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Analogue and numerical models of earthquake rupture

by Simon GUERIN-MARTHE

Earthquakes represent one of the most important natural risks facing human
populations in urban areas. Understanding the processes at the origin of these
destructive events requires seismological observations, but also the use of labo-
ratory analogues and numerical models for earthquake rupture. They allow for
controlled conditions under which we can investigate the relative importance of
different physical quantities involved in the system. The main points investigated
in this thesis are the influence of loading rate on the nucleation of earthquakes,
and the evolution of friction during dynamic ruptures. I conduct photoelastic ex-
periments using polycarbonate plates, but also direct-shear experiments of pre-
cut granite blocks in a pressure vessel. I use finite-difference numerical models
to reproduce and understand the dynamic laboratory ruptures, and I developed
static finite element codes in order to reproduce the loading conditions induced
by the experimental setup. The main results are that under certain conditions,
increasing the loading rate makes the nucleation length shrink, and affects the
nucleation position, which in this case is consistently situated on high coulomb
stress areas. This is not necessarily the case for low loading rates. The shrinking
of nucleation length may explain partly why some asperities in subduction zones
can behave seismically or aseismically depending on the local tectonic loading
velocity. Finally, I propose a method to estimate the dependence of friction on
slip and slip velocity from strain gauge data during friction experiments. When
conducted under realistic pressure conditions, this can provide useful constitu-
tive laws to implement in numerical models simulating earthquakes. Eventually,
the results presented in this thesis can be used in order to improve rupture sce-
narios, and short-term earthquake forecast.
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Lb−a critical nucleation length as defined by rubin m
M0 seismic moment N m
Mw earthquake moment magnitude
N fringe order
N1 to N4 shape functions
Pcon f confining pressure Pa
Pe f f effective pressure Pa
Q activation energy J mol−1

S prestress ratio
~u displacement vector
Ue elastic energy J
U f frictional work J
Uk kinematic energy J
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Us fracture energy J
Vin input voltage V
Vout output voltage V
Vp p-wave velocity m s−1

Vr rupture velocity m s−1

Vray Rayleigh wave velocity m s−1

Vs s-wave velocity m s−1

W work by external forces J
Xe breakdown zone length m

∆τ stress drop Pa
∆ε strain drop
∆ relative retardation
ηe f seismic efficiency
ε strain tensor
ε strain
εd strain measured at 45◦ to the fault plane
ε̇ strain rate s−1

γ specific surface energy J m−2

γxy shear strain (engineering convention)
λ Lamé parameter Pa
λw wavelength m
µ0 initial friction
µp peak friction
µr residual friction
ν Poisson’s ratio
∇ Del operator
ωc corner frequency Hz
ρ density Kg m−3

σ stress tensor
σn normal stress Pa
σdi f f differential stress Pa
σ∞ remote stress Pa
τ shear stress Pa
τ̇ shear stress rate Pa s−1

τmax maximum shear stress Pa
τ0 initial stress Pa
τp peak stress Pa
τr residual stress Pa
θ state variable s
ζ and η finite element local coordinates
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Overview of the thesis

Understanding the origin of earthquakes is a major challenge in a context of

growing urban areas. Energy generated by plate tectonics may be released slowly

along faults by creeping-like phenomena, or more suddenly, generating strong

and sometimes very destructive ground motion. While seismology provides vital

observations which can be used to infer the physical processes leading to a large

rupture in a very complex natural system, controlled laboratory experiments and

numerical models are needed in order to better understand the relative impor-

tance of different physical quantities in simplified earthquake models.

The simplified fault model used in laboratory experiments often consists of a

planar contact interface, separating rectangular blocks composed of elastic mate-

rials. By applying forces at the blocks’ edges, we are able to store elastic energy

in the system, similarly to what happens during tectonic loading. Under applied

normal load, the contact interface resists shear stress by friction, until the so-

called fault strength is reached. At this point, some relative slip occurs between

the two blocks. At the nucleation stage, the slip is generally confined to a small

patch which is often referred to as a crack. Inside the crack, frictional resistance

decreases with slip and slip velocity, therefore driving its growth. Although the

crack growth is initially slow and controlled by the applied forces, it may accel-

erate and become unstable if the energy released at its tips is sufficient. The size

of the crack before acceleration is called the critical nucleation length Lc. It is

crucial to understand which system variables control Lc as this is directly linked

to the stability of a fault. Understanding the stability of faults, aseismic versus

seismic behaviour, and in particular the critical nucleation length dependence on

the applied shear loading rate is the main focus in this thesis.

In chapter 1, a general introduction on natural earthquakes is given in order

to highlight the complexity of such events. This is needed in order to understand
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how meaningful laboratory, numerical and theoretical studies described later are

with regard to natural systems. I also give some background necessary in order to

understand fracture mechanics, wave propagation, friction laws, and the relation

with natural faults. The basic equations of stress and strain are given so that the

reader can familiarise themselves with the symbology used in the manuscript.

This theory underpins the wave equation and the 2-Dimensional approximation

used in numerical models (chapter 4), the static crack stress field equations used

to benchmark static numerical models, and the dynamic crack equations used

to invert photoelastic fringes in appendix A. The goal of the chapter is also to

give an overview of previous laboratory and numerical nucleation studies, and

to introduce the concept of nucleation length Lc. I finally discuss briefly the types

of friction laws used in numerical models and in stability analysis theory, in order

to explain how Lc may be estimated.

The numerical methods, laboratory setups and materials used are presented

in chapter 2. Even though parts of this chapter are repeated in other result chap-

ters, this is all gathered here for clarity. I first introduce the different deforma-

tion apparatuses used: a biaxial press with polycarbonate plates, and a triaxial

pressure vessel adapted to study rock friction under high confining pressure con-

ditions. I show how a rupture propagation can be tracked and quantified us-

ing photoelaticity with a high-speed camera, and/or using strain gauges with

a high frequency acquisition system. A large part of this chapter is also ded-

icated to introduce numerical models, and in particular explaining the Finite

Element method in detail. Although most of the information contained in this

section can already be found in the literature, this is not always very clear for

non-mathematicians. Therefore, a lot of details have been written in order for a

new PhD student to use it for building a simple elastic model from scratch for

instance. Moreover, it should make it easier for someone who would like to keep

working on the static and dynamic finite element python codes developed in this

thesis, which can be found on Github (see appendix C).

The results from chapter 3 constitute the most significant piece of work of

the thesis. The experiments presented in this chapter aim at tracking directly the

rupture front of several shear ruptures under varying applied shear loading rates,
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thanks to photoelasticity combined with a high-speed camera. As suggested by

previous studies on laboratory earthquake nucleation, the loading rate often ne-

glected in theoretical studies influences the size Lc. This study, published in the

Journal of Geophysical Research: Solid Earth (Guerin-Marthe et al., 2018), evi-

dences that indeed Lc decreases at higher loading rates, but also that it affects the

nucleation position of the localized slipping patch. Under a slow applied loading

rate, the nucleation position initiates more or less randomly along the interface,

while it localizes consistently on the same spots at higher rates. I discuss these

results using rate-and-state friction laws, and show their implications for natural

earthquakes and for the seismicity of subduction zones.

In chapter 4, following the observations of localized nucleations at high load-

ing rates, I build a static finite element model of 2D elasticity in order to infer

the initial stress distribution in the biaxial experiments. Using different load-

ing configurations in the model by changing the boundary conditions, I am able

to simulate the photoelastic fringes it would generate, and match the simulated

fringe pattern with the observed pattern in the experiments. This evidences two

areas of high coulomb stress where the rupture initiates, and is published as an

appendix in Guerin-Marthe et al., 2018. A finite difference code based on Virieux

and Madariaga, 1982 is also written in order to model the dynamic propagation.

Some features observed in the strain gauge signals are well explained by the nu-

merical models, such as the shear stress evolution during supershear ruptures. I

also use it to validate and discuss the method used in chapter 3 to estimate the

friction dependence on slip and slip velocity.

After having explored the nucleation of shear ruptures along simulated faults

under relatively low normal stress, using polycarbonate plates, and having sim-

ulated the experiments with numerical models, chapter 5 aims at exploring more

realistic nucleation conditions. I use Westerly Granite blocks under a direct shear

configuration, applying confining pressures up to 100 MPa in a pressure vessel,

corresponding to the Earth’s upper crust. A previously built setup has been suc-

cessfully adapted in order to enable up to 6 strain gauges to be fixed along a 4

cm long simulated interface. I show that for long healing times, increasing the

loading rate tends to promote instability, while instability is inhibited for shorter
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healing times. The results are interpreted using rate-and-state laws, complement-

ing the discussion of chapter 3.

In chapter 6, the static finite element model is used, as in chapter 4, in order

to understand the loading conditions of the triaxial experiments in chapter 5 and

to discuss their effect on the low apparent friction measured, and the difference

with strain gauge signals in the experiments of chapter 5. The second part of the

chapter uses the finite difference code and is used to verify how accurately one

can determine friction laws of granite under upper-crustal pressure conditions,

given the loading configuration used in chapter 5.

Chapter 7 summarizes the work done during the PhD, and the main results

presented. It also gives an overview of the additional methods tested in the ap-

pendices, and suggests new research ideas following the thesis.
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Chapter 1

Introduction

1.1 Rupture at the scale of tectonic plates

1.1.1 Global seismicity

FIGURE 1.1: Global seismicity map presenting the 10000 biggest events of the year
2017, up to 600 km depth (data taken from the iris website, and plotted with the

script given in appendix C)

.
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Earthquakes represent the most disastrous natural hazard in term of economic

damage and death toll, at least from 2000 until now (www.statista.com). They

have fascinated, confused and scared people for centuries and still today. Once

believed to be caused by explosions or exhalations of gases trapped underground

at the Greek time with Aristotle, fourth century BC (Udías et al., 2014), there were

significant advances toward a better understanding of the source of earthquakes

during the last century.

By looking at the global seismicity pattern (fig. 1.1), we observe that most

earthquakes occur along well-defined segments that highlight the tectonic plate

boundaries (Kanamori and Brodsky, 2004), in which case they are refered to as

interplate earthquakes, as opposed to intraplate earthquakes. By looking at the

depth distribution of events along the so-called Pacific ring of fire, one can also

notice the Benioff–Wadati plane evidencing the presence of subduction zones

along which the biggest earthquakes occur, including tsunamigenic ones.

There are fewer large earthquakes compared to small ones; the number of

events N(Mw) of magnitude ≥ Mw follows the Gutenberg-Richter law:

log N(Mw) = a− bMw (1.1)

Where a is linked to the seismicity rate, and the b value corresponds to the

ratio between large and small events. It has been shown that in some cases b de-

creased prior to large earthquakes, meaning an relative increase of larger earth-

quakes during the precursory phase (Imoto, 1991). The Gutenberg-Richter law

also holds for small earthquakes even though they are not necessarily all detected

below the magnitude of completeness Mw ≈ 5. For large ones (around Mw = 8,

see fig 1.2), there is a statistical bias if the period considered is too short (it is

also possible that the occurrence probability of large earthquakes does not fit this

law).
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FIGURE 1.2: Example of Gutenberg-Richter relationship for the Mw > 3 of 2005
using the data from the iris earthquake catalogue

1.1.2 Architecture of a fault

The faults along which ruptures propagate exhibit a complex geometry: exposed

fault traces and geological observations show that they are irregular structures

comprising bends and jogs, and have a self-affine nature (Candela et al., 2012).

Ruptures are also affected by a complex surrounding medium composed of dif-

ferent materials (Chester et al., 1993), partially altered by previous events (Bhat et

al., 2007; Biegel et al., 2008) (see figure 1.3). In order to simplify those geometrical

complexities, the concept of a fault plane is used, based on the fact that cumula-

tive slip tends to flatten the surface of mature faults. The area of rupture increases

with magnitude. The shape of the fault can be characterized by the aspect ratio

L/W (length over width) (Udías et al., 2014). For small earthquakes (L < 20 km)

the shape can be approximated by a circle or a square, with L/W ≈ 1. Brittle frac-

ture extent is limited by the brittle-ductile transition in the crust, situated around

15 to 20 km in depth. For large strike-slip earthquakes, the shape becomes rect-

angular or elliptical, with an aspect ratio that can be greater than 10, with the

exception of large earthquakes in subduction zones, where L can be longer than

400 km, and W around 100 km (Udías et al., 2014).
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FIGURE 1.3: Fault architecture after Chester et al., 1993. (1) Intact host rock (2)
Damage zone, fractured, 10 m to 100 m wide (3) Gouge, 1 m to 10s m wide (4)
Ultracataclasite shear zone, usually clay rich, 10s mm to 100s mm wide (5) Principal

slip surface (within (4)) that can be < 1 mm.

1.1.3 Rheology of the crust

FIGURE 1.4: Lithosphere rheology (Kohlstedt et al., 1995)

On top of the geometrical complexities, the rheology of the rocks on the fault

plane is also heterogeneous but in the general case follows some trend with depth

due to the layered structure of the Earth (Kohlstedt et al., 1995). The upper crust
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strength follows Byerlee’s friction law, shown in more details later in fig. 1.23 (By-

erlee, 1978), up to a depth around 10 to 15 km where a temperature threshold is

reached, corresponding to the onset of Quartz plasticity (≈ 300◦C), followed by

the onset of Feldspar plasticity (≈ 450◦C). At this point, the strength gradually

decreases following a plastic flow law, depending on the thermal gradient and

the strain rate ε̇. It becomes stronger again where the upper mantle is reached, in

which stronger mineral such as olivine are found (see fig. 1.4).

1.1.4 Earthquake cycle

FIGURE 1.5: Illustration of elastic rebound theory of Reid, 1911, after Udías et al.,
2014. a) Two reference fault segments during the interseismic period. b) Deforma-
tion due to tectonic loading. c) Final deformation after strain release by the rupture

.

A widely accepted model of earthquakes has been proposed by Reid (1911). In

this model, plate motion produces deformation that localizes around the fault

during the interseismic period (fig. 1.5.a-b). The local deformation leads to stress

accumulation. When the stress accumulated becomes higher than the fault plane

strength, the strain energy is rapidly released, producing a slip called elastic re-

bound during the coseismic period (fig. 1.5.c). In reality, some strain can be re-

leased before and after an earthquake triggering foreshocks and aftershocks re-

spectively. The strain can also be released via aseismic creep or during recently

discovered slow-slip events (Peng and Gomberg, 2010).

A typical timescale with depth and slip magnitude is illustrated in figure 1.6.

However the amount of slip and the recurrence time (hence the length of inter-

seismic, nucleation and postseismic periods) are variable and scale dependant

(linked to the rupture asperity size). This gives rise to a strong variability of the
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earthquake cycles to be expected depending on the fault considered. The scaling

laws will be discussed later in section 1.1.6.

FIGURE 1.6: Illustration of a typical earthquake cycle, after Scholz, 2002

1.1.5 Point approximation of earthquake source: double-couple

and beach-ball diagrams

During the coseismic period, the sudden dislocation produced by a remote earth-

quake source can be approximated by a point source from where a double couple

generates displacements in the surrounding medium. The far-field displacements

(ur, uθ and uφ) for a point source (as illustrated fig. 1.7.a) in an homogeneous
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medium can be written using polar coordinates in the form (Kanamori and Brod-

sky, 2004):


ur

uθ

uφ

 =
1

4πρrV3
p

M′0(t−
r

Vp
)


Rr(θ, φ)

0

0


+

1
4πρrV3

s
M′0(t−

r
Vs

)


0

Rθ(θ, φ)

Rφ(θ, φ)


(1.2)

Where ρ is the density, Vp is the compressionnal wave speed, M0 is the seis-

mic moment, r is the radius, and t is the time. Rr(θ, φ) (associated with the P-

waves), Rθ(θ, φ) and Rφ(θ, φ) (associated with the S-waves) are radiation pat-

terns which depend on the source geometry and the observation point (Kanamori

and Brodsky, 2004). They can be written Rr(θ, φ) = sin(2θ) cos(φ)r̂, Rθ(θ, φ) =

cos(2θ) cos(φ)θ̂ and Rφ(θ, φ) = − cos(θ) sin(φ)φ̂, after Shearer, 2009.

The pressures associated with this dislocation can be visualized in the form

of focal mechanism ’beach balls’ with compressional and dilatational quadrants

(see fig. 1.7.b). The first motion of particles in the compressional quadrant are out-

wards, and inwards in the dilatational quadrant. By convention, only the lower

hemisphere of the focal mechanism sphere is represented on maps, from a top

view, as the fastest way for the seismic waves to propagate up to a remote station

is toward the interior of the Earth first before coming back up at the surface.
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FIGURE 1.7: a) Double couple source approximation. b) Focal mechanism of earth-
quakes where the arrows represent the particles first motion. The compressional
quadrant is shaded while the dilatational one is white. The black thick lines are the
primary and auxiliary planes. They correspond to the fault plane and the plane

perpendicular to it, repsectively. Figure from Shearer, 2009

1.1.6 Magnitude of earthquakes and scaling laws

Earthquake magnitude

The radiated seismic waves that propagate within the earth, and along its surface

are recorded at seismic stations and used to estimate the magnitude of earth-

quakes. The high frequency P-waves arrive first with a low amplitude, and then

come the S-waves with a higher amplitude, and lower frequency. After those

body waves arrivals, very high amplitude surfaces waves are recorded: Love

and then Rayleigh waves. Surface waves are dispersive which means the wave

speed is frequency-dependant; the larger wavelengths are propagating faster in

this case. The Rayleigh waves result from the interaction of P and S waves propa-

gating along a surface, they have a velocity Vray ≈ 0.92Vs, where Vs is the S-wave

speed. Their dispersion comes from the fact that larger wavelengths penetrate

deeper in the earth and are thus sensitive to faster media. On the other hand the
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Love waves are a constructive interferences of SH waves (horizontally polarized

S-waves) guided in a low velocity layer (compared to the one below).

FIGURE 1.8: a) Seismic waves recorded at IU-SLBS station (Mexico) for a Mw6.2
(22-08-2018), with an epicenter off the coast of Oregon, US. b) Power spectrum of
P-waves and corner frequency around 0.5 Hz. Data has been dowloaded from Iris

and then processed to produced the power spectrum

The magnitude can be estimated using the body wave spectrum, up to Mw ≈

6, and using the surface waves amplitude for larger events. An example of waves

recorded at IU-SLBS station (Mexico) for a Mw6.2 that happened on the 22nd of

August 2018, off the coast of Oregon, US is shown fig. 1.8.a. Plotting the am-

plitude spectrum in a log-log diagram, we can measure the so-called corner fre-

quency ωc of the P-waves. The smaller the corner frequency the larger the event.

Indeed, the duration of the slip pulse generated during an earthquake is linked

to the size of the rupture L ≈ TrVr, where Tr is the rupture duration and Vr is the

rupture velocity (≈ constant). Therefore, because L is larger for big earthquakes,

the duration of the slip pulse is also larger, radiating larger wavelengths, and thus

lower frequencies. The scaling between ωc and M0 is illustrated in fig. 1.9. Using

this scaling relationship and estimating ωc thus enables to estimate Mw (fig. 1.8.b)
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FIGURE 1.9: Relation between the corner frequency ωc and magnitude Mw after
Allmann and Shearer, 2009

Although seismic waves can provide a fast estimate of the magnitude Mw,

useful for early-warning systems for instance, Mw is more accurately calculated

based on the properties of the earthquake source: the shear modulus G and the

average slip D over the slip area S. It uses the seismic moment M0 = GDS in

[N.m]. The moment magnitude is then calculated using:

Mw =
2
3
(log10(M0)− 9.1) (1.3)

Relations between seismic moment, slip surface and stress drop of earthquakes

The stress drop ∆τ during an earthquake is almost always between 105 and 108

Pa, regardless of Mw (fig.1.9). It is linked to the strain drop ∆ε and the shear

modulus G by ∆τ = G∆ε ≈ CG D
L̃ , where L̃ ≡

√
S is a characteristic length of the

fault, and C is a geometrical constant. C = 7π/16 for a circular crack, and C = 2π

in the case of a fault length L to fault width W ratio L/W � 1. This implies that

M0 ∝ S3/2 as ∆τ ≈ CM0/S3/2 and is confirmed by the data in fig. 1.10.
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FIGURE 1.10: Scaling between the seismic moment M0 and the slip surface S show-
ing M0 ∝ S3/2 , after Kanamori and Brodsky, 2004
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1.1.7 Nucleation models and seismicity patterns in subduction

zones

FIGURE 1.11: Seismicity of subduction zones (Lay et al., 2012)

Understanding the seismicity of subduction zones is of crucial importance as

these complex physical systems host the largest megathrust earthquakes. Re-

cently, significant advance in technology enabled the detection of a whole range

of seismic signals, with the deployment of instruments such as strainmeters, tilt-

meters, high-sensitivity seismometers, accelerometers, and Global Positioning

System (GPS) stations. Those signals with characteristics that may differ from

classical radiations emitted during earthquakes are referred to as Episodic Tremor

and Slip (ETS) and include Low Frequency Earthquake (LFE), Very Low Fre-

quency (VLF) earthquakes and Slow Slip Events (SSEs). The characteristic period

of those events is shown in figure 1.12. It ranges from 0.1 s for LFEs to several

months for SSEs.
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FIGURE 1.12: Timescale of low-frequency events after Ide et al., 2007. The ETS
events plotted are recorded in the Cascadia subduction zone.

Taking the example of Japan (although the picture is complicated), it seems

that the subduction zone can be divided into four main domains (fig.1.11; Ide

et al., 2007, Lay et al., 2012). The domain B where the megathrust earthquakes

occur is limited at the top by a domain A, mainly characterized by stable slid-

ing but where tsunamigenic rupture can propagate and where shallow VLF and

tremors can be found at the transition between domains A and B. Below, there is

a conditionally stable portion (domain C) where long term SSEs occur. And the

deeper part, domain D, is characterised by deep tremor activity, VLF and short

term SSEs. All those events are inter-related in a non-trivial way, for example it

seems that the continuous tremor activity of domain D is triggered by the propa-

gation of SSEs (Frank et al., 2016).

This kind of signals are also observable in other places such as Chile (Ruiz
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et al., 2014; Ruiz et al., 2017), Mexico (Radiguet et al., 2016) or Cascadia (see sci-

ence of slow earthquakes website). But although the general pattern for most of

the subduction zones is similar, and includes the seismogenic zone, surrounded

by conditionally stable areas from where slow slip is likely to occur at the rheo-

logical transitions, there are few differences depending on the place considered

(Schwartz and Rokosky, 2007). Not all of these signals are observed everywhere,

and it might be due to the fact that the instrumentation is not as developed every-

where as in Japan, but also that the seismicity itself is not necessarily the same.

For instance, while slow slip is observed almost everywhere along the Pacific ring

of fire, tremors are mainly observed in Japan, Cascadia, and Costa Rica, and are

well correlated to slow slip only in Cascadia and in the South of Japan (Schwartz

and Rokosky, 2007). Slow slip can also be observed in continental settings such as

the San Andreas fault (Rousset et al., 2019), or the North Anatolian fault (Rousset

et al., 2016). In San Andreas, a correlation between slow slip and tremors is also

observed (Schwartz and Rokosky, 2007).

In order for a large earthquake to propagate, an initial patch of domain B

needs to reach instability (see fig. 1.11). This will happen when the tectonic load-

ing brings the asperity close to its strength. The loading process can be accen-

tuated by surrounding stress perturbations, including foreshocks and pre-slip

around the asperity during the precursory phase few days to few months be-

fore the main rupture (see nucleation model of Socquet et al., 2017 for the Mw8.2

Iquique earthquake in 2014). Once the initial patch breaks, in order to propagate

and become a megathrust earthquake, the stress drop inside the nucleation zone

needs to be large enough so that the energy that is released is sufficient to break

the surrounding asperities, and propagate through stable areas that act as energy

sinks. The available energy depends on the strength of the interface that is en-

countered, which can be unusually weak for certain rock types like serpentinite

or clays. Weakening mechanisms such as thermal pressurisation or flash heat-

ing can also significantly lower the friction during dynamic rupture propagation

(Rice, 2006).

Weather or not an asperity of radius r will initially break and radiate seismic

waves is linked to the questions of whether there is a critical nucleation length Lc

http://www.eri.u-tokyo.ac.jp/project/sloweq/en/
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for the asperity, what controls it, and under what conditions Lc < r, in which case

an instability is possible. The question of will it propagate and when will it stop

are linked to the dynamic frictional evolution of the interface; at which point the

energy released is not sufficient anymore for the rupture to overcome the friction

and propagate further.

What controls the nucleation length size Lc and how dynamic friction evolves

during rupture are the main motivations for this study, and are tackled by using

laboratory analogues for earthquake rupture, and numerical models. In order

to understand the small scale physics and the equations behind the models, I

introduce in the next few sections the main equations used later in the thesis.
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1.2 Mathematical treatment of earthquake source

Large scale wave propagation in the Earth is not investigated in this thesis. I

look at a smaller scale, at the source mechanisms of earthquakes, and dynamic

rupture propagation. In this section the concept of linear elasticity which consti-

tutes a basis for Linear Elastic Fracture Mechanics (LEFM) is introduced, giving

the theoretical stress field around a crack tip, and an energy based criterion for

fracture propagation. Linear elasticity is also used to derive the wave equation,

an essential ingredient of numerical models and theoretical studies in order to

explain rupture dynamics.

1.2.1 Hooke’s law: stress and strain relationships

We start by giving the relations between displacements, deformations and stresses

in an elastic medium.

In a 3D elastic medium, the stress and strain tensors σ and ε are symmetric

(εij = εji and σij = σji), and defined with their 9 components each by:

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz



FIGURE 1.13: a) The stress tensor components. b) Infinitesimal deformations in 2D
.
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The strains are linked to the spatial derivatives of the displacement field ~u ={
ux uy uz

}T
(see fig 1.13.b for an illustration in 2D):

ε =
1
2

[
∇~u + (∇~u)T

]

=


∂ux
∂x

1
2(

∂ux
∂y +

∂uy
∂x )

1
2(

∂ux
∂z + ∂uz

∂x )

1
2(

∂ux
∂y +

∂uy
∂x )

∂uy
∂y

1
2(

∂uy
∂z + ∂uz

∂y )

1
2(

∂ux
∂z + ∂uz

∂x )
1
2(

∂uy
∂z + ∂uz

∂y )
∂uz
∂z


(1.4)

In the general case, the stress tensor can be expressed as a function of the

displacements as:

σij = Cijkluk,l where uk,l ≡
∂uk
∂l

(1.5)

However, in the case of an isotropic elastic medium, the 81 components of

the tensor of elastic coefficients Cijkl can be simplified to two independent com-

ponents G and λ, the Lamé parameters. The stress tensor is then found using

Hooke’s law:

σ = λtr(ε)I + 2Gε

= λ


∂ux
∂x +

∂uy
∂y + ∂uz

∂z 0 0

0 ∂ux
∂x +

∂uy
∂y + ∂uz

∂z 0

0 0 ∂ux
∂x +

∂uy
∂y + ∂uz

∂z



+ G


2∂ux

∂x ( ∂ux
∂y +

∂uy
∂x ) ( ∂ux

∂z + ∂uz
∂x )

( ∂ux
∂y +

∂uy
∂x ) 2∂uy

∂y (
∂uy
∂z + ∂uz

∂y )

( ∂ux
∂z + ∂uz

∂x ) (
∂uy
∂z + ∂uz

∂y ) 2 ∂uz
∂z



(1.6)

Where the shear modulus G and the Lamé parameter λ can be expressed as a

function of the Young’s modulus E and the Poisson ratio ν using:

λ =
Eν

(1 + ν)(1− 2ν)
and G =

E
2(1 + ν)

(1.7)
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Under a pressure parallel to an axis ~x, E quantifies how much a solid can

deform along ~x. ν quantifies the ratio of deformations perpendicular and parallel

to ~x (see fig. 1.14.a). G quantifies how much a solid deforms under an given

applied shear stress (see fig. 1.14.b).

FIGURE 1.14: Elastic modulus illustration under simple deformation modes
.

