WEINGARTEN ET AL.,

2015). ..49
FIGURE 2.17: “MAP OF BARNETT SHALE AREA” … “SHOWING EARTHQUAKES LOCATED IN THIS

STUDY (RED CIRCLES) AND INJECTION WELLS IN USE SINCE 2006 (SQUARES AND + SYMBOLS).

YELLOW SQUARES ARE WELLS REPORTING MAXIMUM MONTHLY INJECTION RATES

EXCEEDING 150,000 BWPM (24,000 M3/MO); WHITE SQUARES, EXCEEDING 15,000 BWPM

(2,400 M3/MO); + SYMBOLS, EXCEEDING 1,500 BWPM (240 M3/MO).” (FROHLICH, 2012). ..51
FIGURE 2.18: “SEISMICITY AND WELLS IN THE WESTERN CANADA SEDIMENTARY BASIN (WCSB).

(A) RED LINES DELINEATE THE STUDY AREA, WHICH PARALLELS THE FOOTHILLS REGION OF

THE WCSB. OVALS IDENTIFY AREAS WHERE INDUCED SEISMICITY HAS BEEN PREVIOUSLY

ATTRIBUTED TO HYDRAULIC FRACTURING (H), WASTEWATER DISPOSAL (W), AND

PRODUCTION (P). RED/PINK CIRCLES SHOW M ≥ 3 EARTHQUAKES CORRELATED WITH

HYDRAULIC FRACTURE (HF) WELLS. TURQUOISE CIRCLES SHOW M ≥3 EARTHQUAKES

CORRELATED WITH DISPOSAL WELLS. ORANGE CIRCLES ARE CORRELATED WITH BOTH.

SMALL SQUARES IN THE BACKGROUND SHOW LOCATIONS OF EXAMINED HF WELLS (DARK

PINK) AND DISPOSAL WELLS (TURQUOISE). GRAY SQUARES IN THE FAR BACKGROUND ARE

ALL WELLS. ..54
(B) CUMULATIVE RATE OF SEISMICITY WITHIN THE WCSB, COMMENCING IN 1985; NUMBERS OF

DISPOSAL WELLS AND HF WELLS FOR THE WCSB AS COMPILED IN THIS STUDY ARE

INDICATED (TOP). A ROUGHLY SYNCHRONOUS INCREASE IN RATE IS EVIDENT IN THE BASINS

OF THE CENTRAL AND EASTERN UNITED STATES. ..55
(BOTTOM; DATA PLOTTED FROM ELLSWORTH, 2013) (WELL INFORMATION IS NOT AVAILABLE IN

THE ELLSWORTH STUDY, BUT MOST ACTIVITY IS CONSIDERED TO ...55
BE RELATED TO WASTEWATER DISPOSAL.) THE GRAY LINES SHOW THE EXPECTED COUNTS FOR A

CONSTANT SEISMICITY RATE.” (ATKINSON ET AL., 2016) ..55
FIGURE 2.19: “SEISMICITY OF NORTHWESTERN ALBERTA, CANADA, FOR THE PERIOD 1985−2016.

SYMBOL SIZE INDICATES MAGNITUDE, AND COLOR DENOTES DATE OF OCCURRENCE. B.C.,

BRITISH COLUMBIA. SEISMICITY WEST OF FOX CREEK COMMENCED IN DECEMBER 2013 AND

CORRELATES IN SPACE AND TIME WITH LOCAL HYDRAULIC-FRACTURING OPERATIONS (9).

FOCAL MECHANISMS OF THE LARGEST EARTHQUAKES, FROM (32–34), ARE LABELED BY

YEAR/MONTH/ DATE OF OCCURRENCE.” (BAO AND EATON, 2016). ..57
FIGURE 2.20: “(A) NUMERICAL MODEL GEOMETRY AND INITIAL CONDITIONS. WE ASSUMED A

NORMAL FAULT WITH A 125 M OFFSET THROUGH A 100 M THICK RESERVOIR BOUNDED AT THE

TOP AND THE BOTTOM BY A 150 M THICK CAPROCK. (B) A PLASTIC SHEAR STRAIN‐

WEAKENING FRICTION LAW THAT GOVERNS THE PROPAGATION OF RUPTURE ALONG THE

FAULT ZONE. (C) FAULT SLIP VERSUS TIME AT THREE POINTS LOCATED AT THE (1) TOP, (2)

MIDDLE AND (3) BOTTOM OF THE RESERVOIR, RESPECTIVELY” … “SNAPSHOTS OF CHANGE

(RELATIVE TO THE INITIAL STATE) IN (D) FLUID PRESSURE, (E) CO2 SATURATION, AND (F)

PLASTIC SHEAR STRAIN AT THE END OF THE SUDDEN SLIP EVENT (AFTER 90 DAYS OF CO2

INJECTION)” (CAPPA AND RUTQVIST, 2011A). ...59
FIGURE 2.21. “GEOMECHANICAL PROCESSES AND KEY TECHNICAL ISSUES ASSOCIATED WITH

GCS IN DEEP SEDIMENTARY FORMATIONS. TOP THE DIFFERENT REGIONS OF INFLUENCE FOR A

CO2 PLUME, RESERVOIR PRESSURE CHANGES, AND GEOMECHANICAL CHANGES IN A

MULTILAYERED SYSTEM WITH MINOR AND MAJOR FAULTS. BOTTOM LEFT INJECTION-

INDUCED STRESS, STRAIN, DEFORMATIONS AND POTENTIAL MICROSEISMIC EVENTS AS A

RESULT OF CHANGES IN RESERVOIR PRESSURE AND TEMPERATURE, AND BOTTOM RIGHT

UNWANTED INELASTIC CHANGES THAT MIGHT REDUCE SEQUESTRATION EFFICIENCY AND

CAUSE CONCERNS IN THE LOCAL COMMUNITY.” (RUTQVIST, 2012).61
FIGURE 3.1: “MACROSCOPIC LARGE-SCALE FAULT ZONE STRUCTURE. (A) PANORAMIC VIEW OF A

LARGE-SCALE NORMAL FAULT ZONE WITHIN THE TRIASSIC EVAPORITES. NOTE THAT THE

MAJOR FAULT ZONES CROSSCUTS THE FORMER SYNOROGENIC MESOSCALE ‘‘GNEISSIC’’

~ ix ~

FABRIC (B) LINE DRAWING OF THE FAULT ZONE SHOWN IN FIGURE [3.1]A. (C) DETAIL OF THE

FAULT CORE OF THE LARGE FAULT ZONE SHOWN IN FIGURE [3.1]A. THE INNER FAULT CORE

BOUNDARY IS HIGHLIGHTED. (D) LINE DRAWING OF THE FAULT ZONE SHOWN IN FIGURE

[3.1]C, DISPLAYING THE INTERNAL FAULT CORE ARCHITECTURE.” (DE PAOLA ET AL., 2008)

ADAPTED TO SHOW FRACTURED DOLOSTONES AND FOLIATE ANHYDRITE AND OUTER FAULT

CORE (OFC) - INNER FAULT CORE (IFC) BOUNDARY AND DAMAGE ZONE (DZ) (DE PAOLA ET

AL., 2008). ... 74
FIGURE 3.2: THE IDEALISED FAULT SEGMENT IN THE BASE CASE AS CONSIDERED FOR THIS STUDY

WITH THE DIRECTLY SIMULATED AREA IN THE DASHED BOX. (ANGLES BETWEEN BEDDING

PLANES AND FAULT IN DAMAGE ZONE (DZ) ARE INDICATIVE ONLY AND ARE NOT DIRECTLY

RECREATED IN SIMULATIONS. THE SIMULATED FAULT IS AT 45⁰ TO VERTICAL.) 78
FIGURE 3.3: DIAGRAM OF SPATIAL GRID USED IN NUMERICAL SIMULATIONS, INDICATING

VARIABLES DEFINED AT POINTS AND MID-POINTS. ... 81
FIGURE 3.4: FLOW-CHART OF FAILURE-EVENT SWITCHING IN FAULT FLUID FLOW AND EARTHQUAKE

SIMULATIONS. ... 84
FIGURE 3.5: VARIATIONS OF EARTHQUAKE PARAMETERS VS. PORE FLUID FACTOR, FOR

SIMULATIONS DEMONSTRATING NUMERICAL INSTABILITY WITH THE ODE15S SOLVER.

LENGTH OF INTERSEISMIC PERIOD (A), DURATION OF THE NUCLEATION PHASE (B), LENGTH OF

RUPTURE PATCH AT FAILURE (C) AND LENGTH OF THE RUPTURE PATCH AT NUCLEATION) ARE

PLOTTED AGAINST VARIATION OF THE PORE FLUID FACTOR ACROSS MULTIPLE SIMULATIONS.

 .. 87
FIGURE 3.6: VARIATIONS OF EARTHQUAKE PARAMETERS VS. PORE FLUID FACTOR, FOR

NUMERICALLY STABLE SIMULATIONS, WITH THE ODE23TB SOLVER. LENGTH OF

INTERSEISMIC PERIOD (A), NUCLEATION LENGTH (B) AND DURATION OF NUCLEATION PHASE

(C) ARE PLOTTED AGAINST VARIATION OF THE PORE FLUID FACTOR ACROSS MULTIPLE

SIMULATIONS. ... 88
FIGURE 3.7: BOUNDARY CONDITIONS USED TO TEST FIXED PRESSURE DIRICHLET BOUNDARY

CONDITIONS. TOP AND BOTTOM BOUNDARY CONDITIONS CHOSEN TO PRODUCE SOLUTIONS

INDEPENDENT OF Y. ... 93
FIGURE 3.8: SIMULATION RESULTS FOR HOMOGENEOUS ISOTROPIC PERMEABILITY CASE AT Y=50M,

COMPARED TO KNOWN ANALYTICAL SOLUTION. ANALYTICAL RESULTS (BLACK) AND

SIMULATION RESULTS (RED) ARE COLINEAR EXCEPTING EXTERNALLY IMPOSED INITIAL

CONDITIONS... 93
FIGURE 3.9: SIMULATION RESULTS FOR NONLINEAR HOMOGENEOUS ISOTROPIC PERMEABILITY

CASE AT Y = 50M, COMPARED TO KNOWN ANALYTICAL SOLUTION. ANALYTICAL RESULTS

(BLACK) AND SIMULATION RESULTS (RED) ARE COLINEAR AT STEADY STATE (WHERE

ANALYTICAL SOLUTION EXISTS). ... 95
FIGURE 3.10: SIMULATION RESULTS FOR DISCONTINUOUS CHANGE IN HOMOGENEOUS ISOTROPIC

PERMEABILITY CASE AT Y=50M, COMPARED TO KNOWN ANALYTICAL SOLUTION.

ANALYTICAL RESULTS (BLACK) AND SIMULATION RESULTS (RED) ARE COLINEAR EXCEPT FOR

EXTERNALLY IMPOSED INITIAL CONDITIONS. ... 96
FIGURE 4.1: FAILURE ENVELOPES AND SCHEMATIC MOHR CIRCLES FOR THE DIFFERENT FAULT ZONE

DOMAINS: A) THE BRITTLE (LOCALISED DEFORMATION) AND DUCTILE (DISTRIBUTED

FAILURE) REGIONS OF THE OFC AND IFC FAILURE ENVELOPES ARE INDICATED WITH CORE

PLUG SKETCHES. THE SCHEMATIC MOHR CIRCLES SHOW THE ONSET OF BRITTLE AND DUCTILE

FAILURE IN THE OFC, RESPECTIVELY. B) THE MOHR CIRCLE SHOWS THE ONSET OF

FRICTIONAL SLIDING ALONG A COHESIONLESS PRINCIPAL SLIP SURFACE WITHIN THE PSZ

(BLACK LINE WITHIN THE MOHR CIRCLE). .. 107
FIGURE 4.2: LOG-PLOT OF PERMEABILITY AGAINST DIFFERENTIAL STRESS AND EFFECTIVE PRESSURE

BASED ON TRIAXIAL EXPERIMENTS PERFORMED ON OFC TRIASSIC EVAPORITES SAMPLES. A -

B) FAULT PARALLEL (A) AND FAULT PERPENDICULAR (B) PERMEABILITY EVOLUTION WITH

EFFECTIVE PORE PRESSURE DERIVED FROM STATIC TRIAXIAL EXPERIMENTS WITH NO LOADING

OF THE SAMPLE. C – D) FAULT PARALLEL (C) AND FAULT PERPENDICULAR (D) PERMEABILITY

EVOLUTION WITH EFFECTIVE PORE PRESSURE AND STRESS DEPENDENCE OBTAINED DURING

DYNAMIC TRIAXIAL EXPERIMENTS, WHEN SAMPLES ARE LOADED TO FAILURE. 111
NB: THE RAW VALUES FOR THIS PLOT ARE TAKEN FROM DE PAOLA ET AL., 2009, IN WHICH THE

TERMINOLOGY EFFECTIVE PRESSURE IS USED IN PLACE OF EFFECTIVE STRESS. 111
FIGURE 4.3: SIMULATION RESULTS OF PORE PRESSURE EVOLUTION AND ONSET OF FAILURE –

SIMPLE CASE A. A, D) PLOTS ARE PROVIDED FOR SLIGHTLY SUPRA-HYDROSTATIC, ΛV = 0.45

(A), AND SUB-LITHOSTATIC, ΛV = 0.85 (D) INITIAL PORE PRESSURE CONDITIONS IN THE

~ x ~

DAMAGE ZONE RESERVOIR, COMPARED TO INITIALLY HYDROSTATIC ONES (ΛV = 0.4) IN THE

FAULT CORE. B, E) PORE PRESSURE EVOLUTION FROM INITIAL CONDITIONS TO THE TIME AT

WHICH FAILURE INITIATES IN A FAILURE PATCH (LF), ALONG THE MAIN PRINCIPAL SLIP ZONE

(PSZ) IN THE INNER FAULT CORE (IFC). NOTE THAT THE SIZE OF THE FAILURE PATCH, LF, IS

NOT TO SCALE IN THESE PANELS, AS LF IS INFINITESIMALLY SMALL AT THE ONSET OF FAILURE.

C, F) PORE PRESSURE CONDITIONS AT THE TIME AN EARTHQUAKE NUCLEATES, WHEN THE SIZE

OF THE FAILURE PATCH, LF, MATCHES THAT OF THE THEORETICAL PREDICTED NUCLEATION

LENGTH, LN. G) MOHR FAILURE ANALYSIS FOR THE PSZ AT INITIAL CONDITIONS (A, D), ONSET

OF FAULT FAILURE (B, E) AND EARTHQUAKE NUCLEATION (C, F). RESULTS ARE PRESENTED

FOR 40 M OF 1 KM SIMULATED REGION SHOWN VERTICALLY, AND 2.5 M FAULT CORE

EXAGGERATED HORIZONTALLY. DURING SIMULATIONS A MILLIMETRE SCALE HORIZONTAL

SPATIAL GRID WAS USED, AND VERTICALLY AN INITIALLY MILLIMETRE SCALE LOGARITHMIC

GRID WAS USED. ...115
FIGURE 4.4: SIMULATION RESULTS OF PORE PRESSURE EVOLUTION AND ONSET OF FAILURE –

COMPLEX AND REALISTIC CASE B. A, E) PLOTS ARE PROVIDED FOR SLIGHTLY SUPRA-

HYDROSTATIC, ΛV = 0.45 (A), AND SUB-LITHOSTATIC, ΛV = 0.85 (E) INITIAL PORE PRESSURE

CONDITIONS IN THE DAMAGE ZONE RESERVOIR, COMPARED TO INITIALLY HYDROSTATIC ONES

(ΛV = 0.4) IN THE FAULT CORE. B, F) PORE PRESSURE EVOLUTION FROM INITIAL CONDITIONS TO

THE TIME AT WHICH DUCTILE (B) AND BRITTLE (F) FAILURE INITIATES IN THE OUTER FAULT

CORE (OFC). WHITE ARROWS INDICATE THE EXTENT OF DUCTILE AND BRITTLE

DEFORMATION FRONT IN THE OFC. C, G) PORE PRESSURE CONDITIONS WHEN FAULT FAILURE

INITIATES IN A PATCH (LF), ALONG THE MAIN PRINCIPAL SLIP ZONE (PSZ) IN THE INNER FAULT

CORE (IFC). D, H) PORE PRESSURE CONDITIONS AT THE TIME AN EARTHQUAKE NUCLEATES,

WHEN THE SIZE OF THE FAILURE PATCH, LF, MATCHES THAT OF THE THEORETICAL PREDICTED

NUCLEATION LENGTH, LN. I - J) MOHR FAILURE ANALYSIS FOR THE PSZ (I) AND OFC (J) AT

INITIAL CONDITIONS (A, E), ONSET OF DUCTILE (B) AND BRITTLE (F) FAILURE IN THE OFC,

ONSET OF FAULT FAILURE (C, G) AND EARTHQUAKE NUCLEATION (D, H). RESULTS ARE

PRESENTED FOR 40 M OF 1 KM SIMULATED REGION SHOWN VERTICALLY, AND 2.5 M FAULT

CORE EXAGGERATED HORIZONTALLY. DURING SIMULATIONS A MILLIMETRE SCALE

HORIZONTAL SPATIAL GRID WAS USED, AND VERTICALLY AN INITIALLY MILLIMETRE SCALE

LOGARITHMIC GRID WAS USED. ..117
 123
FIGURE 4.5: VARIATIONS OF EARTHQUAKE PARAMETERS VS. PORE FLUID FACTOR. LENGTH OF

INTERSEISMIC PERIOD (A), NUCLEATION LENGTH (B) AND DURATION OF NUCLEATION PHASE

(C) ARE PLOTTED AGAINST VARIATION OF THE PORE FLUID FACTOR ACROSS MULTIPLE

SIMULATIONS FOR CASE A AND CASE B, RESPECTIVELY. FOR CASE B, THE PRESSURE FIELDS

OF DUCTILE AND BRITTLE DEFORMATION IN THE OFC ARE ALSO SHOWN IN PINK AND GREY,

RESPECTIVELY. IN PANEL 7C, A DOUBLE-HEADED ARROW ALSO SHOWS THE RANGE OF

LENGTHS OF THE NUCLEATION PHASE OF SOME NATURAL EARTHQUAKES, ESTIMATED BY

SEISMOLOGICAL OBSERVATIONS (FIG. 4.7C; MAVROMMATIS ET AL., 2014; KATO ET AL.,

2012; SOCQUET ET AL., 2017). ...124
FIGURE 5.1: EXAMPLES OF DIFFERING FAULT ZONE STRUCTURES WITH SIMPLIFIED SCHEMATIC

DIAGRAMS. (A) THE PUNCHBOWL FAULT, SAN ANDREAS SYSTEM, CALIFORNIA. A FAULT

WITH 40KM OF DISPLACEMENT, A 50CM THICK ULTRACATACLASITE LAYER WITH 1MM THICK

PRIMARY SLIP SURFACES AND A DAMAGE ZONE EXTENDING 15M. THIS FAULT AND FAULTS

WITH A SIMILAR RATIO OF DAMAGE ZONE TO FAULT CORE ACT AS DISTRIBUTED CONDUITS

WITH RESPECT TO FLUID FLOW. (CHESTER AND CHESTER, 1998; CHESTER AND LOGAN, 1986)

(B) THE CARBONERAS FAULT, SPAIN. A FAULT WITH 40KM OF DISPLACEMENT, A 1KM THICK

FAULT CORE OF FAULT GOUGE BOUNDING FRACTURED LENS AND INCLUDED BLOCKS AND A

100M THICK DAMAGE ZONE. THIS FAULT AND FAULTS WITH A SIMILAR RATIO OF FAULT CORE

TO DAMAGE ZONE WOULD ACT AS A COMBINED CONDUIT/BARRIER(FAULKNER ET AL., 2003).

(C) THE ROCCASTRADA FAULT, ITALY. A FAULT WITH 1KM OF DISPLACEMENT A THICK

CATACLASITE LAYER CONTAINING PRIMARY SLIP SURFACES AROUND 1MM THICK, A WELL-

DEVELOPED DAMAGE ZONE IN DOLOSTONE LAYERS AND AN ABSENT DAMAGE ZONE IN THE

ANHYDRITE LAYERS. SO FAR, NO STUDY HAS CONSIDERED THE FLUID FLOW PROPERTIES OF

THIS FAULT ZONE STRUCTURE. ...134
FIGURE 5.2: SIMULATION RESULTS OF THE MODE OF FAILURE INDEPENDENT PORE PRESSURE

DIFFUSION MODEL. PLOTS ARE PROVIDED OF PORE PRESSURE (WITH FAILURE (LF) AND

NUCLEATION LENGTH (LN)) AND MODE OF FAILURE (TOP ROW WITH AN OUTER FAULT CORE

1M WIDE AND MIDDLE ROW WITH AN OUTER FAULT CORE 8M WIDE) AND MOHR FAILURE

~ xi ~

ANALYSIS (G) FOR THE OFC AND PSZ AT (A, D) INITIAL CONDITIONS, (B, E) THE ONSET OF

STABLE AND (C, F) UNSTABLE SLIDING. SIMULATIONS PRESENTED WERE CARRIED OUT AT A

DEPTH OF 7KM, WITH A TECTONIC UNLOADING RATE OF 0.15MPA/ YEAR IN THE MINIMUM

PRINCIPAL STRESS DIRECTION. THE INTERSECTING OVERPRESSURED AQUIFER THICKNESS

TAKES A BASE CASE VALUE OF 40M RESPECTIVELY. (40M OF 1KM SIMULATED REGION SHOWN

VERTICALLY, FAULT CORE EXAGGERATED HORIZONTALLY.) DURING SIMULATIONS A

MILLIMETRE SCALE HORIZONTAL SPATIAL GRID WAS USED, AND VERTICALLY AN INITIALLY

MILLIMETRE SCALE LOGARITHMIC GRID WAS USED. .. 148
FIGURE 5.3: SIMULATION RESULTS OF THE MODE OF FAILURE-CONTROLLED PORE PRESSURE

DIFFUSION MODEL. PLOTS ARE PROVIDED OF PORE PRESSURE (WITH FAILURE (LF) AND

NUCLEATION LENGTH (LN)) AND MODE OF FAILURE (TOP ROW WITH AN OUTER FAULT CORE

1M WIDE AND MIDDLE ROW WITH AN OUTER FAULT CORE 8M WIDE) AND MOHR FAILURE

ANALYSIS(I, J) FOR THE OFC AND PSZ AT (A, E) INITIAL CONDITIONS, (B) THE ONSET OF

DUCTILE FAILURE IN THE OFC, (F) THE ONSET OF BRITTLE FAILURE IN THE OFC, (C, G) THE

ONSET OF STABLE AND (D, H) UNSTABLE SLIDING. SIMULATIONS PRESENTED WERE CARRIED

OUT AT A DEPTH OF 7KM, WITH A TECTONIC UNLOADING RATE OF 0.15MPA/ YEAR IN THE

MINIMUM PRINCIPAL STRESS DIRECTION. THE INTERSECTING OVERPRESSURED AQUIFER

THICKNESS (OVERPRESSURE CONTACT HEIGHT) TAKES A BASE CASE VALUE OF 40M

RESPECTIVELY. (40M OF 1KM SIMULATED REGION SHOWN VERTICALLY, FAULT CORE

EXAGGERATED HORIZONTALLY.) DURING SIMULATIONS A MILLIMETRE SCALE HORIZONTAL

SPATIAL GRID WAS USED, AND VERTICALLY AN INITIALLY MILLIMETRE SCALE LOGARITHMIC

GRID WAS USED. .. 150
FIGURE 5.4: EARTHQUAKE NUCLEATION PARAMETERS AS CONTROLLED BY THE VARIATION OF THE

OUTER FAULT CORE WIDTH ACROSS MULTIPLE SIMULATIONS, THE FAULT IS TAKEN TO BE AT A

DEPTH OF 7KM UNLOADED AT A RATE OF 0.15MPA/YEAR IN THE MINIMUM PRINCIPAL STRESS

DIRECTION FROM A CRITICALLY STRESSED STATE. THE INTERSECTING OVERPRESSURED

AQUIFER THICKNESS (OVERPRESSURE CONTACT HEIGHT) TAKES A BASE CASE VALUE OF 40M

RESPECTIVELY. A) INTERSEISMIC PERIOD. B) NUCLEATION LENGTH. C) NUCLEATION PHASE.

 .. 153
FIGURE 5.5: SIMULATION RESULTS OF THE MODE OF FAILURE INDEPENDENT PORE PRESSURE

DIFFUSION MODEL. PLOTS ARE PROVIDED OF PORE PRESSURE (WITH FAILURE (LF) AND

NUCLEATION LENGTH (LN)) AND MODE OF FAILURE (TOP ROW WITH AN INTERSECTING

OVERPRESSURED AQUIFER THICKNESS OF 10M AND MIDDLE ROW WITH AN INTERSECTING

OVERPRESSURED AQUIFER THICKNESS OF 60M) AND MOHR FAILURE ANALYSIS(G) FOR THE

OFC AND PSZ AT (A, D) INITIAL CONDITIONS, (B, E) THE ONSET OF STABLE AND (C, F)

UNSTABLE SLIDING. SIMULATIONS PRESENTED WERE CARRIED OUT AT A DEPTH OF 7KM, WITH

A TECTONIC UNLOADING RATE OF 0.15MPA/ YEAR IN THE MINIMUM PRINCIPAL STRESS

DIRECTION. THE OUTER FAULT CORE WIDTH TAKES A BASE CASE VALUE OF 2M. DURING

SIMULATIONS A MILLIMETRE SCALE HORIZONTAL SPATIAL GRID WAS USED, AND VERTICALLY

A LOGARITHMIC GRID WAS USED WITH AN INITIALLY MILLIMETRE SCALE SPATIAL GRID. (40M

OF 1KM SIMULATED REGION SHOWN VERTICALLY, FAULT CORE EXAGGERATED

HORIZONTALLY.) ... 156
FIGURE 5.6: SIMULATION RESULTS OF THE MODE OF FAILURE-CONTROLLED PORE PRESSURE

DIFFUSION MODEL. PLOTS ARE PROVIDED OF PORE PRESSURE (WITH FAILURE (LF) AND

NUCLEATION LENGTH (LN)) AND MODE OF FAILURE (TOP ROW WITH AN INTERSECTING

OVERPRESSURED AQUIFER THICKNESS OF 10M AND MIDDLE ROW WITH AN INTERSECTING

OVERPRESSURED AQUIFER THICKNESS OF 60M) AND MOHR FAILURE ANALYSIS(I, J) FOR THE

OFC AND PSZ AT (A, E) INITIAL CONDITIONS, (B) THE ONSET OF DUCTILE FAILURE IN THE

OFC, (F) THE ONSET OF BRITTLE FAILURE IN THE OFC, (C, G) THE ONSET OF STABLE AND (D,

H) UNSTABLE SLIDING. SIMULATIONS PRESENTED WERE CARRIED OUT AT A DEPTH OF 7KM,

WITH A TECTONIC UNLOADING RATE OF 0.15MPA/ YEAR IN THE MINIMUM PRINCIPAL STRESS

DIRECTION. THE OUTER FAULT CORE WIDTH TAKES A BASE CASE VALUE OF 2M. DURING

SIMULATIONS A MILLIMETRE SCALE HORIZONTAL SPATIAL GRID WAS USED, AND VERTICALLY

A LOGARITHMIC GRID WAS USED WITH AN INITIALLY MILLIMETRE SCALE SPATIAL GRID. (40M

OF 1KM SIMULATED REGION SHOWN VERTICALLY, FAULT CORE EXAGGERATED

HORIZONTALLY.) ... 158
FIGURE 5.7: EARTHQUAKE NUCLEATION PARAMETERS AS CONTROLLED BY THE VARIATION OF THE

INTERSECTING OVERPRESSURED AQUIFER THICKNESS (OVERPRESSURE CONTACT HEIGHT)

ACROSS MULTIPLE SIMULATIONS, THE FAULT IS TAKEN TO BE AT A DEPTH OF 7KM UNLOADED

AT A RATE OF 0.15MPA/YEAR IN THE MINIMUM PRINCIPAL STRESS DIRECTION FROM A

~ xii ~

CRITICALLY STRESSED STATE. THE OUTER FAULT CORE WIDTH TAKES A BASE CASE VALUE OF

2M. A) INTERSEISMIC PERIOD. B) NUCLEATION LENGTH. C) NUCLEATION PHASE.161
FIGURE 5.8: EARTHQUAKE FAILURE AND NUCLEATION LENGTH EVOLUTION FOR THE END MEMBER

CASE STUDIES IN INTERSECTING OVERPRESSURED AQUIFER THICKNESS, THE FAULT IS TAKEN

TO BE AT A DEPTH OF 7KM UNLOADED AT A RATE OF 0.15MPA/YEAR IN THE MINIMUM

PRINCIPAL STRESS DIRECTION FROM A CRITICALLY STRESSED STATE. THE INTERSECTING

OVERPRESSURED AQUIFER THICKNESS TAKES A BASE CASE VALUE OF 40M RESPECTIVELY. A)

NO DEFORMATION-DEPENDENT FAILURE 1M OUTER FAULT CORE. B) NO DEFORMATION-

DEPENDENT FAILURE 8M OUTER FAULT CORE. C) DEFORMATION-DEPENDENT FAILURE 1M

OUTER FAULT CORE. D) DEFORMATION-DEPENDENT FAILURE 8M OUTER FAULT CORE.163
FIGURE 5.9: EARTHQUAKE FAILURE AND NUCLEATION LENGTH EVOLUTION FOR THE END MEMBER

CASE STUDIES IN INTERSECTING OVERPRESSURED AQUIFER THICKNESS, THE FAULT IS TAKEN

TO BE AT A DEPTH OF 7KM UNLOADED AT A RATE OF 0.15MPA/YEAR IN THE MINIMUM

PRINCIPAL STRESS DIRECTION FROM A CRITICALLY STRESSED STATE. THE OUTER FAULT CORE

WIDTH TAKES A BASE CASE VALUE OF 2M. A) NO DEFORMATION-DEPENDENT FAILURE 10M

OVERPRESSURE CONTACT. B) NO DEFORMATION-DEPENDENT FAILURE 60M OVERPRESSURE

CONTACT. C) DEFORMATION-DEPENDENT FAILURE 10M OVERPRESSURE CONTACT. D)

DEFORMATION-DEPENDENT FAILURE 60M OVERPRESSURE CONTACT.165

~ xiii ~

Declaration

I declare that this thesis, which I submit for the degree of Doctor of Philosophy at

Durham University, is my own work and not substantially the same as any which

has previously been submitted at this or any other university.

Thomas A. Snell

Durham University

October 2019

© The copyright of this thesis rests with the author. No quotation from it should

be published without the author's prior written consent and information derived

from it should be acknowledged.

~ xiv ~

Acknowledgements

Firstly, I would like to thank Nic, for being a supportive supervisor and guiding

me through the transition from Physics and Biophysics to Geophysics. His high

standards have helped me develop my communication and writing skills to higher

levels and made me a more rounded person.

Second, thanks to Jeroen for both technical and emotional support throughout the

project. His clear thinking really sharpened the critical processes I use for

analysing ideas the project, particularly the numerical simulation code would not

have built without his input.

Third, I would like to thank Stefan for his superb theoretical input, really helping

me to understand the earthquake nucleation phase and the nature of the

approximations involved.

I would like to thank Anna my wife and Arthur my son, for putting up with the

disruption on family life that the PhD caused, for believing in my and giving me

the time and emotional support, I needed to finish. Thanks to Arthur for

reminding me continuously that there are far more important things to worry

about in life.

~ 1 ~

CHAPTER 1

Introduction

~ 2 ~

1 Introduction
1.1 Rationale and broad context

The potential for earthquakes exists throughout the crust, both along

intracontinental and plate boundaries faults, where deformation is high and stress

level may be near the strength of faults (Townend and Zoback, 2000). Under these

conditions, small perturbations such as increasing pore fluid pressure can affect the

stress state of the faulted crust and cause fault reactivation, frictional instability and

trigger seismicity.

Figure 1.1: “Cumulative count of earthquakes with M≥ 3 in the central and

eastern United States, 1967–2012.The dashed line corresponds to the long-term

rate of 21.2 earthquakes/year. (Inset) Distribution of epicenters in the region

considered here.” (Ellsworth, 2013).Subsurface pore fluid pressure gradients

(Cox, 2010; Sibson, 1990, 1992) and fluid migration (Collettini et al., 2009; Cox,

1995; Cox et al., 1987; De Paola et al., 2008; Hickman et al., 1995; Miller, 1996;

~ 3 ~

Rice, 1992; Sibson, 2000) in the subsurface can significantly alter the frictional

strength of faults and induce seismicity. Natural fluid flows (Di Luccio et al.,

2010; Mahesh et al., 2012; Miller et al., 2004; Mizoguchi et al., 2008; Parotidis

et al., 2003; Terakawa et al., 2013; Yoshida et al., 2016, 2003) and a number of

human subsurface injection activities (Davies et al., 2013) can induce these pore

pressure gradients in the faulted crust.

A number of large earthquakes have been driven by natural subsurface fluid

flow (up to MW 9.0, Terakawa et al., 2013). Mantle degassing through the release of

supercritical carbon dioxide (CO2) is thought to have driven many instances of

natural seismicity. This CO2 is released from structural or lithological traps in the

subsurface (Noir et al., 1997; Nur and Booker, 1972; Parotidis et al., 2003; Terakawa

et al., 2013; Yoshida et al., 2016), fed by the degassing processes (Di Luccio et al.,

2010; Mahesh et al., 2012; Miller et al., 2004). Further, this CO2 release itself can

depend on seismicity and be released coseismically triggering subsequent further

seismicity (Keranen et al., 2013; Sumy et al., 2014).

A number of subsurface injection activities contribute to modern energy

production and can induce seismicity, particularly: 1) carbon capture and storage

(Zoback and Gorelick, 2012), by injection of supercritical CO2 into deep formations

for permanent capture and storage; 2) hydraulic fracturing (Atkinson et al., 2015,

2016; Bao and Eaton, 2016; Clarke et al., 2014; Davies et al., 2013; De Pater and

Baisch, 2011; Elsworth et al., 2016; Farahbod et al., 2015a, 2015b; Friberg et al.,

2014; Holland, 2013; Keranen et al., 2013; Lei et al., 2017; Maxwell et al., 2002;

McGarr, 2014; Rutledge et al., 2004; Rutledge and Phillips, 2003; Schultz et al.,

2015; Skoumal et al., 2015; Sumy et al., 2014; Vermylen and Zoback, 2011), by

injection of water into low porosity, tight reservoirs to stimulate hydro-fracturing,

~ 4 ~

and enable oil and gas production; and 3) wastewater disposal (Ake et al., 2005;

Frohlich, 2012; Frohlich and Brunt, 2013; Hornbach et al., 2016; Keranen et al.,

2014, 2013; Kim, 2013), by injection into deep saline aquifers.

There is still considerable uncertainty concerning the relationship between

the timing of seismicity after human subsurface fluid injection (Folger and Tiemann,

2015), sometimes occurring immediately and, in other cases, long after the fluid

injection has begun or even ceased. This variability in timing indicates a complicated

relationship between low porosity faults, fluid flow and earthquake nucleation.

However, continent-scale seismic monitoring of the USA provides evidence that

areas considered geologically stable have now experienced increased rates of

seismicity due to fluid-injection activities (Fig 1.1) (Ellsworth, 2013; McGarr, 2014;

McGarr et al., 2015; Weingarten et al., 2015).

Faulting and rock failure in the seismogenic layer of the brittle crust (about

15 km depth) can be accommodated by two main failure modes, brittle deformation

in rocks displaying elastic-frictional behaviour (localised deformation by discrete

faulting; R. H. Sibson, 1977) and ductile failure (fracturing distributed at the

mesoscopic scale; Rutter et al., 1986). The specific mode of failure is known to

control the development of fracture patterns (Caine et al., 1996; Cox, 1995; Mitchell

and Faulkner, 2008; Peach and Spiers, 1996; Wong et al., 1997; Zoback and Byerlee,

1975), which affect the transport properties of rocks and, hence, control fluid

circulation in the upper crust (De Paola et al., 2009; Fischer, 1992; Morrow and

Lockner, 1997, 1994; Paterson and Wong, 2005; Zhu et al., 1997).

Brittle faults are zones of finite thickness, which are comprised of distinct

domains, each with a characteristic suite of fault rocks and different transport

~ 5 ~

properties (Caine et al., 1996); taken together these domains are referred to as the

fault zone architecture (Caine et al., 1996). A simplistic, but still useful schematic

model of this fault zone architecture considers a fault core, accommodating most of

the strain, surrounded by a damage zone of distributed fracturing which is itself

surrounded by relatively intact protolith rock (Chester et al., 2004; Faulkner et al.,

2010). More complex models of fault zone architecture refine the fault core itself in

to an outer fault core of highly fractured rocks, an inner fault core of cohesive

cataclasite and primary slip zones composed of incohesive gouges (De Paola et al.,

2008).

The size and distribution of the different fault zone domains control fluid

flow within a fault zone (Caine et al., 1996) and, hence, fault reactivation. The

following factors, parameters and conditions control the mode of failure and

architecture of fault zones:

• Environmental conditions: confining pressure controls the transition from

brittle to ductile failure in rocks (Byerlee, 1968) and pore fluid pressure,

mediates a similar effect by controlling the effective confining pressure.

• Lithological variations: as, for any given environmental conditions, they may

accommodate deformation by different mode of failure (e.g. brittle vs.

ductile) and produce differing suites of fault rocks in the fault zone domains

(e.g. Bullock et al., 2014; Collettini et al., 2009; De Paola et al., 2008; D. R.

Faulkner et al., 2010), each with differing transport properties.

The above parameters control fault zone architecture and reactivation

processes in the brittle crust and are typically resolved with varying degrees of

certainty. Several fault zone parameters are essentially unknowns, such as the initial

~ 6 ~

stress state and the evolution of rock permeability with pore fluid pressure and

deformation. In fact, pore pressure perturbation and fluid flow in the subsurface is

dependent on the level of connectivity of the fault/fracture patterns. Such limitations

in the predictions of fault reactivation do impact on our ability to estimate

earthquake nucleation and earthquake recurrence intervals, which are affected by the

same unknowns, as well as further uncertainties due to the lack of information about

fault zone dimensions, internal structure and large-scale connectivity.

Fault reactivation usually begins as stable, non-oscillatory frictional sliding

on a fault asperity, which is usually a relatively small fault patch with either low

frictional strength (e.g. due to high pore fluid pressure) or high shear stress (e.g.

stress concentration at fault bends). An earthquake can then nucleate when such

rupture patch reaches a critical size, the nucleation length, at which fast and unstable,

oscillatory sliding and rupture propagation begin (Marone, 1998; Scholz, 1998).

Natural subsurface fluid flow has been implicated in both the deadly Mw 6.0

1997-98 Colfiorito and Mw 6.5 2016 Norcia seismic sequences regions with irregular

seismic recurrence intervals. (De Paola et al., 2008; Porreca et al., 2018).

Constraining the long-term controls of fault reactivation and the short-term controls

of the duration of the earthquake nucleation phase, leading to seismic faulting, can

help mitigate the seismic hazard such fluid induced seismicity. As such

understanding the dependence of earthquake nucleation and the nucleation phase on

the transport and geometric properties of complex, natural fault zones, therefore,

become the focus of this thesis.

~ 7 ~

1.2 Aims and objectives

Fault zone transport properties and geometric parameters nonlinearly mediate

the hydraulic connectivity between naturally pressurized reservoirs or injection sites

and the actively slipping portion of faults. This nonlinearity arises both from the

pressure dependence of permeability and the hysteretic permeability changes

associated with discontinuous fracturing. Put directly the ratio of permeability and

pressure is not a constant tensor across time. Therefore, the solutions to the pressure

field for different faults independently exhibiting both above behaviours in response

to the same stimulus cannot be superimposed to solve for a fault simultaneously

exhibiting both behaviours.

The research presented in this thesis aims to constrain better how such fault zone

properties and controlling parameters influence pore pressure diffusion in fault

zones, when a simplified but still realistic fault zone architecture is accounted

for. Previous simulation studies have approximated using one or two component

models of fault zone architecture and considered only continuous failure

behaviors (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005;

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009; Leclère et

al., 2015). Such simple models represent gross fluid flow behaviours in the

vicinity of the fault, but do not resolve how the finer components composing the

fault zone influence fluid flow behavior and earthquake nucleation. Further, the

absence of discontinuous brittle or ductile mode of failure in the outer fault core

in particular, may have a primary impact as it can be responsible for permeability

changes within the fault core over several orders of magnitude (De Paola et al.,

2009).

~ 8 ~

 A more refined four-component model of fault zone architecture with more

comprehensive models of continuous and discontinuous failure will allow us to

simulate fluid-flow and failure in natural faults more closely, capture these

primary contributions to fluid flow evolution and therefore resolve more

precisely how these processes control earthquake nucleation.

Numerical experiments are performed to model fluid flow in natural fault zones

with complex architecture, as taken from field studies of exhumed seismic fault

analogues, and dynamic evolution of fault rock transport properties, as taken

from rock mechanics experiments. Modelling results are then used to investigate

how pore fluid variations may affect the strength of seismic faults during the

interseismic period and control the earthquake nucleation phase. More

specifically, the over-arching aims of this thesis are:

• To model pore pressure diffusion during the interseismic period in natural

fault zones, accounting for their complex architecture and deformation

features, due to the operation of realistic brittle and ductile modes of failure.

We decompose fault zone architecture into a four-component model (damage

zone, outer and inner fault core and primary slip zone), as opposed to a one-

(Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Mazzoldi

et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009) or two-

component model in previous studies (Leclère et al., 2015).

• To simulate the earthquake nucleation phase and the evolution of pore

pressure during this period.

• To constrain the dependence of earthquake nucleation on: transport and fault

properties (e.g. particularly modes of failure, pore pressure and stress-

sensitive permeability), multilayer scale lithological properties (e.g. varying

~ 9 ~

thickness of overpressured reservoirs) and fault zone dimensions (e.g.

relative ratio of fault core/damage zone thickness).

1.3 Methodology: Numerical modelling

The above aims have been achieved by:

• Building a multiphysics model of nonlinear diffusion in low permeability

fault zones, in turn, incorporating realistic models of:

1) Complex, natural fault zone architecture, as obtained from field

observations of exhumed extensional faults in the Northern Apennines,

assumed as analogous to the hypocentral faults of the Mw 6.0 1997-98

Colfiorito and Mw 6.5 2016 Norcia earthquakes (De Paola et al., 2008;

Porreca et al., 2018).

2) Permeability evolution during rock failure, as measured in triaxial

deformation experiments with fluid flow on real fault rocks. Specifically

those experiments performed on samples from the Perugia 2 and

Fossonbrone 2 boreholes, located in the seismogenic belt of the Umbria-

Marche Apennines in Italy (De Paola et al., 2009).

3) Failure processes the fault core, which includes frictional sliding along

primary slip zones and brittle and ductile mode of failure in the

surrounding fault zone rocks. Failure envelops have been obtained from

triaxial deformation experiments with fluid flow on real fault rocks

(similar rock samples as at point two, De Paola et al., 2009).

4) Earthquake nucleation processes and the transition of the system from

stable, non-oscillatory sliding to fast and unstable, oscillatory sliding (e.g.

the nucleation length criticality).

~ 10 ~

• Conducting A-, L- and S-stable numerical simulations (Dahlquist, 1963) of

the highly stiff set of coupled partial differential equations (Jacobian matrix

eigenvalues differing on the order of 1011) resulting from the multiphysics

model above. A-, and L-stability indicate respectively that a solver given test

equation y' = ky subject to initial condition y(0) = 1, would provide a solution

approximating y(t) = exp(kt) and that the solution decays to zero in a single

step as step size is increased to infinity for k< 0 (Hairer and Wanner, 1996).

S-stability extends this, stating that when the applied solver is represented as

a function of the jacobian and step size, that function should tend to zero as

step size increases to infinity for each jacobian element .

• Introducing a novel mathematical formulation of the mode of failure problem

with failure state variables as a non-smooth process. This formulation ensures

tractability in reasonable computational time using a combination of an

existing explicit singly diagonal implicit Runge-Kutta (ESDIRK) solver (for

A-,L-,S-stability) and event detection (to ensure simulations remain

mathematically well-posed near discontinuities) to minimise both the

required number of simulation time-steps and cumulative truncation error.

• Conducting parameter studies to analyse the sensitivity of the fault fluid

system to uncertainty or variation in typically poorly constrained lithological

or pore pressure conditions.

1.3.1 Multiphysics Model

A multiphysics model of seismic, low-permeability fault-zones was

constructed from nonlinear pore pressure diffusion, realistic fault zone

architecture, pre-, co-, and post-failure permeability sub-models, as measured

by triaxial deformation experiments with fluid flow, and fault-rock failure

~ 11 ~

models. As all simulations presented in this case study lie several orders of

magnitude below the threshold for non-Darcy flow (Thauvin and Mohanty,

1998), fluid flow within the low-permeability medium was approximated

using the equations for the non-linear diffusion of pore pressure within a

classically porous medium (Silin, Korneev, & Goloshubin, 2003).

Specifically, we select a model of fault zone architecture based on field

observations of exhumed extensional faults in the Northern Apennines,

which is analogous to that of the hypocentral fault of the 1997-98 Colfiorito

seismic sequence (De Paola et al., 2008).

Both pre-, co- and post-failure permeability and associated failure

envelopes of the fault rocks were approximated using measurements from

triaxial deformation experiments with fluid flow on representative rocks of

the fault core, retrieved from samples from the Perugia 2 and Fossonbrone 2

boreholes in the Umbria-Marche Apennines in Italy (De Paola et al., 2009).

Failure by frictional sliding along the cohesionless gouges of the main

principal slip zone was modelled using known friction laws (Byerlee, 1978).

Earthquake nucleation processes were also considered, by treating the

fault-fluid ensemble as a non-smooth dynamical system, with transport and

deformation properties evolving discontinuously at times. These earthquake

nucleation processes govern the dynamics of the fault-fluid system from

stable, non-acceleratory motion, when shear stress equals the fault shear

strength, to the point at which unstable, accelerating oscillation begins on the

fault, when the sliding patch has a size comparable to that of the critical

(nucleation) length.

~ 12 ~

1.3.2 Numerical Simulation

During our numerical simulation, we apply the above multiphysics

model to the loading during the interseismic period of a realistic, low-

permeability fault zone. The range of physical conditions present at this fault

are such that brittle or ductile mode of failure may occur within the fault core

before and/or during the interseismic period and nucleation phase. These

failure conditions ensure hysteresis in numerical simulation, in the sense that

the physical state of the fault at a given time is dependent on the history of

the fault and not just the current physical conditions at any given instant at

the fault (e.g. a fault that undergoes failure in a spcific portion of the fault

core can never return to its unfailed state, excepting hydrothermal healing).

We can represent this brittle or ductile mode of failure behaviour in a state

variable and treat the fault-fluid system mathematically as a non-smooth

dynamical system. Not all the time derivatives with respect to physical

variables (e.g. permeability) are well defined at the instant of these brittle of

ductile mode of failure events.

The coupled partial differential equations (PDEs) that govern the

multiphysics model can be discretized in space and time, resulting in a series

of ordinary differential equations (ODEs) and a Jacobian matrix, whose

eigenvalues might differ by up to 11 orders of magnitude. We select an

ESDIRK method that can solve this highly stiff problem, efficiently and

accurately enough to consistently resolve the nucleation phase (relative

tolerance of 5E-9), specifically the MATLAB ODE23tb solver, an

implementation of the ESDIRK23 algorithm (Bagterp Jørgensen and Rode

Kristensen, 2018; Kristensen et al., 2004). This solver was also selected to be

~ 13 ~

capable of event detection to ensure that time integration was only performed

directly for periods in which the time derivative with respect to all physical

variables was continuous, and therefore that the problem was mathematically

well-posed.

1.3.3 Parameter Studies

The inherent uncertainty in our understanding of subsurface fault

systems, coupled with the evolution of their physical environment over time,

means that any numerical simulation result must be robust to changes in

these uncertain variables. We also need to constrain the behaviour we

observe in these simulations over a broader range of values for each uncertain

parameter. Hence, parameter studies allow us to expand our results to a much

broader range of conditions, representative of those encountered in the brittle

crust, which may affect seismic fault behaviours.

In this thesis, we use parameter studies to constrain fault behaviour

during the interseismic period and earthquake nucleation phase, with respect

to the following varying conditions and parameters:

• Variations in pore pressure within the reservoir at the fault

core/damage zone boundary. The aim is to investigate the controls

exerted on permeability and mode of failure within the fault core.

• Variations in the thickness of the overpressured reservoir. The aim is

to investigate the controls exerted on the relative length of the failure

patch in the fault core and the theoretically predicted nucleation

length.

~ 14 ~

• Variation in the relative width of the fault zone sub-domains in the

fault core, which should exert a primary control on the extent of

failure, permeability evolution and magnitude of pore pressure in the

fault core.

The above properties are all highly sensitive to uncertainty due to

natural spatial or temporal variation, inaccuracy of subsurface measurement

via indirect geophysical methods or approximated inference from outcrop

analogues. Direct analysis of the impact of this uncertainty on simulation

informs our understanding of the ability of our models to represent the likely

behaviour of faults with poorly constrained properties or to generalise to

other faults.

1.4 Thesis Outline

This thesis comprises the following chapters:

Chapter 2: This chapter includes a literature review of subsurface fluid flow,

faulting and seismicity. Taking field examples of both natural and human subsurface

fluid flow and subsequently induced seismicity.

Chapter 3: A description of the methodology adopted is presented in this

chapter, a method for efficiently simulating fault zone pore pressure diffusion in the

interseismic period with complex, realistic models of fault zone architecture and

brittle and ductile modes of failure. The nucleation phase is simulated, and stable

sliding and earthquake nucleation are resolved and distinguished to the order of

seconds for several hundred years simulations.

Chapter 4: Results from a case study are presented and discussed in this

chapter we model an analogue of the seismic sources at hypocentre depth of recent

~ 15 ~

seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 Colfiorito

and Mw 6.5 2016 Norcia earthquakes). Further, a parameter study of pore fluid factor

and brittle and ductile mode of failure is presented. The format of this chapter is in

journal-style" research chapters, as this is currently in review in EPSL.

Chapter 5: Results from a parameter study are presented and discussed in

this chapter, we perform parameter studies on pore pressure diffusion and earthquake

nucleation, with realistic models of ductile failure, varying the dimension of

components of fault zone architecture and neighbouring lithology, outer fault core

width and the height of pressurised layers abutting the fault core. The format of this

chapter is in journal-style" research chapters, as this is currently in submission to

JGR

Chapter 6: This chapter presents a discussion and conclusions of the

research chapters, including future research.

~ 16 ~

CHAPTER 2

A literature review of fluid flow, faulting and seismicity in natural rocks

~ 17 ~

2 A literature review of fluid flow, faulting and seismicity in

natural rocks

2.1 Introduction

There is a large and growing body of evidence that both natural and human-

induced subsurface fluid flow can drive faulting and seismicity. Supra-hydrostatic

pore pressure gradients can drive fluid flow within fault zones, which can cause a

reduction of the frictional strength of faults due to the increasing pore pressure. Fluid

overpressure can basically make faults weaker and induce fault initiation (Cox, 2010;

Sibson, 1990, 1992). However, a highly non-linear relationship exists between pore

pressure and earthquake nucleation processes. In fact, reducing the effective normal

stress of faults will increase the critical size of a rupture patch needed for unstable

sliding to spread (an earthquake) (Campillo et al., 2001; Scholz, 1988; Uenishi and

Rice, 2003). As overpressure acts to simultaneously weaken the fault while

increasing the size of failure patch required for earthquake nucleation the

relationship between overpressure and the timing of earthquake nucleation is not

linear. No constant ratio exists between either interseismic period, nucleation phase

length or the size of the rupture patch and the amount of overpressure found in the

fault core.

Natural subsurface fluid flow has driven a number of large earthquakes (up to

MW 9.0, Terakawa et al., 2013). Supercritical carbon dioxide (CO2) from mantle

degassing processes is thought to have driven many instances of natural seismicity. It

is argued that supra-hydrostatic pore pressure gradients can be generated by CO2

released from deep degassing processes (Di Luccio et al., 2010; Mahesh et al., 2012;

Miller et al., 2004) and structural or lithological traps in the subsurface (Noir et al.,

~ 18 ~

1997; Nur and Booker, 1972; Parotidis et al., 2003; Terakawa et al., 2013; Yoshida

et al., 2016). Migration paths of the CO2 released can themselves depend on

seismicity, as large volumes of stored CO2 can be released coseismically triggering

subsequent further seismicity (Keranen et al., 2013; Sumy et al., 2014).

There has been a recent increased interest in human-induced seismicity due

to the exponential increase in the seismic rate observed in the continental United

States. This has been associated with higher rates of hydraulic fracturing and

wastewater storage operations (Ellsworth, 2013), occurring even in regions without

any previous history of seismicity (Schultz et al., 2015). While only a small subset of

these hydraulic fracturing or wastewater injection wells cause felt seismicity

(Weingarten et al., 2015), the large number of them within the continental US

represents a considerable hazard. Here, we review some case studies of natural and

human-induced seismicity, drawing from geological, geophysical, mathematical and

simulation-based analysis of observed seismicity and linking it causally to

~ 19 ~

subsurface fluid flow.

Figure 2.1: “Mohr diagram with composite failure envelope for intact rock with

tensile strength, T, illustrating the stress conditions and orientations with

respect to the stress field of: (a) extensional failure; (b) hybrid extensional-shear

failure; and, (c) compressional shear failure, for a particular rock-type.”

(Sibson, 1996)

2.2 Fundamental principles of fault and earthquake mechanics

Intact rocks fail by the development of shear fractures, extensional fractures

or hybrid extensional/shear fractures. Failure in these rocks initiates around

randomly oriented microfractures (Griffith, 1924). Microfractures oriented parallel to

the direction of maximum shear within the rock will fail first and act to control this

transition. Mohr diagrams can be used to analyse this failure and the strength of

intact rock (the stress at the point of failure, Fig 2.1).

~ 20 ~

The tensile strength of a rock T is the extensional stress at which the rock

would fail. Similarly, the shear strength acting on a rock is the shear stress at which

failure would occur. In a fluid-saturated rock, the normal stresses, σN, are reduced by

the amount of pore fluid pressure, P, (Terzaghi, 1963) to give effective normal stress

as

σ′𝑁 = σ𝑁 − 𝑃 (2.1)

Considering effective stress in place of stress is a useful parameterization as linear

elastic models of porous solids indicate that they deform in response to changes in

effective stress rather than stress (Scholz, 2019).

 The Griffith’s criterion relates the shear strength of a rock to the effective

normal stress acting on a rock and it’s tensile strength (Griffith, 1924):

𝜎𝑁 − 𝑃 =
𝜏2−4𝑇

4𝑇
 (2.2)

The Griffith criterion applies comprehensively to compressive, hybrid and tensile

failure. This criterion is derived by considering the stress at which macroscopic

failure would arise from the largest, most optimally oriented Griffith crack(Griffith,

1924). Griffith cracks are naturally occurring, microscopic cracks present in all

natural rocks, occurring as a result of both weathering and formation.”

For compressional failure, effective normal stress, i.e. σ’N > 0, the shear failure of

intact rocks can also be simplified to the Coulomb-Navier failure criterion (Sibson,

1996), where τ is the shear stress, μi is the coefficient of internal friction, σN is the

normal stress, C = 2T is the cohesive strength and P is the pore fluid pressure

(Sibson, 1996)

𝜏 = 𝐶 + 𝜇𝑖(𝜎𝑁 − 𝑃) (2.3)

~ 21 ~

Most reservoir/seal rocks contain pre-existing faults, developed during

previous deformation events, further increasing their structural complexity. From a

mechanical point of view, faults are usually considered planes of shear failure

without any cohesion and, according to Amonton’s law, sliding will occur when the

shear force on the fault exceeds the frictional forces acting on the fault, where μs is

the sliding friction coefficient (Sibson, 1996)

𝜏 = 𝜇𝑠(𝜎𝑁 − 𝑃) (2.4)

Rocks can undergo failure according to two main modes of failure, brittle or ductile.

Both brittle and ductile failure are characterised by fracturing. During brittle failure

the strain due to deformation is accommodated by a single extensive fracture,

whereas during ductile deformation multiple distributed fractures each accommodate

a smaller portion of the overall strain (Rutter, 1972). The brittle-ductile failure

transition is controlled by confining pressure, and therefore by pore pressure through

effective stress (Byerlee, 1978).

~ 22 ~

Figure 2.2: “Comparison between granite and dolomite marble behaviour for a

load point velocity jump from 0.1 to 1m/s. (a) Granite shows a transient

increase in friction followed by a decay to a lower steady state frictional

strength, response termed "velocity weakening." (b) Marble shows the same

increase in frictional stress, with a small peak, but this is followed by a decay to

a higher frictional strength, for an overall "velocity strengthening”.” (Weeks

and Tullis, 1985)

Amonton’s Law defines the value of shear stress required to initiate sliding along a

fault surface for a given effective normal stress. However, rate and state theory

predict the velocity-dependence of sliding friction, once sliding is initiated

~ 23 ~

(Dieterich, 1979). If subjected to a sudden change in sliding velocity, sliding friction

coefficient evolves to a new steady value over a characteristic slip distances Dc

(Dieterich, 1979). The rate- and state-variable friction law describes the velocity

dependence of sliding friction (Dieterich, 1979):

𝜏 = (𝜇0 + 𝑎 𝑙𝑛 (
𝑉

𝑉0
) + 𝑏 𝑙𝑛 (

𝑉0𝜃

𝐷𝐶
))𝜎′𝑁 (2.5)

Where 𝜏 is shear stress, V is velocity, 𝜇0 is steady state friction at reference

velocity V0 and DC is the critical slip distance, a and b are material properties and 𝜃

the state variable which parameterises the physical state and evolution of the slip

surface is given by:

�̇� = 1 −
𝑉𝜃

𝐷𝐶

 For example, upon application of a sudden increase in velocity, sliding friction first

increases (direct effect controlled by the rate and state parameter) then, decreases to

a new steady state value (evolving according to the b rate and state parameter) (Fig.

