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General Abstract 

 

Flowering plant mating systems are as varied as they are complex, and are generally 

considered the leading force behind angiosperm diversity and evolution. Establishing the 

genetic and molecular mechanisms behind phenotypic traits is important to understand 

how they have developed, evolved and spread across populations and taxa. Until recently, 

our understanding of the genetic basis of heterostyly, whereby reciprocal polymorphisms 

in the relative positioning of stigmas and anthers in certain angiosperm species, has been 

largely unknown; though has since been shown to be determined by the multiallelic S-

locus. Using the study species of Linum tenue (Linaceae), this thesis investigates the ecology, 

trait variance and developmental progression of heterostyly in the flowers of L. tenue, 

making inferences on the specific control of heterostyly in this species and general 

speculative theories for its evolution in this taxa. Using a transcriptomic dataset derived 

from short-read Illumina sequence data, this thesis presents an automated method for 

reassembling consensus unigene sequences for the creation of a high-quality refernce 

transcriptome from mRNA data, providing a useful tool for a challenging aspect of gene 

expression studies in non-model organisms. This method is exemplified through the 

creation of a transcriptomic reference sequence of L. tenue vegetative and floral tissues, 

and through the de novo assembly of the Arabidopsis thaliana transcriptome. Next, global and 

differential expression analyses are used to investigate patterns in expression between 

polymorphic L. tenue flowers to discover candidate and proto-candidate loci determining 

the heterostyly syndrome and study differences in expression behaviour between the two 

morphotypes. This thesis provides evidence that heterostyly in L. tenue is pleiotropically 

controlled, and that the non-recombining nature of the S-locus can result in interesting 

patterns of morph-specific expression. 
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1.0 General Introduction 

“Equipped with flowers, the new seed plants spread from the forests to the polar tundra and invaded freshwaters; 
they returned even to the sea, which no moss, liverwort, fern, fern ally, cycad, or conifer had been able to do. 

Emancipated, they transformed the vast gloomy flowerless world with gaiety, feast, and song into a new factory of 
life.” 

 
E. J. H. Corner (1964) The Life of Plants 

 
1.1 Introduction to angiosperm reproductive biology 
 

1.1.1 Angiosperm diversity 

 

Understanding the origins of phylogenetic diversity and ecological success are long-

standing challenges in biology, yet precisely defining either is difficult as both are fairly 

ambiguous and multi-factorial. However, by any standard, both may be used to aptly 

describe the flowering plants (angiosperms). Composed of an estimated 352,000 species, 

angiosperms comprise around 90% of all extant species of land plants (embryophytes) 

(Niklas, 1997); they represent every known plant body plan and growth form, from small 

herbaceous dandelions to towering oaks; and they have radiated into every terrestrial 

biome, where they play key roles in ecological food webs and species-species interactions. 

The dominance and diversity of angiosperms is nowhere more lucidly described than in 

Edred J. H. Corner’s ‘The life of plants’ (1964), which, forgiving the misconception at its 

time of writing that embryophytes descended from marine ancestors, provides the 

aspiring botanist with a comprehensive overview of angiosperm biology entwined with 

deep passion and profound understanding. Since their emergence in the fossil record 

during the early Cretaceous only c.120 mya (Hughes, 1994; Sun et al., 2002), angiosperms 

appear to have undergone rapid early diversification (Friis, Pedersen and Crane, 2005); 

with the origin of key clades, such as the eudicots (130 mya) rosids (108-121 mya) and 

asterids (101-119 mya) dating to roughly the same period (Bell, Soltis and Soltis, 2010). 
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The evolutionary forces that have begot and shaped the staggering angiosperm diversity 

we see were branded by Darwin as an “abominable mystery”, and still remain elusive today. 

 

Up until twenty years ago there was no solid consensus in the scientific community 

regarding the relationships between angiosperm groups (Heywood, 1978), and the 

application of predominantly morphology-based classification did little to bridge deep-

rooted schisms among botanists. Due to the nature of the characters used for classification, 

the inability to distinguish between homology and convergence (and, indeed, the 

weighting of their importance) prevented cladistic analyses from creating accurate 

phylogenies. Subsequent advances in palynology (Donoghue and Doyle, 1989), molecular 

systematics (Crane, 1993; Qiu et al., 1999; Soltis, Soltis and Chase, 1999) and embryology 

(Williams and Friedman, 2002; Friedman, 2006) have provided major insights into the 

evolutionary relationships among angiosperm taxa. Allowing clear and objective 

conclusions to be drawn on the phylogenetic distribution of defined angiosperm 

characters paved the way to a complete revaluation of the angiosperm phylogeny. The 

work presented by these, and many other, scientists has been summarised by the 

Angiosperm Phylogeny Group (APG), an (informal) international collaboration of plant 

systematists. The latest findings of the APG IV (Chase et al., 2016) are regarded as the 

most reliable reference for and holistic depiction of angiosperm phylogenetic relationships 

to date. 

 

1.1.2 Angiosperm mating systems 

 

The vast diversity seen in angiosperms is mirrored in the complexity of their reproductive 

biology. Determining the reproductive fate of the plant, there is often very strong selection 

acting on flowers. By shifting to a new pollinator, or becoming intimately specialised with 
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one, plant populations can achieve rapid reproductive isolation. It is not surprising, then, 

to see that animal-pollinated lineages show the highest levels of species richness and can 

frequently undergo rapid adaptive radiations (Johnson and Steiner, 2000, 2003; 

Richardson et al., 2001). I believe this can be seen as akin to sexual selection: through 

reward, scent, shape and colour the flower has evolved increasing ornamentation to 

attract the pollinator, which carries with it the unmindful pollen grain. Viewed in this 

way, the flower serves a function similar to that of the peacock’s tail. It explains how the 

evolution of floral traits can be exacerbated, and how rapid speciation can take place 

among animal-pollinated taxa. 

 

1.1.3 The dimensions of plant mating strategies 

 

It is first important to understand how trajectories of male and female function can either 

align or diverge based on the associated cost of the mating system. Parker, Baker and 

Smith (1972) showed how an evolutionary stable strategy favours gamete dimorphism 

(anisogamy) under conditions where parental resources are limited, as is always the case 

in nature; resulting in small, abundant, motile male gametes, and large, few, sessile female 

gametes. The natural corollary of this is that male fitness is determined by the number of 

gametes produced, and female fitness by the quality of gametes produced. In many 

mammals, for example, there is heavy investment in sexual form and function, spurred 

often by sexual selection: males compete to defend territories or harems, while females 

invest heavily through maternal care and weaning. In most plants, however, sexual costs 

account for relatively low amounts of the total energy budget (Richards, 1997), and thus 

male and female forms can successfully coexist in a hermaphroditic individual. It is not 

surprising, then, to see the evolution of dioecy in situations of differential sexual 

investment, i.e. expensive fruit production in tropical trees (Barrett and Hough, 2013). 
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Roughly 90% of angiosperms are cosexual and hermaphroditic, giving weight to the 

theory that the first flowers were cosexual (Frohlich and Parker, 2000). Assuming an 

absence of other constraints, cosexual flowers can self-pollinate, which guarantees 

reproduction. Selfing is a sexual process, involving meiosis to form both gametes, and so 

does not result in the same lack of genetic variability that is found in asexual reproduction. 

This is quite possibly what allowed angiosperms, which first evolved on the peripheries of 

plant communities (Sun et al., 2002), to invade and conquer the gymnosperm forests. 

 

As shown in Figure 1.1, angiosperm mating strategies tend to lean towards one of three 

broad types. Apomixis will not be discussed in detail here, but it is interesting to note how 

this mating strategy has led to the evolution of complex communities and endemic taxa, 

notably in Sorbus populations of the Avon Gorge, Bristol (Robertson et al., 2010), and the 

East Lyn Valley, Devon (Hamston et al., 2017). The third strategy is outcrossing between 

different individuals in a large enough population (panmixis). 

 

Each strategy has consequences for gene flow dynamics among populations. Outcrossers 

will have higher levels of genetic diversity, with large numbers of heterozygotes for any 

Outbreeding 
PANMIXIS 

SI, herkogamy: facultative/obligate 

Inbreeding 
AUTOGAMY 

Selfing: facultative/obligate 

Asexuality 
APOMIXIS 

Vegetative, agamospermy 

Figure 1.1 The ‘eternal triangle’ of angiosperm breeding system interfaces (Richards, 1997). There are three 
distinct breeding systems, but it is rare to find such extremes in nature. Most species will fall further along one 
of the edges; even in populations considered obligate inbreeders, such as Arabidopsis thaliana, there is still a limited 
degree of outcrossing that will occur. In this way, many species adopt a ‘mixed’ mating strategy. 
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polymorphic locus. This genetic variability may offer the potential for continual evolution 

and allow diversification to fill many different niches. Selfing populations will have lower 

levels of genetic diversity and fewer heterozygotes, although occasional outcrossing may 

slightly ameliorate this. As a result, most selfing species may lack adaptive or evolutionary 

potential (Goldberg et al., 2010). Asexual populations will also possess a further lack of 

genetic variation, unless, as has been seen in Sorbus, a number of different asexual lines 

coexist. Depending on the progenitor genotype, heterozygosity may be low or high, but, 

given their vegetative nature, they (theoretically) have almost no evolutionary potential. 

 

The balance between the relative importance of genetic variation and reproductive 

assurance differs between species, primarily due to habitat, life history and niches 

occupied (Charlesworth, 2006). It is the conflict between long-term evolutionary 

persistence and short-sighted evolutionary change that characterises the distribution of 

mating strategies. 

 

1.1.4 Promoting outbreeding 

 

Usually bearing hermaphroditic flowers, most plants face the possibility of self-pollination. 

This can involve either pollen from an anther landing on the stigma of the same flower 

(autonogamy) or pollen from an anther landing on the stigma of a different flower of the 

same individual (geitonogamy). It has long been known that inbred offspring are less fit 

than outbred offspring, as a result of i) accumulation of deleterious recessive alleles and ii) 

a lack of genetic variation to enhance adaptive potential; this is known as inbreeding 

depression (Charlesworth and Charlesworth, 1987). To overcome this, the evolution of 

sophisticated mating systems conducive to outcrossing have evolved multiple times across 
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the angiosperm phylogeny; some of which seem to have evolved in parallel, others 

convergently. 

 

Two of the most common forms are self-incompatibility (SI) (the recognition and rejection of 

self-pollen) and herkogamy (the separation of male and female sexual organs in space). SI 

involves a series of molecular mechanisms, whereby pollen from the same, or a closely 

related, individual is recognised on the stigma and either fails to germinate or the pollen 

tube is actively destroyed. In contrast, herkogamy is purely structural and often takes the 

form of heterostyly, which involves polymorphisms in relative anther and stigma heights, 

where morphotypes generally can only mate reciprocally. SI and heterostyly are under 

tight genetic control, and different species may employ either or both of these strategies 

to facilitate outcrossing. Other systems also exist, such as dichogamy (the separation of 

male and female organs in time) and dicliny (the development of unisexual flowers, on 

either monoecious or dioecious individuals), but will not be discussed further here. 

 

By Fisher’s fundamental theorem, where the rate of evolution increases with additive 

genetic variance, high levels of genetic diversity make it easier for a population to traverse 

the adaptive landscape. The proclivity to evolve such diverse ranges in reproductive 

strategy, and to enforce outcrossing in particular, is a key attribute of angiosperms, and 

has undoubtedly contributed to their diversity, plasticity and success. 

 

1.1.4.1  Self-incompatibility 

 

It has been reported that up to 50% of angiosperm species bear some form of SI (McClure 

and Franklin-Tong, 2006). In the 90 angiosperm families where SI has been studied, the 

control of fertilisation can often be determined by a single genetic locus, the S locus. The 

S locus is a closely linked chromosomal region containing multiple genes, which together 
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control SI, and exists in multiple haplotypes (although sometimes referred to as ‘alleles’ in 

the literature). A pollen-pistil union where one, or both, of the parent haplotypes are the 

same results in an incompatible pollination. SI can be split into two main categories: i) 

gametophytic SI (GSI), where SI is determined by the haplotype of the pollen (see Figure 

1.2), and ii) sporophytic SI (SSI) where SI is determined by the diploid genomes of the 

parents (Figure 1.3). 

 

 

 

 

 

 

Best characterised in the Solanaceae, but also found in the Rosaceae and Papaveraceae 

(among others), GSI inhibits pollen tube growth in the tissue of the style. The female 

determinant was first discovered in Nicotiana alata (Anderson et al., 1986), and later 

confirmed to be acting as an RNase (named S-RNase) (Gray et al., 1991). Characterising 

the male determinant of GSI has been more difficult. Early work found S locus F box (SLF) 

genes to affect SI (Lai et al., 2002; Qiao et al., 2004; Sijacic et al., 2004); F box proteins 

target specific proteins for ubiquitination by the SCF E3 ubiquitin ligase complex; the 

proposition being that non-self S-RNases are targeted for degradation. A more in-depth 

study has since shown that multiple SLF alleles are linked to the S locus and expressed in 

Figure 1.2 Gametophytic self-incompatibility. Mating 
type of the pollen is determined by the haplotype of the 
pollen gamete (Glover, 2007). 

Figure 1.3 Sporophytic self-incompatibility. Here, 
the mating type of the pollen is determined by the 
diploid genotype of the parents (Glover, 2007). 
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the pollen, allowing a variety of S-RNases to be targeted (Kubo et al., 2010). Given the 

relatively recent discovery of the male determinant, much work remains to be done to 

fully characterise the system and that of completely different mechanisms described in 

other families (Foote et al., 1994; Wheeler et al., 2009). 

 

SSI has been heavily studied in the Brassicaceae, but is also found in other major families, 

including the Asteraceae and Caryophyllaceae, although the molecular mechanisms by 

which it governs in them are yet unclear. In contrast to GSI, SSI inhibits pollen tube 

germination on the stigmatic surface before it enters the style. Dominance, co-dominance 

and recessiveness may be at play among S locus haplotypes, making understanding the 

relationships between them a rather complicated affair (Hiscock and McInnis, 2003). Two 

highly polymorphic S locus genes have been identified in Brassica: S locus receptor kinase (SLK) 

(Stein et al., 1991) and S locus glycoprotein (SLG) (Nasrallah et al., 1985; Kandasamy et al., 

1989). SRK proteins have been found to be localised to the plasma membrane of stigmatic 

tissues (Stein et al., 1996) and are the female specificity determinants, with SLG enhancing 

the recognition process (Takasaki et al., 2000). The male determinant has been found to 

be S locus cystine-rich (SCR) (Schopfer, Nasrallah and Nasrallah, 1999), also known as S-locus 

pollen protein 11 (SP11) (Takayama et al., 2000), the proteins of which were found to be 

expressed within the tapetum and rubbed into the exine walls of developing pollen grains. 

When pollen lands on the stigma, SCR and SRK will bind together if they are encoded 

by genes from the same haplotype (Takayama et al., 2001) to initiate an intracellular signal 

transduction cascade, which results in the degradation of proteins essential for pollen tube 

growth by E3 ubiquitin ligase (Stone et al., 2003). 

 

Studies in Senecio (Asteraceae) have focused on isolating glycoproteins with stigma-specific 

expression and S locus segregation through transcriptome-based approaches (Allen et al., 

2011). Interestingly, potential homologs of SLK and SLG are ubiquitously expressed and 
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do not segregate with the S locus (Hiscock et al., 2003), suggesting SSI has evolved multiple 

times across the angiosperm phylogeny with different molecular mechanisms. 

 

1.1.4.2  Heteromorphic self-incompatibility 

 

Many angiosperm families have been reported to have a heteromorphic SI system, where 

SI type is associated with morphological polymorphisms in the relative positioning of the 

stamen and the stigma. This is often also referred to as heterostyly and will be discussed 

in greater detail in section 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Usually heterostyly takes the form of distyly, where two morphs are present in a species, 

although tristyly (three morphs: e.g. Oxalis eckloniana, Lythrum slaicaria) is also known to 

occur. As shown in Figure 1.4a, distyly involves ‘pin’ (long-styled) and ‘thrum’ (short-

styled) individuals in a population, and only reciprocal pollination results in a legitimate 

union. The classic example is that of the common primrose, Primula vulgaris (Primulaceae), 

Figure 1.4 Heterostyly, a form of reciprocal herkogamy, in angiosperms. a) A schematic 
representation of distyly. Pin (left) and thrum (right) polymorphisms provide efficient pollen transfer 
with a reduced chance of self-pollination (Barrett, 2002). b) Photograph showing heterostyly in long 
(left) and medium (right) morphs of tristylous Lythrum slaicaria (Lythraceae) (Nickrent et al., 2006 
onwards) 
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which Charles Darwin studied in great detail. He postulated that the function of 

heterostyly was to cover the anterior and posterior ends of the insect with pin and thrum 

pollen respectively, so entry into a flower would be likely to deposit pollen onto the 

reciprocal stigma. P. vulgaris has a SSI system directed by only two haplotypes, which also 

control the relative style and anther lengths. These haplotypes display Mendelian 

dominance-recessive behaviour, with SS and Ss individuals producing thrum flowers and 

ss individuals producing pin flowers. This works in a very similar way to the XY sex 

determination system in mammals, and similarly produces populations with 50-50 

proportions of each morph.  

 

There is some evidence that molecular SI mechanisms may differ between floral morphs, 

as incompatible pollen has shown to be inhibited in different tissues dependant on 

whether the maternal plant is a pin (stigmatic tissues) or thum (style tissues) in Pentanisia 

prunelloides (Rubiaceae) (Massinga, Johnson and Harder, 2005). Until recent years, most 

research has focused on the population dynamics and evolution of heterostyly, as opposed 

to its molecular evolution and genetic basis. 

 

1.1.5 Evolutionary transitions to self-compatibility 

 

A further striking feature of plant mating systems is their evolutionary lability. Outcrossing 

is dependent on the pollen of a compatible mate to reach the stigma, which will fail in the 

absence of a large enough population and/or an effective pollinator. It is not surprising, 

then, to see that about 20% of angiosperm species are primarily selfers, with transitions 

from SI to self-compatibility (SC) and from heterostyly to homostyly being commonplace 

(Barrett, 2002). 

 



 12 

One fascinating example of this is in the bee orchid Ophrys apifera. Ophrys spp. are well 

known for their visual and olfactory mimicry of female insects – usually bees – which in 

turn attracts males of the same species to attempt copulation with the flower, transferring 

pollen in the process. Given the complexity required for such sexual deception, the plant-

pollinator interaction is highly species-specific and has developed through tight 

coevolution. However, due to the extinction of the pollinator, the stalks bearing the pollen 

sacs have adapted their development to grow longer and thinner, allowing the pollen sacs 

to draw themselves down under their own weight and contact the stigma (Stebbins, 1957). 

The stark irony here demonstrates both the blind directionality of natural selection and 

the plasticity of angiosperm reproductive systems: millions of years of evolution geared 

towards heavy investment in traits that promote outcrossing have culminated in a plant 

that selfs. 

 

The genetic basis for the break-down of SI has been characterised in Arabidopsis thaliana, 

and attributed to an inversion within the SCR locus (Tsuchimatsu et al., 2010). The shift 

to selfing is often accompanied by the loss of traits that attract pollinators, as the plant no 

longer has to invest in these (sometimes) expensive characters. This can include a 

reduction in flower size, a reduction in scent or nectar production, and a loss of any stylar 

polymorphisms. Traits that enhance self-pollination may also become more pronounced: 

flowers may become increasingly cleistogamous (indehiscent) or lose dichogamous 

maturation (Kalisz et al., 2012). Any alleles that promote selfing may spread quickly 

through a population due to natural selection favouring the reproductive assurance which 

autogamy provides. In some cases the free-living gametophyte phase of the plant life-cycle 

is can purge deleterious alleles from a population (Szövényi et al., 2014), although, as 

explained in section 1.1.3, inbreeding can perpetuate genetic invariability and thus a lack 

of evolutionary vigour. 
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The evolution of SC from SI is largely unidirectional, and reversions from selfing back to 

outcrossing are rare; Dollo’s law postulates this is due to the unlikelihood of such complex 

traits being regained (Barrett, 2013). A study by Goldberg et al. (2010) investigated this 

directionality in the evolution of selfing, and found the rates of transitions from SI to SC 

were so much greater than SC to SI that it was in fact surprising that SI persists at all. 

Upon taking a macroevolutionary perspective, it can be seen that selection acts 

antagonistically on different levels of the taxonomic hierarchy. Species may also be units 

of selection: they produce ‘offspring’ (incipient species); there will be variation in the 

offspring, but traits will also be inherited from the progenitor species; species may have 

differential success (give rise to more/less incipients); and they can also ‘die’ (become 

extinct). Goldberg et al. found that SI species have a tendency to beget more incipient 

species and were much less likely to become extinct than SC species. The short-

sightedness of natural selection driving the evolution of SC is, thereby, completely 

displaced by species selection favouring SI in the long-term. 

 

1.2 Introduction to heterostyly 
 

“I do not think anything in my scientific life has given me so much satisfaction as making out the meaning and 
structure of these [heterostylous] plants.” 

Charles Darwin (1876) 
 

1.2.1 Reciprocal herkogamy: the Darwinian hypothesis 

 

From at least the 16th century people had already made observations of the arrangements 

of the sexual organs of primrose (Primula) species, but botanical interest in heterostyly was 

piqued when Charles Darwin published a paper entitled ‘On the two forms, or dimorphic 

condition, in the species of Primula, and on their remarkable sexual relations’ in 1862 – three years 

after the publication of ‘On the origin of species’. Darwin claimed to have first noticed this 

unusual trait over twenty years prior in Linum flavum, where the species is composed of pin 
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(long-styled, LS) and thrum (short-styled, SS) individuals, but originally believed it to be 

a function of the natural variation present in a population. However, upon an 

examination of Primula spp., he discovered that the two forms were “much too regular and 

constant” to be present as a result of random variability.  

 

His original assumption was that heterostyly represented a transitional stage between 

cosexual flowers and dioecy; that the shorter organs on each morph were decreasing in 

functionality. At his home at Down House, Orpington UK, Darwin began to test this 

hypothesis, growing up hundreds of Primula flowers in flower beds at the bottom of his 

garden. Through a series of controlled crosses, whereby there are four possible pollen-

pistil unions (LS pollen x LS stigma; LS pollen x SS stigma; SS pollen x LS stigma; SS 

pollen x SS stigma), it became clear that there was no fitness cost associated with a shorter 

organ or an intermorph mating; which would be a prerequisite for diversifying selection 

to drive segregation of the sex organs. In fact, the pollination studies revealed the opposite: 

as demonstrated in Figure 1.5, intermorph unions where organs were of reciprocal heights 

(i.e. LS pollen x SS stigma or SS pollen x LS stigma) produced dramatically larger and 

higher quality seed sets (had greater reproductive success) than those from intramorph 

matings or self-pollinations. 

 

Darwin’s work clearly indicated the function of heterostyly was to encourage outcrossing, 

and in 1877, after further extensive examination of heterostyly in many other families 

such as the Linaceae, Rubiaceae, and Polygonaceae (buckwheat) (Darwin, 1877), 

concluded that the mechanism behind this is to encourage deposition of pollen from 

different style morphs on different ends of the insect pollinator. A year prior, Darwin had 

published a book entitled ‘The effects of cross and self-fertilisation in the vegetable kingdom’ (1876) 

and was well aware of the effects of inbreeding. For this reason, crosses were always 

between unrelated individuals to prevent confounding influences on seed set measures. In 
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addition to the lengths of the sexual organs, a number of other ancillary morphological 

variations were found specific to each morphotype. Specifically the large size difference 

between pin and thrum pollen in heterostylous Primula spp., along with the different 

[inwards/outwards-facing] orientations of the stigmas, convinced Darwin that dimorphic 

pollen is distributed along the insect in a segregated fashion: LS pollen on the anterior 

and SS pollen on the posterior (see Figure 1.4). This then serves, Darwin postulated, to 

ensure that when the pollinator visits a pin flower, long-anther pollen on its rear will be in 

contact with the long-styled stigmas, and short-anther pollen on its front will be in contact with 

short-styled stigmas in a thrum. 

 

Darwin thus described an elegant structural mechanism employed by flowering plants to 

enforce outcrossing and disassortative mating in order to prevent inbreeding depression. 

 

1.2.2 The ecological function: the modern perspective 

 

The ecological function of heterostyly can be difficult to examine, based on the limited 

number of methods available for precise pollen tracking. Ganders (1974) argued 

avoidance of self-pollination cannot be the only explanation for the persistence of 

Figure 1.5 An illustration of Darwin’s model of heterostyly from his 1862 paper ‘On the two forms 
of Primula’. The dotted arrows represent various possibilities of pollen transfer, where intermorph 
(heteromorphic) pollinations result in a much higher seed set than intramorph (homomorphic) 
pollinations. This suggests selection is favouring intermorph (disassortative) mating. 
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heterostyly, as monomorphic populations can equally prevent self-pollination just as 

effectively. This work also showed, through emasculation of anthers, that a significant 

percentage of incoming pollen on the distylous stigmas of Jepsonia heterandra 

(Saxifragaceae) was from the opposite morph. Evidence seems to suggest heterostyly 

functions to promote disassortative mating and not just the avoidance of selfing. 

 

Lloyd and Yates (1982) and Harder and Barrett (2006) studied the effects of self-

interference, which occurs when there is competition between the male and female sexual 

functions within a hermaphroditic individual. In the case of the SI flower, if autonogamy 

(self-pollen landing on stigma of the same flower) occurs, male function is adversely affected 

as the pollen is ‘wasted’, and there may also be a cost to female function: there will be less 

space on the stigma for viable pollen grains. Conversely, male fitness (in terms of the 

export of pollen) can be compromised if the positioning of the stigma reduces contact 

between the anther and the visiting pollinator. In this way, the floral architecture that 

maximises male fitness can be different to the architecture that maximises female fitness 

(Johnston et al., 2009). Other than opting for mono- or dioecy, herkogamy provides the 

plant with a resolution for this sexual conflict (Barrett, 2002). Heterostyly therefore 

functions to (i) reduce sexual interference through the spatial separation of sexual organs 

within the flower, (ii) promote disassortative mating through selective pollen transfer using 

the reciprocal positioning of the sexual organs, and (iii) prevent selfing through structural 

and physiological intramorph incompatibilities, aided by biochemical SI mechanisms. 

 

1.2.3 The genetic basis (in Primula – the ‘model’ heterostylous system) 

 

In the early 20th century, William Bateson ‘rediscovered’ the work of Gregor Mendel and 

fully recognised its importance for the understanding of inheritance. Being a zealous 
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exponent of Mendel’s work, Bateson quickly became known as ‘Mendel’s bulldog’, and 

coined the term ‘genetics’ in 1905 (from the Greek ‘genno’: ‘to give birth’); and founded 

what has today become the scientific discipline of genetics. In the same year, Bateson 

published ‘On the inheritance of heterostylism in Primula’ (Bateson and Gregory, 1905), which 

demonstrated that the inheritance of distyly in P. sinensis nicely follows the principles of 

Mendelian particulate inheritance. Through the cross- and self-fertilisation of pin and 

thrum individuals, Bateson determined that (long-styled, LS) pins were homozygous ss 

and (short-styled, SS) thrums were heterozygous Ss, where ‘S’ represents the allelic locus 

controlling heterostyly and S is the dominant allele and s is the recessive. The results 

showed that self-fertilised pins solely produced LS offspring (homozygosity), whereas self-

fertilised thrums produced SS to LS offspring in the expected ratio of 3:1 (heterozygosity); 

and a pin x thrum cross yielded SS to LS offspring in a 1:1 ratio (S is dominant over s). 

Bateson’s work was replicated and confirmed in various different systems towards the 

latter half of the 20th century. However, higher levels of intramorph incompatibility 

sometimes prevented successful crossing experiments from being carried out, such as in 

P. vulgaris (Ornduff, 1992). 

 

The first large breakthrough in heterostyly genetics came from the work of Alfred Ernst, 

whose exhaustive crossing experiments (Ernst, 1928, 1936, 1955), involving thousands of 

Primula intra- and inter-species pollinations, revealed that three determinant loci were 

together responsible for the two style morphotypes: G: controlling style length, stigmatic 

papillae type and female compatibility type (with the dominant allele causing short styles); 

P: the pollen and male incompatibility type (with the dominant allele causing larger 

pollen; and A: the position of the anthers (with the dominant allele causing long anthers). 

This complex of loci has come to be collectively known as the S locus. Under Ernst’s 

model, thrums were heterozygous GPAgpa and pins were homozygous gpagpa, as suggested 

by Bateson and Gregory (1905). This discovery was primarily due to the categorisation of 
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novel morphotypes in rare homostylous populations (high anthers in LS homostyles and 

low anthers in SS homostyles), in addition to similar segregation of pollen size, suggesting 

separate, yet tightly linked, alleles were responsible for different aspects of the heterostyly 

syndrome. Specifically, the pollen incompatibility phenotype consistently segregated with 

pollen size, and the stigma incompatibility type with style length suggesting the GPA order 

of genes within the S locus. 

 

Ernst’s work suggested that inheritance of heterostyly was clearly controlled by a number 

of tightly-linked alleles, most likely a chromosomal region, and that novel morphotypes 

were arising as a result of mutation in one or more of the constituent alleles, creating new 

S locus genotypes. Further work focussing on the classical genetics of Primula in the latter 

half of the 20th century confirmed and expanded on Ernst’s work, and showed that while 

mutation may be the cause of novel morphotypes in some Primula species, recombination 

events at the S locus was more likely to be producing the unusual morphs (Pamela and 

Dowrick, 1956; Barrett, 1992). Pamela & Dowrick (1956) also worked with the tetraploid 

Primula obconica and noted that the frequency of double reduction, a phenomenon where 

the complicated pairing of homologous chromosomes during meiosis in polyploid 

organisms can result in a chromatid and its sister copy to end up in the same gamete 

(potentially allowing heterozygous individuals to generate homozygous offspring), was 

extremely low. Given that the centromere of the chromosome can shield against crossing 

over, the coefficient of double reduction can therefore be a function of distance from the 

centromere. Pamela & Dowrick (1956) thus predicted that the S locus was likely to be 

situated close to a centromere. 

 

The consensus, then, for the model of heterostyly genetics in Primula was that the S locus 

was a diallelic superlocus, with all dominant alleles (responsible for SS thrums), GPA, 

present on one haplotype and all recessive alleles (responsible for LS pins), gpa, present on 
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the other. Recombination at the locus is heavily suppressed, but occasional recombination 

events can create unusual morphs. It has been suggested (Kurian and Richards, 1997) 

that additional genes are responsible for sex-linked incompatibility other than G and P as 

an unusual morphotype was discovered that produced a mixture of pin and thrum pollen, 

demonstrating that male compatibility type can be segregated from pollen size. 

 

Population genetic studies predict that negative frequency dependant selection should 

maintain a balanced level of polymorphism within a population for longer than alleles at 

other loci not under selection (Charlesworth, 2006). However, the effects of genetic drift 

should also be stronger on the S locus than selection compared to other regions of the 

genome due to the reduced effective population size of the S allele, and purifying selection 

to remove deleterious mutations will be weaker at the S allele, as it is only present as a 

heterozygous genotype in a genomic region that is already under tight suppression of 

recombination (Uyenoyama, 2004). The corollary of this is that S locus genes should 

present higher levels of sequence divergence relative to other parts of the genome, and 

will likely have accumulated associated genetic load and regions of repetitive elements 

and transposons (Kappel, Huu and Lenhard, 2017). 

 

With improvements in molecular techniques and technologies, attention in Primula has 

turned towards sequence and functional genetics-based approaches. Through subtractive 

transcriptomics (McCubbin, Lee and Hetrick, 2006) and differential display PCR (Li et 

al., 2007) and RFLP (Manfield et al., 2005) approaches, numerous genes were initially 

found to be present with morph-specific expression patterns. Some of these were not 

linked to the S locus (McCubbin, Lee and Hetrick, 2006) and thus thought to function 

downstream. However, SLL1 and SLL2 were found to be tightly linked to the S locus (Li 

et al., 2007), and PvSLP1 was found to be very closely linked repetitive region (Manfield et 

al., 2005). Overexpression of GLO1, the Primula ortholog of the class B floral homeotic 
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gene GLOBOSA in A. thaliana, was found to be responsible for homeotic mutant 

phenotypes (Li et al., 2008, 2010). Li et al. (2015) then used these loci as part of a high-

resolution map of the S locus in P. vulgaris. It was also confirmed that the S locus is located 

on the largest Primula chromosome next to a centromere, as predicted by Pamela & 

Dowrick (1956). Genome, RAD and transcriptome sequencing of P. veris (Nowak et al., 

2015) suggest heavy suppression of recombination in genomic regions surrounding the S 

locus and higher levels of sequence divergence were found in thrum morph haplotypes, 

as predicted by population genetics (Charlesworth, 2006). Of key significance in this study 

was the absence of these S locus sequences in the pin genome, suggestive of a hemizygous 

determination system. Recently, a build of the P. vulgaris genome (Cocker et al., 2018) has 

revealed the architecture of the S locus, and has shown its conservation throughout the 

genus.  

 

1.2.4 Genetic studies in other heterostylous systems 

 

In most other studied heterostylous systems, SS morphs similarly appear to be determined 

by a dominant (or possibly hemizygous) haplotype. Classical (Shore and Barrett, 1985) 

and molecular (Labonne et al., 2010) genetics strongly suggest the presence of a superlocus 

in Turnera (Passifloraceae) with thrum morphs being determined by the dominant 

haplotype. Thrum style-specific expression of alpha-dioxygenase (unlinked to the S locus) 

and polygalacturonase (linked to but not a part of the S locus) (Athanasiou and Shore, 

1997; Athanasiou et al., 2003) suggest secondary control by distyly-determinant factors. 

Labonne et al. (2009) conducted high-resolution mapping of the S locus and found genes 

(including retrotransposons, as predicted by population genetics) to be tightly linked with 

the S locus. 
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Inheritance patterns in Fagopyrum (Polygonaceae) similarly indicate governance by a 

superlocus (Garber & Quisenberry 1927; Matsui et al. 2003). Many markers have been 

found to be linked to the S locus (Aii et al., 1998; Yasui et al., 2004) along with thrum-

specific expression (Miljuš-Đukić et al., 2004). RNAseq was used to identify four SHORT-

STYLE-SPECIFIC GENE (SSG) genes (SSG1-4) with thrum-specific expression (Yasui et al., 

2012). SSG3 seems to have arisen through the duplication of a homolog of the closely 

related EFL3 in A. thaliana. This pattern is also observed in other Fagopyrum species, and 

thus has implications for the selection of heterostyly in the Polygonaceae. Furthermore, 

mutations in SSG3 appear to be involved in the breakdown of heterostyly and SI in two 

independent Fagopyrum esculentum homostyles, strongly suggesting it is a functional member 

of the S locus. Genome sequencing of F. esculentum (Yasui et al., 2016) further identified 

large regions of over 5.4 Mb that were SS-specific, suggestive of a large non-recombining 

hemizygous region, with 75% of the sequence derived from transposable elements, 

similarly consistent with population genetics predictions. 

 

Within the Boraginaceae heterostyly appears to have evolved independently on numerous 

occasions, at both the family and genus level (Cohen, 2011). RNAseq found differential 

expression of numerous genes at different floral developmental stages between morphs, 

with fewer genes being differentially expressed early in development. Throughout 

development, there appears to be a shift in expression from genes involved in growth and 

floral development to genes involved in physiological functions. 

 

Tristyly in the monocot Eichhornia (Ponterderiaceae) has been shown to follow a similar 

dialleleic control system (Arunkumar et al., 2017), whereby tristyly seems to be controlled 

by two loci: the S locus and the M (modifier) locus. Here, QTL mapping of floral traits 

was conducted on the M locus, finding a large region (10 Mb) that cosegregates with the 
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M locus. Whether the M locus represents a superlocus or contains a small number of 

pleiotropic loci is still an area of enquiry. 

 

1.2.5 The origins of heterostyly 

 

Heterostyly is, relatively speaking, a rare phenomenon, but is nonetheless a fascinating 

study system due to the convergent evolution of different heterostylous systems across the 

angiosperm phylogeny. Heterostyly seems to have evolved independently at least twenty 

times (Lloyd and Webb 1992), even numerous times independently within a family such 

as the Boraginaceae (Cohen 2011). In the Primulaceae, the ‘model’  heterostyly system, 

however, a single independent origin is most likely (de Vos et al. 2014). Darwin knew the 

occurrence of heterostyly was spread across the angiosperm phylogeny, and he proposed 

that the most parsimonious explanation was multiple independent evolution events. 

