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Abstract

The evolution of Active Galactic Nuclei (AGNs) is crucial to galaxy evolution,

given that AGNs affect their host galaxies via AGN feedback. In this thesis, I present

predictions for the evolution of supermassive black holes (SMBHs) and AGNs from

the semi-analytic model of galaxy formation galform, over a range of redshift

(0 < z < 15) and wavelength (from radio to X-ray). First, I compare SMBH masses

and AGN optical to X-ray luminosities from the model for z < 6 to observations, and

explore the evolution of typical SMBHs within the model. I find that the median

SMBH spin evolves very little over this redshift range. Secondly, I present predictions

for z ≥ 7 for future surveys by JWST, EUCLID, ATHENA, and Lynx. I find that

Lynx will detect the smallest SMBHs in the smallest host galaxies and host haloes,

and that the predictions are generally insensitive to the SMBH seed mass. Thirdly, I

predict the evolution of jet powers and (core-dominated) radio luminosities from the

model for z < 6, and compare the evolution of these to observations. I predict the jet

powers, halo masses, and fuelling mechanisms that dominate the model predictions.

Finally, I present predictions of radio luminosities, lobe sizes and Fanaroff-Riley

types of radio sources by combining a radio lobe evolution model appropriate for

extended sources with the galaxy formation model. I find that this model generally

is in good agreement with observed radio properties at z = 0, except for the fractions

of Fanaroff-Riley sources, the number of low luminosity radio sources in high stellar

mass galaxies, and the number of large sources. I explore the effect of varying

different free parameters of this radio model, and suggest potential improvements.
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A.3 Different rest-frame 1500Å obscuration models . . . . . . . . . . . . . 200

A.4 Different rest-frame soft X-ray obscuration models . . . . . . . . . . . 201

A.5 The bolometric luminosity function derived in this work . . . . . . . . 202

A.6 The constructed bolometric luminosity functions for different obscu-

ration models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.7 The effect on the AGN bolometric luminosity function of varying

∆twindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.8 The AGN bolometric luminosity function using the time averaging

method and the snapshot luminosities . . . . . . . . . . . . . . . . . . 205

A.9 The effect on the AGN bolometric luminosity function of varying the

parameter fq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.10 The effect on the AGN bolometric luminosity function of varying the

parameter ηEdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.11 The effect on the AGN bolometric luminosity function of switching

off disc instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



List of Figures xiii

A.12 The effect on the AGN bolometric luminosity function of turning off

the SMBH spinup evolution . . . . . . . . . . . . . . . . . . . . . . . 209

A.13 The effect on the AGN luminosity function of changing the accretion

efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.1 The effect of halo mass resolution on the AGN bolometric luminosity

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.2 The effect of seed mass on the AGN luminosity function . . . . . . . 213

C.1 A schematic of the structure of supersonic radio sources in the model 218



Declaration

The work in this thesis is based on research carried out by the author between 2015

and 2019 at the Institute for Computational Cosmology, Durham University, whilst

the author was a research student under the supervision of Prof. Cedric Lacey. No

part of this thesis has been submitted elsewhere for any other degree or qualification.

Chapter 3 and Appendix A have been published in the form of an article in the

Monthly Notices of the Royal Astronomical Society:

The evolution of SMBH spin and AGN luminosities for z < 6 within a semi-

analytic model of galaxy formation, Griffin, Andrew J.; Lacey, Cedric G.; Gonzalez-

Perez, Violeta; Lagos, Claudia del P.; Baugh, Carlton M.; Fanidakis, Nikos,

2019, MNRAS, 487, 198

Chapter 4 and Appendix B has been submitted as an article to the Monthly

Notices of the Royal Astronomical Society:

AGNs at the cosmic dawn: predictions for future surveys from a ΛCDM cos-

mological model, Griffin, Andrew J.; Lacey, Cedric G.; Gonzalez-Perez, Violeta;

Lagos, Claudia del P.; Baugh, Carlton M.; Fanidakis, Nikos

Chapter 5 will be submitted as an article to the Monthly Notices of the Royal

Astronomical Society:

The evolution of radio jets across cosmic time, Griffin, Andrew J.; Lacey, Cedric

G.; Gonzalez-Perez, Violeta; Lagos, Claudia del P.

Chapter 6 and Appendix C will be submitted as an article to the Monthly Notices

of the Royal Astronomical Society:

xiv



List of Figures xv

Extended radio emission from AGNs in a hierarchical model of galaxy formation,

Griffin, Andrew J.; Lacey, Cedric G.

Copyright c© 2019 by ANDREW JAMES GRIFFIN.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.



Acknowledgements

There are many people to thank for this thesis coming together. Firstly, I would like

to thank my supervisor, Cedric Lacey, for sharing your comprehensive knowledge of

astrophysics and for giving clear advice throughout my PhD. Thanks also to Carl-

ton Baugh for helpful suggestions, and to Chris Done for accretion-based wisdom.

Thanks also to Violeta Gonzalez-Perez for teaching me the ways of galform, and

to Claudia Lagos for fascinating plots to make.

Thank you to colleagues here at Durham who have asked brilliant questions and

to those at conferences who have given me fresh insights into my work. Thank you

to those who I have shared an office: Stuart, Helen, Sownak, Hou Jun, Flora, Anna,

Jacob, Tom C, Lee and Jan. Thank you for helping with any coding issues and for

asking how my weekend has been.

Thanks to those in Durham who have helped life outside of work be enjoyable,

I thank housemates over the years: Piotr, Jamie, Cam, JP, Phil and Ali for late

night McDonald’s trips, Fifa sessions, and for brunch at the Duke. Thank you to

those in Castle MCR and at Christchurch Durham who I’ve got to know over the

years. Thank you to those from Oxford who have kept in touch, and for those from

Holywell Church for keeping an interest in my wellbeing.

Thank you to Mum and Dad, for your continuous support and encouragement,

and for teaching me to follow my passion. Thank you to David and Esther (and

Daniel) for making me part of your life.

Finally, I thank the Lord Jesus Christ, whose sacrifice gives me purpose for life

today, and who created the stars, galaxies, and black holes for us to understand.

xvi



Dedicated to
Mum and Dad, for your support



Chapter 1

Introduction

1.1 Introducing AGNs

1.1.1 A brief history of AGNs

The history of observations of Active Galactic Nuclei (AGNs) dates back just over a

century, to 1908, when Edward Fath was performing optical spectroscopy on objects

thought to be ‘spiral nebulae’ within the Milky Way. He found that one of them,

NGC 1068, had an unusual spectrum, showing broad emission lines (Fath, 1909).

These lines were confirmed by Vesto Slipher in 1917 (Slipher, 1917), who found

that these emission lines were spread over a substantial range of wavelengths. Not

that long after, Edwin Hubble determined that some of these nebulae, including

NGC 1068, in fact reside outside of our own galaxy (Hubble, 1926). Extragalactic

astronomy had been born.

A systematic study of these galaxies with these strong emission lines was con-

ducted by Carl Seyfert in 1943 (Seyfert, 1943), but this was not enough to launch

AGNs as a major focus of astronomical research. The end of World War II saw great

developments in radio astronomy, as many radio engineers began to apply their ex-

pertise to astronomy, and the following decades saw many detections of radio sources,

sometimes coincident with optical sources. An unusual class of object discovered

were ‘quasi-stellar sources’ or ‘quasars’. Optical observations of these objects showed

broad emission lines at unfamiliar wavelengths, and more near-ultraviolet emission

2
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than normal stars. The discovery by Maarten Schmidt in 1963 that the quasar

associated with the radio source 3C273 has a redshift of 0.158 (Schmidt, 1963) -

considered enormous at the time - revealed that quasars are of extragalactic origin,

and launched the study of AGNs in a cosmological context.

The vast distances to AGNs implied very high optical luminosities, and hence

there was interest in understanding the mechanism by which AGNs could produce

such high luminosities. This mechanism was suggested by Edwin Salpeter in 1964

to be accretion of gas onto extremely massive objects of a small size (Salpeter, 1964;

Lynden-Bell, 1969). It is now widely accepted that AGNs are powered by accretion

onto a supermassive black hole (SMBH), with SMBHs observed in the centres of

galaxies with masses, MBH ∼ 105 − 1010M�. Black holes form when an amount of

matter occupies a small enough volume so that no physical force can prevent its

collapse under gravity, and the object is believed to collapse to form a singularity.

The singularity is bounded by a surface, referred to as the event horizon, where

the escape velocity from the black hole is equal to the speed of light. Evidence

for SMBHs in the centres of galaxies has come from observations of the dynamics

of the centre of the galaxy M87, which indicated a supermassive object of mass

MBH ∼ 5 × 109M� in the centre (Young et al., 1978; Sargent et al., 1978). More

recently, the imaging of the accretion disc and event horizon of the supermassive

black hole in the centre of the galaxy M87 using the Event Horizon Telescope (EHT

- Event Horizon Telescope Collaboration et al., 2019), has provided good evidence

for this picture, finding a mass of MBH ≈ 6.5× 109M�. Future observations of the

event horizon of the SMBH in our own galaxy using the EHT are planned, which

will no doubt deepen our understanding of our closest SMBH.

1.1.2 The role of AGNs in galaxy formation

SMBHs in the centres of galaxies are believed to play an important role in galaxy

formation and evolution. This is indicated by several pieces of evidence. First, X-ray

observations of some clusters revealed the ‘cooling flow problem’. From the X-ray

emission of the hot intergalactic gas, a cooling time for the gas can be calculated,

but for these objects, despite the cooling time being much shorter than the age of the
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cluster, the gas in the centres is not observed to be condensing and turning into stars

(Cowie & Binney, 1977; Fabian & Nulsen, 1977). These clusters therefore require

some form of heating mechanism that could counterbalance the cooling. Secondly,

giant elliptical galaxies are observed to have entirely old stellar populations. Within

the standard paradigm of galaxy formation (i.e. hierarchical structure formation),

one expects larger structures (and hence larger galaxies) to form later (Lacey & Cole,

1993), and therefore for these galaxies to have at least some young stars. While one

could imagine scenarios where larger galaxies could have a lack of stars (e.g. if

they are formed by mergers of gas-poor ellipticals), careful theoretical modelling

shows we expect at least some young stars to form in the largest galaxies. Thirdly,

observational studies have also measured correlations between the mass of the SMBH

and the mass or the velocity dispersion of the host galaxy bulge (e.g. Magorrian et al.,

1998; Häring & Rix, 2004; McConnell & Ma, 2013). These correlations suggest that

there is some sort of ‘co-evolution’ occurring between SMBHs and their host galaxies.

Fourthly, there is observed to be a sharp decrease in the number density of objects

at the bright end of the galaxy luminosity function, which was hard to show using

the understanding of the physical processes involved in galaxy formation in the early

2000s.

Combining these requirements, it was shown in theoretical models of galaxy

formation that if a central SMBH heats the halo gas, such that it suppresses the

cooling of the hot gas in the halo and shuts off star formation, that a match to

the observed galaxy luminosity function can be obtained (e.g. Bower et al., 2006;

Croton et al., 2006). This heating by an AGN addresses the observational puzzles

described above. Examples of this ‘AGN feedback’ occurring can be observed in

X-ray images of galaxy groups and clusters, where giant ‘cavities’ are seen at X-

ray energies and coincide with the lobes of radio sources (e.g. Randall et al., 2011;

Blanton et al., 2011). The SMBH is believed to provide the energy for the radio

source, and therefore causes the evacuation of the gas in the host galaxy halo.

The inclusion of an AGN feedback prescription into theoretical models of galaxy

formation also allowed other open questions in galaxy evolution to be addressed. The

colour distribution of galaxies is observed to be bimodal, with a population of blue,
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star-forming galaxies and a population of red, quiescent galaxies. The bimodality

implies that the mechanism by which galaxies transition from the former to the

latter is relatively fast. While mergers had been proposed as a mechanism for this

transition, feedback from AGNs is thought to be able to terminate star formation

and redden galaxies much faster (Springel et al., 2005).

Overall, the evidence from observations and theoretical models suggests a con-

nection between SMBHs and their host galaxies. I now turn to consider our current

understanding of galaxy formation.

1.2 Galaxy formation

Decades of observations of galaxies and the development of state-of-the-art theoret-

ical galaxy formation models have greatly advanced our understanding of the wide

variety of galaxies observed. The theoretical models are generally developed within

the currently accepted cosmological paradigm, ΛCDM.

1.2.1 The ΛCDM Paradigm

In the ΛCDM paradigm, the energy density of the Universe today is dominated by

dark energy (a vacuum energy density), and cold dark matter, which is non-baryonic

matter with negligible thermal velocity at decoupling. Dark energy constitutes about

70 per cent of the energy density, and cold dark matter constitutes about 26 per

cent of the energy density. The other 4 per cent is composed of baryons, which

constitute the stars and gas in the Universe, and radiation, which contributes a

negligible fraction of the Universe today.

The idea that the Universe contains a dark matter component dates back to the

work of Oort (1932) analysing the orbits of stars in the Milky Way, and Zwicky

(1933) analysing the orbits of galaxies in the Coma cluster. The velocities of the

orbits of these objects were found to imply total masses above the masses from

the observed luminous matter. This analysis was subsequently complemented by

measurements of the rotation curves of galaxies, which were showed to be flat out

to large radii (Roberts & Rots, 1973; Rubin et al., 1980).
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The nature of dark matter is yet to be clarified. Initially, dark matter was

thought to consist of faint, compact objects, that are composed of baryons, such as

black holes and brown dwarfs. However, there have been insufficient micro-lensing

signatures from such objects to provide the mass required (Alcock et al., 2000).

Constraints on the baryon energy density, Ωb, can be obtained from the abundance

of light elements produced in Big Bang nucleosynthesis (e.g. Alpher et al., 1948),

which occurs ∼ 100s after the Big Bang. When compared to values of the matter

energy density, Ωm, obtained from the abundances of clusters (e.g. Vikhlinin et al.,

2009), it is found that Ωb � Ωm. Dark matter therefore cannot be baryonic.

Many different elementary particles have been suggested to be dark matter, al-

though some have been ruled out by cosmological constraints, such as neutrinos.

Neutrinos have a small rest mass (∼ 100eV ), causing them to travel at relativis-

tic velocities, and hence they free-stream out of perturbations, erasing structure

on scales smaller than superclusters (∼ 1015M�). Current possible candidates for

dark matter include exotic particles such as axions, or weakly-interacting massive

particles, such as sterile neutrinos.

Evidence for the Universe’s dark energy component has only emerged more re-

cently. A rare type of supernova, type Ia, occurs when a white dwarf explodes

after having accreted material from a companion star. As the white dwarf accretes

material, it eventually accretes sufficient mass that the electron degeneracy pres-

sure can no longer prevent its collapse. The luminosity of type Ia supernovae is a

known quantity (given a measured light curve), and so from the luminosities and

redshifts of these objects, cosmological parameters can be inferred. Observations

of these supernovae in other galaxies found that they were fainter than would be

expected in a matter dominated universe, and so the expansion of the Universe must

be accelerating (Riess et al., 1998; Perlmutter et al., 1999).

Other evidence for dark energy comes from temperature fluctuations in the Cos-

mic Microwave Background (CMB). The CMB, disovered by Penzias & Wilson

(1965), is a relic of the early Universe from the era of recombination, which oc-

cured when the Universe was about 380,000 years old. Prior to recombination,

the Universe was ionised and Thomson scattering was the dominant interaction



1.2. Galaxy formation 7

between matter and radiation, which were in thermal equilibrium. After recombi-

nation, matter and radiation were able to evolve separately, with photons able to

propagate freely through the Universe. The CMB is generally isotropic, and can

be well fit by a blackbody of temperature ∼ 3K, but there are some deviations

from this uniform temperature of 30µK. From the angular power spectrum of these

fluctuations, cosmological parameters can be constrained. These analyses indicate

that the Universe is described by a flat geometry. To close the Universe to a flat

geometry, a dark energy component is required in addition to the mass provided by

baryons and dark matter.