2.2). This velocity dependence can be positive, in which case velocity strengthening

behaviour (a − b > 0) will favour stable sliding, or negative (a − b < 0), in which

case velocity weakening behaviour will favour frictional instability and earthquake

nucleation (Scholz, 1998). The rock properties, ambient conditions and amount of

slip/shear localisation control the velocity dependence of sliding friction (Marone,

1998).

Shear failure usually initiates at fault asperities, which are small fault

patches, when shear stress exceeds the fault shear strength due to high shear stress or

elevated pore fluid pressure reducing fault strength. Stable sliding initiates at these

fault asperities and, in velocity weakening materials, can spread out with an

~ 24 ~

accelerating sliding velocity until it reaches a critical size. This stability limit is the

nucleation length, Lc,

 𝐿𝐶 =
𝜁𝐺𝐷𝐶

𝜎′𝑁(𝑏−𝑎)
 (2.5)

where G is the shear modulus, 𝜁 is a constant of proportionality of order 1, Dc is the

critical slip distance, a and b are rate and state parameters (Dieterich, 1992; Rice and

Ruina, 1983).

In velocity weakening materials, any slipping patch that extends beyond the

nucleation length exhibits unstable behaviour leading to the nucleation of an

earthquake. The nucleation length concept implies a complex relationship between

pore pressure and induced seismicity. Increasing the pore pressure at a fault reduces

the effective normal stress acting upon it and the fault strength (Eq. 2.4), bringing

pressurised fault patches closer to failure. At the same time, there is a simultaneous

increase in the nucleation length required to nucleate an earthquake, due to the

inverse proportionality of Lc to the effective normal stress. The nucleation length is a

critical parameter controlling the nucleation of earthquakes. Nevertheless, it is a

seismic parameter that cannot be directly measured and/or obtained from the

inversion of seismological data.

2.3 Fault zone architecture and the role of pore fluid pressure during faulting

Pore fluid pressure reduces the frictional strength of faults and, hence, plays a

primary role during faulting processes (Cox, 2010; Sibson, 1990, 1992). Indeed,

there is a body of geological (Collettini et al., 2009; Hickman et al., 1995; Sibson,

1992), geophysical (De Pater and Baisch, 2011; Miller et al., 2004; Miller, 1996;

Rice, 1992; Sibson, 2000, 1992) and numerical (Cappa and Rutqvist, 2011b, 2011a,

2012; Mazzoldi et al., 2012; Rinaldi et al., 2014a; Rutqvist et al., 2007, 2002, 2016,

~ 25 ~

2015, 2013b, 2013a, 2009) evidence showing that fluid migration in the upper crust

controls faulting. Fluid circulation within the crust is strongly dependent on the rock

transport properties (i.e., permeability), and their evolution with pressure (De Paola

et al., 2009; Fischer, 1992; Morrow and Lockner, 1997, 1994; Zhu et al., 2007) and

deformation, which itself controls the development and connectivity of fracture

patterns across a range of scales (Caine et al., 1996; Cox, 1995; De Paola et al.,

2009; Faulkner and Rutter, 2001; Mitchell and Faulkner, 2008; Peach and Spiers,

1996; Zoback and Byerlee, 1975).

Figure 2.3: “Schematic section across the North Branch San Gabriel fault

illustrating position of the structural zones of the fault. The diagram is not to

scale.” (Chester et al., 1993)

Tectonic faults are zones of finite width, whose internal architecture can be

described by discrete and juxtaposed discrete fault zone domains (Chester et al.,

1993; Faulkner et al., 2010): the protolith, the damage zone and the fault core (Fig.

2.3). The fault core is the centre of the fault zone where most of the displacement is

~ 26 ~

accumulated. The main structural features in the fault core are principal slip zones

and principal slip surfaces, due to shear localization within volumes of fine- to very

fine-grained fault gouges, cataclasites and ultracataclasites (Sibson, 1977 JGSL). On

both sides of the fault core, a damage zone is usually present (Fig. 2.3), which is

made of the network of subsidiary fracture patterns. Relatively little amount of slip is

accommodated within the damage zone, where the main structural features are

network of fractures, veins and subsidiary small shear fractures. Damage intensity

and density decreases as one move away from the fault core, towards the protolith.

Fault breccias are the main fault rocks found in the damage zone. Finally, the

protolith is the original rock source of those fault rocks found in the damage zone

and fault core. There is no damage or faulting in the protolith related to the specific

fault zone activity, although background damage and fracturing may be presented in

the protolith due to ancient, previous faulting events.

Figure 2.4: “Conceptual model of fault zone with protolith removed (after

Chester and Logan, 1986; Smith et al., 1990). Ellipse represents relative

magnitude and orientation of the bulk two-dimensional permeability (k) tensor

~ 27 ~

that might be associated with each distinct architectural component of fault

zone.” (Caine et al., 1996).

Figure 2.5: “Summary of laboratory permeability data obtained at Pe=15 MPa

(closed circles corresponding to a depth of approximately 1 km of overburden

under hydrostatic pressure) and Pe=90 MPa (open circles corresponding to a

depth of approximately 5 km) as a function of position within the fault zone. In

situ estimates made by Barton et al. (1997)at a depth of 2.5 km are shown as the

shaded bar that spans the damage zone and fault core.” (Seront et al., 1998)

~ 28 ~

Figure 2.6: “Profiles of matrix permeability measured at 50 MPa effective

confining pressure. The three upper fault crossings show a low permeability

fault core (fine-grained material containing some clay fraction) surrounded by

high permeability damage zones (interlocked grains with numerous open

microfractures). The deep shear zone is partially sealed and was apparently not

activated by the Kobe earthquake.” (Mizoguchi et al., 2008)

~ 29 ~

Figure 2.7: “Conceptual scheme for fault-related fluid flow.” (Caine et al., 1996)

Figure 2.8: (Left) Macroscopic large fault zone structure of the Roccastrada

outcrop. (Right) Line drawing of the fault zone shown displaying the internal

fault core architecture.

~ 30 ~

The general model of fault zone architecture as comprising a fault core and a

damage zone is a useful concept, despite the complexity and diversity of real faults.

Different suites of fault rocks in the different damage zone domains have different

transport properties (Fig. 2.5-6). Variations in the relative thickness of the damage

zone and fault core exert a primary control over fluid flow across and along fault

zones (Fig. 2.3, 7) (Caine et al., 1996; Caine and Forster, 1999). Deformation within

the damage zone is in part controlled by the mode of failure. Either brittle

deformation, elastic-frictional behaviour (localised deformation by discrete faulting)

(Sibson, 1977) or ductile failure (fracturing distributed on the mesoscopic scale)

(Rutter et al., 1986), e.g. ductile failure in the Roccastrada damage zone (Fig. 2.8; De

Paola et al., 2008). Experimental measurements of gross fault zone permeability has

shown it to increase with increasing relative damage zone width (Caine et al., 1996).

While the combination of relative fault core and damage zone width can be used to

group fault zones into four coarse groups with respect to fluid flow: distributed

conduit, localized conduit, combined conduit-barrier, localized barrier (Fig. 2.7;

Caine et al., 1996).

The deformation patterns developed within each fault domain control fluid

flow across and along fault zones and, hence, fault zone architecture can further

control the onset and duration of earthquake nucleation and rupture properties. This

is an aspect of the earthquake nucleation process that is still poorly investigated and

understood.

During industrial hydraulic fracturing operations, extensional and hybrid

extensional-shear fracture systems are intentionally produced in tight reservoir rocks,

~ 31 ~

by pumping high-pressure fracking fluid and proppant into intact rock. The main aim

is to increase the permeability of otherwise tight, low permeability reservoir rocks to

result in an enhanced recovery of hydrocarbons. In this case, the pore pressure levels

induced in the stimulated reservoir should satisfy the extensional and extensional-

shear (Eq. 2.2) failure criterion for intact rocks, but it should not meet the conditions

that favour either shear failure in intact rocks (Eq. 2.3) or fault reactivation in pre-

existing faults (Eq. 2.4).

During industrial carbon sequestration operations, supercritical carbon

dioxide is pumped into sealed lithological units in the subsurface. The pore pressure

levels in the reservoir/seal system should always be below those values required to

induce any failure, as predicted by Eq. 2.1 - 2.3. Predictions of the brittle or ductile

mode of failure that occurs in the intact rocks of a natural reservoir depend on the

balance between the differential stress, the tensile strength and coefficient of internal

friction, and the level of pore fluid pressure. The intrinsic properties of rocks (e.g. T,

μi) are reasonably well known. However, the initial stress state in a reservoir and the

evolution of rock permeability with pore fluid pressure are fundamental unknowns.

The pore pressure perturbation at the local and field-scale depends on the level of

connectivity of the fault/fracture patterns.

~ 32 ~

Figure 2.9: “Variation of the effective stress ratio, R =σ1′/s3′ as a function of the

coefficient of static friction, µs, with a reactivation angle θr of 63°. The light

grey shaded area defines the domain where the fault is favourably oriented, the

grey area where the fault is unfavourably oriented (UO) and the white area

where the fault is severely misoriented.” (Leclère et al., 2012)

~ 33 ~

Figure 2.10: “Foreshocks of 6 April 2009 Mw 6.3 L’Aquila earthquake. Light

blue dots represent earthquakes that occurred from January to 30 March 2009.

Dark blue dots indicate earthquakes that occurred from 30 March to the main

shock. Smaller yellow star is ML = 4 foreshock that occurred on 30 March.

Larger yellow star is main shock hypocenter. Triangles are seismic stations,

used to localize earthquakes, belonging to Istituto Nazionale di Geofi sica e

Vulcanologia national (red triangles) and regional (pink triangles) permanent

seismic networks. Purple box is uniform slip fault (Atzori et al., 2009). Traces of

cross sections are represented by blue lines. Green rose diagram represents

frequency distribution of splitting fast directions measured at station AQU

(length of each petal is proportional to number of measures in each direction

interval). Red arrow indicates direction of minimum horizontal stress in area

(from Montone et al., 2004). Star in inset is location of main shock on map of

Italy Foreshocks of 6 April 2009 Mw 6.3 L’Aquila earthquake. Light blue dots

~ 34 ~

represent earthquakes that occurred from January to 30 March 2009. Dark

blue dots indicate earthquakes that occurred from 30 March to the main shock.

Smaller yellow star is ML = 4 foreshock that occurred on 30 March. Larger

yellow star is main shock hypocenter. Triangles are seismic stations, used to

localize earthquakes, belonging to Istituto Nazionale di Geofi sica e

Vulcanologia national (red triangles) and regional (pink triangles) permanent

seismic networks. Purple box is uniform slip fault (Atzori et al., 2009). Traces of

cross sections are represented by blue lines. Green rose diagram represents

frequency distribution of splitting fast directions measured at station AQU

(length of each petal is proportional to number of measures in each direction

interval). Red arrow indicates direction of minimum horizontal stress in area

(from Montone et al., 2004). Star in inset is location of main shock on map of

Italy.” (Lucente et al., 2010a)

Figure 2.11: “A: Vertical section across VP/VS (ratio between compressional-

wave and shear-wave velocity) synthetic model for conditions before 30 March.

B: Vertical section across VP/VS synthetic model for conditions after 30 March.

~ 35 ~

Green indicates unperturbed volume of model (Table DR1 [see footnote 1]).

Red triangles are seismic stations. Red dots are hypocenters of foreshocks. Blue

curves indicate seismic wave paths. Orange and light blue filled areas represent

P- and S-wave velocity anomalies, respectively. Fault is represented by thick

gray line. Smaller star on panel A indicates location of ML= 4 foreshock; large

star in panel B is main shock hypocenter. C: Comparison between time series of

synthetic (left) and observed (right) VP/VS values.” (Lucente et al., 2010a)

~ 36 ~

As the frictional strength of a fault is typically lower than that of intact rocks, this

means that favourably oriented faults will undergo shear failure while subject to less

stress (Fig. 2.9. Quantitative predictions of the critical pore pressure values leading

to reactivation of pre-existing faults in stimulated reservoirs (hydraulic fracturing) or

reservoir/seal systems (carbon capture and storage) are routinely performed based on

the application of Amonton’s Law (Fig. 2.9). These predictions are affected by the

same unknowns as those of intact rocks, as well as further uncertainties due to the

lack of information about fault zone dimensions and internal structure, which control

fluid circulation and stress/pore pressure perturbations.

2.4 Pore pressure and natural seismicity

There are many examples in the literature of case studies where natural fluid

migration in the upper crust control faulting and earthquake processes. It is inferred

that compressible fluids released from structural or lithological traps can cause

subsurface pore pressure diffusion waves, which can drive seismicity (Noir et al.,

1997; Nur and Booker, 1972). These lithological traps are themselves previously fed

by deep, high-pressure sources of carbon dioxide (CO2), which can be released by

crust/mantle degassing processes (Parotidis et al., 2003; Terakawa et al., 2013;

Yoshida et al., 2016) and mobilized by main earthquake and aftershock events (Di

Luccio et al., 2010; Miller et al., 2004). The increasingly higher resolution of seismic

tomography data can further enhance pressure diffusion analysis at the regional scale

for some major seismic sequences, e.g. Mw 6.3 2009 L’Aquila earthquake (Lucente

et al., 2010b) and the Chamoli Region, Garhwal Himalayas (Mahesh et al., 2012).

Approaching the Mw 6.3 2009 L’Aquila, the elastic properties of rocks in the fault

region underwent a sharp change about a week before the earthquake. This was used

to infer that a complex sequence of dilatancy-diffusion processes takes place and that

~ 37 ~

fluids play a key role in the fault failure process (Fig. 2.10-11;Lucente et al., 2010a).

Pressure diffusion analysis of earthquake events in the Chamoli region of the Central

Himalayas (1999 MB 6.3, 2005 MB 5.3, and 2011 M 4.6.), suggested the presence of

fluids percolating from depth, likely from metamorphic dehydration (Mahesh et al.,

2012).

 Natural fluid flow, faulting and earthquake processes have also been examined

using numerical simulation techniques. For example, physical models of subsurface

fluid flow resulting from the upwelling of carbon dioxide, CO2, have been connected

to seismicity (Cappa et al., 2009; Miller et al., 2004).

A correlation between reconstructed pore pressure diffusion waves and the

distribution and timing of seismicity was established for the 1966 Parkfield-

Cholame, California (Nur and Booker, 1972) and 1989 Dobi, Afar (Noir et al., 1997)

seismic sequences. The analysis of pressure diffusion wave correlation can be

extended to consider the frictional properties of specific faults involved in a seismic

sequence. For instance, the 2011 M W 9.0 Tohoku-Oki earthquake lead a swarm of

earthquakes where both favourably and unfavourably oriented faults were correlated

to a fluid pressure-dependent frictional strength (Yoshida, Hasegawa, and Yoshida,

2016), suggesting that crust/mantle degassing fluid upwelling and subsequent

migration after the initial MW 9.0 event initiated later earthquakes (Terakawa et al.,

2013).

Similar pressure diffusion analysis has been used to link compressible fluids released

from crust/mantle degassing processes to a number of instances of natural large

events and associated aftershock sequences. For example, kilometre-scale pore

pressure diffusion simulations correlated diffusivity to the recurrence of the nine

swarms from the 2000 Vogtland/NW-Bohemia earthquake swarm at the

~ 38 ~

German/Czech border, suggesting the release of overpressured carbon dioxide (CO2)

(Parotidis et al., 2003). CO2 pore pressure released from deep underlying

metasomatized mantle wedge was invoked as the primary controlling factor in the

time and space distribution of the 2009 MW 6.3 L’Aquila seismic sequence (Di

Luccio et al., 2010).

Figure 2.12: “Comparison of aftershock data to stress changes in the DCFS

formulation and pore pressure changes. a) There is no correlation between

positive or negative DCFS regions and the aftershock locations. In contrast, b,

~ 39 ~

the same aftershock data compared to the calculated fluid pressure state after

11 days, shows a very strong correlation with the entire aftershock sequence.”

~ 40 ~

~ 41 ~

Figure 2.13: “Comparison of model results with initial conditions (top) to the

hypocentres of aftershocks (bottom)” ... “a–g, Model results plotted as the rate

of pore pressure increase to highlight propagation of the pressure front (left

column), and the corresponding evolution of the entire fluid pressure field

(right column). The left column compares the evolution of the pore pressure

front to the aftershocks occurring during the times indicated. The overall fluid

pressure field is superposed with the cumulative aftershock catalogue. The

largest event in the sequence (event 3) and subsequent large aftershocks in the

hanging wall (events 4 and 5) are indicated in a, d and e.” (Miller et al., 2004)

Pressure diffusion analysis was combined with seismic wave velocity data and the

pattern of earthquake events in the Chamoli region of the Central Himalayas (1999

MB 6.3, 2005 MB 5.3, and 2011 M 4.6.). This analysis suggested the presence of

fluids percolating from depth, likely from metamorphic dehydration of the Indian

Crust in the Chamoli Region of the Central Himalayas (Mahesh et al., 2012).

The above linear models of pressure diffusion reconstruction can be refined

using more precise non-linear models of rock transport properties in numerical

simulations. These techniques have been applied in the Northern Apennines in Italy,

where it has been suggested that fluids released coseismically from a deep source

may have driven the MW 6.0 1997-98 Colfiorito seismic sequence (Fig. 2.12-13)

(Miller et al., 2004). Miller et al. (2004) show that the timing and location of

aftershock events strongly correlate with a kilometre scale simulation of the

nonlinear diffusion of a 20 MPa pore pressure pulse. The results of their simulations

suggest that the MW 5.7 mainshock may have released overpressured fluids and

created damaged regions for these fluids to propagate through, subsequently

triggering the aftershocks.

~ 42 ~

Numerical simulations coupling multiphase flow and geomechanical

modelling code TOUGH-FLAC (Rutqvist et al., 2002) have also been used to

validate the hypothesis that natural fluid flow may trigger earthquakes. For instance,

Cappa et al., 2009 argued that the fluid pressurisation of upwelling, deep CO2 rich

fluids triggered the 1965-1967 Matsushiro earthquake swarm. This seismic swarm

comprised more than 700,000 earthquakes, in part fed by an inferred two order of

magnitude increase in permeability of the earthquake rupture patch.

2.5 Pore pressure and human induced seismicity

Contemporary seismic and microseismic (MW < -1) measurements of human

subsurface fluid injection have demonstrated the link between injection activities and

induced seismicity. The careful analysis and monitoring of carbon sequestration

(Zoback and Gorelick, 2012), enhanced oil recovery (Gan et al., 2013), wastewater

injection (Ake et al., 2005; Frohlich, 2012; Frohlich and Brunt, 2013; Hornbach et

al., 2016; Keranen et al., 2014, 2013; Kim, 2013) and hydraulic fracturing operations

has allowed the collection of dense and high resolution seismic records. In particular,

large volumes of data and information have been gathered about human-induced

microseismicity (Baisch et al., 2009; Dicelis et al., 2017; Maxwell et al., 2002;

Rutledge et al., 2004; Rutledge and Phillips, 2003; Vermylen and Zoback, 2011),

seismicity (Atkinson et al., 2015, 2016; Bao and Eaton, 2016; Clarke et al., 2014;

Davies et al., 2013; De Pater and Baisch, 2011; Elsworth et al., 2016; Farahbod et

al., 2015b, 2015a; Friberg et al., 2014; Holland, 2013; Lei et al., 2017; McGarr,

2014; Rutqvist et al., 2013b; Skoumal et al., 2015; Sumy et al., 2014) and cascading

seismicity, where coseismic Coulomb stress transfer from fluid induced earthquakes

triggers further seismicity (Keranen et al., 2013; Sumy et al., 2014). The link

between human subsurface fluid injection and seismicity is also apparent in

~ 43 ~

continent-scale measurements of induced seismicity in the USA, showing a sharp

deviation from the typical trend after the onset of hydraulic fracturing operations

(Fig. 1.1) (Ellsworth, 2013; Weingarten et al., 2015). The issue of induced seismicity

has become sufficiently prominent in the continental United States that proposals for

mitigation of the seismic hazard have even been forwarded (McGarr et al., 2015).

Analytical solutions to the corresponding physical equations (Shapiro and

Dinske, 2009) and numerical simulations of fluid flow and faulting offer further

support to the connection between human subsurface fluid injection and seismicity.

In particular, coupled deformation and fluid flow models such as TOUGH-FLAC

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2016, 2015, 2013a, 2002) have

been developed and employed to carry out such analyses. Numerical simulations,

which couple fluid flow and geomechanical fault slip (e.g. fault reactivation), model

the spatial evolution of both in situ stresses and fluid pressure. These models can be

specifically used to estimate the maximum sustainable injection pressure during

geological sequestration of CO2 (Rutqvist et al., 2007), or parameter studies to

determine reservoir properties which pose the most significant risk for seismicity

(Mortezaei and Vahedifard, 2015). The above models have been applied from the

metre to kilometre scale, and simulations have been extended to include the effects

of simple fault zone architectures (Cappa and Rutqvist, 2011a; Mazzoldi et al., 2012;

Rinaldi et al., 2014a; Rutqvist et al., 2013b, 2009) and effective normal stress

dependent permeability (Cappa and Rutqvist, 2011b; Hsiung et al., 2005).

~ 44 ~

~ 45 ~

Figure 2.14: “Upper: Instrumentally recorded seismicity and damaging

historical earthquakes in the central and eastern United States and

southeastern Canada. Red dots indicate sites of reservoir-induced seismicity.

Lower : Seismicity of south and east Asia and sites of reservoir-induced

seismicity.” (Zoback and Gorelick, 2012).

2.5.1 Seismicity induced by subsurface carbon dioxide injection

A number of human industrial activities involve the injection of supercritical

CO2 into the subsurface, which can induce seismicity, particularly injection as part of

enhanced oil recovery and carbon sequestration. For instance, injection at the

Cogdell oil field in Texas lead to seismicity exceeding MW 3.0 (Gan et al., 2013).

The period of greatest seismicity 2006-2011 accompanied the injection of CO2,

while less significant seismicity occurred in the period of highest net water injection

1957-1982. Furthermore, a combined dataset of induced seismicity in hydrocarbon

reservoirs from both the continental US and Asia and stress measurements, from the

pilot carbon sequestration site at the Teapot Dome, Wyoming, establish the link

between human subsurface injection of CO2 and seismicity (Fig. 2.14) (Zoback &

Gorelick, 2012).

2.5.2 Seismicity induced by wastewater injection into deep saline aquifers

Wastewater disposal by injection into deep saline aquifers is thought to be

the primary cause of induced seismicity in the continental USA, driving an

exponential increase of seismicity over the last two decades (Fig. 1.1) (Ellsworth,

2013). Wastewater disposal operations are typically carried out alongside hydraulic

fracturing operations to dispose of flow-back fluids from recently treated wells. In

the three years from 2010-2012, the continental USA experienced 300 seismic events

MW ≥ 3 compared to an average of 21 per year in the period 1967-2000. Most of

~ 46 ~

these large seismic events occurred within 10 km of the location of wastewater

disposal wells. The largest seismic events identified occurred beneath the injection

interval, suggesting that increased pore pressure in the basement, transmitted from

the injection site, presents the greatest seismic risk (Fig. 1.1) (Ellsworth, 2013). A

series of regional studies of seismicity during this same period have more precisely

examined and confirmed the link from wastewater disposal to seismicity.

Figure 2.15: “Earthquakes in Oklahoma between 1976 and 2014.

Earthquakes are M > 1 from the NEIC catalog (10). Black lines are faults (26–

28). Small and large dashed gray boxes outline the areas used for analysis of the

Jones swarm and of central Oklahoma, respectively, in inset B. OKC:

Oklahoma City. Inset A: Comparison of M3+ earthquake rate in Oklahoma

~ 47 ~

and California, normalized by area. California is ~2.3 times larger than

Oklahoma. 2014 earthquakes are through the first 4 months. Inset B:

Expanding area of the Jones and the broader central Oklahoma swarms.

Regions were divided into 5 km by 5 km grid cells, and any cell with an

earthquake was considered part of the swarm. Swarm area per year is inclusive

of all prior years.” (Keranen et al., 2014).

Seismicity and hydrogeological models link the sharp increase in seismicity

in Central Oklahoma to wastewater injection. Pore pressure simulations demonstrate

the feasibility of wastewater injection operations and the subsequent pore pressure

diffusion leading to regional increases in seismicity (Fig. 2.15) (K. M. Keranen et al.,

2014). Simulations were able to match the positions and sequence of seismic events,

for the highest energy earthquake swarm, to a pore pressure diffusion wave in the

wastewater disposal formation and upper basement, from 2-5 km in depth.

Significantly while thousands of disposal wells operate aseismically, it was found

that just four of the highest rate wells would be capable of inducing 20% of the

reported 2008 - 2013 central US seismicity.

Further, analysis of subsurface fluid conditions and earthquakes from 2005-

2014 of the Bend-Arch, Fort Wirth Basin in North Texas, shows an exponential

increase in seismicity from the onset of wastewater disposal in 2008 (Hornbach et

al., 2016). With the largest event being a MW 4.0, in 160 years of habitation and 40

years of monitoring, no felt earthquakes had been recorded in the area before 2008.

A robust connection exists between 1.7 billion barrels of wastewater injected, a

cumulative increase average fluid pressure at depth (1.7 - 4.5 MPa) across the Bend-

Arch, Fort Wirth Basin, and the increased occurrence of seismicity in the area and up

to 10 km away.

~ 48 ~

In similar circumstances, an area with no known prior earthquakes,

Youngstown Ohio, experienced 109 earthquakes (MW 0.4 - 3.9) over 14 months of

wastewater injection activities from January 2011 - February 2012 (Kim, 2013).

Initial seismicity occurred in the vicinity of the wellbore, occurring at greater

distances over time. This migration of seismicity indicates pore pressure diffusion

resulting from human subsurface fluid injection as a cause. Strong temporal

correlations between wastewater injection and seismicity were further supported by

the observation that periods of low wastewater injection volume were accompanied

by a period of seismic quiescence.

In the longest running monitoring study, a well-monitored continuous (1991 -

present), deep (4.3 - 4.8 km) wastewater injection operation was examined in

Paradox Valley, Colorado. Here, 15 events exceeding MW 2.5 occurred, with the

largest event being a MW 4.3 as of 2003. Isolated seismic events and swarms both

exhibit a strong spatial correlation with the zone of fluid injection (Ake et al., 2005).

~ 49 ~

Figure 2.16: “Associated earthquakes in the [central and eastern United States]

from 1973 to 2014. Map showing the locations of M ≥ 0.0 earthquakes in the

[Advanced National Seismic System’s comprehensive earthquake catalogue]

from 1 January 1973 through 31 December 2014. White dots denote

earthquakes that are not spatiotemporally associated with injection wells. Red

dots denote earthquakes that are spatiotemporally associated with injection

wells. Following Ellsworth” … “the U.S. mid-continent is defined by the dashed

lines inside of the greater central and eastern United States.” (Weingarten et al.,

2015).

~ 50 ~

2.5.3 Seismicity induced by hydraulic fracturing

Seismicity induced by hydraulic fracturing has now been observed in a

number of regional studies, independently of wastewater injection operations. It has

also contributed to the previously mentioned exponential increase in seismicity in the

continental USA (Fig. 1.1) (Ellsworth, 2013). Hydraulic fracturing induced

seismicity has been observed in a number of countries: USA (Friberg et al., 2014;

Frohlich, 2012; Frohlich and Brunt, 2013; Holland, 2013; Keranen et al., 2013; Kim,

2013; McGarr, 2014; McGarr et al., 2015; Rutledge et al., 2004; Rutledge and

Phillips, 2003; Skoumal et al., 2015; Weingarten et al., 2015), Canada (Atkinson et

al., 2015, 2016; Bao and Eaton, 2016; Farahbod et al., 2015a, 2015b; Schultz et al.,

2015), China (Lei et al., 2017) and UK (Clarke et al., 2014; De Pater & Baisch,

2011).

There has been an exponential increase in mid-continental seismicity within

North America. Notably the USA, correlated strongly with the rise of high rate (≥

300, 000 barrels per day) wastewater injection wells since 2009 (Fig. 2.16)

(Weingarten et al., 2015). A breakdown of data from the Advanced National Seismic

System’s comprehensive earthquake catalogue, from the 1st of January 1973 to the

31st of December 2014, indicates that this exponential increase is only present at

sites associated with injection wells. No such increase in seismicity occurs for the

earthquakes not associated with injection wells. Further dissecting the injection well

data shows high rate wells were significantly more likely to be associated with

earthquakes than lower rate injection wells.

In fact, human subsurface injection has altered the seismic landscape of the

United States sufficiently that as of 2016, Oklahoma, an area of previously low

seismic activity, was now experiencing a greater volume of MW 3.0 or greater

~ 51 ~

earthquakes than naturally seismically active areas such as California (McGarr et al.,

2015). Concern over this abrupt deviation to the spatial distribution of seismicity on

the continental scale was enough for the previous authors to propose a series of

interventions to reduce seismic hazard and manage social licence.

Figure 2.17: “Map of Barnett Shale area” … “showing earthquakes located in

this study (red circles) and injection wells in use since 2006 (squares and +

~ 52 ~

symbols). Yellow squares are wells reporting maximum monthly injection rates

exceeding 150,000 BWPM (24,000 m3/mo); white squares, exceeding 15,000

BWPM (2,400 m3/mo); + symbols, exceeding 1,500 BWPM (240 m3/mo).”

(Frohlich, 2012).

Observations of induced seismicity have increased in line with an increased number

of hydraulic fracturing operations. In the following part of the chapter, we review

some of the most relevant and recent case studies of injection induced seismicity.

For instance, extensive monitoring of the Barnett Shale, Texas, on a 70 km2

grid between November 2009 and September 2011, demonstrate that all of the 24

most reliably located earthquake hypocentres, of a set of 67 total detected earthquake

hypocentres, were within 3.2 km of at least one hydraulic fracturing injection well.

These earthquakes were all located in the vicinity of 9 of the 27 high rate wells (>

150,000 barrels per month) (Fig. 2.17) (Frohlich, 2012). The distribution of

favourably stressed faults in the area likely explains why injection wells of a

similarly high rate did not all induce seismicity. In fact, high-pressure fluids needed

to contact a critically stressed fault to reduce effective normal stress on the fault

plane and induce seismicity. Similar monitoring of the Eagle Ford Shale, Texas

again, on a 70 km2 grid between November 2009 and September 2011, detected 62

probable earthquakes, clustered into 14 foci. Ten of these foci located near wells

involved in the injection of subsurface fluids or the extraction of recently injected

subsurface fluids. Shortly after the cessation of monitoring, a Mw 4.8 event occurred

at nearby Fashing on the 20th October 2011, without any previous increase in the

injection of subsurface fluids and felt earthquakes had happened in the area before

significant injection operations in 1973 and 1983 (Frohlich and Brunt, 2013). The

prior history of seismicity not associated with injection and the weaker correlation

~ 53 ~

between injection-related activities indicate that a more complex relationship exists

between human subsurface fluid injection and seismicity in this region.

Also, five hydraulic fracturing treatments of the Carthage Cotton Valley Gas

Field, in Texas, initiated microseismicity. Initially, dense microearthquake clusters in

the targeted layers would diffuse with time from the onset of a treatment, indicating

fluid movement into the surrounding lithology (Rutledge and Phillips, 2003;

Rutledge, Phillips, and Mayerhofer, 2004). The focal mechanisms and event

locations suggest that the microseismicity was primarily comprised of motion on the

reservoir’s natural fractures.

Further, ten widely observed positive magnitude earthquakes of the October

2013 seismic sequence in Harrison County, Ohio, were spatially and temporally

linked with the hydraulic fracturing operations at the Ryser wells (Friberg et al.,

2014). The detection of other seismic events, which were cross correlated with the

ten positive magnitude earthquakes, tapered off with time following hydraulic

fracturing operations. These observations, together with the similarity of seismic

waves detected from all events, makes it probable that hydraulic fracturing

operations were responsible for the entire October 2013 seismic sequence.

Hydraulic fracturing operations triggered the 2011MW 5.7 earthquake

sequence near Prague, Oklahoma (Keranen et al., 2013). Its MW 5.0 foreshock was

connected directly to fluid injection (Keranen et al., 2013). By detecting and locating

110 earthquakes in the sequence, Sumy et al. (2014) demonstrated that the

subsequent cascade of seismic events, triggered by coseismic Coulomb stress

transfer, resulted from the foreshock. This indicated that contrary to what argued by

~ 54 ~

McGarr (2014), the volume of fluid injected might not limit mainshock magnitude or

cumulative seismic moment release.

Also, analysis of 77 earthquakes spatially and temporally correlated with

hydraulic fracturing activities in Poland Township, Ohio, suggested a causal link

between the two. However, nearly 100 stimulation stages in nearby wells did not

coincide with felt seismicity, suggesting it did not occur in all cases (Skoumal et al.,

2015). A series of events were recorded up to MW 3 (one of the largest detected at

the time, 2014) and the observed seismicity shared a lot of characteristics with

nearby induced seismicity in Youngstown, 18 km to the northwest (Kim, 2013).

Figure 2.18: “Seismicity and wells in the Western Canada Sedimentary basin

(WCSB). (a) Red lines delineate the study area, which parallels the foothills

region of the WCSB. Ovals identify areas where induced seismicity has been

previously attributed to hydraulic fracturing (H), wastewater disposal (W), and

production (P). Red/pink circles show M ≥ 3 earthquakes correlated with

~ 55 ~

hydraulic fracture (HF) wells. Turquoise circles show M ≥3 earthquakes

correlated with disposal wells. Orange circles are correlated with both. Small

squares in the background show locations of examined HF wells (dark pink)

and disposal wells (turquoise). Gray squares in the far background are all wells.

(b) Cumulative rate of seismicity within the WCSB, commencing in 1985;

numbers of disposal wells and HF wells for the WCSB as compiled in this study

are indicated (top). A roughly synchronous increase in rate is evident in the

basins of the central and eastern United States.

(bottom; data plotted from Ellsworth, 2013) (Well information is not available

in the Ellsworth study, but most activity is considered to

be related to wastewater disposal.) The gray lines show the expected counts for

a constant seismicity rate.” (Atkinson et al., 2016)

At least 86 earthquakes accompanied hydraulic fracturing operations in South

Central, Oklahoma, from the 16th-23rd January 2011, with 16 of these events

exceeding MW 2.0. A cross-correlation analysis showed no similar seismic

waveforms outside of the window of hydraulic fracturing operations (Holland,

2013). Poor weather conditions at the well-site led to hydraulic fracturing stages

being separated by approximately two days, increasing the precision of the temporal

correlations between seismicity and fluid injection operations.

A study of hydraulic fracturing and seismicity in the Western Canada

Sedimentary Basin shows that the seismic events correlated strongly with hydraulic

fracturing operations (Fig. 2.18) (G. Atkinson et al., 2015; G. M. Atkinson et al.,

2016). However, the rate of seismicity did not appear to obey the expected

relationship between the volume of fluid injected and the maximum observed

~ 56 ~

seismic magnitude. A significant number of events exceeded predictions of seismic

magnitude indicating the seismic hazard of hydraulic fracturing may be larger than

routine analysis would suggest.

Further, a region of previous seismic quiescence within central Alberta,

Canada, experienced a sequence of earthquakes beginning 1st December 2013, and

comprising 160 events as of the end of 2014. Seismic monitoring showed that events

clustered at each of the sites of horizontal drilling. The data could be further resolved

into five temporal sub-sequences, with the first-order relations to hydraulic

fracturing operations (Schultz et al., 2015). Analysis of the seismic waveforms was

sufficiently precise to indicate that seismicity would stop when hydraulic fracturing

operations would stop, and resume when they would restart months later, strongly

implying direct causation.

~ 57 ~

Figure 2.19: “Seismicity of northwestern Alberta, Canada, for the period

1985−2016. Symbol size indicates magnitude, and color denotes date of

occurrence. B.C., British Columbia. Seismicity west of Fox Creek commenced

in December 2013 and correlates in space and time with local hydraulic-

fracturing operations (9). Focal mechanisms of the largest earthquakes, from

(32–34), are labeled by year/month/ date of occurrence.” (Bao and Eaton, 2016).

Analysis from Western Canada, specifically north-western Alberta, of

hydraulic fracturing and seismicity over a four-month period, again finds a strong

spatial and temporal correlation between hydraulic fracturing and seismicity. One

large (MW 3.9) event occurred several weeks after injection, along a fault that

~ 58 ~

extends from the site of hydraulic fracturing operations into the crystalline basement

(Fig. 2.19) (Bao & Eaton, 2016). Predictions of the stress change during seismicity

suggests that fault activation could be possible more than 1 km away from the site of

injection, and that direct pressurisation of faults locally could lead to episodic

seismicity persisting for months.

Also, hydraulic fracturing operations in the Horn River Basin, northeast

British Columbia, coincided with a sharp increase in seismicity (131 events per year)

above background levels (24 events per year), as well as with an increase in the

maximum magnitude, from ML 2.9 to 3.6 (Farahbod, Kao, Cassidy, et al., 2015). The

analysis of the natural background and hydraulic fracturing seismogram data

supported a physical link between hydraulic fracturing operations in the area and

induced seismicity (Farahbod, Kao, Cassidy, et al., 2015).) The dominant factor

controlling induced seismicity in the area appeared to be the volume of fluid

injected, more so than the injection pressure. There was no change from background

seismicity when the volume of injected fluid was less than 20,000 m3 per month, and

the largest seismic releases occurred with monthly injected volumes exceeding

150,000 m3 (Farahbod, Kao, Walker, et al., 2015). The time lag from initiation of

hydraulic fracturing subsurface injection and seismicity could be days or months

depending on the local geological conditions, particularly the distribution and

geometry of faults in the area.

Observations of hydraulic fracturing induced seismicity have also been made

in China. The Sichuan Basin has experienced a series of earthquakes up to MW 4.7,

resulting from fault reactivation driven by fluids injected into the subsurface for

hydraulic fracturing (Lei et al., 2017). The combination of precisely relocated

aftershock hypocenters, focal mechanism solutions of 13 significant events (MW 3.5)

~ 59 ~

and Coulomb failure stress analyses all indicate that injection over the course of

several months at a single well pad, at depths of 2.3-3 km, induced each of the

earthquakes.

Hydraulic fracturing operations in the Carboniferous Bowland Shale in the

UK, at the well Preese Hall 1, resulted in a series of seismic events, the largest of

which was ML 2.3, 1.8 km from the well at a depth of 3.6 km (Clarke et al., 2014; De

Pater & Baisch, 2011). Furthermore, this sizeable seismic event immediately

followed the injection of 2245 m3 of fluid, and 117 tons of proppant at the well.

Some small shear movements were detected slightly before the highest energy event.

The ML 2.3 event likely resulted from fluid leaking from induced fractures to natural

ones, before migrating onto the fault plane of a pre-existing, critically stressed fault.

The fluids lowered the effective normal stress on the fault, which was reactivated

triggering the seismicity.

Figure 2.20: “(a) Numerical model geometry and initial conditions. We assumed

a normal fault with a 125 m offset through a 100 m thick reservoir bounded at

~ 60 ~

the top and the bottom by a 150 m thick caprock. (b) A plastic shear strain‐

weakening friction law that governs the propagation of rupture along the fault

zone. (c) Fault slip versus time at three points located at the (1) top, (2) middle

and (3) bottom of the reservoir, respectively” … “Snapshots of change (relative

to the initial state) in (d) fluid pressure, (e) CO2 saturation, and (f) plastic shear

strain at the end of the sudden slip event (after 90 days of CO2 injection)”

(Cappa and Rutqvist, 2011a).

2.5.4 Numerical Simulation of Induced Seismicity

Examination of the reservoir, caprock and fault systems with numerical

simulation techniques have predicted human subsurface injection-induced seismicity

and constrained conditions under which it might occur during carbon sequestration

operations (Frederic Cappa & Rutqvist, 2012; Frédéric Cappa & Rutqvist, 2011a,

2011b; J. Rutqvist et al., 2002; Jonny Rutqvist, Cappa, et al., 2013). Credible stress

ranges for microseismicity in caprock embedded faults during similar carbon

sequestration simulations (J. Rutqvist et al., 2002). Seismic movement and a sudden

stress drop were predicted within a few months from the beginning of CO2 injection

into a reservoir, for a schematic fault embedded in a caprock for realistic physical

parameter ranges in initial horizontal‐to‐vertical stress ratio and fault permeability

(Fig. 2.20) (Frédéric Cappa & Rutqvist, 2011b). These simulations were refined by

including effective stress dependent permeability. The results demonstrated a

relationship between the physical parameters stress ratio and fault permeability, the

size of the rupture patch and earthquake magnitude. In a model like the previous case

with simple fault zone architectures were implemented within simulations of CO2

injection to examine their impact on predictions of seismicity, fluid flow and the

mechanical response of faults (Frédéric Cappa & Rutqvist, 2011a). Here simple fault

~ 61 ~

zone architecture refers to a damage zone and fault core. This reservoir with caprock

embedded fault simulation was extended to make predictions of ground acceleration

and seismic wave propagation in the case of a critically stressed fault (Frederic

Cappa & Rutqvist, 2012). Showing that within a few days of fluid injection sliding

can begin on a small patch of a few centimetres, which can develop rapidly into a

more massive earthquake if fluid flow and fault weakening act to reduce the

effective coefficient of friction for the fault plane.

Figure 2.21. “Geomechanical processes and key technical issues associated

with GCS in deep sedimentary formations. Top the different regions of

influence for a CO2 plume, reservoir pressure changes, and geomechanical

changes in a multilayered system with minor and major faults. Bottom left

injection-induced stress, strain, deformations and potential microseismic events

as a result of changes in reservoir pressure and temperature, and

~ 62 ~

bottom right unwanted inelastic changes that might reduce sequestration

efficiency and cause concerns in the local community.” (Rutqvist, 2012).

Simulations of natural fault systems subjected to human injection activities

have been validated using the CO2 injection and storage project at In Salah, Algeria

(Fig. 2.21) (Jonny Rutqvist, 2012; Jonny Rutqvist et al., 2009). A thin, low

permeability, Carboniferous sandstone formation was targeted for CO2 storage at a

depth of 1.8 - 1.9 km. Three long reach 1-1.5 km horizontal injection wells were

utilised, with injection occurring at 18 MPa of pressure. A realisation of the

TOUGH-FLAC simulator was able to predict microseismicity that was comparable

to that detected at the site. Modelling results also predicted the distribution of pore

pressure in the reservoir and the evolution of stress predicted was consistent with

those at In Salah. TOUGH-FLAC simulations in general infer earthquake properties

using empirical seismological relations instead of directly simulating the earthquake

nucleation phase.

Specific operational constraints (J. Rutqvist et al., 2007) and hazards

(Mazzoldi et al., 2012; Mortezaei & Vahedifard, 2015) were evaluated by simulating

the pressure distribution of caprock embedded faults overlying reservoirs targeted for

carbon sequestration. A fully coupled numerical analysis of schematic faults was

performed using TOUGH-FLAC and simple models of fault zone architecture.

While these models did not simulate earthquake nucleation directly, they were able

evaluate the maximum sustainable CO2 injection pressure that would avoid

seismicity for carbon sequestration operations (J. Rutqvist et al., 2007). As well as

operational constraints, estimates of the magnitude of functional seismic hazard have

been calculated with numerical simulation techniques using the TOUGH-FLAC

suite, for a schematic domal structure targeted for the deep storage of CO2, focusing

~ 63 ~

specifically on reactivating sub-seismic resolution faults (Mazzoldi et al., 2012). The

seismic magnitudes for movements on these sub-seismic resolution faults was

inferred from seismological relations to be (2 ≤ MW ≤ 3.9). Another study evaluated

seismic hazard in a similar way on sub-seismic resolution faults using TOUGH-

FLAC simulations, posing the problem as a parameter study of permeability and

reservoir thickness (Mortezaei & Vahedifard, 2015).

TOUGH-FLAC simulations where extended and refined for the simulation of

shale fault activation during hydraulic fracturing operations. Specific examinations

of steeply dipping faults, at depths of 1000 to 2500 m, indicated that hydraulic

fracturing could induce shear failure, and hence microseismicity (Jonny Rutqvist et

al., 2015). The seismic moment magnitudes predicted by the TOUGH-FLAC shale

fault simulation during typical hydraulic fracturing operations ranged from MW -2.0

to 0.5, excepting one MW 2.3 simulation of a very brittle fault with low residual

shear strength. They conclude that felt seismicity is unlikely to result from hydraulic

fracturing operations in the vicinity of steeply dipping faults.

TOUGH-FLAC simulations have been extended further to incorporate faults

embedded in lithologically complex, layered systems as part of a caprock-reservoir

system targeted for carbon sequestration (Rinaldi et al., 2014). These simulations

demonstrate that the inclusion of heterogeneities strengthens the fault and decreases

the magnitude of earthquakes by preventing the propagation of rupture to shallow

depths. The complex hydraulic properties of the multilayer also impede the flow of

fluids along the fault. The simulations were even able to predict that while thin

caprocks and/or aquifers might produce smaller magnitude events, they also

increased the volume of leaked fluid.

~ 64 ~

2.6 Conclusion

Many case studies in the literature, clearly support the evidence that

subsurface fluid flow can trigger both natural and human induced seismicity, up to

MW 9.0 events for natural seismicity (Terakawa et al., 2013). There is also evidence

that human activities, such as fluid injection, have led to an exponential increase in

seismicity in the continental USA (Ellsworth, 2013; Weingarten et al., 2015) and

also in other areas of the world.

Fault mechanics theory predicts that increasing pore pressure reduces fault

frictional strength and can favour the reactivation of faults at lower stress levels or

even when faults are in their stability stress field. Although the rock mechanics

principles and laws that govern fault reactivation are simple, fault frictional strength

can depend in a highly non-linear way on supra-hydrostatic pore pressure gradients,

potentially driving seismicity (Cox, 2010; Sibson, 1990, 1992).

Numerical simulation techniques have been used to analyse fault reactivation

more precisely, modelling subsurface fluid flow and pore pressure distribution

within faults, eventually causing fault reactivation (Cappa and Rutqvist, 2011a,

2012; Rutqvist et al., 2015, 2013a, 2002). Further, a number of metre- to kilometre-

scale models have refined these results to include simplistic models of fault zone

architecture, and pore pressure dependent fault zone transport properties (Cappa et

al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Mazzoldi et al., 2012;

Rinaldi et al., 2014; Rutqvist et al., 2013, 2009). However, there are several

previously unconsidered model refinements that could more realistically predict the

complexity of fluid flow and reproduce the behaviour of natural faults. These are

treated in the next chapters of this thesis and include the implementation into models

of simple to complex and more realistic models of fault zone architecture. In

~ 65 ~

particular, the models output of fluid flow and fault reactivation conditions account

for the evolution of permeability in the different fault zone domains due to its

dependence on evolving pore pressure and mode of failure, e.g. brittle vs. ductile

(Caine et al., 1996; Caine and Forster, 1999; Collettini et al., 2009; De Paola et al.,

2008)

Finally, there are several previously unconsidered model refinements that could

more realistically reproduce the behaviour of natural faults and accurately

characterise and forecast their seismicity. Here, I attempt to reproduce in simulations

the earthquake nucleation phase, as opposed to the approach adopted in previous

studies, where seismological relations were used to infer earthquake nucleation

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). This is

achieved by considering the effects of reducing effective normal stress, which would

result in an increasing nucleation length – the size of the rupture patch needed for

earthquake nucleation (Campillo et al., 2001; Scholz, 1988; Uenishi and Rice, 2003).

~ 66 ~

CHAPTER 3

Simulating fluid overpressure in low-porosity faults with brittle and ductile mode of

failure and earthquake nucleation

~ 67 ~

3. Simulating fluid overpressure in low-porosity faults with

brittle and ductile mode of failure and earthquake

nucleation

3.1 Introduction

Failure and deformation processes can occur continuously throughout the

interseismic period and aren’t necessarily isolated to primary slip zones involved in

active fault-slip and earthquake nucleation. These brittle and ductile deformation

processes act as a primary control on fluid flow and pore pressure evolution and

hence earthquake nucleation (Rowland and Sibson, 2004). We model the effect of

the processes on the aforementioned physical properties using the triaxial

deformation with fluid flow measurements of De Paola et al., 2009.

Here we refer to distributed fracturing as ductile failure, there is not a full transition

to viscous behaviour as we might see at high temperatures, it is a discrete failure

event (a collapse), which alters the porosity of the rock and transport properties. It

does not engage in fully fluid-like behaviour for an extended period in a way which

would require simulation. Treating these brittle and ductile mode of failure events as

a field of discrete failure states, simplifies models of fault-fluid evolution and

earthquake nucleation both conceptually and computationally. Chopping sub-milli-

second and -metre continuous failure and deformation events into discontinuous

failure states and transitions reduces the number of physical processes considered

while recovering the natural, irreversible, hysteretic behaviours resulting from brittle

and ductile mode of failure, not typically recovered in continuous models.

~ 68 ~

Further, numerical simulations and multiphysics models of the natural world, as well

as their inputs, are necessarily approximations. Very few non-fundamental

macroscopic physical relationships capture the full complexity of natural behaviours.

Also, we cannot constrain any physical quantity with perfect precision, particularly

in the subsurface. Any numerical simulation result must either be robust to changes

in these uncertain variables otherwise we will need to constrain the behaviour we

observe in these simulations over a range of values for each uncertain parameter.

Understanding how simulation results vary within the range of possible uncertainty,

we would expect for a fault in the natural subsurface allows us to distinguish which

of our results would apply widely to similar faults and conversely what variation we

might expect to between different examples of similar faults..

Here we model the nucleation of earthquakes, which depend on the frictional

behaviour of faults and the normal stresses acting on fault planes. These in turn depend

on the fluid pressure acting on the fault plane. The fluid pressure acting on the fault

plane is controlled by fluid flow throughout the fault zone, this fluid flow can be

facilitated by the deformation of the rocks comprising the fault zone. This study will

model the evolution of stress, fluid flow, pore pressure and deformation throughout

the fault zone and predict subsequent earthquake nucleation. We establish a method

for efficiently simulating fault zone pore pressure diffusion in the interseismic period

with complex, realistic models of fault zone architecture and brittle and ductile modes

of failure. The nucleation phase is simulated, and stable sliding and earthquake

nucleation are resolved and distinguished to the order of seconds for several hundred

years simulations. As all the simulations presented in this thesis are consistently

several orders of magnitude within the region for Darcy flow (Thauvin and Mohanty,

1998).

~ 69 ~

3.2 Governing Equations

All simulations presented in this thesis consider fluid flow through porous media. By

considering any three-dimensional element of a porous medium for mass to be

conserved mass flux into this element minus mass flux out equals the increase in

amount stored by the element, we represent this mathematically as follows (Table

3.1):

 ∇. (𝜌𝑞) = −
𝑑(𝜌𝜑)

𝑑𝑡
 (3.1)

As all the simulations presented in this thesis are consistently several orders of

magnitude within the region for Darcy flow (Thauvin and Mohanty, 1998), we take

the left hand side of this equation and substitute Darcy’s law, whilst also assuming

incompressibility (Table 3.1):

∇. (𝜌𝑞) = −
𝜌

𝜂
∇. (𝑘∇𝑃) (3.2)

Taking the right-hand side of this equation and differentiating using the product rule

and using the definitions of pore and fluid compressibility (βφ and βf respectively)

gives (Table 3.1):

𝑑(𝜌𝜑)

𝑑𝑡
= 𝜌

𝑑𝜑

𝑑𝑡
+ 𝜑

𝑑𝜌

𝑑𝑡
= 𝜌

𝑑𝜑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+ 𝜑

𝑑𝜌

𝑑𝑃

𝑑𝑃

𝑑𝑡
= 𝜌𝜑 (

1

𝜑

𝑑𝜑

𝑑𝑃
+
1

𝜌

𝑑𝜌

𝑑𝑃
)
𝑑𝑃

𝑑𝑡

= 𝜌𝜑(𝛽𝜑 + 𝛽𝑓)
𝑑𝑃

𝑑𝑡
 (3.3)

By combining equations 3.1 and 3.2 we arrive at a relationship for the diffusion of

pore pressure in a classically porous medium, for a laminar flow (Eq. 3.4; Table 3.1;

Zimmerman, 2018),

𝑑𝑃

𝑑𝑡
=

𝛻·(𝑘𝛻𝑃)

𝛽𝜂𝜑
 (3.4)

~ 70 ~

with 𝛽 = 𝛽𝜑 + 𝛽𝑓, viscosity η and transport and rock property relationships derived

from (De Paola et al., 2009). As the compressibility of the porous medium is several

orders of magnitude greater than that of the pore fluid the compressiblity of the

porous medium will have an outsized impact on flow. We use equation 3.4

throughout this thesis to approximate fluid flow within low permeability porous

medium. Inherent in our approach is an assumption that the fluid present is a dry

single phase CO2 fluid. However, most naturally occurring subsurface CO2 would

contain a proportion of water. The presence of moisture would lead to

dissolution/precipitation of the rock matrix, would swell clays if present and would

also alter frictional rock behaviours. We accept this dry fluid assumption as an

approximation, leaving the complexity of wet CO2 for future work.

𝛽𝜙 =
𝛼(1−2𝜐)

𝐸
 (3.5)

The compressibility of the porous rock matrix can be expressed in terms of Poisson’s

ratio 𝜐, Biot coefficient α and Young’s modulus E (Eq. 3.5, Detournay and Cheng,

1993). The compressibility of a porous medium is the change in volume of that

medium in response to a change in effective pressure. When a rock deforms

according to two modes of deformation, one along the axis which stress is applied,

characterised by the Young’s modulus E (the strain in response to applied stress),

and secondly a transverse expansion in response to compression along the initial

stress axis (characterised by the Poisson ratio 𝜐, relating axial to transverse strain. In

porous media containing fluids a third factor must be considered, the Biot coefficient

𝛼 which characterises the amount of fluid which would be expressed in response to a

~ 71 ~

change in volume. When these factors are combined as in Eq. 3.5 we arrive at the

true total volume change in response to a change in pressure.

No macroscopic natural system is going to undergo genuinely discrete transitions

with respect to time. on some low level of time or spatial resolution there will be

observable continuous processes governing the transition from one state to another.

to simulate all of these processes would be computationally intensive. Therefore we

approximate failure state in our numerical simulations with a discrete variable as a

simplification, this discontinuous approach to failure state allows us to analyse the

problem on a space and time resolution of millimetres or milliseconds and above.

Specifically, permeability, pressure sensitivity and porosity all vary discontinously

with the failure state of the rock (prefailure, localised brittle fracturing or distributed

ductile fracturing) and the component of fault zone architecture.

In natural rocks changes in porosity drive changes in permeability, these porosity

changes are in turn controlled by the effective stress acting on the rock. as is

indicated by linear elastic models (Berryman, 1992). In the simulations in this thesis

we do not directly consider porosity except for discontinuous failure transitions. In

continuous permeability changes, porosity changes are treated implicitly, and hence

continuous permeability changes are modelled as driven only by effective stress.

Permeability is represented by the following function (De Paola et al., 2009;

Faulkner, 2004; Faulkner and Rutter, 2003, 2000; Zhang et al., 1999):

𝑘 = 𝑘0exp(−𝛾𝜎′) (3.6)

 γ represents the pressure sensitivity, and 𝜎eff is effective stress:

𝜎′ = 𝜎3 − 𝑃 (3.7)

~ 72 ~

σ3 is the principal minimum stress.

When considering fluid flow in the fault fluid system, we employ several more

standard relationships between physical variables. For instance, the normal stress

acting on a plane σ𝑁 at angle 𝜃 to the orientation of principal maximum stress σ1 is

given by (Cox, 2010, Fig. 2.1; Table 3.1):

σ𝑁 =
1

2
(σ1 + σ3) +

1

2
(σ1 − σ3) cos (2𝜃) (3.8)

The shear stress acting on a plane σ𝑁 at angle 𝜃 to the orientation of principal

maximum stress σ1 is given by (Cox, 2010; Table 3.1):

 𝜏 =
1

2
(σ1 − σ3) sin (2𝜃) (3.9)

In a fluid-saturated rock, the effective normal stresses are the normal stresses

reduced by the amount of pore fluid pressure (Eq 2.1; Sibson, 1990; Table 3.1).

For compressional effective normal stress the shear failure of intact rocks is

described by the Coulomb-Navier failure criterion (Sibson, 1996) where τ is the

shear stress, μ is the coefficient of internal friction, σN is the normal stress (Sibson,

1990; Table 3.1):

𝜏 = 𝐶 + 𝜇𝑖(𝜎𝑁 − 𝑃) (3.11)

For the faults considered in this thesis, the shear failure envelope further decomposes

into two regions one representing a brittle mode of failure and one representing

ductile, with the transition occurring at a critical effective stress, derived from (De

Paola et al., 2009). The coefficient of friction and cohesion also vary with mode of

failure and fault zone architecture component, similarly to porosity, permeability and

pressure sensitivity before.

~ 73 ~

Hybrid extensional-shear failure, can also develop in intact rocks; the Griffith

criterion describes this phenomenon (Griffith, 1924).

Pre-existing faults, developed during previous deformation events, are usually

considered planes of shear failure without any cohesion and, according to Amonton’s

law (Eq. 2.4; Table 3.1; R. H. Sibson, 1990), sliding will occur when the shear force

on the fault exceeds frictional forces acting on the fault.

