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Abstract 

Pore fluid overpressures in active fault systems can drive fluid flow and cause 

fault weakening and seismicity. In return, deformation accommodated by 

different mode of failure (e.g. brittle vs. ductile) also affects fault zone 

permeability and, hence, fluid flow and pore fluid pressure distribution. The 

resulting non-linear, complex feedback between fluid flow, fluid pressure and 

fault deformation controls the length of the nucleation phase of an earthquake and 

the duration of the interseismic period.  

In this thesis we: 1) model overpressured, supercritical CO2 fluid flow in natural, 

exhumed faults in evaporite sequences, which represent an analogue of the 

seismic sources at hypocentre depth of recent seismic events in the Northern 

Apennines of Italy (e.g. Mw 6.0 1997-98 Colfiorito and Mw 6.5 2016 Norcia 

earthquakes). 2) perform parameter studies on pore pressure diffusion and 

earthquake nucleation, with realistic models of ductile failure, varying the 

dimension of components of fault zone architecture and neighbouring lithology, 

outer fault core width and the height of pressurised layers abutting the fault core. 

Our results show that: 1) the duration of the nucleation phase is significantly 

reduced, from a few years to a few months, when realistic models of fault zone 

architecture and pore pressure- and deformation-dependent permeability are 

considered. We implement a four-component model of fault zone architecture in 

simulations (damage zone, outer fault core, inner fault core and primary slip 

zone) in contrast to the one- or two-component models of fault zone architecture 

previously considered.  2) For a given tectonic loading rate, a thinner fault core 

results in a more effective fault weakening. The impact of fluid flow on the fault 
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being more significant for faults with a thinner rather than thicker outer fault core. 

In the absence of fluids, the base mechanical strength of the slipping portion of 

the fault did not vary with thickness. Similarly, an increasing the thickness of an 

overpressured aquifer intersecting a fault in the damage zone produces a higher 

magnitude of pore pressure in the fault core, which weakens the principal slip 

zone. Understanding the controls exerted on the duration of the nucleation phase 

of earthquakes has important implications for premonitory signal detection, as 

identifying extended nucleation phases of active faults would increase the 

likelihood of detection of early seismicity warnings.  
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1 Introduction 
1.1 Rationale and broad context 

The potential for earthquakes exists throughout the crust, both along  

intracontinental and plate boundaries faults, where deformation is high and  stress 

level may be near the strength of faults (Townend and Zoback, 2000). Under these 

conditions, small perturbations such as increasing pore fluid pressure can affect the 

stress state of the faulted crust and cause fault reactivation, frictional instability and 

trigger seismicity.  

 

Figure 1.1: “Cumulative count of earthquakes with M≥ 3 in the central and 

eastern United States, 1967–2012.The dashed line corresponds to the long-term 

rate of 21.2 earthquakes/year. (Inset ) Distribution of epicenters in the region 

considered here.” (Ellsworth, 2013).Subsurface pore fluid pressure gradients 

(Cox, 2010; Sibson, 1990, 1992) and fluid migration  (Collettini et al., 2009; Cox, 

1995; Cox et al., 1987; De Paola et al., 2008; Hickman et al., 1995; Miller, 1996; 
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Rice, 1992; Sibson, 2000) in the subsurface can significantly alter the frictional 

strength of faults and induce seismicity. Natural fluid flows (Di Luccio et al., 

2010; Mahesh et al., 2012; Miller et al., 2004; Mizoguchi et al., 2008; Parotidis 

et al., 2003; Terakawa et al., 2013; Yoshida et al., 2016, 2003)  and a number of 

human subsurface injection activities (Davies et al., 2013) can induce these pore 

pressure gradients in the faulted crust. 

A number of large earthquakes have been driven by natural subsurface fluid 

flow (up to MW 9.0, Terakawa et al., 2013). Mantle degassing through the release of 

supercritical carbon dioxide (CO2) is thought to have driven many instances of 

natural seismicity. This CO2 is released from structural or lithological traps in the 

subsurface (Noir et al., 1997; Nur and Booker, 1972; Parotidis et al., 2003; Terakawa 

et al., 2013; Yoshida et al., 2016), fed by the degassing processes (Di Luccio et al., 

2010; Mahesh et al., 2012; Miller et al., 2004). Further, this CO2 release itself can 

depend on seismicity and be released coseismically triggering subsequent further 

seismicity (Keranen et al., 2013; Sumy et al., 2014). 

A number of subsurface injection activities contribute to modern energy 

production and can induce seismicity, particularly: 1) carbon capture and storage 

(Zoback and Gorelick, 2012), by injection of supercritical CO2 into deep formations 

for permanent capture and storage; 2) hydraulic fracturing (Atkinson et al., 2015, 

2016; Bao and Eaton, 2016; Clarke et al., 2014; Davies et al., 2013; De Pater and 

Baisch, 2011; Elsworth et al., 2016; Farahbod et al., 2015a, 2015b; Friberg et al., 

2014; Holland, 2013; Keranen et al., 2013; Lei et al., 2017; Maxwell et al., 2002; 

McGarr, 2014; Rutledge et al., 2004; Rutledge and Phillips, 2003; Schultz et al., 

2015; Skoumal et al., 2015; Sumy et al., 2014; Vermylen and Zoback, 2011), by 

injection of water into low porosity, tight reservoirs to stimulate hydro-fracturing, 
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and enable oil and gas production; and 3) wastewater disposal (Ake et al., 2005; 

Frohlich, 2012; Frohlich and Brunt, 2013; Hornbach et al., 2016; Keranen et al., 

2014, 2013; Kim, 2013), by injection into deep saline aquifers. 

There is still considerable uncertainty concerning the relationship between 

the timing of seismicity after human subsurface fluid injection (Folger and Tiemann, 

2015), sometimes occurring immediately and, in other cases, long after the fluid 

injection has begun or even ceased. This variability in timing indicates a complicated 

relationship between low porosity faults, fluid flow and earthquake nucleation. 

However, continent-scale seismic monitoring of the USA provides evidence that 

areas considered geologically stable have now experienced increased rates of 

seismicity due to fluid-injection activities (Fig 1.1) (Ellsworth, 2013; McGarr, 2014; 

McGarr et al., 2015; Weingarten et al., 2015). 

Faulting and rock failure in the seismogenic layer of the brittle crust (about 

15 km depth) can be accommodated by two main failure modes, brittle deformation 

in rocks displaying elastic-frictional behaviour (localised deformation by discrete 

faulting; R. H. Sibson, 1977) and ductile failure (fracturing distributed at the 

mesoscopic scale; Rutter et al., 1986). The specific mode of failure is known to 

control the development of fracture patterns (Caine et al., 1996; Cox, 1995; Mitchell 

and Faulkner, 2008; Peach and Spiers, 1996; Wong et al., 1997; Zoback and Byerlee, 

1975), which affect the transport properties of rocks and, hence, control fluid 

circulation in the upper crust (De Paola et al., 2009; Fischer, 1992; Morrow and 

Lockner, 1997, 1994; Paterson and Wong, 2005; Zhu et al., 1997).  

Brittle faults are zones of finite thickness, which are comprised of distinct 

domains, each with a characteristic suite of fault rocks and different transport 
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properties (Caine et al., 1996); taken together these domains are referred to as the 

fault zone architecture (Caine et al., 1996). A simplistic, but still useful schematic 

model of this fault zone architecture considers a fault core, accommodating most of 

the strain, surrounded by a damage zone of distributed fracturing which is itself 

surrounded by relatively intact protolith rock (Chester et al., 2004; Faulkner et al., 

2010). More complex models of fault zone architecture refine the fault core itself in 

to an outer fault core of highly fractured rocks, an inner fault core of cohesive 

cataclasite and primary slip zones composed of incohesive gouges (De Paola et al., 

2008). 

The size and distribution of the different fault zone domains control fluid 

flow within a fault zone (Caine et al., 1996) and, hence, fault reactivation. The 

following factors, parameters and conditions control the mode of failure and 

architecture of fault zones:  

• Environmental conditions: confining pressure controls the transition from 

brittle to ductile failure in rocks (Byerlee, 1968) and pore fluid pressure, 

mediates a similar effect by controlling the effective confining pressure. 

• Lithological variations: as, for any given environmental conditions, they may 

accommodate deformation by different mode of failure (e.g. brittle vs. 

ductile) and produce differing suites of fault rocks in the fault zone domains 

(e.g. Bullock et al., 2014; Collettini et al., 2009; De Paola et al., 2008; D. R. 

Faulkner et al., 2010), each with differing transport properties.  

The above parameters control fault zone architecture and reactivation 

processes in the brittle crust and are typically resolved with varying degrees of 

certainty. Several fault zone parameters are essentially unknowns, such as the initial 
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stress state and the evolution of rock permeability with pore fluid pressure and 

deformation. In fact, pore pressure perturbation and fluid flow in the subsurface is 

dependent on the level of connectivity of the fault/fracture patterns. Such limitations 

in the predictions of fault reactivation do impact on our ability to estimate 

earthquake nucleation and earthquake recurrence intervals, which are affected by the 

same unknowns, as well as further uncertainties due to the lack of information about 

fault zone dimensions, internal structure and large-scale connectivity. 

Fault reactivation usually begins as stable, non-oscillatory frictional sliding 

on a fault asperity, which is usually a relatively small fault patch with either low 

frictional strength (e.g. due to high pore fluid pressure) or high shear stress (e.g. 

stress concentration at fault bends). An earthquake can then nucleate when such 

rupture patch reaches a critical size, the nucleation length, at which fast and unstable, 

oscillatory sliding and rupture propagation begin (Marone, 1998; Scholz, 1998).  

Natural subsurface fluid flow has been implicated in both the deadly Mw 6.0 

1997-98 Colfiorito and Mw 6.5 2016 Norcia seismic sequences regions with irregular 

seismic recurrence intervals. (De Paola et al., 2008; Porreca et al., 2018). 

Constraining the long-term controls of fault reactivation and the short-term controls 

of the duration of the earthquake nucleation phase, leading to seismic faulting, can 

help mitigate the seismic hazard such fluid induced seismicity.  As such 

understanding the dependence of earthquake nucleation and the nucleation phase on 

the transport and geometric properties of complex, natural fault zones, therefore, 

become the focus of this thesis. 
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1.2 Aims and objectives 

Fault zone transport properties and geometric parameters nonlinearly mediate 

the hydraulic connectivity between naturally pressurized reservoirs or injection sites 

and the actively slipping portion of faults. This nonlinearity arises both from the 

pressure dependence of permeability and the hysteretic permeability changes 

associated with discontinuous fracturing. Put directly the ratio of permeability and 

pressure is not a constant tensor across time. Therefore, the solutions to the pressure 

field for different faults independently exhibiting both above behaviours in response 

to the same stimulus cannot be superimposed to solve for a fault simultaneously 

exhibiting both behaviours. 

The research presented in this thesis aims to constrain better how such fault zone 

properties and controlling parameters influence pore pressure diffusion in fault 

zones, when a simplified but still realistic fault zone architecture is accounted 

for. Previous simulation studies have approximated using one or two component 

models of fault zone architecture and considered only continuous failure 

behaviors (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; 

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009; Leclère et 

al., 2015). Such simple models represent gross fluid flow behaviours in the 

vicinity of the fault, but do not resolve how the finer components composing the 

fault zone influence fluid flow behavior and earthquake nucleation. Further, the 

absence of discontinuous brittle or ductile mode of failure in the outer fault core 

in particular, may have a primary impact as it can be responsible for permeability 

changes within the fault core over several orders of magnitude (De Paola et al., 

2009). 



      

 

~ 8 ~ 
 

 A more refined four-component model of fault zone architecture with more 

comprehensive models of continuous and discontinuous failure will allow us to 

simulate fluid-flow and failure in natural faults more closely, capture these 

primary contributions to fluid flow evolution and therefore resolve more 

precisely how these processes control earthquake nucleation. 

Numerical experiments are performed to model fluid flow in natural fault zones 

with complex architecture, as taken from field studies of exhumed seismic fault 

analogues, and dynamic evolution of fault rock transport properties, as taken 

from rock mechanics experiments. Modelling results are then used to investigate 

how pore fluid variations may affect the  strength of seismic faults during the 

interseismic period and control the earthquake nucleation phase. More 

specifically, the over-arching aims of this thesis are: 

• To model pore pressure diffusion during the interseismic period in natural 

fault zones, accounting for their complex architecture and deformation 

features, due to the operation of realistic brittle and ductile modes of failure. 

We decompose fault zone architecture into a four-component model (damage 

zone, outer and inner fault core and primary slip zone), as opposed to a one-

(Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Mazzoldi 

et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009)  or two-

component model in previous studies (Leclère et al., 2015). 

• To simulate the earthquake nucleation phase and the evolution of pore 

pressure during this period. 

• To constrain the dependence of earthquake nucleation on: transport and fault 

properties (e.g. particularly modes of failure, pore pressure and stress-

sensitive permeability), multilayer scale lithological properties (e.g. varying 
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thickness of overpressured reservoirs) and fault zone dimensions (e.g. 

relative ratio of fault core/damage zone thickness). 

1.3 Methodology: Numerical modelling 

The above aims have been achieved by: 

• Building a multiphysics model of nonlinear diffusion in low permeability 

fault zones, in turn, incorporating realistic models of: 

1) Complex, natural fault zone architecture, as obtained from field 

observations of exhumed extensional faults in the Northern Apennines, 

assumed as analogous to the hypocentral faults of the Mw 6.0 1997-98 

Colfiorito and Mw 6.5 2016 Norcia earthquakes (De Paola et al., 2008; 

Porreca et al., 2018). 

2) Permeability evolution during rock failure, as measured in triaxial 

deformation experiments with fluid flow on real fault rocks. Specifically 

those experiments performed on samples from the Perugia 2 and 

Fossonbrone 2 boreholes, located in the seismogenic belt of the Umbria-

Marche Apennines in Italy (De Paola et al., 2009). 

3) Failure processes the fault core, which includes frictional sliding along 

primary slip zones and brittle and ductile mode of failure in the 

surrounding fault zone rocks. Failure envelops have been obtained from 

triaxial deformation experiments with fluid flow on real fault rocks 

(similar rock samples as at point two, De Paola et al., 2009). 

4) Earthquake nucleation processes and the transition of the system from 

stable, non-oscillatory sliding to fast and unstable, oscillatory sliding (e.g. 

the nucleation length criticality). 
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• Conducting A-, L- and S-stable numerical simulations (Dahlquist, 1963) of 

the highly stiff set of coupled partial differential equations (Jacobian matrix 

eigenvalues differing on the order of 1011) resulting from the multiphysics 

model above. A-, and L-stability indicate respectively that a solver given test 

equation y' = ky subject to initial condition y(0) = 1, would provide a solution 

approximating y(t) = exp(kt) and that the solution decays to zero in a single 

step as step size is increased to infinity for k< 0 (Hairer and Wanner, 1996). 

S-stability extends this, stating that when the applied solver is represented as 

a function of the jacobian and step size, that function should tend to zero as 

step size increases to infinity for each jacobian element . 

• Introducing a novel mathematical formulation of the mode of failure problem 

with failure state variables as a non-smooth process. This formulation ensures 

tractability in reasonable computational time using a combination of an 

existing explicit singly diagonal implicit Runge-Kutta  (ESDIRK) solver (for 

A-,L-,S-stability) and event detection (to ensure simulations remain 

mathematically well-posed near discontinuities) to minimise both the 

required number of simulation time-steps and cumulative truncation error. 

• Conducting parameter studies to analyse the sensitivity of the fault fluid 

system to uncertainty or variation in typically poorly constrained lithological 

or pore pressure conditions. 

1.3.1 Multiphysics Model 

A multiphysics model of seismic, low-permeability fault-zones was 

constructed from nonlinear pore pressure diffusion, realistic fault zone 

architecture, pre-, co-, and post-failure permeability sub-models, as measured 

by triaxial deformation experiments with fluid flow, and fault-rock failure 
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models. As all simulations presented in this case study lie several orders of 

magnitude below the threshold for non-Darcy flow (Thauvin and Mohanty, 

1998), fluid flow within the low-permeability medium was approximated 

using the equations for the non-linear diffusion of pore pressure within a 

classically porous medium (Silin, Korneev, & Goloshubin, 2003). 

Specifically, we select a model of fault zone architecture based on field 

observations of exhumed extensional faults in the Northern Apennines, 

which is analogous to that of the hypocentral fault of the 1997-98 Colfiorito 

seismic sequence (De Paola et al., 2008). 

Both pre-, co- and post-failure permeability and associated failure 

envelopes of the fault rocks were approximated using measurements from 

triaxial deformation experiments with fluid flow on representative rocks of 

the fault core, retrieved from samples from the Perugia 2 and Fossonbrone 2 

boreholes in the Umbria-Marche Apennines in Italy (De Paola et al., 2009). 

Failure by frictional sliding along the cohesionless gouges of the main 

principal slip zone was modelled using known friction laws (Byerlee, 1978). 

Earthquake nucleation processes were also considered, by treating the 

fault-fluid ensemble as a non-smooth dynamical system, with transport and 

deformation properties evolving discontinuously at times. These earthquake 

nucleation processes govern the dynamics of the fault-fluid system from 

stable, non-acceleratory motion, when shear stress equals the fault shear 

strength, to the point at which unstable, accelerating oscillation begins on the 

fault, when the sliding patch has a size comparable to that of the critical 

(nucleation) length.   
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1.3.2 Numerical Simulation 

During our numerical simulation, we apply the above multiphysics 

model to the loading during the interseismic period of a realistic, low-

permeability fault zone. The range of physical conditions present at this fault 

are such that brittle or ductile mode of failure may occur within the fault core 

before and/or during the interseismic period and nucleation phase. These 

failure conditions ensure hysteresis in numerical simulation, in the sense that 

the physical state of the fault at a given time is dependent on the history of 

the fault and not just the current physical conditions at any given instant at 

the fault (e.g. a fault that undergoes failure in a spcific portion of the fault 

core can never return to its unfailed state, excepting hydrothermal healing). 

We can represent this brittle or ductile mode of failure behaviour in a state 

variable and treat the fault-fluid system mathematically as a non-smooth 

dynamical system. Not all the time derivatives with respect to physical 

variables (e.g. permeability) are well defined at the instant of these brittle of 

ductile mode of failure events. 

The coupled partial differential equations (PDEs) that govern the 

multiphysics model can be discretized in space and time, resulting in a series 

of ordinary differential equations (ODEs) and a Jacobian matrix, whose 

eigenvalues might differ by up to 11 orders of magnitude. We select an 

ESDIRK method that can solve this highly stiff problem, efficiently and 

accurately enough to consistently resolve the nucleation phase (relative 

tolerance of 5E-9), specifically the MATLAB ODE23tb solver, an 

implementation of the ESDIRK23 algorithm (Bagterp Jørgensen and Rode 

Kristensen, 2018; Kristensen et al., 2004). This solver was also selected to be 
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capable of event detection to ensure that time integration was only performed 

directly for periods in which the time derivative with respect to all physical 

variables was continuous, and therefore that the problem was mathematically 

well-posed. 

1.3.3 Parameter Studies 

The inherent uncertainty in our understanding of subsurface fault 

systems, coupled with the evolution of their physical environment over time, 

means that any numerical simulation result must be robust to changes in 

these uncertain variables. We also need to constrain the behaviour we 

observe in these simulations over a broader range of values for each uncertain 

parameter. Hence, parameter studies allow us to expand our results to a much 

broader range of conditions, representative of those encountered in the brittle 

crust, which may affect seismic fault behaviours. 

In this thesis, we use parameter studies to constrain fault behaviour 

during the interseismic period and earthquake nucleation phase, with respect 

to the following varying conditions and parameters: 

• Variations in pore pressure within the reservoir at the fault 

core/damage zone boundary. The aim is to investigate the controls 

exerted on permeability and mode of failure within the fault core. 

•  Variations in the thickness of the overpressured reservoir. The aim is 

to investigate the controls exerted on the relative length of the failure 

patch in the fault core and the theoretically predicted nucleation 

length. 
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•  Variation in the relative width of the fault zone sub-domains in the 

fault core, which should exert a primary control on the extent of 

failure, permeability evolution and magnitude of pore pressure in the 

fault core. 

The above properties are all highly sensitive to uncertainty due to 

natural spatial or temporal variation, inaccuracy of subsurface measurement 

via indirect geophysical methods or approximated inference from outcrop 

analogues. Direct analysis of the impact of this uncertainty on simulation 

informs our understanding of the ability of our models to represent the likely 

behaviour of faults with poorly constrained properties or to generalise to 

other faults. 

1.4 Thesis Outline 

This thesis comprises the following chapters: 

Chapter 2: This chapter includes a literature review of subsurface fluid flow, 

faulting and seismicity. Taking field examples of both natural and human subsurface 

fluid flow and subsequently induced seismicity. 

Chapter 3: A description of the methodology adopted is presented in this 

chapter, a method for efficiently simulating fault zone pore pressure diffusion in the 

interseismic period with complex, realistic models of fault zone architecture and 

brittle and ductile modes of failure. The nucleation phase is simulated, and stable 

sliding and earthquake nucleation are resolved and distinguished to the order of 

seconds for several hundred years simulations. 

Chapter 4: Results from a case study are presented and discussed in this 

chapter we model an analogue of the seismic sources at hypocentre depth of recent 
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seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 Colfiorito 

and Mw 6.5 2016 Norcia earthquakes). Further, a parameter study of pore fluid factor 

and brittle and ductile mode of failure is presented. The format of this chapter is in 

journal-style" research chapters, as this is currently in review in EPSL. 

Chapter 5: Results from a parameter study are presented and discussed in 

this chapter, we perform parameter studies on pore pressure diffusion and earthquake 

nucleation, with realistic models of ductile failure, varying the dimension of 

components of fault zone architecture and neighbouring lithology, outer fault core 

width and the height of pressurised layers abutting the fault core. The format of this 

chapter is in journal-style" research chapters, as this is currently in submission to 

JGR 

Chapter 6:  This chapter presents a discussion and conclusions of the 

research chapters, including future research. 
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CHAPTER 2 

 

A literature review of fluid flow, faulting and seismicity in natural rocks 
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2 A literature review of fluid flow, faulting and seismicity in 

natural rocks 

2.1 Introduction 

There is a large and growing body of evidence that both natural and human-

induced subsurface fluid flow can drive faulting and seismicity. Supra-hydrostatic 

pore pressure gradients can drive fluid flow within fault zones, which can cause a 

reduction of the frictional strength of faults due to the increasing pore pressure. Fluid 

overpressure can basically make faults weaker and induce fault initiation (Cox, 2010; 

Sibson, 1990, 1992). However, a highly non-linear relationship exists between pore 

pressure and earthquake nucleation processes. In fact, reducing the effective normal 

stress of faults will increase the critical size of a rupture patch needed for unstable 

sliding to spread (an earthquake) (Campillo et al., 2001; Scholz, 1988; Uenishi and 

Rice, 2003). As overpressure acts to simultaneously weaken the fault while 

increasing the size of failure patch required for earthquake nucleation the 

relationship between overpressure and the timing of earthquake nucleation is not 

linear. No constant ratio exists between either interseismic period, nucleation phase 

length or the size of the rupture patch and the amount of overpressure found in the 

fault core.  

Natural subsurface fluid flow has driven a number of large earthquakes (up to 

MW 9.0, Terakawa et al., 2013). Supercritical carbon dioxide (CO2) from mantle 

degassing processes is thought to have driven many instances of natural seismicity. It 

is argued that supra-hydrostatic pore pressure gradients can be generated by CO2 

released from deep degassing processes (Di Luccio et al., 2010; Mahesh et al., 2012; 

Miller et al., 2004) and structural or lithological traps in the subsurface (Noir et al., 
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1997; Nur and Booker, 1972; Parotidis et al., 2003; Terakawa et al., 2013; Yoshida 

et al., 2016). Migration paths of the CO2 released can themselves depend on 

seismicity, as large volumes of stored CO2 can be released coseismically triggering 

subsequent further seismicity (Keranen et al., 2013; Sumy et al., 2014). 

There has been a recent increased interest in human-induced seismicity due 

to the exponential increase in the seismic rate observed in the continental United 

States. This has been associated with higher rates of hydraulic fracturing and 

wastewater storage operations (Ellsworth, 2013), occurring even in regions without 

any previous history of seismicity (Schultz et al., 2015). While only a small subset of 

these hydraulic fracturing or wastewater injection wells cause felt seismicity 

(Weingarten et al., 2015), the large number of them within the continental US 

represents a considerable hazard. Here, we review some case studies of natural and 

human-induced seismicity, drawing from geological, geophysical, mathematical and 

simulation-based analysis of observed seismicity and linking it causally to 
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subsurface fluid flow. 

 

Figure 2.1: “Mohr diagram with composite failure envelope for intact rock with 

tensile strength, T, illustrating the stress conditions and orientations with 

respect to the stress field of: (a) extensional failure; (b) hybrid extensional-shear 

failure; and, (c) compressional shear failure, for a particular rock-type.” 

(Sibson, 1996) 

2.2 Fundamental principles of fault and earthquake mechanics 

Intact rocks fail by the development of shear fractures, extensional fractures 

or hybrid extensional/shear fractures. Failure in these rocks initiates around 

randomly oriented microfractures (Griffith, 1924). Microfractures oriented parallel to 

the direction of maximum shear within the rock will fail first and act to control this 

transition. Mohr diagrams can be used to analyse this failure and the strength of 

intact rock (the stress at the point of failure, Fig 2.1).  
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The tensile strength of a rock T is the extensional stress at which the rock 

would fail. Similarly, the shear strength acting on a rock is the shear stress at which 

failure would occur. In a fluid-saturated rock, the normal stresses, σN, are reduced by 

the amount of pore fluid pressure, P, (Terzaghi, 1963) to give effective normal stress 

as 

σ′𝑁 = σ𝑁 − 𝑃  (2.1) 

Considering effective stress in place of stress is a useful parameterization as linear 

elastic models of porous solids indicate that they deform in response to changes in 

effective stress rather than stress (Scholz, 2019).  

 The Griffith’s criterion relates the shear strength of a rock to the effective 

normal stress acting on a rock and it’s tensile strength (Griffith, 1924): 

𝜎𝑁  −  𝑃 =
𝜏2−4𝑇

4𝑇
 (2.2) 

The Griffith criterion applies comprehensively to compressive, hybrid and tensile 

failure. This criterion is derived by considering the stress at which macroscopic 

failure would arise from the largest, most optimally oriented Griffith crack(Griffith, 

1924). Griffith cracks are naturally occurring, microscopic cracks present in all 

natural rocks, occurring as a result of both weathering and formation.” 

For compressional failure, effective normal stress, i.e. σ’N > 0, the shear failure of 

intact rocks can also be simplified to the Coulomb-Navier failure criterion (Sibson, 

1996), where τ is the shear stress, μi is the coefficient of internal friction, σN is the 

normal stress, C = 2T is the cohesive strength and P is the pore fluid pressure 

(Sibson, 1996) 

𝜏 =  𝐶 + 𝜇𝑖(𝜎𝑁  −  𝑃) (2.3) 
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Most reservoir/seal rocks contain pre-existing faults, developed during 

previous deformation events, further increasing their structural complexity. From a 

mechanical point of view, faults are usually considered planes of shear failure 

without any cohesion and, according to Amonton’s law, sliding will occur when the 

shear force on the fault exceeds the frictional forces acting on the fault, where μs is 

the sliding friction coefficient (Sibson, 1996) 

𝜏 =  𝜇𝑠(𝜎𝑁  −  𝑃) (2.4) 

Rocks can undergo failure according to two main modes of failure, brittle or ductile. 

Both brittle and ductile failure are characterised by fracturing. During brittle failure 

the strain due to deformation is accommodated by a single extensive fracture, 

whereas during ductile deformation multiple distributed fractures each accommodate 

a smaller portion of the overall strain (Rutter, 1972). The brittle-ductile failure 

transition is controlled by confining pressure, and therefore by pore pressure through 

effective stress (Byerlee, 1978). 
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Figure 2.2: “Comparison between granite and dolomite marble behaviour for a 

load point velocity jump from 0.1 to 1m/s. (a) Granite shows a transient 

increase in friction followed by a decay to a lower steady state frictional 

strength, response termed "velocity weakening." (b) Marble shows the same 

increase in frictional stress, with a small peak, but this is followed by a decay to 

a higher frictional strength, for an overall "velocity strengthening”.” (Weeks 

and Tullis, 1985)  

Amonton’s Law defines the value of shear stress required to initiate sliding along a 

fault surface for a given effective normal stress. However, rate and state theory 

predict the velocity-dependence of sliding friction, once sliding is initiated 
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(Dieterich, 1979). If subjected to a sudden change in sliding velocity, sliding friction 

coefficient evolves to a new steady value over a characteristic slip distances Dc 

(Dieterich, 1979). The rate- and state-variable friction law describes the velocity 

dependence of sliding friction (Dieterich, 1979): 

𝜏 =  (𝜇0 + 𝑎 𝑙𝑛 (
𝑉

𝑉0
) + 𝑏 𝑙𝑛 (

𝑉0𝜃

𝐷𝐶
))𝜎′𝑁 (2.5) 

Where 𝜏 is shear stress, V is velocity, 𝜇0 is steady state friction at reference 

velocity V0 and DC is the critical slip distance, a and b are material properties and 𝜃 

the state variable which parameterises the physical state and evolution of the slip 

surface is given by: 

�̇� = 1 − 
𝑉𝜃

𝐷𝐶
 

 For example, upon application of a sudden increase in velocity, sliding friction first 

increases (direct effect controlled by the rate and state parameter) then, decreases to 

a new steady state value (evolving according to the b rate and state parameter) (Fig. 

2.2). This velocity dependence can be positive, in which case velocity strengthening 

behaviour (a − b > 0) will favour stable sliding, or negative (a − b < 0), in which 

case velocity weakening behaviour will favour frictional instability and earthquake 

nucleation (Scholz, 1998). The rock properties, ambient conditions and amount of 

slip/shear localisation control the velocity dependence of sliding friction (Marone, 

1998). 

Shear failure usually initiates at fault asperities, which are small fault 

patches, when shear stress exceeds the fault shear strength due to high shear stress or 

elevated pore fluid pressure reducing fault strength. Stable sliding initiates at these 

fault asperities and, in velocity weakening materials, can spread out with an 
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accelerating sliding velocity until it reaches a critical size. This stability limit is the 

nucleation length, Lc,  

    𝐿𝐶 = 
𝜁𝐺𝐷𝐶

𝜎′𝑁(𝑏−𝑎)
  (2.5) 

where G is the shear modulus, 𝜁 is a constant of proportionality of order 1, Dc is the 

critical slip distance, a and b are rate and state parameters (Dieterich, 1992; Rice and 

Ruina, 1983). 

In velocity weakening materials, any slipping patch that extends beyond the 

nucleation length exhibits unstable behaviour leading to the nucleation of an 

earthquake. The nucleation length concept implies a complex relationship between 

pore pressure and induced seismicity. Increasing the pore pressure at a fault reduces 

the effective normal stress acting upon it and the fault strength (Eq. 2.4), bringing 

pressurised fault patches closer to failure. At the same time, there is a simultaneous 

increase in the nucleation length required to nucleate an earthquake, due to the 

inverse proportionality of Lc to the effective normal stress. The nucleation length is a 

critical parameter controlling the nucleation of earthquakes. Nevertheless, it is a 

seismic parameter that cannot be directly measured and/or obtained from the 

inversion of seismological data.  

2.3 Fault zone architecture and the role of pore fluid pressure during faulting 

Pore fluid pressure reduces the frictional strength of faults and, hence, plays a 

primary role during faulting processes (Cox, 2010; Sibson, 1990, 1992). Indeed, 

there is a body of geological (Collettini et al., 2009; Hickman et al., 1995; Sibson, 

1992), geophysical (De Pater and Baisch, 2011; Miller et al., 2004; Miller, 1996; 

Rice, 1992; Sibson, 2000, 1992) and numerical (Cappa and Rutqvist, 2011b, 2011a, 

2012; Mazzoldi et al., 2012; Rinaldi et al., 2014a; Rutqvist et al., 2007, 2002, 2016, 
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2015, 2013b, 2013a, 2009) evidence showing that fluid migration in the upper crust 

controls faulting. Fluid circulation within the crust is strongly dependent on the rock 

transport properties (i.e., permeability), and their evolution with pressure (De Paola 

et al., 2009; Fischer, 1992; Morrow and Lockner, 1997, 1994; Zhu et al., 2007) and 

deformation, which itself controls the development and connectivity of fracture 

patterns across a range of scales (Caine et al., 1996; Cox, 1995; De Paola et al., 

2009; Faulkner and Rutter, 2001; Mitchell and Faulkner, 2008; Peach and Spiers, 

1996; Zoback and Byerlee, 1975). 

 

 

Figure 2.3: “Schematic section across the North Branch San Gabriel fault 

illustrating position of the structural zones of the fault. The diagram is not to 

scale.” (Chester et al., 1993) 

Tectonic faults are zones of finite width, whose internal architecture can be 

described by discrete and juxtaposed discrete fault zone domains (Chester et al., 

1993; Faulkner et al., 2010): the protolith, the damage zone and the fault core (Fig. 

2.3). The fault core is the centre of the fault zone where most of the displacement is 
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accumulated. The main structural features in the fault core are principal slip zones 

and principal slip surfaces, due to shear localization within volumes of fine- to very 

fine-grained fault gouges, cataclasites and ultracataclasites (Sibson, 1977 JGSL). On 

both sides of the fault core, a damage zone is usually present (Fig. 2.3), which is 

made of the network of subsidiary fracture patterns. Relatively little amount of slip is 

accommodated within the damage zone, where the main structural features are 

network of fractures, veins and subsidiary small shear fractures. Damage intensity 

and density decreases as one move away from the fault core, towards the protolith. 

Fault breccias are the main fault rocks found in the damage zone. Finally, the 

protolith is the original rock source of those fault rocks found in the damage zone 

and fault core. There is no damage or faulting in the protolith related to the specific 

fault zone activity, although background damage and fracturing may be presented in 

the protolith due to ancient, previous faulting events. 

 

Figure 2.4: “Conceptual model of fault zone with protolith removed (after 

Chester and Logan, 1986; Smith et al., 1990). Ellipse represents relative 

magnitude and orientation of the bulk two-dimensional permeability (k ) tensor 
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that might be associated with each distinct architectural component of fault 

zone.” (Caine et al., 1996). 

 

Figure 2.5: “Summary of laboratory permeability data obtained at Pe=15 MPa 

(closed circles corresponding to a depth of approximately 1 km of overburden 

under hydrostatic pressure) and Pe=90 MPa (open circles corresponding to a 

depth of approximately 5 km) as a function of position within the fault zone. In 

situ estimates made by Barton et al. (1997)at a depth of 2.5 km are shown as the 

shaded bar that spans the damage zone and fault core.” (Seront et al., 1998) 
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Figure 2.6: “Profiles of matrix permeability measured at 50 MPa effective 

confining pressure. The three upper fault crossings show a low permeability 

fault core (fine-grained material containing some clay fraction) surrounded by 

high permeability damage zones (interlocked grains with numerous open 

microfractures). The deep shear zone is partially sealed and was apparently not 

activated by the Kobe earthquake.” (Mizoguchi et al., 2008) 
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Figure 2.7: “Conceptual scheme for fault-related fluid flow.” (Caine et al., 1996) 

 

Figure 2.8: (Left) Macroscopic large fault zone structure of the Roccastrada 

outcrop. (Right) Line drawing of the fault zone shown displaying the internal 

fault core architecture. 
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The general model of fault zone architecture as comprising a fault core and a 

damage zone is a useful concept, despite the complexity and diversity of real faults. 

Different suites of fault rocks in the different damage zone domains have different 

transport properties (Fig. 2.5-6). Variations in the relative thickness of the damage 

zone and fault core exert a primary control over fluid flow across and along fault 

zones (Fig. 2.3, 7) (Caine et al., 1996; Caine and Forster, 1999). Deformation within 

the damage zone is in part controlled by the mode of failure. Either brittle 

deformation, elastic-frictional behaviour (localised deformation by discrete faulting) 

(Sibson, 1977) or ductile failure (fracturing distributed on the mesoscopic scale) 

(Rutter et al., 1986), e.g. ductile failure in the Roccastrada damage zone (Fig. 2.8; De 

Paola et al., 2008). Experimental measurements of gross fault zone permeability has 

shown it to increase with increasing relative damage zone width (Caine et al., 1996). 

While the combination of relative fault core and damage zone width can be used to 

group fault zones into four coarse groups with respect to fluid flow: distributed 

conduit, localized conduit, combined conduit-barrier, localized barrier (Fig. 2.7;  

Caine et al., 1996). 

The deformation patterns developed within each fault domain control fluid 

flow across and along fault zones and, hence, fault zone architecture can further 

control the onset and duration of earthquake nucleation and rupture properties. This 

is an aspect of the earthquake nucleation process that is still poorly investigated and 

understood.  

During industrial hydraulic fracturing operations, extensional and hybrid 

extensional-shear fracture systems are intentionally produced in tight reservoir rocks, 
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by pumping high-pressure fracking fluid and proppant into intact rock. The main aim 

is to increase the permeability of otherwise tight, low permeability reservoir rocks to 

result in an enhanced recovery of hydrocarbons. In this case, the pore pressure levels 

induced in the stimulated reservoir should satisfy the extensional and extensional-

shear (Eq. 2.2) failure criterion for intact rocks, but it should not meet the conditions 

that favour either shear failure in intact rocks (Eq. 2.3) or fault reactivation in pre-

existing faults (Eq. 2.4).  

During industrial carbon sequestration operations, supercritical carbon 

dioxide is pumped into sealed lithological units in the subsurface. The pore pressure 

levels in the reservoir/seal system should always be below those values required to 

induce any failure, as predicted by Eq. 2.1 - 2.3. Predictions of the brittle or ductile 

mode of failure that occurs in the intact rocks of a natural reservoir depend on the 

balance between the differential stress, the tensile strength and coefficient of internal 

friction, and the level of pore fluid pressure. The intrinsic properties of rocks (e.g. T, 

μi) are reasonably well known. However, the initial stress state in a reservoir and the 

evolution of rock permeability with pore fluid pressure are fundamental unknowns. 

The pore pressure perturbation at the local and field-scale depends on the level of 

connectivity of the fault/fracture patterns. 
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Figure 2.9: “Variation of the effective stress ratio, R =σ1′/s3′ as a function of the 

coefficient of static friction, µs, with a reactivation angle θr of 63°. The light 

grey shaded area defines the domain where the fault is favourably oriented, the 

grey area where the fault is unfavourably oriented (UO) and the white area 

where the fault is severely misoriented.” (Leclère et al., 2012)  



      

 

~ 33 ~ 
 

 

Figure 2.10: “Foreshocks of 6 April 2009 Mw 6.3 L’Aquila earthquake. Light 

blue dots represent earthquakes that occurred from January to 30 March 2009. 

Dark blue dots indicate earthquakes that occurred from 30 March to the main 

shock. Smaller yellow star is ML = 4 foreshock that occurred on 30 March. 

Larger yellow star is main shock hypocenter. Triangles are seismic stations, 

used to localize earthquakes, belonging to Istituto Nazionale di Geofi sica e 

Vulcanologia national (red triangles) and regional (pink triangles) permanent 

seismic networks. Purple box is uniform slip fault (Atzori et al., 2009). Traces of 

cross sections are represented by blue lines. Green rose diagram represents 

frequency distribution of splitting fast directions measured at station AQU 

(length of each petal is proportional to number of measures in each direction 

interval). Red arrow indicates direction of minimum horizontal stress in area 

(from Montone et al., 2004). Star in inset is location of main shock on map of 

Italy Foreshocks of 6 April 2009 Mw 6.3 L’Aquila earthquake. Light blue dots 
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represent earthquakes that occurred from January to 30 March 2009. Dark 

blue dots indicate earthquakes that occurred from 30 March to the main shock. 

Smaller yellow star is ML = 4 foreshock that occurred on 30 March. Larger 

yellow star is main shock hypocenter. Triangles are seismic stations, used to 

localize earthquakes, belonging to Istituto Nazionale di Geofi sica e 

Vulcanologia national (red triangles) and regional (pink triangles) permanent 

seismic networks. Purple box is uniform slip fault (Atzori et al., 2009). Traces of 

cross sections are represented by blue lines. Green rose diagram represents 

frequency distribution of splitting fast directions measured at station AQU 

(length of each petal is proportional to number of measures in each direction 

interval). Red arrow indicates direction of minimum horizontal stress in area 

(from Montone et al., 2004). Star in inset is location of main shock on map of 

Italy.” (Lucente et al., 2010a) 

 

Figure 2.11: “A: Vertical section across VP/VS (ratio between compressional-

wave and shear-wave velocity) synthetic model for conditions before 30 March. 

B: Vertical section across VP/VS synthetic model for conditions after 30 March. 
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Green indicates unperturbed volume of model (Table DR1 [see footnote 1]). 

Red triangles are seismic stations. Red dots are hypocenters of foreshocks. Blue 

curves indicate seismic wave paths. Orange and light blue filled areas represent 

P- and S-wave velocity anomalies, respectively. Fault is represented by thick 

gray line. Smaller star on panel A indicates location of ML= 4 foreshock; large 

star in panel B is main shock hypocenter. C: Comparison between time series of 

synthetic (left) and observed (right) VP/VS values.” (Lucente et al., 2010a)  
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As the frictional strength of a fault is typically lower than that of intact rocks, this 

means that favourably oriented faults will undergo shear failure while subject to less 

stress (Fig. 2.9. Quantitative predictions of the critical pore pressure values leading 

to reactivation of pre-existing faults in stimulated reservoirs (hydraulic fracturing) or 

reservoir/seal systems (carbon capture and storage) are routinely performed based on 

the application of Amonton’s Law (Fig. 2.9). These predictions are affected by the 

same unknowns as those of intact rocks, as well as further uncertainties due to the 

lack of information about fault zone dimensions and internal structure, which control 

fluid circulation and stress/pore pressure perturbations. 

2.4 Pore pressure and natural seismicity 

There are many examples in the literature of case studies where natural fluid 

migration in the upper crust control faulting and earthquake processes. It is inferred 

that compressible fluids released from structural or lithological traps can cause 

subsurface pore pressure diffusion waves, which can drive seismicity (Noir et al., 

1997; Nur and Booker, 1972). These lithological traps are themselves previously fed 

by deep, high-pressure sources of carbon dioxide (CO2), which can be released by 

crust/mantle degassing processes (Parotidis et al., 2003; Terakawa et al., 2013; 

Yoshida et al., 2016) and mobilized by main earthquake and aftershock events (Di 

Luccio et al., 2010; Miller et al., 2004). The increasingly higher resolution of seismic 

tomography data can further enhance pressure diffusion analysis at the regional scale 

for some major seismic sequences, e.g. Mw 6.3 2009 L’Aquila earthquake (Lucente 

et al., 2010b) and the Chamoli Region, Garhwal Himalayas  (Mahesh et al., 2012). 

Approaching the Mw 6.3 2009 L’Aquila, the elastic properties of rocks in the fault 

region underwent a sharp change about a week before the earthquake. This was used 

to infer that a complex sequence of dilatancy-diffusion processes takes place and that 
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fluids play a key role in the fault failure process (Fig. 2.10-11;Lucente et al., 2010a).  

Pressure diffusion analysis of earthquake events in the Chamoli region of the Central 

Himalayas (1999 MB 6.3, 2005 MB 5.3, and 2011 M 4.6.), suggested the presence of 

fluids percolating from depth, likely from metamorphic dehydration (Mahesh et al., 

2012). 

  Natural fluid flow, faulting and earthquake processes have also been examined 

using numerical simulation techniques. For example, physical models of subsurface 

fluid flow resulting from the upwelling of carbon dioxide, CO2, have been connected 

to seismicity (Cappa et al., 2009; Miller et al., 2004). 

A correlation between reconstructed pore pressure diffusion waves and the 

distribution and timing of seismicity was established for the 1966 Parkfield-

Cholame, California (Nur and Booker, 1972) and 1989 Dobi, Afar (Noir et al., 1997) 

seismic sequences. The analysis of pressure diffusion wave correlation can be 

extended to consider the frictional properties of specific faults involved in a seismic 

sequence. For instance, the 2011 M W 9.0 Tohoku-Oki earthquake lead a swarm of 

earthquakes where both favourably and unfavourably oriented faults were correlated 

to a fluid pressure-dependent frictional strength (Yoshida, Hasegawa, and Yoshida, 

2016), suggesting that crust/mantle degassing fluid upwelling and subsequent 

migration after the initial MW 9.0 event initiated later earthquakes (Terakawa et al., 

2013).  

Similar pressure diffusion analysis has been used to link compressible fluids released 

from crust/mantle degassing processes to a number of instances of natural large 

events and associated aftershock sequences. For example, kilometre-scale pore 

pressure diffusion simulations correlated diffusivity to the recurrence of the nine 

swarms from the 2000 Vogtland/NW-Bohemia earthquake swarm at the 



      

 

~ 38 ~ 
 

German/Czech border, suggesting the release of overpressured carbon dioxide (CO2) 

(Parotidis et al., 2003). CO2 pore pressure released from deep underlying 

metasomatized mantle wedge was invoked as the primary controlling factor in the 

time and space distribution of the 2009 MW 6.3 L’Aquila seismic sequence (Di 

Luccio et al., 2010). 

 

 

Figure 2.12: “Comparison of aftershock data to stress changes in the DCFS 

formulation and pore pressure changes. a) There is no correlation between 

positive or negative DCFS regions and the aftershock locations. In contrast, b, 
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the same aftershock data compared to the calculated fluid pressure state after 

11 days, shows a very strong correlation with the entire aftershock sequence.” 
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Figure 2.13: “Comparison of model results with initial conditions (top) to the 

hypocentres of aftershocks (bottom)” ... “a–g, Model results plotted as the rate 

of pore pressure increase to highlight propagation of the pressure front (left 

column), and the corresponding evolution of the entire fluid pressure field 

(right column). The left column compares the evolution of the pore pressure 

front to the aftershocks occurring during the times indicated. The overall fluid 

pressure field is superposed with the cumulative aftershock catalogue. The 

largest event in the sequence (event 3) and subsequent large aftershocks in the 

hanging wall (events 4 and 5) are indicated in a, d and e.” (Miller et al., 2004) 

Pressure diffusion analysis was combined with seismic wave velocity data and the 

pattern of earthquake events in the Chamoli region of the Central Himalayas (1999 

MB 6.3, 2005 MB 5.3, and 2011 M 4.6.). This analysis suggested the presence of 

fluids percolating from depth, likely from metamorphic dehydration of the Indian 

Crust in the Chamoli Region of the Central Himalayas (Mahesh et al., 2012). 

The above linear models of pressure diffusion reconstruction can be refined 

using more precise non-linear models of rock transport properties in numerical 

simulations. These techniques have been applied in the Northern Apennines in Italy, 

where it has been suggested that fluids released coseismically from a deep source 

may have driven the MW 6.0 1997-98 Colfiorito seismic sequence (Fig. 2.12-13) 

(Miller et al., 2004). Miller et al. (2004) show that the timing and location of 

aftershock events strongly correlate with a kilometre scale simulation of the 

nonlinear diffusion of a 20 MPa pore pressure pulse. The results of their simulations 

suggest that the MW 5.7 mainshock may have released overpressured fluids and 

created damaged regions for these fluids to propagate through, subsequently 

triggering the aftershocks. 
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Numerical simulations coupling multiphase flow and geomechanical 

modelling code TOUGH-FLAC (Rutqvist et al., 2002) have also been used to 

validate the hypothesis that natural fluid flow may trigger earthquakes. For instance, 

Cappa et al., 2009 argued that the fluid pressurisation of upwelling, deep CO2 rich 

fluids triggered the 1965-1967 Matsushiro earthquake swarm. This seismic swarm 

comprised more than 700,000 earthquakes, in part fed by an inferred two order of 

magnitude increase in permeability of the earthquake rupture patch. 

2.5 Pore pressure and human induced seismicity 

Contemporary seismic and microseismic (MW < -1) measurements of human 

subsurface fluid injection have demonstrated the link between injection activities and 

induced seismicity. The careful analysis and monitoring of carbon sequestration 

(Zoback and Gorelick, 2012), enhanced oil recovery (Gan et al., 2013), wastewater 

injection (Ake et al., 2005; Frohlich, 2012; Frohlich and Brunt, 2013; Hornbach et 

al., 2016; Keranen et al., 2014, 2013; Kim, 2013) and hydraulic fracturing operations 

has allowed the collection of dense and high resolution seismic records. In particular, 

large volumes of data and information have been gathered about human-induced 

microseismicity (Baisch et al., 2009; Dicelis et al., 2017; Maxwell et al., 2002; 

Rutledge et al., 2004; Rutledge and Phillips, 2003; Vermylen and Zoback, 2011), 

seismicity (Atkinson et al., 2015, 2016; Bao and Eaton, 2016; Clarke et al., 2014; 

Davies et al., 2013; De Pater and Baisch, 2011; Elsworth et al., 2016; Farahbod et 

al., 2015b, 2015a; Friberg et al., 2014; Holland, 2013; Lei et al., 2017; McGarr, 

2014; Rutqvist et al., 2013b; Skoumal et al., 2015; Sumy et al., 2014) and cascading 

seismicity, where coseismic Coulomb stress transfer from fluid induced earthquakes 

triggers further seismicity (Keranen et al., 2013; Sumy et al., 2014). The link 

between human subsurface fluid injection and seismicity is also apparent in 
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continent-scale measurements of induced seismicity in the USA, showing a sharp 

deviation from the typical trend after the onset of hydraulic fracturing operations 

(Fig. 1.1) (Ellsworth, 2013; Weingarten et al., 2015). The issue of induced seismicity 

has become sufficiently prominent in the continental United States that proposals for 

mitigation of the seismic hazard have even been forwarded (McGarr et al., 2015). 

Analytical solutions to the corresponding physical equations (Shapiro and 

Dinske, 2009) and numerical simulations of fluid flow and faulting offer further 

support to the connection between human subsurface fluid injection and seismicity. 

In particular, coupled deformation and fluid flow models such as TOUGH-FLAC 

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2016, 2015, 2013a, 2002) have 

been developed and employed to carry out such analyses. Numerical simulations, 

which couple fluid flow and geomechanical fault slip (e.g. fault reactivation), model 

the spatial evolution of both in situ stresses and fluid pressure. These models can be 

specifically used to estimate the maximum sustainable injection pressure during 

geological sequestration of CO2 (Rutqvist et al., 2007), or parameter studies to 

determine reservoir properties which pose the most significant risk for seismicity 

(Mortezaei and Vahedifard, 2015). The above models have been applied from the 

metre to kilometre scale, and simulations have been extended to include the effects 

of simple fault zone architectures (Cappa and Rutqvist, 2011a; Mazzoldi et al., 2012; 

Rinaldi et al., 2014a; Rutqvist et al., 2013b, 2009) and effective normal stress 

dependent permeability (Cappa and Rutqvist, 2011b; Hsiung et al., 2005).  
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Figure 2.14: “Upper: Instrumentally recorded seismicity and damaging 

historical earthquakes in the central and eastern United States and 

southeastern Canada. Red dots indicate sites of reservoir-induced seismicity. 

Lower : Seismicity of south and east Asia and sites of reservoir-induced 

seismicity.” (Zoback and Gorelick, 2012). 

2.5.1 Seismicity induced by subsurface carbon dioxide injection 

A number of human industrial activities involve the injection of supercritical 

CO2 into the subsurface, which can induce seismicity, particularly injection as part of 

enhanced oil recovery and carbon sequestration. For instance, injection at the 

Cogdell oil field in Texas lead to seismicity exceeding MW 3.0 (Gan et al., 2013). 

The period of greatest seismicity 2006-2011 accompanied the injection of CO2, 

while less significant seismicity occurred in the period of highest net water injection 

1957-1982.  Furthermore, a combined dataset of induced seismicity in hydrocarbon 

reservoirs from both the continental US and Asia and stress measurements, from the 

pilot carbon sequestration site at the Teapot Dome, Wyoming, establish the link 

between human subsurface injection of CO2 and seismicity (Fig. 2.14) (Zoback & 

Gorelick, 2012). 

2.5.2 Seismicity induced by wastewater injection into deep saline aquifers 

Wastewater disposal by injection into deep saline aquifers is thought to be 

the primary cause of induced seismicity in the continental USA, driving an 

exponential increase of seismicity over the last two decades (Fig. 1.1) (Ellsworth, 

2013). Wastewater disposal operations are typically carried out alongside hydraulic 

fracturing operations to dispose of flow-back fluids from recently treated wells. In 

the three years from 2010-2012, the continental USA experienced 300 seismic events 

MW ≥ 3 compared to an average of 21 per year in the period 1967-2000. Most of 
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these large seismic events occurred within 10 km of the location of wastewater 

disposal wells. The largest seismic events identified occurred beneath the injection 

interval, suggesting that increased pore pressure in the basement, transmitted from 

the injection site, presents the greatest seismic risk (Fig. 1.1) (Ellsworth, 2013). A 

series of regional studies of seismicity during this same period have more precisely 

examined and confirmed the link from wastewater disposal to seismicity.  

 

 

Figure 2.15: “Earthquakes in Oklahoma between 1976 and 2014. 

Earthquakes are M > 1 from the NEIC catalog (10). Black lines are faults (26–

28). Small and large dashed gray boxes outline the areas used for analysis of the 

Jones swarm and of central Oklahoma, respectively, in inset B. OKC: 

Oklahoma City. Inset A: Comparison of M3+ earthquake rate in Oklahoma 
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and California, normalized by area. California is ~2.3 times larger than 

Oklahoma. 2014 earthquakes are through the first 4 months. Inset B: 

Expanding area of the Jones and the broader central Oklahoma swarms. 

Regions were divided into 5 km by 5 km grid cells, and any cell with an 

earthquake was considered part of the swarm. Swarm area per year is inclusive 

of all prior years.” (Keranen et al., 2014). 

Seismicity and hydrogeological models link the sharp increase in seismicity 

in Central Oklahoma to wastewater injection. Pore pressure simulations demonstrate 

the feasibility of wastewater injection operations and the subsequent pore pressure 

diffusion leading to regional increases in seismicity (Fig. 2.15) (K. M. Keranen et al., 

2014). Simulations were able to match the positions and sequence of seismic events, 

for the highest energy earthquake swarm, to a pore pressure diffusion wave in the 

wastewater disposal formation and upper basement, from 2-5 km in depth. 

Significantly while thousands of disposal wells operate aseismically, it was found 

that just four of the highest rate wells would be capable of inducing 20% of the 

reported 2008 - 2013 central US seismicity. 

Further, analysis of subsurface fluid conditions and earthquakes from 2005-

2014 of the Bend-Arch, Fort Wirth Basin in North Texas, shows an exponential 

increase in seismicity from the onset of wastewater disposal in 2008 (Hornbach et 

al., 2016). With the largest event being a MW 4.0, in 160 years of habitation and 40 

years of monitoring, no felt earthquakes had been recorded in the area before 2008. 

A robust connection exists between 1.7 billion barrels of wastewater injected, a 

cumulative increase average fluid pressure at depth (1.7 - 4.5 MPa) across the Bend-

Arch, Fort Wirth Basin, and the increased occurrence of seismicity in the area and up 

to 10 km away. 
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In similar circumstances, an area with no known prior earthquakes, 

Youngstown Ohio, experienced 109 earthquakes (MW 0.4 - 3.9) over 14 months of 

wastewater injection activities from January 2011 - February 2012 (Kim, 2013). 

Initial seismicity occurred in the vicinity of the wellbore, occurring at greater 

distances over time. This migration of seismicity indicates pore pressure diffusion 

resulting from human subsurface fluid injection as a cause. Strong temporal 

correlations between wastewater injection and seismicity were further supported by 

the observation that periods of low wastewater injection volume were accompanied 

by a period of seismic quiescence. 

In the longest running monitoring study, a well-monitored continuous (1991 - 

present), deep (4.3 - 4.8 km) wastewater injection operation was examined in 

Paradox Valley, Colorado. Here, 15 events exceeding MW 2.5 occurred, with the 

largest event being a MW 4.3 as of 2003. Isolated seismic events and swarms both 

exhibit a strong spatial correlation with the zone of fluid injection (Ake et al., 2005).  
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Figure 2.16: “Associated earthquakes in the [central and eastern United States] 

from 1973 to 2014. Map showing the locations of M ≥ 0.0 earthquakes in the 

[Advanced National Seismic System’s comprehensive earthquake catalogue] 

from 1 January 1973 through 31 December 2014. White dots denote 

earthquakes that are not spatiotemporally associated with injection wells. Red 

dots denote earthquakes that are spatiotemporally associated with injection 

wells. Following Ellsworth” … “the U.S. mid-continent is defined by the dashed 

lines inside of the greater central and eastern United States.” (Weingarten et al., 

2015). 
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2.5.3 Seismicity induced by hydraulic fracturing 

Seismicity induced by hydraulic fracturing has now been observed in a 

number of regional studies, independently of wastewater injection operations. It has 

also contributed to the previously mentioned exponential increase in seismicity in the 

continental USA (Fig. 1.1) (Ellsworth, 2013). Hydraulic fracturing induced 

seismicity has been observed in a number of countries: USA (Friberg et al., 2014; 

Frohlich, 2012; Frohlich and Brunt, 2013; Holland, 2013; Keranen et al., 2013; Kim, 

2013; McGarr, 2014; McGarr et al., 2015; Rutledge et al., 2004; Rutledge and 

Phillips, 2003; Skoumal et al., 2015; Weingarten et al., 2015), Canada (Atkinson et 

al., 2015, 2016; Bao and Eaton, 2016; Farahbod et al., 2015a, 2015b; Schultz et al., 

2015), China (Lei et al., 2017) and UK (Clarke et al., 2014; De Pater & Baisch, 

2011). 