 

Darwin’s hypothesis was that the first stage in the evolution of heterostyly was that in 

ancestral progenitor species of extant heterostylous taxa there would have been high 

amounts of variation in the pistil and stamen lengths, or, as in the case of Linum 

grandiflorum, pistil length alone. He then implied that some degree of SI would have 

favoured reciprocal herkogamy that improved regular cross-pollination. In the 140 years 

since, Darwin’s hypothesis still forms the basis for various competing hypotheses: is the 

acquisition of reciprocal herkogamy or SI the first stage in the evolution of heterostyly? 

 

There are two main competing models for the evolution of heterostyly. Charlesworth & 

Charlesworth (1979) proposed a mutation for a novel incompatible pollen type arising in 

a SC homostylous ancestor could spread and establish a polymorphism under conditions 

where the product of selfing rate and inbreeding depression are high. In contrast, Lloyd 
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& Webb (1992a; 1992b) propose a model whereby ancestors with approach herkogamous 

flowers (stigma positioned above anthers) experienced an evolutionary event, possibly the 

result of a mutation, to shorten the style and subsequent mutations to raise the heights of 

the anthers. Subsequent work has tended to support models similar to the latter 

‘approach-herkogamy-first’ hypothesis, as it suggests at least partial outcrossing and thus 

the selection for pollination efficiency (Harder and Barrett, 2006). 

 

1.3 Introduction to Linum 
 

1.3.1 The Linaceae 

 

The genus Linum (Linaceae) is a study system which provides plenty of opportunities to 

explore heterostyly. For over 8 millennia (Hillman 1975) humanity has fostered and 

exploited the natural qualities of flax, which has been grown for its fibres (Zohary and 

Hopf 2000) and its seeds (Vaisey-Genser & Morris 2003), and this has led to the breeding 

of cultivated flax (Linum usitatissimum). In recent times, the use of flax for linen fibres has 

heavily declined due to the boom in cotton and synthetic fabric industries, but L. 

usitatissimum is still grown for its seeds (linseed) and remains an important economic crop 

for many countries in Europe, Asia, Canada and the USA. Scientific interest in flax has 

also been renewed due to the discovery of high lignan and α- linolenic acid content of its 

seeds, which have been shown to be effective in protecting against cardivascular dieases 

and cancer (Cunnane, 2003; Muir and Westcott, 2003). 

 

Having evolved c.44 mya (McDill et al. 2009) and being comprised of over 180 species 

inhabiting tropical, sub-tropical and temperate regions around the globe, Linum displays 

classic variation (see Figure 1.1) in its species’ reproductive biology. Linum bienne (the 

progenitor of L. usitatissimum), Linum strictum, Linum tenue and Linum trigynum are all found 
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throughout southern Europe and are quite common across the southern Iberian peninsula 

in particular. L. tenue and L. trigynum are two heteromorphic SI sister species, whereas L. 

strictum and L. bienne are both homomorphic and SC. Being part of two separate Linum 

clades, L. strictum and L. bienne represent at least two independent evolutionary transitions 

from SI to SC, thus providing the ideal opportunity to understand the selective forces that 

have resulted in convergence and have shaped patterns of mating system evolution in this 

genus. Furthermore, the ranges of these four species span the entirety of the Andalusia 

region, which encompasses populations living at sea level, in e.g. Marbella, to >3000m in 

the Sierra Nevada mountain range. This system thus allows observations of how gene-

flow dynamics across a species’ range can be affected by its mating strategy. 

 

With the exception of some work into the heterostyly syndrome (Armbruster et al., 2006), 

and recent advances by Ushijima et al. (2012, 2015) the genetic basis of SI has been largely 

overlooked in Linum by the broader research community. Through a molecular dissection 

of the genes involved in the S locus, and a study of how these can be exposed to selection 

within populations, we can begin to paint a more colourful and holistic picture of plant 

mating system evolution than that which is conventionally offered through model systems. 

 

1.3.2 The genetics of heterostyly in Linum 

  

Heterostylous Linum species demonstrate all the classic traits associated with the 

heterostyly syndrome, such as strong SI and different pollen morphologies (Rogers, 1979). 

The breakdown of heterostyly in L. tenuifolioum demonstrates that the long homostyles are 

more frequent (Nicholls, 1985), consistent with the theory that there is a shift to selection 

for maintaining female function during heterostyly breakdown (Charlesworth and 

Charlesworth, 1979). In comparison to other heterostylous systems, the difference in the 
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anther positioning of some Linum species is not as extreme, though strong SI and many of 

the associated morph-specific polymorphisms are commonly found (Dulberger 1992). 

 

As in many other heterstylous taxa, the working assumption is that SS individuals are 

hemizygous, with superlocus control of heterostyly being suggested, as is found in Primula, 

due to the identification of thrum-specific genes  L. grandiflorum (Ushijima et al., 2012, 

2015). Combining proteomic and transcriptomic approaches, Ushijima et al. (2012) 

isolated 12 floral morph-related genes with strong indications for the functional control 

of heterostyly in L. grandiflorum, similarly indicating the presence of a superlocus. Of 

specific interest is the TSS1 gene, which is exclusively expressed in thrum styles. Ushijima 

et al. (2015) later demonstrated that TSS1 is absent in pin genomic DNA. This has 

implications for a hemizygous system similar to Primula, although was discovered before 

the publication of the Primula genome. Given the restricted expression of TSS1 in thrums, 

it is likely a part of the dominant haplotype. The function of this gene, however, has 

remained unknown. 

 

1.4 Linum tenue: the study species 
 

To provide greater context for the thesis, and the decisions taken for experimental design 

of the following data chapters, I will use this section to introduce Linum tenue and provide 

information on the background work I conducted prior to data collection and analyses.  

 

1.4.1 Linum tenue: the biology, bauplan and phylogeny 

 

The distylous L. tenue is a locally frequent annual forb (herbaceous angiosperm that is not 

grass or grass-like in morphology) of grassland, frequently found in meadows, olive groves 

and orchards. Its native range spans southwest Iberia and northwest Africa, though recent 
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phylogenetic studies suggest the African and European lineages are separate species 

(Ruiz-Martín et al., 2018). Individual plants can grow 30-150 cm tall and show a range of 

variation in branching patterns and upright or prostrate growth. In the wild, flowering 

time generally begins from mid-late spring and lasts until mid-summer, though the 

flowering phenology of populations at higher elevations will shift forwards by a month or 

so. In the glasshouse, under controlled temperature and watering conditions, flowering 

time can extend up to 10 months in our experience. During the flowering period there 

can be a range of developmental stages on each shoot, from young developing buds to 

open flowers, with ~2-4 flowers open on a shoot at any given time. The flowers display a 

degree of nyctinasty, and close slightly from the late afternoon to the next morning, and 

will also close in the presence of rainfall. 

 

The yellow flowers, up to ~2 cm in diameter, of L. tenue are actinomorphic with five-fold 

symmetry: five sepals, petals, stamens and pistils, that are fused at the ovaries. The sepals 

and petals form a polypetalous (petals are free from one another) corolla with basal 

nectaries (Valdés-Castrillón, Talavera-Lozano and Fernández-Galiano, 1987). The 

heterostyly observed in  L. tenue individuals follows the typical mode of distyly, pin and 

thrum morphs bearing tall and short organs of roughly equivalent heights (Figure 2.1). 

Literature on the mating system of L. tenue is scarce, and to the author’s knowledge no 

studies have directly investigated the nature of incompatibility in the species. However, 

from statements made in the literature (Murray, 1986) and anecdotal glasshouse 

observations made by researchers, the research community as a whole generally accepts 

the assumption that L. tenue is (at least mostly) self-incompatible. 

 

Phylogenetically within the Linaceae, the family is mostly split into two broad clades: the 

largest being the core Linum, comprised of the genera Linum, Cliococca, Hesperolinon, 

Screrolinom and Radiola; and a much smaller clade containing Humiria, Viola and Hypericum 
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(Ruiz-Martín et al., 2018). Within the subclades of the core Linum group, L. tenue is part of 

subclade B, with its close relatives being L. trigynum, L. catharticum and L. suffruticosum. 

Conversely, other more heavily studied species of Linum, such as L. usitatissimum, L. bienne 

and L. grandiflorum, are within the subclade A (Ruiz-Martín et al., 2018). 

 

1.4.2 Initial crossing experiments 

 

During the early stages of this project a number of different experimental approaches 

were considered to investigate the mating system of L. tenue: a morphological approach 

(Chapter 2.0), a molecular genetics approach (Chapters 3.0 and 4.0) and a classical 

genetics approach. The classical genetics approach intended to conduct series of 

controlled intra- and intermorph crosses between L. tenue pin and thrum individuals to 

determine the nature of the self-incompatibility system. 

 

During the first year of the project, seeds collected from four wild populations in 2013 by 

ACB were grown in the glasshouse. Multiple crosses were subsequently attempted but 

unfortunately failed to set seed, most likely due to a number of factors. Glasshouse 

temperatures in the first year were higher than those used for individuals grown for the 

data collected in Chapter 2.0. Combined with the higher indoor humidity, the resulting 

pollen appeared to be self-adhering and was not easily transferable among stigmas. 

Similarly, low germination and high mortality rates, and an outbreak of mildew infection, 

impacted the amount of plant material available for comprehensive crossing experiments. 

It was thus decided that the classical genetics approach was outside of the scope of the 

project, and focus fell upon taking the RNAseq approach described in Chapters 3.0 and 

4.0 to investigate the molecular basis of heterostyly. 
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1.4.3 Experimental design 

 

The work for the construction and sequencing of the RNAseq libraries (Chapter 4.0) was 

conducted during May and June 2014, using L. tenue individuals grown from wild-sampled 

seeds by ACB in 2013. This was prior to the fieldwork conducted by AF in June/August 

2014, where seeds were sampled from more wild populations for the data generated in 

Chapter 2.0. For reasons outlined in section 1.4.2, the availability of healthy plants still in 

flowering was limited at that time; the sampling of pin and thrum treatment groups was 

thus determined by which individuals were suitable and which extractions yielded the 

highest quality RNA. This resulted in a thrum treatment group composed of three 

individuals from the CBT population and a pin treatment group composed of one CBT 

and two GRT individuals. Given that heterostyly is strongly genetically controlled, and 

in Linum likely a result of hemizygosity (Ushijima et al., 2012, 2015), this asymmetrical 

population sampling is acceptable for broad-scale RNAseq approaches. 

 

1.5 Project aims 
 

1. What are the characteristics of heterostyly in L. tenue? 

First, I study the range of variation in heterostyly traits in different populations of 

L. tenue, with seeds sampled from across Andalusia in southern Spain. Specifically, 

I will analyse the level of reciprocity between the sexual organs using new 

techniques. I also investigate the development of the sexual organs and cytological 

mechanisms behind organ positioning. I discuss the findings in light of the 

evolutionary implications of ecological function. 
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2. Creating a high-quality reference transcriptome for L. tenue 

I will then create an RNAseq dataset from vegetative and floral samples of pin and 

thrum individuals using Illumina next-generation sequencing.  I assemble a de novo 

transcriptome reference using a multiple k-mer approach, and demonstrate a 

method and automated tool I have developed to reassemble consensus unigene 

sequences in order to create a high-quality transcriptome reference. For the 

purposes of continuity of the ‘biological’ data chapters, the work for this is detailed 

in Chapter 4.0. 

 

3. What are the differences in expression between pin and thrum individuals? 

Next, I will investigate the transcriptome profiles of pin and thrum flowers, using 

differential expression and analysis of global patterns of expression. I discuss the 

difficulties and control methods for working with highly dispersed datasets. The 

analyses will reveal a gene of interest to the L. tenue S locus. 

 

4. What is the molecular genetic basis underlying heterostyly in L. tenue? 

Finally, using sequence analysis and homology techniques, I will examine the gene 

of interest and bring together two previously unconnected functional genetics 

studies to provide strong evidence that it is a potential candidate for the G locus 

constituent of the L. tenue S locus. 
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-  Chapter 2  - 

The developmental and functional control of distyly in Linum tenue 
(Linaceae) 

 
 

 
 
 
 

  

Pin (top) and thrum (bottom) morphs of Linum tenue. Images by Stuart Brooker and Alireza Foroozani 
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2.0 The developmental and functional control of  distyly in Linum 
tenue (Linaceae) 

Ali Foroozani1, Eleanor Desmond1, Rocío Pérez Barrales2, Adrian Brennan1 

1 Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK 
2 School of Biological Sciences, Portsmouth University, King Henry Building, King 

Henry I Street, Portsmouth, PO1 2DY, UK 
 

2.0.1 Preamble 

 

The following chapter is comprised of a journal manuscript aiming for submission as an 

original research article at the Annals of Botany. The manuscript structure is thus 

designed to be in line with Ann Bot’s guidelines. However, for the purposes of this thesis, 

some elements of section/subsection formatting and word limits have been adapted to a 

thesis structure for continuity and coherency. 

 

Pollinator observation data and additional floral organ measures of open flowers were 

collected by our collaborator Rocío Pérez-Barrales, and her work contributed to sections 

2.2.1, 2.2.2, 2.2.5, 2.3.1, 2.3.2 and 2.3.3. 

 

2.0.2 Abstract 

 

Background and Aims: Distyly is a floral polymorphism involving reciprocal herkogamy 

that is shaped by selection for disassortative mating between floral morphs through 

improved pollen transfer efficiency by specialist pollinators. Pollen transfer efficiency can 

be optimized by minimizing the difference and variance in height of the stamens and 

pistils of each floral morph while maintaining within morph herkogamy. Distyly is 

typically controlled by a multiallelic superlocus (known as the S locus) containing morph-

specific alleles of a small set of genes that each control different aspects of floral 
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morphology. We hypothesize that, consistent with their different genetic controls and 

functions in pollen transfer, there will be reciprocal differences in development and 

accuracy in different organs and morphs of distylous Linum tenue (Linaceae). 

 

Methods: We measured floral organ lengths of flowers of both morphs sampled from wild 

L. tenue populations and recorded pollinators and pollinator behaviour. We grew wild 

sampled seeds of distylous L. tenue in the glasshouse and measured floral organ and cell 

lengths of different morphs at different developmental stages from young bud to open 

flower. We analysed the results to measure reciprocal inaccuracy of tall and short 

reproductive organs and test the factors that influence reproductive organ length and 

herkogamy. 

 

Key Results: In the wild, flowers were mostly visited by three species of Bombyliidae flies. 

Smaller flies entered the flower corolla and likely facilitated disassortative pollen transfer. 

Population differences in tall and short floral organ lengths were evident both in the field 

and glasshouse. Short floral organs typically contributed to reciprocal inaccuracy by 

showing bias or height mismatches, while tall organs contributed by showing height 

variance. Morph-specific differences in developing buds are generated mostly by greater 

pin pistil lengthening compared to other reproductive organs. Reproductive organ cell 

length measures show that thrum style cell lengths remain short along the organ in 

contrast to other reproductive organs with longer cells.   

 

Conclusions: Distyly in L. tenue involves multiple types of asymmetry between reproductive 

organs and floral morphs, indicative of the complex developmental control and different 

functional constraints. Differences in both cell division and cell elongation in pistil tissue 

contribute to morph type differences. Greater bias of short organs is probably caused by 
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developmental constraints, while greater variance of tall organs reflects relatively relaxed 

selective pressure for effective cross-pollination.  

 

Keywords: adaptive accuracy, distyly, flower development, Linum tenue, pistil, stamen, 

reciprocal herkogamy 

 

2.1 Introduction 
 

The generation and maintenance of genetic diversity is of paramount importance to the 

survival of many plant species as it improves general resilience and adaptability to 

changing environmental conditions (Lin, 2011), and can allow plants to mitigate any 

negative effects imposed by the sessile mode of living. The majority of angiosperms are 

hermaphrodite, with each flower containing both male and female sexual organs (Renner, 

2014). Consequently, plants have developed strategies to maximise outcrossing through 

wind-pollination and pollination by insects and other animals. 

 

Heterostyly is a breeding system characterised by the presence of two (distyly) or three 

(tristyly) floral morphs, with distyly being generally more common among flowering plants 

(Lloyd and Webb, 1992; Barrett and Shore, 2008). Distylous species exhibit a thrum 

morph, with short styles and tall stamens (S-morph, thrum flowers), and a pin morph with 

tall styles and short stamens (L-morph, pin flowers) (Fig. 1.4). The reciprocal spatial 

displacement or herkogamy functions so that the height of the stigma on one morph 

corresponds to the height of the anther on the other morph to both reduce self-pollination 

and promote cross-pollination (Barrett, Jesson and Baker, 2000; Keller, Thomson and 

Conti, 2014). 
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The evolution of heterostyly has been addressed by two models that differ in their 

interpretation of the ancestral state of heterostyly and the sequence of trait acquisition. 

The first model assumes that the common ancestor was homostylous and self-compatible 

and that a mutation to a novel self-incompatible pollen type spread and established a 

polymorphism due to the advantage of avoiding inbreeding depression (Charlesworth and 

Charlesworth, 1979). In contrast, the second model assumes that heterostyly evolved from 

approach-herkogamous ancestors with pistils taller than stamens, whose populations were 

invaded by a dominant mutation shortening the style and subsequent mutations to elevate 

the anthers in the short-styled form to the level of the stigma in the original form. Recent 

studies have tended to support the approach herkogamy evolutionary model as it 

prioritizes pollination efficiency rather than outcrossing itself (Kissling and Barrett, 2013; 

Zhou et al., 2015; Zhu et al., 2015; Yuan et al., 2017). Self-interference occurs when there 

is competition between the male and female sexual functions within a hermaphroditic 

individual (Harder and Barrett, 2006). In the case of the self-incompatible flower, if self-

pollination occurs, male function is adversely affected as the pollen is wasted, and there 

may also be a cost to female function: there will be less space on the stigma for compatible 

pollen grains. Conversely, male fitness in terms of the export of pollen can be 

compromised if the positioning of the stigma is in such a way that it reduces contact 

between the anther and the visiting pollinator. In this way, the floral architecture that 

maximises female fitness can be different to the architecture that maximises male fitness 

(Johnston et al., 2009). Other than opting for unisexual flowers, herkogamy provides the 

plant with a resolution for this sexual conflict (Barrett 2002). Heterostyly therefore 

functions to (i) reduce sexual interference through the spatial separation of sexual organs 

within the flower, (ii) promote disassortative mating through selective pollen transfer using 

the reciprocal positioning of the sexual organs, and (iii) prevent selfing through structural 

and physiological intramorph incompatibilities. 
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Detailed studies of the morphology and development of flower form in heterostylous 

species have contributed to understanding the functional significance of floral traits and 

their evolution (Faivre and Mcdade, 2001; Pérez, Vargas and Arroyo, 2004; Kálmán et 

al., 2007; Sánchez et al., 2010; Ferrero et al., 2011; Keller, De Vos and Conti, 2012; Sá et 

al., 2016). For example, developmental studies in the Rubiaceae (Faivre, 2000) provided 

support to the Lloyd and Webb (1992a,b) hypothesis that distyly evolved from approach 

herkogamy, a single floral morph with pistils longer than stamens. Morphological studies 

of distylous species with epipetalous flowers, where stamens are connected to the corolla, 

often show developmental constraints due to non-independence between stamen height 

and corolla depth (Faivre, 2000; Faivre and Mcdade, 2001; Pérez-Barrales and Arroyo, 

2010; Pérez-Barrales et al., 2014; Sá et al., 2016). Fine tuning of reciprocal pistil-stamen 

length differences might also contribute to avoidance of inter-specific hybridization as 

observed in a morphological survey of three Primula species (Keller, Thomson and Conti, 

2014). Knowledge about pollinators and their relative disassortative pollination efficiency 

can provide further insights into the function and evolution of distylyous floral traits 

(Pérez-Barrales and Arroyo, 2010; Simón-Porcar, Santos-Gally and Arroyo, 2014). 

 

Heterostyly has evolved independently in at least 28 plant families and consequently, 

heterostylous species are a remarkable exemplar of convergent evolution across floral 

morphology, genetics and physiology (Ganders, 1979; Barrett and Shore, 2008). Early 

genetic studies in Primula concluded that distyly is controlled by two alleles present at a 

single locus (Bateson and Gregory, 1905; Gregory, de Winton and Bateson, 1923). These 

S alleles, termed S and s, display dominance-recessive behaviour with SS and Ss 

individuals producing thrum flowers and ss individuals producing pin flowers. Later, the 

S locus was shown to be a superlocus or cluster of at least three closely associated genes 

mostly inherited together by progeny with each gene controlling a different distylous trait 

consisting of style length (G), stamen length (A) and pollen size (P) (Lewis, 1954; Ernst, 
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1955). Similar genetic control appears to be the rule for distyly in other plant families 

(Lewis and Jones, 1992). Recent sequencing of the entire P. vulgaris S locus region show 

that the thrum morph is controlled by a cluster of five linked genes, which are missing in 

the reciprocal pin morph (Li et al., 2016; McClure, 2016). Therefore the genetic control 

of distyly in Primula is hemizygous, being dependent on the presence or absence of a single 

thrum haplotype rather than a dominance interaction between two alleles. The lack of 

corresponding sequence at the pin morph S haplotype also explains the lack of 

recombination, which is required to keep S-locus genes together (McClure, 2016). The 

functions of two of the Primula S locus genes have been explored further. GLOT (also 

referred to as GLO2) is a paralogue of GLOBOSA (GLO1) a B function MADS box gene, 

one of the master control ABC transcription factors that control floral organ identity 

(Nowak et al., 2015; Li et al., 2016). GLOBOSA is expressed in the second and third floral 

whorls and is important for specifying petal and stamen identity (Vandenbussche et al., 

2004). The expression of GLOT in Primula is associated with the thrum morph (Nowak et 

al., 2015; Li et al., 2016). CYPT (also referred to as CYP734A50) is also found within the 

thrum S locus region and is a cytochrome P450 type gene expressed exclusively in thrum 

style tissue that functions to degrade brassinolide, part of the brassinosteroid family of 

plant growth hormones and reduce style length (Huu et al., 2016; Li et al., 2016). 

Therefore, recent molecular genetic advances confirm classic models of distyly 

development for independent control of different floral tissues and traits starting with 

different S locus genes. Candidates for S locus genes have been identified in study systems 

from other plant families, including evidence for hemizygous control as some of these 

candidate genes are present only in the thrum morph (Ushijima et al., 2012; Yasui et al., 

2012, 2016). 

 

Linum has been historically important for the study of heterostyly ever since Darwin’s 

pioneering work (Darwin, 1862, 1877) first showed the association between pollination 
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capacity and different floral morphs. Linum is a diverse genus with a wide geographical 

distribution (Ruiz-Martín et al., 2018); it consists of approximately 180 species that exhibit 

wide variation in breeding systems, from self-compatible and monomorphic species to 

distylous species with typical heteromorphic incompatibility system (Dulberger, 1992; 

McDill et al., 2009; Ruiz-Martín et al., 2018). Distyly is common in Linum: it is exhibited 

by over 40% of the ca. 180 Linum species in four of the five sections of the genus and it is 

known to occur in other subgroups of Linaceae, notably Reinwardtia and several members 

of the Hugonioideae (Rogers, 1979). However, distyly is only found in old world species 

and it has been difficult to determine with high levels of confidence as to whether distyly 

or homostyly is the ancestral state for the family (McDill et al., 2009; Ruiz-Martín et al., 

2018). Armbruster et al. (2006)’s phylogenetic study concluded that distyly could have 

evolved several times independently within Linum’s different lineages, with recent evidence 

arguing for an independent emergence of distyly in the South African clade of section 

Linopsis relative to other old world sections (Ruiz-Martín et al., 2018). 

 

The majority of the variation in species and mating systems is found in the Mediterranean 

area (McDill et al., 2009). Distylous Linum species present substantial morphological 

variation in the degree of differentiation in traits between morphs and reciprocal 

herkogamy (Wolfe, 2001; Armbruster et al., 2006), with some species displaying variation 

only in stigma height, as it is the case of L. grandiflorum (Darwin, 1877) and other species 

showing breeding system variation across the range of the species (Nicholls, 1985, 1986). 

Less is known in monomorphic Linum species, but it appears that they show a tendency 

towards outcrossing, possibly aided by herkogamy. For example, cultivated flax, L. 

usitatissimum, does not self-pollinate immediately because the anthers face outwards and 

are slightly distanced from the stigmas until after the opening of the flower (Kadam and 

Patel, 1938), only making contact for self-pollination if an outcrossing pollination has not 
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occurred. Another example is that of L. lewisii, which is self-compatible yet relies on insect 

visitation for seed production (Kearns and Inouye, 1994). 

 

Heterostyly in Linum is purported to be controlled by an S locus superlocus; the evidence 

being that all of the self-compatible monomorphic populations of L. tenuifolium that have 

been identified resemble the pin morph (Nicholls, 1985). More recent proteomic and 

transcriptomic studies of style dimorphism in L. grandiflorum have identified a shortlist of S 

locus gene candidates with exclusive or enhanced expression in thrum styles (Ushijima et 

al., 2012). One of these candidate genes, THRUM STYLE-SPECIFIC 1 (TSS1), also 

appears to be hemizygous, present only in thrum individuals, analogous to recent findings 

for the genetic control of distyly in Primula (Ushijima et al., 2012; Kappel, Huu and 

Lenhard, 2017). 

 

Here, we present a detailed study of pollination, floral morphology and development in 

the distylous annual species, L. tenue with a view to separating the functional and 

developmental components of this floral syndrome. We observed pollinator visits in the 

field and measured floral organ length in open flowers in the field and the glasshouse, and 

floral organ cell lengths in developing flower buds in the glasshouse. Specifically, we 

addressed the following hypotheses: (i) pollinator visitors to L. tenue in the field facilitate 

disassortative mating between morph types, (ii) male and female floral organ height of pin 

and thrum morphs show differences in their contributions to reciprocal herkogamy and, 

(iii) male and female floral organs of pin and thrum morphs show differences in their 

development. In general we expect to find multiple sources of asymmetry in trait 

expression of distyly consistent with different floral organs in different morphs 

experiencing different functional constraints and genetic control.  
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2.2 Materials and Methods 
 

2.2.1 Pollinator observations 

 

Linum tenue is a locally frequent annual forb of grassland growing 30 to 150 cm tall that 

occupies meadows, olive groves, and orchards. Its native range extends through southwest 

Iberia and northwest Africa, although recent phylogenetic studies suggest the two lineages 

are separate species (Ruiz-Martín et al., 2018). This study used samples from natural 

populations across the region of Andalusia, Spain. Observations of insect visits were 

conducted during July 2015 in two populations (r10, r17; Figure 2.1) in patches of 

grassland where 10-40 individual plants with open flowers were present. For intervals of 

ca. 10 minutes, between 10:00 and 17:00 CET, small areas where 3-5 plants are in close 

proximity were observed for approaching pollinators. Observations were carried out at 

different patches after two intervals. Any event where an insect was observed approaching 

and making contact with a flower on the plants under observation was classed as a 

visitation. Upon a visitation event, the flower in question was carefully approached, the 

morphotype of the individual plant was noted, and observations were made on the mode 

of contact between the insects body and the stigmas and anthers. Insects were also 

identified to the lowest possible taxonomic level, and the collection of a nectar or pollen 

reward from individual plants was recorded. 

 

2.2.2 Plant material 

 

Flowers or seeds were collected from 30-50 separately sampled maternal plants from 4 

and 16 wild populations in 2013 and 2014 respectively from across the region of 

Andalusia, Spain (Fig. 2.1, Appendix I). Plants were sampled at random, with at least one-

meter distance among sampled individuals, to avoid pseudoreplication and estimate the 
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relative presence of pin and thrum individuals. Flower or seed collection involved one 

newly open flower per individual plant that was preserved in separate 1.5 mL screw-top 

tubes with 70% ethanol. Seed collection involved several ripe fruit capsules per plant 

placed in separate glassine envelopes. Later, in the glasshouse, one seed per maternal plant 

was germinated in individual 10 cm diameter pots of two thirds John Innes no. 2 compost 

(ICL, Ipswich, UK) and one third Perlite (LBS horticultural supplies, Colne UK) grown 

to flowering in greenhouses at the Department of Biosciences, Durham University, UK, 

under semi-controlled growth conditions of 20°C for 16 hours of day length and 15°C for 

8 hours of darkness. Upon flowering, approximately all individuals from each population 

were visually classified as pin or thrum floral morphs prior to more detailed floral organ 

measures. 

 

2.2.3 Floral organ measures 

 

Measurements were made of field collected flowers stored in ethanol or one to three 

freshly opened flowers per glasshouse grown individual. Flowers were dissected whorl-by-

whorl under a dissecting microscope and the vertical height of the sepals, petals, stamens, 

and their component filaments and anthers, pistils and their component styles, stigmas, 

and ovaries were measured from the base of the ovary as reference as shown in Figure 

2.1, using a combination of Vernier calipers and analysis of photos using ImageJ software 

(Schneider, Rasband and Eliceiri, 2012). The digital photographs of dissected flowers 

were made against a 1 mm ruled graph paper background using a Leica M80 light 

microscope (Leica Biosystems, Nussloch, Germany) set at 7.5 times magnification 

connected to a computer. Anther length of field collected flowers was not measured 

because L. tenue flowers usually lose anthers when stored in alcohol. Multiple investigators 

contributed different measures at different times, so to account for observer differences in 
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the glasshouse data a constant was added to each trait measure for each observer, in order 

to have the same mean after correction for morph frequency differences, as the samples 

measured using ImageJ, which were considered to be the most accurate measures. 

 

One to three developing flowers of various bud sizes, representing different developmental 

stages from approximately ten to one days prior to opening, were collected from each 

glasshouse grown individual to describe the morphological development of stamen and 

pistil in pin and thrum flowers. Flowers were dissected and photos of floral organs were 

taken and measured using imageJ, as described for the open flowers. 

 

2.2.4 Analysis of floral organ length and herkogamy in open flowers 

 

Using measurements from newly open flowers, linear mixed effect models were used to 

test floral organ lengths and herkogamy; the difference in height between pistils and 

stamens for the fixed effects of flower morph (pin or thrum), flower size measured as petal 

length, and their interaction, while controlling for the random effects of sample individual 

nested within sample population. The lmerTest R package (Kuznetsova, Brockhoff and 

Christensen, 2017) was used to fit models and assess the significance of main effects using 

the restricted maximum likelihood approach. The significances of random effects were 

assessed by analysis of variance comparisons of nested models dropping individual effects 

first, followed by population effects. The proportions of variances (coefficient of 

determination, r2) explained by the models were calculated using the MuMIn R package 

(Bartoń, 2009) that evaluates both marginal r2 for fixed effects only and conditional r2 for 

both fixed and random effects. 
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To identify differences in flower development, linear mixed effect models were used to 

test floral organ lengths and herkogamy for the fixed effects of developing bud morph 

type, bud developmental stage (measured as petal length), and their interaction, while 

controlling for the random effects of sample individual nested in sample population, using 

an analogous approach to the open flower analysis. 

 

2.2.5 Analysis of morph frequency and adaptive inaccuracy 

 

Chi-square tests were used to assess population deviations from the expected 1:1 morph 

ratio under complete disassortative mating. Inaccuracy in the reciprocal placement of tall 

and short organs was estimated using the adaptive inaccuracy method developed by 

Armbruster et al. (2017). The disassortative pollination function of distylous flowers 

predicts that the optimal position of tall pin stigmas is represented by the position of tall 

thrum anthers. Similarly, the optimum position of short thrum stigmas is represented by 

the position of short pin anthers. Hence, it is possible to estimate inaccuracy in reciprocity 

by studying the contribution of differences between population means of tall organs and 

short organs (bias), and the variance of organ position (imprecision) to departures from 

perfect matching between anthers and stigmas of pin and thrum flowers. The reciprocal 

inaccuracy measures were done on height of filaments and styles, excluding anthers and 

stigmas because anthers had been mostly shed for the wild-sampled flowers. For each 

sample population with measures for nine or more flowers of each morph type, floral 

measures were analysed using a custom script (Scott Armbruster, pers. comm.) to generate 

raw and mean-standardized (dividing by average organ height per population) adaptive 

inaccuracy estimates and confidence intervals based on equations 16 to 21 in Armbruster 

et al. (2017). Adaptive inaccuracy measured in the field informs about the effects of 

environmental variation on the development of reproductive organs, and its influence on 
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the reciprocal placement of tall and small organs. The same measure of glasshouse grown 

plants is a better estimator of the genetic contribution of floral developmental variation to 

reciprocity after controlling for environmental variation. 

 

2.2.6 Analysis of filament and style cell length 

 

Whole filaments and styles were separated from freshly harvested newly open flowers from 

glasshouse-grown individuals. Floral organs were immediately mounted on microscope 

slides, stained with 0.05 % toluidine blue solution, and viewed at 100x to 400x 

magnification using differential interference contrast Leica DMI2500 microscope (Leica 

Biosystems, Nussloch, Germany) with an eyepiece graticule and photographed with a 

Panasonic GP-US932HAE camera (Panasonic UK, Bracknell, UK). To account for 

localized differences in cell length at different positions along the organs, each style and 

stamen filament was classified into five approximately equal length regions counting from 

base to tip. Using appropriate planes of view that allowed clear discrimination of 

individual cells and the eyepiece graticule, images of each section were taken at 400x 

magnification. Using ImageJ software (Rasband 2017), up to 20 cells were chosen at 

random from each image and measured along their longest axis to the nearest 0.1 μm. 

 

Linear mixed effect models were used to test the potential effects influencing the 

dependent variable, floral organ cell length. The fixed effects were organ type (pistil or 

stamen), flower morph (pin or thrum), and organ region treated as an ordinal variable 

going from the base to the tip. There were five levels of region so models with higher order 

linear, quadratic, cubic, and quartic relationships were fitted for this variable. The 

random effects were sample individual nested in sample population as for the floral organ 
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length analyses. The significance of random effects and both marginal and conditional r2 

coefficients were calculated as for the floral organ length analyses. 

 

2.3 Results 
 

2.3.1 Pollinator observations 

 

A total of 4 and 8 hours of observations were accumulated in r10 and r17, respectively. 

Weather conditions were sunny as is typical of the Andalusian climate during July. In r10, 

flowers were visited equally by Usia cf. pusilla and Bombylius cf. major (Bombiliidae), with 17 

visitation events by each visitor during the period of observation. In r17, most of the visits 

were paid by Usia cf. pusilla, and less frequently by small Halictidae (cf. Lasioglossum), with 

16 and 3 visits respectively. In all cases, insects visited to collect nectar, but the behaviour 

was different. Both Usia and cf. Lasioglossum landed on the petals and crawled down to the 

bottom of the flower towards the nectaries to collect nectar, visiting all five nectaries and 

making contact with short reproductive organs more often than tall organs with the dorsal 

part of the body. Specifically, it was observed that pin pollen was deposited on the head 

and the thorax of the insects, and thrum pollen on the abdomen, and less often on the 

thorax. Bombylius visited by hovering in front of the flowers, but visits were fleeting and it 

was not possible to retrieve detailed information on contact rate with anthers and stigmas. 

 

2.3.2 Open flower floral organ lengths 

 

The results of mixed model analysis showed that the lengths of pistils and stamens and 

herkogamy of open flowers could be predicted by morph type as expected (Table 2.1, 

Appendix II). Moreover, flower size, as measured by petal length also had a significantly 

positive effect on pistil and stamen length, indicative of allometry between floral organs, 
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but not for within-flower herkogamy, indicative of selection for reciprocal accuracy of 

floral organ lengths. There was no evidence for an interaction effect between flower size 

and morph type in the expression of pistil and stamen length or herkogamy. Individual 

nested in population was shown to be a significant random effect in all tests, while the 

random effect of population was also significant in the test of pistil length. 