Stable sliding initiates at fault asperities and can spread out (in velocity weakening

materials) with an accelerating sliding velocity until it reaches a critical size. This

stability limit is a nucleation length, Lc where G is the shear modulus, ζ is a constant

of proportionality of order 1, Dc is the critical slip distance, a and b are rate-and-state

parameters (Dieterich, 1992; Rice and Ruina, 1983). The rate parameter a controls

the variation of friction with velocity, the state parameter b controls the variation of

friction with ‘state’, e.g. how much healing has occurred at the sliding interface since

the last movement (Table 3.1):

𝐿𝐶 =
𝜁𝐺𝐷𝐶

𝜎′𝑁𝐹
 (3.13)

In our simulations, the frictional strength of the fault is taken to be homogeneous,

and without asperities, with any variation in frictional strength modelled as being

dependent only on effective normal stress. For the situations in which simulations

are run in this thesis the ‘asperity’ due to fluid pressure would be the most significant

as it is the most spatially expansive and the nucleation phase evolution would be

dominated by it (Campillo et al., 2001). However, our analysis would not apply to

situations in which fluid and fault asperities are both of similar scales or the fault

asperity is greater. When shear stress exceeds the fault shear strength, for a given

pore pressure, sliding begins along the fault plane in the primary slip zone. The

~ 74 ~

effective normal stress of the sliding fault patch is taken to be constant after sliding

begins if it can no longer accumulate or dissipate stress energy locally as any change

in energy will instead accelerate or decelerate sliding. We assume that the nucleation

length (LN) of a failure patch (LF) is equal to that of its strongest point, which

represents an upper limit (Campillo et al., 2001; Uenishi and Rice, 2003).

Figure 3.1: “Macroscopic large-scale fault zone structure. (a) Panoramic view of

a large-scale normal fault zone within the Triassic Evaporites. Note that the

major fault zones crosscuts the former synorogenic mesoscale ‘‘gneissic’’ fabric

(b) Line drawing of the fault zone shown in Figure [3.1]a. (c) Detail of the fault

core of the large fault zone shown in Figure [3.1]a. The inner fault core

boundary is highlighted. (d) Line drawing of the fault zone shown in Figure

[3.1]c, displaying the internal fault core architecture.” (De Paola et al., 2008)

Adapted to show fractured dolostones and foliate anhydrite and outer fault core

~ 75 ~

(OFC) - inner fault core (IFC) boundary and damage zone (DZ) (De Paola et

al., 2008).

3.3 Multiphysics model

A single model of the coupled fault-fluid system is constructed using the physical

relationships given in the previous section, evaluating at each simulated timestep: 1)

the fields of intensive physical variables (e.g. pressure, stress), 2) transport properties

(e.g. permeability), 3) quantities relating to failure and earthquake nucleation. There

is a complex, nonlinear interdependence between each of these variables. For

instance, permeability increases exponentially with effective stress as pore space in

the rock increases and discontinuous transitions in porosity accompany brittle or

ductile mode of failure (De Paola et al., 2009). We construct a multiphysics model of

seismic low-permeability fault-zones from nonlinear pore pressure diffusion,

realistic fault zone architecture, pre-, co-, and post-failure permeability sub-models

as measured by triaxial deformation experiments with fluid flow and fault-rock

failure models. We incorporate a schematic model of fault zone architecture

comprising a damage zone (DZ) of interbedded fractured dolostones and foliated

anhydrite and outer fault core (OFC) of foliated anhydrite and inner fault core (IFC)

of fine-grained cohesive cataclasites and a principal slip zone (PSZ) of incohesive

fault gouge (Fig. 3.1). The case studies considered in this thesis take as a base a

model of fault zone architecture that is typical of extensional faults of the Northern

Apennines, which is analogous to the central fault of the 1997-98 Colfiorito seismic

sequence (De Paola et al., 2008).

Triaxial deformation measurements on real fault rocks with fluid flow were used to

approximate pre-, co-, and post-failure permeability and the failure envelopes of the

fault rocks on real fault rocks. These measurements were taken on fault rocks

~ 76 ~

corresponding to the OFC above. Separate measurements were taken with foliation

both parallel and perpendicular to the direction of principal maximum stress, using

samples from the Perugia 2 and Fossonbrone 2 boreholes in the Umbria-Marche

Apennines in Italy (De Paola et al., 2009). Failure in the cohesionless PSZ was

modelled using known friction laws (Byerlee, 1978).

A sub-model of earthquake nucleation processes was also considered, by treating the

fault-fluid ensemble as a non-smooth system, where the rate of change of a physical

parameter is undefined for at a least a point in time. Earthquake nucleation processes

govern the dynamics of the fault-fluid system from stable non-acceleratory motion as

shear strength is exceeded to the point at which the critical (nucleation) length is

exceeded. Once this critical length is exceeded unstable, accelerating oscillation

begins on the fault.

One of the critical components of our fluid-driven earthquake simulations is the

inclusion of brittle and ductile mode of failure within models, as measured in the

laboratory. Simulations of fault-fluid systems which neglect brittle and ductile mode

of failure do not exhibit hysteresis, as the relationship between the transport

properties and pore pressure is a function of only pressure, any unique distribution of

pressure uniquely defines the state of the system. The state of the fault fluid system

at a future instant in the interseismic period can be specified entirely using the state

of the fault fluid system at the previous instant, and the history of the fault over the

course of the interseismic period is irrelevant. The introduction of brittle and ductile

mode of failure introduces discontinuous, irreversible failure behaviour and

hysteresis, e.g. localised brittle failure that has occurred several years or tens of years

earlier can impact fluid-driven earthquake nucleation and represents systematic time-

dependence far beyond the previous instant in time.

~ 77 ~

3.4 Fault zone architecture and model setup

We validate our methodology with a case study of seismic extensional fault zones in

evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008), from these faults

we infer fault zone geometries, physical properties and mechanical behaviours.

In particular, the simulated fault zones in this thesis are exhumed normal faults in

evaporite sequences (Collettini et al., 2009; De Paola et al., 2008) and analogues of

the seismic sources in the hypocentre zone of the Northern Apennines seismic belt

(e.g. Mirabella et al., 2008).

CO2 fluxes in the Northern Apennines seismic belt (e.g. Mw 6.0 1997-98

Colfiorito and Mw 6.3 2009 L’Aquila extensional earthquakes) have been measured

at greater than 0.45 t day−1 km−2 (Chiodini et al., 2004; Collettini et al., 2008).

While, overpressured CO2 was encountered in boreholes within the Triassic

Evaporites, at ~80% of the lithostatic load, at depths of 4-4.8 km (Chiodini and

Cioni, 1989; Collettini and Barchi, 2002; Miller et al., 2004). Our simulations

assume that the modelled fault zone is saturated with supercritical CO2 and treat it as

being a single phase at a depth of interest 7 km, as the pressure conditions at the

relevant depths indicate that both CO2 and brine would be exists as a single miscible

supercritical fluid (Miller et al., 2004).

The compressibility of supercritical CO2 exceeds that of evaporite rocks by

several orders of magnitude and we approximate it as being only the fluid

compressibility (Burke, 2011; Robertson et al., 1958). We also assume that the

variation of viscosity υ and compressibility with effective stress is negligible, for the

conditions simulated (Burke, 2011).

~ 78 ~

The modelled fault zone is a 1.5-2 km thick sequence of 6 – 19 m interbedded

anhydrite/gypsum and dolostones, within the Triassic Evaporite formation (Barchi,

2002; Trippetta et al., 2013). Seismological data and observations indicate shallow

dipping (45°) faults from hypocentre depths in the Northern Apennines seismic belt,

which may favour the generation of fluid overpressure leading to fault reactivation

(Barchi, 2002; Miller et al., 2004; Mirabella et al., 2008). Field observations report a

1m wide fault core, where most of the slip accommodated by the fault is localised

(Fig. 3.1a; Collettini et al., 2009; De Paola et al., 2008). A well-developed damage

zone (DZ) is observed within thick (a few meters to tens of meters) fractured

dolostones, extending at least 10 m in either direction from the fault core.

Conversely, no macroscopic fracturing is observed within the foliated anhydrite

layer immediately adjacent to the fault core, on either side of the fractured

dolostones (Fig. 3.1a) (De Paola et al., 2008).

Figure 3.2: The idealised fault segment in the base case as considered for this

study with the directly simulated area in the dashed box. (Angles between

~ 79 ~

bedding planes and fault in damage zone (DZ) are indicative only and are not

directly recreated in simulations. The simulated fault is at 45⁰ to vertical.)

Schematically, we further subdivide the fault core into: 1) an inner fault core

(IFC), containing fine-grained cohesive cataclasites, 2) a 2m wide outer fault core

(OFC) containing the IFC, made of cohesive foliated anhydrites which are not

fractured (Fig. 3.1b) (De Paola et al., 2008). Within the IFC slip is localised along

straight, millimetre scale principal slip zones (PSZ) of ultra-fine grained incohesive

anhydrite and dolomite-rich gouges in the IFC (Fig. 3.1b) (De Paola et al., 2008).

We approximate the IFC as made of cohesive cataclasites and contains a single PSZ

of zero thickness, made of incohesive fault gouges (Fig. 3.2).

The fault models assume fault-valve behaviour (Sibson, 1990) so that any

overpressure within the fault core is released after the seismic event. As a

consequence, initial pore pressure within the fault core is assumed to be distributed

uniformly and hydrostatically (Miller et al., 2004), with an imposed extensional fault

unloading rate of 0.15 MPa/year, based on the tectonic setting (Chiaraluce et al.,

2003).

We simulate the OFC and IFC directly with boundary conditions defined using

pore pressure conditions from the damage zone (DZ). This is comprised of

interbedded fractured dolostones and foliated anhydrites, the overpressure is largely

contained within the fractured dolostone layer, and the anhydrites are taken to be

hydrostatic. In our base case, we simulate an area of 2.5 by 1000m, representing the

upper left quadrant of the fault core, with the width of the OFC (2.5m) varied in

some parameter studies (Fig. 3.2). Pressure boundary conditions are hydrostatic on

fault parallel boundaries, except for a 40 m thick overpressured region on the

~ 80 ~

damage zone/outer fault core boundary, which models the effects of an external,

infinitely wide, permanently overpressured reservoir made of fractured dolostones

(Fig. 3.2; Trippetta et al., 2013).

The idealised fault section has two planes of symmetry, the fault parallel plane

bisecting the fault, and the fault perpendicular plane bisecting the overpressure

contacts. We exploit this symmetry to reduce computational costs. We take these

planes as symmetry boundaries, with the gradient of pore pressure normal to these

boundaries set to zero.

Domain dimensions are chosen large enough that the top and bottom boundary

are sufficiently removed from overpressure to not significantly affect pressure

distribution within the model domain. Specifically, the length of fault that is

considered is selected ensuring that the pressure gradient at the upper perpendicular

boundary is less than 1% of hydrostatic pressure per metre. All models are run from

an initial stress state with minimum principal stress set at 85% of lithostatic load

(Miller et al., 2004).

~ 81 ~

Figure 3.3: Diagram of spatial grid used in numerical simulations, indicating

variables defined at points and mid-points.

3.5 Numerical Method

We discretise the second order partial differential equation (Eq. 3.4; Table 3.1) over

the spatial grid defined above:

∆𝑃𝑗, 𝑖

∆𝑡
=

1

𝛽𝜂
(
𝑘
𝑗+
1
2
, 𝑖
(𝑃𝑗+1, 𝑖 − 𝑃𝑗, 𝑖) − 𝑘𝑗−1

2
, 𝑖
(𝑃𝑗, 𝑖 − 𝑃𝑗−1, 𝑖)

𝜑𝑗, 𝑖 (𝑧𝑗+1
2
, 𝑖
− 𝑧

𝑗−
1
2
, 𝑖
)

 +

𝑘
𝑗, 𝑖+

1
2

(𝑃𝑗, 𝑖+1 − 𝑃𝑗, 𝑖) − 𝑘𝑗, 𝑖−1

2

(𝑃𝑗, 𝑖 − 𝑃𝑗, 𝑖−1)

𝜑𝑗, 𝑖 (𝑥𝑗, 𝑖+1
2

− 𝑥

𝑗, 𝑖−
1
2

)

) (3.14)

~ 82 ~

We then define physical variables on an Nx by Nz spatial grid, and its midpoints,

where Nx is the number of fault perpendicular array points and Nz is the number of

fault parallel array points (Fig. 3.3). We define the fault parallel and perpendicular

directions relative to the plane of the primary slip zone. All physical variables except

for the parallel and perpendicular components of permeability, the failure state

variable, architecture component and effective stress are set on the grid points and

not midpoints. Values are interpolated to midpoints by averaging as required.

Multiple simulations were run in all cases with a decreasing grid size until further

reductions in the grid spacing did not affect simulation results.

The initial nonlinear pore pressure diffusion relationship (Eq. 3.4; Table 3.1), being

the only differential equation, is the only one that is not defined entirely on either

central or midpoints. In all other cases, all variables in the relationship can be taken

to be at the same point or midpoint under consideration.

This discretisation gives us a set of Nz by Nx equations to solve at each simulated

timestep. The change in pressure at a given point is dependent only on the pressure at

the point itself (i, j) and its four neighbouring points (i±1, j±1). For computational

ease and to allow us to employ standard ODE (ordinary differential equation) solvers

on this set of equations. Ordinary differential equations are composed of formulas in

only one variable and derivatives of that variable, and ODE solvers are software tool

for integrating these equations.

The variables represented by Eq. 3.5-13 are evaluated at each time step and used to

estimate the rate of change of pressure with time at each array point (Eq. 3.4; Table

3.1) and passed to the ODE23tb solver which returns the value at the subsequent

time step. Time step size is determined by the solver to ensure numerical stability.

~ 83 ~

We evaluate shear stress (Eq. 3.8, 3.12; Table 3.1) and shear strength (Eq. 3.10;

Table 3.1) at all array points where failure might occur. Shear and normal stress and

shear strength between the points undergoing failure are interpolated to precisely

determine the length of the failure patch and nucleation length.

We apply two types of boundary condition in the simulations in this thesis, constant

pressure and volumetric flux (Dirichlet) boundary conditions and volumetric flux

symmetry (Neumann) boundary conditions. The former boundary conditions are

applied by setting a constant value for a physical parameter at a given boundary

array point, while the latter entails a more complicated condition on flux divergence.

This condition arises from the assumption that the volumetric flux vector q is equal

and opposite immediately on the other side of the symmetry boundaries, in our case

at the bottom and right:

(∇ ∙ 𝑞)𝑗 =
2 𝑞𝑗

∆(∆j)
; 𝑗 = 𝑥 𝑜𝑛 𝑎 𝑧 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑟 𝑧 𝑜𝑛 𝑎 𝑥 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (3.15)

∆𝜏 = 𝜏𝑓 − 𝜏 (3.16)

∆𝐿𝑓 =
𝐿𝑁− 𝐿𝑓

 𝐿𝑓
 (3.17)

~ 84 ~

Figure 3.4: Flow-chart of failure-event switching in fault fluid flow and

earthquake simulations.

~ 85 ~

3.5.1 Technical Considerations

Event-location is used to determine the failure events which drive each of these

discontinuous failure state transitions. We treat the system as non-smooth, to ensure

the problem is mathematically well-posed and computationally efficient. Simulations

must be run to extremely low relative tolerances (5x10^-9) to consider the

earthquake nucleation phase directly in simulations (directly simulating the

earthquake nucleation phase as opposed to inferring it from seismological

relationships). Nucleation events might last seconds over a simulated period of

several hundred years.

𝜉𝑒 =

{
 𝑚𝑖𝑛(𝛥𝜏)(𝑥,𝑧)𝑝𝑟𝑒𝑓𝑎𝑖𝑙; 𝑓𝑜𝑟 |Ξ∆𝐿𝑓| > |𝑚𝑖𝑛(𝛥𝜏)(𝑥,𝑧)𝑝𝑟𝑒𝑓𝑎𝑖𝑙| 𝑎𝑛𝑑 Ξ∆𝐿𝑓 > 0

Ξ∆𝐿𝑓; 𝑒𝑙𝑠𝑒
(3.18)

Off-fault, on-fault and earthquake nucleation are non-smooth processes (the

evolution of a physical quantity transitions discontinuously from one value to

another). These transitions arise due to discontinuous approximations of the true

system to limit the range of space- and timescales we consider. The event-location

function of the MATLAB ODE solver suite is used to detect the point at which either

failure occurs at an array point or the onset of unstable sliding (an earthquake) when

failure length exceeds nucleation length. The locations of these events halt the time

integration of the system of ODEs and the discontinuous failure state and physical

quantities which depend on it (permeability and porosity (Eq. 3.6; Table 3.1)) are

updated. The MATLAB event-location function requires specifying a function which

returns a single value ξe which is zero for all failure events, positive for prefailure

and negative for post-failure (Eq. 3.18; Table 3.1). The function Eq. 3.18 considers

both off-fault and fault failure (𝛥𝜏, Eq. 3.16; Table 3.1) and earthquake nucleation

~ 86 ~

(∆𝐿𝑓 , Eq. 3.17; Table 3.1) by isolating the array point that has just begun failure and

excluding points which have already failed. It must also ensure that both failure and

earthquake nucleation quantities vary over the same approximate range of values for

the consistent application of relative tolerance, we enforce this by multiplying the

earthquake nucleation parameter ∆𝐿𝑓 by a factor 𝛯. As events are detected at the

instant when 𝜉𝑒takes a zero value timing is unaffected by this factor (any multiple of

zero is still zero.)

Switching and updating on failure events like this ensures both that the integration is

well-posed and increases computational efficiency as typically fewer evaluations are

required. The switching mentioned above is necessary as at the instant of failure we

model a discontinuous permeability change, the ODE solvers used assume that all

changes are continuous. Ignoring such changes would result in numerical errors in

the returned solution, equivalent to the solver encountering a singularity in

permeability. Solvers in MATLAB’s ODE suite evaluate the pressure derivative at

multiple minor steps between full step evaluations. To calculate pressure before and

after this event takes fewer time steps than it would were the solver to model it

instead as a near-discontinuous but finite time derivative in the corresponding

physical variable (e.g. permeability), particularly if the suggested initial step size

post-event is judiciously specified.

~ 87 ~

Figure 3.5: Variations of earthquake parameters vs. pore fluid factor, for

simulations demonstrating numerical instability with the ODE15s solver.

Length of interseismic period (a), duration of the nucleation phase (b), length of

rupture patch at failure (c) and length of the rupture patch at nucleation) are

plotted against variation of the pore fluid factor across multiple simulations.

~ 88 ~

Figure 3.6: Variations of earthquake parameters vs. pore fluid factor, for

numerically stable simulations, with the ODE23tb solver. Length of interseismic

period (a), nucleation length (b) and duration of nucleation phase (c) are plotted

against variation of the pore fluid factor across multiple simulations.

~ 89 ~

3.5.2 ODE Solver Selection and Numerical Stability

The Jacobian matrix, the first order partial derivatives of pore pressure at each of the

grid points, varies over time due to the nonlinear dependence of transport properties

on pressure, as do its eigenvalues. The instantaneous values of the Jacobian matrix

and its eigenvalues can be inspected directly during simulation. The discrete failure

state formulation leads to an extremely stiff set of differential equations, with

Jacobian eigenvalues at certain points during simulation differing by up to 11 orders

of magnitude, when applied to the case studies in this thesis. These stiff equations

are solved using MATLAB’s ODE23tb solver, an implementation of the ESDIRK23

algorithm (explicit singly diagonal implicit Runge-Kutta method Bagterp Jørgensen

and Rode Kristensen, 2018; Kristensen et al., 2004).

When numerically integrating systems of ODEs it is expected that for numerical

stability a smaller step size is required in regions where the solution curve shows

more variation and vice versa. Systems are stiff if they require a small step size for

numerical stability even in smooth solution curve regions, systems of equations

exhibiting this phenomenon. The system of ODEs defined above exhibit extremely

stiff behaviour as applied to the case studies in this thesis (Lambert and D., 1991),

consistently the eigenvalues of the Jacobian matrix considered above can differ by

up to 11 orders of magnitude in these cases.

The stiffness of a system of equations is a primary factor in ODE solver selection.

MATLAB was selected as a language to write the numerical simulations in this

thesis for their ODE suite and the ability to provide a sparse Jacobian pattern to the

solver to increase computational efficiency. The columns of the Nz by Nx physical

variable arrays can be stacked into at NzNx long vector, with corresponding NzNx by

~ 90 ~

NzNx Jacobian matrix pattern (indicating with ones the non-zero elements of the

Jacobian matrix):

𝐽𝑝𝑎𝑡 =

(

 𝑁𝑍
 1 1 0 0 ⋯ 1 0 ⋯
 1 1 1 0 ⋯ 0 1 ⋯
 0 1 1 1 ⋯ 0 0 ⋯
 0 0 1 1 ⋯ 0 0 ⋯
 ⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋯ ⋯
𝑁𝑍 1 0 0 0 ⋮ 1 1 ⋯
 0 1 0 0 ⋮ 1 1 ⋯
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 (3.19)

The use of a Jacobian pattern reduces the number of calculations required at each

time step by the ratio of the sum of non-zero elements to total elements, in this case,

~
5

𝑁𝑥𝑁𝑧
.

MATLAB provides a series of stiff ODE solvers, and ODE23tb was selected an

explicit singly diagonal implicit Runge-Kutta (ESDIRK) solver, being the only

solver which is A-, L-, S-stable (Hosea and Shampine, 1996; Shampine and

Reichelt, 1997). ODE23tb is an implementation of the ESDIRK23 algorithm

specifically (Bagterp Jørgensen and Rode Kristensen, 2018; Kristensen et al., 2004).

The A-stability requirement ensures that solutions corresponding to all negative

Jacobian matrix eigenvalues tend to zero as time tends to infinity and L-, S-stability

place conditions on the solver which ensure that these solutions would approach zero

in a single step as step size goes to infinity, ensuring no numerical oscillation.

Preliminary testing with the ODE15s and ODE23s solvers showed numerical

instability in low-tolerance nucleation phase simulations (Fig. 3.5 vs. Fig 3.6) arising

from the lack of A-, L-, S-stability in the underlying adaptive order and Rosenbrock

methods (Shampine and Reichelt, 1997) respectively. The examples in Fig. 3.5-6 are

~ 91 ~

ran from different initial tectonic stresses, but the relative variation in solutions is

clear. The greatest errors were introduced when failure events were incorrectly

located during simulation, as mistiming these events during which permeability

would increase by several orders of magnitude would have a huge cumulative

impact. We suspect this instability resulted from the inaccurate estimation of

truncation error associated with the timestep expansion for extremely stiff problems

and hence relative tolerance during simulation. However, MATLAB solvers being

closed source cannot be interrogated directly during simulation.

3.5.3 Parallelisation

Any numerical simulation result must either be robust to changes in uncertain

variables otherwise we will need to constrain the behaviour we observe in these

simulations over a range of values for each uncertain parameter. With any numerical

case study using uncertain observations of natural subsurface faults, there is a need

to explore the impact of varying the most uncertain parameters, so that we can

distinguish behaviours and conclusions that would apply generally to the class of

similar faults, from those that would apply only to faults with physical properties

very similar to the assumed base case. Parameter studies allow us to expand our

dataset for numerical experiments; we can build an initial base case using

observations of a fault from the natural world and alter one or more parameters over

a range of values likely found in other natural faults.

A parameter study is a set of simulations which are necessarily independent of one

and other, as such they are candidates for parallelisation. Scripts were constructed

using MATLAB’s object-oriented language features to ensure each simulation

existed as a distinct object in memory, isolated for parallelisation, taking each of the

varied parameters as an input argument. This object isolation in memory allows

~ 92 ~

discontinuous physical variables to be updated and persist between each time-

integration (between located failure events) as object properties and not as global

variables, without affecting simulations with different sets of parameters run

concurrently. Both parallelisation and performant scripts were necessary as a single

high spatial resolution (175 x 200), low relative tolerance simulations (~5E-9) would

require of the order of 107 simulation steps. Computation time for a single parameter

study (typically involving varying a parameter over a range of roughly 20 values)

could be conducted on a desktop computer, in less than three days at worst and an

hour at best. The number of localised failure events and hence dominant mode of

failure significantly affects the number of discontinuous permeability transitions and

hence time steps required for simulation. Brittle failure dominated parameter studies

might take on the order of days where ductile failure dominated studies were

typically on the order of hours.

3.6 Model Testing and Verification

To validate the MATLAB scripts used in simulations the fluid flow model, the

component of simulation produced directly from the integration of differential

equations, is tested under all conditions where analytical solutions exist (constant,

nonlinear, discontinuous permeability). All other physical variables used in

simulations are produced from direct algebraic equations were tested in development

by ensuring that the correct answer was returned for a given input.

~ 93 ~

Figure 3.7: Boundary conditions used to test fixed pressure Dirichlet boundary

conditions. Top and bottom boundary conditions chosen to produce solutions

independent of y.

Figure 3.8: Simulation results for homogeneous isotropic permeability case at

y=50m, compared to known analytical solution. Analytical results (black) and

simulation results (red) are colinear excepting externally imposed initial

conditions.

3.6.1 Constant permeability

To validate the pore pressure diffusion code and boundary conditions a reduced

complexity version of the model was considered. A 100 m by 100 m region, in the x

~ 94 ~

and y directions, overpressured at the left boundary, with the right boundary held at

hydrostatic pressure and initially hydrostatic everywhere else. Neumann symmetry

boundary conditions for pressure are imposed at the top and bottom boundary,

representing seals, to produce a pore pressure distribution that is independent of

vertical position (Fig. 3.7). For this test we selected. homogenous, isotropic

permeability of 10-16 m2.

The above initial-boundary-value problem has the following solution:

𝑃(𝑥, 𝑡) = 𝑃ℎ𝑦𝑑𝑟𝑜 + 𝑃𝑜𝑝 (1 − 𝛾 −
2

𝜋
∑

sin (𝜋𝑛𝛾)

𝑛
𝑒−(𝜋𝑛)

2𝛼𝑡∞
𝑛=1) (3.20)

Where

𝛾 =
𝑥 − 1

𝐿𝑥 − 1

and

𝛼 =
𝑘𝑥
𝛽𝜂𝜑

Figure 3.8 shows the simulation results at each timestep that was evaluated by the

solver, over the horizontal line y=50m. The analytical results and simulation result

are colinear except under initial conditions and vary by less than the ODE solver

relative tolerance, we take this is validation that the numerical simulation code

reproduces both transient and steady state behaviour for simple homogeneous porous

media. The simulation exhibits a variation from initial conditions when compared to

the analytical solution, this is as the externally imposed initial conditions are not

actually a valid solution to the physical system.

~ 95 ~

Figure 3.9: Simulation results for nonlinear homogeneous isotropic

permeability case at y = 50m, compared to known analytical solution. Analytical

results (black) and simulation results (red) are colinear at steady state (where

analytical solution exists).

3.6.2 Pressure-dependent permeability

To validate simulations of nonlinear pressure dependent permeability, the same

scenario was considered now considering a permeability model of the form 𝑘 =

𝑘0𝑒
−ɣP. Setting a permeability of 10-16 m2 at zero pressure with pressure sensitivity ɣ

= 5⨉10-8. This initial-boundary-value problem has the following steady-state

solution:

𝑃 = ln
 (𝑐𝑥+𝑑)

𝛾
 (3.21)

where:

𝑐 =
exp (𝛾𝑃ℎ𝑦𝑑) − exp (𝛾𝑃𝑜𝑝)

𝐿

and:

𝑑 = exp (𝛾𝑃𝑜𝑝)

~ 96 ~

Figure 3.6 similarly shows the simulation results at each timestep that was evaluated

by the solver, over the horizontal line y=50m. At steady state, the analytical results

and simulation result are almost perfectly colinear and vary by less than the ODE

solver relative tolerance. No analytical solution exists for the transient problem. We

take this consistency between solutions as validation that the numerical simulation

code reproduces steady state behaviour when compare to situations with pressure

dependent permeability.

Figure 3.10: Simulation results for discontinuous change in homogeneous

isotropic permeability case at y=50m, compared to known analytical solution.

Analytical results (black) and simulation results (red) are colinear except for

externally imposed initial conditions.

~ 97 ~

3.6.3 Discontinuous permeability transition

To validate the discontinuous transitions in permeability introduced in our

simulations, the case of isotropic, homogenous, constant permeability is once more

considered, taking the same initial value as the previous case. However, after ten

seconds the permeability is instantaneously doubled throughout the modelled area.

Prior to this change in permeability the solution equation 3.20 holds, subsequently

the following solution holds:

𝑃(𝑥, 𝑡) = 𝑃ℎ𝑦𝑑𝑟𝑜 + 𝑃𝑜𝑝 (1 − 𝛾 −
2

𝜋
∑

sin (𝜋𝑛𝛾)

𝑛
𝑒−(𝜋𝑛)

2(𝛼′𝑡 + 𝛼𝑡0)∞
𝑛=1) (3.22)

Where

𝛼′ =
𝑘𝑥
′

𝛽𝜂𝜑

with t0=10s, the time of the instantaneous permeability change. Again, as the

solutions are colinear to within solver tolerance we take this as validation that fluid

flow script can accurately recover known analytical solutions for both transient and

steady state conditions (Fig. 3.10). Due the large disparity in timescales between

initial fast fluid flow changes before a quasi-steady state is reached and the

unloading of the fault, to a somewhat close approximation (at least the closest

approximation with analytical solution) the step change in permeability is effectively

a timed change in permeability.

 Further as each of the fundamental permeability behaviours of the simulated system

match known analytical solutions where available we take this as validation of the

partial differential equation component of our fluid flow solver script in general.

~ 98 ~

~ 99 ~

CHAPTER 4

Modelling fluid flow in complex natural fault zones: implications for natural and

human-induced earthquake nucleation.

~ 100 ~

4. Modelling fluid flow in complex natural fault zones:

implications for natural and human-induced earthquake

nucleation.

Abstract

Pore fluid overpressures in active fault systems can drive fluid flow and cause fault

weakening and seismicity. In return, deformation accommodated by different mode

of failure (e.g. brittle vs. ductile) also affects fault zone permeability and, hence,

fluid flow and pore fluid pressure distribution. The resulting non-linear, complex

feedback between fluid flow, fluid pressure and fault deformation control the length

of the nucleation phase of an earthquake and the duration of the interseismic period.

Current numerical simulation techniques model how fluid flow controls fault

reactivation and associated seismicity. However, the control exerted by pore fluid

pressure on the transition from aseismic slow fault sliding to seismic fast sliding,

during the earthquake nucleation phase, is still poorly understood. Here, we model

overpressured, supercritical CO2 fluid flow in natural, exhumed faults in evaporite

sequences, which represent an analogue of the seismic sources at hypocentre depth

of recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Our modelling results of Darcy

fluid flow show that the duration of the nucleation phase is significantly reduced,

from a few years to a few months, when realistic models of fault zone architecture

and pore pressure- and deformation-dependent permeability are considered.

Interestingly, a few months is also the time scale of aseismic slip measured during

the nucleation phase of some recent large earthquakes (e.g. Fig. 4.7c; Mavrommatis

et al., 2014; Kato et al., 2012; Socquet et al., 2017). These findings have significant

~ 101 ~

implications for earthquake early warning systems, as any significant extension of

the nucleation phase can increase the likelihood of precursory signal detection. In

addition, our results have important implications for short- and long-term earthquake

forecasting, as crustal fluid migration during the interseismic period may control

fault strength and earthquake recurrence intervals.

~ 102 ~

4.1. Introduction

Pore fluid pressure plays a primary mechanical role during faulting as it reduces

the frictional fault strength (Cox, 2010; Sibson, 1990, 1992). There is strong

geological and geophysical evidence that fluid migration in the upper crust controls

faulting (Collettini et al., 2009; Cox, 1995; Cox et al., 1987; De Paola et al., 2008;

Hickman et al., 1995; Miller, 1996; Rice, 1992; Sibson, 1992, 1990, 2000), and

natural (Di Luccio et al., 2010; Miller et al., 2004; Nur and Booker, 1972) and

human induced (Ellsworth, 2013; McGarr et al., 2015; Sumy et al., 2014) seismic

activity.

Fluid circulation within the upper crust is strongly dependent on the transport

properties of rocks (i.e., permeability). Rock permeability and porosity vary with

pressure conditions and deformation (De Paola et al., 2009; Fischer, 1992; Hangx et

al., 2010; Morrow and Lockner, 1997, 1994; Paterson and Wong, 2005; Zhu et al.,

1997), which control the development and connectivity of fracture patterns across a

range of scales (Caine et al., 1996; Cox, 1995; Mitchell and Faulkner, 2008; Peach

and Spiers, 1996; Wong et al., 1997; Zoback and Byerlee, 1975).

In previous modelling efforts, the link between fluid flow and faulting has been

investigated using coupled deformation and fluid flow modelling software, such as

TOUGH-FLAC (Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a,

2002). Coupled fluid flow and geomechanical fault slip (e.g. fault reactivation)

analysis have been used, for example, to model the spatial evolution of both in situ

stresses and fluid pressure, to estimate the maximum sustainable injection pressure

during geological sequestration of CO2 (Rutqvist et al., 2007). In these studies, fluid

~ 103 ~

flow was modelled for metre to kilometre scale fault zone features, considering

permeability as a continuous function of porosity, volumetric strain, average

effective stress (Davies et al., 2001), and fault shear strain (Rutqvist et al., 2007).

This approach has been extended to also include the effect of simplistic fault zone

architectures (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005;

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009; Leclère et al.,

2015). Overall, previous results show that pressure increase due to shear-enhanced

permeability plays an important role, as it can facilitate the propagation of fault

instability and extend permeability enhancement through the overlying caprock.

Here, we model fluid flow in exhumed faults in evaporite sequences with

complex architecture, and pore pressure- and deformation-dependent permeability.

These faults represent an analogue of the seismic sources at hypocentre depth of

recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Modelled fluid flow is then used to

investigate the effects of pore fluid pressure distribution during the nucleation phase

that precedes an earthquake. During this phase, stable sliding spreads out from an

initial small patch until it reaches a critical size, the nucleation length, at which

unstable fast sliding results in the propagation of the rupture (Marone, 1998; Scholz,

1998).

Identifying the factors that control the duration of the nucleation phase of

earthquakes has significant implications for earthquake early warning systems, as

any significant extension of the nucleation phase can increase the likelihood of early

premonitory signal detection. Furthermore, modelling pore fluid pressure evolution

during the interseismic period has relevant implications for long term earthquake

forecasting, as it controls fault strength and earthquake recurrence intervals.

~ 104 ~

4.2. Numerical method

We perform numerical simulations of nonlinear diffusion to model fluid flow in

fault zones with realistic, complex fault zone architecture (all symbols and values

used are explained in Table 1). In our model, fault zone permeability is assumed to

vary as a function of effective stress and mode of failure (e.g. brittle and localised vs.

ductile and distributed).

4.2.1. Porous media flow and numerical solution

We develop an approach based on the diffusion of pore pressure within a classical

porous medium using Eq. 3.4 which relates pore pressure p and permeability 𝑘 to the

rate of change of pressure with time t. The compressibility β is approximated as

being only the fluid compressibility, because the compressibility of supercritical CO2

exceeds that of evaporite rocks by several orders of magnitude (Burke, 2011;

Robertson et al., 1958). It is also assumed that the variation of viscosity υ and

compressibility with effective stress is negligible for the range of conditions

simulated (Burke, 2011), where effective stress as defined in Eq. 2.2.

Following the experimental permeability relations observed in low porosity

evaporite rocks (De Paola et al., 2009; Hangx et al., 2010), we consider that the solid

rock is an ideal porous medium. Its permeability can be expressed as a function of

effective stress in the presence of ductile deformations, accommodated by small,

distributed fracture patterns (Detournay and Cheng, 1993). We also consider

singularities in the time derivative of permeability when localised brittle failure

occurs, leading to instantaneous increase of permeability within the fault (De Paola

et al., 2009).

~ 105 ~

We make the simplifying assumption that single-phase dry, supercritical CO2

saturates the modelled fault zone and that no precipitation or dissolution occurs

between the fluid and rock matrix. This assumption is in accord with field data

supporting large CO2 fluxes in the epicentre areas of the Northern Apennines seismic

belt (e.g. Mw 6.0 1997-98 Colfiorito and Mw 6.3 2009 L’Aquila extensional

earthquakes), where large deep-seated CO2 flux greater than 0.45 t day−1 km−2 have

been measured (Chiodini et al., 2004; Collettini et al., 2008).

Although fault zone geometries, physical properties and mechanical behaviour

used in our modelling are inferred and constrained from a seismic extensional fault

zone in evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008), the

methods and results can be generalised and applied to any natural fault zone subject

to natural single phase flow and in the absence of significant rock matrix dissolution

with known fault zone architecture and constrained physical and mechanical

properties.

4.2.2. Model input parameters

4.2.2.1. Fault zone architecture

The modelled fault zone is formed within the Triassic Evaporite formation: a 1.5-

2 km thick sequence of 6 – 19 m interbedded anhydrite/gypsum and dolostones

(Barchi, 2002; Trippetta et al., 2013). Seismological data and observations from

hypocentre depths in the Northern Apennines seismic belt indicate the presence of

shallow dipping (45°) faults, which may favour the generation of fluid overpressure

leading to fault reactivation (Barchi, 2002; Miller et al., 2004; Mirabella et al.,

2008).

~ 106 ~

Fault zone architecture is constrained by field observations reporting a 1 m wide

inner fault core, where most of the slip accommodated by the fault is localised (Fig.

2.8a; Collettini et al., 2009; De Paola et al., 2008). Outside the fault core, a well-

developed damage zone (DZ) is observed within thick (a few meters to tens of

meters) fractured dolostones, extending at least 10 m in either direction from the

fault core. Conversely, no macroscopic fracturing is observed within the foliated

anhydrite layer immediately adjacent to the fault core, on either side of the fractured

dolostones (Fig. 2.8a) (De Paola et al., 2008).

The fault core can be subdivided into an inner fault core (IFC), containing fine-

grained cohesive cataclasites, which is enclosed on both sides by a 2 m wide outer

fault core (OFC), containing cohesive foliated anhydrites, which are not fractured

(Fig. 2.8b) (De Paola et al., 2008). Within the IFC, slip is further localised along

straight principal slip surfaces (PSS), which are located within thin (millimetre-

scale) principal slip zones (PSZ) of ultra-fine-grained incohesive anhydrite and

dolomite-rich gouges (Fig. 2.8b) (De Paola et al., 2008).

A schematic, yet realistic, fault zone architecture is used within the model (Fig.

3.2), where it is assumed that seismic slip occurs along a single PSZ of zero

thickness, made of incohesive fault gouges and located in the centre of the IFC,

which is made of cohesive cataclasites (Fig. 3.2).

~ 107 ~

Figure 4.1: Failure envelopes and schematic Mohr circles for the different fault

zone domains: a) The brittle (localised deformation) and ductile (distributed

~ 108 ~

failure) regions of the OFC and IFC failure envelopes are indicated with core

plug sketches. The schematic Mohr circles show the onset of brittle and ductile

failure in the OFC, respectively. b) The Mohr circle shows the onset of frictional

sliding along a cohesionless principal slip surface within the PSZ (Black line

within the Mohr circle).

4.2.2.2. Failure envelopes and mode of failure

The failure envelopes, mode of failure and transport properties of rocks within the

OFC and IFC fault zone domains have been obtained from triaxial deformation

experiments with fluid flow, performed on borehole samples of Triassic Evaporites

rocks (De Paola et al., 2009; Hangx; et al., 2010).

The strength of intact anhydrite rocks is controlled by the presence and

orientation of fabric anisotropy, with the weakest rocks being those where foliation

is sub-parallel to the loading direction. On the other hand, the transition between

localised brittle to distributed ductile mode of failure is controlled by effective

stresses, and occurs at about 20 MPa regardless of grain size, presence of fabric

anisotropy, and its orientation (De Paola et al., 2009).

Mohr-Coulomb failure envelopes have been constructed for each fault zone

domain, i.e. the OFC, the IFC and the PSZ (Fig. 4.1). The failure envelope of the

foliated anhydrite in the OFC is obtained from triaxial loading experiments

performed on anhydrite borehole samples with foliation oriented sub-parallel to the

loading direction (Fig. 4.1a; De Paola et al., 2009). A sharp transition from localised

brittle to distributed ductile mode of failure is observed at effective stresses of about

20 MPa (Fig. 4.1a). The failure envelope of the IFC, made of cohesive, anhydrite

bearing fine-grained cataclasites, with no fabric, is obtained from triaxial loading

experiments performed on fine-grained, homogeneous anhydrite borehole samples

~ 109 ~

(Fig. 4.1a; De Paola et al., 2009). The failure envelope of the PSZ – the actively

slipping plane within the IFC – is assumed consistent to that of a cohesionless fault

plane, with Byerlee’s sliding friction coefficient of 0.6 (Fig. 4.1b; Scuderi et al.,

2013).

In our simulations, the frictional strength of the fault is taken to be homogeneous

and without asperities. Any variation in frictional strength is modelled as being

dependent only on effective normal stress, which is taken to be constant on the

sliding fault patch, after sliding begins. This approximation assumes that the fault

patch can no longer accumulate or dissipate stress energy locally, as any change in

energy will instead accelerate or decelerate sliding. Similarly to what demonstrated

in Campillo et al. (2001), and using a similar approximation to Uenishi and Rice

(2003), we approximate the nucleation length (LN) of a failure patch (LF) as the

nucleation length of the stiffest point in the patch (largest effective normal stress).

~ 110 ~

~ 111 ~

Figure 4.2: Log-plot of permeability against differential stress and effective

pressure based on triaxial experiments performed on OFC Triassic Evaporites

samples. a - b) Fault parallel (a) and fault perpendicular (b) permeability

evolution with effective pore pressure derived from static triaxial experiments

with no loading of the sample. c – d) Fault parallel (c) and fault perpendicular

(d) permeability evolution with effective pore pressure and stress dependence

obtained during dynamic triaxial experiments, when samples are loaded to

failure.

NB: The raw values for this plot are taken from De Paola et al., 2009, in which

the terminology effective pressure is used in place of effective stress.

4.2.2.3 Fault zone transport properties

The permeability tensor relations have been constructed for the OFC using

available data from triaxial deformation experiments with fluid flow (De Paola et al.,

2009), and are illustrated in Fig. 4.2. In particular, the fault parallel and

perpendicular components of the permeability tensor in the OFC are obtained from

loading experiments to failure with fluid flow imposed parallel and perpendicular to

fabric, respectively. To a first approximation, laboratory experiments show that the

permeability of anhydrite rocks before failure are controlled by the combined effect

of (De Paola et al., 2009): 1) effective stress, as permeability decreases with

increasing effective stress, due to porosity reduction (Fig. 4.2a-b); and 2)

deformation, as permeability increases with increasing loading due to the creation of

fractures within the rock (Fig. 4.2c-d). For a given value of pore pressure, a sudden

increase in permeability is observed at failure, and its magnitude is controlled by the

brittle and ductile mode of failure (Fig. 4.2c-d), respectively. The pore pressure

~ 112 ~

sensitivity of permeability k is described by the general, experimentally derived,

empirical Eq. 3.6.

At the onset of distributed ductile failure, permeability will rapidly increase (Fig.

4.3c-d). Then, for a given value of effective stress during ductile failure,

permeability will reach a plateau value when a percolation threshold state is attained

in the sample, due to the development of a fully connected network of microfractures

(Fig. 4.3c-d; De Paola et al., 2009). Permeability of samples deforming in a ductile

mode is sensitive to effective stress variations (Fig. 4.3c-d; Table 1), which can

reduce or enhance the porosity of the sample by closing or opening fractures,

respectively (De Paola et al., 2009).

Conversely, at the onset of localised brittle failure, permeability will rapidly

increase to a relatively high value (Fig. 4.3c-d). After the occurrence of brittle

failure, we assume that permeability will not be sensitive to effective stress

variations (Fig. 4.3c-d; Table 1), as the macroscopic fault/fracture can act as an

effective conduit for fluid migration (De Paola et al., 2009). We also assume that all

fractures created during the pre- and co-seismic phase will be fully healed soon after

the main seismic event. This is due to the efficiency of hydrothermal healing

processes, acting during the interseismic period, which may seal micro- and macro-

scale fractures within a few years of a slip event (Keulen et al., 2008; Nakatani and

Scholz, 2004; Niemeijer et al., 2008; Scuderi et al., 2013; Yasuhara et al., 2005).

The permeability of the fine-grained cataclasites in the IFC and gouges in the PSZ

are assumed to be anisotropic in the fault-parallel and fault-orthogonal direction

(Evans et al., 1997; Wibberley and Shimamoto, 2002), but otherwise in the OFC,

they are not assumed to depend on pore pressure and deformation (Table 1).

~ 113 ~

4.2.3 Model setup

The model setup assumes that pore fluid overpressure within the damage zone

(DZ) is largely contained within the fractured dolostone layer (Fig. 3.2). Hydrostatic

pore fluid pressure occurs within the layers of foliated anhydrite in the DZ, which act

as a perfect seal at their contacts immediately above and below the overpressured

dolostone reservoir (Fig. 3.2). The initial pore pressure distribution within the fault

core is assumed to be uniform and hydrostatic. This is due to fault-valve behaviour

(Sibson, 1990), as any overpressure build-up during the interseismic period within

the fault core is being quickly released during and soon after the seismic event

(Miller et al., 2004).

We simulate an area of 2.5 by 1000 m, representing the upper left quadrant of the

fault core (Fig. 3.2), located at a hypocentre model depth of 7 km and subject to

extensional tectonic loading by reduction of the least principal stress axis at a rate of

0.15 MPa/year, based on the tectonic setting (Chiaraluce et al., 2003). All models are

run from an initial stress state with minimum principal stress set at 85% of lithostatic

load (Miller et al., 2004).

Our simulations only directly model the OFC and IFC, with boundary conditions

defined using the pore pressure conditions from the damage zone. Pressure boundary

conditions are hydrostatic on all boundaries, except for a 40 m thick overpressured

part of the side boundaries, which models the effects of an external, infinitely wide,

permanently overpressured reservoir made of fractured dolostones (Fig. 3.2; De

Paola et al., 2008; Trippetta et al., 2013).

To reduce computational costs, we exploit the model’s symmetry properties. The

idealised fault section has two planes of symmetry, the fault parallel plane bisecting

the fault, and the fault perpendicular plane bisecting the overpressure contacts. In our

~ 114 ~

model, these planes become symmetry boundaries, with the gradient of pore pressure

normal to these boundaries set to zero.

The top and bottom fixed pressure boundaries maintain a hydrostatic pressure,

and domain dimensions are chosen large enough that this boundary doesn't

significantly affect pressure distribution within the model domain. For each

simulation, the length of fault that is considered is selected ensuring that the pressure

gradient at the upper perpendicular boundary is less than 1% of hydrostatic pressure

per metre.

4.3. Results

A series of numerical simulations have been performed for a range of initial pore

pressures, at a depth of 7 km, for a fixed tectonic unloading rate in the minimum

principal stress direction. Fluid flow in the fault core during the interseismic period

is modelled for two end-member scenarios, Case A and B. In the simpler Case A

scenario, permeability evolves during the interseismic period in the OFC solely

controlled by pore pressure variations and lithological factors (e.g. fabric presence

and orientation; Fig. 4.2a-b). In the more complex Case B scenario, permeability

evolution during the interseismic period is additionally controlled by deformation,

via brittle or ductile failure in the OFC (Fig. 4.2c-d).

The effect of pore pressure evolution in the fault core on the duration of the

nucleation phase and on the size of the nucleation patch is then investigated.

~ 115 ~

Figure 4.3: Simulation results of pore pressure evolution and onset of failure –

Simple Case A. a, d) Plots are provided for slightly supra-hydrostatic, λv = 0.45

(a), and sub-lithostatic, λv = 0.85 (d) initial pore pressure conditions in the

damage zone reservoir, compared to initially hydrostatic ones (λv = 0.4) in the

~ 116 ~

fault core. b, e) Pore pressure evolution from initial conditions to the time at

which failure initiates in a failure patch (LF), along the main principal slip zone

(PSZ) in the inner fault core (IFC). Note that the size of the failure patch, LF, is

not to scale in these panels, as LF is infinitesimally small at the onset of failure.

c, f) Pore pressure conditions at the time an earthquake nucleates, when the size

of the failure patch, LF, matches that of the theoretical predicted nucleation

length, LN. g) Mohr failure analysis for the PSZ at initial conditions (a, d), onset

of fault failure (b, e) and earthquake nucleation (c, f). Results are presented for

40 m of 1 km simulated region shown vertically, and 2.5 m fault core

exaggerated horizontally. During simulations a millimetre scale horizontal

spatial grid was used, and vertically an initially millimetre scale logarithmic

grid was used.

~ 117 ~

Figure 4.4: Simulation results of pore pressure evolution and onset of failure –

Complex and realistic Case B. a, e) Plots are provided for slightly supra-

hydrostatic, λv = 0.45 (a), and sub-lithostatic, λv = 0.85 (e) initial pore pressure

conditions in the damage zone reservoir, compared to initially hydrostatic ones

(λv = 0.4) in the fault core. b, f) Pore pressure evolution from initial conditions to

the time at which ductile (b) and brittle (f) failure initiates in the outer fault

core (OFC). White arrows indicate the extent of ductile and brittle deformation

~ 118 ~

front in the OFC. c, g) Pore pressure conditions when fault failure initiates in a

patch (LF), along the main principal slip zone (PSZ) in the inner fault core

(IFC). d, h) Pore pressure conditions at the time an earthquake nucleates, when

the size of the failure patch, LF, matches that of the theoretical predicted

nucleation length, LN. i - j) Mohr failure analysis for the PSZ (i) and OFC (j) at

initial conditions (a, e), onset of ductile (b) and brittle (f) failure in the OFC,

onset of fault failure (c, g) and earthquake nucleation (d, h). Results are

presented for 40 m of 1 km simulated region shown vertically, and 2.5 m fault

core exaggerated horizontally. During simulations a millimetre scale horizontal

spatial grid was used, and vertically an initially millimetre scale logarithmic

grid was used.

4.3.1 Pore pressure evolution and onset of failure

4.3.1.1 Simple Case A scenario

During the interseismic period, permeability evolves with pore pressure variations

and lithological factors in the OFC, while it is constant (but anisotropic) along the

fault-parallel and -orthogonal direction in both the IFC and PSZ (Fig. 3.2). The pore

pressure conditions in the fault zone are represented by the pore fluid factor λv,

defined as the ratio between pore pressure and lithostatic load. We model fluid flow

for two pore pressure regimes in the damage zone reservoir, with slightly supra-

hydrostatic (λv = 0.45) and sub-lithostatic (λv = 0.85) initial pore pressure conditions,

compared to initially hydrostatic ones (λv = 0.4) in the fault core (Fig. 4.3a, d).

Our results show that at the beginning of the interseismic period, soon after an

earthquake event, pore pressure excess is concentrated in the vicinity of the

overpressure contact at the DZ/OFC boundary (Fig. 4.3a, d). High time resolution

simulations show that pore fluids start to rapidly diffuse within the OFC first and

~ 119 ~

then into the IFC and PSZ, where pore pressure increases along the fault-parallel and

-perpendicular direction. A quasi-steady state pore pressure regime is attained in the

fault zone on the order of days.

Failure by sliding along the PSZ will start at 356 and 119 years, for λv = 0.45 and

0.85, respectively, when the shear stress level, which is controlled by the tectonic

loading rate, matches the fault strength, which is dependent on pore fluid pressure

(Fig. 4.3g). At this time, failure patches begin to develop along the PSZ in the supra-

hydrostatic and sub-lithostatic pressure cases, respectively (LF in Fig 4.3b, e).

4.3.1.2 Complex and more realistic Case B scenario

We now consider the more complex and realistic scenario where permeability

evolution during the interseismic period in the fault core is additionally controlled by

deformation, via brittle or ductile failure in the OFC (Fig. 4.3c-d). We consider here

the same two scenarios as before, for slightly supra-hydrostatic (λv = 0.45) and sub-

lithostatic (λv = 0.85) initial pore pressure condition in the damage zone reservoir,

again compared to initial hydrostatic ones (λv = 0.4) in the fault core (Fig. 4.4a, e).

Let us consider first the case of slightly supra-hydrostatic (λv = 0.45) initial pore

pressure conditions in the damage zone reservoir and assume the same initial state of

stress in the fault and extensional tectonic loading rate as in the previous scenario

(Fig. 4.4i-j). Similarly, to the case with no deformation control, high time resolution

simulations show that pore fluids start to rapidly diffuse within the OFC first and,

then, into the IFC and PSZ. After 327 years, the stress level in the OFC is such that

ductile failure sweeps rapidly across its full width (Fig. 4.4b), before sliding begins

along the PSZ (Fig. 4.4i-j). Sliding along the PSZ occurs earlier than in Case A (Fig.

4.3b, 4.4c), at almost the same time as ductile failure in the OFC.

~ 120 ~

For sub-lithostatic (λv = 0.85) initial pore pressure conditions in the damage zone

reservoir, pore fluids start to rapidly diffuse within the OFC, IFC and PSZ, and pore

pressure reaches a quasi-steady state after 19 days, but with the attainment of higher

pore pressure values than in Case A. This means that at the initial stage, the OFC

Mohr circle is more translated to the left than in Case A and, hence, will intercept the

brittle segment of the OFC failure envelope during loading (Fig. 4.4i-j). After 58

years, brittle failure begins in the OFC increasing its permeability by around 3 orders

of magnitude (Fig. 4.4f). Sliding along the PSZ first occurs at 58.7 years (LF in Fig.

4.4g), while the brittle failure front extends away from the overpressure contact,

towards the IFC. There is no ductile failure in this case due to the lower level of

effective stress in the OFC (Fig. 4.4i-j). The onset of sliding along the PSZ occurs

after about 59 years, earlier than in Case A when there is no-deformation in the OFC

(Compare Fig. 4.3e, 4.4g).

4.3.2 Pore pressure evolution and earthquake nucleation

During the nucleation stage of an earthquake, stable sliding spreads out from an

initial small fault patch (LF) until it reaches a critical size, the nucleation length (LN),

at which unstable fast sliding begins causing the propagation of the rupture (Marone,

1998; Scholz, 1998). In the framework of rate and state friction theory, the critical

patch size or nucleation length is inversely proportional to effective normal stress

(Campillo et al., 2001; Scholz, 1998) and can defined as in Eq. 3.13.

Hence, modelling results of pore pressure evolution can be used to investigate the

evolution in space and time of the nucleation length, during the nucleation stage.

During our simulations, we assume velocity weakening behaviour for the PSZ (F

in Table 1 and Eq. 4), which has been observed for anhydrite and dolomite-rich

~ 121 ~

gouge at high temperature and sub-seismic sliding velocity (Scuderi et al., 2013).

When shear stress exceeds the fault shear strength, for a given pore pressure, sliding

begins along the PSZ. This condition coincides with the beginning of the nucleation

phase, which ends when the size of the sliding patch on the PSZ equals that of the

nucleation length (i.e. LF = LN in Figs. 4.3c, f and 4.4d, h); a condition leading to the

dynamic fast propagation of the rupture. Hence, the computed nucleation length

values can be used to estimate the duration of the nucleation stage.

For the simple Case A scenario, with no deformation control on permeability, our

results show that the initial pore pressure within the damage zone reservoir controls

the time at which sliding initiates along the PSZ (Fig. 4.3b, e). In fact, the nucleation

phase initiates significantly earlier for sub-lithostatic (λv = 0.85; Fig. 4.3e) initial pore

pressure conditions than for slightly supra-hydrostatic ones (λv = 0.45; Fig. 4.3b).

During the nucleation phase of the earthquake, the failure patch grows along the PSZ

until conditions for dynamic seismic rupture propagation are attained (e.g. LF = LN in

Fig. 4.3c, f).

Remarkably, the nucleation phase is one order of magnitude longer in the case of

initial sub-lithostatic pore pressure conditions (10.1 years, Fig. 4.3b-c), than in the

case of supra-hydrostatic ones (0.4 years, Fig. 4.3e-f). These results are due to the

trade-off of two competing effects: the reduction of effective normal stress due to

high pore pressures and the growth of the failure patch along the PSZ. The higher the

pore pressure, the lower the effective normal stress so the sooner sliding can begin

(Fig. 4.3b, e). However, the lower the effective normal stress, the higher the

nucleation length so a larger sliding patch is needed for earthquake nucleation,

resulting in a longer nucleation phase (Fig. 4.3c, f). It is worth noting that, during the

nucleation phase, pore fluid pressure conditions do not vary from the steady state

~ 122 ~

conditions attained early during the interseismic period (Fig. 4.3b-c, 4.3e-f). Hence,

it is the nucleation length inverse dependence on pore pressure that controls the

duration of the nucleation phase.

In Case B scenario, the occurrence of ductile (λv = 0.45) and brittle (λv = 0.85)

failure before and during the nucleation phase significantly increases permeability

within the OFC (Figs. 4.4b-d, 4.4f-h). The permeability enhancement caused by

ductile and brittle deformation in the OFC changes the pore pressure field within the

OFC and IFC. These pore pressure variations reduce the length of the interseismic

period, when compared to the case with no deformation (e.g. compare Figs. 5b, e

with Fig. 4.4c, g). This effect is particularly significant for the initial sub-lithostatic

pore pressure regime (Fig. 4.4e), when brittle deformation in the OFC can halve the

length of the interseismic period, when compared to the case with no deformation

(Fig. 4.3f, 4.4h).

The length of the nucleation phase is 0.1 years in the case of initial sub-lithostatic

pore pressure conditions (Fig. 4.4g-h) and much quicker, below the resolution of the

modelling, in the case of supra-hydrostatic ones (Fig. 4.4c-d).

Compared to the case with no deformation control on permeability, transient fluid

pressures conditions occur during the nucleation phase (Fig. 4.4c-d, 4.4g-h), as

opposed to steady state conditions attained in the simple Case A with no deformation

(Fig. 4.3b-c, 4.3e-f).

~ 123 ~

~ 124 ~

Figure 4.5: Variations of earthquake parameters vs. pore fluid factor. Length

of interseismic period (a), nucleation length (b) and duration of nucleation

phase (c) are plotted against variation of the pore fluid factor across multiple

simulations for Case A and Case B, respectively. For case B, the pressure fields

of ductile and brittle deformation in the OFC are also shown in pink and grey,

respectively. In panel 7c, a double-headed arrow also shows the range of lengths

of the nucleation phase of some natural earthquakes, estimated by seismological

observations (Fig. 4.7c; Mavrommatis et al., 2014; Kato et al., 2012; Socquet et

al., 2017).