The Universe therefore is such that most of its mass is in dark energy and dark

matter, while the majority of the luminosity is provided by main sequence stars,

despite only contributing ∼ 0.16% of the total density (e.g. Fukugita & Peebles,

2004). The Universe is also remarkably inefficient at forming stars, with only 6% of

the baryons forming stars, the rest being in the form of warm intergalactic plasma,

or intracluster plasma (Fukugita & Peebles, 2004). Understanding why such a small

fraction of baryons form stars is one of the motivations for understanding galaxy

formation. I now proceed to outline a theoretical picture of galaxy formation.

1.2.2 Theoretical Models of Galaxy Formation

Quantum fluctuations in the scalar field that drives inflation, that are then expanded

to galaxy and larger scales by inflation, are thought to seed structure formation.

These perturbations are observed in the CMB. While the initial, linear growth of

these density perturbations can be calculated analytically, the collapse of these fluc-

tuations and the build up of structure is a highly non-linear process. However,

empirical arguments (Sheth et al., 2001), and N-body simulations (Springel et al.,

2005) have allowed this non-linear evolution to be generally well understood.

Once the density of a perturbation is such that its self-gravity can overcome

the expansion of the Universe, the dark matter undergoes dissipationless gravita-

tional collapse, to form a dark matter halo. It is within these dark matter haloes

that baryons condense to form galaxies. These dark matter haloes assemble hier-

archically, with smaller haloes forming first, and larger haloes forming later. This
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is because the shape of the matter power spectrum is such that the variance of

fluctuations is larger on small scales, and so small scale fluctuations collapse first.

It is thought that the photon-baryon fluid should trace the dark matter distri-

bution at early times. However, once recombination has occured, the photons and

baryons are no longer coupled. The baryons therefore fall into the potential wells

provided by the dark matter perturbations. As this gas falls inwards, it is com-

pressed, which cause shocks to form, thus heating the gas. The gas within haloes is

thought to be shock heated to around the virial temperature. Any further gas being

added to the halo shocks upon reaching the virial radius of the dark matter halo.

This gas can then cool, radiating away energy through a variety of atomic and

molecular processes, falling further into the gravitational potential well of the dark

matter halo. As this gas cools, it eventually can become self-gravitating, and there-

fore form a galactic disc (Fall & Efstathiou, 1980; Mo et al., 1998). The angular

momentum of the gas that collapses to discs is provided by the tidal torques from

the anisotropic distribution of structure.

The cold gas in the galaxy is then able to form stars. How star formation occurs

from gas is not a process that is well understood in detail, partly due to the vast

range of scales involved, but the relationship between star formation rate surface

density and the surface density of gas within galaxies (Kennicutt, 1998) is well

established. More recent studies show correlations between the star formation rate

density and the surface density of molecular hydrogen, rather than of the total gas

(Kennicutt et al., 2007; Bigiel et al., 2008).

Once populations of stars form, the evolutionary paths of stars is generally well

understood, thanks to years of investigation into stellar evolution in the Milky Way

and nearby galaxies. Lower mass stars are fainter, but have long lifetimes, whereas

higher mass stars are brighter, and end their relatively short lifetimes dramatically,

as supernova explosions. These supernova explosions inject energy into the ISM,

and drive the gas out of galaxies (Larson, 1974).

The above picture of galaxies forming as baryons condense within dark matter

haloes was originally developed by White & Rees (1978). These early theoretical

models suffered from the ‘overcooling problem’, where too many faint galaxies were
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predicted by the models. Fundamentally, this issue arises because the shape of the

halo mass function is a different shape to that of the galaxy luminosity function.

Therefore, in a model where all galaxies have the same mass to light ratio, it is

not possible to simultaneously reproduce the halo mass function and the galaxy

luminosity function. The models therefore needed to account for the relative lack of

galaxies at the faint and bright end of the luminosity function.

At the faint end, this can be explained by including feedback from supernovae

into the models, such as via the ‘disc reheating’ method of Cole et al. (2000), where

the gas is reheated and ejected from the galaxy by supernova feedback. The gas

rises out of the potential well of the dark matter halo, and therefore is unavailable

for star formation. While this can provide the models with a satisfactory fit to the

faint end slope of the galaxy luminosity function, this effect causes problems at the

bright end. This is because in larger haloes, the massive reservoir of gas ejected by

supernova feedback eventually cools onto the galaxy, due to the larger gravitational

potential of the halo. This gas cooling fuels star formation, and causes the number

density of galaxies at the bright end to be too high.

Benson et al. (2003) explored the effect of different physical processes on the

galaxy luminosity function using the semi-analytic model of galaxy formation gal-

form. To provide a match to the bright end of the luminosity function, a mechanism

by which cooling could be suppressed in the most massive haloes was required. Ther-

mal conduction was found to be a potential mechanism for this. In this mechanism,

conduction in the ionised gas transports energy into the inner regions of the halo,

which increases the gas cooling time, and therefore decreases the cooling radius.

However, this required an uncomfortably high conduction efficiency. Alternatively,

a high energy ‘superwind’, where gas is ejected completely from the dark matter

halo, could suppress cooling as required, but the energy required was found to ex-

ceed the energy available from star formation. The supermassive black hole at the

centre of the galaxy accreting gas could provide the energy required.

The models could therefore account for the lack of galaxies at the faint and

bright end of the luminosity function, and feedback from supernovae and AGNs is

now commonly used in theoretical models and simulations of galaxy formation.
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1.3 Modelling galaxy formation

There are a variety of ways to model galaxy formation in a cosmological context.

Two of the more physically-based approaches are semi-analytic models and hydro-

dynamical simulations (for a review, see Somerville & Davé, 2015). I use the semi-

analytic model galform for the predictions in this thesis, and I compare to a few

results from hydrodynamical simulations. Both can provide important insights into

galaxy formation.

In semi-analytic models, baryonic processes such as gas cooling, star formation

and feedback are modelled analytically, evolving through the merging history of

dark matter haloes. Typically, these dark matter merger trees are extracted from

dark matter N-body simulations. Semi-analytic models have the advantage of being

computationally inexpensive, which allows large volumes to be simulated, and allows

large parameter spaces to be explored. However, semi-analytic models have the

disadvantage that they often need to make certain simplifying assumptions, such as

that of spherical symmetry. Some other semi-analytic models of galaxy formation

are the model presented in Somerville et al. (2008), L-Galaxies (Guo et al., 2011),

SAGE (Croton et al., 2016), ν2GC (Shirakata et al., 2018), SAG (Cora et al., 2018),

and SHARK (Lagos et al., 2018).

Hydrodynamical simulations solve the equations of gravity and hydrodynamics

in a cosmological context, incorporating physical processes such as gas cooling and

feedback, and trace the properties of dark matter, stars and gas in given resolution

elements through time. To model physical processes occurring below the resolution

of the simulation (e.g. star formation, black hole accretion and energy injection by

supernovae and AGNs), ‘subgrid’ models are adopted, which are then calibrated

to observed galaxy properties. Hydrodynamical simulations have the advantage

that the anisotropic distributions of matter, and the impact of baryonic effects on

dark matter can be calculated, but are more computationally expensive. Some

hydrodynamical galaxy formation simulations are EAGLE (Schaye et al., 2015),

Illustris-TNG (Springel et al., 2018), Horizon-AGN (Dubois et al., 2014), and the

BlueTides simulation (Feng et al., 2016).

Comparing these two approaches, semi-analytic models are less computationally



1.3. Modelling galaxy formation 11

expensive, allowing larger volumes and parameter spaces to be probed. This means

that large volume mock catalogues for surveys can be produced. On the other

hand, hydrodynamical simulations require fewer approximations to be made, and

allow anisotropic distributions of structure to be simulated, and allow the effect of

baryons on dark matter to be understood.

The work presented in this thesis is well suited to using a semi-analytic model of

galaxy formation for several reasons. First, in this thesis we extensively explore the

effect of varying different input parameters on the predictions, such as the effect of

the SMBH spin model on the AGN luminosity function, and the effect of radio lobe

parameters on the radio AGN predictions. The relatively short computational time

required to run semi-analytic models allows predictions with different parameters

to be made. Secondly, the volumes that we are able to simulate by using a semi-

analytic model allow us to make predictions down to low number densities, such as

in the AGN luminosity function. Thirdly, the relative simplicity with which changes

can be made to a semi-analytic model (as galaxy components within a galaxy evolve

analytically) means detailed subgrid models can be developed (in this case for SMBH

spin and radio lobe evolution), so a wide range of properties can be compared to

the observations.

The implementation of AGN feedback is different in different semi-analytic mod-

els. In galform, AGN feedback is implemented only as ‘radio mode’ feedback.

Here, if the halo is in the quasi-hydrostatic cooling regime and if the SMBH is ac-

creting with a low Eddington accretion rate, the gas cooling is assumed to be exactly

balanced by the heating from the AGN jet (Bower et al., 2006). This model of AGN

feedback is also used in ν2GC (Shirakata et al., 2018), and is one two available op-

tions of AGN feedback in SHARK (Lagos et al., 2018). In L-Galaxies (Guo et al.,

2011), AGN feedback is also implemented only in the radio mode, but rather than

the gas cooling being completely balanced by the AGN heating if certain conditions

are met, the mass cooling rate is reduced by the AGN heating. In the model in

Somerville et al. (2008), AGN feedback is in two modes: a merger driven ‘bright

mode’ where radiative energy from the AGN drives a wind, and a radio mode where

the mass accretion rate is the Bondi (1952) mass accretion rate.
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1.4 SMBH spin

While AGN jets are understood to be important for galaxy formation, a precise

physical mechanism for the production of AGN jets has not yet been determined.

The most widely accepted models for these jets postulate that the jet energy source

is either the rotational energy of the black hole (Blandford & Znajek, 1977), or

the rotational energy of the accretion disc (Blandford & Payne, 1982). Therefore,

an understanding of SMBH spin has the potential to provide clues to how AGN

feedback proceeds in galaxy formation.

The spin of the black hole is characterised by the dimensionless spin parameter,

a, given by:

a = cJBH/GM
2
BH, (1.4.1)

where MBH and JBH are the mass and angular momentum of the SMBH. a takes

values in the range −1 ≤ a ≤ 1, where a = 0 denotes a non-rotating black hole, and

a = 1 denotes a maximally spinning black hole.

SMBH spin depends on the gas accretion and merger histories of SMBHs, because

SMBH spins change either when gas is accreted, or when merging with another

SMBH occurs. These processes are determined by the evolution of the host galaxy,

as its gas content evolves and it merges with other galaxies. This has motivated

predictions for SMBH spin evolution within cosmological simulations (e.g. Fanidakis

et al., 2011; Barausse, 2012; Bustamante & Springel, 2019). In these models the

evolution of the host galaxies is determined a physical galaxy formation model.

SMBH spins are difficult to measure observationally, but some studies have

constrained spin values, either using the iron Kα line profile (e.g. Brenneman &

Reynolds, 2006; Chiang & Fabian, 2011), or by fitting multiwavelength observations

to accretion disc models (e.g. Done et al., 2013). For stellar mass black holes, detec-

tions of gravitational waves following black hole mergers can put constraints on black

hole spin values both before and after the merger, such as from the gravitational

wave measurement of Abbott et al. (2016). Similarly, SMBH spin values may be

able to be constrained with future instruments such as Evolved Laser Interferometer
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Space Antenna (eLISA), which are planned to be able to detect gravitational wave

signals from merging SMBHs.

1.5 Radio emission from AGNs

AGN jets provide the energy for producing large lobes of relativistic plasma which

then emit at radio frequencies via synchrotron emission. These radio sources can

have a wide variety of sizes, luminosities and morphologies, with some sources having

sizes up to several Mpc (see Muxlow & Garrington, 1991, for a review). One way to

classify the morphologies of these extended radio sources is that of Fanaroff & Riley

(1974), in which sources are split into two classes according to their radio brightness

distribution. Sources that are brighter in the core than at the edges are classified

as type I (FRI), whereas sources that are brighter at the edges than at the core are

classified as type II (FRII).

While the physical reason for the dichotomy between FRIs and FRIIs is currently

not well understood, observational studies have suggested potential mechanisms that

cause the two types. Radio luminosity could be responsible, with a gradual switch

between the two types observed around P1.4GHz ∼ 1024WHz−1Sr−1 (Gendre et al.,

2010, 2013), and jet powers have also been suggested (e.g. Rawlings & Saunders,

1991). The environments of the two types appear to be different (e.g. Prestage &

Peacock, 1988; Gendre et al., 2013) with FRIs observed in richer clusters, but with a

large overlap between the two classes. Observational studies have also found differ-

ent correlations between properties for the two types, with Owen & Ledlow (1994)

reporting a separation in FRIs and FRIIs in the radio versus optical luminosity

plane, although more recent studies do not show that separation (Best, 2009).

Another commonly used classification of AGNs is into High Excitation Radio

Galaxies (HERGs), and Low Excitation Radio Galaxies (LERGs). HERGs and

LERGs are typically classified based on optical emission line strength, with HERGs

having stronger emission lines. HERGs are believed to correspond to AGNs accreting

gas via a physically thin, optically thick accretion disc (Shakura & Sunyaev, 1973),

whereas LERGs are believed to accrete gas via a physically thick, optically thin



1.6. Thesis Outline 14

Advection Dominated Accretion Flow (ADAF - Yuan & Narayan, 2014).

Observational studies of the radio luminosity function of HERGs and LERGs

(Best et al., 2014) and Pracy et al. (2016) both find that these two populations

evolve differently. Best et al. (2014) and Pracy et al. (2016) both find that the

number density of HERGs increases with redshift at all radio luminosities from

z = 0 to z = 1. For LERGs, Best et al. (2014) report an increase in space density

at high radio luminosities over this redshift increase, and a decrease at low radio

luminosities. However, Pracy et al. (2016) report little evolution for LERGs over

this redshift range.

These observational studies of radio AGNs are made possible because of large

surveys at radio frequencies, such as the Faint Images of the Radio Sky at Twenty

centimetres (FIRST - Becker et al., 1995), the 1.4 GHz National Radio Astronomy

Observatory VLA Sky Survey (NVSS - Condon et al., 1998), and more recently the

LOFAR Two Metre Sky Survey (LoTSS - Shimwell et al., 2017). These surveys can

be cross compared with optical surveys to study radio AGNs and galaxies together.

Alongside some of the discoveries detailed above, some other findings have been: a

dependence of radio AGN activity on galaxy stellar mass (Best et al., 2005b), the

effect of radio AGN activity on star formation in the most massive galaxies (Chen

et al., 2013), and that for sufficiently low radio luminosities and high stellar masses,

all galaxies host a radio AGN (Sabater et al., 2019).

Our understanding will be deepened further by planned radio surveys with new

telescopes such as MeerKAT (Jonas & MeerKAT Team, 2016), the Australian Square

Kilometre Array Pathfinder (ASKAP - Johnston et al., 2008), and the Square

Kilometre Array (SKA - Schilizzi et al., 2008).

1.6 Thesis Outline

The outline of this thesis is as follows. In Chapter 2 I describe the modelling of

physical processes in the semi-analytic galaxy formation model galform, that I

will use for this thesis.

In Chapter 3, I present the SMBH spin evolution model, and the method by which



1.6. Thesis Outline 15

AGN luminosities are calculated. I present black hole mass functions, accretion rate

distributions, and relations between SMBH mass and bulge/galaxy stellar mass. I

present the AGN bolometric luminosity function and analyse the contributions from

different accretion disc states and fuelling modes. I then compare AGN luminosity

functions in different bands (from optical to X-ray) to observations for 0 ≤ z ≤ 6.