There has been an exponential increase in mid-continental seismicity within 

North America. Notably the USA, correlated strongly with the rise of high rate (≥ 

300, 000 barrels per day) wastewater injection wells since 2009 (Fig. 2.16) 

(Weingarten et al., 2015). A breakdown of data from the Advanced National Seismic 

System’s comprehensive earthquake catalogue, from the 1st of January 1973 to the 

31st of December 2014, indicates that this exponential increase is only present at 

sites associated with injection wells. No such increase in seismicity occurs for the 

earthquakes not associated with injection wells. Further dissecting the injection well 

data shows high rate wells were significantly more likely to be associated with 

earthquakes than lower rate injection wells. 

In fact, human subsurface injection has altered the seismic landscape of the 

United States sufficiently that as of 2016, Oklahoma, an area of previously low 

seismic activity, was now experiencing a greater volume of MW 3.0 or greater 
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earthquakes than naturally seismically active areas such as California (McGarr et al., 

2015). Concern over this abrupt deviation to the spatial distribution of seismicity on 

the continental scale was enough for the previous authors to propose a series of 

interventions to reduce seismic hazard and manage social licence. 

 

Figure 2.17: “Map of Barnett Shale area” … “showing earthquakes located in 

this study (red circles) and injection wells in use since 2006 (squares and + 
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symbols). Yellow squares are wells reporting maximum monthly injection rates 

exceeding 150,000 BWPM (24,000 m3/mo); white squares, exceeding 15,000 

BWPM (2,400 m3/mo); + symbols, exceeding 1,500 BWPM (240 m3/mo).” 

(Frohlich, 2012). 

Observations of induced seismicity have increased in line with an increased number 

of hydraulic fracturing operations. In the following part of the chapter, we review 

some of the most relevant and recent case studies of injection induced seismicity. 

For instance, extensive monitoring of the Barnett Shale, Texas, on a 70 km2 

grid between November 2009 and September 2011, demonstrate that all of the 24 

most reliably located earthquake hypocentres, of a set of 67 total detected earthquake 

hypocentres, were within 3.2 km of at least one hydraulic fracturing injection well. 

These earthquakes were all located in the vicinity of 9 of the 27 high rate wells (> 

150,000 barrels per month) (Fig. 2.17) (Frohlich, 2012). The distribution of 

favourably stressed faults in the area likely explains why injection wells of a 

similarly high rate did not all induce seismicity. In fact, high-pressure fluids needed 

to contact a critically stressed fault to reduce effective normal stress on the fault 

plane and induce seismicity. Similar monitoring of the Eagle Ford Shale, Texas 

again, on a 70 km2 grid between November 2009 and September 2011, detected 62 

probable earthquakes, clustered into 14 foci. Ten of these foci located near wells 

involved in the injection of subsurface fluids or the extraction of recently injected 

subsurface fluids. Shortly after the cessation of monitoring, a Mw 4.8 event occurred 

at nearby Fashing on the 20th October 2011, without any previous increase in the 

injection of subsurface fluids and felt earthquakes had happened in the area before 

significant injection operations in 1973 and 1983 (Frohlich and Brunt, 2013). The 

prior history of seismicity not associated with injection and the weaker correlation 
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between injection-related activities indicate that a more complex relationship exists 

between human subsurface fluid injection and seismicity in this region. 

Also, five hydraulic fracturing treatments of the Carthage Cotton Valley Gas 

Field, in Texas, initiated microseismicity. Initially, dense microearthquake clusters in 

the targeted layers would diffuse with time from the onset of a treatment, indicating 

fluid movement into the surrounding lithology (Rutledge and Phillips, 2003; 

Rutledge, Phillips, and Mayerhofer, 2004). The focal mechanisms and event 

locations suggest that the microseismicity was primarily comprised of motion on the 

reservoir’s natural fractures. 

Further, ten widely observed positive magnitude earthquakes of the October 

2013 seismic sequence in Harrison County, Ohio, were spatially and temporally 

linked with the hydraulic fracturing operations at the Ryser wells (Friberg et al., 

2014). The detection of other seismic events, which were cross correlated with the 

ten positive magnitude earthquakes, tapered off with time following hydraulic 

fracturing operations. These observations, together with the similarity of seismic 

waves detected from all events, makes it probable that hydraulic fracturing 

operations were responsible for the entire October 2013 seismic sequence. 

Hydraulic fracturing operations triggered the 2011MW 5.7 earthquake 

sequence near Prague, Oklahoma (Keranen et al., 2013). Its MW 5.0 foreshock was 

connected directly to fluid injection (Keranen et al., 2013). By detecting and locating 

110 earthquakes in the sequence, Sumy et al. (2014) demonstrated that the 

subsequent cascade of seismic events, triggered by coseismic Coulomb stress 

transfer, resulted from the foreshock. This indicated that contrary to what argued by 
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McGarr (2014), the volume of fluid injected might not limit mainshock magnitude or 

cumulative seismic moment release. 

Also, analysis of 77 earthquakes spatially and temporally correlated with 

hydraulic fracturing activities in Poland Township, Ohio, suggested a causal link 

between the two. However, nearly 100 stimulation stages in nearby wells did not 

coincide with felt seismicity, suggesting it did not occur in all cases (Skoumal et al., 

2015). A series of events were recorded up to MW 3 (one of the largest detected at 

the time, 2014) and the observed seismicity shared a lot of characteristics with 

nearby induced seismicity in Youngstown, 18 km to the northwest (Kim, 2013). 

 

Figure 2.18: “Seismicity and wells in the Western Canada Sedimentary basin 

(WCSB). (a) Red lines delineate the study area, which parallels the foothills 

region of the WCSB. Ovals identify areas where induced seismicity has been 

previously attributed to hydraulic fracturing (H), wastewater disposal (W), and 

production (P). Red/pink circles show M ≥ 3 earthquakes correlated with 
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hydraulic fracture (HF) wells. Turquoise circles show M ≥3 earthquakes 

correlated with disposal wells. Orange circles are correlated with both. Small 

squares in the background show locations of examined HF wells (dark pink) 

and disposal wells (turquoise). Gray squares in the far background are all wells. 

(b) Cumulative rate of seismicity within the WCSB, commencing in 1985; 

numbers of disposal wells and HF wells for the WCSB as compiled in this study 

are indicated (top). A roughly synchronous increase in rate is evident in the 

basins of the central and eastern United States. 

(bottom; data plotted from Ellsworth, 2013) (Well information is not available 

in the Ellsworth study, but most activity is considered to 

be related to wastewater disposal.) The gray lines show the expected counts for 

a constant seismicity rate.” (Atkinson et al., 2016) 

At least 86 earthquakes accompanied hydraulic fracturing operations in South 

Central, Oklahoma, from the 16th-23rd January 2011, with 16 of these events 

exceeding MW 2.0. A cross-correlation analysis showed no similar seismic 

waveforms outside of the window of hydraulic fracturing operations (Holland, 

2013). Poor weather conditions at the well-site led to hydraulic fracturing stages 

being separated by approximately two days, increasing the precision of the temporal 

correlations between seismicity and fluid injection operations. 

A study of hydraulic fracturing and seismicity in the Western Canada 

Sedimentary Basin shows that the seismic events correlated strongly with hydraulic 

fracturing operations (Fig. 2.18) (G. Atkinson et al., 2015; G. M. Atkinson et al., 

2016). However, the rate of seismicity did not appear to obey the expected 

relationship between the volume of fluid injected and the maximum observed 
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seismic magnitude. A significant number of events exceeded predictions of seismic 

magnitude indicating the seismic hazard of hydraulic fracturing may be larger than 

routine analysis would suggest. 

Further, a region of previous seismic quiescence within central Alberta, 

Canada, experienced a sequence of earthquakes beginning 1st December 2013, and 

comprising 160 events as of the end of 2014. Seismic monitoring showed that events 

clustered at each of the sites of horizontal drilling. The data could be further resolved 

into five temporal sub-sequences, with the first-order relations to hydraulic 

fracturing operations (Schultz et al., 2015). Analysis of the seismic waveforms was 

sufficiently precise to indicate that seismicity would stop when hydraulic fracturing 

operations would stop, and resume when they would restart months later, strongly 

implying direct causation. 
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Figure 2.19: “Seismicity of northwestern Alberta, Canada, for the period 

1985−2016. Symbol size indicates magnitude, and color denotes date of 

occurrence. B.C., British Columbia. Seismicity west of Fox Creek commenced 

in December 2013 and correlates in space and time with local hydraulic-

fracturing operations (9). Focal mechanisms of the largest earthquakes, from 

(32–34), are labeled by year/month/ date of occurrence.” (Bao and Eaton, 2016).  

Analysis from Western Canada, specifically north-western Alberta, of 

hydraulic fracturing and seismicity over a four-month period, again finds a strong 

spatial and temporal correlation between hydraulic fracturing and seismicity. One 

large (MW 3.9) event occurred several weeks after injection, along a fault that 



      

 

~ 58 ~ 
 

extends from the site of hydraulic fracturing operations into the crystalline basement 

(Fig. 2.19) (Bao & Eaton, 2016). Predictions of the stress change during seismicity 

suggests that fault activation could be possible more than 1 km away from the site of 

injection, and that direct pressurisation of faults locally could lead to episodic 

seismicity persisting for months. 

Also, hydraulic fracturing operations in the Horn River Basin, northeast 

British Columbia, coincided with a sharp increase in seismicity (131 events per year) 

above background levels (24 events per year), as well as with an increase in the 

maximum magnitude, from ML 2.9 to 3.6 (Farahbod, Kao, Cassidy, et al., 2015). The 

analysis of the natural background and hydraulic fracturing seismogram data 

supported a physical link between hydraulic fracturing operations in the area and 

induced seismicity (Farahbod, Kao, Cassidy, et al., 2015).) The dominant factor 

controlling induced seismicity in the area appeared to be the volume of fluid 

injected, more so than the injection pressure. There was no change from background 

seismicity when the volume of injected fluid was less than 20,000 m3 per month, and 

the largest seismic releases occurred with monthly injected volumes exceeding 

150,000 m3 (Farahbod, Kao, Walker, et al., 2015). The time lag from initiation of 

hydraulic fracturing subsurface injection and seismicity could be days or months 

depending on the local geological conditions, particularly the distribution and 

geometry of faults in the area. 

Observations of hydraulic fracturing induced seismicity have also been made 

in China. The Sichuan Basin has experienced a series of earthquakes up to MW 4.7, 

resulting from fault reactivation driven by fluids injected into the subsurface for 

hydraulic fracturing (Lei et al., 2017). The combination of precisely relocated 

aftershock hypocenters, focal mechanism solutions of 13 significant events (MW 3.5) 
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and Coulomb failure stress analyses all indicate that injection over the course of 

several months at a single well pad, at depths of 2.3-3 km, induced each of the 

earthquakes.  

Hydraulic fracturing operations in the Carboniferous Bowland Shale in the 

UK, at the well Preese Hall 1, resulted in a series of seismic events, the largest of 

which was ML 2.3, 1.8 km from the well at a depth of 3.6 km (Clarke et al., 2014; De 

Pater & Baisch, 2011). Furthermore, this sizeable seismic event immediately 

followed the injection of 2245 m3 of fluid, and 117 tons of proppant at the well. 

Some small shear movements were detected slightly before the highest energy event. 

The ML 2.3 event likely resulted from fluid leaking from induced fractures to natural 

ones, before migrating onto the fault plane of a pre-existing, critically stressed fault. 

The fluids lowered the effective normal stress on the fault, which was reactivated 

triggering the seismicity.  

 

Figure 2.20: “(a) Numerical model geometry and initial conditions. We assumed 

a normal fault with a 125 m offset through a 100 m thick reservoir bounded at 
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the top and the bottom by a 150 m thick caprock. (b) A plastic shear strain‐ 

weakening friction law that governs the propagation of rupture along the fault 

zone. (c) Fault slip versus time at three points located at the (1) top, (2) middle 

and (3) bottom of the reservoir, respectively” …  “Snapshots of change (relative 

to the initial state) in (d) fluid pressure, (e) CO2 saturation, and (f) plastic shear 

strain at the end of the sudden slip event (after 90 days of CO2 injection)” 

(Cappa and Rutqvist, 2011a). 

2.5.4 Numerical Simulation of Induced Seismicity 

Examination of the reservoir, caprock and fault systems with numerical 

simulation techniques have predicted human subsurface injection-induced seismicity 

and constrained conditions under which it might occur during carbon sequestration 

operations (Frederic Cappa & Rutqvist, 2012; Frédéric Cappa & Rutqvist, 2011a, 

2011b; J. Rutqvist et al., 2002; Jonny Rutqvist, Cappa, et al., 2013). Credible stress 

ranges for microseismicity in caprock embedded faults during similar carbon 

sequestration simulations (J. Rutqvist et al., 2002). Seismic movement and a sudden 

stress drop were predicted within a few months from the beginning of CO2 injection 

into a reservoir, for a schematic fault embedded in a caprock for realistic physical 

parameter ranges in initial horizontal‐to‐vertical stress ratio and fault permeability 

(Fig. 2.20) (Frédéric Cappa & Rutqvist, 2011b). These simulations were refined by 

including effective stress dependent permeability. The results demonstrated a 

relationship between the physical parameters stress ratio and fault permeability, the 

size of the rupture patch and earthquake magnitude. In a model like the previous case 

with simple fault zone architectures were implemented within simulations of CO2 

injection to examine their impact on predictions of seismicity, fluid flow and the 

mechanical response of faults (Frédéric Cappa & Rutqvist, 2011a). Here simple fault 
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zone architecture refers to a damage zone and fault core. This reservoir with caprock 

embedded fault simulation was extended to make predictions of ground acceleration 

and seismic wave propagation in the case of a critically stressed fault (Frederic 

Cappa & Rutqvist, 2012). Showing that within a few days of fluid injection sliding 

can begin on a small patch of a few centimetres, which can develop rapidly into a 

more massive earthquake if fluid flow and fault weakening act to reduce the 

effective coefficient of friction for the fault plane. 

 

 

Figure 2.21. “Geomechanical processes   and   key   technical   issues associated 

with GCS in deep sedimentary formations. Top the different regions of 

influence for a CO2 plume, reservoir pressure changes, and geomechanical 

changes in a multilayered system with  minor  and  major  faults. Bottom  left 

injection-induced stress, strain, deformations and potential microseismic events   

as   a   result   of   changes   in   reservoir   pressure   and temperature, and 
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bottom right unwanted inelastic changes that might reduce sequestration 

efficiency and cause concerns in the local community.” (Rutqvist, 2012). 

Simulations of natural fault systems subjected to human injection activities 

have been validated using the CO2 injection and storage project at In Salah, Algeria 

(Fig. 2.21) (Jonny Rutqvist, 2012; Jonny Rutqvist et al., 2009). A thin, low 

permeability, Carboniferous sandstone formation was targeted for CO2 storage at a 

depth of 1.8 - 1.9 km. Three long reach 1-1.5 km horizontal injection wells were 

utilised, with injection occurring at 18 MPa of pressure. A realisation of the 

TOUGH-FLAC simulator was able to predict microseismicity that was comparable 

to that detected at the site. Modelling results also predicted the distribution of pore 

pressure in the reservoir and the evolution of stress predicted was consistent with 

those at In Salah. TOUGH-FLAC simulations in general infer earthquake properties 

using empirical seismological relations instead of directly simulating the earthquake 

nucleation phase. 

Specific operational constraints (J. Rutqvist et al., 2007) and hazards 

(Mazzoldi et al., 2012; Mortezaei & Vahedifard, 2015) were evaluated by simulating 

the pressure distribution of caprock embedded faults overlying reservoirs targeted for 

carbon sequestration. A fully coupled numerical analysis of schematic faults was 

performed using TOUGH-FLAC and simple models of fault zone architecture. 

While these models did not simulate earthquake nucleation directly, they were able 

evaluate the maximum sustainable CO2 injection pressure that would avoid 

seismicity for carbon sequestration operations (J. Rutqvist et al., 2007). As well as 

operational constraints, estimates of the magnitude of functional seismic hazard have 

been calculated with numerical simulation techniques using the TOUGH-FLAC 

suite, for a schematic domal structure targeted for the deep storage of CO2, focusing 
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specifically on reactivating sub-seismic resolution faults (Mazzoldi et al., 2012). The 

seismic magnitudes for movements on these sub-seismic resolution faults was 

inferred from seismological relations to be (2 ≤ MW ≤ 3.9). Another study evaluated 

seismic hazard in a similar way on sub-seismic resolution faults using TOUGH-

FLAC simulations, posing the problem as a parameter study of permeability and 

reservoir thickness (Mortezaei & Vahedifard, 2015).  

TOUGH-FLAC simulations where extended and refined for the simulation of 

shale fault activation during hydraulic fracturing operations. Specific examinations 

of steeply dipping faults, at depths of 1000 to 2500 m, indicated that hydraulic 

fracturing could induce shear failure, and hence microseismicity (Jonny Rutqvist et 

al., 2015). The seismic moment magnitudes predicted by the TOUGH-FLAC shale 

fault simulation during typical hydraulic fracturing operations ranged from MW -2.0 

to 0.5, excepting one MW 2.3 simulation of a very brittle fault with low residual 

shear strength. They conclude that felt seismicity is unlikely to result from hydraulic 

fracturing operations in the vicinity of steeply dipping faults. 

TOUGH-FLAC simulations have been extended further to incorporate faults 

embedded in lithologically complex, layered systems as part of a caprock-reservoir 

system targeted for carbon sequestration (Rinaldi et al., 2014). These simulations 

demonstrate that the inclusion of heterogeneities strengthens the fault and decreases 

the magnitude of earthquakes by preventing the propagation of rupture to shallow 

depths. The complex hydraulic properties of the multilayer also impede the flow of 

fluids along the fault. The simulations were even able to predict that while thin 

caprocks and/or aquifers might produce smaller magnitude events, they also 

increased the volume of leaked fluid. 
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2.6 Conclusion 

Many case studies in the literature, clearly support the evidence that 

subsurface fluid flow can trigger both natural and human induced seismicity, up to 

MW 9.0 events for natural seismicity (Terakawa et al., 2013). There is also evidence 

that human activities, such as fluid injection, have led to an exponential increase in 

seismicity in the continental USA (Ellsworth, 2013; Weingarten et al., 2015) and 

also in other areas of the world.  

Fault mechanics theory predicts that increasing pore pressure reduces fault 

frictional strength and can favour the reactivation of faults at lower stress levels or 

even when faults are in their stability stress field. Although the rock mechanics 

principles and laws that govern fault reactivation are simple, fault frictional strength 

can depend in a highly non-linear way on supra-hydrostatic pore pressure gradients, 

potentially driving seismicity (Cox, 2010; Sibson, 1990, 1992).   

Numerical simulation techniques have been used to analyse fault reactivation 

more precisely, modelling subsurface fluid flow and pore pressure distribution 

within faults, eventually causing fault reactivation (Cappa and Rutqvist, 2011a, 

2012; Rutqvist et al., 2015, 2013a, 2002). Further, a number of metre- to kilometre- 

scale models have refined these results to include simplistic models of fault zone 

architecture, and pore pressure dependent fault zone transport properties (Cappa et 

al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Mazzoldi et al., 2012; 

Rinaldi et al., 2014; Rutqvist et al., 2013, 2009). However, there are several 

previously unconsidered model refinements that could more realistically predict the 

complexity of fluid flow and reproduce the behaviour of natural faults. These are 

treated in the next chapters of this thesis and include the implementation into models 

of simple to complex and more realistic models of fault zone architecture. In 
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particular, the models output of fluid flow and fault reactivation conditions account 

for the evolution of permeability in the different fault zone domains due to its 

dependence on evolving pore pressure and mode of failure, e.g. brittle vs. ductile 

(Caine et al., 1996; Caine and Forster, 1999; Collettini et al., 2009; De Paola et al., 

2008)  

Finally, there are several previously unconsidered model refinements that could 

more realistically reproduce the behaviour of natural faults and accurately 

characterise and forecast their seismicity. Here, I attempt to reproduce in simulations 

the earthquake nucleation phase, as opposed to the approach adopted in previous 

studies, where seismological relations were used to infer earthquake nucleation 

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). This is 

achieved by considering the effects of reducing effective normal stress, which would 

result in an increasing nucleation length – the size of the rupture patch needed for 

earthquake nucleation (Campillo et al., 2001; Scholz, 1988; Uenishi and Rice, 2003).   



      

 

~ 66 ~ 
 

 

CHAPTER 3 

 

Simulating fluid overpressure in low-porosity faults with brittle and ductile mode of 

failure and earthquake nucleation  
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3. Simulating fluid overpressure in low-porosity faults with 

brittle and ductile mode of failure and earthquake 

nucleation  

3.1 Introduction 

Failure and deformation processes can occur continuously throughout the 

interseismic period and aren’t necessarily isolated to primary slip zones involved in 

active fault-slip and earthquake nucleation. These brittle and ductile  deformation 

processes act as a primary control on fluid flow and pore pressure evolution and 

hence earthquake nucleation (Rowland and Sibson, 2004). We model the effect of 

the processes on the aforementioned physical properties using the triaxial 

deformation with fluid flow measurements of  De Paola et al., 2009. 

Here we refer to distributed fracturing as ductile failure, there is not a full transition 

to viscous behaviour as we might see at high temperatures, it is a discrete failure 

event (a collapse), which alters the porosity of the rock and transport properties. It 

does not engage in fully fluid-like behaviour for an extended period in a way which 

would require simulation. Treating these brittle and ductile mode of failure events as 

a field of discrete failure states, simplifies models of fault-fluid evolution and 

earthquake nucleation both conceptually and computationally. Chopping sub-milli-

second and -metre continuous failure and deformation events into discontinuous 

failure states and transitions reduces the number of physical processes considered 

while recovering the natural, irreversible, hysteretic behaviours resulting from brittle 

and ductile mode of failure, not typically recovered in continuous models. 
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Further, numerical simulations and multiphysics models of the natural world, as well 

as their inputs, are necessarily approximations. Very few non-fundamental 

macroscopic physical relationships capture the full complexity of natural behaviours. 

Also, we cannot constrain any physical quantity with perfect precision, particularly 

in the subsurface. Any numerical simulation result must either be robust to changes 

in these uncertain variables otherwise we will need to constrain the behaviour we 

observe in these simulations over a range of values for each uncertain parameter. 

Understanding how simulation results vary within the range of possible uncertainty, 

we would expect for a fault in the natural subsurface allows us to distinguish which 

of our results would apply widely to similar faults and conversely what variation we 

might expect to between different examples of similar faults.. 

Here we model the nucleation of earthquakes, which depend on the frictional 

behaviour of faults and the normal stresses acting on fault planes. These in turn depend 

on the fluid pressure acting on the fault plane. The fluid pressure acting on the fault 

plane is controlled by fluid flow throughout the fault zone, this fluid flow can be 

facilitated by the deformation of the rocks comprising the fault zone. This study will 

model the evolution of stress, fluid flow, pore pressure and deformation throughout 

the fault zone and predict subsequent earthquake nucleation. We establish a method 

for efficiently simulating fault zone pore pressure diffusion in the interseismic period 

with complex, realistic models of fault zone architecture and brittle and ductile modes 

of failure. The nucleation phase is simulated, and stable sliding and earthquake 

nucleation are resolved and distinguished to the order of seconds for several hundred 

years simulations. As all the simulations presented in this thesis are consistently 

several orders of magnitude within the region for Darcy flow (Thauvin and Mohanty, 

1998). 
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3.2 Governing Equations 

All simulations presented in this thesis consider fluid flow through porous media. By 

considering any three-dimensional element of a porous medium for mass to be 

conserved mass flux into this element minus mass flux out equals the increase in 

amount stored by the element, we represent this mathematically as follows (Table 

3.1): 

                                              ∇. (𝜌𝑞) = −
𝑑(𝜌𝜑)

𝑑𝑡
  (3.1) 

As all the simulations presented in this thesis are consistently several orders of 

magnitude within the region for Darcy flow (Thauvin and Mohanty, 1998), we take 

the left hand side of this equation and substitute Darcy’s law, whilst also assuming 

incompressibility (Table 3.1): 

∇. (𝜌𝑞) = −
𝜌

𝜂
∇. (𝑘∇𝑃) (3.2) 

Taking the right-hand side of this equation and differentiating using the product rule 

and using the definitions of pore and fluid compressibility (βφ and βf respectively) 

gives (Table 3.1): 

𝑑(𝜌𝜑)
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= 𝜌

𝑑𝜑
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= 𝜌

𝑑𝜑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+ 𝜑
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1

𝜌

𝑑𝜌
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𝑑𝑡
 

= 𝜌𝜑(𝛽𝜑 + 𝛽𝑓 )
𝑑𝑃

𝑑𝑡
 (3.3) 

By combining equations 3.1 and 3.2 we arrive at a relationship for the diffusion of 

pore pressure in a classically porous medium, for a laminar flow (Eq. 3.4; Table 3.1; 

Zimmerman, 2018), 

 
𝑑𝑃

𝑑𝑡
= 

𝛻·( 𝑘𝛻𝑃)

𝛽𝜂𝜑
 (3.4) 
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with 𝛽 =  𝛽𝜑 + 𝛽𝑓, viscosity η and transport and rock property relationships derived 

from (De Paola et al., 2009). As the compressibility of the porous medium is several 

orders of magnitude greater than that of the pore fluid the compressiblity of the 

porous medium will have an outsized impact on flow. We use equation 3.4 

throughout this thesis to approximate fluid flow within low permeability porous 

medium. Inherent in our approach is an assumption that the fluid present is a dry 

single phase CO2 fluid. However, most naturally occurring subsurface CO2 would 

contain a proportion of water. The presence of moisture would lead to 

dissolution/precipitation of the rock matrix, would swell clays if present and would 

also alter frictional rock behaviours. We accept this dry fluid assumption as an 

approximation, leaving the complexity of wet CO2 for future work. 

𝛽𝜙 = 
𝛼(1−2𝜐)

𝐸
  (3.5) 

 

The compressibility of the porous rock matrix can be expressed in terms of Poisson’s 

ratio 𝜐, Biot coefficient α and Young’s modulus E (Eq. 3.5, Detournay and Cheng, 

1993). The compressibility of a porous medium is the change in volume of that 

medium in response to a change in effective pressure.  When a rock deforms 

according to two modes of deformation, one along the axis which stress is applied, 

characterised by the Young’s modulus E (the strain in response to applied stress), 

and secondly a transverse expansion in response to compression along the initial 

stress axis (characterised by the Poisson ratio 𝜐, relating axial to transverse strain. In 

porous media containing fluids a third factor must be considered, the Biot coefficient 

𝛼 which characterises the amount of fluid which would be expressed in response to a 
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change in volume. When these factors are combined as in Eq. 3.5 we arrive at the 

true total volume change in response to a change in pressure.  

No macroscopic natural system is going to undergo genuinely discrete transitions 

with respect to time. on some low level of time or spatial resolution there will be 

observable continuous processes governing the transition from one state to another. 

to simulate all of these processes would be computationally intensive. Therefore we 

approximate failure state in our numerical simulations with a discrete variable as a 

simplification, this discontinuous approach to failure state allows us to analyse the 

problem on a space and time resolution of millimetres or milliseconds and above. 

Specifically, permeability, pressure sensitivity and porosity all vary discontinously 

with the failure state of the rock (prefailure, localised brittle fracturing or distributed 

ductile fracturing) and the component of fault zone architecture.  

In natural rocks changes in porosity drive changes in permeability, these porosity 

changes are in turn controlled by the effective stress acting on the rock. as is 

indicated by linear elastic models (Berryman, 1992). In the simulations in this thesis 

we do not directly consider porosity except for discontinuous failure transitions. In 

continuous permeability changes, porosity changes are treated implicitly, and hence 

continuous permeability changes are modelled as driven only by effective stress.  

Permeability is represented by the following function (De Paola et al., 2009; 

Faulkner, 2004; Faulkner and Rutter, 2003, 2000; Zhang et al., 1999): 

𝑘 =  𝑘0exp(−𝛾𝜎′)   (3.6) 

 γ represents the pressure sensitivity, and 𝜎eff is effective stress: 

𝜎′ =  𝜎3 −  𝑃  (3.7) 
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σ3 is the principal minimum stress. 

When considering fluid flow in the fault fluid system, we employ several more 

standard relationships between physical variables. For instance, the normal stress 

acting on a plane σ𝑁 at angle 𝜃 to the orientation of principal maximum stress σ1 is 

given by (Cox, 2010, Fig. 2.1; Table 3.1): 

σ𝑁 = 
1

2
(σ1 + σ3) +

1

2
(σ1 − σ3) cos (2𝜃) (3.8) 

The shear stress acting on a plane σ𝑁 at angle 𝜃 to the orientation of principal 

maximum stress σ1 is given by (Cox, 2010; Table 3.1): 

 𝜏 =  
1

2
(σ1 − σ3) sin (2𝜃)  (3.9) 

In a fluid-saturated rock, the effective normal stresses are the normal stresses 

reduced by the amount of pore fluid pressure (Eq 2.1; Sibson, 1990; Table 3.1). 

For compressional effective normal stress the shear failure of intact rocks is 

described by the Coulomb-Navier failure criterion (Sibson, 1996) where τ is the 

shear stress, μ is the coefficient of internal friction, σN is the normal stress (Sibson, 

1990; Table 3.1): 

𝜏 =  𝐶 + 𝜇𝑖(𝜎𝑁  −  𝑃)  (3.11) 

For the faults considered in this thesis, the shear failure envelope further decomposes 

into two regions one representing a brittle mode of failure and one representing 

ductile, with the transition occurring at a critical effective stress, derived from (De 

Paola et al., 2009). The coefficient of friction and cohesion also vary with mode of 

failure and fault zone architecture component, similarly to porosity, permeability and 

pressure sensitivity before. 
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Hybrid extensional-shear failure, can also develop in intact rocks; the Griffith 

criterion describes this phenomenon (Griffith, 1924). 

Pre-existing faults, developed during previous deformation events, are usually 

considered planes of shear failure without any cohesion and, according to Amonton’s 

law (Eq. 2.4; Table 3.1; R. H. Sibson, 1990), sliding will occur when the shear force 

on the fault exceeds frictional forces acting on the fault. 

Stable sliding initiates at fault asperities and can spread out (in velocity weakening 

materials) with an accelerating sliding velocity until it reaches a critical size. This 

stability limit is a nucleation length, Lc where G is the shear modulus, ζ is a constant 

of proportionality of order 1, Dc is the critical slip distance, a and b are rate-and-state 

parameters (Dieterich, 1992; Rice and Ruina, 1983). The rate parameter a controls 

the variation of friction with velocity, the state parameter b controls the variation of 

friction with ‘state’, e.g. how much healing has occurred at the sliding interface since 

the last movement (Table 3.1): 

𝐿𝐶 = 
𝜁𝐺𝐷𝐶

𝜎′𝑁𝐹
 (3.13) 

In our simulations, the frictional strength of the fault is taken to be homogeneous, 

and without asperities, with any variation in frictional strength modelled as being 

dependent only on effective normal stress. For the situations in which simulations 

are run in this thesis the ‘asperity’ due to fluid pressure would be the most significant 

as it is the most spatially expansive and the nucleation phase evolution would be 

dominated by it (Campillo et al., 2001). However, our analysis would not apply to 

situations in which fluid and fault asperities are both of similar scales or the fault 

asperity is greater.  When shear stress exceeds the fault shear strength, for a given 

pore pressure, sliding begins along the fault plane in the primary slip zone. The 
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effective normal stress of the sliding fault patch is taken to be constant after sliding 

begins if it can no longer accumulate or dissipate stress energy locally as any change 

in energy will instead accelerate or decelerate sliding. We assume that the nucleation 

length (LN) of a failure patch (LF) is equal to that of its strongest point, which 

represents an upper limit (Campillo et al., 2001; Uenishi and Rice, 2003). 

 

Figure 3.1: “Macroscopic large-scale fault zone structure. (a) Panoramic view of 

a large-scale normal fault zone within the Triassic Evaporites. Note that the 

major fault zones crosscuts the former synorogenic mesoscale ‘‘gneissic’’ fabric 

(b) Line drawing of the fault zone shown in Figure [3.1]a. (c) Detail of the fault 

core of the large fault zone shown in Figure [3.1]a. The inner fault core 

boundary is highlighted. (d) Line drawing of the fault zone shown in Figure 

[3.1]c, displaying the internal fault core architecture.” (De Paola et al., 2008) 

Adapted to show fractured dolostones and foliate anhydrite and outer fault core 
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(OFC) - inner fault core (IFC) boundary and damage zone (DZ) (De Paola et 

al., 2008).  

3.3 Multiphysics model 

A single model of the coupled fault-fluid system is constructed using the physical 

relationships given in the previous section, evaluating at each simulated timestep: 1) 

the fields of intensive physical variables (e.g. pressure, stress), 2) transport properties 

(e.g. permeability), 3) quantities relating to failure and earthquake nucleation. There 

is a complex, nonlinear interdependence between each of these variables. For 

instance, permeability increases exponentially with effective stress as pore space in 

the rock increases and discontinuous transitions in porosity accompany brittle or 

ductile mode of failure (De Paola et al., 2009). We construct a multiphysics model of 

seismic low-permeability fault-zones from nonlinear pore pressure diffusion, 

realistic fault zone architecture, pre-, co-, and post-failure permeability sub-models 

as measured by triaxial deformation experiments with fluid flow and fault-rock 

failure models. We incorporate a schematic model of fault zone architecture 

comprising a damage zone (DZ) of interbedded fractured dolostones and foliated 

anhydrite and outer fault core (OFC) of foliated anhydrite and inner fault core (IFC) 

of fine-grained cohesive cataclasites and a principal slip zone (PSZ) of incohesive 

fault gouge (Fig. 3.1). The case studies considered in this thesis take as a base a 

model of fault zone architecture that is typical of extensional faults of the Northern 

Apennines, which is analogous to the central fault of the 1997-98 Colfiorito seismic 

sequence (De Paola et al., 2008). 

Triaxial deformation measurements on real fault rocks with fluid flow were used to 

approximate pre-, co-, and post-failure permeability and the failure envelopes of the 

fault rocks on real fault rocks. These measurements were taken on fault rocks 



      

 

~ 76 ~ 
 

corresponding to the OFC above. Separate measurements were taken with foliation 

both parallel and perpendicular to the direction of principal maximum stress, using 

samples from the Perugia 2 and Fossonbrone 2 boreholes in the Umbria-Marche 

Apennines in Italy (De Paola et al., 2009). Failure in the cohesionless PSZ was 

modelled using known friction laws (Byerlee, 1978). 

A sub-model of earthquake nucleation processes was also considered, by treating the 

fault-fluid ensemble as a non-smooth system, where the rate of change of a physical 

parameter is undefined for at a least a point in time. Earthquake nucleation processes 

govern the dynamics of the fault-fluid system from stable non-acceleratory motion as 

shear strength is exceeded to the point at which the critical (nucleation) length is 

exceeded. Once this critical length is exceeded unstable, accelerating oscillation 

begins on the fault.   

One of the critical components of our fluid-driven earthquake simulations is the 

inclusion of brittle and ductile mode of failure within models, as measured in the 

laboratory. Simulations of fault-fluid systems which neglect brittle and ductile mode 

of failure do not exhibit hysteresis, as the relationship between the transport 

properties and pore pressure is a function of only pressure, any unique distribution of 

pressure uniquely defines the state of the system. The state of the fault fluid system 

at a future instant in the interseismic period can be specified entirely using the state 

of the fault fluid system at the previous instant, and the history of the fault over the 

course of the interseismic period is irrelevant. The introduction of brittle and ductile 

mode of failure introduces discontinuous, irreversible failure behaviour and 

hysteresis, e.g. localised brittle failure that has occurred several years or tens of years 

earlier can impact fluid-driven earthquake nucleation and represents systematic time-

dependence far beyond the previous instant in time.  
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3.4 Fault zone architecture and model setup 

We validate our methodology with a case study of seismic extensional fault zones in 

evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008), from these faults 

we infer fault zone geometries, physical properties and mechanical behaviours. 

In particular, the simulated fault zones in this thesis are exhumed normal faults in 

evaporite sequences (Collettini et al., 2009; De Paola et al., 2008) and analogues of 

the seismic sources in the hypocentre zone of the Northern Apennines seismic belt 

(e.g. Mirabella et al., 2008).  

CO2 fluxes in the Northern Apennines seismic belt (e.g. Mw 6.0 1997-98 

Colfiorito and Mw 6.3 2009 L’Aquila extensional earthquakes) have been measured 

at greater than 0.45 t day−1 km−2  (Chiodini et al., 2004; Collettini et al., 2008). 

While, overpressured CO2 was encountered in boreholes within the Triassic 

Evaporites, at ~80% of the lithostatic load, at depths of 4-4.8 km (Chiodini and 

Cioni, 1989; Collettini and Barchi, 2002; Miller et al., 2004). Our simulations 

assume that the modelled fault zone is saturated with supercritical CO2 and treat it as 

being a single phase at a depth of interest 7 km, as the pressure conditions at the 

relevant depths indicate that both CO2 and brine would be exists as a single miscible 

supercritical fluid (Miller et al., 2004). 

The compressibility of supercritical CO2 exceeds that of evaporite rocks by 

several orders of magnitude and we approximate it as being only the fluid 

compressibility (Burke, 2011; Robertson et al., 1958). We also assume that the 

variation of viscosity υ and compressibility with effective stress is negligible, for the 

conditions simulated (Burke, 2011).  
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The modelled fault zone is a 1.5-2 km thick sequence of 6 – 19 m interbedded 

anhydrite/gypsum and dolostones, within the Triassic Evaporite formation (Barchi, 

2002; Trippetta et al., 2013). Seismological data and observations indicate shallow 

dipping (45°) faults from hypocentre depths in the Northern Apennines seismic belt, 

which may favour the generation of fluid overpressure leading to fault reactivation 

(Barchi, 2002; Miller et al., 2004; Mirabella et al., 2008).  Field observations report a 

1m wide fault core, where most of the slip accommodated by the fault is localised 

(Fig. 3.1a; Collettini et al., 2009; De Paola et al., 2008). A well-developed damage 

zone (DZ) is observed within thick (a few meters to tens of meters) fractured 

dolostones, extending at least 10 m in either direction from the fault core. 

Conversely, no macroscopic fracturing is observed within the foliated anhydrite 

layer immediately adjacent to the fault core, on either side of the fractured 

dolostones (Fig. 3.1a) (De Paola et al., 2008). 

 

 

Figure 3.2: The idealised fault segment in the base case as considered for this 

study with the directly simulated area in the dashed box. (Angles between 
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bedding planes and fault in damage zone (DZ) are indicative only and are not 

directly recreated in simulations. The simulated fault is at 45⁰ to vertical.) 

Schematically, we further subdivide the fault core into: 1) an inner fault core 

(IFC), containing fine-grained cohesive cataclasites, 2) a 2m wide outer fault core 

(OFC) containing the IFC, made of cohesive foliated anhydrites which are not 

fractured (Fig. 3.1b) (De Paola et al., 2008). Within the IFC slip is localised along 

straight, millimetre scale principal slip zones (PSZ) of ultra-fine grained incohesive 

anhydrite and dolomite-rich gouges in the IFC (Fig. 3.1b) (De Paola et al., 2008). 

We approximate the IFC as made of cohesive cataclasites and contains a single PSZ 

of zero thickness, made of incohesive fault gouges (Fig. 3.2).  

The fault models assume fault-valve behaviour (Sibson, 1990) so that any 

overpressure within the fault core is released after the seismic event. As a 

consequence, initial pore pressure within the fault core is assumed to be distributed 

uniformly and hydrostatically (Miller et al., 2004), with an imposed extensional fault 

unloading rate of 0.15 MPa/year, based on the tectonic setting (Chiaraluce et al., 

2003).  

We simulate the OFC and IFC directly with boundary conditions defined using 

pore pressure conditions from the damage zone (DZ). This is comprised of 

interbedded fractured dolostones and foliated anhydrites, the overpressure is largely 

contained within the fractured dolostone layer, and the anhydrites are taken to be 

hydrostatic. In our base case, we simulate an area of 2.5 by 1000m, representing the 

upper left quadrant of the fault core, with the width of the OFC (2.5m) varied in 

some parameter studies (Fig. 3.2). Pressure boundary conditions are hydrostatic on 

fault parallel boundaries, except for a 40 m thick overpressured region on the 
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damage zone/outer fault core boundary, which models the effects of an external, 

infinitely wide, permanently overpressured reservoir made of fractured dolostones 

(Fig. 3.2; Trippetta et al., 2013). 

The idealised fault section has two planes of symmetry, the fault parallel plane 

bisecting the fault, and the fault perpendicular plane bisecting the overpressure 

contacts. We exploit this symmetry to reduce computational costs. We take these 

planes as symmetry boundaries, with the gradient of pore pressure normal to these 

boundaries set to zero. 

Domain dimensions are chosen large enough that the top and bottom boundary 

are sufficiently removed from overpressure to not significantly affect pressure 

distribution within the model domain. Specifically, the length of fault that is 

considered is selected ensuring that the pressure gradient at the upper perpendicular 

boundary is less than 1% of hydrostatic pressure per metre. All models are run from 

an initial stress state with minimum principal stress set at 85% of lithostatic load 

(Miller et al., 2004). 
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Figure 3.3: Diagram of spatial grid used in numerical simulations, indicating 

variables defined at points and mid-points. 

3.5 Numerical Method 

We discretise the second order partial differential equation (Eq. 3.4; Table 3.1) over 

the spatial grid defined above: 
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We then define physical variables on an Nx by Nz spatial grid, and its midpoints, 

where Nx is the number of fault perpendicular array points and Nz is the number of 

fault parallel array points (Fig. 3.3). We define the fault parallel and perpendicular 

directions relative to the plane of the primary slip zone. All physical variables except 

for the parallel and perpendicular components of permeability, the failure state 

variable, architecture component and effective stress are set on the grid points and 

not midpoints. Values are interpolated to midpoints by averaging as required.  

Multiple simulations were run in all cases with a decreasing grid size until further 

reductions in the grid spacing did not affect simulation results. 

The initial nonlinear pore pressure diffusion relationship (Eq. 3.4; Table 3.1), being 

the only differential equation, is the only one that is not defined entirely on either 

central or midpoints. In all other cases, all variables in the relationship can be taken 

to be at the same point or midpoint under consideration.  

This discretisation gives us a set of Nz by Nx equations to solve at each simulated 

timestep. The change in pressure at a given point is dependent only on the pressure at 

the point itself (i, j) and its four neighbouring points (i±1, j±1). For computational 

ease and to allow us to employ standard ODE (ordinary differential equation) solvers 

on this set of equations. Ordinary differential equations are composed of formulas in 

only one variable and derivatives of that variable, and ODE solvers are software tool 

for integrating these equations.  

The variables represented by Eq. 3.5-13 are evaluated at each time step and used to 

estimate the rate of change of pressure with time at each array point (Eq. 3.4; Table 

3.1) and passed to the ODE23tb solver which returns the value at the subsequent 

time step. Time step size is determined by the solver to ensure numerical stability. 
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We evaluate shear stress (Eq. 3.8, 3.12; Table 3.1) and shear strength (Eq. 3.10; 

Table 3.1) at all array points where failure might occur. Shear and normal stress and 

shear strength between the points undergoing failure are interpolated to precisely 

determine the length of the failure patch and nucleation length. 

We apply two types of boundary condition in the simulations in this thesis, constant 

pressure and volumetric flux (Dirichlet) boundary conditions and volumetric flux 

symmetry (Neumann) boundary conditions. The former boundary conditions are 

applied by setting a constant value for a physical parameter at a given boundary 

array point, while the latter entails a more complicated condition on flux divergence. 

This condition arises from the assumption that the volumetric flux vector q is equal 

and opposite immediately on the other side of the symmetry boundaries, in our case 

at the bottom and right: 

(∇ ∙ 𝑞)𝑗 =
2 𝑞𝑗

∆(∆j)
;  𝑗 = 𝑥 𝑜𝑛 𝑎 𝑧 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑟 𝑧 𝑜𝑛 𝑎 𝑥 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  (3.15) 

∆𝜏 =  𝜏𝑓 − 𝜏  (3.16) 

∆𝐿𝑓 = 
𝐿𝑁− 𝐿𝑓

 𝐿𝑓
  (3.17) 
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Figure 3.4: Flow-chart of failure-event switching in fault fluid flow and 

earthquake simulations. 
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3.5.1 Technical Considerations  

Event-location is used to determine the failure events which drive each of these 

discontinuous failure state transitions. We treat the system as non-smooth, to ensure 

the problem is mathematically well-posed and computationally efficient. Simulations 

must be run to extremely low relative tolerances (5x10^-9) to consider the 

earthquake nucleation phase directly in simulations (directly simulating the 

earthquake nucleation phase as opposed to inferring it from seismological 

relationships). Nucleation events might last seconds over a simulated period of 

several hundred years.  

𝜉𝑒 =

{
 𝑚𝑖𝑛(𝛥𝜏)(𝑥,𝑧)𝑝𝑟𝑒𝑓𝑎𝑖𝑙;  𝑓𝑜𝑟 |Ξ∆𝐿𝑓|  >  |𝑚𝑖𝑛(𝛥𝜏)(𝑥,𝑧)𝑝𝑟𝑒𝑓𝑎𝑖𝑙| 𝑎𝑛𝑑 Ξ∆𝐿𝑓 > 0  

Ξ∆𝐿𝑓; 𝑒𝑙𝑠𝑒
(3.18) 

Off-fault, on-fault and earthquake nucleation are non-smooth processes (the 

evolution of a physical quantity transitions discontinuously from one value to 

another). These transitions arise due to discontinuous approximations of the true 

system to limit the range of space- and timescales we consider. The event-location 

function of the MATLAB ODE solver suite is used to detect the point at which either 

failure occurs at an array point or the onset of unstable sliding (an earthquake) when 

failure length exceeds nucleation length. The locations of these events halt the time 

integration of the system of ODEs and the discontinuous failure state and physical 

quantities which depend on it (permeability and porosity (Eq. 3.6; Table 3.1)) are 

updated. The MATLAB event-location function requires specifying a function which 

returns a single value ξe which is zero for all failure events, positive for prefailure 

and negative for post-failure (Eq. 3.18; Table 3.1). The function Eq. 3.18 considers 

both off-fault and fault failure (𝛥𝜏, Eq. 3.16; Table 3.1) and earthquake nucleation 
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(∆𝐿𝑓 , Eq. 3.17; Table 3.1) by isolating the array point that has just begun failure and 

excluding points which have already failed. It must also ensure that both failure and 

earthquake nucleation quantities vary over the same approximate range of values for 

the consistent application of relative tolerance, we enforce this by multiplying the 

earthquake nucleation parameter ∆𝐿𝑓 by a factor 𝛯. As events are detected at the 

instant when 𝜉𝑒takes a zero value timing is unaffected by this factor (any multiple of 

zero is still zero.) 

Switching and updating on failure events like this ensures both that the integration is 

well-posed and increases computational efficiency as typically fewer evaluations are 

required. The switching mentioned above is necessary as at the instant of failure we 

model a discontinuous permeability change, the ODE solvers used assume that all 

changes are continuous. Ignoring such changes would result in numerical errors in 

the returned solution, equivalent to the solver encountering a singularity in 

permeability. Solvers in MATLAB’s ODE suite evaluate the pressure derivative at 

multiple minor steps between full step evaluations. To calculate pressure before and 

after this event takes fewer time steps than it would were the solver to model it 

instead as a near-discontinuous but finite time derivative in the corresponding 

physical variable (e.g. permeability), particularly if the suggested initial step size 

post-event is judiciously specified. 



      

 

~ 87 ~ 
 

 

Figure 3.5: Variations of earthquake parameters vs. pore fluid factor, for 

simulations demonstrating numerical instability with the ODE15s solver. 

Length of interseismic period (a), duration of the nucleation phase (b), length of 

rupture patch at failure (c) and length of the rupture patch at nucleation) are 

plotted against variation of the pore fluid factor across multiple simulations. 
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Figure 3.6: Variations of earthquake parameters vs. pore fluid factor, for 

numerically stable simulations, with the ODE23tb solver. Length of interseismic 

period (a), nucleation length (b) and duration of nucleation phase (c) are plotted 

against variation of the pore fluid factor across multiple simulations. 
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3.5.2 ODE Solver Selection and Numerical Stability 

The Jacobian matrix, the first order partial derivatives of pore pressure at each of the 

grid points, varies over time due to the nonlinear dependence of transport properties 

on pressure, as do its eigenvalues. The instantaneous values of the Jacobian matrix 

and its eigenvalues can be inspected directly during simulation. The discrete failure 

state formulation leads to an extremely stiff set of differential equations, with 

Jacobian eigenvalues at certain points during simulation differing by up to 11 orders 

of magnitude, when applied to the case studies in this thesis. These stiff equations 

are solved using MATLAB’s ODE23tb solver, an implementation of the ESDIRK23 

algorithm (explicit singly diagonal implicit Runge-Kutta method Bagterp Jørgensen 

and Rode Kristensen, 2018; Kristensen et al., 2004). 

When numerically integrating systems of ODEs it is expected that for numerical 

stability a smaller step size is required in regions where the solution curve shows 

more variation and vice versa. Systems are stiff if they require a small step size for 

numerical stability even in smooth solution curve regions, systems of equations 

exhibiting this phenomenon. The system of ODEs defined above exhibit extremely 

stiff behaviour as applied to the case studies in this thesis (Lambert and D., 1991), 

consistently the eigenvalues of the Jacobian matrix considered above can differ by 

up to 11 orders of magnitude in these cases.  

The stiffness of a system of equations is a primary factor in ODE solver selection. 

MATLAB was selected as a language to write the numerical simulations in this 

thesis for their ODE suite and the ability to provide a sparse Jacobian pattern to the 

solver to increase computational efficiency. The columns of the Nz by Nx physical 

variable arrays can be stacked into at NzNx long vector, with corresponding NzNx by 
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NzNx Jacobian matrix pattern (indicating with ones the non-zero elements of the 

Jacobian matrix): 

𝐽𝑝𝑎𝑡 =

 
  
 
 

(

 
 
 
 
 
 

 

      𝑁𝑍   
 1 1 0 0 ⋯ 1 0 ⋯
 1 1 1 0 ⋯ 0 1 ⋯
 0 1 1 1 ⋯ 0 0 ⋯
 0 0 1 1 ⋯ 0 0 ⋯
 ⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋯ ⋯
𝑁𝑍 1 0 0 0 ⋮ 1 1 ⋯
  0 1 0 0 ⋮ 1 1 ⋯
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
 
 
 

 (3.19) 

 

The use of a Jacobian pattern reduces the number of calculations required at each 

time step by the ratio of the sum of non-zero elements to total elements, in this case, 

~
5

𝑁𝑥𝑁𝑧
.  

MATLAB provides a series of stiff ODE solvers, and ODE23tb was selected an 

explicit singly diagonal implicit Runge-Kutta  (ESDIRK) solver, being the only 

solver which is A-,  L-,  S-stable (Hosea and Shampine, 1996; Shampine and 

Reichelt, 1997). ODE23tb is an implementation of the ESDIRK23 algorithm 

specifically (Bagterp Jørgensen and Rode Kristensen, 2018; Kristensen et al., 2004). 

The A-stability requirement ensures that solutions corresponding to all negative 

Jacobian matrix eigenvalues tend to zero as time tends to infinity and L-, S-stability 

place conditions on the solver which ensure that these solutions would approach zero 

in a single step as step size goes to infinity, ensuring no numerical oscillation.  

Preliminary testing with the ODE15s and ODE23s solvers showed numerical 

instability in low-tolerance nucleation phase simulations (Fig. 3.5 vs. Fig 3.6) arising 

from the lack of A-, L-, S-stability in the underlying adaptive order and Rosenbrock 

methods (Shampine and Reichelt, 1997) respectively. The examples in Fig. 3.5-6 are 
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ran from different initial tectonic stresses, but the relative variation in solutions is 

clear. The greatest errors were introduced when failure events were incorrectly 

located during simulation, as mistiming these events during which permeability 

would increase by several orders of magnitude would have a huge cumulative 

impact. We suspect this instability resulted from the inaccurate estimation of 

truncation error associated with the timestep expansion for extremely stiff problems 

and hence relative tolerance during simulation. However, MATLAB solvers being 

closed source cannot be interrogated directly during simulation. 

3.5.3 Parallelisation 

Any numerical simulation result must either be robust to changes in uncertain 

variables otherwise we will need to constrain the behaviour we observe in these 

simulations over a range of values for each uncertain parameter. With any numerical 

case study using uncertain observations of natural subsurface faults, there is a need 

to explore the impact of varying the most uncertain parameters, so that we can 

distinguish behaviours and conclusions that would apply generally to the class of 

similar faults, from those that would apply only to faults with physical properties 

very similar to the assumed base case. Parameter studies allow us to expand our 

dataset for numerical experiments; we can build an initial base case using 

observations of a fault from the natural world and alter one or more parameters over 

a range of values likely found in other natural faults.  

A parameter study is a set of simulations which are necessarily independent of one 

and other, as such they are candidates for parallelisation. Scripts were constructed 

using MATLAB’s object-oriented language features to ensure each simulation 

existed as a distinct object in memory, isolated for parallelisation, taking each of the 

varied parameters as an input argument. This object isolation in memory allows 
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discontinuous physical variables to be updated and persist between each time-

integration (between located failure events) as object properties and not as global 

variables, without affecting simulations with different sets of parameters run 

concurrently. Both parallelisation and performant scripts were necessary as a single 

high spatial resolution (175 x 200), low relative tolerance simulations (~5E-9) would 

require of the order of 107 simulation steps. Computation time for a single parameter 

study (typically involving varying a parameter over a range of roughly 20 values) 

could be conducted on a desktop computer, in less than three days at worst and an 

hour at best. The number of localised failure events and hence dominant mode of 

failure significantly affects the number of discontinuous permeability transitions and 

hence time steps required for simulation. Brittle failure dominated parameter studies 

might take on the order of days where ductile failure dominated studies were 

typically on the order of hours. 

 

3.6 Model Testing and Verification 

To validate the MATLAB scripts used in simulations the fluid flow model, the 

component of simulation produced directly from the integration of differential 

equations, is tested under all conditions where analytical solutions exist (constant, 

nonlinear, discontinuous permeability). All other physical variables used in 

simulations are produced from direct algebraic equations were tested in development 

by ensuring that the correct answer was returned for a given input. 
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Figure 3.7: Boundary conditions used to test fixed pressure Dirichlet boundary 

conditions.  Top and bottom boundary conditions chosen to produce solutions 

independent of y. 

 

Figure 3.8: Simulation results for homogeneous isotropic permeability case at 

y=50m, compared to known analytical solution. Analytical results (black) and 

simulation results (red) are colinear excepting externally imposed initial 

conditions. 

3.6.1 Constant permeability 

To validate the pore pressure diffusion code and boundary conditions a reduced 

complexity version of the model was considered. A 100 m by 100 m region, in the x 



      

 

~ 94 ~ 
 

and y directions, overpressured at the left boundary, with the right boundary held at 

hydrostatic pressure and initially hydrostatic everywhere else. Neumann symmetry 

boundary conditions for pressure are imposed at the top and bottom boundary, 

representing seals, to produce a pore pressure distribution that is independent of 

vertical position (Fig. 3.7). For this test we selected. homogenous, isotropic 

permeability of 10-16 m2.  

The above initial-boundary-value problem has the following solution: 

𝑃(𝑥, 𝑡) = 𝑃ℎ𝑦𝑑𝑟𝑜 + 𝑃𝑜𝑝 (1 − 𝛾 − 
2

𝜋
∑

sin (𝜋𝑛𝛾)

𝑛
𝑒−(𝜋𝑛)

2𝛼𝑡∞
𝑛=1 ) (3.20) 

Where 

𝛾 =
𝑥 − 1

𝐿𝑥 − 1
 

and 

𝛼 =
𝑘𝑥
𝛽𝜂𝜑

 

Figure 3.8 shows the simulation results at each timestep that was evaluated by the 

solver, over the horizontal line y=50m. The analytical results and simulation result 

are colinear except under initial conditions and vary by less than the ODE solver 

relative tolerance, we take this is validation that the numerical simulation code 

reproduces both transient and steady state behaviour for simple homogeneous porous 

media. The simulation exhibits a variation from initial conditions when compared to 

the analytical solution, this is as the externally imposed initial conditions are not 

actually a valid solution to the physical system. 
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Figure 3.9:  Simulation results for nonlinear homogeneous isotropic 

permeability case at y = 50m, compared to known analytical solution. Analytical 

results (black) and simulation results (red) are colinear at steady state (where 

analytical solution exists). 

3.6.2 Pressure-dependent permeability 

To validate simulations of nonlinear pressure dependent permeability, the same 

scenario was considered now considering a permeability model of the form 𝑘 =

𝑘0𝑒
−ɣP. Setting a permeability of 10-16 m2 at zero pressure with pressure sensitivity ɣ 

= 5⨉10-8. This initial-boundary-value problem has the following steady-state 

solution: 

𝑃 = ln
 (𝑐𝑥+𝑑)

𝛾
 (3.21) 

where: 

𝑐 =  
exp (𝛾𝑃ℎ𝑦𝑑) − exp (𝛾𝑃𝑜𝑝) 

𝐿
 

and: 

𝑑 =  exp (𝛾𝑃𝑜𝑝) 
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Figure 3.6 similarly shows the simulation results at each timestep that was evaluated 

by the solver, over the horizontal line y=50m. At steady state, the analytical results 

and simulation result are almost perfectly colinear and vary by less than the ODE 

solver relative tolerance. No analytical solution exists for the transient problem. We 

take this consistency between solutions as validation that the numerical simulation 

code reproduces steady state behaviour when compare to situations with pressure 

dependent permeability. 

 

 

 

Figure 3.10: Simulation results for discontinuous change in homogeneous 

isotropic permeability case at y=50m, compared to known analytical solution. 