 

2.3.3 Morph frequency and adaptive inaccuracy 

 

Population morph ratio (the percentage of pin flowers) ranged between 51.3% to 59%, 

and in all cases Chi-square analyses showed that populations did not depart significantly 

from a 1:1 ratio (Table 2.2). Field sampled pin and thrum organs were longer than 

glasshouse grown flowers in general, with the exception of the field sample from mva that 

showed similar floral organ lengths to glasshouse material (Table 2.2). It might be that 

there is substantial genetic or environmentally-induced variation in flower size. The 

measures we report here are within the range given for the species in Flora Vascular de 

Andalucía Occidental (Valdés-Castrillón, Talavera-Lozano and Fernández-Galiano, 

1987). Table 2.3 summarizes the contribution of bias and imprecision to inaccuracy of 

tall and short organs. Overall, these results show that the contribution of bias and 

imprecision to inaccuracy in reciprocity for tall and short organs is different. Measures of 

bias were generally greater for short organs compared to tall organs, with the exception 

of population snv, in which bias was similar for tall and small organs. In contrast, tall 

organs consistently showed greater imprecision than small organs. 
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2.3.4 Developing floral organ lengths 

 

The youngest buds measured were less than 4 mm long and approximately 10 days from 

flowering while the longest buds were just less than 10 mm long and had fully developed 

petals that were about one day from opening (observations based on other tagged but 

non-harvested flower buds). The results of mixed model analysis showed that morph type 

was an important predictor of pistil, stem length and herkogamy (Table 2.4). Petal length 

showed significant positive relationships in all tests indicative of floral organ growth during 

development. There was a significant interaction effect between morph type and petal 

length for developing reproductive organs and herkogamy, indicating differences in the 

rate of growth and development of organ type in each morph. These differences are 

illustrated in Figure 2.2. Both pistils and stamens lengthen during flower development 

(petal lengthening) but they do so at different rates and to different extents in different 

morph types; thrum stamens have a slightly steeper slope than pin stamens and pin pistils 

have a steeper slope than thrum pistils (Figure 2.2). These patterns support that relative 

growth rate is different between tall and small organs, as expected for a distylous species. 

When comparing the same organs in each morph, the differences in slope is larger 

between pin and thrum pistils than the comparison between pin and thrum stamens. The 

pin pistil shows the greatest rate of growth and variance compared to the other organs, 

possibly reflective of less canalization and more developmental noise. The mixed model 

analysis results (Table 2.4) indicate that often, the random effects of individual nested in 

population and population make significant contributions to reproductive organ length 

also. 
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2.3.5 Floral organ cell lengths 

 

A summary of the results of mixed model analysis of floral organ cell length are presented 

in Table 2.5. The random effects of both individual nested in population and population 

were both highly significant. Cell lengths were subject to significant interaction effects 

between morph, organ, and region. Both positive linear and negative quadratic ordinal 

organ region effects were detected. These interacting effects on cell length are visualized 

in Figure 2.3. Pin styles and filaments of both morphs have shorter cells about 50 μm long 

in region 1 at the base of each organ that increase to a constant limit of about 125 μm by 

region 3. In contrast, cell lengths stay consistently short at about 50 μm across all regions 

of thrum morph styles. Therefore, cell length seems to contribute to differences in style 

length between the two morphs but not for filaments. Therefore, differences in the 

filament length are achieved by alternative growth mechanisms, such as differences in cell 

division. 

 

2.4 Discussion 
 

Detailed measurements of floral reproductive organ and cell length revealed multiple 

sources of asymmetry in the expression and function of distyly in L. tenue. Altogether, the 

findings are consistent with a functional distyly breeding system that serves to promote 

disassortative mating between floral morphs. Our results support that functional 

constraints differ between each reproductive organ in each morph type. These findings 

also support that distyly in L. tenue is controlled by a superlocus consisting of multiple genes 

that contribute to separate floral traits that together make up the distyly floral syndrome. 
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2.4.1 Pollinator visitation in the field facilitate intermorph disassortative mating 

 

Pollinator observations found that pollination by small Usia and cf. Lasioglossum flies that 

enter the corolla to feed on nectar tend to make most contact with short reproductive 

organs suggesting biases in disassortative pollen transfer. This is relevant to reproductive 

success as L. tenue is self- and intramorph-incompatible and depends on insect pollination 

for cross-pollination (Murray, 1986; authors pers. obs.) It is currently unclear whether 

more superficial visits by larger Bombylius flies alter this pollination dynamic. 

 

2.4.2 Ancillary floral traits contribute to the distyly floral syndrome 

 

Open flowers showed pistil and stamen length differences between morphs consistent with 

expectations for reciprocal herkogamy (Table 2.1). The lengths of most other floral organs 

that were not directly involved in the reciprocal herkogamy did not show significant 

differences between morphs, indicating that they are not part of the distyly floral 

syndrome nor under S locus control. 

 

2.4.3 The expression of distyly is robust to environmental influences 

 

Larger flowers produced longer reproductive organs but the degree of herkogamy 

between male and female organs was maintained (Tables 2.1, 2.3). This result highlights 

the importance of within-flower herkogamy in limiting assortative mating and the tight 

developmental genetic control of this key trait (Barrett, 2002). To the authors’ knowledge, 

no study has previously considered the influence of environment on the expression of 

distyly. There was a trend for wild sampled flowers to be larger than glasshouse sampled 

flowers (Table 2.2). Unfortunately, different populations were sampled under their own 
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respective conditions, meaning that the extent to which flower size is environmentally or 

genetically controlled could not be distinguished. This issue should be investigated in 

future studies. Within field and glasshouse analyses, both population and individual were 

often significant random factors suggesting at least some genetic contribution to flower 

size. 

 

Individual- and population-level variation in reproductive organ length and herkogamy 

was found for L. tenue (Table 2.3), in common with other heterostylous species (Richards 

and Koptur, 1993; Eckert and Barrett, 1994; Faivre and Mcdade, 2001). The presence of 

genetic variation in the expression of floral morphology associated with distyly could be 

an important source of standing variation to permit rapid and flexible breeding system 

responses to a changeable pollination environment (Kissling and Barrett, 2013; Jiang et 

al., 2018; Simón-Porcar, 2018). Differences in distyly expression between populations 

might be driven by spatial variation in pollination efficiency or the presence of other 

species that might compete for shared pollinators (Kálmán et al., 2007; Keller, De Vos 

and Conti, 2012; Kissling and Barrett, 2013). For example, fine tuning of reciprocal pistil-

stamen length differences might contribute to avoidance of interspecific hybridization as 

observed in a morphological survey of three Primula species (Primulaceae) (Keller, 

Thomson and Conti, 2014). More extensive studies to explicitly examine individual- and 

population-level differences in distyly in L. tenue would help to better understand the fitness 

consequences of variation in distyly expression under local pollination conditions. 
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2.4.4 Male and female floral organ lengths of both morphs show different 

contributions to reciprocal herkogamy 

 

Few other studies of distyly have used the new adaptive inaccuracy measure proposed by 

Armbruster et al. (2017) that allows identification of the contribution of different 

reproductive organs to overall inaccuracy. However, the reanalysis of floral morphology 

data for three Primula species, from the study of Keller et al. (2012), provides some 

examples from other distylous species against which to compare our results. Measures of 

adaptive inaccuracy also provide insights into the functional constraints on heterostyly in 

L. tenue by considering different sources of inaccuracy separately. Typically in this study, 

greater bias was found for short reproductive organs, while greater imprecision was found 

for tall reproductive organs. The bias, or mismatch in short floral organ heights, was due 

to thrum pistils generally being shorter than pin stamens. Thrum pistils also showed less 

imprecision or variance than pin stamens suggesting tighter regulation of growth in this 

specific organ. This finding matches with another observation of this study  and a study 

of L. grandiflorum by Ushijima et al. (2015) that thrum style cells were generally shorter 

compared to other reproductive organs. Therefore, it is possible that limited cell 

expansion in this tissue leads to less imprecision in whole organ length. Only one out of 

the three studied Primula species, P. veris, showed also a greater bias in short organs than 

tall organs in the reanalysis presented by Armbruster et al. (2017), highlighting that sources 

of bias and imprecision are labile features of distyly that can differ between species. 

 

Greater imprecision was observed for tall floral organs relative to short floral organs 

consistent with findings of Armbruster et al. (2017). Our study of developing flower buds 

found also that tall organs showed greater variance than short organs, particularly in the 

later stages of flower development (Figure 2.2). In addition, there was greater variation in 
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the longer cells of reproductive organs (Figure 2.3). These results might reflect the 

common observation that tall stamens and pistils are more effective than short organs at 

disassortative pollen transfer as they tend to make more frequent contact with pollinators 

bodies (e.g. Wolfe, 2001; Lau and Bosque, 2003; García-Robledo, 2008; Pérez-Barrales 

and Arroyo, 2010; Zhu et al., 2015). 

 

Preferential cross pollination between tall reproductive organs can lead to further 

breeding system evolution to dioecy where the less efficient male and female functions of 

short organs in thrum and pin morph types, respectively, are lost (Barrett, Morgan and 

Husband, 1989; Eckert and Barrett, 1994). Alternatively, cases of breeding system shifts 

to selfing are frequently characterised by loss of the thrum morph type due to its inferior 

female fitness (Pannell, Dorken and Eppley, 2005). Relatively relaxed selection for 

accuracy in tall organs relative to short organs might allow the persistence of greater 

standing variation in populations and/or more relaxed developmental control of these 

traits  (Sanchez, Ferrero and Navarro, 2008; Keller, De Vos and Conti, 2012; Armbruster 

et al., 2017). There is evidence from this study that floral development contributes to the 

greater imprecision observed for tall organs in the form of increasing variance in pin pistil 

height during flower development and greater variation in the longer cells of reproductive 

organs (Figures 2.2 and 2.3). 

 

2.4.5 Male and female floral organs of both morphs show differences in their 

development 

 

Developing floral organs of each morph showed consistent differences in growth rates, 

primarily driven by the different pistil growth rates, from a relatively early stage from one 

week prior to flower opening (Figure 2.2). These developmental differences are most likely 
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completed just before flower opening, as has been noted for L. grandiflorum (Ushijima et al., 

2015). Analysis of floral morph development and cell lengths identified at least two distinct 

mechanisms to achieve reproductive organ height differences. Developing pin flowers 

showed enhanced growth of the tall pin pistil during floral development (Figure 2.2). Since 

pin style cell lengths of mature flowers are not significantly different from the cell lengths 

of pin and thrum filament (Figure 2.3), this additional length has probably been achieved 

through increasing cell number by extra cell division in this organ. The second 

developmental mechanism to achieve morph differences is reduced cell elongation in 

short thrum styles (Figure 2.3). Therefore, pistil tissues appear to employ two different 

developmental mechanisms to control height in each floral morph. The developmental 

control of height differences between stamens between pin and thrum morphs is not 

apparent from this study. These observations of organ-specific developmental 

mechanisms support the model for genetic control of distyly by a superlocus consisting of 

multiple physically linked genes, each contributing to a distinct floral trait (Lewis and 

Jones, 1992). 

 

2.5 Concluding remarks 

 

Detailed morphological and developmental analysis of reproductive organ height in 

distylous L. tenue has revealed interesting sources of asymmetry and inaccuracy between 

male and female reproductive organ height in different floral morphs. Morph-specific 

differences are driven by both arrested cell elongation in short thrum pistils and enhanced 

cell division in long pin pistils, highlighting the importance of pistil height differences for 

the expression of distyly. In terms of adaptive inaccuracy, short reproductive organs show 

a greater bias (mismatch) in organ heights than tall organs, while tall organs show greater 

imprecision (variance) in organ height. In particular, thrum pistils show the least variance 

but are consistently shorter than their matching pin stamens. Finally, the expression of 



 53 

distyly is influenced by both genetic and environmental factors. These fine-scale 

morphological and developmental details raise many further questions about the potential 

evolutionary and functional constraints on distyly in this species and more generally. 

Further understanding will require detailed ecologically and phylogenetically informed 

studies of S locus genetics, floral morphology, and pollination biology in more Linum 

species and other distylous groups. 

 

 

 

 

 

 



 54 

  

Figure 2.1 Dissected Linum tenue flowers showing floral organ measures and map of sample populations. (a) Thrum 

morph with outer two whorls removed, (b) Thrum morph with outer three whorls removed, (c) Thrum morph with 

only the second whorl (petals) removed, (d) Pin morph with outer two whorls removed, (e) Pin morph with outer three 

whorls removed, (f) a removed petal. The lengths measured are: i = filament, ii = anther, iii = stigma, iv = ovary, v = 

style, vi = pistil, vii = sepal, viii = petal height, ix = petal width. (g) Map of sampled region. The inset shows the 

sampled region within the context of Europe. Populations were sampled during the summers of 2013, 2014, and, 2015 

by ACB, AF, and RPB. 
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Figure 2.2 Relationships between Linum tenue floral organ length and petal length and floral morph in developing 

flower buds. A 1:1 petal length to floral organ length aspect ratio was used to plot the values. Lines indicate best fit 

linear models between the plotted variables. 
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Figure 2.3 Cell length means and standard deviations for Linum tenue floral morph, organ type, and region of organ. 

Organ regions (from open flowers) divide the total length of each organ into five, starting from the base (R1) to the tip 

of the organ (R5). 
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Table 2.1 Mixed model analysis results for Linum tenue open flower measurements. Mixed models were performed on non-transformed data using the lmer REML fit function of the R lmerTest. The p 
values of mixed effects were evaluated using t-tests with Satterthwaite degrees of freedom approximations, while the p values of random effects were evaluated by sequentially dropping random effects 
from the model and comparing the prior model using the anova function with likelihood ratio tests. R2 values were calculated using the r.squaredGLMM function of the R MuMIn package and are 
either conditional for the full mixed model or marginal for fixed effects only. 

Response Random 
effects  

No. 
obs. 

Variance SD P value R2 cond. Fixed effects Estimate SE p value R2 marg. 

Pistil length individual x 
population  
population 
residual 

150 
 
16 
 

0.117 
 
0.001 
0.140 

0.343 
 
0.024 
0.374 

9.66e-15 

 
1.50e-02 

 

0.955 intercept 
morph 
petal length 
morph*petal 
length 

4.822 
-2.009 
0.191 

-0.099 

0.241 
0.392 
0.017 
0.027 

<2.00e-16 
  4.94e-07 
<2.00e-16 

3.52e-04 

0.916 

Stamen length 
 

individual x 
population  
population 
residual 

115 
 
16 

0.106 
 
0.004 
0.159 

0.325 
 
0.061 
0.399 
 

2.65e-07 

 
2.92e-02 
 

0.905 intercept 
morph 
petal length 
morph*petal 
length 

3.418 
1.868 
0.142 
0.024 

0.334 
0.483 
0.024 
0.034 

<2.00e-16 
1.35e-04 
1.19e-08 
4.76e-01 

0.841 

Herkogamy 
(pistil – stamen) 

individual x 
population  
population 
residual 

115 
 
16 

0.141 
 
<0.001 
0.119 
 

0.375 
 
<0.001 
0.345 
 

<2.00e-16 
 
7.71e-02 

0.986 intercept 
morph 
petal length 
morph*petal 
length 

1.658 
-4.143 
0.030 

-0.105 

0.307 
0.443 
0.022 
0.031 

1.39e-07 
<2.00e-16 

1.85e-01 
9.44e-04 

0.968 
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Table 2.2 Floral morph frequencies and reproductive organ heights of Linum tenue sample populations. Population sample size for the two floral morphs (P and T), mean organ length for each tall and 
small organ (P style S; T filament A; T style a; P filament a), mean organ length across all organ types, variance of tall organs and short organs, population morph ratio and Chi-square statistic (in all 
comparisons, d.f.=1; in all cases, population morph ratio did not depart from the 1:1 morph ratio). 

Population Sample 
size 

Mean length of 
tall organs (mm) 

Mean length of 
small organs (mm) 

Mean organ 
length (mm) 

Variance of tall and short organs (mm2) Population 
morph ratio 

Chi-square 

Population P  T  S A s a 
 

Var (S) Var (A) Var (s) Var (a) % P flowers 
 

snv 36 25 12.0 11.406 6.125 6.869 9.165 0.985 1.940 0.302 0.696 59.02 1.9836 (n.s.) 

pdp 45 34 11.390 12.004 5.836 7.028 9.084 0.867 1.052 0.212 0.564 56.96 1.5316 (n.s. 

r10  42 37 12.150 12.185 6.187 7.435 9.509 0.891 0.831 0.347 0.658 53.16 0.3165 (n.s.) 

r17 40 37 12.766 12.962 6.492 7.704 9.991 0.415 1.323 0.205 0.505 51.95 0.1168 (n.s.) 

mva 39 37 7.231 7.131 3.900 4.406 5.671 0.258 0.244 0.107 0.126 51.32 0.0526 (n.s.) 
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Table 2.3 Adaptive inaccuracy of floral organ height of Linum tenue sample populations. Legend same as for Table 2.2. F and G indicated plants from the field or glasshouse respectively. 

Popn. 
(seed 

source) 

Popn. 
Type 

Sample size Mean length of 
tall organs (mm) 

Mean length of 
small organs (mm) 

Mean 
organ 
length 
(mm) 

Variance of tall and short organs (mm2) Popn. 
morph 
ratio 

Chi-square 

  P T S A s a 
 

Var (S) Var (A) Var (s) Var (a)   

Mva F 39 37 7.231 7.131 3.900 4.406 5.671 0.258 0.244 0.107 0.126 51.32 0.053 (n.s.) 
Pdp F 45 34 11.390 12.004 5.836 7.028 9.084 0.867 1.052 0.212 0.564 56.96 1.532 (n.s. 
R10 F 42 37 12.150 12.185 6.187 7.435 9.509 0.891 0.831 0.347 0.658 53.16 0.317 (n.s.) 
R17 F 40 37 12.766 12.962 6.492 7.704 9.991 0.415 1.323 0.205 0.505 51.95 0.117 (n.s.) 
Sdn F 36 25 12.000 11.406 6.125 6.869 9.165 0.985 1.940 0.302 0.696 59.02 1.984 (n.s.) 
Ara G 23 12 6.763 6.436 3.422 4.677 5.449 0.391 0.135 0.123 0.292 - - 
Bur G 9 11 6.181 7.267 3.573 4.646 5.417 0.446 0.801 0.176 0.216 - - 
Cbt G 10 10 6.359 6.981 3.466 4.605 5.352 0.334 0.189 0.040 0.083 - - 
Ebo G 10 9 7.110 6.772 3.486 4.550 5.498 0.137 0.395 0.056 0.118 - - 
Hin G 9 8 6.368 7.009 3.302 3.946 5.156 0.295 0.512 0.085 0.141 - - 
Lum G 9 15 6.316 6.772 3.595 4.101 5.193 0.175 0.366 0.094 0.062 - - 
Mon G 12 14 5.946 6.778 3.540 3.854 5.039 0.357 0.979 0.239 0.200 - - 
Snv G 10 14 6.151 6.897 3.538 4.415 5.245 0.304 0.317 0.073 0.030 - - 
Svt G 16 18 6.463 7.138 3.764 4.363 5.433 0.469 0.212 0.141 0.120 - - 
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Table 2.4 Mixed model analysis results for Linum tenue developing bud measurements. Legend as for Table 2.2. 

Response Random effects  No. obs. Variance SD p value R2 cond. Fixed effects Estimate SE p value R2 marg. 
Pistil length individual x population  

population 
residual 

56 
9 
 

0.040 
0.016 
0.062 
 

0.20 
0.126 
0.249 
 

1.16e-02 
1.93e-03 

0.926 intercept 
morph 
petal length 
morph*petal length 

-0.151 
1.099 
0.677 

-0.361 

0.166 
0.224 
0.027 
0.037 

3.65e-01 
3.88e-06 

<2.16e-16 
5.33e-15 

0.860 

Stamen length 
 

individual x population  
population 
residual 

56 
9 
 

0.013 
0.002 
0.023 

0.116 
0.043 
0.151 
 

5.05e-03 

2.32e-01 
 

0.904 intercept 
morph 
petal length 
morph*petal length 

1.010 
-0.508 
0.242 
0.106 

0.097 
0.134 
0.016 
0.022 

<2.16e-16 
2.58e-04 

<2.16e-16 
7.97e-06 

0.840 

Herkogamy 
(pistil – stamen) 

individual x population  
population 
residual 

56 
9 
 

0.588 
0.136 
0.050 

0.243 
0.117 
0.223 

1.32e-05 

1.01 e-03 

 

0.911 intercept 
morph 
petal length 
morph*petal length 

-1.133 
1.610 
0.430 

-0.467 

0.156 
0.210 
0.025 
0.034 

  2.11e-10 
  1.72e-11 
<2.00e-16 
<2.00e-16 

0.781 
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Table 2.5 Mixed model analysis for Linum tenue floral organ cell measurements. Legend as for Table 2.2 except that the fixed effect, region, was treated as an ordinal factor with five levels permitting 
tests of linear (L), quadratic (Q), cubic (C) and quartic (^4) models of this factor. 

Response Random effects  No. 
obs. 

Variance SD p value R2 
cond. 

Fixed effects Estimate SE p value R2 
marg. 

cell length  individual x 
population  
population 
residual 

9 
 
2 
 

0.06002 
 
0.00000 
0.18785 

0.24500 
 
0.00000 
0.43340 

<2.16e-

16 
 
6.02 e-08 

 

0.579 intercept 
organstyle 
typethrum 
region.L 
region.Q 
organstyle:typethrum 
organstyle:region.L 
organstyle:region.Q 
typethrum:region.L 
typethrum:region.Q 
organstyle:typethrum:region.L 
organstyle:typethrum:region.Q 
 

4.39078 
0.07409 
0.05059 
0.51854 

-0.38458 
-0.81119 
0.02969 
0.10935 
0.22670 

-0.19306 
-0.26319 
0.45374 

 

0.11137 
0.03059 
0.16716 
0.04361 
0.04526 
0.04514 
0.06618 
0.0683 
0.06717 
0.06794 
0.09963 
0.10046 
 

1.22e-09 
1.56 e-02 
7.71 e-01 
<2.16e-

16 
<2.16e-

16 
<2.16e-

16 
6.54 e-01 
1.10 e-01 
7.57 e-04 
4.55 e-03 
8.33 e-03 
6.76 e-06 
 

0.444 
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 -  Chapter 3  - 

Expression analysis of long- and short-styled heterostylous morphs 
of Linum tenue (Linaceae) 

 
 
 

 
 
 

  

Pin-morph Linum tenue. Image by Stuart Brooker and Alireza Foroozani 
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3.0 Expression analysis of  long- and short-styled heterostylous 
morphs of  Linum tenue (Linaceae) 

3.0.1 Preamble 

 

The following chapter is composed as a traditional thesis chapter. The methods used to 

assemble the reference transcriptome of Linum tenue are detailed in Chapter 4.0. I would 

like to highlight here for the reader that the terms ‘contig’ and ‘feature’ are at times used 

interchangeably. In genomics, features are usually genes or transcripts present on a 

particular stretch of sequence in a genome reference FASTA file, and are defined by their 

start and stop coordinates on that sequence. These sequences are known as contigs, and, 

depending on the resolution of the reference genome, can represent whole chromosomes 

or fragmented chromosomes (in the form of scaffolds). The use of ancillary annotation 

files are required in various formats for the downstream analyses that are discussed in the 

following chapter, even though we do not have the genomic information to create them. 

Given that our reference sequence has been constructed as a de novo transcriptome 

comprised of consensus unigene sequences (Chapter 4.0), each contig largely resembles a 

transcript and thus the entire contig can be considered a feature in and of itself. In-house 

annotation models have been created reflecting this structure. Therefore, at points in the 

following chapter where I discuss elements of expression, I have appropriately done so in 

terms of features. However, when discussing specific sequences in the L. tenue reference 

transcriptome, I have done so in terms of contigs. 

 

3.0.2 Abstract 

 

Linum tenue (Linaceae) displays heterostyly, a particular angiosperm mating system trait 

where reciprocal polymorphisms in stigma and anther positioning produce populations 

with two floral morphotypes: pin individuals where stigmas are positioned above the 
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anthers, and thrum individuals where anthers are positioned above the stigmas. This 

functions as an elegant structural mechanism to promote outcrossing through segregated 

deposition of morph-specific pollen on opposing ends of the insect pollinator(s), which is 

associated with the molecular mechanisms of self-incompatibility. Recent studies of 

heterostyly in Primula (Primulaceae) have made huge advances in our understanding of 

the underlying genetics, finding candidate genomic regions for the S locus. These studies 

reveal hemizygous determination of the thrum morph in Primula arising from duplication 

events at the S locus. Foreshadowing work in Linum grandiflorum found evidence for 

hemizygous expression of thrum-specific alleles, though the genomic architecture of the 

Linum S locus, and the function of its constituent alleles, remains an area of ongoing 

research. Here, we present a mRNAseq analysis of L. tenue pin and thrum floral 

transcriptomes and an examination of genes of interest from L. grandiflorum. We find strong 

evidence for the presence in our transcriptome reference of a thrum flower-specific 

candidate for the G locus, the style length and female incompatibility type determinant 

feature of the L. tenue S locus. Our findings provide a missing link between THRUM 

STYLE-SPECIFIC1 (TSS1), a S locus candidate in L. grandiflorum, and VASCULAR-

RELATED UNKNOWN PROTEIN1 (VUP1), a gene from a small, obscure family of highly-

divergent homologs in Arabidopsis thaliana. 

 

3.1 Introduction 
 

High-throughput cDNA sequencing (RNAseq) allows genome-wide analysis of gene 

expression to be carried out in a single experiment (Mortazavi et al., 2008), and even 

smaller scale-experiments with a few samples can produce vast amounts of data. The 

depth of sequencing provides data than can be used to combine both transcript discovery 

and quantification, and it is little surprise that RNAseq has eclipsed former transcriptomic 



65 

analysis techniques, such as microarrays, across the biological sciences (Conesa et al., 

2016). 

 

The depth of sequence coverage that Illumina methods provide is highly appealing, but, 

by its nature, dealing with the large volumes of fragmented short-read information comes 

with significant challenges and caveats. These short reads are generally 100-150 bp in 

length, though the chemistry is constantly improving and more modern machines can 

generate reads of up to 300 bp (https://emea.illumina.com/systems/sequencing-

platforms.html); in our dataset a majority of the reads ranged from 100-125 bp. Assuming 

the availability of a high quality reference, in the form of either a genome or a de novo 

assembled transcriptome (Chapter 4.0), matching these reads to their parent transcripts 

is a major issue inherent when dealing with short-read data; particularly when attempting 

to allocate reads between alternate-splice variants with shared exon sequences, or between 

transcripts of closely-related genes. There are various stages in the experimental and data 

analysis pipelines where these issues can be addressed. 

 

Experimental designs should aim to observe multiple biological replicates per treatment; 

gene expression is noisy, particularly in diverse natural populations, and the inclusion of 

even a few extra replicates is valuable in terms of increasing the power of the experiment 

(Conesa et al., 2016). The experimental design should also take the expected read depth 

for each sample into account: here, the investigator should consider the size of the genome 

and the expected fold change expression differences for the genes of interest; both of these 

factors will affect the power of the experiment. The power of the experiment to avoid type 

II (false negative) errors is largely determined by the number of observations that can be 

made for a given transcript: the larger the genome, the lower the relative read depth will 

be for a given locus (assuming an absence of RNA composition bias); similarly, for very 
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small differences in expression (<2 fold change), the ability to detect significant changes 

decreases rapidly for samples with read totals below 10 million (Conesa et al., 2016). 

 

Once sequencing has been conducted, the next stage of the analysis is to align the reads 

to a reference in order to determine the true origin of each read and acquire the 

information to calculate transcript abundance. This is one of the most crucial stages of 

the analysis and is where a majority of the data can be lost if performed incorrectly. If 

aligning the reads back to a genomic reference, where reads may span splice junctions, a 

‘splice-aware’ alignment tool must be used (Martin and Wang, 2011). Other important 

software parameters that should be adjusted are the strandedness options to match the 

library preparation of the samples, whether reads are single- or paired-end, the size of the 

sequenced fragment (known as the ‘insert’ between the Illumina adapters), and the 

threshold for mismatches between the reads and the reference. This last parameter is of 

particular relevance to our L. tenue dataset as the reference is comprised of consensus 

unigene sequences, and the read data is taken from wild populations of outcrossing (and 

likely highly heterozygous) individuals. When aligning reads to a reference that is 

genetically divergent, parameters should be changed to allow higher mismatching rates 

and have lower gap penalties. Many mapping tools are unable to make combined use of 

single- and paired-end data together and single-ended read libraries often need to be 

dropped from paired-end datasets. However, the number of single-ended reads is usually 

a negligible fraction of the paired-end read total for that library. One major cause of 

uncertainty in the alignment process is presence of reads that map to multiple locations 

on the reference. Assuming pains have been taken to generate as high quality a reference 

as possible, the main ways to minimise multi-mapping at this stage is to improve the 

accuracy of the alignment by appropriate employment of the mapping parameters 

outlined above. There can be a trade-off when changing the parameters of the alignment 

to be more accommodating to divergences between the reads and the reference: allowing 
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for more mismatches and lower gap penalties may increase the overall mapping rate at 

the cost of an increase in reads mapping to multiple locations. It is important to find an 

acceptable balance between the two through experimentation with the alignment 

parameters. The user then has the choice of either dropping multi-mapped reads from 

the dataset, selecting the single locus with the best alignment result, or using downstream 

tools that can estimate abundance that includes multi-mapped data (Warden, Yuan and 

Wu, 2013). 

 

Normalisation of the raw read counts to control for transcript length, total library size, 

and RNA composition bias, is the next important step that precedes cross-library 

comparisons of gene expression. As with many aspects of RNAseq, there are a multitude 

of approaches and tools available, each with their own idiosyncrasies, that can impact the 

estimation of differential expression. Below is an outline of some of the most prominent 

approaches, some of which can be used in tandem according to the experimental design 

and the intrinsic qualities of the data. Early RNAseq studies used reads per kilobase of 

exon model per million reads (RPKM) (Mortazavi et al., 2008), or its paired-end 

equivalent fragments per kilobase of exon model per million reads mapped (FPKM), 

normalisation methods, which are used as within-sample scaling factors to control for 

feature length. However, correcting for feature length is only necessary when ranking 

levels of expression within samples, and has been demonstrated to introduce heavy biases 

when used for cross-sample comparisons (Wagner, Kin and Lynch, 2012). The modified 

method of transcripts per million (TPM) was suggested to make samples more 

comparable, though is still subject to some bias when comparing samples from different 

tissues or different experiments (Conesa et al., 2016). Examples of other methods in this 

suite of normalisation approaches that focus on distribution adjustments of the read 

counts are upper quartile and quantile normalisation (Bullard et al., 2010). Upper quartile 

normalisation first removes all features from the dataset with universal counts of 0 and 
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ranks the feature counts within each sample and uses the 75th percentile value as a divisor 

for all feature counts within that sample. This can be performed by itself or following 

RPKM normalisation. The resulting normalised counts, that tend to be very small, can 

then be optionally scaled up by multiplying each value by the mean of the 75th percentile 

values for all samples. In a similar vein, quantile normalisation ranks the feature counts 

for each sample and calculates the mean value for each feature in a given quantile (rank 

position). The quantile-normalised value is thus the mean of all features in that quantile. 

This method functions to completely equalise quantiles across samples while maintaining 

the original feature order, but is most appropriate when variation in global properties are 

due to technical inconsistencies (e.g. different sequencing machines) and unrelated to the 

underlying biology (Hicks and Irizarry, 2014). In this way, distribution-adjustment 

normalisation approaches rely on assumptions of comparable expression distributions and 

RNA composition across samples, making them less appropriate when library sizes vary 

dramatically, or when experimental designs comprise different tissues. 

 

Another branch of normalisation methods use library size as a scaling factor for each 

sample; the most popular examples are trimmed mean of M-values (TMM) (Robinson 

and Oshlack, 2010) and DESeq2 (Anders and Huber, 2010; Love, Huber and Anders, 

2014). Both methods operate on the assumption that most genes are not differentially 

expressed, and are used in the edgeR and DESeq2 Bioconductor packages for differential 

expression respectively. These methods are most suitable for use on our dataset, as they 

adjust for both sequencing depth (differences in library size) and library composition 

(different tissue transcriptomes) together. 

 

For TMM, features with read counts of 0 in all samples are removed from the dataset and 

each sample is scaled by its total read count; i.e. ratio between the count value for each 

feature and the total count value for that sample is calculated. The sample with a 75th 
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quantile closest to the mean of the 75th quantile across all samples is then selected as the 

‘reference sample’. Within each sample, a set of unbiased features are used to determine 

the scaling factors for that library; the ramification here is that different features are used 

for each sample to derive their scaling factors. Biased features are filtered out sample-by-

sample through the removal of features above a defined threshold of log2 fold change 

differences between that sample and the reference sample. When the features to be used 

for the scaling factor are determined, weighted averages for their log2 ratios (reference 

feature count divided by sample feature count) are calculated; this weighted average 

ensures small changes in features with low read counts, which can result in large log2 fold 

changes, don’t skew the data. These weighted averages are then raised to the power 2 to 

give the scaling factors for each library that are finally centred around 1, which does not 

change the results of differential expression but gives the data more ‘agreeable’ 

mathematical properties, according to Robinson & Oshlack (2010). Normalised reads are 

obtained by dividing the feature counts in each sample these 1-centered scaling factors.  

 

Libraries with large differences in library size have been demonstrated to be less skewed 

by outlier samples when normalised using DESeq2 (Dillies et al., 2013), whereby the 

geometric mean is calculated for each feature across all samples and used as a divisor for 

each sample count of this feature. The size factor for each sample is then determined by 

the median of these sample-feature-count to feature-geometric-mean ratios within each 

sample (library). This is a further method for avoiding extreme expression differences in 

features from skewing the size factors, and in practise tends to give more influence to 

‘house-keeping’ genes with moderate expression differences between tissues and 

individuals. DESeq2 then employs shrinkage estimation, using dispersion values for each 

feature across the replicates estimated through Bayesian approaches. Normalised 

expression counts for each feature are plotted against their variance and modelled to a 

negative binomial distribution using generalised linear models. The theory here is that 
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variance in expression is highest the more lowly expressed a feature is, but decreases with 

increasing expression. Significant differences in count data are then determined using the 

Wald test. 

 

Once differential expression analyses have been conducted, adjustment of the p-values for 

Type I error false discovery rate (FDR) is a key step in the process. The nature of genomic 

experiments involves multiple testing over many features, ~120,000 features in our 

dataset for L. tenue. Correspondingly, at a p-value threshold of 0.05, if all features were 

differentially expressed, ~6000 false positives are expected in the differentially expressed 

data. The p-value alone is therefore not sufficient when conducting differential expression; 

it is necessary to adjust for FDR. This is usually done using the Benjamini-Hochberg 

method (Benjamini and Hochberg, 1995) that overlies the expected p-value distributions 

from true positive differentially expressed features, which will form a 0-skewed 

distribution, and non-differentially expressed features, which will form a uniform 

distribution across p-values. The mathematics behind the adjustment is relatively simple: 

p-values are ordered and ranked, then for a specific feature (f), the p-value for f is multiplied 

by the quotient of the highest rank position in the dataset and the rank position for f. This 

limits the number of false positives that are reported as significant by effectively shifting 

up the p-values to ‘correct’ the distribution to a 0-skew. 

 

In recent years, huge advances have been made in our understanding of the genetics of 

heterostyly. Intensive genomic studies in Primula (Nowak et al., 2015; Li et al., 2016; Cocker 

et al., 2018) have successfully characterised the architecture of a 450 kb region, where 

duplication events in the thrum alleles appear to assert hemizygous determination of the 

short-styled phenotype. This is consistent with the commonly accepted model of a 

dominant GPA/gpa thrum genotype, and a recessive gpa/gpa pin genotype: where the G 

locus (from the German ‘griffel’: ‘style’) determines the style length and female 
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incompatibility type, the P locus determines the pollen morphology and male 

incompatibility type, and the A locus determines the positioning of the anthers. Together, 

these loci comprise a superlocus known as the S locus. 

 

Work in Linum grandiflorum (Ushijima et al., 2012) has identified five genes, TSS1, TPP1, 

LgMYB21, LgAP1 and LgGLX1, with thrum-specific expression. TSS1 is of particular 

interest as it is expressed in the tissues of the style, and has since been found to be absent 

from pin genomic DNA (Ushijima et al., 2015), suggesting a hemizygous genotypic 

determinant of thrum individuals in L. grandiflorum, similar to what is observed in Primula.  