As it is often useful to reduce 3D problems to 2 dimensions, especially when

considering the time cost of numerical models, I present two particular cases of

2D elasticity called plane-stress and plane-strain. In the plane-strain problem,

an elastic solid is considered having one dimension much longer than the two

others, along ~z for instance. In this case εzz = εxz = εyz = τxz = τyz = 0. In

the plane-stress problem, one dimension is much shorter than the two others,

and εxz = εyz = σzz = τxz = τyz = 0. The other components can have non-

zero values. In both cases the simplified relation between stress and strain can be

written as:


σxx

σyy

τxy

 = D


εxx

εyy

2εxy

 (1.8a)

Where for the plane-strain case,

D = Dε =
E

(1 + ν)(1− 2ν)
×


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 (1.8b)
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and for the plane-stress case,

D = Dσ =
E

1− ν2 ×


1 ν 0

ν 1 0

0 0 1−ν
2

 (1.8c)

1.2.2 Fracture mechanics: static crack

In the case of fractures, treating the problem with linear elasticity means that there

would exist a singularity at the crack tips, with infinite stress values. LEFM by-

passes this issue by defining stress intensity factors which characterize the stress

field shape in the vicinity of the crack tips. It can also be used in order to obtain

an energy based criterion for rupture propagation.

Crack propagation modes and stress intensity factor

FIGURE 1.15: Propagation modes for a crack extenting along x, and stresses σyi
acting on the crack surface S. Modified after Scholz, 1998.

There are three possible opening modes for a crack or fracture, as shown in fig-

ure 1.15. Mode I crack opening, or tensile-opening corresponds to a pure traction

applied in the direction perpendicular to the crack surface S. Because S is a free

surface in this mode, there are no forces acting on it. Mode II or in-plane shear
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corresponds to a relative slip on S parallel to the propagation direction. The trac-

tion on S is proportional to the friction coefficient µ (more details will be given

about friction in section 1.4), and to the normal force σyy : τyx = µσyy. Mode III

or anti-plane shear (also referred as out-of-plane shear) corresponds to a relative

slip on S perpendicular to the propagation direction, and τyz = µσyy.

For modes I, II and III, stress intensity factors KI , KI I and KI I I are defined as:

KI = lim
r→0

√
2πrσyy (1.9a)

KI I = lim
r→0

√
2πrτxy (1.9b)

KI I I = lim
r→0

√
2πrτyz (1.9c)

And the energy release rates GI , GI I and GI I I are:

GI = K2
I /E∗ (1.10a)

GI I = K2
I I/E∗ (1.10b)

GI I I = K2
I I I(1 + ν)/E (1.10c)

E∗ = E for plane stress, and E∗ = E/(1− ν2) for plane strain, and r is the dis-

tance to the crack tip. These definitions are commonly used in fracture mechanics

and are a useful way to describe the stress field around crack tips and to derive

failure criterion for elastic solids.

Griffith’s fracture model

Griffith’s model (Griffith, 1921) is an example of how a failure criterion can be

derived, and consists of a simple elliptical crack of length 2a embedded in an

elastic medium, under a uniform remote stress σ∞. In this case the stress intensity

factors are in the form Ki = σ∞
√

πa.
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His study shows that under quasi-static driving stress, a crack in tensile-opening

mode will grow satisfying the following energy balance:

δW − δUE − 2γδS = 0 (1.11)

where δW is the work done by the external forces, δUE is the change in strain

energy due to the crack opening displacement, and 2γδS = Us is the fracture

energy, the energy required to extend the two fracture surfaces by an element

δS, given a specific surface energy γ (material property). Using equation 1.11,

Griffith’s study evidenced that in order for a crack to propagate, it must reach a

critical energy release rate Gc = 2γ.

In the case of a shear crack, the situation is more complex (figure 1.16). The

crack opens in mode III on the edge parallel to the slip direction, and in mode II on

the edge perpendicular (Fialko, 2007; Kanamori and Brodsky, 2004). In a purely

elastic crack model, the stress field also has a singularity at the tips. Because

an infinite stress is not physically realistic, the concept of a breakdown zone at

the crack edges is needed (Livne et al., 2008; Dally and Riley, 1965). This zone

accounts for the fact that there must be some kind of plastic deformation in the

vicinity of the crack tip, where the stress degrades gradually.

FIGURE 1.16: Sketch of a shear crack expanding, after Fialko, 2007. For a pulse-like
rupture, the slipping area is confined between the solid and the dashed lines.
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Stress field around a static crack tip

I give here the equations of the stress field around a crack tip as I use them later

in order to attempt to invert photoelastic fringe patterns in appendix A. For a

mixed-mode I and II static crack, the stresses are witten in polar coordinates (r,θ)

by Freund, 1998 in the form:

σij =
KI(t)√

2πr
ΣI

ij +
KI I(t)√

2πr
ΣI I

ij (1.12)

except:

σ11 =
KI(t)√

2πr
ΣI

11 +
KI I(t)√

2πr
ΣI I

11 + σ0x

where

σ0x = σ∞
22 − σ∞

11

which represents the difference of remote stresses (Dally and Riley, 1965).

The form of the Σijs for a static crack are given by equations 1.13a to 1.13f

(Dally and Riley, 1965, p525):

ΣI
11 = cos(θ/2)(1− sin(θ/2) sin(3θ/2)) (1.13a)

ΣI
12 = sin(θ/2) cos(θ/2) cos(3θ/2) (1.13b)

ΣI
22 = cos(θ/2)(1 + sin(θ/2) sin(3θ/2)) (1.13c)

ΣI I
11 = − sin(θ/2)(2 + cos(θ/2) cos(3θ/2)) (1.13d)

ΣI I
12 = cos(θ/2)(1− sin(θ/2) sin(3θ/2)) (1.13e)

ΣI I
22 = sin(θ/2) cos(θ/2) cos(3θ/2) (1.13f)
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After Dally and Riley, 1965 the maximum shear stress τmax can be obtained

using:

(2τmax)
2 = (σ11 − σ22)

2 + 4σ2
12

=
1

2πr
[(KI sin θ + 2KI I cos θ)2 + (KI I sin θ)2]

+
2σ0x√

2πr
sin(θ/2)[KI sin θ(1 + 2 cos θ)

+ KI I(1 + 2 cos2 θ + cos θ)] + σ2
0x

(1.14)

This expression can be used almost directly to invert the photoelastic fringes,

which can be visualized as contour lines of the maximum shear stress (more de-

tails about the photoelastic method are given in section 2.2.1). I also used eq. 1.14

to verify that the equations of a dynamic crack propagating at a velocity Vr pre-

sented in the next section and the ones of a static crack are comparable when Vr

tends toward 0.

1.2.3 Fracture mechanics: dynamic crack

Stress field around a propagating mixed-mode crack

For a dynamic crack, the stresses have the same general form as given in eq. 1.12.

The Σijs are given by Freund, 1998 (p163):
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ΣI
11 =

1
D
[(1 + α2

s )(1 + 2α2
p − α2

s )
cos(θp/2)
√

γp
− 4αsαp

cos(θs/2)√
γs

] (1.15a)

ΣI
12 =

2αp(1 + α2
s )

D
[
sin(θp/2)
√

γp
− sin(θs/2)√

γs
] (1.15b)

ΣI
22 = − 1

D
[(1 + α2

s )
2 cos(θp/2)
√

γp
− 4αsαp

cos(θs/2)√
γs

] (1.15c)

ΣI I
11 = −2αs

D
[(1 + 2α2

p − α2
s )

sin(θp/2)
√

γp
− (1 + α2

s )
sin(θs/2)√

γs
] (1.15d)

ΣI I
12 =

1
D
[4αsαp

cos(θp/2)
√

γp
− (1 + α2

s )
2 sin(θs/2)√

γs
] (1.15e)

ΣI I
22 =

2αs(1 + α2
s )

D
[
sin(θp/2)
√

γp
− sin(θs/2)√

γs
] (1.15f)

Where

D = 4αsαp − (1 + α2
s )

2; γp =

√
1−

(
Vr sin θ

Vp

)2

; γs =

√
1−

(
Vr sin θ

Vs

)2

θ and r are the angle and radius for polar coordinates. I also define the dis-

torted angles and radius (θp, rp) and (θs, rs), needed when taking into account the

Lorentz contractions for rupture fronts approaching P-wave and S-wave speed

respectively:

θs = tan−1(yαs/x) θp = tan−1(yαp/x) θ = tan−1(y/x)

rs =
√

x2 + (yαs)2 rp =
√

x2 + (yαp)2 r =
√

x2 + y2

Where x and y are the Cartesian coordinates, αp =
√

1− (Vr/Vp)2, and αs =√
1− (Vr/Vs)2.
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Equations 1.15a-1.15f are valid for subshear ruptures at constant velocities,

and are used for inversion of photoelastic fringes in Appendix A. For rupture ve-

locities approaching 0 m/s, equations 1.13a-1.13f and 1.15a-1.15f are equivalent.

Energy balance of earthquakes

In the case of a dynamic rupture, the energy balance is more complex than equa-

tion 1.11 and includes other terms such as the frictional work U f and the radiated

energy Es = δUk, δUk being the variation of kinetic energy. Although off-fault

damage may not be negligible in the energy budget, it is often neglected and a

simplified form of the energy balance can be written:

Es = δUe −U f −Us + δW (1.16)

In eq. 1.16 the work done by the external forces δW is generally small relatively

to the other terms. The latter terms can be visualized on a friction versus slip

plot such as the one shown in fig. 1.17. δUe is the change of strain energy and

corresponds to the area under the green curve in fig. 1.17

FIGURE 1.17: Friction law of laboratory earthquake (measured experimentally for
polycarbonate), and energy partitioning

The amount of radiated energy can also be quantified using the seismic effi-

ciency ηe f = Es/δUe. Es is the area under the green curve (δUe) minus the area
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under the blue curve τxy(u) where u is in this case the relative displacement be-

tween the two sliding surfaces.

1.2.4 The wave equation

To understand the ground motion generated by earthquakes, and how a rupture

propagates dynamically, the basic equations of particle motion in a continuous

medium have to be defined.

The momentum equation is derived from Newton’s second law, equating the

net sum of forces ΣF acting on a system of mass m, to its acceleration a: ΣF =

ma. Let’s consider an infinitesimal cube of volume dx× dy× dz as illustrated in

figure 1.13.a, of density ρ. Here, ΣF is the sum of the forces
∂σij
∂xj

, acting on the

surfaces, and of the internal forces Fi. If assuming ρ constant, ma = ρ ∂2ui
∂t2 . For

dx → 0, the momentum equation for an infinite medium becomes:

ρ
∂2ui

∂t2 =
∂σij

∂xj
+ Fi (1.17)

Using Hooke’s law and assuming an isotropic homogeneous material (λ and

G constant), 1.17 can be rewritten as (Udías et al., 2014):

ρ
∂2~u
∂t2 = (λ + G)∇(∇.~u) + G∇2~u + ~F (1.18)

Equation 1.18 is one form of the seismic wave equation. It can be rearranged to

evidence the compressional (P-waves) and rotational/transverse (S-waves) com-

ponents of the particle motion. Denoting the P-wave velocity Vp =
√
(λ + 2G)/ρ,

the S-wave velocity Vs =
√

G/ρ and using vector identities such as∇×∇×~u =

∇(∇.~u)−∇2~u, or∇.(∇×~u) = ∇× (∇~u) = 0, equation 1.18 can be modified to:

∂2~u
∂t2 = V2

p∇(∇.~u)−V2
s ∇× (∇× ~u) +

~F
ρ

(1.19)

From which it can be seen that the P-waves are related to the divergence of

the displacements ∇.~u and the S-waves to the curl of the displacements ∇× ~u.
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FIGURE 1.18: Particle motion associated to P and S waves (source:
www.colorado.edu)

.

1.3 Laboratory studies of dynamic crack propagation

During the preparatory phase preceding earthquakes (which can last several days

to several months), preslip can sometimes be observed (Ruiz et al., 2014). Labo-

ratory models are very useful to understand the prevalence of preslip during the

nucleation stage and what controls it. They can also be used to investigate how

further complexities such as fault geometry or fault material properties can affect

the nucleation process and the following dynamic rupture. In this section, I give

an overview on the characteristics of laboratory earthquakes, and present a few

results from previous studies.
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1.3.1 The nucleation stage, concept of a nucleation length

FIGURE 1.19: Nucleation model for a self-similar crack, after Ohnaka, 2003

.

Laboratory models of earthquakes show the presence of 3 main stages during the

nucleation phase (see model of Ohnaka (2013), fig. 1.19).

During phase I, the rupture is stable, quasi-static, and some slow slip takes

place in a localized nucleation area, which expands at a velocity controlled by

the applied load (Ohnaka, 2013). This phase has been measured to last around

200 µs during the laboratory experiments of Nielsen et al., 2010 using PMMA

(PolyMethyl Methacrylate) plates, and the rupture velocity was around 30 to 60

m.s−1. Other experiments imaging the contact between PMMA plates observe a

similar phase, also lasting around 200 µs (Ben-David et al., 2010). In their case, it

has been interpreted to be a series of arrested rupture fronts that renew a part of

the contact population.

The second phase is an acceleration of the rupture growth, controlled by iner-

tia (the crack propagation does not depend anymore on the applied loading rate),

after a critical length Lsc is reached (Ben-David et al., 2010). This length Lsc de-

pends on the applied loading rate, and on the roughness of the surface (Ohnaka,

2003).

Phase III is the dynamic rupture where the rupture front tends to its limit-

ing velocity, quasi-stable, sub-Rayleigh (Vr < Vray ≈ 0.92Vs, where Vray is the

Rayleigh wave speed), or possibly switches to supershear (Vr > Vs), depending

on the loading conditions.
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Understanding the scaling of the nucleation length (generally called Lc) of a

slipping patch is critical as the observed pre-slip in nature is a possible precursory

signal of real earthquakes (Tape et al., 2018). Using an energy criterion similar to

the one of Griffith, 1921, Andrews, 1976 has shown that Lc can be estimated as:

Lc =
2G∗

π

(τp − τr)Dc

(τ0 − τr)2 (1.20)

where G∗ = G/(1− ν) is the effective shear modulus, ν is the Poisson’s coeffi-

cient, and τ0, τp and τr are the initial, peak and residual stresses, respectively (see

figure 1.25).

Controls on rupture velocity

FIGURE 1.20: Mach cone visualised using photoelasticity, associated with a super-
shear rupture (Lu et al., 2010b). The particles velocity is superimposed in yellow.

Once the instability is triggered, the rupture asymsoptically tends to a limiting

velocity Vr which is generally around Vray for mode II and around Vs for mode III,

until it switches to intersonic velocity in some cases (Vs < Vr < Vp) as observed

in recent laboratory studies (Dunham et al., 2003; Lu et al., 2010b; Schubnel et al.,

2011; Passelègue et al., 2013). Observations of rupture velocities higher than the
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shear wave velocity Vs have also been reported in nature (example of Kokoxili

2001 event in Tibet, Bhat et al., 2007). Vr ≈
√

2Vs is an energetically favorable

intersonic rupture velocity. This type of rupture is observed when the prestress

is sufficiently high, and can be triggered from strong asperities that concentrate

energy (Dunham et al., 2003). Andrews (1976) showed that for 2D studies, the

seismic ratio defined as S = (τp− τ0)/(τ0− τr) controls the ratio L/Lc, where L is

the distance at which the rupture switches from sub-Rayleigh to supershear. If L

is longer than the sample size in the laboratory experiment, a supershear rupture

might not be observed despite a high prestress ratio (Passelègue et al., 2013). The

latter experiments, performed on crustal rocks (Westerly granite) showed that

supershear took place when τ0/σn > 0.7.

The bimaterial contrast (two different materials in contact) also strongly influ-

ences the rupture velocity. When a rupture propagates in the positive direction

(direction of motion of the most compliant side), Vr+ is similar to the compliant

material shear wave velocity Vs cpt, accompanied by a large normal stress reduc-

tion near the crack tip (Shlomai and Fineberg, 2016). In the negative direction

(direction of motion of the stiffer side), the rupture never propagates at Vs, but is

more likely to be sub-Rayleigh or supershear (Shlomai and Fineberg, 2016).

Supershear ruptures, often recognizable in photoelastic experiments with their

highly energetic mach cone with a low geometrical attenuation (see figure 1.20)

are likely to create off-fault damage in the surrounding materials (Bhat et al., 2007;

Biegel et al., 2008). Ground motion simulations also show that these conic waves

amplify ground shaking on fault analogues hanging wall and footwall (Gabuchian

et al., 2014).

Rupture modes, crack-like versus pulse-like

As observed in the field with seismic data (Heaton, 1990), a crack can propagate

as a crack-like rupture, through the entire interface, or as pulse-like rupture, and

be localized between a portion ahead of the crack tip that has not slipped yet, and

a restrengthening portion behind, as illustrated in figure 1.21.
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FIGURE 1.21: Pulse-like crack model with a linear variation of shear stress in the
slip weakening-zone, after Rice et al., 2005.

Experimental and numerical studies on the rise time (local duration of relative

slip between two surfaces) support the field observations, and show that this rise

time can be much shorter than the overall rupture duration, by an order of mag-

nitude (Lu et al., 2010b; Lu et al., 2007; Ben-Zion, 2001; Rice et al., 2005; Nielsen

and Madariaga, 2003). Those rupture modes are important to understand as they

influence the constitutive and scaling laws, the energy partition, the heat genera-

tion, and the spatio-temporal complexity of the slip on the fault fault plane (Lu et

al., 2010b). Although it is not clear which processes influencing the rupture mode

are dominant in nature, several mechanisms have been proposed to explain simi-

lar observations in the laboratory (Lu et al., 2010b). In homogeneous models with

simple geometries, it is found that a transition to pulse-like mode occurs when

reducing the prestress ratio τ0/σ0, and more generally, when decreasing the ab-

solute values of τ0 and σ0 (Lu et al., 2010b; Lu et al., 2007). Another explana-

tion supported by numerical models (Nielsen and Madariaga, 2003; Cochard and

Madariaga, 1994) is an interface with strong velocity-weakening friction. In na-

ture, a possible velocity-weakening mechanism can be the local increase of pore

pressure due to frictional heating (Lu et al., 2010b). The increased pore pressure

can be only localized just behind the crack tip, leading to the rapid restrengthen-

ing of the contacts further away from it. Such variations of normal stress have a

strong influence on the rupture mode and on the healing of a fault (Richardson

and Marone, 1999). In a real fault, waves that are reflected back from barriers
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can have the effect of accelerating healing (Lu et al., 2007). The geometric barri-

ers are also found to influence the rupture mode and are a natural explanation

for the field observations of pulse-like ruptures (Ben-Zion, 2001). The barrier

model to explain pulses consists of several crack-like ruptures delimited by ge-

ometric irregularities that locally stop the motion (Lu et al., 2007). Finally, the

rupture mode is also affected by bimaterial interfaces (Ben-Zion, 2001; Shlomai

and Fineberg, 2016): when propagating in the positive direction, the rupture is

likely to be pulse-like, associated with a large normal stress drop at the crack

tip, and propagating at the shear wave speed of the softer material. In the neg-

ative direction, the bimaterial coupling favours crack-like rupture (Shlomai and

Fineberg, 2016).
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1.4 The friction laws

During a rupture, when relative slip occurs at a contact interface, the concept of

friction is extensively used to simplify complex interactions between asperities in

contact (Ohnaka, 2013; Marone, 1998a; Scholz, 1998).

FIGURE 1.22: a) Simple spring slider model where the friction coefficient µ links
the shear resistance τ and the normal stress σn. b) Schematic evolution of friction
as a function of the slider displacement where an instability starts at point C. c)
Critical crack size L̃ at the interface between two blocks in contact over an nominal

area A, and a real contact area Ar. Figure from Kanamori and Brodsky, 2004

To quantify the friction, the Coulomb coefficient of friction µ is used, and rep-

resents the ratio of shear strength τmax to normal stress σn, applied on a surface

(fig. 1.22.a). τmax is the maximum value of shear stress that can be applied on
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a contact surface before it slides. The static coefficients of friction for different

rocks and with different roughnesses have been measured experimentally by By-

erlee, 1978. His study shows that µs systematically varies between 0.6 and 0.8,

except for a number of clay minerals (see fig. 1.23). However, when it comes

to studying this coefficient is not constant during a dynamic event, and friction

laws are needed in order to describe its evolution with time. The friction laws are

generally divided into two categories. The first ones are the rate-and-state laws

which consider the dependence of the friction coefficient on slip velocity. The

other category are the slip weakening laws which consider the friction coefficient

as a function of the relative slip between two surfaces.

FIGURE 1.23: Friction of crustal rocks after Byerlee, 1978

1.4.1 Rate-and-State model

The rate-and-state laws express the coefficient of friction as a function of the slip

velocity V and of the evolution of one or more state variables, as illustrated in

figure 1.24. They are based on empirical fit of laboratory experiments.

Some physical interpretation lies in the fact that the shear resistance of an

interface τp is proportional to the real area of contacts Ar (fig. 1.22.c) multiplied
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by the strength of those contacts. The "rate" term accounts for the fact that there

is a direct effect of slip rate, that tends to increase the friction in the case of creep

behaviour, and which can be seen in flow laws (Scholz, 1998). The "state" term

represents the change of fault properties with velocity and time. It captures the

fact that Ar increases logarithmically with time in the form:

Ar(θ) = A0

[
1 + b ln

(
θV0

dc

) ]
where θ has the dimension of a time (Dieterich and Kilgore, 1994).

A common formulation for this type of law is the Dieterich-Ruina aging law

(Scholz, 1998):

µ = µ0 + a ln
(

V
V0

)
+ b ln

(
θV0

dc

)
(1.21)

where

θ̇ = 1− θV
dc

(1.22)

The constants a and b are non-dimensional parameters determined experi-

mentally, V is the sliding velocity, V0 is a reference velocity at which µ = µ0, its

steady-state value. θ is a state variable which depends on time, and contains the

information on the state of a surface, which depends on its history. dc is a char-

acteristic sliding distance. It is interpreted to be the distance needed to renew the

contacts population of the interface. If (a-b)<0, the interface is said to be rate-

weakening, and can allow instabilities to be triggered. If (a-b)>0, the interface

is rate-strengthening, the coefficient of friction increases with velocity, and thus

rupture cannot propagate.

At steady-state (θ̇ = 0 or θ/dc = 1/V) one can see the direct relationship

between friction coefficient µss and slip velocity Vss:

µss = µ0 + (a− b) ln
(

Vss

V0

)
(1.23)
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FIGURE 1.24: Rate-and-State law Scholz, 1998.

This formulation works well to explain a large range of observed phenomena

in the laboratory and in nature (Scholz, 1998; Marone, 1998a).

It also enables the estimation of a scaling for the critical length of a crack L̃ at

which an instability is to be expected. Indeed, considering again the spring slider

model in fig. 1.22.a, the force balance yields τ = k(δ0 − δ), and an instability

will be triggered if |∆τ/∆δ| > k (fig. 1.22.b). Assuming fault stiffness k f in the

form E′/L̃, E′ being a relevant elastic modulus, the critical length L̃ will then

be (Kanamori and Brodsky, 2004):

L̃ ≈ E′dc

∆τ
=

E′dc

σn(µs − µr)
(1.24)

The corresponding Rate-and-State estimate Lb−a is derived by stability analy-

sis and given in Rice, 1993 by:

Lb−a =
G∗dc

σn(b− a)
(1.25)

Where G∗ = G/(1− ν) is the effective shear modulus.

An extensive discussion about the nucleation length estimates using rate-and-

state friction laws can be found in Rubin and Ampuero, 2005 where the authors

derive a lower bound Lb, and an upper bound L∞ that corresponds roughly to the

Lc derived by Andrews, 1976 (see next section). The different values of Lc can be

due to different loading conditions and histories (Rubin and Ampuero, 2005), but
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further complexity also arises from the heterogeneous nature of faults (Harbord

et al., 2017). Further discussion on the nucleation length is given in chapter 3.

1.4.2 Slip-weakening model

FIGURE 1.25: Slip weakening model, after Andrews, 1976 b) Typical observed slip-
weakening law Ohnaka, 2013

.

One can also consider the variation of the friction coefficient with respect to rel-

ative slip. A simple model first proposed by Ida, 1973 and then Andrews, 1976,

consists of a linear decrease of shear stress versus relative slip, from the peak

value τp ahead of the crack, down to a dynamic value τr attained after a char-

acteristic amount of relative slip Dc, called the slip-weakening distance (see fig-

ure 1.25.a). In this case, the estimate of the critical nucleation length is given by

LAndrews = 2G∗Dc/π × (τp − τf )/(τ0 − τf )
2, where τ0 is the initial shear stress.

In reality, as highlighted by several laboratory experiments (Ohnaka, 2013), the

shear stress increases first from τ0 to a peak value τp in a distance Da, before

decreasing exponentially after the critical slip Dc, to its dynamic value τr of resid-

ual friction, in the center of the crack, as shown in figure 1.25.b. An upper
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bound for Dc in laboratory experiments on fault analogues has been found to

be 500 µm (Nielsen et al., 2010), and typical values are around 1 µm to 10 µm.

1.5 Main focus of the PhD

In spite of decades of research, there are a lot of open questions that remain in

earthquake science. How do earthquake start? Do small and large earthquakes

start in a similar manner? If there exists a difference, can we measure it and use

it for short-term forecasting? Can it also be used to predict the size of the events?

What is the role of the recently discovered slow slip regarding these questions?

Advances in positioning systems have enables to sometimes detect slow slip

during the nucleation phase of the earthquake cycle. When this pre-slip is de-

tected, what we want to know is what controls its size and prevalence, and what

does it tell about the subsequent rupture.

In this thesis, we propose to look at the pre-slip during the nucleation phase

of controlled laboratory ruptures, in order to look specifically at how it is af-

fected by the loading rate, and what are the implications for real earthquakes.

A better understanding of this slow slip and more generally of the nucleation of

earthquakes has got direct implications for probabilistic earthquake forecast and

early-warning systems. It enables a better societal preparedness, and therefore to

reduce the vulnerability to earthquake risk.
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Chapter 2

Material and methods

This chapter presents the main methods used during this PhD. I used and devel-

oped laboratory experiments, as well as numerical codes in order to study the nu-

cleation and dynamic propagation of ruptures. As a considerable amount of time

has been spend developing those tools, this part aims at giving enough details for

someone to reproduce or use them. I introduce the photoelasticity technique used

in chapter 3 to visualize the crack tips of a rupture in the biaxial shear apparatus.

I also give the main equations used to process the strain gauge signals, both in the

biaxial, and in the triaxial shear apparatus. The second part is dedicated to the

numerical techniques, mainly used in chapters 4 and 6. It includes the numerical

model schemes: the finite difference method used to simulate dynamic ruptures,

and the finite element method used to reproduce the loading conditions of the

fault analogues in the laboratory. Finally, I give some details about the inversion

procedure used in appendix A in order to attempt to invert photoelastic fringes.
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2.1 Shear deformation apparatus

2.1.1 Biaxial experiments

Overview of the setup

The biaxial experiment illustrated in figures 2.1 and 2.2 is used to visualize a rup-

ture propagating through a contact interface. Two thin plates (each 1 cm thick, 15

cm wide and 30 cm long) are initially pressed together and then sheared, mak-

ing the asperities initially welded together progressively detach. Although the

rupture process may last several seconds on real faults, at the laboratory scale it

represents only a fraction of a millisecond. Stress changes propagating at speeds

around hundreds of m.s−1 along a 30 cm interface can only be captured using

very high speed acquisition devices. One way of tracking a rupture propagation

is by using strain gauges, another is to use the birefringent properties of transpar-

ent materials such as polycarbonate. This technique called photoelasticity uses

the fact that the refraction indices of birefringent material change depending on

stresses, creating extinction fringes visible when a polarized light passes through.

FIGURE 2.1: Biaxial experiments setup. A monochromatic light source (red: ≈ 635
nm) go through the optical elements in the following order: polarizer, 1/4 wave
plate, lens, birefringent samples (polycarbonate), 1/4 wave plate, polariser, high-

speed camera.
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FIGURE 2.2: a) Photograph of the biaxial press used for the rupture experiments
with the camera on one side. b) Picture of the other side where we can see the
diode, the aquisition system on the left, the lens in front of the polycarbonate plates
in the press, and the hydraulic hand-pumps below to control the pistons applying

the forces.
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In order to polarize the light, polarisers and quarter wave plates are used on

both sides of the plates, and a powerful monochromatic light source (red diode

with a wavelength λw ≈ 635 nm) ensures that enough photons will be captured

in a short exposure time by the Phantom R© V642 camera used. I usually adopt a

frame rate of up to 200000 frames per seconds (fps) with a resolution of 464 by 64

pixels, limited by the buffer memory.