4.3.3 Pore fluid factor control

 We perform parameter studies of the same two case scenarios, with (Case A)

and without (Case B) deformation-dependent permeability, at a range of different

pore fluid factors (0.45 < λv < 0.85, in steps of 0.025) (Fig. 4.5a-c). Our results show

that pore fluid factor and deformation-dependent permeability all exert primary

control over the duration of the interseismic period and nucleation phase, and over

the length of the failure patch at nucleation. Increased initial pore fluid factor in the

pressurised reservoir acted in both scenarios to decrease the duration of the

interseismic period (Fig. 4.5a), and to increase the nucleation length (Fig. 4.5b) and

the duration of the nucleation phase (Fig. 4.5c).

The timing of brittle failure in the OFC is dependent on pore fluid factor, while

the timing of ductile failure is constant due to the flat ductile region of the OFC

failure envelope (Fig. 4.1a). In all cases, the inclusion of deformation-dependent

permeability decreases both the interseismic period (to 60.1 years, Fig 4.5a) and the

nucleation phase duration (to less than 1 year, Fig 4.5c), while increasing the size of

the nucleation length (to > 30 m, Fig. 4.5b).

~ 125 ~

It is interesting to note that for pore fluid factors of 0.55 the results obtained for

the two scenarios considered here converge (Figs. 4.5a-c). This is due to the specific

tectonic loading rate chosen for our simulations, which causes fault sliding in the

PSZ before any fracturing by brittle or ductile failure can occur within the OFC. This

observation shows that tectonic loading rate also plays a role in controlling pore

pressure diffusion in fault zones during the seismic cycle.

4.4. Discussion and Conclusions

4.4.1 Mode of failure controls pore pressure diffusion and earthquake

recurrence interval

Small scale fracturing within fault zones acts as a primary control on pore

pressure diffusion during the interseismic period (e.g. natural earthquakes) or when a

stress perturbation is caused in a reservoir (e.g. induced seismicity). In general,

fracturing can increase the average permeability of rocks in the zones of damage

adjacent to the main slip zones by several orders of magnitude, and therefore driving

pore pressure diffusion more effectively. In the specific case investigated here, at a

given tectonic fault-loading rate, failure occurring within the outer fault core (OFC)

reduces the frictional strength of the fault at a faster rate, and fault sliding (e.g.

beginning of the nucleation phase) can initiate earlier than in the case where no

fracturing occurs in the OFC (Fig. 4.5a).

More specifically, results from our case study show that initial high pore

pressures can cause small scale brittle failure in the OFC during the interseismic

period, which creates higher permeability than ductile failure occurring at lower

initial pore pressures (e.g. Fig. 4.4b-c and 4.4f-g). Hence, in the case of brittle failure

in the OFC, fault sliding occurs much earlier than in the case of failure by ductile

deformation, reducing the duration of the interseismic period (Fig. 4.5a).

~ 126 ~

These results have implications in terms of seismic hazard estimates, as they show

that local factors such as lithology and fault zone structure can significantly affect

the length of the interseismic period and, hence, the recurrence interval of

earthquakes. They also show that, during the coseismic and interseismic period, the

evolution of the hydrogeological conditions of the fault zone and its connected

reservoirs will affect the recurrence interval of events. In particular, hydrogeological

monitoring of springs (e.g., Barberio et al., 2017) and boreholes in the epicentral area

or in the surrounding areas of injection sites could potentially provide information on

coseismic fluid discharge and on interseismic fluid recharge between the fault zone

and the connected aquifers. These observations could be used to estimate the pore

pressure evolution of the fault zone and its surroundings during the seismic cycle.

4.4.2 Implications for fluid induced earthquake nucleation

Our results have some implications for our understanding of the role and controls

of aseismic slip during the nucleation phase preceding an earthquake. Although

aseismic slip episodes have been relatively commonly observed over the last decade,

until very recently the occurrence of aseismic slip as a precursor to major

earthquakes was almost completely unknown. Large aseismic slip episodes have

now been identified immediately preceding the recent Mw 9, 2011 Tohoku

earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1, 2014

Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It is argued that these

aseismic slip events, lasting a few months, contribute to the triggering of earthquakes

and are related to their preparatory nucleation phase (Guglielmi et al., 2015).

Overall, our results show that both the inclusion of realistic models of fault zone

architecture and deformation-dependent permeability (brittle and ductile failure)

~ 127 ~

control the size of the sliding patch (Fig. 4.7b) during earthquake nucleation and the

duration of the nucleation phase (Fig. 4.7c).

The size of the failure patch during the nucleation phase is always larger when

realistic models of fault zone architecture and deformation-dependent permeability

are considered (Fig. 4.7b). In particular, small scale fracturing by brittle failure,

occurring for initially high pore pressures, provides the largest slipping patches (> 30

m in Fig. 4.7b). These results are of particular relevance when considering that

technological improvements in signal/noise ratio and spatio-temporal resolution of

geodetic data are lowering the detection thresholds for measurements of aseismic

slip. In particular, the advent of new satellite radar missions now enables a

systematic, global investigation of pre-seismic slip for the first time.

 Our results show that the duration of the nucleation phase is significantly reduced

from a few years to a few months at high values of initial pore pressure, when

realistic models of fault zone architecture and deformation-dependent permeability

are considered. Interestingly, a few months is also the time scale of aseismic slip

measured during the nucleation phase of some recent large earthquakes (Fig. 4.7c;

Mw 9, 2011 Tohoku and Mw 8.1, 2014 Iquique earthquakes).To conclude, estimates

of the duration of the nucleation phase have implications for earthquake early

warning systems. In fact, intermittent aseismic creep on fault patches > 30 m in

diameter, over a period of few months, could be detectable well in advance of a

significant seismic event, perhaps using geodetic data and new satellite remote

sensing techniques.

~ 128 ~

~ 129 ~

NB: The values for compressibility and viscosity given in Burke, 2011, and

subsequently, Table 3.1 are lower than other values produced from empirical

relationships. With viscosity being higher by a factor of ten and compressibility by a

factor of five (Mathias et al., 2009). These variables decrease the instantaneous rate

of pore pressure change (Eq. 3.4) impact short term transient flow much more

heavily than longer-term quasi-steady-state changes. Simulations were run to

validate the impact of this variation on the results of Chapters 4 and 5. There were no

changes to rupture patch dimensions and the length of the interseismic period, both

~ 130 ~

controlled by longer-term changes. The length of the nucleation phase increase by

roughly an order of magnitude for short nucleation phases (seconds to minutes), for

longer nucleation phases the value of nucleation phase is not significantly changed.

Transient fluid flow triggered by discontinuous failure explains why this impact

disproportionately affects shorter nucleation lengths.

~ 131 ~

CHAPTER 5

5. Fault zone architecture and dimensions control the evolution of the pore pressure

field during the seismic cycle

~ 132 ~

5. Fault zone architecture and dimensions control the

evolution of the pore pressure field during the seismic cycle

Abstract

Natural subsurface fluid flow can perturb fault zone pore pressure

environments, and in turn can drive large variations in fault frictional strength

potentially triggering seismicity. The earthquake nucleation phase spans the period

of stable sliding from initial infinitesimal development of the patch to critical

nucleation length, at which fast, unstable sliding (an earthquake) begins rupture

(Marone, 1998; Scholz, 1998). Previous numerical simulation studies have examined

the role of fluid flow in faulting processes and associated seismicity, no simulations

have examined the earthquake nucleation phase sensitivity to variation in the scale of

fault zone architecture and neighbouring lithology.

Here, we perform parameter studies on pore pressure diffusion and

earthquake nucleation, with realistic models of ductile failure, varying the dimension

of components of fault zone architecture and neighbouring lithology, outer fault core

width and the height of pressurised layers abutting the fault core. As a base case for

the studies, we simulate the evolution of overpressured, supercritical CO2 in natural,

exhumed faults in evaporite sequences. The failure and transport properties of rocks

are derived from laboratory measurements, and realistic models of fault zone

architecture.

The results obtained show that for a given tectonic loading rate, a thinner

fault core will result in a more effective fault weakening, as the fault frictional

strength will reduce at a faster rate due to higher pore pressures. The impact of fluid

flow on the fault being more significant for faults with a thinner rather than thicker

~ 133 ~

outer fault core. In the absence of fluids, the base mechanical strength of the slipping

portion of the fault did not vary with thickness. Similarly, an increasing intersecting

overpressured aquifer thickness in the damage zone produces a higher magnitude of

pore pressure in the fault core, which weakens the principal slip zone located in the

centre of the fault core.

Understanding the controls exerted on the duration of the nucleation phase of

earthquakes has important implications for premonitory signal detection, as

identifying extended nucleation phases of active faults would increase the likelihood

of detection of early seismicity warnings. Our case study shows that, for a given

fault, characteristic values of fault zone parameters (e.g. fault core width and

intersecting overpressured aquifer thickness) govern the transition from relatively

long – on the order of days to months – easily detectable nucleation phase to very

short ones – on the order of seconds to minutes – difficult to detect. As such, realistic

estimates of uncertainty in fault zone architecture dimension must inform hazard

estimates, as small differences in scale can correspond to significant variation of the

nucleation phase, from seconds to years.

~ 134 ~

~ 135 ~

Figure 5.1: Examples of differing fault zone structures with simplified

schematic diagrams. (a) The Punchbowl fault, San Andreas system, California.

A fault with 40km of displacement, a 50cm thick ultracataclasite layer with

1mm thick primary slip surfaces and a damage zone extending 15m. This fault

and faults with a similar ratio of damage zone to fault core act as distributed

conduits with respect to fluid flow. (Chester and Chester, 1998; Chester and

Logan, 1986) (b) The Carboneras fault, Spain. A fault with 40km of

displacement, a 1km thick fault core of fault gouge bounding fractured lens and

included blocks and a 100m thick damage zone. This fault and faults with a

similar ratio of fault core to damage zone would act as a combined

conduit/barrier(Faulkner et al., 2003). (c) The Roccastrada fault, Italy. A fault

with 1km of displacement a thick cataclasite layer containing primary slip

surfaces around 1mm thick, a well-developed damage zone in dolostone layers

and an absent damage zone in the anhydrite layers. So far, no study has

considered the fluid flow properties of this fault zone structure.

5.1. Introduction

Natural (Di Luccio et al., 2010; Miller et al., 2004; Nur and Booker, 1972)

and human induced (Ellsworth, 2013; McGarr et al., 2015; Sumy et al., 2014) pore

pressure variations in the upper crust can cause fluid migration and trigger

seismicity.

An increase in pore fluid pressure can weaken faults, by decreasing their

frictional strength (Cox, 2010; Sibson, 1990, 1992), and make the interseismic

period shorter by bringing pressurized fault patches closer to failure. At the same

time, an increase in pore pressure can increase the duration of the nucleation phase

of an earthquake, due to the inverse proportionality of the nucleation length fault

~ 136 ~

parameter to the effective normal stress (Marone, 1998; Scholz, 1998). The

nucleation phase concept implies that slow, aseismic fault sliding precedes an

earthquake. Then, sliding spreads out with an accelerating velocity until the sliding

patch reaches a critical size – the nucleation length – at which fast seismic sliding

will propagate (Marone, 1998; Scholz, 1998). Usually aseismic sliding initiates at

small fault asperities, due to the local concentration of high shear stress or elevated

pore fluid pressure reducing fault strength.

There is a relation between the evolution of the pore pressure field during the

seismic cycle and fluid-induced seismicity (Collettini et al., 2009; Cox, 1995; De

Paola et al., 2008; Hickman et al., 1995; Miller, 1996; Rice, 1992; Sibson, 2000). In

particular, the integration of field observations and experimental datasets show that

the transport properties of faults are closely related to their internal structure (Caine

et al., 1996; Collettini et al., 2009; Lockner and Beeler, 1999; Seront et al., 1998).

Nevertheless, the control exerted by fault zone architecture and lithological

variations in the neighbouring zones on pore pressure evolution during the seismic

cycle is still poorly investigated and understood. This is mainly due to the

complexity and great variability shown by seismic fault zone architectures and to

significant uncertainty in the estimation of the transport properties and size of their

associated fault zone domains (Caine et al., 1996; Cox, 1995; De Paola et al., 2009;

Fischer, 1992; Hangx et al., 2010; Mitchell and Faulkner, 2008; Morrow and

Lockner, 1997, 1994; Paterson and Wong, 2005; Peach and Spiers, 1996; Wong et

al., 1997; Zhu et al., 1997; Zoback and Byerlee, 1975).

Simulations of faulting and fluid flow have previously been conducted using

coupled deformation and fluid flow modelling software (e.g. TOUGH-FLAC)

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). However,

~ 137 ~

these studies consider simplistic fault zone architectures (e.g. Fig. 5.1a-b; Cappa,

2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Leclère et al., 2015; Mazzoldi

et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013b, 2009), where permeability is

a continuous function in porosity, volumetric strain, average effective stress (Davies

et al., 2001) and in some cases shear strain on the fault (Rutqvist et al., 2007).

Here, we model fluid flow in exhumed faults in evaporite sequences with

complex architecture, and pore pressure- and deformation-dependent permeability.

These faults represent an analogue of the seismic sources at hypocentre depth of

recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Our results are then generalised to

relate fault zone parameters (e.g. dimension, architecture and associated deformation

mechanisms, lithological variations in the neighbouring rocks to the fault) to the

duration of the interseismic period and the nucleation phase of an earthquake.

Low resolution of indirect measurement methods and generic inference from

specific natural analogues make fault zone parameters poorly constrained. Hence,

numerical simulations and multiphysics models of seismic faults are a useful tool to

predict the distribution and evolution of pore fluid pressure during the seismic cycle.

Predictions of the pore pressure field during the seismic cycle have important

implications for earthquake forecasting, as they potentially allow the estimation of

the length of the interseismic period. Furthermore, they have also implications for

earthquake early warning systems, as they potentially allow estimating the duration

of the aseismic nucleation phase preceding an earthquake, and the likelihood of

detecting early premonitory signal.

~ 138 ~

5.2. Fault zone architecture controls fluid migration

Tectonic faults are zones of finite width, whose internal architecture can be

described by three main fault zone domains (Chester et al., 1993; Faulkner et al.,

2010) : the protolith, the damage zone and the fault core. The fault core is the

domain where most of the fault slip is accommodated within narrow slip zones.

Intense damage, but relatively little amount of slip, is accommodated within the

damage zone domains often present on both sides of the fault core. In the damage

zone deformation is mostly accommodated by network of connected fractures and

veins. Finally, the protolith is the original source rock of those fault rocks found in

the damage zone and fault core. There is no damage or faulting in the protolith

related to the specific fault zone activity.

Caine et al. (1996) proposed that whether a fault acts as a conduit or a barrier

to fluid migration will depend on the relative thickness between the fault core

domain, dominated by low permeability multiple narrow slip zones and fine-grained

fault rocks, and the surrounding damage zones, dominated by distributed and well-

connected fracture patterns. Faults with a thin, low permeability fault core and a

thick and well developed damage zone may act as conduits, favouring fluid

migration through the damage zone fault rocks (Fig. 5.1a, e.g. Punchbowl fault with

a 50 mm thick fault core and 15 m wide damage zone; Chester and Chester, 1998;

Chester and Logan, 1986). Conversely, faults with a thick, low permeability fault

core and a relatively thin, poorly developed damage zone may act as barriers to

migrating fluids (Fig. 5.1b, e.g. Carboneras fault with 1 km thick fault core and less

than a few tens of metres damage zone; Faulkner et al., 2003; Faulkner and Rutter,

2001). In between these end-members there are faults with a variety of architectures

and range of fault core damage zone aspect ratios (Faulkner et al., 2010). Amongst

~ 139 ~

these, exhumed seismic faults with complex fault core structure observed in

evaporite sequences can be attributed with a mixed conduit/barrier behaviour,

controlled by transient pore pressure evolution and mode of failure (Fig. 5.1c e.g.

Roccastrada fault; De Paola et al., 2008; Collettini et al., 2009).

The Roccastrada fault analogue from the Northern Apennines of Italy is

chosen as a base case for fluid flow simulations. There, borehole measurements at 4 -

4.8 km in the Triassic evaporites encountered overpressured CO2, which has been

implicated in historical and recent seismicity in that area (Chiodini and Cioni, 1989;

Collettini and Barchi, 2002; Miller et al., 2004).

We apply our simulations to the observed fault zone architecture,

deformation patterns and protolith stratigraphic setting (De Paola et al., 2008;

Collettini et la., 2009), where permeability is assumed to vary as a function of

effective stress and ductile failure. To generalise our findings, the dimensions of

fault zone domains and protolith stratigraphy are varied systematically from this base

case, during parameter study simulations.

5.3. Numerical Method

We perform parameter studies composed of sets of simulations of nonlinear

diffusion in fault zones with realistic, complex fault zone architecture. A well-

studied and constrained base case for these studies is taken from an exhumed normal

fault in evaporite sequences (Fig. 5.1c), which is an analogue of the seismic source

in the hypocentre zone of the Northern Apennines seismic belt (e.g. Mirabella et al.,

2008). We apply our simulations to the observed fault zone architecture, deformation

patterns and protolith stratigraphic setting (De Paola et al., 2008; Collettini et al.,

2009), where permeability is assumed to vary as a function of effective stress and

ductile failure. To generalise our findings, the dimensions of fault zone domains and

~ 140 ~

protolith stratigraphy are varied systematically from this base case, during parameter

study simulations.

5.3.1. Porous media flow and numerical solution

In simulations, the evaporites are treated as classically porous media, using

Eq. 3.4 a relation between pore pressure p and permeability 𝑘 to the rate of change of

pressure with time t. We approximate the compressibility β as being only the fluid

compressibility, because the compressibility of supercritical CO2 exceeds that of

evaporite rocks by several orders of magnitude (Burke, 2011; Robertson et al.,

1958). The variation of viscosity υ and compressibility with effective stress can be

neglected for the conditions considered (Burke, 2011), where the effective stress is

defined as the difference of principal minimum stress and pore pressure Eq. 2.1.

Taking experimental relationships established for low porosity rocks in De Paola et

al. (2009) and (Hangx et al., 2010), we express permeability as a function of

effective stress both prefailure and after ductile deformation, Eq. 3.6 accommodated

by microscale, distributed fracturing (Detournay and Cheng, 1993).

Large deep-seated CO2 fluxes greater than 0.45 t day−1 km−2 have been

measured in the epicentre areas of the Northern Apennines seismic belt (e.g. Mw 6.0

1997-98 Colfiorito and Mw 6.3 2009 L’Aquila extensional earthquakes) (Chiodini et

al., 2004; Collettini et al., 2008). As such, it is reasonable to assume in simulations

that the set of theoretical faults considered in the parameter study are saturated with a

single phase of supercritical CO2.

In the simulations presented here fault zone geometries, physical properties

and mechanical behaviour, taken as a base case and re-used in part for parameter

studies, are inferred and constrained from main seismic extensional fault zone in

evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008). However, the

~ 141 ~

techniques and results are more generally applicable to any natural fault zone with

partially constrained fault zone architecture and constrained physical and mechanical

properties.

5.3.2. Model input parameters

5.3.2.1. Fault zone architecture and base model setup

The fault zones constraining the base simulation case occur within the

Triassic Evaporite formation, which is a 1.5-2 km thick sequence of 6 – 19 m thick

interbedded layers of anhydrite/gypsum and dolostones (Barchi, 2002; Trippetta et

al., 2013). Moderately dipping (45°) normal faults are present at hypocentre depths

in the Northern Apennines seismic belt, thought to favour fluid overpressure

attainment and fault reactivation (Barchi, 2002; Miller et al., 2004; Mirabella et al.,

2008).

 For our base case simulation, we adopt a model of fault zone architecture

proposed from field observations, which represent an analogue of those present at

seismogenic depths (Fig. 5.1a; Collettini et al., 2009; De Paola et al., 2008).

Modelled fault zone architecture comprises a complex fault core, made of a 1 m

wide inner fault core (IFC), where most of the slip is localised within narrow

principal slip zones, and a 2 m wide outer fault core (OFC) (Fig. 2.8). The

distribution of damage in the damage zone is heterogeneous and controlled by the

lithology of the protolith. In fact, when the protolith rocks are made of dolostones, a

well-developed damage zone (DZ) of pervasively fractured dolostones extends at

least 10 m in either direction from the fault core. On the other hand, the foliated

anhydrite layers interbedded between the fractured dolostones, outside the fault core

in the damage zone, contain no macroscopic fracturing, and hence no damage zone is

~ 142 ~

present here (Fig. 2.8) (De Paola et al., 2008). These fractured dolostone layers in the

damage zone are pressurised with supercritical carbon dioxide at depth. We refer to

the contact between this pressurised dolostone layer in the DZ and the OFC as the

overpressure contact (OC).

A schematic, yet realistic, fault zone architecture is used within base case

simulations. This fault zone architecture is formed of an IFC, containing fine-grained

cohesive cataclasites, set within an OFC extending 2 m on both directions,

containing cohesive foliated anhydrites (Figs. 2.8, 3.2) (De Paola et al., 2008). The

IFC is made of fine-grained cohesive cataclasites, with an isotropic texture (De Paola

et al., 2008). The most prominent structural feature in the IFC are straight and thin,

millimetre scale, principal slip zone (PSZ), made of ultra-fine grained and dolomite-

rich gouges (Fig. 2.8) (De Paola et al., 2008). Schematically we represent these as a

single PSZ of zero thickness, made of incohesive fault gouges, in the centre of the

IFC, which is assumed as made of cohesive cataclasite (Fig. 3.2).

 During the seismic cycle, it is assumed that the modelled fault will behave

according to the fault-valve behaviour described by Sibson (1990), when pore fluid

overpressure is released upon seismic sliding. At the beginning of the seismic cycle,

following a main seismic events, we then take pore pressure within the fault core to

be uniform and hydrostatic (Miller et al., 2004). We model each of our set of

theoretical faults at a hypocentre depth of 7 km, and subject to an extensional fault

unloading rate of 0.15 MPa/year, based on the tectonic setting of our base case

(Chiaraluce et al., 2003).

 The fractured dolostone layer within the DZ represent our pore fluid reservoir

due to the presence of well-connected and dense fracture patterns (Fig. 3.2). Pore

fluid overpressure can be generated within the fracture dolostones of the DZ, due to

~ 143 ~

their high permeability compared to the low permeability of interbedded anhydrites,

which may act as seal (Fig. 3.2). Pore pressures are taken to be hydrostatic in the

anhydrites seal. The OFC and IFC are directly recreated in simulations where the DZ

inform boundary conditions. Further, to reduce computational costs, we exploit the

model’s symmetry properties. The idealised fault section has two planes of

symmetry, the fault parallel plane bisecting the fault, and the fault perpendicular

plane bisecting the overpressure contacts. The gradient of pore pressure normal to

theses symmetry boundaries is taken to be zero. We simulate an area of 2.5 by 1000

m, representing the upper left quadrant of the fault core (Fig. 3.2), subject to an

extensional tectonic loading rate of 0.15MPa/year. The non-symmetry external

boundaries are taken to be hydrostatic, except for the region of contact between the

overpressured, fractured dolostone layers in the DZ and the fault core (Fig. 3.2;

Trippetta et al., 2013). The top, and bottom boundary by symmetry, is taken to be

sufficiently removed from the overpressure source that this boundary does not

significantly alter fluid flow in the fault core. The length of the simulated area is

selected ensuring that the pressure gradient at the upper perpendicular boundary is

less than 1% of hydrostatic pressure per metre. All models are run from an initial

stress state with minimum principal stress set at 85% of lithostatic load (Miller et al.,

2004).

 Fault frictional strength is assumed to be homogeneous, and without

asperities, thus any variation in frictional strength is dependent only on effective

normal stress. Effective normal stress on a sliding fault patch is held constant after

sliding begins as the fault patch can no longer accumulate or dissipate stress energy

locally, any change in energy acts instead to accelerate or decelerate sliding. A

similar approach is taken in (Campillo et al., 2001) and using a similar

~ 144 ~

approximation to Uenishi and Rice (2003), we approximate the nucleation length

(LN) of a failure patch (LF) as the nucleation length of the stiffest point in the patch

(largest effective normal stress).

The simulations presented here consider the earthquake nucleation phase

(Marone, 1998; Scholz, 1998). During this phase, stable sliding spreads out from an

initial point (LF) until it reaches a critical size, the nucleation length (LN), at which

unstable fast sliding begins causing the propagation of the rupture (Marone, 1998;

Scholz, 1998). Taking rate and state friction as a theoretical framework, the critical

patch size or nucleation length is inversely proportional to effective normal stress

(Campillo et al., 2001; Scholz, 1998) and can be expressed by Eq. 3.13. Hence, our

modelling results of pore pressure evolution can be extended to investigate the

evolution in space and time of the nucleation length, during the nucleation stage.

During our simulations, we assume velocity weakening behaviour for the

PSZ (parameter F in Eq. 4), which has been observed for anhydrite and dolomite-

rich gouge at high temperature and sub-seismic sliding velocity (Scuderi et al.,

2013). At the point when shear stress exceeds the fault shear strength, for a given

pore pressure, sliding begins along the PSZ. We define the duration of the nucleation

phase as the time interval between the beginning of sliding and the time when the

size of the sliding patch on the PSZ equals that of the nucleation length (i.e. LF = LN);

a condition leading to the dynamic, fast propagation of the rupture. Hence, the

computed nucleation length values can be used to estimate the duration of the

nucleation stage.

~ 145 ~

5.3.2.2. Failure envelopes, mode of failure and transport properties

The failure envelopes, mode of failure and transport properties of the OFC

and IFC subdomains of the fault core are derived from triaxial deformation

experiments with fluid flow, performed on borehole samples of Triassic Evaporites

rocks (De Paola et al., 2009). Fabric anisotropy controls the strength of intact

anhydrite rocks, being weakest when loaded along a sub-parallel to foliation

direction. Mode of failure discontinuously transitions from brittle to ductile failure at

effective stresses of 20 MPa, and appears independent of grain size or the presence

of fabric anisotropy and its orientation (De Paola et al., 2009).

 A simplified Mohr-Coulomb failure envelope is assigned to each of the

components of fault zone architecture, i.e. the OFC, the IFC and the PSZ (Fig. 4.3,

Table 4.1). For the OFC specifically, the failure envelope of the foliated anhydrite is

taken from triaxial loading experiments performed on anhydrite borehole samples

with foliation oriented sub-parallel to the loading direction (Fig. 4.3a; Table 4.1; De

Paola et al., 2009). A sharp elbow is present in failure envelopes representing the

sharp transition from brittle to ductile failure at an effective stress of 20 MPa (Fig.

4.3a). The failure envelope of the IFC is given by triaxial loading experiments

performed on fine-grained, homogeneous anhydrite borehole samples, representative

of cohesive, anhydrite bearing fine-grained cataclasites, with no fabric (Fig. 4.3a;

Table 4.1; De Paola et al., 2009). The failure envelope of the PSZ is represented with

a Byerlee’s friction coefficient of 0.6 treating it as a cohesionless fault plane (Fig.

4.3b; Table 4.1; Scuderi et al., 2013).

The OFC permeability tensors are specified using data from triaxial

deformation experiments with fluid flow in De Paola et al. (2009) (Fig. 4.4).

Measurements of deformation and fluid flow both parallel and perpendicular to

~ 146 ~

fabric represent the fault parallel and perpendicular components of OFC

permeability, respectively. These triaxial deformation measurements with fluid flow

show that the permeability of anhydrite rocks is controlled by two factors (De Paola

et al., 2009): 1) effective stress, as permeability decreases with increasing effective

stress due to porosity reduction (Fig. 4.4a-b); and 2) distributed deformation, as

permeability increases with increasing loading due to the creation of fractures within

the rock (Fig. 4.4c-d). Sharp increases in permeability accompany failure of these

anhydrite rocks and, for a given constant pore pressure, the magnitude of this

increase is governed by the brittle or ductile mode of failure (Fig. 4.4c-d).

If effective stress is held constant while ductile failure occurs, permeability

will rapidly increase before reaching a plateau value, when a percolation threshold

state is attained due to the development of a fully connected network of

microfractures (Fig. 4.4c-d; 5.6; De Paola et al., 2009). Anhydrite rocks deforming in

a ductile manner are still sensitive to effective stress variations (Fig. 4.4c-d; 5.2;

Table 4.1), which may alter sample porosity by opening or closing small fractures

(De Paola et al., 2009).

Efficient hydrothermal healing processes, acting during the interseismic

period, may seal micro- and macro-scale fractures within a few years of a slip event

(Keulen et al., 2008; Nakatani and Scholz, 2004; Niemeijer et al., 2008; Scuderi et

al., 2013; Yasuhara et al., 2005). As such, we assume that any fractures created

during previous seismic events are effectively healed by the beginning of the

interseismic period in our simulations.

The permeability of the fine-grained cataclasites in the IFC and gouges in the

PSZ are assumed to be anisotropic in the fault-parallel and fault-orthogonal direction

~ 147 ~

(Evans et al., 1997; Wibberley and Shimamoto, 2002), excepting the OFC, they are

not assumed to depend on pore pressure and deformation (Fig. 5.2; Table 4.1, Eq. 3).

5.4. Results

A series of parameter studies were performed at a depth of 7 km, for a fixed

tectonic unloading rate of 0.15 MPa/year in the minimum principal stress direction.

Fluid flow in the fault core during the interseismic period and the earthquake

nucleation phase are modelled for parameter studies, where outer fault core (OFC)

width and overpressure contact (OC) height are varied across realistic parameter

ranges (Fig. 3.2). Further high-resolution studies are conducted in the vicinity of any

sharp transitions in earthquake nucleation time, and the results compiled.

The pore fluid factor λv, defined as the ratio between pore pressure and

lithostatic load σv, is used to represent the pore pressure conditions in the fault zone.

Parameter studies are performed at a pore fluid factor of λv = 0.45, which correspond

to the conditions that would favour ductile failure in the OFC.

For each parameter range, two separate studies are run using both

deformation-independent and –dependent permeability. In the deformation-

independent case, permeability evolves during the interseismic period in the OFC

solely controlled by pore pressure variations and lithological factors (e.g. fabric

presence and orientation; Fig. 4.4a-b). In the case of deformation-dependent

permeability, a more complex and realistic scenario is assumed, where permeability

evolution during the interseismic period is additionally controlled by deformation,

via brittle or ductile failure in the OFC (Fig. 4.4c-d). In both cases, permeability is

assumed to be constant in both the IFC and PSZ, but anisotropic along the fault-

parallel and fault-orthogonal directions.

~ 148 ~

Figure 5.2: Simulation results of the mode of failure independent pore pressure

diffusion model. Plots are provided of pore pressure (with failure (LF) and

nucleation length (LN)) and mode of failure (top row with an outer fault core 1m

wide and middle row with an outer fault core 8m wide) and Mohr failure

analysis (g) for the OFC and PSZ at (a, d) initial conditions, (b, e) the onset of

~ 149 ~

stable and (c, f) unstable sliding. Simulations presented were carried out at a

depth of 7km, with a tectonic unloading rate of 0.15MPa/ year in the minimum

principal stress direction. The intersecting overpressured aquifer thickness

takes a base case value of 40m respectively. (40m of 1km simulated region

shown vertically, fault core exaggerated horizontally.) During simulations a

millimetre scale horizontal spatial grid was used, and vertically an initially

millimetre scale logarithmic grid was used.

~ 150 ~

Figure 5.3: Simulation results of the mode of failure-controlled pore pressure

diffusion model. Plots are provided of pore pressure (with failure (LF) and

nucleation length (LN)) and mode of failure (top row with an outer fault core

1m wide and middle row with an outer fault core 8m wide) and Mohr failure

analysis(i, j) for the OFC and PSZ at (a, e) initial conditions, (b) the onset of

ductile failure in the OFC, (f) the onset of brittle failure in the OFC, (c, g) the

onset of stable and (d, h) unstable sliding. Simulations presented were carried

~ 151 ~

out at a depth of 7km, with a tectonic unloading rate of 0.15MPa/ year in the

minimum principal stress direction. The intersecting overpressured aquifer

thickness (overpressure contact height) takes a base case value of 40m

respectively. (40m of 1km simulated region shown vertically, fault core

exaggerated horizontally.) During simulations a millimetre scale horizontal

spatial grid was used, and vertically an initially millimetre scale logarithmic

grid was used.

~ 152 ~

~ 153 ~

Figure 5.4: Earthquake nucleation parameters as controlled by the variation of

the outer fault core width across multiple simulations, the fault is taken to be at

a depth of 7km unloaded at a rate of 0.15MPa/year in the minimum principal

stress direction from a critically stressed state. The intersecting overpressured

aquifer thickness (overpressure contact height) takes a base case value of 40m

respectively. a) Interseismic period. b) Nucleation length. c) Nucleation phase.

5.4.1 Outer Fault Core Width

First, we consider a parameter study in which initially outer fault core width

is varied over the range 1-8 m, in steps of 1 m. We ran fluid flow simulations to

examine in more detail two end-member case study scenarios, for deformation-

independent (Fig. 5.3) and deformation-dependent permeability (Fig. 5.4),

respectively. In both case scenarios, the OFC width takes values between 1 m and 8

m. These cases reveal details about pore pressure evolution and failure distribution

throughout the fault core, at the extremes of the considered range of the OFC width

parameter (Figs. 5.3-4). A further high-resolution parameter study is conducted in

the range 2 – 4 m, in steps of 0.1 m, in the vicinity of an observed sharp transition in

earthquake nucleation length (Fig. 5.5).

Our results show that at the beginning of the interseismic period, soon after

an earthquake event, pore pressure excess is concentrated in the vicinity of the

overpressure contact at the DZ/OFC boundary (Fig. 5.3a, d and 5.4a, d). High time

resolution simulations show that pore fluids start to rapidly diffuse within the OFC

first and then into the IFC and PSZ, where pore pressure increases along the fault-

parallel and -perpendicular direction. A quasi-steady state pore pressure regime is

attained in the fault zone on the order of days.

~ 154 ~

Simulations with no deformation control on permeability show that failure by

sliding along the PSZ will start at 356 and 372 years, for OFC = 1 m and 8 m,

respectively (Fig. 5.3b, e). At this time, the shear stress level, which is controlled by

the tectonic loading rate, matches the fault strength, which is dependent on pore fluid

pressure. Failure patches begin to develop along the PSZ (LF in Fig 4.4b, e), a

condition that coincides with the beginning of the nucleation phase of the

earthquake. The nucleation phase ends when the size of the sliding patch on the PSZ

equals that of the nucleation length (i.e. LF = LN in Figs. 4.4c, f), a condition leading

to the dynamic fast propagation of the rupture. Hence, the computed nucleation

length values can be used to estimate the duration of the nucleation stage, which is 6

months and less than 1 month long for OFC = 1 m and 8 m, respectively (Fig. 5.3c,

f).

Simulations with deformation control on permeability show that ductile

failure in the OFC will start at 326.6 years (Fig. 5.4b, f). This occurs before failure

along the PSZ, which will start at 327 years and 336 years, for OFC = 1 m and 8 m,

respectively (Fig. 5.4c, g). The duration of the nucleation stage is much less than 1

minute and more than 1 year long for OFC = 1 m and 8 m, respectively (Fig. 5.5d,

h).

Overall, simulations with no deformation control on permeability show that

the width of the OFC controls the length of the interseismic period (Fig. 5.5a). In

particular, the length of the interseismic period increases monotonically with OFC

width, with an OFC width of 8 m entailing an interseismic period about 20 years

longer than a 1 m wide OFC (356.3 years and 371.6 years respectively, Fig. 5.5a).

The occurrence of ductile failure in deformation-dependent permeability

simulations leads to significant increases in the OFC permeability (Fig 4.4c-d).

~ 155 ~

Compared to the previous case when permeability was not dependent on

deformation, the results show an increased pore pressure in the IFC and PSZ after

the onset of ductile failure, which reduces the interseismic period for the considered

values of OFC width (Fig. 5.5a). The interseismic period is up to 39.1 years shorter

for an 8 m wide OFC than for a 1 m wide one (Fig. 5.5a). Further, the interseismic

period takes a constant value of 326.6 years in the range of OFC widths 1 - 2.4 m

(Fig. 5.5a).

For both cases considered here, we also observe a monotonic decrease in the

nucleation length – the length of the rupture patch at the point of earthquake

nucleation (i.e. LF = LN). For the deformation-independent case, an OFC width of 8

m exhibits a nucleation length of 13.87 m, which is 0.39 m smaller than 14.26 m

obtained for a 1 m wide OFC (Fig. 5.5b). For the case of permeability controlled by

deformation, larger nucleation lengths are observed, which can be up to 1.08 m

larger than that obtained for the previous case for an OFC width of 8m (Fig 5.5b).

For the simplest case considered, when permeability was not dependent on

deformation, the duration of the earthquake nucleation phase gradually decreases

with increasing OFC width (Fig. 5.5c). For an OFC width of 8 m, the nucleation

phase length is 0.11 years, which is 0.5 years shorter than 0.61 years obtained for a 1

m wide OFC (Fig. 5.5c).

In simulations considering deformation-dependent permeability, the onset of

ductile deformation produces a more complex evolution of the earthquake nucleation

phase (Fig. 5.5c). First, the nucleation phase duration increases with OFC width,

from the order of 10 seconds to 1.84 years (Fig. 5.5c). However, the trend is not

smooth, and a sharp increase by more than three orders of magnitude, from 9.4

minutes to 28.1 days, is observed between OFC widths of 2.2 - 2.3 m (Fig. 5.5c).

~ 156 ~

Then, for OFC widths > 2.4 m, the nucleation phase duration decreases

monotonically from a value of 1.84 years (Fig. 5.5c).

Figure 5.5: Simulation results of the mode of failure independent pore pressure

diffusion model. Plots are provided of pore pressure (with failure (LF) and

nucleation length (LN)) and mode of failure (top row with an intersecting

~ 157 ~

overpressured aquifer thickness of 10m and middle row with an intersecting

overpressured aquifer thickness of 60m) and Mohr failure analysis(g) for the

OFC and PSZ at (a, d) initial conditions, (b, e) the onset of stable and (c, f)

unstable sliding. Simulations presented were carried out at a depth of 7km, with

a tectonic unloading rate of 0.15MPa/ year in the minimum principal stress

direction. The outer fault core width takes a base case value of 2m. During

simulations a millimetre scale horizontal spatial grid was used, and vertically a

logarithmic grid was used with an initially millimetre scale spatial grid. (40m of

1km simulated region shown vertically, fault core exaggerated horizontally.)

~ 158 ~

Figure 5.6: Simulation results of the mode of failure-controlled pore pressure

diffusion model. Plots are provided of pore pressure (with failure (LF) and

nucleation length (LN)) and mode of failure (top row with an intersecting

overpressured aquifer thickness of 10m and middle row with an intersecting

overpressured aquifer thickness of 60m) and Mohr failure analysis(i, j) for the

OFC and PSZ at (a, e) initial conditions, (b) the onset of ductile failure in the

OFC, (f) the onset of brittle failure in the OFC, (c, g) the onset of stable and (d,

h) unstable sliding. Simulations presented were carried out at a depth of 7km,

~ 159 ~

with a tectonic unloading rate of 0.15MPa/ year in the minimum principal stress

direction. The outer fault core width takes a base case value of 2m. During

simulations a millimetre scale horizontal spatial grid was used, and vertically a

logarithmic grid was used with an initially millimetre scale spatial grid. (40m of

1km simulated region shown vertically, fault core exaggerated horizontally.)

~ 160 ~

~ 161 ~

Figure 5.7: Earthquake nucleation parameters as controlled by the variation of

the intersecting overpressured aquifer thickness (overpressure contact height)

across multiple simulations, the fault is taken to be at a depth of 7km unloaded

at a rate of 0.15MPa/year in the minimum principal stress direction from a

critically stressed state. The outer fault core width takes a base case value of

2m. a) Interseismic period. b) Nucleation length. c) Nucleation phase.

~ 162 ~

~ 163 ~

Figure 5.8: Earthquake failure and nucleation length evolution for the end

member case studies in intersecting overpressured aquifer thickness, the fault is

taken to be at a depth of 7km unloaded at a rate of 0.15MPa/year in the

minimum principal stress direction from a critically stressed state. The

intersecting overpressured aquifer thickness takes a base case value of 40m

respectively. a) No deformation-dependent failure 1m outer fault core. b) No

deformation-dependent failure 8m outer fault core. c) Deformation-dependent

failure 1m outer fault core. d) Deformation-dependent failure 8m outer fault

core.

~ 164 ~

~ 165 ~

Figure 5.9: Earthquake failure and nucleation length evolution for the end

member case studies in intersecting overpressured aquifer thickness, the fault is

taken to be at a depth of 7km unloaded at a rate of 0.15MPa/year in the

minimum principal stress direction from a critically stressed state. The outer

fault core width takes a base case value of 2m. a) No deformation-dependent

failure 10m overpressure contact. b) No deformation-dependent failure 60m

overpressure contact. c) Deformation-dependent failure 10m overpressure

contact. d) Deformation-dependent failure 60m overpressure contact.

5.4.2 Intersecting overpressured aquifer thickness

We consider another parameter study in which lithological anisotropy in the

protolith control the size of the fractured dolostone layers and, hence, of the

intersecting overpressured aquifer thickness in the damage zone reservoir (Fig. 3.2).

In our simulations, the thickness of dolostone layers and, hence, the

overpressure height is varied from 10 to 60 m in steps of 10 m. We ran fluid flow

simulations to examine in detail two case study scenarios, for deformation-

independent (Fig. 5.6) and deformation-dependent permeability (Fig. 5.7),

respectively. In both case scenarios, the OC height takes values of 10 m and 60 m.

These cases reveal details about pore pressure evolution and failure distribution

throughout the fault core, at the extremes of the considered range of the OC height

parameter (Figs. 5.6-7). The other fault zone parameter of relevance, the OFC width,

takes a base case value of 2 m.

Simulations of fluid flow with no deformation control on permeability show

that failure by sliding along the PSZ will start at 378 and 355 years, for OC = 10 m

and 60 m, respectively (Fig. 5.6b, e). The nucleation phase duration is 4 months and

3 months for OC = 10 m and 60 m, respectively (Fig. 5.6c, f).

~ 166 ~

Simulations of fluid flow with deformation control on permeability show that

ductile failure in the OFC will start at 326.6 years (Fig. 5.7b, f). This occurs before

failure along the PSZ, which will start at 349.7 years and 326.6 years, for OC = 10 m

and 60 m, respectively (Fig. 5.7c, g). The duration of the nucleation stage is more

than 7 years and much less than 1 minute for OC = 10 m and 60 m, respectively (Fig.

5.7d, h).

Overall, simulations with no deformation control on permeability show that

the OC height controls the length of the interseismic period (Fig. 5.8a). In particular,

the length of the interseismic period decreases monotonically with OC height, with

an OC height of 60 m entailing an interseismic period about 23.4 years shorter than a

10 m thick OC height (378.2 years and 354.9 years respectively, Fig. 5.7a-h; Fig.

5.8a). Increasing OC height now increases the extent and magnitude of the pore

pressure that develops in the IFC and, subsequently, decreases the shear strength of

the PSZ.

When permeability is dependent on deformation, fluid flow simulations

including ductile failure in the OFC show that the interseismic period reduces by up

to 33.3 years for a 60 m OC height compared to 357 years for a 10 m height one

(Fig. 5.8a). Further, the interseismic period takes a constant value of 326.6 years in

the range of OC heights > 40 m (Fig. 5.8a).

For both cases considered here, we also observe a monotonic increase in the

nucleation length (Fig. 5.8b). For the deformation-independent case, an OC height of

10 m exhibits a nucleation length of 13.7 m, which is 0.6 m smaller than 14.3 m

obtained for a 60 m high OC (Fig. 5.8b). For the case of permeability controlled by

deformation, larger nucleation lengths are observed, which can be up to 0.8 m larger

than that obtained for the previous case for an OC height of 60 m (Fig 5.6b).

~ 167 ~

For the simplest case considered, when permeability was not dependent on

deformation, the duration of the earthquake nucleation phase shows a subtle decrease

from 4 and 3 months for OC height of 10 m and 60 m, respectively (Fig. 5.8c).

In simulations considering deformation-dependent permeability, the onset of

ductile deformation produces a more complex evolution of the earthquake nucleation

phase (Fig. 5.8c). First, for OC heights between 10 m and 35 m, the nucleation phase

duration decreases monotonically from values of 2.62 to values of 1.3 years (Fig.

5.8c), respectively. Then, a sharp decrease by almost 5 orders of magnitude, from

209 days to 264 seconds, is observed between OC heights of 35 - 40 m (Fig. 5.8c).

Finally, the nucleation phase duration decreases more gradually from 264 to 15

seconds, for OC height increasing from 40 m to 60 m (Fig. 5.8c).

5.5. Discussion and Conclusions

5.5.1 Dimensions of fault zone architecture and lithological variations in the

protolith control pressure diffusion and earthquake recurrence interval

We model fault zone fluid flow considering the simplest case scenario where

permeability of the fault core does not depend on deformation, but solely on pore

pressure. Our results show that the thickness of the fault core domain and the

intersecting overpressured aquifer thickness in a reservoir in the damage zone,

abutting the fault core, act as controls on pore pressure diffusion.

For the specific fault zone architecture considered in our case study, an

increased width of the OFC acts as a barrier to fluid flow. It reduces the extent and

magnitude of the pore pressure that develops in the IFC and, subsequently, affects

the shear strength of the PSZ (Fig 5.3 a-f). For a given tectonic loading rate, a

thinner fault core will result in a more effective fault weakening, as the fault

frictional strength will reduce at a faster rate due to higher pore pressures (Fig. 5.3b).

~ 168 ~

The impact of fluid flow on the fault being more significant for faults with a thinner

rather than thicker outer fault core. In the absence of fluids, the base mechanical

strength of the slipping portion of the fault did not vary with thickness. However, a

thinner fault core shows a larger rupture patch at the point of earthquake nucleation

(Fig. 5.5b) and a longer nucleation phase (Fig. 5.5c).

Similarly, an increasing intersecting overpressured aquifer thickness in the

damage zone produces a higher magnitude of pore pressure in the fault core, which

weakens the principal slip zone located in the centre of the fault core. A higher

overpressure contact will result in a larger rupture patch at the point of earthquake

nucleation (Fig. 5.8b) and in a longer nucleation phase (Fig. 5.8c).

These counterintuitive results are due to the heterogeneous distribution of

pore fluid pressure within the IFC and, particularly, along the PSZ. Pore pressure

values within the IFC and along the PSZ control the strength of the PSZ, which is

reduced by lower effective normal stresses at higher pore pressures. On the other

hand, the imposed tectonic loading controls the shear stress build-up along the PSZ,

which is independent of pore fluid pressure and operates at same rate for any

investigated case. Failure along the PSZ first occurs in patches where higher pore

fluid pressures have reduced the PSZ strength, and then slowly spreads out along the

PSZ due to shear stress increase by tectonic loading. For a wider OFC or lower

intersecting overpressured aquifer thickness, the delayed onset of failure along the

high pressure PSZ means that, outside the pressurised PSZ patch, shear stress is

relatively high and close to the PSZ shear strength. This makes the nucleation phase

relatively short as small amounts of tectonic loading, hence short times, are needed

to grow the sliding patch to the size of the nucleation length (Fig. 5.9a-b; Fig. 5.10a,

b). On the other hand, for thinner OFCs and higher intersecting overpressured

~ 169 ~

aquifer thickness, the anticipated onset of failure means that larger amount of

tectonic loading, hence longer times, are needed to grow the sliding patch outside of

the pressurised PSZ patch, where sliding first initiated (Fig. 5.9a-b; Fig. 5.8a-b).

It is well known that the scale of lithological variations in the protolith,

controlling the size of overpressure reservoir in the damage zone, and fault zone

architecture significantly affect the hydrogeological conditions of fault zones. Here,

our results show that these parameters also control the evolution of fault strength

during the seismic cycle and, hence, the length of the interseismic period and the

duration of the nucleation phase of an earthquake. These findings have relevant

implications for estimates of seismic hazards, such as the recurrence interval of

earthquakes.

5.5.2 Ductile deformation in the fault core controls pore pressure diffusion

during the seismic cycle

The occurrence of fluid driven ductile, distributed fracturing in the fault core

acts as a primary control on pore pressure diffusion during the interseismic period. In

fact, ductile failure can increase the permeability of fault core rocks by several orders

of magnitude and enhances the diffusion of pore pressure toward the primary slip

zone, located into the centre of the fault.

5.5.2.1 Failure initiation and duration of the interseismic period

The occurrence of ductile failure in the fault core causes fault weakening

along the PSZ at a faster rate than when fluid flow is not affected by deformation in

the fault core.

Our results show that, for a given constant tectonic loading rate and in the

presence of ductile deformation in the fault core, failure along the PSZ of the fault

~ 170 ~

can initiate earlier for thinner fault cores (OFC) and higher contact pressure (OC)

heights (Fig. 5.5a, 5.8a).

Similarly, to the previous case examined in Section 5.1, early fault initiation

is due to the larger input of pore fluid pressure produced by a thinner OFC or a

higher OC, following ductile failure in the fault core, which causes the weakening of

the PSZ. For a thicker OFC and a smaller OC, a larger input of steady tectonic

loading, hence a longer time, is required to trigger failure along the PSZ.

The implications of these results are that the duration of the interseismic

period is also affected by the occurrence of ductile failure in the fault core, and by

fault zone architecture and lithological variations in the protolith. In our specific case

study, a critical fault core thickness (OFC < 2 m) and intersecting overpressured

aquifer thickness (OC > 40 m) can be identified, beyond which the duration of the

interseismic period does not vary. The attainment of a characteristic interseismic

period duration, controlled by local fault zone factors, is due to the development of a

failure patch whose dimension are comparable to those of the nucleation length, both

being dependent on pore pressure.

These results again have implications for seismic hazards evaluation, such as

the estimation of the recurrence interval of earthquakes.

5.5.2.2 Earthquake nucleation phase and premonitory signal detection

When pore pressure distribution during the interseismic is not affected by

deformation in the fault core, our results show that the nucleation length

monotonically increases and the duration of the nucleation phase is gradually longer

for thin fault cores and greater intersecting overpressured aquifer thicknesss (Fig.

5.5b-c, 5.8b-c).

~ 171 ~

The increase in nucleation phase duration can be explained by the pore

pressure distribution within the IFC, which controls the strength of the PSZ. A

thinner OFC and a larger OC height will reach failure along the pressurised portion

of the PSZ earlier, due to a high pore pressure in the fault core. However, they will

still result in a longer nucleation phase, due to the lower shear stress level outside the

pressurised portion of the PSZ, which requires a longer time of steady tectonic

loading to grow the failure patch to the size of the nucleation length (Fig. 5.9a-b;

5.10a,b).

In simulations considering deformation-dependent permeability, the onset of

ductile deformation produces a more complex evolution of the earthquake nucleation

phase (Fig. 5.3c, 5.6c).

These results can be explained by rapid and transient fluctuations in pore

pressure within the IFC and, particularly, along the PSZ, after ductile failure is

activated in the OFC. For thicker OFC (> 3 m) and low values of OC height (< 35

m), steady state pore pressure conditions are attained in the fault core at the time of

failure initiation within a pressurised patch along the PSZ (Fig. 5.4c-d, 5.7c-d),

which is smaller than the nucleation length. This means that, after sliding initiation,

the growth of the failure patch is relatively slow and solely controlled by steady

shear stress increase by tectonic loading (Fig. 5.9d; 5.10c). For a thinner OFC,

between 2.4 m and 3 m, and an increasing OC height, between 35 m and 55 m, a

sharp first and then more gradual decrease in the duration of the nucleation length is

observed (Fig. 5.5c, 5.7c). This can be explained by transient pore pressure

conditions in the fault core, caused by ductile failure at the time of fault initiation in

a pressurised patch along the PSZ (Fig. 5.5b-d, 5.7b-d). In fact, the subsequent

growth of the failure patch is relatively fast and controlled by transient pore pressure

~ 172 ~

evolution along the PSZ and steady shear stress increase by tectonic loading. Finally,

for thin OFC (< 2.4 m) and large OC heights of 60 m, failure will initiate along the

PSZ with a several metre-long failure patch, of similar size compared to the

nucleation length. The failure patch can very quickly grow to the size of the

nucleation length, nucleating an earthquake on the order of seconds (Fig. 5.9c,

5.10d).

In simulations without ductile failure (Fig. 5.5c, 5.8c) or in simulations

where ductile failure is significantly removed in time from the onset of stable sliding,

the nucleation phase is on the order of days to years. On the other hand, simulations

where ductile failure immediately precedes failure along the PSZ have nucleation

phases on the order of seconds.

Our parameter studies often predict large aseismic slip episodes, which can

precede the nucleation of an earthquake, and last for months to years (Fig. 5.5c,

5.8c). Evidence for aseismic slip episodes preceding major earthquake events are

supported by independent geophysical observations for the recent Mw 9, 2011

Tohoku earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1,

2014 Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It has been

interpreted that these early slip events are related to the preparatory nucleation phase

of the main events (Guglielmi et al., 2015).

Understanding the controls exerted on the duration of the nucleation phase of

earthquakes has important implications for premonitory signal detection, as

identifying extended nucleation phases of active faults would increase the likelihood

of detection of early seismicity warnings. Our case study shows that, for a given

fault, characteristic values of fault zone parameters (e.g. fault core width and

intersecting overpressured aquifer thickness) govern the transition from relatively

~ 173 ~

long – on the order of days to months – easily detectable nucleation phase to very

short ones – on the order of seconds to minutes – difficult to detect. As such, realistic

estimates of uncertainty in fault zone architecture dimension must inform hazard

estimates, as small differences in scale can correspond to significant variation of the

nucleation phase, from seconds to years.

~ 174 ~

CHAPTER 6

Final discussions and conclusions

~ 175 ~

6. Final discussion and conclusions

6.1 Introduction

In this thesis I have performed a series of numerical simulations and

parameter studies of pore pressure diffusion and fluid flow in fault zones with a

realistic complex architecture. In my simulations, fault zone permeability is

controlled by pore pressure and deformation, as observed in laboratory experiments.

The results of my simulations are then used in some specific case studies of

seismically active fault zones, where I simulate pore pressure distribution during the

seismic cycle. In particular, the role played by pore pressure evolution and

distribution during the interseismic period and the nucleation phase preceding an

earthquake is investigated.

The simulations are constrained by a simplified low-porosity fault zone

model, which still encompasses the essential features of natural seismogenic fault

zones with complex architecture. The numerical simulations are conducted using a

multiphysics model of nonlinear diffusion in low porosity fault zones, which in turn

incorporates: 1) models of fault zone with complex architecture; 2) brittle and ductile

mode of failure within the fault core domain; 3) pore pressure- and deformation-

dependent permeability constrained by triaxial deformation experiments with fluid

flow; 4) basic assumptions about the physics of the earthquake nucleation processes.

Mathematically, I present a treatment of the fault zone and the fluids it

contains as a non-smooth dynamical system. The results of these studies are then

discussed in detail at the end of each of the research chapters. This final discussion

chapter aims to highlight and contrast the main findings of the preceding chapters. I

will also discuss the implications for fluid-induced earthquake nucleation,

~ 176 ~

earthquake forecasting and premonitory signal detection. Opportunities for future

work will be signposted when discussing the results and their implications.

6.2 Summary and comparison of main findings

In Chapter 4, we present a parameter study of pore pressure diffusion from an

overpressured reservoir, located in the fault damage zone abutting the fault core.

Two end-member case studies at the extremes of the pore pressure range – e.g.

supra-hydrostatic vs. sub-lithostatic conditions – were examined in further detail.

The fault zones used to establish the base case, around which pore fluid factor was

varied, are analogues of the seismic sources in the hypocentre zone of the Northern

Apennines seismic belt (e.g. Mirabella et al., 2008; De Paola et al., 2008; Collettini

et al., 2009). In simulations, we considered that faults were saturated with

supercritical CO2, at a hypocentre depth of 7 km. This was consistent with borehole

measurements, which show the presence of overpressured CO2 within the Triassic

Evaporites host rocks at up to 80% of the lithostatic load (Chiodini and Cioni, 1989;

Collettini and Barchi, 2002; Miller et al., 2004).

Fault zone architecture is taken from field observations of analogous

evaporite faults reporting a 3 m wide fault core with a complex internal structure,

where most of the seismic slip accommodated by the fault is localised (Collettini et

al., 2009; De Paola et al., 2008). Outside the fault core, a well-developed damage

zone (DZ) is observed within thick (a few meters to tens of meters) fractured

dolostones interbedded with undeformed foliated anhydrite, extending at least 10 m

in either direction from the fault core. At depth, high porosity fractured dolostones

and low porosity foliated anhydrite layers in the DZ are believed to act as an

efficient reservoir-seal system, where supercritical CO2 over- pressurise can develop.

~ 177 ~

In Chapter 5, we extend this analysis to a more generalised parameter study,

where fault zone parameters are systematically varied to account for the variability

of fault zone structure and dimensions observed in nature. In particular, we retain the

same base complex fault zone structure from analogues of the seismic sources in the

hypocentre zone of the Northern Apennines seismic belt. What we vary instead are

the dimensions of the lithological heterogeinity in the protolith and damage zone,

and the dimensions of the fault core domains. The specific parameters varied are the

width of the outer fault core (OFC) and the thickness of the pressurised reservoir in

the DZ, while pore fluid factor is held constant.

6.2.1 Mode of failure controls pore pressure diffusion during the seismic cycle

and earthquake recurrence interval

In previous studies, numerical simulation techniques have been used to

analyse fault reactivation. These studies model pore pressure distribution and

subsurface fluid flow within faults, which eventually cause fault reactivation (Cappa

and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). Further, a number of

metre- to kilometre-scale models have refined these results to include simplistic

models of fault zone architecture and pore pressure dependent fault zone transport

properties (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005;

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009).