 

Here we present an analysis of expression differences between floral transcriptomes of pin 

and thrum individuals of L. tenue. As outlined in Section 4.2, the experiment was designed 

to capture as broad a range of developmental stages as possible, whilst also providing a 

vegetative control growth stage. Young bud, immature flower, open flower and leaf 

growth stages were sampled from three pin individuals and three thrum individuals, 

providing a total of 24 samples. These samples were sequenced using an Illumina HiSeq 

2500 over two lanes, to provide technical replicates; and given the expected number of 

generated reads per lane, we aimed to sequence to a depth of 20 million reads per sample. 

We will pay particular attention to TSS1, and demonstrate the homolog (putative 

ortholog) in L. tenue to be a strong candidate for the G locus. 

 

3.2 Materials and Methods 
 

3.2.1 Comparison of mapping tools and parameters 

 

To demonstrate the behaviour of different read mapping tools, and to inform the 

alignment settings to be used for transcript quantification, the STAR v2.3.5a (Dobin et al., 
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2013a) and TopHat2 v2.1.0 (Kim et al., 2013) aligners were used to align the reads for 

each library individually to the L. tenue transcriptome reference using three preset groups 

of customized options: ‘loose’, ‘default’, and ‘stringent’. For STAR: loose parameters were 

defined as ‘outFilterMismatchNmax 15’, ‘scoreDelOpen -1’, ‘scoreDelBase -1’, 

‘scoreInsOpen -1’, and ‘scoreInsBase -1’; and stringent parameters were defined as 

‘outFilterMismatchNmax 5’, ‘scoreDelOpen -3’, ‘scoreDelBase -3’, ‘scoreInsOpen -3’, 

and ‘scoreInsBase -3’. For TopHat2: loose parameters were defined as ‘bt2-D 20’, ‘bt2-R 

3’, ‘bt2-N 1’, ‘bt2-L 20’, ‘bt2-rdg 4,2’, and ‘bt2-rfg 4,2’; and stringent parameters were 

defined as ‘bt2-D 10’, ‘bt2-R 1’, ‘bt2-N 0’, ‘bt2-L 24’, ‘bt2-rdg 6,4’, and ‘bt2-rfg 6,4’. The 

appropriate strandedness options were used for both aligners in all presettings: for STAR 

this was ‘fr-firststrand’; and for TopHat2 this was also ‘fr-firststrand’.  

 

3.2.2 Subsetting of the libraries 

 

In order to control for large variations in library size, the 18 libraries over 5,978,885 reads 

were subsetted to this number by randomly selecting reads from the FASTQ files, along 

with their reciprocal paired mate. The same methods of mapping, quantification, 

differential expression and downstream analyses were applied as to the rest of the dataset. 

 

3.2.3 Mapping and quantification of L. tenue libraries 

 

For transcript quantification, paired reads were aligned to the L. tenue transcriptome 

reference sequence, produced in Chapter 4.0, with STAR v2.3.5a using the loose 

parameter presetting, in order to allow mismatches between reads and multi-allelic 

consensus sequences in the reference. Sample expression was quantified according to an 

L. tenue annotated transcriptome model, a custom-made Browser Extensible Data (BED) 
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file, using Partek E/M, from the Partek Flow software suite (Partek Inc., 2018), using strict 

paired end compatibility and a minimum read count of 10 across all samples. Partek E/M 

employs an expectation-maximum algorithm to allocate multi-mapped reads among their 

matching loci using a maximum likelihood approach. 

 

3.2.4 Differential expression analysis 

 

Differential expression was performed using DESeq2 (Love, Huber and Anders, 2014). 

For analysis of differential expression, the biological triplicate sets for all three floral 

growth stages were compared by morphotype. The list of differentially expressed genes 

were filtered for FDR, by using a FDR step-up threshold of 0.05 and by excluding features 

that showed less than a two-fold change in expression (i.e. a fold change between -2 and 

2). In order to determine the features most likely to be associated with flower development 

in the full and subsetted datasts, the feature list was also filtered to create a list of features 

exclusively expressed in the floral growth stages using in-house python scripts. 

 

3.2.5 Exploratory analyses 

 

In order to understand relationships between the samples beyond differential expression, 

a number of approaches were taken to observe other interactions in expression patterns. 

These analyses were conducted using the tools in the Partek Flow software suite. A 

principal components analysis (PCA) was performed on the count data prior to and post 

differential expression analysis, using a log2 transformation and allowing features to 

contribute by variance. A t-distributed stochastic neighbour embedding (t-SNE) analysis 

was performed on the data with the following parameters: perplexity 30, a measure of the 

effective number of neighbours for each point on the graph; random generator seed 1; 
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initialise output values at random; number of iterations 1000; distance metric between 

data points Euclidian; features contribute to the graph equally; count values transformed 

by log2. Hierarchical clustering was also performed on the dataset using Partek Flow with 

default parameters to cluster samples according to overall similarity of expression. 

 

3.2.6 Genomic clustering 

 

Genomic clustering analysis was performed on the filtered list of differentially expressed 

features from the subsetted dataset in the hope of detecting signals of an S supergene locus 

of linked genes. The differentially expressed features (contigs) were extracted from the L. 

tenue transcriptome sequences and their putative corresponding loci were found in the 

genomes of Arabidopsis thaliana (TAIR10), Populus trichocarpa and Primula veris through local 

TBLASTX searches, with default parameters including the selection of only the top 

BLAST hit. A. thaliana was selected as a reference due its level of development as a model 

and high characterisation of the S locus, P. trichocarpa was selected as it was the closest 

reference species to L. tenue with a chromosomal-level resolution of the genome at the time 

of writing, and P. veris was selected as it was the best developed heterostyly model species 

with candidate regions for the S locus at the time of writing. The sequences used for A. 

thaliana and P. trichocarpa were at the chromosomal level, and the P. veris sequences used 

were the best-resolved scaffold set. A subset of scaffolds from the P. veris genome 

representing candidate contigs putatively linked to the S locus (Nowak et al., 2015) was 

also searched for matches to the differentially expressed L. tenue contigs. The genome of 

Linum usitatissimum was not used during this exercise as the length of assembled scaffolds 

(at the time of writing) were not long enough to display the data in the desired manner. 

The build of the P. veris genome was used despite this due to the characterisation of its S 

locus region.  



75 

 

BLAST results were then organised by subject (genome reference sequence) 

chromosome/scaffold, and the start positions of each alignment in the subject were 

plotted to visualise their clustering patterns on chromosomes of these reference species. 

 

3.2.7 L. grandiflorum S locus candidates in L. tenue 

 

Amino acid sequences of the five genes (TSS1, LgAP1, LgMYB21, TPP1 and LgGLX1) 

found to display thrum-specific expression in L. grandiflorum by Ushijima et al. (2012) were 

downloaded from the DDJ/EMBL/GenBank (http://getentry.ddbj.nig.ac.jp/) using 

accessions AB617824-AB617828 respectively. Homologs were searched for in the L. tenue 

reference transcriptome using TBLASTN with default parameters, limiting the maximum 

number of target sequences to 10. The DESeq2 normalised count data for 43 resultant 

matching L. tenue contigs were extracted, and each of the contigs were searched for in the 

list of L. tenue differentially expressed features (Section 3.3.3). 

 

The cDNA sequence of the single L. tenue transcript contig, Contig_141165 (a homolog, 

and possible ortholog, of L. grandiflorum TSS1), found to match to one of the L. grandiflorum 

genes of interest and found to be differentially expressed between L. tenue pin and thrum 

morphs was translated in silico into amino acid sequences with all six possible reading 

frames using the online ExPASy Translate Tool (Appel, Bairoch and Hochstrasser, 1994; 

Gasteiger et al., 2003; Artimo et al., 2012) (https://web.expasy.org/translate/). To select 

the correct translational reading frame for Contig_141165, the amino acid sequence for 

TSS1 was used to query the six theoretical Contig_141165 amino acid sequences using 

BLASTP. To confirm selection of the correct reading frame, the six theoretical 

Contig_141165 amino acid sequences were also aligned to TSS1 alongside those of A. 
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thaliana homologs VUP1, VUP2, VUP3 and VUP4 (Grienenberger and Douglas, 2014), 

using MUSCLE v3.8.31 (Edgar, 2004) with default settings; alignments were viewed in 

Jalview v2.9 (Clamp et al., 2004; Waterhouse et al., 2009) and a UPGMA tree of average 

distance was calculated using percentage sequence similarity. 

 

The amino acid sequence for Contig_141165, translated in the sense (5’ to 3’) orientation 

using reading frame 3, was aligned to VUP1, TSS1 and a range of VUP1 homologs across 

the angiosperm phylogeny including Sellaginella moellendorffii (Embryophyta) using 

MUSCLE v3.8.31 with default parameters, visualised using Jalview v2.9. Through 

TBLASTN of VUP1-4 and VUP1 homologs to the L. tenue reference transcripts, three 

contigs, Contig_051339 (matching to VUP1, VUP3, VUP4, Populus_trichocarpa1, 

Populus_trichocarpa2 and Populus_trichocarpa3), Contig_051340 (matching to 

Populus_trichocarpa1 and Populus_trichocarpa2) and Contig_051341 (matching to 

Populus_trichocarpa1 and Populus_trichocarpa2), representing putative VUP1 homologs 

(and thus putative paralogs of L. tenue Contig_141165) were discovered. For these L. tenue 

contigs, the predicted amino acid sequences from the correct reading frames (using the 

same techniques as outlined for Contig_141165) were included in the alignment of VUP1 

homologs. 

 

Phylogenetic analyses were conducted on the alignment using IQ-TREE v1.6.9 (Nguyen 

et al., 2015). Both Bayesian and maximum likelihood inference analyses were performed 

and, using the Bayesian information criterion (BIC) and the Akaike information criterion 

(AIC), the best-fit substitution model was selected with ModelFinder (Kalyaanamoorthy 

et al., 2017). Bootstrap values were generated with the VT+G4 model of substitution for 

1000 ultrafast bootstraps (Minh, Nguyen and von Haeseler, 2013; Hoang et al., 2018). 

The phylogenetic analysis was repeated using an alignment excluding Contig_051339, 

Contig_051340 and Contig_051341, the putative VUP1 homologs of L. tenue. 
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3.3 Results 
 

3.3.1 Comparison of mapping tools and parameters 

 

The STAR aligner generated the highest mapping results overall when compared to 

TopHat2 (Table 3.1). STAR generated an overall alignment rate of 82.32%, 81.14% and 

78.39%, whereas TopHat2 produced overall alignment rates of 70.22%, 70.12% and 

69.75%, for the loose, default and strict parameter presettings respectively. Also of note 

is the significant improvement in unique mapping rates, which are consistently over 20% 

higher with STAR than with TopHat2. There was little variation between the mapping 

results for the individual libraries at each presetting, though with increasing stringency, 

this variation increases very slightly as demonstrated by coefficients of variation of 0.023, 

0.024 and 0.025 for STAR and 0.074, 0.075 and 0.077 for TopHat2, for the overall 

mapping rates at loose, default and stringent presettings respectively. These coefficients 

of variation also demonstrate a comparable, but slight increase in, variation with the 

TopHat2 aligner, with STAR giving more consistent results overall. 

 

Whilst not used as a comparative measure, it should also be noted through personal 

observations that STAR consistently ran much faster than TopHat2, sometimes by a 

difference of 5 hours.
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Table 3.1 Mapping results for the full L. tenue data set with the STAR and TopHat2 aligners. Each library was mapped individually, and averages and standard deviations are 
shown for each alignment presetting, as described in Section 3.2.1. 

 

Table 3.2 Read counts and number of alignments for each RNAseq library, ranked in size order. The morph and growth stages have been given as abbreviations for each sample: pin (_p), thrum (_t), 
leaf (L), young bud (YB), immature flower (IF) and open flower (OF). Alignments were performed using STAR with the loose parameter setting. 

Sample individual and name Growth stage/morph Total reads Total alignments (paired-end) to the L. tenue reference 
CBT8_OpenFlower OF_t 810,556 1,558,002 

CBT6b_Leaf L_p 1,652,967 3,297,533 
CBT7b_YoungBud YB_t 2,136,112 4,093,598 

GRT9c_Leaf L_p 2,184,258 4,580,721 
GRT1a_YoungBud YB_p 3,585,868 6,917,477 
GRT9c_YoungBud YB_p 5,817,359 11,454,051 
CBT8_YoungBud YB_t 6,463,463 12,493,752 

GRT9c_OpenFlower OF_p 7,892,092 16,931,168 
CBT10_ImmatureFlower IF_t 9,427,315 19,133,866 

CBT10_YoungBud YB_t 9,926,960 20,159,619 
CBT8_ImmatureFlower IF_t 10,191,126 19,796,823 

CBT10_OpenFlower OF_t 10,994,604 22,569,737 
GRT1a_ImmatureFlower IF_p 11,559,619 23,758,819 

CBT7b_Leaf L_t 11,578,817 24,409,763 
GRT1a_Leaf L_p 13,115,010 26,906,364 

CBT6b_OpenFlower OF_p 13,725,994 29,313,366 
GRT1a_OpenFlower OF_p 20,535,561 42,099,893 

CBT6b_ImmatureFlower IF_p 22,318,996 47,060,478 
CBT7b_OpenFlower OF_t 22,408,546 47,008,698 

CBT10_Leaf L_t 24,394,478 50,505,081 
GRT9c_ImmatureFlower IF_p 26,071,618 53,914,515 

CBT8_Leaf L_t 43,399,923 91,306,528 
CBT6b_YoungBud YB_p 47,158,940 98,519,708 

CBT7b_ImmatureFlower IF_t 74,227,468 154,852,114 

  STAR loose STAR default STAR stringent TopHat2 loose TopHat2 default TopHat2 stringent 
Total aligned reads (%) ± SD 82.32 ± 1.92 81.14 ± 1.95 78.39 ± 1.95 70.22 ± 5.22 70.12 ± 5.24 69.75 ± 5.34 

Total unique paired alignments (%) ± SD 67.17 ± 1.13 66.09 ± 1.16 63.51 ± 1.27 42.06 ± 2.51 41.92 ± 2.52 41.28 ± 2.66 
Total non-unique paired alignments (%) ± SD 15.15 ± 1.09 15.05 ± 1.08 14.88 ± 1.07 11.30 ± 1.39 11.31 ± 1.41 11.17 ± 1.42 

Total unaligned reads (%) ± SD 17.68 ± 1.92 18.86 ± 1.95 21.61 ± 1.95 29.78 ± 5.22 29.88 ± 5.24 30.25 ± 5.34 
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3.3.2 Mapping and quantification of libraries 

 

 

Total read counts were highly variable between samples due to a large range in size of 

RNAseq read libraries (Table 3.2). The number of aligned reads ranged from 1,558,002 

in sample CBT8_OpenFlower, to 154,852,114 in sample CBT7b_ImmatureFlower. 

Variation in library size was on a sample-by-sample basis and was not a product of 

treatment; combined data distributions for each treatment triplicate are shown in Figure 

3.1. This indicates the variation in library size was randomly distributed across the 

dataset, however the mean and median values for these raw counts by triplicate varied 

greatly. 
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Figure 3.1 Boxplots of the alignment data for each treatment. The morph and growth stage have been given as 
abbreviations for each sample: pin (_p), thrum (_t), leaf (L), young bud (YB), immature flower (IF) and open flower 
(OF). 
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The mean library size was 16,732,402 with a median of 11,277,111. Total reads mapping 

to pin morph individuals in floral stages was 329,969,475, and to thrum morph 

individuals in floral stages was 301,666,209 (Figure 3.2). The mean number of alignments 

for both groups are very similar (36,663,275 pin, 35,518,468 thrum), but the pin dataset 

displays larger interquartile ranges and contains more of the largest libraries. 

 

 

 

 

Figure 3.2 Boxplots of the alignment data for floral developmental stages of each morph. Sample 
CBT7b_IF has been designated as an outlier comparative to other thrum samples. 
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3.3.3 Differential expression analyses 

 

All differential expression results were filtered primarily by false discovery rate (FDR) 

adjustment, using a threshold of 0.05, and a minimum fold change of 2. For the full 

dataset this yielded a total of 2363 (Appendix III), and for the subset dataset 1586, 

differentially expressed features between all pin and all thrum floral growth stages. The p-

value distribution of the datasets were shown to be heavily skewed towards 0 as opposed 

a) 

b) 

Figure 3.3 p-value distributions for differentially expressed features shared between the full dataset (a) 
and the subsetted dataset (b) after filtering for fold change and FDR-adjusted p-values. 
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to uniform from 0 to 1, as would be expected in the absence of differential expression, 

indicating the variance model used by DESeq2 was an appropriate fit for the data. 

Between both sets of differentially expressed features, 1371 features are shared, with the 

p-values tending to be lower in the full dataset (Figure 4.3), with 140 more features having 

a p-value less than or equal to 0.000085 in the full dataset.  

a) b)

c) d)

Figure 3.4 Volcano plots of L. tenue differential expression analyses with DESeq2. Fold 
change values are displayed on the x-axis and probability values on the y-axis. Differential 
expression results in terms of fold change are displayed for the full dataset, a) and b), and 
the subset dataset, c) and d), are shown against both p value, a) and c), and FDR 
adjustment, b) and d).  



83 

 

Figure 3.4 displays the differential expression results for the full- (3.4a and 3.4b) and 

subsetted (3.4c and 3.4d) datasets in volcano plots, with log2 fold change plotted against 

p-values (3.4a and 3.4c) and FDR-adjusted p-values (3.4b and 3.4d). Significance values 

of 0.05 and minimum fold change of 2 have been selected. Both sets of plots follow the 

expected pattern of increasing significance (lower p-value) as fold changes move further 

away from 0. The number of significantly differentially expressed features greatly 

decreases after FDR-adjustment. Of interest between the full- and subsetted datasets is 

the presence of far fewer outliers in the subsetted dataset, as demonstrated by the 

reduction of the ‘arms’ of the volcano at the extremes of the fold change scale, particularly 

for down-expressed features. 

 

3.3.4 Exploratory analyses 

 

PCA revealed that 61.89% of the full dataset was explained by PC1 and PC2 (Figure 3.5), 

and further inclusion of PC3 explained 70.98% of the data. Figure 3.5 demonstrates 

sample clustering largely by developmental stage, and 3-dimensional representations of 

Figure 3.5 Principal components analysis of the full dataset prior to differential expression analysis. 
Samples have been coloured and connected by growth stage, and node sizes denote the style phenotype 
(morphotype). The first two principal components are displayed. 
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a) b) 

Figure 3.6 t-SNE analysis of the full dataset prior to differential expression analysis. Samples have 
been coloured growth stage, and the style phenotype (morphotype) is displayed by size and highlighted 
by colour. The first three (a) and the first two (b) principal components are displayed. 

Figure 3.7 t-SNE analysis of the subset dataset after differential expression analysis. Samples have been 
coloured by growth stage, the style phenotype (morphotype) is displayed by size. The first three principal 
components are displayed. 
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the data with the first 3 principal components added further dimensionally to this 

clustering. At this stage of the analysis, no pattern by morphotype is displayed. As can be 

seen in Figure 3.5, the open flower and leaf clusters each show a single large outlier; these 

individuals corresponded to library sample CBT8_OpenFlower and CBT6b_Leaf, which 

were the smallest samples with 1,558,002 and 3,297,533 total aligned reads respectively. 

 

PCA analysis conducted on the subsetted dataset prior to differential expression analysis 

revealed a similar clustering pattern, with PC1 and PC2 together explaining 62.40% of 

the data. 

 

When conducted on the datasets prior to differential expression, t-SNE analysis revealed 

loose but overlapping expression patterns between developmental stages in both the full 

dataset (Fig. 3.6) and the subsetted dataset for the first 2 principal components. When 

viewed 3-dimensionally with use of the third principal component (Fig. 3.6a), some 

separation can be seen between pin and thrum morphotypes. However, when conducted 

on the datasets post differential expression analyses on the feature list filtered by FDR-

adjusted p-value and minimum fold change (Fig. 3.7), distinct clustering by morphotype 

is evident. Of particular interest here is that distinct sub-clustering can be seen within the 

pin-morph cluster, where each sub-cluster was comprised of all the developmental stages 

for a single individual. Similar proximity positioning of samples by individual can be 

observed to an extent within the thrum cluster, but this is much less distinct. 

 

Hierarchical clustering of both datasets yielded very similar results to the PCA and t-SNE 

analysis; the resultant heat map for floral growth stage samples in the subsetted dataset is 

shown in Fig. 3.8. As is clear from the heatmap, samples show distinct clustering by 

morphotype, with floral growth stages for each individual falling into exclusive pin or 

thrum clades. The heatmap displays four large blocks of expression patterning, two areas 
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of universal down-regulated expression within morphotypes (displayed in cherry), and two 

areas of up-regulated expression (sky blue) within morphotypes. Areas of up-expression 

are not as uniform in terms of expression patterns between individuals, and display sub-

blocks of up-regulated features that largely correspond to within-individual patterns of 

expression. 

 

Again of interest in the hierarchical clustering is the pattern of sample clustering by 

individual rather than by developmental stage. As can be seen clearly in Figure 3.8, the 9 

pin morph samples are assembled into 3 clades towards the bottom of the hierarchy, with 

each clade consisting of all the samples for a single individual. This pattern is present in 

the thrums, with the samples for individual CBT10 forming a single clade, but overall the 

pattern is weaker, with some growth stages forming their own ‘outgroups’.  

 

3.3.5 Genomic clustering 

 

Of the 1586 contigs from the subsetted dataset found to be differentially expressed 

between pin and thrum floral developmental stages after filtering for significance and fold 

change: 560 found matches in A. thaliana, 585 found matches in P. trichocarpa, and 510 

found matches in P. veris. In the P. veris candidate S locus subset (comprised of 8 scaffolded 

contigs), 35 of the L. tenue contigs found BLAST hits. 

 

In each of the A. thaliana and P. trichocarpa reference genomes, BLAST hits were distributed 

across the chromosomes. In P. trichocarpa the most frequently matched chromosome was 

Chromosome 1 with 67 (11.97%) hits, and the remaining Chromosomes 2-19 saw an 

average of 28.78 hits (SD 7.39). In A. thaliana, the hits were more unevenly distributed 

between its 5 chromosomes: Chromosomes 1, 3 and 5 saw an average of 132 (SD 19.97), 
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Figure 3.9 Plots of differentially expressed contigs and the start positions of their pairwise alignments to genomic 
reference sequences: (a) A. thaliana chromosome 3, with the genomic location of VUP1 indicted by the red marker; 
(b) A. thaliana chromosome 4; (c) P. trichocarpa chromosome 19; and (d) P. veris Contig927. The count frequencies 
are represented on the y-axes and x-axes represent starting nucleotide coordinates of the alignments on the 
chromosomes. 

 

a) 

b) 
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c) 

d) 

Figure 3.9 Continued. 
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Chromosome 2 received 84 hits and Chromosome 4 received 76 hits; regarding the 

organellar genomes, 3 contigs matched to the chloroplast and 1 to the mitochondrial 

genome. In P. veris, the 510 BLAST matches were found to be distributed across 330 

scaffolded contigs, with 224 of these contigs containing only a single BLAST match from 

the L. tenue query. Of the 35 L. tenue contigs that found a match in the S locus reference, a 

majority of these were matched to JTKG01000926.1 (15 hits) and JTKG01000478.1 (10 

hits). 

 

The results of the differentially expressed contig mapping for selected 

chromosomes/contigs are displayed in Figure 3.9. Chromosomes were selected as they 

are known to contain genes linked to the S locus of that species (A. thaliana Chromosome 

4, P. trichocarpa Chromosome 19 and P. veris JTKG01000926.1/Contig927) and floral 

development (A. thaliana Chromosome 3). Clustering appears particularly distinct for A. 

thaliana Chromosome 3 (Figure 3.9a) and P. veris Contig927 (Figure 3.9d). BLAST hits 

appear more sparsely distributed on A. thaliana Chromosome 5 (Figure 3.9b) and P. 

trichocarpa Chromosome 19 (Figure 3.9c), with a majority of genomic regions matching to 

only a single contig. 

 

3.3.6 L. grandiflorum S locus candidates in L. tenue 

 

TBLASTN of the amino acid sequences of five genes with thrum-specific expression in L. 

grandiflorum yielded the following number of matching L. tenue transcript sequences: TSS1, 

1; LgAP1, 8; LgMYB21, 9; TPP1, 10; LgGLX1, 10. Of these 43 L. tenue contigs, only 

Contig_141165, the single match for L. grandiflorum TSS1, was found to be present in the 

DESeq2 filtered list of differentially expressed features. The normalised count data for 

Contig_141165 exhibits clear thrum-specific expression in L. tenue. With the exception of 



91 

sample CBT6b_YoungBud (count of 4.5), all pin samples displayed counts of 0.0 for 

feature Contig_141165. For thrum samples of individuals CBT10, CBT7b and CBT8 

respectively, feature Contig_141165 displayed counts of 121.55, 15.2428 and 29.6401 for 

immature flower samples; 111.104, 29.6401 and 69.6678 for open flower samples; and 

counts of 0.0 for all leaf and young bud samples.  

 

From the functional annotation of the L. tenue reference transcriptome (Section 4.2.5), a 

predicted peptide translated from nucleotide coordinates 102-539[+] on Contig_141165 

was found to be a putative homolog of A. thaliana VUP1. Of the six theoretical amino acid 

sequences that could be derived from Contig_141165, TSS1 found a BLASTP match 

only with Ltenue_Contig41165_5’3’_Frame3. Further alignment of Contig_141165 

theoretical amino acid sequences to TSS1, VUP1 and A. thaliana VUP1 paralogs VUP2-4 

(Appendix IV) showed Ltenue_Contig41165_5’3’_Frame3 represented the only reading 

frame that shared four conserved VUP motifs designated M1-M4 (Figure 3.10) by 

Grienenberger & Douglas (2014). Clustering of these sequences by percentage sequence 

similarity (Appendix V) demonstrated clear exclusion of the other L. tenue theoretical 

peptides, with Ltenue_Contig41165_5’3’_Frame3, TSS1 and VUP1-4 forming a distinct 

clade and other L. tenue theoretical peptides falling as outgroups. 

 

Alignment of Contig_141165, TSS1, VUP1-4 and VUP1 homologs showed overall low 

levels of sequence similarity among homologs (only 28% of residues were constant across 

all sites), with the exception of four highly conserved motifs, M1-4 (Figure 3.10). In 

accordance with Grienenberger & Douglas (2014), we found motifs M1-3 to be present 

in all L. tenue homologs but inconsistent presence of motif M4, which was only retained in 

Contig_051339 and Contig_141165. Of special interest was the dissimilarity between L. 

tenue Contig_141165 and Contig_051339-41 sequences; contigs Contig_051339-41 share 

many residues that were not present or conserved in Contig_141165. Contig_141165  
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Figure 3.10 Alignment of full-length Ltenue_Contig141165_5’3’_Frame3 and its putative paralogs, TSS1, 
VUP1-4 and putative VUP1 homologs from across the angiosperm phylogeny and Selaginella moellendorffii 
(Lycopodista). Alignments were made using MUSCLE v3.8.31, and amino acid residues coloured according to 
their physicochemical properties (Clustalx colouring system). M1-4 indicate conserved sequence motifs, as defined 
by Grienenberger & Douglas (2014), among VUP1 homologs. 

 

M1 M2

M2 M3
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M3

M4

M4

Figure 3.10 continued. 
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appeared to share greater similarity with TSS1 and VUP1-4 than its conspecific (putative) 

paralogs. The amino acid sequences of L. tenue homologs Contig_051339-41 were all 

longer than the other sequences in the alignment set, with the presence of ~140-150 

leading amino acid residues. Also apparent from our alignment was the truncation of 

TSS1 relative to other homologs, resulting in an absence of the M4 motif; the alignment 

in Appendix IV shows the absence of ~100 residues on the trailing end of the sequence 

relative to L. tenue Contig_141165. 

 

The alignment set of the twenty-one putative homologs of Contig_141165 and TSS1 were 

used to create two sets of trees (Figure 3.11), excluding (Figure 3.11a,b) and including 

(Figure 3.11c) putative L. tenue paralogs of Contig_141165. Considering both sets of trees, 

support for the nodes were generally highest at the leaves of the tree, and decreased for 

most groups as nodes approached the base. The most evident exceptions to this were for 

the subclades of Poaceae (monocots) species Zea mays, Brachypodium distachyon and Oryza 

sativa. In all trees, Contig_141165 and TSS1 were shown to be closest to each other, 

forming their own monophyletic groups with high support. For the exclusive analysis, 

Selaginella moellendorffii consistently formed a clear outgroup at the base of the trees relative 

to the other angiosperm taxa. The inclusive analysis exhibits the paralogs of 

Contig_141165 and contigs Contig_051339-41, forming distinct outgroups to all other 

taxa. In further contrast to the exclusive analysis, the topology of the inclusive maximum 

likelihood and consensus trees was equivalent, with a Robinson-Foulds distance of 0 

(Robinson-Foulds distance of 8 between exclusive trees). 
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a) 
+----------------------------------------------------Selaginella_moellendorffii 
| 
|                                    +-------VUP3 
|                  +-----------------| (99.5/81) 
|                  |                 +-----------VUP2 
|            +-----| (86.9/31) 
|            |     +----------VUP4_AT5G54790_1-165 
|        +---| (77.1/26) 
|        |   |                          +----------------TSS1 
|        |   |   +----------------------| (98.2/99) 
|        |   |   |                      +----------------Ltenue_Contig141165 
|        |   +---| (68.8/63) 
|        |       |     +--Populus_trichocarpa4 
|        |       |  +--| (95/96) 
|        |       |  |  +--Populus_trichocarpa3 
|        |       +--| (13.4/73) 
|        |          +--------Ricinus_communis_2 
+--------| (90/31) 
|        |        +--Populus_trichocarpa2 
|        |     +--| (96.9/95) 
|        |     |  +--Populus_trichocarpa1 
|        |  +--| (83.5/35) 
|        |  |  |     +--------Glycine_max 
|        |  |  |  +--| (53.3/56) 
|        |  |  |  |  +-----Vitis_vinifera 
|        |  |  +--| (50.9/27) 
|        |  |     |                    +--Brachypodium_distachyon 
|        |  |     |                 +--| (78.2/57) 
|        |  |     |                 |  +----Zea_mays 
|        |  |     +-----------------| (100/100) 
|        |  |                       +---Oryza_sativa 
|        +--| (59.5/35) 
|           +-----Ricinus_communis1 
| 
+--------VUP1 
 
 
 
b) 
+----------------------------------------------Selaginella_moellendorffii 
| 
|  +-------VUP3 
+--| (81) 
|  +--------VUP2 
| 
|                                 +--Populus_trichocarpa2 
|                              +--| (95) 
|                              |  +--Populus_trichocarpa1 
|                           +--| (29) 
|                           |  |  +-------Glycine_max 
|                           |  +--| (56) 
|                           |     +----Vitis_vinifera 
|                        +--| (35) 
|                        |  |                   +--Brachypodium_distachyon 
|                        |  |                +--| (57) 
|                        |  |                |  +----Zea_mays 
|                        |  +----------------| (100) 
|                        |                   +--Oryza_sativa 
|                     +--| (35) 
|                     |  +----Ricinus_communis1 
|                 +---| (21) 
|                 |   +---------------VUP1 
|            +----| (24) 
|            |    |                       +--------------TSS1 
|            |    |   +-------------------| (99) 
|            |    |   |                   +---------------Ltenue_Contig141165 
|            |    +---| (63) 
|            |        |     +--Populus_trichocarpa4 
|            |        |  +--| (96) 
|            |        |  |  +--Populus_trichocarpa3 
|            |        +--| (73) 
|            |           +-------Ricinus_communis2 
+------------| (60) 
             +---------VUP4 
 
Figure 3.11 Legend on continued figure below. 
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c) 
+--LtenueContig051339 
| 
|  +--LtenueContig051340 
+--| (99) 
|  +--LtenueContig051341 
| 
|                                      +-------Ltenue_Contig141165 
|                      +---------------| (99) 
|                      |               +--------TSS1 
|                   +--| (32) 
|                   |  |                  +-----VUP2_At1g50930 
|                   |  |      +-----------| (67) 
|                   |  |      |           +----VUP3_AT3G20557 
|                   |  |  +---| (46) 
|                   |  |  |   +--------VUP4_AT5G54790 
|                   |  +--| (39) 
|                   |     |      +--Populus_trichocarpa3 
|                   |     |  +---| (96) 
|                   |     |  |   +--Populus_trichocarpa4 
|                   |     +--| (80) 
|                   |        +----Ricinus_communis2 
|                +--| (37) 
|                |  |        +--VUP1_At3g21710 
|                |  +--------| (56) 
|                |           +-----------------------------------Selaginella_moellendorffii 
|             +--| (28) 
|             |  +---Ricinus_communis1 
|          +--| (61) 
|          |  +----Vitis_vinifera1 
|       +--| (55) 
|       |  |  +--Populus_trichocarpa1 
|       |  +--| (96) 
|       |     +--Populus_trichocarpa2 
|    +--| (71) 
|    |  +-------Glycine_max 
+----| (99) 
     |              +---Zea_mays 
     |           +--| (80) 
     |           |  +--Brachypodium_distachyon 
     +-----------| (100) 
                 +---Oryza_sativa 
 
Figure 3.11 Unrooted trees of L. tenue Contig_141165, its putative paralogs (Contig_051339-41), its putative ortholog 
in L. grandiflorum (TSS1) and its putative homologs from across the tracheophyta. a) Maximum likelihood tree of the 
protein set excluding L. tenue contigs Contig_051339-41, with percentage SH-aLRT support and ultrafast bootstrap 
support respectively shown for each node. b) Consensus tree of the protein set excluding L. tenue contigs Contig051339-
41 derived from 1000 ultrafast bootstraps, with percentage ultrafast bootstrap support shown for each node. c) 
Consensus tree of the whole protein set, displaying ultrafast bootstrap support as in b). 

 
3.4 Discussion 
 

3.4.1 Comparison of mapping tools and parameters 

 

Alignment of the reads to a genomic or transcriptomic reference is a crucial step in any 

RNAseq pipeline and is often the step where a majority of the data can be lost if not 

performed correctly. If cDNA reads are being aligned to a genomic reference sequence, 

then a ‘splice aware’ aligner should always be selected for this task. The two most 

commonly used and highly regarded tools, both in the literature and online forums, 
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specifically designed for this purpose are STAR and TopHat2. Our findings that STAR 

generates higher overall and unique alignment rates, whilst also being much quicker and 

less computationally burdensome, are of little surprise and support the reported literature 

(Dobin et al., 2013; Engström et al., 2013). It is however an important step for any RNAseq 

study to experiment with the choice of tools and parameters, as different datasets may be 

better suited to different tools. Our data demonstrates little variation between the 

presetting parameters for each software tool, accounting for only small differences in 

overall results, whereas the majority of variance is between the tools used. However, 

efforts should be taken to maximise the rates of mapping as even small percentages can 

represent hundreds of thousands of reads, and as the distributions of reads mapping to 

each feature in the genome is rarely uniform, this could lead to disproportionate changes 

in transcript counts or detection across the genome. Our data (Table 3.1) demonstrate 

that STAR is more suitable for mapping of the L. tenue dataset to the reference 

transcriptome; with a consistent ~10% increase in total alignment rates and ~20% 

increase in unique alignment rates. Our data also demonstrate lower variation between 

samples when aligning with STAR, with standard deviations ranging from 1.92 to 1.95, 

whereas with TopHat2 the standard deviation of samples ranged from 5.22 to 5.43. 

 

It should be noted that the presetting values were not designed to be directly comparable 

between the alignment tools used. The algorithms governing both are different, 

particularly with regards to seeding (matches between parts of the read and the target 

sequence) and extending (the dynamic process by which the rest of the read is matched), 

and for example changes to the seed parameters in STAR will have larger consequences 

downstream in the alignment process. For this reason, seed options were only adjusted in 

the TopHat2 presettings, though gap and insertion penalty scores were changed for both. 

The presettings thus aimed to demonstrate the differences in alignment that can be 

derived from the same tool. Given the nature of the L. tenue reference, which as explained 
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in Chapter 4.0, had been created from consensus unigene sequences, it was expected that 

reference loci may be comprised of allelic and transcript isoform variants. Thus the loose 

presetting was selected for the STAR aligner when aligning for the purpose of transcript 

quantification.  