In Chapter 4, I extend the model to make predictions for z ≥ 7, for future

surveys with the space-based telescopes JWST and EUCLID (in the optical and

near-infrared), and ATHENA and Lynx (in X-rays). I predict the number of objects

that should be detected by possible surveys conducted by these telescopes, as well

as the properties of objects detected (black hole masses, mass accretion rates, stellar

masses, halo masses).

In Chapter 5, I present predictions for AGN jet powers and (core-dominated)

radio luminosities. This model uses a Blandford-Znajek type model for the jet

powers, and a published scaling relation for determining the radio luminosities from

the jet powers. I present predictions for the evolution of jet powers and radio

luminosities, and compare to observations for 0 ≤ z ≤ 6.

In Chapter 6, I present predictions at z = 0 using a model of radio emission

for extended sources. The analytic model for radio emission that I couple to gal-

form tracks the evolution of radio lobe luminosity, size, and Fanaroff-Riley type. I

compare the predictions from the model to observational radio luminosity functions,

fractions of each Fanaroff-Riley type, and radio source sizes and finally explore the

effect on the model predictions of varying free parameters of the radio lobe model.

Finally, I summarise the main findings of this thesis, and give suggestions for

future work in Chapter 7.



Chapter 2

The galaxy formation model

The work described in this thesis makes use of the Durham semi-analytic model of

galaxy formation galform. The galform model builds on the principles outlined

in White & Rees (1978), White & Frenk (1991), and Cole et al. (1994), and was

introduced in Cole et al. (2000).

In galform galaxies form from baryons condensing within dark matter haloes,

with the evolution of the dark matter haloes described by the dark matter merger

trees. The baryonic physics is modelled by a series of coupled differential equations,

which track the exchange of baryons between different galaxy components. Physical

processes modelled in galform include i) the merging of dark matter haloes, ii)

shock heating and radiative cooling of gas in haloes, iii) the collapse of cooled gas to

a rotationally supported disc, iv) a two-phase interstellar medium with star forma-

tion from molecular gas, v) feedback from photoionisation, supernovae, and AGNs,

vi) the chemical evolution of gas and stars, vii) galaxies merging in haloes due to

dynamical friction, viii) bar instabilities in galaxy discs, ix) the growth of SMBHs

by gas accretion and galaxy mergers, x) the evolution of stellar populations, and xi)

the extinction and reprocessing of stellar radiation by dust.

There are several different versions of the galform model, the most recent of

these being those of Lacey et al. (2016), Gonzalez-Perez et al. (2018), and Baugh

et al. (2019). These different models all follow the same overall methodology. For

the work presented in this thesis, I am using the model of Lacey et al. (2016), as

recalibrated by Baugh et al. (2019). I give the values of the free parameters used

16
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in this model in Tables 2.1 and 2.2. Below, I describe how the different physical

processes of galaxy formation are modelled. The description of galform presented

here is based on those given in Cole et al. (2000), Lacey et al. (2016), and Baugh

et al. (2019).

2.1 Dark matter haloes

In galform galaxies evolve within dark matter merger trees, which describe the

merging histories of dark matter haloes, from their progenitors down to the desired

output redshift. Dark matter merger trees can be calculated either using a Monte-

Carlo technique that is based on the Extended Press-Schechter model (Lacey &

Cole, 1993; Cole et al., 2000; Parkinson et al., 2008), or can be extracted directly

from N-body simulations (Helly et al., 2003). The former has the advantage that it

is computationally inexpensive to generate these merger trees, and any desired halo

mass resolution can be input, whereas the latter has the advantage that it allows

the spatial distribution of galaxies to be studied. For this thesis, I am using merger

trees generated by the latter procedure.

To generate the merger trees, first a dark matter N-body simulation is run from

high-redshift (e.g. z = 127 in the P-Millennium simulation used in this thesis) down

to the present day, and the particle data is output at several ‘snapshots’. Groups of

dark matter particles are identified in the simulation snapshots using the Friends of

Friends algorithm (FoF - Davis et al., 1985). The SUBFIND algorithm (Springel

et al., 2001) is then used to identify self-bound, locally overdense sub-groups within

the FoF groups. The merger trees are generated using the ‘Dhaloes’ algorithm

(Jiang et al., 2014). When they form, haloes are assumed in galform to have a

virial radius given by:

rvir =

(
3Mhalo

4π∆virρ̄

)1/3

, (2.1.1)

where Mhalo is the halo mass, ρ̄ is the cosmological mean density at that redsift, and

∆vir is the overdensity, which is calculated from the spherical top-hat collapse model

(e.g. Eke et al., 1996). The dark matter density profiles of haloes are assumed to
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Table 2.1: The cosmological and galaxy formation parameters relevant for star for-

mation for the Baugh et al. (2019) recalibration of the Lacey et al. (2016) model

used in this thesis.

Parameter Description Value

Cosmology

Ωm0 Matter density 0.307

Ωv0 Vacuum energy density 0.693

Ωb0 Baryon density 0.0483

h Reduced Hubble parameter 0.678

σ8 Power spectrum normalization 0.829

ns Power spectrum slope 0.961

IMF: quiescent

x Initial mass function slope x = 0.4 for m < M�

and x = 1.5 for

m > M�

p Yield 0.021

R Recycled fraction 0.44

IMF: starburst

x Initial mass function slope 1

p Yield 0.048

R Recycled fraction 0.54

Quiescent star formation

νSF Molecular gas efficiency factor 0.74 Gyr−1

P0 Pressure relation normalisation 1.7× 104

kBcm−3K

αP Pressure relation slope 0.8

Burst star formation

fdyn Dynamical time multiplier 20

τburst,min Minimum burst timescale 100Myr
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Table 2.2: The galaxy formation parameters for feedback, dynamical processes and

dust for the Baugh et al. (2019) recalibration of the Lacey et al. (2016) model used

in this thesis.

Parameter Description Value

Photoionisation feedback

zreion Redshift of reionisation 10

Vcrit Threshold circular velocity 30kms−1

SN feedback

VSN Pivot velocity 320kms−1

γSN Slope of mass loading 3.4

αret Gas reincorporation timescale 1.0

AGNs and SMBHs

fBH Fraction of mass accreted 0.005

onto SMBH in a starburst

αcool AGN feedback threshold 0.8

fEdd Maximum BH heating rate 0.01

εheat SMBH heating efficiency 0.02

Disc stability

Fstab Disc instability threshold 0.9

Galaxy merger timescale Simha & Cole (2017)

Size of merger remnants

forbit Orbital energy contribution 0

fDM DM fraction in galaxy mergers 2

Starbursts in mergers

fellip Major merger mass ratio 0.3

threshold

fburst Mass ratio threshold for burst 0.05

Dust model

fcloud Fraction of dust in clouds 0.5

tesc Escape time of young stars 1Myr



2.2. Gas in haloes 20

have the NFW form (Navarro et al., 1997):

ρDM(r) ∝ 1

(r/rs)(1 + r/rs)2
, (2.1.2)

where rs, the scale radius, relates to the virial radius by, rs = rvir/cNFW, where cNFW

is calculated using the analytical prescription of Navarro et al. (1997).

In the simulation, haloes can grow either by mergers or by accretion. The virial

velocity, Vvir = (GMhalo/rvir)
1/2, and cNFW are updated at ‘halo formation events’,

which are defined as occurring either when a halo appears without a progenitor, or

when a halo has grown in mass by a factor of two since the last halo formation event.

Haloes acquire angular momentum from tidal torques during their formation. At

each halo formation event, a value of the dimensionless spin parameter of the halo:

λH =
Jhalo|Ehalo|1/2

GM
5/2
halo

, (2.1.3)

is drawn from a lognormal distribution, with median λH,median = 0.039, and disper-

sion σλH = 0.53 in lnλH . These values are obtained from the N-body simulations

of Cole & Lacey (1996).

2.2 Gas in haloes

Each halo is initially given the cosmological fraction of baryons - (Ωb/ΩM)Mhalo. It

is assumed that the gas in haloes is shock heated to the virial temperature:

Tvir =
µmH

2kB
V 2

vir, (2.2.4)

where mH is the mass of a hydrogen atom and µ is the mean molecular weight. The

hot gas is assumed to settle in a spherically symmetric distribution with density

profile:

ρhot(r) ∝
1

r2
c + r2

, (2.2.5)

with a core radius, rc = 0.1rvir (following Lacey et al., 2016). The thermal energy

per unit volume of the gas at a radius r is:
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Uhot(r) =
3

2

kBTvir

µmH

ρhot(r). (2.2.6)

The hot gas then loses its thermal energy through atomic processes, such that

its cooling luminosity per unit volume is:

Lcool(r) = ρ2
hot(r)Λ(Tvir, Zhot), (2.2.7)

where Λ(Tvir, Zhot) is the temperature and metallicity dependent cooling function

tabulated by Sutherland & Dopita (1993). The ratio of these two quantities gives a

cooling time, which is the timescale for the gas to radiate its thermal energy:

τcool =
3

2

kB
µmH

Tvir

ρhot(r)Λ(Tvir, Zhot)
. (2.2.8)

From this, a cooling radius can be calculated, at which the cooling time of the

gas is equal to the age of the halo: τcool(rcool) = t− tform. This propagates outwards

with time. Gas with r < rcool is assumed to have cooled.

For gas to form a galactic disc, it also needs to have time to fall down the

potential well produced by the dark matter halo. The free-fall time of a test particle

for a given mass distribution is:

tff(r) =

∫ r

0

[∫ r′′

r

−GM(r′)

r′2
dr′

]−1/2

dr′′, (2.2.9)

and from this, the free-fall radius, rff , can be calculated via tff(rff) = t − tform. A

particle at r < rff will have had sufficient time to fall to the centre of the potential

well. For gas to become available to be accreted onto a galactic disc it needs to have

sufficient time to cool, and sufficient time to fall to the centre of the potential well.

Therefore, an accretion radius for the halo gas is defined by:

racc(t) = min[rcool(t), rff(t)]. (2.2.10)

The accretion rate of hot gas onto the cold disc is given by:

Ṁacc = 4πr2
accρhot(racc)

dracc

dt
. (2.2.11)
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The angular momentum of the gas is conserved, and forms a disc. We assume

that gas only accretes onto a central galaxy, and not onto satellite galaxies. Once a

galaxy becomes a satellite, it is assumed that the hot gas of the satellite is instantly

stripped by ram pressure stripping, so no gas can cool onto satellite galaxies.

2.3 Star formation

Gas that cools from the halo is added to the disc, and this cold gas is available to

form stars. The galaxy has disc and spheroid components, and both contain gas

and stars. Star formation is assumed to occur in a quiescent mode in the disc, and

in a starburst mode in the spheroid. Stars and gas can be transferred from the disc

to the spheroid by galaxy mergers and disc instabilities.

2.3.1 Star formation in the disc

Star formation in the disc is calculated using the Blitz & Rosolowsky (2006) empirical

law, which was implemented into galform in Lagos et al. (2011). The gas is in

atomic and molecular phases, with the ratio of the surface densities, Σatom and Σmol,

depending on the gas pressure at the midplane, P, as:

Rmol =
Σmol

Σatom

=

(
P

P0

)αP

, (2.3.12)

where αP = 0.8 and P0/kB = 1700cm−3K, based on observations from Leroy et al.

(2008). The star formation rate in the galaxy disc is then assumed to be proportional

to the mass of molecular gas:

ψdisc = νSFMmol,disc = νSFfmolMcold,disc, (2.3.13)

where fmol = Rmol/(1 + Rmol) and νSF is a free parameter. For the model used in

this thesis, νSF = 0.74, as in Lacey et al. (2016).
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2.3.2 Star formation in bursts

For star formation in bursts (which occur in the bulge/spheroid), we assume that

fmol ≈ 1, and that the star formation rate depends on a star formation timescale,

τ?,burst, as:

ψburst = νSF,burstMcold,burst =
Mcold,burst

τ?,burst

. (2.3.14)

τ?,burst depends on the dynamical timescale of the bulge, τdyn,bulge as:

τ?,burst = max[fdynτdyn,bulge, τburst,min], (2.3.15)

where τdyn,bulge is the dynamical timescale of the bulge, calculated as rbulge/VC(rbulge),

and fdyn and τburst,min are parameters of the model. In the above expression the star

formation timescale scales with the dynamical timescale of the bulge (fdyn = 20) at

large dynamical times, and has a floor value (τburst,min = 100Myr) at small dynamical

times. These are the values from Lacey et al. (2016).

2.4 Feedback processes

2.4.1 Photoionisation feedback

The Intergalactic Medium (IGM) is reionised and photo-heated by ionising photons

produced by stars and AGNs. This inhibits galaxy formation because i) the increased

IGM pressure inhibits the collapse of gas into dark matter haloes, and ii) the photo-

heating of gas in haloes from the UV background inhibits gas cooling within haloes.

In the model, reionisation is assumed to occur instantly at z = zreion. After the

IGM is reionised at z = zreion, no cooling occurs for haloes with circular velocities,

VC < Vcrit (Benson et al., 2003). A value of zreion = 10 is adopted here (Dunkley

et al., 2009), and a value of Vcrit = 30kms−1 based on the gas-dynamical simulations

of Okamoto et al. (2008). This prescription has been shown to agree with more

detailed treatments quite well (e.g. Font et al., 2011).
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2.4.2 Supernova feedback

The most massive stars end their lives as supernova (SN) explosions, which inject

energy into the ISM, and expel cold gas from the galaxy. These massive stars are

short lived, and so in the model, the gas ejection rate from the galaxy due to SNe

is assumed to be proportional to the instantaneous star formation rate, ψ:

Ṁeject = βψ. (2.4.16)

The factor β depends on the circular velocity of the halo, Vc, taking into account

that the mass ejection rate should depend on the gravitational potential of the halo,

and is given by:

β =

(
Vc
VSN

)−γSN
, (2.4.17)

where VSN and γSN are free parameters, with the values VSN = 320kms−1 and γSN =

3.4 adopted here. These values are obtained from calibration to galaxy properties

in Lacey et al. (2016) and Baugh et al. (2019) respectively. Vc = Vc(rdisc) for

quiescent star formation in the disc, and Vc = Vc(rbulge) for starbursts in the bulge.

The ejection rate is calculated separately for the disc and for the bulge, and then

combined to give a total mass ejection rate.

This gas is assumed to be ejected beyond the virial radius of the dark matter

halo to a reservoir of gas with mass Mres. This gas is assumed to return to the hot

gas reservoir within the virial radius, at a rate:

Ṁreturn = αret
Mres

τdyn,halo

, (2.4.18)

where τdyn,halo = rvir/Vvir is the halo dynamical time, and αret is a free parameter.

In this thesis, αret = 1. This value is obtained in Baugh et al. (2019) by calibration

to galaxy properties.

2.4.3 AGN feedback

Supermassive black holes accrete gas, and subsequently release energy into their

surrounding environment. There are generally thought to be two modes of AGN
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feedback - quasar mode feedback and radio mode feedback. Quasar mode feedback

occurs as rapidly growing AGNs drive wide-angle outflows, at velocities ∼ 102 −

103kms−1. It has been suggested that these outflows may establish the observed

correlations between black hole mass and bulge properties (King & Pounds, 2015).