The photoloelaticity technique detailed later used simultaneously with strain

gauge signals, has enabled to investigate the slow propagation phase of ruptures,

which is the object of chapter 3.

Loading geometry

Inside the biaxial press, two polycarbonate plates are clamped by metallic slabs,

over a width of 7.5 cm. A normal load is then applied uniformly thanks to two

pistons pushing horizontally on a metallic block (figure 2.3.a). This forces the two

plates to be in contact along a 30 by 1 cm interface. The contact interface is then

sheared by using a third piston pushing down vertically (simple shear configura-

tion), and the rupture starts when the strength of the interface is reached.

Although the loading system seems relatively simple, as I will show chapter 4,

depending on whether or not the plates are properly clamped so that they do

not slide between the clamps when the pressure is applied, this setup can create

different initial shear stress distributions prior to a rupture. I also had the problem

that the pumps controlling the horizontal pistons could not hold a high pressure

(5 MPa) for a long time. Therefore even though ideally the normal stresses would

have been constant and uniform during the experiments, it could vary by ± 0.7

MPa from one experiment to another. Instead of changing the pumps and redoing

the experiments which could have taken a lot of time, I chose to correct for this

effect when investigating the nucleation length of ruptures in chapter 3.
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FIGURE 2.3: a) Photograph of the biaxial press loading configuration, showing the
two pistons applying the normal stress, and the one for the shear stress. b) Sketch

of the elements and the loading configuration in the biaxial press
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Polycarbonate mechanical properties

The polycarbonate mechanical properties can be found in Latour et al., 2013 or

Dally and Riley, 1965, and are summarized in table 2.1. From the experimental

results, the polycarbonate used in our experiments has similar properties to the

one used by Latour et al., 2013. I will therefore use the latter values in these

studies. We can also mention here that the friction coefficient typically ranges

from 0.3 to 0.4.

source: Latour et al., 2013 Dally and Riley, 1965

E 2.59 [GPa] 2.48 [GPa]

ν 0.35 0.38

G 0.957 [GPa] 0.898 [GPa]

λ 2.24 [GPa] 2.81 [GPa]

Vp 1860 [m.s−1] 1957 [m.s−1]

Vs 893 [m.s−1] 865 [m.s−1]

Vray 821 [m.s−1] 796 [m.s−1]

ρ 1200 [kg.m−3] 1200 [kg.m−3]

TABLE 2.1: Polycarbonate properties

2.1.2 Triaxial experiments

The study of rock friction under pressure, and in particular the effect of rough-

ness in the triaxial vessel had been started in the Rock Mechanics Lab of Durham

University, and a detailed description of the setup can be found in the PhD thesis

of C. Harbord (Harbord, 2018). As I use the same setup except for few improve-

ments (use of longer samples and feedthrough connectors enabling more strain

gauge measurements along the interface), I present here a lighter description. In

this thesis, the triaxial apparatus is used in order to understand the dynamic fric-

tion of rocks under crustal pressure conditions, and how it can be affected by the

different loading conditions.
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Overview of the setup

FIGURE 2.4: a) Description of the triaxial machine elements used to perform dy-
namic rupture experiments under pressure, from the technical notes. b) Picture of
the outside of the machine from where the valves control the confining and pore

pressures applied.

The experiments are performed in a deformation rig able to apply confining pres-

sures up to 250 MPa, and a vertical axial force. It also has the possibility to apply

upstream (from the top) and downstream (from the bottom) pore fluids pressures

via a servo-controlled pump, and to go to temperatures up to 200◦C (not used

here). The pressure vessel at the top is where the sample assembly goes. It is

closed by a threaded top nut, and sealed thanks to several o-rings. The pressure

fluid is a low viscosity silicone oil (0.01 Pa.s), and is controlled by an air-driven

hydraulic pump. Finer adjustments for the confining pressure can also be made
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thanks to a Nova Swiss syringe pump. Concerning the axial force, it is measured

by a Linear Variable Differential Transformer (LVDT) force gauge sitting on top

of a loading column, and under the sample assembly. In order to apply the axial

load on the sample, a motor at the bottom, which can be servo-controlled drives

up the loading column that contains a THK ball spline in the middle to avoid

rotations. The contact is made when the top of the force gauge LVDT touches

the bottom of the sample assembly. The experiments can be run by controlling

the displacement rates using the axial displacement LVDT at the bottom, and a

servo-control system. In this case, due to the loading column compliance (even

though it should be low compared to the sample compliance), the displacement

measured at the bottom should be slightly more than at the top of the column,

and therefore a correction should be applied. In general I fix the motor voltage

(hence the displacement rate) rather than working in servo-control, and measure

the stressing rate directly along the contact interface using strain gauges, or us-

ing the load cell data. I usually go up to 14 µm.s−1. The experiment is controlled

using Labview with a code written mainly by Dan Faulkner.

Loading geometry

The rock samples are prepared as illustrated in fig. 2.5, in a direct shear configu-

ration: two slabs of rock are first fixed on stainless steel holders using cyanoacry-

late, and polished using usually 400 grit diamond powder, and then 800 grit sand-

paper. The two parts are then put in contact together, silicon spacers are placed to

fill the voids, and everything is wrapped in Teflon sheets to avoid friction with the

PVC jacket into which it is inserted. The strain gauge wires that were fixed on the

samples are then pulled out of holes cut through the jacket, and later filled with

soft Loctite R© Hysol 9455 flexible epoxy. The gauge wires are connected to the

outside of the vessel by soldering them on shielded cables (fig. 2.5.a) or anodised

wires (fig. 2.5.b) that are passed through the sample assembly. The anodised

wire are advantageous as up to 6 of them can be passed through feedthrough

conical hollow screws. The sealing to resist pressure is achieved by filling the

feedthrough with Permabound R© ET5428 two-part epoxy (shear strength around
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22 MPa for mild steel). The confining pressure applies the normal load at the in-

terface between the two slabs, and the vertical axial load enables to increase the

shear stress in a direct shear configuration.

FIGURE 2.5: Photograph of the assembly designed to hold and load the sample
(not visible on the picture as it is wrapped into teflon sheet). The brown coaxial
wires around are designed to transmit the strain gauge signals fixed on the sample.
b) Feedthrough cones designed to connect the strain gauges inside the pressure
vessel to the amplifier outside, via anodized wires soldered on terminal blocks.
c) Detail of the loading geometry reproduced after Harbord, 2018; two stainless
steel holders inside a PVC jacket maintain the rock slabs together in a direct shear
configuration. The strain gauges anodized wires are pulled through holes outside

the jacket, which are later filled with soft epoxy.
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Rock mechanical properties

The properties of the rock used are summarized in the table 2.2. They depend

on the temperature, pressure conditions, and on the sample damage history. I

present here some of the values found in literature at 0 MPa and 75 MPa of con-

fining pressure, room temperature, and for intact samples. To account for the

Young’s modulus dependence on pressure, we can assume a linear relation be-

tween E = 50 GPa at Pe f f = 0 MPa, and E = 75 GPa at Pe f f = 75 MPa, for simplicity

(in reality it is more a log type of relation).

Pe f f 0 [MPa] 75 [MPa] source

E 50 [GPa] 70 [GPa] (Heap and Faulkner, 2008)

ν 0.25 (Bhat et al., 2011)

G 20 [GPa] 28 [GPa]

λ 20 [GPa] 28 [GPa]

Vp 5500 [m.s−1] 6000 [m.s−1] (Nasseri et al., 2009)

Vs 2500 [m.s−1] 3600 [m.s−1] (Nasseri et al., 2009)

Vray 3036 [m.s−1] 3312 [m.s−1] (taking Vray ≈ 0.92Vs)

ρ 2700 [kg.m−3] 2700 [kg.m−3]

TABLE 2.2: Westerly granite properties at room temperature, intact samples (≈
20◦C)
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2.2 Quantification of rupture processes

2.2.1 Photoelasticity

FIGURE 2.6: (a) Isochromatic fringes before a rupture propagation. b)Isochromatic
fringe patterns recorded during a rupture propagation. The slipping zone of img1
is situated between the two red arrows that represent the crack tips or rupture
fronts propagating. The green arrow on img2 points at the bottom tip that has

transitioned to supershear while the top tip went out of the camera field.

Photoelasticity is a well-known technique used to image the stress in birefringent

materials, which has been used in several studies on rupture propagation (Schub-

nel et al., 2011; Nielsen et al., 2010; Biegel et al., 2008; Lu et al., 2010b). When a

polarized light passes through a medium and through an analyser on the oppo-

site side, bright and dark fringes appear. Those fringes can be divided into two

types. The first type of fringe are the isoclinics, and correspond to the alignment
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of one of the principal stress direction with the polarity axis of light. Those fringes

disappear when using a circular polariscope arrangement (see fig. 2.7). The other

type are the isochromatics. The isochromatic fringes can be considered as contour

lines of the maximum shear stress field (figure 2.6). This can be shown using the

stress-optic law (Dally and Riley, 1965). It states that the variation of the indices

of refractions are linearly proportional to the stresses in linearly elastic materi-

als. The general form for the optical stress law for two-dimensional plane-stress

birefringent material is expressed as follows:

∆ =
2πhc
λw

(σ1 − σ2), (2.1)

where ∆ is the relative retardation that corresponds to the relative angular

phase-shift, as the stressed material acts as a wave-plate, thus modifying the in-

dices of refractions in the principal stress directions σ1 and σ2. λw is the wave-

length, c is the stress-optic coefficient in m2.N−1, and h is the thickness of the

material in m.

FIGURE 2.7: Circular polariscope arrangement from Dally and Riley, 1965
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When working with monochromatic light, this form can be simplified to :

N fσ

h
= σ1 − σ2 = 2τmax (2.2)

where

N =
∆

2π
and fσ =

λw

c
(2.3)

The fringe order N corresponds to the number of retardation cycles, and the

fringe value fσ in N.m−1 (per fringe) is a material constant. After Dally and Riley,

1965, if using polycarbonate, fσ = 7 kN.m−1 for green light (λw = 546 nm), which

give fσ ≈ 8.1 kN.m−1 for red light (λw = 635 nm). In chapter 4 however, we use a

lower value fσ = 4 kN.m−1 which works better in order to simulate numerically

the fringe patterns observed. Ideally we would need to calibrate this value of fσ.

The theoretical light intensity is given by:

I(x, y) = A sin2(πN(x, y)) + C(x, y)

Where A is the amplitude of the light intensity, C(x, y) is the background light.

2.2.2 Strain gauges

The acquisition system

The strain gauge signals are transmitted via shielded cables to an Elsys SGA_2

conditioning unit. The unit contains a total of 24 channels; wheastone bridges

that can be powered by either 5V or 10V. The output voltages can then be am-

plified by a gain factor of 1, 10 or 100 (±0.1%). The amplifier acts as a low-pass

filter with a cut-off frequency of 1.5 MHz for a gain of 1, down to 600 KHz for

a gain of 100. The output signals have an impedance of 50 Ohms, matching the

impedance of the analog-to-digital converter units called Richters, to which they

are transmitted via shielded BNC to BNC cables. The 6 Richter units can digitize

continuously the signal at a frequency of up to 10 MHz on the total of 24 chan-

nels available (16-bit resolution). One of the Richter units is the master (Richter

M, fig 2.8), deciding on the aquisition parameters for the 5 others (Richters S1

to S5, fig 2.8). The units are controlled by a PC, with the Insite software from
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ITASCATM for the continuous recording. There is also the possibility to use a

Cecchi system which can record at 50 MHz, 80 VPP, 12-bit resolution, but on

trigger mode for short time windows. The continuous data acquired is saved in

several large HDF5 files, and as a lot of time has been spent writing the python

scripts in order to deal with those files in an efficient way, some of the scripts are

given in appendix C.

FIGURE 2.8: Photograph of the acquisition system. The strain gauges signals are
transmitted by Lemo connectors to a conditioning unit which contains the Wheas-
tone briges and amplifies the signals. The amplified signals are connected to syn-
chronized analog-to-digital converter units called richters, via BNC cables. All the

units are controlled by a PC, with Insite software from ITASCATM.
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3-wire Wheatstone bridge configuration

FIGURE 2.9: Three-wire quarter-bridge circuit from
www.vishaypg.com

Strain gauges in a 3-wires quarter-bridge configuration are used, and the output

voltage Vout(t) is measured. Adjusting the output voltage Vout = 0 when ε = 0

by changing the value of the resistor R4 (see fig. 2.9), then ε(t) can be obtained by

the relation:

ε(t) =
−4Vout(t)

G f (Vin + 2Vout(t))
(2.4)

Where Vin is the bridge excitation voltage, and G f is the gauge factor (generally

equal to 2).

Grid configurations for stress calculations

The rosette strain gauges enable me to measure the 2D strain tensor during our

experiments. Here I present the different configurations used, and how to ob-

tain the stresses from them. The gauges were fixed on polycarbonate surfaces

(fig. 2.10.a) or on the rock samples (fig. 2.10.b), using Loctite R© 424 adhesive (ethyl-

based cyanoacrylate). When using polycarbonate, because of the low heat dissi-

pation, I also placed a copper sheet (1 cm by 1 cm) on top of the gauges to avoid

heating of the interface which could alter the stress measurements.
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FIGURE 2.10: a) Example of 3-component rosette strain gauges used on polycar-
bonate. The three strain components oriented at 45◦, 90◦ and 135◦ to the interface
plane are used. b) a) Example of 3-component rosette strain gauges used on rocks
(Micro Measurements G1350, 120 Ohms), photography and sketch from Harbord,
2018. In this case, only the components oriented at 0◦ (εxx) and 45◦ (εd) are usually

used.
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The 3 stacked gauge grids enable me to measure the strains ε1, ε2, ε3 in 3

different orientations θ1, θ2, θ3, along axes u1, u2 and u3 respectively (fig. 2.11).

FIGURE 2.11: Rotation of strains

If x is the axis aligned with the interface, the parallel, perpendicular and shear

components of strain εxx, εyy and γxy can be inverted using :

εi=1,2,3 = εxx(cos θi)
2 + εyy(sin θi)

2 + γxy sin θi cos θi (2.5)

For the biaxial experiments (fig. 2.10.a), θ1 = 45◦, θ2 = 90◦, θ3 = 135◦, which

reduces to: 
εxx = ε3 + ε1 − ε2

εyy = ε2

γxy = ε1 − ε3

(2.6)

The stresses can then be retrieved using Hooke’s law:
σxx = E

1−ν2 (εxx + νεyy)

σyy = E
1−ν2 (εyy + νεxx)

σxy = Gγxy = E
2(1+ν)

γxy

(2.7)

In the triaxial vessel, I assume the normal stress σn to be roughly constant

and equal to the confining pressure Pcon f (it generally does not vary significantly

during the passage of a rupture front, and it has been checked on polycarbonate,

figure 2.12). In this case, by measuring the fault-parallel strain εxx, and the strain

at 45◦ εd, the experiments and calculations can be simplified, as only two strain

gauges are needed in this case.
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FIGURE 2.12: Example of strain gauge signals recorded during a rupture and fil-
tered at 500 kHz a) Shear stresses τxy and fault parallel particle velocities −Vrεxx
recorded at the 4 different locations 5 cm apart b) Normal stresses σn recorded at the
same locations. The initial shear stresses τ0, peak stresses τp and residual stresses
τr can be distinguished in the shear stress record on the left. in general, the normal

stresses measured σn do not vary significantly during ruptures .

From Hooke’s law:

σn = σyy = λ(εxx + εyy) + 2Gεyy (2.8)

Which gives:

εyy = − λ

λ + 2G
εxx +

σyy

λ + 2G
(2.9)

Then using eq. 2.5, with θ = π/4 (meaning cos2(θ) = sin2(θ) = cos(θ) sin(θ) =

1/2), we obtain:

εd =
1
2
(εxx + εyy + γxy) (2.10)
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and therefore:

γxy(= 2εxy) = 2εd + εxx(
λ

λ + 2G
− 1)−

σyy

λ + 2G
(2.11)

The shear stress τxy is finally given by:

τxy = Gγxy = 2Gεd + Gεxx(
λ

λ + 2G
− 1)−

Gσyy

λ + 2G
(2.12)

which assuming a Poisson’s ratio of 0.25 (λ = G) simplifies to :

τxy = 2G(εd −
εxx

3
)−

σyy

3
(2.13)

The strain gauges could also be used with orientations of 45◦ and 135◦. In

term of noise, it would mean that for γxy = ε45◦ − ε135◦ (assuming ν = 0.25), the

electromagnetic noise sensed identically by the gauge grids εerr would be sup-

pressed (εtot
err = εerr− εerr). However, as we might also be interested in calculating

εxx, a quick calculation shows that in this case, assuming ν = 0.25, εtot
err = 3εerr.

When εd at 45◦ and εxx are measured directly, εtot
err = εerr for εxx, and εtot

err = 2/3εerr

for εd. When only two strain gauges are used, assuming σyy constant, I therefore

prefer to use εd and εxx as a compromise for noise reduction.

In spite of this precaution, along with minimising the exposed parts of wires

(not shielded), the noise is still significant on the amplified signals and I usu-

ally apply a low-pass filter with a cut-off frequency of 500 kHz to visualize the

dynamic stress variations (see fig. 2.12).
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Slip calculation for the friction law

In order to obtain the relative slip to plot the friction laws I use the same method

presented in Svetlizky and Fineberg (2014). Assuming that the rupture front is at

steady-state and propagating at constant velocity Vr (we can check using the high

speed camera), the relative slip velocity V(x, t) (twice the particle velocity on one

side of the fault) can be obtained using the measurement of fault-parallel strain:

V(x, t) = 2
∂u(x, t)

∂t
= 2

∂u(x−Vrt)
∂t

= 2
∂u
∂x

∂x
∂t

= −2 Vrεxx(x, t) (2.14)

Where u is the particle displacement in the x direction (parallel to the fault). Now

defining t = t0 as the time just before a rupture front passes at the position of the

strain gauge at x, and ε0
xx = εxx(t0), the fault slip U is obtained using:

U(x, t) =
∫ t

t0

2
∂u(x, t′)

∂t′
dt′ = −2 Vr

∫ t

t0

(
εxx(x, t′)− ε0

xx
)
dt′ (2.15)

This method is used in Chapter 3, which presents experimental results of

strain gauge data during dynamic ruptures. It enables to obtain the friction co-

efficient dependence on slip and slip velocity. The method is also tested and

validated using the numerical models presented in chapters 4 and 6.
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2.3 Numerical methods

The numerical methods used in order to simulate the experiments are presented

here. Two main modelling methods are used: the finite difference and the finite

element methods. While the Finite Element Method (FEM) is an efficient way

of modelling static deformations of elastic materials (see sections 4.1 and 6.1 of

chapters 4 and 6 respectively), it is computationally expensive. When modelling

dynamic ruptures in sections 4.2 and 6.2, we therefore prefer to use the finite

difference method which is more efficient in the case of dynamic problems.

2.3.1 Finite differences

I present here a brief description of the finite difference scheme used for dynamic

rupture simulations in chapters 4 and 6.

FIGURE 2.13: Finite-difference staggered grid for the 2D stress-velocity form of the
wave equation after Virieux and Madariaga, 1982. Velocities are defined at time t,

and stresses at time t+1/2

The finite-difference method consists of approximating the spatial and tempo-

ral derivatives of a problem, at specified grid points, using values at nearby grid

points. A popular approach for rupture modelling is described by Virieux and

Madariaga, 1982, and a similar method was also used by Andrews, 1976.
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For the 2D stress-velocity form of the wave equation, I use a staggered grid

(fig. 2.13) and the five discretized equations (eqs. 2.17) describing the evolution

of particle velocities Vx and Vz in x and z directions, and of the stresses τxx, τzz

and τxz (Virieux and Madariaga, 1982), obtained from equations 2.16.

∂vx

∂t
=

1
ρ
(

∂τxx

∂x
+

∂τxz

∂z
)

∂vz

∂t
=

1
ρ
(

∂τxz

∂x
+

∂τzz

∂z
)

∂τxx

∂t
= (λ + 2G)

∂vx

∂x
+ λ

∂vz

∂z
∂τzz

∂t
= (λ + 2G)

∂vz

∂z
+ λ

∂vx

∂x
τxz

∂t
= G(

∂vx

∂z
+

∂vz

∂x
)

(2.16)

Vx
∣∣t+1
i+1/2
j+1/2

= Vx
∣∣ti+1/2

j+1/2
+

dt
ρ

(τxx
∣∣t+1/2

i+1
j+1/2

− τxx
∣∣t+1/2

i
j+1/2

dx
+

τxz
∣∣t+1/2
i+1/2

j+1
− τxz

∣∣t+1/2
i+1/2

j

dz

)

Vz
∣∣t+1
i+1
j+1

= Vz
∣∣ti+1

j+1
+

dt
ρ

(τxz
∣∣t+1/2
i+3/2

j+1
− τxz

∣∣t+1/2
i+1/2

j+1

dx
+

τzz
∣∣t+1/2

i+1
j+3/2

− τzz
∣∣t+1/2

i+1
j+1/2

dz

)

τxx
∣∣t+3/2

i+1
j+1/2

= τxx
∣∣t+1/2

i+1
j+1/2

+ dt
(
(λ + 2G)

Vx
∣∣t+1
i+3/2
j+1/2

−Vx
∣∣t+1
i+1/2
j+1/2

dx
+ λ

Vz
∣∣t+1
i+1
j+1
−Vz

∣∣t+1
i+1

j

dz

)

τzz
∣∣t+3/2

i+1
j+1/2

= τzz
∣∣t+1/2

i+1
j+1/2

+ dt
(

λ

Vx
∣∣t+1
i+3/2
j+1/2

−Vx
∣∣t+1
i+1/2
j+1/2

dx
+ (λ + 2G)

Vz
∣∣t+1
i+1
j+1
−Vz

∣∣t+1
i+1

j

dz

)

τxz
∣∣t+3/2
i+1/2

j+1
= τxz

∣∣t+1/2
i+1/2

j+1
+ Gdt

(Vx
∣∣t+1
i+1/2
j+3/2

−Vx
∣∣t+1
i+1/2
j+1/2

dz
+

Vz
∣∣t+1
i+1
j+1
−Vz

∣∣t+1
i

j+1

dx

)
(2.17)

The critical time-step is dt ≤ min(∆x, ∆z)/Vp to ensure a stable solution.
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FIGURE 2.14: Example of stress drop along a defined interface, during a dynamic
rupture numerical simulation, using finite-differences, and a linear slip-weakening
friction law. On the figure, ∆τ = τ̇ × (t− t0), t0 being the start of the simulation,
at which I start forcing the stress to drop at a rate τ̇ inside the predefined patch

between x = 0.14 m and x = 0.16 m.

In order to model a dynamic rupture, I force the shear stress to increase ev-

erywhere at a rate of τ̇ along a line which corresponds to the interface in the

2D model, except inside a pre-defined patch (from 0.14 to 0.16 m in fig. 2.14).

The relative lower shear stress within this patch induces some increase of relative

dispacement. As the relative displacement increases, the shear stress decreases

further inside the patch, according to a prescribed slip-weakening friction law

which gives the relation between shear stress and relative displacement, as im-

plemented in Andrews (1976) (linear decrease from τp to τr after a relative slip

amount equal to the critical slip-weakening distance Dc). While the stress drops

inside the patch, it also increases outside of it, at the crack tips, therefore driving

its growth. One remarkable result from Andrews (1976), using this relatively sim-

ple model, is the possibility for a transition from sub-shear to supershear rupture

velocities.
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2.3.2 Finite elements

Basic 1D spring model

The FEM consists in discretizing a domain into so-called elements, in order to

solve the partial differential equations governing a physical problem. In this case,

I apply the method to linear elasticity, and LEFM.

I present here the simplest model possible in order to understand the concept

of the FEM, as described in Ottosen and Petersson, 1992. Consider a spring at

equilibrium subjected to forces
−→−F and

−→
F at the left and right nodes respectively,

so that Σ
−→
F =

−→
0 (fig. 2.15.a). If the spring stiffness is noted k, then the nodal

forces and displacements are linked by:

F = k(u2− u1); considering the right node (2.18)

−F = k(u1− u2); considering the left node (2.19)

FIGURE 2.15: a) Spring subjected to simple traction. b) Two springs system subject
to a simple traction with global forces and displacements. c) Two springs system

decomposed into two elements with local forces and displacements

Now instead of a single spring, consider a system of two springs with two

end nodes and a third one in the middle connecting them (fig. 2.15.b), where we

would like to relate the global nodal displacements u1, u2 and u3 to the global

nodal forces
−→
f 1,
−→
f 2 and

−→
f 3. In the FEM, we start by considering each spring
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with its associated nodes individually as a so-called element (fig. 2.15.c). A single

global node can belong to several elements; u2 belongs to element 1 and element

2 in this case, and depending if I refer to the node in element 1 or element 2, I will

refer to it as u2e1 or u1e2, respectively. Now that the physical domain is divided

into elements, the displacement-force relations (see eq. 2.19) can be written for

each of the elements, in a matrix form kei~u = ~fei: For element 1:

 ke1 −ke1

−ke1 ke1

u1e1

u2e1

 =

 f 1e1

f 2e1

 (2.20a)

And for element 2:  ke2 −ke2

−ke2 ke2

u1e2

u2e2

 =

 f 1e2

f 2e2

 (2.20b)

Which, written as a function of the global displacements ~u =
{

u1 u2 u3
}T

, is

equivalent to:


ke1 −ke1 0

−ke1 ke1 0

0 0 0




u1

u2

u3

 =


f 1e1

f 2e1

0

 (2.21a)

And


0 0 0

0 ke2 −ke2

0 −ke2 ke2




u1

u2

u3

 =


0

f 1e2

f 2e2

 (2.21b)
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Then the forces can be added given the fact that
−→
f 2 =

−−→
f 2e1 +

−−→
f 1e2 (= 0 at

equilibrium) to obtain:

~f =


f 1

f 2

f 3

 =


f 1e1

f 2e1 + f 1e2

f 2e2

 =


f 1e1

f 2e1

0

+


0

f 1e2

f 2e2


= ~fe1 + ~fe2 = ke1~u + ke2~u =

[
ke1 + ke2

]
~u = K~u

(2.22)

K is called the stiffness matrix and ~f the load vector. At equilibrium, the sys-

tem written in full would be:


ke1 −ke1 0

−ke1 ke1 + ke2 −ke2

0 −ke2 ke2




u1

u2

u3

 =


− f 1

0

f 1

 (2.23)

Which could be solved using ~u = K−1~f .

However one can notice that this particular system would have an infinity of

solutions as there are an infinity of displacements ~u able to satisfy the prescribed

forces (the inverse problem is ill-posed, and in mathematical terms det K = 0).

Therefore one has to be careful about which boundary conditions are applied.

In this case we might for instance prescribe a fixed displacement at the left node

u1 = d. In order to enforce this displacement, the following modifications are

made:


ke1 −ke1 0

−ke1 ke1 + ke2 −ke2

0 −ke2 ke2

 becomes


1 0 0

0 ke1 + ke2 −ke2

0 −ke2 ke2


And
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
− f 1

0

f 1

 becomes


d

0− ke1 × d

f 1− 0× d


So that the initial system


ke1u1− ke1u2 = f 1

ke1u1 + (ke1 + ke2)u2− ke2u3 = 0

−ke2u2 + ke2u3 = − f 1

(2.24)

becomes


u1 = d

(ke1 + ke2)u2− ke2u3 = −ke1d

−ke2u2 + ke2u3 = − f 1

(2.25)

The trivial equation u1 = d can be deleted, and the system with 2 equations

and 2 unknowns be solved. Because one node is fixed, there will be only one

solution satisfying the system.