 

3.4.2 Library quantification 

 

The quantification demonstrated that the libraries were of highly variable size, with there 

being an over one hundred-fold difference between the smallest and largest libraries in 

terms of reads aligning to the reference. Various control measures were taken during the 

sample and library preparation procedures in an attempt to avoid such variation effects 

between samples. All plants were grown in the same glasshouse and samples were 

harvested at the approximately the same time of day and season: between 11:00 and 13:00 

over a two-week period in June 2014 (see Section 4.2.1). Care was also taken to normalise 

RNA concentrations using fluorimetry post-extraction and post-DNAse treatment, and 

equal volumes (and thus equal total quantities of RNA) were used as input for the library 

preparation protocols. After construction, libraries were then quantified using qPCR and 

concentrations were again normalised prior to sequencing. The variation in sample sizes 

raises various issues and challenges for differential expression studies and downstream 

applications for specific contigs of interest. There is an increased chance of false positives 

being present in the dataset due to the variable libraries, as results could be heavily skewed 

by outlier counts in a single sample. As the power of differential expression experiments 

are sensitive to the number of observations for each feature, the samples with the lowest 

number of reads are likely to be most adversely affected. Similarly, there is an increased 

risk of false negatives in the dataset, as the detection of lowly expressed transcripts might 

become lost in the overall noise (Finotello and Di Camillo, 2015). 
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Normalisation of the read counts was attempted on a per sample basis using CPM, 

quantile normalisation and upper quartile scaling, as these methods can be effective at 

removing library size effects (Evans, Hardin and Stoebel, 2018). Upper quartile 

normalisation did yield highly comparable counts between the libraries, but given the 

disparate range in library sizes within and between triplicate sets, normalisation through 

these methods are unlikely to be entirely sufficient. Given the amount of variance in 

interquartile ranges between samples and treatments, normalisation methods that use 

quartile information are particularly unreliable for smaller libraries. If libraries within a 

dataset are comparable and have globally high read counts (>25 million), variance in 

counts will naturally lower as highly expressed features tend to deviate less from the mean. 

However, with globally fewer read counts, the variance in expression on a sample-by-

sample basis will be much higher, thus counts in the top quartile will be subject to greater 

stochasticity. Zyprych-Walczak et al. (2015) examined the impacts normalisation methods 

can have on the count data, particularly highlighting the bias that can arise in upper 

quartile normalisation. We thus opted to employ the DESeq2 model of normalisation that 

uses library scaling factors based on median values, which is less susceptible to outliers 

than distribution adjustment approaches. 

 

To provide some measure of control over the differences in library sizes seen in the full 

dataset, large samples were subsetted to 5,978,885 randomly selected paired reads (the 

first quartile limit). This subsetted dataset aimed to reduce the magnitude of variance 

between library sizes and was used alongside the full dataset for all downstream expression 

analyses as a control for variable sample size. Though the differential expression testing 

in DESeq2 uses Cook’s distance to remove count outliers and features with low counts 

(where the mean of normalised counts falls below a threshold), this was used as a 

comparative measure to assess the overall behaviour of the full dataset. A caveat, however, 
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of subsetting the data is that it can reduce the power of the experiment in three main 

ways. With fewer observations, the shrinkage estimations used to match the data to the 

generalised linear model may be affected and result in the exclusion of more features for 

differential expression; and lower gene counts overall can increase the number of features 

falling below the mean-of-normalised-counts-threshold that are discarded from the 

analysis. The presence of lower counts overall also tends to increase the severity of the 

FDR p-value adjustment, resulting in more features falling above the user-defined 

significance threshold, that we set to 0.05. 

 

This creates a trade-off that can be difficult to reconcile, as use of the subsetted dataset 

increases the likelihood of false negatives, yet the range of variation in orders of magnitude 

between samples throws the reliability of results for the full dataset into doubt. The 

expectation is that the subsetted dataset will detect fewer differentially expressed features, 

but that if a majority of these features are also found to be comparably differentially 

expressed in the full dataset we can be more confident regarding the impacts of sample 

bias.  

 

3.4.3 Global expression patterns 

 

The PCA of the full dataset prior to normalisation and differential expression analyses 

(Figure 3.5) revealed that the developmental transcriptomes are on the whole distinct, 

with discrete clustering of samples by growth stage. This provides a strong indication that 

the data are biologically sound, as we would expect different flowering stages to be 

specifically characterised by differential expression at many loci (Gao et al., 2014; 

Klepikova et al., 2015). We know that the S locus is a multiallelic supergene, but the 

differences between morphs is likely to be driven by the cumulative effects of many more 
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differentially expressed genes that are regulated by the S locus or earlier stages of the 

morph-specific developmental pathways (Cocker et al., 2018). 

 

Of interest in the PCA results is the high level of variation that the first few principal 

components explain. This analysis is sensitive to the variance contributed by each feature. 

It is therefore unsurprising that the open flower and leaf clusters each display extreme 

outlier samples as these outliers are the two smallest libraries (Table 3.2), and represent 

the samples with the largest deviation from the mean and median library size. In contrast, 

the larger-sized libraries were less prone to be outliers. With increased observations of 

count data, the variance in counts tends to decrease (hence the negative binomial model 

of DESeq2); reducing the magnitude of principal components for large samples. It is also 

possible that, given both coverage of the reference and average read depth of covered 

regions is proportional to library size, when counts are log2 transformed, the larger 

libraries are closer to the mean and median values. That the difference between PCA of 

the full dataset and PCA of the subsetted dataset is near negligible is further evidence that 

the smaller libraries are producing the largest skew in the data, as opposed to generalised 

variations in library size overall. This suggests that libraries above a minimum sequencing 

depth are more import for reliable expression analyses, which is a view echoed in the 

literature (ENCODE consortium RNAseq guidelines: https://bit.ly/2CXRQmI).  

 

A t-SNE analysis was also performed on the data prior to differential expression testing 

(Figure 3.6). t-SNE is a similar technique to PCA in many ways in that it performs 

dimensionality reduction for a multivariate and high-dimensional dataset. However, 

while PCA functions purely to explain the variance observed in a dataset, t-SNE attempts 

to take the underlying structure of the data into account by giving more value in a 

similarity matrix to neighbouring nodes (Van Der Maaten and Hinton, 2008). When t-

SNE was performed on the data and allowed the features to contribute by variance, 



102 

discrete separate clusters were generated based on developmental stage, similar to the 

PCA. However, by allowing features to contribute equally, the t-SNE presented here 

reduces the effect that more variable features have on the graph, which may result from 

differences in library size. As can be seen from Figure 3.6b, the first two t-SNE principal 

components group samples largely by developmental stage. In comparison to the PCA, 

the floral growth stages are overall grouped closer together in the t-SNE, as opposed to 

the open flower samples forming a discrete cluster in the PCA graph, and leaf samples are 

mostly confined to the right-hand edge of the graph. It appears also, based on t-SNE PC1 

and PC2 alone, that pin-morph samples within a developmental stage tend to cluster 

closer than the equivalent developmental stages of thrum-morph samples. However, 

when PC3 is taken into account (Figure 3.6a) this pattern is not apparent. Nonetheless, 

this could provide some support for differences between pin and thrum expression 

patterns that will be discussed later. 

 

In contrast to the PCA, the t-SNE plot of principal components 1-3 does suggest a minor 

degree of distinction between the pin and thrum transcriptomes. This difference is very 

slight, and only becomes more significant once the t-SNE is conducted on the 

differentially expressed data (Figure 3.7), though does give credence to the argument that 

morph differences in expression are derived from the regulation of a (relatively) small 

number of genes.  

 

3.4.4 Differential expression with DESeq2 

 

Differential expression was conducted to compare all pin floral growth stages and all 

thrum floral growth stages as, given the variance in library sizes, a sample size of nine 

provides greater power than pairwise comparisons of individual floral growth stages in 
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triplicate. Differential expression analysis found 2363 significantly differentially expressed 

features in the full dataset and 1885 significantly differentially expressed features in the 

subsetted dataset. As observed in Figure 3.3, the 1371 differentially expressed features 

that are shared between the two datasets were found to be more significant in the full 

dataset, as demonstrated by the greater skew towards zero p-values. This differential was 

to be expected, as discussed in section 3.4.2. High overlap of the differentially expressed 

features in the subsetted and full datasets was promising, suggesting that the large variance 

in library size did not have too severe an impact on the ability of DESeq2 to remove false 

positives from data with greater levels of dispersion.  

 

As shown in Figure 3.4, other than the number of differentially expressed features 

detected, there was little difference in the dispersion of the overall sample expression 

between the full and subsetted datasets. The largest difference was the reduction of 

features showing extreme changes in expression levels, particularly for down-expressed 

features. This disproportional reduction in extreme values is likely due to features, already 

shown to be lowly expressed, failing to meet the count value threshold for significance in 

the subsetted dataset. This is further evidence that the full dataset has increased power to 

avoid type II false negative errors.  

 

When conducted on the differentially expressed feature set (Figure 3.7), t-SNE analysis 

revealed clear distinction between pin and thrum individuals. This result is to be expected, 

given the data is comprised solely of differentially expressed features, but allows the nature 

of the distinction between the two morphotypes to be examined in greater detail. A t-SNE 

analysis prior to differential expression suggested slightly closer neighbouring of pin 

individuals than thrum individuals within the developmental stage groups. However, the 

neighbouring pattern changed when conducted on the differentially expressed dataset. 

Figure 3.7 clearly shows sub-clusters of pin samples that subcluster strongly by individual 
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rather than by growth stage. This subclustering by individual was also reflected in the 

thrum samples, but was subject to greater overlap and was therefore less distinctive. This 

observation is further reinforced by the results of hierarchical clustering (Figure 3.8), 

where the floral developmental stage samples for pin individuals sort into three distinct 

clades, yet the thrum samples, whilst broadly sorting by individual, displayed weaker 

grouping by individual and was more subject to outlier samples. This pattern could be 

due to two reasons: true representation of biological activity or sample bias between pin 

and thrum datasets. 

 

Assuming that there was unbiased sampling of the natural diversity seen in L. tenue 

populations among the six sampled individuals, and that there was no sample bias 

between pin and thrum libraries, this result could be indicative that there is more variation 

in overall gene expression between pin individuals than different floral stages within 

individuals, but that this pattern is weaker for thrum individuals. This result supports 

recent findings in the heterostyly literature that suggests that the S locus controlling distyly 

shows a hemizygous determination of thrum individuals as a result of a single thrum 

supergene not present in pin individuals. Younger thrum loci that have arisen more 

recently in evolutionary time will have accumulated fewer allelic variants than the older 

pin loci, and thus thrum individuals may display a smaller degree of genotypic diversity. 

Li et al., (2016) indicates that the thrum morphotype evolved from a proto-pin (approach 

herkogamy) progenitor, with the proto-pin present 100-125 million years ago (mya) and 

the duplication event leading to the present-day thrum morphotype occurring 33.1-72.1 

mya. Another common occurrence during duplication events is that gene regulatory 

mechanisms can be disrupted, causing effects similar to what is known as ‘transcriptomic 

shock’ (Hegarty et al., 2006). This could be a factor in explaining the tighter regulation 

observed in pin individuals. The dynamics of population genetics between the distylous 

morphs may also provide a speculative explanation for this pattern of subclustering. 
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Meeus et al. (2012) present similar finding when investigating the effects of morph 

frequency bias in populations of Pulmonaria officinalis (Boraginaceae). When populations 

showed a frequency bias towards pin individuals, the FST (a genetic measure of population 

differentiation) values tend to decrease, especially when populations are located in close 

proximity to each other. When FST values are low (<0.1) due to gene flow between 

populations, pairwise genetic distances are higher for thrum individuals between 

populations than for pin individuals, indicating lower levels of per population diversity in 

thrums. However, this is dependent on specific traits observable in P. officinalis and may 

have limited implications for the pattern we see in L. tenue. Primarily, P. officinalis pin 

individuals produce double the amount of pollen grains and this results in higher amounts 

of pin-pin gene flow between populations. The pin frequency bias reduces the effective 

thrum population size, and thus can lead to lower levels of thrum diversity. 

 

Another possible contributing factor to the morph-specific structural subgrouping lies in 

the dominant inhibitory effect of the candidate Contig_141165, a homolog of VUP1. Due 

to the interplay between genetics, environment and chance, nature displays inherent 

variation, which commonly manifest in measurements for traits showing Gaussian 

distributions. If left to elongate uninhibited, the cells in the pin styles and filaments of 

different individuals, and their underlying gene expression profiles, are likely to display 

natural variation. However, in thrum styles, if the VUP1 homlog, which is known in 

Arabidopsis thaliana to have an inhibitory effect on the expression of many genes, is acting 

to supress cell elongation before it has begun, we might expect the level of variance 

between thrum individuals (in both gene expression and cell length) to be greatly reduced. 

This pattern is observable in our data for cell lengths (Figure 2.3). 

 

Non-biological explanations are also possible. The power of the data should be taken into 

consideration as these patterns of expression could also be artefacts of experimental design 
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and library bias. First, when considering the results of the hierarchical clustering analysis 

(Figure 3.8), the groupings should be treated with caution in the absence of bootstrapping 

support, as the strength of the emergent pattern could be weak. The outlier samples within 

the thrum clade also deserve closer examination. The two outlying samples were 

CBT8_OpenFlower and CBT7b_YoungBud, which were the first and third smallest 

libraries with ~1.5 million and ~4 million aligned reads respectively (Table 3.2). For 

CBT7b_YoungBud, the main expression differences from the other samples for 

individual CBT7b appear to be within the block of upregulated thrum features (top left 

of Figure 3.8), where a stretch of features appear to be relatively downregulated in 

CBT7b_YoungBud compared to other CBT7b samples. While we would hope for 

DESeq2 to effectively remove skewed feature counts in relatively small libraries, the 

possibility of unequal coverage in the smaller libraries cannot be ruled out. Similarly, in 

the case of CBT8_OpenFlower, the main expression differences from other CBT8 

samples was in the same block of upregulated thrum features, with relative up- and down-

expression for some features. Given CBT8_OpenFlower was the smallest library, similar 

effects of library RNA composition bias cannot be ruled out. If expression patterns were 

more uniform, we could see a restructuring of the thrum clade reveal similar sub-clades 

grouped by individual, similar to the pin clade. 

 

3.4.5 Experimental power 

 

A post-hoc power analysis (Appendix VII) revealed that, for our triplicate experimental 

design, our experiment could have power as low as 60%, indicating our analyses could 

have failed to detect as many as 40% of the true positives in the dataset. Both at the time 

of the experiment and now at the time of writing, our experimental design was in line 

with the ENCODE guidelines and the literature, though future experiments should 
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always use a pilot dataset to conduct a power analysis prior to running a full investigation. 

The inclusion of even two extra biological replicates per treatment could increase the 

power of the experiment to 80-90%. It is possible therefore that our dataset does not at 

present contain the full complement of loci that show significant differential expression 

between pin and thrum morphs. That the expression results for the full and subsetted 

datasets were very close is indicative that the full dataset is, overall, reliable to use for 

differential expression with DESeq2. The reliability of the results is largest when large 

scale patterns in gene expression are examined overall, instead of examining individual 

features of interest from the differentially expressed list. Coefficients of variation for 

feature expression counts in each triplicate set have also been created, and could be used 

as a further diagnostic confidence measure when considering each of the differentially 

expressed features separately. 

 

3.4.6 Genomic clustering 

 

Genome clustering analysis (Figure 3.9) revealed some interesting co-localisation of 

differentially expressed contigs on selected chromosomes in reference species. Initially 

conceived as a further way of inferring gene function beyond the transcriptome 

annotation, the clustering of L. tenue contigs in the same genomic regions, particularly on 

A. thaliana Chromosome 4, P. trichocarpa Chromosome 19 and P. veris Contig927, is of 

strong interest. Given that the S locus is a tightly-linked genomic region, predicted to be 

located near a centromere (Pamela and Dowrick, 1956; Li et al., 2015), finding how 

contigs co-localise on a reference genome could indicate candidate regions for the S locus 

in L. tenue. The reference genomes used for clustering were selected carefully: the closest 

possible species to L. tenue with the highest possible resolution, at the chromosome-level 

or at least with a contig-scaffold N50 in the megabases. 
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Of great interest in our results is the co-localisation of 142 differentially expressed L. tenue 

features on a ~13 Mb region of A. thaliana Chromosome 3 and surrounding the genomic 

location of VUP1. If Contig_141165 is a homolog of VUP1, sequences of the features 

falling in this location could represent loci of the L. tenue S locus, or neighbouring loci 

linked to the S locus through reduced recombination. This provides another avenue for 

further exploration to track down the genomic location of the L. tenue S locus. However, 

this method is dependent on many assumptions of synteny and shared genetic 

mechanisms for self-incompatibility and heterostyly, many of which may not hold. It is 

possible that many of the differentially expressed features not finding BLAST matches are 

novel loci, or unique to L. tenue. Further refinements of the method are thus necessary to 

bring these findings forward, repeating the technique with the full-dataset in particular. 

 

3.4.7 Contig_141165 represents a candidate G locus allele of the L. tenue S locus 

 

The discovery of Contig_141165 as a possible ortholog of TSS1 and its possible 

relationship (as a putative homolog) with VUP1 is a significant finding. To the author’s 

current knowledge, no connection in the literature has yet been made in heterostylous 

taxa, in Linum or otherwise, between putative S locus candidates and VUP1 in A. thaliana. 

Proteomic and transcriptomic approaches in L. grandiflorum have demonstrated thrum-

specific expression of TSS1 in the tissues of the (short) style (Ushijima et al., 2012), and 

subsequent investigations have demonstrated that TSS1 is absent from pin genomic DNA 

(Ushijima et al., 2015); this is strongly suggestive of hemizygous dominant control of the 

thrum phenotype, as is evident in Primula (Li et al., 2015, 2016; Cocker et al., 2018). The 

expression signature for Contig_141165 is concordant with this finding: Contig_141165 

is only expressed in thrum individuals and is absent from vegetative tissue. We found that 
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expression of Contig_141165 only begins in the later stages of flower development, which 

complements our findings in Chapter 2.0 that differences between male and female organ 

lengths accelerate in the latter stages of floral development (Figure 2.2). Another key 

finding of Ushijima et al. (2015) is the reduction of cell lengths in the tissues of the thrum 

style, which again is echoed in our findings. These findings together provide strong 

evidence that (i) the physiological developmental mechanisms, and (ii) their causative 

genetic control, determining style height in the thrum flowers of L. grandiflorum and L. tenue 

are equivalent. Our discovery that Contig_141165 is a potential homolog of VUP1 

advances our knowledge of the genetic basis of heterostyly in Linum as VUP1 has been 

shown to be strongly correlated with reduced cell elongation when expressed in the tissues 

of A. thaliana (Grienenberger and Douglas, 2014).   

 

Through an extensive study by Grienenberger and Douglas (2014), VUP1 (VASCULAR-

RELATED UNKNOWN PROTEIN1) in A. thaliana was found to encode a predicted protein 

of 24 kD, whose expression was detected in various organs and tissues, particularly in 

vascular tissues and the tissues of floral organs, namely the sepals, petals, and stamen 

filaments. Constitutive overexpression resulted in a range of substantial defects, namely: 

shorter floral organs, severe dwarfism, and a 75% reduction in epidermal cell lengths of 

hypocotyls. Transcriptomic analyses also revealed the effects of VUP1 overexpression to 

be surprisingly pleiotropic, repressing the expression of many genes involved in the 

brassinosteroid, gibberellic acid, and auxin-response pathways, which are known to be 

involved in the regulatory control of cell elongation and floral development (Goda et al., 

2004, 2008; Cao et al., 2006; Sun et al., 2010). Based on the strong dominant inhibitory 

effects of VUP1, the thrum style-specific expression of TSS1, and our patterns of thrum-

specific expression, we propose Contig_141165 is a strong candidate for the G locus of L. 

tenue; the style length and female incompatibility type determinant of the S locus. 
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Interestingly, despite its substantial and far-reaching regulatory effects, the function of 

VUP1 remains unknown, and the report of Grienenberger & Douglas (2014) appears to 

be its only occurrence in the literature. Discovery of the sequence of TSS1 preceded the 

discovery of the function of VUP1-4, and neither VUP1, TSS1 or Contig_141165 contain 

recognisable functional, structural or conserved domains. This perhaps explains why the 

link between VUP1 and TSS1 has, until now, remained undiscovered. Intriguingly, in 

their sequence analysis of TSS1, Ushijima et al. (2012) attempted to find homologs in a 

range of species, and independently found similar conservation of the diagnostic residue 

motifs later documented by Grienenberger & Douglas (2014). Both groups used VUP2-4 

and many of the same species in their analyses, yet the connection between TSS1 and 

VUP1 was not made. This is most likely a result of the overall low sequence identity 

between homologs (35-40%), and that the M4 domain is absent in the truncated TSS1 

protein. The construction of gene models for peptide searches, and PSI-BLAST 

approaches (which are designed to specifically search for conserved domains and motifs), 

used during our annotation pipeline (Chapter 4.0) has likely been a key factor in our 

discovery. 

 

This high level of overall divergence observed in Contig_141165 and its homologs is 

another key line of evidence for it being a S locus candidate. As described by 

Grienenberger and Douglas (2014), VUP1 is possibly unique to the vascular plant 

(tracheophyta) lineage. VUP1 and its homologs appear to be part of a small gene family, 

with no more than four members. In this way, contigs Contig_051339-41 may represent 

the full complement of paralogs in L. tenue. Our phylogenetic analysis of Contig_141165 

inclusive of its putative paralogs (Figure 3.11c) are suggestive of a high level of divergence 

within the L. tenue genome. That Contig_141165 is more closely related to TSS1 and 

divergent from its paralogs provides evidence for reduced recombination at the 

Contig_141165 locus and an equivalent function to TSS1. 
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3.5 Concluding remarks 

 

The study described in this chapter has demonstrated distinct differential expression 

between the pin and thrum morphs of distylous L. tenue. Despite potential issues with 

variations in library size within the dataset, we have demonstrated that our data are still 

effective for discerning overall differences in gene expression between morphs and floral 

developmental stages. The discovery of Contig_141165 as a candidate for the G locus is 

of interest and may contribute to our understanding of heterostyly genetics and 

development in Linum. 

 

Further work investigating the biological processes, such as pathway enrichment studies 

of this and similar high-throughput transcriptomic datasets, would be extremely helpful 

and could further our understanding of the underlying genetic mechanisms of heterostyly 

in Linum. 
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4.0 High-quality transcriptome condensation into consensus 
unigene sequences with BALLISTA: a case study with the de 
novo transcriptome assembly of  Linum tenue 

Alireza Foroozani1 and Adrian C. Brennan1 

1 Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK 

 

4.0.1 Preamble 

 

The following chapter is comprised of a journal article manuscript aiming for submission 

as a methods paper at Genome Research. The manuscript structure is thus designed to 

be in line with Genome Research’s guidelines. For this reason, many aspects of the work 

have been condensed. However, for the purposes of this thesis, some features of 

section/subsection formatting, word limits, additional explanations, and the inclusion of 

extra figures, have been appropriated for continuity and coherency. 

 

I would like to define here for the reader the term ‘k-mer’, which is used in this chapter 

and in the General Discussion (Chapter 5.0). Modern genome and transcriptome 

assembly tools assemble sequencing reads into longer sequences, which are representative 

of their parent genomic or transcript sequences, using de Bruijn graphs. All possible 

substrings of a defined length (k) present in the input sequencing reads are extracted, 

which are known as k-mers. A de Bruijn graph is then constructed by assigning the k-mer 

sequences to the vertices, and (k-1)-mers (the k-mer minus the first or last base) are assigned 

to the nodes. Assembly algorithms function to solve the de Bruijn graph by joining each 

overlapping node in what is known as a Eulerian pathway, thus using k-mers as the 

windows of overlap between the reads to assemble longer sequences. 
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4.0.2 Abstract 

 

High-throughput transcriptome analyses (RNAseq) are being increasingly applied to non-

model organisms due to affordable costs and the development of accessible tools to 

conduct de novo transcriptome assembly. However, assembling a high-quality 

transcriptome reference to conduct downstream expression analyses without the use of a 

genomic reference comes with its own unique set of challenges. Modern transcriptome 

assembly tools are highly efficient at handling high volumes of read data with variable 

coverage and are understandably in high demand. However, the initial de novo 

transcriptomes that are assembled are often hundreds of thousands of contigs long and 

mostly composed of fragmented transcripts, allelic variants, and alternate-splice isoforms. 

This isoform variation can hinder contig elongation in the assembly process, and can be 

a greater impediment if the non-model species has a complex (i.e. large, eukaryotic and 

heterozygous) genome and RNA is extracted from multiple individuals grown from wild-

sampled seeds. We present the BALLISTA (aBstraction of ALLelic and ISoform-level 

variation for Transcriptome Analyses) pipeline as an additional post-assembly processing 

method, designed specifically to improve the quality of de novo transcriptome assemblies 

derived from mRNA data.  Through a quick, automated, user-friendly procedure, 

BALLISTA uses a close- or distantly-related reference proteome to sort the transcripts of 

a de novo assembly into unigenes, which are then condensed into consensus sequences. We 

demonstrate the efficacy of BALLISTA, through the de novo transcriptome assembly of 

Linum tenue and Arabidopsis thaliana from short-read mRNAseq data, to construct high 

quality reference transcriptomes with reduced ambiguity. This improves downstream 

applications such as read alignment for transcript quantification and subsequent 

expression analyses. 
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4.1 Introduction 
 

Vast improvements in and greater accessibility to sequencing technologies over the last 

decade have had a resounding impact in the experimental approaches used in many fields 

of research, such that ‘next-generation sequencing’ (NGS) is now common vernacular in 

biology (Buermans and den Dunnen, 2014). The application of NGS for transcriptomic 

studies, or RNA sequencing (RNAseq), in particular has allowed developments in our 

understanding gene expression profiling, alternative splicing and of allele-specific 

expression (Hrdlickova, Toloue and Tian, 2017). 

 

The most popular modern NGS platforms tend to be based on Illumina sequencing 

chemistry, which generate hundreds of gigabytes of short-length (~100-300 bp) 

(https://emea.illumina.com/systems/sequencing-platforms.html) sequence data, as they 

provide the highest value in terms of cost per base sequencing and low error rate. The 

drastically reduced costs of sequencing have allowed the emergence of genome-scale 

studies in non-model organisms; where important resources, such as genome sequences 

and transcript maps, are lacking (Ekblom and Galindo, 2011). As RNAseq requires the 

mapping of sequencing reads to a genome or transcriptome reference sequence, studies 

with non-model organisms need to create a draft reference using de novo assembly if a close 

relative with a sequenced genome is not available (Paszkiewicz and Studholme, 2010). 

There is now a wide array of open access de novo assemblers that can efficiently handle the 

volume and complexity of these shorter reads to construct draft transcriptomes directly 

from RNAseq data. However, dealing with RNA sequence data provides a unique set of 

challenges. A variety of factors, such as variable sequencing depth reflecting expression 

differences across the genome, a lack of information regarding underlying exon-intron 

structure, and the presence of transcript isoforms such as alternate-splice and allelic 

variants, make transcriptome assembly problematic in different ways than genome 
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assembly (Martin and Wang, 2011). RNAseq data also contain inherent errors as a result 

of PCR-based steps involved in library preparation (Oshlack and Wakefield, 2009; 

Hansen, Brenner and Dudoit, 2010) or sequencing errors, which can be as high as 3-4% 

in Illumina data (Dohm et al., 2008). 

 

The most commonly used de novo transcriptome assembly tools are Cufflinks (Roberts et 

al., 2011), Oases (Schulz et al., 2012), and Trinity (Grabherr et al., 2011), the last of which 

increasingly appears to be the ‘assembler of choice’ in the literature and online forums. 

Whilst immensely valuable, these assembly programs are highly sensitive to the errors and 

polymorphisms present in the sequence data, which often generate assemblies of many 

hundreds of thousands of contigs relative to the few tens of thousands of expected genes. 

The inflated sizes of the assemblies are a result of fragmented/incomplete transcripts, and 

the ineffective collapsing of alternate-splice or allelic variants into loci, producing high 

levels of redundant transcripts. While obtaining isoform-level information is a key goal for 

some RNAseq experiments, conducting differential expression on these raw assemblies 

with unrealistically high numbers of contigs can be problematic for downstream analyses 

(Finotello and Di Camillo, 2015). Creating a good reference is therefore of utmost 

importance, and researchers wishing to conduct de novo transcriptome assembly should i) 

perform appropriate pre-processing steps of the sequence data, such as error correction 

and trimming; ii) optimise the assembly strategy, through experimentation with various 

assembly programs and parameters; and iii) consider post-processing of the assembly, 

such as scaffolding or unigene reconstruction. 

 

Scaffolding is a technique commonly applied in genome sequencing to link together 

contigs produced by the initial assembly. The longer sequence fragments that can be 

obtained from genomic DNA allow a sequencing strategy to combine paired-end (PE) 

sequence data from sequencing libraries consisting of varied fragment size distributions, 
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allowing assembly algorithms to bridge together contigs by gaps of known length (Wajid 

and Serpedin, 2012). These extended contigs can be also be referred to as ‘super-contigs’. 

The gaps derived from PE sequencing of longer reads may not be supported by sufficient 

read depth to allow base calling but are still informative to elucidate the relationships 

between contigs, such as orientation and distances between them. The gaps are 

represented in the sequence data by strings of undetermined nucleotides, typically 

denoted as ‘N’. Attempts have been made to apply scaffolding techniques to post-assembly 

de novo transcriptomes derived from mRNA data by using mRNA to protein translational 

information, such as Scaffolding using Translational Mapping (STM) (Surget-Groba and 

Montoya-Burgos, 2010), and Transcriptome Post-Scaffolding (TransPS) (Liu et al., 2014). 

The core premise of such techniques is to use translation BLAST programs (i.e. BLASTX) 

to compare the non-model transcriptome against the proteome of a model or previously 

sequenced related species, and then to use the obtained BLAST coordinates to guide the 

scaffolding process. As amino acid polymorphisms between species tend to be under 

stronger selective constraints and accumulate much more slowly over evolutionary time 

than non-synonymous nucleotide differences, this can theoretically allow even distantly 

related organisms to be used as proteome references (Surget-Groba and Montoya-Burgos, 

2010). However, it remains to be seen how effective these programs can be in practice for 

improving non-model transcriptome assemblies. For example, STM only reassembles 

partially overlapping contigs, and further rejects this reassembly if the output contains 

more than one ‘super-contig’. This can result in relatively limited assignment of contigs 

into scaffolds, and low levels of condensation of redundant isoforms. 

 

We present BALLISTA (aBstraction of ALLelic and Isoform-level variation for 

Transcriptome Analyses) as an alternative and improved pipeline for the post-assembly 

processing of de novo transcriptomes. The effectiveness of this new pipeline was 

demonstrated by our de novo assembly of the Linum tenue and Arabidopsis thaliana 



 

 118 

transcriptomes, each derived from short-read mRNAseq data. In contrast to existing 

scaffolding pipelines, while BALLISTA makes use of translational information to create 

unigenes, it does not use BLAST coordinates to create a scaffold, and it condenses all 

overlapping regions between contigs. We thus argue that, as the contig-extension process 

in our pipeline is unconstrained by the assumption that protein structure and organisation 

must match the reference, BALLISTA displays greater effectiveness at condensing 

isoforms into a representative consensus sequence. The quality of a de novo transcriptome 

lies in the proportion of the original sequence reads it explains and its completeness in 

terms of universal single-copy orthologs. We further aim to generate an assembly with 

reduced isoform-level ambiguity to aid the accuracy of read alignment for downstream 

analyses.  BALLISTA is also easily run through the Linux or MacOS command line and 

can be run on single or multiple cores making efficient use of system resources. 

 

4.2 Materials and Methods 
 

4.2.1 Sample collection, library construction and sequencing 

 

The target species, Linum tenue (Linaceae), is an annual meadow-growing wild flower 

occurring in southwest Iberia. Being insect-pollinated, the transfer of pollen between 

viable individuals is ensured through a species polymorphism known as distyly. Distyly 

involves two floral morphs (long-styled, LS and short-styled, SS), where male (anthers) 

and female (stigmas) reproductive organs are spatially separated within the flower but 

heights extend to complementary positions between morphs to allow reciprocal inter-

morph pollen transfer (Barrett and Shore, 2008). A reference transcriptome for L. tenue 

was desired in order to better understand the differences in floral gene expression that 

lead to the differential floral organ development observed in distyly. Seeds from wild-
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sampled plants were grown to flowering under partially-controlled growth conditions of 

15-20°C and 16 hour supplementary light day length. 

 

Plant tissue was collected from leaves and three qualitatively defined stages of flower 

development, to capture as wide a range of flowering development as possible, and snap 

frozen in liquid nitrogen; all samples were collected and RNA extracted over a two-week 

period in June 2014. Tissues were all harvested within a two-hour window of the day from 

11:00 to 13:00, before the petals begin to close in the late afternoon. Total RNA was 

extracted from young bud, immature flower, open flower, and leaf tissues (Figure 4.1) 

from 3 LS and 3 SS individuals using TRIzol Reagent (ThermoFisher Scientific, 

Waltham, US) and DNAse treated with TURBO DNA-free (ThermoFisher Scientific, 

Waltham, US). RNA samples were quantified using Qubit fluorometry (ThermoFisher 

Scientific, Waltham, US) before and after DNAse treatment, checked for purity using 

NanoDrop spectrophotometry, and RNA integrity was assessed by agarose gel 

electrophoresis. A total of 24 RNAseq libraries were constructed using TruSeq Stranded 

mRNA kits (Illumina, San Diego, US), using 2 µg of input RNA per sample. Libraries 

were then quantified using the qPCR NGS Library Quantification Kit (Agilent 

1 cm 

Figure 4.1 Qualitative floral developmental stages of Linum tenue used to create RNAseq libraries. From left to right: 
young bud – at this stage the growing bud is seen and encased by sepals, there is no visible floral tissue; immature 
flower – the floral structure is starting to grow but has not yet fully dehisced, yellow petals are visible behind the sepals; 
mature (open) flower – the flower is now fully open and all floral organs are exposed and visible. 



 

 120 

Technologies, Santa Clara, US), using the following thermal cycle: 3 minutes at 95°C 

followed by 30 cycles of 15 seconds at 95°C and 30 seconds at 60°C. Primers provided by 

the qPCR NGS Library Quantification Kit anneal to the Illumina adapters, indicating 

whether adapter ligation has been successful. Fragment size distributions were verified 

using Tapestation (Agilent Technologies, Santa Clara, US). Paired-end (PE) stranded 

sequencing was performed by pooling all libraries together and running over two lanes 

on an Illumina HiSeq 2500 platform at the DBS Genomics Facility (Durham, UK) in July 

2014. 

 

4.2.2 Data pre-processing  

 

The raw FASTQ reads were preprocessed to exclude low quality or suspicious reads from 

the assembly. The quality of the raw sequence reads was gauged before and after pre-

processing using FastQC (Andrews, 2010). Rcorrecter (Song and Florea, 2015) was used 

at default settings to correct errors in the reads; any reads containing non-correctable 

errors were dropped from the dataset. Reads were then trimmed using Trim Galore! 

v0.4.4 (https://github.com/FelixKrueger/TrimGalore) with the following options: 

paired mode, retain unpaired reads, minimum sequence length of 36, quality 5 (trimming 

ends of reads below threshold quality). Sequence reads for libraries run on separate lanes 

of the Illumina 2500 were concatenated together, generating a single dataset for each 

orientation and read type for each sequenced library: forward-paired, reverse-paired, 

forward-unpaired and reverse-unpaired. Ribosomal reads were then filtered out through 

alignment to a dataset comprising the SILVA LSU, SSU (Pruesse et al., 2007; Quast et al., 

2012) and 5SRNAdb (Szymanski et al., 2016) ribosomal datasets, after uracils in these 

datasets had been converted to thymines using in-house python scripts. Alignments for 
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ribosomal filtration were performed with Bowtie2 v2.3.3.1 (Langmead and Salzberg, 

2012) using the ‘very-sensitive-local’ parameter option. 

 

4.2.3 Initial de novo transcriptome assemblies 

 

The preprocessed reads were then assembled by combining different assemblies produced 

using the Trinity (Haas et al., 2013) and Velvet/Oases (Zerbino and Birney, 2008; Schulz 

et al., 2012) assembly platforms. A single assembly was generated with Trinity v2.5.1, using 

the default k-mer length of 25, minimum contig length of 250, minimum k-mer coverage 

of 2, and path reinforcement distance of 20. The in silico read reduction (normalisation) 

and appropriate strandedness options (RF) were also utilized to maximize computational 

efficiency and reduce assembly errors. Four assemblies of varying k-mer lengths (21, 23, 

35, 40) were generated using the Velvet/Oases pipeline (Velvet v1.2.10 and Oases 

v0.2.08). Prior to assembly with Velvet/Oases, an in-silico normalisation of reads was 

performed separately on paired and unpaired reads using ORNA (Durai and Schulz, 

2017), with a base value setting of 1.3.  