 The simulations within this thesis represent a novel implementation of

previous studies, which is applied to a new case study of seismic faults from the

Italian Northern Apennines seismic belt. These simulations also represent an

extension of simulations in previous studies, as they include complex and realistic

models of fault zone architecture and the role played by different model of failure,

e.g. brittle vs. ductile, in the fault core. Rock failure and deformation-controlled

~ 178 ~

porosity/permeability are considered in these simulations, throughout the fault core

and away from any primary slip zones. Both deformation and pore pressure

dependency of rock transport properties observed in triaxial deformation

experiments with fluid flow is retained in my simulations. Failure envelopes and

permeability tensor of anhydrite rocks in the fault core domains are obtained from

triaxial loading experiments performed on anhydrite borehole samples, with foliation

oriented in a sub-parallel and sub-orthogonal direction to loading and fluid flow

direction (De Paola et al., 2009).

Deformation by brittle and ductile mode of failure both acted as primary

controls on pore pressure diffusion into fault cores. In my simulations, when fracture

patterns were created by either brittle or ductile mode of failure the average fault

core permeability increased by several orders of magnitude. Anisotropic

permeability variations in the fault core affect both the fault parallel and fault normal

pore pressure distribution. In all cases, the occurrence of failure during the

interseismic period enhanced pore pressure diffusion into the fault core, compared to

simulations where failure in the fault core was not accounted for. This resulted in an

earlier fault failure, where slip initiated along the main slip zones with a larger

failure patch. Further, the magnitude of permeability increase was greater in

simulations where brittle failure occurred, so too was the development of pore

pressure into the fault core. My results show that mode of failure occurring in the

fault core does affect pore pressure distribution and fluid flow, which have an impact

on the duration of the interseismic period and on the size of the initial rupture patch.

Such effects are of the same order of magnitude as local factors, such as fault core

thickness and the level of pressure and thickness of pressurised reservoirs in the

damage zone. As such, the aforementioned simulations which consider simple fault

~ 179 ~

zone architecture and generic deformation, neglecting the role of specific mode of

failure, did not consistently consider all primary factors at work (Rinaldi et al.,

2014).

In our specific case study, a critical fault core thickness (OFC < 2 m) and

intersecting overpressured aquifer thickness (OC > 40 m) can be identified beyond

which the duration of the interseismic period does not vary. We believe that the

attainment of a characteristic interseismic period duration, controlled by local fault

zone factors, is due to the development of a failure patch whose dimension are

comparable to those of the nucleation length, both being dependent on pore pressure.

6.2.2 The role of pore-fluid pressure during the earthquake nucleation phase

Simulations presented in Chapters 4 and 5 show that both the inclusion of

realistic models of fault zone architecture and deformation-dependent permeability

(brittle and ductile mode of failure) control both the size of the sliding patch during

earthquake nucleation and the theoretical nucleation length, which is the predicted

critical size required to start the propagation of fast seismic sliding. The conditions

also affect the duration of the nucleation phase, which is the time interval between

the initiation of slow failure and onset of fast seismic sliding along the main slip

zone. Simulation of the earthquake nucleation phase has also given insight into the

role that aseismic slip plays before a major earthquake is triggered. Further, it is

evident from the parameter studies of Chapters 4 and 5 that the variation of each of

these parameters acts to enhance or inhibit the development of pore pressure in the

centre of the fault.

 Increasing the pore fluid factor, thickness of the pressurised reservoir in the

damage zone abutting the fault core and decreasing the thickness of the fault core all

act to enhance the magnitude of pore pressure in the fault core. Subsequently, the

~ 180 ~

duration of the interseismic period is reduced, as an earthquake can nucleate on the

fault plane sooner, with a larger rupture patch. However, my results show that the

length of the nucleation phase is affected by the presence and timing of ductile

deformation occurring in the fault core. In simulations without ductile failure or in

simulations where ductile failure is significantly removed in time from the onset of

sliding along the main slip zone, the nucleation phase duration is on the order of

days to years. On the other hand, simulations where ductile failure immediately

precedes failure along the main slip zone have nucleation phases lasting on the order

of seconds.

In the simulations presented in this thesis, the lithostatic pressure and

hydrogeological conditions considered determine that any fluid present in the fault

would be in a single supercritical phase, and consistently several orders of magnitude

below the criteria for non-Darcy flow (Thauvin and Mohanty, 1998). However, the

same simulation techniques could be applied more broadly, and to shallower faults,

if simulations of compressible, multiphase and/or multicomponent flow were

considered, where the criteria for non-Darcy flow is met (e.g. Goudarzi, Mathias, &

Gluyas, 2016).

6.3 Broader implications of main findings

6.3.1 Implications for fluid-induced seismicity and earthquake forecasting

The results of Chapter 4 suggest that the level of pore pressure in pressurised

reservoirs in the damage zone acts as a primary control on the diffusion of pore

pressure into the fault core. My results show that the resultant pore pressure

distribution affects the length of the interseismic period and the size of the rupture

patch. Increasing the level of pore pressure of supercritical CO2 in the damage zone

~ 181 ~

reservoir acts to increase the length of the rupture patch and the duration of the

nucleation phase, while decreasing the length of the interseismic period. Rupture

patch dimensions have been related to rock transport properties in broadly similar

studies in different locations on metre to kilometre scales. However, none of the

previous studies considered the role played by local factors, and their effects on the

duration of the interseismic period or nucleation phase (Cappa, 2009; Cappa and

Rutqvist, 2011b; Mazzoldi et al., 2012; Rutqvist et al., 2007).

In Chapter 5 I show that the thickness of the pressurised reservoir in the

damage zone and of the fault core also act as primary controls on the diffusion of

pore pressure into the fault core. These fault zone parameters influence the length of

the interseismic period and the size of the rupture patch. In this case, decreasing the

thickness of the outer fault core and increasing the thickness of the pressurised

reservoir in the damage zone act to increase the length of the rupture patch, while

decreasing the length of the interseismic period. Also, both findings presented in

Chapter 4 and 5 suggest that the inclusion of complex, realistic models of fault zone

architecture alters interseismic period, nucleation length and the length of the

nucleation phase. Hence, they are necessary to accurately simulate pore pressure

diffusion and earthquake nucleation in low-porosity rocks.

Similar results have been recovered from TOUGH-FLAC simulations of

carbon sequestration operations in interbedded shale and limestone (Rinaldi et al.,

2014b). However, in these simulations much simpler fault zone architecture were

considered, and rock the relations between rock physical parameters (e.g. structural

porosity due to deformation and permeability) and pore pressure were more general

and not constrained with triaxial deformation experiments with fluid flow. Further,

the specific role played by mode of failure, e.g. brittle vs. ductile mode of failure,

~ 182 ~

and the effects acused on earthquake nucleation were not considered (Rinaldi et al.,

2014) in these studies.

Simulations presented in both Chapters 4 and 5 show that small-scale

fracturing acts to increase fault core permeability by several orders of magnitude

and, therefore, to increase the development of pore pressure in the fault core. Fault

zone parameters, such as fault core domains thickness, control the occurrence and

relative timescale of small-scale fracturing in the fault core. Further control on the

timescale of small-scale fracturing is exerted by the initial hydrogeological

conditions of the fault zone (e.g. level of pressure and thickness of connected

reservoirs in the damage zone) and their evolution during the interseismic period.

Hence, information on coseismic fluid discharge and fluid recharge between the fault

zone and the connected aquifers could thus be inferred from the hydrogeological

monitoring of springs (e.g., Barberio et al., 2017) and boreholes in the epicentral area

or in the surrounding areas of injection sites. These observations could then be used

to estimate the pore pressure evolution of the fault zone and its surroundings during

the seismic cycle.

To conclude, key fault zone parameters and lithological variations in the

protolith control small-scale fracturing in the fault core, which can modulate the

length of the interseismic period. Low resolution of indirect measurement methods

and generic inference from specific natural analogues make fault zone parameters

poorly constrained. Hence, numerical simulations and multiphysics models of

seismic faults are a useful tool to predict the distribution and evolution of pore fluid

pressure during the seismic cycle.

~ 183 ~

6.3.2 Implications for earthquake nucleation phase duration and premonitory

signal detection

The parameter studies of pore pressure in a supercritical CO2 reservoir in the

damage zone in Chapter 4 indicate that it controls the length of the nucleation phase,

thus increasing levels of pore pressure in the fault core and extending the duration of

the nucleation phase by several years. This nucleation length control is much more

pronounced when deformation dependent permeability is considered. The

dependence of nucleation phase on pore pressure is mediated by the nonlinear trade-

off as increasing pore pressure decreases fault strength but also decreases fault

stiffness and therefore increases the critical patch size required for earthquake

nucleation. A secondary layer of complexity is added when small scale fracturing in

the fault core, accommodated by brittle or ductile mode of failure, is also considered.

This fracturing acts to reduce the length of the nucleation phase to more realistic

values, ranging from a few seconds to a few days, compared to several years

required in simulations with no deformation in the fault core accounted for.

In Chapter 5, the thickness of the pressurised reservoir in the damage zone

and the thickness of the fault core are both shown to control the length of the

nucleation phase, when no deformation in the fault core is accounted for. In both

cases, increasing thickness acts to reduce the length of the nucleation phase.

However, the inclusion of small-scale fracturing, accommodated by brittle or ductile

mode of failure in the fault core, reveals some rather complex evolution patterns of

the nucleation length, which in some cases extends by several years and, in other,

reduces to the order of seconds.

Our case studies in chapter 4 and 5 show that, for a given fault, characteristic

values of fault zone parameters (e.g. fault core width and intersecting overpressured

~ 184 ~

aquifer thickness) govern the transition from relatively long (days to months) and

easily detectable nucleation phase to very short ones (seconds to minutes) and

difficult to detect. As such, realistic estimates of uncertainty in fault zone

architecture dimension must inform hazard estimates. Small differences in scale can

correspond to significant variation of the duration of the nucleation phase, from

seconds to years. This hypersensitivity to local fault zone factors has significant

implications for premonitory signal detection. In fact, any extension of the

nucleation phase where the fault undergoes stable sliding may be more readily

detected using remote sensing techniques which can resolve surface displacements

down to 2cm (Guerrieri et al., 2010).

Further, this hypersensitivity to initial conditions supports the idea that the

fault-fluid system can be treated as a dynamical system, and is consistent with the

theoretical analysis of said system (Anghel et al., 2004; Kim, 2017; Sobolev, 2011).

The consideration of fault zone fluids and small-scale fracturing in simulations

mediates an effective nonlinear relationship in fault frictional strength. Similar

chaotic behaviour emerges in both experimental (Johnson et al., 2012) and

seismological (Shelly, 2010) observations of nonlinear friction in fault systems.

Both Chapters 4 and 5 include simulations which predict long periods of aseismic

slip on the order of months to years. Episodes of aseismic slip on fault zones has

been observed on numerous occasions throughout the last decade, although they

were generally not linked to the triggering of seismicity. Recently, large aseismic

slip episodes have been identified immediately preceding the recent Mw 9, 2011

Tohoku earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1,

2014 Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It is argued that

these aseismic slip events, each lasting a few months, contributed to the triggering of

~ 185 ~

earthquakes and were related to their preparatory nucleation phase (Guglielmi et al.,

2015).

The control exerted by the local factors over the interseismic period has

significant implications for earthquake forecasting. On the other hand, estimates of

the duration of the nucleation phase have implications for earthquake early warning

systems. We believe that the aseismic creep predicted by our simulations (creep on

fault patches > 30m) could be detectable well in advance of a significant seismic

event, particularly by using geodetic data and new satellite remote sensing

techniques which can resolve surface displacements down to 2cm (Guerrieri et al.,

2010).

6.4 Future modelling

Simulations of the earthquake nucleation phase were able to resolve the

duration of this phase to the order of a few seconds in several hundred-year

simulations consistently, despite high instantaneous stiffness in the Jacobian matrix

for the fault-fluid system (eigenvalues differing by a factor of 1011). This efficiency

is possible by considering the permeability transitions associated with small scale

fracturing, brittle or ductile mode of failure, and stable sliding on the fault as the

discontinuous transitions of a non-smooth dynamical system and conducting

simulations with an explicit singly diagonal implicit Runge-Kutta (ESDIRK) solver

(for A-,L-,S-stability) and event detection.

While simulations presented in Chapter 4 accounted for the occurrence of

brittle mode of failure, those in Chapter 5 did not due to the level of pore pressure

considered in the damage zone reservoir. This was due to the preliminary parameter

studies, in the pressure ranges likely to produce brittle failure, being significantly

~ 186 ~

more computationally intensive. The simulation time was approximately two orders

of magnitude larger due to the gradual, phased development of brittle mode of

failure, as opposed to the instant onset of ductile failure.

Future work may consider running higher resolution parameter studies in

these brittle failure ranges, although production of more performant code might be

necessary. The current simulation code performs the majority of its short timestep

calculations immediately after large changes in permeability following brittle or

ductile mode of failure. The subsequent pressure front might be resolved more

efficiently with existing computational techniques (e.g. Weighted Essentially Non-

Oscillatory Schemes, Liu, Osher, & Chan, 1994). Beyond this, performance analysis

of simulations indicates that a similar amount of execution time is spent in the

MATLAB ODE solver library itself as in the MATLAB numerical simulation script

I have written. The MATLAB execution engine calls C++ code using just-in-time

compilation. This code itself is heavily optimised but also general enough to be

versatile. Given the already high level of code optimization present in MATLAB’s

built-in libraries it is likely that the only possibility for performance improvements,

beyond one order of magnitude, likely lies in memory optimisation with respect to

processor caches. The most promising way forward might be hand optimised C++

code with existing solver libraries (e.g. CVODE; Hindmarsh et al., 2005) to

potentially entirely avoid cache thrashing (e.g. (Jin et al., 1998)).

6.5 Conclusions

The work set out in this thesis illustrates a range of seismic processes present

in natural low porosity fault zones. These processes are examined in numerical

simulations of with transport and failure properties constrained using triaxial loading

experiments with fluid flow. The results of these simulations have broad

~ 187 ~

implications for fluid flow and earthquake nucleation in low porosity fault zones and

are described below:

• Several local factors of fault zones exert a primary control on the diffusion of

pore pressure into the fault core of low porosity faults. Hence, these factors

control the duration of the interseismic period, the size of the rupture patch

and the duration of the nucleation phase of an earthquake. Specifically, fault

core width and the thickness and level of pore pressure in pressurised

reservoirs in the damage zone abutting the fault zone all mediate the

aforementioned effect.

• Small-scale fracturing in the fault core, accommodated by either brittle or

ductile mode of failure, acts as a primary control of the duration of the

interseismic period, the size of the rupture patch, and the duration of the

nucleation phase of an earthquake. The magnitude of this effect was

significant in simulations that also included realistic, complex models of fault

zone architecture. Therefore, both must be considered to produce realistic

results.

• Earthquake rupture patch development and nucleation is governed by highly

nonlinear processes. The fault-fluid system exhibits hypersensitivity to initial

conditions, consistent with a chaotic dynamical system. This hypersensitivity

to initial conditions has large implications for earthquake forecasting, and

premonitory signal detection, as small centimetre scale uncertainty in fault

zone parameters controlled by local factors can have outsized effects on the

duration of the interseismic period, rupture patch dimension and length of the

nucleation phase.

~ 188 ~

that these aseismic slip events, lasting a few months, contribute to the

triggering of earthquakes and are related to their preparatory nucleation phase

(Guglielmi et al., 2015).

Overall, our results show that both the inclusion of realistic models of fault

zone architecture and deformation-dependent permeability (brittle and ductile

failure) control the size of the sliding patch (Fig. 4.7b) during earthquake

nucleation and the duration of the nucleation phase (Fig. 4.7c).

The size of the failure patch during the nucleation phase is always larger

when realistic models of fault zone architecture and deformation-dependent

permeability are considered (Fig. 4.7b). Small scale fracturing by brittle

failure, occurring for initially high pore pressures, provides the largest

slipping patches (> 30 m in Fig. 4.7b). These results are of relevance when

considering that technological improvements in signal/noise ratio and spatio-

temporal resolution of geodetic data are lowering the detection thresholds for

measurements of aseismic slip. In particular, the advent of new satellite radar

missions now enables a systematic, global investigation of pre-seismic slip for

the first time.

 Our results show that the duration of the nucleation phase is significantly

reduced from a few years to a few months at high values of initial pore

pressure, when realistic models of fault zone architecture and deformation-

dependent permeability are considered. Interestingly, a few months is also the

time scale of aseismic slip measured during the nucleation phase of some

recent large earthquakes (Fig. 4.7c; Mw 9, 2011 Tohoku and Mw 8.1, 2014

Iquique earthquakes).To conclude, estimates of the duration of the nucleation

~ 189 ~

phase have implications for earthquake early warning systems. In fact,

intermittent aseismic creep on fault patches > 30 m in diameter, over a period

of few months, could be detectable well in advance of a significant seismic

event, perhaps using geodetic data and new satellite remote sensing

techniques.

~ 190 ~

BIBLIOGRAPHY

Bibliography

~ 191 ~

Bibliography

Ake, J., Mahrer, K., O ’connell, D., Block, L., 2005. Deep-Injection and

Closely Monitored Induced Seismicity at Paradox Valley, Colorado.

Bull. Seismol. Soc. Am. 95, 664–683.

https://doi.org/10.1785/0120040072

Anghel, M., Ben-Zion, Y., Rico-Martinez, R., 2004. Dynamical System

Analysis and Forecasting of Deformation Produced by an Earthquake

Fault. Pure Appl. Geophys. PAGEOPH 161, 2023–2051.

https://doi.org/10.1007/s00024-004-2547-9

Atkinson, G., Assatourians, K., Cheadle, B., Greig, W., 2015. Ground

Motions from Three Recent Earthquakes in Western Alberta and

Northeastern British Columbia and Their Implications for Induced-

Seismicity Hazard in Eastern Regions. Seismol. Res. Lett. 86, 1022–

1031. https://doi.org/10.1785/0220140195

Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz,

R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R.M., Liu, Y., Van

Der Baan, M., Kao, H., Baan, M. van der, Kao, H., 2016. Hydraulic

Fracturing and Seismicity in the Western Canada Sedimentary Basin.

Seismol. Res. Lett. 87, 631–647. https://doi.org/10.1785/0220150263

Bagterp Jørgensen, J., Rode Kristensen, M., 2018. A FAMILY OF ESDIRK

INTEGRATION METHODS.

Baisch, S., Voros, R., Weidler, R., Wyborn, D., 2009. Investigation of Fault

Mechanisms during Geothermal Reservoir Stimulation Experiments in

~ 192 ~

the Cooper Basin, Australia. Bull. Seismol. Soc. Am. 99, 148–158.

https://doi.org/10.1785/0120080055

Bao, X., Eaton, D.W., 2016. Fault activation by hydraulic fracturing in

western Canada. Science 354, 1406–1409.

https://doi.org/10.1126/science.aag2583

Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017.

Hydrogeochemical changes before and during the 2016 Amatrice-Norcia

seismic sequence (central Italy). Sci. Rep. 7, 11735.

https://doi.org/10.1038/s41598-017-11990-8

Barchi, M., 2002. Lithological and structural controls on the seismogenesis of

the Umbria region: observations from seismic reflection profiles. Boll.

della Soc. Geol. Ital. 121, 855–864.

Berryman, J.G., 1992. Effective stress for transport properties of

inhomogeneous porous rock. J. Geophys. Res. 97.

https://doi.org/10.1029/92jb01593

Bullock, R.J., De Paola, N., Holdsworth, R.E., Trabucho-Alexandre, J., 2014.

Lithological controls on the deformation mechanisms operating within

carbonate-hosted faults during the seismic cycle. J. Struct. Geol. 58, 22–

42. https://doi.org/10.1016/j.jsg.2013.10.008

Burke, L., 2011. Carbon dioxide fluid-flow modeling and injectivity

calculations. U.S. Geol. Surv. Sci. Investig. Rep. 2011 5083, 16.

Byerlee, J., 1978. Friction of rocks. Pure Appl. Geophys. PAGEOPH 116,

615–626. https://doi.org/10.1007/BF00876528

~ 193 ~

Byerlee, J.D., 1968. Brittle-Ductile Transition in Rocks.

https://doi.org/10.1029/JB073i014p04741

Caine, J.S., Evans, J.P., Forster, C.B., Saul, J., City, S.L., Caine, J.S., Evans,

J.P., Forster, C.B., 1996. Fault zone architecture and permeability

structure. Geology 24, 1025. https://doi.org/10.1130/0091-

7613(1996)024<1025:FZAAPS>2.3.CO;2

Caine, J.S., Forster, C.B., 1999. Fault Zone Architecture and Fluid Flow :

Insights From Field Data and Numerical Modeling.

Campillo, M., Favreau, P., Ionescu, I.R., Voisin, C., 2001. On the effective

friction law of a heterogeneous fault. J. Geophys. Res. 106, 16307.

https://doi.org/10.1029/2000JB900467

Cappa, F., 2009. Modelling fluid transfer and slip in a fault zone when

integrating heterogeneous hydromechanical characteristics in its internal

structure. Geophys. J. Int. 178, 1357–1362.

https://doi.org/10.1111/j.1365-246X.2009.04291.x

Cappa, F., Rutqvist, J., 2011a. Impact of CO 2 geological sequestration on the

nucleation of earthquakes 38, 2–7.

https://doi.org/10.1029/2011GL048487

Cappa, F., Rutqvist, J., 2011b. Modeling of coupled deformation and

permeability evolution during fault reactivation induced by deep

underground injection of CO2. Int. J. Greenh. Gas Control 5, 336–346.

https://doi.org/10.1016/j.ijggc.2010.08.005

Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Modeling crustal deformation

~ 194 ~

and rupture processes related to upwelling of deep CO 2 -rich fluids

during the 1965–1967 Matsushiro earthquake swarm in Japan. J.

Geophys. Res. 114, B10304. https://doi.org/10.1029/2009JB006398

Cappa, F.F., Rutqvist, J., 2012. Seismic rupture and ground accelerations

induced by CO 2 injection in the shallow crust. Geophys. J. Int. 190,

1784–1789. https://doi.org/10.1111/j.1365-246X.2012.05606.x

Chester, F.M., Chester, J.S., 1998. Ultracataclasite structure and friction

processes of the Punchbowl fault, San Andreas system, California,

Tectonophysics. Elsevier. https://doi.org/10.1016/S0040-

1951(98)00121-8

Chester, F.M., Chester, J.S., Kirschner, D.L., Schulz, S.E., Evans, J.P., 2004.

8. Structure of Large-Displacement, Strike-Slip Fault Zones in the Brittle

Continental Crust, in: Karner, G.D., Taylor, B., Driscoll, N.W.,

Kohlstedt, D.L. (Eds.), Rheology and Deformation of the Lithosphere at

Continental Margins. Columbia University Press, New York Chichester,

West Sussex. https://doi.org/10.7312/karn12738-009

Chester, F.M., Evans, J.P., Biegel, R.L., 1993. Internal structure and

weakening mechanisms of the San Andreas Fault. J. Geophys. Res. Solid

Earth 98, 771–786. https://doi.org/10.1029/92JB01866

Chester, F.M., Logan, J.M., 1986. Implications for mechanical properties of

brittle faults from observations of the Punchbowl fault zone, California.

Pure Appl. Geophys. PAGEOPH 124, 79–106.

https://doi.org/10.1007/BF00875720

Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the

~ 195 ~

complexity of an active normal fault system: The 1997 Colfiorito

(central Italy) case study. J. Geophys. Res. 108, 2294.

https://doi.org/10.1029/2002JB002166

Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F.,

Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in

central and southern Italy. Geophys. Res. Lett. 31, n/a-n/a.

https://doi.org/10.1029/2004GL019480

Chiodini, G., Cioni, R., 1989. Gas geobarometry for hydrothermal systems

and its application to some Italian geothermal areas. Appl. Geochemistry

4, 465–472. https://doi.org/10.1016/0883-2927(89)90004-8

Clarke, H., Eisner, L., Styles, P., Turner, P., 2014. Felt seismicity associated

with shale gas hydraulic fracturing: The first documented example in

Europe. Geophys. Res. Lett. 41, 8308–8314.

https://doi.org/10.1002/2014GL062047

Collettini, C., Barchi, M.R., 2002. A low-angle normal fault in the Umbria

region (Central Italy): a mechanical model for the related

microseismicity. Tectonophysics 359, 97–115.

https://doi.org/10.1016/S0040-1951(02)00441-9

Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E.,

Smith, S. a. F., 2008. Fault weakening due to CO2 degassing in the

Northern Apennines: short- and long-term processes. Geol. Soc. London,

Spec. Publ. 299, 175–194. https://doi.org/10.1144/SP299.11

Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry

and mechanics of the Umbria–Marche earthquakes (Central Italy) from

~ 196 ~

the integration of field and laboratory data. Tectonophysics 476, 99–109.

https://doi.org/10.1016/j.tecto.2008.08.013

Cox, S.F., 2010. The application of failure mode diagrams for exploring the

roles of fluid pressure and stress states in controlling styles of fracture-

controlled permeability enhancement in faults and shear zones.

Geofluids 10, 217–233. https://doi.org/10.1111/j.1468-

8123.2010.00281.x

Cox, S.F., 1995. Faulting processes at high fluid pressures: An example of

fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J.

Geophys. Res. Solid Earth 100, 12841–12859.

https://doi.org/10.1029/95JB00915

Cox, S.F., Etheridge, M.A., Wall, V.J., 1987. The role of fluids in syntectonic

mass transport, and the localization of metamorphic vein-type ore

deposits. Ore Geol. Rev. Elsevier Sci. Publ. B.V 2, 65–86.

https://doi.org/10.1016/0169-1368(87)90024-2

Dahlquist, G.G., 1963. A special stability problem for linear multistep

methods. BIT 3, 27–43. https://doi.org/10.1007/BF01963532

Davies, J.P.P., Davies, D.K.D.K., Davies, D.K.D.K., 2001. Stress-Dependent

Permeability : Characterization and Modeling. SPE J. 6, 224–235.

https://doi.org/10.2118/71750-PA

Davies, R., Foulger, G., Bindley, A., Styles, P., 2013. Induced seismicity and

hydraulic fracturing for the recovery of hydrocarbons. Mar. Pet. Geol.

45, 171–185. https://doi.org/10.1016/j.marpetgeo.2013.03.016

~ 197 ~

De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone

architecture and deformation processes within evaporitic rocks in the

upper crust. Tectonics 27, 1–21. https://doi.org/10.1029/2007TC002230

De Paola, N., Faulkner, D.R., Collettini, C., 2009. Brittle versus ductile

deformation as the main control on the transport properties of low-

porosity anhydrite rocks. J. Geophys. Res. Solid Earth 114.

https://doi.org/10.1029/2008JB005967

De Pater, C.J., Baisch, S., 2011. Geomechanical Study of Bowland Shale

Seismicity Synthesis Report.

Detournay, E., Cheng, A.H.-D.A., 1993. Fundamentals of Poroelasticity.

Compr. Rock Eng. Princ. Pract. Proj. II, 113–171.

https://doi.org/10.1016/0148-9062(94)90606-8

Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R.,

2010. Normal faults and thrusts reactivated by deep fluids: The 6 April

2009 Mw 6.3 L’Aquila earthquake, central Italy. J. Geophys. Res. 115,

B06315. https://doi.org/10.1029/2009JB007190

Dicelis, G., Assumpção, M., Prado, R.L., Agurto-Detzel, H., Barbosa, J.R.,

2017. Improving the characterization of the seismic source in

Bebedouro, Paraná Basin, Brazil: Further evidence of seismicity

triggered by hydraulic stimulation in water wells. Geophys. J. Int. 210,

594–608. https://doi.org/10.1093/gji/ggx180

Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and

statedependent friction. Tectonophysics.

~ 198 ~

Dieterich, J.H., 1979. Modeling of rock friction: 1. Experimental results and

constitutive equations. J. Geophys. Res. 84, 2161.

https://doi.org/10.1029/JB084iB05p02161

Ellsworth, W.L., 2013. Injection-Induced Earthquakes. Science (80-.). 341,

1225942–1225942. https://doi.org/10.1126/science.1225942

Elsworth, D., Spiers, C.J., Niemeijer, A.R., 2016. Understanding induced

seismicity. Science (80-.). 354, 1380–1381.

https://doi.org/10.1126/science.aal2584

Evans, J.P., Forster, C.B., Goddard, J. V., 1997. Permeability of fault-related

rocks, and implications for hydraulic structure of fault zones. J. Struct.

Geol. 19, 1393–1404. https://doi.org/10.1016/S0191-8141(97)00057-6

Farahbod, A.M., Kao, H., Cassidy, J.F., Walker, D., 2015a. How did

hydraulic-fracturing operations in the Horn River Basin change

seismicity patterns in northeastern British Columbia, Canada? Lead.

Edge 34, 658–663. https://doi.org/10.1190/tle34060658.1

Farahbod, A.M., Kao, H., Walker, D.M., Cassidy, J.F., 2015b. Investigation

of regional seismicity before and after hydraulic fracturing in the Horn

River Basin, northeast British Columbia. Can. J. Earth Sci. 52, 112–122.

https://doi.org/10.1139/cjes-2014-0162

Faulkner, D.., Lewis, A.., Rutter, E.., 2003. On the internal structure and

mechanics of large strike-slip fault zones: field observations of the

Carboneras fault in southeastern Spain. Tectonophysics 367, 235–251.

https://doi.org/10.1016/S0040-1951(03)00134-3

~ 199 ~

Faulkner, D.R., 2004. A model for the variation in permeability of clay-

bearing fault gouge with depth in the brittle crust. Geophys. Res. Lett.

31, L19611. https://doi.org/10.1029/2004GL020736

Faulkner, D.R., Rutter, E.H., 2003. The effect of temperature, the nature of

the pore fluid, and subyield differential stress on the permeability of

phyllosilicate-rich fault gouge. J. Geophys. Res. Solid Earth 108.

https://doi.org/10.1029/2001JB001581

Faulkner, D.R., Rutter, E.H., 2001. Can the maintenance of overpressured

fluids in large strike-slip fault zones explain their apparent weakness?

Geology 29, 503–506. https://doi.org/10.1130/0091-

7613(2001)029<0503:CTMOOF>2.0.CO;2

Faulkner, D.R., Rutter, E.H., 2000. Comparisons of water and argon

permeability in natural clay-bearing fault gouge under high pressure at

20°C. J. Geophys. Res. Solid Earth 105, 16415–16426.

https://doi.org/10.1029/2000JB900134

Faulkner, D.R.R., Jackson, C.A.L.A.L., Lunn, R.J.J., Schlische, R.W.W.,

Shipton, Z.K.K., Wibberley, C.A.J.A.J., Withjack, M.O.O., 2010. A

review of recent developments concerning the structure, mechanics and

fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575.

https://doi.org/10.1016/j.jsg.2010.06.009

Fischer, G.J., 1992. Chapter 8 The Determination of Permeability and Storage

Capacity: Pore Pressure Oscillation Method. Academic Press.

https://doi.org/10.1016/S0074-6142(08)62823-5

Folger, P., Tiemann, M., 2015. Human-Induced Earthquakes from Deep-Well

~ 200 ~

Injection: A Brief Overview 1–26.

Friberg, P.A., Besana-Ostman, G.M., Dricker, I., 2014. Characterization of an

Earthquake Sequence Triggered by Hydraulic Fracturing in Harrison

County, Ohio. Seismol. Res. Lett. 85, 1295–1307.

https://doi.org/10.1785/0220140127

Frohlich, C., 2012. Two-year survey comparing earthquake activity and

injection-well locations in the Barnett Shale, Texas. Proc. Natl. Acad.

Sci. U. S. A. 109, 13934–8. https://doi.org/10.1073/pnas.1207728109

Frohlich, C., Brunt, M., 2013. Two-year survey of earthquakes and

injection/production wells in the Eagle Ford Shale, Texas, prior to the

MW4.8 20 October 2011 earthquake. Earth Planet. Sci. Lett. 379, 56–63.

https://doi.org/10.1016/j.epsl.2013.07.025

Gan, W., Frohlich, C., Forsyth, D.W., 2013. Gas injection may have triggered

earthquakes in the Cogdell oil field, Texas.

https://doi.org/10.1073/pnas.1311316110

Goudarzi, S., Mathias, S.A., Gluyas, J.G., 2016. Simulation of Three-

Component Two-Phase Flow in Porous Media Using Method of Lines.

Transp. Porous Media 112, 1–19. https://doi.org/10.1007/s11242-016-

0639-5

Griffith, A., 1924. The theory of rupture. Proc., Ist., Int., Congr., Appl., Mech.

Biereno, C.B. Burgers, J.M(eds). Delft Tech. Boekhand. en Druk. J.

Waltman Jr. 54–63.

Griffiths, D. V., 1990. Failure Criteria Interpretation Based on Mohr‐

~ 201 ~

Coulomb Friction. J. Geotech. Eng. 116, 986–999.

https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(986)

Guerrieri, L., Baer, G., Hamiel, Y., Amit, R., Blumetti, A.M., Comerci, V., Di

Manna, P., Michetti, A.M., Salamon, A., Mushkin, A., Sileo, G., Vittori,

E., 2010. InSAR data as a field guide for mapping minor earthquake

surface ruptures: Ground displacements along the Paganica Fault during

the 6 April 2009 L’Aquila earthquake. J. Geophys. Res. 115, B12331.

https://doi.org/10.1029/2010JB007579

Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., Elsworth, D., 2015.

Seismicity triggered by fluid injection – induced aseismic slip. Science

(80-.). 348, 1224–1227. https://doi.org/10.1126/science.aab0476

Hairer, E., Wanner, G., 1996. Stability Analysis for Explicit RK Methods. pp.

15–39. https://doi.org/10.1007/978-3-642-05221-7_2

Hangx;, Spiers, C.J., Peach, C.J., 2010. Mechanical behavior of anhydrite

caprock and implications for CO 2 sealing capacity. J. Geophys. Res.

115, B07402. https://doi.org/10.1029/2009JB006954

Hangx, S.J.T., Spiers, C.J., Peach, C.J., 2010. The effect of deformation on

permeability development in anhydrite and implications for caprock

integrity during geological storage of CO2. Geofluids 10, 369–387.

https://doi.org/10.1111/j.1468-8123.2010.00299.x

Hickman, S., Sibson, R., Bruhn, R., 1995. Introduction to Special Section:

Mechanical Involvement of Fluids in Faulting. J. Geophys. Res. Solid

Earth 100, 12831–12840. https://doi.org/10.1029/95JB01121

~ 202 ~

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker,

D.E., Woodward, C.S., 2005. SUNDIALS: Suite of Nonlinear and

Differential/Algebraic Equation Solvers.

Holland, A.A., 2013. Earthquakes triggered by hydraulic fracturing in south-

central Oklahoma. Bull. Seismol. Soc. Am. 103, 1784–1792.

https://doi.org/10.1785/0120120109

Hornbach, M.J., Jones, M., Scales, M., DeShon, H.R., Magnani, M.B.,

Frohlich, C., Stump, B., Hayward, C., Layton, M., 2016. Ellenburger

wastewater injection and seismicity in North Texas. Phys. Earth Planet.

Inter. 261, 54–68. https://doi.org/10.1016/J.PEPI.2016.06.012

Hosea, M.E., Shampine, L.F., 1996. Analysis and implementation of TR-

BDF2. Appl. Numer. Math. 20, 21–37. https://doi.org/10.1016/0168-

9274(95)00115-8

Hsiung, S.M., Chowdhury, a H., Nataraja, M.S., 2005. Numerical simulation

of thermal – mechanical processes observed at the Drift-Scale Heater

Test at Yucca Mountain , Nevada , USA. Rock Mech. 42, 652–666.

https://doi.org/10.1016/j.ijrmms.2005.03.006

Jin, G., Li, Z., Chen, F., 1998. An efficient solution to the cache thrashing

problem caused by true data sharing. IEEE Trans. Comput. 47, 527–543.

https://doi.org/10.1109/12.677228

Johnson, P.A., Carpenter, B., Knuth, M., Kaproth, B.M., Le Bas, P.-Y., Daub,

E.G., Marone, C., 2012. Nonlinear dynamical triggering of slow slip on

simulated earthquake faults with implications to Earth. J. Geophys. Res.

Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB008594

~ 203 ~

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., Hirata, N.,

2012. Propagation of Slow Slip Leading Up to the 2011 W w 9.0

Tohoku-Oki Earthquake. Source Sci. New Ser. 335, 705–708.

https://doi.org/10.1126/science.l213778

Keranen, K.M., Savage, H.M., Abers, G.A., Cochran, E.S., 2013. Potentially

induced earthquakes in Oklahoma, USA: Links between wastewater

injection and the 2011 Mw 5.7 earthquake sequence. Geology 41, 699–

702. https://doi.org/10.1130/G34045.1

Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A., Ge, S., 2014.

Sharp increase in central Oklahoma seismicity since 2008 induced by

massive wastewater injection. Science (80-.). 345, 448–451.

https://doi.org/10.1126/SCIENCE.1255802

Keulen, N., Stünitz, H., Heilbronner, R., 2008. Healing microstructures of

experimental and natural fault gouge. J. Geophys. Res. 113, B06205.

https://doi.org/10.1029/2007JB005039

Kim, M.H., 2017. New dynamical systems modeling helps explain mega-

earthquakes. Scilight 2017, 180004. https://doi.org/10.1063/1.5009894

Kim, W.-Y., 2013. Induced seismicity associated with fluid injection into a

deep well in Youngstown, Ohio. J. Geophys. Res. Solid Earth 118,

3506–3518. https://doi.org/10.1002/jgrb.50247

Kristensen, M.R., Jørgensen, J.B., Thomsen, P.G., Jørgensen, S.B., 2004. An

ESDIRK method with sensitivity analysis capabilities. Comput. Chem.

Eng. 28, 2695–2707.

https://doi.org/10.1016/J.COMPCHEMENG.2004.08.004

~ 204 ~

Lambert, J.D. (John D., D., J., 1991. Numerical methods for ordinary

differential systems : the initial value problem. Wiley.

Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O.,

2015a. Development and maintenance of fluid overpressures in crustal

fault zones by elastic compaction and implications for earthquake

swarms. J. Geophys. Res. Solid Earth 120, 4450–4473.

https://doi.org/10.1002/2014JB011759

Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O.,

Zhang, L., Carpenter, B.M., Ikari, M.J., Marone, C., Zhang, L.,

Carpenter, B.M., Ikari, M.J., Marone, C., Leclère, H., Cappa, F.,

Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 2015b. Journal of

Geophysical Research : Solid Earth. J. Geophys. Res. Solid Earth 4450–

4473. https://doi.org/10.1002/2014JB011759.Received

Leclère, H., Fabbri, O., Daniel, G., Cappa, F., 2012. Reactivation of a strike-

slip fault by fluid overpressuring in the southwestern French-Italian

Alps. Geophys. J. Int. 189, 29–37. https://doi.org/10.1111/j.1365-

246X.2011.05345.x

Lei, X., Huang, D., Su, J., Jiang, G., Wang, X., Wang, H., Guo, X., Fu, H.,

2017. Fault reactivation and earthquakes with magnitudes of up to

Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin,

China. Sci. Rep. 7, 7971. https://doi.org/10.1038/s41598-017-08557-y

Liu, X.-D., Osher, S., Chan, T., 1994. Weighted Essentially Non-oscillatory

Schemes. J. Comput. Phys. 115, 200–212.

https://doi.org/10.1006/JCPH.1994.1187

~ 205 ~

Lockner, D.A., Beeler, N.M., 1999. Premonitory slip and tidal triggering of

earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH.

https://doi.org/10.1029/1999JB900205

Lucente, F., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M.,

Chiarabba, C., Piana Agostinetti, N., 2010a. Temporal variation of

seismic velocity and anisotropy before the 2009 M W 6.3 L’Aquila

earthquake, Italy. Geology 38, 1015–1018.

https://doi.org/10.1130/G31463.1

Lucente, F., Margheriti, L., Chiarabba, C., Piana, N., Francesco, A., Lucente,

P., De Gori, P., Piccinini, D., Di Bona, M., 2010b. Seismic Anisotropy

beneath the Arabia-Eurasia collision zone: the major thrust-and-fold

belts of Zagros and Alborz and the Iranian plateau View project

ITALIAN SEISMIC BULLETIN View project.

https://doi.org/10.1130/G31463.1

Mahesh, P., Gupta, S., Rai, S.S., Sarma, P.R., 2012. Fluid driven earthquakes

in the Chamoli Region, Garhwal Himalaya: evidence from local

earthquake tomography. Geophys. J. Int. 191, no-no.

https://doi.org/10.1111/j.1365-246X.2012.05672.x

Marone, C., 1998. Laboratory-Derived Friction Laws and Their Application

to Seismic Faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696.

https://doi.org/10.1146/annurev.earth.26.1.643

Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009.

Screening and selection of sites for CO2 sequestration based on pressure

buildup. Int. J. Greenh. Gas Control 3, 577–585.

~ 206 ~

https://doi.org/10.1016/J.IJGGC.2009.05.002

Mavrommatis, A.P., Segall, P., Johnson, K.M., 2014. A decadal-scale

deformation transient prior to the 2011 M w 9.0 Tohoku-oki earthquake.

Geophys. Res. Lett. 41, 4486–4494.

https://doi.org/10.1002/2014GL060139

Maxwell, S.C., Urbancic, T.I., Steinsberger, N., Zinno, R., 2002.

Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett

Shale, in: SPE Annual Technical Conference and Exhibition. Society of

Petroleum Engineers. https://doi.org/10.2118/77440-MS

Mazzoldi, A., Rinaldi, A.P., Borgia, A., Rutqvist, J., 2012. Induced seismicity

within geological carbon sequestration projects: Maximum earthquake

magnitude and leakage potential from undetected faults. Int. J. Greenh.

Gas Control 10, 434–442. https://doi.org/10.1016/j.ijggc.2012.07.012

McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid

injection. J. Geophys. Res. Solid Earth 119, 1008–1019.

https://doi.org/10.1002/2013JB010597

McGarr, A., Bekins, B., Burkardt, N., Dewey, J., Earle, P., Ellsworth, W., Ge,

S., Hickman, S., Holland, A., Majer, E., Rubinstein, J., Sheehan, A.,

2015. Coping with earthquakes induced by fluid injection. Science (80-.

). 347, 830–831. https://doi.org/10.1126/science.aaa0494

Miller, S. a, Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus,

B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth.

Nature 427, 724–727. https://doi.org/10.1038/nature02251

~ 207 ~

Miller, S.A., 1996. Fluid-mediated influence of adjacent thrusting on the

seismic cycle at Parkfield. Nature 382, 799–802.

https://doi.org/10.1038/382799a0

Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008.

Insights on the seismogenic layer thickness from the upper crust

structure of the Umbria-Marche Apennines (central Italy). Tectonics 27,

1–15. https://doi.org/10.1029/2007TC002134

Mitchell, T.M., Faulkner, D.R., 2008. Experimental measurements of

permeability evolution during triaxial compression of initially intact

crystalline rocks and implications for fluid flow in fault zones. J.

Geophys. Res. Solid Earth 113, 1–16.

https://doi.org/10.1029/2008JB005588

Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2008. Internal

structure and permeability of the Nojima fault, southwest Japan. J.

Struct. Geol. 30, 513–524. https://doi.org/10.1016/j.jsg.2007.12.002

Morrow, C.A., Lockner, D.A., 1997. Permeability and porosity of the Illinois

UPH 3 drillhole granite and a comparison with other deep drillhole

rocks. J. Geophys. Res. Solid Earth 102, 3067–3075.

https://doi.org/10.1029/96JB03178

Morrow, C.A., Lockner, D.A., 1994. Permeability differences between

surface-derived and deep drillhole core samples. Geophys. Res. Lett. 21,

2151–2154. https://doi.org/10.1029/94GL01936

Morrow, C.A., Shi, L.Q., Byerlee, J.D., 1984. Permeability of fault gouge

under confining pressure and shear stress. J. Geophys. Res. Solid Earth

~ 208 ~

89, 3193–3200. https://doi.org/10.1029/JB089iB05p03193

Nakatani, M., Scholz, C.H., 2004. Frictional healing of quartz gouge under

hydrothermal conditions: 1. Experimental evidence for solution transfer

healing mechanism. J. Geophys. Res. Solid Earth 109.

https://doi.org/10.1029/2001JB001522

Niemeijer, A., Marone, C., Elsworth, D., 2008. Healing of simulated fault

gouges aided by pressure solution: Results from rock analogue

experiments 113, B04204. https://doi.org/10.1029/2007JB005376

Noir, J., Jacques, E., Békri, S., Adler, P.M., Tapponnier, P., King, G.C.P.,

1997. Fluid flow triggered migration of events in the 1989 Dobi

Earthquake sequence of central Afar. Geophys. Res. Lett. 24, 2335–

2338. https://doi.org/10.1029/97GL02182

Nur, A., Booker, J.R., 1972. Aftershocks caused by pore fluid flow? Science

175, 885–7. https://doi.org/10.1126/science.175.4024.885

Parotidis, M., Rothert, E., Shapiro, S.A., 2003. Pore-pressure diffusion: A

possible triggering mechanism for the earthquake swarms 2000 in

Vogtland/NW-Bohemia, central Europe. Geophys. Res. Lett. 30, n/a-n/a.

https://doi.org/10.1029/2003GL018110

Paterson, M.S., Wong, T.-F., 2005. Experimental Rock Deformation - The

Brittle Field. Exp. Rock Deform. - Brittle Field, by M.S. Paterson T.-F.

Wong. X, 348 p. 87 illus. 2nd Ed. 3-540-24023-3. Berlin Springer,

2005. 87.

Peach, C.J., Spiers, C.J., 1996. Influence of crystal plastic deformation on

~ 209 ~

dilatancy and permeability development in synthetic salt rock.

Tectonophysics 256, 101–128. https://doi.org/10.1016/0040-

1951(95)00170-0

Porreca, M., Minelli, G., Ercoli, M., Brobia, A., Mancinelli, P., Cruciani, F.,

Giorgetti, C., Carboni, F., Mirabella, F., Cavinato, G., Cannata, A.,

Pauselli, C., Barchi, M.R., 2018. Seismic Reflection Profiles and

Subsurface Geology of the Area Interested by the 2016-2017 Earthquake

Sequence (Central Italy). Tectonics 37, 1116–1137.

https://doi.org/10.1002/2017TC004915

Rice, J.R., 1992. Fault Stress States, Pore Pressure Distributions, and the

Weakness of the San Andreas Fault, Fault Mechanics and Transport

Properties in Rocks. Academic Press. https://doi.org/10.1016/S0074-

6142(08)62835-1

Rice, J.R., Ruina, a. L., 1983. Stability of Steady Frictional Slipping. J. Appl.

Mech. 50, 343. https://doi.org/10.1115/1.3167042

Rinaldi, A.P., Jeanne, P., Rutqvist, J., Cappa, F., Guglielmi, Y., 2014a.

Effects of fault-zone architecture on earthquake magnitude and gas

leakage related to CO 2 injection in a multi-layered sedimentary system.

Greenh. Gases Sci. Technol. 4, 99–120. https://doi.org/10.1002/ghg.1403

Rinaldi, A.P., Rutqvist, J., Cappa, F., 2014b. Geomechanical effects on CO2

leakage through fault zones during large-scale underground injection.

Int. J. Greenh. Gas Control 20, 117–131.

https://doi.org/10.1016/J.IJGGC.2013.11.001

Robertson, B.E.C., Robie, R.A., Books, K.G., 1958. Physical properties of

~ 210 ~

salt, anhydrite, and gypsum -- preliminary report. United States Dep.

Inter. Trace Elem. Memo. Rep. 1048.

Rowland, J. V., Sibson, R.H., 2004. Structural controls on hydrothermal flow

in a segmented rift system, Taupo Volcanic Zone, New Zealand.

Geofluids 4, 259–283. https://doi.org/10.1111/j.1468-8123.2004.00091.x

Ruiz, S., Aden-Antoniow, F., Baez, J.C., Otarola, C., Potin, B., del Campo,

F., Poli, P., Flores, C., Satriano, C., Leyton, F., Madariaga, R., Bernard,

P., 2017. Nucleation Phase and Dynamic Inversion of the M w 6.9

Valparaíso 2017 Earthquake in Central Chile. Geophys. Res. Lett. 44,

10,290-10,297. https://doi.org/10.1002/2017GL075675

Rutledge, J.T., Phillips, W.S., 2003. Hydraulic stimulation of natural fractures

as revealed by induced microearthquakes, Carthage Cotton Valley gas

field, east Texas. GEOPHYSICS 68, 441–452.

https://doi.org/10.1190/1.1567214

Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., 2004. Faulting Induced by

Forced Fluid Injection and Fluid Flow Forced by Faulting: An

Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton

Valley Gas Field, Texas. Bull. Seismol. Soc. Am. 94, 1817–1830.

Rutqvist, J., 2012. The Geomechanics of CO2 Storage in Deep Sedimentary

Formations. Geotech. Geol. Eng. 30, 525–551.

https://doi.org/10.1007/s10706-011-9491-0

Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007. Estimating

maximum sustainable injection pressure during geological sequestration

of CO2 using coupled fluid flow and geomechanical fault-slip analysis.

~ 211 ~

Energy Convers. Manag. 48, 1798–1807.

https://doi.org/10.1016/j.enconman.2007.01.021

Rutqvist, J., Cappa, F., Mazzoldi, A., Rinaldi, A., 2013a. Geomechanical

Modeling of Fault Responses and the Potential for Notable Seismic

Events During Underground CO2 Injection. Energy Procedia 37, 4774–

4784. https://doi.org/10.1016/j.egypro.2013.06.387

Rutqvist, J., Rinaldi, A.P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L.,

Guglielmi, Y., Vilarrasa, V., 2016. Fault activation and induced

seismicity in geological carbon storage – Lessons learned from recent

modeling studies. J. Rock Mech. Geotech. Eng. 8, 789–804.

https://doi.org/10.1016/J.JRMGE.2016.09.001

Rutqvist, J., Rinaldi, A.P., Cappa, F., Moridis, G.J., 2013b. Modeling of fault

reactivation and induced seismicity during hydraulic fracturing of shale-

gas reservoirs. J. Pet. Sci. Eng. 107, 31–44.

https://doi.org/10.1016/j.petrol.2013.04.023

Rutqvist, J., Rinaldi, A.P., Cappa, F.F., Moridis, G.J., 2015. Modeling of fault

activation and seismicity by injection directly into a fault zone associated

with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 127,

377–386. https://doi.org/10.1016/j.petrol.2015.01.019

Rutqvist, J., Vasco, D.W., Myer, L., 2009. Coupled reservoir-geomechanical

analysis of CO2 injection at In Salah, Algeria. Energy Procedia 1, 1847–

1854. https://doi.org/10.1016/j.egypro.2009.01.241

Rutqvist, J., Wu, Y.-S., Tsang, C.-F., Bodvarsson, G., 2002. A modeling

approach for analysis of coupled multiphase fluid flow, heat transfer, and

~ 212 ~

deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39,

429–442. https://doi.org/10.1016/S1365-1609(02)00022-9

Rutter, E.H., 1972. The effects of strain-rate changes on the strength and

ductility of Solenhofen limestone at low temperatures and confining

pressures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 9, 183–189.

https://doi.org/10.1016/0148-9062(72)90020-4

Rutter, E.H., Maddock, R.H., Hall, S.H., White, S.H., 1986. Comparative

microstructures of natural and experimentally produced clay-bearing

fault gouges. Pure Appl. Geophys. PAGEOPH 124, 3–30.

https://doi.org/10.1007/BF00875717

Scholz, C.H., 2019. The Mechanics of Earthquakes and Faulting. Cambridge

University Press. https://doi.org/10.1017/9781316681473

Scholz, C.H., 1998. Earthquakes and friction laws. Nature 391, 37–42.

https://doi.org/10.1038/34097

Scholz, C.H., 1988. The critical slip distance for seismic faulting. Nature 336,

761–763. https://doi.org/10.1038/336761a0

Schultz, R., Stern, V., Novakovic, M., Atkinson, G., Gu, Y.J., 2015.

Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned

from regional seismic networks. Geophys. Res. Lett. 42, 2750–2758.

https://doi.org/10.1002/2015GL063455

Scuderi, M.M., Niemeijer, A.R., Collettini, C., Marone, C., 2013. Frictional

properties and slip stability of active faults within carbonate-evaporite

sequences: The role of dolomite and anhydrite. Earth Planet. Sci. Lett.

~ 213 ~

369–370, 220–232. https://doi.org/10.1016/j.epsl.2013.03.024

Seront, B., Wong, T.F., Caine, J.S., Forster, C.B., Bruhn, R.L., Fredrich, J.T.,

Seront, Bernard ; Wong, Teng-Fong ; Caine, Jonathan S. ; Forster, Craig

B. ; Bruhn, Ronald L. ; Fredrich, J.T., Seront, B., Wong, T.F., Caine,

J.S., Forster, C.B., Bruhn, R.L., Fredrich, J.T., 1998. Laboratory

characterization of hydromechanical properties of a seismogenic normal

fault system. J. Struct. Geol. 20, 865–881.

https://doi.org/10.1016/S0191-8141(98)00023-6

Shampine, L.F., Reichelt, M.W., 1997. The MATLAB ODE Suite. SIAM J.

Sci. Comput. 18, 1–22. https://doi.org/10.1137/S1064827594276424

Shapiro, S.A.A., Dinske, C., 2009. Fluid-induced seismicity: Pressure

diffusion and hydraulic fracturing. Geophys. Prospect. 57, 301–310.

https://doi.org/10.1111/j.1365-2478.2008.00770.x

Shelly, D.R., 2010. Periodic, Chaotic, and Doubled Earthquake Recurrence

Intervals on the Deep San Andreas Fault. Science (80-.). 328, 1385–

1388. https://doi.org/10.1126/science.1189741

Sibson, R.H., 2000. Fluid involvement in normal faulting 29.

Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture

meshes. J. Struct. Geol. 18, 1031–1042. https://doi.org/10.1016/0191-

8141(96)00032-6

Sibson, R.H., 1990. Conditions for fault-valve behaviour. Geol. Soc. London,

Spec. Publ. 54, 15–28. https://doi.org/10.1144/GSL.SP.1990.054.01.02

Sibson, R.H., 1977. Fault rocks and fault mechanisms. J. Geol. Soc. London.

~ 214 ~

133, 191–213. https://doi.org/10.1144/gsjgs.133.3.0191

Sibson, R.H.H., 1992. Implications of fault-valve behaviour for rupture

nucleation and recurrence. Tectonophysics 211, 283–293.

https://doi.org/10.1016/0040-1951(92)90065-E

Silin, D., Korneev, V., Goloshubin, G., 2003. Pressure diffusion waves in

porous media, Lawrence Berkeley National Laboratory.

Skoumal, R.J., Brudzinski, M.R., Currie, B.S., 2015. Earthquakes Induced by

Hydraulic Fracturing in Poland Township, Ohio. Bull. Seismol. Soc.

Am. 105, 189–197. https://doi.org/10.1785/0120140168

Sobolev, G.A., 2011. Natural Hazards and Earth System Sciences Seismicity

dynamics and earthquake predictability. Hazards Earth Syst. Sci 11,

445–458. https://doi.org/10.5194/nhess-11-445-2011

Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N.,

Specht, S., Ortega-Culaciati, F., Carrizo, D., Norabuena, E., 2017. An

8 month slow slip event triggers progressive nucleation of the 2014 Chile

megathrust. Geophys. Res. Lett. 44, 4046–4053.

https://doi.org/10.1002/2017GL073023

Sumy, D.F., Cochran, E.S., Keranen, K.M., Wei, M., Abers, G. a., 2014.

Observations of static Coulomb stress triggering of the November 2011

M 5.7 Oklahoma earthquake sequence. J. Geophys. Res. Solid Earth 119,

1904–1923. https://doi.org/10.1002/2013JB010612.Received

Terakawa, T., Hashimoto, C., Matsu’ura, M., 2013. Changes in seismic

activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid

~ 215 ~

pressure. Earth Planet. Sci. Lett. 365, 17–24.

https://doi.org/10.1016/j.epsl.2013.01.017

Terzaghi, K., 1963. The Shearing Resistance of Saturated Soils. Proc. First

Int. Conf. Soil Mech. 1, 54–56.

Thauvin, F., Mohanty, K.K., 1998. Network Modeling of Non-Darcy Flow

Through Porous Media. Transp. Porous Media 31, 19–37.

https://doi.org/10.1023/A:1006558926606

Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong.

Geology 28, 399. https://doi.org/10.1130/0091-

7613(2000)28<399:HFKTCS>2.0.CO;2

Trippetta, F., Collettini, C., Barchi, M.R., Lupattelli, A., Mirabella, F., 2013.

A multidisciplinary study of a natural example of a CO2 geological

reservoir in central Italy. Int. J. Greenh. Gas Control 12, 72–83.

https://doi.org/10.1016/J.IJGGC.2012.11.010

Uenishi, K., Rice, J.R., 2003. Universal nucleation length for slip-weakening

rupture instability under nonuniform fault loading. J. Geophys. Res. B

Solid Earth 108. https://doi.org/10.1029/2001JB001681

Vermylen, J., Zoback, M.D., 2011. Hydraulic fracturing, microseismic

magnitudes, and stress evolution in the Barnett Shale, Texas, USA. SPE

Hydraul. Fract. Technol. … SPE 140507.

https://doi.org/10.2118/140507-MS

Weeks, J.D., Tullis, T.E., 1985. Frictional sliding of dolomite: A variation in

constitutive behavior. J. Geophys. Res. 90, 7821.

~ 216 ~

https://doi.org/10.1029/JB090iB09p07821

Weingarten, M., Ge, S., Godt, J.W., Bekins, B.A., Rubinstein, J.L., 2015.