Feedback in the radio mode involves a relativistic jet depositing energy in hot gas

haloes to balance radiative cooling. In galform, only feedback in the radio mode

is included, with the jet energy released by gas accreting onto the SMBH from hot

halo gas. We assume that the heating from the jet balances radiative cooling if

the following two conditions are met (Bower et al., 2006). First, the cooling time

of the gas, tcool, needs to be sufficiently long compared to the free-fall time, tff , as

cooling needs to be in the quasi-hydrostatic cooling regime for the gas to be heated

effectively:

tcool(rcool)/tff(rcool) > 1/αcool, (2.4.19)

where rcool is the cooling radius calculated using the procedure in Lacey et al. (2016)

Section 3.3, and αcool is a free parameter, where a value of αcool = 0.8 is adopted

here. This value is obtained from the calibration to galaxy properties in Lacey et al.

(2016). Secondly, the cooling luminosity, Lcool needs to be below a fraction of the

Eddington luminosity, as jet production is assumed to occur for SMBHs accreting

at low Eddington accretion rates:

Lcool < fEddLEdd(MBH), (2.4.20)

where fEdd is a free parameter, with fEdd = 0.01 adopted here, as in Fanidakis et al.

(2011) and Lacey et al. (2016). When AGN feedback is active, the SMBH accretes

gas from the hot halo by ‘hot halo accretion’.

2.5 Galaxy mergers

Galaxies are either central galaxies, which sit at the centre of the dark matter halo,

or satellite galaxies, which orbit within the dark matter halo. When haloes merge,

we assume that the central galaxy of the most massive progenitor halo becomes the
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new central galaxy, while the other galaxies become satellites within the dark matter

halo. It is assumed that the satellites are stripped of their hot gas haloes (which is

then added to the central galaxy) through ram pressure stripping, and no further

gas can cool onto them.

These satellite galaxies may then merge with the central galaxy. The timescale

on which the satellites merge is calculated as in the treatment of Simha & Cole

(2017), in which satellite galaxies track the positions of their associated subhaloes

in the N-body simulation. When the subhalo hosting the satellite can no longer

be tracked in the simulation, the position and the velocity of the subhalo when it

was last tracked are used to calculate the dynamical friction timescale analytically.

Dynamical friction is the process of a satellite galaxy accelerating stars and dark

matter in its wake, which slows down the satellite. The timescale for dynamical

friction is calculated here by:

TDF =

(
Rvir

RC

)α(
J

JC

)β
τdyn,halo

2B(1) ln Λ

(
Mhalo

Msat

)
, (2.5.21)

where RC is the radius of a circular orbit with the same energy as the actual orbit,

and J/JC is the ratio of the angular momentum of the actual orbit to the angular

momentum of a circular orbit with the same energy. α and β are parameters that

are determined numerically in Simha & Cole (2017) as α = −1.8 and β = 0.85.

τdyn,halo is the dynamical time of the halo, and B(x) is given by:

B(x) = erf(x)− 2x√
π

exp(−x2). (2.5.22)

Following Simha & Cole (2017), ln Λ is taken to be ln(Mhalo/Msat). The result

of the galaxy merger depends on the ratio of the baryonic mass of the satellite to

that of the central. If Msat/Mcent > fellip, then the merger is classified as a major

merger, in which the stellar discs of the central and satellite are destroyed, and the

gas and stars are added to the resultant spheroid. Other mergers are classified as

minor, in which the stars from the satellite are added to the spheroid of the central,

and the gas from the satellite is added to the disc of the central, without changing

its specific angular momentum. Mergers with Msat/Mcent > fburst trigger starbursts
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in which all of the cold gas from the merging galaxies is transferred to the spheroid,

to form stars or be ejected by the resulting SN feedback. Some of this gas is then

available to feed the central SMBH (Kauffmann & Haehnelt, 2000; Malbon et al.,

2007). fellip and fburst are free parameters with values 0.3 and 0.05 respectively.

2.6 Disc instabilities

Galaxy discs are susceptible to bar instabilities, which can change the galaxy mor-

phology, and drive gas to the centre of the galaxy. Galaxy discs become unstable to

bar formation when they are sufficiently self-gravitating. To model this we use the

Efstathiou et al. (1982) disc stability criterion, where discs are dynamically unstable

if:

Fdisc ≡
Vc(rdisc)

(1.68GMdisc/rdisc)1/2
< Fstab, (2.6.23)

where Mdisc is the disc mass (gas and stars), and rdisc is the disc half-mass radius.

Fdisc quantifies the contribution of disc self-gravity to its circular velocity, so higher

values of Fdisc correspond to less self-gravity, and therefore greater disc stability.

Fstab is a parameter of the model. The N-body simulations of Efstathiou et al.

(1982) found Fstab ≈ 1.1 for purely stellar discs embedded in dark matter haloes,

whereas Christodoulou et al. (1995) found Fstab ≈ 0.9 for purely gaseous discs. If

Fdisc < Fstab at any timestep, we assume that the disc forms a bar, which then

thickens due to buckling instabilities, and forms a spheroid. This transition from

disc to spheroid is assumed to happen instantaneously, and this disc instability

triggers a starburst. A value of Fstab = 0.9 is used here.

Disc instabilities also transfer gas to the centre of the galaxy to be fed into

the SMBH. Disc instabilities driving gas into the centres of galaxies is an effect

seen in various hydrodynamical simulations (e.g. Hohl, 1971; Bournaud et al., 2005;

Younger et al., 2008), and treated as a channel of black hole/bulge growth in many

semi-analytic models of galaxy formation (e.g. De Lucia et al., 2011; Hirschmann

et al., 2012; Menci et al., 2014; Croton et al., 2016; Lagos et al., 2018), although the

implementation of these disc instabilities varies between models. Most models also
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use the disc instability criterion of Efstathiou et al. (1982), however different models

apply this condition differently. For example, in the model of Hirschmann et al.

(2012), if a disc is unstable, then enough gas and stars are transferred from the disc

to the bulge to completely stabilise the disc, while in galform, we assume that

if a disc is unstable, then it is completely destroyed and forms a bulge. Numerical

simulations of isolated disks show that disc instabilities can transfer large fractions of

gas and stars into the bulge in some situations (e.g. Bournaud et al., 2007; Elmegreen

et al., 2008; Saha & Cortesi, 2018).

2.7 SMBH growth

The starting point for the treatment of SMBHs in the model is SMBH seeds that

eventually grow by accretion of gas and by merging with other SMBHs to form the

objects in the Universe today. The processes for SMBH seed formation are uncertain

(see e.g. Volonteri 2010, and references therein) and so we simply add a seed SMBH

of mass Mseed into each halo, where Mseed is a parameter that we can vary. Unless

otherwise stated, this parameter has the value Mseed = 10h−1M� - representative

of the SMBH seeds formed by stellar collapse. SMBHs in galform grow in three

different ways.

2.7.1 Starburst mode gas accretion

First, SMBHs can accrete gas during starbursts, which are triggered by either galaxy

mergers or disc instabilities. In both of these cases, all of the remaining cold gas in

a galaxy is consumed in a starburst and a fixed fraction of the mass of stars formed

from the starburst feeds the SMBH, such that the accreted mass is given by:

Macc = fBHM?,burst, (2.7.24)

whereM?,burst is the mass of stars formed in the starburst and fBH is a free parameter,

which takes the value fBH = 0.005 here, as adopted in Lacey et al. (2016). Note that

the mass of the stars formed is less than the initial mass of the gas in the starburst

due to the ejection of gas by supernova feedback.
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It is assumed that that during an accretion episode the accretion rate is constant

over a time fqτdyn,bulge, where τdyn,bulge is the dynamical timescale of the bulge (cal-

culated in Section 2.8), and fq is a free parameter, given in Table 3.1. The value of

fq is calibrated on the AGN luminosity functions as shown in Figure A.9. Therefore,

the mass accretion rate is given by:

Ṁ =
fBHM?,burst

fqτdyn,bulge

. (2.7.25)

2.7.2 Hot halo mode gas accretion

In galform we assume that SMBHs can also accrete gas from the hot gas at-

mospheres of massive haloes. When the cooling time of the gas is longer than its

free-fall time, the SMBH is fed with a slow inflow from the halo’s hot atmosphere -

‘hot halo mode accretion’ (Bower et al., 2006), which occurs when AGN feedback is

active (see Section 2.4.3). The energy input from the relativistic jet is assumed to

balance radiative cooling in the halo, with the mass accretion rate onto the black

hole Ṁ being determined by this energy balance condition:

Ṁ =
Lcool

εheatc2
, (2.7.26)

where Lcool is the radiative cooling luminosity of the hot halo gas from Section 2.4.3,

and εheat is the efficiency of halo heating, which is treated as a free parameter, with

value 0.02, as adopted in Lacey et al. (2016).

2.7.3 SMBH mergers

SMBHs can also be built up by SMBH-SMBH mergers. When galaxies merge, dy-

namical friction from gas, stars and dark matter causes the SMBH of the smaller

galaxy to sink towards the other SMBH. Then, as the separation decreases, grav-

itational radiation provides a mechanism by which the SMBHs can lose angular

momentum and spiral in to merge and form a larger SMBH. In the model, we as-

sume the timescale on which the SMBHs merge is short, so that the SMBHs merge

when the galaxies merge.
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2.8 Galaxy Sizes

The size of a galaxy disc is determined by conservation of angular momentum and

centrifugal equilibrium. The following derivation follows Appendix C of Cole et al.

(2000). Galaxy sizes are calculated in galform such that as the gas condenses to

form a galaxy at the centre of the dark matter halo, the lengthscales of the disc and

bulge and the mass distribution in the halo respond adiabatically to each other. A

fraction 1 − fH of the total mass condenses to form a galaxy at the centre of the

halo, with a fraction fH of mass still in the halo component. fH is determined by

the sum of the disc and bulge masses. It is assumed that the pseudo-specific angular

momentum, rVc(r) is conserved for each shell of the halo. Under this assumption:

r0Vc,0(r0) = rVc(r), (2.8.27)

where r0 and r are the initial and final radii of the shell (before and after the galaxy

condensation), and Vc,0 and Vc are the initial and final circular velocities of the halo.

The initial and final masses interior to the shell are related by:

MH(r) = fHMH,0(r0), (2.8.28)

where MH(r) is the halo mass profile. Vc for halo mass shells is then given by:

V 2
c (r) = G[MH(r) +MD(r) +MB(r)]/r, (2.8.29)

where MD(r) and MB(r) are the disc and bulge masses, interior to the radius r.

Equations (2.8.27), (2.8.28), and (2.8.29), can then be combined to give:

r0MH,0(r0) = r[fHMH,0(r0) +MD(r) +MB(r)], (2.8.30)

which relates the final radius of a halo shell to its initial radius, given known disc

and bulge profiles. In the model, the disc is assumed to have an exponential surface

density profile:

ΣD(r) =
MD

2πh2
D

exp(−r/hD), (2.8.31)
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where:

MD(r) = MD[1− (1 + r/hD) exp(−r/hD)], (2.8.32)

where hD is the radial scale length of the disc. This is related to the disc half-mass

radius, rD by rD = 1.68hD. The specific angular momentum of the disc, jD, is given

by:

jD = kDrDVcD(rD), (2.8.33)

where VcD is the circular velocity in the disc plane at the half-mass radius and kD is

a constant. For a flat rotation curve (VcD(r) = VcD(rD)), kD = 1.19, and the value of

kD only weakly depends on the assumed rotation curve. galform uses kD = 1.19.

From equation (2.8.33), the angular momentum of the disc is then given by:

j2
D =k2

Dr
2
DV

2
cD(rD)

=k2
DGrD

[
fHMH,0(rD,0) +

1

2
kHMD +MB(rD)

]
,

(2.8.34)

where MD(rD) = 1
2
MD by construction. The constant kH arises from the fact that

the disc is not spherically symmetric. For an exponential disc, kH = 1.25. Therefore,

to calculate the disc half-mass radius, equation (2.8.34) evaluated at rD, must be

satisfied, and equation (2.8.30) evaluated at rD:

rD0MH,0(rD,0) = rD[fHMH,0(rD,0) +
1

2
MD +MB(rD)], (2.8.35)

must be satisfied. A similar procedure can then be followed to determine the size

of the spheroid (see Appendix C of Cole et al., 2000). The mass density profile for

the spheroid in projection is given by (de Vaucouleurs, 1948):

ΣB(r) = Σ0 exp

[
7.676

((
r

re

)1/4

− 1

)]
, (2.8.36)

where re is the half-mass radius of the bulge in projection, which relates to rB by

re = rB/1.35.
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In galform, a spheroid is formed after a merger or a disc instability. In the

case of a merger, once the separation between the galaxies equals the sum of their

half-mass radii, the galaxies are assumed to merge. Using the virial theorem, the

internal energy of a galaxy relates to the gravitational self-binding energy of the

galaxy and hence the total mass, M , and the half-mass radius, r, by:

Eint = −1

2
Ebind = −cbind

2

GM2

r
, (2.8.37)

where cbind is a constant that depends on the assumed density profile. For a spheroid

with the mass density considered here, cbind = 0.45 (which I refer to as cB), whereas

for an exponential disc, cbind = 0.49 (which I refer to as cD). For simplicity, in the

model, a single value of cbind = 0.5 is adopted. The energy of the relative orbital

motion between the two galaxies just prior to the merger is:

Eorbit = −forbit

2

GM1M2

r1 + r2

, (2.8.38)

where M1 and M2 are the total (dark matter and gas and stars) masses, and r1 and

r2 are the half-mass radii of the galaxies. The value of the parameter forbit depends

on the orbital parameters of the galaxy pair. For two point masses on circular

orbits, forbit = 1, whereas for a parabolic trajectory, forbit = 0. forbit is treated as an

adjustable parameter in the range 0 ≤ forbit . 1, and a value of forbit = 0 is adopted

here, following Lacey et al. (2016). By conservation of energy, the binding energy

of the new spheroid is given by:

Eint,new = Eint,1 + Eint,2 + Eorbit. (2.8.39)

By combining equations (2.8.37), (2.8.38), and (2.8.39), I obtain the expression:

(M1 +M2)2

rnew

=
M2

1

r1

+
M2

2

r2

+
forbit

cbind

M1M2

r1 + r2

, (2.8.40)

which can be solved for the half-mass radius of the new spheroid, rnew. For disc

instabilities, a similar expression to equation (2.8.40) can be computed:

cB(MD +MB)2

rnew

= cB
M2

B

rB
+ cD

M2
D

rD
+ fint

MDMB

rD + rB
, (2.8.41)
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where cB and cD are defined as above. The masses MB and MD are the masses

of the baryonic (stars and gas) components of the bulge and disc. The final term

represents the gravitational interaction energy of the disc and the bulge, with fint

reasonably well approximated by fint = 2. This value follows Cole et al. (2000) and

Lacey et al. (2016).

From these calculations the half-mass radius of the bulge, rB has been obtained.

From rB and the circular velocity at rB, the dynamical timescale of the bulge can

be calculated via:

τdyn,bulge = rB/Vc(rB), (2.8.42)

which is then used for calculating the timescale over which an SMBH growth epsiode

in the starburst mode occurs in Section 2.7.1.

2.9 Chemical evolution and IMF

2.9.1 The evolution of mass and metals

The above processes of gas cooling, star formation and feedback can be expressed as

a series of coupled differential equations, describing the evolution of the hot gas in

haloes (Mhot), cold gas in galaxies (Mcold), stars in galaxies (M?), and the reservoir

of ejected gas outside haloes (Mres). I illustrate these differential equations in Figure

2.1, and give the equations below (ignoring SMBH terms which are much smaller):

Ṁhot = −Ṁhalo,acc + αret
Mres

τdyn,halo

, (2.9.43)

Ṁcold = Ṁhalo,acc − (1−R + β)ψ, (2.9.44)

Ṁ? = (1−R)ψ, (2.9.45)

Ṁres = βψ − αret
Mres

τdyn,halo

. (2.9.46)
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Figure 2.1: A schematic showing the exchange of baryons between the different

halo components, including the SMBH. The mass accretion rates for the exchange

between each components are shown next to each arrow. Accretion onto the SMBH

requires either a starburst or hot halo accretion, which may not be occurring at a

certain timestep, and so are given by dotted lines.
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The masses of the metals obey a similar set of differential equations:

ṀZ
hot = −ZhotṀhalo,acc + αret

MZ
res

τdyn,halo

, (2.9.47)

ṀZ
cold = ZhotṀhalo,acc − [p− (1−R + β)Zcold]ψ, (2.9.48)

ṀZ
? = (1−R)Zcoldψ, (2.9.49)

ṀZ
res = βZcoldψ − αret

MZ
res

τdyn,halo

, (2.9.50)

where Zhot is the metallicity of the hot gas component, given by Zhot = MZ
hot/Mhot.