 

The multiple assemblies were merged using EvidentialGene 

(http://arthropods.eugenes.org/EvidentialGene/about/EvidentialGene_trassembly_pi

pe.html), to reduce contig redundancy. The EvidentialGene algorithm first pools 

transcript contigs together based on predicted coding sequence (CDS) and amino acid 

sequences, then using the amino acid information selects the highest quality ‘protein’ and 

removes all other perfectly matching (redundant) sequences. Contigs failing to reach 

minimum protein coding requirements are subsequently dropped from the assembly. 

EvidentialGene then performs a BLAST of the new assembly against itself; pairwise 

alignment data and the CDS/amino acid models are used to select ‘main’ (primary 
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transcripts) and ‘alt’ (alternate isoform variants) datasets. The main and alt datasets were 

combined into a reduced redundancy (RR) assembly for downstream analyses. 

 

4.2.4 Reconstruction of unigenes with BALLISTA 

 

The BALLISTA pipeline (Figure 4.2) was used to condense the outputs of the L. tenue RR-

assembly into unigenes in order to reconstruct a more reliable reference against which 

mapping and gene expression analyses can be performed. The following steps were 

implemented through our Ballista pipeline 

(https://github.com/durhamuniversitybioinformatics). The RR-assembly was aligned 

through DIAMOND-BLASTX (Buchfink, Xie and Huson, 2015) against the most recent 

Arabidopsis thaliana (TAIR10) proteome; for contigs that found a single or multiple matches 

the best hit was selected and referred to as BLAST-hit, and contigs with no match as no-

hit. The BLAST-hit contigs were then sorted into clusters according to their corresponding 

locus in the reference proteome, and each cluster was independently fed though the CAP3 

Sequence Assembly Program (Huang and Madan, 1999) with the following parameters: 

end clipping flag 0, gap penalty factor 1, mismatch score factor -1, overlap length cut-off 

20, max gap length in any overlap 600, max overhang percent length 500. This 

reassembled all BLAST-hit contigs that match to same locus on the reference sequence, 

and the resultant groups of contigs (‘loci’), generated from reassembled BLAST-hit contigs, 

were then collected together to create a primary ‘scaffold’. The no-hit contigs were then 

searched against this primary ‘scaffold’ using BLASTN in order to incorporate contigs 

that previously had not found matches due to larger differences from the reference 

TAIR10 loci. Contigs with new BLAST hits were similarly sorted into clusters with their 

primary scaffold contigs, and all clusters were again fed independently through CAP3. 
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The reassembled ‘loci’ were then merged with all remaining no-hit contigs to create a post 

Ballista assembly composed of reconstructed unigenes. 

 

The completeness of all assemblies were quantitatively assessed by analysing the universal 

single-copy orthologs contained in the data with BUSCO v3 (Simão et al., 2015), using 

the embryophyta lineage dataset (downloaded from https://busco.ezlab.org/) and 

transcriptome run mode. 

 

4.2.5 Reassembly of A. thaliana transcriptome 

 

The performance of the BALLISTA pipeline when used with the increasingly distantly-

related proteome references was explored by testing de novo reassembly of the Arabidopsis 

thaliana transcriptome. A. thaliana mRNAseq sequence reads from libraries prepared by 

Wan et al. (2015) (accessions GSM1868687, GSM1868688, GSM1868689, 

GSM1868696, GSM1868697 and GSM1868698) were downloaded from the NCBI 

Gene Expression Omnibus (GEO) (Barrett et al., 2012; Wos and Willi, 2018). Reads were 

preprocessed and assembled into a single-k Trinity assembly using the steps and 

parameters outlined above. 

 

The initial A. thaliana assembly was then reassembled with the BALLISTA pipeline using 

six angiosperm species with increasing phylogenetic distance as proteome references. 

These reference species were Arabidopsis lyrata (Rawat et al., 2015),  Brassica oleracea (Liu et 

al., 2014), Carica papaya (Ming et al., 2008),  Populus trichocarpa (Tuskan et al., 2006),  Aquilegia 

coerulea (Aquilegia coerulea Genome Sequencing Project, http://phytozome.jgi.doe.gov/) 

and Amborella trichopoda (Albert et al., 2013). These species represent the angiosperm 

phylogeny in relation to A. thaliana by providing proteome references at the same genus 
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Figure 4.2 A graphical representation of the Ballista pipeline, as automated through Python. Arrows represent the flow 
of sequence data: from the reference proteome onwards, solid arrows represent contigs from the assembly with a 
BLASTX/BLASTN match to the reference proteome/primary ‘scaffold’ (BLAST hit) and dotted arrows represent those 
without (BLAST no-hit). The user generates an assembly through any method of their own choosing and selects a suitable 
reference proteome, which are both used as inputs for Ballista. The script then conducts a BLASTX of the assembly 
against the reference proteome to generate clusters composed of contigs aligning to the same locus. The contigs in each 
cluster are then assembled as independent groups using CAP3 to produce preliminary ‘scaffolds’ of unigenes. This scaffold 
is then used to further merge BLAST no-hit contigs into the assembly through BLASTN to generate new sets of clusters 
for CAP3 assembly. The final set of unigenes can be merged with any remaing BLAST no-hit contigs to produce the final 
assembly. 
 



 

 125 

(Arabidopsis), family (Brassicaceae), order (Brassicales), super-ordinal clade (Rosids), super-

ordinal clade (Eudicots) and super-ordinal clade (Angiosperma) taxonomic hierarchical 

levels, respectively. 

 

4.2.6 Functional annotation 

 

The post-BALLISTA transcriptome was annotated using a number of functional 

annotation approaches to construct gene models, using the suite of programs 

implemented by the Trinotate v3.1.1 pipeline (Bryant et al., 2017). Transdecoder v5.3.0 

(http://transdecoder.sourceforge.net/) was used to predict the longest ORFs and these 

were used to conduct BLASTP searches to the UniProt database (Bateman et al., 2017) 

for homology searches. Subsequently,  protein domains were identified using HMMER 

v3.2.1 (Eddy, 2011) and signal peptides were predicted using signalP v4.1 (Petersen et al., 

2011). The transcriptome was also searched for homology to transcription factor loci by 

BLASTX searching the Arabidopsis thaliana and more closely related Linum usitatissimum, 

Salix purpurea and Poplulus trichocarpa transcription factor databases downloaded from 

PlantTFDB v4.0 (Jin et al., 2017). Bidirectional best-hit BLAST searches were also 

conducted to Linum usitatissimum, Arabidopsis thaliana, Salix purpurea and Poplar trichocarpa 

proteomes using our in-house reciprocal best-hits tools written in python 

(https://github.com/durhamuniversitybioinformatics). Finally, the NCBI Conserved 

Domain Database (CDD) (Marchler-Bauer et al., 2015) was searched for homologous 

domains using RPSTBLASTN. These custom BLAST searches were merged into final 

the Trinotate annotation report, and used to create a general feature format (GFF3) 

ancillary annotation file. Gene Ontology (GO) annotation results were plotted using 

WEGO v2.0 (Ye et al., 2006, 2018), according to their hierarchical GO level. 

 



 

 126 

4.3 Results 
 

4.3.1 Linum tenue sequencing and initial de novo transcriptome assemblies 

 

The 24 L. tenue cDNA libraries of different tissue types (leaf, young bud, immature flower, 

open flower) generated a total of 803,516,244 pre-processed reads (401,622,055 forward 

and 401,894,189 reverse), of which 803,155,300 (99.96%) were paired. Following pre-

processing, reads had an average Phred quality score of ~36 and ranged in size from 35-

126 bp, with a mean of 91.42 bp. 

 

The summary statistics of the initial assemblies using a single-k Trinity and multiple-k 

Velvet/Oases approach are shown in Table 4.1. The reduced redundancy (RR) assembly 

was generated through pooling and condensing the 946,900 contigs produced from the 

separate initial assemblies using EvidentialGene. The RR assembly was 157.80 Mbp in 

length with an N50 of 708 bp, comprised of 249,320 contigs ranging from 209 to 16,770 

bp in length. 

 

Mapping the preprocessed reads back to the initial assemblies (Table 4.1) using STAR 

v2.3.0 (Dobin et al., 2013) yielded mapping rates ranging from 43-90%, with the 

proportions of reads mapping to multiple contigs ranging from 21-55%. The Trinity 

assembly had the highest rate of reads mapping to unique transcriptomic locations (35%). 

The RR assembly showed demonstrably improved mapping statistics, with a 56% 

mapping rate for reads aligning to unique locations. 

 

The BUSCO analyses demonstrated assembly completeness ranging from 23-27% in the 

Velvet/Oases assemblies to 87% in the Trinity assembly (Table 4.1). Of the universal 

single-copy orthologs present in the Trinity assembly, 20% were complete single-copies, 
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51% were complete duplicates and 15% were fragmented. The RR assembly showed a 

marked increase to 46% in the proportion of single-copy orthologs. 

 

3.3.2 Assembly condensation and unigene reconstruction with BALLISTA 

 

The RR assembly and A. thaliana TAIR10 proteome were used as inputs for BALLISTA, 

which ran to completion in ~2 hrs. The resultant BALLISTA reassembly (B-reassembly) 

(Table 4.1) was 114.19 Mbp in length, comprised of 106,105 contigs derived from 

reassembled clusters of transcripts matching an A. thaliana reference locus, and a further 

64,537 contigs that did not match (a total of 170,642 contigs). Contigs lengths of the B-

assembly ranged from 209 to 16,770 bp in length, with an N50 of 789 bp; the contig size 

distribution is presented in Figure 4.3. 

Figure 4.3 Distribution of contig lengths in the BALLISTA-assisted Linum tenue transcriptome assembly. 
Bars represent counts of contigs in each length category.  
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The B-reassembly yielded the best mapping results (Table 4.1), with an overall mapping 

rate of 82%, with 67% of reads mapping to unique transcriptomic locations and 15% 

showing multiple mapping. Of the mapped reads, the mean mapping quality score was 

149.06, and the mean transcriptome-wide coverage was ~667X following a uniform 

distribution (Figure 4.4). Similarly, the BUSCO analysis of the B-reassembly (Table 4.1) 

demonstrated the best scores when compared to each individual initial assembly and the 

RR-assembly, with a total of 86% of single-copy orthologs found. Of these, 58% were 

complete single-copies, 12% were complete duplicates and 16% were fragmented. 

 

 

Figure 4.4 Distribution of read coverage across the L. tenue transcriptome.  
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 Oases k21 Oases k23 Oases k35 Oases k40 Trinity k25 Reduced Redundancy BALLISTA Reassembly 

Assembly Statistics        
Assembly length (Mbp) 88.67 87.95 68.92 64.64 250.03 157.80 114.19 

No. contigs 183,954 178,271 139,975 131,686 313,014 249,320 170,642 

Smallest contig length (bp) 197 220 248 250 251 209 209 

Longest contig length (bp) 4,883 4,708 4,867 5,507 16,770 16,770 16,770 

Average contig length (bp) 482.01 493.36 492.35 490.85 798.79 632.92 669.15 

N50 (bp) 512 527 526 523 1,074 708 789 

        
Read Mapping        
Uniquely mapped reads (%) 18 20 25 27 35 56 67 

Multiply mapped reads (%) 25 26 22 21 55 27 15 

Unmapped reads (%) 57 55 53 53 10 17 18 

        
BUSCO Analysis        
Complete single-copy BUSCOs (%) 3 2 2 4 20 46 58 

Complete duplicate BUSCOs (%) 2 2 3 3 51 24 12 

Fragmented BUSCOs (%) 19 18 21 21 15 16 16 

Missing BUSCOs (%) 77 77 75 73 14 14 14 

Table 4.1 Summary statistics of the assembly, read mapping and BUSCO analyses. 
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4.3.3 Comparison of A. thaliana BALLISTA reassemblies 

 

The initial A. thaliana assembly (A. thaliana IA) was comprised of 41,377 contigs, reaching 

51.57 Mbp in length (Table 4.2). Mapping the A. thaliana preprocessed reads to the A. 

thaliana IA yielded an 96% overall mapping rate, with 54% mapping to unique and 42% 

mapping to multiple transcriptomic locations. A BUSCO analysis of the A. thaliana IA 

showed 8% of the total expected single-copy orthologs were missing; and of the single-

copy orthologs that were present 66% were complete single-copies, 24% were complete 

duplicates and 3% were fragmented (Table 4.2). 

 

The subsequent BALLISTA reassemblies of the A. thaliana IA showed similar results, with 

a uniform condensation of the number of contigs, ranging from 31,155-31,927, using each 

of the reference transcriptomes regardless of phylogenetic distance (Table 4.2). The total 

mapping rate remained at 96%, but displayed improvements in the multi-mapping rates, 

decreasing from 42% to 24-26% (Table 4.2). Similarly, this was reflected in the BUSCO 

analyses, where the number of complete duplicated single-copy orthologs decreased from 

24% to 7-8% (Table 4.2). 

 

To confirm the quality of the reassembled unigene sequences, contigs were compared to 

the A. thaliana genome using BLASTN (Table 4.2). All references post-processed with 

BALLISTA retained >99% match rate to the A. thaliana genome. When filtered for high-

fidelity matches, where the pairwise alignment had a percentage identity >90% and 

covered >60% of the of the unigene contig sequence, the BALLISTA post-processed 

references performed just as well as the Trinity assembly, though with slightly higher rates 

of matches.  
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4.3.4 Functional annotation of the L. tenue transcriptome 

 

The features as identified in the Trinotate pipeline were combined into a gene feature 

format (GFF3) annotation. Of the 170,642 contigs in the final L. tenue, 133,358 (78%) 

could be annotated for at least one feature. The 37,478 annotated contigs with associated 

GO terms were distributed among 35 subcategories across the three primary GO 

functional categories: biological processes (21,180, 57%), cellular components (8,197, 

22%), and molecular function (33,204, 89%), as shown in Table 4.3 and Fig. 4.5. Within 

the biological processes category, the dominant groups of subcategories were metabolic 

process (43.2%) and cellular processes (31.3%). Within the molecular functions category, 

the dominant subcategories were binding (56.9%) and catalytic (45.1%), and within the 

cellular components category, they were cell (12.2%), cell part (12.2%) and membrane 

part (11.4%) (Fig. 4.5a). 

 

Of the unannotated contigs, a total of 155 contigs were found to have bidirectional best-

hit BLAST matches with three of the tested related species and with A. thaliana (TAIR10) 

(Fig 4.6). Thirty-three contigs had bidirectional best-hit BLAST matches with all query 

species, whilst unique bidirectional best hits were also found in L. usitatissimum (43), P. 

trichocarpa (12), S. purpurea (15) and TAIR10 (9). 
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Table 4.2 Summary statistics of the Arabidopsis thaliana reassemblies, read mapping and BUSCO analyses. The first data column (A. thaliana IA) presents data for the initial A. thaliana assembly as created 
using the single-k Trinity method. All subsequent columns present the data for separate BALLISTA reassemblies of the A. thaliana IA data using the listed species as proteomic references. For the TAIR10 
genome (chromosomes), only the relevant statistics of read mapping are provided for comparison purposes. 

 A. Thaliana IA A. lyrata B. oleracea C. papaya P. trichocarpa A. coerulea A. trichopoda TAIR10_chromosomes    

Assembly Statistics             

Assembly length (Mbp) 57.51 42.46 43.36 43.36 43.41 43.13 43.21 -     

No. contigs 41,377 31,155 31,982 31,927 32,083 31,804 31,660 -     

Smallest contig length (bp) 251 251 251 251 251 251 251 -     

Longest contig length (bp) 13,019 13,019 13,019 13,019 13,019 13,019 13,019 -     

Average contig length (bp) 1,389.83 1,362.88 1,355.87 1,358.14 1,353.08 1,356.00 1,364.68 -     

N50 (bp) 1,801 1,776 1,773 1,774 1,768 1,773 1,786 -     

             

Read Mapping             

Uniquely mapped reads (%) 54 71 70 70 70 70 70 96     

Multiply mapped reads (%) 42 24 25 26 25 25 25 1     

Unmapped reads (%) 4 4 4 4 4 4 4 3     

             

BUSCO Analysis             

Complete single-copy BUSCOs (%) 66 78 78 77 78 78 78 -     

Complete duplicate BUSCOs (%) 24 8 8 8 8 7 8 -     

Fragmented BUSCOs (%) 3 6 6 6 6 6 6 -     

Missing BUSCOs (%) 8 8 8 8 8 8 8 -     

             

BLASTN to TAIR10 genome             

No. contigs with BLAST matches 41,361 31,141 31,968 31,913 32,070 31,790 31,646 -     

No. contigs with BLAST matches (%) 99.961 99.955 99.956 99.956 99.959 99.956 99.956 -     

No. high-fidelity BLAST matches  16,520 12,997 13,409 13,413 13,516 13,398 13,360 -     

No. high-fidelity BLAST matches (%) 39.93 41.72 41.93 42.01 42.13 42.13 42.20 -     
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Table 4.3 Summary of analysis of GO terms using WEGO.  

    L. tenue 
Annotated Features 37,478 

GO Terms 

Biological 21,180 

Cellular 8,197 

Function 33,204 

Total 62,581 

Figure 4.5 GO annotation of the L. tenue BALLISTA reassembly. A total of 37,478 GO terms were derived from the 
annotated contigs and classified into the three major categories of the GO hierarchy (cellular component, molecular 
function, and biological process) and 35 subcategories. 
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4.4 Discussion 
 

The availability and reduced cost of NGS technology has led to transcriptomic analyses 

in an increasing range of species (Todd, Black and Gemmell, 2016). However, with the 

advancement of technology there is often a lag in the development of the tools that 

facilitate its implementation to realising its full potential, and RNAseq studies in non-

model organisms still rely heavily on the quality of the reference de novo transcriptome. 

Here we present the BALLISTA pipeline as an alternative post-assembly processing 

method to improve the quality of a de novo mRNA transcriptome assembly, even with 

distantly-related reference species. BALLISTA uses proteomic information from the 

proteome of a related reference species to reassemble clusters of unigenes and allelic 

variants into an accurate reference transcriptome, as demonstrated by our de novo 

transcriptome assemblies of Linum tenue and Arabidopsis thaliana from Illumina mRNAseq 

datasets. 

 

Figure 4.6 Venn diagram of the unannotated contigs and their bidirectional best-hit BLAST 
matches with related reference species (Linum usitatissimum, Populus trichocarpa, Salix purpurea and 
Arabidopsis thaliana (TAIR10). 
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4.4.1 Pre-processing of the FASTQ reads 

 

The use of k-mers (sub-sequences of the sequence reads of length k) in the construction 

and extension of de Bruijn graphs in modern short-read assembly algorithms can lead to 

assemblies with high numbers of contigs, representing only fragments of the parent 

transcripts. Sequencing errors along with sequence attributes, such as polymorphisms, 

sequence repeats and poor coverage of lowly expressed transcripts, have been shown to 

contribute further to this fragmentation (Heo et al., 2014; Song, Florea and Langmead, 

2014; Li, 2015). Sequencing errors are often the leading cause of rare k-mers (Song and 

Florea, 2015), and it is thus good practice to correct or remove them. Rcorrecter is a fast, 

efficient, high-accuracy tool for sequence error correction designed to handle the variance 

in coverage and alternative isoforms present in RNAseq data. Erroneous reads that 

cannot be corrected are also flagged for removal, which can be done with simple scripts.  

 

Examination of the sequence read quality, particularly for adapter contamination post-

demultiplexing, which is a common occurrence, should also be an important 

consideration when aiming to produce a high quality contiguous, error-free, and complete 

transcriptome. However, it should be noted that aggressive trimming through the use of 

high quality thresholds can be suboptimal and adversely affect an assembly (MacManes, 

2014). TrimGalore! is a trimming tool that has been shown to be more effective at 

removing adapter sequeces than comparable programs such as Trimmomatic both in the 

literature (Stubbs et al., 2017) and in our dataset (personal observations). 

 

The final step in the pre-processing pipeline should be to filter the k-corrected and 

trimmed reads against a custom ribosomal RNA database, created through a combination 

of large subunit, small subunit and 5S ribosomal RNA databases. This is particularly 
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recommended to researchers using only poly-A capture methods to remove abundant 

rRNA, as resultant libraries can still be highly composed of ribosomal RNA. Whilst the 

Illumina TruSeq Stranded mRNA kits utilise both ribo-depletion and ploy-A capture 

methods, we would recommend filtering residual ribosomal reads out of the dataset to 

ensure that the assembly contains only mRNA transcripts. The reads resulting from this 

process were subsequently assessed and were shown to be of demonstrably high quality 

(Phred quality score >30). 

 

Pre-processing of the raw reads beyond 3’ trimming and adapter removal is rarely 

suggested in the literature, and we urge researchers to consider this or similar pre-

processing pipelines for RNAseq investigations. 

 

4.4.2 Multiple k-mer approach for the de novo L. tenue transcriptome assembly 

 

The creation of a merged RR assembly from multiple k-mer values and different 

assemblers was a useful transcriptome assembly method supported by our results. 

Software packages for de novo assembly offer a whole suite of parameters that can be 

adjusted to optimise the resultant assembly. The k-mer length is the main parameter that 

is often focused on as it has one of the largest effects on the structure of the de Bruijn 

graph. Choosing the right value of k can be a subjective endeavour due to trade-offs 

between low and high values: low values of k increase the number of reads that contribute 

to the graph and thus improve coverage, while high values of k are more specific and thus 

less sensitive to sequencing errors, producing more contiguous and error-free assemblies. 

Approaches combining assemblies of varying k-mer length (Surget-Groba and Montoya-

Burgos, 2010) have thus been proposed to maximise both coverage and accuracy. 

However different assembly tools behave differently in the way they handle the variable 
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transcript coverage inherent in RNAseq data, and the choice of assembler has a large 

impact of the assembly. For example, a Velvet/Oases pipeline has been shown to be better 

at identifying novel isoforms, whilst Trinity was shown to be better at producing 

contiguous assemblies from low read coverage (Zhao et al., 2011). A number of recent 

studies have thus started merging multiple assemblies from different assembly tools and 

varying k-mer lengths (Nakasugi et al., 2014; Orsini et al., 2016; Sales et al., 2017). 

 

The data for our initial assemblies (Table 4.1) strongly support this approach. Obtaining 

assembly statistics are useful for descriptive purposes but can be misleading for evaluation, 

as, in contrast to genomes, transcriptomes are by their nature more fragmented and 

composed of shorter sequences. Evaluation of transcriptome assembly quality should 

therefore focus more on how well it is supported by the original reads, and how complete 

the coverage is in terms of the presence of expected transcripts, as opposed to the use of 

statistics such as the N50 (which is a measure of contig size distribution). The use of 

BUSCO scores to evaluate transcriptome assembly completeness are particularly useful, 

as they indicate both the coverage of a transcriptome and the quality of the assembly of 

its protein-coding elements. Our L. tenue RR assembly demonstrated better read support 

and completeness scores overall than any of the initial assemblies individually, as indicated 

by improved rate of uniquely-mapped reads and the proportion of complete single-copy 

universal orthologs. The slight decrease in overall mapping rate in the RR assembly 

compared to the Trinity-k25 assembly (90 to 83%) can be explained as a consequence of 

the condensation of redundant transcripts that would require additional adjustment of the 

alignment parameters to take account of allelic mismatches and splice junctions. 

 

Of interest in our analysis is the low coverage of the Velvet/Oases assemblies in terms of 

their BUSCO scores (ranging from 33-37% completeness). This result is largely explained 

by the normalisation steps performed on the sequence data using ORNA prior to 
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assembly. The Velvet assembler is notorious for its difficulties in resolving nodes of the de 

Bruijn graph with high coverage (Zhao et al., 2011), commonly leading to computational 

failures in the assembly process (personal observations from our investigations and from 

collaborators). ORNA is thus designed to be overzealous in its normalisation of high-

coverage k-mers, which can lead to a large reduction of the overall input dataset. Our 

results indicate that this can come at the cost of complete and contiguous assemblies. 

However, the slight increase in fragmented BUSCO scores between the Trinity-k25 and 

RR assembly (15-16%) indicate that the Velvet/Oases pipeline assembled some 

transcripts that Trinity was unable to. This supports the hypothesis that Velvet/Oases is 

more effective at assembling novel or lowly expressed isoforms than Trinity, although 

improvements to the normalisation process are warranted. 

 

4.4.3 Assembly of consensus unigene sequences with BALLISTA 

 

Further improvements to the quality of the L. tenue transcriptome assembly were made by 

applying the BALLSITA pipeline. In the absence of a genomic reference, the uncertainty 

produced through the multiple-mapping of reads to different locations on the 

transcriptome is a ubiquitous problematic issue inherent in short-read RNAseq. Small 

reads representing fragments of sequence may map to multiple locations if their parent 

transcripts share exons through alternate-splicing or conserved protein functional 

domains. Promising tools are now available that aim to reduce the issues associated with 

allocating multi-mapped reads to a transcriptomic reference through Bayesian 

quantification approaches (Li et al., 2010; Leng et al., 2013) or the stitching together of 

related sequences into ‘super transcripts’ (Davidson, Hawkins and Oshlack, 2017). 

However, in our experience, there can still be great difficulty in the analysis if a de novo 

transcriptome assembly has not been adequately post-processed to remove the 
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redundancy of allelic variants. Our results indicate that the BALLISTA pipeline as 

applied to the RR assembly is effective at reducing the issues associated with multiple 

mapping, as demonstrated by the 11% increase in uniquely aligned reads, and the 12% 

increase in the presence of complete single-copy BUSCOs (Table 4.1). 

 

The use of translational information in the reconstruction and condensation of unigenes 

is another strength of the BALLSITA pipeline for use on mRNAseq data. Building on 

approaches proposed by Surget-Groba & Montoya-Burgos (2011), BALLISTA 

demonstrates improved effectiveness at increasing the contiguity and incorporating 

redundant contigs by removing the assumption that the transcripts being reassembled 

must resemble the reference proteome in organisation and structure. The reassembly of 

the A. thaliana transcriptome from reference proteomes of varying phylogenetic distance 

demonstrate that even distantly-related species can be used as an effective reference, with 

BALLISTA consistently improving unique mapping rates by 26-27%, and increasing the 

proportions of complete single-copy BUSCOs by 11-12% (Table 4.2). Through 

reassembling all transcripts that comprise a unigene, as opposed to only reassembling 

regions that partially overlap positionally, BALLISTA also successfully incorporates 

smaller contigs that are fully contained within larger ones. This is more effective for the 

condensation of allelic-level information and allows distantly-related species to be used as 

a reference if more closely-related proteomes are unavailable. The use of BLASTX to 

cluster transcripts by matches to protein reference loci is a biologically accurate method 

for unigene clustering as it matches transcripts to known proteins. This method is less 

arbitrary than, and preferable to, clustering transcripts based on their relationships with 

each other within the assembly; as was attempted during the de novo transcriptome 

assembly of Orchis italica (De Paolo et al., 2014), using CD-HIT (a clustering tool) set to 

85% sequence identity. Such approaches run the risk of merging loci from related gene 

families. 
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4.5 Concluding remarks 

 

The concept of condensing all the transcripts comprising a unigene into a consensus 

transcriptomic sequences is not a new practise. Liang et al. (2000) and Pertea et al. (2003) 

developed methods which constructed clusters of unigenes from EST data, through 

pairwise sequence similarity, which were then individually reassembled using CAP3 or 

similar tools. The employment of similar methods have been used more recently to resolve 

redundancy issues in the de novo transcriptome assembly of the tetraploid Nicotiana 

benthamiana (Nakasugi et al., 2014). The modifications to the CAP3 parameters in the our 

pipeline have been informed by these studies (Pertea et al., 2003; Lee et al., 2004), and 

BALLISTA revives the method for use in the NGS era. 
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5.0 General Discussion 

 

5.1 Synthesis 

 

This thesis has investigated the morphological nature and transcriptomics of distyly in 

Linum tenue, with the aim of furthering our understanding of the molecular genetic basis of 

heterostyly in the Linaceae. This work has illustrated the complexities of the distyly 

syndrome in L. tenue, highlighting the functional differences between pin and thrum traits, 

possible developmental mechanisms responsible for differences in tall and short style 

heights in pin and thrum morphs, and indicating stages of development in which flowers 

begin their morph-specific trajectories. This work underlines the significance of 

developing a high-quality, reliable de novo transcriptomic reference and presents a method 

by which this can be achieved. This method has been used to create a vegetative and 

floral transcriptome reference for L. tenue, which is an extremely useful resource for the 

Linum research community. Furthermore, this project has investigated patterns of 

differential expression between pin and thrum flowers to provide a list of putative 

candidate transcripts (Appendix III) for loci that comprise the S locus, are S locus-linked, 

or are controlled by the S locus of L. tenue. 

 

The findings of this project have implications at a range of scales in different fields. In this 

section these will be discussed in light of key themes: (i) the value of constructing a high-

quality reference transcriptome, (ii) new insights into the expression of distyly in L. tenue, 

(iii) evolution of pin and thrum morphs of L. tenue, and (iv) the S locus of L. tenue. In Section 

5.2 I will present the gaps and questions raised by this research, suggesting avenues for 

improvements and further work; and finally, in Section 5.3 I will outline my thoughts and 

predictions for the directions that the field of bioinformatics will take in the future. 
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5.1.1 The value of constructing a high-quality reference transcriptome 

 

In Chapter 4.0, we presented a method to reconstruct consensus unigene sequences from 

the mRNA sequences that are assembled with contemporary transcriptome assembly 

software tools. From combining numerous assemblies generated from different software 

tools at a range of different parameters, we found that a combined multiple k-mer and 

reduced redundancy approach resulted in a transcriptomic reference that was of higher 

quality than individual references assembled from a single k-mer or a single software tool 

alone. Further improvements to the quality of this reference was made through 

implementation of the BALLISTA pipeline, a user-friendly automated tool we have 

developed to reduce the allelic and alternate splice variants commonly identified as 

transcript isoforms in the raw outputs of assembly tools. 

 

Deriving useful biological information from a transcriptome without a genomic reference 

is challenging. Researchers need to create a reference transcriptome as a catalogue of the 

transcripts present in the study samples, which can be done using a genome-guided 

approach (with the use of a related reference genome) or through de novo assembly of the 

sequenced cDNA reads. Given that using a hetero-specific reference as a template focuses 

on reassembling reads that map to known transcript models, and declines in performance 

with increasing sequence divergence (Vijay et al., 2013), we elected to use a de novo 

assembly approach. However, the resultant fragmented and high-complexity (i.e. 

containing alternate-splice and allelic variants) references that are commonly assembled 

can be of poor quality (Chang, Wang and Li, 2014), which naturally impacts the quality 

of downstream expression analyses. 
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Through the use of translational information, BALLISTA uses the proteome of a 

reference species to reduce the complexity and redundancy of the de novo transcripts by 

reconstructing consensus unigene sequences without relying on assumptions of synteny 

with the reference. Only reassembling the transcripts that match to a single locus on the 

reference, the BALLISTA pipeline also reduces the risk of falsely merging transcripts from 

closely-related loci. Post-processing of assemblies with the BALLISTA pipeline produced 

references that were of demonstrably higher quality, with higher rates of unique 

alignments of the original sequence reads, and increased assemblies of universal single-

copy orthologs. The efficacy of the BALLISTA pipeline to function consistently even with 

distantly-related references was also demonstrated through the de novo assembly of the 

Arabidopsis thaliana transcriptome from mRNAseq sequence data, similarly improving the 

rates of unique read alignment and universal single-copy orthologs whilst retaining high-

fidelity matches of the unigene sequences to the A. thaliana genome. 

 

Retaining allelic and alternate-splice information may be a point of interest for some 

RNAseq studies, and this information is retrievable from the BALLISTA process. For 

each consensus unigene sequence the alignment of its constituent input contigs is known. 

However, in our study focused on finding candidate loci, isoform-level information was 

not a priority. Furthermore we found the reduced levels of multimapping during the 

alignment stage, and reduction of information at the differential expression-level, was 

more helpful for our analyses. 

 

We would also like to highlight to researchers in the field the importance of pre-processing 

the sequence reads prior to assembly and downstream analyses. Bias and errors in the 

library preparation and sequencing processes will have negative impacts on reference 

generation and transcript quantification. Implementation of such steps are not commonly 
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reported in the literature, and we urge researchers to follow the pre-processing steps we 

have taken, or similar approaches, when using short-read Illumina data. 

 

5.1.2 New insights into the expression of distyly in L. tenue 

 

This work has contributed significantly to our knowledge of the ecology and the 

heterostyly syndrome in L. tenue. We made use of the new adaptive inaccuracy measures 

of heterostylous reciprocity, proposed by Armbruster et al. (2017), to reveal interesting 

patterns in the functional expression of distyly at the population level (Table 2.3). This 

method uses equal positioning of the reciprocal stigmas and anthers as the optimum 

phenotype, and extent of phenotypic deviations in these organs from the optimum 

(inaccuracy) that can be measured in terms of the mean departure of floral organ position 

from the optimum (bias) and intrapopulation variance in each organ height (imprecision). 

We found a greater bias for short reproductive organs, generally as a result of shorter 

thrum pistils than pin stamens, and greater imprecision for tall reproductive organs. The 

developmental data from our study indicates that the greater imprecision in tall organs 

result from greater variance in pin pistil height in the later stages of flower development. 

 

That there are differences and differing developmental mechanisms between the different 

morphs and organs is a significant finding, and provides strong evidence that heterostyly 

in L. tenue is a pleiotropic trait with different determinants for the male and female sexual 

organs, as is consistent with the expectations of an S locus-controlled regulation of 

heterostyly (Lewis and Jones, 1992). The reduced imprecision in the length of thrum pistils 

suggests that development of the organ is under tighter genetic control. Our findings thus 

suggest that reduced cell elongation in the thrum style tissues leads to increased robustness 

of the trait. Our results also suggest different levels of selection pressure for tall and short 
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organs. It is commonly reported in the literature that the positioning of taller organs at 

the opening of the flower increase the likelihood of contact with pollinators than the 

shorter organs, suggesting there is less pressure for precise positioning. This could have 

implications for evolutionary transitions to selfing or dioecy if the thrum flower begins to 

suffer from reduced female fitness. 

 

5.1.3 Evolution of pin and thrum morphs of L. tenue 

 

Analyses of differential gene expression between pin and thrum morphs of Linum tenue 

flowers in Chapter 3.0 revealed a list of features that are representative of morph-specific 

transcriptional activity. This list is an important first step towards finding candidate loci 

for the L. tenue S locus. Analysis of these differentially expressed features uncovered 

interesting expression patterns between the morphotypes, which, if representative of the 

underlying biology, have very interesting implications for our understanding of the 

molecular genetics and evolution of heterostyly in Linum. 

 

Research in the mating system of Linum species is currently very active (Ushijima et al., 

2015; Kappel, Huu and Lenhard, 2017), with a number of groups working to identify the 

location and architecture of the S locus. The current evidence suggests that heterostyly in 

Linum grandiflorum exhibits hemizygous determination of the thrum morph (Ushijima et al., 

2012), similar to the genetic control observed in Primula (Nowak et al., 2015). However, 

without characterisation of S locus allelic variants, or an understanding of the dominance 

or epistatic interactions of S locus alleles, little is known regarding the behaviour of loci 

comprising or controlled by the Linum S locus. Our findings have implications for the 

molecular genetics of distyly in L. tenue, and speculatively provide some support for a model 

of the evolutionary development of heterostyly in the species. 
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Our results for differences in cell lengths for style and stamen filament organs between 

pin and thrum morphs (Chapter 2.0) is parsimonious with the model of heterostyly 

evolution that distyly developed from approach herkogamous flowers (pin morph) (Lloyd 

and Webb, 1992a, 1992b). Here, an evolutionary event, possibly a gene duplication as 

proposed in Primula (Li et al., 2016), leads to extension of the stamen filaments to the height 

of the style in a long homostyle morph. Over time, as more genes are recruited to the S 

locus, the length of the style in this new long homostyle decreases and results in the thrum 

morphs we see in populations today. Our finding that the short style of the thrum is largely 

developmentally driven by reduced cell elongation in the tissues of the style, whilst the 

long stamen filaments putatively develop from an increase in cell number in the tissues of 

the filament (as cells of the pin style, pin filament and thrum filament are of relatively 

comparable length) (Figure 2.3), is consistent with this evolutionary model. Our cell length 

data suggest at least two different mechanisms for the development of long and short 

sexual organs in the two morphs, consistent with two separate evolutionary events: first 

the creation of long stamen filaments, then a short style. 