In order to add a point force at a given node, it is easier and only needs to be

added to the load vector at the corresponding index.
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2D elasticity with rectangular elements

FIGURE 2.16: a) Grid example with global nodes (blue) and elements numbers
(red). b) Rectangular element of length a and b in the physical domain. c) Example
of shape function N1 in local coordinates d) Local degrees of freedom of an element

For 2D problems using rectangular elements the principle is the same as with

the spring example. Starting from the constitutive equations:


∂σxx
∂x +

∂τxy
∂y + Fx

∂σyy
∂y +

∂τxy
∂x + Fy

(2.26)

Where Fx and Fy are the body forces, using the displacements u and v in x and y

direction, equation 2.26 can be written (Smith et al., 2013):

E
1− ν2 (

∂2u
∂x2 +

1− ν

2
∂2u
∂y2 + ν

∂v
∂x∂y

+
1− ν

2
∂2v

∂y∂x
) = −Fx (2.27a)

E
1− ν2 (ν

∂2u
∂y∂x

+
1− ν

2
∂2u

∂x∂y
+

1− ν

2
∂2v
∂x2 +

∂2v
∂y2 ) = −Fy (2.27b)
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From here the displacements can be approximated using the so-called shape

functions. Those shape functions can be polynomials of high-order or linear in

the simplest case. They can be defined in a local coordinate system (ζ,η) which

maps the physical coordinates (x,y) in a domain comprised between -1 and 1,

used for the numerical integration. For 4-node rectangular elements, the linear

shape functions N1, N2, N3 and N4 in the local coordinate space have the form:



N1 = (1− x
a )(1−

y
b ) ≡

1
4(1− ζ)(1− η)

N2 = x
a (1−

y
b ) ≡ 1

4(1 + ζ)(1− η)

N3 = x
a

y
b ≡ 1

4(1 + ζ)(1 + η)

N4 = (1− x
a )

y
b ≡ 1

4(1− ζ)(1 + η)

(2.28)

An example of shape function is shown in fig. 2.16.c . N1 is for instance equal

to 0 at every node except the local node 1 (fig. 2.16.b-c). Using those shape func-

tions, the displacement (assumed linear) inside an element e can be approximated

as:

ue(x, y) = ΣNiui =
{

N1 N2 N3 N4
}

.
{

u1 u2 u3 u4
}T

(2.29)

where u1, u2, u3, u4 are the nodal displacements in x-direction (fig. 2.16.d).

A similar relation is valid for v1, v2, v3 and v4, the nodal displacements in the

y-direction: ve(x, y) = ΣNivi. The nodal displacements in x and y directions are

usually called degrees of freedom (dof) and commonly gathered in one single

displacement vector ~u =
{

u1 u2 u3 u4 v1 v2 v3 v4
}T

.

Then the FEM consists in using those approximations in equations 2.27a-2.27b,

and by multiplying 2.27a and 2.27b each by the 4 shape functions, a set of 8

equations necessary to solve for the 8 unknowns in ~u is obtained. Both sides of

the equations are then integrated by parts which enables us to avoid having the

second derivatives of displacements appearing (otherwise there would be trivial

equations 0 = 0 as the second derivative of a linear function would be zero).
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Following those steps, we end up with the following set of equations for an

element (Szabo and Lee, 1969):

E
1− ν2

a∫
0

b∫
0

 ( ∂Ni
∂x

∂Nj
∂x + 1−ν

2
∂Ni
∂y

∂Nj
∂y ) (ν ∂Ni

∂x
∂Nj
∂y + 1−ν

2
∂Ni
∂y

∂Nj
∂x )

(ν ∂Ni
∂y

∂Nj
∂x + 1−ν

2
∂Ni
∂x

∂Nj
∂y ) ( ∂Ni

∂y
∂Nj
∂y + 1−ν

2
∂Ni
∂x

∂Nj
∂x )

 dxdy · ~u = ~f

(2.30)

Which gives an element stiffness matrix ke in the matrix form:

ke =
∫

BTDBdV (2.31)

If the terms in~u are rearranged such that~u =
{

u1 v1 u2 v2 u3 v3 u4 v4
}T

B, the matrix containing the shape functions derivatives is given by:

B =


∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y
∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 (2.32)

and using the chain rule:

B = 2


1
a

∂N1
∂ζ 0 1

a
∂N2
∂ζ 0 1

a
∂N3
∂ζ 0 1

a
∂N4
∂ζ 0

0 1
b

∂N1
∂η 0 1

b
∂N2
∂η 0 1

b
∂N3
∂η 0 1

b
∂N4
∂η

1
b

∂N1
∂η

1
a

∂N1
∂ζ

1
b

∂N2
∂η

1
a

∂N2
∂ζ

1
b

∂N3
∂η

1
a

∂N3
∂ζ

1
b

∂N4
∂η

1
a

∂N4
∂ζ

 (2.33)

The elements of ke are then integrated using the gauss-quadrature method:

the integral a function f (x, y) can be approximated by the sum of the value of the

function at so-called gauss-points fi multiplied by weights wi. For rectangular

elements the coordinates of the four gauss points in the local coordinate space

and the weights are given by table 2.3
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ζi ηi wi
−1√

3
−1√

3
1

1√
3

−1√
3

1
1√
3

1√
3

1
−1√

3
1√
3

1

TABLE 2.3: Gauss points coordinates and weights for 4 -nodes rectangular ele-
ments

Equation 2.31 can now be rewritten:∫
BTDBdV = ΣiΣjBTDBijdet(J)wij

where J is the Jacobian which contains the ratio between the physical and local

coordinates:

J =

 ∂x
∂ζ

∂x
∂η

∂y
∂ζ

∂y
∂η

 (2.34)

FIGURE 2.17: How to assemble the contribution of 2 elements in a global stiffness
matrix. At the locations where there are contributions from several elements, the

stiffness matrix values keij are summed

The contributions of all the elements are summed in a single global stiffness

matrix K in the same way as in the example of the spring system (fig. 2.17). All the

dof shared between 2 neighbouring elements will have the added contribution of
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the 2 elements in the stiffness matrix. It will also be similar to build the force

vector and apply the boundary conditions. The system is finally solved using:

~u = K−1~f (2.35)
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The discontinuous version of finite elements

Until now, the FEM was described for its continuous version, which is assuming

that the displacements are continuous in the physical domain. In certain cases

and especially for cracks and rupture problems, it is convenient to enable a dis-

continuity between the elements (corresponding to the location of a precut inter-

face for instance). This numerical scheme is called Discontinuous Galerkin (DG)

and I built a python code based on the MATLAB version implemented by Bird

et al., 2017 in this thesis (see appendix C for the python scripts). In DG, each el-

ement possesses independent dof that are not linked to dof of nearby elements

by the volume integral term
∫

BTDBdV, but by surface fluxes. The assembled

global stiffness matrix K is therefore a combination of terms coming from the

volume integrals and others from the surface integrals. For a domain with nelx

elements in x-direction and nely elements in y-direction, the total number of el-

ements nels (hence the total number of volume elemental stiffness matrices kvol
e )

will be nelx × nely, and the total number of faces connecting two elements is

n f aces = 2nels − (nelx + nely). Assuming continuity between the elements, K

can be calculated as (Bird et al., 2017):

K =
nels

∑
1

∫
BTDBdV +

n f aces

∑
1

∫
(C1 + C2 + C3 + C4)dS

= (Kvol + Ksur f )

(2.36)

where



C1 = −B+TD nT N+/2− N+Tn D B+/2 + p(N+T N+)

C2 = +B+TD nT N−/2− N+Tn D B−/2− p(N+T N−)

C3 = −B−TD nT N+/2 + N−Tn D B+/2− p(N−T N+)

C4 = +B−TD nT N−/2 + N−Tn D B−/2 + p(N−T N−)

(2.37)
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The + and− superscripts correspond to the variables in the positive and neg-

ative elements around a face, depending on the convention chosen, n contains the

components of the face normal vector n̂, pointing outwards the positive element

(see fig. 2.18). p is a penalty term defined as p = 10 E∗
h . h being the length of the

face.

n =

nx 0 ny

0 ny nx


And

N =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4


Those terms are integrated along the surface between two facing elements

using 3-points gaussian integration with coordinates and weights summarized

in table 2.4. In the example of figure fig. 2.18, ζ is constant for all the gauss points

as the surface is oriented vertically; ζ = +1 for the positive element, ζ = −1 for

the negative element.

ζi or ηi wi

−
√

3
5 5/9

0 8/9

+
√

3
5 5/9

TABLE 2.4: Gauss points coordinates and weights for surface terms integration

The assembly procedure is illustrated in fig. 2.18, according to the element

topography. The term C1 links only nodes from the positive element, and the

term C4 only from the negative element. The terms C2 and C3 are linking nodes

from positive and negative elements (see eq. 2.37).
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FIGURE 2.18: How to assemble the surface terms C1 to C4 in a global stiffness
matrix. At the locations where there is a contributions of several terms, they are

summed

For elastodynamic problems the wave equation written from a FEM point of

view is:

MT~̈u + KT~u = ~f (2.38)

If using the centered finite-difference approximation of the time derivative it

becomes:

~ut+dt = dt2[MT]−1[~f − KT~ut] + 2~ut − ~ut−dt (2.39)

where M is the so-called mass matrix which is assembled in a similar way

than for K, and where the elementary matrices Me are calculated and integrated

using:

Me =
∫

ρNT NdV = ΣiΣjρNT Ndet(J)wij (2.40)
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2.3.3 Overdetermined inversion

Using photoelasticity, it is possible in some cases to obtain informations about the

stress field around a crack tip, by inverting the isochromatic fringes (Dally and

Riley, 1965). Although it did not work well in the case of the dynamic ruptures, I

discuss why in appendix A, and still describe this useful method here.

To understand the inverse problem, it is useful to consider a simple linear fit

using the least-square method. Consider a set of points (yi, xi) which we want to

fit with a function in the form f (a1, a2) = a1 + a2x. In order to have an optimal

fit, we need to adjust the coefficients a1 and a2 which minimize the root-mean-

squared error R2(a1, a2) = ∑n
i=1[yi − (a1 + a2xi)]

2. The condition to have found a

minimum is:
∂R2(a1, a2)

∂ai
= 0 (2.41)

For a linear fit we can thus write:
∂R2(a1,a2)

∂a1
= −2 ∑n

i=1[yi − (a1 + a2xi)] = 0

∂R2(a1,a2)
∂a2

= −2 ∑n
i=1[yi − (a1 + a2xi)]xi = 0

(2.42)

⇔ na1 + a2 ∑n
i=1 xi = ∑n

i=1 yi

a1 ∑n
i=1 xi + a2 ∑n

i=1 x2
i = ∑n

i=1 xiyi

(2.43)

Or written in matrix form: n ∑n
i=1 xi

∑n
i=1 xi ∑n

i=1 x2
i

a1

a2

 =

 ∑n
i=1 yi

∑n
i=1 xiyi

 (2.44)

It can also be noticed that:

 n ∑n
i=1 xi

∑n
i=1 xi ∑n

i=1 x2
i

 =

 1 ... 1

x1 ... xn




1 ... x1

. ... .

. ... .

1 ... xn

 = GTG
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And

 ∑n
i=1 yi

∑n
i=1 xiyi

 =

 1 ... 1

x1 ... xn




y1

.

.

yn


= GT~d

Finally the model parameters ~m =
{

a1, a2

}T
can be found using the familiar

equation for inverse problems:

~m =
[

GTG
]−1

GT~d (2.45)

where ~d =
{

y1, ..., yn

}T
contains the data points, and G contains the partial

derivatives of the function to minimize gi(xi, yi, a1, a2, ..., ak) = yi− f (xi, a1, a2, ..., ak)

with respect to the k model parameters in ~m. Those derivatives can be either de-

termined analytically, or using a finite difference approximation. G is written in

the general form:

G =



∂g1
∂a1

∂g1
∂a2

... ∂g1
∂ak

∂g2
∂a1

∂g2
∂a2

... ∂g2
∂ak

. . . .

. . . .

. . . .
∂gn
∂a1

∂gn
∂a2

... ∂gn
∂ak


(2.46)

In the case of a non-linear inverse problem, some initial guess for the models

parameters ~m0 have to be given at first, and then the solution is found iteratively

using a root-finding algorithm such as the Newton-Raphson method as described

in Dally and Riley, 1965, p 514-515.
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The matrix G is calculated at a time j like in eq. 2.46, from the vector ~gj con-

taining the errors between observations and modelled data, and by taking the

derivative of these errors with respect to the k model parameters contained in

~mj. We obtain a vector ~∆j containing the corrections to apply to ~mj using equa-

tion 2.47.

~∆j =
[

GT
j Gj

]−1
GT

j ~g (2.47)

The model ~mj is thus corrected using:

~mj+1 = ~mj +~∆j (2.48)

The process is repeated, starting again from eq. 2.47 with the new model val-

ues in ~mj+1 until the solution converges which means until the errors in ~∆j are

negligible.

To avoid falling in local minima in the inversion described in appendix A, we

also repeat the inversion procedure, starting from different initial guesses.
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Chapter 3

Loading rate influence on the

nucleation of laboratory earthquakes

This chapter is written in the form of an article, as its content has been published

in Journal of Geophysical Research (Guerin-Marthe et al., 2018). It is co-authored

with Stefan Nielsen who participated to the data acquisition and made few edits

in the text, Stefano Giani and Robert Bird who helped with the development of a

Finite Element code, and Giulio Di Toro who provided the funds to buy the lab-

oratory equipment. I did the acquisition, processed the data, made the figures,

wrote the Finite Element code in python, and wrote the manuscript. Some ele-

ments of the methods section in this chapter are already mentioned in chapter 2,

however we now give more emphasis on how the specific set of experiments have

been run, in a self-contained form.

Keypoints :

• The nucleation length decreases with loading rate, implying that smaller-

size asperities clusters can be triggered by accelerated slip

• The nucleation position localises on high coulomb stress patches with small-

scale inhomogeneities at high loading rates

• The measured nucleation length of laboratory earthquakes falls into the

range predicted by numerical and theoretical studies
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3.1 Abstract

Recent GPS observations of major earthquakes such as the 2014 Chile megathrust

show a slow pre-slip phase releasing a significant portion of the total moment

(Ruiz et al., 2014). Despite advances from theoretical stability analysis (Rubin

and Ampuero, 2005; Ruina, 1983), and modeling (Kaneko et al., 2017), it is not

fully understood what controls the prevalence and the amount of slip in the nu-

cleation process. Here we present laboratory observations of slow slip preceding

dynamic rupture, where we observe a dependence of nucleation size and position

on the loading rate (laboratory-equivalent of tectonic loading rate). The setup is

composed of two polycarbonate plates under direct shear with a 30 centimeters

long slip interface. The results of our laboratory experiments are in agreement

with the pre-slip model outlined by Ellsworth and Beroza (1995) and observed in

laboratory experiments (Ohnaka and Kuwahara, 1990; Nielsen et al., 2010; Latour

et al., 2013), which show a slow slip followed by an acceleration up to dynamic

rupture velocity. However, further complexity arises from the effect of (1) rate

of shear loading and (2) inhomogeneities on the fault surface. In particular, we

show that when the loading rate is increased from 10−2 MPa.s−1 to 6 MPa.s−1,

the nucleation length can shrink by a factor of three and the rupture nucleates

consistently on higher shear stress areas. The nucleation lengths measured fall

within the range of the theoretical limits Lb and L∞ derived by Rubin and Am-

puero (2005) for rate-and-state friction laws.
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3.2 Introduction

The precursory phase of earthquakes and, more generally, the different phases of

the seismic cycle remain in large part poorly understood. However some promis-

ing advances have been made in the past decades thanks to fault observations,

theoretical and numerical models, and small-scale laboratory experiments.

It is well-known that some faults are able to release a significant portion of the

strain energy accumulated during the tectonic loading phase by slow, aseismic

creep (Kanamori, 1977; Scholz et al., 1969). The observation of small to moderate

earthquakes and repeaters evolving in the area of an impending earthquake, has

allowed to infer either the presence of slow slip (Kato et al., 2012; Hasegawa and

Yoshida, 2015) or the advancement of a slow rupture front (Bouchon et al., 2011;

Michel Bouchon and Schmittbuhl, 2013). More recently, thanks to substantial

developments of GPS and continuous GPS networks along with satellite interfer-

ometry, it has been possible to use geodetical data in conjunction with seismic

signals to highlight the crustal deformation during different stages of the seis-

mic cycle. In a small number of cases so far, an accelerated slip phase preceding

large or great earthquakes of several weeks (Ruiz et al., 2014; Ruiz et al., 2017)

to months (Socquet et al., 2017) has been identified, often accompanied by seis-

mic swarms triggered as the slip progresses (Kato et al., 2012). The latter may

be indicative of the nucleation process and has been interpreted as part of the

triggering mechanism of earthquakes (Ruiz et al., 2014; Ruiz et al., 2017). In the

later case, the coseismic slip area was smaller and located inside the large nucle-

ation zone that started slipping a few months before. More recently Tape et al.

(2018) showed that a M3.7 earthquake in Alaska initiated with the acceleration of

a rupture front 22 seconds before the main shock. This last observation concerns

a small earthquake rupture and thus provides insight in the rupture process at an

intermediate scale between laboratory experiments and great earthquakes.

While the above observations are provoking, they are so far too few to clearly

quantify the prevalence of pre-slip, and to demonstrate a statistically signifi-

cant causality relation between slow-slip and earthquake nucleation. As a con-

sequence, opposing models have been proposed for earthquake initiation: the
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pre-slip model of Ellsworth and Beroza (1995) and the cascade model (Olson and

Allen, 2005). The main difference between the two models is that in the pre-slip

model, the rupture expands until the slipping patch reaches a critical size Lc at

which it becomes unstable. In the cascade model, small and large earthquake

start in a similar manner, by successive random breaking of asperities eventually

leading to a large rupture for which the size cannot be predicted until it stops

(Olson and Allen, 2005).

As it has been suggested that a number of large events have been triggered by

pre-slip (Ruiz et al., 2014; Ruiz et al., 2017; Tape et al., 2018), it is crucial to under-

stand how large can a slipping patch grow before being likely to become unstable

and trigger a major event, and what controls the size of Lc, intended as the size

above which a sliding fault patch will start to propagate spontaneously. Lc can

be predicted for a few simple models related to earthquake faulting. Assuming

that the stress drop inside the slipping patch is known, an estimate of Lc can be

obtained based on energy concepts, stemming from the original Griffith criterion

for brittle failure (Griffith, 1921), subsequently extended to elasto-plastic materi-

als (Irwin, 1957; Rice, 1968) and to shear rupture on frictional earthquake faults

(Andrews, 1976). The resulting Lc decreases with the normal stress and the stress

drop within the nucleation patch, and increases with the fracture energy. For a

homogeneous fault characterized by a velocity-weakening friction law, the size

Lb−a of an unstable slipping patch can be predicted (Ruina, 1983; Gu et al., 1984)

by stability analysis. Some correspondence between Lb−a (obtained in terms of

stability) and Lc (obtained in terms of energy balance) must exist and has been ex-

plored for particular cases of rate-and-state friction laws (Uenishi and Rice, 2003;

Rubin and Ampuero, 2005). Importantly, the study of Rubin and Ampuero (2005)

using rate-and-state models shows that Lb−a is not unique, but that there exists

a range of possible nucleation lengths within the values (Lb, L∞), corresponding

to the lower and upper bounds of the nucleation length predicted, respectively

(see discussion section). While these theoretical predictions are roughly matched

by experimental observations, a more complex behaviour is observed on experi-

mental and natural faults, possibly due to strong inhomogeneity (Harbord et al.,

2017).
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Because of the small number of pre-slip observations in nature and the com-

plexity of the physical processes involved at different scales, one way to investi-

gate the dependence of Lc on individual physical parameters is to replicate this

slow-slip in controlled laboratory experiments (Ohnaka and Kuwahara, 1990;

Kato et al., 1992; Ohnaka, 1992; Latour et al., 2013; Mclaskey and Yamashita,

2017; Xu et al., 2017) and in numerical models (Kato and Hirasawa, 1996; Rubin

and Ampuero, 2005; Kaneko and Ampuero, 2011; Kaneko et al., 2016; Kaneko

et al., 2017). Latour et al. (2013) evidenced that Lc was inversely proportional to

the normal stress using polycarbonate plate as earthquake laboratory analog. The

normal stress dependence is supported by theoretical studies using rate-and-state

or slip weakening friction laws and crack stability analysis Ruina, 1983. Ohnaka

(1992) and Kato et al. (1992) also observed a similar pre-slip in laboratory rupture

experiments using granite slabs. The scaling of Lc in those experiments depends

on normal stress, fault surface roughness and slip weakening distance Dc, which

is the amount of relative slip on a fault needed for the friction to reach the dy-

namic value. The effect of normal stress is also evidenced in numerical models

(Kaneko et al., 2016). But, more than the Lc dependence on normal stress, nu-

merical models also show that increasing the loading rate causes Lc to decrease,

using rate-and-state friction laws (Kato and Hirasawa, 1996; Kaneko et al., 2016).

In order to verify this decrease of Lc , we conducted experiments similar to the

ones of Latour et al. (2013), but this time investigating the effect of the loading rate

on the nucleation length of laboratory ruptures. Even though experiments using

granite blocks have already investigated the Lc dependence on loading rate, this

was done either by looking at strain gauges signals (Kato et al., 1992), or by ob-

serving the transition between stable and unstable behavior of granite slabs of

length close to Lc (Mclaskey and Yamashita, 2017). The advantage of the pho-

toelastic technique used here is that the tips of the propagating rupture can be

directly tracked, allowing to measure nucleation length and position.
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3.3 Materials and Methods

a)

b)

c)
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 c
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High-speed
camera
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pistons

FIGURE 3.1: Photograph and schematic description of the experimental setup. a)
Picture of the biaxial press used for the rupture experiments. b) Sketch of the
loading and monitoring configuration with the two polycarbonate plates (7) held
through metallic clamps (2). Two horizontal pistons (1) apply a distributed normal
force through the right-hand clamp edge (4), which is fixed in the vertical direc-
tion but allowed to move in the horizontal direction. A vertical piston (3) actuates
the shear stress by applying a vertical force through the left-hand clamp edge (5),
which is allowed to move vertically along a low friction rail, but is fixed in the hor-
izontal direction. Four strain gauge rosettes (9) indicated by red circles are fixed
using cyanoacrylate bond along the 30x1 cm interface (red line) between the two
plates. An accelerometer (6) is fixed at the top of the right plate, and a high speed
camera captures the rupture events in a 20 cm long window (8) in the middle of
the interface. c) Two examples of isochromatic fringe patterns recorded during a
rupture. The slipping zone of img1 is situated between the two red arrows that
represent the crack tips, or propagating rupture fronts. The green arrow on img2
points at the bottom tip that has transitioned to supershear velocity, while the top
tip has propagated outside of the camera field. Again red circles represent the

strain gauges, which are numbered sg1-4.
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The laboratory setup (fig. 3.1.a and 3.1.b) consists in two rectangular polycarbon-

ate plates 30 x 15 x 1 cm, held in sliding contact across their 30 cm edge. Two

horizontal pistons apply a uniform pressure through a metal holder, maintaining

the 30 cm by 1 cm contact interface under normal stress. A third piston applies

a vertical force on the metal holder of the left-hand plate, thus imposing shear

stress on the sliding interface in a simple shear configuration. All pistons are con-

trolled by hand pumps. The two horizontal pistons and the normal stress remain

fixed during the shear loading phase leading to the rupture. After each rupture

the normal stress is released, the plates are reset to their initial positions, and the

normal stress is imposed again for the next experiment. Three strain components

are monitored at each of the four strain gauge rosette locations (2 mm away from

the fault interface, and equally spaced 5 cm away from each other).

The signals are sampled at 10 MHz and filtered at 500 kHz in order to record

the initial, peak, residual and normal stresses before the rupture, respectively τ0,

τp, τr and σn (see fig. 3.2). Because we do not control the exact value of shear

loading rate τ̇ when moving the vertical piston using the hand pump, we also

use the strain gauges to measure the average loading rate τ̇ = ∆τ/∆t during the

few seconds of the loading phase.

A high-speed camera continuously overwrites a circular buffer, recording at

2.105 frames per second. A signal is sent to the camera immediately after the

dynamic rupture, allowing to store the frames from the last few seconds before

rupture, and up to approximately 0.5 s after. We use the well-known photoelastic

properties of the polycarbonate to visualize so-called isochromatic fringes, high-

lighting the areas of high stress concentration which correspond to the edges of

the slipping patch (fig. 3.1.c), as used in previous laboratory rupture experiments

(Nielsen et al., 2010; Rosakis et al., 2007). We select the frames where sharp stress

variations start to appear along the contact interface (start of nucleation), until

the crack propagates dynamically and the tips reach the limit of the camera field.

Thus for each rupture experiment, which lasts a few hundreds of micro-seconds,

we are able to track the positions of the rupture tips versus time along with the

absolute values of stress measured at four locations thanks to the strain gauge
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rosettes. The gauges’ values can be interpolated to obtain a continuous stress dis-

tribution (see fig. 3.3.b and fig. 3.5). The two surfaces in contact were initially

smoothed using 400 grit diamond powder and then sandblasted with heteroge-

neous sand particles to simulate a self-similar roughness in a similar way than in

Lu et al. (2010a). Note that before the experiments presented below, several stick-

slip events had already been triggered. This might have introduced defects on the

simulated fault surface, and would explain why small-scale stress heterogeneities

(wavelengths of 4 to 8 mm) are visible in fig 3.8. Those short wavelengths are su-

perimposed to larger normal and shear stress variations which are explained by

the loading conditions (see section 4.1.2).
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FIGURE 3.2: Example of strain gauge signals recorded during a rupture that initi-
ates close to the strain gauge sg 2. a) Shear stresses τxy and fault parallel particle
velocities −Vrεxx recorded at the 4 different locations corresponding to sg 1 to sg
4, Vr being the rupture velocity . b) Normal stresses σn recorded at the same lo-
cations. For one event, the initial shear stresses τ0 , peak stresses τp , residual
stresses τr and normal stresses σn are picked as averaged values in time windows
shown on the stress records at sg 4. Note that although σn can slightly vary locally

at the rupture front, we only pick the averaged value.
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3.4 Results
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FIGURE 3.3: a) Loading rate for each experiment and b) Corresponding rupture
histories presented in individual time windows of 500 µs. The black dots are the
positions of the crack tips. The background colors represent the normal stress dis-
tribution for each rupture, measured with the four strain gauge rosettes, and inter-
polated between their positions indicated by the red solid lines. The big red dots

are the nucleation positions.

We conducted a total of 27 individual experiments, at imposed loading rates rang-

ing from 0.01 MPa.s−1 to 6 MPa.s−1 (figure 3.3.a), with normal stresses main-

tained around 4.7 ± 0.8 MPa (fig 3.3.b). The key input and output variables are

summarized in table 3.1. For each experiment, we present the tracking of the

rupture tips positions in individual time windows representing 500 µs. Crack

tips are not clearly visible on all frames (due to weak stress concentration or to

masking by strain gauge rosettes) which is why there are apparent gaps in pick-

ing of the front positions (black dots) in fig. 3.3.b. We took care of performing
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the experiments in a random order in terms of the background loading rate, to

exclude any possible bias due to progressive sample wear. As a consequence the

rupture histories presented in figure 3.3.b have not been run in the same order

as presented (by increasing loading rate). The background color represents the

normal stress distribution for each individual experiment, interpolated from the

four strain gauge rosettes values.

0 1 2 3 4 5

Crack half length [cm]

101

102

103

A
v
e
ra

g
e

ru
p

tu
re

fr
o
n
t

v
e
lo

c
it

y
[m

.s
1
]

10 1

100
L
o
a
d

in
g

ra
te

[M
P
a
.s

1
]

10 2 10 1 100

loading rate [MPa. s 1]

0

2

4

6

8

10

12

14

16

n
o
rm

a
liz

e
d

n
u
cl

e
a
ti

o
n

le
n
g
th

s
[M

P
a
.c

m
]

y= n L50=-2.1 log10(x)+5.4

y = 4 + 3erfc((log10(x/0.164))/1.453)

y= n Lsc=-1.4 log10(x)+2.3

y = C1 + C2erfc((log10(x/0.027))/1.482)Vray

Vray/2

L 50% range

Lsc range

a) b)

FIGURE 3.4: a) Characteristics of the nucleation phase of each individual rupture
experiment under different background loading rates. Warmer colors represent
higher loading rates. The dots represent a nucleation length taken arbitrarily as
the crack half-length when the average rupture front velocity Vr reaches 50% of the
Rayleigh wave speed VRay. b) Normalized nucleation lengths Lsc (blue triangles)
at the start of the acceleration and L50% (green diamonds) by the normal stress, as
a function of the background loading rate τ̇. The blue and green area represents
the uncertainty on the arbitrary linear relations plotted as a solid lines, using a
bootstrap method at 95.45% of confidence (2 x std), for σnLsc vs τ̇ and σnL50% vs τ̇,
respectively. The dashed red lines are non-linear fits assuming that the nucleation
length tends asymptotically toward limiting values Lb and L∞ at high and low

values of τ̇ respectively.