Analytical results (black) and simulation results (red) are colinear except for 

externally imposed initial conditions. 
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3.6.3 Discontinuous permeability transition 

To validate the discontinuous transitions in permeability introduced in our 

simulations, the case of isotropic, homogenous, constant permeability is once more 

considered, taking the same initial value as the previous case. However, after ten 

seconds the permeability is instantaneously doubled throughout the modelled area. 

Prior to this change in permeability the solution equation 3.20 holds, subsequently 

the following solution holds:  

𝑃(𝑥, 𝑡) = 𝑃ℎ𝑦𝑑𝑟𝑜 + 𝑃𝑜𝑝 (1 − 𝛾 − 
2

𝜋
∑

sin (𝜋𝑛𝛾)

𝑛
𝑒−(𝜋𝑛)

2(𝛼′𝑡 + 𝛼𝑡0)∞
𝑛=1 ) (3.22) 

Where 

𝛼′ =
𝑘𝑥 
′

𝛽𝜂𝜑
 

with t0=10s, the time of the instantaneous permeability change. Again, as the 

solutions are colinear to within solver tolerance we take this as validation that fluid 

flow script can accurately recover known analytical solutions for both transient and 

steady state conditions (Fig. 3.10). Due the large disparity in timescales between 

initial fast fluid flow changes before a quasi-steady state is reached and the 

unloading of the fault, to a somewhat close approximation (at least the closest 

approximation with analytical solution) the step change in permeability is effectively 

a timed change in permeability.  

 Further as each of the fundamental permeability behaviours of the simulated system 

match known analytical solutions where available we take this as validation of the 

partial differential equation component of our fluid flow solver script in general. 
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CHAPTER 4 

Modelling fluid flow in complex natural fault zones: implications for natural and 

human-induced earthquake nucleation. 
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4. Modelling fluid flow in complex natural fault zones: 

implications for natural and human-induced earthquake 

nucleation. 

Abstract 

Pore fluid overpressures in active fault systems can drive fluid flow and cause fault 

weakening and seismicity. In return, deformation accommodated by different mode 

of failure (e.g. brittle vs. ductile) also affects fault zone permeability and, hence, 

fluid flow and pore fluid pressure distribution. The resulting non-linear, complex 

feedback between fluid flow, fluid pressure and fault deformation control the length 

of the nucleation phase of an earthquake and the duration of the interseismic period. 

Current numerical simulation techniques model how fluid flow controls fault 

reactivation and associated seismicity. However, the control exerted by pore fluid 

pressure on the transition from aseismic slow fault sliding to seismic fast sliding, 

during the earthquake nucleation phase, is still poorly understood. Here, we model 

overpressured, supercritical CO2 fluid flow in natural, exhumed faults in evaporite 

sequences, which represent an analogue of the seismic sources at hypocentre depth 

of recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Our modelling results of Darcy 

fluid flow show that the duration of the nucleation phase is significantly reduced, 

from a few years to a few months, when realistic models of fault zone architecture 

and pore pressure- and deformation-dependent permeability are considered. 

Interestingly, a few months is also the time scale of aseismic slip measured during 

the nucleation phase of some recent large earthquakes (e.g. Fig. 4.7c; Mavrommatis 

et al., 2014; Kato et al., 2012; Socquet et al., 2017). These findings have significant 
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implications for earthquake early warning systems, as any significant extension of 

the nucleation phase can increase the likelihood of precursory signal detection. In 

addition, our results have important implications for short- and long-term earthquake 

forecasting, as crustal fluid migration during the interseismic period may control 

fault strength and earthquake recurrence intervals. 
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4.1. Introduction 

Pore fluid pressure plays a primary mechanical role during faulting as it reduces 

the frictional fault strength (Cox, 2010; Sibson, 1990, 1992). There is strong 

geological and geophysical evidence that fluid migration in the upper crust controls 

faulting (Collettini et al., 2009; Cox, 1995; Cox et al., 1987; De Paola et al., 2008; 

Hickman et al., 1995; Miller, 1996; Rice, 1992; Sibson, 1992, 1990, 2000), and 

natural (Di Luccio et al., 2010; Miller et al., 2004; Nur and Booker, 1972) and 

human induced (Ellsworth, 2013; McGarr et al., 2015; Sumy et al., 2014) seismic 

activity. 

Fluid circulation within the upper crust is strongly dependent on the transport 

properties of rocks (i.e., permeability). Rock permeability and porosity vary with 

pressure conditions and deformation (De Paola et al., 2009; Fischer, 1992; Hangx et 

al., 2010; Morrow and Lockner, 1997, 1994; Paterson and Wong, 2005; Zhu et al., 

1997), which control the development and connectivity of fracture patterns across a 

range of scales (Caine et al., 1996; Cox, 1995; Mitchell and Faulkner, 2008; Peach 

and Spiers, 1996; Wong et al., 1997; Zoback and Byerlee, 1975). 

In previous modelling efforts, the link between fluid flow and faulting has been 

investigated using coupled deformation and fluid flow modelling software, such as 

TOUGH-FLAC (Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 

2002). Coupled fluid flow and geomechanical fault slip (e.g. fault reactivation) 

analysis have been used, for example, to model the spatial evolution of both in situ 

stresses and fluid pressure, to estimate the maximum sustainable injection pressure 

during geological sequestration of CO2 (Rutqvist et al., 2007). In these studies, fluid 
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flow was modelled for metre to kilometre scale fault zone features, considering 

permeability as a continuous function of porosity, volumetric strain, average 

effective stress (Davies et al., 2001), and fault shear strain (Rutqvist et al., 2007). 

This approach has been extended to also include the effect of simplistic fault zone 

architectures (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; 

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009; Leclère et al., 

2015). Overall, previous results show that pressure increase due to shear-enhanced 

permeability plays an important role, as it can facilitate the propagation of fault 

instability and extend permeability enhancement through the overlying caprock.  

Here, we model fluid flow in exhumed faults in evaporite sequences with 

complex architecture, and pore pressure- and deformation-dependent permeability. 

These faults represent an analogue of the seismic sources at hypocentre depth of 

recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Modelled fluid flow is then used to 

investigate the effects of pore fluid pressure distribution during the nucleation phase 

that precedes an earthquake. During this phase, stable sliding spreads out from an 

initial small patch until it reaches a critical size, the nucleation length, at which 

unstable fast sliding results in the propagation of the rupture (Marone, 1998; Scholz, 

1998).  

Identifying the factors that control the duration of the nucleation phase of 

earthquakes has significant implications for earthquake early warning systems, as 

any significant extension of the nucleation phase can increase the likelihood of early 

premonitory signal detection. Furthermore, modelling pore fluid pressure evolution 

during the interseismic period has relevant implications for long term earthquake 

forecasting, as it controls fault strength and earthquake recurrence intervals. 
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4.2. Numerical method 

We perform numerical simulations of nonlinear diffusion to model fluid flow in 

fault zones with realistic, complex fault zone architecture (all symbols and values 

used are explained in Table 1). In our model, fault zone permeability is assumed to 

vary as a function of effective stress and mode of failure (e.g. brittle and localised vs. 

ductile and distributed). 

4.2.1. Porous media flow and numerical solution 

We develop an approach based on the diffusion of pore pressure within a classical 

porous medium using Eq. 3.4 which relates pore pressure p and permeability 𝑘 to the 

rate of change of pressure with time t. The compressibility β is approximated as 

being only the fluid compressibility, because the compressibility of supercritical CO2 

exceeds that of evaporite rocks by several orders of magnitude (Burke, 2011; 

Robertson et al., 1958). It is also assumed that the variation of viscosity υ and 

compressibility with effective stress is negligible for the range of conditions 

simulated (Burke, 2011), where effective stress as defined in Eq. 2.2.  

Following the experimental permeability relations observed in low porosity 

evaporite rocks (De Paola et al., 2009; Hangx et al., 2010), we consider that the solid 

rock is an ideal porous medium. Its permeability can be expressed as a function of 

effective stress in the presence of ductile deformations, accommodated by small, 

distributed fracture patterns (Detournay and Cheng, 1993). We also consider 

singularities in the time derivative of permeability when localised brittle failure 

occurs, leading to instantaneous increase of permeability within the fault (De Paola 

et al., 2009).  
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We make the simplifying assumption that single-phase dry, supercritical CO2 

saturates the modelled fault zone and that no precipitation or dissolution occurs 

between the fluid and rock matrix. This assumption is in accord with field data 

supporting large CO2 fluxes in the epicentre areas of the Northern Apennines seismic 

belt (e.g. Mw 6.0 1997-98 Colfiorito and Mw 6.3 2009 L’Aquila extensional 

earthquakes), where large deep-seated CO2 flux greater than 0.45 t day−1 km−2 have 

been measured (Chiodini et al., 2004; Collettini et al., 2008). 

Although fault zone geometries, physical properties and mechanical behaviour 

used in our modelling are inferred and constrained from a seismic extensional fault 

zone in evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008), the 

methods and results can be generalised and applied to any natural fault zone subject 

to natural single phase flow and in the absence of significant rock matrix dissolution 

with known fault zone architecture and constrained physical and mechanical 

properties. 

 

4.2.2. Model input parameters 

4.2.2.1. Fault zone architecture  

The modelled fault zone is formed within the Triassic Evaporite formation: a 1.5-

2 km thick sequence of 6 – 19 m interbedded anhydrite/gypsum and dolostones 

(Barchi, 2002; Trippetta et al., 2013). Seismological data and observations from 

hypocentre depths in the Northern Apennines seismic belt indicate the presence of 

shallow dipping (45°) faults, which may favour the generation of fluid overpressure 

leading to fault reactivation (Barchi, 2002; Miller et al., 2004; Mirabella et al., 

2008).  
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Fault zone architecture is constrained by field observations reporting a 1 m wide 

inner fault core, where most of the slip accommodated by the fault is localised (Fig. 

2.8a; Collettini et al., 2009; De Paola et al., 2008). Outside the fault core, a well-

developed damage zone (DZ) is observed within thick (a few meters to tens of 

meters) fractured dolostones, extending at least 10 m in either direction from the 

fault core. Conversely, no macroscopic fracturing is observed within the foliated 

anhydrite layer immediately adjacent to the fault core, on either side of the fractured 

dolostones (Fig. 2.8a) (De Paola et al., 2008).  

The fault core can be subdivided into an inner fault core (IFC), containing fine-

grained cohesive cataclasites, which is enclosed on both sides by a 2 m wide outer 

fault core (OFC), containing cohesive foliated anhydrites, which are not fractured 

(Fig. 2.8b) (De Paola et al., 2008). Within the IFC, slip is further localised along 

straight principal slip surfaces (PSS), which are located within thin (millimetre-

scale) principal slip zones (PSZ) of ultra-fine-grained incohesive anhydrite and 

dolomite-rich gouges (Fig. 2.8b) (De Paola et al., 2008).  

A schematic, yet realistic, fault zone architecture is used within the model (Fig. 

3.2), where it is assumed that seismic slip occurs along a single PSZ of zero 

thickness, made of incohesive fault gouges and located in the centre of the IFC, 

which is made of cohesive cataclasites (Fig. 3.2).   
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Figure 4.1: Failure envelopes and schematic Mohr circles for the different fault 

zone domains: a) The brittle (localised deformation) and ductile (distributed 
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failure) regions of the OFC and IFC failure envelopes are indicated with core 

plug sketches. The schematic Mohr circles show the onset of brittle and ductile 

failure in the OFC, respectively. b) The Mohr circle shows the onset of frictional 

sliding along a cohesionless principal slip surface within the PSZ (Black line 

within the Mohr circle). 

4.2.2.2. Failure envelopes and mode of failure  

The failure envelopes, mode of failure and transport properties of rocks within the 

OFC and IFC fault zone domains have been obtained from triaxial deformation 

experiments with fluid flow, performed on borehole samples of Triassic Evaporites 

rocks (De Paola et al., 2009; Hangx; et al., 2010).  

The strength of intact anhydrite rocks is controlled by the presence and 

orientation of fabric anisotropy, with the weakest rocks being those where foliation 

is sub-parallel to the loading direction. On the other hand, the transition between 

localised brittle to distributed ductile mode of failure is controlled by effective 

stresses, and occurs at about 20 MPa regardless of grain size, presence of fabric 

anisotropy, and its orientation (De Paola et al., 2009). 

Mohr-Coulomb failure envelopes have been constructed for each fault zone 

domain, i.e. the OFC, the IFC and the PSZ (Fig. 4.1). The failure envelope of the 

foliated anhydrite in the OFC is obtained from triaxial loading experiments 

performed on anhydrite borehole samples with foliation oriented sub-parallel to the 

loading direction (Fig. 4.1a; De Paola et al., 2009). A sharp transition from localised 

brittle to distributed ductile mode of failure is observed at effective stresses of about 

20 MPa (Fig. 4.1a). The failure envelope of the IFC, made of cohesive, anhydrite 

bearing fine-grained cataclasites, with no fabric, is obtained from triaxial loading 

experiments performed on fine-grained, homogeneous anhydrite borehole samples 
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(Fig. 4.1a; De Paola et al., 2009). The failure envelope of the PSZ – the actively 

slipping plane within the IFC – is assumed consistent to that of a cohesionless fault 

plane, with Byerlee’s sliding friction coefficient of 0.6 (Fig. 4.1b; Scuderi et al., 

2013).  

In our simulations, the frictional strength of the fault is taken to be homogeneous 

and without asperities. Any variation in frictional strength is modelled as being 

dependent only on effective normal stress, which is taken to be constant on the 

sliding fault patch, after sliding begins. This approximation assumes that the fault 

patch can no longer accumulate or dissipate stress energy locally, as any change in 

energy will instead accelerate or decelerate sliding. Similarly to what demonstrated 

in Campillo et al. (2001), and using a similar approximation to Uenishi and Rice 

(2003), we approximate the nucleation length (LN) of a failure patch (LF) as the 

nucleation length of the stiffest point in the patch (largest effective normal stress).  
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Figure 4.2: Log-plot of permeability against differential stress and effective 

pressure based on triaxial experiments performed on OFC Triassic Evaporites 

samples. a - b) Fault parallel (a) and fault perpendicular (b) permeability 

evolution with effective pore pressure derived from static triaxial experiments 

with no loading of the sample. c – d) Fault parallel (c) and fault perpendicular 

(d) permeability evolution with effective pore pressure and stress dependence 

obtained during dynamic triaxial experiments, when samples are loaded to 

failure. 

NB: The raw values for this plot are taken from De Paola et al., 2009, in which 

the terminology effective pressure is used in place of effective stress. 

4.2.2.3 Fault zone transport properties 

The permeability tensor relations have been constructed for the OFC using 

available data from triaxial deformation experiments with fluid flow (De Paola et al., 

2009), and are illustrated in Fig. 4.2. In particular, the fault parallel and 

perpendicular components of the permeability tensor in the OFC are obtained from 

loading experiments to failure with fluid flow imposed parallel and perpendicular to 

fabric, respectively. To a first approximation, laboratory experiments show that the 

permeability of anhydrite rocks before failure are controlled by the combined effect 

of (De Paola et al., 2009): 1) effective stress, as permeability decreases with 

increasing effective stress, due to porosity reduction (Fig. 4.2a-b); and 2) 

deformation, as permeability increases with increasing loading due to the creation of 

fractures within the rock (Fig. 4.2c-d). For a given value of pore pressure, a sudden 

increase in permeability is observed at failure, and its magnitude is controlled by the 

brittle and ductile mode of failure (Fig. 4.2c-d), respectively. The pore pressure 
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sensitivity of permeability k is described by the general, experimentally derived, 

empirical Eq. 3.6. 

At the onset of distributed ductile failure, permeability will rapidly increase (Fig. 

4.3c-d). Then, for a given value of effective stress during ductile failure, 

permeability will reach a plateau value when a percolation threshold state is attained 

in the sample, due to the development of a fully connected network of microfractures 

(Fig. 4.3c-d; De Paola et al., 2009). Permeability of samples deforming in a ductile 

mode is sensitive to effective stress variations (Fig. 4.3c-d; Table 1), which can 

reduce or enhance the porosity of the sample by closing or opening fractures, 

respectively (De Paola et al., 2009). 

Conversely, at the onset of localised brittle failure, permeability will rapidly 

increase to a relatively high value (Fig. 4.3c-d). After the occurrence of brittle 

failure, we assume that permeability will not be sensitive to effective stress 

variations (Fig. 4.3c-d; Table 1), as the macroscopic fault/fracture can act as an 

effective conduit for fluid migration (De Paola et al., 2009). We also assume that all 

fractures created during the pre- and co-seismic phase will be fully healed soon after 

the main seismic event. This is due to the efficiency of hydrothermal healing 

processes, acting during the interseismic period, which may seal micro- and macro-

scale fractures within a few years of a slip event (Keulen et al., 2008; Nakatani and 

Scholz, 2004; Niemeijer et al., 2008; Scuderi et al., 2013; Yasuhara et al., 2005).  

The permeability of the fine-grained cataclasites in the IFC and gouges in the PSZ 

are assumed to be anisotropic in the fault-parallel and fault-orthogonal direction 

(Evans et al., 1997; Wibberley and Shimamoto, 2002), but otherwise in the OFC, 

they are not assumed to depend on pore pressure and deformation (Table 1).  
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4.2.3 Model setup  

The model setup assumes that pore fluid overpressure within the damage zone 

(DZ) is largely contained within the fractured dolostone layer (Fig. 3.2). Hydrostatic 

pore fluid pressure occurs within the layers of foliated anhydrite in the DZ, which act 

as a perfect seal at their contacts immediately above and below the overpressured 

dolostone reservoir (Fig. 3.2). The initial pore pressure distribution within the fault 

core is assumed to be uniform and hydrostatic. This is due to fault-valve behaviour 

(Sibson, 1990), as any overpressure build-up during the interseismic period within 

the fault core is being quickly released during and soon after the seismic event 

(Miller et al., 2004).  

We simulate an area of 2.5 by 1000 m, representing the upper left quadrant of the 

fault core (Fig. 3.2), located at a hypocentre model depth of 7 km and subject to 

extensional tectonic loading by reduction of the least principal stress axis at a rate of 

0.15 MPa/year, based on the tectonic setting (Chiaraluce et al., 2003). All models are 

run from an initial stress state with minimum principal stress set at 85% of lithostatic 

load (Miller et al., 2004).  

Our simulations only directly model the OFC and IFC, with boundary conditions 

defined using the pore pressure conditions from the damage zone. Pressure boundary 

conditions are hydrostatic on all boundaries, except for a 40 m thick overpressured 

part of the side boundaries, which models the effects of an external, infinitely wide, 

permanently overpressured reservoir made of fractured dolostones (Fig. 3.2; De 

Paola et al., 2008; Trippetta et al., 2013).  

To reduce computational costs, we exploit the model’s symmetry properties. The 

idealised fault section has two planes of symmetry, the fault parallel plane bisecting 

the fault, and the fault perpendicular plane bisecting the overpressure contacts. In our 
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model, these planes become symmetry boundaries, with the gradient of pore pressure 

normal to these boundaries set to zero. 

The top and bottom fixed pressure boundaries maintain a hydrostatic pressure, 

and domain dimensions are chosen large enough that this boundary doesn't 

significantly affect pressure distribution within the model domain. For each 

simulation, the length of fault that is considered is selected ensuring that the pressure 

gradient at the upper perpendicular boundary is less than 1% of hydrostatic pressure 

per metre.  

4.3. Results  

A series of numerical simulations have been performed for a range of initial pore 

pressures, at a depth of 7 km, for a fixed tectonic unloading rate in the minimum 

principal stress direction. Fluid flow in the fault core during the interseismic period 

is modelled for two end-member scenarios, Case A and B. In the simpler Case A 

scenario, permeability evolves during the interseismic period in the OFC solely 

controlled by pore pressure variations and lithological factors (e.g. fabric presence 

and orientation; Fig. 4.2a-b). In the more complex Case B scenario, permeability 

evolution during the interseismic period is additionally controlled by deformation, 

via brittle or ductile failure in the OFC (Fig. 4.2c-d).  

The effect of pore pressure evolution in the fault core on the duration of the 

nucleation phase and on the size of the nucleation patch is then investigated.  
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Figure 4.3: Simulation results of pore pressure evolution and onset of failure – 

Simple Case A. a, d) Plots are provided for slightly supra-hydrostatic, λv = 0.45 

(a), and sub-lithostatic, λv = 0.85 (d) initial pore pressure conditions in the 

damage zone reservoir, compared to initially hydrostatic ones (λv = 0.4) in the 
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fault core. b, e) Pore pressure evolution from initial conditions to the time at 

which failure initiates in a failure patch (LF), along the main principal slip zone 

(PSZ) in the inner fault core (IFC). Note that the size of the failure patch, LF, is 

not to scale in these panels, as LF is infinitesimally small at the onset of failure. 

c, f) Pore pressure conditions at the time an earthquake nucleates, when the size 

of the failure patch, LF,  matches that of the theoretical predicted nucleation 

length, LN. g) Mohr failure analysis for the PSZ at initial conditions (a, d), onset 

of fault failure (b, e) and earthquake nucleation (c, f). Results are presented for 

40 m of 1 km simulated region shown vertically, and 2.5 m fault core 

exaggerated horizontally. During simulations a millimetre scale horizontal 

spatial grid was used, and vertically an initially millimetre scale logarithmic 

grid was used. 
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Figure 4.4: Simulation results of pore pressure evolution and onset of failure – 

Complex and realistic Case B. a, e) Plots are provided for slightly supra-

hydrostatic, λv = 0.45 (a), and sub-lithostatic, λv = 0.85 (e) initial pore pressure 

conditions in the damage zone reservoir, compared to initially hydrostatic ones 

(λv = 0.4) in the fault core. b, f) Pore pressure evolution from initial conditions to 

the time at which ductile (b) and brittle (f) failure initiates in the outer fault 

core (OFC). White arrows indicate the extent of ductile and brittle deformation 
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front in the OFC.  c, g) Pore pressure conditions when fault failure initiates in a 

patch (LF), along the main principal slip zone (PSZ) in the inner fault core 

(IFC). d, h) Pore pressure conditions at the time an earthquake nucleates, when 

the size of the failure patch, LF,  matches that of the theoretical predicted 

nucleation length, LN. i - j) Mohr failure analysis for the PSZ (i) and OFC (j) at 

initial conditions (a, e), onset of ductile (b) and brittle (f) failure in the OFC, 

onset of fault failure (c, g) and earthquake nucleation (d, h). Results are 

presented for 40 m of 1 km simulated region shown vertically, and 2.5 m fault 

core exaggerated horizontally. During simulations a millimetre scale horizontal 

spatial grid was used, and vertically an initially millimetre scale logarithmic 

grid was used. 

4.3.1 Pore pressure evolution and onset of failure  

4.3.1.1 Simple Case A scenario 

During the interseismic period, permeability evolves with pore pressure variations 

and lithological factors in the OFC, while it is constant (but anisotropic) along the 

fault-parallel and -orthogonal direction in both the IFC and PSZ (Fig. 3.2). The pore 

pressure conditions in the fault zone are represented by the pore fluid factor λv, 

defined as the ratio between pore pressure and lithostatic load. We model fluid flow 

for two pore pressure regimes in the damage zone reservoir, with slightly supra-

hydrostatic (λv = 0.45) and sub-lithostatic (λv = 0.85) initial pore pressure conditions, 

compared to initially hydrostatic ones (λv = 0.4) in the fault core (Fig. 4.3a, d).  

Our results show that at the beginning of the interseismic period, soon after an 

earthquake event, pore pressure excess is concentrated in the vicinity of the 

overpressure contact at the DZ/OFC boundary (Fig. 4.3a, d). High time resolution 

simulations show that pore fluids start to rapidly diffuse within the OFC first and 
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then into the IFC and PSZ, where pore pressure increases along the fault-parallel and 

-perpendicular direction. A quasi-steady state pore pressure regime is attained in the 

fault zone on the order of days.  

Failure by sliding along the PSZ will start at 356 and 119 years, for λv = 0.45 and 

0.85, respectively, when the shear stress level, which is controlled by the tectonic 

loading rate, matches the fault strength, which is dependent on pore fluid pressure 

(Fig. 4.3g). At this time, failure patches begin to develop along the PSZ in the supra-

hydrostatic and sub-lithostatic pressure cases, respectively (LF in Fig 4.3b, e).  

4.3.1.2 Complex and more realistic Case B scenario 

We now consider the more complex and realistic scenario where permeability 

evolution during the interseismic period in the fault core is additionally controlled by 

deformation, via brittle or ductile failure in the OFC (Fig. 4.3c-d). We consider here 

the same two scenarios as before, for slightly supra-hydrostatic (λv = 0.45) and sub-

lithostatic (λv = 0.85) initial pore pressure condition in the damage zone reservoir, 

again compared to initial hydrostatic ones (λv = 0.4) in the fault core (Fig. 4.4a, e).  

Let us consider first the case of slightly supra-hydrostatic (λv = 0.45) initial pore 

pressure conditions in the damage zone reservoir and assume the same initial state of 

stress in the fault and extensional tectonic loading rate as in the previous scenario 

(Fig. 4.4i-j). Similarly, to the case with no deformation control, high time resolution 

simulations show that pore fluids start to rapidly diffuse within the OFC first and, 

then, into the IFC and PSZ. After 327 years, the stress level in the OFC is such that 

ductile failure sweeps rapidly across its full width (Fig. 4.4b), before sliding begins 

along the PSZ (Fig. 4.4i-j). Sliding along the PSZ occurs earlier than in Case A (Fig. 

4.3b, 4.4c), at almost the same time as ductile failure in the OFC. 
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For sub-lithostatic (λv = 0.85) initial pore pressure conditions in the damage zone 

reservoir, pore fluids start to rapidly diffuse within the OFC, IFC and PSZ, and pore 

pressure reaches a quasi-steady state after 19 days, but with the attainment of higher 

pore pressure values than in Case A. This means that at the initial stage, the OFC 

Mohr circle is more translated to the left than in Case A and, hence, will intercept the 

brittle segment of the OFC failure envelope during loading (Fig. 4.4i-j). After 58 

years, brittle failure begins in the OFC increasing its permeability by around 3 orders 

of magnitude (Fig. 4.4f). Sliding along the PSZ first occurs at 58.7 years (LF in Fig. 

4.4g), while the brittle failure front extends away from the overpressure contact, 

towards the IFC. There is no ductile failure in this case due to the lower level of 

effective stress in the OFC (Fig. 4.4i-j). The onset of sliding along the PSZ occurs 

after about 59 years, earlier than in Case A when there is no-deformation in the OFC 

(Compare Fig. 4.3e, 4.4g).  

4.3.2 Pore pressure evolution and earthquake nucleation 

During the nucleation stage of an earthquake, stable sliding spreads out from an 

initial small fault patch (LF) until it reaches a critical size, the nucleation length (LN), 

at which unstable fast sliding begins causing the propagation of the rupture (Marone, 

1998; Scholz, 1998). In the framework of rate and state friction theory, the critical 

patch size or nucleation length is inversely proportional to effective normal stress 

(Campillo et al., 2001; Scholz, 1998) and can defined as in Eq. 3.13. 

Hence, modelling results of pore pressure evolution can be used to investigate the 

evolution in space and time of the nucleation length, during the nucleation stage.  

During our simulations, we assume velocity weakening behaviour for the PSZ (F 

in Table 1 and Eq. 4), which has been observed for anhydrite and dolomite-rich 
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gouge at high temperature and sub-seismic sliding velocity (Scuderi et al., 2013). 

When shear stress exceeds the fault shear strength, for a given pore pressure, sliding 

begins along the PSZ. This condition coincides with the beginning of the nucleation 

phase, which ends when the size of the sliding patch on the PSZ equals that of the 

nucleation length (i.e. LF = LN in Figs. 4.3c, f and 4.4d, h); a condition leading to the 

dynamic fast propagation of the rupture. Hence, the computed nucleation length 

values can be used to estimate the duration of the nucleation stage.  

For the simple Case A scenario, with no deformation control on permeability, our 

results show that the initial pore pressure within the damage zone reservoir controls 

the time at which sliding initiates along the PSZ (Fig. 4.3b, e). In fact, the nucleation 

phase initiates significantly earlier for sub-lithostatic (λv = 0.85; Fig. 4.3e) initial pore 

pressure conditions than for slightly supra-hydrostatic ones (λv = 0.45; Fig. 4.3b). 

During the nucleation phase of the earthquake, the failure patch grows along the PSZ 

until conditions for dynamic seismic rupture propagation are attained (e.g. LF = LN in 

Fig. 4.3c, f).  

Remarkably, the nucleation phase is one order of magnitude longer in the case of 

initial sub-lithostatic pore pressure conditions (10.1 years, Fig. 4.3b-c), than in the 

case of supra-hydrostatic ones (0.4 years, Fig. 4.3e-f).  These results are due to the 

trade-off of two competing effects: the reduction of effective normal stress due to 

high pore pressures and the growth of the failure patch along the PSZ. The higher the 

pore pressure, the lower the effective normal stress so the sooner sliding can begin 

(Fig. 4.3b, e). However, the lower the effective normal stress, the higher the 

nucleation length so a larger sliding patch is needed for earthquake nucleation, 

resulting in a longer nucleation phase (Fig. 4.3c, f). It is worth noting that, during the 

nucleation phase, pore fluid pressure conditions do not vary from the steady state 
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conditions attained early during the interseismic period (Fig. 4.3b-c, 4.3e-f). Hence, 

it is the nucleation length inverse dependence on pore pressure that controls the 

duration of the nucleation phase. 

In Case B scenario, the occurrence of ductile (λv = 0.45) and brittle (λv = 0.85) 

failure before and during the nucleation phase significantly increases permeability 

within the OFC (Figs. 4.4b-d, 4.4f-h). The permeability enhancement caused by 

ductile and brittle deformation in the OFC changes the pore pressure field within the 

OFC and IFC. These pore pressure variations reduce the length of the interseismic 

period, when compared to the case with no deformation (e.g. compare Figs. 5b, e 

with Fig. 4.4c, g). This effect is particularly significant for the initial sub-lithostatic 

pore pressure regime (Fig. 4.4e), when brittle deformation in the OFC can halve the 

length of the interseismic period, when compared to the case with no deformation 

(Fig. 4.3f, 4.4h).  

The length of the nucleation phase is 0.1 years in the case of initial sub-lithostatic 

pore pressure conditions (Fig. 4.4g-h) and much quicker, below the resolution of the 

modelling, in the case of supra-hydrostatic ones (Fig. 4.4c-d).  

Compared to the case with no deformation control on permeability, transient fluid 

pressures conditions occur during the nucleation phase (Fig. 4.4c-d, 4.4g-h), as 

opposed to steady state conditions attained in the simple Case A with no deformation 

(Fig. 4.3b-c, 4.3e-f). 
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Figure 4.5:  Variations of earthquake parameters vs. pore fluid factor. Length 

of interseismic period (a), nucleation length (b) and duration of nucleation 

phase (c) are plotted against variation of the pore fluid factor across multiple 

simulations for Case A and Case B, respectively. For case B, the pressure fields 

of ductile and brittle deformation in the OFC are also shown in pink and grey, 

respectively. In panel 7c, a double-headed arrow also shows the range of lengths 

of the nucleation phase of some natural earthquakes, estimated by seismological 

observations (Fig. 4.7c; Mavrommatis et al., 2014; Kato et al., 2012; Socquet et 

al., 2017).  

4.3.3 Pore fluid factor control  

     We perform parameter studies of the same two case scenarios, with (Case A) 

and without (Case B) deformation-dependent permeability, at a range of different 

pore fluid factors (0.45 < λv < 0.85, in steps of 0.025) (Fig. 4.5a-c). Our results show 

that pore fluid factor and deformation-dependent permeability all exert primary 

control over the duration of the interseismic period and nucleation phase, and over 

the length of the failure patch at nucleation. Increased initial pore fluid factor in the 

pressurised reservoir acted in both scenarios to decrease the duration of the 

interseismic period (Fig. 4.5a), and to increase the nucleation length (Fig. 4.5b) and 

the duration of the nucleation phase (Fig. 4.5c). 

The timing of brittle failure in the OFC is dependent on pore fluid factor, while 

the timing of ductile failure is constant due to the flat ductile region of the OFC 

failure envelope (Fig. 4.1a). In all cases, the inclusion of deformation-dependent 

permeability decreases both the interseismic period (to 60.1 years, Fig 4.5a) and the 

nucleation phase duration (to less than 1 year, Fig 4.5c), while increasing the size of 

the nucleation length (to > 30 m, Fig. 4.5b). 
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It is interesting to note that for pore fluid factors of 0.55 the results obtained for 

the two scenarios considered here converge (Figs. 4.5a-c). This is due to the specific 

tectonic loading rate chosen for our simulations, which causes fault sliding in the 

PSZ before any fracturing by brittle or ductile failure can occur within the OFC. This 

observation shows that tectonic loading rate also plays a role in controlling pore 

pressure diffusion in fault zones during the seismic cycle.    

4.4. Discussion and Conclusions 

4.4.1 Mode of failure controls pore pressure diffusion and earthquake 

recurrence interval 

Small scale fracturing within fault zones acts as a primary control on pore 

pressure diffusion during the interseismic period (e.g. natural earthquakes) or when a 

stress perturbation is caused in a reservoir (e.g. induced seismicity). In general, 

fracturing can increase the average permeability of rocks in the zones of damage 

adjacent to the main slip zones by several orders of magnitude, and therefore driving 

pore pressure diffusion more effectively. In the specific case investigated here, at a 

given tectonic fault-loading rate, failure occurring within the outer fault core (OFC) 

reduces the frictional strength of the fault at a faster rate, and fault sliding (e.g. 

beginning of the nucleation phase) can initiate earlier than in the case where no 

fracturing occurs in the OFC (Fig. 4.5a).  

More specifically, results from our case study show that initial high pore 

pressures can cause small scale brittle failure in the OFC during the interseismic 

period, which creates higher permeability than ductile failure occurring at lower 

initial pore pressures (e.g. Fig. 4.4b-c and 4.4f-g). Hence, in the case of brittle failure 

in the OFC, fault sliding occurs much earlier than in the case of failure by ductile 

deformation, reducing the duration of the interseismic period (Fig. 4.5a).  



      

 

~ 126 ~ 
 

These results have implications in terms of seismic hazard estimates, as they show 

that local factors such as lithology and fault zone structure can significantly affect 

the length of the interseismic period and, hence, the recurrence interval of 

earthquakes. They also show that, during the coseismic and interseismic period, the 

evolution of the hydrogeological conditions of the fault zone and its connected 

reservoirs will affect the recurrence interval of events. In particular, hydrogeological 

monitoring of springs (e.g., Barberio et al., 2017) and boreholes in the epicentral area 

or in the surrounding areas of injection sites could potentially provide information on 

coseismic fluid discharge and on interseismic fluid recharge between the fault zone 

and the connected aquifers. These observations could be used to estimate the pore 

pressure evolution of the fault zone and its surroundings during the seismic cycle.  

4.4.2 Implications for fluid induced earthquake nucleation 

Our results have some implications for our understanding of the role and controls 

of aseismic slip during the nucleation phase preceding an earthquake. Although 

aseismic slip episodes have been relatively commonly observed over the last decade, 

until very recently the occurrence of aseismic slip as a precursor to major 

earthquakes was almost completely unknown. Large aseismic slip episodes have 

now been identified immediately preceding the recent Mw 9, 2011 Tohoku 

earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1, 2014 

Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It is argued that these 

aseismic slip events, lasting a few months, contribute to the triggering of earthquakes 

and are related to their preparatory nucleation phase (Guglielmi et al., 2015). 

Overall, our results show that both the inclusion of realistic models of fault zone 

architecture and deformation-dependent permeability (brittle and ductile failure) 
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control the size of the sliding patch (Fig. 4.7b) during earthquake nucleation and the 

duration of the nucleation phase (Fig. 4.7c).  

The size of the failure patch during the nucleation phase is always larger when 

realistic models of fault zone architecture and deformation-dependent permeability 

are considered (Fig. 4.7b). In particular, small scale fracturing by brittle failure, 

occurring for initially high pore pressures, provides the largest slipping patches (> 30 

m in Fig. 4.7b). These results are of particular relevance when considering that 

technological improvements in signal/noise ratio and spatio-temporal resolution of 

geodetic data are lowering the detection thresholds for measurements of aseismic 

slip. In particular, the advent of new satellite radar missions now enables a 

systematic, global investigation of pre-seismic slip for the first time. 

 Our results show that the duration of the nucleation phase is significantly reduced 

from a few years to a few months at high values of initial pore pressure, when 

realistic models of fault zone architecture and deformation-dependent permeability 

are considered. Interestingly, a few months is also the time scale of aseismic slip 

measured during the nucleation phase of some recent large earthquakes (Fig. 4.7c; 

Mw 9, 2011 Tohoku and Mw 8.1, 2014 Iquique earthquakes).To conclude, estimates 

of the duration of the nucleation phase have implications for earthquake early 

warning systems. In fact, intermittent aseismic creep on fault patches > 30 m in 

diameter, over a period of few months, could be detectable well in advance of a 

significant seismic event, perhaps using geodetic data and new satellite remote 

sensing techniques.  
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NB: The values for compressibility and viscosity given in Burke, 2011, and 

subsequently, Table 3.1 are lower than other values produced from empirical 

relationships. With viscosity being higher by a factor of ten and compressibility by a 

factor of five (Mathias et al., 2009). These variables decrease the instantaneous rate 

of pore pressure change (Eq. 3.4) impact short term transient flow much more 

heavily than longer-term quasi-steady-state changes. Simulations were run to 

validate the impact of this variation on the results of Chapters 4 and 5. There were no 

changes to rupture patch dimensions and the length of the interseismic period, both 
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controlled by longer-term changes.  The length of the nucleation phase increase by 

roughly an order of magnitude for short nucleation phases (seconds to minutes), for 

longer nucleation phases the value of nucleation phase is not significantly changed. 

Transient fluid flow triggered by discontinuous failure explains why this impact 

disproportionately affects shorter nucleation lengths. 
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CHAPTER 5 

 

5. Fault zone architecture and dimensions control the evolution of the pore pressure 

field during the seismic cycle 
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5. Fault zone architecture and dimensions control the 

evolution of the pore pressure field during the seismic cycle 

Abstract 

Natural subsurface fluid flow can perturb fault zone pore pressure 

environments, and in turn can drive large variations in fault frictional strength 

potentially triggering seismicity. The earthquake nucleation phase spans the period 

of stable sliding from initial infinitesimal development of the patch to critical 

nucleation length, at which fast, unstable sliding (an earthquake) begins rupture 

(Marone, 1998; Scholz, 1998). Previous numerical simulation studies have examined 

the role of fluid flow in faulting processes and associated seismicity, no simulations 

have examined the earthquake nucleation phase sensitivity to variation in the scale of 

fault zone architecture and neighbouring lithology.  

Here, we perform parameter studies on pore pressure diffusion and 

earthquake nucleation, with realistic models of ductile failure, varying the dimension 

of components of fault zone architecture and neighbouring lithology, outer fault core 

width and the height of pressurised layers abutting the fault core. As a base case for 

the studies, we simulate the evolution of overpressured, supercritical CO2 in natural, 

exhumed faults in evaporite sequences.  The failure and transport properties of rocks 

are derived from laboratory measurements, and realistic models of fault zone 

architecture. 

The results obtained show that for a given tectonic loading rate, a thinner 

fault core will result in a more effective fault weakening, as the fault frictional 

strength will reduce at a faster rate due to higher pore pressures. The impact of fluid 

flow on the fault being more significant for faults with a thinner rather than thicker 
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outer fault core. In the absence of fluids, the base mechanical strength of the slipping 

portion of the fault did not vary with thickness.  Similarly, an increasing intersecting 

overpressured aquifer thickness in the damage zone produces a higher magnitude of 

pore pressure in the fault core, which weakens the principal slip zone located in the 

centre of the fault core. 

Understanding the controls exerted on the duration of the nucleation phase of 

earthquakes has important implications for premonitory signal detection, as 

identifying extended nucleation phases of active faults would increase the likelihood 

of detection of early seismicity warnings. Our case study shows that, for a given 

fault, characteristic values of fault zone parameters (e.g. fault core width and 

intersecting overpressured aquifer thickness) govern the transition from relatively 

long – on the order of days to months – easily detectable nucleation phase to very 

short ones – on the order of seconds to minutes – difficult to detect. As such, realistic 

estimates of uncertainty in fault zone architecture dimension must inform hazard 

estimates, as small differences in scale can correspond to significant variation of the 

nucleation phase, from seconds to years. 
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Figure 5.1:  Examples of differing fault zone structures with simplified 

schematic diagrams. (a) The Punchbowl fault, San Andreas system, California. 

A fault with 40km of displacement, a 50cm thick ultracataclasite layer with 

1mm thick primary slip surfaces and a damage zone extending 15m. This fault 

and faults with a similar ratio of damage zone to fault core act as  distributed 

conduits with respect to fluid flow. (Chester and Chester, 1998; Chester and 

Logan, 1986) (b) The Carboneras fault, Spain. A fault with 40km of 

displacement, a 1km thick fault core of fault gouge bounding fractured lens and 

included blocks and a 100m thick damage zone. This fault and faults with a 

similar ratio of fault core to damage zone would act as a combined 

conduit/barrier(Faulkner et al., 2003). (c) The Roccastrada fault, Italy. A fault 

with 1km of displacement a thick cataclasite layer containing primary slip 

surfaces around 1mm thick, a well-developed damage zone in dolostone layers 

and an absent damage zone in the anhydrite layers. So far, no study has 

considered the fluid flow properties of this fault zone structure. 

5.1. Introduction 

Natural (Di Luccio et al., 2010; Miller et al., 2004; Nur and Booker, 1972) 

and human induced (Ellsworth, 2013; McGarr et al., 2015; Sumy et al., 2014) pore 

pressure variations in the upper crust can cause fluid migration and trigger 

seismicity.  

An increase in pore fluid pressure can weaken faults, by decreasing their 

frictional strength (Cox, 2010; Sibson, 1990, 1992), and make the interseismic 

period shorter by bringing pressurized fault patches closer to failure. At the same 

time, an increase in pore pressure can increase the duration of the nucleation phase 

of an earthquake, due to the inverse proportionality of the nucleation length fault 
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parameter to the effective normal stress (Marone, 1998; Scholz, 1998). The 

nucleation phase concept implies that slow, aseismic fault sliding precedes an 

earthquake. Then, sliding spreads out with an accelerating velocity until the sliding 

patch reaches a critical size – the nucleation length – at which fast seismic sliding 

will propagate (Marone, 1998; Scholz, 1998). Usually aseismic sliding initiates at 

small fault asperities, due to the local concentration of high shear stress or elevated 

pore fluid pressure reducing fault strength.  

There is a relation between the evolution of the pore pressure field during the 

seismic cycle and fluid-induced seismicity (Collettini et al., 2009; Cox, 1995; De 

Paola et al., 2008; Hickman et al., 1995; Miller, 1996; Rice, 1992; Sibson, 2000). In 

particular, the integration of field observations and experimental datasets show that 

the transport properties of faults are closely related to their internal structure (Caine 

et al., 1996; Collettini et al., 2009; Lockner and Beeler, 1999; Seront et al., 1998). 

Nevertheless, the control exerted by fault zone architecture and lithological 

variations in the neighbouring zones on pore pressure evolution during the seismic 

cycle is still poorly investigated and understood. This is mainly due to the 

complexity and great variability shown by seismic fault zone architectures and to 

significant uncertainty in the estimation of the transport properties and size of their 

associated fault zone domains (Caine et al., 1996; Cox, 1995; De Paola et al., 2009; 

Fischer, 1992; Hangx et al., 2010; Mitchell and Faulkner, 2008; Morrow and 

Lockner, 1997, 1994; Paterson and Wong, 2005; Peach and Spiers, 1996; Wong et 

al., 1997; Zhu et al., 1997; Zoback and Byerlee, 1975). 

Simulations of faulting and fluid flow have previously been conducted using 

coupled deformation and fluid flow modelling software (e.g. TOUGH-FLAC) 

(Cappa and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). However, 
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these studies consider simplistic fault zone architectures (e.g. Fig. 5.1a-b;  Cappa, 

2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; Leclère et al., 2015; Mazzoldi 

et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013b, 2009), where permeability is 

a continuous function in porosity, volumetric strain, average effective stress (Davies 

et al., 2001) and in some cases shear strain on the fault (Rutqvist et al., 2007).  

Here, we model fluid flow in exhumed faults in evaporite sequences with 

complex architecture, and pore pressure- and deformation-dependent permeability. 

These faults represent an analogue of the seismic sources at hypocentre depth of 

recent seismic events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 

Colfiorito and Mw 6.5 2016 Norcia earthquakes). Our results are then generalised to 

relate fault zone parameters (e.g. dimension, architecture and associated deformation 

mechanisms, lithological variations in the neighbouring rocks to the fault) to the 

duration of the interseismic period and the nucleation phase of an earthquake. 

Low resolution of indirect measurement methods and generic inference from 

specific natural analogues make fault zone parameters poorly constrained. Hence, 

numerical simulations and multiphysics models of seismic faults are a useful tool to 

predict the distribution and evolution of pore fluid pressure during the seismic cycle. 

Predictions of the pore pressure field during the seismic cycle have important 

implications for earthquake forecasting, as they potentially allow the estimation of 

the length of the interseismic period. Furthermore, they have also implications for 

earthquake early warning systems, as they potentially allow estimating the duration 

of the aseismic nucleation phase preceding an earthquake, and the likelihood of 

detecting early premonitory signal.     
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5.2. Fault zone architecture controls fluid migration 

Tectonic faults are zones of finite width, whose internal architecture can be 

described by three main fault zone domains (Chester et al., 1993; Faulkner et al., 

2010) : the protolith, the damage zone and the fault core. The fault core is the 

domain where most of the fault slip is accommodated within narrow slip zones. 

Intense damage, but relatively little amount of slip, is accommodated within the 

damage zone domains often present on both sides of the fault core. In the damage 

zone deformation is mostly accommodated by network of connected fractures and 

veins. Finally, the protolith is the original source rock of those fault rocks found in 

the damage zone and fault core. There is no damage or faulting in the protolith 

related to the specific fault zone activity. 

Caine et al. (1996) proposed that whether a fault acts as a conduit or a barrier 

to fluid migration will depend on the relative thickness between the fault core 

domain, dominated by low permeability multiple narrow slip zones and fine-grained 

fault rocks, and the surrounding damage zones, dominated by distributed and well-

connected fracture patterns. Faults with a thin, low permeability fault core and a 

thick and well developed damage zone may act as conduits, favouring fluid 

migration through the damage zone fault rocks (Fig. 5.1a, e.g. Punchbowl fault with 

a 50 mm thick fault core and 15 m wide damage zone; Chester and Chester, 1998; 

Chester and Logan, 1986). Conversely, faults with a thick, low permeability fault 

core and a relatively thin, poorly developed damage zone may act as barriers to 

migrating fluids (Fig. 5.1b, e.g. Carboneras fault with 1 km thick fault core and less 

than a few tens of metres damage zone; Faulkner et al., 2003; Faulkner and Rutter, 

2001). In between these end-members there are faults with a variety of architectures 

and range of fault core damage zone aspect ratios (Faulkner et al., 2010). Amongst 
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these, exhumed seismic faults with complex fault core structure observed in 

evaporite sequences can be attributed with a mixed conduit/barrier behaviour, 

controlled by transient pore pressure evolution and mode of failure (Fig. 5.1c e.g. 

Roccastrada fault; De Paola et al., 2008; Collettini et al., 2009). 

The Roccastrada fault analogue from the Northern Apennines of Italy is 

chosen as a base case for fluid flow simulations. There, borehole measurements at 4 - 

4.8 km in the Triassic evaporites encountered overpressured CO2, which has been 

implicated in historical and recent seismicity in that area (Chiodini and Cioni, 1989; 

Collettini and Barchi, 2002; Miller et al., 2004).  

We apply our simulations to the observed fault zone architecture, 

deformation patterns and protolith stratigraphic setting (De Paola et al., 2008; 

Collettini et la., 2009), where permeability is assumed to vary as a function of 

effective stress and ductile failure. To generalise our findings, the dimensions of 

fault zone domains and protolith stratigraphy are varied systematically from this base 

case, during parameter study simulations. 

5.3. Numerical Method 

We perform parameter studies composed of sets of simulations of nonlinear 

diffusion in fault zones with realistic, complex fault zone architecture. A well-

studied and constrained base case for these studies is taken from an exhumed normal 

fault in evaporite sequences (Fig. 5.1c), which is an analogue of the seismic source 

in the hypocentre zone of the Northern Apennines seismic belt (e.g. Mirabella et al., 

2008). We apply our simulations to the observed fault zone architecture, deformation 

patterns and protolith stratigraphic setting (De Paola et al., 2008; Collettini et al., 

2009), where permeability is assumed to vary as a function of effective stress and 

ductile failure. To generalise our findings, the dimensions of fault zone domains and 
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protolith stratigraphy are varied systematically from this base case, during parameter 

study simulations. 

5.3.1. Porous media flow and numerical solution 

In simulations, the evaporites are treated as classically porous media, using 

Eq. 3.4 a relation between pore pressure p and permeability 𝑘 to the rate of change of 

pressure with time t. We approximate the compressibility β as being only the fluid 

compressibility, because the compressibility of supercritical CO2 exceeds that of 

evaporite rocks by several orders of magnitude (Burke, 2011; Robertson et al., 

1958). The variation of viscosity υ and compressibility with effective stress can be 

neglected for the conditions considered (Burke, 2011), where the effective stress is 

defined as the difference of principal minimum stress and pore pressure Eq. 2.1. 

Taking experimental relationships established for low porosity rocks in De Paola et 

al. (2009) and (Hangx et al., 2010), we express permeability as a function of 

effective stress both prefailure and after ductile deformation, Eq. 3.6 accommodated 

by microscale, distributed fracturing (Detournay and Cheng, 1993). 

Large deep-seated CO2 fluxes greater than 0.45 t day−1 km−2 have been 

measured in the epicentre areas of the Northern Apennines seismic belt (e.g. Mw 6.0 

1997-98 Colfiorito and Mw 6.3 2009 L’Aquila extensional earthquakes) (Chiodini et 

al., 2004; Collettini et al., 2008). As such, it is reasonable to assume in simulations 

that the set of theoretical faults considered in the parameter study are saturated with a 

single phase of supercritical CO2. 

In the simulations presented here fault zone geometries, physical properties 

and mechanical behaviour, taken as a base case and re-used in part for parameter 

studies, are inferred and constrained from main seismic extensional fault zone in 

evaporite rocks (Collettini et al., 2009; De Paola et al., 2009, 2008). However, the 
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techniques and results are more generally applicable to any natural fault zone with 

partially constrained fault zone architecture and constrained physical and mechanical 

properties. 

 

5.3.2. Model input parameters 

5.3.2.1. Fault zone architecture and base model setup 

The fault zones constraining the base simulation case occur within the 

Triassic Evaporite formation, which is a 1.5-2 km thick sequence of 6 – 19 m thick 

interbedded layers of anhydrite/gypsum and dolostones (Barchi, 2002; Trippetta et 

al., 2013). Moderately dipping (45°) normal faults are present at hypocentre depths 

in the Northern Apennines seismic belt, thought to favour fluid overpressure 

attainment and fault reactivation (Barchi, 2002; Miller et al., 2004; Mirabella et al., 

2008).  

 For our base case simulation, we adopt a model of fault zone architecture 

proposed from field observations, which represent an analogue of those present at 

seismogenic depths (Fig. 5.1a; Collettini et al., 2009; De Paola et al., 2008). 

Modelled fault zone architecture comprises a complex fault core, made of a 1 m 

wide inner fault core (IFC), where most of the slip is localised within narrow 

principal slip zones, and a 2 m wide outer fault core (OFC) (Fig. 2.8). The 

distribution of damage in the damage zone is heterogeneous and controlled by the 

lithology of the protolith. In fact, when the protolith rocks are made of dolostones, a 

well-developed damage zone (DZ) of pervasively fractured dolostones extends at 

least 10 m in either direction from the fault core. On the other hand, the foliated 

anhydrite layers interbedded between the fractured dolostones, outside the fault core 

in the damage zone, contain no macroscopic fracturing, and hence no damage zone is 



      

 

~ 142 ~ 
 

present here (Fig. 2.8) (De Paola et al., 2008). These fractured dolostone layers in the 

damage zone are pressurised with supercritical carbon dioxide at depth. We refer to 

the contact between this pressurised dolostone layer in the DZ and the OFC as the 

overpressure contact (OC). 

A schematic, yet realistic, fault zone architecture is used within base case 

simulations. This fault zone architecture is formed of an IFC, containing fine-grained 

cohesive cataclasites, set within an OFC extending 2 m on both directions, 

containing cohesive foliated anhydrites (Figs. 2.8, 3.2) (De Paola et al., 2008). The 

IFC is made of fine-grained cohesive cataclasites, with an isotropic texture (De Paola 

et al., 2008). The most prominent structural feature in the IFC are straight and thin, 

millimetre scale, principal slip zone (PSZ), made of ultra-fine grained and dolomite-

rich gouges (Fig. 2.8) (De Paola et al., 2008). Schematically we represent these as a 

single PSZ of zero thickness, made of incohesive fault gouges, in the centre of the 

IFC, which is assumed as made of cohesive cataclasite (Fig. 3.2). 

 During the seismic cycle, it is assumed that the modelled fault will behave 

according to the fault-valve behaviour described by Sibson (1990), when pore fluid 

overpressure is released upon seismic sliding. At the beginning of the seismic cycle, 

following a main seismic events, we then take pore pressure within the fault core to 

be uniform and hydrostatic (Miller et al., 2004). We model each of our set of 

theoretical faults at a hypocentre depth of 7 km, and subject to an extensional fault 

unloading rate of 0.15 MPa/year, based on the tectonic setting of our base case 

(Chiaraluce et al., 2003). 

 The fractured dolostone layer within the DZ represent our pore fluid reservoir 

due to the presence of well-connected and dense fracture patterns (Fig. 3.2). Pore 

fluid overpressure can be generated within the fracture dolostones of the DZ, due to 
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their high permeability compared to the low permeability of interbedded anhydrites, 

which may act as seal (Fig. 3.2). Pore pressures are taken to be hydrostatic in the 

anhydrites seal. The OFC and IFC are directly recreated in simulations where the DZ 

inform boundary conditions. Further, to reduce computational costs, we exploit the 

model’s symmetry properties. The idealised fault section has two planes of 

symmetry, the fault parallel plane bisecting the fault, and the fault perpendicular 

plane bisecting the overpressure contacts. The gradient of pore pressure normal to 

theses symmetry boundaries is taken to be zero. We simulate an area of 2.5 by 1000 

m, representing the upper left quadrant of the fault core (Fig. 3.2), subject to an 

extensional tectonic loading rate of 0.15MPa/year. The non-symmetry external 

boundaries are taken to be hydrostatic, except for the region of contact between the 

overpressured, fractured dolostone layers in the DZ and the fault core (Fig. 3.2; 

Trippetta et al., 2013). The top, and bottom boundary by symmetry, is taken to be 

sufficiently removed from the overpressure source that this boundary does not 

significantly alter fluid flow in the fault core. The length of the simulated area is 

selected ensuring that the pressure gradient at the upper perpendicular boundary is 

less than 1% of hydrostatic pressure per metre. All models are run from an initial 

stress state with minimum principal stress set at 85% of lithostatic load (Miller et al., 

2004). 

 Fault frictional strength is assumed to be homogeneous, and without 

asperities, thus any variation in frictional strength is dependent only on effective 

normal stress. Effective normal stress on a sliding fault patch is held constant after 

sliding begins as the fault patch can no longer accumulate or dissipate stress energy 

locally, any change in energy acts instead to accelerate or decelerate sliding. A 

similar approach is taken in (Campillo et al., 2001) and using a similar 
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approximation to Uenishi and Rice (2003), we approximate the nucleation length 

(LN) of a failure patch (LF) as the nucleation length of the stiffest point in the patch 

(largest effective normal stress). 

The simulations presented here consider the earthquake nucleation phase 

(Marone, 1998; Scholz, 1998). During this phase, stable sliding spreads out from an 

initial point (LF) until it reaches a critical size, the nucleation length (LN), at which 

unstable fast sliding begins causing the propagation of the rupture (Marone, 1998; 

Scholz, 1998). Taking rate and state friction as a theoretical framework, the critical 

patch size or nucleation length is inversely proportional to effective normal stress 

(Campillo et al., 2001; Scholz, 1998) and can be expressed by Eq. 3.13. Hence, our 

modelling results of pore pressure evolution can be extended to investigate the 

evolution in space and time of the nucleation length, during the nucleation stage.  

During our simulations, we assume velocity weakening behaviour for the 

PSZ (parameter F in Eq. 4), which has been observed for anhydrite and dolomite-

rich gouge at high temperature and sub-seismic sliding velocity (Scuderi et al., 

2013). At the point when shear stress exceeds the fault shear strength, for a given 

pore pressure, sliding begins along the PSZ. We define the duration of the nucleation 

phase as the time interval between the beginning of sliding and the time when the 

size of the sliding patch on the PSZ equals that of the nucleation length (i.e. LF = LN); 

a condition leading to the dynamic, fast propagation of the rupture. Hence, the 

computed nucleation length values can be used to estimate the duration of the 

nucleation stage.   
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5.3.2.2. Failure envelopes, mode of failure and transport properties 

The failure envelopes, mode of failure and transport properties of the OFC 

and IFC subdomains of the fault core are derived from triaxial deformation 

experiments with fluid flow, performed on borehole samples of Triassic Evaporites 

rocks (De Paola et al., 2009). Fabric anisotropy controls the strength of intact 

anhydrite rocks, being weakest when loaded along a sub-parallel to foliation 

direction. Mode of failure discontinuously transitions from brittle to ductile failure at 

effective stresses of 20 MPa, and appears independent of grain size or the presence 

of fabric anisotropy and its orientation (De Paola et al., 2009). 