 

The morph-specific differences in observed gene expression patterns in our analyses also 

fit with this model of distyly evolution. Differentially expressed features show strong 

grouping by morphotype; but the pin group shows strong structural subgrouping by 

individual, whereas this pattern is much less apparent in the thrum group (Figure 3.7, 

Figure 3.8). This suggests a higher variance in expression between pin individuals and a 

higher variance in expression within thrum individuals. If this difference is a result of 

greater allelic diversity in pin S locus-linked loci than in thrum S locus-linked loci, a 

younger evolutionary origin of the thrum morph (with less time to accumulate allelic 

variants in functional genes or genic regions) provides a reasonable explanation for this 

subgroup patterning. 
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5.1.4 The S locus of L. tenue 

 

Until recent years, our understanding of the genetic basis and functional genetic basis of 

heterostyly remained elusive. Modern sequencing technologies have made allowed 

models to be made from non-model organisms, and Primula has become the flagship 

system for understanding heterostyly. However, independent evolutionary emergences of 

heterostyly have occurred across the angiosperm phylogeny; though the S locus may be 

under constraints that can dictate which genes are recruited, the genetic determinants 

and mechanisms between taxa are unlikely to be completely equivalent. That of the five 

L. grandiflorum thrum-specific loci found by Ushijima et al. (2012) we found only TSS1 to 

be differentially expressed is demonstrative of this. Even though L. grandiflorum is a con-

generic, according to certain phylogenies (McDill et al., 2009) it may represent an 

evolutionary acquisition of heterostyly within the Linaceae independent of L. tenue. 

Though some elements of the S locus may be shared, we might expect the genomic 

architecture and constitutive determinants to be different. We were also unable to find a 

homolog for TSS1 in the newly published genome of Primula vulgaris (Cocker et al., 2018), 

though publication of its predicted protein sequences may change this. Nonetheless, the 

genetics of heterosty in Linum remains very much an open field. Though with the Ushijima 

group in Okayama chasing the functional genetics in L. grandiflorum, and the Slotte Lab in 

Stockholm sequencing the genomes of three heterostylous Linum species, this may soon 

change. 

 

 The discovery of Contig_141165 as a candidate gene for the G locus is a significant 

contribution to the field. We not only demonstrate a late-development thrum-specific 

signature of expression, we present evidence that Contig_141165 is divergent from other 
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putative paralogs within the genome. Furthermore, we show that Contig_141165 is likely 

a homolog of VUP1 in A. thaliana, a gene of unknown function that has dramatic 

pleiotropic events on multiple pathways (Grienenberger and Douglas, 2014), and 

functions as a dominant inhibitory element. The cell length microscopy we have 

conducted revealing reduced cell elongation in the tissues of the thrum style further 

support our synthesis that Contig_141165 may have a similar effect in L. tenue. To our 

knowledge, this thesis represents the only work to recognise the work done by 

Grienenberger and Douglas (2014) realising the downstream effects of VUP1, if not its 

direct function, and reporting a homolog in L. tenue with similar (putative) activity in style 

tissue.  

 

Further investigations into Contig_141165 must be done in order to define it as a S locus 

constituent. Knowledge of the genomic sequence will greatly aid subsequent functional 

genetics work to confirm its activity and effects of expression. Characterising the protein, 

inferring and discovering its function will be a significant task, as Contig_141165 and its 

homologs display very low levels of similarity and no functional or structural domains 

have been identified so far. This demonstrates the limitations of bioinformatics for various 

tasks, as functional genetic studies remain the strongest avenue for the foreseeable future 

to characterise Contig_141165 and its activity. This is a challenge the authors welcome 

to receive. 

 

5.2 Further work and improvements 

 

5.2.1 The BALLISTA pipeline 

 

Whether used on a reference produced from a single de novo assembly or a redundancy-

reduction tool such as EvidentialGene (Section 4.2.2), the BALLISTA pipeline combines 
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alternate-splice variants into consensus unigene sequences. Our tool could be further 

developed to produce ancillary files that detail the location of these ‘features’ within the 

unigene sequences. This information is present in the temporary files that BALLISTA 

creates, but a consolidated report detailing which of the original contigs constitute each 

of the unigene sequences could be useful to users. Similarly, BALLISTA has been created 

to be accessible, and BED files that detail the precise location of the original features on 

the new unigene reference sequences could also be created to aid downstream analyses. 

 

5.2.2 The L. tenue reference transcriptome 

 

The current build of the L. tenue reference transcriptome (Section 4.2.2) is the highest 

quality reference built to date. However, the multiple k-mer assemblies generated with 

Velvet/Oases (Zerbino and Birney, 2008; Schulz et al., 2012) demonstrated lower rates of 

overall alignment of the original sequence reads, and higher rates of missing universal 

single-copy orthologs, than the single-k Trinity (Garber et al., 2011) assembly. This is due 

to aggressive in silico normalisation of the reads with ORNA (Durai and Schulz, 2017), 

which was a necessary step and recommended tool to prepare reads for assembly with 

Velvet/Oases; Trinity makes use of a bundled normalisation tool, Jellyfish (Marçais and 

Kingsford, 2011). Future builds of the L. tenue reference transcriptome should either 

include further optimisation of ORNA parameters for input to Velvet/Oases or use 

Jellyfish independently to create a universal set of normalised reads for input to both 

Velvet/Oases and Trinity tools. Additional assembly tools, such as Trans-ABySS 

(Robertson et al., 2010) and SOAPdenovo-Trans (Xie et al., 2014), could also be utilised 

to capture as broad a complement of the sample transcript populations as possible. 
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5.2.3 Improving the power of the L.tenue floral RNAseq experiment 

 

Further sequencing of additional biological replicates would improve the power of the 

expression analyses by (i) increasing the sample size of pin and thrum individuals and (ii) 

ameliorating the levels of dispersion in library size. Through the inclusion of more 

individuals in the analyses, a wider range of allelic variation at the S locus could be 

captured, providing greater confidence for the subgroup structures of pin- and thrum-

specific patterns of expression. The variance in per-treatment feature counts tends to 

decrease with the inclusion of biological replicates, which can greatly improve the 

replicability of an experiment. This in turn increases the power of the experiment to avoid 

type II false negative errors. The increased sampling would also allow pairwise 

comparisons of pin and thrum samples to be carried out by growth stage, as the lower 

levels of count data dispersion in treatments by single growth stages would provide enough 

power to offset the decrease in the power that pooling all growth stages into a larger 

treatment would provide. This would allow a more detailed analysis of the phases of 

flower development and the discovery of more differentially expressed features exclusively 

present in specific developmental stages. 

 

5.2.4 Refining the list of putative candidate loci 

 

Streamlining of the list of differentially expressed features and improvements in the 

biological interpretation of the dataset would be achieved through Gene Ontology (GO) 

enrichment and pathway analyses. Such analyses would reveal which GO terms and 

molecular pathways are over- or under-represented in the gene set, providing valuable 

and important insights into the molecular functions of the putative candidate loci. Thrum-

specific repression of the brassinosteroid, gibberellic acid, and auxin response pathways 
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in particular would be tell-tale signals for the influence of Contig_141165. Analyses of 

coexpression are also great avenues for further work. Particular focus on genes exhibiting 

expression patterns correlated with the activity of Contig_141165 may uncover loci 

downstream of its regulation network, or even further S locus candidates. 

 

The results of the genomic clustering showed some promise, particularly with the high 

levels of co-localising features on Chromosomes 3 and 4 of A. thaliana. A more detailed 

analysis of the L. tenue contigs mapping to these regions could provide candidate regions 

in L. tenue through synteny mapping. 

 

5.2.5 Developmental mechanisms behind tall and short floral organs of L. tenue 

 

Our study demonstrated that the mechanism driving the shorter height of the thrum style 

relative to the pin style appears to be largely a difference in cell elongation. Though the 

comparable cell lengths of pin and thrum stamen filaments suggest the height difference 

in male organs is driven by cell number, this was not directly measured in our study. 

Future investigations would benefit from further microscopy work to count all the 

epidermal cells on a single plane from the base to the tip of the stamen filaments in order 

to gain insights into the mechanism driving differences in male organ heights. 

 

Developmental genetic studies could also greatly complement this work, as known 

pathways controlling cell length and cell division can be used to observe the behaviour of 

genes of interest in the expression datasets. Further developmental genetic investigations 

would strongly benefit from further differentiating samples by morph-specific organs, as 

opposed to the whole flower, to observe how gene expression affects the male and female 

organs of each morph. 
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5.2.6 Gene flow dynamics within and between L. tenue populations 

 

Population genetic studies of L. tenue and other Linum species would be of immense value 

to the future of this project. First, with increasing sample sizes and the addition of more 

populations to the study, we could gain a deeper understanding of morph frequency bias 

in L. tenue populations. We found there was no significant difference in morph frequencies 

in the five wild populations we observed in the field (Table 2.3), though disequilibrium of 

morph ratios in heterostylous populations is not uncommon and can affect population-

level measures of genetic diversity (Meeus et al., 2012). It has also been noted through 

personal observations (AF) that some populations of L. tenue in the field appeared to show 

slightly skewed morph ratios, though this was not investigated in our study. The inclusion 

of a more rigorous sampling of populations would provide further insights on this issue. 

 

Next-generation sequencing (NGS) approaches allow population genetics to be conducted 

on a genomic scale, through the use of techniques such as restriction site-associated DNA 

sequencing (RADseq). Primarily, this could be used to conduct association mapping and 

identify broad-scale candidate markers for the S locus. This could allow us to identify 

candidate genomic regions of interest, and could open up avenues of investigation for 

levels of allelic diversity in S locus loci determining the different male and female organ 

traits. Population genetic studies would also allow us to investigate the evolutionary 

implications of disyly in Linum, particularly with studies conducted across species with 

varied mating systems. In this way, the evolutionary consequences of heterostyly, self-

incompatibility and self-compatibility could be examined. 
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5.3 The future of bioinformatics perspectives 
 

We are currently in a transitional period between two generations of sequencing 

technologies. Where the previous decade has been dominated by second-generation 

short-read Illumina sequencing, the next ten years may well see a shift to the widespread 

employment of single-molecule sequencing. This so-called ‘third-generation’ sequencing, 

currently led by Pacific Biosciences (PacBio) and Oxford Nanopore, is still in its infancy, 

yet if it develops to its full potential is set to paradigmatically change the molecular biology 

and bioinformatics research scenes.  

 

In 2011, PacBio commercialised what has become known as single-molecule real-time 

sequencing; a sequencing-by-synthesis method that eavesdrops on the natural activity of 

DNA polymerase, which can replicate 3000 nucleotides per minute. Through the use of 

rolling circle repetitive sequencing, where the cDNA is circularised, the base-calling 

accuracy rates can rival that of current day Illumina technologies. In 2011, PacBio 

claimed that this technology could soon be used to sequence whole human genomes in 

minutes for under $100, though the current cost-per-base-sequencing is relatively high. 

 

In contrast, Oxford Nanopore technology uses a charged membrane that is punctured 

with pores <1 nM in diameter, that can either be composed of either protein channels 

(biological membranes) or solid materials (solid-state nanopores), through which nucleic 

acids can be pulled by electrophoresis. As the molecules pass through the membranes, the 

charge signature of each base is recorded. The major benefits of this technology are that, 

as the sequencing is not dependant on DNA synthesis, RNA and even amino acid 

molecules can also be sequenced. This can have a resounding impact on the nature of 

genomics in two ways. Firstly, the ability to directly sequence RNA molecules removes 

the need to prepare cDNA libraries. This can not only be laboriously intensive and time-
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consuming (as can be attested through personal experience!), but removes the reverse-

transcription and PCR bias of library preparation and sequencing. Such biases can 

change the composition of the molecule pool and lead to composition bias between 

samples, or the over- and under-representation of certain RNA species or transcripts from 

particular loci. This also allows transcript counts to be acquired in real time without the 

need for aligning short reads back to a reference genome or transcriptome, which removes 

many uncertainties that can arise during expression analyses with Illumina data. 

Secondly, the ability to easily and cost-effectively conduct direct quantitative proteomics 

has the potential to change the way research is conducted. With the exception of certain 

RNA species, proteins are largely the main functional elements of the genome: RNAseq 

is usually used as a proxy for understanding the proteome, which means the technique 

has a limited lifespan in the future. There is evidence to suggest that interactions between 

transcriptome and proteome activity do not always correlate (Feussner and Polle, 2015; 

Ishitsuka, Akutsu and Nacher, 2016). Proteins are also the elements of the genome that 

selection directly acts on, and thus proteomics will afford us a greater understanding of 

how organisms interact with their environment. 

 

A rise in approaches that use longer reads could have impacts for the tools used in 

bioinformatics. Longer reads could cause a shift in the algorithms that assembly tools use, 

and we could see a reversion to the use of Hamiltonian pathways in de Bruin graph-based 

software. In Hamiltonian cycles, the reads are assigned to the nodes of the de Bruijn graph 

and the overlaps to the edges, meaning an algorithm needs to function to visit each edge 

once to assemble the sequence. This was the technique used during the era of Sanger 

sequencing and was used to assemble the human genome. However, with the advent of 

Illumina data, the increased size and complexity of the de Bruijn graphs became very 

difficult to solve. de Bruijn-based algorithms thus transitioned to use Eulerian cycles, 

whereby the reads are now assigned to the edges of the graph and overlaps to the nodes, 
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requiring each node to be visited once for resolution. This is much less intensive on 

computational resources and is easier to solve. Such approaches were in fact designed for 

the early days of the microarray, which was originally designed to sequence the human 

genome through sequencing-by-hybridisation. Many of the modern NGS assembly tools 

available today have adapted Eulerian cycle-based algorithms that were originally 

designed for microarray data. This fluctuation in algorithms used by tools therefore 

follows popularity trends in the nature of data that is collected, and it is thus a near-

certainty that we will see a recycling of approaches in the future. 

 

Applications of NGS which make use of Illumina data that are unlikely to make the 

transition to single-molecule sequencing are micro RNA sequencing and RADseq. Single-

molecule sequencing is less accurate for shorter molecules, and short-reads are likely to 

be lost at the alignment stage of such pipelines. Micro RNAs and their diagnostic 

precursor transcripts require sequencing of molecules between ~22-70 nucleotides in 

length and thus rely on short-read sequencing. Current alignment tools also tend to use 

algorithms that are best-suited to either short- or long-read mapping, making the 

application of single-molecule sequencing of limited value here. The use of Illumina is 

similarly useful to population genetics as the ability to multiplex large sample sizes is 

highly appealing. Population genomic approaches that use whole genome sequences are 

very useful and can reveal interesting patterns of genomic evolution, but the benefit of 

RADseq to population genetics is that it is a reduced-genome representation approach; 

and researchers may always prefer to balance the benefits of wider sampling over more 

genetic information. These applications may allow the research community to eke out the 

use of Illumina technology into the future. 

 

Depending on the type of sequencing and the platform used, error rates with Nanopore 

can range from 1-16%. In conjunction with high cost-per-base sequencing and low 
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awareness of the technology in the research community currently leads to limited use of 

Nanopore sequencing; however, as the technologies improve and costs of sequencing fall, 

these techniques could become more widely adopted in time. Given the overhaul in 

approaches that NGS has brought over the last decade, it is not too far a stretch to imagine 

the possibilities that may come in the not too distant future. 
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Appendix I 

 
Table S1 Location data for Linum tenue sample populations. Collectors were Dr Adrian Brennan (ACB), Mr 
Alireza Foroozani (AF), and Dr Rocío Pérez-Barrales (RPB). Experiments were field (F) or glasshouse (G) measures. 

 
 

Location Name Year Collector Latitude Longitude Experiment 

Manga Villaluenga mva 2015 RPB 36.6886 -5.4095 F 

Puerto de las Palomas pdp 2015 RPB 36.7881 -5.3764 F 

Ronda 10 km r10 2015 RPB 36.7814 -5.0946 F 

Ronda 17 km r17 2015 RPB 36.7933 -4.9913 F 

Sierra de las Nieves sdn 2015 RPB 36.6619 -5.7725 F 

Alhaurin de al Torre alt 2013 ACB 36.6687 -4.5543 G 

Aracena ara 2014 AF 37.9414 -6.5249 G 

Burguillos bur 2014 AF 37.5950 -5.9753 G 

Cazalla de la Sierra caz 2014 AF 37.9374 -5.7612 G 

Cabra cbt 2013 ACB 37.4671 -4.4229 G 

El Bosque ebo 2014 AF 36.7774 -5.5180 G 

El Burgo elb 2014 AF 36.6275 -4.9901 G 

Grazalema grt 2013 ACB 36.8189 -5.3463 G 

Hinojales hin 2014 AF 38.0129 -6.5872 G 

La Zubia laz 2014 AF 37.1142 -3.5747 G 

La Umbria lum 2014 AF 37.8623 -6.4809 G 

Mairena del Aljarafe mda 2014 AF 37.3414 -6.0476 G 

Monachil mon 2014 AF 37.1368 -3.5077 G 

Pinos Genil pig 2014 AF 37.1609 -3.5123 G 

Sierra Nevada snv 2014 AF 37.1389 -3.4609 G 

Sevilla svt 2013 ACB 37.3553 -5.9909 G 



 183 

Appendix II 

Table S2 Mixed model analysis results for all Linum tenue open flower measurements. Mixed models were performed on non-transformed data using the lmer REML fit function of the R lmerTest. 

The p values of mixed effects were evaluated using t-tests with Satterthwaite degrees of freedom approximations, while the p values of random effects were evaluated by sequentially dropping random 

effects from the model and comparing the prior model using the anova function with likelihood ratio tests. R2 values were calculated using the r.squaredGLMM function of the R MuMIn package and 

are either conditional for the full mixed model or marginal for fixed effects only. Shaded rows indicate trait results presented in Table 1. 

 

Response Random effects  No. 
obs. 

Variance SD P value R2 
cond. 

Fixed effects Estimate SE p value R2 
marg. 

Pistil length individual x 
population  
population 
residual 

150 
 

16 
 

0.117 
 

0.001 
0.140 

0.343 
 

0.024 
0.374 

9.66e-15 

 
1.50e-02 

 

0.955 intercept 
morph 
petal length 
morph*petal 
length 

4.822 
-2.009 
0.191 

-0.099 

0.241 
0.392 
0.017 
0.027 

<2.00e-16 
  4.94e-07 
<2.00e-16 

3.52e-04 

0.916 

Stamen length 
 

individual x 
population  
population 
residual 

115 
 

16 

0.106 
 

0.004 
0.159 

0.325 
 

0.061 
0.399 

 

2.65e-07 

 
2.92e-02 

 

0.905 intercept 
morph 
petal length 
morph*petal 
length 

3.418 
1.868 
0.142 
0.024 

0.334 
0.483 
0.024 
0.034 

<2.00e-16 
1.35e-04 
1.19e-08 
4.76e-01 

0.841 

Herkogamy  
(pistil – stamen) 

individual x 
population  
population 
residual 

115 
 

16 

0.141 
 

<0.001 
0.119 

 

0.375 
 

<0.001 
0.345 

 

<2.00e-16 
 

7.71e-02 

0.986 intercept 
morph 
petal length 
morph*petal 
length 

1.658 
-4.143 
0.030 

-0.105 

0.307 
0.443 
0.022 
0.031 

1.39e-07 
<2.00e-16 

1.85e-01 
9.44e-04 

0.968 

Ovary+Style individual x 
population  
population 
residual 

131 
16 

0.067 
0.009 
0.123 

0.259 
0.097 
0.350 

5.95e-07 
8.11e-04 

0.949 intercept 
morph 
petal length 
morph*petal 
length 

4.291 
-2.136 
0.160 

-0.065 

0.231 
0.372 
0.017 
0.026 

<2.00e-16 
2.40e-08 

<2.00e-16 
1.30e-02 

0.918 
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Filament individual x 
population  
population 
residual 

131 
16 

0.090 
0.016 
0.145 

0.300 
0.127 
0.381 

5.78e-08 
3.65e-04 

0.922 intercept 
morph 
petal length 
morph*petal 
length 

2.812 
1.859 
0.118 
0.036 

0.256 
0.411 
0.018 
0.029 

<2.00e-16 
9.06e-06 
5.92e-10 
2.07e-01 

0.865 

Herkogamy  
(ovary+style – 
filament) 

individual x 
population  
population 
residual 

131 
16 

0.084 
0.030 
0.119 

0.289 
0.175 
0.346 

2.10e-08 
4.26e-06 

0.984 intercept 
morph 
petal length 
morph*petal 
length 

1.541 
-4.086 
-0.036 
-0.094 

0.242 
0.382 
0.017 
0.027 

7.57e-10 
<2.00e-16 

3.45e-02 
4.97e-04 

0.969 

Stigma length individual x 
population  
population 
residual 

131 
16 

0.012 
0.002 
0.018 

0.111 
0.045 
0.133 

3.85e-09 
7.89e-04 

0.784 intercept 
morph 
petal length 
morph*petal 
length 

0.651 
-0.156 
0.026 

-0.021 

0.091 
0.146 
0.007 
0.010 

8.61e-12 
2.87e-01 
1.01e-04 
3.95e-02 

0.608 

Anther length individual x 
population  
population 
residual 

131 
16 

0.006 
0.002 
0.011 

0.075 
0.044 
0.106 

1.03e-07 
1.16e-05 

0.440 intercept 
morph 
petal length 
morph*petal 
length 

1.057 
-0.090 
0.012 
0.002 

0.069 
0.111 
0.005 
0.008 

<2.00e-16 
4.21e-01 
1.48e-02 
7.91e-01 

0.066 

Petal width individual x 
population  
population 
residual 

150 
16 

0.289 
<0.001 
0.512 

0.538 
<0.001 
0.715 

4.88e-10 
4.29e-01 

0.613 intercept 
morph 
petal length 
morph*petal 
length 

1.692 
0.097 
0.367 

-0.015 

0.433 
0.704 
0.031 
0.049 

1.11e-04 
8.91e-01 

<2.00e-16 
7.59e-01 

0.394 

Sepal length individual x 
population  
population 
residual 

129 
16 

0.094 
0.035 
0.240 

0.306 
0.186 
0.490 

9.12e-04 
2.65e-03 

0.457 intercept 
morph 
petal length 
morph*petal 
length 

3.007 
0.014 
0.134 

-0.020 

0.321 
0.510 
0.023 
0.036 

<2.00e-16 
9.78e-01 
1.59e-08 
5.85e-01 

0.166 
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Appendix III 

List of features found to be differentially expressed in the full dataset, filtered for a minimum 
fold change of +/- 2 and and FDR threshold of 0.05. 
 
Contig_129342 
Contig_125780 
Contig_095635 
Contig_168818 
Contig_151932 
Contig_070269 
Contig_117644 
Contig_167741 
Contig_054975 
Contig_129990 
Contig_097696 
Contig_026462 
Contig_008558 
Contig_164093 
Contig_078102 
Contig_127925 
Contig_060228 
Contig_143758 
Contig_089334 
Contig_019094 
Contig_096616 
Contig_119744 
Contig_064925 
Contig_032223 
Contig_133387 
Contig_083134 
Contig_109724 
Contig_111750 
Contig_157631 
Contig_013606 
Contig_007469 
Contig_168293 
Contig_146603 
Contig_161189 
Contig_128032 
Contig_039635 
Contig_138449 
Contig_154292 
Contig_033030 
Contig_081191 
Contig_157894 
Contig_142554 
Contig_148818 
Contig_049345 
Contig_094968 
Contig_109337 
Contig_032672 
Contig_005542 
Contig_033726 
Contig_047708 
Contig_151821 
Contig_111660 
Contig_133650 
Contig_121005 
Contig_000974 
Contig_022504 
Contig_153510 
Contig_041186 
Contig_062948 
Contig_123443 
Contig_073543 
Contig_043973 

Contig_145822 
Contig_028132 
Contig_080751 
Contig_086326 
Contig_107300 
Contig_128263 
Contig_127921 
Contig_001428 
Contig_122937 
Contig_108580 
Contig_167732 
Contig_020391 
Contig_004732 
Contig_094272 
Contig_043888 
Contig_159228 
Contig_039640 
Contig_079510 
Contig_047709 
Contig_050956 
Contig_113249 
Contig_040308 
Contig_070598 
Contig_156142 
Contig_110007 
Contig_013610 
Contig_125708 
Contig_100473 
Contig_068833 
Contig_119500 
Contig_090982 
Contig_159112 
Contig_144826 
Contig_099636 
Contig_035016 
Contig_129913 
Contig_155937 
Contig_055576 
Contig_126742 
Contig_121053 
Contig_145024 
Contig_111529 
Contig_123175 
Contig_063076 
Contig_020299 
Contig_117889 
Contig_088790 
Contig_034595 
Contig_147164 
Contig_156090 
Contig_102000 
Contig_040535 
Contig_109942 
Contig_052552 
Contig_152729 
Contig_161921 
Contig_087869 
Contig_060830 
Contig_096613 
Contig_084066 
Contig_163189 
Contig_149150 

Contig_020380 
Contig_071319 
Contig_071368 
Contig_042165 
Contig_078474 
Contig_007465 
Contig_062262 
Contig_090758 
Contig_167359 
Contig_060016 
Contig_051786 
Contig_125868 
Contig_143046 
Contig_062164 
Contig_145326 
Contig_005294 
Contig_125027 
Contig_125317 
Contig_108576 
Contig_095114 
Contig_048993 
Contig_165581 
Contig_007940 
Contig_073540 
Contig_094689 
Contig_157342 
Contig_098553 
Contig_110428 
Contig_120246 
Contig_055251 
Contig_165440 
Contig_129297 
Contig_130200 
Contig_152598 
Contig_035536 
Contig_066053 
Contig_156638 
Contig_124571 
Contig_088121 
Contig_155880 
Contig_048185 
Contig_040489 
Contig_043783 
Contig_163208 
Contig_128342 
Contig_148911 
Contig_151288 
Contig_154849 
Contig_157562 
Contig_135277 
Contig_131551 
Contig_049185 
Contig_015300 
Contig_071637 
Contig_083814 
Contig_036483 
Contig_043971 
Contig_020379 
Contig_147478 
Contig_009484 
Contig_018474 
Contig_038173 

Contig_159123 
Contig_015074 
Contig_112734 
Contig_123146 
Contig_082492 
Contig_063789 
Contig_007994 
Contig_046535 
Contig_106753 
Contig_146722 
Contig_091415 
Contig_028320 
Contig_170321 
Contig_061177 
Contig_088122 
Contig_035675 
Contig_105745 
Contig_015125 
Contig_126446 
Contig_010314 
Contig_016548 
Contig_159291 
Contig_147374 
Contig_138051 
Contig_046520 
Contig_134252 
Contig_074745 
Contig_006411 
Contig_083024 
Contig_007413 
Contig_073149 
Contig_041721 
Contig_007287 
Contig_158273 
Contig_163216 
Contig_087698 
Contig_110712 
Contig_089333 
Contig_065112 
Contig_004911 
Contig_087702 
Contig_054654 
Contig_024453 
Contig_135046 
Contig_102066 
Contig_131607 
Contig_141869 
Contig_108758 
Contig_114740 
Contig_046757 
Contig_067934 
Contig_034894 
Contig_033579 
Contig_021778 
Contig_167020 
Contig_117067 
Contig_120081 
Contig_072173 
Contig_046068 
Contig_082353 
Contig_027388 
Contig_073948 

Contig_162660 
Contig_054620 
Contig_083136 
Contig_124597 
Contig_117373 
Contig_127015 
Contig_069675 
Contig_119682 
Contig_036859 
Contig_109163 
Contig_097699 
Contig_030985 
Contig_066254 
Contig_043195 
Contig_044970 
Contig_056928 
Contig_117739 
Contig_098552 
Contig_164619 
Contig_118266 
Contig_106723 
Contig_063071 
Contig_035537 
Contig_133178 
Contig_055302 
Contig_005491 
Contig_130465 
Contig_170224 
Contig_077819 
Contig_159973 
Contig_118351 
Contig_100938 
Contig_037924 
Contig_123204 
Contig_009754 
Contig_149416 
Contig_084397 
Contig_155738 
Contig_106649 
Contig_022634 
Contig_041836 
Contig_166208 
Contig_138622 
Contig_015126 
Contig_160685 
Contig_011810 
Contig_141795 
Contig_125380 
Contig_083141 
Contig_086787 
Contig_143028 
Contig_029286 
Contig_167758 
Contig_162365 
Contig_133605 
Contig_135847 
Contig_151804 
Contig_138290 
Contig_019060 
Contig_014600 
Contig_060749 
Contig_115748 

Contig_132262 
Contig_007980 
Contig_005292 
Contig_070336 
Contig_142068 
Contig_018454 
Contig_133359 
Contig_079997 
Contig_097512 
Contig_121521 
Contig_126342 
Contig_060754 
Contig_008310 
Contig_127147 
Contig_127185 
Contig_089689 
Contig_002368 
Contig_056649 
Contig_128751 
Contig_110734 
Contig_002877 
Contig_136084 
Contig_161110 
Contig_080750 
Contig_082150 
Contig_130560 
Contig_168264 
Contig_139887 
Contig_069541 
Contig_164084 
Contig_032661 
Contig_054205 
Contig_149880 
Contig_113244 
Contig_093445 
Contig_112094 
Contig_130344 
Contig_018946 
Contig_036206 
Contig_151385 
Contig_091825 
Contig_147459 
Contig_000845 
Contig_141643 
Contig_046527 
Contig_052617 
Contig_088662 
Contig_075481 
Contig_139098 
Contig_035676 
Contig_013777 
Contig_087691 
Contig_109239 
Contig_079699 
Contig_113608 
Contig_014490 
Contig_062218 
Contig_030123 
Contig_091846 
Contig_136309 
Contig_089335 
Contig_042156 
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Contig_117933 
Contig_148814 
Contig_046533 
Contig_145893 
Contig_122961 
Contig_163983 
Contig_098780 
Contig_096947 
Contig_075744 
Contig_169649 
Contig_062854 
Contig_060363 
Contig_031878 
Contig_066919 
Contig_164114 
Contig_025047 
Contig_095002 
Contig_028586 
Contig_088653 
Contig_015850 
Contig_029939 
Contig_080421 
Contig_153351 
Contig_039634 
Contig_122347 
Contig_109504 
Contig_016578 
Contig_035319 
Contig_093025 
Contig_005186 
Contig_100155 
Contig_007557 
Contig_056895 
Contig_040216 
Contig_065713 
Contig_069506 
Contig_053624 
Contig_045747 
Contig_054826 
Contig_078313 
Contig_113766 
Contig_048663 
Contig_066035 
Contig_151202 
Contig_137214 
Contig_091705 
Contig_039648 
Contig_002283 
Contig_066510 
Contig_104634 
Contig_156263 
Contig_050275 
Contig_111648 
Contig_116856 
Contig_125503 
Contig_039925 
Contig_037414 
Contig_001506 
Contig_091409 
Contig_126598 
Contig_041527 
Contig_106764 
Contig_062453 
Contig_023372 
Contig_132371 
Contig_143365 
Contig_068628 
Contig_066828 
Contig_114682 
Contig_166310 

Contig_033629 
Contig_085335 
Contig_073126 
Contig_069589 
Contig_064306 
Contig_127646 
Contig_155413 
Contig_041237 
Contig_145322 
Contig_056144 
Contig_129291 
Contig_081662 
Contig_156596 
Contig_136421 
Contig_051600 
Contig_130353 
Contig_115086 
Contig_100512 
Contig_105244 
Contig_081105 
Contig_049081 
Contig_168325 
Contig_024750 
Contig_079780 
Contig_165740 
Contig_020764 
Contig_030299 
Contig_154813 
Contig_105216 
Contig_130429 
Contig_144132 
Contig_050646 
Contig_012510 
Contig_062955 
Contig_022651 
Contig_081523 
Contig_141279 
Contig_085368 
Contig_059338 
Contig_061503 
Contig_058891 
Contig_040331 
Contig_150122 
Contig_020483 
Contig_162742 
Contig_038849 
Contig_041247 
Contig_071635 
Contig_020016 
Contig_095500 
Contig_158714 
Contig_157618 
Contig_023729 
Contig_028569 
Contig_005746 
Contig_138423 
Contig_099633 
Contig_114946 
Contig_163598 
Contig_156823 
Contig_124992 
Contig_016233 
Contig_139244 
Contig_139246 
Contig_078535 
Contig_088661 
Contig_145205 
Contig_031150 
Contig_064187 
Contig_049651 

Contig_032302 
Contig_130327 
Contig_059286 
Contig_161341 
Contig_164899 
Contig_043885 
Contig_004977 
Contig_075704 
Contig_002871 
Contig_102410 
Contig_076480 
Contig_057000 
Contig_167047 
Contig_092693 
Contig_039271 
Contig_085895 
Contig_139970 
Contig_025914 
Contig_089306 
Contig_028515 
Contig_011148 
Contig_069345 
Contig_111768 
Contig_044315 
Contig_029686 
Contig_099734 
Contig_161065 
Contig_089888 
Contig_102327 
Contig_107417 
Contig_082975 
Contig_158442 
Contig_124030 
Contig_088774 
Contig_112826 
Contig_015979 
Contig_142976 
Contig_113995 
Contig_128220 
Contig_133535 
Contig_000708 
Contig_114322 
Contig_118837 
Contig_136543 
Contig_066433 
Contig_132075 
Contig_120132 
Contig_017522 
Contig_135930 
Contig_155942 
Contig_021079 
Contig_036710 
Contig_073645 
Contig_007975 
Contig_118668 
Contig_003397 
Contig_107911 
Contig_044330 
Contig_008102 
Contig_022736 
Contig_078857 
Contig_019973 
Contig_118341 
Contig_043062 
Contig_129274 
Contig_128258 
Contig_147627 
Contig_075702 
Contig_022267 
Contig_078548 

Contig_100573 
Contig_163898 
Contig_158109 
Contig_060609 
Contig_017678 
Contig_021686 
Contig_131853 
Contig_069702 
Contig_117048 
Contig_056679 
Contig_131818 
Contig_050198 
Contig_069036 
Contig_159856 
Contig_162321 
Contig_131783 
Contig_155584 
Contig_054880 
Contig_022684 
Contig_054738 
Contig_101519 
Contig_077737 
Contig_121336 
Contig_091821 
Contig_125672 
Contig_155974 
Contig_115196 
Contig_128008 
Contig_118004 
Contig_090154 
Contig_149751 
Contig_004970 
Contig_156420 
Contig_026142 
Contig_065452 
Contig_156346 
Contig_079988 
Contig_087788 
Contig_110222 
Contig_165379 
Contig_135520 
Contig_082156 
Contig_050276 
Contig_106421 
Contig_119550 
Contig_023461 
Contig_013474 
Contig_163924 
Contig_139370 
Contig_014025 
Contig_165135 
Contig_026662 
Contig_141903 
Contig_074322 
Contig_021704 
Contig_058347 
Contig_002872 
Contig_062088 
Contig_075703 
Contig_129430 
Contig_156564 
Contig_137229 
Contig_100127 
Contig_141932 
Contig_057128 
Contig_067809 
Contig_158166 
Contig_077886 
Contig_105284 
Contig_153417 

Contig_116680 
Contig_142551 
Contig_042507 
Contig_138464 
Contig_046600 
Contig_137380 
Contig_115720 
Contig_168366 
Contig_120032 
Contig_003030 
Contig_085804 
Contig_122851 
Contig_052906 
Contig_059595 
Contig_005524 
Contig_026410 
Contig_059516 
Contig_017648 
Contig_019833 
Contig_166463 
Contig_033468 
Contig_164734 
Contig_004614 
Contig_045464 
Contig_029001 
Contig_067491 
Contig_164836 
Contig_108180 
Contig_166682 
Contig_044141 
Contig_088658 
Contig_138778 
Contig_071606 
Contig_151678 
Contig_161533 
Contig_138975 
Contig_093997 
Contig_093046 
Contig_050039 
Contig_137538 
Contig_020373 
Contig_013481 
Contig_127576 
Contig_157199 
Contig_141203 
Contig_028036 
Contig_101938 
Contig_076839 
Contig_128790 
Contig_015947 
Contig_141239 
Contig_028939 
Contig_076575 
Contig_035307 
Contig_012259 
Contig_095020 
Contig_026696 
Contig_147340 
Contig_082568 
Contig_086636 
Contig_161396 
Contig_018411 
Contig_057529 
Contig_063810 
Contig_152793 
Contig_116367 
Contig_036277 
Contig_019192 
Contig_073810 
Contig_082587 