INDUCED SEISMICITY. High-rate injection is associated with the

increase in U.S. mid-continent seismicity. Science 348, 1336–40.

https://doi.org/10.1126/science.aab1345

Wibberley, C.A.J., Shimamoto, T., 2002. Internal structure and permeability

of major strike-slip fault zones: The Median Tectonic Line in Mie

Prefecture, Southwest Japan. J. Struct. Geol. 25, 59–78.

https://doi.org/10.1016/S0191-8141(02)00014-7

Wong, T., Zhu, W., Wong, T., 1997. The transition from brittle faulting to

cataclastic flow: Permeability evolution. J. Geophys. Res. Solid Earth

102, 3027–3041. https://doi.org/10.1029/96JB03282

Yasuhara, H., Marone, C., Elsworth, D., 2005. Fault zone restrengthening and

frictional healing: The role of pressure solution. J. Geophys. Res 110.

https://doi.org/10.1029/2004JB003327

Yoshida, K., Hasegawa, A., Yoshida, T., 2016. Temporal variation of

frictional strength in an earthquake swarm in NE Japan caused by fluid

migration. J. Geophys. Res. Solid Earth 121, 5953–5965.

https://doi.org/10.1002/2016JB013022

Yoshida, N., Tsukahara, H., Okusawa, T., 2003. Andesitic Magmatic Water

Which Generated Matsushiro Earthquake Swarm And S Wave Reflector.

Am. Geophys. Union, Fall Meet. 2003, Abstr. #V52B-0437.

Zhang, S., Tullis, T.E., Scruggs, V.J., 1999. Permeability anisotropy and

~ 217 ~

pressure dependency of permeability in experimentally sheared gouge

materials. J. Struct. Geol. 21, 795–806. https://doi.org/10.1016/S0191-

8141(99)00080-2

Zhu, W., Montesi, L.G.J., Wong, T.-F., 1997. Shear-enhanced compaction

and permeability reduction: Triaxial extension tests on porous sandstone.

Mech. Mater. 25, 199–214. https://doi.org/10.1016/S0167-

6636(97)00011-2

Zhu, W., Tivey, M.K., Gittings, H., Craddock, P.R., 2007. Permeability-

porosity relationships in seafloor vent deposits: Dependence on pore

evolution processes. J. Geophys. Res. Solid Earth 112, 1–15.

https://doi.org/10.1029/2006JB004716

Zimmerman, R.W., 2018. Fluid flow in porous media.

Zoback, M.D., Byerlee, J.D., 1975. The effect of microcrack dilatancy on the

permeability of westerly granite. J. Geophys. Res. 80, 752–755.

https://doi.org/10.1029/JB080i005p00752

Zoback, M.D., Gorelick, S.M., 2012. Earthquake triggering and large-scale

geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. U. S. A. 109,

10164–8. https://doi.org/10.1073/pnas.1202473109

~ 218 ~

APPENDIX

Appendix: MATLAB Scripts

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 1/31

classdef FaultFluidFlowClass < handle

 properties(Constant)

 SECONDS_PER_YEAR = 3.15569e7;

 SECONDS_PER_DAY = 86400;

 GRAVITATIONAL_CONSTANT = 9.81;

 end

 properties

 analyticalTime;

 maximumSimulationTime;

 timeVectorLength;

 time;

 timeOutput;

 timeVectorDensity;

 x;

 z;

 Delta;

 faultArchitectureList;

 simulatedFaultWidth;

 simulatedFaultHeight;

 horizontalArrayLength;

 verticalArrayLength;

 FaultArchitectureEnds;

 ModeOfFailureArchitectureFlag;

 SlidingFailureFlag;

 FineFeatureFlag;

 overpressureHeight;

 overpressureMap;

 pszWidth;

 blankingArray;

 EarthquakeLengthStore;

 EarthquakeLengthVector;

 CohesiveFlag;

 nucleationDetectionFactor = 5E5;

 faultPreset;

 rockDensity;

 faultAngle;

 FailureModeBoundary;

 FrictionCoefficient;

 porosity;

 porosityStates;

 compressiblity;

 Viscosity;

 UnstressedPermeability;

 PressureSensitivity;

 Cohesion;

 initialStressField;

 arrayoverpressureHeight;

 contactOverpressure;

 initialPressure;

 initialSolverVariable;

 pressure;

 Density;

 shearModulus;

 rateAndStateDifference;

 criticalSlipDistance;

 psi;

 slidingStress;

 FailureTime = struct(...

 'Brittle', NaN,...

 'Ductile', NaN,...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 2/31

 'Stable', NaN,...

 'Unstable', NaN);

 SlidingLength = struct;

 cohesionLimit;

 failureStateList;

 FailureAngle;

 TwoCosFailureAngle;

 twoCosFaultAngle;

 ArrayFaultArchitectureEnds;

 ArrayFaultArchitectureMap;

 FailureModeBoundaryStress;

 hydrostaticStress;

 lithostaticStress;

 FailureMarker;

 slidingFailureMarker;

 failureExtent;

 maximumStress;

 minimumStress;

 Permeability;

 options;

 outputPressure;

 outputSolverVariable;

 FailureMarkerStore;

 slidingFailureMarkerStore;

 slidingStressStore;

 oldFailureMarker;

 newFailureMarker;

 PlotProperties = struct;

 twoCosAngle;

 twoSinAngle;

 internalFrictionArray;

 cohesion;

 TwoSinFailureAngle;

 twoSinFaultAngle;

 FailureEnvelope;

 poreFluidFactor;

 tectonicLoadingRate;

 faultDepth;

 confinementFactor;

 OFCwidth;

 IFCwidth;

 initialStress;

 modeOfFailureFlag = false;

 plotTimeScale;

 PlottingAngle;

 end

 methods

 function obj = initialise(...

 obj,...

 poreFluidFactor,...

 tectonicLoadingRate,...

 faultDepth,...

 confinementFactor,...

 overpressureHeight,...

 OFCwidth,...

 IFCwidth,...

 faultPreset,...

 varargin)

 % Initialise object for simulating fluid flow in a given fault

 % zone.

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 3/31

 FaultFluidFlowClass.printProgressString(...

 'Initialising problem parameters...')

 obj.poreFluidFactor = poreFluidFactor;

 obj.tectonicLoadingRate = tectonicLoadingRate;

 obj.faultDepth = faultDepth;

 obj.confinementFactor = confinementFactor;

 obj.overpressureHeight = overpressureHeight;

 obj.OFCwidth = OFCwidth;

 obj.IFCwidth = IFCwidth;

 obj.importFaultValues(faultPreset);

 obj.updateFaultWidthValues;

 obj.initialiseVarargin(varargin);

 obj.initialiseSpatialArray;

 obj.mapFaultArchitecture;

 obj.colfioritoOverpressureMap;

 obj.initialiseRockMatrixVariables;

 obj.initialiseIntensiveVariables(confinementFactor);

 obj.initialiseTimeVariables;

 end

 function initialiseIntensiveVariables(obj, confinementFactor)

 % Intialise intensive physical variables of fault zone.

 obj.initialiseNonSolverVariables(confinementFactor);

 end

 function initialiseVarargin(obj, varargin)

 %Process arguments in varargin input.

 if any(strcmp(varargin{:}, 'modeoffailure'))

 obj.modeOfFailureFlag = true;

 end

 end

 function initialiseNonSolverVariables(obj, confinementFactor)

 %Initialise physical variables not altered by solver.

 obj.hydrostaticStress = 1000 ...

 * FaultFluidFlowClass.GRAVITATIONAL_CONSTANT...

 * obj.faultDepth;

 obj.lithostaticStress = obj.rockDensity...

 * FaultFluidFlowClass.GRAVITATIONAL_CONSTANT...

 * (obj.faultDepth);

 obj.initialisePressure;

 obj.initialiseStress(confinementFactor);

 obj.initialPressure =...

 obj.pressureBCS(obj.initialPressure);

 [obj.Permeability,...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 4/31

 obj.FailureMarker,...

 obj.slidingFailureMarker,...

 ~,...

 ~,...

 ~,...

 ~]...

 = obj.rockMatrixState(obj.initialPressure, 0);

 end

 function initialiseCommonRockMatrixVariables(obj)

 obj.slidingStress = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 obj.Permeability = obj.initialiseXZMidpointStruct;

 obj.FailureMarker = obj.initialiseXZCMidpointStruct;

 obj.slidingFailureMarker = false(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 obj.calculatePorosity(obj.FailureMarker);

 obj.initialiseFailureBlankingArray;

 obj.initialiseFailureAngles;

 obj.initialiseInternalFriction;

 obj.initialiseCohesion;

 obj.initialisePorosity;

 end

 function initialisePorosity(obj)

 obj.porosity = obj.initialiseArray;

 obj.porosity = obj.porosityStates.Prefailure;

 end

 function initialiseStress(obj, confinementFactor)

 % Calculate initial stress for simulation.

 obj.fixedInitialStress(confinementFactor);

 obj.calculateMaximumStress;

 obj.calculateMinimumStress(0);

 if isa(obj, 'SinglePhaseFluidFlowSolidVelocityClass')

 obj.initialStressField = cat(...

 3,...

 -obj.maximumStress,...

 -obj.minimumStress,...

 obj.maximumStress - obj.minimumStress);

 obj.initialStressField = repmat(...

 obj.initialStressField(1, 1, :),...

 obj.verticalArrayLength + 1,...

 obj.horizontalArrayLength + 1);

 end

 end

 function initialiseFailureBlankingArray(obj)

 %Returns an array true at array points where logical failure

 %can occur.

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 5/31

 obj.blankingArray = false(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 if (obj.ModeOfFailureArchitectureFlag.(...

 architectureComponent)...

 && obj.modeOfFailureFlag)...

 || obj.SlidingFailureFlag.(architectureComponent)

 obj.blankingArray(...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central) = true;

 end

 end

 end

 function initialisePressure(obj)

 %Set initial pressure for simulation.

 obj.contactOverpressure = obj.poreFluidFactor...

 * obj.lithostaticStress - obj.hydrostaticStress;

 obj.initialPressure = obj.hydrostaticStress...

 * ones(...

 obj.verticalArrayLength, obj.horizontalArrayLength);

 end

 function initialiseCommonSpatialArray(obj)

 % Initialise spatial arrays for simulation.

 obj.verticalSemiLogMesh;

 obj.arrayoverpressureHeight...

 = FaultFluidFlowClass.indexOfNearest(...

 obj.z,...

 obj.overpressureHeight);

 [obj.x, obj.z] = meshgrid(obj.x, obj.z);

 obj.Delta.X = diff(obj.x, 1, 2);

 obj.Delta.Z = diff(obj.z, 1, 1);

 obj.Delta.XX = (obj.x(:, 3:end) - obj.x(:, 1:end - 2)) / 2;

 obj.Delta.ZZ = (obj.z(3:end, :) - obj.z(1:end - 2, :)) / 2;

 end

 function verticalSemiLogMesh(obj)

 % Vertical semi-logarithmic spatial array.

 obj.x = (1:obj.horizontalArrayLength)...

 * obj.simulatedFaultWidth...

 / obj.horizontalArrayLength;

 obj.z = logspace(0, log10(obj.simulatedFaultHeight + 1),...

 obj.verticalArrayLength);

 obj.z = obj.z - 1;

 end

 function initialiseTimeVariables(obj)

 % Initialise time variables for solver.

 obj.calculateMaximumSimulationTime;

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 6/31

 obj.calculateAnalyticalTime;

 obj.timeVectorLength = round(...

 obj.timeVectorDensity...

 * obj.maximumSimulationTime...

 / obj.SECONDS_PER_YEAR);

 obj.time = 0:(obj.maximumSimulationTime...

 / obj.timeVectorLength):obj.maximumSimulationTime;

 end

 function updateFaultWidthValues(obj)

 % Update fault architecture component widths based on input.

 obj.FaultArchitectureEnds =...

 struct(...

 'OFC', obj.OFCwidth,...

 'IFC', obj.IFCwidth + obj.OFCwidth,...

 'PSZ', obj.IFCwidth + obj.OFCwidth - 1E-3);

 obj.simulatedFaultWidth = obj.OFCwidth + obj.IFCwidth;

 end

 function pressure = rockFluidCoupling(obj, pressure, time)

 % Physical coupling between rock and fluid.

 obj.oldFailureMarker = sum(obj.FailureMarker.X(:))...

 + sum(obj.FailureMarker.Z(:));

 obj.calculateMinimumStress(time);

 pressure = obj.pressureBCS(pressure);

 [obj.Permeability,...

 FailureMarkerLocal,...

 ~,...

 ~,...

 ~,...

 ~,...

 ~]...

 = obj.rockMatrixState(pressure, time);

 obj.newFailureMarker = sum(FailureMarkerLocal.X(:))...

 + sum(FailureMarkerLocal.Z(:));

 end

 function [value, isTerminal, direction] = events(...

 obj,...

 time,...

 pressure)

 % ODES15S event trigger function.

 pressure = reshape(...

 pressure,...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 pressure = obj.pressureBCS(pressure);

 [~,...

 ~,...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 7/31

 ~,...

 distance,...

 failureLength,...

 nucleationLength,...

 ~]...

 = obj.rockMatrixState(pressure, time);

 value = min(distance(:));

 failureDiff = obj.nucleationDetectionFactor...

 * (nucleationLength - failureLength)...

 / nucleationLength;

 if abs(failureDiff) < abs(value) && value < 0

 value = failureDiff;

 end

 isTerminal = 1;

 direction = 0;

 end

 function obj = calculateMaximumStress(obj)

 % Calculate maximum stress at every spatial array point.

 obj.maximumStress = obj.lithostaticStress...

 * ones(obj.verticalArrayLength, obj.horizontalArrayLength);

 end

 function obj = calculateMinimumStress(obj, time)

 % Calculate minimum stress at every spatial array point.

 obj.extensionalMinimumStress(time);

 end

 function extensionalMinimumStress(obj, time)

 % If in extensionally defined minimum stress regime, calculate

 % minimum stress.

 obj.minimumStress = (obj.initialStress +...

 obj.tectonicLoadingRate * time / obj.SECONDS_PER_YEAR)...

 * ones(obj.verticalArrayLength, obj.horizontalArrayLength);

 end

 function pressureTimeDerivative = pressureTimeDerivative(...

 obj,...

 FluxDivergence)

 % Derivative of pressure with respect to time.

 pressureTimeDerivative = (...

 1 ./...

 (obj.compressiblity .* obj.porosity))...

 .* FluxDivergence.Central;

 end

 function FluxDivergence = fluxDivergenceBCS(...

 obj,...

 Flux,...

 FluxDivergence)

 % Enforce flux divergence boundary conditions.

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 8/31

 FluxDivergence.Z = [zeros(1, obj.horizontalArrayLength);...

 FluxDivergence.Z; zeros(1, obj.horizontalArrayLength)];

 FluxDivergence.X = [zeros(obj.verticalArrayLength, 1)...

 FluxDivergence.X zeros(obj.verticalArrayLength, 1)];

 FluxDivergence.Z(1, :) = 2 ...

 .* ((Flux.Z(1, :))...

 ./ obj.Delta.ZZ(1, :));

 FluxDivergence.X(:, end) = -2 ...

 .* ((Flux.X(:, end))...

 ./ obj.Delta.XX(:, end));

 FluxDivergence.Central = FluxDivergence.X + FluxDivergence.Z;

 end

 function Flux = pressureFlux(obj, pressure)

 % Struct of pressure fluxes in x and z directions and every

 % array point.

 PressureDerivative = obj.spatialDerivative(pressure);

 Flux = struct;

 Flux.X = obj.Permeability.X .* PressureDerivative.X...

 / obj.Viscosity.SinglePhase;

 Flux.Z = obj.Permeability.Z .* PressureDerivative.Z...

 / obj.Viscosity.SinglePhase;

 end

 function [Permeability,...

 FailureMarker,...

 slidingFailureMarker,...

 distance,...

 failureLength,...

 nucleationLength,...

 slidingStress]...

 = rockMatrixState(obj, pressure, time)

 % Evaluate physical conditions representing the state of the

 % rock matrix.

 obj.calculateMinimumStress(time);

 EffectivePressure = obj.initialiseXZCMidpointStruct;

 FailureMarker = EffectivePressure;

 EffectiveNormalStress = EffectivePressure;

 slidingFailureMarker = false(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 Permeability = obj.initialiseXZMidpointStruct;

 cohesionArray = obj.cohesion;

 internalFrictionLoop = obj.internalFrictionArray;

 EffectivePressure = obj.effectivePressure(...

 EffectivePressure,...

 pressure);

 [twoCosFailureAngle, twoSinFailureAngle] = obj.calculateTwoFailureAngle(...

 EffectivePressure);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 9/31

 componentMap = obj.ArrayFaultArchitectureMap.(...

 architectureComponent);

 internalFrictionLoop = obj.internalFriction(...

 internalFrictionLoop,...

 EffectivePressure,...

 architectureComponent,...

 componentMap);

 cohesionArray = obj.calculateCohesion(...

 cohesionArray,...

 EffectivePressure,...

 architectureComponent,...

 componentMap);

 EffectiveNormalStress = obj.effectiveNormalStress(...

 pressure,...

 EffectiveNormalStress,...

 twoCosFailureAngle,...

 componentMap);

 end

 [logicalFailureMarker,...

 distance,...

 stressDifference,...

 slidingStress]...

 = obj.mohrAnalysis(...

 pressure,...

 internalFrictionLoop,...

 cohesionArray,...

 EffectiveNormalStress,...

 twoSinFailureAngle);

 obj.calculatePorosity(FailureMarker);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 componentMap = obj.ArrayFaultArchitectureMap.(...

 architectureComponent);

 Permeability = permeability(...

 obj,...

 EffectivePressure,...

 Permeability,...

 architectureComponent,...

 componentMap);

 if obj.modeOfFailureFlag

 FailureMarker = obj.markModeOfFailure(...

 FailureMarker,...

 architectureComponent,...

 EffectivePressure,...

 logicalFailureMarker,...

 componentMap);

 end

 slidingFailureMarker = obj.markSlidingFailure(...

 slidingFailureMarker,...

 architectureComponent,...

 logicalFailureMarker,...

 componentMap);

 end

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 10/31

 failureLength = obj.failureLength(...

 stressDifference,...

 slidingFailureMarker);

 effectiveStressPatch = obj.calculateEffectiveStressPatch(...

 EffectiveNormalStress,...

 slidingFailureMarker,...

 failureLength);

 nucleationLength = obj.nucleationLength(...

 effectiveStressPatch);

 end

 function initialiseFailureAngles(obj)

 % Calcualte failure angles for each mode of failure.

 obj.twoCosFaultAngle = cosd(2 * obj.faultAngle);

 obj.twoSinFaultAngle = sind(2 * obj.faultAngle);

 obj.twoCosAngle = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 obj.twoSinAngle = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 obj.FailureAngle.(architectureComponent).Brittle = 90 ...

 + 0.5 * atand(-1 / obj.FrictionCoefficient.Brittle.(...

 architectureComponent));

 obj.FailureAngle.(architectureComponent).Ductile = 90 ...

 + 0.5 * atand(-1 / obj.FrictionCoefficient.Ductile.(...

 architectureComponent));

 obj.TwoCosFailureAngle.(architectureComponent).Brittle...

 = cosd(2 * obj.FailureAngle.(architectureComponent).Brittle);

 obj.TwoCosFailureAngle.(architectureComponent).Ductile...

 = cosd(2 * obj.FailureAngle.(architectureComponent).Ductile);

 obj.TwoSinFailureAngle.(architectureComponent).Brittle...

 = sind(2 * obj.FailureAngle.(architectureComponent).Brittle);

 obj.TwoSinFailureAngle.(architectureComponent).Ductile...

 = sind(2 * obj.FailureAngle.(architectureComponent).Ductile);

 obj.FailureAngle.(architectureComponent).Brittle = [];

 obj.FailureAngle.(architectureComponent).Ductile = [];

 componentMap = obj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central;

 if obj.CohesiveFlag.(architectureComponent)

 obj.twoCosAngle(componentMap)...

 = obj.TwoCosFailureAngle.(...

 architectureComponent).Brittle;

 obj.twoSinAngle(componentMap)...

 = obj.TwoSinFailureAngle.(...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 11/31

 architectureComponent).Brittle;

 else

 obj.twoCosAngle(componentMap)...

 = obj.twoCosFaultAngle;

 obj.twoSinAngle(componentMap) = obj.twoSinFaultAngle;

 end

 end

 end

 function initialiseInternalFriction(obj)

 obj.internalFrictionArray = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 obj.internalFrictionArray(...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 = obj.FrictionCoefficient.Brittle.(...

 architectureComponent);

 end

 end

 function initialiseCohesion(obj)

 obj.cohesion = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 obj.cohesion(...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 = obj.Cohesion.Brittle.(...

 architectureComponent);

 end

 end

 function [twoCos, twoSin] = calculateTwoFailureAngle(...

 obj,...

 EffectivePressure)

 % Update failure angle based on failure state.

 twoCos = obj.twoCosAngle;

 twoSin = obj.twoSinAngle;

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 if obj.CohesiveFlag.(architectureComponent)

 logicalMapDuctile = (EffectivePressure.Central...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 12/31

 > obj.FailureModeBoundary.(architectureComponent))...

 & obj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central;

 twoCos(logicalMapDuctile)...

 = obj.TwoCosFailureAngle.(architectureComponent).Ductile;

 twoSin(logicalMapDuctile)...

 = obj.TwoSinFailureAngle.(architectureComponent).Ductile;

 end

 end

 end

 function failureLength = failureLength(...

 obj,...

 shearStrengthExcess,...

 failureMap)

 % Calculate failure length.

 if all(~failureMap)

 failureLength = NaN;

 else

 [failureLength, ~] = max(obj.z(failureMap));

 [failureEnd, ~] = find(obj.z == failureLength);

 failureEnd = failureEnd(end);

 if failureEnd == obj.verticalArrayLength

 failureInterp = 0;

 else

 failureInterp =...

 -shearStrengthExcess(failureEnd, end)...

 * (obj.z(failureEnd + 1, end)...

 - failureLength)...

 / (shearStrengthExcess(failureEnd + 1, end)...

 - shearStrengthExcess(failureEnd, end));

 %failureInterp(isnan(failureInterp)) = 0;

 end

 failureLength = 2 * (failureLength + failureInterp);

 end

 end

 function effectiveStressPatch = calculateEffectiveStressPatch(...

 obj,...

 EffectiveNormalStress,...

 failureMap,...

 failureLength)

 % Calculate effective stress of failure patch.

 if all(~failureMap)

 effectiveStressPatch = NaN;

 else

 effectiveStressPatch = obj.interpolateStressEdge(...

 EffectiveNormalStress,...

 failureMap,...

 failureLength);

 end

 end

 function effectiveStressPatch = interpolateStressEdge(...

 obj,...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 13/31

 EffectiveNormalStress,...

 failureMap,...

 failureLength)

 % Interpolate stress to the edge of the failure patch.

 [row, ~] = find(max(obj.z(failureMap))...

 == obj.z);

 row = row(end);

 effectiveStress = EffectiveNormalStress.Central;

 logicalMap = ~isnan(obj.slidingStress);

 effectiveStress(logicalMap)...

 = obj.slidingStress(logicalMap);

 effectiveStressPatchVector = effectiveStress(...

 failureMap);

 [~, maxStressRow] = max(effectiveStressPatchVector);

 if row ~= maxStressRow

 effectiveStressPatch =...

 min(effectiveStressPatchVector);

 else

 if row ~= obj.verticalArrayLength

 stressInterp =...

 (EffectiveNormalStress.Central(row + 1, end)...

 - effectiveStressPatchVector(end))...

 * (failureLength * 0.5 - obj.z(row, end));

 else

 stressInterp = 0;

 end

 effectiveStressPatch =...

 effectiveStressPatchVector(end)...

 + stressInterp;

 end

 end

 function EffectiveNormalStress = effectiveNormalStress(...

 obj,...

 pressure,...

 EffectiveNormalStress,...

 twoCosAngle,...

 componentMap)

 % Calculate effective normal stress.

 logicalMap = componentMap.Central;

 minStress = obj.minimumStress(logicalMap);

 maxStress = obj.maximumStress(logicalMap);

 EffectiveNormalStress.Central(...

 logicalMap) = 0.5...

 .* ((maxStress...

 + (minStress...

 - 2 .* pressure(...

 logicalMap)))...

 + (maxStress...

 - (minStress))...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 14/31

 .* twoCosAngle(...

 logicalMap));

 EffectiveNormalStress.Central(obj.slidingFailureMarker)...

 = obj.slidingStress(obj.slidingFailureMarker);

 EffectiveNormalStress.X =...

 (EffectiveNormalStress.Central(:, 1:end-1)...

 + EffectiveNormalStress.Central(:, 2:end)) / 2;

 EffectiveNormalStress.Z =...

 (EffectiveNormalStress.Central(1:end-1, :)...

 + EffectiveNormalStress.Central(2:end, :)) / 2;

 end

 function nucleationLength = nucleationLength(...

 obj,...

 effectiveStressPatch)

 % Calculate nucleation length stability criterion.

 nucleationLength = obj.psi...

 * obj.shearModulus...

 * obj.criticalSlipDistance...

 ./ (effectiveStressPatch...

 * obj.rateAndStateDifference);

 end

 function [logicalFailureMarker,...

 distance,...

 stressDifference,...

 slidingStress]...

 = mohrAnalysis(...

 obj,...

 pressure,...

 internalFrictionArray,...

 cohesionArray,...

 EffectiveNormalStress,...

 twoSinFailureAngle)

 % Find spatial array points undergoing failure and distance

 % between failure envelope and Mohr circle and every point.

 slidingStress = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 meanStress = obj.meanStress - pressure;

 differentialStress = obj.calculateDifferentialStress;

 distance = obj.stressDifference(...

 EffectiveNormalStress.Central,...

 differentialStress,...

 internalFrictionArray,...

 cohesionArray,...

 twoSinFailureAngle);

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 ComponentMap = obj.ArrayFaultArchitectureMap.(...

 architectureComponent);

 if obj.SlidingFailureFlag.(architectureComponent)

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 15/31

 faultPlaneDistance = obj.stressDifference(...

 meanStress,...

 differentialStress,...

 internalFrictionArray,...

 cohesionArray,...

 twoSinFailureAngle);

 slidingStress = obj.slidingStress;

 logicalMap = ComponentMap.Central...

 & isnan(obj.slidingStress);

 distance(...

 logicalMap) = faultPlaneDistance(...

 logicalMap);

 logicalMap = logicalMap...

 & distance < 0;

 slidingStress(logicalMap) = meanStress(...

 logicalMap);

 end

 end

 stressDifference = distance;

 distance(~obj.blankingArray) = NaN;

 logicalFailureMarker = obj.logicalFailureMarker(...

 distance);

 distance(obj.FailureMarker.Central ~= 0) = NaN;

 distance(obj.slidingFailureMarker) = NaN;

 end

 function stressDifference = stressDifference(...

 obj,...

 effNormStress,...

 differentialStress,...

 internalFrictionArray,...

 cohesionArray,...

 twoSin)

 % Stress difference between mohr circle and failure envelope.

 stressDifference...

 = obj.algebraicFailureEnvelope(...

 effNormStress,...

 internalFrictionArray,...

 cohesionArray)...

 - obj.algebraicMohrCircle(...

 differentialStress,...

 twoSin);

 end

 function Permeability = permeability(...

 obj,...

 EffectivePressure,...

 Permeability,...

 architectureComponent,...

 componentMap)

 % Return permeability struct for fault.

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 16/31

 Permeability =...

 FaultFluidFlowClass.architecturePermeability(...

 Permeability,...

 obj.FailureMarker,...

 EffectivePressure,...

 obj.UnstressedPermeability.(...

 architectureComponent),...

 obj.PressureSensitivity.(...

 architectureComponent),...

 componentMap);

 end

 function calculatePorosity(...

 obj,...

 FailureMarker)

 % Calculate porosity for a given set of physical and failure

 % conditions.

 if isfield(obj.porosityStates, 'Brittle')

 obj.porosity(FailureMarker.Central == 1)...

 = obj.porosityStates.Brittle;

 end

 if isfield(obj.porosityStates, 'Ductile')

 obj.porosity(FailureMarker.Central == 2)...

 = obj.porosityStates.Ductile;

 end

 end

 function meanStress = meanStress(obj)

 % Calculate the mean stress at every spatial array point.

 meanStress = 0.5 * (obj.maximumStress + obj.minimumStress);

 end

 function FailureMarker = markModeOfFailure(...

 obj,...

 FailureMarker,...

 architectureComponent,...

 EffectivePressure,...

 logicalFailureMarker,...

 ComponentMap)

 % Take logical failure marker and build failure marker struct

 % for every spatial array point.

 if obj.ModeOfFailureArchitectureFlag.(...

 architectureComponent)

 FailureMarker.Central(...

 obj.brittleFailureArrayCondition(...

 EffectivePressure,...

 logicalFailureMarker,...

 architectureComponent, 'Central')) = 1;

 FailureMarker.Central(...

 obj.ductileFailureArrayCondition(...

 EffectivePressure, logicalFailureMarker,...

 architectureComponent, 'Central')) = 2;

 FailureMarker.X(ComponentMap.X)...

 = FailureMarker.Central(ComponentMap.X);

 FailureMarker.Z(ComponentMap.Z)...

 = FailureMarker.Central(ComponentMap.Z);

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 17/31

 end

 end

 function slidingFailureMarker = markSlidingFailure(...

 obj,...

 slidingFailureMarker,...

 architectureComponent,...

 logicalFailureMarker,...

 ComponentMap)

 % Take logical failure marker and build failure marker struct

 % for every spatial array point.

 if obj.SlidingFailureFlag.(architectureComponent)

 slidingFailureMarker(...

 logicalFailureMarker...

 & ComponentMap.Central) = true;

 end

 end

 function cohesionArray = calculateCohesion(...

 obj,...

 cohesionArray,...

 EffectivePressure,...

 architectureComponent,...

 componentMap)

 % Return array of cohesions at every spatial array point.

 cohesionArray(...

 (EffectivePressure.Central...

 > obj.FailureModeBoundary.(architectureComponent))...

 & componentMap.Central)...

 = obj.Cohesion.Ductile.(architectureComponent);

 end

 function internalFrictionArray = internalFriction(...

 obj,...

 internalFrictionArray,...

 EffectivePressure,...

 architectureComponent,...

 componentMap)

 % Calculate internal friction at each spatial array points.

 internalFrictionArray(...

 (EffectivePressure.Central...

 > obj.FailureModeBoundary.(architectureComponent))...

 & componentMap.Central)...

 = obj.FrictionCoefficient.Ductile.(...

 architectureComponent);

 end

 function condition = brittleFailureArrayCondition(...

 obj,...

 EffectivePressure,...

 logicalFailureMarker,...

 architectureComponent,...

 structString)

 % Condition for brittle failure at an array point.

 condition = (((EffectivePressure.Central...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 18/31

 <= obj.FailureModeBoundary.(architectureComponent)...

 & obj.FailureMarker.(structString) == 0)...

 & logicalFailureMarker)...

 | obj.FailureMarker.(structString) == 1)...

 & obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(structString);

 end

 function condition = ductileFailureArrayCondition(...

 obj,...

 EffectivePressure,...

 logicalFailureMarker,...

 architectureComponent,...

 structString)

 %Condition for ductile failure at an array point.

 condition = (((EffectivePressure.Central...

 > obj.FailureModeBoundary.(architectureComponent)...

 & obj.FailureMarker.(structString) == 0)...

 & logicalFailureMarker)...

 | obj.FailureMarker.(structString) == 2)...

 & obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(structString);

 end

 function ShearStrength =...

 failureEnvelope(obj,...

 EffectiveNormalStress,...

 EffectivePressure,...

 ShearStrength,...

 architectureComponent)

 % Shear strength at each spatial array point.

 fields = fieldnames(teststruct);

 for loopCounter = 1:numel(fields)

 ShearStrength.(fields{loopCounter})(...

 obj.brittleFailureEnvelopeCondition(...

 EffectivePressure, architectureComponent,...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent), fields{loopCounter}))...

 = FaultFluidFlowClass.algebraicFailureEnvelope(...

 EffectiveNormalStress.(fields{loopCounter})(...

 obj.brittleFailureEnvelopeCondition(...

 architectureComponent,...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent),...

 fields{loopCounter})),...

 obj.FrictionCoefficient.Brittle.(...

 architectureComponent),...

 obj.Cohesion.Brittle.(architectureComponent));

 ShearStrength.(...

 fields{...

 loopCounter})(obj.ductileFailureEnvelopeCondition(...

 EffectivePressure, architectureComponent,...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent), fields{loopCounter}))...

 = FaultFluidFlowClass.algebraicFailureEnvelope(...

 EffectiveNormalStress.(fields{loopCounter})(...

 obj.ductileFailureEnvelopeCondition(...

 architectureComponent,...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent),...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 19/31

 fields{loopCounter})),...

 obj.FrictionCoefficient.Ductile.(...

 architectureComponent),...

 obj.Cohesion.Ductile.(architectureComponent));

 ShearStrength.(...

 fields{...

 loopCounter})(...

 ShearStrength.(fields{loopCounter}) < 0 & ...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(fields{loopCounter})) = 0;

 end

 end

 function condition = brittleFailureEnvelopeCondition(...

 obj,...

 EffectivePressure,...

 architectureComponent,...

 structString)

 % Condition for array point to be susceptible to brittle

 % failure.

 condition = EffectivePressure.(structString)...

 <= obj.FailureModeBoundary.(architectureComponent)...

 & obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(structString);

 end

 function condition = ductileFailureEnvelopeCondition(...

 obj,...

 EffectivePressure,...

 architectureComponent,...

 structString)

 % Condition for array point to be susceptible to ductile

 % failure.

 condition = EffectivePressure.(structString)...

 > obj.FailureModeBoundary.(architectureComponent)...

 & obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(structString);

 end

 function ShearStress = shearStress(...

 obj,...

 differentialStress,...

 failureAngle,...

 ShearStress,...

 architectureComponent)

 % Shear stress at each central array point.

 fields = fieldnames(teststruct);

 for loopCounter = 1:numel(fields)

 ShearStress.Central(...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(fields{loopCounter})) =...

 FaultFluidFlowClass.shearStressRelation(...

 differentialStress,...

 failureAngle.(fields{loopCounter})(...

 obj.ArrayFaultArchitectureMap.(...

 architectureComponent).(fields{loopCounter})));

 end

 end

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 20/31

 function obj = calculateMaximumSimulationTime(obj)

 % Calculate maximum length of time for which simulation could

 % run.

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 if obj.SlidingFailureFlag.(architectureComponent)

 obj.maximumSimulationTime = ...

 1.5 * obj.analyticalPrediction(...

 0.4,...

 architectureComponent);

 end

 end

 end

 function obj = calculateAnalyticalTime(obj)

 % Calculate analytical prediction of earthquake timing.

 for loopCounter = 1:length(obj.faultArchitectureList)

 architectureComponent =...

 obj.faultArchitectureList{loopCounter};

 if obj.SlidingFailureFlag.(architectureComponent)

 obj.analyticalTime = ...

 obj.analyticalPrediction(...

 obj.poreFluidFactor,...

 architectureComponent);

 end

 end

 end

 function analyticalTime = analyticalPrediction(...

 obj,...

 poreFluidFactor,...

 architectureComponent)

 % Analytical prediction of stable sliding on fault.

 analyticalTime = FaultFluidFlowClass.SECONDS_PER_YEAR * ...

 ((obj.lithostaticStress - obj.initialStress) *...

 (sind(2 * obj.faultAngle)) + 2 ...

 * obj.FrictionCoefficient.Brittle.(...

 architectureComponent)...

 * (poreFluidFactor...

 * obj.lithostaticStress -...

 obj.lithostaticStress * cosd(obj.faultAngle) ^ 2 -...

 obj.initialStress * sind(obj.faultAngle) ^ 2))...

 / (obj.tectonicLoadingRate * (sind(2 * obj.faultAngle)...

 + 2 * obj.FrictionCoefficient.Brittle.(...

 architectureComponent)...

 * sind(obj.faultAngle) ^ 2));

 analyticalTime(analyticalTime < 0) = 0;

 end

 function EffectivePressure = effectivePressure(....

 obj,...

 EffectivePressure,...

 pressure)

 % Effective pressure struct and midpoint spatial arrays.

 EffectivePressure.Central=...

 obj.minimumStress...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 21/31

 - pressure;

 EffectivePressure.Central(EffectivePressure.Central < 0) = 0;

 EffectivePressure.X = (EffectivePressure.Central(:, 1:(end - 1))...

 + EffectivePressure.Central(:, 2:end)) / 2;

 EffectivePressure.Z = (EffectivePressure.Central(1:(end - 1), :)...

 + EffectivePressure.Central(2:end, :)) / 2;

 end

 function pressure = pressureBCS(obj, pressure)

 % Apply pressure boundary conditions.

 pressure(:, 1) = obj.hydrostaticStress;

 pressure(end, :) = obj.hydrostaticStress;

 pressure(obj.overpressureMap) =...

 obj.contactOverpressure + obj.hydrostaticStress;

 end

 function obj = fixedInitialStress(obj, confinementFactor)

 % Initial stress conditions for fault zones without coupling

 % between pore fluid and initial stress state.

 % (Typically no significant regional stress.)

 obj.initialStress =...

 confinementFactor...

 * obj.lithostaticStress;

 end

 function differentialStress = calculateDifferentialStress(obj)

 % Calculate differential stress array at each simulated spatial

 % point.

 differentialStress = obj.maximumStress - obj.minimumStress;

 end

 function obj = mapFaultArchitecture(obj)

 % Map fault zone architecture dimensions to array.

 obj.assignFaultArchitectureArrayEnds;

 cellLength = length(obj.faultArchitectureList);

 startEndVector = zeros(cellLength + 1, 1);

 startEndVector(1) = 0;

 for loopCounter = 1:cellLength

 startEndVector(loopCounter + 1) =...

 obj.ArrayFaultArchitectureEnds.(...

 obj.faultArchitectureList{loopCounter});

 obj.ArrayFaultArchitectureMap.(...

 obj.faultArchitectureList{loopCounter}) =...

 obj.mapFaultComponent(startEndVector(loopCounter),...

 startEndVector(loopCounter + 1));

 % Enforce PSZ

 if loopCounter ~= cellLength

 obj.ArrayFaultArchitectureMap.(...

 obj.faultArchitectureList{loopCounter}).Central(:, end) = false;

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 22/31

 obj.ArrayFaultArchitectureMap.(...

 obj.faultArchitectureList{loopCounter}).Z(:, end) = false;

 obj.ArrayFaultArchitectureMap.(...

 obj.faultArchitectureList{loopCounter}).X(:, end) = false;

 end

 end

 end

 function FaultComponentMap =...

 mapFaultComponent(obj,...

 faultComponentStart,...

 faultComponentEnd)

 % Map Fault component of fault zone architecture to array.

 FaultComponentMap =...

 obj.initialiseLogicalXZCMidpointStruct(false);

 FaultComponentMap = obj.mapParallelFaultComponent(...

 faultComponentStart, faultComponentEnd,...

 FaultComponentMap);

 end

 function FaultComponentMap = mapParallelFaultComponent(...

 obj,...

 faultComponentStart,...

 faultComponentEnd,...

 FaultComponentMap)

 % Map a fault component parallel to the fault plane.

 if faultComponentStart ~= obj.horizontalArrayLength

 faultComponentStart = faultComponentStart + 1;

 end

 if faultComponentStart > faultComponentEnd

 faultComponentEnd = faultComponentStart;

 end

 FaultComponentMap.Central(1:(obj.verticalArrayLength),...

 faultComponentStart:faultComponentEnd) = true;

 FaultComponentMap.Z(1:(obj.verticalArrayLength - 1),...

 faultComponentStart:faultComponentEnd) = true;

 if faultComponentEnd == obj.horizontalArrayLength

 faultComponentEnd = faultComponentEnd - 1;

 if faultComponentEnd - faultComponentStart < 0

 faultComponentStart = faultComponentEnd;

 end

 end

 FaultComponentMap.X(1:obj.verticalArrayLength,...

 faultComponentStart:faultComponentEnd)...

 = true;

 end

 function sameEffectiveStressTransitionAssumption(obj)

 % Enforce the assumption

 obj.FailureModeBoundaryStress.IFC...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 23/31

 = obj.FailureModeBoundaryStress.OFC;

 end

 function obj = assignFaultArchitectureArrayEnds(obj)

 % Build struct to hold positions of ends of fault zone

 % architecture in array space.

 for loopCounter = 1:length(obj.faultArchitectureList)

 obj.faultArchitectureArrayEnd(...

 obj.faultArchitectureList{loopCounter});

 end

 end

 function obj = faultArchitectureArrayEnd(obj, componentName)

 % Calculate the ends of the components of fault zone

 % architecture in array space.

 obj.ArrayFaultArchitectureEnds.(componentName) =...

 ceil((obj.horizontalArrayLength)...

 * obj.FaultArchitectureEnds.(componentName)...

 / obj.simulatedFaultWidth);

 obj.ArrayFaultArchitectureEnds.(componentName)(...

 obj.ArrayFaultArchitectureEnds.(componentName)...

 > obj.horizontalArrayLength)...

 = obj.horizontalArrayLength;

 end

 function Derivative = spatialDerivative(obj, array)

 % Spatial first derivative of physical variable.

 Derivative = struct;

 Derivative.X = diff(array, 1, 2) ./ obj.Delta.X;

 Derivative.Z = diff(array, 1, 1) ./ obj.Delta.Z;

 end

 function Derivative = spatialSecondDerivative(obj, InputStruct)

 Derivative = struct('X', [], 'Z', []);

 Derivative.X = diff(InputStruct.X, 1, 2) ./ obj.Delta.XX;

 Derivative.Z = diff(InputStruct.Z, 1, 1) ./ obj.Delta.ZZ;

 end

 function outputStruct = initialiseLogicalXZCMidpointStruct(...

 obj,...

 bool)

 % Initialise struct of boolean arrays based on spatial centres

 % and midpoints.

 if bool

 outputStruct = struct('X', true(obj.verticalArrayLength,...

 obj.horizontalArrayLength - 1), 'Z',...

 true(obj.verticalArrayLength - 1,...

 obj.horizontalArrayLength),...

 'Central', true(obj.verticalArrayLength,...

 obj.horizontalArrayLength));

 else

 outputStruct = struct('X', false(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength - 1), 'Z',...

 false(obj.verticalArrayLength - 1,...

 obj.horizontalArrayLength),...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 24/31

 'Central', false(obj.verticalArrayLength,...

 obj.horizontalArrayLength));

 end

 end

 function outputStruct = initialiseXZCMidpointStruct(obj)

 % Initialise a struct containing x-, z-midpoint and central

 % spatial arrays.

 outputStruct = struct(...

 'X',...

 zeros(obj.verticalArrayLength,...

 obj.horizontalArrayLength - 1),...

 'Z',...

 zeros(obj.verticalArrayLength - 1,...

 obj.horizontalArrayLength),...

 'Central',...

 zeros(obj.verticalArrayLength,...

 obj.horizontalArrayLength));

 end

 function outputStruct = initialiseXZMidpointStruct(obj)

 % Initialise a struct with x- and z-midpoint spatial arrays.

 outputStruct = struct('X', zeros(obj.verticalArrayLength,...

 obj.horizontalArrayLength - 1),...

 'Z', zeros(obj.verticalArrayLength - 1,...

 obj.horizontalArrayLength));

 end

 function outputStruct = initialiseXZStruct(obj)

 % Initialise x and z spatial arrays.

 outputStruct = struct(...

 'X', zeros(obj.verticalArrayLength,...

 obj.horizontalArrayLength),...

 'Z', zeros(obj.verticalArrayLength,...

 obj.horizontalArrayLength));

 end

 function outputArray = initialiseArray(obj)

 % Initialise and x and z array.

 outputArray = nan(obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 end

 function initialiseSpatialArray(obj)

 % Initialise spatial arrays for dummy.

 obj.initialiseCommonSpatialArray;

 end

 function initialiseRockMatrixVariables(obj)

 % Initialise common rock matrix variables for dummy instance.

 obj.initialiseCommonRockMatrixVariables;

 end

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 25/31

 function importFaultValues(obj, faultPreset)

 % Import the fault specific properties for a given fault

 % preset.

 obj.faultPreset = faultPreset;

 switch faultPreset

 case 'Colfiorito'

 obj.faultArchitectureList = {'OFC', 'IFC', 'PSZ'};

 obj.failureStateList = {'Brittle', 'Ductile'};

 obj.simulatedFaultHeight = 1000;

 obj.horizontalArrayLength = 175;

 obj.verticalArrayLength = 200;

 obj.timeVectorDensity = 1;

 obj.ModeOfFailureArchitectureFlag =...

 struct('OFC', true, 'IFC', false, 'PSZ', false);

 obj.SlidingFailureFlag =....

 struct('OFC', false, 'IFC', false, 'PSZ', true);

 obj.FineFeatureFlag =...

 struct('OFC', false, 'IFC', false, 'PSZ', true);

 obj.CohesiveFlag =...

 struct('OFC', true, 'IFC', false, 'PSZ', false);

 obj.colfioritoOverpressureMap;

 obj.pszWidth = 1E-3;

 obj.shearModulus = 45.7E9;

 obj.rateAndStateDifference = 0.003;

 obj.criticalSlipDistance = 0.000063;

 obj.psi = 1;

 obj.rockDensity = 2650;

 obj.faultAngle = 45;

 obj.FrictionCoefficient =...

 struct('Brittle',...

 struct(...

 'OFC', 0.704,...

 'IFC', 0.84,...

 'PSZ', 0.6),...

 'Ductile',...

 struct('OFC', 0, 'IFC', 0, 'PSZ', NaN));

 obj.FailureModeBoundary =...

 struct(...

 'OFC', 10E6,...

 'IFC', 10E6,...

 'PSZ' , 1E10);

 obj.FailureModeBoundaryStress =...

 struct(...

 'OFC', 32E6,...

 'IFC', 32E6,...

 'PSZ' , 1E10);

 obj.Cohesion = struct(...

 'Brittle', struct(...

 'OFC', 15.5E6,...

 'IFC', 26.4E6,...

 'PSZ', 0),...

 'Ductile', struct(...

 'OFC', 38.14E6,...

 'IFC', 53.28E6,...

 'PSZ', NaN));

 obj.cohesionLimit = obj.Cohesion.Brittle.OFC;

 obj.compressiblity = 1E-10;

 obj.Viscosity = struct(...

 'SinglePhase', 1E-5);

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 26/31

 obj.porosityStates = struct(...

 'Prefailure', 0.01,...

 'Brittle', 0.0175,...

 'Ductile', 0.015);

 obj.UnstressedPermeability =...

 struct(...

 'OFC', struct(...

 'Prefailure', struct('X', 8E-21, 'Z', 3E-19),...

 'Brittle',...

 struct('X', 1.1287E-18, 'Z', 1.39E-17),...

 'Ductile',...

 struct('X', 2.407E-18, 'Z', 3.681E-18)),...

 'IFC',...

 struct(...

 'Prefailure', struct('X', 1E-19, 'Z', 1E-17)),...

 'PSZ',...

 struct('Prefailure',...

 struct('X', 1E-21, 'Z', 1E-19)));

 obj.PressureSensitivity = struct(...

 'OFC', struct(...

 'Prefailure', struct('X', -4E-8, 'Z', -1.3E-7),...

 'Brittle', struct('X', 0, 'Z', 0),...

 'Ductile',...

 struct('X', -1.136E-7, 'Z', -7.968E-8)),...

 'IFC',...

 struct('Prefailure', struct('X', 0, 'Z', 0)),...

 'PSZ',...

 struct('Prefailure', struct('X', 0, 'Z', 0)));

 obj.PlotProperties.OFC...

 = {'Color', 'red', 'LineWidth', 2.5};

 obj.PlotProperties.IFC...

 = {'Color', 'cyan', 'LineWidth', 1.5};

 obj.PlotProperties.PSZ...

 = {'Color', 'black'};

 obj.plotTimeScale = 'years';

 obj.PlottingAngle.Brittle.OFC = 60;

 obj.PlottingAngle.Ductile.OFC = 60;

 otherwise

 error('Fault preset not recognised.')

 end

 end

 function colfioritoOverpressureMap(obj)

 % Implement map of overpressure particular to Colfiorito

 % example.

 obj.overpressureMap...

 = false(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 obj.overpressureMap(...

 1:obj.arrayoverpressureHeight, 1)...

 = 1;

 end

 end

 methods(Static)

 function PermeabilityArrayStruct = architecturePermeability(...

 PermeabilityArrayStruct,...

 FailureMarker,...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 27/31

 EffectivePressure,...

 UnstressedPermeabilityStruct,...

 PressureSensitivityStruct,...

 ArchitectureMap)

 % Calculate permeability for all components of fault zone

 % architecture.

 fields = fieldnames(PermeabilityArrayStruct);

 for loopCounter = 1:numel(fields)

 architectureComponent = fields{loopCounter};

 logicalMap = ...

 FailureMarker.(architectureComponent) == 0 ...

 & ArchitectureMap.(architectureComponent);

 PermeabilityArrayStruct.(architectureComponent)(...

 logicalMap) =...

 FaultFluidFlowClass.algebraicPermeability(...

 UnstressedPermeabilityStruct.Prefailure.(...

 architectureComponent),...

 EffectivePressure.(...

 architectureComponent)(...

 logicalMap),...

 PressureSensitivityStruct.Prefailure.(...

 architectureComponent));

 if any(FailureMarker.(...

 fields{...

 loopCounter})(...

 ArchitectureMap.(architectureComponent)) == 1)

 logicalMap = ...

 FailureMarker.(architectureComponent) == 1 ...

 & ArchitectureMap.(architectureComponent);

 PermeabilityArrayStruct.(...

 fields{...

 loopCounter})(...

 logicalMap) =...

 FaultFluidFlowClass.algebraicPermeability(...

 UnstressedPermeabilityStruct.Brittle.(...

 architectureComponent),...

 EffectivePressure.(...

 architectureComponent)(...

 logicalMap),...

 PressureSensitivityStruct.Brittle.(...

 architectureComponent));

 end

 if any(FailureMarker.(...

 fields{...

 loopCounter})(...

 ArchitectureMap.(architectureComponent)) == 2)

 logicalMap = ...

 FailureMarker.(architectureComponent) == 2 ...

 & ArchitectureMap.(architectureComponent);

 PermeabilityArrayStruct.(...

 architectureComponent)(...

 logicalMap) =...

 FaultFluidFlowClass.algebraicPermeability(...

 UnstressedPermeabilityStruct.Ductile.(...

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 28/31

 architectureComponent),...

 EffectivePressure.(...

 architectureComponent)(...

 logicalMap),...

 PressureSensitivityStruct.Ductile.(...

 architectureComponent));

 end

 end

 end

 function logicalFailureMarker...

 = logicalFailureMarker(distance)

 % Calculate failure marker array as boolean.

 tolerance = 0;

 logicalFailureMarker = false(size(distance));

 logicalFailureMarker(distance <= tolerance) = true;

 end

 function mohr = algebraicMohrCircle(...

 differentialStress,...

 twoSin)

 % Calculate value of mohr circle as analytical relationship.

 mohr = (differentialStress / 2) .* twoSin;

 end

 function permeability = algebraicPermeability(...

 unstressedPermeability,...

 effectivePressure,...

 pressureSensitivity)

 % Calculate value of permeability as analytical relationship.

 permeability = unstressedPermeability .*...

 exp(pressureSensitivity...

 .* effectivePressure);

 end

 function inputStruct = assignToXZCMidpointStruct(...

 inputStruct,...

 value)

 inputStruct.Central = value;

 % Set all arrays in spatial position struct to a given value.

 inputStruct...

 = FaultFluidFlowClass.interpolateStructArray(...

 inputStruct);

 end

 function inputStruct = interpolateStructArray(inputStruct)

 % Interpolate central spatial struct to X and Z midpoints.

 inputStruct.X = (inputStruct.Central(:, 2:end)...

 + inputStruct.Central(:, 1: end - 1)) / 2;

 inputStruct.Z = (inputStruct.Central(2:end, :)...

 + inputStruct.Central(1:end -1, :)) / 2;

 end

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 29/31

 function index = indexOfNearest(input, value)

 % Find index of point in array nearest to a given value.

 temp = abs(input - value);

 [~ , index] = min(temp);

 end

 function output = copyToXZStruct(input)

 %Copy an input to both X and Z array midpoints.

 output = struct;

 output.X = input;

 output.Z = input;

 end

 function shearStress = shearStressRelation(...

 differentialStress,...

 failureAngle)

 % Shear stress relationship.

 shearStress = differentialStress...

 .* sind(2 .* failureAngle)...

 / 2;

 end

 function height = semiCircleHeight(x, MohrRadius, MohrCentre)

 % Find height of Mohr semi-circle.

 height = sqrt(MohrRadius .^ 2 - (MohrCentre - x) .^ 2);

 end

 function printProgressString(string)

 % Output current solver progress to console.

 disp(string)

 fprintf('\n')

 end

 function shearStrength = algebraicFailureEnvelope(...

 effectiveNormalStress,...

 frictionCoefficient,...

 cohesion)

 % Return failure envelope given effective normal stress,

 % cohesion and friction coefficient.

 shearStrength...

 = cohesion...

 + frictionCoefficient...

 .* effectiveNormalStress;

 end

 end

end

ans =

 FaultFluidFlowClass with properties:

 SECONDS_PER_YEAR: 31556900

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 30/31

 SECONDS_PER_DAY: 86400

 GRAVITATIONAL_CONSTANT: 9.8100

 analyticalTime: []

 maximumSimulationTime: []

 timeVectorLength: []

 time: []

 timeOutput: []

 timeVectorDensity: []

 x: []

 z: []

 Delta: []

 faultArchitectureList: []

 simulatedFaultWidth: []

 simulatedFaultHeight: []

 horizontalArrayLength: []

 verticalArrayLength: []

 FaultArchitectureEnds: []

 ModeOfFailureArchitectureFlag: []

 SlidingFailureFlag: []

 FineFeatureFlag: []

 overpressureHeight: []

 overpressureMap: []

 pszWidth: []

 blankingArray: []

 EarthquakeLengthStore: []

 EarthquakeLengthVector: []

 CohesiveFlag: []

 nucleationDetectionFactor: 500000

 faultPreset: []

 rockDensity: []

 faultAngle: []

 FailureModeBoundary: []

 FrictionCoefficient: []

 porosity: []

 porosityStates: []

 compressiblity: []

 Viscosity: []

 UnstressedPermeability: []

 PressureSensitivity: []

 Cohesion: []

 initialStressField: []

 arrayoverpressureHeight: []

 contactOverpressure: []

 initialPressure: []

 initialSolverVariable: []

 pressure: []

 Density: []

 shearModulus: []

 rateAndStateDifference: []

 criticalSlipDistance: []

 psi: []

 slidingStress: []

 FailureTime: [1×1 struct]

 SlidingLength: [1×1 struct]

 cohesionLimit: []

 failureStateList: []

 FailureAngle: []

 TwoCosFailureAngle: []

 twoCosFaultAngle: []

 ArrayFaultArchitectureEnds: []

 ArrayFaultArchitectureMap: []

 FailureModeBoundaryStress: []

 hydrostaticStress: []

 lithostaticStress: []

 FailureMarker: []

08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 31/31

 slidingFailureMarker: []

 failureExtent: []

 maximumStress: []

 minimumStress: []

 Permeability: []

 options: []

 outputPressure: []

 outputSolverVariable: []

 FailureMarkerStore: []

 slidingFailureMarkerStore: []

 slidingStressStore: []

 oldFailureMarker: []

 newFailureMarker: []

 PlotProperties: [1×1 struct]

 twoCosAngle: []

 twoSinAngle: []

 internalFrictionArray: []

 cohesion: []

 TwoSinFailureAngle: []

 twoSinFaultAngle: []

 FailureEnvelope: []

 poreFluidFactor: []

 tectonicLoadingRate: []

 faultDepth: []

 confinementFactor: []

 OFCwidth: []

 IFCwidth: []

 initialStress: []

 modeOfFailureFlag: 0

 plotTimeScale: []

 PlottingAngle: []

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 1/8

function faultFluidFlowScript(varargin)

% OOP based script to simulate fluid flow for a given fault zone

% architecture.

% INSTRUCTIONS: Pass the following input variables when running

% pressureDiffusionScript.

% Pore fluid factor lambda. Can be vector. (REQUIRED)

% Tectonic loading rate, extension. Can be vector. (REQUIRED)

% Fault depth. Can be vector. (REQUIRED)

% Confinement factor (of lithostatic stress).(REQUIRED).

% Overpressure half height. (REQUIRED)

% OFC width. (REQUIRED)

% IFC half width. (REQUIRED)

% Fault Preset. ('Colfiorito'). (REQUIRED.)

% Fail test pass string 'modeoffailure'. Turn on/off mode of failure

% behaviour. (REQUIRED FOR CASE STUDY)

% (Omit in case of paramter study.)

%Include analytical predictions pass string 'analytical'.

% (OPTIONAL, ONLY USED IN PARAMETER STUDY.)

% Side-by-side plot data side by side for specific paper diagrams.

% Include string 'sidebyside' (OPTIONAL).

% Examples: Case Study:

% pressureDiffusionScript(0.45, -1.5E5, 7000, 0.7, 'Colfiorito', 'modeoffailure')

% Parameter Study:

% pressureDiffusionScript(0.4:0.05:0.7, -1.5E5, 7000:250:7500, 0.7, 'Colfiorito', 'analytical')

% Side By Side:

% pressureDiffusionScript([0.45, 0.7], -1.5E5, 7000, 0.7,'Colfiorito', 'sidebyside')

clc

format long eng

tic

[analyticalFlag, sideBySideFlag, resultPlotFlag, fileName]...