 A simplified Mohr-Coulomb failure envelope is assigned to each of the 

components of fault zone architecture, i.e. the OFC, the IFC and the PSZ (Fig. 4.3, 

Table 4.1). For the OFC specifically, the failure envelope of the foliated anhydrite is 

taken from triaxial loading experiments performed on anhydrite borehole samples 

with foliation oriented sub-parallel to the loading direction (Fig. 4.3a; Table 4.1; De 

Paola et al., 2009). A sharp elbow is present in failure envelopes representing the 

sharp transition from brittle to ductile failure at an effective stress of 20 MPa (Fig. 

4.3a). The failure envelope of the IFC is given by triaxial loading experiments 

performed on fine-grained, homogeneous anhydrite borehole samples, representative 

of cohesive, anhydrite bearing fine-grained cataclasites, with no fabric (Fig. 4.3a; 

Table 4.1; De Paola et al., 2009). The failure envelope of the PSZ is represented with 

a Byerlee’s friction coefficient of 0.6 treating it as a cohesionless fault plane (Fig. 

4.3b; Table 4.1; Scuderi et al., 2013). 

The OFC permeability tensors are specified using data from triaxial 

deformation experiments with fluid flow in De Paola et al. (2009) (Fig. 4.4). 

Measurements of deformation and fluid flow both parallel and perpendicular to 
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fabric represent the fault parallel and perpendicular components of OFC 

permeability, respectively. These triaxial deformation measurements with fluid flow 

show that the permeability of anhydrite rocks is controlled by two factors (De Paola 

et al., 2009): 1) effective stress, as permeability decreases with increasing effective 

stress due to porosity reduction (Fig. 4.4a-b); and 2) distributed deformation, as 

permeability increases with increasing loading due to the creation of fractures within 

the rock (Fig. 4.4c-d). Sharp increases in permeability accompany failure of these 

anhydrite rocks and, for a given constant pore pressure, the magnitude of this 

increase is governed by the brittle or ductile mode of failure (Fig. 4.4c-d). 

If effective stress is held constant while ductile failure occurs, permeability 

will rapidly increase before reaching a plateau value, when a percolation threshold 

state is attained due to the development of a fully connected network of 

microfractures (Fig. 4.4c-d; 5.6; De Paola et al., 2009). Anhydrite rocks deforming in 

a ductile manner are still sensitive to effective stress variations (Fig. 4.4c-d; 5.2; 

Table 4.1), which may alter sample porosity by opening or closing small fractures 

(De Paola et al., 2009). 

Efficient hydrothermal healing processes, acting during the interseismic 

period, may seal micro- and macro-scale fractures within a few years of a slip event 

(Keulen et al., 2008; Nakatani and Scholz, 2004; Niemeijer et al., 2008; Scuderi et 

al., 2013; Yasuhara et al., 2005). As such, we assume that any fractures created 

during previous seismic events are effectively healed by the beginning of the 

interseismic period in our simulations. 

The permeability of the fine-grained cataclasites in the IFC and gouges in the 

PSZ are assumed to be anisotropic in the fault-parallel and fault-orthogonal direction 
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(Evans et al., 1997; Wibberley and Shimamoto, 2002), excepting the OFC, they are 

not assumed to depend on pore pressure and deformation (Fig. 5.2; Table 4.1, Eq. 3).          

5.4. Results 

A series of parameter studies were performed at a depth of 7 km, for a fixed 

tectonic unloading rate of 0.15 MPa/year in the minimum principal stress direction. 

Fluid flow in the fault core during the interseismic period and the earthquake 

nucleation phase are modelled for parameter studies, where outer fault core (OFC) 

width and overpressure contact (OC) height are varied across realistic parameter 

ranges (Fig. 3.2). Further high-resolution studies are conducted in the vicinity of any 

sharp transitions in earthquake nucleation time, and the results compiled. 

The pore fluid factor λv, defined as the ratio between pore pressure and 

lithostatic load σv, is used to represent the pore pressure conditions in the fault zone. 

Parameter studies are performed at a pore fluid factor of λv = 0.45, which correspond 

to the conditions that would favour ductile failure in the OFC. 

For each parameter range, two separate studies are run using both 

deformation-independent and –dependent permeability. In the deformation-

independent case, permeability evolves during the interseismic period in the OFC 

solely controlled by pore pressure variations and lithological factors (e.g. fabric 

presence and orientation; Fig. 4.4a-b). In the case of deformation-dependent 

permeability, a more complex and realistic scenario is assumed, where permeability 

evolution during the interseismic period is additionally controlled by deformation, 

via brittle or ductile failure in the OFC (Fig. 4.4c-d). In both cases, permeability is 

assumed to be constant in both the IFC and PSZ, but anisotropic along the fault-

parallel and fault-orthogonal directions. 
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Figure 5.2: Simulation results of the mode of failure independent pore pressure 

diffusion model. Plots are provided of pore pressure (with failure (LF) and 

nucleation length (LN)) and mode of failure (top row with an outer fault core 1m 

wide and middle row with an outer fault core 8m wide) and Mohr failure 

analysis (g) for the OFC and PSZ at (a, d) initial conditions, (b, e) the onset of 
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stable and (c, f) unstable sliding. Simulations presented were carried out at a 

depth of 7km, with a tectonic unloading rate of 0.15MPa/ year in the minimum 

principal stress direction. The intersecting overpressured aquifer thickness 

takes a base case value of 40m respectively.  (40m of 1km simulated region 

shown vertically, fault core exaggerated horizontally.) During simulations a 

millimetre scale horizontal spatial grid was used, and vertically an initially 

millimetre scale logarithmic grid was used. 
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Figure 5.3: Simulation results of the mode of failure-controlled pore pressure 

diffusion model. Plots are provided of pore pressure (with failure (LF) and 

nucleation length (LN)) and mode of failure  (top row with an outer fault core 

1m wide and middle row with an outer fault core 8m wide) and Mohr failure 

analysis(i, j) for the OFC and PSZ at (a, e) initial conditions,  (b) the onset of 

ductile failure in the OFC, (f) the onset of brittle failure in the OFC, (c, g) the 

onset of stable and (d, h) unstable sliding. Simulations presented were carried 
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out at a depth of 7km, with a tectonic unloading rate of 0.15MPa/ year in the 

minimum principal stress direction. The intersecting overpressured aquifer 

thickness (overpressure contact height) takes a base case value of 40m 

respectively.  (40m of 1km simulated region shown vertically, fault core 

exaggerated horizontally.) During simulations a millimetre scale horizontal 

spatial grid was used, and vertically an initially millimetre scale logarithmic 

grid was used. 
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Figure 5.4:  Earthquake nucleation parameters as controlled by the variation of 

the outer fault core width across multiple simulations, the fault is taken to be at 

a depth of 7km unloaded at a rate of 0.15MPa/year in the minimum principal 

stress direction from a critically stressed state. The intersecting overpressured 

aquifer thickness (overpressure contact height) takes a base case value of 40m 

respectively. a) Interseismic period. b) Nucleation length. c) Nucleation phase. 

5.4.1 Outer Fault Core Width 

First, we consider a parameter study in which initially outer fault core width 

is varied over the range 1-8 m, in steps of 1 m. We ran fluid flow simulations to 

examine in more detail two end-member case study scenarios, for deformation-

independent (Fig. 5.3) and deformation-dependent permeability (Fig. 5.4), 

respectively. In both case scenarios, the OFC width takes values between 1 m and 8 

m. These cases reveal details about pore pressure evolution and failure distribution 

throughout the fault core, at the extremes of the considered range of the OFC width 

parameter (Figs. 5.3-4). A further high-resolution parameter study is conducted in 

the range 2 – 4 m, in steps of 0.1 m, in the vicinity of an observed sharp transition in 

earthquake nucleation length (Fig. 5.5). 

Our results show that at the beginning of the interseismic period, soon after 

an earthquake event, pore pressure excess is concentrated in the vicinity of the 

overpressure contact at the DZ/OFC boundary (Fig. 5.3a, d and 5.4a, d). High time 

resolution simulations show that pore fluids start to rapidly diffuse within the OFC 

first and then into the IFC and PSZ, where pore pressure increases along the fault-

parallel and -perpendicular direction. A quasi-steady state pore pressure regime is 

attained in the fault zone on the order of days.  
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Simulations with no deformation control on permeability show that failure by 

sliding along the PSZ will start at 356 and 372 years, for OFC = 1 m and 8 m, 

respectively (Fig. 5.3b, e). At this time, the shear stress level, which is controlled by 

the tectonic loading rate, matches the fault strength, which is dependent on pore fluid 

pressure. Failure patches begin to develop along the PSZ (LF in Fig 4.4b, e), a 

condition that coincides with the beginning of the nucleation phase of the 

earthquake. The nucleation phase ends when the size of the sliding patch on the PSZ 

equals that of the nucleation length (i.e. LF = LN in Figs. 4.4c, f), a condition leading 

to the dynamic fast propagation of the rupture. Hence, the computed nucleation 

length values can be used to estimate the duration of the nucleation stage, which is 6 

months and less than 1 month long for OFC = 1 m and 8 m, respectively (Fig. 5.3c, 

f). 

Simulations with deformation control on permeability show that ductile 

failure in the OFC will start at 326.6 years (Fig. 5.4b, f). This occurs before failure 

along the PSZ, which will start at 327 years and 336 years, for OFC = 1 m and 8 m, 

respectively (Fig. 5.4c, g). The duration of the nucleation stage is much less than 1 

minute and more than 1 year long for OFC = 1 m and 8 m, respectively (Fig. 5.5d, 

h). 

Overall, simulations with no deformation control on permeability show that 

the width of the OFC controls the length of the interseismic period (Fig. 5.5a). In 

particular, the length of the interseismic period increases monotonically with OFC 

width, with an OFC width of 8 m entailing an interseismic period about 20 years 

longer than a 1 m wide OFC (356.3 years and 371.6 years respectively, Fig. 5.5a).  

The occurrence of ductile failure in deformation-dependent permeability 

simulations leads to significant increases in the OFC permeability (Fig 4.4c-d). 
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Compared to the previous case when permeability was not dependent on 

deformation, the results show an increased pore pressure in the IFC and PSZ after 

the onset of ductile failure, which reduces the interseismic period for the considered 

values of OFC width (Fig. 5.5a). The interseismic period is up to 39.1 years shorter 

for an 8 m wide OFC than for a 1 m wide one (Fig. 5.5a). Further, the interseismic 

period takes a constant value of 326.6 years in the range of OFC widths 1 - 2.4 m 

(Fig. 5.5a).  

For both cases considered here, we also observe a monotonic decrease in the 

nucleation length – the length of the rupture patch at the point of earthquake 

nucleation (i.e. LF = LN). For the deformation-independent case, an OFC width of 8 

m exhibits a nucleation length of 13.87 m, which is 0.39 m smaller than 14.26 m 

obtained for a 1 m wide OFC (Fig. 5.5b). For the case of permeability controlled by 

deformation, larger nucleation lengths are observed, which can be up to 1.08 m 

larger than that obtained for the previous case for an OFC width of 8m (Fig 5.5b). 

For the simplest case considered, when permeability was not dependent on 

deformation, the duration of the earthquake nucleation phase gradually decreases 

with increasing OFC width (Fig. 5.5c). For an OFC width of 8 m, the nucleation 

phase length is 0.11 years, which is 0.5 years shorter than 0.61 years obtained for a 1 

m wide OFC (Fig. 5.5c). 

In simulations considering deformation-dependent permeability, the onset of 

ductile deformation produces a more complex evolution of the earthquake nucleation 

phase (Fig. 5.5c). First, the nucleation phase duration increases with OFC width, 

from the order of 10 seconds to 1.84 years (Fig. 5.5c). However, the trend is not 

smooth, and a sharp increase by more than three orders of magnitude, from 9.4 

minutes to 28.1 days, is observed between OFC widths of 2.2 - 2.3 m (Fig. 5.5c). 
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Then, for OFC widths > 2.4 m, the nucleation phase duration decreases 

monotonically from a value of 1.84 years (Fig. 5.5c).  

Figure 5.5: Simulation results of the mode of failure independent pore pressure 

diffusion model. Plots are provided of pore pressure (with failure (LF) and 

nucleation length (LN)) and mode of failure (top row with an intersecting 
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overpressured aquifer thickness of 10m and middle row with an intersecting 

overpressured aquifer thickness of 60m) and Mohr failure analysis(g) for the 

OFC and PSZ at (a, d) initial conditions, (b, e) the onset of stable and (c, f) 

unstable sliding. Simulations presented were carried out at a depth of 7km, with 

a tectonic unloading rate of 0.15MPa/ year in the minimum principal stress 

direction. The outer fault core width takes a base case value of 2m. During 

simulations a millimetre scale horizontal spatial grid was used, and vertically a 

logarithmic grid was used with an initially millimetre scale spatial grid. (40m of 

1km simulated region shown vertically, fault core exaggerated horizontally.)  
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Figure 5.6: Simulation results of the mode of failure-controlled pore pressure 

diffusion model. Plots are provided of pore pressure (with failure (LF) and 

nucleation length (LN)) and mode of failure (top row with an intersecting 

overpressured aquifer thickness of 10m and middle row with an intersecting 

overpressured aquifer thickness of 60m) and Mohr failure analysis(i, j) for the 

OFC and PSZ at (a, e) initial conditions,  (b) the onset of ductile failure in the 

OFC, (f) the onset of brittle failure in the OFC, (c, g) the onset of stable and (d, 

h) unstable sliding. Simulations presented were carried out at a depth of 7km, 
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with a tectonic unloading rate of 0.15MPa/ year in the minimum principal stress 

direction. The outer fault core width takes a base case value of 2m. During 

simulations a millimetre scale horizontal spatial grid was used, and vertically a 

logarithmic grid was used with an initially millimetre scale spatial grid. (40m of 

1km simulated region shown vertically, fault core exaggerated horizontally.) 
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Figure 5.7:  Earthquake nucleation parameters as controlled by the variation of 

the intersecting overpressured aquifer thickness (overpressure contact height) 

across multiple simulations, the fault is taken to be at a depth of 7km unloaded 

at a rate of 0.15MPa/year in the minimum principal stress direction from a 

critically stressed state. The outer fault core width takes a base case value of 

2m. a) Interseismic period. b) Nucleation length. c) Nucleation phase. 
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Figure 5.8:  Earthquake failure and nucleation length evolution for the end 

member case studies in intersecting overpressured aquifer thickness, the fault is 

taken to be at a depth of 7km unloaded at a rate of 0.15MPa/year in the 

minimum principal stress direction from a critically stressed state. The 

intersecting overpressured aquifer thickness takes a base case value of 40m 

respectively. a) No deformation-dependent failure 1m outer fault core. b) No 

deformation-dependent failure 8m outer fault core.  c) Deformation-dependent 

failure 1m outer fault core. d) Deformation-dependent failure 8m outer fault 

core. 
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Figure 5.9: Earthquake failure and nucleation length evolution for the end 

member case studies in intersecting overpressured aquifer thickness, the fault is 

taken to be at a depth of 7km unloaded at a rate of 0.15MPa/year in the 

minimum principal stress direction from a critically stressed state. The outer 

fault core width takes a base case value of 2m. a) No deformation-dependent 

failure 10m overpressure contact. b) No deformation-dependent failure 60m 

overpressure contact.  c) Deformation-dependent failure 10m overpressure 

contact. d) Deformation-dependent failure 60m overpressure contact. 

5.4.2 Intersecting overpressured aquifer thickness 

We consider another parameter study in which lithological anisotropy in the 

protolith control the size of the fractured dolostone layers and, hence, of the 

intersecting overpressured aquifer thickness in the damage zone reservoir (Fig. 3.2). 

In our simulations, the thickness of dolostone layers and, hence, the 

overpressure height is varied from 10 to 60 m in steps of 10 m. We ran fluid flow 

simulations to examine in detail two case study scenarios, for deformation-

independent (Fig. 5.6) and deformation-dependent permeability (Fig. 5.7), 

respectively. In both case scenarios, the OC height takes values of 10 m and 60 m. 

These cases reveal details about pore pressure evolution and failure distribution 

throughout the fault core, at the extremes of the considered range of the OC height 

parameter (Figs. 5.6-7). The other fault zone parameter of relevance, the OFC width, 

takes a base case value of 2 m.  

Simulations of fluid flow with no deformation control on permeability show 

that failure by sliding along the PSZ will start at 378 and 355 years, for OC = 10 m 

and 60 m, respectively (Fig. 5.6b, e). The nucleation phase duration is 4 months and 

3 months for OC = 10 m and 60 m, respectively (Fig. 5.6c, f). 
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Simulations of fluid flow with deformation control on permeability show that 

ductile failure in the OFC will start at 326.6 years (Fig. 5.7b, f). This occurs before 

failure along the PSZ, which will start at 349.7 years and 326.6 years, for OC = 10 m 

and 60 m, respectively (Fig. 5.7c, g). The duration of the nucleation stage is more 

than 7 years and much less than 1 minute for OC = 10 m and 60 m, respectively (Fig. 

5.7d, h). 

Overall, simulations with no deformation control on permeability show that 

the OC height controls the length of the interseismic period (Fig. 5.8a). In particular, 

the length of the interseismic period decreases monotonically with OC height, with 

an OC height of 60 m entailing an interseismic period about 23.4 years shorter than a 

10 m thick OC height (378.2 years and 354.9 years respectively, Fig. 5.7a-h; Fig. 

5.8a). Increasing OC height now increases the extent and magnitude of the pore 

pressure that develops in the IFC and, subsequently, decreases the shear strength of 

the PSZ. 

When permeability is dependent on deformation, fluid flow simulations 

including ductile failure in the OFC show that the interseismic period reduces by up 

to 33.3 years for a 60 m OC height compared to 357 years for a 10 m height one 

(Fig. 5.8a). Further, the interseismic period takes a constant value of 326.6 years in 

the range of OC heights > 40 m (Fig. 5.8a).  

For both cases considered here, we also observe a monotonic increase in the 

nucleation length (Fig. 5.8b). For the deformation-independent case, an OC height of 

10 m exhibits a nucleation length of 13.7 m, which is 0.6 m smaller than 14.3 m 

obtained for a 60 m high OC (Fig. 5.8b). For the case of permeability controlled by 

deformation, larger nucleation lengths are observed, which can be up to 0.8 m larger 

than that obtained for the previous case for an OC height of 60 m (Fig 5.6b). 
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For the simplest case considered, when permeability was not dependent on 

deformation, the duration of the earthquake nucleation phase shows a subtle decrease 

from 4 and 3 months for OC height of 10 m and 60 m, respectively (Fig. 5.8c).  

In simulations considering deformation-dependent permeability, the onset of 

ductile deformation produces a more complex evolution of the earthquake nucleation 

phase (Fig. 5.8c). First, for OC heights between 10 m and 35 m, the nucleation phase 

duration decreases monotonically from values of 2.62 to values of 1.3 years (Fig. 

5.8c), respectively. Then, a sharp decrease by almost 5 orders of magnitude, from 

209 days to 264 seconds, is observed between OC heights of 35 - 40 m (Fig. 5.8c). 

Finally, the nucleation phase duration decreases more gradually from 264 to 15 

seconds, for OC height increasing from 40 m to 60 m (Fig. 5.8c).  

5.5. Discussion and Conclusions 

5.5.1 Dimensions of fault zone architecture and lithological variations in the 

protolith control pressure diffusion and earthquake recurrence interval 

We model fault zone fluid flow considering the simplest case scenario where 

permeability of the fault core does not depend on deformation, but solely on pore 

pressure. Our results show that the thickness of the fault core domain and the 

intersecting overpressured aquifer thickness in a reservoir in the damage zone, 

abutting the fault core, act as controls on pore pressure diffusion.  

For the specific fault zone architecture considered in our case study, an 

increased width of the OFC acts as a barrier to fluid flow. It reduces the extent and 

magnitude of the pore pressure that develops in the IFC and, subsequently, affects 

the shear strength of the PSZ (Fig 5.3 a-f). For a given tectonic loading rate, a 

thinner fault core will result in a more effective fault weakening, as the fault 

frictional strength will reduce at a faster rate due to higher pore pressures (Fig. 5.3b). 
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The impact of fluid flow on the fault being more significant for faults with a thinner 

rather than thicker outer fault core. In the absence of fluids, the base mechanical 

strength of the slipping portion of the fault did not vary with thickness.  However, a 

thinner fault core shows a larger rupture patch at the point of earthquake nucleation 

(Fig. 5.5b) and a longer nucleation phase (Fig. 5.5c).  

Similarly, an increasing intersecting overpressured aquifer thickness in the 

damage zone produces a higher magnitude of pore pressure in the fault core, which 

weakens the principal slip zone located in the centre of the fault core. A higher 

overpressure contact will result in a larger rupture patch at the point of earthquake 

nucleation (Fig. 5.8b) and in a longer nucleation phase (Fig. 5.8c).  

These counterintuitive results are due to the heterogeneous distribution of 

pore fluid pressure within the IFC and, particularly, along the PSZ. Pore pressure 

values within the IFC and along the PSZ control the strength of the PSZ, which is 

reduced by lower effective normal stresses at higher pore pressures. On the other 

hand, the imposed tectonic loading controls the shear stress build-up along the PSZ, 

which is independent of pore fluid pressure and operates at same rate for any 

investigated case. Failure along the PSZ first occurs in patches where higher pore 

fluid pressures have reduced the PSZ strength, and then slowly spreads out along the 

PSZ due to shear stress increase by tectonic loading. For a wider OFC or lower 

intersecting overpressured aquifer thickness, the delayed onset of failure along the 

high pressure PSZ means that, outside the pressurised PSZ patch, shear stress is 

relatively high and close to the PSZ shear strength. This makes the nucleation phase 

relatively short as small amounts of tectonic loading, hence short times, are needed 

to grow the sliding patch to the size of the nucleation length (Fig. 5.9a-b; Fig. 5.10a, 

b). On the other hand, for thinner OFCs and higher intersecting overpressured 
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aquifer thickness, the anticipated onset of failure means that larger amount of 

tectonic loading, hence longer times, are needed to grow the sliding patch outside of 

the pressurised PSZ patch, where sliding first initiated (Fig. 5.9a-b; Fig. 5.8a-b).  

It is well known that the scale of lithological variations in the protolith, 

controlling the size of overpressure reservoir in the damage zone, and fault zone 

architecture significantly affect the hydrogeological conditions of fault zones. Here, 

our results show that these parameters also control the evolution of fault strength 

during the seismic cycle and, hence, the length of the interseismic period and the 

duration of the nucleation phase of an earthquake. These findings have relevant 

implications for estimates of seismic hazards, such as the recurrence interval of 

earthquakes.  

5.5.2 Ductile deformation in the fault core controls pore pressure diffusion 

during the seismic cycle 

The occurrence of fluid driven ductile, distributed fracturing in the fault core 

acts as a primary control on pore pressure diffusion during the interseismic period. In 

fact, ductile failure can increase the permeability of fault core rocks by several orders 

of magnitude and enhances the diffusion of pore pressure toward the primary slip 

zone, located into the centre of the fault.  

5.5.2.1 Failure initiation and duration of the interseismic period  

The occurrence of ductile failure in the fault core causes fault weakening 

along the PSZ at a faster rate than when fluid flow is not affected by deformation in 

the fault core.   

Our results show that, for a given constant tectonic loading rate and in the 

presence of ductile deformation in the fault core, failure along the PSZ of the fault 
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can initiate earlier for thinner fault cores (OFC) and higher contact pressure (OC) 

heights (Fig. 5.5a, 5.8a).  

Similarly, to the previous case examined in Section 5.1, early fault initiation 

is due to the larger input of pore fluid pressure produced by a thinner OFC or a 

higher OC, following ductile failure in the fault core, which causes the weakening of 

the PSZ. For a thicker OFC and a smaller OC, a larger input of steady tectonic 

loading, hence a longer time, is required to trigger failure along the PSZ.  

The implications of these results are that the duration of the interseismic 

period is also affected by the occurrence of ductile failure in the fault core, and by 

fault zone architecture and lithological variations in the protolith. In our specific case 

study, a critical fault core thickness (OFC < 2 m) and intersecting overpressured 

aquifer thickness (OC > 40 m) can be identified, beyond which the duration of the 

interseismic period does not vary. The attainment of a characteristic interseismic 

period duration, controlled by local fault zone factors, is due to the development of a 

failure patch whose dimension are comparable to those of the nucleation length, both 

being dependent on pore pressure. 

These results again have implications for seismic hazards evaluation, such as 

the estimation of the recurrence interval of earthquakes.  

5.5.2.2 Earthquake nucleation phase and premonitory signal detection 

When pore pressure distribution during the interseismic is not affected by 

deformation in the fault core, our results show that the nucleation length 

monotonically increases and the duration of the nucleation phase is gradually longer 

for thin fault cores and greater intersecting overpressured aquifer thicknesss (Fig. 

5.5b-c, 5.8b-c). 
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The increase in nucleation phase duration can be explained by the pore 

pressure distribution within the IFC, which controls the strength of the PSZ. A 

thinner OFC and a larger OC height will reach failure along the pressurised portion 

of the PSZ earlier, due to a high pore pressure in the fault core. However, they will 

still result in a longer nucleation phase, due to the lower shear stress level outside the 

pressurised portion of the PSZ, which requires a longer time of steady tectonic 

loading to grow the failure patch to the size of the nucleation length (Fig. 5.9a-b; 

5.10a,b).  

In simulations considering deformation-dependent permeability, the onset of 

ductile deformation produces a more complex evolution of the earthquake nucleation 

phase (Fig. 5.3c, 5.6c). 

These results can be explained by rapid and transient fluctuations in pore 

pressure within the IFC and, particularly, along the PSZ, after ductile failure is 

activated in the OFC. For thicker OFC (> 3 m) and low values of OC height (< 35 

m), steady state pore pressure conditions are attained in the fault core at the time of 

failure initiation within a pressurised patch along the PSZ (Fig. 5.4c-d, 5.7c-d), 

which is smaller than the nucleation length. This means that, after sliding initiation, 

the growth of the failure patch is relatively slow and solely controlled by steady 

shear stress increase by tectonic loading (Fig. 5.9d; 5.10c). For a thinner OFC, 

between 2.4 m and 3 m, and an increasing OC height, between 35 m and 55 m, a 

sharp first and then more gradual decrease in the duration of the nucleation length is 

observed (Fig. 5.5c, 5.7c). This can be explained by transient pore pressure 

conditions in the fault core, caused by ductile failure at the time of fault initiation in 

a pressurised patch along the PSZ (Fig. 5.5b-d, 5.7b-d). In fact, the subsequent 

growth of the failure patch is relatively fast and controlled by transient pore pressure 
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evolution along the PSZ and steady shear stress increase by tectonic loading. Finally, 

for thin OFC (< 2.4 m) and large OC heights of 60 m, failure will initiate along the 

PSZ with a several metre-long failure patch, of similar size compared to the 

nucleation length. The failure patch can very quickly grow to the size of the 

nucleation length, nucleating an earthquake on the order of seconds (Fig. 5.9c, 

5.10d).  

In simulations without ductile failure (Fig. 5.5c, 5.8c) or in simulations 

where ductile failure is significantly removed in time from the onset of stable sliding, 

the nucleation phase is on the order of days to years. On the other hand, simulations 

where ductile failure immediately precedes failure along the PSZ have nucleation 

phases on the order of seconds. 

Our parameter studies often predict large aseismic slip episodes, which can 

precede the nucleation of an earthquake, and last for months to years (Fig. 5.5c, 

5.8c). Evidence for aseismic slip episodes preceding major earthquake events are 

supported by independent geophysical observations for the recent Mw 9, 2011 

Tohoku earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1, 

2014 Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It has been 

interpreted that these early slip events are related to the preparatory nucleation phase 

of the main events (Guglielmi et al., 2015). 

Understanding the controls exerted on the duration of the nucleation phase of 

earthquakes has important implications for premonitory signal detection, as 

identifying extended nucleation phases of active faults would increase the likelihood 

of detection of early seismicity warnings. Our case study shows that, for a given 

fault, characteristic values of fault zone parameters (e.g. fault core width and 

intersecting overpressured aquifer thickness) govern the transition from relatively 
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long – on the order of days to months – easily detectable nucleation phase to very 

short ones – on the order of seconds to minutes – difficult to detect. As such, realistic 

estimates of uncertainty in fault zone architecture dimension must inform hazard 

estimates, as small differences in scale can correspond to significant variation of the 

nucleation phase, from seconds to years.  
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CHAPTER 6 

Final discussions and conclusions 
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6. Final discussion and conclusions 

6.1 Introduction 

In this thesis I have performed a series of numerical simulations and 

parameter studies of pore pressure diffusion and fluid flow in fault zones with a 

realistic complex architecture. In my simulations, fault zone permeability is 

controlled by pore pressure and deformation, as observed in laboratory experiments. 

The results of my simulations are then used in some specific case studies of 

seismically active fault zones, where I simulate pore pressure distribution during the 

seismic cycle. In particular, the role played by pore pressure evolution and 

distribution during the interseismic period and the nucleation phase preceding an 

earthquake is investigated.  

The simulations are constrained by a simplified low-porosity fault zone 

model, which still encompasses the essential features of natural seismogenic fault 

zones with complex architecture. The numerical simulations are conducted using a 

multiphysics model of nonlinear diffusion in low porosity fault zones, which in turn 

incorporates: 1) models of fault zone with complex architecture; 2) brittle and ductile 

mode of failure within the fault core domain; 3) pore pressure- and deformation-

dependent permeability constrained by triaxial deformation experiments with fluid 

flow; 4) basic assumptions about the physics of the earthquake nucleation processes.  

Mathematically, I present a treatment of the fault zone and the fluids it 

contains as a non-smooth dynamical system. The results of these studies are then 

discussed in detail at the end of each of the research chapters. This final discussion 

chapter aims to highlight and contrast the main findings of the preceding chapters. I 

will also discuss the implications for fluid-induced earthquake nucleation, 
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earthquake forecasting and premonitory signal detection. Opportunities for future 

work will be signposted when discussing the results and their implications. 

6.2 Summary and comparison of main findings 

In Chapter 4, we present a parameter study of pore pressure diffusion from an 

overpressured reservoir, located in the fault damage zone abutting the fault core. 

Two end-member case studies at the extremes of the pore pressure range – e.g. 

supra-hydrostatic vs. sub-lithostatic conditions – were examined in further detail. 

The fault zones used to establish the base case, around which pore fluid factor was 

varied, are analogues of the seismic sources in the hypocentre zone of the Northern 

Apennines seismic belt (e.g. Mirabella et al., 2008; De Paola et al., 2008; Collettini 

et al., 2009). In simulations, we considered that faults were saturated with 

supercritical CO2, at a hypocentre depth of 7 km. This was consistent with borehole 

measurements, which show the presence of overpressured CO2 within the Triassic 

Evaporites host rocks at up to 80% of the lithostatic load (Chiodini and Cioni, 1989; 

Collettini and Barchi, 2002; Miller et al., 2004).  

Fault zone architecture is taken from field observations of analogous 

evaporite faults reporting a 3 m wide fault core with a complex internal structure, 

where most of the seismic slip accommodated by the fault is localised (Collettini et 

al., 2009; De Paola et al., 2008). Outside the fault core, a well-developed damage 

zone (DZ) is observed within thick (a few meters to tens of meters) fractured 

dolostones interbedded with undeformed foliated anhydrite, extending at least 10 m 

in either direction from the fault core.  At depth, high porosity fractured dolostones 

and low porosity foliated anhydrite layers in the DZ are believed to act as an 

efficient reservoir-seal system, where supercritical CO2 over- pressurise can develop.  
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In Chapter 5, we extend this analysis to a more generalised parameter study, 

where fault zone parameters are systematically varied to account for the variability 

of fault zone structure and dimensions observed in nature. In particular, we retain the 

same base complex fault zone structure from analogues of the seismic sources in the 

hypocentre zone of the Northern Apennines seismic belt. What we vary instead are 

the dimensions of the lithological heterogeinity in the protolith and damage zone, 

and the dimensions of the fault core domains. The specific parameters varied are the 

width of the outer fault core (OFC) and the thickness of the pressurised reservoir in 

the DZ, while pore fluid factor is held constant. 

6.2.1 Mode of failure controls pore pressure diffusion during the seismic cycle 

and earthquake recurrence interval 

In previous studies, numerical simulation techniques have been used to 

analyse fault reactivation. These studies model pore pressure distribution and 

subsurface fluid flow within faults, which eventually cause fault reactivation (Cappa 

and Rutqvist, 2011a, 2012; Rutqvist et al., 2015, 2013a, 2002). Further, a number of 

metre- to kilometre-scale models have refined these results to include simplistic 

models of fault zone architecture and pore pressure dependent fault zone transport 

properties (Cappa et al., 2009; Cappa and Rutqvist, 2011; Hsiung et al., 2005; 

Mazzoldi et al., 2012; Rinaldi et al., 2014; Rutqvist et al., 2013, 2009). 

 The simulations within this thesis represent a novel implementation of 

previous studies, which is applied to a new case study of seismic faults from the 

Italian Northern Apennines seismic belt. These simulations also represent an 

extension of simulations in previous studies, as they include complex and realistic 

models of fault zone architecture and the role played by different model of failure, 

e.g. brittle vs. ductile, in the fault core.  Rock failure and deformation-controlled 
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porosity/permeability are considered in these simulations, throughout the fault core 

and away from any primary slip zones. Both deformation and pore pressure 

dependency of rock transport properties observed in triaxial deformation 

experiments with fluid flow is retained in my simulations. Failure envelopes and 

permeability tensor of anhydrite rocks in the fault core domains are obtained from 

triaxial loading experiments performed on anhydrite borehole samples, with foliation 

oriented in a sub-parallel and sub-orthogonal direction to loading and fluid flow 

direction (De Paola et al., 2009). 

Deformation by brittle and ductile mode of failure both acted as primary 

controls on pore pressure diffusion into fault cores. In my simulations, when fracture 

patterns were created by either brittle or ductile mode of failure the average fault 

core permeability increased by several orders of magnitude. Anisotropic 

permeability variations in the fault core affect both the fault parallel and fault normal 

pore pressure distribution. In all cases, the occurrence of failure during the 

interseismic period enhanced pore pressure diffusion into the fault core, compared to 

simulations where failure in the fault core was not accounted for. This resulted in an 

earlier fault failure, where slip initiated along the main slip zones with a larger 

failure patch. Further, the magnitude of permeability increase was greater in 

simulations where brittle failure occurred, so too was the development of pore 

pressure into the fault core. My results show that mode of failure occurring in the 

fault core does affect pore pressure distribution and fluid flow, which have an impact 

on the duration of the interseismic period and on the size of the initial rupture patch.  

Such effects are of the same order of magnitude as local factors, such as fault core 

thickness and the level of pressure and thickness of pressurised reservoirs in the 

damage zone. As such, the aforementioned simulations which consider simple fault 
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zone architecture and generic deformation, neglecting the role of specific mode of 

failure, did not consistently consider all primary factors at work (Rinaldi et al., 

2014).  

In our specific case study, a critical fault core thickness (OFC < 2 m) and 

intersecting overpressured aquifer thickness (OC > 40 m) can be identified beyond 

which the duration of the interseismic period does not vary. We believe that the 

attainment of a characteristic interseismic period duration, controlled by local fault 

zone factors, is due to the development of a failure patch whose dimension are 

comparable to those of the nucleation length, both being dependent on pore pressure. 

6.2.2 The role of pore-fluid pressure during the earthquake nucleation phase 

Simulations presented in Chapters 4 and 5 show that both the inclusion of 

realistic models of fault zone architecture and deformation-dependent permeability 

(brittle and ductile mode of failure) control both the size of the sliding patch during 

earthquake nucleation and the theoretical nucleation length, which is the predicted 

critical size required to start the propagation of fast seismic sliding. The conditions 

also affect the duration of the nucleation phase, which is the time interval between 

the initiation of slow failure and onset of fast seismic sliding along the main slip 

zone. Simulation of the earthquake nucleation phase has also given insight into the 

role that aseismic slip plays before a major earthquake is triggered. Further, it is 

evident from the parameter studies of Chapters 4 and 5 that the variation of each of 

these parameters acts to enhance or inhibit the development of pore pressure in the 

centre of the fault. 

 Increasing the pore fluid factor, thickness of the pressurised reservoir in the 

damage zone abutting the fault core and decreasing the thickness of the fault core all 

act to enhance the magnitude of pore pressure in the fault core. Subsequently, the 
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duration of the interseismic period is reduced, as an earthquake can nucleate on the 

fault plane sooner, with a larger rupture patch. However, my results show that the 

length of the nucleation phase is affected by the presence and timing of ductile 

deformation occurring in the fault core. In simulations without ductile failure or in 

simulations where ductile failure is significantly removed in time from the onset of 

sliding along the main slip zone, the nucleation phase duration is on the order of 

days to years. On the other hand, simulations where ductile failure immediately 

precedes failure along the main slip zone have nucleation phases lasting on the order 

of seconds. 

In the simulations presented in this thesis, the lithostatic pressure and 

hydrogeological conditions considered determine that any fluid present in the fault 

would be in a single supercritical phase, and consistently several orders of magnitude 

below the criteria for non-Darcy flow (Thauvin and Mohanty, 1998). However, the 

same simulation techniques could be applied more broadly, and to shallower faults, 

if simulations of compressible, multiphase and/or multicomponent flow were 

considered, where the criteria for non-Darcy flow is met (e.g. Goudarzi, Mathias, & 

Gluyas, 2016). 

6.3 Broader implications of main findings 

6.3.1 Implications for fluid-induced seismicity and earthquake forecasting 

The results of Chapter 4 suggest that the level of pore pressure in pressurised 

reservoirs in the damage zone acts as a primary control on the diffusion of pore 

pressure into the fault core. My results show that the resultant pore pressure 

distribution affects the length of the interseismic period and the size of the rupture 

patch. Increasing the level of pore pressure of supercritical CO2 in the damage zone 
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reservoir acts to increase the length of the rupture patch and the duration of the 

nucleation phase, while decreasing the length of the interseismic period. Rupture 

patch dimensions have been related to rock transport properties in broadly similar 

studies in different locations on metre to kilometre scales. However, none of the 

previous studies considered the role played by local factors, and their effects on the 

duration of the interseismic period or nucleation phase (Cappa, 2009; Cappa and 

Rutqvist, 2011b; Mazzoldi et al., 2012; Rutqvist et al., 2007). 

In Chapter 5 I show that the thickness of the pressurised reservoir in the 

damage zone and of the fault core also act as primary controls on the diffusion of 

pore pressure into the fault core. These fault zone parameters influence the length of 

the interseismic period and the size of the rupture patch. In this case, decreasing the 

thickness of the outer fault core and increasing the thickness of the pressurised 

reservoir in the damage zone act to increase the length of the rupture patch, while 

decreasing the length of the interseismic period. Also, both findings presented in 

Chapter 4 and 5 suggest that the inclusion of complex, realistic models of fault zone 

architecture alters interseismic period, nucleation length and the length of the 

nucleation phase. Hence, they are necessary to accurately simulate pore pressure 

diffusion and earthquake nucleation in low-porosity rocks.  

Similar results have been recovered from TOUGH-FLAC simulations of 

carbon sequestration operations in interbedded shale and limestone (Rinaldi et al., 

2014b). However, in these simulations much simpler fault zone architecture were 

considered, and rock the relations between rock physical parameters (e.g. structural 

porosity due to deformation and permeability) and pore pressure were more general 

and not constrained with triaxial deformation experiments with fluid flow. Further, 

the specific role played by mode of failure, e.g. brittle vs. ductile mode of failure, 
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and the effects acused on earthquake nucleation were not considered (Rinaldi et al., 

2014) in these studies. 

Simulations presented in both Chapters 4 and 5 show that small-scale 

fracturing acts to increase fault core permeability by several orders of magnitude 

and, therefore, to increase the development of pore pressure in the fault core. Fault 

zone parameters, such as fault core domains thickness, control the occurrence and 

relative timescale of small-scale fracturing in the fault core. Further control on the 

timescale of small-scale fracturing is exerted by the initial hydrogeological 

conditions of the fault zone (e.g. level of pressure and thickness of connected 

reservoirs in the damage zone) and their evolution during the interseismic period. 

Hence, information on coseismic fluid discharge and fluid recharge between the fault 

zone and the connected aquifers could thus be inferred from the hydrogeological 

monitoring of springs (e.g., Barberio et al., 2017) and boreholes in the epicentral area 

or in the surrounding areas of injection sites. These observations could then be used 

to estimate the pore pressure evolution of the fault zone and its surroundings during 

the seismic cycle.  

To conclude, key fault zone parameters and lithological variations in the 

protolith control small-scale fracturing in the fault core, which can modulate the 

length of the interseismic period. Low resolution of indirect measurement methods 

and generic inference from specific natural analogues make fault zone parameters 

poorly constrained. Hence, numerical simulations and multiphysics models of 

seismic faults are a useful tool to predict the distribution and evolution of pore fluid 

pressure during the seismic cycle. 
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6.3.2 Implications for earthquake nucleation phase duration and premonitory 

signal detection 

The parameter studies of pore pressure in a supercritical CO2 reservoir in the 

damage zone in Chapter 4 indicate that it controls the length of the nucleation phase, 

thus increasing levels of pore pressure in the fault core and extending the duration of 

the nucleation phase by several years. This nucleation length control is much more 

pronounced when deformation dependent permeability is considered.  The 

dependence of nucleation phase on pore pressure is mediated by the nonlinear trade-

off as increasing pore pressure decreases fault strength but also decreases fault 

stiffness and therefore increases the critical patch size required for earthquake 

nucleation. A secondary layer of complexity is added when small scale fracturing in 

the fault core, accommodated by brittle or ductile mode of failure, is also considered. 

This fracturing acts to reduce the length of the nucleation phase to more realistic 

values, ranging from a few seconds to a few days, compared to several years 

required in simulations with no deformation in the fault core accounted for.  

In Chapter 5, the thickness of the pressurised reservoir in the damage zone 

and the thickness of the fault core are both shown to control the length of the 

nucleation phase, when no deformation in the fault core is accounted for. In both 

cases, increasing thickness acts to reduce the length of the nucleation phase. 

However, the inclusion of small-scale fracturing, accommodated by brittle or ductile 

mode of failure in the fault core, reveals some rather complex evolution patterns of 

the nucleation length, which in some cases extends by several years and, in other, 

reduces to the order of seconds.  

Our case studies in chapter 4 and 5 show that, for a given fault, characteristic 

values of fault zone parameters (e.g. fault core width and intersecting overpressured 
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aquifer thickness) govern the transition from relatively long (days to months) and 

easily detectable nucleation phase to very short ones (seconds to minutes) and 

difficult to detect. As such, realistic estimates of uncertainty in fault zone 

architecture dimension must inform hazard estimates. Small differences in scale can 

correspond to significant variation of the duration of the nucleation phase, from 

seconds to years. This hypersensitivity to local fault zone factors has significant 

implications for premonitory signal detection. In fact, any extension of the 

nucleation phase where the fault undergoes stable sliding may be more readily 

detected using remote sensing techniques which can resolve surface displacements 

down to 2cm (Guerrieri et al., 2010).  

Further, this hypersensitivity to initial conditions supports the idea that the 

fault-fluid system can be treated as a dynamical system, and is consistent with the 

theoretical analysis of said system (Anghel et al., 2004; Kim, 2017; Sobolev, 2011). 

The consideration of fault zone fluids and small-scale fracturing in simulations 

mediates an effective nonlinear relationship in fault frictional strength. Similar 

chaotic behaviour emerges in both experimental (Johnson et al., 2012) and 

seismological (Shelly, 2010) observations of nonlinear friction in fault systems. 

Both Chapters 4 and 5 include simulations which predict long periods of aseismic 

slip on the order of months to years. Episodes of aseismic slip on fault zones has 

been observed on numerous occasions throughout the last decade, although they 

were generally not linked to the triggering of seismicity. Recently, large aseismic 

slip episodes have been identified immediately preceding the recent Mw 9, 2011 

Tohoku earthquake (Kato et al., 2012; Mavrommatis et al., 2014) and the Mw 8.1, 

2014 Iquique earthquake (Ruiz et al., 2017; Socquet et al., 2017). It is argued that 

these aseismic slip events, each lasting a few months, contributed to the triggering of 
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earthquakes and were related to their preparatory nucleation phase (Guglielmi et al., 

2015). 

The control exerted by the local factors over the interseismic period has 

significant implications for earthquake forecasting. On the other hand, estimates of 

the duration of the nucleation phase have implications for earthquake early warning 

systems. We believe that the aseismic creep predicted by our simulations (creep on 

fault patches > 30m) could be detectable well in advance of a significant seismic 

event, particularly by using geodetic data and new satellite remote sensing 

techniques which can resolve surface displacements down to 2cm (Guerrieri et al., 

2010). 

6.4 Future modelling  

Simulations of the earthquake nucleation phase were able to resolve the 

duration of this phase to the order of a few seconds in several hundred-year 

simulations consistently, despite high instantaneous stiffness in the Jacobian matrix 

for the fault-fluid system (eigenvalues differing by a factor of 1011). This efficiency 

is possible by considering the permeability transitions associated with small scale 

fracturing, brittle or ductile mode of failure, and stable sliding on the fault as the 

discontinuous transitions of a non-smooth dynamical system and conducting 

simulations with an explicit singly diagonal implicit Runge-Kutta  (ESDIRK) solver 

(for A-,L-,S-stability) and event detection. 

While simulations presented in Chapter 4 accounted for the occurrence of 

brittle mode of failure, those in Chapter 5 did not due to the level of pore pressure 

considered in the damage zone reservoir. This was due to the preliminary parameter 

studies, in the pressure ranges likely to produce brittle failure, being significantly 
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more computationally intensive. The simulation time was approximately two orders 

of magnitude larger due to the gradual, phased development of brittle mode of 

failure, as opposed to the instant onset of ductile failure.   

Future work may consider running higher resolution parameter studies in 

these brittle failure ranges, although production of more performant code might be 

necessary. The current simulation code performs the majority of its short timestep 

calculations immediately after large changes in permeability following brittle or 

ductile mode of failure. The subsequent pressure front might be resolved more 

efficiently with existing computational techniques (e.g. Weighted Essentially Non-

Oscillatory Schemes, Liu, Osher, & Chan, 1994). Beyond this, performance analysis 

of simulations indicates that a similar amount of execution time is spent in the 

MATLAB ODE solver library itself as in the MATLAB numerical simulation script 

I have written. The MATLAB execution engine calls C++ code using just-in-time 

compilation. This code itself is heavily optimised but also general enough to be 

versatile. Given the already high level of code optimization present in MATLAB’s 

built-in libraries it is likely that the only possibility for performance improvements, 

beyond one order of magnitude, likely lies in memory optimisation with respect to 

processor caches. The most promising way forward might be hand optimised C++ 

code with existing solver libraries (e.g. CVODE; Hindmarsh et al., 2005) to 

potentially entirely avoid cache thrashing (e.g. (Jin et al., 1998)). 

6.5 Conclusions 

The work set out in this thesis illustrates a range of seismic processes present 

in natural low porosity fault zones.  These processes are examined in numerical 

simulations of with transport and failure properties constrained using triaxial loading 

experiments with fluid flow. The results of these simulations have broad 



      

 

~ 187 ~ 
 

implications for fluid flow and earthquake nucleation in low porosity fault zones and 

are described below: 

• Several local factors of fault zones exert a primary control on the diffusion of 

pore pressure into the fault core of low porosity faults. Hence, these factors 

control the duration of the interseismic period, the size of the rupture patch 

and the duration of the nucleation phase of an earthquake. Specifically, fault 

core width and the thickness and level of pore pressure in pressurised 

reservoirs in the damage zone abutting the fault zone all mediate the 

aforementioned effect. 

• Small-scale fracturing in the fault core, accommodated by either brittle or 

ductile mode of failure, acts as a primary control of the duration of the 

interseismic period, the size of the rupture patch, and the duration of the 

nucleation phase of an earthquake. The magnitude of this effect was 

significant in simulations that also included realistic, complex models of fault 

zone architecture. Therefore, both must be considered to produce realistic 

results. 

• Earthquake rupture patch development and nucleation is governed by highly 

nonlinear processes. The fault-fluid system exhibits hypersensitivity to initial 

conditions, consistent with a chaotic dynamical system. This hypersensitivity 

to initial conditions has large implications for earthquake forecasting, and 

premonitory signal detection, as small centimetre scale uncertainty in fault 

zone parameters controlled by local factors can have outsized effects on the 

duration of the interseismic period, rupture patch dimension and length of the 

nucleation phase. 
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that these aseismic slip events, lasting a few months, contribute to the 

triggering of earthquakes and are related to their preparatory nucleation phase 

(Guglielmi et al., 2015). 

Overall, our results show that both the inclusion of realistic models of fault 

zone architecture and deformation-dependent permeability (brittle and ductile 

failure) control the size of the sliding patch (Fig. 4.7b) during earthquake 

nucleation and the duration of the nucleation phase (Fig. 4.7c).  

The size of the failure patch during the nucleation phase is always larger 

when realistic models of fault zone architecture and deformation-dependent 

permeability are considered (Fig. 4.7b). Small scale fracturing by brittle 

failure, occurring for initially high pore pressures, provides the largest 

slipping patches (> 30 m in Fig. 4.7b). These results are of relevance when 

considering that technological improvements in signal/noise ratio and spatio-

temporal resolution of geodetic data are lowering the detection thresholds for 

measurements of aseismic slip. In particular, the advent of new satellite radar 

missions now enables a systematic, global investigation of pre-seismic slip for 

the first time. 

 Our results show that the duration of the nucleation phase is significantly 

reduced from a few years to a few months at high values of initial pore 

pressure, when realistic models of fault zone architecture and deformation-

dependent permeability are considered. Interestingly, a few months is also the 

time scale of aseismic slip measured during the nucleation phase of some 

recent large earthquakes (Fig. 4.7c; Mw 9, 2011 Tohoku and Mw 8.1, 2014 

Iquique earthquakes).To conclude, estimates of the duration of the nucleation 
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phase have implications for earthquake early warning systems. In fact, 

intermittent aseismic creep on fault patches > 30 m in diameter, over a period 

of few months, could be detectable well in advance of a significant seismic 

event, perhaps using geodetic data and new satellite remote sensing 

techniques.  



      

 

~ 190 ~ 
 

 

 

BIBLIOGRAPHY 

Bibliography 

 

  



      

 

~ 191 ~ 
 

Bibliography 

Ake, J., Mahrer, K., O ’connell, D., Block, L., 2005. Deep-Injection and 

Closely Monitored Induced Seismicity at Paradox Valley, Colorado. 

Bull. Seismol. Soc. Am. 95, 664–683. 

https://doi.org/10.1785/0120040072 

Anghel, M., Ben-Zion, Y., Rico-Martinez, R., 2004. Dynamical System 

Analysis and Forecasting of Deformation Produced by an Earthquake 

Fault. Pure Appl. Geophys. PAGEOPH 161, 2023–2051. 

https://doi.org/10.1007/s00024-004-2547-9 

Atkinson, G., Assatourians, K., Cheadle, B., Greig, W., 2015. Ground 

Motions from Three Recent Earthquakes in Western Alberta and 

Northeastern British Columbia and Their Implications for Induced-

Seismicity Hazard in Eastern Regions. Seismol. Res. Lett. 86, 1022–

1031. https://doi.org/10.1785/0220140195 

Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, 

R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R.M., Liu, Y., Van 

Der Baan, M., Kao, H., Baan, M. van der, Kao, H., 2016. Hydraulic 

Fracturing and Seismicity in the Western Canada Sedimentary Basin. 

Seismol. Res. Lett. 87, 631–647. https://doi.org/10.1785/0220150263 

Bagterp Jørgensen, J., Rode Kristensen, M., 2018. A FAMILY OF ESDIRK 

INTEGRATION METHODS. 

Baisch, S., Voros, R., Weidler, R., Wyborn, D., 2009. Investigation of Fault 

Mechanisms during Geothermal Reservoir Stimulation Experiments in 



      

 

~ 192 ~ 
 

the Cooper Basin, Australia. Bull. Seismol. Soc. Am. 99, 148–158. 

https://doi.org/10.1785/0120080055 

Bao, X., Eaton, D.W., 2016. Fault activation by hydraulic fracturing in 

western Canada. Science 354, 1406–1409. 

https://doi.org/10.1126/science.aag2583 

Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017. 

Hydrogeochemical changes before and during the 2016 Amatrice-Norcia 

seismic sequence (central Italy). Sci. Rep. 7, 11735. 

https://doi.org/10.1038/s41598-017-11990-8 

Barchi, M., 2002. Lithological and structural controls on the seismogenesis of 

the Umbria region: observations from seismic reflection profiles. Boll. 

della Soc. Geol. Ital. 121, 855–864. 

Berryman, J.G., 1992. Effective stress for transport properties of 

inhomogeneous porous rock. J. Geophys. Res. 97. 

https://doi.org/10.1029/92jb01593 

Bullock, R.J., De Paola, N., Holdsworth, R.E., Trabucho-Alexandre, J., 2014. 

Lithological controls on the deformation mechanisms operating within 

carbonate-hosted faults during the seismic cycle. J. Struct. Geol. 58, 22–

42. https://doi.org/10.1016/j.jsg.2013.10.008 

Burke, L., 2011. Carbon dioxide fluid-flow modeling and injectivity 

calculations. U.S. Geol. Surv. Sci. Investig. Rep. 2011 5083, 16. 

Byerlee, J., 1978. Friction of rocks. Pure Appl. Geophys. PAGEOPH 116, 

615–626. https://doi.org/10.1007/BF00876528 



      

 

~ 193 ~ 
 

Byerlee, J.D., 1968. Brittle-Ductile Transition in Rocks. 

https://doi.org/10.1029/JB073i014p04741 

Caine, J.S., Evans, J.P., Forster, C.B., Saul, J., City, S.L., Caine, J.S., Evans, 

J.P., Forster, C.B., 1996. Fault zone architecture and permeability 

structure. Geology 24, 1025. https://doi.org/10.1130/0091-

7613(1996)024<1025:FZAAPS>2.3.CO;2 

Caine, J.S., Forster, C.B., 1999. Fault Zone Architecture and Fluid Flow : 

Insights From Field Data and Numerical Modeling. 

Campillo, M., Favreau, P., Ionescu, I.R., Voisin, C., 2001. On the effective 

friction law of a heterogeneous fault. J. Geophys. Res. 106, 16307. 

https://doi.org/10.1029/2000JB900467 

Cappa, F., 2009. Modelling fluid transfer and slip in a fault zone when 

integrating heterogeneous hydromechanical characteristics in its internal 

structure. Geophys. J. Int. 178, 1357–1362. 

https://doi.org/10.1111/j.1365-246X.2009.04291.x 

Cappa, F., Rutqvist, J., 2011a. Impact of CO 2 geological sequestration on the 

nucleation of earthquakes 38, 2–7. 

https://doi.org/10.1029/2011GL048487 

Cappa, F., Rutqvist, J., 2011b. Modeling of coupled deformation and 

permeability evolution during fault reactivation induced by deep 

underground injection of CO2. Int. J. Greenh. Gas Control 5, 336–346. 

https://doi.org/10.1016/j.ijggc.2010.08.005 

Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Modeling crustal deformation 



      

 

~ 194 ~ 
 

and rupture processes related to upwelling of deep CO 2 -rich fluids 

during the 1965–1967 Matsushiro earthquake swarm in Japan. J. 

Geophys. Res. 114, B10304. https://doi.org/10.1029/2009JB006398 

Cappa, F.F., Rutqvist, J., 2012. Seismic rupture and ground accelerations 

induced by CO 2 injection in the shallow crust. Geophys. J. Int. 190, 

1784–1789. https://doi.org/10.1111/j.1365-246X.2012.05606.x 

Chester, F.M., Chester, J.S., 1998. Ultracataclasite structure and friction 

processes of the Punchbowl fault, San Andreas system, California, 

Tectonophysics. Elsevier. https://doi.org/10.1016/S0040-

1951(98)00121-8 

Chester, F.M., Chester, J.S., Kirschner, D.L., Schulz, S.E., Evans, J.P., 2004. 

8. Structure of Large-Displacement, Strike-Slip Fault Zones in the Brittle 

Continental Crust, in: Karner, G.D., Taylor, B., Driscoll, N.W., 

Kohlstedt, D.L. (Eds.), Rheology and Deformation of the Lithosphere at 

Continental Margins. Columbia University Press, New York Chichester, 

West Sussex. https://doi.org/10.7312/karn12738-009 

Chester, F.M., Evans, J.P., Biegel, R.L., 1993. Internal structure and 

weakening mechanisms of the San Andreas Fault. J. Geophys. Res. Solid 

Earth 98, 771–786. https://doi.org/10.1029/92JB01866 

Chester, F.M., Logan, J.M., 1986. Implications for mechanical properties of 

brittle faults from observations of the Punchbowl fault zone, California. 