This is similarly defined for the other components. R is the returned fraction, and p

is the yield. The two quantities depend on the initial mass function, and are defined

below.

2.9.2 Initial Mass Function

The initial mass function (IMF) is defined as the distribution of stars in mass m

when a stellar population is formed, normalised to unit solar mass:

∫ mU

mL

mΦ(m)d lnm = 1, (2.9.51)

where Φ(m)d lnm is the number of stars formed with masses between ln(m) and

ln(m) + d ln(m) per unit total mass of stars formed, and mL and mU are lower and

upper limits of the IMF. The returned fraction, R, which is the fraction of the initial

mass of a stellar population that is returned to the ISM by mass loss from dying

stars, is given by:

R =

∫ mU

1M�

(m−mrem(m))Φ(m)d lnm, (2.9.52)

where mrem(m) is the mass of the remnant (white dwarf, neutron star, black hole)

left by a star of mass m. This calculation assumes the ‘instantaneous recycling



2.10. Stellar populations and Dust 36

approximation’, which assumes that all stars with masses above 1M� die immedi-

ately, whereas stars of lower mass live forever. This approximation is reasonable as

the lifetimes of massive stars is short compared to the timescales on which galaxies

evolve.

The yield, p, which is the fraction of the initial mass of a stellar population that

is synthesised into new metals and then ejected, is given by:

p =

∫ mU

1M�

pZ(m)mΦ(m)d lnm, (2.9.53)

where pZ(m) is this fraction for a single star of initial mass, m, as obtained from

stellar evolution calculations. The IMF is assumed to be a power law, or a piecewise

power law, in mass:

Φ(m) =
dN

d lnm
∝ m−x, (2.9.54)

where x is the IMF slope. For a Salpeter (1955) IMF, x = 1.35. The model uses

different IMFs for the different modes of star formation. For the quiescent mode of

star formation, a Kennicutt (1983) IMF is assumed, where x = 0.4 for m < 1M�,

and x = 1.5 for m > 1M�, whereas for the burst mode of star formation, a single

power law IMF is used, with x = 1.

2.10 Stellar populations and Dust

2.10.1 Stellar population synthesis

From the previous calculations, the evolution of stellar mass and metallicity of each

galaxy is obtained. These can be combined with a stellar population synthesis (SPS)

model to determine the spectral energy distribution (SED) of each galaxy. The SED

of a stellar population with a mixture of ages and metallicities at a time t can be

written as:

Lλ(t) =

∫ t

0

dt′
∫ ∞

0

dZ ′Ψ(t′, Z ′)LSSP
λ (t− t′, Z ′; Φ), (2.10.55)
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where Ψ(t′, Z ′)dt′dZ ′ is the mass of stars formed between t′ and t′+dt′ and metallicity

between Z ′ and Z ′+dZ ′. LSSP
λ (t− t′, Z ′; Φ) is the SED of a single stellar population

(SSP) of unit mass, with an age t−t′, metallicity Z ′, and formed with an IMF Φ(m).

LSSP
λ (t, Z; Φ) can be calculated from the SED of a single star (of age t, metallicity

Z and mass m), L
(star)
λ (t, Z,m) using:

LSSP
λ (t, Z; Φ) =

∫ mU

mL

L
(star)
λ (t, Z,m)Φ(m)d lnm. (2.10.56)

As separate IMFs are assumed for the disc and for the spheroid, these are calcu-

lated separately. The SPS model adopted in the Lacey et al. (2016) model is that

of Maraston (2005).

2.10.2 Dust extinction

The light from stars is absorbed by dust, which re-emits the radiation at longer

wavelengths. The dust is assumed to be in two components, (i) dense molecular

clouds, which surround young stars and star forming regions, and (ii) diffuse dust

with an exponential vertical and radial distribution in a disc. The fraction of the

dust in molecular clouds is fcloud, while the rest of the dust is in the diffuse medium.

A value of fcloud = 0.5 is adopted in Lacey et al. (2016).

For the dense molecular component, stars are assumed to form surrounded by

uniform density dust clouds with a constant mass (mcloud) and radius (rcloud), and

then gradually leave these clouds over a timescale of tesc. The clouds cause extinction

of the light from the stars inside them, with an optical depth proportional to the

amount of dust (proportional to Zcloud) and the projected density (proportional to

mcloud/r
2
cloud):

τ ∝ Zcold
mcloud

r2
cloud

. (2.10.57)

The diffuse dust component also obscures starlight. To model this component,

galform uses the tabulated radiative transfer models of Ferrara et al. (1999). This

component produces extinction with optical depth:
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τ ∝ (1− fcloud)Zcold
Mcold

r2
diff

, (2.10.58)

where rdiff = rdisc for quiescent star formation, and rdiff = rbulge for starbursts.

2.11 The Lacey et al. (2016) model

There exist several different published galform models. Starting with the orig-

inal Cole et al. (2000) model, two different variants were developed: (i) a model

using supernova-driven superwinds and a varying IMF to match the abundances of

submillimetre and Lyman-break galaxies (Baugh et al., 2005), and (ii) a model in-

cluding AGN feedback (Bower et al., 2006). The Lacey et al. (2016) model brought

these branches together into a model including both AGN feedback and a varying

IMF, and hence can be thought of as a ‘unifying’ model.

This model used cosmological parameters from the WMAP cosmology (Komatsu

et al., 2011). It used the Millennium-WMAP7 (MW7) simulation, which has a box

size of side 500h−1Mpc, and has a halo mass resolution of 1.87× 1010h−1M�. This

corresponds to a dark matter particle resolution of 9.36 × 108h−1M� (haloes are

defined to have a minimum of 20 particles).

The Lacey et al. (2016) model compares well to a wide range of observational

constraints, across a range of wavelengths (from 850µm number counts to far-UV

luminosity functions) and across a range in redshift (from z = 0 out to z = 6).

2.12 The Baugh et al. (2019) model

The model I am using for this thesis is the recalibration of the Lacey et al. (2016)

galform model by Baugh et al. (2019). This model uses a higher resolution dark

matter only simulation, P-Millennium (Baugh et al., 2019), which has a box size

of side 800Mpc and a halo mass resolution of 2.12× 109h−1M�, which corresponds

to a dark matter particle mass of 1.06 × 108h−1M� (haloes are defined to have

a minimum of 20 particles). The P-Millennium also has an increased number of

snapshots output - 270 instead of 64 for the MW7 simulation used in Lacey et al.
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(2016). The new model also includes a more accurate calculation of the timescale

for galaxies to merge within a halo (Simha & Cole, 2017), as I described in Section

2.5.

Because of the changed cosmological parameters and an improved halo mass

resolution in P-Millennium compared to the simulation used in Lacey et al. (2016),

some of the galaxy formation parameters were recalibrated compared to Lacey et al.

(2016). Only two galform parameters were changed, both relating to supernova

feedback (γSN) and the return of ejected gas (αret). This P-Millennium based model

has already been used in Cowley et al. (2018) to make predictions for galaxies for

JWST in near- and mid-IR bands, and a model using P-Millennium and the model

of Gonzalez-Perez et al. (2018) was used to study the effect of AGN feedback on

halo occupation distribution models in McCullagh et al. (2017).



Chapter 3

The evolution of SMBH spin and

AGN luminosity for 0 < z < 6

3.1 Introduction

Ever since quasars were first identified to be cosmological sources (Schmidt, 1968),

a key aim has been to to understand their evolution through cosmological time.

Early studies showed that the number density of quasars shows strong evolution,

with more luminous quasars present at z ≈ 2 than at z ≈ 0, leading to the sug-

gestion that quasars evolve by ‘pure luminosity evolution’ (PLE). In this scenario,

quasars are long lived and fade through cosmic time, leading to an evolution in the

luminosity function of only the characteristic luminosity (e.g. Boyle et al., 1990).

However, more recent optical surveys, which can probe both the faint and bright

end of the luminosity function, have shown not only that the slope of the luminosity

function evolves (e.g. Richards et al., 2006; Croom et al., 2009), but also that the

number density decreases at high redshift (e.g. Fan et al., 2001; Jiang et al., 2016).

Surveys at X-ray wavelengths, show an evolution in the shape of the luminosity

function (e.g. Ueda et al., 2014) as well as differences between the absorbed and

unabsorbed populations (e.g. Aird et al., 2015; Georgakakis et al., 2015). Clearly,

the full picture of supermassive black holes (SMBHs) and Active Galactic Nuclei

(AGNs) evolving through cosmological time is complicated, and requires detailed

investigation. Theoretical models and cosmological simulations have allowed us to

40
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try to quantify the role of different contributing black hole fuelling mechanisms (e.g.

mergers, disc instabilities) and obscuration to the AGN luminosity function (e.g.

Fanidakis et al., 2012; Hirschmann et al., 2012), but we do not yet fully understand

the reasons for the different features of the evolution.

In this Chapter, we present predictions for the evolution of SMBH and AGN

properties in the redshift range 0 < z < 6, using an updated prescription for the

evolution of SMBH spin within galform, as we now describe. This Chapter is

organised as follows. In Section 3.2 we outline the spin evolution model and in

Section 3.3 we outline the calculation of AGN luminosities. In Section 3.4 we present

predictions for black hole masses and spins for the model, as well as the dependence

of AGN luminosities on galaxy properties. In Section 3.5 we show the evolution of

the AGN luminosity function at different wavelengths for 0 < z < 6. In Section 3.6

we give concluding remarks.

3.2 SMBH spin evolution

In this Section, we update/modify the model for SMBHs and AGNs presented in

Fanidakis et al. (2011), superceding the equations in that paper, which contained

some typographical errors, and also putting special emphasis on improving the model

for the obscuration of AGNs at X-ray and optical wavelengths. We calculate ex-

pressions for accretion disc quantities (e.g. warp radius, self-gravity radius) only

using the accretion disc solutions of Collin-Souffrin & Dumont (1990), which are

appropriate for AGN discs, rather than using different expressions from different

studies.

3.2.1 SMBH mass growth and spinup by gas accretion

In this model, SMBHs can change spin in two ways: (i) by accretion of gas or (ii) by

merging with another SMBH. The SMBH spin is characterised by the dimensionless

spin parameter, a = cJBH/GM
2
BH, within the range −1 ≤ a ≤ 1, where JBH is

the angular momentum of the SMBH, and MBH is the mass of the SMBH. a = 0

represents a black hole that is not spinning and a = 1 or a = −1 represents a
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maximally spinning black hole. The sign of a is defined by the direction of the

angular momentum of the black hole relative to that of the innermost part of the

accretion disc, so for a > 0 the black hole is spinning in the same direction as

the inner accretion disc and for a < 0 the black hole is spinning in the opposite

direction to the inner accretion disc. To calculate the SMBH spin, af after an

accretion episode, we use the expression in Bardeen (1970)1:

af =
1

3

√
r̂lso,i

MBH,i

MBH,f

(
4−

[
3r̂lso,i

(MBH,i

MBH,f

)2

− 2
]1/2)

, (3.2.1)

where r̂lso is the radius of the last stable circular orbit in units of the gravitational

radius, RG = GMBH/c
2, and the subscripts i and f indicate values at the start and

end of an accretion event. The black hole mass before and after an accretion event

are related by:

MBH,f = MBH,i + (1− εTD)∆M, (3.2.2)

where ∆M is the mass accreted from the disc in this accretion episode (from the

fuelling modes outlined in Scetion 2.7) and εTD, the radiative accretion efficiency for

a thin accretion disc, is given by:

εTD = 1−
(

1− 2

3r̂lso

)1/2

. (3.2.3)

r̂lso is calculated from the spin a, as in Bardeen et al. (1972):

r̂lso = 3 + Z2 ∓
√

(3− Z1)(3 + Z1 + 2Z2), (3.2.4)

with the minus sign for a > 0 and the positive sign for a < 0. The functions Z1 and

Z2 are given by:

Z1 = 1 + (1− |a|2)1/3[(1 + |a|)1/3 + (1− |a|)1/3], (3.2.5)

Z2 =
√

3|a|2 + Z2
1 . (3.2.6)

1Note that equation (3.2.1) is corrected from a typographical error in Fanidakis et al. (2011)

equation (6).
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Figure 3.1: A diagram showing the various scales involved in the gas accretion - the

warp radius Rwarp and the inner radius Rin. We refer to the region within Rin as the

inner disc and the region outside of Rin as the outer disc. For typical parameters (i.e.

a = 0.4, αTD = 0.1, ṁ = 0.1, MBH = 106M�, ν2/ν1 = 1, with these variables defined

below) using equations (3.2.11) and (3.2.16), Rwarp = 0.0006pc and Rin = 0.02pc.

We consider the accretion disc in three separate parts as shown in Figure 3.1

- an outer disc at radii greater than an inner radius, Rin, an inner disc for radii

less than Rin, and a warped disc for radii less than the warp radius, Rwarp. The

SMBH has an angular momentum ~JBH, and the angular momentum of the disc

within Rin is ~Jin. If ~JBH is not in the same direction as ~Jin a spinning black hole

induces a Lense-Thirring precession in the misaligned disc elements. Because the

precession rate falls off as R−3, at smaller radii the black hole angular momentum

and the accretion disc angular momentum vectors will become exactly aligned or

anti-aligned, whereas at sufficiently large radii there will still be a misalignment

(Bardeen & Petterson, 1975). The transition between these two regions occurs at

the so-called ‘warp radius’, Rwarp. The angular momentum of the disc within the

warp radius is ~Jwarp. At the start of an accretion event, the angular momentum

~Jwarp within Rwarp is assumed to be aligned with ~Jin. As a result of the torques, ~JBH
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then aligns with ~Jtot = ~JBH + ~Jwarp (which remains constant during this alignment

process) and ~Jwarp either anti-aligns or aligns with ~JBH (King et al., 2005). The gas

within Rwarp is then assumed to be accreted onto the SMBH from the aligned/anti-

aligned disc. As more gas is accreted, ~JBH eventually aligns with the rest of the

inner disc, as the gas in the inner disc is consumed.

We consider two alternative scenarios for how the angular momentum directions

of the inner and outer disc are related. In the ‘prolonged mode’ accretion scenario,

the angular momentum of the inner disc is in the same direction as the angular

momentum of the outer disc, ~Jout, but in the ‘chaotic mode’ accretion scenario

introduced in King et al. (2008), the orientation of the angular momentum of the

inner disc is randomly oriented with respect to the angular momentum of the outer

disc. King et al. (2008) propose that Rin is the self-gravity radius of the disc, and

we assume this in our model.

The motivation for chaotic mode accretion is twofold. First, the Soltan (1982)

argument, a comparison of the integral of the quasar luminosity function over lu-

minosity and redshift to the integral over the black hole mass function in the local

Universe, implies an average radiative efficiency of SMBH growth of ε ≈ 0.1 (which

corresponds to a spin value of a ≈ 0.67), suggesting that SMBHs in the Universe

are typically not maximally spinning, as we would expect from SMBHs that have

been spun up by the accretion of gas that is aligned in the same direction, as in the

prolonged accretion scenario. However, there are uncertainties in the value of ε from

the Soltan (1982) argument, due to uncertainties in the derived quasar luminosity

function and black hole mass function (the latter is generally determined using scal-

ing relations with σ, Mbulge or Lbulge). Secondly, AGN jets seem to be misaligned

with their host galaxies (e.g. Kinney et al., 2000; Sajina et al., 2007), suggesting a

misaligned accretion of material onto the SMBH.