 = processVarargin(varargin);

parallelIndex = indicesOfVectorInputs(varargin{:});

if ~any(strcmp(varargin, 'plotonly'))

 folderName = initialiseFolder(parallelIndex);

 saveInputsToFile(folderName, varargin{:});

else

 folderName = [];

end

if all(~parallelIndex)

 if strcmp(resultPlotFlag, 'plotonly')

 FaultFluidFlowMat = load(fileName);

 FaultFluidFlow = FaultFluidFlowMat.FaultFluidFlow;

 else

 FaultFluidFlow = solveFaultFluidFlow(varargin{:});

 end

 toc;

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 2/8

 if ~strcmp(resultPlotFlag, 'resultonly')

 plotResults(FaultFluidFlow, folderName, varargin{:})

 end

 if ~strcmp(resultPlotFlag, 'plotonly')

 save([folderName '/FaultFluidFlowResults.mat'],...

 'FaultFluidFlow')

 end

 close all;

else

 FaultFluidFlowClass.printProgressString(...

 'Initialise parameter study...')

 [gridVariables, parameterStudyFailureVector,...

 parameterStudyNoFailureVector]...

 = initialiseParameterStudyVariables(parallelIndex, varargin);

 SideBySideCellFailure = cell(2, 1);

 SideBySideCellNoFailure = cell(2, 1);

 parfor parallelLoopCounter = 1:length(gridVariables{1}(:))

 loopVector = varargin;

 loopVector(parallelIndex) = cellfun(...

 @(x)x(parallelLoopCounter),...

 gridVariables, 'un', 0);

 if sideBySideFlag

 if ~strcmp(resultPlotFlag, 'plotonly')

 [SideBySideCellFailure{parallelLoopCounter},...

 SideBySideCellNoFailure{parallelLoopCounter}]...

 = sideBySideStudy(...

 loopVector,...

 folderName,...

 parallelLoopCounter);

 end

 else

 if ~strcmp(resultPlotFlag, 'plotonly')

 [parameterStudyFailureVector(parallelLoopCounter, :),...

 parameterStudyNoFailureVector(...

 parallelLoopCounter,...

 :)]...

 = parameterStudy(loopVector, folderName);

 end

 end

 end

 if sideBySideFlag

 postProcessSideBySideResults(...

 folderName,...

 SideBySideCellFailure,...

 SideBySideCellNoFailure,...

 gridVariables,...

 parallelIndex,...

 resultPlotFlag,...

 fileName,...

 varargin);

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 3/8

 else

 postProcessParameterStudyResults(...

 parameterStudyFailureVector,...

 parameterStudyNoFailureVector,...

 folderName,...

 gridVariables,...

 parallelIndex,...

 analyticalFlag,...

 resultPlotFlag,...

 fileName,...

 varargin{:});

 end

 close all;

end

toc

end

function [SideBySideCellFailureOutput, SideBySideCellNoFailureOutput]...

 = sideBySideStudy(loopVector, folderName, parallelLoopCounter)

% Perform case studies necessary for side by side plotting.

[FaultFluidFlowFailure, FaultFluidFlowNoFailure]...

 = parameterStudySimulation(loopVector);

SideBySidePlottingFailure = processSideBySideResults(...

 FaultFluidFlowFailure,...

 folderName,...

 [num2str(parallelLoopCounter), '_1']);

SideBySidePlottingNoFailure = processSideBySideResults(...

 FaultFluidFlowNoFailure,...

 folderName,...

 [num2str(parallelLoopCounter), '_2']);

%Struct output necessary for parallelisation.

[SideBySideCellFailureOutput,...

 SideBySideCellNoFailureOutput]...

 = storeToSideBySideCell(...

 SideBySidePlottingFailure,...

 SideBySidePlottingNoFailure);

end

function postProcessSideBySideResults(...

 folderName,...

 SideBySideCellFailure,...

 SideBySideCellNoFailure,...

 gridVariables,...

 parallelIndex,...

 resultPlotFlag,...

 fileName,...

 argCell)

% Postprocess case study results for side by side plotting.

DummyFaultFluidFlow = dummyFaultFluidFlowClass(...

 gridVariables,...

 parallelIndex,...

 argCell);

if strcmp(resultPlotFlag, 'plotonly')

 SideBySidePlottingMat = load(fileName);

 SideBySidePlotting = SideBySidePlottingMat.SideBySidePlotting;

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 4/8

else

 SideBySidePlotting = SideBySidePlottingClass;

 SideBySidePlotting.initialise(...

 DummyFaultFluidFlow,...

 folderName);

 SideBySidePlotting.SideBySideResultStruct = struct(...

 'Failure',...

 SideBySideCellFailure,...

 'NoFailure',...

 SideBySideCellNoFailure);

end

if ~strcmp(resultPlotFlag, 'resultonly')

 SideBySidePlotting.sideBySidePlot(...

 DummyFaultFluidFlow);

end

if ~strcmp(resultPlotFlag, 'plotonly')

 save(...

 [folderName '/SideBySideStudyResults.mat'],...

 'SideBySidePlotting')

end

end

function SideBySidePlotting = processSideBySideResults(...

 FaultFluidFlow,...

 folderName,...

 fileNumber)

% Process side by side results

SideBySidePlotting = SideBySidePlottingClass;

SideBySidePlotting.initialise(FaultFluidFlow, folderName);

SideBySidePlotting.resultProcessing(FaultFluidFlow);

SideBySidePlotting.faultPlaneFailurePlot(FaultFluidFlow, fileNumber);

end

function postProcessParameterStudyResults(...

 parameterStudyFailureVector,...

 parameterStudyNoFailureVector,...

 folderName,...

 gridVariables,...

 parallelIndex,...

 analyticalFlag,...

 resultPlotFlag,...

 fileName,...

 varargin)

% Postprocess parameter study results.

if strcmp(resultPlotFlag, 'plotonly')

 ParameterStudyPlottingMat = load(fileName);

 ParameterStudyPlotting...

 = ParameterStudyPlottingMat.ParameterStudyPlotting;

else

 ParameterStudyPlotting = ParameterStudyPlottingClass;

 ParameterStudyPlotting.initialiseParameterStudy(...

 folderName,...

 gridVariables,...

 varargin{:},...

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 5/8

 analyticalFlag);

end

if ~strcmp(resultPlotFlag, 'plotonly')

 ParameterStudyPlotting.postProcessParameterStudyResults(...

 parameterStudyFailureVector,...

 parameterStudyNoFailureVector);

end

if ~strcmp(resultPlotFlag, 'resultonly')

 ParameterStudyPlotting.parameterStudyPlot(...

 parallelIndex,...

 gridVariables,...

 analyticalFlag);

end

if ~strcmp(resultPlotFlag, 'plotonly')

 save([folderName '/ParameterStudyResults.mat'],...

 'ParameterStudyPlotting')

end

end

function [gridVariables,...

 parameterStudyVector,...

 parameterStudyNoFailureVector]...

 = initialiseParameterStudyVariables(parallelIndex, argCell)

% Initialise variables necessary to perform parameter study.

parallelVariable = argCell(parallelIndex);

gridVariables = cell(1, numel(parallelVariable));

[gridVariables{:}] = ndgrid(parallelVariable{:});

gridLength = length(gridVariables{1}(:));

parameterStudyVector = NaN(gridLength, 11);

parameterStudyNoFailureVector = NaN(gridLength, 11);

end

function [FaultFluidFlowFailure, FaultFluidFlowNoFailure]...

 = parameterStudySimulation(loopVector)

% Peform set of simulations required for parameter study.

FaultFluidFlowFailure = solveFaultFluidFlow(...

 loopVector{1:8},...

 'modeoffailure');

FaultFluidFlowNoFailure = solveFaultFluidFlow(...

 loopVector{1:8});

end

function [parameterStudyFailureVectorOutput,...

 parameterStudyNoFailureVectorOutput]...

 = parameterStudy(loopVector, folderName)

% Perform parameter study.

[FaultFluidFlowFailure, FaultFluidFlowNoFailure]...

 = parameterStudySimulation(loopVector);

ParameterStudyPlottingFailure = ParameterStudyPlottingClass;

ParameterStudyPlottingFailure.initialise(...

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 6/8

 FaultFluidFlowFailure,...

 folderName);

ParameterStudyPlottingNoFailure...

 = ParameterStudyPlottingClass;

ParameterStudyPlottingNoFailure.initialise(...

 FaultFluidFlowNoFailure,...

 folderName);

%Vector output necessary for parallelisation.

parameterStudyFailureVectorOutput =...

 ParameterStudyPlottingFailure.resultProcessing(...

 FaultFluidFlowFailure);

parameterStudyNoFailureVectorOutput =...

 ParameterStudyPlottingNoFailure.resultProcessing(...

 FaultFluidFlowNoFailure);

end

function FaultFluidFlow = solveFaultFluidFlow(varargin)

% Solve fault fluid flow problem for a given fault zone.

FaultFluidFlow = SinglePhaseFluidFlowClass;

FaultFluidFlow.initialise(varargin{:});

FaultFluidFlow.faultFluidFlowSolver();

end

function plotResults(FaultFluidFlow, folderName, varargin)

% Plot case study results.

ResultPlotting = ResultPlottingClass;

ResultPlotting.initialise(FaultFluidFlow, folderName);

ResultPlotting.caseStudyFigures(FaultFluidFlow);

end

function [analyticalFlag, sideBySideFlag, resultPlotFlag, fileName]...

 = processVarargin(varargin)

% Process variable input arguments.

fileName = '';

if any(strcmp(varargin{:}, 'analytical'))

 analyticalFlag = 'analytical';

else

 analyticalFlag = '';

end

if any(strcmp(varargin{:}, 'sidebyside'))

 sideBySideFlag = true;

else

 sideBySideFlag = false;

end

if any(strcmp(varargin{:}, 'plotonly'))

 resultPlotFlag = 'plotonly';

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 7/8

 idx = find(strcmp(varargin{:}, 'plotonly')) + 1;

 fileName = varargin{1}{idx};

elseif any(strcmp(varargin{:}, 'resultonly'))

 resultPlotFlag = 'resultonly';

else

 resultPlotFlag = 'both';

end

end

function [SideBySideCellFailure, SideBySideCellNoFailure]...

 = storeToSideBySideCell(...

 SideBySidePlotting,...

 SideBySidePlottingNoFailure)

% Create cell for storing side by side case studies simulation results.

SideBySideCellFailure =...

 SideBySidePlotting.SideBySideStruct;

SideBySideCellNoFailure =...

 SideBySidePlottingNoFailure.SideBySideStruct(...

 1:(length(SideBySidePlotting.SideBySideStruct)-1));

end

function DummyFaultFluidFlow = dummyFaultFluidFlowClass(...

 gridVariables,...

 parallelIndex,...

 argCell)

% Create a dummy fault fluid flow class instance to enable side by side

% plotting.

DummyFaultFluidFlow = FaultFluidFlowClass;

dummyVariables = argCell;

dummyVariables(parallelIndex) = cellfun(@(x)x(1), gridVariables, 'un', 0);

DummyFaultFluidFlow.initialise(dummyVariables{:});

end

function s = convertNum(n)

 % Convert number to string.

 s = [];

 while n > 0

 d = mod(n,10);

 s = [char(48+d), s];

 n = (n-d)/10;

 end

end

function saveInputsToFile(folderName, varargin)

% Store simulation inputs to file.

fileId = fopen([folderName '/input.txt'], 'w');

08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 8/8

filevec = ['Pore Fluid Factor ', convertNum(varargin{1}),...

 ' Tectonic Loading Rate ', convertNum(varargin{2}),...

 ' Fault Depth ', convertNum(varargin{3}), ...

 ' Confinement Factor ' , convertNum(varargin{4}),...

 ' Overpressure Contact Height ' , convertNum(varargin{5}),...

 ' OFC Width ' , convertNum(varargin{6}),...

 ' IFC Width ' , convertNum(varargin{7}),...

 ' Fault Preset ' , convertNum(varargin{8}),...

 ' ' varargin{9:end}];

fprintf(fileId, '%s', filevec);

end

function folderName = initialiseFolder(parallelIndex)

% Initialise folder for storing inputs and results.

if sum(parallelIndex) ~= 0

 folderName = ['ParameterStudy' datestr(datetime('now'),...

 'ddmmyyHHMMSS')];

else

 folderName = ['FaultFluidFlow' datestr(datetime('now'),...

 'ddmmyyHHMMSS')];

end

ResultPlottingClass.makeDirectory(folderName);

end

function parallelIndex = indicesOfVectorInputs(varargin)

% Identify vectorised inputs for parallel case studies

% (parameter study or side by side plotting.)

parallelIndex = cellfun(@(e) length(e) ~= 1, varargin(1:7));

end

Index exceeds the number of array elements (0).

Error in faultFluidFlowScript>indicesOfVectorInputs (line 486)

parallelIndex = cellfun(@(e) length(e) ~= 1, varargin(1:7));

Error in faultFluidFlowScript (line 38)

parallelIndex = indicesOfVectorInputs(varargin{:});

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 1/18

classdef ParameterStudyPlottingClass < ResultPlottingClass

 properties

 FailureTime = struct(...

 'Brittle', NaN,...

 'Ductile', NaN,...

 'Stable', NaN,...

 'Unstable', NaN);

 FailureExtent = struct'

 ParameterStudyFailureTime = struct(...

 'Brittle', struct, 'Ductile', struct,...

 'Stable', struct('General', struct),...

 'Unstable', struct('General', struct));

 ParameterStudyFailureExtent = struct(...

 'Stable', struct,...

 'Unstable', struct);

 PatchSize

 analyticalTime;

 SlidingLength;

 poreFluidFactorList;

 tectonicLoadingRate;

 faultDepth;

 confinementFactor;

 overpressureHeight;

 OFCwidth;

 IFCwidth;

 failureStringCell = {'Failure', 'NoFailure'};

 options;

 simulatedFaultWidth;

 simulatedFaultHeight;

 end

 methods

 function obj = initialiseParameterStudy(...

 obj,...

 folderName,...

 grid,...

 poreFluidFactorList,...

 tectonicLoadingRate,...

 faultDepth,...

 confinementFactor,...

 overpressureHeight,...

 OFCwidth,...

 IFCwidth,...

 varargin)

 obj.ParameterStudyFailureTime.Stable.Failure = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureTime.Unstable.Failure = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureTime.Stable.NoFailure = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureTime.Unstable.NoFailure = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureTime.Brittle = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureTime.Ductile = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureExtent.Stable = NaN(...

 length(grid{1}(:)));

 obj.ParameterStudyFailureExtent.Unstable = NaN(...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 2/18

 length(grid{1}(:)));

 obj.poreFluidFactorList = poreFluidFactorList;

 obj.tectonicLoadingRate = tectonicLoadingRate;

 obj.faultDepth = faultDepth;

 obj.confinementFactor = confinementFactor;

 obj.overpressureHeight = overpressureHeight;

 obj.OFCwidth = OFCwidth;

 obj.IFCwidth = IFCwidth;

 obj.folderName = folderName;

 end

 function obj = assignEarthquakeLengthsToStruct(...

 obj,...

 parallelVector,...

 noFailureParallelVector)

 % Transfer results from parallel loop output vector to object

 % instance.

 obj.SlidingLength.Failure.Failure.Stable...

 = parallelVector(:, 6);

 obj.SlidingLength.Failure.Failure.Unstable...

 = parallelVector(:, 7);

 obj.SlidingLength.Failure.Nucleation.Stable =...

 parallelVector(:, 8);

 obj.SlidingLength.Failure.Nucleation.Unstable =...

 parallelVector(:, 9);

 obj.FailureExtent.Stable.Failure =...

 parallelVector(:, 10);

 obj.FailureExtent.Unstable.Failure =...

 parallelVector(:, 11);

 obj.SlidingLength.NoFailure.Failure.Stable =...

 noFailureParallelVector(:, 6);

 obj.SlidingLength.NoFailure.Failure.Unstable =...

 noFailureParallelVector(:, 7);

 obj.SlidingLength.NoFailure.Nucleation.Stable =...

 noFailureParallelVector(:, 8);

 obj.SlidingLength.NoFailure.Nucleation.Unstable =...

 noFailureParallelVector(:, 9);

 obj.FailureExtent.Stable.NoFailure =...

 noFailureParallelVector(:, 10);

 obj.FailureExtent.Unstable.NoFailure =...

 noFailureParallelVector(:, 11);

 end

 function obj = postProcessParameterStudyResults(...

 obj,...

 parallelVector,...

 noFailureParallelVector)

 % Apply post processing to parameter study results.

 obj.readDataFromParallelVector(...

 parallelVector,...

 noFailureParallelVector);

 obj.assignEarthquakeLengthsToStruct(...

 parallelVector,...

 noFailureParallelVector);

 end

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 3/18

 function obj = parameterStudyPlot(...

 obj,...

 parallelIndex,...

 gridVariable,...

 analyticalFlag)

 switch sum(parallelIndex)

 case 1

 obj.oneVectorInputPlot(parallelIndex, analyticalFlag)

 case 2

 obj.twoVectorInputPlot(gridVariable, parallelIndex)

 case 3

 obj.threeVectorInputPlot(gridVariable, parallelIndex)

 end

 end

 function readDataFromParallelVector(...

 obj,...

 parallelVector,...

 noFailureParallelVector)

 obj.ParameterStudyFailureTime.Stable.Failure...

 = parallelVector(:, 3);

 obj.ParameterStudyFailureTime.Unstable.Failure...

 = parallelVector(:, 4);

 obj.ParameterStudyFailureTime.Stable.NoFailure...

 = noFailureParallelVector(:, 3);

 obj.ParameterStudyFailureTime.Unstable.NoFailure...

 = noFailureParallelVector(:, 4);

 obj.ParameterStudyFailureTime.Brittle = parallelVector(:, 1);

 obj.ParameterStudyFailureTime.Ductile = parallelVector(:, 2);

 obj.analyticalTime = parallelVector(:, 5);

 end

 function oneVectorInputPlot(obj, parallelIndex, analyticalFlag)

 if parallelIndex(1) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 obj.poreFluidFactorList,...

 'PlotString1',...

 'Pore Fluid Factor');

 elseif parallelIndex(2) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 obj.tectonicLoadingRate,...

 'PlotString1',...

 'Tectonic Loading Rate');

 elseif parallelIndex(3) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 obj.faultDepth, ...

 'PlotString1',...

 'Fault Depth (m)');

 elseif parallelIndex(4) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 obj.confinementFactor, ...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 4/18

 'PlotString1',...

 'Confinement Factor');

 elseif parallelIndex(5) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 2 * obj.overpressureHeight, ...

 'PlotString1',...

 'Overpressure Contact Height (m)');

 elseif parallelIndex(6) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 obj.OFCwidth, ...

 'PlotString1',...

 'Outer Fault Core Width (m)');

 elseif parallelIndex(7) == 1

 PlotStruct = struct(...

 'plotVariable1',...

 2 * obj.IFCwidth, ...

 'PlotString1',...

 'Inner Fault Core Width (m)');

 end

 obj.onePlot(PlotStruct, analyticalFlag);

 end

 function twoVectorInputPlot(obj, gridVariable, parallelIndex)

 if parallelIndex(1) == 1 && parallelIndex(3) == 1

 obj.poreFluidFactorList = gridVariable{1};

 obj.faultDepth = gridVariable{2};

 PlotStruct = struct(...

 'PlotString1',...

 'Pore Fluid Factor',...

 'PlotString2',...

 'Fault Depth (m)');

 obj.twoPlot(gridVariable, PlotStruct);

 elseif parallelIndex(3) == 1 && parallelIndex(4) == 1

 obj.faultDepth = gridVariable{1};

 obj.confinementFactor = gridVariable{2};

 PlotStruct = struct(...

 'PlotString1',...

 'Fault Depth (m)',...

 'PlotString2',...

 'Initial Confinement (Pa)');

 obj.twoPlot(gridVariable, PlotStruct);

 elseif parallelIndex(1) == 1 && parallelIndex(4) == 1

 obj.poreFluidFactorList = gridVariable{1};

 obj.confinementFactor = gridVariable{2};

 PlotStruct = struct(...

 'PlotString1',...

 'Pore Fluid Factor',...

 'PlotString2',...

 'Initial Confinement (Pa)');

 obj.twoPlot(gridVariable, PlotStruct);

 end

 end

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 5/18

 function threeVectorInputPlot(obj, gridVariable, parallelIndex)

 if parallelIndex(1) == 1 ...

 && parallelIndex(2) == 1 ...

 && parallelIndex(3) == 1

 PlotStruct = struct(...

 'plotVariable1', obj.faultDepth,...

 'plotVariable2', obj.poreFluidFactorList,...

 'plotVariable3', obj.tectonicLoadingRate,...

 'PlotString1', 'Fault Depth (m)', ...

 'PlotString2', 'Pore Fluid Factor',...

 'plotString3', 'Tectonic Loading Rate (Pa/year)');

 obj.threePlot(gridVariable, PlotStruct);

 end

 end

 function onePlot(obj, PlotStruct, analyticalFlag)

 % Plot parameter study for one vector input.

 obj.plotInterseismicPeriod(PlotStruct, analyticalFlag);

 obj.plotNucleationLength(PlotStruct);

 obj.plotNucleationPhase(PlotStruct);

 obj.plotFailureExtent(PlotStruct);

 end

 function outputImage = plotInterseismicPeriod(...

 obj,...

 PlotStruct,...

 analyticalFlag)

 % Plot interseismic period.

 figure;

 hold on

 [p3, p4] = obj.addFailureRectanglesToPlot(...

 PlotStruct,...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 obj.ParameterStudyFailureTime.Unstable.NoFailure);

 p1 = plot(...

 PlotStruct.plotVariable1, ...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 'r*-');

 p2 = plot(...

 PlotStruct.plotVariable1,...

 obj.ParameterStudyFailureTime.Unstable.NoFailure,...

 'k*-');

 axis tight;

 xlabel(PlotStruct.PlotString1)

 ylabel('Interseismic period (years)')

 legcell = {...

 'Deformation-dependent permeability',...

 'No deformation-dependent permeability'};

 if analyticalFlag

 plot(...

 PlotStruct.plotVariable1,...

 obj.analyticalTime,...

 'r*');

 legcell = {...

 legcell{:}, ...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 6/18

 'Analytical Prediction of Stable Sliding'};

 end

 if ~isempty(p3)

 legcell = {...

 'Brittle failure',...

 legcell{:}};

 end

 if ~isempty(p4)

 legcell = {...

 'Ductile failure',...

 legcell{:}};

 end

 legend(...

 [p3(~isempty(p3)),...

 p4(~isempty(p4)),...

 p1(~isempty(p1)),...

 p2(~isempty(p2))],...

 legcell{:},...

 'Location',...

 'southwest');

 hold off;

 drawnow

 outputImage = ResultPlottingClass.copyPlotToImage(gcf);

 obj.saveFigure('FailureEventTiming');

 end

 function outputImage = plotNucleationPhase(obj, PlotStruct)

 % Plot nucleation time.

 nucleationTime = obj.nucleationTime('Failure');

 nucleationTimeNoFailure = obj.nucleationTime('NoFailure');

 figure;

 hold on;

 [p3, p4] = obj.addFailureRectanglesToPlot(...

 PlotStruct,...

 nucleationTime,...

 nucleationTimeNoFailure);

 p1 = plot(PlotStruct.plotVariable1,...

 nucleationTime,...

 'r*-');

 p2 = plot(...

 PlotStruct.plotVariable1,...

 nucleationTimeNoFailure,...

 'k*-');

 legcell = {...

 'Deformation-dependent permeability',...

 'No deformation-dependent permeability'};

 if ~isempty(p3)

 legcell = {...

 'Brittle failure',...

 legcell{:}};

 end

 if ~isempty(p4)

 legcell = {...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 7/18

 'Ductile failure',...

 legcell{:}};

 end

 legend(...

 [p3(~isempty(p3)),...

 p4(~isempty(p4)),...

 p1(~isempty(p1)),...

 p2(~isempty(p2))],...

 legcell{:},...

 'Location',...

 'southeast');

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString1)

 ylabel(['Nucleation phase (years).'])

 drawnow

 set(gca, 'YScale', 'log');

 outputImage = ResultPlottingClass.copyPlotToImage(gcf);

 obj.saveFigure('NucleationPhaseTiming');

 end

 function nucleationTime = nucleationTime(obj, failureString)

 % Calculate nucleation time.

 nucleationTime = (obj.ParameterStudyFailureTime.Unstable.(...

 failureString)...

 - obj.ParameterStudyFailureTime.Stable.(failureString));

 end

 function outputImage = plotNucleationLength(obj, PlotStruct)

 % Plot nucleation length.

 figure;

 hold on;

 [p3, p4] = obj.addFailureRectanglesToPlot(PlotStruct,...

 obj.SlidingLength.Failure.Failure.Unstable,...

 obj.SlidingLength.NoFailure.Failure.Unstable,...

 obj.SlidingLength.Failure.Failure.Unstable,...

 obj.SlidingLength.NoFailure.Failure.Unstable);

 p1 = plot(PlotStruct.plotVariable1,...

 obj.SlidingLength.Failure.Failure.Unstable, 'r*-');

 p2 = plot(PlotStruct.plotVariable1,...

 obj.SlidingLength.NoFailure.Failure.Unstable, 'k*-');

 legcell = {...

 'Deformation-dependent permeability',...

 'No deformation-dependent permeability'};

 if ~isempty(p3)

 legcell = {...

 'Brittle failure',...

 legcell{:}};

 end

 if ~isempty(p4)

 legcell = {...

 'Ductile failure',...

 legcell{:}};

 end

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 8/18

 axis tight;

 hold off;

 xlabel(PlotStruct.PlotString1);

 ylabel('Nucleation length (m)')

 legend(...

 [p3(~isempty(p3)),...

 p4(~isempty(p4)),...

 p1(~isempty(p1)),...

 p2(~isempty(p2))],...

 legcell{:},...

 'Location',...

 'northwest');

 drawnow

 outputImage = ResultPlottingClass.copyPlotToImage(gcf);

 obj.saveFigure('FailureLengths');

 end

 function outputImage = plotFailureExtent(obj, PlotStruct)

 % Plot extent of failure in OFC for each value of parameter.

 figure;

 hold on;

 [p3, p4] = obj.addFailureRectanglesToPlot(...

 PlotStruct,...

 obj.FailureExtent.Stable.Failure,...

 obj.FailureExtent.Unstable.Failure,...

 obj.FailureExtent.Stable.Failure,...

 obj.FailureExtent.Unstable.Failure);

 p1 = plot(...

 PlotStruct.plotVariable1,...

 obj.FailureExtent.Stable.Failure,...

 'r*-');

 p2 = plot(...

 PlotStruct.plotVariable1,...

 obj.FailureExtent.Unstable.Failure,...

 'k*-');

 legcell = {...

 'Deformation-dependent permeability',...

 'No deformation-dependent permeability'};

 if ~isempty(p3)

 legcell = {...

 'Brittle',...

 legcell{:}};

 end

 if ~isempty(p4)

 legcell = {...

 'Ductile',...

 legcell{:}};

 end

 axis tight;

 hold off;

 xlabel(PlotStruct.PlotString1);

 ylabel('OFC Failure Extent Ratio')

 legend(...

 [p3(~isempty(p3)),...

 p4(~isempty(p4)),...

 p1(~isempty(p1)),...

 p2(~isempty(p2))],...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 9/18

 legcell{:},...

 'Location',...

 'southeast');

 drawnow

 outputImage = ResultPlottingClass.copyPlotToImage(gcf);

 obj.saveFigure('FailureExtent');

 end

 function obj = twoPlot(obj, gridVariable, PlotStruct)

 % Plotting in two dimensions.

 obj.reshapeInputsToGridDimensions(gridVariable);

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'BrittleFailure',...

 obj.ParameterStudyFailureTime.Brittle,...

 'Time of Brittle Failure');

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'DuctileFailure',...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 'Time of Ductile Failure');

 obj.modeOfFailureContour(gridVariable, PlotStruct);

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'StableSlidingWithFailure',...

 obj.ParameterStudyFailureTime.Stable.Failure,...

 'Time of Stable Sliding');

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'UnstableSlidingWithFailure',...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 'Time of Unstable Sliding');

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'StableSlidingNoFailure',...

 obj.ParameterStudyFailureTime.Stable.Failure,...

 'Time of Stable Sliding');

 obj.parameterPcolor(...

 gridVariable,...

 PlotStruct,...

 'UnstableSlidingNoFailure',...

 obj.ParameterStudyFailureTime.Stable.Failure,...

 'Time of /Unstable Sliding');

 nucleationTime = (...

 obj.ParameterStudyFailureTime.Stable.Failure -...

 obj.ParameterStudyFailureTime.Unstable.Failure);

 nucleationTimeNoFailure = (...

 obj.ParameterStudyFailureTime.Stable.Failure -...

 obj.ParameterStudyFailureTime.Unstable.Failure);

 obj.parameterPcolor(...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 10/18

 gridVariable,...

 PlotStruct,...

 'NucleationPhaseWithFailure',...

 nucleationTime,...

 ['Length of Nucleation Phase (years).']),...

 obj.parameterPcolor(...

 gridVariable, PlotStruct,...

 'NucleationPhaseNoFailure',...

 nucleationTimeNoFailure,...

 ['Length of Nucleation Phase (years).'])

 end

 function ParameterStudyFailureTimePcolor(...

 obj,...

 gridVariable,...

 PlotStruct,...

 failureFlagString,...

 stabilityString)

 % Two dimensional failure time plot.

 figure;

 hold on

 pcolor(...

 gridVariable{1},...

 gridVariable{2},...

 obj.ParameterStudyFailureTime.(...

 stabilityString).(failureFlagString));

 shading interp

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString1)

 ylabel(PlotStruct.PlotString2)

 title(...

 ['Timing of PSZ ' stabilityString ' sliding'])

 drawnow

 xlabel(colorbar, ...

 ['Timing of PSZ ' stabilityString ' sliding (years).'])

 obj.saveFigure(...

 [stabilityString 'ParameterStudyFailureTime'...

 failureFlagString]);

 end

 function modeOfFailurePcolor(...

 obj,...

 gridVariable,...

 PlotStruct,...

 failureString)

 % Two dimensional mode of failure plot.

 if any(...

 isfinite(...

 obj.ParameterStudyFailureTime.(...

 failureString)(:)))

 figure;

 hold on

 pcolor(gridVariable{1}, gridVariable{2}, ...

 obj.ParameterStudyFailureTime.(failureString));

 shading interp

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString1)

 ylabel(PlotStruct.PlotString2)

 title(...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 11/18

 ['Timing of OFC' failureString 'Failure '])

 drawnow

 xlabel(colorbar, ...

 ['Timing of OFC' failureString 'Failure '])

 obj.saveFigure([failureString ' Failure Time']);

 end

 end

 function modeOfFailureContour(obj, gridVariable, PlotStruct)

 % Add contour to two dimensional plot, to indicate mode of

 % failure.

 mark = obj.setContourVariable(gridVariable);

 contourNumber = max(max(mark));

 if ~all(mark(:) == 0)

 figure;

 hold on

 [C, h] = contourf(gridVariable{1},...

 gridVariable{2}, mark,...

 contourNumber, 'k');

 v = [0, 1, 2, 3];

 if ~isempty(C)

 clabel(C, h, v);

 text(C(1, 2), C(2, 2), 'Brittle');

 text(C(1, end), C(2, end), 'Ductile');

 end

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString1)

 ylabel(PlotStruct.PlotString2)

 title(...

 'Brittle and ductile failure regions ')

 drawnow;

 obj.saveFigure('ModeOfFailureContour');

 end

 end

 function mark = setContourVariable(obj, gridVariable)

 % Assign the values of the variable used in two dimensional

 % contour plots.

 mark = zeros(size(gridVariable{1}));

 mark(isfinite(obj.ParameterStudyFailureTime.Brittle)) = 1 ;

 mark(isfinite(obj.ParameterStudyFailureTime.Ductile)) = 2 ;

 mark(isfinite(obj.ParameterStudyFailureTime.Brittle)...

 & isfinite(obj.ParameterStudyFailureTime.Ductile))...

 = 3;

 end

 function parameterPcolor(...

 obj,...

 gridVariable,...

 PlotStruct,...

 fileName,...

 plotVariable,...

 titleString)

 % Plot pcolor for two dimensional parameter study.

 figure;

 hold on

 pcolor(gridVariable{1}, gridVariable{2},...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 12/18

 plotVariable)

 shading interp

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString1)

 ylabel(PlotStruct.PlotString2)

 title(titleString)

 drawnow

 xlabel(colorbar, titleString)

 obj.saveFigure(fileName);

 end

 function obj = threePlot(obj, gridVariable, PlotStruct)

 % Plot three dimensional volume slice plot of parameter study.

 obj.reshapeInputsToGridDimensions(gridVariable);

 SliceStruct = struct;

 SliceStruct.X = [min(PlotStruct.plotVariable1)...

 mean(PlotStruct.plotVariable1)];

 SliceStruct.Y = max(PlotStruct.plotVariable2);

 SliceStruct.Z = [mean(PlotStruct.plotVariable3) ...

 min(PlotStruct.plotVariable3)];

 if any(isfinite(obj.ParameterStudyFailureTime.Brittle(:)))

 obj.parameterSlice(...

 PlotStruct,...

 obj.ParameterStudyFailureTime.Brittle,...

 ['Timing of Brittle Failure (years).'],...

 'BrittleParameterStudyFailureTime',...

 SliceStruct);

 end

 if any(isfinite(obj.ParameterStudyFailureTime.Ductile(:)))

 obj.parameterSlice(...

 PlotStruct, obj.ParameterStudyFailureTime.Ductile,...

 ['Timing of Ductile Failure (years).'],...

 'DuctileParameterStudyFailureTime', SliceStruct);

 end

 obj.parameterSlice(...

 PlotStruct,...

 obj.ParameterStudyFailureTime.Stable.Failure,...

 ['Timing of Stable Sliding (years).'],...

 'StableSlidingTimeFailure',...

 SliceStruct);

 obj.parameterSlice(...

 PlotStruct,...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 ['Timing of Unstable Sliding (years).'],...

 'UnstableSlidingTimeFailure',...

 SliceStruct);

 obj.parameterSlice(...

 PlotStruct,...

 obj.ParameterStudyFailureTime.Stable.NoFailure,...

 ['Timing of Stable Sliding (years).'],...

 'StableSlidingTimeNoFailure',...

 SliceStruct);

 obj.parameterSlice(...

 PlotStruct,...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 13/18

 obj.ParameterStudyFailureTime.Unstable.NoFailure,...

 ['Timing of Unstable Sliding (years).'],...

 'UnstableSlidingTimeNoFailure',...

 SliceStruct);

 nucleationTime...

 = (obj.ParameterStudyFailureTime.Unstable.Failure...

 - obj.ParameterStudyFailureTime.Stable.Failure);

 nucleationTimeNoFailure = (...

 obj.ParameterStudyFailureTime.Unstable.NoFailure...

 - obj.ParameterStudyFailureTime.Stable.NoFailure);

 obj.parameterSlice(...

 PlotStruct, nucleationTime,...

 ['Nucleation Time (years).'],...

 'NucleationTimeFailure',...

 SliceStruct);

 obj.parameterSlice(...

 PlotStruct, nucleationTimeNoFailure,...

 ['Nucleation Time (years).'],...

 'NucleationTimeNoFailure',...

 SliceStruct);

 end

 function parameterSlice(...

 obj,...

 PlotStruct,...

 plotVariable,...

 titleString,...

 fileName,...

 SliceStruct)

 % Plot two dimensional parameter study through three

 % dimensional volume plot.

 figure;

 hold on

 view(45, 45);

 slice(...

 PlotStruct.plotVariable1',...

 PlotStruct.plotVariable2',...

 PlotStruct.plotVariable3',...

 plotVariable, SliceStruct.X,...

 SliceStruct.Y, SliceStruct.Z);

 shading interp

 axis tight;

 hold off

 xlabel(PlotStruct.PlotString2)

 ylabel(PlotStruct.PlotString1)

 zlabel(PlotStruct.plotString3)

 title(...

 titleString)

 drawnow

 xlabel(colorbar, titleString)

 obj.saveFigure(fileName);

 end

 function reshapeInputsToGridDimensions(obj, gridVariable)

 % Take vector input and reshape to plot grid.

 obj.ParameterStudyFailureTime.Stable.Failure = reshape(...

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 14/18

 obj.ParameterStudyFailureTime.Stable.Failure,...

 size(gridVariable{1}));

 obj.ParameterStudyFailureTime.Unstable.Failure = reshape(...

 obj.ParameterStudyFailureTime.Unstable.Failure,...

 size(gridVariable{1}));

 obj.ParameterStudyFailureTime.Stable.NoFailure = reshape(...

 obj.ParameterStudyFailureTime.Stable.NoFailure,...

 size(gridVariable{1}));

 obj.ParameterStudyFailureTime.Unstable.NoFailure = reshape(...

 obj.ParameterStudyFailureTime.Unstable.NoFailure,...

 size(gridVariable{1}));

 obj.ParameterStudyFailureTime.Brittle = reshape(...

 obj.ParameterStudyFailureTime.Brittle, size(...

 gridVariable{1}));

 obj.ParameterStudyFailureTime.Ductile = reshape(...

 obj.ParameterStudyFailureTime.Ductile, size(...

 gridVariable{1}));

 end

 function parameterTransfer(obj, faultFluidFlowObj)

 % Transfer parameters representing solver tolerance.

 obj.options = faultFluidFlowObj.options;

 obj.simulatedFaultWidth...

 = faultFluidFlowObj.simulatedFaultWidth;

 obj.simulatedFaultHeight...

 = faultFluidFlowObj.simulatedFaultHeight;

 obj.horizontalArrayLength...

 = faultFluidFlowObj.horizontalArrayLength;

 obj.verticalArrayLength...

 = faultFluidFlowObj.verticalArrayLength;

 end

 function outputVector = resultProcessing(...

 obj,...

 faultFluidFlowObj)

 % Process results for plotting at each result time step.

 obj.parameterTransfer(faultFluidFlowObj);

 FaultFluidFlowClass.printProgressString(...

 'Returning parameter study result...');

 obj.initialiseFailurePlaneStruct(...

 faultFluidFlowObj);

 obj.initialiseFailureLengthVariables;

 stableSlidingTrigger = false;

 faultFluidFlowObj.slidingStress = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopTimeCounter = 1:length(faultFluidFlowObj.time)

 loopTime = faultFluidFlowObj.time(loopTimeCounter);

 if ~obj.processingEarthquakeTrigger

 obj.postProcessingPhysicalVariables(...

 faultFluidFlowObj,...

 loopTimeCounter,...

 loopTime);

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 15/18

 if obj.brittleFailureCondition

 obj.FailureTime.Brittle...

 = faultFluidFlowObj.time(...

 loopTimeCounter);

 obj.brittleFailureTimeTrigger...

 = true;

 end

 if obj.ductileFailureCondition

 obj.FailureTime.Ductile...

 = faultFluidFlowObj.time(...

 loopTimeCounter);

 obj.ductileFailureTimeTrigger...

 = true;

 end

 if obj.onsetOfStableSlidingCondition(...

 faultFluidFlowObj,...

 loopTimeCounter)...

 && ~stableSlidingTrigger

 obj.FailureTime.Stable...

 = faultFluidFlowObj.time(loopTimeCounter);

 obj.SlidingLength.Failure.Stable...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Failure;

 obj.SlidingLength.Nucleation.Stable...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Nucleation;

 obj.FailureExtent.Stable =...

 faultFluidFlowObj.failureExtent;

 stableSlidingTrigger = true;

 end

 if obj.unstableSlidingCondition(...

 faultFluidFlowObj,...

 loopTimeCounter)

 obj.processingEarthquakeTrigger...

 = true;

 obj.FailureTime.Unstable...

 = faultFluidFlowObj.time(...

 loopTimeCounter);

 obj.SlidingLength.Failure.Unstable...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Failure;

 obj.SlidingLength.Nucleation.Unstable...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Nucleation;

 obj.FailureExtent.Unstable =...

 faultFluidFlowObj.failureExtent;

 end

 end

 end

 faultFluidFlowObj.calculateAnalyticalTime;

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 16/18

 outputVector = obj.parameterStudyOutputVector(...

 faultFluidFlowObj);

 end

 function obj = initialiseFailureLengthVariables(obj)

 % Initialise variables for storing failure lengths.

 obj.SlidingLength.Failure.Stable = NaN;

 obj.SlidingLength.Failure.Unstable = NaN;

 obj.SlidingLength.Nucleation.Stable = NaN;

 obj.SlidingLength.Nucleation.Unstable = NaN;

 end

 function outputVector = parameterStudyOutputVector(...

 obj,...

 faultFluidFlowObj)

 % Create output vector from a single parameter's study.

 timeUnit = FaultFluidFlowClass.SECONDS_PER_YEAR;

 outputVector = [...

 obj.FailureTime.Brittle / timeUnit,...

 obj.FailureTime.Ductile / timeUnit,...

 obj.FailureTime.Stable / timeUnit,...

 obj.FailureTime.Unstable / timeUnit,...

 faultFluidFlowObj.analyticalTime / timeUnit,...

 obj.SlidingLength.Failure.Stable,...

 obj.SlidingLength.Failure.Unstable,...

 obj.SlidingLength.Nucleation.Stable,...

 obj.SlidingLength.Nucleation.Unstable,...

 obj.FailureExtent.Stable,...

 obj.FailureExtent.Unstable];

 end

 function [p1, p2] = addFailureRectanglesToPlot(...

 obj,...

 PlotStruct, ...

 varargin)

 % Add rectangles to parameter study plot indicating mode of

 % failure.

 Y.max = max(max([varargin{:}]));

 Y.min = min(min([varargin{:}]));

 p1 = ParameterStudyPlottingClass.failureRectangle(...

 obj.ParameterStudyFailureTime.Brittle,...

 PlotStruct,...

 Y,...

 'k');

 p2 = ParameterStudyPlottingClass.failureRectangle(...

 obj.ParameterStudyFailureTime.Ductile,...

 PlotStruct,...

 Y,...

 'r');

 end

 end

 methods(Static)

 function p = failureRectangle(...

 ParameterStudyFailureTime,...

 PlotStruct,...

 Y,...

 rectangleColor)

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 17/18

 % Add rectangle indicating failure to line plot.

 X = PlotStruct.plotVariable1(...

 isfinite(...

 ParameterStudyFailureTime));

 p = [];

 if ~isempty(X) > 0

 p = patch(...

 [min(X) max(X) max(X) min(X)],...

 [Y.min Y.min Y.max Y.max],...

 rectangleColor,...

 'FaceAlpha',...

 0.25,...

 'EdgeColor',...

 'none');

 end

 end

 function legcell = plotFailureBox(...

 ParameterStudyFailureTime,...

 PlotStruct,...

 legcell,...

 legString,...

 plotType)

 % Add failure box to plot.

 if ~all(isnan(ParameterStudyFailureTime(:)))

 plot(...

 PlotStruct.plotVariable1,...

 ParameterStudyFailureTime,...

 plotType{:})

 legcell = {legcell{:}, legString};

 end

 end

 function imageCell = resizeImagesToFirstImage(imageCell)

 sizeTemp = size(imageCell{1, 1});

 for cellCounter1 = 1:size(imageCell, 1)

 for cellCounter2 = 1:size(imageCell, 2)

 imageCell{cellCounter1, cellCounter2}...

 = imresize(...

 imageCell{...

 cellCounter1, cellCounter2}, sizeTemp(1:2));

 end

 end

 end

 end

end

ans =

 ParameterStudyPlottingClass with properties:

 FailureTime: [1×1 struct]

 FailureExtent: [1×1 struct]

 ParameterStudyFailureTime: [1×1 struct]

 ParameterStudyFailureExtent: [1×1 struct]

 PatchSize: []

 analyticalTime: []

 SlidingLength: []

08/04/2019 ParameterStudyPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 18/18

 poreFluidFactorList: []

 tectonicLoadingRate: []

 faultDepth: []

 confinementFactor: []

 overpressureHeight: []

 OFCwidth: []

 IFCwidth: []

 failureStringCell: {'Failure' 'NoFailure'}

 options: []

 simulatedFaultWidth: []

 simulatedFaultHeight: []

 horizontalArrayLength: []

 verticalArrayLength: []

 EarthquakeLengthVector: []

 StabilityLengths: []

 FailureMarker: []

 slidingFailureMarker: []

 oldFailureMap: []

 pressure: []

 stress: []

 effectiveStress: []

 outputPressure: []

 MohrCircle: [1×1 struct]

 MohrGeometry: [1×1 struct]

 time: []

 effectiveNormalStressForPlot: []

 EffectiveNormalStressStep: 10000

 processingEarthquakeTrigger: 0

 brittleFailureTimeTrigger: 0

 ductileFailureTimeTrigger: 0

 steadyStateTrigger: 0

 brittleFailureTime: NaN

 ductileFailureTime: NaN

 SubplotFileNames: [1×1 struct]

 mohrFigureScale: []

 plotTimeScale: []

 decimalPlaces: 1

 limitYValue: 40

 pressureSubplot: []

 mohrSubplot: []

 stressSubplot: []

 pressureSubplotElement: []

 mohrSubplotElement: []

 stressSubplotElement: []

 legendVector: []

 folderName: []

 folderCheckFlag: 1

 plotCounter: 0

 effectiveStressPatchVector: []

 effectiveStressPatch: []

 computerStore: []

 lowMohrLimit: []

 lastPressure: []

 steadyStateLimit: 1.0000e-12

 gaussianWidth: 1.2500

 lastSlidingFailureMarker: []

 lastFailureMarker: []

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 1/20

classdef ResultPlottingClass < handle

 properties

 horizontalArrayLength;

 verticalArrayLength;

 EarthquakeLengthVector;

 StabilityLengths

 FailureMarker;

 slidingFailureMarker;

 oldFailureMap;

 pressure;

 stress;

 effectiveStress;

 outputPressure;

 MohrCircle = struct;

 MohrGeometry = struct('Radius', struct,'Geometry', struct);

 time;

 effectiveNormalStressForPlot;

 EffectiveNormalStressStep = 1E4;

 processingEarthquakeTrigger = false;

 brittleFailureTimeTrigger = false;

 ductileFailureTimeTrigger = false;

 steadyStateTrigger = false;

 brittleFailureTime = NaN;

 ductileFailureTime = NaN;

 SubplotFileNames = struct;

 mohrFigureScale;

 plotTimeScale;

 decimalPlaces = 1;

 limitYValue = 40;

 pressureSubplot;

 mohrSubplot;

 stressSubplot;

 pressureSubplotElement;

 mohrSubplotElement;

 stressSubplotElement;

 legendVector;

 folderName;

 folderCheckFlag = true;

 plotCounter = 0;

 effectiveStressPatchVector;

 effectiveStressPatch;

 computerStore;

 lowMohrLimit;

 lastPressure = [];

 steadyStateLimit = 1E-12;

 gaussianWidth = 1.25;

 lastSlidingFailureMarker;

 lastFailureMarker;

 end

 methods

 function initialise(obj, faultFluidFlowObj, folderName)

 % Initialise instance of result plotting class.

 obj.folderName = folderName;

 obj.initialiseFailurePlaneVariables(faultFluidFlowObj);

 end

 function initialiseFailurePlaneVariables(obj, faultFluidFlowObj)

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 2/20

 % Initialise failure plane variables.

 obj.lowMohrLimit = 0;

 obj.effectiveNormalStressForPlot =...

 obj.lowMohrLimit:obj.EffectiveNormalStressStep:...

 obj.roundToMPa(...

 faultFluidFlowObj.lithostaticStress...

 - faultFluidFlowObj.hydrostaticStress);

 obj.computerStore = computer;

 obj.oldFailureMap = false(...

 faultFluidFlowObj.verticalArrayLength,...

 faultFluidFlowObj.horizontalArrayLength);

 obj.initialiseFailurePlaneStruct(faultFluidFlowObj);

 end

 function obj = caseStudyFigures(obj, faultFluidFlowObj)

 % Plot figures for case study.

 faultFluidFlowObj.printProgressString(...

 'Plotting and saving results...');

 obj.initialiseFailurePlaneStruct(faultFluidFlowObj);

 obj.resultProcessing(faultFluidFlowObj);

 obj.faultPlaneFailurePlot(faultFluidFlowObj);

 end

 function obj = resultProcessing(obj, faultFluidFlowObj)

 % Process results for plotting at each result time step.

 stableSlidingTrigger = false;

 faultFluidFlowObj.slidingStress = NaN(...

 faultFluidFlowObj.verticalArrayLength,...

 faultFluidFlowObj.horizontalArrayLength);

 for loopCounter = 1:length(faultFluidFlowObj.time)

 loopTime = faultFluidFlowObj.time(loopCounter);

 faultFluidFlowObj = obj.postProcessingPhysicalVariables(...

 faultFluidFlowObj,...

 loopCounter,...

 loopTime);

 if ~obj.processingEarthquakeTrigger

 if ResultPlottingClass.initialTimeCondition(...

 loopCounter)

 obj.printFigure(faultFluidFlowObj, loopTime);

 end

 if obj.onsetOfStableSlidingCondition(...

 faultFluidFlowObj,...

 loopTime)...

 && ~stableSlidingTrigger

 obj.printFigure(faultFluidFlowObj, loopTime);

 stableSlidingTrigger = true;

 end

 if obj.unstableSlidingCondition(...

 faultFluidFlowObj,...

 loopTime)

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 3/20

 obj.printFigure(faultFluidFlowObj, loopTime);

 obj.processingEarthquakeTrigger = true;

 end

 if obj.brittleFailureCondition

 obj.printFigure(faultFluidFlowObj, loopTime);

 obj.brittleFailureTimeTrigger = true;

 end

 if obj.ductileFailureCondition

 obj.printFigure(faultFluidFlowObj, loopTime);

 obj.ductileFailureTimeTrigger = true;

 end

 end

 end

 end

 function obj = printFigure(obj, faultFluidFlowObj, time)

 % Print result figure.

 obj.plotCounter = obj.plotCounter + 1;

 obj.pressureFigure(faultFluidFlowObj, time);

 obj.mohrFigure(faultFluidFlowObj, time);

 end

 function outputFigure = pressureFigure(...

 obj,...

 faultFluidFlowObj,...

 time,...

 varargin)

 % Plot pressure figure and save.

 outputFigure = figure;

 [C, h] = contourf(...

 faultFluidFlowObj.x,...

 faultFluidFlowObj.z,...

 obj.pressure / 1E6);

 clabel(C,h);

 shading interp;

 colorbar;

 axis tight;

 if isnan(faultFluidFlowObj.confinementFactor)

 faultFluidFlowObj.confinementFactor...

 = max(max(...

 obj.pressure / faultFluidFlowObj.lithostaticStress));

 end

 hold on;

 colorbar;

 limy = get(gca, 'YLim');

 ylim([limy(1) obj.limitYValue])

 xlabel('x [m]')

 ylabel('y [m]')

 xlabel(colorbar, 'Pressure [MPa]')

 if strcmp(faultFluidFlowObj.plotTimeScale, 'years')

 title(['Absolute pressure at ', num2str(round(time / ...

 FaultFluidFlowClass.SECONDS_PER_YEAR,...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 4/20

 obj.decimalPlaces)), ' years'])

 elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days')

 title(['Absolute pressure at ', num2str(round(time / ...

 FaultFluidFlowClass.SECONDS_PER_DAY,...

 obj.decimalPlaces)), ' days'])

 end

 if any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList, 'OFC'))

 elseif any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList, 'Fracture'))

 ResultPlottingClass.markFracture(faultFluidFlowObj);

 elseif any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList,...

 'PSZ'))

 ResultPlottingClass.markFault(faultFluidFlowObj)

 end

 obj.failureContour(...

 faultFluidFlowObj,...

 obj.gaussianWidth);

 hold off

 drawnow

 if isempty(varargin)

 counter = num2str(obj.plotCounter);

 else

 counter = varargin{:};

 end

 obj.saveFigure(...

 ['PressureFigure' counter]);

 end

 function outputFigure = stressFigure(obj, faultFluidFlowObj, time)

 % Plot stress figure and save.

 outputFigure = figure;

 quiver(...

 faultFluidFlowObj.x,...

 faultFluidFlowObj.z,...

 obj.stress(:, :, 1),...

 obj.stress(:, :, 2));

 axis tight;

 xlabel('x [m]')

 ylabel('y [m]')

 if strcmp(faultFluidFlowObj.plotTimeScale, 'years')

 title(['Stress at ', num2str(round(time / ...

 FaultFluidFlowClass.SECONDS_PER_YEAR,...

 obj.decimalPlaces)), ' years'])

 elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days')

 title(['Stress at ', num2str(round(time / ...

 FaultFluidFlowClass.SECONDS_PER_DAY,...

 obj.decimalPlaces)), ' days'])

 end

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 5/20

 if any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList, 'OFC'))

 ResultPlottingClass.markOFCBoundary(faultFluidFlowObj);

 elseif any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList, 'Fracture'))

 ResultPlottingClass.markFracture(faultFluidFlowObj);

 elseif any(...

 strcmp(...

 faultFluidFlowObj.faultArchitectureList, 'PSZ'))

 ResultPlottingClass.markFault(faultFluidFlowObj)

 end

 switch faultFluidFlowObj.contourPlotMode

 case 'failure'

 obj.failureContour(...

 faultFluidFlowObj,...

 obj.gaussianWidth);

 otherwise

 error('Contour plot mode not recognised.');

 end

 hold off

 drawnow

 obj.saveFigure(['StressFigure' num2str(...

 obj.plotCounter)]);

 end

 function failureContour(...

 obj,...

 faultFluidFlowObj,...

 gaussianWidth)

 % Add local failure contour to pressure plot.

 if ~all(obj.FailureMarker.Central(:) == 0)

 Zsmooth1 = imgaussfilt(...

 obj.FailureMarker.Central,...

 gaussianWidth);

 contour(...

 faultFluidFlowObj.x,...

 faultFluidFlowObj.z,...

 obj.FailureMarker.Central,...

 1,...

 'w');

 end

 end

 function obj = mohrFigure(obj, faultFluidFlowObj, time)

 % Plot Mohr analysis figure.

 obj.mohrPlotVariables(faultFluidFlowObj, time);

 obj.setMohrFigureScale(faultFluidFlowObj);

 figure;

 hold on;

 axis('equal')

 xlim([min(obj.effectiveNormalStressForPlot),...

 max(obj.effectiveNormalStressForPlot)])

 ylim([0, obj.mohrFigureScale]);

 obj.legendVector = zeros(...

 size(...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 6/20

 faultFluidFlowObj.faultArchitectureList));

 if ~faultFluidFlowObj.modeOfFailureFlag

 for loopCounter = 1:length(...

 faultFluidFlowObj.faultArchitectureList)

 architectureComponent...

 = faultFluidFlowObj.faultArchitectureList{...

 loopCounter};

 if faultFluidFlowObj.ModeOfFailureArchitectureFlag.(...

 architectureComponent)

 faultFluidFlowObj.PlotProperties.(...

 architectureComponent)...

 = {'--', faultFluidFlowObj.PlotProperties.(...

 architectureComponent){:}};

 end

 end

 end

 for loopCounter = 1:length(...

 faultFluidFlowObj.faultArchitectureList)

 architectureComponent =...

 faultFluidFlowObj.faultArchitectureList{...

 loopCounter};

 plot(obj.effectiveNormalStressForPlot,...

 faultFluidFlowObj.FailureEnvelope.(...

 architectureComponent));

 obj.legendVector(loopCounter) = plot(...

 obj.effectiveNormalStressForPlot,...

 obj.MohrCircle.(architectureComponent));

 end

 hold off

 ResultPlottingClass.convertToMpa(gca);

 xlabel('Effective normal stress [MPa]')

 ylabel('Shear stress [MPa]')

 if strcmp(faultFluidFlowObj.plotTimeScale, 'years')

 title(['Mohr failure envelope at ' ...

 , num2str(round(time /...

 FaultFluidFlowClass.SECONDS_PER_YEAR,...

 obj.decimalPlaces)), ' years'])

 elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days')

 title(['Mohr failure envelope at ' ...

 , num2str(round(time /...

 FaultFluidFlowClass.SECONDS_PER_DAY,...

 obj.decimalPlaces)), ' days'])

 end

 for loopCounter = 1:length(...

 faultFluidFlowObj.faultArchitectureList)

 if faultFluidFlowObj.SlidingFailureFlag.(...

 faultFluidFlowObj.faultArchitectureList{...

 loopCounter})

 obj.plotFailurePlane(...

 faultFluidFlowObj,...

 faultFluidFlowObj.faultArchitectureList{...

 loopCounter});

 end

 end

 legend(...

 obj.legendVector,...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 7/20

 faultFluidFlowObj.faultArchitectureList);

 drawnow

 obj.saveMohrFigure;

 end

 function setMohrFigureScale(obj, faultFluidFlowObj)

 % Set Mohr figure plot scaling based on preset.

 obj.localFailureMohrFigureScaling(faultFluidFlowObj);

 end

 function localFailureMohrFigureScaling(obj, faultFluidFlowObj)

 % Set Mohr figure scale for local failure.

 obj.mohrFigureScale = 1.5...

 * max(faultFluidFlowObj.FailureEnvelope.OFC);

 end

 function saveMohrFigure(obj, varargin)

 % Save a Mohr plot.

 if isempty(varargin)

 counter = num2str(obj.plotCounter);

 else

 counter = varargin{:};

 end

 obj.saveFigure(['MohrFigure' counter]);

 end

 function obj = mohrPlotVariables(obj, faultFluidFlowObj, time)

 % Generate variables for Mohr plot.

 faultFluidFlowObj.FailureEnvelope = struct;

 for loopCounter = 1:length(...

 faultFluidFlowObj.faultArchitectureList)

 architectureComponent =...

 faultFluidFlowObj.faultArchitectureList{...

 loopCounter};

 ResultPlottingClass.failureEnvelopeForPlot(...

 faultFluidFlowObj,...

 obj.effectiveNormalStressForPlot,...

 architectureComponent);

 obj.mohrCircle(...

 faultFluidFlowObj,...

 time,...

 architectureComponent);

 end

 end

 function obj = mohrCircle(...

 obj,...

 faultFluidFlowObj,...

 time,...

 architectureComponent)

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 8/20

 % Calculate values for Mohr circle.

 faultFluidFlowObj.calculateMaximumStress;

 faultFluidFlowObj.calculateMinimumStress(...

 time);

 obj.MohrCircleGeometry(...

 faultFluidFlowObj,...

 obj.pressure,...

 architectureComponent);

 obj.MohrCircle.(architectureComponent) =...

 zeros(size(obj.effectiveNormalStressForPlot));

 for loopCounter = 1:length(obj.MohrGeometry.Radius.(...

 architectureComponent))

 obj.MohrCircle.(architectureComponent) =...