Using the position of the rupture tips versus time, we can plot the average

rupture front velocity Vr versus crack half-length (fig. 3.4.a) (Vr being the av-

erage of the 2 rupture fronts velocities in the case of bilateral ruptures). We

see clearly the phase of acceleration of Vr up to about the Rayleigh wave speed

VRay ≈ 820 m.s−1, i.e., the limiting velocity for subshear ruptures (dashed red line

in fig. 3.4). We use VRay to define L50% as the crack half-length when Vr = 0.5 VRay.

We also observe supershear rupture in some of the experiments (fig. 3.1.c) in par-

ticular when the length of the propagating rupture exceeds 5 cm (not shown in
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exp. exp. τ̇ order τ0 τp σn τr Lsc L50%
number name [MPa/s] of run [MPa] [MPa] [MPa] [MPa] [cm] [cm]

1 30 0.011 23 1.8 2.1 4.8 1.2 1.7 3.7
2 013 0.014 3 1.4 1.6 4.2 0.9 2.7 4.9
3 32 0.026 24 1.7 2.0 4.9 1.2 2.7 3.6
4 015 0.036 4 1.6 1.8 4.5 1.0 1.6 3.1
5 26 0.04 21 1.7 2.0 5.1 1.1 2.0 3.6
6 34 0.05 25 1.7 2.1 5.0 1.2 1.1 2.9
7 25 0.051 20 1.7 2.0 5.2 1.1 0.6 3.9
8 09 0.052 10 1.5 1.8 4.6 1.0 2.3 4.0
9 19 0.057 16 1.5 1.7 5.1 1.0 2.0 2.9

10 009 0.062 1 1.3 1.5 4.2 0.9 2.0 4.7
11 10 0.066 11 1.6 1.8 4.7 1.1 0.6 1.7
12 27 0.074 22 1.5 1.7 4.3 1.0 2.8 4.2
13 35 0.078 26 1.7 1.7 4.8 1.1 1.3 2.3
14 20 0.1 17 1.6 2.0 5.3 1.1 1.4 2.8
15 13 0.131 13 1.6 2.0 4.8 1.1 0.5 1.8
16 11 0.167 12 1.6 1.9 4.7 1.1 1.6 2.8
17 07 0.2 8 1.4 1.7 4.5 1.0 1.3 4.3
18 017 0.22 6 1.7 1.9 4.8 1.1 1.6 2.9
19 21 0.23 18 1.7 2.0 5.3 1.0 1.9 4.1
20 18 0.41 15 1.2 1.4 3.9 0.8 1.3 2.5
21 16 0.6 14 1.6 1.9 4.7 1.1 0.6 1.9
22 08 0.7 9 1.6 1.8 4.5 1.0 1.7 3.4
23 012 0.75 2 1.4 1.7 4.6 0.9 1.2 2.9
24 019 0.8 7 1.4 1.7 4.0 0.9 0.9 1.7
25 22 2.49 19 1.8 2.1 5.3 1.1 0.6 1.5
26 016 2.6 5 1.6 1.9 4.5 1.0 0.6 1.6
27 37 5.6 27 1.8 2.0 5.0 1.2 0.7 1.7

TABLE 3.1: Summary of the input and output variables of the experiments. From
left to right: experiment number, experiment name, loading rate, order in which it
has been run, average initial stress (from the 4 different values measured at the 4
strain gauges), average peak stress, average normal stress, average residual stress,
nucleation length, nucleation length defined at 50% of the Rayleigh wave speed.
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fig. 3.4.a). (The limiting rupture velocity in supershear is the P-wave velocity ≈

1860 m.s−1, but we always use VRay for the definition of L50%). Using L50%, the

stress concentration at the crack tips is large enough to allow a clearly visible

rupture tips in most cases. For comparison to the theoretical predictions Lb, Lb−a

and L∞, we also define Lsc as the nucleation length at which nucleation starts to

accelerate. However, at such early stage of nucleation, the crack tip position is

less clear; therefore Lsc is poorly resolved, in particular for small nucleation sizes

(see lower bound of Lsc range, fig. 3.4.a).

We observe a shrinking of the nucleation length with increasing loading rate

in accordance to the numerical model of Kaneko et al. (2016). L50% shrinks from

almost 2.5 cm to approximately 0.8 cm when the loading rate is increased from

10−2 MPa.s−1 to 6 MPa.s−1 respectively. Although the variability is high, this

shows clearly that L50% is dependent on the loading rate.

Because the nucleation length is also inversely proportional to the normal

stress (see discussion), we normalize L50% by multiplying it by σn. When plot-

ted versus τ̇ the normalized nucleation length decreases with increasing loading

rate (fig. 3.4.b). As we have an uncertainty on the nucleation length and on the

normal stress interpolated at the nucleation position, we propagate the uncer-

tainty on L50% × σn and plot the error bars. Even though we do not know the

exact relationship between normalized L50% and loading rate, a linear regression

shows a clear negative slope:

L50% × σn = −2.1 log10 τ̇ + 5.4 (3.1)

L50% is in cm, σn in MPa, and τ̇ in MPa.s−1. Dividing equation 3.1 by the average

normal stress of σn = 4.7 MPa we obtain:

L50% = −0.44 log10 τ̇ + 1.15 (3.2)

The uncertainty on this slope is calculated using a bootstrap method and dis-

played as a light green area. The regression coefficient is clearly negative meaning

that the normalized nucleation length is dependent on the loading rate.
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Assuming that the nucleation length Lsc tends asymptotically toward the the-

oretical limiting values Lb and L∞ at high and low values of τ̇ respectively (see

discussion section), we can also obtain an empirical fit using the follwing mathe-

matical form (using erfc to produce tapering at both high and low values of τ̇):

σnLsc = c1 + c2× erfc
(

log10(τ̇/c3)
c4

)
(3.3)

where c1 = σnLb = 2.07 [MPa.cm], c2 = σn(L∞ − Lb)/2 = 2.47 [MPa.cm],

c3 = 0.027 [MPa.s−1] and c4 = 1.482.

A similar relation can be found using L50% (fig. 3.4.b).
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strain gauges locations, using values picked as in figure 2. The dot colors represent

the loading rate and follow the same scale than on fig. 4.a.
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FIGURE 3.6: a) Picture of the typical isochromatic fringe pattern taken approxi-
mately 500 µs before nucleation, highlighting high shear and normal stresses areas
around 8.5 cm and 22.5 cm. b) Nucleation location of each individual experiment.
The nucleation location is taken as the mean value of the first picked positions of
the crack tips propagating upwards and downwards along the interface. The dots
colour represents the nucleation length L50% measured as in fig. 3.4.a. c) Accelera-
tions recorded at the top edge of the right plate (see fig. 3.1.2). The initial accelera-
tions are zeros, and an offset is applied to plot the waveforms at the position where

the rupture have nucleated.

In addition to the shrinking of Lc with increasing loading rate, we observe

that the nucleation position along the interface is not random but also affected by

τ̇. Indeed at loading rates over 0.3 MPa.s−1 the nucleation localizes only on areas

situated around 8.5 cm and 22.5 cm along the interface. The nucleation length

Lc is small everytime the rupture nucleates on those patches (fig. 3.6.b), and the

accelerations (recorded at the top of the right plate) show that all the ruptures

initiating around 8.5 cm have very similar waveforms (fig. 3.6.c). We find that the

preferred nucleation sites at high loading rates correspond to areas of relatively

higher shear and normal initial stresses by using the typical photoelastic fringes

pattern before nucleation (taken approximately 500 µs before the crack tips be-

come visible, as shown in fig. 3.6.a) and the strain gauges data; the method is de-

tailed in section 4.1.2. Although the exact stress distribution is different between

experiments (see fig. 3.5), the general fringe pattern before rupture is consistent

and always showing the two same high stress areas. The stress variations from

one experiments to another are of too short wavelength, or too small magnitude

to be quantified using the method described in section 4.1.2. The sparse strain

gauge measurements do not enable to resolve sharp stress heterogeneities either.
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At low loading rates, the nucleation is observed to start in more homogeneous

zones (between 10 cm and 18 cm), with apparent slightly lower initial stress val-

ues.
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FIGURE 3.7: a) Plot of the local slip velocity V=−2 Vrεxx (εxx is the fault parallel
strain low-pass filtered at 30 kHz) used to calculate (b) the relative displacement U,
as detailed in section 2.2.2. The friction evolution is then plotted as a function of
(c) the local slip velocity V and (d) the relative displacement U. e) Dynamic slip-
weakening friction laws of each experiments. f) Normalized τ0 vs loading rate
for all events excepts the ones having nucleated around 8.5 cm along the interface
which are discarded as the stress values are not resolved by the sparse strain gauge

measurements.

Finally, we attempt to derive the dynamic slip-weakening friction laws of each

rupture (fig. 3.7.e) using the method described in section 2.2.2 (eq. 2.15). From

the camera data we select strain gauges that recorded εxx when the rupture front

attained a quasi-static propagation velocity Vr ≈ VRay, and use the measured

velocity to calculate u. Filtering the signal at 30 kHz and plotting the friction

evolution versus slip for each experiment indicates a slip dependence of friction

with a consistent critical slip weakening distance Dc ≈ 14 µm (fig. 3.7.e). How-

ever there is no clear trend concerning the slip weakening dependence of friction

with regard to the loading rate. This should be expected as the dynamic friction

is weakly related to the quasi-static friction law state variables and therefore to

the loading history. To quantify what happens during the quasi-static stage of

rupture, we use the values of τ0 and σn interpolated at the nucleation position
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(fig. 3.5) and plot their relation with τ̇ (fig. 3.7.f). The events nucleating on the

high stress area around 8.5 cm along the interface are discarded as the interpo-

lated stress distribution using the strain gauges can clearly not resolve the stress

field visible on the isochromatics (fig 3.6.a). The ratio τ0 / σn seems to increase

with loading rate, which is consistent with the rate effect of rate-and-state friction

laws. A possible microphysical interpretation is that locked micro-contacts across

the sliding surface deform plastically under shear; in that case their shear stress is

expected to increase with strain rate. We can also infer that if the higher stresses

around 8.5 cm would be properly resolved by the strain gauges, this would add

more point in the upper right part of the graph fig. 3.7.f.

3.5 Discussion

We now discuss our observations on the size of experimental nucleation to the

theoretical predictions that can be made using stability analysis and assuming

some type of rate-and-state frictional behavior.

Because the stability analysis does not consider a change in the remote load, it

is expected that those experiments where the loading rate is the smallest should

be closer to the prediction and differ increasingly with loading rate. However we

remark that other differences between theory and model may alter the behavior.

First, inhomogeneity of the simulated fault will arise due to stress fluctuations,

slight changes in frictional properties and imperfections in the slip surface due

to non-planarity, wear or microcracks. Second, the actual frictional behavior of

the simulated fault may not be perfectly matched by the specific rate-and-state

friction that is being assumed in the stability analysis.

In the rate-and-state friction framework, the friction coefficient can be ex-

pressed as in Ruina (1983):

τ = σn

(
µ0 + a ln

(
V
V0

)
+ b ln

(
V0θ

dc

))
(3.4)

where for the aging law:
dθ

dt
= 1− Vθ

dc
(3.5)
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and for the slip law
dθ

dt
= −Vθ

dc
ln
(

Vθ

dc

)
(3.6)

Where σn is the normal stress, a and b are the rate and state constitutive pa-

rameters, V is the slip rate, µ0 is the reference friction coefficient at the reference

slip rate V0. dc is a characteristic slip.

Although no simple analytical solution exists for these laws, the expected

critical nucleation length at which a slipping zone becomes unstable has been

discussed by several authors (Ruina, 1983; Dieterich, 1992; Rice, 1993; Uenishi

and Rice, 2003; Rubin and Ampuero, 2005; Ampuero and Rubin, 2008; Fang et

al., 2010). Because of the non-trivial evolution of the coupled parameters θ and

V along a fault obeying a rate-and state law, the nucleation history and there-

fore the critical nucleation length can be significantly different depending on

which initial and loading conditions are used in numerical models (Rubin and

Ampuero, 2005; Fang et al., 2010). Using a simple spring-slider model and lin-

ear stability analysis, Ruina (1983) and Rice (1993) have shown that the critical

stiffness of a patch was given by kc = (b − a)σn/dc, giving a critical nucleation

length Lb−a = G∗dc/((b − a)σn), G∗ being the effective shear modulus for in-

plane stress, G∗ = G/(1− ν). Rubin and Ampuero (2005) also examined in detail

the nucleation of rate and state faults and showed that the variable Ω = Vθ/dc

played a crucial role in the process. They found that depending on the value of Ω

at the time of nucleation, on the ratio a/b, and on the state variable evolution law

chosen (slip or aging law), different expression for the nucleation length could be

expected (Rubin and Ampuero, 2005; Ampuero and Rubin, 2008). In particular,

when Ω ≈ 1, close to steady-state, the nucleation length reaches an upper bound

L∞ = G∗dc/π× (b/(σn(b− a)2)). The same scaling in b/(b− a)2 can be found in

the critical length derived by Andrews (1976) using a slip-weakening law and an

energy criterion LAndrews = 2G∗Dc/π × (τp − τf )/(τ0 − τf )
2. In the case where

the nucleation process is fast enough (for example considering a fault that has

not recently rupture and with high slip rates), Ω� 1 and does not have the time

to decrease inside the slipping area unlike for a slow nucleation process. In this
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Parameter Value Unit
µ 0.96 GPa
ν 0.35
dc 2× 10−7 m
σn 4.7 MPa
a 0.01
b 0.0144

TABLE 3.2: Parameters used to estimate the nucleation lengths Lb, Lb−a and L∞. ν
is the Poisson’s coefficient.

case the nucleation zone shrinks to a minimal value of Lb = G∗dc/(b σn). Uen-

ishi and Rice (2003) and Dieterich (1992) also showed that in the case Ω � 1 the

rate-and-state law can be approximated as a slip-weakening law, and the critical

nucleation length scales as b−1. It has also been remarked that low ratios of a/b

favor a nucleation patch of size Lb while larger ratios of a/b favor the expand-

ing crack case growing up to a critical length L∞ (Rubin and Ampuero, 2005)

unless Ω is very large at the time of nucleation. Finally, by comparing the two

evolution laws, Ampuero and Rubin (2008) found that when Ω � 1 they gave

similar results, while when Ω ≈ 1 the slip law produced unidirectional rupture

propagation only.

In order to compare the experimentally determined nucleation lengths to the

theoretical estimates, we use the values from Kaneko et al. (2016) who modeled

similar experiments (Latour et al., 2013) that were run with a loading rate of τ̇ =

0.36 MPa.s−1. The values are summarized in table 3.2. However, it is important

to point out that in Latour et al. (2013) both shear and normal stresses were time

dependent due to the oblique fault in the experimental setup. Also, we use the

ageing law to estimate the nucleation length and to compare it to Lb and L∞ de-

rived by Rubin and Ampuero (2005). Those values do not necessarily hold for

the slip law and it is not clear which law would be the most representative of the

experiments in this study.

Using those parameters we obtain Lb = 0.44 cm, Lb−a = 1.43 cm and L∞ =

1.49 cm. The measured values Lsc (fig. 3.4.a) are comprised between 0.25 cm and

1.4 cm, close to the predicted range bounded by Lb and L∞. We do not know what

would happen for a larger range of experimental loading rates values, however,
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we can infer that the values taken by Lsc would tend asymptotically toward the

bounds Lb and L∞ for τ̇ 6 6 MPa.s−1 and τ̇ > 0.01 MPa.s−1, respectively. Us-

ing the energy criterion of Andrews (1976), along with our averaged values of

τ0 = 1.58 MPa, τp = 1.84 MPa , τf = 1.05 MPa and Dc = 14 µm from the exper-

imentally determined friction law (fig. 3.7.e), we obtain LAndrews = 3.7 cm which

is slightly more than twice the maximum value L∞. An important result of this

study is that we are able to obtain nucleation lengths ranging from the minimum

to the maximum values predicted by the rate-and-state laws only by varying the

loading rate. Even though this parameter is often neglected in theoretical stud-

ies to obtain analytical solutions of rate-and-state laws, τ̇ seems to have a great

influence on the path taken by the coupled parameters θ and V which ultimately

control the nucleation length. In fact the loading rate itself may not be the de-

termining factor, but rather the greater acceleration resulting from the imposition

of a high loading rate starting from close to zero velocity, thus forcing the sys-

tem away from the steady-state. In particular, if inside the nucleation patch Ω

becomes � 1 due the sudden increase of velocity V, and if the state variable

θ does not have the time to evolve during the nucleation phase due to a high

loading rate, Ω will remain� 1 by the time of instability, in which case a small

nucleation length close to Lb is to be expected.

In addition to the dependence of Lc on τ̇, we also observe a dependence of

the nucleation position (see fig. 3.6). Indeed, while the ruptures nucleate more

or less randomly along the interface at low τ̇, as we exceed a value of τ̇ ≈ 0.3

MPa.s−1 the rupture initiates systematically within two localized patches posi-

tioned at 8.5 and 22.5 cm along the interface. By using a finite element model

later in chapter 4 to match the observed fringes, we show that they seem to cor-

respond to zones of high coulomb stresses, where the nucleation is thus likely to

initiate (see fig. 4.12 of section 4.1.2). Previous studies already showed that the

initial stress distribution (Kato and Hirasawa, 1996) and frictional parameters a

and b (Kawamura and Chen, 2017; Ray and Viesca, 2017) would influence the

rupture nucleation, but the role of the loading rate was not clear. In more recent

studies, Xu et al. (2017) who observed a similar negative dependence of Lc with

τ̇, showed that the spatial distribution of the nucleation zones of stick-slip events
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were also influenced by τ̇. However in their case the effect was the opposite

compared to our experiments: the nucleations occurred all within the same patch

for loading rates of 0.01 mm.s−1 and 0.1 mm.s−1, but started to be located ran-

domly at 1 mm.s−1. This contrast between the experiments presented here and

the results of Xu et al. (2017) could be explained by a different frictional evolu-

tion of the pre-cut surfaces between experiments using granite samples (possible

frictional melt during weakening phase which would solidify during the healing

process) or polycarbonate in our study (no melt during dynamic ruptures, but

rather elasto-plastic deformations). In addition, between each event we reset the

plates to their initial positions and wait approximately 20 seconds in order for the

interface to heal while in the case of Xu et al. (2017), each experiment at a given

loading rate comprises a continuous series of stick-slip instabilities.
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FIGURE 3.8: Zoom-in of the photoelastic fringes located around the high stress
areas (zones A and B), showing short wavelength variations of stress between 4

and 8 mm, compared to the smoother distribution at the center of the frame.

Although we do not have a clear explanation why some rupture would nu-

cleate in zones of lower coulomb stress, it is very likely that there exist smaller

stress heterogeneities that we are not able to resolve with the sparse strain gauge
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measurements or on the isochromatic fringes, and which may vary from one ex-

periment to another influencing the nucleation position; the nucleation may start

at some sites where locally high coulomb stress is not resolved by our measure-

ments. The discussion in section 4.1.2 gives only an general idea of the stress

distribution along the interface, but do not enable to resolve very small stress

variations, or to compare quantitatively the initial stresses of different experi-

ments. We also note that the wavelength of the stress heterogeneity along the

interface may play a role in the nucleation localisation. Indeed, in the preferred

nucleation zones A and B (see fig. 3.8), a cluster of heterogeneities of smaller

wavelength compared to the rest of the interface (4 to 8 mm) is visible in the

photoelastic fringes. One hypothesis is that fast stressing would favour the in-

stability closer to small-scale inhomogeneities, while gradual stressing favours

the development of pre-slip on larger, homogeneous patches. This could be the

case if the stress redistribution during the rupture preparation phase followed a

diffusive process, because the diffusion time is proportional to the square root of

the inhomogeneity wavelength. Under slow loading the small wavelength het-

erogeneities would have time to disappear, favouring the development of larger

and longer-lasting stress variations. In this study, we have no direct experimental

evidence of such process other than the presence of small-scale heterogeneity as

illustrated in fig. 3.8, and at time of failure, the level of small-scale heterogeneity

appears to be the same in either fast or slow loading conditions. However, as

mentioned earlier, it is difficult to make an accurate quantitative analysis based

on the photoelastic images alone, and the stress is measured only at the four sites

which were instrumented with strain gauges. Also, we can visualize only the

main rupture at a late nucleation stage: some rate-dependent slip may occur dur-

ing the previous seconds of loading which are not captured. Numerical exper-

iments using heterogeneous a and b values and/or heterogeneous initial stress

distribution along with varying loading conditions (different loading rates and

hold times) would be needed to better understand the influence of the loading

rate on the nucleation position.

Another difference with the results of Xu et al. (2017) has to do with the rup-

ture speed dependence with loading rate. While Xu et al. (2017) observe a clear
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rupture speed dependence, it is a bit less visible in our experiments (even though

some slight dependence can still be seen in fig. 3.4). Indeed, in Xu et al. (2017),

the rupture speed does not seem to reach consistently the limiting speed VRay,

unlike what we observe. As the spatial resolution in their experiments is lower,

maybe the rupture sometimes switches temporarily to supershear fronts which is

not visible, and there could also be 3D effect with only an apparent rupture speed

measured. In our experiments, the setup is clearly 2D, and the rupture propagates

along a line rather than a plane. It follows a classical evolution, reaching rapidly

VRay, and sometimes switching to supershear. Even though the threshold for the

limiting speed is roughly the same around 820 m/s regardless of the loading rate

applied in our experiments, what we see is that this threshold is reached earlier

in space and time at high loading rate, and the same can be said for the transition

to supershear. This dependence of the transition to supershear with loading rate

is not discussed here, but could be the object of further studies.
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FIGURE 3.9: Cartoon illustrating how the loading rate may locally increase in a slab
close to rupture (a,b,c), and how such loading rate increase can induce seismic rup-
ture of conditionally stable asperities (d,e). a) An Apparent Slipping Zone (ASZ)
expands from the conditionally stable part, slowly releasing stress in the blue area,
and increasing it outside in the red area. Blue asperities are failing; red asperities
are locked and accumulating stress; black asperities (located further away) are not
yet significantly affected by the stress variations; green asperities are condition-
ally stable. The conditionally stable asperities (green) do not fail seismically at this
stage because their radii r are smaller than Lc. b) The ASZ slowly expands, induc-
ing an increase in both load and loading rate in the surrounding area. This activates
seismic failure of either previously locked asperities, or of previously aseismic, con-
ditionally stable asperities (green) due to the shrinking of Lc below their radius r.
c) Final stage of nucleation for a large earthquake. A dense cluster of asperities fail
jointly (cascade or pre-slip model), further accelerating load around the slip area
and finally triggering a large seismic rupture. d) When the loading rate is relatively
low (stage a), the conditionally stable asperities slip aseismically as Lc is larger than
the asperity radius r. e) When the loading rate increases (stages b and c), the pre-
viously aseismic asperities might start to fail seismically if Lc shrinks and becomes

smaller than r.

To understand what those experimental results can mean for real earthquakes,

it is important to have a global picture of how the interface between plates be-

haves. From recent observations where pre-slip was detected before an earth-

quake by inverting GPS signals (Ruiz et al., 2014; Ruiz et al., 2017), a large Appar-

ent Slipping Zone which we will refer to as ASZ appears to be activated around

the future epicenter of the earthquake. In order to understand why this ASZ
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(interpreted as the preseismic slip) is larger than the coseismic slip, it is impor-

tant to imagine this ASZ as a highly heterogeneous patch actually composed of

smaller locked (or rate-weakening) and creeping (or rate-strengthening) patches

(see fig. 3.9.a), as suggested by Socquet et al. (2017). Those patches are pro-

gressively activated as the ASZ expands (fig. 3.9.b), some asperities (intended

as either conditionally stable or unstable velocity-weakening patches) might fail

(foreshocks), releasing stress locally and in the surrounding creeping material,

while others might remain locked and build-up stress. It has been observed that

this apparent homogeneous ASZ is not only discontinuous in space, but also in

time (Frank et al., 2017). The remaining locked asperities inside the ASZ will still

be progressively loaded as it expands, and if a large cluster of them breaks (see

fig. 3.9.c), this would be the main shock of an earthquake and possibly a foreshock

of a next one.

In our case, it is hard to tell if the Lsc measured from the experiments (a few

centimeters) can be extrapolated to infer the size of the ASZ which can reach a

radius of several tens of kilometers (Ruiz et al., 2014). Indeed, the ASZ is very

heterogeneous and experiences much more complexity in the frictional evolution

than in the controlled laboratory experiments. But considering that the ASZ may

be close to velocity-neutral, with an average of (a-b) close to 0, the estimates Lb−a

could be infinitely large.

Contrary to the observations reported by Ruiz et al. (2014), the conditions

under which the experiments are conducted here do not appear to result in a large

creeping patch with locked asperities, but rather in a locked fault with a localised

pre-slip patch which grows into a dynamic rupture, corresponding rather to the

observations of Tape et al. (2018) for a M3.7 asperity. We can therefore discuss

the possible effects of a shrinking nucleation size under accelerated loading rate

in some natural contexts, for example, linking the natural earthquake nucleations

described by Ruiz et al., 2014 and Tape et al., 2018 or to explain the appearance of

aftershocks following the 2011 M9.0 Tohoku-oki earthquake, in places where only

very few earthquakes had been observed during the last 88 years (Hatakeyama

et al., 2017).



106 Chapter 3. Influence of loading rate

A locked asperity on a creeping fault could fail aseismically: if Lc were larger

than the size of the asperity, the slip would not accelerate up to seismic velocities

needed to radiate waves (Mclaskey and Yamashita, 2017) (see fig. 3.9.d). How-

ever, if the loading rate in the vicinity of this patch is suddenly increased, Lc could

decrease below the asperity dimensions and the patch could become seismic (see

fig. 3.9.e). As noted by Mclaskey and Yamashita (2017) this model is consistent

with the observations of Wech and Bartlow (2014) who evidenced a correlation

between slow slip rate and the number of tremors in Cascadia, considering that

a subduction interface can be composed of a large population of those patches

oscillating between stable and unstable behavior. As the ASZ undergoes acceler-

ated creep, the local loading rate on the smaller locked asperities increases and

this could trigger their seismic rupture during the preseismic interval. In the

postseismic phase, as long as the accelerated creep continues, the small asperi-

ties may still undergo seismic rupture as observed in the seismic cycle (Yao et al.,

2017), and aftershocks could appear in conditionally stable areas following the

increase of loading rate as discussed by Hatakeyama et al. (2017).
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Chapter 4

Numerical models of rupture and

loading conditions of biaxial

experiments

This chapter aims mainly at helping to understand the results of the analogue

rupture experiments from chapter 3. It is divided into a static models section and

a dynamic models section.

The static part is used to benchmark the FEM base code (including the part

written to calculate stresses and strains from a 2-dimensional displacement field)

using the analytical solution for a mode I crack under a uniform remote stress.

The way I deal with contact problems in finite elements is introduced, and is the

basis of a code in developement simulating dynamic ruptures (see appendix C).

I also use the static model to infer the initial stress distribution in the experi-

ments described in chapter 3. This constitutes an appendix of the published arti-

cle Guerin-Marthe et al., 2018. Finite differences are used to model the dynamic

ruptures, and enable to better understand the evolutions of slip, velocities and

stresses along the fault, in a similar manner to what has been measured by the

strain gauges in chapter 3. Finally, I verify and discuss the method used in chap-

ter 3 to estimate the slip dependant friction law.