Pure Appl. Geophys. PAGEOPH 124, 79–106. 

https://doi.org/10.1007/BF00875720 

Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the 



      

 

~ 195 ~ 
 

complexity of an active normal fault system: The 1997 Colfiorito 

(central Italy) case study. J. Geophys. Res. 108, 2294. 

https://doi.org/10.1029/2002JB002166 

Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., 

Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in 

central and southern Italy. Geophys. Res. Lett. 31, n/a-n/a. 

https://doi.org/10.1029/2004GL019480 

Chiodini, G., Cioni, R., 1989. Gas geobarometry for hydrothermal systems 

and its application to some Italian geothermal areas. Appl. Geochemistry 

4, 465–472. https://doi.org/10.1016/0883-2927(89)90004-8 

Clarke, H., Eisner, L., Styles, P., Turner, P., 2014. Felt seismicity associated 

with shale gas hydraulic fracturing: The first documented example in 

Europe. Geophys. Res. Lett. 41, 8308–8314. 

https://doi.org/10.1002/2014GL062047 

Collettini, C., Barchi, M.R., 2002. A low-angle normal fault in the Umbria 

region (Central Italy): a mechanical model for the related 

microseismicity. Tectonophysics 359, 97–115. 

https://doi.org/10.1016/S0040-1951(02)00441-9 

Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., 

Smith, S. a. F., 2008. Fault weakening due to CO2 degassing in the 

Northern Apennines: short- and long-term processes. Geol. Soc. London, 

Spec. Publ. 299, 175–194. https://doi.org/10.1144/SP299.11 

Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry 

and mechanics of the Umbria–Marche earthquakes (Central Italy) from 



      

 

~ 196 ~ 
 

the integration of field and laboratory data. Tectonophysics 476, 99–109. 

https://doi.org/10.1016/j.tecto.2008.08.013 

Cox, S.F., 2010. The application of failure mode diagrams for exploring the 

roles of fluid pressure and stress states in controlling styles of fracture-

controlled permeability enhancement in faults and shear zones. 

Geofluids 10, 217–233. https://doi.org/10.1111/j.1468-

8123.2010.00281.x 

Cox, S.F., 1995. Faulting processes at high fluid pressures: An example of 

fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. 

Geophys. Res. Solid Earth 100, 12841–12859. 

https://doi.org/10.1029/95JB00915 

Cox, S.F., Etheridge, M.A., Wall, V.J., 1987. The role of fluids in syntectonic 

mass transport, and the localization of metamorphic vein-type ore 

deposits. Ore Geol. Rev. Elsevier Sci. Publ. B.V 2, 65–86. 

https://doi.org/10.1016/0169-1368(87)90024-2 

Dahlquist, G.G., 1963. A special stability problem for linear multistep 

methods. BIT 3, 27–43. https://doi.org/10.1007/BF01963532 

Davies, J.P.P., Davies, D.K.D.K., Davies, D.K.D.K., 2001. Stress-Dependent 

Permeability : Characterization and Modeling. SPE J. 6, 224–235. 

https://doi.org/10.2118/71750-PA 

Davies, R., Foulger, G., Bindley, A., Styles, P., 2013. Induced seismicity and 

hydraulic fracturing for the recovery of hydrocarbons. Mar. Pet. Geol. 

45, 171–185. https://doi.org/10.1016/j.marpetgeo.2013.03.016 



      

 

~ 197 ~ 
 

De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone 

architecture and deformation processes within evaporitic rocks in the 

upper crust. Tectonics 27, 1–21. https://doi.org/10.1029/2007TC002230 

De Paola, N., Faulkner, D.R., Collettini, C., 2009. Brittle versus ductile 

deformation as the main control on the transport properties of low-

porosity anhydrite rocks. J. Geophys. Res. Solid Earth 114. 

https://doi.org/10.1029/2008JB005967 

De Pater, C.J., Baisch, S., 2011. Geomechanical Study of Bowland Shale 

Seismicity Synthesis Report. 

Detournay, E., Cheng, A.H.-D.A., 1993. Fundamentals of Poroelasticity. 

Compr. Rock Eng. Princ. Pract. Proj. II, 113–171. 

https://doi.org/10.1016/0148-9062(94)90606-8 

Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 

2010. Normal faults and thrusts reactivated by deep fluids: The 6 April 

2009 Mw 6.3 L’Aquila earthquake, central Italy. J. Geophys. Res. 115, 

B06315. https://doi.org/10.1029/2009JB007190 

Dicelis, G., Assumpção, M., Prado, R.L., Agurto-Detzel, H., Barbosa, J.R., 

2017. Improving the characterization of the seismic source in 

Bebedouro, Paraná Basin, Brazil: Further evidence of seismicity 

triggered by hydraulic stimulation in water wells. Geophys. J. Int. 210, 

594–608. https://doi.org/10.1093/gji/ggx180 

Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and 

statedependent friction. Tectonophysics. 



      

 

~ 198 ~ 
 

Dieterich, J.H., 1979. Modeling of rock friction: 1. Experimental results and 

constitutive equations. J. Geophys. Res. 84, 2161. 

https://doi.org/10.1029/JB084iB05p02161 

Ellsworth, W.L., 2013. Injection-Induced Earthquakes. Science (80-. ). 341, 

1225942–1225942. https://doi.org/10.1126/science.1225942 

Elsworth, D., Spiers, C.J., Niemeijer, A.R., 2016. Understanding induced 

seismicity. Science (80-. ). 354, 1380–1381. 

https://doi.org/10.1126/science.aal2584 

Evans, J.P., Forster, C.B., Goddard, J. V., 1997. Permeability of fault-related 

rocks, and implications for hydraulic structure of fault zones. J. Struct. 

Geol. 19, 1393–1404. https://doi.org/10.1016/S0191-8141(97)00057-6 

Farahbod, A.M., Kao, H., Cassidy, J.F., Walker, D., 2015a. How did 

hydraulic-fracturing operations in the Horn River Basin change 

seismicity patterns in northeastern British Columbia, Canada? Lead. 

Edge 34, 658–663. https://doi.org/10.1190/tle34060658.1 

Farahbod, A.M., Kao, H., Walker, D.M., Cassidy, J.F., 2015b. Investigation 

of regional seismicity before and after hydraulic fracturing in the Horn 

River Basin, northeast British Columbia. Can. J. Earth Sci. 52, 112–122. 

https://doi.org/10.1139/cjes-2014-0162 

Faulkner, D.., Lewis, A.., Rutter, E.., 2003. On the internal structure and 

mechanics of large strike-slip fault zones: field observations of the 

Carboneras fault in southeastern Spain. Tectonophysics 367, 235–251. 

https://doi.org/10.1016/S0040-1951(03)00134-3 



      

 

~ 199 ~ 
 

Faulkner, D.R., 2004. A model for the variation in permeability of clay-

bearing fault gouge with depth in the brittle crust. Geophys. Res. Lett. 

31, L19611. https://doi.org/10.1029/2004GL020736 

Faulkner, D.R., Rutter, E.H., 2003. The effect of temperature, the nature of 

the pore fluid, and subyield differential stress on the permeability of 

phyllosilicate-rich fault gouge. J. Geophys. Res. Solid Earth 108. 

https://doi.org/10.1029/2001JB001581 

Faulkner, D.R., Rutter, E.H., 2001. Can the maintenance of overpressured 

fluids in large strike-slip fault zones explain their apparent weakness? 

Geology 29, 503–506. https://doi.org/10.1130/0091-

7613(2001)029<0503:CTMOOF>2.0.CO;2 

Faulkner, D.R., Rutter, E.H., 2000. Comparisons of water and argon 

permeability in natural clay-bearing fault gouge under high pressure at 

20°C. J. Geophys. Res. Solid Earth 105, 16415–16426. 

https://doi.org/10.1029/2000JB900134 

Faulkner, D.R.R., Jackson, C.A.L.A.L., Lunn, R.J.J., Schlische, R.W.W., 

Shipton, Z.K.K., Wibberley, C.A.J.A.J., Withjack, M.O.O., 2010. A 

review of recent developments concerning the structure, mechanics and 

fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575. 

https://doi.org/10.1016/j.jsg.2010.06.009 

Fischer, G.J., 1992. Chapter 8 The Determination of Permeability and Storage 

Capacity: Pore Pressure Oscillation Method. Academic Press. 

https://doi.org/10.1016/S0074-6142(08)62823-5 

Folger, P., Tiemann, M., 2015. Human-Induced Earthquakes from Deep-Well 



      

 

~ 200 ~ 
 

Injection: A Brief Overview 1–26. 

Friberg, P.A., Besana-Ostman, G.M., Dricker, I., 2014. Characterization of an 

Earthquake Sequence Triggered by Hydraulic Fracturing in Harrison 

County, Ohio. Seismol. Res. Lett. 85, 1295–1307. 

https://doi.org/10.1785/0220140127 

Frohlich, C., 2012. Two-year survey comparing earthquake activity and 

injection-well locations in the Barnett Shale, Texas. Proc. Natl. Acad. 

Sci. U. S. A. 109, 13934–8. https://doi.org/10.1073/pnas.1207728109 

Frohlich, C., Brunt, M., 2013. Two-year survey of earthquakes and 

injection/production wells in the Eagle Ford Shale, Texas, prior to the 

MW4.8 20 October 2011 earthquake. Earth Planet. Sci. Lett. 379, 56–63. 

https://doi.org/10.1016/j.epsl.2013.07.025 

Gan, W., Frohlich, C., Forsyth, D.W., 2013. Gas injection may have triggered 

earthquakes in the Cogdell oil field, Texas. 

https://doi.org/10.1073/pnas.1311316110 

Goudarzi, S., Mathias, S.A., Gluyas, J.G., 2016. Simulation of Three-

Component Two-Phase Flow in Porous Media Using Method of Lines. 

Transp. Porous Media 112, 1–19. https://doi.org/10.1007/s11242-016-

0639-5 

Griffith, A., 1924. The theory of rupture. Proc., Ist., Int., Congr., Appl., Mech. 

Biereno, C.B. Burgers, J.M(eds). Delft Tech. Boekhand. en Druk. J. 

Waltman Jr. 54–63. 

Griffiths, D. V., 1990. Failure Criteria Interpretation Based on Mohr‐



      

 

~ 201 ~ 
 

Coulomb Friction. J. Geotech. Eng. 116, 986–999. 

https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(986) 

Guerrieri, L., Baer, G., Hamiel, Y., Amit, R., Blumetti, A.M., Comerci, V., Di 

Manna, P., Michetti, A.M., Salamon, A., Mushkin, A., Sileo, G., Vittori, 

E., 2010. InSAR data as a field guide for mapping minor earthquake 

surface ruptures: Ground displacements along the Paganica Fault during 

the 6 April 2009 L’Aquila earthquake. J. Geophys. Res. 115, B12331. 

https://doi.org/10.1029/2010JB007579 

Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., Elsworth, D., 2015. 

Seismicity triggered by fluid injection – induced aseismic slip. Science 

(80-. ). 348, 1224–1227. https://doi.org/10.1126/science.aab0476 

Hairer, E., Wanner, G., 1996. Stability Analysis for Explicit RK Methods. pp. 

15–39. https://doi.org/10.1007/978-3-642-05221-7_2 

Hangx;, Spiers, C.J., Peach, C.J., 2010. Mechanical behavior of anhydrite 

caprock and implications for CO 2 sealing capacity. J. Geophys. Res. 

115, B07402. https://doi.org/10.1029/2009JB006954 

Hangx, S.J.T., Spiers, C.J., Peach, C.J., 2010. The effect of deformation on 

permeability development in anhydrite and implications for caprock 

integrity during geological storage of CO2. Geofluids 10, 369–387. 

https://doi.org/10.1111/j.1468-8123.2010.00299.x 

Hickman, S., Sibson, R., Bruhn, R., 1995. Introduction to Special Section: 

Mechanical Involvement of Fluids in Faulting. J. Geophys. Res. Solid 

Earth 100, 12831–12840. https://doi.org/10.1029/95JB01121 



      

 

~ 202 ~ 
 

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, 

D.E., Woodward, C.S., 2005. SUNDIALS: Suite of Nonlinear and 

Differential/Algebraic Equation Solvers. 

Holland, A.A., 2013. Earthquakes triggered by hydraulic fracturing in south-

central Oklahoma. Bull. Seismol. Soc. Am. 103, 1784–1792. 

https://doi.org/10.1785/0120120109 

Hornbach, M.J., Jones, M., Scales, M., DeShon, H.R., Magnani, M.B., 

Frohlich, C., Stump, B., Hayward, C., Layton, M., 2016. Ellenburger 

wastewater injection and seismicity in North Texas. Phys. Earth Planet. 

Inter. 261, 54–68. https://doi.org/10.1016/J.PEPI.2016.06.012 

Hosea, M.E., Shampine, L.F., 1996. Analysis and implementation of TR-

BDF2. Appl. Numer. Math. 20, 21–37. https://doi.org/10.1016/0168-

9274(95)00115-8 

Hsiung, S.M., Chowdhury,  a H., Nataraja, M.S., 2005. Numerical simulation 

of thermal – mechanical processes observed at the Drift-Scale Heater 

Test at Yucca Mountain , Nevada , USA. Rock Mech. 42, 652–666. 

https://doi.org/10.1016/j.ijrmms.2005.03.006 

Jin, G., Li, Z., Chen, F., 1998. An efficient solution to the cache thrashing 

problem caused by true data sharing. IEEE Trans. Comput. 47, 527–543. 

https://doi.org/10.1109/12.677228 

Johnson, P.A., Carpenter, B., Knuth, M., Kaproth, B.M., Le Bas, P.-Y., Daub, 

E.G., Marone, C., 2012. Nonlinear dynamical triggering of slow slip on 

simulated earthquake faults with implications to Earth. J. Geophys. Res. 

Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB008594 



      

 

~ 203 ~ 
 

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., Hirata, N., 

2012. Propagation of Slow Slip Leading Up to the 2011 W w 9.0 

Tohoku-Oki Earthquake. Source Sci. New Ser. 335, 705–708. 

https://doi.org/10.1126/science.l213778 

Keranen, K.M., Savage, H.M., Abers, G.A., Cochran, E.S., 2013. Potentially 

induced earthquakes in Oklahoma, USA: Links between wastewater 

injection and the 2011 Mw 5.7 earthquake sequence. Geology 41, 699–

702. https://doi.org/10.1130/G34045.1 

Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A., Ge, S., 2014. 

Sharp increase in central Oklahoma seismicity since 2008 induced by 

massive wastewater injection. Science (80-. ). 345, 448–451. 

https://doi.org/10.1126/SCIENCE.1255802 

Keulen, N., Stünitz, H., Heilbronner, R., 2008. Healing microstructures of 

experimental and natural fault gouge. J. Geophys. Res. 113, B06205. 

https://doi.org/10.1029/2007JB005039 

Kim, M.H., 2017. New dynamical systems modeling helps explain mega-

earthquakes. Scilight 2017, 180004. https://doi.org/10.1063/1.5009894 

Kim, W.-Y., 2013. Induced seismicity associated with fluid injection into a 

deep well in Youngstown, Ohio. J. Geophys. Res. Solid Earth 118, 

3506–3518. https://doi.org/10.1002/jgrb.50247 

Kristensen, M.R., Jørgensen, J.B., Thomsen, P.G., Jørgensen, S.B., 2004. An 

ESDIRK method with sensitivity analysis capabilities. Comput. Chem. 

Eng. 28, 2695–2707. 

https://doi.org/10.1016/J.COMPCHEMENG.2004.08.004 



      

 

~ 204 ~ 
 

Lambert, J.D. (John D., D., J., 1991. Numerical methods for ordinary 

differential systems : the initial value problem. Wiley. 

Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 

2015a. Development and maintenance of fluid overpressures in crustal 

fault zones by elastic compaction and implications for earthquake 

swarms. J. Geophys. Res. Solid Earth 120, 4450–4473. 

https://doi.org/10.1002/2014JB011759 

Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 

Zhang, L., Carpenter, B.M., Ikari, M.J., Marone, C., Zhang, L., 

Carpenter, B.M., Ikari, M.J., Marone, C., Leclère, H., Cappa, F., 

Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 2015b. Journal of 

Geophysical Research : Solid Earth. J. Geophys. Res. Solid Earth 4450–

4473. https://doi.org/10.1002/2014JB011759.Received 

Leclère, H., Fabbri, O., Daniel, G., Cappa, F., 2012. Reactivation of a strike-

slip fault by fluid overpressuring in the southwestern French-Italian 

Alps. Geophys. J. Int. 189, 29–37. https://doi.org/10.1111/j.1365-

246X.2011.05345.x 

Lei, X., Huang, D., Su, J., Jiang, G., Wang, X., Wang, H., Guo, X., Fu, H., 

2017. Fault reactivation and earthquakes with magnitudes of up to 

Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, 

China. Sci. Rep. 7, 7971. https://doi.org/10.1038/s41598-017-08557-y 

Liu, X.-D., Osher, S., Chan, T., 1994. Weighted Essentially Non-oscillatory 

Schemes. J. Comput. Phys. 115, 200–212. 

https://doi.org/10.1006/JCPH.1994.1187 



      

 

~ 205 ~ 
 

Lockner, D.A., Beeler, N.M., 1999. Premonitory slip and tidal triggering of 

earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH. 

https://doi.org/10.1029/1999JB900205 

Lucente, F., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., 

Chiarabba, C., Piana Agostinetti, N., 2010a. Temporal variation of 

seismic velocity and anisotropy before the 2009 M W 6.3 L’Aquila 

earthquake, Italy. Geology 38, 1015–1018. 

https://doi.org/10.1130/G31463.1 

Lucente, F., Margheriti, L., Chiarabba, C., Piana, N., Francesco, A., Lucente, 

P., De Gori, P., Piccinini, D., Di Bona, M., 2010b. Seismic Anisotropy 

beneath the Arabia-Eurasia collision zone: the major thrust-and-fold 

belts of Zagros and Alborz and the Iranian plateau View project 

ITALIAN SEISMIC BULLETIN View project. 

https://doi.org/10.1130/G31463.1 

Mahesh, P., Gupta, S., Rai, S.S., Sarma, P.R., 2012. Fluid driven earthquakes 

in the Chamoli Region, Garhwal Himalaya: evidence from local 

earthquake tomography. Geophys. J. Int. 191, no-no. 

https://doi.org/10.1111/j.1365-246X.2012.05672.x 

Marone, C., 1998. Laboratory-Derived Friction Laws and Their Application 

to Seismic Faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696. 

https://doi.org/10.1146/annurev.earth.26.1.643 

Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009. 

Screening and selection of sites for CO2 sequestration based on pressure 

buildup. Int. J. Greenh. Gas Control 3, 577–585. 



      

 

~ 206 ~ 
 

https://doi.org/10.1016/J.IJGGC.2009.05.002 

Mavrommatis, A.P., Segall, P., Johnson, K.M., 2014. A decadal-scale 

deformation transient prior to the 2011 M  w  9.0 Tohoku-oki earthquake. 

Geophys. Res. Lett. 41, 4486–4494. 

https://doi.org/10.1002/2014GL060139 

Maxwell, S.C., Urbancic, T.I., Steinsberger, N., Zinno, R., 2002. 

Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett 

Shale, in: SPE Annual Technical Conference and Exhibition. Society of 

Petroleum Engineers. https://doi.org/10.2118/77440-MS 

Mazzoldi, A., Rinaldi, A.P., Borgia, A., Rutqvist, J., 2012. Induced seismicity 

within geological carbon sequestration projects: Maximum earthquake 

magnitude and leakage potential from undetected faults. Int. J. Greenh. 

Gas Control 10, 434–442. https://doi.org/10.1016/j.ijggc.2012.07.012 

McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid 

injection. J. Geophys. Res. Solid Earth 119, 1008–1019. 

https://doi.org/10.1002/2013JB010597 

McGarr, A., Bekins, B., Burkardt, N., Dewey, J., Earle, P., Ellsworth, W., Ge, 

S., Hickman, S., Holland, A., Majer, E., Rubinstein, J., Sheehan, A., 

2015. Coping with earthquakes induced by fluid injection. Science (80-. 

). 347, 830–831. https://doi.org/10.1126/science.aaa0494 

Miller, S. a, Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, 

B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth. 

Nature 427, 724–727. https://doi.org/10.1038/nature02251 



      

 

~ 207 ~ 
 

Miller, S.A., 1996. Fluid-mediated influence of adjacent thrusting on the 

seismic cycle at Parkfield. Nature 382, 799–802. 

https://doi.org/10.1038/382799a0 

Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. 

Insights on the seismogenic layer thickness from the upper crust 

structure of the Umbria-Marche Apennines (central Italy). Tectonics 27, 

1–15. https://doi.org/10.1029/2007TC002134 

Mitchell, T.M., Faulkner, D.R., 2008. Experimental measurements of 

permeability evolution during triaxial compression of initially intact 

crystalline rocks and implications for fluid flow in fault zones. J. 

Geophys. Res. Solid Earth 113, 1–16. 

https://doi.org/10.1029/2008JB005588 

Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2008. Internal 

structure and permeability of the Nojima fault, southwest Japan. J. 

Struct. Geol. 30, 513–524. https://doi.org/10.1016/j.jsg.2007.12.002 

Morrow, C.A., Lockner, D.A., 1997. Permeability and porosity of the Illinois 

UPH 3 drillhole granite and a comparison with other deep drillhole 

rocks. J. Geophys. Res. Solid Earth 102, 3067–3075. 

https://doi.org/10.1029/96JB03178 

Morrow, C.A., Lockner, D.A., 1994. Permeability differences between 

surface-derived and deep drillhole core samples. Geophys. Res. Lett. 21, 

2151–2154. https://doi.org/10.1029/94GL01936 

Morrow, C.A., Shi, L.Q., Byerlee, J.D., 1984. Permeability of fault gouge 

under confining pressure and shear stress. J. Geophys. Res. Solid Earth 



      

 

~ 208 ~ 
 

89, 3193–3200. https://doi.org/10.1029/JB089iB05p03193 

Nakatani, M., Scholz, C.H., 2004. Frictional healing of quartz gouge under 

hydrothermal conditions: 1. Experimental evidence for solution transfer 

healing mechanism. J. Geophys. Res. Solid Earth 109. 

https://doi.org/10.1029/2001JB001522 

Niemeijer, A., Marone, C., Elsworth, D., 2008. Healing of simulated fault 

gouges aided by pressure solution: Results from rock analogue 

experiments 113, B04204. https://doi.org/10.1029/2007JB005376 

Noir, J., Jacques, E., Békri, S., Adler, P.M., Tapponnier, P., King, G.C.P., 

1997. Fluid flow triggered migration of events in the 1989 Dobi 

Earthquake sequence of central Afar. Geophys. Res. Lett. 24, 2335–

2338. https://doi.org/10.1029/97GL02182 

Nur, A., Booker, J.R., 1972. Aftershocks caused by pore fluid flow? Science 

175, 885–7. https://doi.org/10.1126/science.175.4024.885 

Parotidis, M., Rothert, E., Shapiro, S.A., 2003. Pore-pressure diffusion: A 

possible triggering mechanism for the earthquake swarms 2000 in 

Vogtland/NW-Bohemia, central Europe. Geophys. Res. Lett. 30, n/a-n/a. 

https://doi.org/10.1029/2003GL018110 

Paterson, M.S., Wong, T.-F., 2005. Experimental Rock Deformation - The 

Brittle Field. Exp. Rock Deform. - Brittle Field, by M.S. Paterson T.-F. 

Wong.  X, 348 p. 87 illus. 2nd Ed. 3-540-24023-3.  Berlin Springer, 

2005. 87. 

Peach, C.J., Spiers, C.J., 1996. Influence of crystal plastic deformation on 



      

 

~ 209 ~ 
 

dilatancy and permeability development in synthetic salt rock. 

Tectonophysics 256, 101–128. https://doi.org/10.1016/0040-

1951(95)00170-0 

Porreca, M., Minelli, G., Ercoli, M., Brobia, A., Mancinelli, P., Cruciani, F., 

Giorgetti, C., Carboni, F., Mirabella, F., Cavinato, G., Cannata, A., 

Pauselli, C., Barchi, M.R., 2018. Seismic Reflection Profiles and 

Subsurface Geology of the Area Interested by the 2016-2017 Earthquake 

Sequence (Central Italy). Tectonics 37, 1116–1137. 

https://doi.org/10.1002/2017TC004915 

Rice, J.R., 1992. Fault Stress States, Pore Pressure Distributions, and the 

Weakness of the San Andreas Fault, Fault Mechanics and Transport 

Properties in Rocks. Academic Press. https://doi.org/10.1016/S0074-

6142(08)62835-1 

Rice, J.R., Ruina,  a. L., 1983. Stability of Steady Frictional Slipping. J. Appl. 

Mech. 50, 343. https://doi.org/10.1115/1.3167042 

Rinaldi, A.P., Jeanne, P., Rutqvist, J., Cappa, F., Guglielmi, Y., 2014a. 

Effects of fault-zone architecture on earthquake magnitude and gas 

leakage related to CO 2 injection in a multi-layered sedimentary system. 

Greenh. Gases Sci. Technol. 4, 99–120. https://doi.org/10.1002/ghg.1403 

Rinaldi, A.P., Rutqvist, J., Cappa, F., 2014b. Geomechanical effects on CO2 

leakage through fault zones during large-scale underground injection. 

Int. J. Greenh. Gas Control 20, 117–131. 

https://doi.org/10.1016/J.IJGGC.2013.11.001 

Robertson, B.E.C., Robie, R.A., Books, K.G., 1958. Physical properties of 



      

 

~ 210 ~ 
 

salt, anhydrite, and gypsum -- preliminary report. United States Dep. 

Inter. Trace Elem. Memo. Rep. 1048. 

Rowland, J. V., Sibson, R.H., 2004. Structural controls on hydrothermal flow 

in a segmented rift system, Taupo Volcanic Zone, New Zealand. 

Geofluids 4, 259–283. https://doi.org/10.1111/j.1468-8123.2004.00091.x 

Ruiz, S., Aden-Antoniow, F., Baez, J.C., Otarola, C., Potin, B., del Campo, 

F., Poli, P., Flores, C., Satriano, C., Leyton, F., Madariaga, R., Bernard, 

P., 2017. Nucleation Phase and Dynamic Inversion of the  M w  6.9 

Valparaíso 2017 Earthquake in Central Chile. Geophys. Res. Lett. 44, 

10,290-10,297. https://doi.org/10.1002/2017GL075675 

Rutledge, J.T., Phillips, W.S., 2003. Hydraulic stimulation of natural fractures 

as revealed by induced microearthquakes, Carthage Cotton Valley gas 

field, east Texas. GEOPHYSICS 68, 441–452. 

https://doi.org/10.1190/1.1567214 

Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., 2004. Faulting Induced by 

Forced Fluid Injection and Fluid Flow Forced by Faulting: An 

Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton 

Valley Gas Field, Texas. Bull. Seismol. Soc. Am. 94, 1817–1830. 

Rutqvist, J., 2012. The Geomechanics of CO2 Storage in Deep Sedimentary 

Formations. Geotech. Geol. Eng. 30, 525–551. 

https://doi.org/10.1007/s10706-011-9491-0 

Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007. Estimating 

maximum sustainable injection pressure during geological sequestration 

of CO2 using coupled fluid flow and geomechanical fault-slip analysis. 



      

 

~ 211 ~ 
 

Energy Convers. Manag. 48, 1798–1807. 

https://doi.org/10.1016/j.enconman.2007.01.021 

Rutqvist, J., Cappa, F., Mazzoldi, A., Rinaldi, A., 2013a. Geomechanical 

Modeling of Fault Responses and the Potential for Notable Seismic 

Events During Underground CO2 Injection. Energy Procedia 37, 4774–

4784. https://doi.org/10.1016/j.egypro.2013.06.387 

Rutqvist, J., Rinaldi, A.P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L., 

Guglielmi, Y., Vilarrasa, V., 2016. Fault activation and induced 

seismicity in geological carbon storage – Lessons learned from recent 

modeling studies. J. Rock Mech. Geotech. Eng. 8, 789–804. 

https://doi.org/10.1016/J.JRMGE.2016.09.001 

Rutqvist, J., Rinaldi, A.P., Cappa, F., Moridis, G.J., 2013b. Modeling of fault 

reactivation and induced seismicity during hydraulic fracturing of shale-

gas reservoirs. J. Pet. Sci. Eng. 107, 31–44. 

https://doi.org/10.1016/j.petrol.2013.04.023 

Rutqvist, J., Rinaldi, A.P., Cappa, F.F., Moridis, G.J., 2015. Modeling of fault 

activation and seismicity by injection directly into a fault zone associated 

with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 127, 

377–386. https://doi.org/10.1016/j.petrol.2015.01.019 

Rutqvist, J., Vasco, D.W., Myer, L., 2009. Coupled reservoir-geomechanical 

analysis of CO2 injection at In Salah, Algeria. Energy Procedia 1, 1847–

1854. https://doi.org/10.1016/j.egypro.2009.01.241 

Rutqvist, J., Wu, Y.-S., Tsang, C.-F., Bodvarsson, G., 2002. A modeling 

approach for analysis of coupled multiphase fluid flow, heat transfer, and 



      

 

~ 212 ~ 
 

deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39, 

429–442. https://doi.org/10.1016/S1365-1609(02)00022-9 

Rutter, E.H., 1972. The effects of strain-rate changes on the strength and 

ductility of Solenhofen limestone at low temperatures and confining 

pressures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 9, 183–189. 

https://doi.org/10.1016/0148-9062(72)90020-4 

Rutter, E.H., Maddock, R.H., Hall, S.H., White, S.H., 1986. Comparative 

microstructures of natural and experimentally produced clay-bearing 

fault gouges. Pure Appl. Geophys. PAGEOPH 124, 3–30. 

https://doi.org/10.1007/BF00875717 

Scholz, C.H., 2019. The Mechanics of Earthquakes and Faulting. Cambridge 

University Press. https://doi.org/10.1017/9781316681473 

Scholz, C.H., 1998. Earthquakes and friction laws. Nature 391, 37–42. 

https://doi.org/10.1038/34097 

Scholz, C.H., 1988. The critical slip distance for seismic faulting. Nature 336, 

761–763. https://doi.org/10.1038/336761a0 

Schultz, R., Stern, V., Novakovic, M., Atkinson, G., Gu, Y.J., 2015. 

Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned 

from regional seismic networks. Geophys. Res. Lett. 42, 2750–2758. 

https://doi.org/10.1002/2015GL063455 

Scuderi, M.M., Niemeijer, A.R., Collettini, C., Marone, C., 2013. Frictional 

properties and slip stability of active faults within carbonate-evaporite 

sequences: The role of dolomite and anhydrite. Earth Planet. Sci. Lett. 



      

 

~ 213 ~ 
 

369–370, 220–232. https://doi.org/10.1016/j.epsl.2013.03.024 

Seront, B., Wong, T.F., Caine, J.S., Forster, C.B., Bruhn, R.L., Fredrich, J.T., 

Seront, Bernard ; Wong, Teng-Fong ; Caine, Jonathan S. ; Forster, Craig 

B. ; Bruhn, Ronald L. ; Fredrich, J.T., Seront, B., Wong, T.F., Caine, 

J.S., Forster, C.B., Bruhn, R.L., Fredrich, J.T., 1998. Laboratory 

characterization of hydromechanical properties of a seismogenic normal 

fault system. J. Struct. Geol. 20, 865–881. 

https://doi.org/10.1016/S0191-8141(98)00023-6 

Shampine, L.F., Reichelt, M.W., 1997. The MATLAB ODE Suite. SIAM J. 

Sci. Comput. 18, 1–22. https://doi.org/10.1137/S1064827594276424 

Shapiro, S.A.A., Dinske, C., 2009. Fluid-induced seismicity: Pressure 

diffusion and hydraulic fracturing. Geophys. Prospect. 57, 301–310. 

https://doi.org/10.1111/j.1365-2478.2008.00770.x 

Shelly, D.R., 2010. Periodic, Chaotic, and Doubled Earthquake Recurrence 

Intervals on the Deep San Andreas Fault. Science (80-. ). 328, 1385–

1388. https://doi.org/10.1126/science.1189741 

Sibson, R.H., 2000. Fluid involvement in normal faulting 29. 

Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture 

meshes. J. Struct. Geol. 18, 1031–1042. https://doi.org/10.1016/0191-

8141(96)00032-6 

Sibson, R.H., 1990. Conditions for fault-valve behaviour. Geol. Soc. London, 

Spec. Publ. 54, 15–28. https://doi.org/10.1144/GSL.SP.1990.054.01.02 

Sibson, R.H., 1977. Fault rocks and fault mechanisms. J. Geol. Soc. London. 



      

 

~ 214 ~ 
 

133, 191–213. https://doi.org/10.1144/gsjgs.133.3.0191 

Sibson, R.H.H., 1992. Implications of fault-valve behaviour for rupture 

nucleation and recurrence. Tectonophysics 211, 283–293. 

https://doi.org/10.1016/0040-1951(92)90065-E 

Silin, D., Korneev, V., Goloshubin, G., 2003. Pressure diffusion waves in 

porous media, Lawrence Berkeley National Laboratory. 

Skoumal, R.J., Brudzinski, M.R., Currie, B.S., 2015. Earthquakes Induced by 

Hydraulic Fracturing in Poland Township, Ohio. Bull. Seismol. Soc. 

Am. 105, 189–197. https://doi.org/10.1785/0120140168 

Sobolev, G.A., 2011. Natural Hazards and Earth System Sciences Seismicity 

dynamics and earthquake predictability. Hazards Earth Syst. Sci 11, 

445–458. https://doi.org/10.5194/nhess-11-445-2011 

Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., 

Specht, S., Ortega-Culaciati, F., Carrizo, D., Norabuena, E., 2017. An 

8 month slow slip event triggers progressive nucleation of the 2014 Chile 

megathrust. Geophys. Res. Lett. 44, 4046–4053. 

https://doi.org/10.1002/2017GL073023 

Sumy, D.F., Cochran, E.S., Keranen, K.M., Wei, M., Abers, G. a., 2014. 

Observations of static Coulomb stress triggering of the November 2011 

M 5.7 Oklahoma earthquake sequence. J. Geophys. Res. Solid Earth 119, 

1904–1923. https://doi.org/10.1002/2013JB010612.Received 

Terakawa, T., Hashimoto, C., Matsu’ura, M., 2013. Changes in seismic 

activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid 



      

 

~ 215 ~ 
 

pressure. Earth Planet. Sci. Lett. 365, 17–24. 

https://doi.org/10.1016/j.epsl.2013.01.017 

Terzaghi, K., 1963. The Shearing Resistance of Saturated Soils. Proc. First 

Int. Conf. Soil Mech. 1, 54–56. 

Thauvin, F., Mohanty, K.K., 1998. Network Modeling of Non-Darcy Flow 

Through Porous Media. Transp. Porous Media 31, 19–37. 

https://doi.org/10.1023/A:1006558926606 

Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong. 

Geology 28, 399. https://doi.org/10.1130/0091-

7613(2000)28<399:HFKTCS>2.0.CO;2 

Trippetta, F., Collettini, C., Barchi, M.R., Lupattelli, A., Mirabella, F., 2013. 

A multidisciplinary study of a natural example of a CO2 geological 

reservoir in central Italy. Int. J. Greenh. Gas Control 12, 72–83. 

https://doi.org/10.1016/J.IJGGC.2012.11.010 

Uenishi, K., Rice, J.R., 2003. Universal nucleation length for slip-weakening 

rupture instability under nonuniform fault loading. J. Geophys. Res. B 

Solid Earth 108. https://doi.org/10.1029/2001JB001681 

Vermylen, J., Zoback, M.D., 2011. Hydraulic fracturing, microseismic 

magnitudes, and stress evolution in the Barnett Shale, Texas, USA. SPE 

Hydraul. Fract. Technol. … SPE 140507. 

https://doi.org/10.2118/140507-MS 

Weeks, J.D., Tullis, T.E., 1985. Frictional sliding of dolomite: A variation in 

constitutive behavior. J. Geophys. Res. 90, 7821. 



      

 

~ 216 ~ 
 

https://doi.org/10.1029/JB090iB09p07821 

Weingarten, M., Ge, S., Godt, J.W., Bekins, B.A., Rubinstein, J.L., 2015. 

INDUCED SEISMICITY. High-rate injection is associated with the 

increase in U.S. mid-continent seismicity. Science 348, 1336–40. 

https://doi.org/10.1126/science.aab1345 

Wibberley, C.A.J., Shimamoto, T., 2002. Internal structure and permeability 

of major strike-slip fault zones: The Median Tectonic Line in Mie 

Prefecture, Southwest Japan. J. Struct. Geol. 25, 59–78. 

https://doi.org/10.1016/S0191-8141(02)00014-7 

Wong, T., Zhu, W., Wong, T., 1997. The transition from brittle faulting to 

cataclastic flow: Permeability evolution. J. Geophys. Res. Solid Earth 

102, 3027–3041. https://doi.org/10.1029/96JB03282 

Yasuhara, H., Marone, C., Elsworth, D., 2005. Fault zone restrengthening and 

frictional healing: The role of pressure solution. J. Geophys. Res 110. 

https://doi.org/10.1029/2004JB003327 

Yoshida, K., Hasegawa, A., Yoshida, T., 2016. Temporal variation of 

frictional strength in an earthquake swarm in NE Japan caused by fluid 

migration. J. Geophys. Res. Solid Earth 121, 5953–5965. 

https://doi.org/10.1002/2016JB013022 

Yoshida, N., Tsukahara, H., Okusawa, T., 2003. Andesitic Magmatic Water 

Which Generated Matsushiro Earthquake Swarm And S Wave Reflector. 

Am. Geophys. Union, Fall Meet. 2003, Abstr. #V52B-0437. 

Zhang, S., Tullis, T.E., Scruggs, V.J., 1999. Permeability anisotropy and 



      

 

~ 217 ~ 
 

pressure dependency of permeability in experimentally sheared gouge 

materials. J. Struct. Geol. 21, 795–806. https://doi.org/10.1016/S0191-

8141(99)00080-2 

Zhu, W., Montesi, L.G.J., Wong, T.-F., 1997. Shear-enhanced compaction 

and permeability reduction: Triaxial extension tests on porous sandstone. 

Mech. Mater. 25, 199–214. https://doi.org/10.1016/S0167-

6636(97)00011-2 

Zhu, W., Tivey, M.K., Gittings, H., Craddock, P.R., 2007. Permeability-

porosity relationships in seafloor vent deposits: Dependence on pore 

evolution processes. J. Geophys. Res. Solid Earth 112, 1–15. 

https://doi.org/10.1029/2006JB004716 

Zimmerman, R.W., 2018. Fluid flow in porous media. 

Zoback, M.D., Byerlee, J.D., 1975. The effect of microcrack dilatancy on the 

permeability of westerly granite. J. Geophys. Res. 80, 752–755. 

https://doi.org/10.1029/JB080i005p00752 

Zoback, M.D., Gorelick, S.M., 2012. Earthquake triggering and large-scale 

geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. U. S. A. 109, 

10164–8. https://doi.org/10.1073/pnas.1202473109 

 

  



      

 

~ 218 ~ 
 

 

 

APPENDIX 

Appendix: MATLAB Scripts 
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classdef FaultFluidFlowClass < handle 

    properties(Constant) 

        SECONDS_PER_YEAR = 3.15569e7; 

        SECONDS_PER_DAY = 86400; 

        GRAVITATIONAL_CONSTANT = 9.81; 

    end 

 

    properties 

        analyticalTime; 

        maximumSimulationTime; 

        timeVectorLength; 

        time; 

        timeOutput; 

        timeVectorDensity; 

        x; 

        z; 

        Delta; 

        faultArchitectureList; 

        simulatedFaultWidth; 

        simulatedFaultHeight; 

        horizontalArrayLength; 

        verticalArrayLength; 

        FaultArchitectureEnds; 

        ModeOfFailureArchitectureFlag; 

        SlidingFailureFlag; 

        FineFeatureFlag; 

        overpressureHeight; 

        overpressureMap; 

        pszWidth; 

        blankingArray; 

        EarthquakeLengthStore; 

        EarthquakeLengthVector; 

        CohesiveFlag; 

        nucleationDetectionFactor = 5E5; 

 

        faultPreset; 

        rockDensity; 

        faultAngle; 

        FailureModeBoundary; 

        FrictionCoefficient; 

        porosity; 

        porosityStates; 

        compressiblity; 

        Viscosity; 

        UnstressedPermeability; 

        PressureSensitivity; 

        Cohesion; 

 

        initialStressField; 

        arrayoverpressureHeight; 

        contactOverpressure; 

        initialPressure; 

        initialSolverVariable; 

        pressure; 

        Density; 

        shearModulus; 

        rateAndStateDifference; 

        criticalSlipDistance; 

        psi; 

        slidingStress; 

        FailureTime = struct(... 

            'Brittle', NaN,... 

            'Ductile', NaN,... 
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            'Stable', NaN,... 

            'Unstable', NaN); 

        SlidingLength = struct; 

        cohesionLimit; 

        failureStateList; 

        FailureAngle; 

        TwoCosFailureAngle; 

        twoCosFaultAngle; 

 

        ArrayFaultArchitectureEnds; 

        ArrayFaultArchitectureMap; 

        FailureModeBoundaryStress; 

        hydrostaticStress; 

        lithostaticStress; 

        FailureMarker; 

        slidingFailureMarker; 

        failureExtent; 

        maximumStress; 

        minimumStress; 

        Permeability; 

        options; 

        outputPressure; 

        outputSolverVariable; 

        FailureMarkerStore; 

        slidingFailureMarkerStore; 

        slidingStressStore; 

        oldFailureMarker; 

        newFailureMarker; 

        PlotProperties = struct; 

        twoCosAngle; 

        twoSinAngle; 

        internalFrictionArray; 

        cohesion; 

        TwoSinFailureAngle; 

        twoSinFaultAngle; 

        FailureEnvelope; 

        poreFluidFactor; 

        tectonicLoadingRate; 

        faultDepth; 

        confinementFactor; 

        OFCwidth; 

        IFCwidth; 

        initialStress; 

        modeOfFailureFlag = false; 

        plotTimeScale; 

 

        PlottingAngle; 

    end 

 

    methods 

        function obj = initialise(... 

                obj,... 

                poreFluidFactor,... 

                tectonicLoadingRate,... 

                faultDepth,... 

                confinementFactor,... 

                overpressureHeight,... 

                OFCwidth,... 

                IFCwidth,... 

                faultPreset,... 

                varargin) 

 

            % Initialise object for simulating fluid flow in a given fault 

            % zone. 

 



08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code… 3/31

            FaultFluidFlowClass.printProgressString(... 

                'Initialising problem parameters...') 

 

            obj.poreFluidFactor = poreFluidFactor; 

            obj.tectonicLoadingRate = tectonicLoadingRate; 

            obj.faultDepth = faultDepth; 

            obj.confinementFactor = confinementFactor; 

            obj.overpressureHeight = overpressureHeight; 

            obj.OFCwidth = OFCwidth; 

            obj.IFCwidth = IFCwidth; 

 

            obj.importFaultValues(faultPreset); 

 

            obj.updateFaultWidthValues; 

 

            obj.initialiseVarargin(varargin); 

 

            obj.initialiseSpatialArray; 

 

            obj.mapFaultArchitecture; 

 

            obj.colfioritoOverpressureMap; 

 

            obj.initialiseRockMatrixVariables; 

            obj.initialiseIntensiveVariables(confinementFactor); 

 

            obj.initialiseTimeVariables; 

        end 

 

 

        function initialiseIntensiveVariables(obj, confinementFactor) 

 

            % Intialise intensive physical variables of fault zone. 

 

            obj.initialiseNonSolverVariables(confinementFactor); 

        end 

 

        function initialiseVarargin(obj, varargin) 

 

            %Process arguments in varargin input. 

 

            if any(strcmp(varargin{:}, 'modeoffailure')) 

                obj.modeOfFailureFlag = true; 

            end 

        end 

 

        function initialiseNonSolverVariables(obj, confinementFactor) 

 

            %Initialise physical variables not altered by solver. 

 

            obj.hydrostaticStress = 1000 ... 

                * FaultFluidFlowClass.GRAVITATIONAL_CONSTANT... 

                * obj.faultDepth; 

            obj.lithostaticStress = obj.rockDensity... 

                * FaultFluidFlowClass.GRAVITATIONAL_CONSTANT... 

                * (obj.faultDepth); 

 

            obj.initialisePressure; 

 

            obj.initialiseStress(confinementFactor); 

 

            obj.initialPressure =... 

                obj.pressureBCS(obj.initialPressure); 

 

            [obj.Permeability,... 
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                obj.FailureMarker,... 

                obj.slidingFailureMarker,... 

                ~,... 

                ~,... 

                ~,... 

                ~]... 

                = obj.rockMatrixState(obj.initialPressure, 0); 

 

        end 

 

        function initialiseCommonRockMatrixVariables(obj) 

            obj.slidingStress = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            obj.Permeability = obj.initialiseXZMidpointStruct; 

 

            obj.FailureMarker = obj.initialiseXZCMidpointStruct; 

            obj.slidingFailureMarker = false(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            obj.calculatePorosity(obj.FailureMarker); 

 

            obj.initialiseFailureBlankingArray; 

 

            obj.initialiseFailureAngles; 

            obj.initialiseInternalFriction; 

            obj.initialiseCohesion; 

            obj.initialisePorosity; 

        end 

 

        function initialisePorosity(obj) 

            obj.porosity = obj.initialiseArray; 

 

            obj.porosity = obj.porosityStates.Prefailure; 

        end 

 

        function initialiseStress(obj, confinementFactor) 

 

            % Calculate initial stress for simulation. 

 

            obj.fixedInitialStress(confinementFactor); 

            obj.calculateMaximumStress; 

            obj.calculateMinimumStress(0); 

 

            if isa(obj, 'SinglePhaseFluidFlowSolidVelocityClass') 

                obj.initialStressField = cat(... 

                    3,... 

                    -obj.maximumStress,... 

                    -obj.minimumStress,... 

                    obj.maximumStress - obj.minimumStress); 

 

                obj.initialStressField = repmat(... 

                    obj.initialStressField(1, 1, :),... 

                    obj.verticalArrayLength + 1,... 

                    obj.horizontalArrayLength + 1); 

            end 

        end 

 

        function initialiseFailureBlankingArray(obj) 

 

            %Returns an array true at array points where logical failure 

            %can occur. 
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            obj.blankingArray = false(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

 

                if (obj.ModeOfFailureArchitectureFlag.(... 

                        architectureComponent)... 

                        && obj.modeOfFailureFlag)... 

                        || obj.SlidingFailureFlag.(architectureComponent) 

                    obj.blankingArray(... 

                        obj.ArrayFaultArchitectureMap.(... 

                        architectureComponent).Central) = true; 

                end 

            end 

        end 

 

        function initialisePressure(obj) 

 

            %Set initial pressure for simulation. 

 

            obj.contactOverpressure = obj.poreFluidFactor... 

                * obj.lithostaticStress - obj.hydrostaticStress; 

 

            obj.initialPressure = obj.hydrostaticStress... 

                * ones(... 

                obj.verticalArrayLength, obj.horizontalArrayLength); 

        end 

 

        function initialiseCommonSpatialArray(obj) 

 

            % Initialise spatial arrays for simulation. 

            obj.verticalSemiLogMesh; 

 

            obj.arrayoverpressureHeight... 

                = FaultFluidFlowClass.indexOfNearest(... 

                obj.z,... 

                obj.overpressureHeight); 

 

            [obj.x, obj.z] = meshgrid(obj.x, obj.z); 

            obj.Delta.X = diff(obj.x, 1, 2); 

            obj.Delta.Z = diff(obj.z, 1, 1); 

            obj.Delta.XX = (obj.x(:, 3:end) - obj.x(:, 1:end - 2)) / 2; 

            obj.Delta.ZZ = (obj.z(3:end, :) - obj.z(1:end - 2, :)) / 2; 

        end 

 

        function verticalSemiLogMesh(obj) 

 

            % Vertical semi-logarithmic spatial array. 

 

            obj.x = (1:obj.horizontalArrayLength)... 

                * obj.simulatedFaultWidth... 

                / obj.horizontalArrayLength; 

 

            obj.z = logspace(0, log10(obj.simulatedFaultHeight + 1),... 

                obj.verticalArrayLength); 

            obj.z = obj.z - 1; 

        end 

 

        function initialiseTimeVariables(obj) 

 

            % Initialise time variables for solver. 

 

            obj.calculateMaximumSimulationTime; 
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            obj.calculateAnalyticalTime; 

 

            obj.timeVectorLength = round(... 

                obj.timeVectorDensity... 

                * obj.maximumSimulationTime... 

            / obj.SECONDS_PER_YEAR); 

 

            obj.time = 0:(obj.maximumSimulationTime... 

                / obj.timeVectorLength):obj.maximumSimulationTime; 

        end 

 

        function updateFaultWidthValues(obj) 

 

            % Update fault architecture component widths based on input. 

 

            obj.FaultArchitectureEnds =... 

                struct(... 

                'OFC', obj.OFCwidth,... 

                'IFC', obj.IFCwidth + obj.OFCwidth,... 

                'PSZ', obj.IFCwidth + obj.OFCwidth - 1E-3); 

 

            obj.simulatedFaultWidth = obj.OFCwidth + obj.IFCwidth; 

        end 

 

        function pressure = rockFluidCoupling(obj, pressure, time) 

 

            % Physical coupling between rock and fluid. 

 

            obj.oldFailureMarker = sum(obj.FailureMarker.X(:))... 

                + sum(obj.FailureMarker.Z(:)); 

 

            obj.calculateMinimumStress(time); 

 

            pressure = obj.pressureBCS(pressure); 

 

            [obj.Permeability,... 

                FailureMarkerLocal,... 

                ~,... 

                ~,... 

                ~,... 

                ~,... 

                ~]... 

                = obj.rockMatrixState(pressure, time); 

 

 

            obj.newFailureMarker = sum(FailureMarkerLocal.X(:))... 

                + sum(FailureMarkerLocal.Z(:)); 

        end 

 

        function [value, isTerminal, direction] =  events(... 

                obj,... 

                time,... 

                pressure) 

 

            % ODES15S event trigger function. 

 

            pressure = reshape(... 

                pressure,... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            pressure = obj.pressureBCS(pressure); 

 

            [~,... 

                ~,... 
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                ~,... 

                distance,... 

                failureLength,... 

                nucleationLength,... 

                ~]... 

                = obj.rockMatrixState(pressure, time); 

 

            value = min(distance(:)); 

 

            failureDiff = obj.nucleationDetectionFactor... 

                * (nucleationLength - failureLength)... 

                / nucleationLength; 

 

            if abs(failureDiff) < abs(value) && value < 0 

                value = failureDiff; 

            end 

 

            isTerminal = 1; 

            direction = 0; 

 

        end 

 

        function obj = calculateMaximumStress(obj) 

 

            % Calculate maximum stress at every spatial array point. 

 

            obj.maximumStress = obj.lithostaticStress... 

                * ones(obj.verticalArrayLength, obj.horizontalArrayLength); 

        end 

 

        function obj = calculateMinimumStress(obj, time) 

 

            % Calculate minimum stress at every spatial array point. 

 

            obj.extensionalMinimumStress(time); 

        end 

 

        function extensionalMinimumStress(obj, time) 

 

            % If in extensionally defined minimum stress regime, calculate 

            % minimum stress. 

 

            obj.minimumStress = (obj.initialStress +... 

                obj.tectonicLoadingRate * time / obj.SECONDS_PER_YEAR)... 

                * ones(obj.verticalArrayLength, obj.horizontalArrayLength); 

        end 

 

        function pressureTimeDerivative = pressureTimeDerivative(... 

                obj,... 

                FluxDivergence) 

 

            % Derivative of pressure with respect to time. 

 

            pressureTimeDerivative = (... 

                1 ./... 

                (obj.compressiblity .* obj.porosity))... 

                .* FluxDivergence.Central; 

        end 

 

        function FluxDivergence = fluxDivergenceBCS(... 

                obj,... 

                Flux,... 

                FluxDivergence) 

 

            % Enforce flux divergence boundary conditions. 
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            FluxDivergence.Z = [zeros(1, obj.horizontalArrayLength);... 

                FluxDivergence.Z; zeros(1, obj.horizontalArrayLength)]; 

            FluxDivergence.X = [zeros(obj.verticalArrayLength, 1)... 

                FluxDivergence.X zeros(obj.verticalArrayLength, 1)]; 

 

                    FluxDivergence.Z(1, :) = 2 ... 

                        .* ((Flux.Z(1, :))... 

                        ./ obj.Delta.ZZ(1, :)); 

 

                    FluxDivergence.X(:, end) = -2 ... 

                        .* ((Flux.X(:, end))... 

                        ./ obj.Delta.XX(:, end)); 

 

            FluxDivergence.Central = FluxDivergence.X + FluxDivergence.Z; 

        end 

 

        function Flux = pressureFlux(obj, pressure) 

 

            % Struct of pressure fluxes in x and z directions and every 

            % array point. 

 

            PressureDerivative = obj.spatialDerivative(pressure); 

 

            Flux = struct; 

            Flux.X = obj.Permeability.X .* PressureDerivative.X... 

                / obj.Viscosity.SinglePhase; 

            Flux.Z = obj.Permeability.Z .* PressureDerivative.Z... 

                / obj.Viscosity.SinglePhase; 

        end 

 

        function [Permeability,... 

                FailureMarker,... 

                slidingFailureMarker,... 

                distance,... 

                failureLength,... 

                nucleationLength,... 

                slidingStress]... 

                = rockMatrixState(obj, pressure, time) 

 

            % Evaluate physical conditions representing the state of the 

            % rock matrix. 

 

            obj.calculateMinimumStress(time); 

 

            EffectivePressure = obj.initialiseXZCMidpointStruct; 

            FailureMarker = EffectivePressure; 

            EffectiveNormalStress = EffectivePressure; 

            slidingFailureMarker = false(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

            Permeability = obj.initialiseXZMidpointStruct; 

            cohesionArray = obj.cohesion; 

            internalFrictionLoop  = obj.internalFrictionArray; 

 

            EffectivePressure = obj.effectivePressure(... 

                EffectivePressure,... 

                pressure); 

 

            [twoCosFailureAngle, twoSinFailureAngle] = obj.calculateTwoFailureAngle(... 

                EffectivePressure); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 
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                componentMap = obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent); 

 

                internalFrictionLoop = obj.internalFriction(... 

                    internalFrictionLoop,... 

                    EffectivePressure,... 

                    architectureComponent,... 

                    componentMap); 

 

                cohesionArray = obj.calculateCohesion(... 

                    cohesionArray,... 

                    EffectivePressure,... 

                    architectureComponent,... 

                    componentMap); 

 

                EffectiveNormalStress = obj.effectiveNormalStress(... 

                    pressure,... 

                    EffectiveNormalStress,... 

                    twoCosFailureAngle,... 

                    componentMap); 

            end 

 

            [logicalFailureMarker,... 

                distance,... 

                stressDifference,... 

                slidingStress]... 

                = obj.mohrAnalysis(... 

                pressure,... 

                internalFrictionLoop,... 

                cohesionArray,... 

                EffectiveNormalStress,... 

                twoSinFailureAngle); 

 

            obj.calculatePorosity(FailureMarker); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

                componentMap = obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent); 

 

                Permeability = permeability(... 

                    obj,... 

                    EffectivePressure,... 

                    Permeability,... 

                    architectureComponent,... 

                    componentMap); 

 

                if obj.modeOfFailureFlag 

                    FailureMarker = obj.markModeOfFailure(... 

                        FailureMarker,... 

                        architectureComponent,... 

                        EffectivePressure,... 

                        logicalFailureMarker,... 

                        componentMap); 

                end 

 

                slidingFailureMarker = obj.markSlidingFailure(... 

                    slidingFailureMarker,... 

                    architectureComponent,... 

                    logicalFailureMarker,... 

                    componentMap); 

 

            end 
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            failureLength = obj.failureLength(... 

                stressDifference,... 

                slidingFailureMarker); 

 

            effectiveStressPatch = obj.calculateEffectiveStressPatch(... 

                EffectiveNormalStress,... 

                slidingFailureMarker,... 

                failureLength); 

 

            nucleationLength = obj.nucleationLength(... 

                effectiveStressPatch); 

        end 

 

        function initialiseFailureAngles(obj) 

 

            % Calcualte failure angles for each mode of failure. 

 

            obj.twoCosFaultAngle = cosd(2 * obj.faultAngle); 

            obj.twoSinFaultAngle = sind(2 * obj.faultAngle); 

 

            obj.twoCosAngle = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            obj.twoSinAngle = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

 

                obj.FailureAngle.(architectureComponent).Brittle = 90 ... 

                    + 0.5 * atand(-1 / obj.FrictionCoefficient.Brittle.(... 

                    architectureComponent)); 

 

                obj.FailureAngle.(architectureComponent).Ductile = 90 ... 

                    + 0.5 * atand(-1 / obj.FrictionCoefficient.Ductile.(... 

                    architectureComponent)); 

 

                obj.TwoCosFailureAngle.(architectureComponent).Brittle... 

                    = cosd(2 * obj.FailureAngle.(architectureComponent).Brittle); 

                obj.TwoCosFailureAngle.(architectureComponent).Ductile... 

                    = cosd(2 * obj.FailureAngle.(architectureComponent).Ductile); 

 

                obj.TwoSinFailureAngle.(architectureComponent).Brittle... 

                    = sind(2 * obj.FailureAngle.(architectureComponent).Brittle); 

                obj.TwoSinFailureAngle.(architectureComponent).Ductile... 

                    = sind(2 * obj.FailureAngle.(architectureComponent).Ductile); 

 

                obj.FailureAngle.(architectureComponent).Brittle = []; 

 

                obj.FailureAngle.(architectureComponent).Ductile = []; 

 

                componentMap = obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).Central; 

 

                if obj.CohesiveFlag.(architectureComponent) 

 

                    obj.twoCosAngle(componentMap)... 

                        = obj.TwoCosFailureAngle.(... 

                        architectureComponent).Brittle; 

 

                    obj.twoSinAngle(componentMap)... 

                        = obj.TwoSinFailureAngle.(... 
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                        architectureComponent).Brittle; 

 

                else 

                    obj.twoCosAngle(componentMap)... 

                        = obj.twoCosFaultAngle; 

 

                    obj.twoSinAngle(componentMap) = obj.twoSinFaultAngle; 

                end 

 

            end 

 

        end 

 

        function initialiseInternalFriction(obj) 

 

            obj.internalFrictionArray = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

 

                obj.internalFrictionArray(... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).Central)... 