Accretion continues in this manner until the gas in the outer disc has been

consumed. For this analysis, we adopt chaotic mode accretion as our standard

choice.
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3.2.2 Warped accretion discs

To obtain the warp radius, Rwarp, of an accretion disc, we need expressions for the

structure of the accretion disc. There are two different types of accretion discs: i)

physically thin, optically thick, radiatively efficient ‘thin discs’ (Shakura & Sunyaev,

1973) and ii) physically thick, optically thin, radiatively inefficient Advection Domi-

nated Accretion Flows (ADAFs - see Yuan & Narayan, 2014, for a review). Shakura

& Sunyaev (1973) introduced the ‘α-prescription’ to solve the accretion disc equa-

tions for a thin disc, where the viscosity, ν, is given by ν = αTDcsH, where αTD is

the dimensionless Shakura & Sunyaev (1973) parameter, cs is the sound speed and

H is the disc semi-thickness. In this analysis, we use the solutions of Collin-Souffrin

& Dumont (1990), in which the accretion disc equations are solved for AGN discs,

assuming this α-prescription. We use their solution for the regime where the opacity

is dominated by electron scattering and where gas pressure dominates over radiation

pressure.

The disc surface density, Σ, is then given by:

Σ = 6.84× 105 g cm−2 α
−4/5
TD ṁ3/5

( MBH

108M�

)1/8( R
RS

)−3/5

, (3.2.7)

where ṁ = Ṁ/ṀEdd is the dimensionless mass accretion rate, R is the radius from

the centre of the disc and RS = 2GMBH/c
2 is the Schwarzschild radius. The value

we use for αTD is given in Table 3.1. The disc semi-thickness H is given by2:

H

R
= 1.25× 10−3 α

−1/10
TD ṁ1/5

( MBH

108M�

)−1/10 ( R
RS

)1/20

. (3.2.8)

We calculate the Eddington luminosity using:

LEdd =
4πGMBHc

κ
= 1.26× 1046

( MBH

108M�

)
ergs−1, (3.2.9)

where κ is the opacity, for which we have used the electron scattering opacity for

pure hydrogen gas. We calculate the Eddington mass accretion rate ṀEdd from

2Note that equation (3.2.8) is different to Fanidakis et al. (2011) equation (25), as we are using

the accretion disc solutions of Collin-Souffrin & Dumont (1990).
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LEdd using a nominal accretion efficiency ε = 0.1 (as used in Yuan & Narayan, 2014)

chosen so that the Eddington normalised mass accretion rate ṁ does not depend on

the black hole spin:

ṀEdd =
LEdd

0.1c2
. (3.2.10)

Note that for the calculation of the luminosities, we do use the spin-dependent

radiative efficiency. We then follow the method of Natarajan & Pringle (1998) and

Volonteri et al. (2007) and take the warp radius as the radius at which the timescale

for radial diffusion of the warp due to viscosity is equal to the local Lense-Thirring

precession timescale. This then gives an expression for the warp radius3:

Rwarp

RS

= 3410 a5/8α
−1/2
TD ṁ−1/4

( MBH

108M�

)1/8 (ν2

ν1

)−5/8

, (3.2.11)

where ν1,2 are the horizontal and vertical viscosities respectively. For this analysis,

we assume that ν1 = ν2 (e.g. King et al., 2008). The warp mass can then be

calculated using:

Mwarp =

∫ Rwarp

0

2πΣ(R)R2dR, (3.2.12)

to give an expression4:

Mwarp = 1.35M�α
−4/5
TD ṁ3/5

( MBH

108M�

)11/5 (Rwarp

RS

)7/5

. (3.2.13)

3.2.3 Self-gravitating discs

In the chaotic mode accretion scenario of King et al. (2008), the inner radius, Rin,

is assumed to be equal to the disc self-gravity radius, Rsg. The self-gravity radius of

the accretion disc is the radius at which the vertical gravity due to the disc equals

3Note that equation (3.2.11) is different to Fanidakis et al. (2011) equation (15), as we are using

the accretion disc solutions of Collin-Souffrin & Dumont (1990).
4Note that equation (3.2.13) is different to Fanidakis et al. (2011) equation (18), as we integrate

the disc surface density, which is not the method followed in Fanidakis et al. (2011).



3.2. SMBH spin evolution 47

Table 3.1: The values for the SMBH/AGN free parameters in the model. The upper

part of the table shows parameters where the values adopted are from other studies,

whereas the lower part of the table gives parameters which have been calibrated on

the luminosity functions in Section 3.4.4.

Parameter Fanidakis et al. (2012) Adopted here Significance

αADAF 0.087 0.1 Shakura & Sunyaev (1973)

viscosity parameter for ADAFs

αTD 0.087 0.1 Shakura & Sunyaev (1973)

viscosity parameter for TDs

δADAF 2000−1 0.2 Fraction of viscous

energy transferred to

electrons in ADAF

ṁcrit,ADAF 0.01 0.01 Boundary between thin disc

and ADAF accretion

ηEdd 4 4 Super-Eddington

suppression factor

fq 10 10 Ratio of lifetime of AGN episode

to bulge dynamical timescale



3.2. SMBH spin evolution 48

the vertical gravity of the central SMBH at the disc midplane. For thin discs (where

ṁ > ṁcrit,ADAF), the self-gravity condition is (Pringle, 1981):

Msg = MBH
H

R
, (3.2.14)

whereMsg is the disc mass within the radiusRsg. For ADAFs (where ṁ < ṁcrit,ADAF),

H ∼ R, so the self-gravity condition is:

Msg = MBH. (3.2.15)

Using the accretion disc solutions of Collin-Souffrin & Dumont (1990), we derive

an expression for the self-gravity radius for thin discs5:

Rsg

RS

= 4790α
14/27
TD ṁ−8/27

( MBH

108M�

)−26/27

, (3.2.16)

and using an integral similar to equation (3.2.12), the self-gravity mass for the thin

disc is given by6:

Msg = 1.35M�α
−4/5
TD ṁ3/5

( MBH

108M�

)11/5 (Rsg

RS

)7/5

. (3.2.17)

3.2.4 Numerical procedure for modelling SMBH accretion

We have calculated results for both the prolonged and chaotic scenario, and for gas

accreted in increments of the self-gravity mass or warp mass. We present predictions

mostly for our standard case in which mass is accreted in increments of the self-

gravity mass and assuming the chaotic mode of accretion. We find that the predicted

spin distribution of the SMBHs is the same if we use increments of the self-gravity

mass or the warp mass (cf. Figure 3.8) and so we use increments of the self-gravity

mass as it is computationally faster. This is because when gas is accreted onto the

SMBH in increments of the warp mass, for small SMBHs the warp mass is very

5Note that equation (3.2.16) is different to Fanidakis et al. (2011) equation (24), because we

are using the accretion disc solutions of Collin-Souffrin & Dumont (1990).
6Note that equation (3.2.17) is different to Fanidakis et al. (2011) equation (26), as we integrate

the disc surface density, unlike the method followed in Fanidakis et al. (2011).
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small, and so in each accretion event the SMBH grows by a very small amount

in each accretion event. First, we present the numerical procedure when mass is

accreted in increments of the warp mass (cf. Volonteri et al., 2007; Fanidakis et al.,

2011), and then the case where mass is accreted in increments of the self-gravity

mass (cf. King et al., 2008).

Accretion in increments of the warp mass

For the first warp mass of gas, the angular momentum of the SMBH, ~JBH, and the

angular momentum of the inner disc, ~Jin, are assigned a random angle, θi, in the

range [0, π] radians. In the chaotic mode, each time the inner disc is consumed, θi is

assigned a new random angle. The gas with R < Rwarp initially has angular momen-

tum ~Jwarp aligned with ~Jin, so θi is also the initial angle between ~JBH and ~Jwarp. ~JBH

and ~Jwarp are then evolved according to the Lense-Thirring effect described in Sec-

tion 3.2.1, with ~JBH and ~Jwarp respectively aligning and aligning/anti-aligning with

~Jtot. The magnitude of ~JBH remains constant during this process, but the magnitude

of ~Jwarp changes. This is treated as happening before the mass consumption onto

the SMBH starts.

We calculate the angular momentum of the material within the warped disc as

Jwarp = Mwarp

√
GMBHRwarp and the angular momentum of the black hole, JBH =

2−1/2MBHa
√
GMBHRS. Then the ratio of these two quantities is:

Jwarp

2JBH

=
Mwarp√
2aMBH

(Rwarp

RS

)1/2

. (3.2.18)

Whether ~Jwarp and ~JBH align or anti-align with each other depends on this ratio

and on the angle θi. Following King et al. (2005), if cos θi > −Jwarp/2JBH, ~Jwarp and

~JBH become aligned (prograde accretion), whereas if cos θi < −Jwarp/2JBH, ~Jwarp

and ~JBH become anti-aligned (retrograde accretion). The angle between ~JBH and

~Jin after the accretion event, θf , is determined by conservation of ~Jtot and | ~JBH| and

is given by:

cosθf =
Jwarp + JBHcosθi√

J2
BH + J2

warp + 2JwarpJBHcosθi
. (3.2.19)
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When a new warp mass Mwarp, is then consumed, the gas is given a new ~Jwarp

pointing in the same direction as the inner disc and the same process happens again.

This repeated process has the effect that ~JBH gradually aligns with the angular

momentum of the inner accretion disc, ~Jin as more gas is accreted. Eventually the

gas in the inner disc is completely consumed.

In the prolonged mode, this process continues until all of the gas in the outer

disc has also been consumed, whereas in the chaotic mode, once a self-gravity mass

of gas has been consumed, the angle between ~Jin and ~Jout is randomised again.

Accretion in increments of the self-gravity mass

In the scenario where gas is being accreted in increments of the self-gravity mass

of gas, the above procedure is followed, but only once for each inner disc of gas

consumed. For this case, the ratio of angular momenta is given by:

Jin

2JBH

=
Msg√

2aMBH

(min(Rwarp, Rsg)

RS

)1/2

. (3.2.20)

In the future we plan a more thorough analysis of the effect on the spin evolution

of accreting in increments of self-gravity mass compared to increments of warp mass.

The AGN luminosities are not affected by this choice as they depend on the accreted

mass and the SMBH spin as we describe in Section 3.3.1.

3.2.5 Spinup by SMBH mergers

The other way in which an SMBH can change its spin is by merging with another

SMBH. The spin of the resulting SMBH depends on the spins of the two SMBHs

that merge and on the angular momentum of their binary orbit. To determine the

final spin, af , we use the expressions obtained from numerical simulations of BH-BH

mergers in Rezzolla et al. (2008):

|af | =
1

(1 + q)2

(
|a2

1|+ |a2
2|q4 + 2|a1||a2|q2 cosφ+

2(|a1| cos θ + |a2|q2 cos ξ)|l|q + |l|2q2
)1/2

,

(3.2.21)
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where a1,2 are the spins of the SMBHs, q is the mass ratio M1/M2, with M1 and

M2 chosen such that q ≤ 1, µ is the symmetric mass ratio q/(q + 1)2, and l is the

contribution of the orbital angular momentum to the spin angular momentum of

the final black hole. It is assumed that the direction of l is that of the initial orbital

angular momentum, while its magnitude is given by:

|l| = s4

(1 + q2)2
(|a1|2 + |a|21q4 + 2|a1||a2|q2 cosφ)+(s5µ+ t0 + 2

1 + q2

)
(|a1| cos θ + |a2|q2 cos ξ)+

2
√

3 + t2µ+ t3µ
2,

(3.2.22)

where s4 = −0.129, s5 = −0.384, t0 = −2.686, t2 = −3.454, t3 = 2.353 are values

obtained in Rezzolla et al. (2008). The angles φ, θ and ξ are the angles between the

spins of the two black holes and their orbital angular momentum, and are given by:

cosφ = â1 · â2, (3.2.23)

cos θ = â1 · l̂, (3.2.24)

cos ξ = â2 · l̂. (3.2.25)

When we consider two SMBHs merging, we calculate the angles between the three

different vectors by randomly selecting directions for a1, a2 and l uniformly over the

surface of a sphere. This prescription makes the assumption that the radiation of

gravitational waves does not affect the direction of the orbital angular momentum

as the binary orbit shrinks, and we also assume that the mass lost to gravitational

radiation is negligible.
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3.3 Calculating AGN luminosities

3.3.1 AGN bolometric luminosities

From the mass of gas that is accreted onto the SMBH, we can calculate a radiative

bolometric luminosity as follows. The mass accretion rates are calculated for the

starburst and hot halo modes in Section 2.7. We then calculate the bolometric

luminosity for a thin accretion disc using:

Lbol,TD = εTDṀc2, (3.3.26)

where the radiative efficiency εTD for the thin disc case depends on the black hole

spin, as given by equation (3.2.3). However, the radiative efficiency is not the same

for all regimes of the accretion flow. As well as the thin disc and the ADAF case,

there are also AGNs accreting above the Eddington accretion rate. Such objects are

generally understood to be advection dominated and to have optically thick flows

(Abramowicz et al., 1988).

For the ADAF regime we use the expressions for bolometric luminosity from

Mahadevan (1997). There are two cases within this regime. For lower accretion rate

ADAFs (ṁ < ṁcrit,visc), heating of the electrons is dominated by viscous heating,

whereas for higher accretion rate ADAFs (ṁcrit,visc < ṁ < ṁcrit,ADAF), the ion-

electron heating dominates the heating of the electrons. In the super-Eddington

regime, the radiative efficiency is lower than the corresponding thin disc radiative

efficiency, and so a super-Eddington luminosity suppression is introduced (Shakura

& Sunyaev, 1973). This expression includes a free parameter, ηEdd, the value for

which is given in Table 3.1,

Hence, the bolometric luminosities in the model are given by the following ex-

pressions7. For the low accretion rate ADAF regime, where ṁ < ṁcrit,visc:

Lbol = 0.0002εTDṀc2
( δADAF

0.0005

)(1− β
0.5

)( 6

r̂lso

)
, (3.3.27)

7Note that the coefficients of the ADAF luminosities are derived in Mahadevan (1997) and not

free parameters.
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where β and δADAF are defined below.

For the higher accretion rate ADAF regime, where ṁcrit,visc < ṁ < ṁcrit,ADAF,

we have:

Lbol = 0.2εTDṀc2
( ṁ

α2
ADAF

)( β

0.5

)( 6

r̂lso

)
. (3.3.28)

For the thin disc regime, where ṁcrit,ADAF < ṁ < ηEdd, Lbol = Lbol,TD. Finally,

for the super-Eddington regime, where ṁ > ηEdd, we have:

Lbol = ηEdd(1 + ln(ṁ/ηEdd))LEdd. (3.3.29)

The value of ηEdd adopted gives a similar luminosity at a given mass accretion

rate in the super-Eddington regime to the model of Watarai et al. (2000) who model

super-Eddington sources as advection dominated slim discs.