The reader can refer to sections 2.3.2 and 2.3.1 for the general theory of FEM,

DG and finite differences. Here I only focus on the code adaptations to model the

experiments. Altogether, this can be used as a tutorial to implement FEM models,

and adapt them to simulate 2D static elasticity, or dynamic ruptures.



108 Chapter 4. Numerical models of biaxial experiments

4.1 Static model

4.1.1 Crack model and benchmark

The polycarbonate plates are modelled using Finite Elements and linear elasticity.

We need to benchmark the numerical model, and therefore we verify that when

the model is deformed, displacements and stresses are consistent with linear elas-

ticity and LEFM theory.

Model verification

FIGURE 4.1: Simple shear static simulation, applying a negative horizontal dis-
placement at the top edge of the elastic domain, and zero horizontal displacement

at the bottom edge. The vertical displacement are also kept to zero.

The first thing I do is to check that the way displacements and forces are applied

to the edges of the domain is correct, as well as the way stresses are calculated.

This is done by creating a simple shear model, where the left and right boundaries
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are left stress-free, and uniform displacements dx corresponding to a uniform

pressure Ph of 28 MPa (arbitrary) are applied on the top edge. The displacements

on the bottom edge in both directions are fixed to zero. dx is calculated for given

values of E, ν and Ly (the height of the domain) using (see fig. 1.14 and eq. 1.7):

dx =
Ly × Ph

E/(1 + ν)
(4.1)
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FIGURE 4.2: a) The blue line corresponds to the shear stress measured in the mid-
dle of the 30 by 30 cm elastic domain (0<x<30 cm, y=15 cm in figure 4.1). Those
shear stresses are then applied as horizontal tractions at the top boundary of a
half-domain, 30 by 15 cm. b) Stresses measured in the half-domain by using the in-
terpolated displacements. The displacement of the left, bottom and right edges are
measured in the model of figure 4.1, and then imposed on the half-domain model.
The stresses calculated at y = 15 cm are also plotted in a) (orange solid line) to be

compared to the applied tractions.
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The stresses are calculated using eqs. 1.4 and 1.8 for the plane stress case

(chapter 2), and are plotted in fig. 4.1. As expected, the stresses are higher in

the middle of the domain, and go to zero at the stress-free edges. A stress profile

at y = 15 cm and 0 < x < 30 cm is plotted in fig. 4.2.a (blue line).

Now if the domain is "cut" in half, along y = 15 cm, if the displacements

are kept the same than on fig. 4.1 at the left, bottom and right edges, and if the

shear stress profile measured in the full domain (blue line fig. 4.2.a) is applied

as horizontal distributed forces on the top edge of the half-domain, we expect to

find a consistent stress distribution (fig. 4.2.b). We can check that the tractions

applied (blue line fig. 4.2.a) and the stress measured (orange solid line fig. 4.2.a)

are indeed very similar, at the exception of the left and right edges (x = 0 cm

and x = 30 cm), where a difference of 5 MPa is observed. It is likely due to

interpolation approximations close to the model’s edges.

FIGURE 4.3: Static simulation on a half-domain where the displacements on the
left, bottom and right edges are imposed given theoretical values for a simple shear
case. On the top edge the corresponding uniform distributed load is imposed (28
MPa in this case). The uniform stress calculated on the whole domain evidences
the consistency between the theory, the simulation, and the stress and strain calcu-

lations.

Finally, if instead of the bell shaped curve I apply a uniform pressure of 28

MPa on the half-domain’s top edge, while fixing all the other edges displace-

ments at the values corresponding to the theoretical simple shear case, it results

in an expected homogeneous shear stress field (see simulation in fig. 4.3).
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Convergence analysis for a mode I crack model

I start by modelling a static crack in tensile-opening mode. This enables to intro-

duce the way I deal with contact problems which is based on the idea of fictitious

springs linking two elastic domains. The same concept is used in the FEM code

simulating dynamic rupture which is only mentioned in the appendix C (it is still

under development).
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FIGURE 4.4: a) Sketch of the grid setup used for the contact problem and crack
simulation. The elastic domain is separated into two elastic domains on both side
of an interface where the nodes are split. Inside a domain the nodes are linked by
the standard continuous FEM terms, and by fictitious springs at the interface. b)
Fictitious springs are maintaining the vertical and horizontal dof of two opposing
nodes together as one in case of contact (spring stiffnesses are arbitrarily high).
c) Case of mode I open crack where the springs are "cut", which is equivalent to

setting their stiffnesses to zero.

In order to model the experiment composed of two elastic plates (see chap-

ter 3), I start by splitting the nodes in the middle of the domain (see fig. 4.4.a).

This enables to have a possible discontinuity between elements, similarly to the

DG method described in section 2.3.2 of chapter 2. In DG, even though a discon-

tinuity between the elements is allowed, modelling continuous elastic domains

might still be needed, in which case additional terms are added to link opposing

surfaces (eq. 2.37 in section 2.3.2). The latter have the following form:

C1 = −B+TD nT N+/2− N+Tn D B+/2 + p(N+T N+) (4.2)
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FIGURE 4.5: a) Mode I crack simulation with a remote tensile stress σyy = 1 MPa.
b) Zoom on the split nodes at the interface around the 4 cm long crack.

(N+Tn D B+/2) and (B+TD nT N+/2) are corrective terms added to enforce in-

teraction between elements, and p(N+T N+) is the term weighing the most in the

calculations, to link opposing surfaces. It is equivalent to add fictitious springs

between opposing nodes as illustrated in figure 4.4.b. Some terms (±kv) are link-

ing the vertical dof while others (±kh) are linking the horizontal ones. Note that

in DG, the arbitrarily high penalty value p corresponds to the fictitious spring
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stiffness. It is generally in the order of magnitude of E, if it is too low the simula-

tion is not accurate, and if it is too high, the global stiffness matrix may become

singular.
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FIGURE 4.6: Convergence analysis using the crack simulation. a) Comparison be-
tween the analytical solution of σyy(x) in the vicinity of a mode I crack under uni-
form remote stress σ∞

yy, and simulations using an increasing number of elements in
both x and y directions. b) Associated rms errors. c) Same comparison, but this
time increasing the ratio (domain width)/(crack width), and keeping the same el-
ements dimensions, and the same crack width. d) Associated rms errors. In a) and
c) the solid lines correspond to the stress values calculated using displacements in-
terpolation in 2D. The dashed lines correspond to the stress values calculated using
the relative vertical displacement between two opposing nodes, and the fictitious

spring stiffness.



114 Chapter 4. Numerical models of biaxial experiments
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FIGURE 4.7: See caption of fig. 4.6. However, this time the solid lines correspond
to simulations using fictitious springs at the split nodes while the dashed lines
correspond to simulations using DG terms between the opposing faces. All the

stresses are calculated from the displacements interpolation in 2D.

Using these fictitious springs, it is relatively easy to model a crack. At least for

mode I, the only things needed to be done is applying displacements at the top

and bottom edges of the domain corresponding to a uniform traction (1 MPa in

the simulation of fig. 4.5.a), and add stiffness terms ±kv and ±kh corresponding

to springs all along the interface, except where the crack is defined (equivalent

to set kv = kh = 0). By doing so, I allow the two surfaces inside the crack to be

completely detached (see fig. 4.5.b). As expected, the stress concentration is also

very high at the crack tips (see fig. 4.5.a), and the values of σyy(x) along x in the

vicinity of the crack tip can be compared to the analytical solution which has the
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form (Broberg, 1999):

σyy(x) =
σ∞

yy√
1−

( a
x
)2

(4.3)

Where a is the crack half-length, σ∞
yy is the remote stress, and x = 0 at the center of

the crack.

Note that for x ≈ a, this expression becomes equivalent to the form of the

near-field stress equations 1.12, with an amplitude dependence in 1/
√

r, where

r is the distance to the crack tip. Indeed, starting from eq. 4.3, taking x=a+r, and

using Taylor expansions to show that 1− a2/(r + a)2 = 2r/a +O(r2) for r ≈ 0,

we obtain:

σyy(x) = σ∞
yy

√
a
2r

(4.4)

I check that the solution converges when increasing the number of elements

(figs. 4.6.a-b and 4.7.a-b), or when increasing the domain width and keeping a and

the number of elements inside the crack constants (figs. 4.6c-d and 4.7.c-d). I also

compare the stress values calculated using the interpolation of the displacement

field, to the values given by the relative displacement ∆u between nodes. Indeed,

the traction at a given node along the interface is directly proportional to the

fictitious spring stiffness k, and given by f = k∆u. Figure 4.6 corresponds to

two sub-domains linked by fictitious springs, while figure 4.7 corresponds to two

sub-domains linked by DG terms. It can be seen that for a high enough number

of elements, the different ways to obtain the stress, and the DG or spring stiffness

terms are giving the same results (see fig. 4.6.a-b and 4.7.a-b).

4.1.2 Initial stress distribution of dynamic ruptures inferred from

photelastic fringe patterns coupled with finite element mod-

els

This section aims at discussing what is the stress distribution along the interface

between the two polycarbonate plates, just before a rupture, using the photoelas-

tic fringe patterns and FEM, in order to support the measurements of chapter 3.
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As described in section 2.1.1, the setup is composed of two polycarbonate

plates 15 cm wide by 30 cm long, and 1 cm thick (see figure 4.8). They are clamped

by two metallic frames overlapping them over a width of 7.5 cm, on each side of

the setup. Then two pistons are applying a normal force by pushing uniformly on

the right edge, 30 cm long. Once under normal load, a fault parallel shear stress

is applied by pressing the left clamping frame downwards. Although the setup

seems simple, further complexity arises from the fact that the plate might actu-

ally not be clamped uniformly within the width of the metallic frame. This can

generate different loading conditions, therefore different stresses at the interface.

aparatus frame
(fixed and rigid)

polycarbonate 
plates

rigid steel blocs

distributed 
load

frictionless 
edge

contact
interface

clamping 
metallic 
plates

75 mm

150 mm

300 m
m

FIGURE 4.8: Sketch of the experimental setup and boundary conditions of the
model
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model 1
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Types of boundary conditions :

displacement prescribed in all directions

displacement prescribed in horizontal direction

displacement prescribed in vertical direction

force applied in vertical direction

75 mm

75 mm

150 mm

300 m
m

FIGURE 4.9: Different types of numerical models used to generate shear stress at
the interface (dashed line)

In order to discuss which loading configuration is the best suited to represent

the experiments, I perform finite element simulations using different boundary

conditions as described in figure 4.9. Note that if the plates were perfectly main-

tained within the metallic clamp, I would only need to model two elastic domains
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7.5 cm wide and 30 cm long (models 3 or 4 fig. 4.9). But if they are allowed to

move inside the clamps, it might resemble rather models 1 and 2 of fig. 4.9.

Using the loading configurations illustrated in fig.4.9, I first adjust the mag-

nitude of the forces or displacements to match roughly the strain gauge mea-

surements of shear and normal stresses to the stresses calculated in the middle

of the FEM models (dashed lines fig. 4.9). At this stage it can be observed that

for models 1 and 2 (30 by 30 cm) the shear distributions along the interface tend

toward parabolic-like shapes, and as the models are shortened (models 3 and 4),

corners start appearing at the edges (fig. 4.10). In all the cases the shear stress

goes down to 0 at the edges, which is to be expected at stress-free boundaries.

The normal stresses are more homogeneous and more or less similar between the

different simulations except for the model 4 where point loads are applied. All

the normal stress distributions present corners where the stress drops roughly 7

cm away from the edges. Model 4 is the one which seems to match best the shear

stress distribution, while the normal stress distribution is better represented by

the other models.

FIGURE 4.10: Shape of shear stresses generated at the interface by each of the 4
loading configuration, and strain gauge point measurements of shear stresses.
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FIGURE 4.11: Fringe patterns simulated in the zone corresponding to where the
experimental fringes have been filmed

In order to compare the models to the experimental data, I simulate the isochro-

matics that the shear and normal stress values measured at the interface would

generate if they are applied as tractions along the 30 cm long edge of one sin-

gle plate, taking a fringe value fσ= 4000 N.m−1. The opposite edge is left with

the same boundary type as it is in figure 4.9. The patterns of the 4 models are

compared to each other, to a fifth model where shear and normal stresses were

manually adjusted to match the isochromatics (see fig. 4.12), and to a typical snap-

shot of fringe pattern before a rupture (fig. 4.11). The boundary conditions of the

fifth model are like the model 3 on the right edge (fixed in all directions). Mod-

els 1 and 2 are far from matching the isochromatics, while models 3 and 4 are a

better starting point. It is thus important to consider the plates as shortened to
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half their original width as they are clamped between the metallic frames. Then

starting from model 3 and by manually adjusting the tractions at the left edge, I

manage to obtain a fringe pattern qualitatively similar to the one observed (ad-

justed model and observed fringes in fig. 4.11). This requires two peaks of shear

stress at approximately 8 cm and 23 cm along the interface, while the normal

stress is more homogeneous, and only dropping slightly on the edges according

the model of fig. 4.12.

FIGURE 4.12: Manually adjusted tractions at the interface to qualitatively fit the
fringes

The adjusted model is consistent with the observed nucleation positions at 8.5

cm and 22.5 cm as the coulomb stress of the model τcoulomb = τxy − µσn is close to

zero at those locations (see fig. 4.13). The rupture is therefore more prone to start

from those 2 locations.
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FIGURE 4.13: Coulomb stress from the adjusted model using a friction coefficient
µ = 0.5. The closer τcoulomb is to 0, the closer to failure this point is.

The result of this section highlighting the two areas of high coulomb stress

is non-unique in the sense that a same fringe pattern can be created by different

shear stress distributions; the concentrated fringes could also highlight areas of

low shear stress. Nevertheless, after having adjusted manually the stress distri-

bution several times, low stress values around 8 cm and 23 cm never enabled to

obtain a good match between modelled and experimental fringes. It does not fit

well with the strain gauge data either, and it is less consistent with the fact that

those areas are the preferred nucleation sites of the ruptures.

It should also be mentioned here that I explored other ways to match the

fringe pattern between simulations and experiments, rather than trying manu-

ally to adjust the forces. As I did not obtained better results, the latter are not

shown here, but I can describe briefly the methods used. I started by defining a

straightforward misfit function, as the sum of the difference between simulated

and measured light intensities, for all the pixels. Then, I searched randomly in

the parameter space which forces would minimise the misfit. This did not give

conclusive results as the misfit function defined this way does not tell exactly

how close to the real solution the model is: two very similar fringe pattern can
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give two very different misfit values if the fringes are sightly shifted so they be-

come in phase opposition. From this observation, I chose to look rather at the

envelope of the fringes by taking the Hilbert transform of the pictures and the

models. I also defined the misfit function as the different between the two, and

searched randomly in the parameter space. This gave results qualitatively simi-

lar to the one when adjusting manually the forces at the interface, but no better...

One thing that would probably work better is to use the same misfit function

(difference between the simulated and measured fringes’ envelopes), and carry a

proper inversion (steepest gradient for instance), similarly to what has been done

in appendix A.
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4.2 Dynamic rupture

In order to model the dynamic ruptures, I use finite-differences which are less

computationally expensive, and easier to implement compared to FEM. The code

used is reproduced from Virieux and Madariaga, 1982. More details on the 2D

discretized wave equations used are given in section 2.3.1 of chapter 2 (eqs. 2.17).

Along the fault I prescribe the initial shear stresses, and a patch is defined, of a

half-width corresponding to Lc, were the shear stress is forced to drop. This stress

drop induces opposing slip velocities on the two opposing sides of the interface.

A relative slip along the interface therefore increases progressively, making the

stress drop further, according to a linear slip-weakening friction law (see section

1.4) (a residual stress τr is also defined, minimum that the shear stress can reach).

As the stress drops inside the crack or ruptured area, it increases outside, at the

tips. A peak stress τp is defined as our rupture criterion: when τp is reached

at the crack tips, the crack is allowed to expand and accelerate. I also prescribe

the loading rate τ̇ at which the shear stress in the non-ruptured area increases.

The initial stress drop needed for the rupture to initiate actually corresponds to

the difference between the increased shear stress outside the ruptured area, and

the shear stress inside the initial ruptured area. In the models presented in this

section, for τ̇ up to 10 MPa/s, stress variation induced by the loading rate rapidly

become negligible in the nucleation process.
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FIGURE 4.14: Shear stress distribution during a sub-shear rupture, in the 30 by
30 cm domain (parameters corresponding to model 1 in table 4.1), simulating a
dynamic rupture similar to the ones observed in the laboratory, using the biaxial
shear apparatus. Time-dependant modelled signals are recorded 2 mm away from
the fault, at the positions corresponding to the strain gauges in the experiments of

chapter 3 (sg 1, sg 2, sg 3 and sg 4).

In order to be comparable to the experiments, I use a similar geometry and

similar material properties than the polycarbonate plates. The Young’s modulus

E = 2.6 GPa, and the Poisson’s ratio ν = 0.35, which gives a S-wave speed VS = 893

m/s. The grid is 30 by 30 cm with a fault parallel to the y-axis, at x = 15 cm. The

horizontal (fault perpendicular) edges are stress-free, while the displacements on

the fault parallel edges are fixed to zero. Displacements, velocities and stresses

are stored at the corresponding strain gauge locations (sg 1, sg 2, sg 3 and sg

4) in the experiments (see fig. 4.14), 2 mm away from the fault. An example of

typical shear stress field recorded during a rupture is shown in fig. 4.14. Three

different models are used in this sections, and the parameters are summarized in

table 4.1. Model 1 is used to look at the friction dependence on slip, to see if the
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steady-state approximation made to plot the friction law described in chapter 2

and used in chapter 3 is valid. This model has the advantage to simulate a rup-

ture propagating at constant velocity for a long time. Model 2 is a model where

we adjusted manually the simulation parameters in order to fit the experimental

data. Model 3 is used to verify that the loading rate applied does not affect the

simulations when using a linear slip-weakening law. It simulates a clear super-

shear transition, and makes it easy to verify that it happens at the same time for

different loading rates.

Parameters: model 1 model 2 model 3

E [GPa] 2.59 2.59 2.59

ν 0.35 0.35 0.35

ρ [kg.m−3] 1200 1200 1200

Lc [cm] 2.05 1.45 2.5

τp [MPa] 2.23 2.23 2.15

τ0 [MPa] 1.5 heterogeneous 1.5

τr [MPa] 0.9 0.9 0.9

Dc [µm] 12 9 15

S 1.22 ≈ 1.22 1.08

κ 1.93 ≈ 1.82 2.0

dx [mm] 0.5 0.75 0.6

nx = ny 600 400 500

dt [µs] 0.076 0.114 0.090

tmax [ms] 0.4 0.7 0.4

τ̇ [MPa/s] 1.0 0.07 variable

TABLE 4.1: Summary of parameters used in finite difference models

In order to compare the experiment and numerical models, I change the model

parameters by trial and error (model 2 in table 4.1) in order to fit the strain gauge

data (see fig. 4.15). The initial shear stress distribution τ0(y) is fitted with a 5th

order polynomial function, so that I obtain a continuous initial shear stress which

passes by the experimental values recorded by the strain gauges (see fig. 4.16,
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stress profile at a time = 0 ms). A very good correlation between the signals is

obtained, although the peak stress arrives earlier for sg 4, indicating a slightly

earlier transition to supershear in the model, compared to the experiments.
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FIGURE 4.15: Comparison between experimental strain gauge signals and mod-
elled ones (parameters corresponding to model 2 in table 4.1), for a supershear

case.

When using the numerical simulation results, the shear stress signals from

strain gauges in the experiments are easier to interpret. By looking at the along-

fault shear stress profile (2 mm away from it) plotted versus time (fig. 4.16), we

can better identify what is recorded by the gauges in fig. 4.15. On sg 1 for in-

stance, we clearly identify the reflected supershear and subshear fronts from the

top of the model, arriving around 0.25 µs (a), and a positive pulse around 0.45

µs corresponding to a reflection on the vertical edges (b). At sg 3, we observe a
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typical subshear rupture front, with a significant stress drop separating two stress

peaks (c). This drop does not exists on the fault itself (fig. 4.18.d), but is measured

due to the shear stress field complexity away from the fault (see fig. 4.14). It

can also be seen from the theoretical solution of stress away from the fault for a

dynamic crack propagating at constant speed (eqs 1.12 and 1.15; a plot example

using those equations is shown in appendix A, fig A.3.c). Finally, sg 4 records a

delay between the first shear stress peak and the following stress drop (d). This

delay is longer for a longer time since the transition to supershear. This typi-

cal observation enables to clearly identify supershear ruptures thanks to strain

gauges, and to have an idea of when and where the transition occurred.

FIGURE 4.16: Time evolution of the shear stress profile 2 mm from the fault during
a supershear rupture, and adimensional axes. Reflected waves are clearly visible

on the figure.

The transition to supershear is controlled by the dimensionless prestress ra-

tio S = (τ0 − τr)/(τp − τr) which gives the ratio of stress increase needed at

the crack tips to stress released inside the crack. The lower S, the more likely
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to have a supershear transition. Supershear velocities are bounded by the so-

called Eshelby velocity equal to
√

2VS, and the P-wave velocity VP, which can

be verify in the finite-difference models. The other nondimensional length used

for normalizing the axes of fig. 4.16 is the critical nucleation length Lc. The

way I set up the models, this corresponds to the initial half-crack length. In

the case where the initial stress drop inside the slipping patch equals τp − τr,

Lc would correspond to LAndrews discussed in chapter 3. We recall that LAndrews =

2G∗Dc/π × (τp − τf )/(τ0 − τf )
2 where G∗ = G/(1− ν) (Andrews, 1976), and in

which the prestress ratio S also appears.
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FIGURE 4.17: a) Track of rupture tips during a numerical simulation of dynamic
rupture. I call crack the slipping zone delimited by the tips position potted as solid
lines. The rupture transitions to supershear after 0.25 ms. b) Speed of the crack tip
propagating downwards, versus crack width. The velocity peak around 0.25 ms is

an artefact, as the rupture tip "jumps" ahead in a discontinuous fashion.

In the numerical models, the loading rate τ̇ controls the time needed to start

the dynamic rupture, for given values of τp, τ0 and τr, and Dc affects how fast

the rupture accelerates. In model 3 (see table 4.1), I check that the loading rate

τ̇ applied does not affect significantly the simulations once the rupture acceler-

ates (fig. 4.17). Indeed, although the shrinking of Lc with τ̇ has been experimen-

tally observed in chapter 3, and explained with rate-and-state laws, it is theoreti-

cally shown that loading conditions should not affect Lc when using a linear slip-

weakening friction law (Uenishi and Rice, 2003). For loading rate values around

several GPa/s however, regardless of the friction law used, a non-negligible shear

stress amount added between each time step could bring a large portion of the
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fault over τp therefore affecting the dynamic rupture. The value of τ̇ does not

change the simulation results for the loading rates range considered, between

0.01 and 10 MPa/s (fig. 4.17.b). It would be different using rate-and-state friction

laws, as shown in Kaneko et al., 2016, where in this case τ̇ would affect Lc.
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FIGURE 4.18: a) εyy × Vrup, 2 mm away from the fault, recorded at sg 3 during
a rupture propagating at constant speed. The displacement is calculated by inte-
grating 2× εyy × Vrup. b) Track of rupture position versus time. The discontinu-
ity corresponds to a supershear transition. c) Comparison of shear stress and slip
measured exactly on the fault, or 2 mm away. The slip 2 mm from the fault can be
calculated by integrating the velocity in the model, or by integrating 2× εyy×Vrup.
d) Comparison between the exact friction law on the fault, the one derived by mea-
suring εyy 2 mm away, and the one using the same one, using a shear stress filtered

with a 50 kHz low-pass.
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An important point of this section however is to validate and discuss the

method used in section 2.2.2 to determine the friction law governing the stress

evolution during a shear rupture. I use the model 1 for which the simulation

parameters are given in table 4.1.

It can be shown mathematically that when a rupture front propagates at a

constant speed Vrup (see fig. 4.18.b), taking the crack tip position as the reference

position and assuming a steady-state strain field, one can obtain the strain vari-

ations in space from the strain variation in time. As detailed in section 2.2.1 of

chapter 2, the fault parallel strain εyy can be used to calculate the local particle

velocity uy (fault parallel component), using uy = εyy × Vrup. The slip velocity

V(y, t) = ∂ux/∂t is therefore equal to 2× εyy × Vrup, and the local relative dis-

placement on the fault is U(y, t) =
∫

2× εyy ×Vrup dt (fig. 4.18.a).

If this method works theoretically, further complexity is expected in practice,

particularly because of the difficulty to measure shear stress σxy and fault parallel

strain εyy exactly on the fault.

When comparing the signals exactly on the fault, and 2 mm away from it (fig.

4.18.c), it can be seen that when using εyy away from the fault, U(y, t) is overes-

timated at the beginning (fig. 4.18.c, red dotted curve). This leads to an apparent

slip-hardening phase which is not necessarily realistic (fig. 4.18.d, dashed line,

between 0 to 8 µm of slip). Moreover, it can be problematic if we want to recover

the friction law, because of the shear stress drop near the rupture tip when mea-

sured at a finite distance from the fault plane (see figs 4.15-(c) and 4.18.d). This

issue has been bypassed by using a lowpass filter in chapter 3, and the filtering

effect is shown in fig. 4.18.d. What can be seen is that the critical slip weaken-

ing distance Dc previously estimated in chapter 3 from the filtered friction law

around 12 to 14 µm is likely overestimated by a factor 2 (fig. 4.18.d). Interest-

ingly, if using a corrected value for Dc around 6 to 7 µm, the nucleation length

estimate LAndrews would be around 1.5 cm for the results of chapter 3. This would

be much closer to the upper bound of the experimentally measured nucleation

lengths, and to L∞, compared to the 3 cm previously estimated.

Finally, I look at the slip velocity dependence of friction, by comparing the

experiments and the model at sg 3, using the parameters of model 2 in table 4.1
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(see also fig. 4.15 from the same simulation). It shows that the real slip increase on

the fault comes later, and that the peak velocity is higher (fig. 4.19.a). Therefore,

using experimental data, the method would tend to give an underestimated peak

velocity (fig. 4.19.a). However, in spite of noisy strain gauge signals, this shows

that 2 mm away from the fault, the experimental and modelled data give a similar

friction versus slip velocity V(y, t) relation. The slope ∂σxy(t)/∂V(y, t) is also well

estimated (fig. 4.19.b).
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Chapter 5

Dynamic friction of rocks at crustal

pressure conditions

This chapter aims at verifying the influence of loading rate and healing time on

the laboratory faults’ stability under crustal pressure conditions, using Westerly

granite samples. It also provides a deeper understanding on the loading setup

used by C. Harbord in his PhD thesis (Harbord, 2018) who investigated the sta-

bility of different types of rocks, and for different confining pressure and rough-

ness conditions. The setup previously designed and used in Harbord, 2018 has

been adapted it in order to enable placing up to 6 strain gauges along a 4 cm long

simulated fault, by transmitting signals via anodized wires in sealed epoxy filled

feed-through. This chapter is written in the form of an article as, even though

the results are preliminary, some of its content is publishable or can be used as

supporting information for a publication concerning similar experiments.

Keypoints :

• A setup has been adapted in order to enable placing up to 6 rosette strain

gauges along a 4 cm long simulated fault, during a dynamic rupture be-

tween granite slabs, under crustal pressure conditions.

• Healing time and loading rate are both influencing the stability of labora-

tory faults under 50 MPa of confining pressure.