                    = obj.FrictionCoefficient.Brittle.(... 

                    architectureComponent); 

            end 

        end 

 

        function initialiseCohesion(obj) 

 

            obj.cohesion = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

 

                obj.cohesion(... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).Central)... 

                    = obj.Cohesion.Brittle.(... 

                    architectureComponent); 

            end 

        end 

 

        function [twoCos, twoSin] = calculateTwoFailureAngle(... 

                obj,... 

                EffectivePressure) 

 

            % Update failure angle based on failure state. 

 

            twoCos = obj.twoCosAngle; 

            twoSin = obj.twoSinAngle; 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

                if obj.CohesiveFlag.(architectureComponent) 

 

                    logicalMapDuctile = (EffectivePressure.Central... 
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                        > obj.FailureModeBoundary.(architectureComponent))... 

                        & obj.ArrayFaultArchitectureMap.(... 

                        architectureComponent).Central; 

 

                    twoCos(logicalMapDuctile)... 

                        = obj.TwoCosFailureAngle.(architectureComponent).Ductile; 

 

                    twoSin(logicalMapDuctile)... 

                        = obj.TwoSinFailureAngle.(architectureComponent).Ductile; 

                end 

            end 

        end 

 

        function failureLength = failureLength(... 

                obj,... 

                shearStrengthExcess,... 

                failureMap) 

 

            % Calculate failure length. 

 

            if all(~failureMap) 

                failureLength = NaN; 

            else 

                    [failureLength, ~] = max(obj.z(failureMap)); 

 

                    [failureEnd, ~] = find(obj.z == failureLength); 

                    failureEnd = failureEnd(end); 

 

                    if failureEnd == obj.verticalArrayLength 

                        failureInterp = 0; 

                    else 

                        failureInterp =... 

                            -shearStrengthExcess(failureEnd, end)... 

                            * (obj.z(failureEnd + 1, end)... 

                            - failureLength)... 

                            / (shearStrengthExcess(failureEnd + 1, end)... 

                            - shearStrengthExcess(failureEnd, end)); 

 

                        %failureInterp(isnan(failureInterp)) = 0; 

                    end 

 

                    failureLength = 2 * (failureLength + failureInterp); 

            end 

        end 

 

        function effectiveStressPatch = calculateEffectiveStressPatch(... 

                obj,... 

                EffectiveNormalStress,... 

                failureMap,... 

                failureLength) 

 

            % Calculate effective stress of failure patch. 

 

            if all(~failureMap) 

                effectiveStressPatch = NaN; 

            else 

                effectiveStressPatch = obj.interpolateStressEdge(... 

                    EffectiveNormalStress,... 

                    failureMap,... 

                    failureLength); 

            end 

        end 

 

        function effectiveStressPatch = interpolateStressEdge(... 

                obj,... 
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                EffectiveNormalStress,... 

                failureMap,... 

                failureLength) 

 

            % Interpolate stress to the edge of the failure patch. 

 

            [row, ~] = find(max(obj.z(failureMap))... 

                == obj.z); 

            row = row(end); 

 

            effectiveStress = EffectiveNormalStress.Central; 

 

            logicalMap = ~isnan(obj.slidingStress); 

 

            effectiveStress(logicalMap)... 

                = obj.slidingStress(logicalMap); 

 

            effectiveStressPatchVector = effectiveStress(... 

                failureMap); 

 

 

            [~, maxStressRow] = max(effectiveStressPatchVector); 

 

            if row ~= maxStressRow 

                effectiveStressPatch =... 

                    min(effectiveStressPatchVector); 

            else 

                if row ~= obj.verticalArrayLength 

                    stressInterp =... 

                        (EffectiveNormalStress.Central(row + 1, end)... 

                        - effectiveStressPatchVector(end))... 

                        * (failureLength * 0.5 - obj.z(row, end)); 

                else 

                    stressInterp = 0; 

                end 

 

                effectiveStressPatch =... 

                    effectiveStressPatchVector(end)... 

                    + stressInterp; 

            end 

        end 

 

        function EffectiveNormalStress = effectiveNormalStress(... 

                obj,... 

                pressure,... 

                EffectiveNormalStress,... 

                twoCosAngle,... 

                componentMap) 

 

            % Calculate effective normal stress. 

 

            logicalMap = componentMap.Central; 

 

            minStress = obj.minimumStress(logicalMap); 

 

            maxStress = obj.maximumStress(logicalMap); 

 

            EffectiveNormalStress.Central(... 

                logicalMap) = 0.5... 

                .* ((maxStress... 

                + (minStress... 

                - 2 .* pressure(... 

                logicalMap)))... 

                + (maxStress... 

                - (minStress))... 
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                .* twoCosAngle(... 

                logicalMap)); 

 

            EffectiveNormalStress.Central(obj.slidingFailureMarker)... 

                = obj.slidingStress(obj.slidingFailureMarker); 

 

            EffectiveNormalStress.X =... 

                (EffectiveNormalStress.Central(:, 1:end-1)... 

                + EffectiveNormalStress.Central(:, 2:end)) / 2; 

            EffectiveNormalStress.Z =... 

                (EffectiveNormalStress.Central(1:end-1, :)... 

                + EffectiveNormalStress.Central(2:end, :)) / 2; 

        end 

 

        function nucleationLength = nucleationLength(... 

                obj,... 

                effectiveStressPatch) 

 

            % Calculate nucleation length stability criterion. 

 

            nucleationLength = obj.psi... 

                * obj.shearModulus... 

                * obj.criticalSlipDistance... 

                ./ (effectiveStressPatch... 

                * obj.rateAndStateDifference); 

        end 

 

        function [logicalFailureMarker,... 

                distance,... 

                stressDifference,... 

                slidingStress]... 

                = mohrAnalysis(... 

                obj,... 

                pressure,... 

                internalFrictionArray,... 

                cohesionArray,... 

                EffectiveNormalStress,... 

                twoSinFailureAngle) 

 

            % Find spatial array points undergoing failure and distance 

            % between failure envelope and Mohr circle and every point. 

 

            slidingStress = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

            meanStress = obj.meanStress - pressure; 

            differentialStress = obj.calculateDifferentialStress; 

 

            distance = obj.stressDifference(... 

                EffectiveNormalStress.Central,... 

                differentialStress,... 

                internalFrictionArray,... 

                cohesionArray,... 

                twoSinFailureAngle); 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

 

                ComponentMap = obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent); 

 

                if obj.SlidingFailureFlag.(architectureComponent) 
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                    faultPlaneDistance = obj.stressDifference(... 

                        meanStress,... 

                        differentialStress,... 

                        internalFrictionArray,... 

                        cohesionArray,... 

                        twoSinFailureAngle); 

 

                    slidingStress = obj.slidingStress; 

 

                    logicalMap = ComponentMap.Central... 

                        & isnan(obj.slidingStress); 

 

                    distance(... 

                        logicalMap) = faultPlaneDistance(... 

                        logicalMap); 

 

                    logicalMap = logicalMap... 

                        & distance < 0; 

 

                    slidingStress(logicalMap) = meanStress(... 

                        logicalMap); 

 

                end 

            end 

 

            stressDifference = distance; 

 

            distance(~obj.blankingArray) = NaN; 

 

            logicalFailureMarker = obj.logicalFailureMarker(... 

                distance); 

 

            distance(obj.FailureMarker.Central ~= 0) = NaN; 

            distance(obj.slidingFailureMarker) = NaN; 

        end 

 

        function stressDifference = stressDifference(... 

                obj,... 

                effNormStress,... 

                differentialStress,... 

                internalFrictionArray,... 

                cohesionArray,... 

                twoSin) 

 

            % Stress difference between mohr circle and failure envelope. 

 

            stressDifference... 

                = obj.algebraicFailureEnvelope(... 

                effNormStress,... 

                internalFrictionArray,... 

                cohesionArray)... 

                - obj.algebraicMohrCircle(... 

                differentialStress,... 

                twoSin); 

 

        end 

 

        function Permeability = permeability(... 

                obj,... 

                EffectivePressure,... 

                Permeability,... 

                architectureComponent,... 

                componentMap) 

 

            % Return permeability struct for fault. 
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            Permeability =... 

                FaultFluidFlowClass.architecturePermeability(... 

                Permeability,... 

                obj.FailureMarker,... 

                EffectivePressure,... 

                obj.UnstressedPermeability.(... 

                architectureComponent),... 

                obj.PressureSensitivity.(... 

                architectureComponent),... 

                componentMap); 

        end 

 

        function calculatePorosity(... 

                obj,... 

                FailureMarker) 

 

            % Calculate porosity for a given set of physical and failure 

            % conditions. 

 

            if isfield(obj.porosityStates, 'Brittle') 

                obj.porosity(FailureMarker.Central == 1)... 

                    = obj.porosityStates.Brittle; 

            end 

 

            if isfield(obj.porosityStates, 'Ductile') 

                obj.porosity(FailureMarker.Central == 2)... 

                    = obj.porosityStates.Ductile; 

            end 

        end 

 

        function meanStress = meanStress(obj) 

 

            % Calculate the mean stress at every spatial array point. 

 

            meanStress = 0.5 * (obj.maximumStress + obj.minimumStress); 

        end 

 

        function FailureMarker = markModeOfFailure(... 

                obj,... 

                FailureMarker,... 

                architectureComponent,... 

                EffectivePressure,... 

                logicalFailureMarker,... 

                ComponentMap) 

 

            % Take logical failure marker and build failure marker struct 

            % for every spatial array point. 

 

            if obj.ModeOfFailureArchitectureFlag.(... 

                    architectureComponent) 

                FailureMarker.Central(... 

                    obj.brittleFailureArrayCondition(... 

                    EffectivePressure,... 

                    logicalFailureMarker,... 

                    architectureComponent, 'Central')) = 1; 

                FailureMarker.Central(... 

                    obj.ductileFailureArrayCondition(... 

                    EffectivePressure, logicalFailureMarker,... 

                    architectureComponent, 'Central')) = 2; 

 

                FailureMarker.X(ComponentMap.X)... 

                    = FailureMarker.Central(ComponentMap.X); 

                FailureMarker.Z(ComponentMap.Z)... 

                    = FailureMarker.Central(ComponentMap.Z); 
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            end 

        end 

 

        function slidingFailureMarker = markSlidingFailure(... 

                obj,... 

                slidingFailureMarker,... 

                architectureComponent,... 

                logicalFailureMarker,... 

                ComponentMap) 

 

            % Take logical failure marker and build failure marker struct 

            % for every spatial array point. 

 

            if obj.SlidingFailureFlag.(architectureComponent) 

 

                slidingFailureMarker(... 

                    logicalFailureMarker... 

                    & ComponentMap.Central) = true; 

 

            end 

        end 

 

        function cohesionArray =  calculateCohesion(... 

                obj,... 

                cohesionArray,... 

                EffectivePressure,... 

                architectureComponent,... 

                componentMap) 

 

            % Return array of cohesions at every spatial array point. 

 

            cohesionArray(... 

                (EffectivePressure.Central... 

                > obj.FailureModeBoundary.(architectureComponent))... 

                & componentMap.Central)... 

                = obj.Cohesion.Ductile.(architectureComponent); 

        end 

 

        function internalFrictionArray = internalFriction(... 

                obj,... 

                internalFrictionArray,... 

                EffectivePressure,... 

                architectureComponent,... 

                componentMap) 

 

            % Calculate internal friction at each spatial array points. 

 

            internalFrictionArray(... 

                (EffectivePressure.Central... 

                > obj.FailureModeBoundary.(architectureComponent))... 

                & componentMap.Central)... 

                = obj.FrictionCoefficient.Ductile.(... 

                architectureComponent); 

        end 

 

        function condition = brittleFailureArrayCondition(... 

                obj,... 

                EffectivePressure,... 

                logicalFailureMarker,... 

                architectureComponent,... 

                structString) 

 

            % Condition for brittle failure at an array point. 

 

            condition = (((EffectivePressure.Central... 



08/04/2019 FaultFluidFlowClass

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-cod… 18/31

                <= obj.FailureModeBoundary.(architectureComponent)... 

                & obj.FailureMarker.(structString) == 0)... 

                & logicalFailureMarker)... 

                | obj.FailureMarker.(structString) == 1)... 

                & obj.ArrayFaultArchitectureMap.(... 

                architectureComponent).(structString); 

        end 

 

        function condition = ductileFailureArrayCondition(... 

                obj,... 

                EffectivePressure,... 

                logicalFailureMarker,... 

                architectureComponent,... 

                structString) 

 

            %Condition for ductile failure at an array point. 

 

            condition = (((EffectivePressure.Central... 

                > obj.FailureModeBoundary.(architectureComponent)... 

                & obj.FailureMarker.(structString) == 0)... 

                & logicalFailureMarker)... 

                | obj.FailureMarker.(structString) == 2)... 

                & obj.ArrayFaultArchitectureMap.(... 

                architectureComponent).(structString); 

        end 

 

        function ShearStrength =... 

                failureEnvelope(obj,... 

                EffectiveNormalStress,... 

                EffectivePressure,... 

                ShearStrength,... 

                architectureComponent) 

 

            % Shear strength at each spatial array point. 

 

            fields = fieldnames(teststruct); 

            for loopCounter = 1:numel(fields) 

                ShearStrength.(fields{loopCounter})(... 

                    obj.brittleFailureEnvelopeCondition(... 

                    EffectivePressure, architectureComponent,... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent), fields{loopCounter}))... 

                    = FaultFluidFlowClass.algebraicFailureEnvelope(... 

                    EffectiveNormalStress.(fields{loopCounter})(... 

                    obj.brittleFailureEnvelopeCondition(... 

                    architectureComponent,... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent),... 

                    fields{loopCounter})),... 

                    obj.FrictionCoefficient.Brittle.(... 

                    architectureComponent),... 

                    obj.Cohesion.Brittle.(architectureComponent)); 

 

                ShearStrength.(... 

                    fields{... 

                    loopCounter})(obj.ductileFailureEnvelopeCondition(... 

                    EffectivePressure, architectureComponent,... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent), fields{loopCounter}))... 

                    = FaultFluidFlowClass.algebraicFailureEnvelope(... 

                    EffectiveNormalStress.(fields{loopCounter})(... 

                    obj.ductileFailureEnvelopeCondition(... 

                    architectureComponent,... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent),... 
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                    fields{loopCounter})),... 

                    obj.FrictionCoefficient.Ductile.(... 

                    architectureComponent),... 

                    obj.Cohesion.Ductile.(architectureComponent)); 

                ShearStrength.(... 

                    fields{... 

                    loopCounter})(... 

                    ShearStrength.(fields{loopCounter}) < 0 & ... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).(fields{loopCounter})) = 0; 

            end 

        end 

 

        function condition = brittleFailureEnvelopeCondition(... 

                obj,... 

                EffectivePressure,... 

                architectureComponent,... 

                structString) 

 

            % Condition for array point to be susceptible to brittle 

            % failure. 

 

            condition = EffectivePressure.(structString)... 

                <= obj.FailureModeBoundary.(architectureComponent)... 

                & obj.ArrayFaultArchitectureMap.(... 

                architectureComponent).(structString); 

        end 

 

        function condition = ductileFailureEnvelopeCondition(... 

                obj,... 

                EffectivePressure,... 

                architectureComponent,... 

                structString) 

 

            % Condition for array point to be susceptible to ductile 

            % failure. 

 

            condition = EffectivePressure.(structString)... 

                > obj.FailureModeBoundary.(architectureComponent)... 

                & obj.ArrayFaultArchitectureMap.(... 

                architectureComponent).(structString); 

        end 

 

        function ShearStress = shearStress(... 

                obj,... 

                differentialStress,... 

                failureAngle,... 

                ShearStress,... 

                architectureComponent) 

 

            % Shear stress at each central array point. 

 

            fields = fieldnames(teststruct); 

            for loopCounter = 1:numel(fields) 

                ShearStress.Central(... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).(fields{loopCounter})) =... 

                    FaultFluidFlowClass.shearStressRelation(... 

                    differentialStress,... 

                    failureAngle.(fields{loopCounter})(... 

                    obj.ArrayFaultArchitectureMap.(... 

                    architectureComponent).(fields{loopCounter}))); 

            end 

        end 
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        function obj = calculateMaximumSimulationTime(obj) 

 

            % Calculate maximum length of time for which simulation could 

            % run. 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

                if obj.SlidingFailureFlag.(architectureComponent) 

                    obj.maximumSimulationTime = ... 

                        1.5 * obj.analyticalPrediction(... 

                        0.4,... 

                        architectureComponent); 

                end 

            end 

        end 

 

        function obj = calculateAnalyticalTime(obj) 

 

            % Calculate analytical prediction of earthquake timing. 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                architectureComponent =... 

                    obj.faultArchitectureList{loopCounter}; 

                if obj.SlidingFailureFlag.(architectureComponent) 

                    obj.analyticalTime = ... 

                        obj.analyticalPrediction(... 

                        obj.poreFluidFactor,... 

                        architectureComponent); 

                end 

            end 

        end 

 

        function analyticalTime = analyticalPrediction(... 

                obj,... 

                poreFluidFactor,... 

                architectureComponent) 

 

            % Analytical prediction of stable sliding on fault. 

 

            analyticalTime = FaultFluidFlowClass.SECONDS_PER_YEAR * ... 

                ((obj.lithostaticStress - obj.initialStress) *... 

                (sind(2 * obj.faultAngle)) + 2 ... 

                * obj.FrictionCoefficient.Brittle.(... 

                architectureComponent)... 

                * (poreFluidFactor... 

                * obj.lithostaticStress -... 

                obj.lithostaticStress * cosd(obj.faultAngle) ^ 2 -... 

                obj.initialStress * sind(obj.faultAngle) ^ 2))... 

                / (obj.tectonicLoadingRate * (sind(2 * obj.faultAngle)... 

                + 2 * obj.FrictionCoefficient.Brittle.(... 

                architectureComponent)... 

                * sind(obj.faultAngle) ^ 2)); 

            analyticalTime(analyticalTime < 0) = 0; 

        end 

 

        function EffectivePressure = effectivePressure(.... 

                obj,... 

                EffectivePressure,... 

                pressure) 

 

            % Effective pressure struct and midpoint spatial arrays. 

 

            EffectivePressure.Central=... 

                obj.minimumStress... 
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                - pressure; 

 

            EffectivePressure.Central(EffectivePressure.Central < 0) = 0; 

 

            EffectivePressure.X = (EffectivePressure.Central(:, 1:(end - 1))... 

                + EffectivePressure.Central(:, 2:end)) / 2; 

            EffectivePressure.Z = (EffectivePressure.Central(1:(end - 1), :)... 

                + EffectivePressure.Central(2:end, :)) / 2; 

        end 

 

        function pressure = pressureBCS(obj, pressure) 

 

            % Apply pressure boundary conditions. 

 

                    pressure(:, 1) = obj.hydrostaticStress; 

 

                    pressure(end, :) = obj.hydrostaticStress; 

 

            pressure(obj.overpressureMap) =... 

                obj.contactOverpressure + obj.hydrostaticStress; 

        end 

 

        function obj = fixedInitialStress(obj, confinementFactor) 

 

            % Initial stress conditions for fault zones without coupling 

            % between pore fluid and initial stress state. 

            % (Typically no significant regional stress.) 

 

            obj.initialStress =... 

                confinementFactor... 

                * obj.lithostaticStress; 

        end 

 

        function differentialStress = calculateDifferentialStress(obj) 

 

            % Calculate differential stress array at each simulated spatial 

            % point. 

 

            differentialStress = obj.maximumStress - obj.minimumStress; 

        end 

 

        function obj = mapFaultArchitecture(obj) 

 

            % Map fault zone architecture dimensions to array. 

 

            obj.assignFaultArchitectureArrayEnds; 

 

            cellLength = length(obj.faultArchitectureList); 

            startEndVector = zeros(cellLength + 1, 1); 

            startEndVector(1) = 0; 

 

            for loopCounter = 1:cellLength 

                startEndVector(loopCounter + 1) =... 

                    obj.ArrayFaultArchitectureEnds.(... 

                    obj.faultArchitectureList{loopCounter}); 

 

                obj.ArrayFaultArchitectureMap.(... 

                    obj.faultArchitectureList{loopCounter}) =... 

                    obj.mapFaultComponent(startEndVector(loopCounter),... 

                    startEndVector(loopCounter + 1)); 

 

                % Enforce PSZ 

                if loopCounter ~= cellLength 

                    obj.ArrayFaultArchitectureMap.(... 

                    obj.faultArchitectureList{loopCounter}).Central(:, end) = false; 
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                obj.ArrayFaultArchitectureMap.(... 

                    obj.faultArchitectureList{loopCounter}).Z(:, end) = false; 

 

                obj.ArrayFaultArchitectureMap.(... 

                    obj.faultArchitectureList{loopCounter}).X(:, end) = false; 

                end 

            end 

 

        end 

 

        function FaultComponentMap =... 

                mapFaultComponent(obj,... 

                faultComponentStart,... 

                faultComponentEnd) 

 

            % Map Fault component of fault zone architecture to array. 

 

            FaultComponentMap =... 

                obj.initialiseLogicalXZCMidpointStruct(false); 

 

            FaultComponentMap = obj.mapParallelFaultComponent(... 

                faultComponentStart, faultComponentEnd,... 

                FaultComponentMap); 

        end 

 

        function FaultComponentMap = mapParallelFaultComponent(... 

                obj,... 

                faultComponentStart,... 

                faultComponentEnd,... 

                FaultComponentMap) 

 

            % Map a fault component parallel to the fault plane. 

 

            if faultComponentStart ~= obj.horizontalArrayLength 

                faultComponentStart = faultComponentStart + 1; 

            end 

 

            if faultComponentStart > faultComponentEnd 

                faultComponentEnd = faultComponentStart; 

            end 

 

            FaultComponentMap.Central(1:(obj.verticalArrayLength),... 

                faultComponentStart:faultComponentEnd) = true; 

 

            FaultComponentMap.Z(1:(obj.verticalArrayLength - 1),... 

                faultComponentStart:faultComponentEnd) = true; 

 

            if faultComponentEnd == obj.horizontalArrayLength 

                faultComponentEnd = faultComponentEnd - 1; 

 

                if faultComponentEnd - faultComponentStart < 0 

                    faultComponentStart = faultComponentEnd; 

                end 

            end 

            FaultComponentMap.X(1:obj.verticalArrayLength,... 

                faultComponentStart:faultComponentEnd)... 

                = true; 

        end 

 

        function sameEffectiveStressTransitionAssumption(obj) 

 

            % Enforce the assumption 

 

            obj.FailureModeBoundaryStress.IFC... 
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                = obj.FailureModeBoundaryStress.OFC; 

        end 

 

        function obj = assignFaultArchitectureArrayEnds(obj) 

 

            % Build struct to hold positions of ends of fault zone 

            % architecture in array space. 

 

            for loopCounter = 1:length(obj.faultArchitectureList) 

                obj.faultArchitectureArrayEnd(... 

                    obj.faultArchitectureList{loopCounter}); 

            end 

        end 

 

        function obj = faultArchitectureArrayEnd(obj, componentName) 

 

            % Calculate the ends of the components of fault zone 

            % architecture in array space. 

 

            obj.ArrayFaultArchitectureEnds.(componentName) =... 

                ceil((obj.horizontalArrayLength)... 

                * obj.FaultArchitectureEnds.(componentName)... 

                / obj.simulatedFaultWidth); 

 

            obj.ArrayFaultArchitectureEnds.(componentName)(... 

                obj.ArrayFaultArchitectureEnds.(componentName)... 

                > obj.horizontalArrayLength)... 

                = obj.horizontalArrayLength; 

        end 

 

        function Derivative = spatialDerivative(obj, array) 

 

            % Spatial first derivative of physical variable. 

 

            Derivative = struct; 

            Derivative.X = diff(array, 1, 2) ./ obj.Delta.X; 

            Derivative.Z = diff(array, 1, 1) ./ obj.Delta.Z; 

        end 

 

        function Derivative =  spatialSecondDerivative(obj, InputStruct) 

            Derivative = struct('X', [], 'Z', []); 

            Derivative.X = diff(InputStruct.X, 1, 2) ./ obj.Delta.XX; 

            Derivative.Z = diff(InputStruct.Z, 1, 1) ./ obj.Delta.ZZ; 

        end 

 

        function outputStruct = initialiseLogicalXZCMidpointStruct(... 

                obj,... 

                bool) 

 

            % Initialise struct of boolean arrays based on spatial centres 

            % and midpoints. 

 

            if bool 

                outputStruct = struct('X', true(obj.verticalArrayLength,... 

                    obj.horizontalArrayLength - 1), 'Z',... 

                    true(obj.verticalArrayLength - 1,... 

                    obj.horizontalArrayLength),... 

                    'Central', true(obj.verticalArrayLength,... 

                    obj.horizontalArrayLength)); 

            else 

                outputStruct = struct('X', false(... 

                    obj.verticalArrayLength,... 

                    obj.horizontalArrayLength - 1), 'Z',... 

                    false(obj.verticalArrayLength - 1,... 

                    obj.horizontalArrayLength),... 
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                    'Central', false(obj.verticalArrayLength,... 

                    obj.horizontalArrayLength)); 

            end 

        end 

 

        function outputStruct = initialiseXZCMidpointStruct(obj) 

 

            % Initialise a struct containing x-, z-midpoint and central 

            % spatial arrays. 

 

            outputStruct = struct(... 

                'X',... 

                zeros(obj.verticalArrayLength,... 

                obj.horizontalArrayLength - 1),... 

                'Z',... 

                zeros(obj.verticalArrayLength - 1,... 

                obj.horizontalArrayLength),... 

                'Central',... 

                zeros(obj.verticalArrayLength,... 

                obj.horizontalArrayLength)); 

        end 

 

        function outputStruct = initialiseXZMidpointStruct(obj) 

 

            % Initialise a struct with x- and z-midpoint spatial arrays. 

 

            outputStruct = struct('X', zeros(obj.verticalArrayLength,... 

                obj.horizontalArrayLength - 1),... 

                'Z', zeros(obj.verticalArrayLength - 1,... 

                obj.horizontalArrayLength)); 

        end 

 

        function outputStruct = initialiseXZStruct(obj) 

 

            % Initialise x and z spatial arrays. 

 

            outputStruct = struct(... 

                'X', zeros(obj.verticalArrayLength,... 

                obj.horizontalArrayLength),... 

                'Z', zeros(obj.verticalArrayLength,... 

                obj.horizontalArrayLength)); 

        end 

 

        function outputArray = initialiseArray(obj) 

 

            % Initialise and x and z array. 

 

            outputArray = nan(obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

        end 

 

        function initialiseSpatialArray(obj) 

 

            % Initialise spatial arrays for dummy. 

 

            obj.initialiseCommonSpatialArray; 

        end 

 

        function initialiseRockMatrixVariables(obj) 

 

            % Initialise common rock matrix variables for dummy instance. 

 

            obj.initialiseCommonRockMatrixVariables; 

        end 
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        function importFaultValues(obj, faultPreset) 

 

            % Import the fault specific properties for a given fault 

            % preset. 

 

            obj.faultPreset = faultPreset; 

 

            switch faultPreset 

                case 'Colfiorito' 

 

                    obj.faultArchitectureList = {'OFC', 'IFC', 'PSZ'}; 

                    obj.failureStateList = {'Brittle', 'Ductile'}; 

                    obj.simulatedFaultHeight = 1000; 

                    obj.horizontalArrayLength = 175; 

                    obj.verticalArrayLength = 200; 

                    obj.timeVectorDensity = 1; 

 

                    obj.ModeOfFailureArchitectureFlag =... 

                        struct('OFC', true, 'IFC', false, 'PSZ', false); 

                    obj.SlidingFailureFlag =.... 

                        struct('OFC', false, 'IFC', false, 'PSZ', true); 

                    obj.FineFeatureFlag =... 

                        struct('OFC', false, 'IFC', false, 'PSZ', true); 

                    obj.CohesiveFlag =... 

                        struct('OFC', true, 'IFC', false, 'PSZ', false); 

                    obj.colfioritoOverpressureMap; 

                    obj.pszWidth = 1E-3; 

                    obj.shearModulus = 45.7E9; 

                    obj.rateAndStateDifference = 0.003; 

                    obj.criticalSlipDistance = 0.000063; 

                    obj.psi = 1; 

                    obj.rockDensity = 2650; 

                    obj.faultAngle = 45; 

                    obj.FrictionCoefficient =... 

                        struct('Brittle',... 

                        struct(... 

                        'OFC', 0.704,... 

                        'IFC', 0.84,... 

                        'PSZ', 0.6),... 

                        'Ductile',... 

                        struct('OFC', 0, 'IFC', 0, 'PSZ', NaN)); 

                    obj.FailureModeBoundary =... 

                        struct(... 

                        'OFC', 10E6,... 

                        'IFC', 10E6,... 

                        'PSZ' , 1E10); 

                    obj.FailureModeBoundaryStress =... 

                        struct(... 

                        'OFC', 32E6,... 

                        'IFC', 32E6,... 

                        'PSZ' , 1E10); 

                    obj.Cohesion = struct(... 

                        'Brittle',  struct(... 

                        'OFC', 15.5E6,... 

                        'IFC', 26.4E6,... 

                        'PSZ', 0),... 

                        'Ductile', struct(... 

                        'OFC', 38.14E6,... 

                        'IFC', 53.28E6,... 

                        'PSZ', NaN)); 

                    obj.cohesionLimit = obj.Cohesion.Brittle.OFC; 

 

                    obj.compressiblity = 1E-10; 

                    obj.Viscosity = struct(... 

                        'SinglePhase', 1E-5); 
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                    obj.porosityStates = struct(... 

                        'Prefailure', 0.01,... 

                        'Brittle', 0.0175,... 

                        'Ductile', 0.015); 

                    obj.UnstressedPermeability =... 

                        struct(... 

                        'OFC', struct(... 

                        'Prefailure', struct('X', 8E-21, 'Z', 3E-19),... 

                        'Brittle',... 

                        struct('X', 1.1287E-18, 'Z', 1.39E-17),... 

                        'Ductile',... 

                        struct('X', 2.407E-18, 'Z', 3.681E-18)),... 

                        'IFC',... 

                        struct(... 

                        'Prefailure', struct('X', 1E-19, 'Z', 1E-17)),... 

                        'PSZ',... 

                        struct('Prefailure',... 

                        struct('X', 1E-21, 'Z', 1E-19))); 

                    obj.PressureSensitivity = struct(... 

                        'OFC', struct(... 

                        'Prefailure', struct('X', -4E-8, 'Z', -1.3E-7),... 

                        'Brittle', struct('X', 0, 'Z', 0),... 

                        'Ductile',... 

                        struct('X', -1.136E-7, 'Z', -7.968E-8)),... 

                        'IFC',... 

                        struct('Prefailure', struct('X', 0, 'Z', 0)),... 

                        'PSZ',... 

                        struct('Prefailure', struct('X', 0, 'Z', 0))); 

 

                    obj.PlotProperties.OFC... 

                        = {'Color', 'red', 'LineWidth', 2.5}; 

                    obj.PlotProperties.IFC... 

                        = {'Color', 'cyan', 'LineWidth', 1.5}; 

                    obj.PlotProperties.PSZ... 

                        = {'Color', 'black'}; 

                    obj.plotTimeScale = 'years'; 

 

                    obj.PlottingAngle.Brittle.OFC = 60; 

                    obj.PlottingAngle.Ductile.OFC = 60; 

 

                otherwise 

                    error('Fault preset not recognised.') 

            end 

        end 

 

        function colfioritoOverpressureMap(obj) 

 

            % Implement map of overpressure particular to Colfiorito 

            % example. 

 

            obj.overpressureMap... 

                = false(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

            obj.overpressureMap(... 

                1:obj.arrayoverpressureHeight, 1)... 

                = 1; 

        end 

    end 

 

    methods(Static) 

        function PermeabilityArrayStruct = architecturePermeability(... 

                PermeabilityArrayStruct,... 

                FailureMarker,... 
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                EffectivePressure,... 

                UnstressedPermeabilityStruct,... 

                PressureSensitivityStruct,... 

                ArchitectureMap) 

 

            % Calculate permeability for all components of fault zone 

            % architecture. 

 

            fields = fieldnames(PermeabilityArrayStruct); 

            for loopCounter = 1:numel(fields) 

 

                architectureComponent = fields{loopCounter}; 

 

                logicalMap = ... 

                    FailureMarker.(architectureComponent) == 0 ... 

                    & ArchitectureMap.(architectureComponent); 

 

                PermeabilityArrayStruct.(architectureComponent)(... 

                    logicalMap) =... 

                    FaultFluidFlowClass.algebraicPermeability(... 

                    UnstressedPermeabilityStruct.Prefailure.(... 

                    architectureComponent),... 

                    EffectivePressure.(... 

                    architectureComponent)(... 

                    logicalMap),... 

                    PressureSensitivityStruct.Prefailure.(... 

                    architectureComponent)); 

 

                if any(FailureMarker.(... 

                        fields{... 

                        loopCounter})(... 

                        ArchitectureMap.(architectureComponent)) == 1) 

 

                    logicalMap = ... 

                    FailureMarker.(architectureComponent) == 1 ... 

                    & ArchitectureMap.(architectureComponent); 

 

                    PermeabilityArrayStruct.(... 

                        fields{... 

                        loopCounter})(... 

                        logicalMap) =... 

                        FaultFluidFlowClass.algebraicPermeability(... 

                        UnstressedPermeabilityStruct.Brittle.(... 

                        architectureComponent),... 

                        EffectivePressure.(... 

                        architectureComponent)(... 

                        logicalMap),... 

                        PressureSensitivityStruct.Brittle.(... 

                        architectureComponent)); 

                end 

 

                if any(FailureMarker.(... 

                        fields{... 

                        loopCounter})(... 

                        ArchitectureMap.(architectureComponent)) == 2) 

 

                    logicalMap = ... 

                    FailureMarker.(architectureComponent) == 2 ... 

                    & ArchitectureMap.(architectureComponent); 

 

                    PermeabilityArrayStruct.(... 

                        architectureComponent)(... 

                        logicalMap) =... 

                        FaultFluidFlowClass.algebraicPermeability(... 

                        UnstressedPermeabilityStruct.Ductile.(... 
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                        architectureComponent),... 

                        EffectivePressure.(... 

                        architectureComponent)(... 

                        logicalMap),... 

                        PressureSensitivityStruct.Ductile.(... 

                        architectureComponent)); 

                end 

            end 

        end 

 

        function logicalFailureMarker... 

                = logicalFailureMarker(distance) 

 

            % Calculate failure marker array as boolean. 

 

            tolerance = 0; 

 

            logicalFailureMarker = false(size(distance)); 

            logicalFailureMarker(distance <= tolerance) = true; 

        end 

 

        function mohr = algebraicMohrCircle(... 

                differentialStress,... 

                twoSin) 

 

            % Calculate value of mohr circle as analytical relationship. 

 

            mohr = (differentialStress / 2) .* twoSin; 

        end 

 

        function permeability = algebraicPermeability(... 

                unstressedPermeability,... 

                effectivePressure,... 

                pressureSensitivity) 

 

            % Calculate value of permeability as analytical relationship. 

 

            permeability = unstressedPermeability .*... 

                exp(pressureSensitivity... 

                .* effectivePressure); 

 

        end 

 

        function inputStruct = assignToXZCMidpointStruct(... 

                inputStruct,... 

                value) 

            inputStruct.Central = value; 

 

            % Set all arrays in spatial position struct to a given value. 

 

            inputStruct... 

                = FaultFluidFlowClass.interpolateStructArray(... 

                inputStruct); 

        end 

 

        function inputStruct = interpolateStructArray(inputStruct) 

 

            % Interpolate central spatial struct to X and Z midpoints. 

 

            inputStruct.X = (inputStruct.Central(:, 2:end)... 

                + inputStruct.Central(:, 1: end - 1)) / 2; 

            inputStruct.Z = (inputStruct.Central(2:end, :)... 

                + inputStruct.Central(1:end -1, :)) / 2; 

        end 
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        function index = indexOfNearest(input, value) 

 

            % Find index of point in array nearest to a given value. 

 

            temp = abs(input - value); 

            [~ , index] = min(temp); 

        end 

 

        function output = copyToXZStruct(input) 

 

            %Copy an input to both X and Z array midpoints. 

 

            output = struct; 

            output.X = input; 

            output.Z = input; 

        end 

 

        function shearStress = shearStressRelation(... 

                differentialStress,... 

                failureAngle) 

 

            % Shear stress relationship. 

 

            shearStress = differentialStress... 

                .* sind(2 .* failureAngle)... 

                / 2; 

        end 

 

        function height = semiCircleHeight(x, MohrRadius, MohrCentre) 

 

            % Find height of Mohr semi-circle. 

 

            height = sqrt(MohrRadius .^ 2 - (MohrCentre - x) .^ 2); 

        end 

 

        function printProgressString(string) 

 

            % Output current solver progress to console. 

 

            disp(string) 

            fprintf('\n') 

        end 

 

                function shearStrength = algebraicFailureEnvelope(... 

                effectiveNormalStress,... 

                frictionCoefficient,... 

                cohesion) 

 

            % Return failure envelope given effective normal stress, 

            % cohesion and friction coefficient. 

 

            shearStrength... 

                = cohesion... 

                + frictionCoefficient... 

                .* effectiveNormalStress; 

        end 

    end 

end 

ans =  

 

  FaultFluidFlowClass with properties: 

 

                 SECONDS_PER_YEAR: 31556900 
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                  SECONDS_PER_DAY: 86400 

           GRAVITATIONAL_CONSTANT: 9.8100 

                   analyticalTime: [] 

            maximumSimulationTime: [] 

                 timeVectorLength: [] 

                             time: [] 

                       timeOutput: [] 

                timeVectorDensity: [] 

                                x: [] 

                                z: [] 

                            Delta: [] 

            faultArchitectureList: [] 

              simulatedFaultWidth: [] 

             simulatedFaultHeight: [] 

            horizontalArrayLength: [] 

              verticalArrayLength: [] 

            FaultArchitectureEnds: [] 

    ModeOfFailureArchitectureFlag: [] 

               SlidingFailureFlag: [] 

                  FineFeatureFlag: [] 

               overpressureHeight: [] 

                  overpressureMap: [] 

                         pszWidth: [] 

                    blankingArray: [] 

            EarthquakeLengthStore: [] 

           EarthquakeLengthVector: [] 

                     CohesiveFlag: [] 

        nucleationDetectionFactor: 500000 

                      faultPreset: [] 

                      rockDensity: [] 

                       faultAngle: [] 

              FailureModeBoundary: [] 

              FrictionCoefficient: [] 

                         porosity: [] 

                   porosityStates: [] 

                   compressiblity: [] 

                        Viscosity: [] 

           UnstressedPermeability: [] 

              PressureSensitivity: [] 

                         Cohesion: [] 

               initialStressField: [] 

          arrayoverpressureHeight: [] 

              contactOverpressure: [] 

                  initialPressure: [] 

            initialSolverVariable: [] 

                         pressure: [] 

                          Density: [] 

                     shearModulus: [] 

           rateAndStateDifference: [] 

             criticalSlipDistance: [] 

                              psi: [] 

                    slidingStress: [] 

                      FailureTime: [1×1 struct] 

                    SlidingLength: [1×1 struct] 

                    cohesionLimit: [] 

                 failureStateList: [] 

                     FailureAngle: [] 

               TwoCosFailureAngle: [] 

                 twoCosFaultAngle: [] 

       ArrayFaultArchitectureEnds: [] 

        ArrayFaultArchitectureMap: [] 

        FailureModeBoundaryStress: [] 

                hydrostaticStress: [] 

                lithostaticStress: [] 

                    FailureMarker: [] 
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             slidingFailureMarker: [] 

                    failureExtent: [] 

                    maximumStress: [] 

                    minimumStress: [] 

                     Permeability: [] 

                          options: [] 

                   outputPressure: [] 

             outputSolverVariable: [] 

               FailureMarkerStore: [] 

        slidingFailureMarkerStore: [] 

               slidingStressStore: [] 

                 oldFailureMarker: [] 

                 newFailureMarker: [] 

                   PlotProperties: [1×1 struct] 

                      twoCosAngle: [] 

                      twoSinAngle: [] 

            internalFrictionArray: [] 

                         cohesion: [] 

               TwoSinFailureAngle: [] 

                 twoSinFaultAngle: [] 

                  FailureEnvelope: [] 

                  poreFluidFactor: [] 

              tectonicLoadingRate: [] 

                       faultDepth: [] 

                confinementFactor: [] 

                         OFCwidth: [] 

                         IFCwidth: [] 

                    initialStress: [] 

                modeOfFailureFlag: 0 

                    plotTimeScale: [] 

                    PlottingAngle: [] 

 

 
Published with MATLAB® R2018b

 

https://www.mathworks.com/products/matlab/
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function faultFluidFlowScript(varargin) 

 

% OOP based script to simulate fluid flow for a given fault zone 

% architecture. 

% INSTRUCTIONS: Pass the following input variables when running 

% pressureDiffusionScript. 

% Pore fluid factor lambda. Can be vector. (REQUIRED) 

% Tectonic loading rate, extension. Can be vector. (REQUIRED) 

% Fault depth. Can be vector. (REQUIRED) 

% Confinement factor (of lithostatic stress).(REQUIRED). 

% Overpressure half height. (REQUIRED) 

% OFC width. (REQUIRED) 

% IFC half width. (REQUIRED) 

% Fault Preset. ('Colfiorito'). (REQUIRED.) 

% Fail test pass string 'modeoffailure'. Turn on/off mode of failure 

% behaviour. (REQUIRED FOR CASE STUDY) 

% (Omit in case of paramter study.) 

%Include analytical predictions pass string 'analytical'. 

% (OPTIONAL, ONLY USED IN PARAMETER STUDY.) 

% Side-by-side plot data side by side for specific paper diagrams. 

% Include string 'sidebyside' (OPTIONAL). 

% Examples: Case Study: 

% pressureDiffusionScript(0.45, -1.5E5, 7000, 0.7, 'Colfiorito', 'modeoffailure') 

 

% Parameter Study: 

% pressureDiffusionScript(0.4:0.05:0.7, -1.5E5, 7000:250:7500, 0.7, 'Colfiorito', 'analytical') 

 

% Side By Side: 

% pressureDiffusionScript([0.45, 0.7], -1.5E5, 7000, 0.7,'Colfiorito', 'sidebyside') 

 

clc 

format long eng 

tic 

 

[analyticalFlag, sideBySideFlag, resultPlotFlag, fileName]... 

    = processVarargin(varargin); 

 

parallelIndex = indicesOfVectorInputs(varargin{:}); 

 

if ~any(strcmp(varargin, 'plotonly')) 

    folderName = initialiseFolder(parallelIndex); 

 

    saveInputsToFile(folderName, varargin{:}); 

 

else 

    folderName = []; 

 

end 

 

if all(~parallelIndex) 

 

    if strcmp(resultPlotFlag, 'plotonly') 

        FaultFluidFlowMat = load(fileName); 

 

        FaultFluidFlow = FaultFluidFlowMat.FaultFluidFlow; 

 

    else 

        FaultFluidFlow = solveFaultFluidFlow(varargin{:}); 

 

    end 

 

    toc; 

 



08/04/2019 faultFluidFlowScript

file:///home/thomas/Dropbox/Documents/Education/Durham University/Earth Sciences/Earth Sciences PhD/fault-fluid-flow-code/… 2/8

    if ~strcmp(resultPlotFlag, 'resultonly') 

        plotResults(FaultFluidFlow, folderName, varargin{:}) 

 

    end 

 

    if ~strcmp(resultPlotFlag, 'plotonly') 

          save([folderName '/FaultFluidFlowResults.mat'],... 

           'FaultFluidFlow') 

 

    end 

 

    close all; 

else 

    FaultFluidFlowClass.printProgressString(... 

        'Initialise parameter study...') 

 

    [gridVariables, parameterStudyFailureVector,... 

        parameterStudyNoFailureVector]... 

        = initialiseParameterStudyVariables(parallelIndex, varargin); 

 

    SideBySideCellFailure = cell(2, 1); 

    SideBySideCellNoFailure = cell(2, 1); 

 

    parfor parallelLoopCounter = 1:length(gridVariables{1}(:)) 

        loopVector = varargin; 

 

        loopVector(parallelIndex) = cellfun(... 

            @(x)x(parallelLoopCounter),... 

            gridVariables, 'un', 0); 

 

        if sideBySideFlag 

            if ~strcmp(resultPlotFlag, 'plotonly') 

                [SideBySideCellFailure{parallelLoopCounter},... 

                    SideBySideCellNoFailure{parallelLoopCounter}]... 

                    = sideBySideStudy(... 

                    loopVector,... 

                    folderName,... 

                    parallelLoopCounter); 

 

            end 

        else 

 

            if ~strcmp(resultPlotFlag, 'plotonly') 

 

                [parameterStudyFailureVector(parallelLoopCounter, :),... 

                    parameterStudyNoFailureVector(... 

                    parallelLoopCounter,... 

                    :)]... 

                    = parameterStudy(loopVector,  folderName); 

 

            end 

        end 

    end 

 

    if sideBySideFlag 

            postProcessSideBySideResults(... 

                folderName,... 

                SideBySideCellFailure,... 

                SideBySideCellNoFailure,... 

                gridVariables,... 

                parallelIndex,... 

                resultPlotFlag,... 

                fileName,... 

                varargin); 
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    else 

            postProcessParameterStudyResults(... 

                parameterStudyFailureVector,... 

                parameterStudyNoFailureVector,... 

                folderName,... 

                gridVariables,... 

                parallelIndex,... 

                analyticalFlag,... 

                resultPlotFlag,... 

                fileName,... 

                varargin{:}); 

 

    end 

    close all; 

end 

 

toc 

end 

 

function [SideBySideCellFailureOutput, SideBySideCellNoFailureOutput]... 

    = sideBySideStudy(loopVector, folderName, parallelLoopCounter) 

 

% Perform case studies necessary for side by side plotting. 

 

[FaultFluidFlowFailure, FaultFluidFlowNoFailure]... 

    = parameterStudySimulation(loopVector); 

 

SideBySidePlottingFailure = processSideBySideResults(... 

    FaultFluidFlowFailure,... 

    folderName,... 

    [num2str(parallelLoopCounter), '_1']); 

SideBySidePlottingNoFailure = processSideBySideResults(... 

    FaultFluidFlowNoFailure,... 

    folderName,... 

    [num2str(parallelLoopCounter), '_2']); 

 

%Struct output necessary for parallelisation. 

[SideBySideCellFailureOutput,... 

    SideBySideCellNoFailureOutput]... 

    = storeToSideBySideCell(... 

    SideBySidePlottingFailure,... 

    SideBySidePlottingNoFailure); 

end 

 

function postProcessSideBySideResults(... 

    folderName,... 

    SideBySideCellFailure,... 

    SideBySideCellNoFailure,... 

    gridVariables,... 

    parallelIndex,... 

    resultPlotFlag,... 

    fileName,... 

    argCell) 

 

% Postprocess case study results for side by side plotting. 

 

DummyFaultFluidFlow = dummyFaultFluidFlowClass(... 

    gridVariables,... 

    parallelIndex,... 

    argCell); 

 

if strcmp(resultPlotFlag, 'plotonly') 

    SideBySidePlottingMat = load(fileName); 

    SideBySidePlotting = SideBySidePlottingMat.SideBySidePlotting; 
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else 

    SideBySidePlotting = SideBySidePlottingClass; 

 

    SideBySidePlotting.initialise(... 

        DummyFaultFluidFlow,... 

        folderName); 

 

    SideBySidePlotting.SideBySideResultStruct = struct(... 

        'Failure',... 

        SideBySideCellFailure,... 

        'NoFailure',... 

        SideBySideCellNoFailure); 

end 

 

if ~strcmp(resultPlotFlag, 'resultonly') 

    SideBySidePlotting.sideBySidePlot(... 

        DummyFaultFluidFlow); 

 

end 

 

if ~strcmp(resultPlotFlag, 'plotonly') 

    save(... 

        [folderName '/SideBySideStudyResults.mat'],... 

        'SideBySidePlotting') 

 

end 

end 

 

function SideBySidePlotting = processSideBySideResults(... 

    FaultFluidFlow,... 

    folderName,... 

    fileNumber) 

 

% Process side by side results 

 

SideBySidePlotting = SideBySidePlottingClass; 

SideBySidePlotting.initialise(FaultFluidFlow, folderName); 

SideBySidePlotting.resultProcessing(FaultFluidFlow); 

SideBySidePlotting.faultPlaneFailurePlot(FaultFluidFlow, fileNumber); 

end 

 

function postProcessParameterStudyResults(... 

    parameterStudyFailureVector,... 

    parameterStudyNoFailureVector,... 

    folderName,... 

    gridVariables,... 

    parallelIndex,... 

    analyticalFlag,... 

    resultPlotFlag,... 

    fileName,... 

    varargin) 

 

% Postprocess parameter study results. 

 

if strcmp(resultPlotFlag, 'plotonly') 

    ParameterStudyPlottingMat = load(fileName); 

    ParameterStudyPlotting... 

        = ParameterStudyPlottingMat.ParameterStudyPlotting; 

 

else 

    ParameterStudyPlotting = ParameterStudyPlottingClass; 

    ParameterStudyPlotting.initialiseParameterStudy(... 

        folderName,... 

        gridVariables,... 

        varargin{:},... 
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        analyticalFlag); 

 

end 

 

if ~strcmp(resultPlotFlag, 'plotonly') 

      ParameterStudyPlotting.postProcessParameterStudyResults(... 

                parameterStudyFailureVector,... 

                parameterStudyNoFailureVector); 

 

end 

 

if ~strcmp(resultPlotFlag, 'resultonly') 

    ParameterStudyPlotting.parameterStudyPlot(... 

        parallelIndex,... 

        gridVariables,... 

        analyticalFlag); 

 

end 

 

if ~strcmp(resultPlotFlag, 'plotonly') 

    save([folderName '/ParameterStudyResults.mat'],... 

        'ParameterStudyPlotting') 

 

end 

end 

 

function [gridVariables,... 

    parameterStudyVector,... 

    parameterStudyNoFailureVector]... 

    = initialiseParameterStudyVariables(parallelIndex, argCell) 

 

% Initialise variables necessary to perform parameter study. 

 

parallelVariable = argCell(parallelIndex); 

gridVariables = cell(1, numel(parallelVariable)); 

[gridVariables{:}] = ndgrid(parallelVariable{:}); 

gridLength = length(gridVariables{1}(:)); 

 

parameterStudyVector = NaN(gridLength, 11); 

parameterStudyNoFailureVector = NaN(gridLength, 11); 

end 

 

function [FaultFluidFlowFailure, FaultFluidFlowNoFailure]... 

    = parameterStudySimulation(loopVector) 

 

% Peform set of simulations required for parameter study. 

 

FaultFluidFlowFailure = solveFaultFluidFlow(... 

    loopVector{1:8},... 

    'modeoffailure'); 

FaultFluidFlowNoFailure = solveFaultFluidFlow(... 

    loopVector{1:8}); 

end 

 

function [parameterStudyFailureVectorOutput,... 

    parameterStudyNoFailureVectorOutput]... 

    = parameterStudy(loopVector,  folderName) 

 

% Perform parameter study. 

 

[FaultFluidFlowFailure, FaultFluidFlowNoFailure]... 

    = parameterStudySimulation(loopVector); 

 

ParameterStudyPlottingFailure = ParameterStudyPlottingClass; 

ParameterStudyPlottingFailure.initialise(... 
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    FaultFluidFlowFailure,... 

    folderName); 

 

ParameterStudyPlottingNoFailure... 

    = ParameterStudyPlottingClass; 

ParameterStudyPlottingNoFailure.initialise(... 

    FaultFluidFlowNoFailure,... 

    folderName); 

 

%Vector output necessary for parallelisation. 

parameterStudyFailureVectorOutput =... 

    ParameterStudyPlottingFailure.resultProcessing(... 

    FaultFluidFlowFailure); 

 

parameterStudyNoFailureVectorOutput =... 

    ParameterStudyPlottingNoFailure.resultProcessing(... 

    FaultFluidFlowNoFailure); 

end 

 

function FaultFluidFlow = solveFaultFluidFlow(varargin) 

 

% Solve fault fluid flow problem for a given fault zone. 

FaultFluidFlow = SinglePhaseFluidFlowClass; 

 

FaultFluidFlow.initialise(varargin{:}); 

 

FaultFluidFlow.faultFluidFlowSolver(); 

end 

 

function plotResults(FaultFluidFlow, folderName, varargin) 

 

% Plot case study results. 

 

ResultPlotting = ResultPlottingClass; 

 

ResultPlotting.initialise(FaultFluidFlow, folderName); 

 

ResultPlotting.caseStudyFigures(FaultFluidFlow); 

end 

 

function [analyticalFlag, sideBySideFlag, resultPlotFlag, fileName]... 

    = processVarargin(varargin) 

 

% Process variable input arguments. 

 

fileName = ''; 

 

if any(strcmp(varargin{:}, 'analytical')) 

    analyticalFlag = 'analytical'; 

 

else 

    analyticalFlag = ''; 

 

end 

 

if any(strcmp(varargin{:}, 'sidebyside')) 

    sideBySideFlag = true; 

 

else 

    sideBySideFlag = false; 

 

end 

 

if any(strcmp(varargin{:}, 'plotonly')) 

    resultPlotFlag = 'plotonly'; 
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    idx = find(strcmp(varargin{:}, 'plotonly')) + 1; 

 

    fileName = varargin{1}{idx}; 

 

elseif any(strcmp(varargin{:}, 'resultonly')) 

    resultPlotFlag = 'resultonly'; 

 

else 

    resultPlotFlag = 'both'; 

 

end 

end 

 

function [SideBySideCellFailure, SideBySideCellNoFailure]... 

    = storeToSideBySideCell(... 

    SideBySidePlotting,... 

    SideBySidePlottingNoFailure) 

 

% Create cell for storing side by side case studies simulation results. 

 

SideBySideCellFailure =... 

    SideBySidePlotting.SideBySideStruct; 

 

SideBySideCellNoFailure =... 

    SideBySidePlottingNoFailure.SideBySideStruct(... 

    1:(length(SideBySidePlotting.SideBySideStruct)-1)); 

 

end 

 

function DummyFaultFluidFlow = dummyFaultFluidFlowClass(... 

    gridVariables,... 

    parallelIndex,... 

    argCell) 

 

% Create a dummy fault fluid flow class instance to enable side by side 

% plotting. 

 

 

DummyFaultFluidFlow = FaultFluidFlowClass; 

 

dummyVariables = argCell; 

 

dummyVariables(parallelIndex) = cellfun(@(x)x(1), gridVariables, 'un', 0); 

 

DummyFaultFluidFlow.initialise(dummyVariables{:}); 

end 

 

function s = convertNum(n) 

 

    % Convert number to string. 

 

   s = []; 

   while n > 0 

      d = mod(n,10); 

      s = [char(48+d), s]; 

      n = (n-d)/10; 

   end 

end 

 

function saveInputsToFile(folderName, varargin) 

 

% Store simulation inputs to file. 

 

fileId = fopen([folderName '/input.txt'], 'w'); 
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filevec = ['Pore Fluid Factor ', convertNum(varargin{1}),... 

    ' Tectonic Loading Rate ', convertNum(varargin{2}),... 

    ' Fault Depth ', convertNum(varargin{3}), ... 

    ' Confinement Factor ' , convertNum(varargin{4}),... 

    ' Overpressure Contact Height ' , convertNum(varargin{5}),... 

    ' OFC Width ' , convertNum(varargin{6}),... 

    ' IFC Width ' , convertNum(varargin{7}),... 

    ' Fault Preset ' , convertNum(varargin{8}),... 

    ' ' varargin{9:end}]; 

fprintf(fileId, '%s', filevec); 

end 

 

function folderName = initialiseFolder(parallelIndex) 

 

% Initialise folder for storing inputs and results. 

 

if sum(parallelIndex) ~= 0 

    folderName = ['ParameterStudy' datestr(datetime('now'),... 

        'ddmmyyHHMMSS')]; 

else 

    folderName = [ 'FaultFluidFlow' datestr(datetime('now'),... 

        'ddmmyyHHMMSS')]; 

end 

 

ResultPlottingClass.makeDirectory(folderName); 

end 

 

function parallelIndex = indicesOfVectorInputs(varargin) 

 

% Identify vectorised inputs for parallel case studies 

% (parameter study or side by side plotting.) 

 

parallelIndex = cellfun(@(e) length(e) ~= 1, varargin(1:7)); 

end 

Index exceeds the number of array elements (0). 

 

Error in faultFluidFlowScript>indicesOfVectorInputs (line 486) 

parallelIndex = cellfun(@(e) length(e) ~= 1, varargin(1:7)); 

 

Error in faultFluidFlowScript (line 38) 

parallelIndex = indicesOfVectorInputs(varargin{:}); 

 
Published with MATLAB® R2018b

 

https://www.mathworks.com/products/matlab/
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classdef ParameterStudyPlottingClass < ResultPlottingClass 

    properties 

        FailureTime = struct(... 

            'Brittle', NaN,... 

            'Ductile', NaN,... 

            'Stable', NaN,... 

            'Unstable', NaN); 

 

        FailureExtent = struct' 

        ParameterStudyFailureTime = struct(... 

            'Brittle', struct, 'Ductile', struct,... 

            'Stable', struct('General', struct),... 

            'Unstable', struct('General', struct)); 

        ParameterStudyFailureExtent = struct(... 

            'Stable', struct,... 

            'Unstable', struct); 

        PatchSize 

        analyticalTime; 

        SlidingLength; 

 

        poreFluidFactorList; 

        tectonicLoadingRate; 

        faultDepth; 

        confinementFactor; 

        overpressureHeight; 

        OFCwidth; 

        IFCwidth; 

 

        failureStringCell = {'Failure', 'NoFailure'}; 

 

        options; 

        simulatedFaultWidth; 

        simulatedFaultHeight; 

    end 

 

    methods 

        function obj = initialiseParameterStudy(... 

                obj,... 

                folderName,... 

                grid,... 

                poreFluidFactorList,... 

                tectonicLoadingRate,... 

                faultDepth,... 

                confinementFactor,... 

                overpressureHeight,... 