 FaultFluidFlowClass.semiCircleHeight(...

 obj.effectiveNormalStressForPlot,...

 obj.MohrGeometry.Radius.(architectureComponent),...

 obj.MohrGeometry.Centre.(architectureComponent));

 end

 obj.MohrCircle.(architectureComponent)(...

 obj.MohrCircle.(architectureComponent) <= 0) = NaN;

 end

 function obj = MohrCircleGeometry(...

 obj,...

 faultFluidFlowObj,...

 pressure,...

 architectureComponent)

 % Calculate the geometry of the Mohr Circle at every spatial

 % array point.

 tempPressure =...

 pressure(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central);

 arrayDims = ndims(tempPressure);

 if any(size(tempPressure) == 0)

 arrayDims = arrayDims - 1;

 end

 if arrayDims == 1

 maxPressure = max(tempPressure);

 elseif arrayDims == 2

 maxPressure = max(max(tempPressure));

 end

 mohrPressure = maxPressure;

 minimumEffectiveStress...

 = faultFluidFlowObj.minimumStress(...

 pressure == maxPressure)...

 - mohrPressure;

 minimumEffectiveStress = minimumEffectiveStress(1);

 maximumEffectiveStress...

 = faultFluidFlowObj.maximumStress(...

 pressure == maxPressure)...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 9/20

 - mohrPressure;

 maximumEffectiveStress = maximumEffectiveStress(1);

 obj.MohrGeometry.Radius.(architectureComponent)...

 = (maximumEffectiveStress...

 - minimumEffectiveStress) / 2;

 obj.MohrGeometry.Centre.(architectureComponent)...

 = (maximumEffectiveStress...

 + minimumEffectiveStress) / 2;

 if faultFluidFlowObj.SlidingFailureFlag.(...

 architectureComponent)

 if isfinite(obj.effectiveStressPatch) == 1

 obj.MohrGeometry.Radius.(architectureComponent)...

 = faultFluidFlowObj.FrictionCoefficient.Brittle.(...

 architectureComponent) * obj.MohrGeometry.Centre.(...

 architectureComponent)...

 ./ (faultFluidFlowObj.FrictionCoefficient.Brittle.(...

 architectureComponent)...

 * cosd(2 * faultFluidFlowObj.faultAngle)...

 - sind(2 * faultFluidFlowObj.faultAngle));

 end

 end

 end

 function faultFluidFlowObj = postProcessingPhysicalVariables(...

 obj,...

 faultFluidFlowObj,...

 loopCounter,...

 loopTime)

 % Extract and calculate physical variables from simulation

 % results.

 faultFluidFlowObj = obj.processFailureMarkerResult(...

 faultFluidFlowObj,...

 loopCounter);

 faultFluidFlowObj = obj.processSlidingFailureMarkerResult(...

 faultFluidFlowObj,...

 loopCounter);

 obj.processPressureResult(faultFluidFlowObj, loopCounter);

 obj.pressure = faultFluidFlowObj.pressureBCS(...

 obj.pressure);

 [~,...

 ~,...

 ~,...

 ~,...

 failureLength,...

 nucleationLength,...

 ~]...

 = faultFluidFlowObj.rockMatrixState(...

 obj.pressure,...

 loopTime);

 if (nucleationLength - failureLength)...

 / nucleationLength...

 < (faultFluidFlowObj.options.RelTol)

 failureLength = nucleationLength;

 end

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 10/20

 faultFluidFlowObj.EarthquakeLengthVector(...

 loopCounter).Failure = failureLength;

 faultFluidFlowObj.EarthquakeLengthVector(...

 loopCounter).Nucleation = nucleationLength;

 end

 function processPressureResult(...

 obj,...

 faultFluidFlowObj,...

 timeLoopCounter)

 % Select pressure from solver output variable at a given time

 % and reshape to spatial dimensions.

 obj.pressure = faultFluidFlowObj.outputPressure(...

 :,...

 timeLoopCounter);

 obj.pressure = reshape(...

 obj.pressure,...

 faultFluidFlowObj.verticalArrayLength,...

 faultFluidFlowObj.horizontalArrayLength);

 end

 function faultFluidFlowObj = processFailureMarkerResult(...

 obj,...

 faultFluidFlowObj,...

 loopCounter)

 % Retrieve failure marker from results at a given timestep.

 obj.FailureMarker = faultFluidFlowObj.FailureMarkerStore(...

 loopCounter);

 if loopCounter > 1

 faultFluidFlowObj.FailureMarker...

 = faultFluidFlowObj.FailureMarkerStore(...

 :,...

 :,...

 loopCounter - 1);

 else

 faultFluidFlowObj.FailureMarker...

 = faultFluidFlowObj.FailureMarkerStore(...

 :,...

 :,...

 loopCounter);

 end

 faultFluidFlowObj = obj.horizontalFailureExtent(...

 faultFluidFlowObj);

 end

 function faultFluidFlowObj = processSlidingFailureMarkerResult(...

 obj,...

 faultFluidFlowObj,...

 loopCounter)

 % Retrieve sliding failure marker from results at a given

 % timestep.

 obj.slidingFailureMarker...

 = faultFluidFlowObj.slidingFailureMarkerStore(...

 :, :, loopCounter);

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 11/20

 if loopCounter > 1

 faultFluidFlowObj.slidingFailureMarker...

 = faultFluidFlowObj.slidingFailureMarkerStore(...

 :, :, loopCounter - 1);

 faultFluidFlowObj.slidingStress...

 = faultFluidFlowObj.slidingStressStore(...

 :, :, loopCounter - 1);

 else

 faultFluidFlowObj.slidingFailureMarker...

 = faultFluidFlowObj.slidingFailureMarkerStore(...

 :, :, loopCounter);

 faultFluidFlowObj.slidingStress...

 = faultFluidFlowObj.slidingStressStore(...

 :, :, loopCounter);

 end

 end

 function obj = faultPlaneFailurePlot(...

 obj,...

 faultFluidFlowObj,...

 varargin)

 % Plot state of failure on the fault plane.

 failureLengthVector...

 = [faultFluidFlowObj.EarthquakeLengthVector(:).Failure];

 nucleationLengthVector...

 = [faultFluidFlowObj.EarthquakeLengthVector(:).Nucleation];

 if(any(isfinite([...

 faultFluidFlowObj.EarthquakeLengthVector(:).Failure])))

 figure;

 hold on;

 plot(faultFluidFlowObj.time...

 / faultFluidFlowObj.SECONDS_PER_YEAR,...

 nucleationLengthVector, 'r');

 plot(faultFluidFlowObj.time...

 / faultFluidFlowObj.SECONDS_PER_YEAR,...

 failureLengthVector, 'k');

 hold off

 legend({'Nucleation length [m]',...

 'Shear Failure length [m]'},...

 'Location',...

 'southeast');

 colormap jet;

 xlabel('Time [years]');

 ylabel('Length [m]');

 title(['Failure lengths (PSZ)']);

 if isfinite(obj.brittleFailureTime) ...

 && ~obj.processingEarthquakeTrigger

 line([obj.brittleFailureTime obj.brittleFailureTime]...

 / Constants.SECONDS_PER_YEAR, ...

 get(gca, 'ylim'), ...

 'Color', 'red',...

 'LineStyle', '--');

 end

 if isfinite(obj.ductileFailureTime) == 1 ...

 && ~obj.processingEarthquakeTrigger

 line([obj.ductileFailureTime...

 obj.ductileFailureTime]...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 12/20

 / Constants.SECONDS_PER_YEAR,...

 get(gca, 'ylim'), ...

 'Color', 'black',...

 'LineStyle', '--');

 end

 drawnow

 if isempty(varargin)

 counter = '';

 else

 counter = varargin{:};

 end

 obj.saveFigure(['FaultPlaneFailure', num2str(counter)])

 end

 end

 function nucleationLength = nucleationLength(...

 obj,...

 faultFluidFlowObj)

 % Calculate nucleation length stability criterion.

 nucleationLength = faultFluidFlowObj.psi...

 * faultFluidFlowObj.shearModulus...

 * faultFluidFlowObj.criticalSlipDistance...

 ./ (obj.effectiveStressPatch...

 * faultFluidFlowObj.rateAndStateDifference);

 end

 function plotFailurePlane(...

 obj,...

 faultFluidFlowObj,...

 architectureComponent)

 % Plot failure and nucleation length.

 faultAngle = faultFluidFlowObj.faultAngle;

 line([...

 obj.MohrGeometry.Centre.(architectureComponent)...

 obj.effectiveStressPatch],...

 [...

 0 ...

 obj.MohrGeometry.Radius.(architectureComponent)...

 * sind(2 * faultAngle)],...

 'Color',...

 'black');

 end

 function obj = initialiseFailurePlaneStruct(...

 obj,...

 faultFluidFlowObj)

 % Initialise struct to hold failure plane parameters.

 faultFluidFlowObj.EarthquakeLengthVector = repmat(...

 struct(...

 'Failure', NaN,...

 'Nucleation', NaN),...

 length(faultFluidFlowObj.time),...

 1);

 end

 function condition = onsetOfStableSlidingCondition(...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 13/20

 obj,...

 faultFluidFlowObj,...

 loopTimeCounter)

 % Condition for fault to begin stable sliding.

 condition = any(obj.slidingFailureMarker(:))...

 || obj.unstableSlidingCondition(...

 faultFluidFlowObj,...

 loopTimeCounter);

 end

 function condition = unstableSlidingCondition(...

 obj,...

 faultFluidFlowObj,...

 loopTimeCounter)

 % Condition for fault to begin unstable sliding.

 condition = loopTimeCounter == length(faultFluidFlowObj.time);

 end

 function condition = steadyStateCondition(obj)

 % Condition for fluid flow to have reached an approximate

 % steady state.

 condition = false;

 if ~isempty(obj.lastPressure)

 meanPressureChange = mean(...

 mean(...

 obj.pressure - obj.lastPressure));

 if (obj.steadyStateLimit...

 > meanPressureChange / mean(mean(obj.pressure)))...

 && obj.steadyStateTrigger ~= 1

 condition = true;

 end

 end

 obj.lastPressure = obj.pressure;

 end

 function condition = brittleFailureCondition(obj)

 % Condition for fault zone to undergo brittle failure at any

 % spatial array point.

 condition = (isnan(obj.brittleFailureTime)...

 && ~obj.brittleFailureTimeTrigger...

 && (any(obj.FailureMarker.X(:) == 1)...

 || any(obj.FailureMarker.Z(:) == 1)))...

 && obj.processingEarthquakeTrigger ~= 1;

 end

 function condition = ductileFailureCondition(obj)

 % Condition for fault zone to undergo ductile failure at any

 % spatial array point.

 condition = (isnan(obj.ductileFailureTime)...

 && obj.ductileFailureTimeTrigger ~= 1 ...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 14/20

 && (any(obj.FailureMarker.X(:) == 2)...

 || any(obj.FailureMarker.Z(:) == 2)))...

 && obj.processingEarthquakeTrigger ~= 1;

 end

 function saveFigure(obj, fileName)

 % Save .fig and .tiff copies of a figure.

 saveas(gcf, [obj.folderName '/' fileName], 'fig');

 saveas(gcf, [obj.folderName '/' fileName], 'tiff');

 end

 end

 methods(Static)

 function faultFluidFlowObj = horizontalFailureExtent(...

 faultFluidFlowObj)

 % Record extent of horizontal failure.

 faultFluidFlowObj.failureExtent = max(...

 faultFluidFlowObj.x(...

 faultFluidFlowObj.FailureMarker.Central ~= 0))...

 / faultFluidFlowObj.OFCwidth;

 if isempty(faultFluidFlowObj.failureExtent)

 faultFluidFlowObj.failureExtent = 0;

 end

 end

 function failureMap = failureMap(...

 faultFluidFlowObj,...

 shearStrengthExcess,...

 architectureComponent)

 % Map failure on fault plane.

 failureMap...

 = faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central;

 failureMap(shearStrengthExcess > 0) = false;

 failureMap(isnan(failureMap)) = 0;

 end

 function failureEnvelopeForPlot =...

 failureEnvelopeForPlot(...

 faultFluidFlowObj,...

 effectiveNormalStress,...

 architectureComponent)

 % Return failure envelope for plotting.

 failureEnvelopeForPlot(effectiveNormalStress...

 <= faultFluidFlowObj.FailureModeBoundaryStress.(...

 architectureComponent))...

 = faultFluidFlowObj.FrictionCoefficient.Brittle.(...

 architectureComponent)...

 * effectiveNormalStress(effectiveNormalStress...

 <= faultFluidFlowObj.FailureModeBoundaryStress.(...

 architectureComponent))...

 + faultFluidFlowObj.Cohesion.Brittle.(...

 architectureComponent);

 failureEnvelopeForPlot(effectiveNormalStress...

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 15/20

 > faultFluidFlowObj.FailureModeBoundaryStress.(...

 architectureComponent))...

 = faultFluidFlowObj.FrictionCoefficient.Ductile.(...

 architectureComponent)...

 * effectiveNormalStress(effectiveNormalStress...

 > faultFluidFlowObj.FailureModeBoundaryStress.(...

 architectureComponent))...

 + faultFluidFlowObj.Cohesion.Ductile.(...

 architectureComponent);

 failureEnvelopeForPlot(failureEnvelopeForPlot < 0) = 0;

 faultFluidFlowObj.FailureEnvelope.(architectureComponent)...

 = failureEnvelopeForPlot;

 end

 function failureLength = failureLength(...

 faultFluidFlowObj,...

 shearStrengthExcess,...

 failureMap)

 % Calculate failure length.

 if all(~failureMap)

 failureLength = NaN;

 else

 failureHeight...

 = max(max(faultFluidFlowObj.z(failureMap)))...

 - min(min(faultFluidFlowObj.z(failureMap)));

 failureWidth...

 = max(max(faultFluidFlowObj.x(failureMap)))...

 - min(min(faultFluidFlowObj.x(failureMap)));

 failureLength...

 = 2 * (failureHeight .^ 2 ...

 + failureWidth .^ 2) .^ 0.5;

 if failureWidth == 0

 [~, failureEnd] = max(faultFluidFlowObj.z(failureMap));

 [~, failurePosition] = max(...

 max(faultFluidFlowObj.x(failureMap)));

 if failureEnd == faultFluidFlowObj.verticalArrayLength

 failureInterp = 0;

 else

 failureInterp =...

 shearStrengthExcess(failureEnd, failurePosition)...

 * (faultFluidFlowObj.z(failureEnd + 1, failurePosition)...

 - faultFluidFlowObj.z(failureEnd, failurePosition))...

 / (shearStrengthExcess(failureEnd + 1, failurePosition)...

 - shearStrengthExcess(failureEnd, failurePosition));

 failureInterp(isnan(failureInterp)) = 0;

 end

 failureLength = failureLength + 2 * failureInterp;

 end

 end

 end

 function EffectiveNormalStress = effectiveNormalStress(...

 faultFluidFlowObj,...

 pressure,...

 EffectiveNormalStress,...

 angle,...

 architectureComponent)

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 16/20

 % Calculate effective normal stress.

 if numel(angle) == 1

 angle = angle * ones(size(pressure));

 end

 EffectiveNormalStress.Central(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central) = 0.5...

 .* ((faultFluidFlowObj.maximumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 - pressure(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central))...

 + (faultFluidFlowObj.minimumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 - pressure(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)))...

 + 0.5 .* (faultFluidFlowObj.maximumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 - (faultFluidFlowObj.minimumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)))...

 .* cosd(...

 2 .* angle(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central));

 EffectiveNormalStress.X =...

 (EffectiveNormalStress.Central(:, 1:end-1)...

 + EffectiveNormalStress.Central(:, 2:end)) / 2;

 EffectiveNormalStress.Z =...

 (EffectiveNormalStress.Central(1:end-1, :)...

 + EffectiveNormalStress.Central(2:end, :)) / 2;

 end

 function shearStrengthExcess =...

 shearStrengthExcess(...

 faultFluidFlowObj,...

 EffectiveNormalStress,...

 architectureComponent,...

 shearStrengthExcess)

 % Shear stress exceeding failure envelope.

 shearStrengthExcess(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central) =...

 faultFluidFlowObj.FrictionCoefficient.Brittle.(...

 architectureComponent)...

 * EffectiveNormalStress.Central(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 - 0.5 * (faultFluidFlowObj.maximumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central)...

 - faultFluidFlowObj.minimumStress(...

 faultFluidFlowObj.ArrayFaultArchitectureMap.(...

 architectureComponent).Central))...

 * sind(2 * faultFluidFlowObj.faultAngle);

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 17/20

 end

 function [pressure, velocity, displacement]...

 = resultVectorToVars(faultFluidFlowObj, pressureVelocity)

 % Split and reshape solver vector to three variables.

 pressure = pressureVelocity(...

 1:(...

 faultFluidFlowObj.verticalArrayLength...

 * faultFluidFlowObj.horizontalArrayLength), :);

 velocity = pressureVelocity((...

 faultFluidFlowObj.verticalArrayLength...

 * faultFluidFlowObj.horizontalArrayLength + 1):(...

 3 * faultFluidFlowObj.verticalArrayLength...

 * faultFluidFlowObj.horizontalArrayLength), :);

 displacement = pressureVelocity((...

 3 * faultFluidFlowObj.verticalArrayLength...

 * faultFluidFlowObj.horizontalArrayLength + 1):end, :);

 end

 function markFracture(faultFluidFlowObj)

 % Mark location of fracture on pressure plot.

 line([faultFluidFlowObj.FaultArchitectureEnds.Fracture...

 faultFluidFlowObj.simulatedFaultWidth], [...

 0 (faultFluidFlowObj.simulatedFaultWidth...

 - faultFluidFlowObj.FaultArchitectureEnds.Fracture)...

 * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',...

 'LineStyle', '--');

 end

 function markFault(faultFluidFlowObj)

 % Mark location of fault zone architecture on plot.

 line([faultFluidFlowObj.FaultArchitectureEnds.Protolith1...

 faultFluidFlowObj.simulatedFaultWidth], [...

 0 (faultFluidFlowObj.simulatedFaultWidth...

 - faultFluidFlowObj.FaultArchitectureEnds.Protolith1)...

 * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',...

 'LineStyle', '--');

 line([faultFluidFlowObj.FaultArchitectureEnds.PSZ...

 faultFluidFlowObj.simulatedFaultWidth], [...

 0 (faultFluidFlowObj.simulatedFaultWidth...

 - faultFluidFlowObj.FaultArchitectureEnds.PSZ)...

 * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',...

 'LineStyle', '--');

 line([faultFluidFlowObj.FaultArchitectureEnds.DamageZone2...

 faultFluidFlowObj.simulatedFaultWidth], [...

 0 (faultFluidFlowObj.simulatedFaultWidth...

 - faultFluidFlowObj.FaultArchitectureEnds.DamageZone2)...

 * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',...

 'LineStyle', '--');

 end

 function image1 = resizeImageToMatch(image1, image2)

 % Resize an image to match another.

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 18/20

 tempSize = size(image2);

 image1 = imresize(image1, tempSize(1:2));

 end

 function condition = initialTimeCondition(loopCounter)

 % Initial timestep condition.

 condition = (loopCounter == 1);

 end

 function axin = convertToMpa(axin)

 % Convert axis units from Pa to MPa.

 h = get(axin, 'xtick');

 set(axin, 'xticklabel', h / 10 ^ 6);

 h = get(axin, 'ytick');

 set(axin, 'yticklabel', h / 10 ^ 6);

 end

 function output = roundToMPa(input)

 % Round a value from Pa to MPa.

 output = round((input + 1E7) / 1E6, -1) * 1E6;

 end

 function makeDirectory(folderName)

 % Create directory.

 if exist(folderName, 'dir') ~= 7

 mkdir(folderName);

 end

 end

 function value = minStructValue(inputStruct)

 %Find the minimum value in a struct.

 value = cell2mat(...

 struct2cell(inputStruct));

 end

 function image = copyPlotToImage(fig)

 % Copy a plot to an image.

 saveas(fig, 'temp.tiff')

 image = imread('temp.tiff');

 end

 function copyPlotToSubplot(inputFigure, inputSubplot)

 % Copy a plot to a subplot.

 axisTemp = get(inputFigure, 'CurrentAxes');

 copyobj(allchild(axisTemp), inputSubplot);

 copyobj(get(axisTemp, 'XLabel'), inputSubplot);

 copyobj(get(axisTemp, 'YLabel'), inputSubplot);

 end

 function [ax, h] = subtitle(text, position)

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 19/20

 % Add a subtitle to a plot.

 ax = axes('Units', 'Normal', 'Position', position,...

 'Visible', 'off');

 set(get(ax, 'Title'), 'Visible', 'on')

 title(text);

 if (nargout < 2)

 return

 end

 h = get(ax, 'Title');

 end

 function output = checkAllStructFields(inputStruct)

 %Check if any of the field values in the first level of a

 % struct are true, given that all the fields are boolean.

 fields = fieldnames(inputStruct);

 output = false;

 for i = 1:length(fields)

 if inputStruct.(fields{i})

 output = true;

 end

 end

 end

 end

end

ans =

 ResultPlottingClass with properties:

 horizontalArrayLength: []

 verticalArrayLength: []

 EarthquakeLengthVector: []

 StabilityLengths: []

 FailureMarker: []

 slidingFailureMarker: []

 oldFailureMap: []

 pressure: []

 stress: []

 effectiveStress: []

 outputPressure: []

 MohrCircle: [1×1 struct]

 MohrGeometry: [1×1 struct]

 time: []

 effectiveNormalStressForPlot: []

 EffectiveNormalStressStep: 10000

 processingEarthquakeTrigger: 0

 brittleFailureTimeTrigger: 0

 ductileFailureTimeTrigger: 0

 steadyStateTrigger: 0

 brittleFailureTime: NaN

 ductileFailureTime: NaN

 SubplotFileNames: [1×1 struct]

 mohrFigureScale: []

 plotTimeScale: []

 decimalPlaces: 1

 limitYValue: 40

 pressureSubplot: []

 mohrSubplot: []

 stressSubplot: []

08/04/2019 ResultPlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 20/20

 pressureSubplotElement: []

 mohrSubplotElement: []

 stressSubplotElement: []

 legendVector: []

 folderName: []

 folderCheckFlag: 1

 plotCounter: 0

 effectiveStressPatchVector: []

 effectiveStressPatch: []

 computerStore: []

 lowMohrLimit: []

 lastPressure: []

 steadyStateLimit: 1.0000e-12

 gaussianWidth: 1.2500

 lastSlidingFailureMarker: []

 lastFailureMarker: []

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 1/13

classdef SideBySidePlottingClass < ResultPlottingClass

 properties

 SideBySideInitialStruct = struct('Failure', [], 'NoFailure', []);

 SideBySideStruct =...

 repmat(struct('Pressure', [], 'FailureMarker', [],...

 'FailureEnvelope', ...

 struct('OFC', [], 'PSZ', []), 'MohrCircle', ...

 struct('OFC', [], 'PSZ', []), 'Time', [],...

 'PoreFluidFactor', [],...

 'Image', struct('Pressure', [], 'MohrFailure', ...

 struct('OFC', [], 'PSZ'...

 , []), 'EffectiveNormalStressForPlot', []),...

 'FailureLength', [], 'NucleationLength', []), 6, 1);

 SideBySideResultStruct;

 FailureEnvelope = struct;

 poreFluidFactorList

 imageCoordinates

 outputFile;

 imageStore;

 end

 methods

 function resultProcessing(...

 obj,...

 faultFluidFlowObj)

 % Process side by side plotting result.

 FaultFluidFlowClass.printProgressString(...

 'Printing side-by-side results...');

 obj.initialiseFailurePlaneStruct(...

 faultFluidFlowObj);

 stableSlidingTrigger = false;

 faultFluidFlowObj.slidingStress = NaN(...

 obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 for loopCounter = 1:length(faultFluidFlowObj.time)

 if ~obj.processingEarthquakeTrigger

 loopTime = faultFluidFlowObj.time(loopCounter);

 obj.postProcessingPhysicalVariables(...

 faultFluidFlowObj,...

 loopCounter,...

 loopTime);

 if obj.initialTimeCondition(...

 loopCounter)

 obj.sideBySideLoopOutput(...

 faultFluidFlowObj,...

 loopTime,...

 loopCounter);

 end

 if obj.brittleFailureCondition

 obj.sideBySideLoopOutput(...

 faultFluidFlowObj,...

 loopTime,...

 loopCounter);

 obj.brittleFailureTimeTrigger = true;

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 2/13

 end

 if obj.ductileFailureCondition

 obj.sideBySideLoopOutput(...

 faultFluidFlowObj,...

 loopTime,...

 loopCounter);

 obj.ductileFailureTimeTrigger = true;

 end

 if obj.onsetOfStableSlidingCondition(...

 faultFluidFlowObj,...

 loopCounter) && ~stableSlidingTrigger

 if ~obj.brittleFailureTimeTrigger...

 && ~obj.ductileFailureTimeTrigger

 obj.plotCounter = obj.plotCounter + 1;

 end

 obj.sideBySideLoopOutput(...

 faultFluidFlowObj,...

 loopTime,...

 loopCounter);

 stableSlidingTrigger = true;

 end

 if obj.unstableSlidingCondition(...

 faultFluidFlowObj,...

 loopCounter)

 obj.sideBySideLoopOutput(...

 faultFluidFlowObj,...

 loopTime,...

 loopCounter);

 obj.processingEarthquakeTrigger = true;

 end

 end

 end

 end

 function sideBySideLoopOutput(...

 obj,...

 faultFluidFlowObj,...

 loopTime,...

 loopTimeCounter)

 % Output side by side plotting results variables for a given

 %timestep.

 obj.plotCounter = obj.plotCounter + 1;

 obj.mohrPlotVariables(faultFluidFlowObj, loopTime);

 obj.SideBySideStruct(obj.plotCounter).PoreFluidFactor...

 = faultFluidFlowObj.poreFluidFactor;

 obj.SideBySideStruct(obj.plotCounter).Pressure...

 = obj.pressure;

 obj.SideBySideStruct(obj.plotCounter).FailureMarker =...

 obj.FailureMarker;

 obj.SideBySideStruct(obj.plotCounter).Time...

 = loopTime;

 obj.SideBySideStruct(...

 obj.plotCounter).FailureEnvelope.OFC...

 = faultFluidFlowObj.FailureEnvelope.OFC;

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 3/13

 obj.SideBySideStruct(...

 obj.plotCounter).FailureEnvelope.PSZ...

 = faultFluidFlowObj.FailureEnvelope.PSZ;

 obj.SideBySideStruct(...

 obj.plotCounter).MohrCircle.OFC...

 = obj.MohrCircle.OFC;

 obj.SideBySideStruct(...

 obj.plotCounter).MohrCircle.PSZ...

 = obj.MohrCircle.PSZ;

 obj.SideBySideStruct(...

 obj.plotCounter...

).EffectiveNormalStressForPlot...

 = obj.effectiveNormalStressForPlot;

 obj.SideBySideStruct(...

 obj.plotCounter...

).FailureLength...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Failure;

 obj.SideBySideStruct(...

 obj.plotCounter).NucleationLength...

 = faultFluidFlowObj.EarthquakeLengthVector(...

 loopTimeCounter).Nucleation;

 end

 function mohrPlot(...

 obj,...

 faultFluidFlowObj,...

 SideBySideStruct,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3,...

 plotType,...

 component)

 % Plot mohr circle.

 [MohrCircle, temporaryX, temporaryY]...

 = obj.mohrPlotParameters(...

 SideBySideStruct,...

 loopCounter3,...

 component);

 Axes = gca;

 colorString = obj.setMohrPlotColor(...

 length(Axes.Children));

 axis('equal')

 plot(temporaryX, temporaryY, plotType)

 hold on;

 plot(temporaryX, MohrCircle)

 hold on;

 if faultFluidFlowObj.SlidingFailureFlag.(component)

 SideBySidePlottingClass.plotFailurePlane(...

 faultFluidFlowObj,...

 temporaryX,...

 MohrCircle,...

 colorString);

 end

 obj.mohrAxis(...

 SideBySideStruct,...

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 4/13

 MohrCircle,...

 temporaryX,...

 loopCounter3);

 obj.saveMohrFigure(...

 [num2str(loopCounter1)...

 '_'...

 num2str(loopCounter2)...

 '_'...

 num2str(loopCounter3)]);

 end

 function sideBySidePrintLine(...

 obj,...

 fields,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3)

 fprintf(...

 obj.outputFile,...

 '%s\n',...

 ['Figure ' num2str(loopCounter2)...

 ', poreFluidFactor ' num2str(...

 obj.SideBySideResultStruct(...

 loopCounter2).(...

 fields{loopCounter1})(loopCounter3).PoreFluidFactor) ...

 ', Failure Length ' num2str(...

 obj.SideBySideResultStruct(...

 loopCounter2).(...

 fields{loopCounter1})(loopCounter3).FailureLength)...

 ', Nucleation Length '...

 num2str(...

 obj.SideBySideResultStruct(...

 loopCounter2).(...

 fields{loopCounter1})(loopCounter3).NucleationLength)]);

 end

 function sideBySidePlot(...

 obj,...

 faultFluidFlowObj)

 % Plot side by side results.

 obj.outputFile = fopen([obj.folderName '/Output.txt'], 'wt');

 fields = fieldnames(obj.SideBySideResultStruct);

 obj.populateporeFluidFactorList(fields);

 for loopCounter1 = 1:length(obj.SideBySideResultStruct)

 for loopCounter2 = 1:length(fields)

 for loopCounter3 = 1:length(...

 obj.SideBySideResultStruct(loopCounter1).(...

 fields{loopCounter2}))

 eventTime = obj.getSideBySideResultStruct(...

 fields,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3);

 obj.plotCounter = obj.plotCounter + 1;

 if ~isempty(...

 obj.SideBySideResultStruct(...

 loopCounter1).(...

 fields{loopCounter2})(loopCounter3).Pressure)

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 5/13

 pressureFigure...

 = obj.pressureFigure(...

 faultFluidFlowObj,...

 eventTime,...

 [num2str(loopCounter1)...

 '_'...

 num2str(loopCounter2)...

 '_'...

 num2str(loopCounter3)]);

 close(pressureFigure);

 end

 end

 end

 obj.plotCounter = 0;

 for loopCounter2 = 1:length(fields)

 for loopCounter3 = 1:length(...

 obj.SideBySideResultStruct(loopCounter1).(...

 fields{loopCounter2}))

 if ~isempty(...

 obj.SideBySideResultStruct(...

 loopCounter1).(...

 fields{loopCounter2})(loopCounter3).Pressure)

 obj.postProcessMohrDiagram(...

 faultFluidFlowObj,...

 fields,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3);

 end

 end

 end

 for loopCounter2 = 1:length(fields)

 for loopCounter3 = 1:length(...

 obj.SideBySideResultStruct(loopCounter1).(...

 fields{loopCounter2}))

 pressureImage =...

 obj.SideBySideResultStruct(loopCounter1).(...

 fields{...

 loopCounter2})(loopCounter3).Image.Pressure;

 if ~isempty(pressureImage)

 imwrite(pressureImage,...

 [obj.folderName '/DiagramPressure'...

 fields{loopCounter2}...

 num2str(loopCounter1)...

 '_' num2str(loopCounter3) '.tiff']);

 end

 end

 end

 end

 end

 function populateporeFluidFactorList(obj, fields)

 obj.poreFluidFactorList = zeros(2, 1);

 for loopCounter = 1:length(obj.SideBySideResultStruct)

 obj.poreFluidFactorList(loopCounter) =...

 obj.SideBySideResultStruct(...

 loopCounter).(fields{1})(1).PoreFluidFactor;

 end

 end

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 6/13

 function eventTime = getSideBySideResultStruct(...

 obj,...

 fields,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3)

 obj.pressure = obj.SideBySideResultStruct(...

 loopCounter1).(...

 fields{loopCounter2})(loopCounter3).Pressure;

 eventTime = obj.SideBySideResultStruct(loopCounter1).(...

 fields{loopCounter2})(loopCounter3).Time;

 if ~isempty(eventTime)

 obj.FailureMarker.Central...

 = obj.SideBySideResultStruct(loopCounter1).(...

 fields{...

 loopCounter2})(loopCounter3).FailureMarker.Central;

 end

 end

 function trimEmptyParameters(obj, loopCounter1)

 obj.SideBySideResultStruct(loopCounter1) = [];

 end

 function LocalStruct = postProcessMohrDiagram(...

 obj,...

 faultFluidFlowObj,...

 fields,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3)

 ofcFigure = figure;

 pszFigure = figure;

 plotType =...

 SideBySidePlottingClass.omittedFailureEnvelope(...

 loopCounter2);

 for internalCounter = 1:length(obj.SideBySideResultStruct)

 LocalStruct = obj.SideBySideResultStruct(...

 internalCounter).(fields{loopCounter2});

 obj.plotCounter = obj.plotCounter + 1;

 set(0, 'CurrentFigure', ofcFigure)

 obj.mohrPlot(...

 faultFluidFlowObj,...

 LocalStruct,...

 loopCounter1,...

 loopCounter2,...

 loopCounter3,...

 plotType,...

 'OFC');

 hold on

 obj.plotCounter = obj.plotCounter + 1;

 set(0, 'CurrentFigure', pszFigure)

 box on

 obj.mohrPlot(...

 faultFluidFlowObj,...

 LocalStruct,...

 loopCounter1,...

 loopCounter2,...

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 7/13

 loopCounter3,...

 'k',...

 'PSZ')

 if loopCounter3 <= length(obj.SideBySideResultStruct(...

 internalCounter).(...

 fields{loopCounter2}))

 if obj.SideBySideResultStruct(...

 internalCounter).(...

 fields{loopCounter2})(loopCounter3).Time == 0

 SideBySidePlottingClass.addMohrPlotLegends(...

 ofcFigure,....

 pszFigure);

 end

 end

 end

 ofcMohrImage = ResultPlottingClass.copyPlotToImage(...

 ofcFigure);

 pszMohrImage = ResultPlottingClass.copyPlotToImage(...

 pszFigure);

 if strcmp(obj.computerStore, 'GLNXA64')

 cropVec = [0, 100, 900, 700];

 else

 cropVec = [0, 100, 1200, 900];

 end

 ofcMohrImage = imcrop(...

 ofcMohrImage, cropVec);

 pszMohrImage = imcrop(...

 pszMohrImage, cropVec);

 imwrite(ofcMohrImage,...

 [obj.folderName '/DiagramOFCMohr'...

 fields{loopCounter2}...

 num2str(loopCounter2)...

 '_' num2str(loopCounter3) '.tiff']);

 imwrite(pszMohrImage,...

 [obj.folderName '/DiagramPSZMohr'...

 fields{loopCounter2}...

 num2str(loopCounter2)...

 '_' num2str(loopCounter3) '.tiff']);

 close(ofcFigure);

 close(pszFigure);

 end

 function mohrAxis(...

 obj,...

 SideBySideResultStruct,...

 MohrCircle,...

 temporaryX,...

 loopCounter3)

 xLimit = 130;

 yLimit = 50; %For consistent paper diagram.

 x1 = min(temporaryX(isfinite(MohrCircle)));

 x2 = max(temporaryX(isfinite(MohrCircle)));

 xlim([0, xLimit]);

 ylim([0, yLimit]);

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 8/13

 xticks([]);

 yticks([]);

 end

 function initialiseImageCoordinates(obj)

 if strcmp(obj.computerStore, 'MACI64')

 obj.imageCoordinates = [100, 288];

 elseif strcmp(obj.computerStore, 'GLNXA64')

 obj.imageCoordinates = [103, 288];

 end

 end

 function image = labelOverpressureEdge(obj, image)

 image = insertShape(image, 'Line',...

 [obj.imageCoordinates(1) + 75,...

 obj.imageCoordinates(2) - 82, ...

 (obj.imageCoordinates(1) + 105),...

 obj.imageCoordinates(2) - 82], 'Color', 'black');

 end

 function image = labelOFCIFCBoundary(obj, image)

 image = insertShape(image, 'Line',...

 [obj.imageCoordinates(1) + 275 ...

 obj.imageCoordinates(2) - 255 ...

 obj.imageCoordinates(1) + 275 ...

 obj.imageCoordinates(2) + 85],...

 'Color', 'black', 'LineWidth', 5);

 end

 function image = labelArchitectureComponent(obj, ...

 image, xOffset, yOffset, labelString)

 image = insertText(image,...

 [obj.imageCoordinates(1) + xOffset...

 obj.imageCoordinates(2) + yOffset],...

 labelString, 'BoxOpacity', 0, 'FontSize', 14);

 end

 function image = labelFaultCore(obj, image)

 image = insertText(image,...

 [obj.imageCoordinates(1) + 100 ...

 obj.imageCoordinates(2) - 280],...

 [sprintf('%s', char(8592))...

 ' FC '...

 sprintf('%s', char(8594))], 'BoxOpacity', 0,...

 'FontSize', 20);

 end

 function image = labelPoreFluidFactor(...

 obj, image, xOffset, yOffset, valueString, color)

 image = insertText(...

 image, [(obj.imageCoordinates(1) + xOffset) ...

 (obj.imageCoordinates(2) + yOffset)],...

 [sprintf('%sv', char(955))...

 ' = ' valueString],...

 'TextColor', color, 'BoxOpacity', 0,...

 'FontSize', 14);

 end

 function image = labelVerticalStress(...

 obj, image, xOffset, yOffset, faultFluidFlowObj)

 image = insertText(image,...

 [obj.imageCoordinates(1) + xOffset...

 obj.imageCoordinates(2) + yOffset], ...

 [sprintf('%s', char(963))...

 'v = ' num2str(round(...

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 9/13

 faultFluidFlowObj.lithostaticStress / 1E6, 3,...

 'significant')) ' MPa'], 'TextColor', 'White',...

 'BoxOpacity', 0,...

 'FontSize', 14);

 end

 function image = insertTime(...

 obj,...

 image,...

 loopCounter3,...

 SideBySideResultStruct)

 image = insertText(image, [obj.imageCoordinates(1) + 100 ...

 obj.imageCoordinates(2) - 290], ...

 [num2str(SideBySideResultStruct(loopCounter3).Time...

 / FaultFluidFlowClass.SECONDS_PER_YEAR, 4) ' years'],...

 'Font', 'LucidaSansDemiBold', 'BoxOpacity', 0,...

 'FontSize', 14);

 end

 function image = generalImageProcessing(...

 obj,...

 image,...

 loopCounter3,...

 SideBySideResultStruct)

 if strcmp(obj.computerStore, 'GLNXA64')

 baseVector = [150, 85];

 else

 baseVector = [150, 85];

 end

 image = obj.labelArchitectureComponent(...

 image, 0, 12, 'DZ');

 image = obj.labelArchitectureComponent(...

 image, baseVector(1), baseVector(2), 'OFC');

 image = obj.labelArchitectureComponent(...

 image, baseVector(1)+80, baseVector(2), 'IFC');

 image = obj.labelOverpressureEdge(image);

 image = obj.labelOFCIFCBoundary(image);

 image = obj.insertTime(...

 image, loopCounter3, SideBySideResultStruct);

 image = obj.labelPoreFluidFactor(...

 image, 0, 32, num2str(...

 SideBySideResultStruct(loopCounter3).PoreFluidFactor),...

 'Black');

 end

 function lengthPosition = lengthLabelsPosition(obj)

 lengthPosition = [obj.imageCoordinates(1) + 285 ...

 obj.imageCoordinates(2)...

 + 85 obj.imageCoordinates(1)...

 + 285 obj.imageCoordinates(2) + 85];

 end

 function nucleationLengthPosition...

 = nucleationLengthPosition(...

 obj,...

 SideBySideResultStruct,...

 loopCounter3)

 %

 lengthPosition = obj.lengthLabelsPosition;

 nucleationLengthPosition = lengthPosition;

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 10/13

 nucleationLengthPosition(4) = nucleationLengthPosition(4)...

 - 4.25...

 * SideBySideResultStruct(loopCounter3).NucleationLength;

 nucleationLengthPosition(2) = nucleationLengthPosition(4);

 nucleationLengthPosition(3) = nucleationLengthPosition(3)...

 + 20;

 end

 function failureLengthPosition = failureLengthPosition(...

 obj,...

 SideBySideResultStruct,...

 loopCounter3)

 lengthPosition = obj.lengthLabelsPosition;

 failureLengthPosition = lengthPosition;

 failureLengthPosition(4) = failureLengthPosition(4)...

 - 4.25...

 * SideBySideResultStruct(loopCounter3).FailureLength;

 end

 function colorString = setMohrPlotColor(...

 obj,...

 counter)

 if counter < 3

 colorString = 'b';

 elseif counter == 6

 colorString = 'r';

 else

 colorString = 'r';

 end

 end

 function image = labelFailureLength(...

 obj,...

 SideBySideResultStruct,...

 image,...

 loopCounter3)

 failureLengthPosition...

 =...

 obj.failureLengthPosition(...

 SideBySideResultStruct,...

 loopCounter3);

 image = insertShape(image, 'Line', failureLengthPosition,...

 'Color', 'black', 'LineWidth', 1);

 image = insertText(...

 image, failureLengthPosition(1:2), sprintf('%s', 'LF'),...

 'BoxOpacity', 0, 'TextColor', 'Black',...

 'FontSize', 14);

 end

 function image = labelNucleationLength(...

 obj,...

 image,...

 SideBySideResultStruct,...

 loopCounter3)

 nucleationLengthPosition...

 = obj.nucleationLengthPosition(...

 SideBySideResultStruct,...

 loopCounter3);

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 11/13

 image = insertShape(image, 'Line', nucleationLengthPosition,...

 'Color', 'red', 'LineWidth', 1);

 image = insertText(...

 image,...

 nucleationLengthPosition(3:4) + [-25, 0],...

 sprintf('%s', 'LN')...

 , 'BoxOpacity', 0, 'TextColor', 'Red',...

 'FontSize', 14);

 end

 end

 methods(Static)

 function outputImage = concatenateImageRow(...

 outputImage, pressureImage1, pressureImage2, mohrImage1,...

 mohrImage2)

 outputImage = cat(1, outputImage, cat(2, pressureImage1,...

 pressureImage2, imresize(cat(1, mohrImage2,...

 mohrImage1), size(pressureImage1, 1) /...

 (2 * size(mohrImage2, 1)))));

 end

 function addMohrPlotLegends(ofcFigure, pszFigure)

 set(0, 'CurrentFigure', ofcFigure)

 text(1, 20, '\tau = \mu_S \sigma''_N + C',...

 'Rotation', 37, 'FontSize', 14)

 set(0, 'CurrentFigure', pszFigure)

 text(30, 21, '\tau = \mu_S \sigma''_N',...

 'Rotation', 35, 'FontSize', 14)

 end

 function [MohrCircle, temporaryX, temporaryY]...

 = mohrPlotParameters(...

 SideBySideResultStruct,...

 loopCounter3,...

 component)

 unitFactor = 1E6;

 MohrCircle = [];

 temporaryX = [];

 temporaryY = [];

 if length(SideBySideResultStruct) >= loopCounter3

 MohrCircle = SideBySideResultStruct(...

 loopCounter3).MohrCircle.(component) / unitFactor;

 temporaryX = SideBySideResultStruct(...

 loopCounter3).EffectiveNormalStressForPlot...

 / unitFactor;

 temporaryY = SideBySideResultStruct(...

 loopCounter3).FailureEnvelope.(component)...

 / unitFactor;

 end

 end

 function mohrArchitectureLabel(architectureString)

 text(1, 45, architectureString);

 end

 function plotType = omittedFailureEnvelope(loopCounter2)

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 12/13

 if loopCounter2 == 1

 plotType = 'k';

 else

 plotType = 'k--';

 end

 end

 function graphFinalProcessing

 title([]);

 pbaspect([1 2 1]);

 end

 function condition = initialImageCondition(...

 SideBySideResultStruct, loopCounter1, loopCounter3)

 condition = SideBySideResultStruct(loopCounter3).Time == 0 ...

 && loopCounter1 == 1;

 end

 function condition = secondImageCondition(...

 SideBySideResultStruct, loopCounter1, loopCounter3)

 condition = SideBySideResultStruct(loopCounter3).Time == 0 ...

 && loopCounter1 == 2;

 end

 function hydrostaticPoreFluidFactor =...

 hydrostaticPoreFluidFactor(faultFluidFlowObj)

 hydrostaticPoreFluidFactor = round(...

 faultFluidFlowObj.hydrostaticStress...

 / faultFluidFlowObj.lithostaticStress, 1);

 end

 function image1 = resizeImageToMatch(image1, image2)

 tempSize = size(image2);

 if ~isempty(image1)

 image1 = imresize(image1, tempSize(1:2));

 end

 end

 function plotFailurePlane(...

 faultFluidFlowObj,...

 temporaryX,...

 MohrCircle,...

 plotType)

 faultAngle = faultFluidFlowObj.faultAngle;

 mohrRadius = max(MohrCircle);

 mohrCentre = temporaryX(MohrCircle == mohrRadius);

 if ~isempty(mohrRadius) && ~isempty(mohrCentre)

 line([mohrCentre,...

 (mohrCentre + mohrRadius * cosd(2 * faultAngle))],...

 [0, ...

 mohrRadius * sind(2 * faultAngle)], 'Color', plotType);

 end

 end

 end

end

ans =

 SideBySidePlottingClass with properties:

08/04/2019 SideBySidePlottingClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 13/13

 SideBySideInitialStruct: [1×1 struct]

 SideBySideStruct: [6×1 struct]

 SideBySideResultStruct: []

 FailureEnvelope: [1×1 struct]

 poreFluidFactorList: []

 imageCoordinates: []

 outputFile: []

 imageStore: []

 horizontalArrayLength: []

 verticalArrayLength: []

 EarthquakeLengthVector: []

 StabilityLengths: []

 FailureMarker: []

 slidingFailureMarker: []

 oldFailureMap: []

 pressure: []

 stress: []

 effectiveStress: []

 outputPressure: []

 MohrCircle: [1×1 struct]

 MohrGeometry: [1×1 struct]

 time: []

 effectiveNormalStressForPlot: []

 EffectiveNormalStressStep: 10000

 processingEarthquakeTrigger: 0

 brittleFailureTimeTrigger: 0

 ductileFailureTimeTrigger: 0

 steadyStateTrigger: 0

 brittleFailureTime: NaN

 ductileFailureTime: NaN

 SubplotFileNames: [1×1 struct]

 mohrFigureScale: []

 plotTimeScale: []

 decimalPlaces: 1

 limitYValue: 40

 pressureSubplot: []

 mohrSubplot: []

 stressSubplot: []

 pressureSubplotElement: []

 mohrSubplotElement: []

 stressSubplotElement: []

 legendVector: []

 folderName: []

 folderCheckFlag: 1

 plotCounter: 0

 effectiveStressPatchVector: []

 effectiveStressPatch: []

 computerStore: []

 lowMohrLimit: []

 lastPressure: []

 steadyStateLimit: 1.0000e-12

 gaussianWidth: 1.2500

 lastSlidingFailureMarker: []

 lastFailureMarker: []

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 1/7

classdef SinglePhaseFluidFlowClass < FaultFluidFlowClass

 methods

 function obj = faultFluidFlowSolver(obj)

 % Solve fault fluid flow problem.

 FaultFluidFlowClass.printProgressString(...

 'Solving single phase fluid flow problem...')

 endTrigger = false;

 timeVector = obj.time;

 timeOutput = [];

 outputPressure = [];

 options = obj.initialiseSolverOptions;

 storeStruct = struct;

 storeStruct.FailureMarkerStore = obj.initialiseXZCMidpointStruct;

 storeStruct.slidingFailureMarkerStore = obj.slidingFailureMarker;

 storeStruct.slidingStressStore = obj.slidingStress;

 storeStruct.EarthquakeLengthStore = struct(...

 'Failure', NaN,...

 'Nucleation', NaN);

 initialSolverVariable = obj.initialSolverVariable;

 obj.initialSolverVariable = [];

 while length(timeVector) ~= 1

 lastwarn('');

 [timeVector,...

 solverVariable,...

 eventTime,...

 eventSolverVariable]...

 = ode23tb(...

 @obj.differentialPressureEquation,...

 timeVector,...

 initialSolverVariable,...

 options);

 [~, msgid] = lastwarn;

 if strcmp(msgid, 'MATLAB:ode15s:IntegrationTolNotMet')

 throw(...

 MException(...

 'CUSTOM:TolErr',...

 'Unable to meet integration tolerance.'));

 end

 timeLength = length(timeVector);

 timeOutput = [timeOutput timeVector'];

 outputPressure...

 = [...

 outputPressure...

 solverVariable'];

 if length(eventTime) ~= 1 && isempty(eventTime) == 0

 eventTime = eventTime(end);

 eventSolverVariable = eventSolverVariable(end, :);

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 2/7

 end

 if isempty(eventTime) == 1

 eventSolverVariable = solverVariable(end, :);

 eventTime = obj.time(end);

 end

 eventPressure = eventSolverVariable;

 [failureLength, nucleationLength, storeStruct] =...

 obj.discontinuousModeOfFailure(...

 eventPressure,...

 timeLength,...

 eventTime,...

 storeStruct);

 if nucleationLength <= failureLength...

 && ~isnan(failureLength)

 eventTime = [];

 end

 if endTrigger

 break

 end

 if isempty(eventTime) == 1 ...

 || nucleationLength <= failureLength...

 && ~isnan(failureLength)

 obj.time = timeOutput;

 endTrigger = true;

 end

 if isempty(eventTime) == 1

 obj.time = timeOutput;

 break;

 end

 options = odeset(...

 options,...

 'InitialStep',...

 (timeVector(end) - timeVector(end-1)) / 1000);

 timeVector...

 = eventTime:(obj.SECONDS_PER_YEAR /...

 obj.timeVectorDensity):obj.maximumSimulationTime;

 initialSolverVariable = eventSolverVariable;

 end

 obj.outputPressure = outputPressure;

 obj.FailureMarkerStore = storeStruct.FailureMarkerStore;

 obj.slidingFailureMarkerStore = storeStruct.slidingFailureMarkerStore;

 obj.slidingStressStore = storeStruct.slidingStressStore;

 obj.EarthquakeLengthStore = storeStruct.EarthquakeLengthStore;

 obj.options = options;

 end

 function initialiseIntensiveVariables(obj, confinementFactor)

 % Initialise intensive physical variables.

 obj.initialiseNonSolverVariables(confinementFactor);

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 3/7

 obj.initialSolverVariable = reshape(...

 obj.initialPressure, [], 1);

 obj.initialPressure = [];

 end

 function [failureLength, nucleationLength, storeStruct] =...

 discontinuousModeOfFailure(...

 obj,...

 pressure,...

 timeLength,...

 eventTime,...

 storeStruct)

 % Make mode of failure update at non-smooth ODE

 % interruptions.

 pressure = reshape(...

 pressure,...

 obj.verticalArrayLength, ...

 obj.horizontalArrayLength);

 pressure = obj.pressureBCS(pressure);

 %if ~obj.modeOfFailureFlag

 % obj.FailureMarker = obj.removeModeOfFailure;

 %end

 oldSlidingFailureMarker = obj.slidingFailureMarker;

 OldFailureMarker = obj.FailureMarker;

 oldSlidingStress = obj.slidingStress;

 [obj.Permeability,...

 obj.FailureMarker,...

 obj.slidingFailureMarker,...

 ~,...

 failureLength,...

 nucleationLength,...

 obj.slidingStress]...

 = obj.rockMatrixState(pressure, eventTime);

 if length(obj.EarthquakeLengthStore) == 1

 timeLength = timeLength - 1;

 end

 storeStruct.FailureMarkerStore = cat(...

 3,...

 storeStruct.FailureMarkerStore,...

 repmat(OldFailureMarker, 1, 1, timeLength));

 storeStruct.slidingFailureMarkerStore = cat(...

 3,...

 storeStruct.slidingFailureMarkerStore,...

 repmat(oldSlidingFailureMarker, 1, 1, timeLength));

 storeStruct.slidingStressStore = cat(...

 3,...

 storeStruct.slidingStressStore,...

 repmat(oldSlidingStress, 1, 1, timeLength));

 storeStruct.EarthquakeLengthStore = cat(...

 3,...

 storeStruct.EarthquakeLengthStore,...

 repmat(...

 storeStruct.EarthquakeLengthStore(1),...

 1, 1, timeLength));

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 4/7

 if (nucleationLength - failureLength)...

 / nucleationLength...

 < 0

 failureLength = nucleationLength;

 end

 storeStruct.EarthquakeLengthStore(end) = struct(...

 'Failure', failureLength,...

 'Nucleation', nucleationLength);

 storeStruct.FailureMarkerStore(:, :, end) = obj.FailureMarker;

 storeStruct.slidingFailureMarkerStore(:, :, end)...

 = obj.slidingFailureMarker;

 storeStruct.slidingStressStore(:, :, end) = obj.slidingStress;

 end

 function pressureTimeDerivative = differentialPressureEquation(...

 obj,...

 time,...

 pressure)

 % Derivative of pressure with respect to time for each spatial

 % array point.

 pressure = reshape(pressure, obj.verticalArrayLength,...

 obj.horizontalArrayLength);

 pressure = obj.rockFluidCoupling(pressure, time);

 PressureFlux = obj.pressureFlux(pressure);

 PressureFluxDivergence = obj.spatialSecondDerivative(...

 PressureFlux);

 PressureFluxDivergence = obj.fluxDivergenceBCS(...

 PressureFlux,...

 PressureFluxDivergence);

 pressureTimeDerivative = obj.pressureTimeDerivative(...

 PressureFluxDivergence);

 pressureTimeDerivative = reshape(...

 pressureTimeDerivative, [], 1);

 end

 function initialiseSpatialArray(obj)

 % Initialise spatial arrays for simulation

 obj.initialiseCommonSpatialArray;

 end

 function initialiseRockMatrixVariables(obj)

 % Initialise rock matrix variables.

 obj.initialiseCommonRockMatrixVariables;

 end

 function options = initialiseSolverOptions(obj)

 % Initialise options for solvers used in simulation.

 jacobianPattern = spdiags(...

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 5/7

 ones(obj.horizontalArrayLength...

 * obj.verticalArrayLength, 5),...

 [-obj.verticalArrayLength;...

 -1;...

 0;...

 1;...

 obj.verticalArrayLength;],...

 obj.horizontalArrayLength...

 * obj.verticalArrayLength,...

 obj.horizontalArrayLength...

 * obj.verticalArrayLength);

 options = odeset(...

 'JPattern', jacobianPattern,...

 'Events',...

 @(time, pressure)obj.events(time, pressure),...

 'RelTol', 1E-8);

 obj.time = [];

 end

 end

end

ans =

 SinglePhaseFluidFlowClass with properties:

 SECONDS_PER_YEAR: 31556900

 SECONDS_PER_DAY: 86400

 GRAVITATIONAL_CONSTANT: 9.8100

 analyticalTime: []

 maximumSimulationTime: []

 timeVectorLength: []

 time: []

 timeOutput: []

 timeVectorDensity: []

 x: []

 z: []

 Delta: []

 faultArchitectureList: []

 simulatedFaultWidth: []

 simulatedFaultHeight: []

 horizontalArrayLength: []

 verticalArrayLength: []

 FaultArchitectureEnds: []

 ModeOfFailureArchitectureFlag: []

 SlidingFailureFlag: []

 FineFeatureFlag: []

 overpressureHeight: []

 overpressureMap: []

 pszWidth: []

 blankingArray: []

 EarthquakeLengthStore: []

 EarthquakeLengthVector: []

 CohesiveFlag: []

 nucleationDetectionFactor: 500000

 faultPreset: []

 rockDensity: []

 faultAngle: []

 FailureModeBoundary: []

 FrictionCoefficient: []

 porosity: []

 porosityStates: []

 compressiblity: []

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 6/7

 Viscosity: []

 UnstressedPermeability: []

 PressureSensitivity: []

 Cohesion: []

 initialStressField: []

 arrayoverpressureHeight: []

 contactOverpressure: []

 initialPressure: []

 initialSolverVariable: []

 pressure: []

 Density: []

 shearModulus: []

 rateAndStateDifference: []

 criticalSlipDistance: []

 psi: []

 slidingStress: []

 FailureTime: [1×1 struct]

 SlidingLength: [1×1 struct]

 cohesionLimit: []

 failureStateList: []

 FailureAngle: []

 TwoCosFailureAngle: []

 twoCosFaultAngle: []

 ArrayFaultArchitectureEnds: []

 ArrayFaultArchitectureMap: []

 FailureModeBoundaryStress: []

 hydrostaticStress: []

 lithostaticStress: []

 FailureMarker: []

 slidingFailureMarker: []

 failureExtent: []

 maximumStress: []

 minimumStress: []

 Permeability: []

 options: []

 outputPressure: []

 outputSolverVariable: []

 FailureMarkerStore: []

 slidingFailureMarkerStore: []

 slidingStressStore: []

 oldFailureMarker: []

 newFailureMarker: []

 PlotProperties: [1×1 struct]

 twoCosAngle: []

 twoSinAngle: []

 internalFrictionArray: []

 cohesion: []

 TwoSinFailureAngle: []

 twoSinFaultAngle: []

 FailureEnvelope: []

 poreFluidFactor: []

 tectonicLoadingRate: []

 faultDepth: []

 confinementFactor: []

 OFCwidth: []

 IFCwidth: []

 initialStress: []

 modeOfFailureFlag: 0

 plotTimeScale: []

 PlottingAngle: []

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab/

08/04/2019 SinglePhaseFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 7/7