• The apparent friction coefficient, when compared similar rate-and-state ex-

periment, can be lower than typical Byerlee values of 0.6 to 0.8, and depends

on the contact interface roughness and on the loading conditions.
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5.1 Abstract

Laboratory experiments of rock friction are an essential tool used to better un-

derstand the seismic cycle. A large number of published experiments on the

frictional behaviour of laboratory faults were traditionally conducted under rel-

atively low normal stress, and only an average friction coefficient was measured

(using the axial load and confining pressure values), although friction is expected

to be heterogeneous along the contact interface. By positioning various sensors

along the interface (displacement sensors, strain gauges or accelerometers for

instance), it is possible to understand in much more detail the processes at the

origin of earthquakes in comparison with experiments where only the apparent

friction is measured from the forces applied at the model’s edges. When per-

forming experiments under high confining pressures, more representative of the

seismogenic conditions in the Earth’s crust, instrumenting the samples becomes

challenging. Here we present a setup designed to allow the positioning of sev-

eral strain gauges on granite samples, and inside a pressure vessel. The exper-

iments are performed under confining pressures up to 100 MPa, and show that

the loading rate and healing time have an effect on fault stability, in accordance

with previous studies. This effect is interpreted in light of previous work using

rate-and-state friction. We also measure stress variations which are only recorded

locally by the strain gauges during slow events, probably caused by inhomoge-

neous small scale slip at the interface. Finally, we obtain low apparent friction

values which might be explained partly by complex loading conditions creating

a heterogeneous normal stress along the contact interface, but also very likely by

the roughness of the precut surfaces, in agreement with collateral experiments

(personal communication from T. Tesei).
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5.2 Introduction

An important challenge in seismic hazard assessment is to understand what con-

trols the stability of natural faults. Rate-and-state laws (where rock strength de-

pends logarithmically on the healing time and strain rate) offer a popular frame-

work to interpret laboratory and natural observations (Scholz, 1998). From such

laws, the critical nucleation length Lc of a slipping patch at which a rupture accel-

erates can be derived (Ruina, 1983). Several laboratory studies have investigated

the stability of rocks under relatively low confining pressure (Mclaskey and Ya-

mashita, 2017; Xu et al., 2017; Marone, 1998b; Kato et al., 1992). They showed

that when the estimated Lc is larger than the sample length l, the simulated fault

is stable, and it becomes unstable at higher loading rates and healing times, in

which case Lc < l. These studies are supported by theoretical (Rubin and Am-

puero, 2005; Fang et al., 2010) and numerical work (Kaneko et al., 2016; Kato

and Hirasawa, 1996). In chapter 3 (Guerin-Marthe et al., 2018) we also showed

evidence of the shrinking of the critical nucleation length Lc with loading rate,

by measuring it directly in photoelastic experiments using polycarbonate plates.

Similar measurements of Lc can be made with a dense array of strain gauges

positioned along the interface between rock slabs (Xu et al., 2017). Local stress

measurements are also important in order to understand the sample’s non-trivial

loading conditions (Guerin-Marthe et al., 2018). Although it is relatively easy to

make these measurements at low confining pressures, instrumenting the samples

becomes challenging at high confining pressures, inside a vessel. In this prelimi-

nary study, I successfully test a way to obtain such dense measurements by trans-

mitting strain gauge signals via anodized wires inside a pressure vessel. I also

demonstrate the loading rate and healing time influence on fault stability, even

under crustal pressure conditions under which complex weakening mechanisms

are likely to take place (Rice, 2006). To the author’s knowledge this has not been

done yet at such pressure conditions. Moreover, most of the experiments inves-

tigating rate-and-state parameters are usually conducted by imposing velocity

steps where the fault is always sliding (Dieterich, 1979; Marone, 1998a). This is
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partly because the current rate-and-state mathematical formulation does not al-

low for realistic friction values at zero sliding velocities, which is not consistent

with the fact that natural faults can be completely locked before breaking into an

earthquake following a sudden increase of tectonic loading. In this study, slide-

hold-slide types of experiments are run in order to be consistent with chapter 3,

and with natural faults’ loading conditions.

5.3 Material and methods

The setup consists of two granite slabs 40 x 4 x 20 mm each, held in sliding con-

tact across a 40 x 20 cm interface (fig. 5.1.a). Surfaces are polished with a 400 grit

diamond powder (particle sizes: 18.3 microns), and then a 800 grit sandpaper

(particle sizes: 7.8 microns). They are fixed on reinforced stainless steel holders

which load the samples in a quasi-direct shear configuration. Two strain gauges

(fig. 5.1.a-(2) ) were also placed along the 4 x 40 cm face of one sample. Anodized

cables (fig. 5.1.a-(3) ) are then soldered on the fault parallel and diagonal compo-

nents (45◦ from the fault). The voids are filled with silicon spacers (fig. 5.1.a-(1)),

and everything is wrapped in Teflon sheets and slid into a NalgeneTM plastic

jacket (fig. 5.1.b). A hole is pierced in the jacket in order for the anodized wires to

be passed through it. The hole is later sealed with soft Loctite R© Hysol 9455 flexi-

ble epoxy (fig. 5.1.b-(6) ) and the wires are connected on soldering pads fixed on

the jacket (fig. 5.1.b-(7) ). The jacket is then inserted in a metallic sample assembly

(fig. 5.1.c), and both ends are sealed with o-rings when pressure is applied. The

left part of the sample assembly (as shown in fig. 5.1.c) goes inside the vessel.

The fault’s normal stress is controlled by the confining pressure, and the shear

stress is applied by pushing the left part of the sample assembly rightward on

fig. 5.1.c, while the cap on the right is fixed on top of the vessel. Others anodized

cables coming from outside the vessel (fig. 5.1.c-(9) ) are fed through a hollow

conduit (fig. 5.1.c-(8) ) and connected to the soldering pads (fig. 5.1.b-(7) ). The

feed-through are filled with high shear resistance Permabound R© ET5428 two-part

epoxy (fig. 5.1.d-(10) ) in order to resist confining pressures up to 250 MPa (tested

up to 150 MPa for 30 minutes).



5.3. Material and methods 137

a)

b)

c)

d)

7 cm

2 cm

7 cm

1 5

2

3

4

36

7

8

10

9

8
FIGURE 5.1: Sample preparation for the triaxial apparatus. a) Slabs of granite (4)
instrumented with strain gauges (2) and fixed on reinforced stainless steel holders
(5). The voids are filled with silicon spacers (1), and the gauges are connected via
anodized wires (3) soldered manually onto them. b) Slabs and holders wrapped
into a NalgeneTM tubing. The anodized wires (3) are passed outside the jacket via
a hole later filled with soft epoxy (6), and are connected on soldering pads (7). c)
Everything is inserted in the sample assembly. Feed-through (8) connect the wires
from inside the pressure vessel to the outside (9). d) Detail of the hollow feed-
through where anodized wires transmit the signal, while the sealing is obtained by

filling the hole with hard epoxy.

Note that in the experiments presented in this study, only one strain gauge

centred 13 mm away from the sample edge and 1.5 mm from the fault ended up
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working. Indeed soldering manually wires on the tiny soldering pads is techni-

cally very challenging, and connections often fail. We may also lose the signals in

the case where the anodization is scratched and wires touch the sample assembly

frame.

In the following experiments, the variable loading rate is applied by control-

ling the tension applied to an axial displacement LVDT actuator, moving the load-

ing column upwards (see sketch and pictures of the machine in chapter 2). A raw

displacement draw is calculated given the number of rotations of the actuator, but

in order to compute the actual shortening of the prepared sample (fig. 5.1.a), it is

necessary to correct for the machine stiffness kmachine = 180 kN/mm given a mea-

sured axial force F using dcorr = draw − F/kmachine. An average shear stress τxy on

the fault (width w and length l) can be calculated using:

τxy =
F

w× (l − dcorr)
(5.1)

And we assume σn = Pcon f

5.4 Results

5.4.1 Overview of experiments

Two experiments are presented here: E1 and E2. E1 is designed to verify the load-

ing rate dependence of nucleation length by looking at the stability of laboratory

faults under a confining pressure of 50 MPa, sheared by displacing a loading col-

umn at different rates (see fig. 5.3). E2 (see fig. 5.4) is more focused on the role of

healing time in laboratory fault’s stability. We also look at the evolution of rock

strength for different loading rates and healing times, and compare the stresses

measured by the loading column’s load cell to the local strain gauge measure-

ments (figs. 5.8 and 5.9). There are a total of 20 recorded events, of which some

are ’silent’, meaning they produce a modest stress drop, and no audible acoustic

emission ( (4) and (8) ). For E1 and E2, we calculate the friction coefficient using

the ratio of shear stress τxy to confining pressure (equivalent to normal stress).

The displacement dcorr (average slip on the fault) and the loading rate τ̇ are also
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Tension applied [V] 0.5 0.7 0.9 4 8
Displacement rate [µm/s] 0.2 0.6 1.0 5.6 11.0

Loading rate [MPa/s] 0.02 0.044 0.068 0.35 0.73

TABLE 5.1: Equivalence between displacement and loading rates, and voltage ap-
plied to the actuator

indicated. τ̇ is measured directly on the linear loading phases of shear stress

records (see fig. 5.3.a): we simply divide the variations of shear stress ∆τxy, by

the time interval ∆t. During the ’stick’ phases, it can be verified that the medium

composed of the granite slabs in contact is linearly elastic, by dividing the dis-

placement rate ḋ = ∆dcorr/∆t (see fig. 5.3.b) by the loading rate τ̇ = ∆τxy/∆t

(fig. 5.2.a), and showing that ḋ/τ̇ is constant (fig. 5.2.b). The relations between

displacement and loading rates versus applied tension are also quasi linear (fig.

5.2.a). The values of loading rate given later in figs. 5.3.b and 5.4.b are therefore

taken from table 5.1, and are known during the experiments as we know the ex-

act voltage applied to the loading column. These values correspond to the slope

during the loading period, where the shear stress increases linearly with time.
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FIGURE 5.2: a) Measured displacement and loading rates versus tension applied
on the axial displacement LVDT actuator. b) Relation between experimental mea-

surements of displacement rates and loading rates.
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E1: Effect of loading rate

In E1 (fig. 5.3), the confining pressure is maintained constant at 50 MPa, and the

sample is sheared at rates ranging from 0.02 to 0.73 MPa/s. The hold time is also

kept constant at 5 minutes between two successive loading phases. The main

result of this experiment is a transition from stick-slip to slow events at low load-

ing rates, between 0.02 and 0.044 MPa/s here. The apparent friction coefficient

(τxy/Pcon f ) tends to increases during the experiment, from µ = 0.3 to µ = 0.4,

and we do not observe a link between loading rate and stress drop. The rela-

tively low values of µ (typical values of friction for rocks are around 0.6 to 0.8)

can be attributed to the very smooth polishing of the samples’ surfaces at 800 grit,

or to coulomb stress variations induced by the loading conditions. This will be

discussed in more detail in the next chapter.
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E2: Effect of healing time
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FIGURE 5.4: Experiment 2 (E2): Overview of triaxial experiment using different
hold times, loading rates and confining pressure. The events labelled with blue
color are qualified as ’slow slip + stick-slip’. See legend of fig. 5.3 for more details.

In the second experiment E2 (fig. 5.4), we also start with a constant confining

pressure of 50 MPa. The sample is initially loaded at 0.35 MPa/s, and we then

decrease the loading rate until we observe the same transition from stick-slips

to slow events between 0.02 and 0.044 MPa/s. From there we look at how the

healing time affects the simulated fault’s stability, at 0.044 MPa/s first and then

0.02 MPa/s. We always get stick-slips at 0.044 MPa/s with healing times of 5

min., 1 min., 30 s and 10 s, therefore we continue with a lower loading rate of

0.02 MPa/s. We get a clear stick-slip after 10 min. of hold (event 13), while for

events 14, 15 and 16, shear stress oscillations probably caused by some slow slip

start appearing for the subsequent shorter hold times of 5 min., 1 min., and 0 s

(no hold). We qualify those events as ’slow slip + stick-slip’ as they start by low
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amplitude stress oscillations, but still end up with a large stress drop, generating

an audible acoustic noise. Fig. 5.5 presents the different types of events, which can

easily be classified by plotting the time derivative of the shear stress variations,

or stress rate (red curves). The presence of slow slip is detected when the stress

rate increases after having decreased, during a period of constant displacement

rate of the loading column (events 8 and 14, figs. 5.5.a and 5.5.b). When the event

is silent, and with a low amplitude stress drop following the peak stress, I call it

only slow slip (events 8, fig. 5.5.a), while when there is a large stress drop and an

audible acoustic noise following the stress rate oscillations, I call it "slow slip +

stick-slip" (events 14, fig. 5.5.b). When the stress rate variations are monotonous

during the loading phase, and followed by a large stress drop, I call the events

stick-slips (events 13, fig. 5.5.c).
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FIGURE 5.5: Different types of events observed in the triaxial shear apparatus. a)
Slow slip, b) Slow slip + stick-slip, c) Stick-slip.
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The green area is where some slow slip is observed.

The confining pressure is then increased to 75 MPa (events 17, 18 and 19), we

load the sample at 0.35 MPa/s and trigger a series of stick-slips (events 17). Next

we hold during 5 min. and apply a loading rate of 0.02 MPa/s for 30 min. during

which we records two ’slow slip + stick-slip’ events (events 18 and 19), similar to

events 14, 15 and 16.

Events 6, 17, and 20 are series of spontaneous stick-slips obtained at τ̇ = 0.35

MPa/s for confining pressures of 50, 75 and 100 MPa, respectively (black color

in fig 5.4), which will be discussed along with the strain gauge data in the next

section.

We summarize the results of E1 and E2 in fig 5.6 where we observe that slow

slip occurs at low loading rates and short healing times (green area in fig 5.6),

compared to pure stick-slips.
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5.4.2 Strain gauge data

FIGURE 5.7: a) Raw measurement of shear stress for the first event of (17), and
signal filter at 1 kHz. b) Signal filtered at 1 kHz with a visible 50 Hz noise, and

signal filtered at 40 Hz.

This section presents the strain gauge data obtained locally on the sample for E2,

13 mm away from the edge, and 1.5 mm away from the interface (see figs 5.1.a

and 6.1).
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FIGURE 5.8: Series of spontaneous stick-slips recorded by the load cell and strain
gauges (filtered at 40 Hz) at confining pressures of 50 MPa (a), 75 MPa (b), 100 MPa

(c), for events 6, 17 and 20, respectively.

In the experiments, the noise is very high, probably because of a bad insula-

tion of the anodized connections combined with a high level of electromagnetic

noise. Previous tests without anodized wires seemed to result in a better signal-to

-noise ratio (Harbord et al., in prep.). In order to detect shear stress variations of

less than 1 MPa hidden in noise induced variations of± 20 MPa in the raw signal

originally sampled at 1 MHz, we apply a lowpass butterworth filter. The effect

of the filter is shown in fig. 5.7. The stress drop starts to be clearly visible when

using a lowpass at 1 kHz (fig. 5.7.a). However the powerline 50 Hz noise is still

visible, and inducing variations up to± 0.5 MPa on the shear stress record, which

is why we use a 40 Hz lowpass filter in the figures presented below.
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Even though the initial aim was to investigate the dynamic friction of gran-

ite by looking at the slip-pulse lasting a fraction of a millisecond, the low sig-

nal to noise ratio does not enable to record such short features (we also check

that no pulse is visible in the data filtered at 50 kHz). Instead it provides a lo-

cal shear stress variations measurement which can be compared to the apparent

shear stress derived from the load cell’s axial force record.
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FIGURE 5.9: Zoom on individual events. (a) is a stable, silent event, c) is a stick-
slip, (b) and (d) are oscillating and therefore close to the transition toward stable

behaviour.

What we observe is that in general the shear stress recorded by the rosette

strain gauge is lower than the stress calculated from the force gauge (figs 5.8 b-c,

and 5.9.b-c-d), except at the start of the experiment, in the initial loading phase,

for events 6 and 8 for instance (figs 5.8 a, and 5.9.a). The local loading rates and

stress drops are also lower.
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During spontaneous stick-slip series, the magnitude of stress drop increases

at first (fig. 5.8.a), but tends to decrease and then stabilize at a later stage, for

events 17 (fig. 5.8.b) and 20 (fig. 5.8.c).

Looking at individual events, we see that during silent or transitional events

(8, 15 and 19 in figs 5.9.a, 5.9.b and 5.9.d, respectively) the strain gauge picks

up local shear stress variations which are not measured by the force gauge, on

top of the larger period oscillations. Also, the local shear stress rate sometimes

decreases during a yielding phase before increasing again few seconds before the

main stress drop, as observed during the first stick-slip of event 17 (5.9.c).

5.5 Discussion

The noise in the signal hides any information concerning the dynamic rupture

front propagation, and restricts this study to longer wavelength signals. This

should be improved in the future by insulating better the wires. We should also

be able to put a large number of strain gauges along the interface, providing that

several of the feed-through are made and in working order.

At the moment we still observe interesting features such as a decrease of shear

stress rate for event 17 in fig 5.9.c, followed by a rate increase before the stress

drop (we can also see it in some other events of figs 5.8.b and 5.8.c). This suggests

that some pre-slip measured by the strain gauge only takes place locally, and

is too small to be measured by the axial load cell. Then, some accelerating slip

might localize further away from the strain gauge in a patch corresponding to the

nucleation area, concentrating stress at its edges. As the slipping patch expands,

if the strain gauge it located initially outside of it, it will sense an increase of shear

stress as the rupture front approaches, followed by a sharp stress drop when the

gauge suddenly becomes located inside the dynamically slipping patch.

In a stick-slip event close to instability (events 15 fig 5.9.b) and during the

’slow slip + stick-slip’ event 19 (5.9.d) we also observe small local stress drops

which are not sensed by the axial load cell. This may be indicative of small dy-

namic slip patches, occurring on areas representing only a fraction of the 8 cm2
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total sample’s surface. A large population of them could create a global progres-

sive weakening of the surface, while creating small local stress drops. Such local

events clusters in space and time could also explain the oscillations recorded by

the axial load cell, and discussed in Baumberger et al., 1999 in terms of rate-and-

state parameters. These preliminary results indicate that the slip distribution is

highly inhomogeneous during the pre-slip phase. Understanding the slip distri-

bution of heterogeneity during ruptures is a challenging and possible path for

future research.

Finally, looking at the slide-hold-slide experiment E1 run at a confining pres-

sure of 50 MPa, where the hold time is constant (5 minutes) and the sample is

loaded with different stressing rates (fig. 5.3), we see a clear influence of the

loading rate. Indeed, a transition between stick-slip behaviour and slow slip is

observed between 0.044 MPa/s and 0.02 MPa/s. The same transition is observed

in E2 (fig. 5.4). Moreover, E2 evidences that larger hold times also favour insta-

bility in accordance with previous studies run at lower normal stresses(Marone,

1998b; Mclaskey and Yamashita, 2017). This effect is visible at a loading rate of

0.02 MPa/s, when comparing event 13, a stick-slip triggered after hold time of

10 min, and the ’slow slip + stick-slip’ event 16, run at the same loading rate,

without hold period.

The latter observations can be explained in term of critical nucleation length Lc

derived from rate-and-state laws, as discussed in chapter 3. The explanation can

also be visualized using the model results of Fang et al., 2010, using a diagram of

shear stress evolution versus slip rate during a typical stick-slip cycle, simulated

with rate-and-state laws (Mclaskey and Yamashita, 2017). Fig. 5.10, reproduced

and modified after Mclaskey and Yamashita, 2017, shows the path taken by shear

stresses and slip rates, for different healing times and loading rates. Typically

(path (a)), the shear stress increases during the loading phase, in the interseismic

period with low slip rates, reaches the static friction threshold and starts to de-

crease with increasing slip-rate slowly at first (nucleation) and faster during the

coseismic phase. The shear stress stays steady during the following hold phase.

In the diagram, the system becomes unstable when brought well above steady-

state. Stable events would be plotted as a point along the steady-state line, or low
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amplitude oscillations around it with low slip rate values.
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FIGURE 5.10: Paths taken by frictional interfaces during stick-slip cycles in a shear
stress versus log(slip rate) diagram, reproduced after Mclaskey and Yamashita,
2017. (a) Reference path. (b) With increased loading rate. (c) With increased hold

time. (d) Without hold. (e) Without hold, at higher loading rate

When the interface is loaded faster ( path (b) ) after a significant hold time, the

shear stress increases faster for a given slip rate, and the peak stress is also higher

due to the strain rate dependence of stress (Kato et al., 1992; Marone, 1998b).

This brings the system further from steady-state which becomes therefore more

unstable (Ω � 1), resulting in a smaller Lc, as discussed in chapter 3 for the

biaxial experiments. A similar effect can be obtained if instead of increasing the

loading rate we increase the healing time ( path (c) ).

In the case where we observe series of spontaneous stick-slips conducted un-

der constant large loading rate, the fault’s behaviour might be different. From the

numerical model of Im et al., 2017, at least the first event generates a large stress

drop ∆τ, as the contacts are relatively strong (Ω � 1, see discussion of chap-

ter 3), while for the following ones (for which the contact population has been

renewed), the stress drop is smaller, and Lc larger (Ω ≈ 1). It seems to be what

we also observe in the stick-slip series 17 and 20 (figs. 5.8.b and 5.8.c). The first
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event of the series might follow path (b) after a long hold time, while the follow-

ing might tend toward path (e). The peak stress seems to rather increase during

spontaneous stick-slips at low loading rates (events 13, 14, 15 and 16, in E2, fig.

5.4), and the stress drop is more or less constant. It would correspond to path (d)

in the diagram of fig. 5.10. Note that things might be more complex at the start

of the experiment (event 6, fig. 5.4), when the surface is strengthening and gouge

or frictional melt may be produced.
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Chapter 6

Numerical models of triaxial

experiments

In chapter 4, finite-difference and finite element methods were used in order to

model the loading conditions and dynamic rupture propagations observed in

the biaxial experiments of chapter 3. In this chapter, I use the same numerical

schemes in order to better understand the experimental data from the triaxial

experiments of chapter 5.
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6.1 Loading conditions

FIGURE 6.1: Boundary conditions and materials of the FEM setup used to model
the triaxial loading conditions (see fig. 5.1.a for more details)

In order to better understand the low friction values of 0.3-0.4 and the lower shear

stress values recorded locally by the strain gauges compared to the apparent

shear stress (obtained by dividing the axial load force values by the sample sur-

face), I run FEM models of the loading conditions for the triaxial experiment. Al-

though it does not explain everything, the static simulation presented here is still

useful in order to interpret better the recorded shear stresses from strain gauges

and from the axial load measurements in chapter 5.

The cylindrical shape of the sample and the steel holders described in chap-

ter 5 (fig 5.1.a) is approximated by a 2D plane strain model of its central section

(fig. 6.1). As we are interested in what happens within the 4 cm long, 2 cm

wide, and 8 mm thick granite material, the plane strain assumption is reasonable.

Because of the relatively higher stiffness of the stainless steel holders, we assume

that the stress distribution in the granite material is the same for any section taken

along the 2 cm width of the samples. We also note that even thought 2D models
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using the plane-stress assumption are not shown here, they give similar results

compared to the plane-strain case.

The model is composed of 3 different elastic materials in order to make it

as realistic as possible (the two granite slab are modelled as one single elastic

domain): stainless steel (E = 200 GPa, ν = 0.3), soft silicon (E = 0.1 GPa, ν = 0.4),

and granite (E = 50 GPa, ν = 0.25). In order to simulate the confining pressure,

distributed forces are prescribed on edges A and B, at the dof in y direction, while

the dof in x direction are free. It corresponds to a pressure of 50 MPa. And in

order to simulate the axial load, displacements in x direction of 0 µm and -60 µm

are prescribed on edges C and D respectively, while the dof in y direction are left

free. It corresponds to an average axial pressure of approximately 49 MPa (and to

an axial force of F = 986 kN). From those values, if using the same calculation as

used to estimate the friction in the triaxial experiments, the average shear force

along the interface would be equal to F/S = 25 MPa, corresponding to a friction

of 0.5.

For this model, I plot the distribution of shear stress τxy (fig 6.2.a), normal

stress σyy (fig 6.2.b), and fault parallel stress σxx (fig 6.2.c). I indicate the averaged

stress values τxy and σyy inside the strain gauge area (τxy = 6 MPa and σyy = 38

MPa), and along the granite slabs interface (τxy = 13 MPa and σyy = 58 MPa). I also

indicate in fig 6.2 the average pressure σxx = 49 MPa along edge D, corresponding

to the axial force ~Fx measured in the triaxial experiments, if timed by the edge

length of 0.02 m.

The shear and normal stress values (τxy and σyy) along the line which would

correspond to the contact area between the granite slabs (solid red lines in fig 6.2)

are plotted in fig 6.3. The ratio τxy/σyy, and the coulomb stress τcoulomb along the

same line are also indicated.

The main result from the simulation is that both shear and normal stresses,

τxy and σyy, are heterogeneous along the interface line with peak values at the

edges. The coulomb stress τcoulomb is also much higher in those areas and closer

to 0 (taking a friction coefficient of 0.4, maximum measured in chapter 5), enough

to reach the static friction of the samples, meaning that some slip is very likely

to take place from one of the edges or both. As the edges would slip, the stress
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would redistribute and it is not really clear how in this study (dynamic simula-

tions with the FEM model would be useful). Also in the case where the friction

coefficient is higher, in the order of 0.8, the coulomb stress distribution is differ-

ent, and does not necessarily peak at the edges.
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FIGURE 6.2: FEM model of the triaxial experiments loading conditions. a) Shear
stress τxy distribution. b) Normal stress σyy distribution. c) Fault parallel stress σxx
distribution. In a) and b), the averaged stress values along the line correspond-
ing to the granite slabs contact interface, and the average stresses inside the strain
gauge grid area are indicated. In c), the average pressure σxx along edge D of the

model is shown.

Looking at the absolute stress values in the model, it indicates that although

an apparent ratio τxy/σyy of 0.5 is measured by dividing shear stress (axial force
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divided by sample’s contact surface), by the confining pressure, the values recorded

by the strain gauge and the actual average stress values along the interface are

different, at least for a completely locked interface. Here the ratio τxy/σyy at the

strain gauge would be equal to 6/38 = 0.16, and would be 13/58= 0.22 on aver-

age along the interface. Note that in the triaxial experiments, σyy = σn is assumed

to be constant to simplify the stress measurements with the gauges. It would

be important in the future to actually measure the normal stress as it is hetero-

geneous along the contact interface and not equal everywhere to Pcon f , making

some assumptions wrong.
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FIGURE 6.3: Stresses along the interface of the FEM model for the triaxial experi-
ments

To come back to the comparison with the experimental results, the FEM model

may explain partly why the apparent friction coefficient measured using the axial

force can be low, while higher ratios τxy/σyy can locally be reached at the inter-

face’s edges, enough to start a rupture (however, it does not mean that the rupture



156 Chapter 6. Numerical models of triaxial experiments

could propagate further, as the energy released at the crack tips might not be suffi-

cient to overcome static friction). At the stage where the interface has not slipped

yet, the value of τxy/σyy recorded by the strain gauge could be even lower. If

the rupture happened so fast that the peak stress would not be recorded in the

filtered signal at 24 Hz, that could explain our observations. However, in the case

of a silent event where the shear stress is redistributed slowly, the lowpass fil-

ter should not hide the peak stress, therefore giving a value more similar to the

actual average one along the interface. In order to understand how the stress is

redistributed during a rupture, dynamic simulations using the same FEM model

would be needed.

In addition to the complexity of loading conditions, it has been shown that

the roughness also affects the friction values. Indeed the measured friction dur-

ing such experiments can decrease from 0.6 at 100 grit, down to 0.3 at 800 grit

(personnal communication from Telemaco Tesei). From the results of this chapter

and chapter 5, we see that more data need to be analysed, and if possible dynamic

FEM models to be run in order to fully understand the laboratory data.
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6.2 Dynamic simulations and friction law
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FIGURE 6.4: a) Snapshot of the shear stress field during the passage of rupture
front in the vicinity of the strain gauge b) Track of rupture tip; it transitions to

supershear around 1.7 cm.

In section 4.2 of chapter 4, I used finite-difference dynamic models in order to

verify and discuss the method (in section 2.2.2) used to experimentally deter-

mine friction laws of analogue materials such as polycarbonate plates in a biaxial

configuration. Although this is a useful validation step for the method, friction

laws derived for polycarbonate at normal stresses of a few MPas are of limited

interest for the rock mechanics community. This section aims at checking if the

same method can be applied to the triaxial experiments presented in chapter 5,

where westerly granite slabs are sheared under confining pressures of several

tens of MPa. Because of the high noise level in strain gauge signals presented

in chapter 5, it is impossible to compare them to numerical models of dynamic

rupture. However, the latter are also developed in order to be used as supporting
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information of the manuscript Harbord et al. (in prep.), where the less noisy data

obtained enabled to use the method from section 2.2.2 to relate friction to slip and

slip velocity in triaxial experiments.