                OFCwidth,... 

                IFCwidth,... 

                varargin) 

            obj.ParameterStudyFailureTime.Stable.Failure = NaN(... 

                length(grid{1}(:))); 

            obj.ParameterStudyFailureTime.Unstable.Failure = NaN(... 

                length(grid{1}(:) )); 

            obj.ParameterStudyFailureTime.Stable.NoFailure = NaN(... 

                length(grid{1}(:))); 

            obj.ParameterStudyFailureTime.Unstable.NoFailure = NaN(... 

            length(grid{1}(:))); 

            obj.ParameterStudyFailureTime.Brittle = NaN(... 

                length(grid{1}(:))); 

            obj.ParameterStudyFailureTime.Ductile = NaN(... 

                length(grid{1}(:))); 

            obj.ParameterStudyFailureExtent.Stable = NaN(... 

                length(grid{1}(:))); 

            obj.ParameterStudyFailureExtent.Unstable = NaN(... 
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                length(grid{1}(:))); 

 

            obj.poreFluidFactorList = poreFluidFactorList; 

            obj.tectonicLoadingRate = tectonicLoadingRate; 

            obj.faultDepth = faultDepth; 

            obj.confinementFactor = confinementFactor; 

            obj.overpressureHeight = overpressureHeight; 

            obj.OFCwidth = OFCwidth; 

            obj.IFCwidth = IFCwidth; 

 

            obj.folderName = folderName; 

        end 

 

        function obj = assignEarthquakeLengthsToStruct(... 

                obj,... 

                parallelVector,... 

                noFailureParallelVector) 

 

            % Transfer results from parallel loop output vector to object 

            % instance. 

 

            obj.SlidingLength.Failure.Failure.Stable... 

                = parallelVector(:, 6); 

            obj.SlidingLength.Failure.Failure.Unstable... 

                = parallelVector(:, 7); 

            obj.SlidingLength.Failure.Nucleation.Stable =... 

                parallelVector(:, 8); 

            obj.SlidingLength.Failure.Nucleation.Unstable =... 

                parallelVector(:, 9); 

            obj.FailureExtent.Stable.Failure =... 

                parallelVector(:, 10); 

            obj.FailureExtent.Unstable.Failure =... 

                parallelVector(:, 11); 

 

            obj.SlidingLength.NoFailure.Failure.Stable =... 

                noFailureParallelVector(:, 6); 

            obj.SlidingLength.NoFailure.Failure.Unstable =... 

                noFailureParallelVector(:, 7); 

            obj.SlidingLength.NoFailure.Nucleation.Stable =... 

                noFailureParallelVector(:, 8); 

            obj.SlidingLength.NoFailure.Nucleation.Unstable =... 

                noFailureParallelVector(:, 9); 

            obj.FailureExtent.Stable.NoFailure =... 

                noFailureParallelVector(:, 10); 

            obj.FailureExtent.Unstable.NoFailure =... 

                noFailureParallelVector(:, 11); 

        end 

 

        function obj = postProcessParameterStudyResults(... 

                obj,... 

                parallelVector,... 

                noFailureParallelVector) 

 

            % Apply post processing to parameter study results. 

 

            obj.readDataFromParallelVector(... 

                parallelVector,... 

                noFailureParallelVector); 

 

            obj.assignEarthquakeLengthsToStruct(... 

                parallelVector,... 

                noFailureParallelVector); 

 

        end 
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        function obj = parameterStudyPlot(... 

                obj,... 

                parallelIndex,... 

                gridVariable,... 

                analyticalFlag) 

 

            switch sum(parallelIndex) 

                case 1 

                    obj.oneVectorInputPlot(parallelIndex, analyticalFlag) 

                case 2 

                    obj.twoVectorInputPlot(gridVariable, parallelIndex) 

                case 3 

                    obj.threeVectorInputPlot(gridVariable, parallelIndex) 

            end 

 

        end 

 

        function readDataFromParallelVector(... 

                obj,... 

                parallelVector,... 

                noFailureParallelVector) 

 

        obj.ParameterStudyFailureTime.Stable.Failure... 

            = parallelVector(:, 3); 

            obj.ParameterStudyFailureTime.Unstable.Failure... 

                = parallelVector(:, 4); 

 

            obj.ParameterStudyFailureTime.Stable.NoFailure... 

                = noFailureParallelVector(:, 3); 

            obj.ParameterStudyFailureTime.Unstable.NoFailure... 

                = noFailureParallelVector(:, 4); 

 

            obj.ParameterStudyFailureTime.Brittle = parallelVector(:, 1); 

            obj.ParameterStudyFailureTime.Ductile = parallelVector(:, 2); 

            obj.analyticalTime = parallelVector(:, 5); 

 

 

        end 

 

        function oneVectorInputPlot(obj, parallelIndex, analyticalFlag) 

            if parallelIndex(1) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    obj.poreFluidFactorList,... 

                    'PlotString1',... 

                    'Pore Fluid Factor'); 

 

            elseif parallelIndex(2) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    obj.tectonicLoadingRate,... 

                    'PlotString1',... 

                    'Tectonic Loading Rate'); 

 

            elseif parallelIndex(3) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    obj.faultDepth, ... 

                    'PlotString1',... 

                    'Fault Depth (m)'); 

 

            elseif parallelIndex(4) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    obj.confinementFactor, ... 
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                    'PlotString1',... 

                    'Confinement Factor'); 

 

            elseif parallelIndex(5) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    2 * obj.overpressureHeight, ... 

                    'PlotString1',... 

                    'Overpressure Contact Height (m)'); 

 

            elseif parallelIndex(6) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    obj.OFCwidth, ... 

                    'PlotString1',... 

                    'Outer Fault Core Width (m)'); 

 

            elseif parallelIndex(7) == 1 

                PlotStruct = struct(... 

                    'plotVariable1',... 

                    2 * obj.IFCwidth, ... 

                    'PlotString1',... 

                    'Inner Fault Core Width (m)'); 

 

            end 

            obj.onePlot(PlotStruct, analyticalFlag); 

        end 

 

        function twoVectorInputPlot(obj, gridVariable, parallelIndex) 

            if parallelIndex(1) == 1 && parallelIndex(3) == 1 

                obj.poreFluidFactorList = gridVariable{1}; 

                obj.faultDepth = gridVariable{2}; 

 

                PlotStruct = struct(... 

                    'PlotString1',... 

                    'Pore Fluid Factor',... 

                    'PlotString2',... 

                    'Fault Depth (m)'); 

 

                obj.twoPlot(gridVariable, PlotStruct); 

            elseif parallelIndex(3) == 1 && parallelIndex(4) == 1 

                obj.faultDepth = gridVariable{1}; 

                obj.confinementFactor = gridVariable{2}; 

 

                PlotStruct = struct(... 

                    'PlotString1',... 

                    'Fault Depth (m)',... 

                    'PlotString2',... 

                    'Initial Confinement (Pa)'); 

 

                obj.twoPlot(gridVariable, PlotStruct); 

            elseif parallelIndex(1) == 1 && parallelIndex(4) == 1 

                obj.poreFluidFactorList = gridVariable{1}; 

                obj.confinementFactor = gridVariable{2}; 

 

                PlotStruct = struct(... 

                    'PlotString1',... 

                    'Pore Fluid Factor',... 

                    'PlotString2',... 

                    'Initial Confinement (Pa)'); 

 

                obj.twoPlot(gridVariable, PlotStruct); 

            end 

        end 
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        function threeVectorInputPlot(obj, gridVariable, parallelIndex) 

            if parallelIndex(1) == 1 ... 

                && parallelIndex(2) == 1 ... 

                && parallelIndex(3) == 1 

            PlotStruct = struct(... 

                    'plotVariable1', obj.faultDepth,... 

                    'plotVariable2', obj.poreFluidFactorList,... 

                    'plotVariable3', obj.tectonicLoadingRate,... 

                    'PlotString1', 'Fault Depth (m)', ... 

                    'PlotString2', 'Pore Fluid Factor',... 

                    'plotString3', 'Tectonic Loading Rate (Pa/year)'); 

 

                obj.threePlot(gridVariable, PlotStruct); 

            end 

        end 

 

        function onePlot(obj, PlotStruct, analyticalFlag) 

 

            % Plot parameter study for one vector input. 

 

            obj.plotInterseismicPeriod(PlotStruct, analyticalFlag); 

            obj.plotNucleationLength(PlotStruct); 

            obj.plotNucleationPhase(PlotStruct); 

            obj.plotFailureExtent(PlotStruct); 

        end 

 

        function outputImage = plotInterseismicPeriod(... 

                obj,... 

                PlotStruct,... 

                analyticalFlag) 

 

            % Plot interseismic period. 

 

            figure; 

            hold on 

 

            [p3, p4] = obj.addFailureRectanglesToPlot(... 

                PlotStruct,... 

                obj.ParameterStudyFailureTime.Unstable.Failure,... 

                obj.ParameterStudyFailureTime.Unstable.NoFailure); 

 

            p1 = plot(... 

                PlotStruct.plotVariable1, ... 

                obj.ParameterStudyFailureTime.Unstable.Failure,... 

                'r*-'); 

            p2 = plot(... 

                PlotStruct.plotVariable1,... 

                obj.ParameterStudyFailureTime.Unstable.NoFailure,... 

                'k*-'); 

 

            axis tight; 

            xlabel(PlotStruct.PlotString1) 

            ylabel('Interseismic period (years)') 

 

            legcell = {... 

                'Deformation-dependent permeability',... 

                 'No deformation-dependent permeability'}; 

 

            if analyticalFlag 

                plot(... 

                    PlotStruct.plotVariable1,... 

                    obj.analyticalTime,... 

                    'r*'); 

                legcell = {... 

                    legcell{:}, ... 
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                    'Analytical Prediction of Stable Sliding'}; 

            end 

 

            if ~isempty(p3) 

                legcell = {... 

                    'Brittle failure',... 

                    legcell{:}}; 

            end 

 

            if ~isempty(p4) 

                legcell = {... 

                    'Ductile failure',... 

                    legcell{:}}; 

            end 

 

            legend(... 

                [p3(~isempty(p3)),... 

                p4(~isempty(p4)),... 

                p1(~isempty(p1)),... 

                p2(~isempty(p2))],... 

                legcell{:},... 

                'Location',... 

                'southwest'); 

            hold off; 

            drawnow 

 

            outputImage = ResultPlottingClass.copyPlotToImage(gcf); 

            obj.saveFigure('FailureEventTiming'); 

        end 

 

        function outputImage = plotNucleationPhase(obj, PlotStruct) 

 

            % Plot nucleation time. 

 

            nucleationTime = obj.nucleationTime('Failure'); 

 

            nucleationTimeNoFailure = obj.nucleationTime('NoFailure'); 

 

            figure; 

            hold on; 

            [p3, p4] = obj.addFailureRectanglesToPlot(... 

                PlotStruct,... 

                nucleationTime,... 

                nucleationTimeNoFailure); 

 

            p1 = plot(PlotStruct.plotVariable1,... 

                nucleationTime,... 

                'r*-'); 

            p2 = plot(... 

                PlotStruct.plotVariable1,... 

                nucleationTimeNoFailure,... 

                'k*-'); 

 

            legcell = {... 

                'Deformation-dependent permeability',... 

                 'No deformation-dependent permeability'}; 

 

            if ~isempty(p3) 

                legcell = {... 

                    'Brittle failure',... 

                    legcell{:}}; 

            end 

 

            if ~isempty(p4) 

                legcell = {... 
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                    'Ductile failure',... 

                    legcell{:}}; 

            end 

 

            legend(... 

                [p3(~isempty(p3)),... 

                p4(~isempty(p4)),... 

                p1(~isempty(p1)),... 

                p2(~isempty(p2))],... 

                legcell{:},... 

                'Location',... 

                'southeast'); 

            axis tight; 

            hold off 

            xlabel(PlotStruct.PlotString1) 

            ylabel(['Nucleation phase (years).']) 

            drawnow 

            set(gca, 'YScale', 'log'); 

 

            outputImage = ResultPlottingClass.copyPlotToImage(gcf); 

            obj.saveFigure('NucleationPhaseTiming'); 

        end 

 

        function nucleationTime = nucleationTime(obj, failureString) 

 

            % Calculate nucleation time. 

 

            nucleationTime = (obj.ParameterStudyFailureTime.Unstable.(... 

                failureString)... 

                - obj.ParameterStudyFailureTime.Stable.(failureString)); 

        end 

 

        function outputImage = plotNucleationLength(obj, PlotStruct) 

 

            % Plot nucleation length. 

 

            figure; 

            hold on; 

            [p3, p4] = obj.addFailureRectanglesToPlot(PlotStruct,... 

                obj.SlidingLength.Failure.Failure.Unstable,... 

                obj.SlidingLength.NoFailure.Failure.Unstable,... 

                obj.SlidingLength.Failure.Failure.Unstable,... 

                obj.SlidingLength.NoFailure.Failure.Unstable); 

 

            p1 = plot(PlotStruct.plotVariable1,... 

                obj.SlidingLength.Failure.Failure.Unstable, 'r*-'); 

            p2 = plot(PlotStruct.plotVariable1,... 

                obj.SlidingLength.NoFailure.Failure.Unstable, 'k*-'); 

 

            legcell = {... 

                'Deformation-dependent permeability',... 

                 'No deformation-dependent permeability'}; 

 

            if ~isempty(p3) 

                legcell = {... 

                    'Brittle failure',... 

                    legcell{:}}; 

            end 

 

            if ~isempty(p4) 

                legcell = {... 

                    'Ductile failure',... 

                    legcell{:}}; 

            end 
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            axis tight; 

            hold off; 

            xlabel(PlotStruct.PlotString1); 

            ylabel('Nucleation length (m)') 

            legend(... 

                [p3(~isempty(p3)),... 

                p4(~isempty(p4)),... 

                p1(~isempty(p1)),... 

                p2(~isempty(p2))],... 

                legcell{:},... 

                'Location',... 

                'northwest'); 

            drawnow 

 

            outputImage = ResultPlottingClass.copyPlotToImage(gcf); 

            obj.saveFigure('FailureLengths'); 

        end 

 

        function outputImage = plotFailureExtent(obj, PlotStruct) 

 

            % Plot extent of failure in OFC for each value of parameter. 

 

            figure; 

            hold on; 

            [p3, p4] = obj.addFailureRectanglesToPlot(... 

                PlotStruct,... 

                obj.FailureExtent.Stable.Failure,... 

                obj.FailureExtent.Unstable.Failure,... 

                obj.FailureExtent.Stable.Failure,... 

                obj.FailureExtent.Unstable.Failure); 

 

            p1 = plot(... 

                PlotStruct.plotVariable1,... 

                obj.FailureExtent.Stable.Failure,... 

                'r*-'); 

            p2 = plot(... 

                PlotStruct.plotVariable1,... 

               obj.FailureExtent.Unstable.Failure,... 

                'k*-'); 

 

            legcell = {... 

                'Deformation-dependent permeability',... 

                 'No deformation-dependent permeability'}; 

 

            if ~isempty(p3) 

                legcell = {... 

                    'Brittle',... 

                    legcell{:}}; 

            end 

 

            if ~isempty(p4) 

                legcell = {... 

                    'Ductile',... 

                    legcell{:}}; 

            end 

 

            axis tight; 

            hold off; 

            xlabel(PlotStruct.PlotString1); 

            ylabel('OFC Failure Extent Ratio') 

            legend(... 

                [p3(~isempty(p3)),... 

                p4(~isempty(p4)),... 

                p1(~isempty(p1)),... 

                p2(~isempty(p2))],... 
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                legcell{:},... 

                'Location',... 

                'southeast'); 

             drawnow 

 

            outputImage = ResultPlottingClass.copyPlotToImage(gcf); 

            obj.saveFigure('FailureExtent'); 

        end 

 

        function obj = twoPlot(obj, gridVariable, PlotStruct) 

 

            % Plotting in two dimensions. 

 

            obj.reshapeInputsToGridDimensions(gridVariable); 

            obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'BrittleFailure',... 

               obj.ParameterStudyFailureTime.Brittle,... 

               'Time of Brittle Failure'); 

           obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'DuctileFailure',... 

               obj.ParameterStudyFailureTime.Unstable.Failure,... 

               'Time of Ductile Failure'); 

 

           obj.modeOfFailureContour(gridVariable, PlotStruct); 

 

           obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'StableSlidingWithFailure',... 

               obj.ParameterStudyFailureTime.Stable.Failure,... 

               'Time of Stable Sliding'); 

 

           obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'UnstableSlidingWithFailure',... 

               obj.ParameterStudyFailureTime.Unstable.Failure,... 

               'Time of Unstable Sliding'); 

 

           obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'StableSlidingNoFailure',... 

               obj.ParameterStudyFailureTime.Stable.Failure,... 

               'Time of Stable Sliding'); 

 

           obj.parameterPcolor(... 

               gridVariable,... 

               PlotStruct,... 

               'UnstableSlidingNoFailure',... 

               obj.ParameterStudyFailureTime.Stable.Failure,... 

               'Time of /Unstable Sliding'); 

 

           nucleationTime = (... 

               obj.ParameterStudyFailureTime.Stable.Failure -... 

               obj.ParameterStudyFailureTime.Unstable.Failure); 

           nucleationTimeNoFailure = (... 

               obj.ParameterStudyFailureTime.Stable.Failure -... 

               obj.ParameterStudyFailureTime.Unstable.Failure); 

 

           obj.parameterPcolor(... 
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               gridVariable,... 

               PlotStruct,... 

               'NucleationPhaseWithFailure',... 

               nucleationTime,... 

               ['Length of Nucleation Phase (years).']),... 

           obj.parameterPcolor(... 

               gridVariable, PlotStruct,... 

               'NucleationPhaseNoFailure',... 

               nucleationTimeNoFailure,... 

               ['Length of Nucleation Phase (years).']) 

        end 

 

        function ParameterStudyFailureTimePcolor(... 

                obj,... 

                gridVariable,... 

                PlotStruct,... 

                failureFlagString,... 

                stabilityString) 

 

            % Two dimensional failure time plot. 

 

            figure; 

            hold on 

            pcolor(... 

                gridVariable{1},... 

                gridVariable{2},... 

                obj.ParameterStudyFailureTime.(... 

                stabilityString).(failureFlagString)); 

            shading interp 

            axis tight; 

            hold off 

            xlabel(PlotStruct.PlotString1) 

            ylabel(PlotStruct.PlotString2) 

            title(... 

                ['Timing of PSZ ' stabilityString ' sliding']) 

            drawnow 

            xlabel(colorbar, ... 

                ['Timing of PSZ ' stabilityString ' sliding (years).']) 

            obj.saveFigure(... 

                [ stabilityString 'ParameterStudyFailureTime'... 

                failureFlagString]); 

        end 

 

        function modeOfFailurePcolor(... 

                obj,... 

                gridVariable,... 

                PlotStruct,... 

                failureString) 

 

            % Two dimensional mode of failure plot. 

 

                        if any(... 

                                isfinite(... 

                                obj.ParameterStudyFailureTime.(... 

                                failureString)(:))) 

                figure; 

                hold on 

                pcolor(gridVariable{1}, gridVariable{2}, ... 

                    obj.ParameterStudyFailureTime.(failureString)); 

                shading interp 

                axis tight; 

                hold off 

                xlabel(PlotStruct.PlotString1) 

                ylabel(PlotStruct.PlotString2) 

                title(... 
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                    ['Timing of OFC' failureString 'Failure ']) 

                drawnow 

                xlabel(colorbar, ... 

                    ['Timing of OFC' failureString 'Failure ']) 

                obj.saveFigure([failureString ' Failure Time']); 

                        end 

        end 

 

        function modeOfFailureContour(obj, gridVariable, PlotStruct) 

 

            % Add contour to two dimensional plot, to indicate mode of 

            % failure. 

 

            mark = obj.setContourVariable(gridVariable); 

            contourNumber = max(max(mark)); 

 

            if ~all(mark(:) == 0) 

                figure; 

                hold on 

                [C, h] = contourf(gridVariable{1},... 

                    gridVariable{2}, mark,... 

                    contourNumber, 'k'); 

                v = [0, 1, 2, 3]; 

                if ~isempty(C) 

                    clabel(C, h, v); 

                    text(C(1, 2), C(2, 2), 'Brittle'); 

                    text(C(1, end), C(2, end), 'Ductile'); 

                end 

                axis tight; 

                hold off 

                xlabel(PlotStruct.PlotString1) 

                ylabel(PlotStruct.PlotString2) 

                title(... 

                    'Brittle and ductile failure regions ') 

                drawnow; 

                obj.saveFigure('ModeOfFailureContour'); 

            end 

        end 

 

        function mark = setContourVariable(obj, gridVariable) 

 

            % Assign the values of the variable used in two dimensional 

            % contour plots. 

 

            mark = zeros(size(gridVariable{1})); 

            mark(isfinite(obj.ParameterStudyFailureTime.Brittle)) = 1 ; 

            mark(isfinite(obj.ParameterStudyFailureTime.Ductile)) = 2 ; 

            mark(isfinite(obj.ParameterStudyFailureTime.Brittle)... 

                & isfinite(obj.ParameterStudyFailureTime.Ductile))... 

                = 3; 

        end 

 

        function parameterPcolor(... 

                obj,... 

                gridVariable,... 

                PlotStruct,... 

                fileName,... 

                plotVariable,... 

                titleString) 

 

            % Plot pcolor for two dimensional parameter study. 

 

            figure; 

            hold on 

            pcolor(gridVariable{1}, gridVariable{2},... 
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                plotVariable) 

            shading interp 

            axis tight; 

            hold off 

            xlabel(PlotStruct.PlotString1) 

            ylabel(PlotStruct.PlotString2) 

 

            title(titleString) 

            drawnow 

            xlabel(colorbar, titleString) 

            obj.saveFigure(fileName); 

        end 

 

        function obj = threePlot(obj, gridVariable, PlotStruct) 

 

            % Plot three dimensional volume slice plot of parameter study. 

 

            obj.reshapeInputsToGridDimensions(gridVariable); 

 

            SliceStruct = struct; 

            SliceStruct.X = [min(PlotStruct.plotVariable1)... 

                mean(PlotStruct.plotVariable1)]; 

            SliceStruct.Y = max(PlotStruct.plotVariable2); 

            SliceStruct.Z = [mean(PlotStruct.plotVariable3) ... 

                min(PlotStruct.plotVariable3)]; 

 

            if any(isfinite(obj.ParameterStudyFailureTime.Brittle(:))) 

                obj.parameterSlice(... 

                    PlotStruct,... 

                    obj.ParameterStudyFailureTime.Brittle,... 

                    ['Timing of Brittle Failure (years).'],... 

                    'BrittleParameterStudyFailureTime',... 

                    SliceStruct); 

            end 

 

            if any(isfinite(obj.ParameterStudyFailureTime.Ductile(:))) 

                obj.parameterSlice(... 

                    PlotStruct, obj.ParameterStudyFailureTime.Ductile,... 

                    ['Timing of Ductile Failure (years).'],... 

                    'DuctileParameterStudyFailureTime', SliceStruct); 

            end 

 

            obj.parameterSlice(... 

                PlotStruct,... 

                obj.ParameterStudyFailureTime.Stable.Failure,... 

                ['Timing of Stable Sliding (years).'],... 

                'StableSlidingTimeFailure',... 

                SliceStruct); 

 

            obj.parameterSlice(... 

                PlotStruct,... 

                obj.ParameterStudyFailureTime.Unstable.Failure,... 

                ['Timing of Unstable Sliding (years).'],... 

                'UnstableSlidingTimeFailure',... 

                SliceStruct); 

 

            obj.parameterSlice(... 

                PlotStruct,... 

                obj.ParameterStudyFailureTime.Stable.NoFailure,... 

                ['Timing of Stable Sliding (years).'],... 

                'StableSlidingTimeNoFailure',... 

                SliceStruct); 

 

            obj.parameterSlice(... 

                PlotStruct,... 
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                obj.ParameterStudyFailureTime.Unstable.NoFailure,... 

                ['Timing of Unstable Sliding (years).'],... 

                'UnstableSlidingTimeNoFailure',... 

                SliceStruct); 

 

            nucleationTime... 

                = (obj.ParameterStudyFailureTime.Unstable.Failure... 

                - obj.ParameterStudyFailureTime.Stable.Failure); 

 

            nucleationTimeNoFailure = (... 

                obj.ParameterStudyFailureTime.Unstable.NoFailure... 

                - obj.ParameterStudyFailureTime.Stable.NoFailure); 

 

            obj.parameterSlice(... 

                PlotStruct, nucleationTime,... 

                ['Nucleation Time (years).'],... 

                'NucleationTimeFailure',... 

                SliceStruct); 

 

            obj.parameterSlice(... 

                PlotStruct, nucleationTimeNoFailure,... 

                ['Nucleation Time (years).'],... 

                'NucleationTimeNoFailure',... 

                SliceStruct); 

        end 

 

        function parameterSlice(... 

                obj,... 

                PlotStruct,... 

                plotVariable,... 

                titleString,... 

                fileName,... 

                SliceStruct) 

 

            % Plot two dimensional parameter study through three 

            % dimensional volume plot. 

 

            figure; 

            hold on 

            view(45, 45); 

            slice(... 

                PlotStruct.plotVariable1',... 

                PlotStruct.plotVariable2',... 

                PlotStruct.plotVariable3',... 

                plotVariable, SliceStruct.X,... 

                SliceStruct.Y, SliceStruct.Z); 

            shading interp 

            axis tight; 

            hold off 

            xlabel(PlotStruct.PlotString2) 

            ylabel(PlotStruct.PlotString1) 

            zlabel(PlotStruct.plotString3) 

 

            title(... 

                titleString) 

            drawnow 

            xlabel(colorbar, titleString) 

            obj.saveFigure(fileName); 

        end 

 

        function reshapeInputsToGridDimensions(obj, gridVariable) 

 

            % Take vector input and reshape to plot grid. 

 

            obj.ParameterStudyFailureTime.Stable.Failure = reshape(... 
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                obj.ParameterStudyFailureTime.Stable.Failure,... 

                size(gridVariable{1})); 

            obj.ParameterStudyFailureTime.Unstable.Failure = reshape(... 

                obj.ParameterStudyFailureTime.Unstable.Failure,... 

                size(gridVariable{1})); 

            obj.ParameterStudyFailureTime.Stable.NoFailure = reshape(... 

                obj.ParameterStudyFailureTime.Stable.NoFailure,... 

                size(gridVariable{1})); 

            obj.ParameterStudyFailureTime.Unstable.NoFailure = reshape(... 

                obj.ParameterStudyFailureTime.Unstable.NoFailure,... 

                size(gridVariable{1})); 

            obj.ParameterStudyFailureTime.Brittle = reshape(... 

                obj.ParameterStudyFailureTime.Brittle, size(... 

                gridVariable{1})); 

            obj.ParameterStudyFailureTime.Ductile = reshape(... 

                obj.ParameterStudyFailureTime.Ductile, size(... 

                gridVariable{1})); 

        end 

 

 

        function parameterTransfer(obj, faultFluidFlowObj) 

 

            % Transfer parameters representing solver tolerance. 

 

            obj.options = faultFluidFlowObj.options; 

            obj.simulatedFaultWidth... 

                = faultFluidFlowObj.simulatedFaultWidth; 

            obj.simulatedFaultHeight... 

                = faultFluidFlowObj.simulatedFaultHeight; 

            obj.horizontalArrayLength... 

                = faultFluidFlowObj.horizontalArrayLength; 

            obj.verticalArrayLength... 

                = faultFluidFlowObj.verticalArrayLength; 

 

 

        end 

 

        function outputVector  = resultProcessing(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Process results for plotting at each result time step. 

 

            obj.parameterTransfer(faultFluidFlowObj); 

 

            FaultFluidFlowClass.printProgressString(... 

                'Returning parameter study result...'); 

 

            obj.initialiseFailurePlaneStruct(... 

                faultFluidFlowObj); 

 

            obj.initialiseFailureLengthVariables; 

            stableSlidingTrigger = false; 

            faultFluidFlowObj.slidingStress = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            for loopTimeCounter = 1:length(faultFluidFlowObj.time) 

                loopTime = faultFluidFlowObj.time(loopTimeCounter); 

 

                if ~obj.processingEarthquakeTrigger 

                    obj.postProcessingPhysicalVariables(... 

                        faultFluidFlowObj,... 

                        loopTimeCounter,... 

                        loopTime); 
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                    if obj.brittleFailureCondition 

                        obj.FailureTime.Brittle... 

                            = faultFluidFlowObj.time(... 

                            loopTimeCounter); 

                        obj.brittleFailureTimeTrigger... 

                            = true; 

                    end 

 

                    if obj.ductileFailureCondition 

                        obj.FailureTime.Ductile... 

                            = faultFluidFlowObj.time(... 

                            loopTimeCounter); 

                        obj.ductileFailureTimeTrigger... 

                            = true; 

                    end 

 

                    if obj.onsetOfStableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopTimeCounter)... 

                            && ~stableSlidingTrigger 

 

                        obj.FailureTime.Stable... 

                            = faultFluidFlowObj.time(loopTimeCounter); 

 

                        obj.SlidingLength.Failure.Stable... 

                            = faultFluidFlowObj.EarthquakeLengthVector(... 

                            loopTimeCounter).Failure; 

 

                        obj.SlidingLength.Nucleation.Stable... 

                            = faultFluidFlowObj.EarthquakeLengthVector(... 

                            loopTimeCounter).Nucleation; 

 

                        obj.FailureExtent.Stable =... 

                            faultFluidFlowObj.failureExtent; 

 

                        stableSlidingTrigger = true; 

                    end 

 

                    if obj.unstableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopTimeCounter) 

                        obj.processingEarthquakeTrigger... 

                            = true; 

 

                        obj.FailureTime.Unstable... 

                            = faultFluidFlowObj.time(... 

                            loopTimeCounter); 

 

                        obj.SlidingLength.Failure.Unstable... 

                            = faultFluidFlowObj.EarthquakeLengthVector(... 

                            loopTimeCounter).Failure; 

 

                        obj.SlidingLength.Nucleation.Unstable... 

                            = faultFluidFlowObj.EarthquakeLengthVector(... 

                            loopTimeCounter).Nucleation; 

 

                        obj.FailureExtent.Unstable =... 

                            faultFluidFlowObj.failureExtent; 

                    end 

                end 

            end 

 

            faultFluidFlowObj.calculateAnalyticalTime; 
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            outputVector = obj.parameterStudyOutputVector(... 

                faultFluidFlowObj); 

        end 

 

        function obj = initialiseFailureLengthVariables(obj) 

 

            % Initialise variables for storing failure lengths. 

 

            obj.SlidingLength.Failure.Stable = NaN; 

            obj.SlidingLength.Failure.Unstable = NaN; 

            obj.SlidingLength.Nucleation.Stable = NaN; 

            obj.SlidingLength.Nucleation.Unstable = NaN; 

        end 

 

        function outputVector = parameterStudyOutputVector(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Create output vector from a single parameter's study. 

 

            timeUnit = FaultFluidFlowClass.SECONDS_PER_YEAR; 

 

            outputVector = [... 

                obj.FailureTime.Brittle / timeUnit,... 

                obj.FailureTime.Ductile / timeUnit,... 

                obj.FailureTime.Stable / timeUnit,... 

                obj.FailureTime.Unstable / timeUnit,... 

                faultFluidFlowObj.analyticalTime / timeUnit,... 

                obj.SlidingLength.Failure.Stable,... 

                obj.SlidingLength.Failure.Unstable,... 

                obj.SlidingLength.Nucleation.Stable,... 

                obj.SlidingLength.Nucleation.Unstable,... 

                obj.FailureExtent.Stable,... 

                obj.FailureExtent.Unstable]; 

        end 

 

        function [p1, p2] = addFailureRectanglesToPlot(... 

                obj,... 

                PlotStruct, ... 

                varargin) 

 

            % Add rectangles to parameter study plot indicating mode of 

            % failure. 

 

            Y.max = max(max([varargin{:}])); 

            Y.min = min(min([varargin{:}])); 

            p1 = ParameterStudyPlottingClass.failureRectangle(... 

                obj.ParameterStudyFailureTime.Brittle,... 

                PlotStruct,... 

                Y,... 

                'k'); 

            p2 = ParameterStudyPlottingClass.failureRectangle(... 

                obj.ParameterStudyFailureTime.Ductile,... 

                PlotStruct,... 

                Y,... 

                'r'); 

        end 

    end 

 

    methods(Static) 

        function  p = failureRectangle(... 

                ParameterStudyFailureTime,... 

                PlotStruct,... 

                Y,... 

                rectangleColor) 
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            % Add rectangle indicating failure to line plot. 

 

            X = PlotStruct.plotVariable1(... 

                isfinite(... 

                ParameterStudyFailureTime)); 

 

            p = []; 

 

            if ~isempty(X) > 0 

                p = patch(... 

                    [min(X) max(X) max(X) min(X)],... 

                    [Y.min Y.min Y.max Y.max],... 

                    rectangleColor,... 

                    'FaceAlpha',... 

                    0.25,... 

                    'EdgeColor',... 

                    'none'); 

            end 

        end 

 

        function legcell = plotFailureBox(... 

                ParameterStudyFailureTime,... 

                PlotStruct,... 

                legcell,... 

                legString,... 

                plotType) 

 

            % Add failure box to plot. 

 

            if ~all(isnan(ParameterStudyFailureTime(:))) 

                plot(... 

                    PlotStruct.plotVariable1,... 

                    ParameterStudyFailureTime,... 

                    plotType{:}) 

                legcell = {legcell{:}, legString}; 

            end 

        end 

 

        function imageCell = resizeImagesToFirstImage(imageCell) 

            sizeTemp = size(imageCell{1, 1}); 

            for cellCounter1 = 1:size(imageCell, 1) 

                for cellCounter2 = 1:size(imageCell, 2) 

                    imageCell{cellCounter1, cellCounter2}... 

                        = imresize(... 

                        imageCell{... 

                        cellCounter1, cellCounter2}, sizeTemp(1:2)); 

                end 

            end 

        end 

    end 

end 

ans =  

 

  ParameterStudyPlottingClass with properties: 

 

                     FailureTime: [1×1 struct] 

                   FailureExtent: [1×1 struct] 

       ParameterStudyFailureTime: [1×1 struct] 

     ParameterStudyFailureExtent: [1×1 struct] 

                       PatchSize: [] 

                  analyticalTime: [] 

                   SlidingLength: [] 
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             poreFluidFactorList: [] 

             tectonicLoadingRate: [] 

                      faultDepth: [] 

               confinementFactor: [] 

              overpressureHeight: [] 

                        OFCwidth: [] 

                        IFCwidth: [] 

               failureStringCell: {'Failure'  'NoFailure'} 

                         options: [] 

             simulatedFaultWidth: [] 

            simulatedFaultHeight: [] 

           horizontalArrayLength: [] 

             verticalArrayLength: [] 

          EarthquakeLengthVector: [] 

                StabilityLengths: [] 

                   FailureMarker: [] 

            slidingFailureMarker: [] 

                   oldFailureMap: [] 

                        pressure: [] 

                          stress: [] 

                 effectiveStress: [] 

                  outputPressure: [] 

                      MohrCircle: [1×1 struct] 

                    MohrGeometry: [1×1 struct] 

                            time: [] 

    effectiveNormalStressForPlot: [] 

       EffectiveNormalStressStep: 10000 

     processingEarthquakeTrigger: 0 

       brittleFailureTimeTrigger: 0 

       ductileFailureTimeTrigger: 0 

              steadyStateTrigger: 0 

              brittleFailureTime: NaN 

              ductileFailureTime: NaN 

                SubplotFileNames: [1×1 struct] 

                 mohrFigureScale: [] 

                   plotTimeScale: [] 

                   decimalPlaces: 1 

                     limitYValue: 40 

                 pressureSubplot: [] 

                     mohrSubplot: [] 

                   stressSubplot: [] 

          pressureSubplotElement: [] 

              mohrSubplotElement: [] 

            stressSubplotElement: [] 

                    legendVector: [] 

                      folderName: [] 

                 folderCheckFlag: 1 

                     plotCounter: 0 

      effectiveStressPatchVector: [] 

            effectiveStressPatch: [] 

                   computerStore: [] 

                    lowMohrLimit: [] 

                    lastPressure: [] 

                steadyStateLimit: 1.0000e-12 

                   gaussianWidth: 1.2500 

        lastSlidingFailureMarker: [] 

               lastFailureMarker: [] 

 

 
Published with MATLAB® R2018b

 

https://www.mathworks.com/products/matlab/
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classdef ResultPlottingClass < handle 

    properties 

        horizontalArrayLength; 

        verticalArrayLength; 

        EarthquakeLengthVector; 

        StabilityLengths 

        FailureMarker; 

        slidingFailureMarker; 

        oldFailureMap; 

        pressure; 

        stress; 

        effectiveStress; 

        outputPressure; 

        MohrCircle = struct; 

        MohrGeometry = struct('Radius', struct,'Geometry', struct); 

        time; 

 

        effectiveNormalStressForPlot; 

        EffectiveNormalStressStep = 1E4; 

        processingEarthquakeTrigger = false; 

        brittleFailureTimeTrigger = false; 

        ductileFailureTimeTrigger = false; 

        steadyStateTrigger = false; 

        brittleFailureTime = NaN; 

        ductileFailureTime = NaN; 

 

        SubplotFileNames = struct; 

        mohrFigureScale; 

        plotTimeScale; 

        decimalPlaces = 1; 

        limitYValue = 40; 

        pressureSubplot; 

        mohrSubplot; 

        stressSubplot; 

        pressureSubplotElement; 

        mohrSubplotElement; 

        stressSubplotElement; 

        legendVector; 

        folderName; 

        folderCheckFlag = true; 

        plotCounter = 0; 

        effectiveStressPatchVector; 

        effectiveStressPatch; 

        computerStore; 

        lowMohrLimit; 

        lastPressure = []; 

        steadyStateLimit = 1E-12; 

        gaussianWidth = 1.25; 

        lastSlidingFailureMarker; 

        lastFailureMarker; 

    end 

 

    methods 

        function initialise(obj, faultFluidFlowObj, folderName) 

 

            % Initialise instance of result plotting class. 

 

            obj.folderName = folderName; 

 

            obj.initialiseFailurePlaneVariables(faultFluidFlowObj); 

        end 

 

        function initialiseFailurePlaneVariables(obj, faultFluidFlowObj) 
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            % Initialise failure plane variables. 

 

            obj.lowMohrLimit = 0; 

 

            obj.effectiveNormalStressForPlot =... 

                obj.lowMohrLimit:obj.EffectiveNormalStressStep:... 

                obj.roundToMPa(... 

                faultFluidFlowObj.lithostaticStress... 

                - faultFluidFlowObj.hydrostaticStress); 

 

            obj.computerStore = computer; 

            obj.oldFailureMap = false(... 

                faultFluidFlowObj.verticalArrayLength,... 

                faultFluidFlowObj.horizontalArrayLength); 

 

            obj.initialiseFailurePlaneStruct(faultFluidFlowObj); 

        end 

 

        function obj = caseStudyFigures(obj, faultFluidFlowObj) 

 

            % Plot figures for case study. 

 

            faultFluidFlowObj.printProgressString(... 

                'Plotting and saving results...'); 

 

            obj.initialiseFailurePlaneStruct(faultFluidFlowObj); 

            obj.resultProcessing(faultFluidFlowObj); 

            obj.faultPlaneFailurePlot(faultFluidFlowObj); 

        end 

 

        function obj = resultProcessing(obj, faultFluidFlowObj) 

 

            % Process results for plotting at each result time step. 

 

            stableSlidingTrigger = false; 

            faultFluidFlowObj.slidingStress = NaN(... 

                faultFluidFlowObj.verticalArrayLength,... 

                faultFluidFlowObj.horizontalArrayLength); 

 

            for loopCounter = 1:length(faultFluidFlowObj.time) 

                loopTime = faultFluidFlowObj.time(loopCounter); 

 

                faultFluidFlowObj = obj.postProcessingPhysicalVariables(... 

                    faultFluidFlowObj,... 

                    loopCounter,... 

                    loopTime); 

 

                if ~obj.processingEarthquakeTrigger 

                    if ResultPlottingClass.initialTimeCondition(... 

                            loopCounter) 

                        obj.printFigure(faultFluidFlowObj, loopTime); 

                    end 

 

                    if obj.onsetOfStableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopTime)... 

                            && ~stableSlidingTrigger 

                        obj.printFigure(faultFluidFlowObj, loopTime); 

                        stableSlidingTrigger = true; 

                    end 

 

                    if obj.unstableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopTime) 
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                        obj.printFigure(faultFluidFlowObj, loopTime); 

                        obj.processingEarthquakeTrigger = true; 

                    end 

 

                    if obj.brittleFailureCondition 

                        obj.printFigure(faultFluidFlowObj, loopTime); 

                        obj.brittleFailureTimeTrigger = true; 

                    end 

 

                    if obj.ductileFailureCondition 

                        obj.printFigure(faultFluidFlowObj, loopTime); 

                        obj.ductileFailureTimeTrigger = true; 

                    end 

                end 

            end 

        end 

 

        function obj = printFigure(obj, faultFluidFlowObj, time) 

 

            % Print result figure. 

 

            obj.plotCounter = obj.plotCounter + 1; 

 

            obj.pressureFigure(faultFluidFlowObj, time); 

            obj.mohrFigure(faultFluidFlowObj, time); 

        end 

 

        function outputFigure = pressureFigure(... 

                obj,... 

                faultFluidFlowObj,... 

                time,... 

                varargin) 

 

            % Plot pressure figure and save. 

 

            outputFigure = figure; 

 

            [C, h] = contourf(... 

                faultFluidFlowObj.x,... 

                faultFluidFlowObj.z,... 

                obj.pressure / 1E6); 

            clabel(C,h); 

 

            shading interp; 

            colorbar; 

            axis tight; 

 

            if isnan(faultFluidFlowObj.confinementFactor) 

                faultFluidFlowObj.confinementFactor... 

                    = max(max(... 

                    obj.pressure / faultFluidFlowObj.lithostaticStress)); 

            end 

 

            hold on; 

            colorbar; 

 

            limy = get(gca, 'YLim'); 

            ylim([limy(1) obj.limitYValue]) 

 

            xlabel('x [m]') 

            ylabel('y [m]') 

            xlabel(colorbar, 'Pressure [MPa]') 

            if strcmp(faultFluidFlowObj.plotTimeScale, 'years') 

                title(['Absolute pressure at ', num2str(round(time / ... 

                    FaultFluidFlowClass.SECONDS_PER_YEAR,... 
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                    obj.decimalPlaces)), ' years']) 

            elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days') 

                title(['Absolute pressure at ', num2str(round(time / ... 

                    FaultFluidFlowClass.SECONDS_PER_DAY,... 

                    obj.decimalPlaces)), ' days']) 

            end 

 

            if any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList, 'OFC')) 

            elseif any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList, 'Fracture')) 

                ResultPlottingClass.markFracture(faultFluidFlowObj); 

            elseif any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList,... 

                    'PSZ')) 

                ResultPlottingClass.markFault(faultFluidFlowObj) 

            end 

 

                    obj.failureContour(... 

                        faultFluidFlowObj,... 

                        obj.gaussianWidth); 

 

            hold off 

            drawnow 

 

            if isempty(varargin) 

                counter = num2str(obj.plotCounter); 

            else 

                counter = varargin{:}; 

            end 

 

            obj.saveFigure(... 

                ['PressureFigure' counter]); 

        end 

 

        function outputFigure = stressFigure(obj, faultFluidFlowObj, time) 

 

            % Plot stress figure and save. 

 

            outputFigure = figure; 

 

            quiver(... 

                faultFluidFlowObj.x,... 

                faultFluidFlowObj.z,... 

                obj.stress(:, :, 1),... 

                obj.stress(:, :, 2)); 

 

            axis tight; 

 

            xlabel('x [m]') 

            ylabel('y [m]') 

 

            if strcmp(faultFluidFlowObj.plotTimeScale, 'years') 

                title(['Stress at ', num2str(round(time / ... 

                    FaultFluidFlowClass.SECONDS_PER_YEAR,... 

                    obj.decimalPlaces)), ' years']) 

            elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days') 

                title(['Stress at ', num2str(round(time / ... 

                    FaultFluidFlowClass.SECONDS_PER_DAY,... 

                    obj.decimalPlaces)), ' days']) 

            end 
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            if any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList, 'OFC')) 

                ResultPlottingClass.markOFCBoundary(faultFluidFlowObj); 

            elseif any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList, 'Fracture')) 

                ResultPlottingClass.markFracture(faultFluidFlowObj); 

            elseif any(... 

                    strcmp(... 

                    faultFluidFlowObj.faultArchitectureList, 'PSZ')) 

                ResultPlottingClass.markFault(faultFluidFlowObj) 

            end 

 

            switch faultFluidFlowObj.contourPlotMode 

                case 'failure' 

                    obj.failureContour(... 

                        faultFluidFlowObj,... 

                        obj.gaussianWidth); 

                otherwise 

                    error('Contour plot mode not recognised.'); 

            end 

            hold off 

            drawnow 

 

            obj.saveFigure(['StressFigure' num2str(... 

                obj.plotCounter)]); 

        end 

 

        function failureContour(... 

                obj,... 

                faultFluidFlowObj,... 

                gaussianWidth) 

 

            % Add local failure contour to pressure plot. 

 

            if ~all(obj.FailureMarker.Central(:) == 0) 

                Zsmooth1 = imgaussfilt(... 

                    obj.FailureMarker.Central,... 

                    gaussianWidth); 

                contour(... 

                    faultFluidFlowObj.x,... 

                    faultFluidFlowObj.z,... 

                    obj.FailureMarker.Central,... 

                    1,... 

                    'w'); 

            end 

        end 

 

        function obj = mohrFigure(obj, faultFluidFlowObj, time) 

 

            % Plot Mohr analysis figure. 

 

            obj.mohrPlotVariables(faultFluidFlowObj, time); 

            obj.setMohrFigureScale(faultFluidFlowObj); 

 

            figure; 

            hold on; 

            axis('equal') 

            xlim([min(obj.effectiveNormalStressForPlot),... 

                max(obj.effectiveNormalStressForPlot)]) 

            ylim([0, obj.mohrFigureScale]); 

 

            obj.legendVector = zeros(... 

                size(... 
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                faultFluidFlowObj.faultArchitectureList)); 

 

            if ~faultFluidFlowObj.modeOfFailureFlag 

                for loopCounter = 1:length(... 

                        faultFluidFlowObj.faultArchitectureList) 

                    architectureComponent... 

                        = faultFluidFlowObj.faultArchitectureList{... 

                        loopCounter}; 

                    if faultFluidFlowObj.ModeOfFailureArchitectureFlag.(... 

                            architectureComponent) 

                        faultFluidFlowObj.PlotProperties.(... 

                            architectureComponent)... 

                            = {'--', faultFluidFlowObj.PlotProperties.(... 

                            architectureComponent){:}}; 

                    end 

                end 

            end 

 

            for loopCounter = 1:length(... 

                    faultFluidFlowObj.faultArchitectureList) 

                architectureComponent =... 

                    faultFluidFlowObj.faultArchitectureList{... 

                    loopCounter}; 

 

                plot(obj.effectiveNormalStressForPlot,... 

                    faultFluidFlowObj.FailureEnvelope.(... 

                    architectureComponent)); 

 

                obj.legendVector(loopCounter) = plot(... 

                    obj.effectiveNormalStressForPlot,... 

                    obj.MohrCircle.(architectureComponent)); 

            end 

 

            hold off 

            ResultPlottingClass.convertToMpa(gca); 

            xlabel('Effective normal stress [MPa]') 

            ylabel('Shear stress [MPa]') 

 

            if strcmp(faultFluidFlowObj.plotTimeScale, 'years') 

                title(['Mohr failure envelope at '  ... 

                    , num2str(round(time /... 

                    FaultFluidFlowClass.SECONDS_PER_YEAR,... 

                    obj.decimalPlaces)), ' years']) 

 

            elseif strcmp(faultFluidFlowObj.plotTimeScale, 'days') 

                title(['Mohr failure envelope at '  ... 

                    , num2str(round(time /... 

                    FaultFluidFlowClass.SECONDS_PER_DAY,... 

                    obj.decimalPlaces)), ' days']) 

            end 

 

            for loopCounter = 1:length(... 

                    faultFluidFlowObj.faultArchitectureList) 

                if faultFluidFlowObj.SlidingFailureFlag.(... 

                        faultFluidFlowObj.faultArchitectureList{... 

                        loopCounter}) 

                    obj.plotFailurePlane(... 

                        faultFluidFlowObj,... 

                        faultFluidFlowObj.faultArchitectureList{... 

                        loopCounter}); 

                end 

            end 

 

            legend(... 

                obj.legendVector,... 
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                faultFluidFlowObj.faultArchitectureList); 

            drawnow 

 

            obj.saveMohrFigure; 

        end 

 

        function setMohrFigureScale(obj, faultFluidFlowObj) 

 

            % Set Mohr figure plot scaling based on preset. 

 

                    obj.localFailureMohrFigureScaling(faultFluidFlowObj); 

 

        end 

 

        function localFailureMohrFigureScaling(obj, faultFluidFlowObj) 

 

            % Set Mohr figure scale for local failure. 

 

            obj.mohrFigureScale = 1.5... 

                * max(faultFluidFlowObj.FailureEnvelope.OFC); 

        end 

 

        function saveMohrFigure(obj, varargin) 

 

            % Save a Mohr plot. 

 

            if isempty(varargin) 

                counter = num2str(obj.plotCounter); 

            else 

                counter = varargin{:}; 

            end 

 

            obj.saveFigure(['MohrFigure' counter]); 

        end 

 

        function obj = mohrPlotVariables(obj, faultFluidFlowObj, time) 

 

            % Generate variables for Mohr plot. 

 

            faultFluidFlowObj.FailureEnvelope = struct; 

 

            for loopCounter = 1:length(... 

                    faultFluidFlowObj.faultArchitectureList) 

 

                architectureComponent =... 

                    faultFluidFlowObj.faultArchitectureList{... 

                    loopCounter}; 

 

                ResultPlottingClass.failureEnvelopeForPlot(... 

                    faultFluidFlowObj,... 

                    obj.effectiveNormalStressForPlot,... 

                    architectureComponent); 

 

                obj.mohrCircle(... 

                    faultFluidFlowObj,... 

                    time,... 

                    architectureComponent); 

            end 

        end 

 

        function obj = mohrCircle(... 

                obj,... 

                faultFluidFlowObj,... 

                time,... 

                architectureComponent) 
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            % Calculate values for Mohr circle. 

 

            faultFluidFlowObj.calculateMaximumStress; 

            faultFluidFlowObj.calculateMinimumStress(... 

                time); 

 

            obj.MohrCircleGeometry(... 

                faultFluidFlowObj,... 

                obj.pressure,... 

                architectureComponent); 

 

            obj.MohrCircle.(architectureComponent) =... 

                zeros(size(obj.effectiveNormalStressForPlot)); 

            for loopCounter = 1:length(obj.MohrGeometry.Radius.(... 

                    architectureComponent)) 

                obj.MohrCircle.(architectureComponent) =... 

                    FaultFluidFlowClass.semiCircleHeight(... 

                    obj.effectiveNormalStressForPlot,... 

                    obj.MohrGeometry.Radius.(architectureComponent),... 

                    obj.MohrGeometry.Centre.(architectureComponent)); 

            end 

            obj.MohrCircle.(architectureComponent)(... 

                obj.MohrCircle.(architectureComponent) <= 0) = NaN; 

        end 

 

        function obj = MohrCircleGeometry(... 

                obj,... 

                faultFluidFlowObj,... 

                pressure,... 

                architectureComponent) 

 

            % Calculate the geometry of the Mohr Circle at every spatial 

            % array point. 

 

            tempPressure =... 

                pressure(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central); 

 

            arrayDims = ndims(tempPressure); 

 

            if any(size(tempPressure) == 0) 

                arrayDims = arrayDims - 1; 

            end 

 

            if arrayDims == 1 

                maxPressure = max(tempPressure); 

 

            elseif arrayDims == 2 

                maxPressure = max(max(tempPressure)); 

 

            end 

 

            mohrPressure = maxPressure; 

 

            minimumEffectiveStress... 

                = faultFluidFlowObj.minimumStress(... 

                pressure == maxPressure)... 

                - mohrPressure; 

            minimumEffectiveStress = minimumEffectiveStress(1); 

 

            maximumEffectiveStress... 

                = faultFluidFlowObj.maximumStress(... 

                pressure == maxPressure)... 
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                - mohrPressure; 

 

            maximumEffectiveStress = maximumEffectiveStress(1); 

 

            obj.MohrGeometry.Radius.(architectureComponent)... 

                = (maximumEffectiveStress... 

                - minimumEffectiveStress) / 2; 

 

            obj.MohrGeometry.Centre.(architectureComponent)... 

                = (maximumEffectiveStress... 

                + minimumEffectiveStress) / 2; 

 

            if faultFluidFlowObj.SlidingFailureFlag.(... 

                    architectureComponent) 

                if isfinite(obj.effectiveStressPatch) == 1 

                    obj.MohrGeometry.Radius.(architectureComponent)... 

                        = faultFluidFlowObj.FrictionCoefficient.Brittle.(... 

                        architectureComponent) * obj.MohrGeometry.Centre.(... 

                        architectureComponent)... 

                        ./ (faultFluidFlowObj.FrictionCoefficient.Brittle.(... 

                        architectureComponent)... 

                        * cosd(2 * faultFluidFlowObj.faultAngle)... 

                        - sind(2 * faultFluidFlowObj.faultAngle)); 

                end 

            end 

        end 

 

        function faultFluidFlowObj = postProcessingPhysicalVariables(... 

                obj,... 

                faultFluidFlowObj,... 

                loopCounter,... 

                loopTime) 

 

            % Extract and calculate physical variables from simulation 

            % results. 

 

            faultFluidFlowObj = obj.processFailureMarkerResult(... 

                faultFluidFlowObj,... 

                loopCounter); 

 

            faultFluidFlowObj = obj.processSlidingFailureMarkerResult(... 

                faultFluidFlowObj,... 

                loopCounter); 

 

            obj.processPressureResult(faultFluidFlowObj, loopCounter); 

 

            obj.pressure = faultFluidFlowObj.pressureBCS(... 

                obj.pressure); 

 

            [~,... 

                ~,... 

                ~,... 

                ~,... 

                failureLength,... 

                nucleationLength,... 

                ~]... 

                = faultFluidFlowObj.rockMatrixState(... 

                obj.pressure,... 

                loopTime); 

 

            if (nucleationLength - failureLength)... 

                    / nucleationLength... 

                    < (faultFluidFlowObj.options.RelTol) 

                failureLength = nucleationLength; 

            end 
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            faultFluidFlowObj.EarthquakeLengthVector(... 

                loopCounter).Failure = failureLength; 

            faultFluidFlowObj.EarthquakeLengthVector(... 

                loopCounter).Nucleation = nucleationLength; 

        end 

 

        function processPressureResult(... 

                obj,... 

                faultFluidFlowObj,... 

                timeLoopCounter) 

 

            % Select pressure from solver output variable at a given time 

            % and reshape to spatial dimensions. 

 

            obj.pressure = faultFluidFlowObj.outputPressure(... 

                :,... 

                timeLoopCounter); 

 

            obj.pressure = reshape(... 

                obj.pressure,... 

                faultFluidFlowObj.verticalArrayLength,... 

                faultFluidFlowObj.horizontalArrayLength); 

        end 

 

        function faultFluidFlowObj = processFailureMarkerResult(... 

                obj,... 

                faultFluidFlowObj,... 

                loopCounter) 

 

            % Retrieve failure marker from results at a given timestep. 

 

            obj.FailureMarker = faultFluidFlowObj.FailureMarkerStore(... 

                loopCounter); 

 

            if loopCounter > 1 

                faultFluidFlowObj.FailureMarker... 

                    = faultFluidFlowObj.FailureMarkerStore(... 

                    :,... 

                    :,... 

                    loopCounter - 1); 

            else 

                faultFluidFlowObj.FailureMarker... 

                    = faultFluidFlowObj.FailureMarkerStore(... 

                    :,... 

                    :,... 

                    loopCounter); 

            end 

 

            faultFluidFlowObj = obj.horizontalFailureExtent(... 

                faultFluidFlowObj); 

 

        end 

 

        function faultFluidFlowObj = processSlidingFailureMarkerResult(... 

                obj,... 

                faultFluidFlowObj,... 

                loopCounter) 

 

            % Retrieve sliding failure marker from results at a given 

            % timestep. 

 

            obj.slidingFailureMarker... 

                = faultFluidFlowObj.slidingFailureMarkerStore(... 

                :, :, loopCounter); 
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            if loopCounter > 1 

                faultFluidFlowObj.slidingFailureMarker... 

                    = faultFluidFlowObj.slidingFailureMarkerStore(... 

                    :, :, loopCounter - 1); 

 

                faultFluidFlowObj.slidingStress... 

                    = faultFluidFlowObj.slidingStressStore(... 

                    :, :, loopCounter - 1); 

            else 

                faultFluidFlowObj.slidingFailureMarker... 

                    = faultFluidFlowObj.slidingFailureMarkerStore(... 

                    :, :, loopCounter); 

 

                faultFluidFlowObj.slidingStress... 

                    = faultFluidFlowObj.slidingStressStore(... 

                    :, :, loopCounter); 

            end 

 

        end 

 

        function obj = faultPlaneFailurePlot(... 

                obj,... 

                faultFluidFlowObj,... 

                varargin) 

 

            % Plot state of failure on the fault plane. 