In the above, αADAF is the viscosity parameter in the ADAF regime (the value

is given in Table 3.1). δADAF is the fraction of viscous energy transferred to the

electrons (the value is given in Table 3.1). The current consensus for the value of

δADAF is a value between 0.1 and 0.5, (cf. Yuan & Narayan, 2014). Therefore, for this

study we adopt a value δADAF = 0.2, more in line with observational (Yuan et al.,

2003; Liu et al., 2013) and theoretical (Sharma et al., 2007) constraints, as opposed

to the value of δADAF = 2000−1 adopted in Fanidakis et al. (2012). Changing the

value of δADAF makes no discernible difference to the luminosity functions shown in

this paper. β is the ratio of gas pressure to total pressure (total pressure being the

sum of gas pressure and magnetic pressure). Following Fanidakis et al. (2012), we

use the relation β = 1−αADAF/0.55, which is based on MHD simulations in Hawley

et al. (1995).

The boundary between the two ADAF regimes is:

ṁcrit,visc = 0.001
( δADAF

0.0005

)(1− β
β

)
α2

ADAF, (3.3.30)

which is a value chosen so that Lbol is continuous in the ADAF regime. The boundary

between the ADAF and thin disc regimes is assumed to be ṁcrit,ADAF = 0.01 (Yuan

& Narayan, 2014). fq and ηEdd are free parameters that we calibrate on observed

AGN luminosity functions, as described in Section 3.5.1.
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Figure 3.2: The Marconi et al. (2004) SED used for calculating luminosities in

different wavebands in this Chapter. Shown is the SED for Lbol = 1043ergs−1 (black

solid line), Lbol = 1045ergs−1 (red dashed line) and for Lbol = 1047ergs−1 (blue dotted

line).

3.3.2 Converting from bolometric to optical and X-ray AGN

luminosities

To convert from AGN bolometric luminosity to luminosities in other wavebands

we use bolometric corrections derived from the empirical AGN SED template in

Marconi et al. (2004). We show this SED for three different luminosities in Figure

3.2. The rest-frame bolometric corrections calculated from this SED are8:

log10(LHX/Lbol) = −1.54− 0.24L − 0.012L2 + 0.0015L3, (3.3.31)

log10(LSX/Lbol) = −1.65− 0.22L − 0.012L2 + 0.0015L3, (3.3.32)

8Note that equations (3.3.31) and (3.3.32) are corrected from a typographical error in Fanidakis

et al. (2012) equation (10).
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log10(νBLνB/Lbol) = −0.80 + 0.067L − 0.017L2 + 0.0023L3, (3.3.33)

where L = log10(Lbol/1012L�), LHX is the hard X-ray (2-10 keV) luminosity, LSX is

the soft X-ray (0.5-2 keV) luminosity, νB = c/4400Å is the frequency of the centre

of the B-band, and LνB is the luminosity per unit frequency in the B-band.

To calculate B-band magnitudes we use the expression9:

MB,AB = −11.33− 2.5log10

( νBLνB
1040ergs−1

)
, (3.3.34)

for magnitudes in the AB system, from the definition of AB magnitudes (Oke &

Gunn, 1983). Using the Marconi et al. (2004) SED template, we convert from rest-

frame B-band magnitudes to rest-frame 1500Å band magnitudes using a relation

similar to equation (A.2.8) to give:

M1500,AB = MB,AB + 0.514. (3.3.35)

The Marconi et al. (2004) SED is based on observations of quasars, with the UV

part of the SED based on observations at LUV ∼ 1042.5−47ergs−1 and the X-ray part

of the SED based on observations at LHX ∼ 1041−44ergs−1. Therefore, this SED is

likely to be most appropriate for AGN in the thin disc and super-Eddington regime.

For z > 6 and for the luminosities that we are considering, the AGN are in the thin

disc or super-Eddington regime, so this SED is appropriate, although in future work

we plan to include a wider variety of SEDs for AGN in different accretion regimes.

3.3.3 AGN obscuration and unobscured fractions

AGN are understood to be surrounded by a dusty torus, which causes some of the

radiation to be absorbed along some sightlines, and re-emitted at longer wavelengths.

For simplicity, we assume that at a given wavelength, AGN are either completely

obscured or completely unobscured. The effect of obscuration can therefore be

9Note that equation (3.3.34) is different to Fanidakis et al. (2012) equation (13), which may

have been caused by a typographical error.
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expressed as an unobscured fraction (visible fraction), which is the fraction of objects

that are unobscured in a certain waveband at a given luminosity and redshift.

The fraction of obscured objects in the hard X-ray band is thought to be small,

so for this thesis we assume that there is no obscuration at hard X-ray wavelengths.

There is a population of so-called ‘Compton-thick’ AGNs for which the column

density of neutral hydrogen exceeds NH ≈ 1.5× 1024cm−2, which is the unit optical

depth corresponding to the Thomson cross section. Such objects are difficult to

detect, even at hard X-ray wavelengths. The number of such objects is thought to

be small, so we ignore their contribution for this thesis.

We calculate the unobscured fractions in the soft X-ray and optical bands using

one of three observationally determined empirical relations from the literature, and

also two more introduced here.

1. The unobscured fraction of Hasinger (2008) is:

fvis = 1 + 0.281
[
log10

( LHX

1043.75ergs−1

)]
− A(z), (3.3.36)

where

A(z) = 0.279(1 + z)0.62. (3.3.37)

LHX is the hard X-ray luminosity in the observer frame and z is the redshift10.

The redshift dependence of the visible fraction in this model saturates at z ≥

2.06 and the visible fraction is not allowed to have values below 0 or above 1.

Because the observational data on which this obscuration model is based only

extend to z = 2, we extrapolate the model to z > 2 using LHX as the rest-

frame hard X-ray band at z = 2, i.e. 6-30 keV. For this obscuration model, if

an object is obscured at soft X-ray wavelengths, then it is also assumed to be

obscured at optical/UV wavelengths.

10This empirical model and others we use from observational studies were derived using a slightly

different cosmology from the one used in the P-Millennium, for simplicity we ignore the effect of

this here.
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2. Hopkins et al. (2007) derive an unobscured fraction of the form:

fvis = f46

( Lbol

1046ergs−1

)β
, (3.3.38)

where f46 and β are constants for each band. For the B-band, [f46, β] are

[0.260, 0.082] and for the soft X-ray band, [f46, β] are [0.609, 0.063]. This

model does not require a high redshift extrapolation, as it depends only on

bolometric luminosity.

3. Aird et al. (2015) observationally determine an unobscured fraction for soft

X-rays of the form:

fvis =
φunabs

φunabs + φabs

, (3.3.39)

where φunabs, the number density of unabsorbed sources, and φabs, the number

density of absorbed sources, are given by:

φ =
K

(LHX

L?
)γ1 + (LHX

L?
)γ2
, (3.3.40)

where the constants for both cases are given in Table 3.2. As for the Hasinger

(2008) obscuration model, if the object is obscured at soft X-ray wavelengths,

then we assume that it is also obscured at optical/UV wavelengths. For this

obscuration model, we extrapolate to high redshift such that for z > 3, the

LHX hard X-ray band is the rest-frame band for z = 3.

4. We also use unobscured fractions that are modified versions of Hopkins et al.

(2007). These unobscured fractions also depend solely on Lbol, but with differ-

ent coefficients. These coefficients were derived by constructing a bolometric

luminosity function from the luminosity functions at optical, UV, and X-ray

wavelengths. We used the Marconi et al. (2004) bolometric corrections and

selected coefficients for the visible fraction so as to create a resultant bolo-

metric luminosity function with the scatter between points minimised. This is

described in Appendix A.3. The first of these new obscuration relations, the
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Table 3.2: The parameters that correspond to the best fit visible fraction from Aird

et al. (2015) where ζ = log(1 + z). These parameter values have been obtained by

private communication. See equations (3.3.39) and (3.3.40).

absorbed unabsorbed

log(K /Mpc−3) −4.48 + 3.38ζ − 7.29ζ2 −5.21 + 3.21ζ − 5.17ζ2

log(L?/ergs−1) 43.06 + 3.24ζ − 1.59ζ2 + 0.43ζ3 43.80− 0.57ζ + 9.70ζ2 − 11.23ζ3

logγ1 −0.28− 0.67ζ −0.44− 1.25ζ

γ2 2.33 2.32

βCT 0.34 0.34

‘low-z modified Hopkins’, (LZMH) visible fraction for rest-frame 1500Å has

the form:

fvis,LZMH = 0.15
( Lbol

1046ergs−1

)−0.1

, (3.3.41)

and for the soft X-ray band it has the form:

fSX,LZMH = 0.4
( Lbol

1046ergs−1

)0.1

. (3.3.42)

5. The second of these modified Hopkins unobscured fractions, the ‘z = 6 mod-

ified Hopkins’ (Z6MH) visible fraction was derived by fitting the galform

z = 6 luminosity functions at 1500Å and in the soft X-ray band to the obser-

vational estimates. This visible fraction is:

fvis,Z6MH = 0.04, (3.3.43)

for both rest-frame 1500Å and soft X-rays.

3.3.4 Calculating model AGN luminosity functions

Typically when one constructs a luminosity function from a simulation, only the

AGNs that are switched on at each snapshot are included. However, if one does

this, rarer objects with higher luminosities but which are only active for a short
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time are not sampled well. To probe the luminosity function for such objects, we

average over a time window, ∆twindow. The time window should not be too large, as

then we may miss the effect of multiple starbursts within the time window, because

the simulation only outputs information on the most recent starburst. We select

a time window for which the luminosity function using the time average method

is converged to the luminosity function using only the AGNs switched on at the

snapshots. For the predictions here we set ∆twindow = tsnapshot/10, where tsnapshot is

the age of the Universe at that redshift.

Each object is assigned a weight, w, given by:

w = tQ/∆twindow, (3.3.44)

where tQ = fqtbulge is the lifetime of the most recent quasar episode occurring within

the time interval ∆twindow as in Section 3.3.1. This weight is then applied to the

number densities counting all AGN occurring within the time interval ∆twindow which

then allows us to include higher luminosity events at lower number densities in the

luminosity function. We show the effect of changing the value of ∆twindow, as well as

the effect of simply using snapshot quantities on the predicted luminosity functions

in Appendix A.4.

3.4 SMBH Masses, accretion rates and spins

We start by showing some basic predictions from the new model for SMBH masses,

accretion rates and spins.

3.4.1 Black hole masses

In the left panel of Figure 3.3 we show the black hole mass function at z = 0

predicted by our model compared to observational estimates. The observations use

indirect methods to estimate the black hole mass function, because of the lack of a

large sample of galaxies with dynamically measured black hole masses. In Marconi

et al. (2004) and Shankar et al. (2004, 2009) galaxy luminosity/velocity dispersion

functions are combined with relations between black hole mass and host galaxy
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Figure 3.3: The black hole mass function. Left panel : the predicted black hole mass

function at z = 0 compared to observational estimates by Marconi et al. (2004);

Shankar et al. (2004, 2009). Right panel : the evolution of the black hole mass

function over the range 0 < z < 12.
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properties to estimate black hole mass functions. The predictions of the model

fit well to the observational estimates within the observational errors, especially

given that there will also be uncertainties on the black hole mass measurements

and given the discrepancies between the observational estimates. The former means

the predictions could still be consistent with observations at the high mass end

(MBH ≥ 109M�).

The evolution of the black hole mass function for 0 < z < 12 is shown in the

right panel of Figure 3.3. Most of the SMBH mass is formed by z ∼ 2, as the mass

density of black holes is dominated by objects around the knee of the black hole mass

function, and this knee is in place by z ∼ 2. The dominant fuelling mechanism for

growing the black hole mass density across all redshifts is gas accretion in starbursts

triggered by disc instabilities, and disc instabilities play an important role in shaping

the black hole mass function for MBH < 108M�. However, SMBH mergers are more

important for determining the shape of the black hole mass function for MBH >

108M�, as they are the mechanism by which the largest SMBHs are formed. AGN

feedback also plays an important role in shaping the black hole mass function at this

high mass end, by suppressing gas cooling and so slowing down the rate at which

the SMBHs grow by cold gas accretion.

In Figure 3.4, we show the ‘active’ black hole function at z = 0 compared to

observational estimates from Schulze & Wisotzki (2010). In this observational es-

timate, active SMBHs are defined as AGN radiating above a certain Eddington

ratio (Lbol/LEdd > 0.01). The flux limit in the observations results in the observa-

tional sample being incomplete for MBJ > −19. The observational sample also only

includes type 1 (unobscured) AGNs. Therefore, we apply these selections to the

model predictions, using the LZMH visible fraction, to compare with this observa-

tional estimate of the active black hole mass function. We also present predictions

where the selection on MBJ has not been applied. The effect of the selection on

MBJ can be seen at the low mass end (MBH < 108M�), where the dashed and solid

lines diverge. While the model is in reasonable agreement with the observations

at MBH ∼ 108.5M�, the model generally underpredicts the active black hole mass

function, although the model does reproduce the overall shape of the shape of the
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Figure 3.4: The active black hole mass function (solid line) at z = 0, compared

to observational estimates from Schulze & Wisotzki (2010). We show predictions

where active SMBHs are defined as AGNs brighter than a threshold Eddington ratio

(Lbol/LEdd > 0.01), using the LZMH visible fraction (cf. Section 3.3.3) (dashed line),

and predictions also brighter than a threshold AGN absolute magnitude (MBJ
<

−19) (solid line). This is for appropriate comparison with the active black hole

mass function in Schulze & Wisotzki (2010), where the open circles are the data

points that suffer from incompleteness, while the filled circles are the data points

that do not. We also show the total black hole mass function (dotted line) with the

number density divided by 100, for comparison.
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Figure 3.5: Left panel : the predicted SMBH mass versus bulge stellar mass relation

at z = 0 compared to observational data from McConnell & Ma (2013). The line

represents the median of the predicted SMBH mass in bins of bulge mass and the

shading denotes the 10-90 percentiles of the predicted distribution. Middle panel :

the evolution of the median of the ratio of SMBH mass to bulge mass versus bulge

mass relation with redshift for z = 0, 0.5, 1, 2, 4, 6. As in the left panel, the grey

shaded band is the 10-90 percentiles of the distribution for z = 0 and the purple

dashed lines are the 10-90 percentiles of the distribution for z = 6. Right panel : the

evolution of the median of the ratio of SMBH mass to galaxy stellar mass versus

galaxy stellar mass relation, with the lines representing the same redshifts as the

middle panel as indicated by the legend.

observational active black hole mass function. We found similar results when com-

paring with other studies, such as those from SDSS (e.g. Vestergaard & Osmer,

2009).

Figure 3.5 shows the relation between SMBH mass and bulge or total stellar

mass. In the left panel of Figure 3.5 we show the predicted SMBH mass versus

bulge mass relation compared to observational data from McConnell & Ma (2013).

The predictions follow the observations well, with the scatter decreasing towards

higher masses. BH-BH mergers contribute towards this decrease in scatter, as seen

in Jahnke & Macciò (2011), although they are not the only contributing mechanism,

with AGN feedback also affecting the scatter at the high mass end.

In the middle panel of Figure 3.5, we show the evolution of the ratio of SMBH

mass to bulge mass (MBH/Mbulge) versus bulge stellar mass for 0 < z < 6, showing
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the scatter of the distribution for z = 0 and z = 6. As we go to higher redshift, the

ratio MBH/Mbulge increases, as also seen in observations (e.g. Peng et al., 2006). The

ratio MBH/Mbulge reflects the mechanism by which these two galaxy components

form. At higher redshift, bulges grow mainly by starbursts, which also feeds the

growth of SMBHs and so the distribution of the ratio MBH/Mbulge peaks at fBH (the

fraction of the mass of stars formed in a starburst accreted onto a black hole), with

some scatter caused by mergers. At lower redshift the ratio MBH/Mbulge decreases,

as galaxy mergers cause bulges to form from discs, but without growing the SMBHs.

We also note how the scatter of the relation is lower at z = 6 than at z = 0 for all

masses - by z = 0 galaxies have had more varied formation histories compared to

the z = 6 population.