The finite difference model is the same than the one in section 4.2, with the

same type of linear slip-weakening friction law. The geometry is different, as

well as other parameters which are summarized in table 6.1. Their values are

adjusted so that as the rupture front passes next to the strain gauge (see fig. 6.4.a-

b), the rupture velocity Vr is equal to Vray, and is constant. Only the domain

corresponding to the granite slabs (8 by 40 mm) is modelled, and it is assumed

that the rupture starts from one of the edges, in accordance to the model results

of section 6.1. For simplicity, stress free boundary conditions are imposed at the

model edges (note that imposing fixed boundary conditions on the edge of a thin

model tends to make the rupture stop prematurely) . The critical slip weakening

distance of the model Dc is 2.4 µm, which is the same order of magnitude as the

values determined experimentally by Ohnaka, 2003.

parameters parameters

E [GPa] 50 S 0.79

ν 0.25 κ 1.31

ρ [kg.m−3] 2700 dx [mm] 0.5

Lc [cm] 0.5 nx 200

τp [MPa] 45 ny 40

τ0 [MPa] 40 dt [µs] 0.012

τp [MPa] 35 tmax [ms] 0.04

Dc [µm] 2.4 τ̇ [MPa/s] 30

TABLE 6.1: Summary of parameters used in the finite difference model of section
6.2

In figure 6.5, I plot the simulated shear stresses, slip and slip velocities which

would be recorded by a strain gauge 1.3 cm from the domain’s left edge, and 1.5

mm from the fault line (similarly to the static models of section 6.1). When calcu-

lated away from the fault, the slip velocity is obtained using V(x, t) = 2εxxVr, and



6.2. Dynamic simulations and friction law 159

the displacement is the time integral: U(x, t) =
∫
(2εxxVr)dt. The shear stresses

are explicitly calculated in the stress-velocity formulation of the model, and the

values of slip and slip velocity on the fault are also the ones taken directly from

the model.
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FIGURE 6.5: a) Shear stresses and slip velocities (2 εxx VS) recorded at the strain
gauge position and on the fault. b) Shear stresses and slip (

∫
(2εxxVS) dt) recorded

at the strain gauge position and on the fault. c) Shear stress versus slip velocity
using model values on the fault, 0.5 mm and 1.5 mm away from it. d) Shear stress

versus displacement on the fault, 0.5 mm and 1.5 mm away from it.

In figure 6.5.a, it can be seen that 1.5 mm away from the fault, the peak of

shear stress is almost not recorded. The slip is also overestimated at the begin-

ning, and underestimated around 15 µs, from where the signals start to diverge
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significantly. This makes the peak velocity underestimated by a factor 2, and the

stress drop by a factor 1.5, away from the fault, when plotting the slip velocity

dependence of friction (fig. 6.5.c). The fit seems better when looking at the slip-

weakening friction law (fig. 6.5.d). This is because although the slip velocity is

overestimated at the start, and underestimated after, it compensates when inte-

grating to get the relative slip, and by the time the shear stress has dropped to

its residual value τr, the amount of slip determined is roughly correct, and cor-

responds to Dc. If it was possible experimentally to place a strain gauge 0.5 mm

from the fault, the peak shear stress τp would be resolved better (figs 6.5.c and

6.5.d), however, the peak of slip velocity would still be underestimated (fig 6.5.c).
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Chapter 7

Conclusions and perspectives

7.1 Thesis summary

In this thesis, I have used laboratory analogues, alongside with static and dy-

namic numerical models in order to determine which factors could influence

earthquake nucleation. While static numerical simulations were used to under-

stand the complex loading conditions in experiments, and therefore their poten-

tial influence on the results, dynamic simulations were compared to laboratory

data in order to validate the experimental methods used to measure the frictional

dependence on slip and slip velocity.

After an introduction to earthquake studies in chapter 1, and the description

of the laboratory and numerical models in chapter 2, we looked specifically at

how the earthquake nucleation size was affected by the loading rate τ̇ in chapter

3, and published the results in Guerin-Marthe et al., 2018. Photoelastic experi-

ments of dynamic shear rupture with polycarbonate plates as analogue material

were conducted, and filmed at 200000 fps. They enabled us to directly track a rup-

ture front propagating, and therefore to directly measure the nucleation length

Lc of laboratory ruptures under varying shear loading rates, corresponding to

varying tectonic loading rates in nature. The main result was that a decrease of

Lc by a factor of 3 was observed when τ̇ was increased by almost 3 orders of

magnitude, from 10−2 MPa/s to 6 MPa/s, which is in agreement with previous

laboratory results (Mclaskey and Yamashita, 2017; Xu et al., 2017), and numeri-

cal studies (Kato and Hirasawa, 1996; Kaneko et al., 2016), suggesting the same

effect. This result was interpreted in a rate-and-state frictional framework, and
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in particular clarifications were made concerning the fact that at at low loading

rates, a crack or slipping patch tends to grow up to a critical size before acceler-

ation, which corresponds to the quasi-static value for a critical nucleation length

LAndrews derived by Andrews, 1976, or L∞ derived by Rubin and Ampuero, 2005.

At higher loading rate, when the state of the surface represented by the variable θ

in the rate-and-state framework does not have the time to evolve significantly by

the time of nucleation, Lc might shrink down to a lower bound called Lb (Rubin

and Ampuero, 2005). Although there is a clear negative trend for the relation Lc

versus τ̇, a high variability is present and likely amplified by the initial stress het-

erogeneities combined with variable nucleation positions along the 30 cm long

contact interface. We observed that the nucleation of laboratory ruptures initi-

ated consistently around 8 cm or 22 cm along the interface for high loading rates,

while being randomly distributed for low values of τ̇. It is not fully understood

why, but we suggest that this might be linked to the size distribution of stress het-

erogeneities, as small wavelength heterogeneities are visible in the initial fringe

pattern around 8 and 22 cm compared to larger wavelength along the rest of the

interface. Finally, we discuss the implication of the shrinking of Lc with τ̇ in

a natural context. Taking the example of subduction zones, we argue that if the

loading rate is suddenly increased locally (eg. in the case of a nearby dislocation),

a smaller Lc would mean that a patch initially stable could become unstable and

release seismic radiations as its size would be superior to the nucleation length.

Seismicity could therefore appear in slab regions which were usually silent, ac-

cording to the observations of Hatakeyama et al., 2017.

In chapter 4, I built a finite element model with simple quadrilateral elements

in order to understand the effect of loading conditions on the initial stress field in

the elastic plates, just before the nucleation phase. By prescribing specific bound-

ary conditions at the FEM models’ edges, both displacements and tractions, I

was able to simulate a fringe pattern which matched the experimental observa-

tions of isochromatics. The model was compared to fringe patterns in frames

taken just before the rupture started to propagate, and in which the isochromat-

ics were therefore representative of the initial stress distribution. This enabled us

to evidence two area of high shear and coulomb stresses, corresponding to the
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preferred nucleation sites at high loading rates. The results from this technique

explain why a rupture would initiate on those patches, as observed in chapter

3, but the difference of initial fringe patterns from one rupture to another is so

small that it cannot be used to quantitatively compare experiments (the pictures

of the initial fringe patterns are available, and can be found in the online reposi-

tory http://doi.org/10.5281/zenodo.1438477). It is not accurate enough either to

resolve the small wavelength stress heterogeneities observed. The second part of

the chapter focused on the dynamic rupture propagation, and aimed at verifying

that the stress variations measured experimentally could be reproduced and un-

derstood thanks to numerical models. I built a finite difference model based on

the method described in Virieux and Madariaga, 1982, and implemented a slip-

weakening friction law for simplicity, and because it is consistent with the exper-

imental observations. Indeed, in chapter 3, the fault-parallel stress had been used

in order to estimate the relative slip along the laboratory fault, and showed a clear

dependence of friction with it. I could also estimate the so-called slip-weakening

distance Dc corresponding to the relative slip needed for the friction to reach its

dynamic value. Dc of the same order of magnitude was used as a parameter for

the dynamic simulation, and it resulted in a very good match with the experi-

mental data, including in the case of supershear ruptures. However, by using the

same method in the numerical model, and filtering the signals with a low-pass

to estimate the friction dependence on slip (as it was also done for the experi-

mental data), I showed that Dc was likely to be overestimated by a factor two

in chapter 3. Therefore it explained why the estimated LAndrews was about twice

L∞. Correcting LAndrews from chapter 3 makes the experimental measurements of

nucleation length even more consistent with crack stability theory.

The birefringent properties of polycarbonate were used in chapter 3 in order

to measure directly the nucleation length in photoelastic experiments. It was a

useful setup to evidence the nucleation length dependence on loading rate, to

understand how the stress evolves during a dynamic rupture, and to test a new

method to determine the relation of friction versus relative slip. However, the

frictional properties of polycarbonate at relatively low pressures around 5 MPa is

of limited interest to infer processes happening on real faults. Chapter 5 aimed at
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studying the stability of laboratory faults, and the dynamic evolution of friction

under more realistic conditions. Friction experiments using granite slabs pol-

ished with a 800 grit sandpaper, were conducted in a vessel applying confining

pressures between 50 and 100 MPa, representative of the Earth upper crust. One

of the results was that increasing healing time and loading rate favoured instabil-

ity, which had only been evidenced at lower and therefore less realistic pressure

conditions, by other studies such as the one of Mclaskey and Yamashita (2017).

I also developed a methodology to place strain gauges onto the samples, inside

the pressure vessel, and showed that this worked with one strain gauge. Pro-

viding that the noise can be reduced and more strain gauge fixed along the slabs

interface, it should enable to record the shear stress evolution during the dynamic

rupture, estimate the nucleation length, and look at the friction dependence on

slip and slip velocity. When comparing the friction values from the strain gauge

to the apparent one using the axial load force values , it can be seen that the strain

gauge picks up more details, even when filtered at 24 Hz to reduce the noise, and

that the local friction values are lower than the apparent ones.

Chapter 6 enabled to clarify the latter observations from chapter 5. I used

FEM to model realistic loading conditions of the quasi direct shear configuration

used to apply shear stress along the granite blocks’ contact interface, including

domains representing the sample holders, and silicon spacers. This evidenced in

particular two areas of higher coulomb stress values at the samples edges from

where the rupture was likely to initiate in this configuration. In those areas, ra-

tios τxy/σn around 0.6 could be reached, and some slip could initiate although the

apparent friction measured was much lower. This could partly explain the low

apparent friction measured in the triaxial pressure vessel during dynamic stick-

slips, but not during slow events. I argue that instead the low friction values are

more likely to be due to the very smooth surfaces of our samples (polished at 800

grit), as it has been observed in preliminary studies to significantly lower friction

values. The second part of this chapter used the finite difference code in the same

way that it was used it in chapter 4, to look at how well the friction dependence on

slip and slip velocity could be recovered when using the fault parallel strain. Be-

cause the geometry and material property are different compared with chapters 3
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and 4, the dynamic rupture is also different, and more affected by the reflections

on the edges. This study was therefore necessary to check if the method used to

estimate the friction laws in the biaxial configuration with polycarbonate plates

could also be used for smaller samples in the triaxial configuration. Although

this could not be directly compared to the experimental data of chapter 6 because

of noisy signals, this is being used for another study in collaboration with C. Har-

bord (Harbord et al., in prep.). The main results from the numerical model were

that the peak stress is always underestimated by the strain gauge measurement if

the latter is placed too far from the contact interface, which is expected. Secondly,

when plotting shear stress versus slip velocity, the maximum slip velocity is un-

derestimated by a factor 2. And finally, when plotting shear stress versus slip,

the critical slip weakening distance Dc is well estimated although a strengthen-

ing phase appears, and is an artefact due to the overestimated slip as the rupture

front approaches.

7.2 Discussion

The main result of this thesis is the loading rate effect on the nucleation size of

laboratory earthquakes. This section aims at clarifying what this result means for

very complex natural systems, how it helps for earthquakes prediction, and how

it relates to the cascade versus preslip models debate.

When an interface is composed of a strong population of contacts (i.e. after a

long healing time), under a high loading rate, the nucleation length of the rupture

Lc tends to be smaller. This can be intuited by considering plasticity theory, where

stress increases with strain rate. The faster the shear stress is applied, the more the

contacts will resist this applied stress. And when some slip eventually occurs, the

whole fault has reached a higher level of potential energy: a smaller nucleation

zone is required for the rupture to accelerate and propagate further.

In the laboratory, if the nucleation length is larger than the sample, there is no

acoustic emission, only slow slip. In nature, this means that if there is an asperity

(a rate-weakening patch embedded in a rate strengthening surrounding medium)

smaller than the nucleation length, then the latter will fail aseismically. On the
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other hand, if following a sudden increase of loading rate, which can be the case

during the immediate post-seismic phase, the shrinking of Lc might make the

asperity to fail seismically.

Although this possibly works for an asperity of a few kilometres of diameter

as in Tape et al. (2018), where the slow slip is interpreted to start from the outside

edges of the asperity, it is hard to imagine than the slow slip observed in the

experiments and the large slow slip zone hundreds of kilometres wide measured

before large megathrusts (Ruiz et al., 2014; Ruiz et al., 2017) (referred to as ASZ

for Apparent Slipping Zone in chapter 3) are comparable. Indeed, the preslip

zone in the latter case is very heterogeneous, and larger than the coseismic slip

area. Nonetheless, the size of the ASZ is likely to be in some cases a proxy for

the following megathrust magnitude, as the energy accumulated on the locked

patches within the ASZ will be proportional to its size.

On top of the complex rheology and geometry of the fault zones, other fac-

tors complicate the picture, making the loading rate effect on the nucleation size

perhaps negligible. Indeed, there can be migrations of fluids driving the rupture,

and for which the path is hard to predict. In the case of a complex fault network,

it has also been shown with rate-and-state simulations, that the interactions be-

tween the faults could generate on a same network sometimes seismic, sometimes

aseismic ruptures (Romanet et al., 2018). The normal stress variations during a

slip episode are also likely to affect significantly the nucleation length, sometimes

more than the loading rate, depending on the geometry of the fault and the direc-

tion of slip. Finally, as discussed in chapter 5, Lc decreases only when the loading

rate is increased after a long healing time. If the loading rate is constantly high,

then it tends to stabilize the fault instead.

In any case, slow slip is a very important phenomenon to study in order to

understand earthquakes, and the seismicity patterns. It is very likely that before

any earthquake, some slow slip occurs at various scales, even if it is not necessar-

ily possible to detect it yet. What influences it depends largely on the geological

setting, and what does it tell us about what follows is a tricky question. The

2016 Mw 7.8 Kaikoura earthquake is a good example to show that on a continen-

tal fault, even if some slow slip had occurred on the first fault that ruptured, it
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would have been almost impossible to predict the following ruptures on a large

network of faults, resulting in a Mw 7.8 earthquake (Ulrich et al., 2019).

Following the recent insights into earthquake nucleation (Ruiz et al., 2014;

Ruiz et al., 2017; Tape et al., 2018; Ulrich et al., 2019), one can say that there

are as many models as there are earthquakes. However, we see that the pre-slip

and cascade models are compatible, and what makes one predominate over the

other is not only the complexity of the system, but also the scale at which it can

be observed. Before earthquake prediction can be achieved, we need very high

resolution data to detect slow slip at the smallest scale possible, and also earth-

quake simulations incorporating complexities of faults (rheology, fault network,

off-fault damage, pore fluids, etc..). It is not only complicated to implement, but

also computationally expensive, especially considering the ranges of time and

length scales involved.

7.3 Further work

When doing research, it seems that we are always asking more questions than

answering them, and earthquake science is certainly not an exception. Even in

simplified models of earthquake rupture, there is a lot more that can be done.

In this PhD, I built numerical models in order to better understand the ex-

periments. A simple slip-weakening friction law was used as it worked well to

match the experimental data. I did not use the models in order to show the nu-

cleation length dependence on loading rate as it had already been done, although

it would still be interesting to implement rate-and-state friction laws in order to

match better the experimental observations. In particular, I believe that devel-

oping further the code DG_version4_(dyn_forces).ipynb from appendix C (in

which I use FEM with two continuous domain separated by split nodes at the

interface to prescribe traction once the static friction is reached) would give very

realistic results for single rupture events, as long as the displacements are small.

Ageing or slip versions of the rate-and-state friction laws could be used, but it

would be even better to implement the power law version of it (ongoing work by

James Moore and Stefan Nielsen) which allows for zero slip velocities.
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Improving the Digital Image Correlation (DIC) technique would also be inter-

esting in order to look at the loading conditions of the samples, the initial stresses,

and the subsequent dynamic rupture. At the moment, although the preliminary

results are promising (see examples in appendix B), the noise could be greatly

improved, by improving both the laboratory setup (more homogeneous light,

more contrast between the black dots pattern and the rest of the plates), and the

way the data is processed (higher order shape functions to match the patterns,

filters, etc...). The inversion technique which consists in using the photoelastic

fringe pattern to find the initial stress conditions of the experiments as described

in chapter 4 would benefit from some improvements too. By taking the Hilbert

transform of the gray level instead of the gray level values themselves, and using

the strain gauge signals at the same time should make the inversion mode robust.

Finally, one of the most recent and promising techniques for probabilistic

short-term earthquake forecasting which has unfortunately not been explored

during the thesis is machine-learning. It has been applied successfully to predict

the stress drop and timing of stick-slips in rock friction experiments by Rouet-

Leduc et al., 2017, and has started to be applied to natural events (Rouet-Leduc et

al., 2018). This could also be applied and tested for the photoelastic experiments

of chapter 3. Indeed, it is likely that some information about the initial stresses

which is challenging to quantify using classic inversion techniques (see appendix

A) is contained in the isochromatic fringes. For instance, frames could be given

to a machine-learning algorithm, which is trained to return the critical nucleation

length, or another frame of the sequence from the same rupture event. The stress

information contained by the strain gauges could also be provided. In the case

of successful results, we could test the same method using InSAR or strainmeters

data, in order to verify if when some pre-slip is detected during the nucleation

phase of an earthquakes, it contains informations about the stresses during the

dynamic rupture.
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Appendix A

Inversion of photoelastic fringes

FIGURE A.1: Scaled picture of isochromatics during a dynamic rupture, where we
assign manually fringe number values at points picked along the fringes.

A natural question which arises when hearing about photoelastic studies is if we

can get quantitative data from isochromatics. During the dynamic rupture ex-

periments presented in chapter 3, the isochromatics are used to track the rupture

tips, but do not provide absolute values of shear and normal stress (given by

strain gauges instead). Therefore, it seems that a lot of the information contained

in the movies is not used. This section discusses why inverting fringes in such

experiments is challenging in practice. The script used here to run the inversion

is accessible online (see appendix C)

The commonly used inversion procedure is described in chapter 2.3.3. Dally

and Riley, 1965 explains more specifically how to invert isochromatics for static

cracks, using optics equations from section 2.2.1, and the theoretical static stress

field in eq. 1.12, resulting in eq. 1.14. From these equations, a fringe number N

can be calculated at any position in the vicinity of a mixed-mode crack, for given

values of stress intensity factors KI , KI I and remote stress σ0x.
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FIGURE A.2: Convergence of inverted parameters KI , KI I and S0x

In order to invert dynamic fringes, I use eq. 1.15 for a mixed-mode dynamic

crack, and the optics equations of section 2.2.1. In a similar manner N can be

obtained at any position, as a function of KI , KI I and σ0x. In the inversion code,

KI , KI I and σ0x are the parameters to invert, in order to minimize the difference

between the computed fringe number, and the fringe number which has to be

assigned manually.

In order to run the inversion, a fringe number needs to be given at points

picked along fringes in the original picture. There need to be more points than

parameters to invert, which is why the technique is called over-determined in-

version.

Once these data are provided, the code can be run until the solution converges,

usually after a few iterations (see fig. A.2). One of the problems is that it is impos-

sible to know the absolute fringe numbers on fig. A.1. Instead we only know from

the theoretical equations that the fringe number should decrease away from the
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crack tip. The direction of fringe number increase is harder to guess elsewhere

in the domain, as heterogeneities create a complex pattern, and there might be

saddle points.

FIGURE A.3: a) Inverted fringes compared to original ones, and picked points. b)
Inverted synthetic fringes. c) Inverted shear stresses.

From KI , KI I and σ0x, I compute the inverted fringe number, and superimpose

it to the original picture in fig. A.3.a . It can be seen that fringes 4, 5 and 6 roughly

match the original pattern, while the others fringes obtained do not fit well. This

is also visible on synthetic fringes computed from N and the optics equations,

fig. A.3.b . If this method was accurate, the full stress field would be obtained

directly. An example is given for the shear stress in fig. A.3.c (as the absolute

fringe number is not known, the absolute values of stress are likely to be wrong
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too). A big issue with the method also comes from the theoretical dynamic crack

equations (eq. 1.15), which assume a negligible process zone length Xe. This

is clearly not the case in our experiments, and it is the reason why there is no

singularity at the crack tips: the fringes on fig. A.3.a do not join at the tip, unlike

on the synthetic fringes of fig. A.3.b. Using the time difference ∆t≈ 15 μs between

the peak stress and residual stress recorded by the strain gauges, and a rupture

velocity Vr = 820 m/s, an estimate of the process zone can be given by Xe = Vr×∆t

= 12 mm, which is non-negligible compared to the fringes size.

What I could also have done to quantify the fracture energy Us is to take di-

rectly the strain gauge signals 2 mm away from the fault, knowing the the rupture

velocity Vr, in a similar way than what has been done in Svetlizky et al., 2016.
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Digital Image Correlation

As discussed in appendix A, although the photoelastic method is a very useful

tool which has been applied successfully in chapter 3, it has limitations when

it comes to measure the full displacement and stress fields, during dynamic rup-

ture experiments. In this section, without going into detail, I briefly explore a DIC

technique in order to track the particle displacements on the polycarbonate plates

before and during a dynamic rupture. A similar technique has already been suc-

cessfully applied to rupture dynamics, in the recent study of Rubino et al., 2017.

Here I show that even being at the limit of resolution, I obtain some promising

results which seem consistent with the strain gauge data from chapter 3.

B.1 Checking the loading conditions of the biaxial

experiments

I start by checking the loading conditions created by the biaxial press, already

discussed in chapters 3 and 4. In section 4.1.2, I matched the isochromatics of a

FEM model to the experimental picture of the fringes at the end of the loading

phase and just before a rupture. This suggested two areas of higher coulomb

stress from where the rupture consistently nucleated at high loading rates. Using

DIC, I want to check if a similar initial stress distribution can be evidenced.

The DIC technique enables to track the motion of particles between two im-

ages. The images are fractioned into smaller areas, and the correlation algorithm

finds the relative vertical and horizontal displacements of the same neighbour-

hood of pixels in the two images which give the best match.
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I use the MATLAB based free software Ncorr in order to obtain the vertical

and horizontal displacement fields ux and uy (see fig. B.1) from which strains εxx,

εxy, εyy and stresses σxx, σxy, σyy can be estimated (see fig. B.2). Similar results can

be obtained with the Image_Correlator.class plugin from the open-source soft-

ware ImageJ. From the initial and the deformed pictures, normal stresses around

5 to 15 MPa and shear stresses around 2 to 6 MPa, the displacement gradients

needed to be resolved are around a few micrometers per centimetre. The frames

are 200 by 992 pixels with a resolution of 33 px/cm.

FIGURE B.1: a) Initial horizontal (a) and vertical (b) displacements measured with
DIC, ux and uy respectively.

Fig. B.2 presents the stresses recovered from the displacement gradients, tak-

ing elastic moduli E = 2.59 GPa, and ν = 0.35 . While the displacement field seems

well resolved, the stresses are more noisy as the displacement gradients are used

in this case. A profile of shear and normal stresses close to the interface is shown

in fig. B.3.a. The normal stresses go up to 17 MPa in the middle if the interface,

and are around 5 MPa close to the edges. The shear stress is around 1 MPa at the

edges and in the middle of the profile, but exhibits to areas where it peaks at 3

to 4 MPa. The general stress distribution is consistent with what I inferred using

the FEM model of section 4.1.2, showing a bell shaped normal stress distribution,

and two areas of high shear stress around 8 and 20 cm from where the rupture is

likely to start, because of high ratios of σyx / σyy. However it is hard to believe
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that the shear stress is almost zero in the middle of the interface, because it is not

consistent with the numerical model, or with the strain gauge measurements. It

it likely due to noisy displacement gradients.

[Pa]

[Pa]

[Pa]

a)

b)

c)

FIGURE B.2: Initial stresses: a) fault parallel; b) fault perpendicular (normal); c)
shear.
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FIGURE B.3: a) Shear and normal initial stresses in the vicinity of the interface. b)
Ratio shear to normal stresses.

B.2 Is is possible to see the dynamic rupture propa-

gation?

The second application of DIC tested in the appendix is the visualization of a dy-

namic rupture propagating at the interface between the polycarbonate plates. I

recorded a movie at 60000 fps with a frame dimension of 120 by 992 pixels and

the same resolution of 33 px/cm. In this case I am interested in the relative dis-

placement between the two plates. Therefore, I subtract the displacement profile

on one side of the interface, to the displacement on the other side between two

successive frames, 16.7 μs apart. The cumulative relative displacement along the

interface over time is calculated and shown in fig. B.4.
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nucleation
~8 cm

reflexion
of slip

FIGURE B.4: Relative displacement versus time along the interface during a dy-
namic event in the biaxial machine, obtained with DIC technique.

A nucleation phase is clearly visible, and is followed by the dynamic rupture.

Several things are consistent with the biaxial experiments of chapter 3 and help

to understand them. First, the nucleation initiates roughly 8 cm away from the

edge, which is what is observed with photoelasticity, and is attributed to high val-

ues of coulomb stress in those places. Second, the total displacement is around

80 μm, and takes place in a fraction of millisecond, which is roughly what I mea-

sured when plotting the dynamic friction evolution of polycarbonate using strain

gauges in chapter 3.

Finally, a very useful result is that we now see that we have a relative slip

propagating downwards at Vr, and reflected upwards when it reaches the plates’

edges. It means that going further from the bottom edge of the interface, the slip

starts occurring in two phases. This is also what can be seen, when looking back

at the fault parallel strain recoded during the ruptures of chapter 3: the slip pulse

is progressively split. We have two peaks recorded by the strain gauges close to

the nucleation position, while all the slip happens at once close to the edge where

the rupture is reflected.
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FIGURE B.5: Slip velocity record evidencing a 2 step slip close to the source, as
expected when looking at fig. B.4
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Appendix C

Github repository for the codes

developed during the PhD

Most of the base codes used during this PhD are made available online at:

https://github.com/Simongm/codes-dynamic-rupture-and-earthquakes.

Here is a list of the codes and their brief description:

• Main_plotter.py and read_function.py : Main_plotter.py calls read_function.py,

which together enable to read all the datasets from hdf5 files produces by

the high-speed acquisition system. Used mainly to process strain-gauge

signals.
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• Iris_EQ_animation.ipynb: Python script (jupyter notebook) which finds

online earthquake datasets from Iris website, and generates animations of

earthquakes sequences for chosen timespans and regions.

https://github.com/Simongm/codes-dynamic-rupture-and-earthquakes
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• dynamic_fd_intro.m: Matlab script which simulates dynamic inplane rup-

tures
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• dynamic_rupture_snapshot.ipynb: Python script (jupyter notebook) for the

simulation of dynamic inplane ruptures.

• DG_version1 static_elasticity_FEM.ipynb: Python jupyter notebook used

for static finite element simulations with simple quadrilateral elements, and

possibility to introduce a crack in the domain.
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• FEM2D_models_of_biaxial_loading.ipynb: Python jupyter notebook used

for static finite element simulations , and more specifically for simulation of

isochromatics in polycarbonate plates with different loading configurations.
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• loading_triax_crack-forceBC.ipynb: Python jupyter notebook used for static

finite element simulations , and more specifically for simulation loading

condition in triaxial apparatus with different materials.
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• DG_version4_(dyn_forces).ipynb: Python script under development, to

simulate dynamic rupture by prescribing tractions at split nodes along an

interface.

• processpiv.py: Python script used to calculate strains in 2D from PIV anal-

ysis results (text files such as pivImJ.txt available in the repository) from the

PIV plugin of imageJ free software.

• inversion-isochromatics-fringes.ipynb: Python jupyter notebook used to

invert isochromatic fringes from photoelastic experiments of dynamic rup-

ture.
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