Contig_032666 
Contig_019194 
Contig_059564 
Contig_024296 
Contig_124789 
Contig_136257 
Contig_078762 
Contig_165481 
Contig_056890 
Contig_019522 
Contig_124574 
Contig_049376 
Contig_055706 
Contig_119722 
Contig_086899 
Contig_160450 
Contig_039483 
Contig_102254 
Contig_090545 
Contig_010489 
Contig_053596 
Contig_059952 
Contig_169260 
Contig_012516 
Contig_003878 
Contig_056122 
Contig_152913 
Contig_053745 
Contig_107465 
Contig_151290 
Contig_132053 
Contig_034521 
Contig_077843 
Contig_046378 
Contig_009406 
Contig_027822 
Contig_133203 
Contig_038587 
Contig_160217 
Contig_148031 
Contig_026371 
Contig_165820 
Contig_071886 
Contig_147050 
Contig_135405 
Contig_115383 
Contig_019321 
Contig_086557 
Contig_032074 
Contig_033580 
Contig_016665 
Contig_118267 
Contig_040309 
Contig_125669 
Contig_023541 
Contig_010563 
Contig_031709 
Contig_127772 
Contig_148844 
Contig_117638 
Contig_157599 
Contig_045574 
Contig_002112 
Contig_036628 
Contig_091513 
Contig_079013 
Contig_034840 
Contig_144859 
Contig_018434 
Contig_074714 
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Contig_095342 
Contig_137559 
Contig_033676 
Contig_003316 
Contig_065244 
Contig_028120 
Contig_092119 
Contig_035538 
Contig_124577 
Contig_041771 
Contig_157475 
Contig_136402 
Contig_130806 
Contig_047901 
Contig_048062 
Contig_062656 
Contig_148040 
Contig_075883 
Contig_128449 
Contig_116517 
Contig_090261 
Contig_027377 
Contig_002798 
Contig_165677 
Contig_154062 
Contig_113143 
Contig_103568 
Contig_057961 
Contig_149718 
Contig_141560 
Contig_027391 
Contig_013462 
Contig_135612 
Contig_101505 
Contig_154157 
Contig_044739 
Contig_064735 
Contig_021312 
Contig_077870 
Contig_109470 
Contig_135116 
Contig_067204 
Contig_025913 
Contig_018626 
Contig_110438 
Contig_092745 
Contig_154133 
Contig_106043 
Contig_129703 
Contig_036147 
Contig_164307 
Contig_026230 
Contig_049961 
Contig_055275 
Contig_010025 
Contig_092279 
Contig_019518 
Contig_072586 
Contig_055340 
Contig_127852 
Contig_048908 
Contig_016130 
Contig_165280 
Contig_153338 
Contig_158693 
Contig_040330 
Contig_096880 
Contig_114245 
Contig_005293 
Contig_019845 

Contig_005269 
Contig_019642 
Contig_057493 
Contig_015036 
Contig_063572 
Contig_000907 
Contig_117799 
Contig_155192 
Contig_145877 
Contig_050072 
Contig_140273 
Contig_085781 
Contig_131475 
Contig_030274 
Contig_061626 
Contig_029293 
Contig_063398 
Contig_143118 
Contig_103087 
Contig_031872 
Contig_089693 
Contig_124687 
Contig_119819 
Contig_046820 
Contig_085397 
Contig_124399 
Contig_117656 
Contig_110229 
Contig_005335 
Contig_089032 
Contig_101937 
Contig_042226 
Contig_052278 
Contig_003407 
Contig_035039 
Contig_054676 
Contig_112391 
Contig_048638 
Contig_040969 
Contig_049497 
Contig_157309 
Contig_019681 
Contig_103522 
Contig_099720 
Contig_063824 
Contig_066822 
Contig_108005 
Contig_164761 
Contig_170142 
Contig_102250 
Contig_046529 
Contig_002867 
Contig_015949 
Contig_114933 
Contig_123832 
Contig_004467 
Contig_037944 
Contig_052631 
Contig_078092 
Contig_155199 
Contig_125877 
Contig_061680 
Contig_166873 
Contig_023634 
Contig_002286 
Contig_048495 
Contig_023570 
Contig_126084 
Contig_055081 
Contig_007724 

Contig_102785 
Contig_091903 
Contig_076068 
Contig_081577 
Contig_046752 
Contig_163054 
Contig_112302 
Contig_113028 
Contig_107825 
Contig_118215 
Contig_088990 
Contig_127022 
Contig_090754 
Contig_097824 
Contig_115460 
Contig_146092 
Contig_078481 
Contig_115732 
Contig_129057 
Contig_043356 
Contig_156007 
Contig_061412 
Contig_004759 
Contig_041990 
Contig_001873 
Contig_043066 
Contig_099848 
Contig_155319 
Contig_041613 
Contig_142376 
Contig_090716 
Contig_061082 
Contig_000724 
Contig_068063 
Contig_143581 
Contig_009955 
Contig_151688 
Contig_143362 
Contig_033181 
Contig_026361 
Contig_100684 
Contig_149117 
Contig_050123 
Contig_147396 
Contig_024056 
Contig_145451 
Contig_020651 
Contig_131221 
Contig_142271 
Contig_124814 
Contig_010384 
Contig_162400 
Contig_119670 
Contig_073600 
Contig_086763 
Contig_135732 
Contig_009734 
Contig_159761 
Contig_064649 
Contig_042521 
Contig_086500 
Contig_161945 
Contig_150063 
Contig_133242 
Contig_096433 
Contig_118204 
Contig_054632 
Contig_134725 
Contig_161328 
Contig_146114 

Contig_166010 
Contig_110235 
Contig_064952 
Contig_108150 
Contig_160592 
Contig_162912 
Contig_132375 
Contig_055704 
Contig_092702 
Contig_032024 
Contig_040732 
Contig_096158 
Contig_058761 
Contig_137912 
Contig_055252 
Contig_059289 
Contig_093615 
Contig_122335 
Contig_015062 
Contig_045966 
Contig_129212 
Contig_048094 
Contig_059371 
Contig_021445 
Contig_100868 
Contig_047677 
Contig_121603 
Contig_032759 
Contig_144197 
Contig_098699 
Contig_115009 
Contig_098615 
Contig_087699 
Contig_045877 
Contig_035093 
Contig_020758 
Contig_095380 
Contig_039384 
Contig_117095 
Contig_050230 
Contig_132895 
Contig_167593 
Contig_058427 
Contig_098747 
Contig_044319 
Contig_147705 
Contig_169809 
Contig_101824 
Contig_133693 
Contig_115685 
Contig_168604 
Contig_144745 
Contig_008469 
Contig_045156 
Contig_094342 
Contig_095370 
Contig_000833 
Contig_087132 
Contig_053064 
Contig_114392 
Contig_158886 
Contig_058527 
Contig_007592 
Contig_042983 
Contig_011345 
Contig_165626 
Contig_042895 
Contig_101627 
Contig_060081 
Contig_084683 

Contig_062182 
Contig_056741 
Contig_115758 
Contig_098117 
Contig_068679 
Contig_049060 
Contig_053528 
Contig_157620 
Contig_169561 
Contig_019065 
Contig_031306 
Contig_011098 
Contig_049484 
Contig_041833 
Contig_113742 
Contig_078547 
Contig_159889 
Contig_003844 
Contig_008750 
Contig_052786 
Contig_145050 
Contig_052686 
Contig_006610 
Contig_054026 
Contig_135125 
Contig_101790 
Contig_120637 
Contig_051741 
Contig_154358 
Contig_165449 
Contig_119321 
Contig_063438 
Contig_148165 
Contig_074269 
Contig_132184 
Contig_026881 
Contig_005777 
Contig_147747 
Contig_153641 
Contig_155022 
Contig_021837 
Contig_094089 
Contig_136894 
Contig_146290 
Contig_013461 
Contig_161968 
Contig_155838 
Contig_100497 
Contig_043966 
Contig_158093 
Contig_083118 
Contig_005274 
Contig_158334 
Contig_155972 
Contig_076546 
Contig_079541 
Contig_087414 
Contig_148309 
Contig_163296 
Contig_128050 
Contig_101690 
Contig_071246 
Contig_078475 
Contig_121427 
Contig_019440 
Contig_125499 
Contig_062190 
Contig_105379 
Contig_081824 
Contig_064109 

Contig_024325 
Contig_100577 
Contig_047793 
Contig_049526 
Contig_050866 
Contig_012653 
Contig_139979 
Contig_043337 
Contig_047387 
Contig_016441 
Contig_019239 
Contig_021324 
Contig_163287 
Contig_054674 
Contig_076447 
Contig_078885 
Contig_074890 
Contig_001315 
Contig_108870 
Contig_069875 
Contig_149652 
Contig_158572 
Contig_117162 
Contig_060440 
Contig_028987 
Contig_161499 
Contig_023735 
Contig_052860 
Contig_112675 
Contig_114878 
Contig_113597 
Contig_045203 
Contig_019350 
Contig_085322 
Contig_061693 
Contig_136699 
Contig_056897 
Contig_057267 
Contig_050859 
Contig_002507 
Contig_125598 
Contig_170226 
Contig_146280 
Contig_035426 
Contig_074823 
Contig_074501 
Contig_128997 
Contig_018471 
Contig_135448 
Contig_018690 
Contig_065469 
Contig_052337 
Contig_135796 
Contig_055339 
Contig_165945 
Contig_082976 
Contig_146142 
Contig_088789 
Contig_129409 
Contig_048230 
Contig_127196 
Contig_022277 
Contig_097521 
Contig_074866 
Contig_004961 
Contig_130873 
Contig_043869 
Contig_164005 
Contig_108364 
Contig_062174 
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Contig_002741 
Contig_095250 
Contig_070507 
Contig_146350 
Contig_164521 
Contig_074431 
Contig_007468 
Contig_079154 
Contig_050133 
Contig_057368 
Contig_129319 
Contig_135179 
Contig_086558 
Contig_106877 
Contig_004044 
Contig_148897 
Contig_087961 
Contig_119794 
Contig_054073 
Contig_165890 
Contig_152998 
Contig_102858 
Contig_053795 
Contig_061015 
Contig_049223 
Contig_106252 
Contig_065627 
Contig_150907 
Contig_082344 
Contig_039307 
Contig_011377 
Contig_159845 
Contig_142235 
Contig_133825 
Contig_041139 
Contig_051728 
Contig_028037 
Contig_137000 
Contig_136075 
Contig_100967 
Contig_023720 
Contig_152316 
Contig_073683 
Contig_030461 
Contig_059130 
Contig_093879 
Contig_087787 
Contig_144373 
Contig_073963 
Contig_069690 
Contig_158942 
Contig_155637 
Contig_164506 
Contig_041191 
Contig_040780 
Contig_050389 
Contig_132319 
Contig_018575 
Contig_046530 
Contig_108894 
Contig_008712 
Contig_139674 
Contig_107797 
Contig_136914 
Contig_008078 
Contig_089349 
Contig_047876 
Contig_111447 
Contig_161938 
Contig_106531 

Contig_107230 
Contig_095539 
Contig_139704 
Contig_010838 
Contig_129311 
Contig_073594 
Contig_055331 
Contig_055887 
Contig_116890 
Contig_075435 
Contig_140384 
Contig_085888 
Contig_004973 
Contig_170411 
Contig_091762 
Contig_073729 
Contig_092007 
Contig_116122 
Contig_036344 
Contig_038688 
Contig_086183 
Contig_161404 
Contig_135671 
Contig_020762 
Contig_027514 
Contig_075699 
Contig_078732 
Contig_135254 
Contig_056233 
Contig_127452 
Contig_058994 
Contig_035615 
Contig_115604 
Contig_013936 
Contig_121168 
Contig_122337 
Contig_058628 
Contig_056417 
Contig_167851 
Contig_100123 
Contig_127044 
Contig_091412 
Contig_122839 
Contig_095982 
Contig_079548 
Contig_076298 
Contig_031983 
Contig_039626 
Contig_102409 
Contig_070115 
Contig_152070 
Contig_065246 
Contig_147555 
Contig_076132 
Contig_166677 
Contig_160114 
Contig_149411 
Contig_126777 
Contig_052689 
Contig_003776 
Contig_077717 
Contig_150158 
Contig_114984 
Contig_145214 
Contig_033386 
Contig_076714 
Contig_029785 
Contig_156751 
Contig_108026 
Contig_011145 

Contig_140707 
Contig_040484 
Contig_033423 
Contig_037608 
Contig_003884 
Contig_091353 
Contig_060971 
Contig_010912 
Contig_083924 
Contig_098359 
Contig_114794 
Contig_005792 
Contig_059717 
Contig_124575 
Contig_090815 
Contig_016555 
Contig_085621 
Contig_014264 
Contig_066265 
Contig_094090 
Contig_079805 
Contig_151406 
Contig_153851 
Contig_161747 
Contig_099935 
Contig_016599 
Contig_154965 
Contig_040642 
Contig_030845 
Contig_024696 
Contig_162320 
Contig_086396 
Contig_049251 
Contig_123169 
Contig_140646 
Contig_065619 
Contig_090326 
Contig_093827 
Contig_127304 
Contig_037374 
Contig_068236 
Contig_128843 
Contig_003875 
Contig_156677 
Contig_010022 
Contig_012493 
Contig_072346 
Contig_000624 
Contig_155837 
Contig_044313 
Contig_166676 
Contig_044142 
Contig_054577 
Contig_016531 
Contig_009065 
Contig_158896 
Contig_139986 
Contig_102577 
Contig_060095 
Contig_052566 
Contig_131434 
Contig_130897 
Contig_165244 
Contig_044697 
Contig_097582 
Contig_002092 
Contig_009448 
Contig_055685 
Contig_158021 
Contig_152872 

Contig_032078 
Contig_053804 
Contig_049804 
Contig_156103 
Contig_147573 
Contig_106922 
Contig_132255 
Contig_049579 
Contig_039650 
Contig_140551 
Contig_052346 
Contig_150211 
Contig_150707 
Contig_098722 
Contig_085377 
Contig_163943 
Contig_081525 
Contig_123329 
Contig_068186 
Contig_070307 
Contig_154136 
Contig_008714 
Contig_077489 
Contig_028720 
Contig_099142 
Contig_151785 
Contig_082626 
Contig_079279 
Contig_089311 
Contig_159035 
Contig_021478 
Contig_102062 
Contig_126333 
Contig_001295 
Contig_168160 
Contig_147577 
Contig_153027 
Contig_156317 
Contig_150368 
Contig_020983 
Contig_149301 
Contig_050898 
Contig_152273 
Contig_137960 
Contig_058301 
Contig_020376 
Contig_154771 
Contig_082452 
Contig_127574 
Contig_020985 
Contig_167874 
Contig_018040 
Contig_097697 
Contig_012464 
Contig_064393 
Contig_067869 
Contig_109912 
Contig_122962 
Contig_086181 
Contig_072798 
Contig_019703 
Contig_042124 
Contig_131499 
Contig_000975 
Contig_013590 
Contig_165590 
Contig_101439 
Contig_124976 
Contig_040075 
Contig_043353 

Contig_074490 
Contig_007184 
Contig_161757 
Contig_052191 
Contig_119907 
Contig_140076 
Contig_055664 
Contig_114268 
Contig_168046 
Contig_002088 
Contig_007169 
Contig_049936 
Contig_157280 
Contig_120316 
Contig_044269 
Contig_056796 
Contig_046485 
Contig_029502 
Contig_154568 
Contig_016025 
Contig_150728 
Contig_031154 
Contig_130328 
Contig_053129 
Contig_148615 
Contig_064645 
Contig_146291 
Contig_029670 
Contig_169953 
Contig_136002 
Contig_081866 
Contig_067876 
Contig_150950 
Contig_126310 
Contig_086909 
Contig_028223 
Contig_079550 
Contig_121561 
Contig_129576 
Contig_039185 
Contig_082010 
Contig_113084 
Contig_108583 
Contig_040010 
Contig_137499 
Contig_159205 
Contig_070226 
Contig_110139 
Contig_167632 
Contig_006524 
Contig_018476 
Contig_071861 
Contig_115282 
Contig_005916 
Contig_098880 
Contig_146626 
Contig_010889 
Contig_023425 
Contig_151986 
Contig_042516 
Contig_098073 
Contig_002401 
Contig_059572 
Contig_111936 
Contig_110614 
Contig_003100 
Contig_005060 
Contig_145760 
Contig_043090 
Contig_149931 

Contig_149964 
Contig_087696 
Contig_142809 
Contig_062177 
Contig_060112 
Contig_022017 
Contig_125330 
Contig_117852 
Contig_025450 
Contig_002279 
Contig_101157 
Contig_099144 
Contig_025538 
Contig_076661 
Contig_129776 
Contig_053854 
Contig_020200 
Contig_159873 
Contig_115664 
Contig_146751 
Contig_127738 
Contig_065743 
Contig_028789 
Contig_080100 
Contig_113119 
Contig_006957 
Contig_032835 
Contig_058423 
Contig_087832 
Contig_060157 
Contig_031037 
Contig_099332 
Contig_137915 
Contig_084292 
Contig_104408 
Contig_023204 
Contig_093926 
Contig_073592 
Contig_123149 
Contig_033108 
Contig_147281 
Contig_129600 
Contig_014594 
Contig_161999 
Contig_084384 
Contig_088262 
Contig_045121 
Contig_060158 
Contig_167222 
Contig_135892 
Contig_090138 
Contig_142234 
Contig_089536 
Contig_049759 
Contig_108508 
Contig_154693 
Contig_155415 
Contig_034390 
Contig_141429 
Contig_134106 
Contig_064017 
Contig_136647 
Contig_129348 
Contig_145642 
Contig_054162 
Contig_085879 
Contig_096539 
Contig_159189 
Contig_021767 
Contig_077116 
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Contig_075470 
Contig_019542 
Contig_017968 
Contig_086570 
Contig_048634 
Contig_006838 
Contig_107849 
Contig_007162 
Contig_000893 
Contig_071140 
Contig_124270 
Contig_074681 
Contig_137289 
Contig_090483 
Contig_053837 
Contig_040380 
Contig_049355 
Contig_046596 
Contig_024446 
Contig_085692 
Contig_155966 
Contig_106750 
Contig_039922 
Contig_062837 
Contig_139961 
Contig_155772 
Contig_008612 
Contig_107934 
Contig_041691 
Contig_118172 
Contig_091019 
Contig_044766 
Contig_153986 
Contig_135960 
Contig_032659 
Contig_135604 
Contig_118916 
Contig_138311 
Contig_168527 
Contig_050041 
Contig_068783 
Contig_020229 
Contig_020055 
Contig_051705 
Contig_141257 
Contig_148713 
Contig_022645 
Contig_020838 
Contig_112750 
Contig_148833 
Contig_099758 
Contig_103432 
Contig_103009 
Contig_145147 
Contig_070138 
Contig_135190 
Contig_046606 
Contig_013873 
Contig_142905 
Contig_163442 
Contig_082628 
Contig_111991 
Contig_034646 
Contig_158042 
Contig_092991 
Contig_060746 
Contig_025046 
Contig_133959 
Contig_020504 
Contig_013814 

Contig_160061 
Contig_130289 
Contig_043819 
Contig_045535 
Contig_091015 
Contig_031653 
Contig_002548 
Contig_144194 
Contig_156784 
Contig_066988 
Contig_058158 
Contig_119838 
Contig_091047 
Contig_120949 
Contig_056342 
Contig_135813 
Contig_036834 
Contig_020858 
Contig_064289 
Contig_114039 
Contig_026091 
Contig_056680 
Contig_040608 
Contig_078455 
Contig_059499 
Contig_019538 
Contig_097756 
Contig_131765 
Contig_001864 
Contig_035665 
Contig_050263 
Contig_161235 
Contig_050450 
Contig_053687 
Contig_043263 
Contig_127761 
Contig_146634 
Contig_027229 
Contig_049086 
Contig_063719 
Contig_146018 
Contig_112681 
Contig_018309 
Contig_165261 
Contig_077893 
Contig_074843 
Contig_037227 
Contig_157401 
Contig_056662 
Contig_065156 
Contig_079281 
Contig_065418 
Contig_046448 
Contig_031447 
Contig_054762 
Contig_166696 
Contig_040846 
Contig_085983 
Contig_113925 
Contig_093601 
Contig_140308 
Contig_161046 
Contig_080205 
Contig_033882 
Contig_101497 
Contig_163476 
Contig_012683 
Contig_117338 
Contig_076306 
Contig_054911 

Contig_110471 
Contig_002353 
Contig_144747 
Contig_144435 
Contig_036482 
Contig_048832 
Contig_015443 
Contig_124486 
Contig_040310 
Contig_078934 
Contig_141357 
Contig_152394 
Contig_078053 
Contig_097427 
Contig_146455 
Contig_042644 
Contig_069573 
Contig_015678 
Contig_044321 
Contig_105603 
Contig_000066 
Contig_049363 
Contig_135617 
Contig_054925 
Contig_066316 
Contig_003507 
Contig_145176 
Contig_069340 
Contig_014945 
Contig_077063 
Contig_115228 
Contig_013768 
Contig_098190 
Contig_072041 
Contig_155941 
Contig_023426 
Contig_130390 
Contig_069845 
Contig_061909 
Contig_107265 
Contig_142930 
Contig_011339 
Contig_085194 
Contig_139522 
Contig_033810 
Contig_088270 
Contig_031304 
Contig_163639 
Contig_048772 
Contig_056195 
Contig_003104 
Contig_077321 
Contig_066321 
Contig_066824 
Contig_001033 
Contig_166148 
Contig_028319 
Contig_049237 
Contig_027824 
Contig_106684 
Contig_036196 
Contig_052594 
Contig_143264 
Contig_031084 
Contig_166776 
Contig_065819 
Contig_048297 
Contig_047697 
Contig_138666 
Contig_028123 

Contig_147279 
Contig_112070 
Contig_023632 
Contig_108504 
Contig_008858 
Contig_123522 
Contig_063982 
Contig_128629 
Contig_166652 
Contig_129565 
Contig_036043 
Contig_044494 
Contig_146327 
Contig_041474 
Contig_119414 
Contig_014038 
Contig_143169 
Contig_095796 
Contig_047386 
Contig_093016 
Contig_091583 
Contig_153444 
Contig_007848 
Contig_161455 
Contig_143760 
Contig_123200 
Contig_010713 
Contig_078675 
Contig_124851 
Contig_041810 
Contig_120708 
Contig_138968 
Contig_158032 
Contig_138364 
Contig_053244 
Contig_002203 
Contig_043939 
Contig_169754 
Contig_013604 
Contig_064211 
Contig_079492 
Contig_164543 
Contig_045211 
Contig_065644 
Contig_110989 
Contig_107485 
Contig_151092 
Contig_138071 
Contig_006804 
Contig_096135 
Contig_078956 
Contig_103403 
Contig_135685 
Contig_022888 
Contig_151429 
Contig_111993 
Contig_118854 
Contig_126372 
Contig_143272 
Contig_041893 
Contig_002428 
Contig_080947 
Contig_170023 
Contig_036888 
Contig_043424 
Contig_088282 
Contig_097698 
Contig_137733 
Contig_160193 
Contig_073038 

Contig_049711 
Contig_054637 
Contig_093606 
Contig_148869 
Contig_156584 
Contig_054643 
Contig_123111 
Contig_027830 
Contig_041702 
Contig_128087 
Contig_002981 
Contig_056239 
Contig_136898 
Contig_062160 
Contig_055249 
Contig_007141 
Contig_106700 
Contig_126867 
Contig_118248 
Contig_017398 
Contig_062784 
Contig_004569 
Contig_011163 
Contig_082078 
Contig_068583 
Contig_105896 
Contig_142371 
Contig_096292 
Contig_167938 
Contig_001722 
Contig_122666 
Contig_051793 
Contig_134373 
Contig_093625 
Contig_090392 
Contig_005513 
Contig_075234 
Contig_142830 
Contig_095678 
Contig_098474 
Contig_161900 
Contig_165705 
Contig_003374 
Contig_070355 
Contig_135693 
Contig_013298 
Contig_078507 
Contig_093533 
Contig_022118 
Contig_020375 
Contig_092766 
Contig_115425 
Contig_146889 
Contig_160402 
Contig_116354 
Contig_008116 
Contig_050814 
Contig_037410 
Contig_045762 
Contig_077368 
Contig_116244 
Contig_123650 
Contig_018338 
Contig_142762 
Contig_084895 
Contig_073649 
Contig_062755 
Contig_145421 
Contig_112329 
Contig_051784 

Contig_029298 
Contig_064396 
Contig_099934 
Contig_018541 
Contig_136136 
Contig_005276 
Contig_024622 
Contig_097972 
Contig_048138 
Contig_139867 
Contig_014718 
Contig_032665 
Contig_090013 
Contig_082922 
Contig_003359 
Contig_080639 
Contig_162007 
Contig_002190 
Contig_084992 
Contig_112374 
Contig_052773 
Contig_057789 
Contig_002968 
Contig_059966 
Contig_090123 
Contig_130204 
Contig_032959 
Contig_157372 
Contig_112557 
Contig_105774 
Contig_045042 
Contig_025394 
Contig_143174 
Contig_046605 
Contig_158424 
Contig_005163 
Contig_144315 
Contig_021491 
Contig_051735 
Contig_109509 
Contig_089172 
Contig_018129 
Contig_042023 
Contig_064069 
Contig_164406 
Contig_083626 
Contig_012179 
Contig_009981 
Contig_158932 
Contig_071136 
Contig_095508 
Contig_167867 
Contig_071970 
Contig_144773 
Contig_152822 
Contig_144088 
Contig_106216 
Contig_123322 
Contig_125838 
Contig_162060 
Contig_081005 
Contig_082908 
Contig_055186 
Contig_032794 
Contig_014442 
Contig_162726 
Contig_155876 
Contig_148449 
Contig_154872 
Contig_131839 
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Contig_085784 
Contig_022006 
Contig_089275 
Contig_154484 
Contig_146893 
Contig_121928 
Contig_133565 
Contig_046508 
Contig_044773 
Contig_101297 
Contig_062762 
Contig_116973 
Contig_137636 
Contig_054083 
Contig_040490 
Contig_046848 
Contig_050086 
Contig_038723 
Contig_052896 
Contig_135864 
Contig_004744 
Contig_050900 
Contig_088845 
Contig_152178 
Contig_094031 
Contig_015004 
Contig_107267 
Contig_016092 
Contig_008359 
Contig_117502 
Contig_002449 
Contig_146580 
Contig_062213 
Contig_060386 
Contig_048779 
Contig_072145 
Contig_069601 
Contig_145912 
Contig_083754 
Contig_132905 
Contig_143789 
Contig_143993 
Contig_161130 
Contig_097518 
Contig_020422 
Contig_055197 
Contig_062326 
Contig_061977 
Contig_158514 
Contig_119493 
Contig_134219 
Contig_153655 

Contig_020812 
Contig_162107 
Contig_087654 
Contig_115066 
Contig_112540 
Contig_117330 
Contig_090860 
Contig_109237 
Contig_102491 
Contig_153227 
Contig_146261 
Contig_154305 
Contig_113687 
Contig_121845 
Contig_142090 
Contig_157921 
Contig_112813 
Contig_019385 
Contig_066566 
Contig_125629 
Contig_059500 
Contig_068666 
Contig_006869 
Contig_017552 
Contig_128845 
Contig_053125 
Contig_095544 
Contig_091429 
Contig_086901 
Contig_100866 
Contig_117773 
Contig_070356 
Contig_066678 
Contig_035164 
Contig_062810 
Contig_019640 
Contig_148908 
Contig_083696 
Contig_055393 
Contig_145586 
Contig_071352 
Contig_082545 
Contig_004704 
Contig_116690 
Contig_118385 
Contig_011538 
Contig_088025 
Contig_144085 
Contig_128343 
Contig_031098 
Contig_105864 
Contig_158614 

Contig_094914 
Contig_025903 
Contig_015793 
Contig_064153 
Contig_145014 
Contig_003194 
Contig_158383 
Contig_123030 
Contig_064832 
Contig_061922 
Contig_025305 
Contig_039314 
Contig_138114 
Contig_053264 
Contig_076799 
Contig_054652 
Contig_042171 
Contig_114883 
Contig_158005 
Contig_008307 
Contig_013556 
Contig_034138 
Contig_012335 
Contig_085028 
Contig_097505 
Contig_073591 
Contig_053077 
Contig_155200 
Contig_122506 
Contig_015946 
Contig_040276 
Contig_083131 
Contig_089033 
Contig_061526 
Contig_087710 
Contig_066992 
Contig_069575 
Contig_170530 
Contig_056187 
Contig_070025 
Contig_091905 
Contig_154691 
Contig_034043 
Contig_140942 
Contig_129636 
Contig_162629 
Contig_051711 
Contig_037363 
Contig_004109 
Contig_041252 
Contig_089105 
Contig_162895 

Contig_073431 
Contig_123164 
Contig_158497 
Contig_003657 
Contig_112056 
Contig_126112 
Contig_137932 
Contig_012245 
Contig_000761 
Contig_152414 
Contig_077481 
Contig_072923 
Contig_119860 
Contig_006040 
Contig_085451 
Contig_051894 
Contig_083091 
Contig_008480 
Contig_033668 
Contig_055271 
Contig_032932 
Contig_070687 
Contig_159458 
Contig_094535 
Contig_097822 
Contig_163821 
Contig_118875 
Contig_008152 
Contig_169931 
Contig_108671 
Contig_164032 
Contig_150569 
Contig_155701 
Contig_149092 
Contig_118972 
Contig_114687 
Contig_107348 
Contig_024042 
Contig_127317 
Contig_155288 
Contig_160595 
Contig_098813 
Contig_063426 
Contig_030637 
Contig_059037 
Contig_162648 
Contig_060405 
Contig_158267 
Contig_074447 
Contig_145825 
Contig_061481 
Contig_127515 

Contig_076289 
Contig_155569 
Contig_115567 
Contig_083085 
Contig_039918 
Contig_021076 
Contig_153580 
Contig_078152 
Contig_160710 
Contig_143877 
Contig_066003 
Contig_071001 
Contig_032649 
Contig_148116 
Contig_165862 
Contig_007870 
Contig_055746 
Contig_161866 
Contig_038927 
Contig_088378 
Contig_092905 
Contig_045483 
Contig_058305 
Contig_020383 
Contig_085137 
Contig_106648 
Contig_148952 
Contig_169423 
Contig_129312 
Contig_120284 
Contig_003032 
Contig_044761 
Contig_005798 
Contig_065461 
Contig_133660 
Contig_073881 
Contig_046258 
Contig_051775 
Contig_049288 
Contig_134282 
Contig_036168 
Contig_046954 
Contig_113761 
Contig_159240 
Contig_074055 
Contig_057928 
Contig_056902 
Contig_115691 
Contig_044535 
Contig_080218 
Contig_160272 
Contig_148034 

Contig_082208 
Contig_010734 
Contig_019943 
Contig_002460 
Contig_058986 
Contig_054090 
Contig_128546 
Contig_144066 
Contig_140950 
Contig_019193 
Contig_020494 
Contig_162076 
Contig_003491 
Contig_150316 
Contig_107177 
Contig_003918 
Contig_104565 
Contig_022425 
Contig_018028 
Contig_020739 
Contig_028830 
Contig_138358 
Contig_003530 
Contig_137121 
Contig_036114 
Contig_090894 
Contig_137330 
Contig_101584 
Contig_060261 
Contig_166757 
Contig_165824 
Contig_078428 
Contig_095139 
Contig_086852 
Contig_041146 
Contig_013526 
Contig_040335 
Contig_153939 
Contig_095050 
Contig_040757 
Contig_107026 
Contig_036464 
Contig_047249 
Contig_044343 
Contig_074974 
Contig_011853 
Contig_022668 
Contig_118307 
Contig_141165 
Contig_041673 
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Appendix IV 

 
 
 
 
 
 
 

  
 

Figure S1 Alignment of full-length Linum tenue contigs Ltenue_Contig141165_5’3’_Frame1-3,  Ltenue_Contig141165_3’5’_Frame1-3, TSS1 and 
VUP1-4. The sequnces are sorted by their position on the calculated tree (Fig S2) Alignments were made using MUSCLE v3.8.31, and amino acid 
residues coloured according to their physicochemical properties (Clustalx colouring system). M1-4 indicate conserved sequence motifs, as defined by 
Grienenberger & Douglas (2014), among VUP1 homologs. 
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Appendix V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2 UPGMA tree of average distance for calculated using percentage sequence similarity 
with Jalview v2.9. Full-length Linum tenue contigs Ltenue_Contig141165_5’3’_Frame1-3,  
Ltenue_Contig141165_3’5’_Frame1-3, TSS1 and VUP1-4. 
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Appendix VI 

+--LtenueContig051339_1-440 
| 
|  +**LtenueContig051340_1-376 
+--| (98.4/99) 
|  +--LtenueContig051341_1-362 
| 
|                                      +-------Ltenue_Contig141165_1-300 
|                      +---------------| (99.6/99) 
|                      |               +--------TSS1_1-173 
|                   +--| (78.3/32) 
|                   |  |                 +-----VUP2_At1g50930_1-196 
|                   |  |      +----------| (99.4/67) 
|                   |  |      |          +----VUP3_AT3G20557_1-130 
|                   |  |  +---| (85.1/46) 
|                   |  |  |   +--------VUP4_AT5G54790_1-165 
|                   |  +--| (61.5/39) 
|                   |     |      +--Populus_trichocarpa3_1-196 
|                   |     |  +---| (99.1/96) 
|                   |     |  |   +--Populus_trichocarpa4_1-199 
|                   |     +--| (90.4/80) 
|                   |        +----Ricinus_communis_2_1-203 
|                +--| (68.4/37) 
|                |  |        +--VUP1_At3g21710_1-211 
|                |  +--------| (94.7/56) 
|                |           +-----------------------------------Selaginella_moellendorffii_1-181 
|             +--| (65.2/28) 
|             |  +---Ricinus_communis_1_1-198 
|          +--| (92.2/61) 
|          |  +----Vitis_vinifera_1-191 
|       +--| (78.6/55) 
|       |  |  +--Populus_trichocarpa1_1-192 
|       |  +--| (93.5/96) 
|       |     +--Populus_trichocarpa2_1-162 
|    +--| (87.9/71) 
|    |  +-------Glycine_max_1-178 
+----| (97.9/99) 
     |              +---Zea_mays_1-223 
     |           +--| (18.2/80) 
     |           |  +--Brachypodium_distachyon_1-193 
     +-----------| (100/100) 
                 +---Oryza_sativa_1-183 

Figure S3 Unrooted maximum likelihood tree of L. tenue Contig_141165, its putative 
paralogs (Contig_051339-41), its putative ortholog in L. grandiflorum (TSS1) and its 
putative homologs from across the tracheophyta. Percentage SH-aRLT support and 
ultrafast bootstrap support are respectively shown for each node. 
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Appendix VII 

 
 

 
  

Figure S4 Power curve of the post-hoc power analysis. The curve was constructed using 
RNAseqPS (Guo et al., 2014) with the following parameters: sample size (n) 50; FDR step-up 
threshold (fdr) 0.05; total number of genes for testing (m) 170,642; expected number of prognostic 
genes (m1) 2000; minimum fold changes for prognostic genes between two groups (rho) 2; average 
read counts for prognostic genes (lambda0) 1150; dispersion for prognostic genes (phi0) 0.4; ratio 
of normalisation factors between two groups (w) 1. The values for fdr and rho represent the FDR 
step-up and minimum fold change thresholds that were used for the differential expression; the 
value of m represents the total number of features in the analysis (number of contigs in the 
reference); the value for m1 represents the number of differentially expressed features found in 
our analysis; the value for lambda0 is the (normalised) average of read counts for all differentially 
expressed features. Other values are used at default settings. 
 