 

            failureLengthVector... 

                = [faultFluidFlowObj.EarthquakeLengthVector(:).Failure]; 

            nucleationLengthVector... 

                = [faultFluidFlowObj.EarthquakeLengthVector(:).Nucleation]; 

 

            if(any(isfinite([... 

                    faultFluidFlowObj.EarthquakeLengthVector(:).Failure]))) 

                figure; 

                hold on; 

                plot(faultFluidFlowObj.time... 

                    / faultFluidFlowObj.SECONDS_PER_YEAR,... 

                    nucleationLengthVector, 'r'); 

                    plot(faultFluidFlowObj.time... 

                    / faultFluidFlowObj.SECONDS_PER_YEAR,... 

                    failureLengthVector, 'k'); 

                hold off 

                legend({'Nucleation length [m]',... 

                    'Shear Failure length [m]'},... 

                    'Location',... 

                    'southeast'); 

                colormap jet; 

                xlabel('Time [years]'); 

                ylabel('Length [m]'); 

                title(['Failure lengths (PSZ)']); 

                if isfinite(obj.brittleFailureTime) ... 

                        && ~obj.processingEarthquakeTrigger 

                    line([obj.brittleFailureTime obj.brittleFailureTime]... 

                        / Constants.SECONDS_PER_YEAR, ... 

                        get(gca, 'ylim'), ... 

                        'Color', 'red',... 

                        'LineStyle', '--'); 

                end 

 

                if isfinite(obj.ductileFailureTime) == 1 ... 

                        && ~obj.processingEarthquakeTrigger 

                    line([obj.ductileFailureTime... 

                        obj.ductileFailureTime]... 
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                        / Constants.SECONDS_PER_YEAR,... 

                        get(gca, 'ylim'), ... 

                        'Color', 'black',... 

                        'LineStyle', '--'); 

                end 

                drawnow 

 

                if isempty(varargin) 

                    counter = ''; 

                else 

                    counter = varargin{:}; 

                end 

 

                obj.saveFigure(['FaultPlaneFailure', num2str(counter)]) 

            end 

        end 

 

        function nucleationLength = nucleationLength(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Calculate nucleation length stability criterion. 

 

            nucleationLength = faultFluidFlowObj.psi... 

                * faultFluidFlowObj.shearModulus... 

                * faultFluidFlowObj.criticalSlipDistance... 

                ./ (obj.effectiveStressPatch... 

                * faultFluidFlowObj.rateAndStateDifference); 

        end 

 

        function plotFailurePlane(... 

                obj,... 

                faultFluidFlowObj,... 

                architectureComponent) 

 

            % Plot failure and nucleation length. 

 

            faultAngle = faultFluidFlowObj.faultAngle; 

 

            line([... 

                obj.MohrGeometry.Centre.(architectureComponent)... 

                obj.effectiveStressPatch],... 

                [... 

                0 ... 

                obj.MohrGeometry.Radius.(architectureComponent)... 

                * sind(2 * faultAngle)],... 

                'Color',... 

                'black'); 

        end 

 

        function obj = initialiseFailurePlaneStruct(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Initialise struct to hold failure plane parameters. 

 

            faultFluidFlowObj.EarthquakeLengthVector = repmat(... 

                struct(... 

                'Failure', NaN,... 

                'Nucleation', NaN),... 

                length(faultFluidFlowObj.time),... 

                1); 

        end 

 

        function condition = onsetOfStableSlidingCondition(... 
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                obj,... 

                faultFluidFlowObj,... 

                loopTimeCounter) 

 

            % Condition for fault to begin stable sliding. 

 

            condition = any(obj.slidingFailureMarker(:))... 

                || obj.unstableSlidingCondition(... 

                faultFluidFlowObj,... 

                loopTimeCounter); 

        end 

 

        function condition = unstableSlidingCondition(... 

                obj,... 

                faultFluidFlowObj,... 

                loopTimeCounter) 

 

            % Condition for fault to begin unstable sliding. 

 

            condition = loopTimeCounter == length(faultFluidFlowObj.time); 

        end 

 

        function condition = steadyStateCondition(obj) 

 

            % Condition for fluid flow to have reached an approximate 

            % steady state. 

 

            condition = false; 

 

            if ~isempty(obj.lastPressure) 

                meanPressureChange = mean(... 

                    mean(... 

                    obj.pressure - obj.lastPressure)); 

 

                if (obj.steadyStateLimit... 

                        > meanPressureChange / mean(mean(obj.pressure)))... 

                        && obj.steadyStateTrigger ~= 1 

 

                    condition = true; 

 

                end 

            end 

 

            obj.lastPressure = obj.pressure; 

        end 

 

        function condition = brittleFailureCondition(obj) 

 

            % Condition for fault zone to undergo brittle failure at any 

            % spatial array point. 

 

            condition = (isnan(obj.brittleFailureTime)... 

                && ~obj.brittleFailureTimeTrigger... 

                && (any(obj.FailureMarker.X(:) == 1)... 

                || any(obj.FailureMarker.Z(:) == 1)))... 

                && obj.processingEarthquakeTrigger ~= 1; 

        end 

 

        function condition = ductileFailureCondition(obj) 

 

            % Condition for fault zone to undergo ductile failure at any 

            % spatial array point. 

 

            condition = (isnan(obj.ductileFailureTime)... 

                && obj.ductileFailureTimeTrigger ~= 1 ... 
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                && (any(obj.FailureMarker.X(:) == 2)... 

                || any(obj.FailureMarker.Z(:) == 2)))... 

                && obj.processingEarthquakeTrigger ~= 1; 

        end 

 

        function saveFigure(obj, fileName) 

 

            % Save .fig and .tiff copies of a figure. 

 

            saveas(gcf, [obj.folderName '/' fileName], 'fig'); 

            saveas(gcf, [obj.folderName '/' fileName], 'tiff'); 

        end 

    end 

 

    methods(Static) 

        function faultFluidFlowObj = horizontalFailureExtent(... 

                faultFluidFlowObj) 

 

            % Record extent of horizontal failure. 

 

            faultFluidFlowObj.failureExtent = max(... 

                faultFluidFlowObj.x(... 

                faultFluidFlowObj.FailureMarker.Central ~= 0))... 

                / faultFluidFlowObj.OFCwidth; 

 

            if isempty(faultFluidFlowObj.failureExtent) 

               faultFluidFlowObj.failureExtent = 0; 

            end 

        end 

 

        function failureMap = failureMap(... 

                faultFluidFlowObj,... 

                shearStrengthExcess,... 

                architectureComponent) 

 

            % Map failure on fault plane. 

 

            failureMap... 

                = faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central; 

            failureMap(shearStrengthExcess > 0) = false; 

 

            failureMap(isnan(failureMap)) = 0; 

        end 

 

        function failureEnvelopeForPlot =... 

                failureEnvelopeForPlot(... 

                faultFluidFlowObj,... 

                effectiveNormalStress,... 

                architectureComponent) 

 

            % Return failure envelope for plotting. 

 

            failureEnvelopeForPlot(effectiveNormalStress... 

                <= faultFluidFlowObj.FailureModeBoundaryStress.(... 

                architectureComponent))... 

                = faultFluidFlowObj.FrictionCoefficient.Brittle.(... 

                architectureComponent)... 

                * effectiveNormalStress(effectiveNormalStress... 

                <= faultFluidFlowObj.FailureModeBoundaryStress.(... 

                architectureComponent))... 

                + faultFluidFlowObj.Cohesion.Brittle.(... 

                architectureComponent); 

 

            failureEnvelopeForPlot(effectiveNormalStress... 
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                > faultFluidFlowObj.FailureModeBoundaryStress.(... 

                architectureComponent))... 

                = faultFluidFlowObj.FrictionCoefficient.Ductile.(... 

                architectureComponent)... 

                * effectiveNormalStress(effectiveNormalStress... 

                > faultFluidFlowObj.FailureModeBoundaryStress.(... 

                architectureComponent))... 

                + faultFluidFlowObj.Cohesion.Ductile.(... 

                architectureComponent); 

 

            failureEnvelopeForPlot(failureEnvelopeForPlot < 0) = 0; 

 

            faultFluidFlowObj.FailureEnvelope.(architectureComponent)... 

                = failureEnvelopeForPlot; 

        end 

 

        function failureLength = failureLength(... 

                faultFluidFlowObj,... 

                shearStrengthExcess,... 

                failureMap) 

 

            % Calculate failure length. 

 

            if all(~failureMap) 

                failureLength = NaN; 

            else 

                failureHeight... 

                    = max(max(faultFluidFlowObj.z(failureMap)))... 

                    - min(min(faultFluidFlowObj.z(failureMap))); 

                failureWidth... 

                    = max(max(faultFluidFlowObj.x(failureMap)))... 

                    - min(min(faultFluidFlowObj.x(failureMap))); 

 

                failureLength... 

                    = 2 * (failureHeight .^ 2 ... 

                    + failureWidth .^ 2) .^ 0.5; 

 

                if failureWidth == 0 

                    [~, failureEnd] = max(faultFluidFlowObj.z(failureMap)); 

                    [~, failurePosition] = max(... 

                        max(faultFluidFlowObj.x(failureMap))); 

 

                    if failureEnd == faultFluidFlowObj.verticalArrayLength 

                        failureInterp = 0; 

                    else 

                        failureInterp =... 

                            shearStrengthExcess(failureEnd, failurePosition)... 

                            * (faultFluidFlowObj.z(failureEnd + 1, failurePosition)... 

                            - faultFluidFlowObj.z(failureEnd, failurePosition))... 

                            / (shearStrengthExcess(failureEnd + 1, failurePosition)... 

                            - shearStrengthExcess(failureEnd, failurePosition)); 

 

                        failureInterp(isnan(failureInterp)) = 0; 

                    end 

                    failureLength = failureLength + 2 * failureInterp; 

                end 

            end 

        end 

 

        function EffectiveNormalStress = effectiveNormalStress(... 

                faultFluidFlowObj,... 

                pressure,... 

                EffectiveNormalStress,... 

                angle,... 

                architectureComponent) 
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            % Calculate effective normal stress. 

 

            if numel(angle) == 1 

                angle = angle * ones(size(pressure)); 

            end 

 

            EffectiveNormalStress.Central(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central) = 0.5... 

                .* ((faultFluidFlowObj.maximumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)... 

                - pressure(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central))... 

                + (faultFluidFlowObj.minimumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)... 

                - pressure(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)))... 

                + 0.5 .* (faultFluidFlowObj.maximumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)... 

                - (faultFluidFlowObj.minimumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)))... 

                .* cosd(... 

                2 .* angle(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)); 

 

            EffectiveNormalStress.X =... 

                (EffectiveNormalStress.Central(:, 1:end-1)... 

                + EffectiveNormalStress.Central(:, 2:end)) / 2; 

            EffectiveNormalStress.Z =... 

                (EffectiveNormalStress.Central(1:end-1, :)... 

                + EffectiveNormalStress.Central(2:end, :)) / 2; 

        end 

 

        function shearStrengthExcess =... 

                shearStrengthExcess(... 

                faultFluidFlowObj,... 

                EffectiveNormalStress,... 

                architectureComponent,... 

                shearStrengthExcess) 

 

            % Shear stress exceeding failure envelope. 

 

            shearStrengthExcess(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central) =... 

                faultFluidFlowObj.FrictionCoefficient.Brittle.(... 

                architectureComponent)... 

                * EffectiveNormalStress.Central(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)... 

                - 0.5 * (faultFluidFlowObj.maximumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central)... 

                - faultFluidFlowObj.minimumStress(... 

                faultFluidFlowObj.ArrayFaultArchitectureMap.(... 

                architectureComponent).Central))... 

                * sind(2 * faultFluidFlowObj.faultAngle); 
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        end 

 

        function [pressure, velocity, displacement]... 

                = resultVectorToVars(faultFluidFlowObj, pressureVelocity) 

 

            % Split and reshape solver vector to three variables. 

 

            pressure =  pressureVelocity(... 

                1:(... 

                faultFluidFlowObj.verticalArrayLength... 

                * faultFluidFlowObj.horizontalArrayLength), :); 

 

            velocity = pressureVelocity((... 

                faultFluidFlowObj.verticalArrayLength... 

                * faultFluidFlowObj.horizontalArrayLength + 1):(... 

                3 * faultFluidFlowObj.verticalArrayLength... 

                * faultFluidFlowObj.horizontalArrayLength), :); 

 

            displacement = pressureVelocity((... 

                3 * faultFluidFlowObj.verticalArrayLength... 

                * faultFluidFlowObj.horizontalArrayLength + 1):end, :); 

        end 

 

        function markFracture(faultFluidFlowObj) 

 

            % Mark location of fracture on pressure plot. 

 

            line([faultFluidFlowObj.FaultArchitectureEnds.Fracture... 

                faultFluidFlowObj.simulatedFaultWidth], [... 

                0 (faultFluidFlowObj.simulatedFaultWidth... 

                - faultFluidFlowObj.FaultArchitectureEnds.Fracture)... 

                * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',... 

                'LineStyle', '--'); 

        end 

 

        function markFault(faultFluidFlowObj) 

 

            % Mark location of fault zone architecture on plot. 

 

            line([faultFluidFlowObj.FaultArchitectureEnds.Protolith1... 

                faultFluidFlowObj.simulatedFaultWidth], [... 

                0 (faultFluidFlowObj.simulatedFaultWidth... 

                - faultFluidFlowObj.FaultArchitectureEnds.Protolith1)... 

                * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',... 

                'LineStyle', '--'); 

 

            line([faultFluidFlowObj.FaultArchitectureEnds.PSZ... 

                faultFluidFlowObj.simulatedFaultWidth], [... 

                0 (faultFluidFlowObj.simulatedFaultWidth... 

                - faultFluidFlowObj.FaultArchitectureEnds.PSZ)... 

                * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',... 

                'LineStyle', '--'); 

 

            line([faultFluidFlowObj.FaultArchitectureEnds.DamageZone2... 

                faultFluidFlowObj.simulatedFaultWidth], [... 

                0 (faultFluidFlowObj.simulatedFaultWidth... 

                - faultFluidFlowObj.FaultArchitectureEnds.DamageZone2)... 

                * tand(faultFluidFlowObj.faultAngle)], 'Color', 'white',... 

                'LineStyle', '--'); 

        end 

 

        function image1 = resizeImageToMatch(image1, image2) 

 

            % Resize an image to match another. 
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            tempSize = size(image2); 

            image1 = imresize(image1, tempSize(1:2)); 

        end 

 

        function condition = initialTimeCondition(loopCounter) 

 

            % Initial timestep condition. 

 

            condition = (loopCounter == 1); 

        end 

 

        function axin = convertToMpa(axin) 

 

            % Convert axis units from Pa to MPa. 

 

            h = get(axin, 'xtick'); 

            set(axin, 'xticklabel', h / 10 ^ 6); 

            h = get(axin, 'ytick'); 

            set(axin, 'yticklabel', h / 10 ^ 6); 

        end 

 

        function output = roundToMPa(input) 

 

            % Round a value from Pa to MPa. 

 

            output = round((input + 1E7) / 1E6, -1) * 1E6; 

        end 

 

        function makeDirectory(folderName) 

 

            % Create directory. 

 

            if exist(folderName, 'dir') ~= 7 

                mkdir(folderName); 

            end 

        end 

 

        function value =  minStructValue(inputStruct) 

 

            %Find the minimum value in a struct. 

 

            value = cell2mat(... 

                struct2cell(inputStruct)); 

        end 

 

        function image = copyPlotToImage(fig) 

 

            % Copy a plot to an image. 

 

            saveas(fig, 'temp.tiff') 

            image = imread('temp.tiff'); 

        end 

 

        function copyPlotToSubplot(inputFigure, inputSubplot) 

 

            % Copy a plot to a subplot. 

 

            axisTemp = get(inputFigure, 'CurrentAxes'); 

            copyobj(allchild(axisTemp), inputSubplot); 

            copyobj(get(axisTemp, 'XLabel'), inputSubplot); 

            copyobj(get(axisTemp, 'YLabel'), inputSubplot); 

        end 

 

        function [ax, h] = subtitle(text, position) 
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            % Add a subtitle to a plot. 

 

            ax = axes('Units', 'Normal', 'Position', position,... 

                'Visible', 'off'); 

            set(get(ax, 'Title'), 'Visible', 'on') 

            title(text); 

            if (nargout < 2) 

                return 

            end 

            h = get(ax, 'Title'); 

        end 

 

        function output = checkAllStructFields(inputStruct) 

 

            %Check if any of the field values in the first level of a 

            % struct are true, given that all the fields are boolean. 

 

            fields = fieldnames(inputStruct); 

            output = false; 

 

            for i = 1:length(fields) 

                if inputStruct.(fields{i}) 

                    output = true; 

                end 

            end 

 

        end 

    end 

end 

ans =  

 

  ResultPlottingClass with properties: 

 

           horizontalArrayLength: [] 

             verticalArrayLength: [] 

          EarthquakeLengthVector: [] 

                StabilityLengths: [] 

                   FailureMarker: [] 

            slidingFailureMarker: [] 

                   oldFailureMap: [] 

                        pressure: [] 

                          stress: [] 

                 effectiveStress: [] 

                  outputPressure: [] 

                      MohrCircle: [1×1 struct] 

                    MohrGeometry: [1×1 struct] 

                            time: [] 

    effectiveNormalStressForPlot: [] 

       EffectiveNormalStressStep: 10000 

     processingEarthquakeTrigger: 0 

       brittleFailureTimeTrigger: 0 

       ductileFailureTimeTrigger: 0 

              steadyStateTrigger: 0 

              brittleFailureTime: NaN 

              ductileFailureTime: NaN 

                SubplotFileNames: [1×1 struct] 

                 mohrFigureScale: [] 

                   plotTimeScale: [] 

                   decimalPlaces: 1 

                     limitYValue: 40 

                 pressureSubplot: [] 

                     mohrSubplot: [] 

                   stressSubplot: [] 
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          pressureSubplotElement: [] 

              mohrSubplotElement: [] 

            stressSubplotElement: [] 

                    legendVector: [] 

                      folderName: [] 

                 folderCheckFlag: 1 

                     plotCounter: 0 

      effectiveStressPatchVector: [] 

            effectiveStressPatch: [] 

                   computerStore: [] 

                    lowMohrLimit: [] 

                    lastPressure: [] 

                steadyStateLimit: 1.0000e-12 

                   gaussianWidth: 1.2500 

        lastSlidingFailureMarker: [] 

               lastFailureMarker: [] 

 

 
Published with MATLAB® R2018b

 

https://www.mathworks.com/products/matlab/
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classdef SideBySidePlottingClass < ResultPlottingClass 

    properties 

        SideBySideInitialStruct = struct('Failure', [], 'NoFailure', []); 

        SideBySideStruct =... 

            repmat(struct('Pressure', [], 'FailureMarker', [],... 

            'FailureEnvelope', ... 

            struct('OFC', [], 'PSZ', []), 'MohrCircle', ... 

            struct('OFC', [], 'PSZ', []), 'Time', [],... 

            'PoreFluidFactor', [],... 

            'Image', struct('Pressure', [], 'MohrFailure', ... 

            struct('OFC', [], 'PSZ'... 

            , []), 'EffectiveNormalStressForPlot', []),... 

            'FailureLength', [], 'NucleationLength', []), 6, 1); 

        SideBySideResultStruct; 

        FailureEnvelope = struct; 

        poreFluidFactorList 

 

        imageCoordinates 

        outputFile; 

        imageStore; 

    end 

 

    methods 

        function resultProcessing(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Process side by side plotting result. 

 

            FaultFluidFlowClass.printProgressString(... 

                'Printing side-by-side results...'); 

 

            obj.initialiseFailurePlaneStruct(... 

                faultFluidFlowObj); 

 

            stableSlidingTrigger = false; 

            faultFluidFlowObj.slidingStress = NaN(... 

                obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            for loopCounter = 1:length(faultFluidFlowObj.time) 

 

                if ~obj.processingEarthquakeTrigger 

                    loopTime = faultFluidFlowObj.time(loopCounter); 

                    obj.postProcessingPhysicalVariables(... 

                        faultFluidFlowObj,... 

                        loopCounter,... 

                        loopTime); 

 

                    if obj.initialTimeCondition(... 

                            loopCounter) 

                        obj.sideBySideLoopOutput(... 

                            faultFluidFlowObj,... 

                            loopTime,... 

                            loopCounter); 

                    end 

 

                    if obj.brittleFailureCondition 

                        obj.sideBySideLoopOutput(... 

                            faultFluidFlowObj,... 

                            loopTime,... 

                            loopCounter); 

                        obj.brittleFailureTimeTrigger = true; 
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                    end 

 

                    if obj.ductileFailureCondition 

                        obj.sideBySideLoopOutput(... 

                            faultFluidFlowObj,... 

                            loopTime,... 

                            loopCounter); 

                        obj.ductileFailureTimeTrigger = true; 

                    end 

 

                    if obj.onsetOfStableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopCounter) && ~stableSlidingTrigger 

 

                        if ~obj.brittleFailureTimeTrigger... 

                                && ~obj.ductileFailureTimeTrigger 

                            obj.plotCounter = obj.plotCounter + 1; 

                        end 

 

                        obj.sideBySideLoopOutput(... 

                            faultFluidFlowObj,... 

                            loopTime,... 

                            loopCounter); 

 

                        stableSlidingTrigger = true; 

                    end 

 

                    if obj.unstableSlidingCondition(... 

                            faultFluidFlowObj,... 

                            loopCounter) 

                        obj.sideBySideLoopOutput(... 

                            faultFluidFlowObj,... 

                            loopTime,... 

                            loopCounter); 

                        obj.processingEarthquakeTrigger = true; 

                    end 

                end 

            end 

        end 

 

        function sideBySideLoopOutput(... 

                obj,... 

                faultFluidFlowObj,... 

                loopTime,... 

                loopTimeCounter) 

 

            % Output side by side plotting results variables for a given 

            %timestep. 

 

            obj.plotCounter = obj.plotCounter + 1; 

 

            obj.mohrPlotVariables(faultFluidFlowObj, loopTime); 

 

            obj.SideBySideStruct(obj.plotCounter).PoreFluidFactor... 

                = faultFluidFlowObj.poreFluidFactor; 

            obj.SideBySideStruct(obj.plotCounter).Pressure... 

                = obj.pressure; 

            obj.SideBySideStruct(obj.plotCounter).FailureMarker =... 

                obj.FailureMarker; 

            obj.SideBySideStruct(obj.plotCounter).Time... 

                = loopTime; 

 

            obj.SideBySideStruct(... 

                obj.plotCounter).FailureEnvelope.OFC... 

                = faultFluidFlowObj.FailureEnvelope.OFC; 
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            obj.SideBySideStruct(... 

                obj.plotCounter).FailureEnvelope.PSZ... 

                = faultFluidFlowObj.FailureEnvelope.PSZ; 

            obj.SideBySideStruct(... 

                obj.plotCounter).MohrCircle.OFC... 

                = obj.MohrCircle.OFC; 

            obj.SideBySideStruct(... 

                obj.plotCounter).MohrCircle.PSZ... 

                = obj.MohrCircle.PSZ; 

            obj.SideBySideStruct(... 

                obj.plotCounter... 

                ).EffectiveNormalStressForPlot... 

                = obj.effectiveNormalStressForPlot; 

 

            obj.SideBySideStruct(... 

                obj.plotCounter... 

                ).FailureLength... 

                = faultFluidFlowObj.EarthquakeLengthVector(... 

                loopTimeCounter).Failure; 

            obj.SideBySideStruct(... 

                obj.plotCounter).NucleationLength... 

                = faultFluidFlowObj.EarthquakeLengthVector(... 

                loopTimeCounter).Nucleation; 

 

        end 

 

        function mohrPlot(... 

                obj,... 

                faultFluidFlowObj,... 

                SideBySideStruct,... 

                loopCounter1,... 

                loopCounter2,... 

                loopCounter3,... 

                plotType,... 

                component) 

 

            % Plot mohr circle. 

 

            [MohrCircle, temporaryX, temporaryY]... 

                = obj.mohrPlotParameters(... 

                SideBySideStruct,... 

                loopCounter3,... 

                component); 

 

            Axes = gca; 

 

            colorString = obj.setMohrPlotColor(... 

                length(Axes.Children)); 

 

            axis('equal') 

            plot(temporaryX, temporaryY, plotType) 

            hold on; 

            plot(temporaryX, MohrCircle) 

            hold on; 

 

            if faultFluidFlowObj.SlidingFailureFlag.(component) 

                SideBySidePlottingClass.plotFailurePlane(... 

                    faultFluidFlowObj,... 

                    temporaryX,... 

                    MohrCircle,... 

                    colorString); 

            end 

 

            obj.mohrAxis(... 

                SideBySideStruct,... 
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                MohrCircle,... 

                temporaryX,... 

                loopCounter3); 

 

            obj.saveMohrFigure(... 

                [num2str(loopCounter1)... 

                '_'... 

                num2str(loopCounter2)... 

                '_'... 

                num2str(loopCounter3)]); 

        end 

 

        function sideBySidePrintLine(... 

                obj,... 

                fields,... 

                loopCounter1,... 

                loopCounter2,... 

                loopCounter3) 

            fprintf(... 

                obj.outputFile,... 

                '%s\n',... 

                ['Figure ' num2str(loopCounter2)... 

                ', poreFluidFactor ' num2str(... 

                obj.SideBySideResultStruct(... 

                loopCounter2).(... 

                fields{loopCounter1})(loopCounter3).PoreFluidFactor) ... 

                ', Failure Length ' num2str(... 

                obj.SideBySideResultStruct(... 

                loopCounter2).(... 

                fields{loopCounter1})(loopCounter3).FailureLength)... 

                ', Nucleation Length '... 

                num2str(... 

                obj.SideBySideResultStruct(... 

                loopCounter2).(... 

                fields{loopCounter1})(loopCounter3).NucleationLength)]); 

        end 

 

        function sideBySidePlot(... 

                obj,... 

                faultFluidFlowObj) 

 

            % Plot side by side results. 

 

            obj.outputFile = fopen([obj.folderName '/Output.txt'], 'wt'); 

            fields = fieldnames(obj.SideBySideResultStruct); 

            obj.populateporeFluidFactorList(fields); 

 

            for loopCounter1 = 1:length(obj.SideBySideResultStruct) 

                for loopCounter2 = 1:length(fields) 

                    for loopCounter3 = 1:length(... 

                            obj.SideBySideResultStruct(loopCounter1).(... 

                            fields{loopCounter2})) 

 

                        eventTime = obj.getSideBySideResultStruct(... 

                            fields,... 

                            loopCounter1,... 

                            loopCounter2,... 

                            loopCounter3); 

 

                        obj.plotCounter = obj.plotCounter + 1; 

 

                        if ~isempty(... 

                                obj.SideBySideResultStruct(... 

                                loopCounter1).(... 

                            fields{loopCounter2})(loopCounter3).Pressure) 
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                            pressureFigure... 

                                = obj.pressureFigure(... 

                                faultFluidFlowObj,... 

                                eventTime,... 

                                [num2str(loopCounter1)... 

                                '_'... 

                                num2str(loopCounter2)... 

                                '_'... 

                                num2str(loopCounter3)]); 

 

                            close(pressureFigure); 

                        end 

                    end 

                end 

 

                obj.plotCounter = 0; 

                for loopCounter2 = 1:length(fields) 

                    for loopCounter3 = 1:length(... 

                            obj.SideBySideResultStruct(loopCounter1).(... 

                            fields{loopCounter2})) 

                        if ~isempty(... 

                                obj.SideBySideResultStruct(... 

                                loopCounter1).(... 

                                fields{loopCounter2})(loopCounter3).Pressure) 

 

                            obj.postProcessMohrDiagram(... 

                                faultFluidFlowObj,... 

                                fields,... 

                                loopCounter1,... 

                                loopCounter2,... 

                                loopCounter3); 

                        end 

                    end 

                end 

 

                for loopCounter2 = 1:length(fields) 

                    for loopCounter3 = 1:length(... 

                            obj.SideBySideResultStruct(loopCounter1).(... 

                            fields{loopCounter2})) 

                        pressureImage =... 

                            obj.SideBySideResultStruct(loopCounter1).(... 

                            fields{... 

                            loopCounter2})(loopCounter3).Image.Pressure; 

                        if ~isempty(pressureImage) 

                            imwrite(pressureImage,... 

                                [obj.folderName '/DiagramPressure'... 

                                fields{loopCounter2}... 

                                num2str(loopCounter1)... 

                                '_' num2str(loopCounter3) '.tiff']); 

                        end 

                    end 

                end 

            end 

 

        end 

 

        function populateporeFluidFactorList(obj, fields) 

            obj.poreFluidFactorList = zeros(2, 1); 

            for loopCounter = 1:length(obj.SideBySideResultStruct) 

                obj.poreFluidFactorList(loopCounter) =... 

                    obj.SideBySideResultStruct(... 

                    loopCounter).(fields{1})(1).PoreFluidFactor; 

            end 

        end 
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        function eventTime = getSideBySideResultStruct(... 

                obj,... 

                fields,... 

                loopCounter1,... 

                loopCounter2,... 

                loopCounter3) 

 

            obj.pressure = obj.SideBySideResultStruct(... 

                loopCounter1).(... 

                fields{loopCounter2})(loopCounter3).Pressure; 

 

            eventTime = obj.SideBySideResultStruct(loopCounter1).(... 

                fields{loopCounter2})(loopCounter3).Time; 

 

            if ~isempty(eventTime) 

                obj.FailureMarker.Central... 

                    = obj.SideBySideResultStruct(loopCounter1).(... 

                    fields{... 

                    loopCounter2})(loopCounter3).FailureMarker.Central; 

            end 

        end 

 

        function trimEmptyParameters(obj, loopCounter1) 

            obj.SideBySideResultStruct(loopCounter1) = []; 

        end 

 

        function LocalStruct = postProcessMohrDiagram(... 

                obj,... 

                faultFluidFlowObj,... 

                fields,... 

                loopCounter1,... 

                loopCounter2,... 

                loopCounter3) 

 

            ofcFigure = figure; 

            pszFigure = figure; 

 

            plotType =... 

                SideBySidePlottingClass.omittedFailureEnvelope(... 

                loopCounter2); 

 

            for internalCounter = 1:length(obj.SideBySideResultStruct) 

                LocalStruct = obj.SideBySideResultStruct(... 

                    internalCounter).(fields{loopCounter2}); 

 

                obj.plotCounter = obj.plotCounter + 1; 

                set(0, 'CurrentFigure', ofcFigure) 

                obj.mohrPlot(... 

                    faultFluidFlowObj,... 

                    LocalStruct,... 

                    loopCounter1,... 

                    loopCounter2,... 

                    loopCounter3,... 

                    plotType,... 

                    'OFC'); 

 

                hold on 

                obj.plotCounter = obj.plotCounter + 1; 

                set(0, 'CurrentFigure', pszFigure) 

                box on 

                obj.mohrPlot(... 

                    faultFluidFlowObj,... 

                    LocalStruct,... 

                    loopCounter1,... 

                    loopCounter2,... 
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                    loopCounter3,... 

                    'k',... 

                    'PSZ') 

 

                if loopCounter3 <= length(obj.SideBySideResultStruct(... 

                        internalCounter).(... 

                        fields{loopCounter2})) 

 

                    if obj.SideBySideResultStruct(... 

                            internalCounter).(... 

                            fields{loopCounter2})(loopCounter3).Time == 0 

                        SideBySidePlottingClass.addMohrPlotLegends(... 

                            ofcFigure,.... 

                            pszFigure); 

                    end 

                end 

            end 

 

            ofcMohrImage = ResultPlottingClass.copyPlotToImage(... 

                ofcFigure); 

            pszMohrImage = ResultPlottingClass.copyPlotToImage(... 

                pszFigure); 

 

 

            if strcmp(obj.computerStore, 'GLNXA64') 

                cropVec = [0, 100, 900, 700]; 

 

            else 

                cropVec = [0, 100, 1200, 900]; 

 

            end 

 

            ofcMohrImage = imcrop(... 

                ofcMohrImage, cropVec); 

            pszMohrImage = imcrop(... 

                pszMohrImage, cropVec); 

 

            imwrite(ofcMohrImage,... 

                [obj.folderName '/DiagramOFCMohr'... 

                fields{loopCounter2}... 

                num2str(loopCounter2)... 

                '_' num2str(loopCounter3) '.tiff']); 

            imwrite(pszMohrImage,... 

                [obj.folderName '/DiagramPSZMohr'... 

                fields{loopCounter2}... 

                num2str(loopCounter2)... 

                '_' num2str(loopCounter3) '.tiff']); 

 

            close(ofcFigure); 

            close(pszFigure); 

        end 

 

        function mohrAxis(... 

                obj,... 

                SideBySideResultStruct,... 

                MohrCircle,... 

                temporaryX,... 

                loopCounter3) 

 

            xLimit = 130; 

            yLimit = 50; %For consistent paper diagram. 

            x1 = min(temporaryX(isfinite(MohrCircle))); 

            x2 = max(temporaryX(isfinite(MohrCircle))); 

            xlim([0, xLimit]); 

            ylim([0, yLimit]); 
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            xticks([]); 

            yticks([]); 

        end 

 

        function initialiseImageCoordinates(obj) 

            if strcmp(obj.computerStore, 'MACI64') 

                obj.imageCoordinates = [100, 288]; 

            elseif strcmp(obj.computerStore, 'GLNXA64') 

                obj.imageCoordinates = [103, 288]; 

            end 

        end 

 

        function image = labelOverpressureEdge(obj, image) 

            image = insertShape(image, 'Line',... 

                [obj.imageCoordinates(1) + 75,... 

                obj.imageCoordinates(2) - 82, ... 

                (obj.imageCoordinates(1) + 105),... 

                obj.imageCoordinates(2) - 82], 'Color', 'black'); 

        end 

 

        function image = labelOFCIFCBoundary(obj, image) 

            image = insertShape(image, 'Line',... 

                [obj.imageCoordinates(1) + 275 ... 

                obj.imageCoordinates(2) - 255 ... 

                obj.imageCoordinates(1) + 275 ... 

                obj.imageCoordinates(2) + 85],... 

                'Color', 'black', 'LineWidth', 5); 

        end 

 

        function image = labelArchitectureComponent(obj, ... 

                image, xOffset, yOffset, labelString) 

            image = insertText(image,... 

                [obj.imageCoordinates(1) + xOffset... 

                obj.imageCoordinates(2) + yOffset],... 

                labelString, 'BoxOpacity', 0, 'FontSize', 14); 

        end 

 

        function image = labelFaultCore(obj, image) 

            image = insertText(image,... 

                [obj.imageCoordinates(1) + 100 ... 

                obj.imageCoordinates(2) - 280],... 

                [sprintf('%s', char(8592))... 

                '                 FC                 '... 

                sprintf('%s', char(8594))], 'BoxOpacity', 0,... 

                'FontSize', 20); 

        end 

 

        function image = labelPoreFluidFactor(... 

                obj, image, xOffset, yOffset, valueString, color) 

            image = insertText(... 

                image, [(obj.imageCoordinates(1) + xOffset) ... 

                (obj.imageCoordinates(2) + yOffset)],... 

                [sprintf('%sv', char(955))... 

                ' = ' valueString],... 

                'TextColor', color, 'BoxOpacity', 0,... 

                'FontSize', 14); 

        end 

 

        function image = labelVerticalStress(... 

                obj, image, xOffset, yOffset, faultFluidFlowObj) 

            image = insertText(image,... 

                [obj.imageCoordinates(1) + xOffset... 

                obj.imageCoordinates(2) + yOffset], ... 

                [sprintf('%s', char(963))... 

                'v = ' num2str(round(... 
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                faultFluidFlowObj.lithostaticStress / 1E6, 3,... 

                'significant')) ' MPa'], 'TextColor', 'White',... 

                'BoxOpacity', 0,... 

                'FontSize', 14); 

        end 

 

        function image = insertTime(... 

                obj,... 

                image,... 

                loopCounter3,... 

                SideBySideResultStruct) 

            image = insertText(image, [obj.imageCoordinates(1) + 100 ... 

                obj.imageCoordinates(2) - 290], ... 

                [num2str(SideBySideResultStruct(loopCounter3).Time... 

                / FaultFluidFlowClass.SECONDS_PER_YEAR, 4) ' years'],... 

                'Font', 'LucidaSansDemiBold', 'BoxOpacity', 0,... 

                'FontSize', 14); 

        end 

 

        function image = generalImageProcessing(... 

                obj,... 

                image,... 

                loopCounter3,... 

                SideBySideResultStruct) 

 

            if strcmp(obj.computerStore, 'GLNXA64') 

                baseVector = [150, 85]; 

            else 

                baseVector = [150, 85]; 

            end 

 

            image = obj.labelArchitectureComponent(... 

                image, 0, 12, 'DZ'); 

            image = obj.labelArchitectureComponent(... 

                image, baseVector(1), baseVector(2), 'OFC'); 

            image = obj.labelArchitectureComponent(... 

                image, baseVector(1)+80, baseVector(2), 'IFC'); 

            image = obj.labelOverpressureEdge(image); 

            image = obj.labelOFCIFCBoundary(image); 

            image = obj.insertTime(... 

                image, loopCounter3, SideBySideResultStruct); 

            image = obj.labelPoreFluidFactor(... 

                image, 0, 32, num2str(... 

                SideBySideResultStruct(loopCounter3).PoreFluidFactor),... 

                'Black'); 

        end 

 

        function lengthPosition = lengthLabelsPosition(obj) 

            lengthPosition = [obj.imageCoordinates(1) + 285 ... 

                obj.imageCoordinates(2)... 

                + 85 obj.imageCoordinates(1)... 

                + 285 obj.imageCoordinates(2) + 85]; 

        end 

 

        function nucleationLengthPosition... 

                = nucleationLengthPosition(... 

                obj,... 

                SideBySideResultStruct,... 

                loopCounter3) 

 

            % 

 

            lengthPosition = obj.lengthLabelsPosition; 

 

            nucleationLengthPosition = lengthPosition; 
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            nucleationLengthPosition(4) = nucleationLengthPosition(4)... 

                - 4.25... 

                * SideBySideResultStruct(loopCounter3).NucleationLength; 

            nucleationLengthPosition(2) = nucleationLengthPosition(4); 

            nucleationLengthPosition(3) = nucleationLengthPosition(3)... 

                + 20; 

        end 

 

        function failureLengthPosition = failureLengthPosition(... 

                obj,... 

                SideBySideResultStruct,... 

                loopCounter3) 

 

            lengthPosition = obj.lengthLabelsPosition; 

            failureLengthPosition = lengthPosition; 

            failureLengthPosition(4) = failureLengthPosition(4)... 

                - 4.25... 

                * SideBySideResultStruct(loopCounter3).FailureLength; 

        end 

 

 

        function colorString = setMohrPlotColor(... 

                obj,... 

                counter) 

 

            if counter < 3 

                colorString = 'b'; 

            elseif counter == 6 

                colorString = 'r'; 

            else 

                colorString = 'r'; 

            end 

        end 

 

        function image = labelFailureLength(... 

                obj,... 

                SideBySideResultStruct,... 

                image,... 

                loopCounter3) 

 

            failureLengthPosition... 

                =... 

                obj.failureLengthPosition(... 

                SideBySideResultStruct,... 

                loopCounter3); 

 

            image = insertShape(image, 'Line', failureLengthPosition,... 

                'Color', 'black', 'LineWidth', 1); 

 

            image = insertText(... 

                image, failureLengthPosition(1:2), sprintf('%s', 'LF'),... 

                'BoxOpacity', 0, 'TextColor', 'Black',... 

                'FontSize', 14); 

        end 

 

        function image = labelNucleationLength(... 

                obj,... 

                image,... 

                SideBySideResultStruct,... 

                loopCounter3) 

 

            nucleationLengthPosition... 

                = obj.nucleationLengthPosition(... 

                SideBySideResultStruct,... 

                loopCounter3); 
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            image = insertShape(image, 'Line', nucleationLengthPosition,... 

                'Color', 'red', 'LineWidth', 1); 

 

            image = insertText(... 

                image,... 

                nucleationLengthPosition(3:4) + [-25, 0],... 

                sprintf('%s', 'LN')... 

                , 'BoxOpacity', 0, 'TextColor', 'Red',... 

                'FontSize', 14); 

        end 

    end 

 

    methods(Static) 

        function outputImage = concatenateImageRow(... 

                outputImage, pressureImage1, pressureImage2, mohrImage1,... 

                mohrImage2) 

 

            outputImage = cat(1, outputImage, cat(2, pressureImage1,... 

                pressureImage2, imresize(cat(1, mohrImage2,... 

                mohrImage1), size(pressureImage1, 1) /... 

                (2 * size(mohrImage2, 1))))); 

 

        end 

 

        function addMohrPlotLegends(ofcFigure, pszFigure) 

            set(0, 'CurrentFigure', ofcFigure) 

            text(1, 20, '\tau = \mu_S \sigma''_N + C',... 

                'Rotation', 37,  'FontSize', 14) 

 

            set(0, 'CurrentFigure', pszFigure) 

            text(30, 21, '\tau = \mu_S \sigma''_N',... 

                'Rotation', 35, 'FontSize', 14) 

        end 

 

        function [MohrCircle, temporaryX, temporaryY]... 

                = mohrPlotParameters(... 

                SideBySideResultStruct,... 

                loopCounter3,... 

                component) 

            unitFactor = 1E6; 

 

            MohrCircle = []; 

            temporaryX = []; 

            temporaryY = []; 

 

            if length(SideBySideResultStruct) >= loopCounter3 

 

                MohrCircle = SideBySideResultStruct(... 

                    loopCounter3).MohrCircle.(component) / unitFactor; 

 

                temporaryX = SideBySideResultStruct(... 

                    loopCounter3).EffectiveNormalStressForPlot... 

                    / unitFactor; 

                temporaryY = SideBySideResultStruct(... 

                    loopCounter3).FailureEnvelope.(component)... 

                    / unitFactor; 

            end 

        end 

 

        function mohrArchitectureLabel(architectureString) 

            text(1, 45, architectureString); 

        end 

 

        function plotType = omittedFailureEnvelope(loopCounter2) 
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            if loopCounter2 == 1 

                plotType = 'k'; 

            else 

                plotType = 'k--'; 

            end 

        end 

 

        function graphFinalProcessing 

            title([]); 

            pbaspect([1 2 1]); 

        end 

 

        function condition = initialImageCondition(... 

                SideBySideResultStruct, loopCounter1, loopCounter3) 

            condition = SideBySideResultStruct(loopCounter3).Time == 0 ... 

                && loopCounter1 == 1; 

        end 

 

        function condition = secondImageCondition(... 

                SideBySideResultStruct, loopCounter1, loopCounter3) 

            condition = SideBySideResultStruct(loopCounter3).Time == 0 ... 

                && loopCounter1 == 2; 

        end 

 

        function hydrostaticPoreFluidFactor =... 

                hydrostaticPoreFluidFactor(faultFluidFlowObj) 

            hydrostaticPoreFluidFactor = round(... 

                faultFluidFlowObj.hydrostaticStress... 

                / faultFluidFlowObj.lithostaticStress, 1); 

        end 

 

        function image1 = resizeImageToMatch(image1, image2) 

            tempSize = size(image2); 

 

            if ~isempty(image1) 

                image1 = imresize(image1, tempSize(1:2)); 

            end 

        end 

 

        function plotFailurePlane(... 

                faultFluidFlowObj,... 

                temporaryX,... 

                MohrCircle,... 

                plotType) 

 

            faultAngle = faultFluidFlowObj.faultAngle; 

 

            mohrRadius = max(MohrCircle); 

 

            mohrCentre = temporaryX(MohrCircle == mohrRadius); 

 

            if ~isempty(mohrRadius) && ~isempty(mohrCentre) 

                line([mohrCentre,... 

                    (mohrCentre + mohrRadius * cosd(2 * faultAngle))],... 

                    [0, ... 

                    mohrRadius * sind(2 * faultAngle)], 'Color', plotType); 

            end 

        end 

    end 

end 

ans =  

 

  SideBySidePlottingClass with properties: 
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         SideBySideInitialStruct: [1×1 struct] 

                SideBySideStruct: [6×1 struct] 

          SideBySideResultStruct: [] 

                 FailureEnvelope: [1×1 struct] 

             poreFluidFactorList: [] 

                imageCoordinates: [] 

                      outputFile: [] 

                      imageStore: [] 

           horizontalArrayLength: [] 

             verticalArrayLength: [] 

          EarthquakeLengthVector: [] 

                StabilityLengths: [] 

                   FailureMarker: [] 

            slidingFailureMarker: [] 

                   oldFailureMap: [] 

                        pressure: [] 

                          stress: [] 

                 effectiveStress: [] 

                  outputPressure: [] 

                      MohrCircle: [1×1 struct] 

                    MohrGeometry: [1×1 struct] 

                            time: [] 

    effectiveNormalStressForPlot: [] 

       EffectiveNormalStressStep: 10000 

     processingEarthquakeTrigger: 0 

       brittleFailureTimeTrigger: 0 

       ductileFailureTimeTrigger: 0 

              steadyStateTrigger: 0 

              brittleFailureTime: NaN 

              ductileFailureTime: NaN 

                SubplotFileNames: [1×1 struct] 

                 mohrFigureScale: [] 

                   plotTimeScale: [] 

                   decimalPlaces: 1 

                     limitYValue: 40 

                 pressureSubplot: [] 

                     mohrSubplot: [] 

                   stressSubplot: [] 

          pressureSubplotElement: [] 

              mohrSubplotElement: [] 

            stressSubplotElement: [] 

                    legendVector: [] 

                      folderName: [] 

                 folderCheckFlag: 1 

                     plotCounter: 0 

      effectiveStressPatchVector: [] 

            effectiveStressPatch: [] 

                   computerStore: [] 

                    lowMohrLimit: [] 

                    lastPressure: [] 

                steadyStateLimit: 1.0000e-12 

                   gaussianWidth: 1.2500 

        lastSlidingFailureMarker: [] 

               lastFailureMarker: [] 
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classdef SinglePhaseFluidFlowClass < FaultFluidFlowClass 

    methods 

 

        function obj = faultFluidFlowSolver(obj) 

 

            % Solve fault fluid flow problem. 

 

            FaultFluidFlowClass.printProgressString(... 

                'Solving single phase fluid flow problem...') 

 

            endTrigger = false; 

            timeVector = obj.time; 

            timeOutput = []; 

            outputPressure = []; 

 

            options = obj.initialiseSolverOptions; 

            storeStruct = struct; 

 

            storeStruct.FailureMarkerStore = obj.initialiseXZCMidpointStruct; 

            storeStruct.slidingFailureMarkerStore = obj.slidingFailureMarker; 

            storeStruct.slidingStressStore = obj.slidingStress; 

 

            storeStruct.EarthquakeLengthStore = struct(... 

                'Failure', NaN,... 

                'Nucleation', NaN); 

 

            initialSolverVariable = obj.initialSolverVariable; 

            obj.initialSolverVariable = []; 

 

            while length(timeVector) ~= 1 

 

                lastwarn(''); 

 

                [timeVector,... 

                    solverVariable,... 

                    eventTime,... 

                    eventSolverVariable]... 

                    = ode23tb(... 

                    @obj.differentialPressureEquation,... 

                    timeVector,... 

                    initialSolverVariable,... 

                    options); 

 

                [~, msgid] = lastwarn; 

 

                if  strcmp(msgid, 'MATLAB:ode15s:IntegrationTolNotMet') 

                    throw(... 

                    MException(... 

                    'CUSTOM:TolErr',... 

                    'Unable to meet integration tolerance.')); 

                end 

 

                timeLength = length(timeVector); 

                timeOutput = [timeOutput timeVector']; 

 

                outputPressure... 

                    = [... 

                    outputPressure... 

                    solverVariable']; 

 

                if length(eventTime) ~= 1 && isempty(eventTime) == 0 

                    eventTime = eventTime(end); 

                    eventSolverVariable = eventSolverVariable(end, :); 
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                end 

 

                if isempty(eventTime) == 1 

                    eventSolverVariable = solverVariable(end, :); 

                    eventTime = obj.time(end); 

                end 

 

                eventPressure = eventSolverVariable; 

 

                [failureLength, nucleationLength, storeStruct] =... 

                    obj.discontinuousModeOfFailure(... 

                    eventPressure,... 

                    timeLength,... 

                    eventTime,... 

                    storeStruct); 

 

                if nucleationLength <= failureLength... 

                        && ~isnan(failureLength) 

                    eventTime = []; 

                end 

 

                if endTrigger 

                    break 

                end 

 

                if isempty(eventTime) == 1 ... 

                        || nucleationLength <= failureLength... 

                        && ~isnan(failureLength) 

                    obj.time = timeOutput; 

                    endTrigger = true; 

                end 

 

                if isempty(eventTime) == 1 

                    obj.time = timeOutput; 

                    break; 

                end 

 

                options = odeset(... 

                    options,... 

                    'InitialStep',... 

                    (timeVector(end) - timeVector(end-1)) / 1000); 

 

                timeVector... 

                    = eventTime:(obj.SECONDS_PER_YEAR /... 

                    obj.timeVectorDensity):obj.maximumSimulationTime; 

 

                initialSolverVariable = eventSolverVariable; 

            end 

 

            obj.outputPressure = outputPressure; 

            obj.FailureMarkerStore = storeStruct.FailureMarkerStore; 

            obj.slidingFailureMarkerStore = storeStruct.slidingFailureMarkerStore; 

            obj.slidingStressStore = storeStruct.slidingStressStore; 

 

            obj.EarthquakeLengthStore = storeStruct.EarthquakeLengthStore; 

 

            obj.options = options; 

        end 

 

        function initialiseIntensiveVariables(obj, confinementFactor) 

 

            % Initialise intensive physical variables. 

 

            obj.initialiseNonSolverVariables(confinementFactor); 
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            obj.initialSolverVariable = reshape(... 

                obj.initialPressure, [], 1); 

            obj.initialPressure = []; 

        end 

 

        function [failureLength, nucleationLength, storeStruct] =... 

                discontinuousModeOfFailure(... 

                obj,... 

                pressure,... 

                timeLength,... 

                eventTime,... 

                storeStruct) 

 

            % Make mode of failure update at non-smooth ODE 

            % interruptions. 

 

            pressure = reshape(... 

                pressure,... 

                obj.verticalArrayLength, ... 

                obj.horizontalArrayLength); 

 

            pressure = obj.pressureBCS(pressure); 

 

            %if ~obj.modeOfFailureFlag 

            %    obj.FailureMarker = obj.removeModeOfFailure; 

            %end 

 

            oldSlidingFailureMarker = obj.slidingFailureMarker; 

            OldFailureMarker = obj.FailureMarker; 

            oldSlidingStress = obj.slidingStress; 

 

            [obj.Permeability,... 

                obj.FailureMarker,... 

                obj.slidingFailureMarker,... 

                ~,... 

                failureLength,... 

                nucleationLength,... 

                obj.slidingStress]... 

                = obj.rockMatrixState(pressure, eventTime); 

 

            if length(obj.EarthquakeLengthStore) == 1 

                timeLength = timeLength - 1; 

            end 

 

            storeStruct.FailureMarkerStore = cat(... 

                3,... 

                storeStruct.FailureMarkerStore,... 

                repmat(OldFailureMarker, 1, 1, timeLength)); 

 

            storeStruct.slidingFailureMarkerStore = cat(... 

                3,... 

                storeStruct.slidingFailureMarkerStore,... 

                repmat(oldSlidingFailureMarker, 1, 1, timeLength)); 

 

            storeStruct.slidingStressStore = cat(... 

                3,... 

                storeStruct.slidingStressStore,... 

                repmat(oldSlidingStress, 1, 1, timeLength)); 

 

            storeStruct.EarthquakeLengthStore = cat(... 

                3,... 

                storeStruct.EarthquakeLengthStore,... 

                repmat(... 

                storeStruct.EarthquakeLengthStore(1),... 

                1, 1, timeLength)); 
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            if (nucleationLength - failureLength)... 

                    / nucleationLength... 

                    < 0 

                failureLength = nucleationLength; 

            end 

 

            storeStruct.EarthquakeLengthStore(end) = struct(... 

                'Failure', failureLength,... 

                'Nucleation', nucleationLength); 

 

            storeStruct.FailureMarkerStore(:, :, end) = obj.FailureMarker; 

            storeStruct.slidingFailureMarkerStore(:, :, end)... 

                = obj.slidingFailureMarker; 

            storeStruct.slidingStressStore(:, :, end) = obj.slidingStress; 

 

        end 

 

        function pressureTimeDerivative = differentialPressureEquation(... 

                obj,... 

                time,... 

                pressure) 

 

            % Derivative of pressure with respect to time for each spatial 

            % array point. 

 

            pressure = reshape(pressure, obj.verticalArrayLength,... 

                obj.horizontalArrayLength); 

 

            pressure = obj.rockFluidCoupling(pressure, time); 

 

            PressureFlux = obj.pressureFlux(pressure); 

            PressureFluxDivergence = obj.spatialSecondDerivative(... 

                PressureFlux); 

 

            PressureFluxDivergence = obj.fluxDivergenceBCS(... 

                PressureFlux,... 

                PressureFluxDivergence); 

 

            pressureTimeDerivative = obj.pressureTimeDerivative(... 

                PressureFluxDivergence); 

 

            pressureTimeDerivative = reshape(... 

                pressureTimeDerivative, [], 1); 

        end 

 

        function initialiseSpatialArray(obj) 

 

            % Initialise spatial arrays for simulation 

 

            obj.initialiseCommonSpatialArray; 

        end 

 

        function initialiseRockMatrixVariables(obj) 

 

            % Initialise rock matrix variables. 

 

            obj.initialiseCommonRockMatrixVariables; 

        end 

 

        function options = initialiseSolverOptions(obj) 

 

            % Initialise options for solvers used in simulation. 

 

            jacobianPattern = spdiags(... 
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                ones(obj.horizontalArrayLength... 

                * obj.verticalArrayLength, 5),... 

                [-obj.verticalArrayLength;... 

                -1;... 

                0;... 

                1;... 

                obj.verticalArrayLength;],... 

                obj.horizontalArrayLength... 

                * obj.verticalArrayLength,... 

                obj.horizontalArrayLength... 

                * obj.verticalArrayLength); 

 

            options = odeset(... 

                'JPattern', jacobianPattern,... 

                'Events',... 

                @(time, pressure)obj.events(time, pressure),... 

                'RelTol', 1E-8); 

 

            obj.time = []; 

        end 

    end 

end 

ans =  

 

  SinglePhaseFluidFlowClass with properties: 

 

                 SECONDS_PER_YEAR: 31556900 

                  SECONDS_PER_DAY: 86400 

           GRAVITATIONAL_CONSTANT: 9.8100 

                   analyticalTime: [] 

            maximumSimulationTime: [] 

                 timeVectorLength: [] 

                             time: [] 

                       timeOutput: [] 

                timeVectorDensity: [] 

                                x: [] 

                                z: [] 

                            Delta: [] 

            faultArchitectureList: [] 

              simulatedFaultWidth: [] 

             simulatedFaultHeight: [] 

            horizontalArrayLength: [] 

              verticalArrayLength: [] 

            FaultArchitectureEnds: [] 

    ModeOfFailureArchitectureFlag: [] 

               SlidingFailureFlag: [] 

                  FineFeatureFlag: [] 

               overpressureHeight: [] 

                  overpressureMap: [] 

                         pszWidth: [] 

                    blankingArray: [] 

            EarthquakeLengthStore: [] 

           EarthquakeLengthVector: [] 

                     CohesiveFlag: [] 

        nucleationDetectionFactor: 500000 

                      faultPreset: [] 

                      rockDensity: [] 

                       faultAngle: [] 

              FailureModeBoundary: [] 

              FrictionCoefficient: [] 

                         porosity: [] 

                   porosityStates: [] 

                   compressiblity: [] 
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                        Viscosity: [] 

           UnstressedPermeability: [] 

              PressureSensitivity: [] 

                         Cohesion: [] 

               initialStressField: [] 

          arrayoverpressureHeight: [] 

              contactOverpressure: [] 

                  initialPressure: [] 

            initialSolverVariable: [] 

                         pressure: [] 

                          Density: [] 

                     shearModulus: [] 

           rateAndStateDifference: [] 

             criticalSlipDistance: [] 

                              psi: [] 

                    slidingStress: [] 

                      FailureTime: [1×1 struct] 

                    SlidingLength: [1×1 struct] 

                    cohesionLimit: [] 

                 failureStateList: [] 

                     FailureAngle: [] 

               TwoCosFailureAngle: [] 

                 twoCosFaultAngle: [] 

       ArrayFaultArchitectureEnds: [] 

        ArrayFaultArchitectureMap: [] 

        FailureModeBoundaryStress: [] 

                hydrostaticStress: [] 

                lithostaticStress: [] 

                    FailureMarker: [] 

             slidingFailureMarker: [] 

                    failureExtent: [] 

                    maximumStress: [] 

                    minimumStress: [] 

                     Permeability: [] 

                          options: [] 

                   outputPressure: [] 

             outputSolverVariable: [] 

               FailureMarkerStore: [] 

        slidingFailureMarkerStore: [] 

               slidingStressStore: [] 

                 oldFailureMarker: [] 

                 newFailureMarker: [] 

                   PlotProperties: [1×1 struct] 

                      twoCosAngle: [] 

                      twoSinAngle: [] 

            internalFrictionArray: [] 

                         cohesion: [] 

               TwoSinFailureAngle: [] 

                 twoSinFaultAngle: [] 

                  FailureEnvelope: [] 

                  poreFluidFactor: [] 

              tectonicLoadingRate: [] 

                       faultDepth: [] 

                confinementFactor: [] 

                         OFCwidth: [] 

                         IFCwidth: [] 

                    initialStress: [] 

                modeOfFailureFlag: 0 

                    plotTimeScale: [] 

                    PlottingAngle: [] 
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