In the right panel of Figure 3.5 we show the evolution of the ratio of the SMBH

mass to the galaxy stellar mass (MBH/M?) versus galaxy stellar mass for the redshift

range 0 < z < 6. Galaxies of larger stellar mass and the largest SMBHs form at

late times, and at lower masses (M? < 1011M�), MBH/M? is smaller at later times.

At lower masses, the ratio MBH/M? decreases with time because the fraction of the

stellar mass that is in the bulge decreases. This evolution slows down at z < 1.

At higher masses (M? > 1011M�), the stellar mass and SMBH mass stay on the

same relation independent of redshift. It is in this regime that the AGN feedback

is operational: in our model we use the AGN feedback prescription of Bower et al.

(2006) in which AGN feedback is only active where the hot gas halo is undergoing

‘quasistatic’ (slow) cooling. This has the effect that AGN feedback is only active for

haloes of mass above ∼ 1012M�. The relation between SMBH mass and stellar mass

at this high mass end is caused by both AGN feedback and mergers, with neither

mechanism dominant in establishing this relation.

3.4.2 Black hole accretion rates

In Figure 3.6 we show the black hole mass accretion rate distribution, showing its

evolution with redshift and split by fuelling modes: the hot halo mode, starbursts

triggered by mergers and starbursts triggered by disc instabilities (see Section 2.7).

The hot halo mode becomes more dominant at later times, because the hot halo
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Figure 3.6: The distribution of black hole mass accretion rates for different redshifts

(black solid line) split by contributions from hot halo mode (red dashed line), star-

bursts triggered by mergers (light blue solid line) and starbursts triggered by disc

instabilities (dark blue dotted line). We have selected all black holes residing in

galaxies of stellar mass, M? > 106M�, which is above the completeness limit of the

simulation.
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mode requires long cooling times, and hence it occurs for massive haloes, and be-

cause dark matter haloes grow hierarchically, these large haloes only form at later

times. The contribution from starbursts triggered by galaxy mergers peaks at z ≈ 2.

Starbursts triggered by mergers peak at a low mass accretion rate, as seen in Figure

3.6, albeit with a tail that extends to high Ṁ . The peak at Ṁ ∼ 10−6M�/yr is

mostly due to minor mergers with mass ratios 0.05 < M2/M1 < 0.3 (mergers with

mass ratios in this range cause about three quarters of the merger triggered star-

bursts at this mass accretion rate)11. These minor mergers involve a relatively small

mass of gas, and so the gas mass accreted onto the SMBH is relatively small, leading

to these lower mass accretion rates. The location of this peak may be sensitive to

the value of fburst adopted (which sets the threshold merger mass ratio for starburst

triggering). For a higher value of fburst, the mass accretion rate of this peak would

increase. The contribution from starbursts triggered by disc instabilities increases

as the redshift increases. Starbursts triggered by mergers typically have lower Ṁ

values than starbursts triggered by disc instabilities. There are two reasons for this.

First, the average stellar mass formed by bursts triggered by disc instabilities is

higher than for bursts triggered by mergers, and this occurs because the average

cold gas mass is higher for galaxies in which bursts triggered by disc instabilities

occur. Secondly, the average bulge dynamical timescale for starbursts triggered by

disc instabilities is smaller than for those triggered by mergers due to the average

bulge size being smaller for starbursts triggered by disc instabilities. The combina-

tion of these effects accounts for the lack of starbursts triggered by disc instabilities

at the very lowest Ṁ values. The galaxies that host such starburst episodes would

be below the mass at which the simulation is complete.

In Figure 3.7 we show the evolution of the distribution of Eddington normalised

mass accretion rate Ṁ/ṀEdd. We also show the predictions in different stellar mass

ranges. Looking at the total distribution (M? > 107M�), for increasing redshift,

the distribution shifts to somewhat higher values. This is seen as the number of

objects with log(Ṁ/ṀEdd) < −2 decreasing with increasing redshift, a peak at

11Note that a mass ratio of 0.05 is assumed to be the lower threshold for starburst triggering in

galaxy mergers (Lacey et al., 2016)
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Figure 3.7: The distribution of Eddington ratio in terms of mass accretion rate,

Ṁ/ṀEdd, evolving with redshift. Shown are all objects with stellar mass, M? >

107M� (black solid line), objects with stellar mass 107M� < M? < 109M� (dark

blue dotted line), objects with stellar mass 109M� < M? < 1011M� (light blue solid

line) and objects with stellar mass M? > 1011M� (red dashed line).
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log(Ṁ/ṀEdd) ∼ −1 building up with increasing redshift and the number of objects

with log(Ṁ/ṀEdd) > 0 increasing with increasing redshift. The different bins of

stellar mass have different distributions of Ṁ/ṀEdd, and evolve differently. At z = 0,

the lowest bin in stellar mass (107M� < M? < 109M�) shows a broad distribution

around a peak at log(Ṁ/ṀEdd) ≈ −1.5, the middle bin in stellar mass (109M� <

M? < 1011M�) also shows a broad distribution, but with a peak at log(Ṁ/ṀEdd) ≈

−3 and also has features at log(Ṁ/ṀEdd) ≈ −1.5 and log(Ṁ/ṀEdd) ≈ −0.5. The

distribution in the highest stellar mass bin (M? > 1011M�) peaks at lower value of

log(Ṁ/ṀEdd) ≈ −4, but has fewer objects at high Eddington ratios than the lower

stellar mass bins. The distribution in the highest stellar mass bin peaks at a lower

Eddington ratio because this is where the hot halo mode is operational, so SMBHs

are typically quiescently accreting.

As redshift increases, the Ṁ/ṀEdd value of the peak in the Ṁ/ṀEdd distribution

for the lowest stellar mass bin increases, such that by z = 6, the peak for the lowest

stellar mass bin and the middle stellar mass bin are both at log(Ṁ/ṀEdd) ≈ −0.5.

The number of objects in the highest stellar mass bin decreases strongly at high

redshift, so the hot halo mode is much less prevalent at higher redshift, z > 3.

We also have compared the predicted Eddington luminosity ratio, (Lbol/LEdd)

distribution at z = 6, to the observational data compiled in Wu et al. (2015) Figure

4. The Lbol/LEdd distribution at z = 6 from galform has a median and 10-90

percentiles at 4.3+4.3
−3.0 for AGNs with Lbol > 1046ergs−1 and 8.6+3.5

−3.5 for AGNs with

Lbol > 1047ergs−1, whereas the Lbol/LEdd median and 10-90 percentiles in Wu et al.

(2015) is 1.0+1.8
−0.4 for a mixture of samples with Lbol > 1046ergs−1. The predicted

Lbol/LEdd are somewhat larger than the observational estimate. One possible reason

for the different distributions is systematic uncertainties in the black hole mass

estimates in the observations. We plan to conduct a more detailed investigation in

future work.

3.4.3 Black hole spins

In Figure 3.8 we show the SMBH spin distribution predicted by the model for both

the prolonged and chaotic accretion modes. Note that a here represents the magni-
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Figure 3.8: The predicted SMBH spin distributions at z = 0 for prolonged (left

panel) and chaotic (right panel) accretion modes. The line represents the median

value of the magnitude of the spin for that SMBH mass, and the shading represents

the 10-90 percentile range of the distribution.

tude of the spin. The low mass end of the spin distribution (6 < log10(MBH/M�) <

8) is dominated by accretion spinup whereas the high mass end (8 < log10(MBH/M�)

< 10) is dominated by merger spinup. For prolonged mode accretion, the coher-

ent accretion spinup means that SMBHs quickly reach their maximum spin value,

giving rise to a population of maximally spinning SMBHs at low mass. At high

masses, the average spin value is lower because of SMBH mergers. This is because

even if two maximally spinning SMBHs merge, the result is typically a SMBH with

a lower spin value because of misalignment between the black hole spins and the

orbital angular momentum. For chaotic mode accretion, the accretion direction is

constantly changing and so the accretion spinup leads to SMBHs with lower median

spin values (a ≈ 0.4), compared to prolonged accretion. The spin values are not

zero in the chaotic mode, as one may be tempted to expect, because the accretion

spinup is more efficient if the accretion disc and SMBH spin are in the same direc-

tion compared to the case of anti-alignment (King et al., 2008). The mean value

of the SMBH spin decreases with increasing black hole mass at this low mass end,

for chaotic mode accretion as also reported in King et al. (2008). At the high mass
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end, the increase in average spin at MBH ∼ 109M� is due to spinup by BH mergers.

Two slowly spinning SMBHs typically form a higher spin SMBH when they merge,

due to the angular momentum of the orbit between them.

One of the conclusions of Fanidakis et al. (2011) was that for chaotic mode

accretion, smaller SMBHs will have lower spin values (ā ≈ 0.15) whereas larger

SMBHs will have higher spin values (ā ≈ 0.7 − 0.8). Our new analysis predicts

that for chaotic mode accretion SMBHs will generally have moderate spin values,

ā ≈ 0.4, yielding radiative accretion efficiencies of ε ≈ 0.075, not too dissimilar from

the value of ε ≈ 0.1 required by the Soltan (1982) argument. However, the average

radiative accretion efficiency implied by prolonged mode accretion is ε ≈ 0.4, in

tension with the Soltan (1982) argument.

The chaotic mode spin distribution is different to that in Fanidakis et al. (2011)

because the equations for SMBH spinup by gas accretion have changed from that

paper (causing higher spin values at the low SMBH mass end) and because the

directions for the spinup due to SMBH mergers are sampled from the surface of a

sphere as opposed to the circumference of a circle, leading to lower spin values at

the high SMBH mass end.

We then show the evolution of the SMBH spin distribution for the prolonged and

chaotic modes in Figure 3.9. The black hole spin versus black hole mass relation

shows negligible evolution for both modes, with the median black hole spin at any

black hole mass approximately the same over the range z = 0− 6. For both modes

the scatter of the distribution decreases with increasing redshift, with the scatter for

the prolonged mode decreasing much more than the scatter for the chaotic mode.

For the prolonged mode, by z = 6, nearly all of the black holes with MBH < 108M�

have the maximal spin permitted by the model. Also, there is a lack of high mass,

MBH > 3 × 108M�, black holes at z = 6 for both modes. This is due to a low

abundance of high mass galaxies at z = 6.

We show how typical black holes evolve in the chaotic mode (the standard choice

for this analysis) for four different black hole masses in Figures in 3.10 and 3.11.

When we generate each black hole history, we only follow the largest progenitor

black hole back in time when two or more black holes merge. In the upper panel of
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Figure 3.9: The predicted evolution of the SMBH spin distribution for prolonged

mode (left panels) and chaotic mode (right panels). Results are shown for z = 0, 2, 6.

The lines and shading have the same meaning as in the previous figure, with the

dotted line representing the median and percentiles for that accretion mode at z = 0.
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Figure 3.10: Upper panel: the evolution of the ratio of SMBH mass to the SMBH at

z = 0 versus time. Lower panel: the evolution of SMBH spin versus time. In both

panels we show examples of SMBHs with z = 0 masses of MBH = 5.47 × 106M�

(black solid line), MBH = 8.43×107M� (dark blue dotted line), MBH = 4.13×108M�

(light blue solid line), MBH = 2.68 × 109M� (red dashed line). The same objects

are plotted in both panels.
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Figure 3.11: The evolution of four different mass SMBHs through the spin versus

mass plane. The final SMBH masses at z = 0 are the same as plotted in Figure

3.10.

Figure 3.10 we show the evolution of the black hole mass through time evolution for

these objects, where the time is measured from the Big Bang. Some of the features

discussed for the black hole mass function in Figure 3.3 can be seen here, such as how

most of the SMBH mass is assembled at early times, and how the very largest black

holes build up gradually at late times. It can also be seen how the larger SMBHs

generally grow their mass quickest, with smaller SMBHs generally growing later.

This is seen in Figure 3.10 where the SMBH of mass MBH = 5.47× 106M� reaches

40% of its final mass at 9 Gyr, whereas the SMBH of mass MBH = 8.43 × 107M�

reaches 60% of its final mass at 6 Gyr, and the SMBH of mass MBH = 4.13×108M�

reaches 80% of its final mass at 2 Gyr. However, the SMBH of mass MBH =

2.68× 109M� grows more gradually.

In the lower panel of Figure 3.10 we show the evolution of SMBH spin through

time. SMBHs of different masses generally show the same trends as their spin evolves

through time. At early times, the black holes are smaller and so the spin values will

change dramatically (with a changing between 0 and 0.8) if there is an accretion or

merger event, whereas at later times, the spin values do not change as dramatically
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Figure 3.12: Left panel: a scatter plot of AGN bolometric luminosity versus halo

mass at z = 0. The points are coloured by the density of objects in this plane, where

red indicates a high density of objects while blue indicates a low density of objects.

Right panel: as in the left panel but showing bolometric luminosity versus stellar

mass.

(a only varies by about 0.1 for each event) with time. The spin values generally

converge on a moderate value (a ≈ 0.2− 0.6) at late times.

In Figure 3.11, we show the evolution of the black holes through the spin versus

mass plane. First, the black holes are spun up to high spins by mergers at small

masses. Then the black holes of different masses generally show a similar evolution

through the spin versus black hole mass plane as they evolve from high spins at

lower black hole masses to lower spins at higher black hole masses, as they accrete

gas by chaotic mode accretion. For the two largest black hole masses, there is an

additional feature, as the black hole spin increases at the very highest masses. This

is a result of the black holes merging with other black holes following their host

galaxies merging.

3.4.4 AGN luminosities and black hole/galaxy properties

Before comparing the predicted AGN luminosity functions to observational esti-

mates, we first show the dependence of AGN luminosities on some different galaxy
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properties.

First in the left panel of Figure 3.12, we show the dependence of bolometric

luminosity on halo mass, where the points are coloured by the density of points. Each

halo mass can host an AGN up to Lbol ∼ 1044ergs−1, with the brightest AGN not

residing in the largest haloes, but instead in haloes of mass Mhalo ∼ 1012M�. This

is a result of how in the model, AGN activity is inhibited in the largest haloes due

to AGN feedback (cf. Fanidakis et al., 2013a). The overall distribution is bimodal,

which is a result of the two primary fuelling modes. The AGN at Mhalo . 1012.5M�

are mostly fuelled by starbursts triggered by disc instabilities, whereas the AGN

at Mhalo & 1012.5M� are mostly fuelled by hot halo mode accretion. AGN fuelled

by starbursts triggered by mergers make a minor contribution to both parts of

this distribution. Hot halo mode accretion fuels the objects at the peak of the 2D

distribution in this plane seen at Mhalo ≈ 1013M� and Lbol ≈ 1042ergs−1. The peak

of the distribution of objects fuelled by starbursts triggered by disc instabilities is

at Mhalo ≈ 1011.5M� and Lbol ≈ 1043.5ergs−1, while the peak in the distribution for

starbursts triggered by mergers is at Mhalo ≈ 1011.5M� and Lbol ≈ 1042ergs−1.

In the right panel of Figure 3.12, we show the dependence of bolometric lumi-

nosity on stellar mass. There is more of a correlation between bolometric luminosity

and stellar mass than between bolometric luminosity and halo mass. The brightest

AGN in the model do not live in the largest stellar mass galaxies, but rather reside

in galaxies of M? ∼ 1011M�. This distribution also shows a bimodality, where gen-

erally the objects at lower masses (M? < 3 × 1010M�) are fuelled by the starburst

mode, while objects at higher masses (M? > 3×1010M�) are fuelled by the hot halo

mode, although there is some overlap between the two. For the starburst mode,

the peak of the distribution for starbursts triggered by disc instabilities and the

peak of the distribution for starbursts triggered by mergers are both at stellar mass

M? ≈ 3 × 109M�. This peak is at Lbol ≈ 1043ergs−1 for disc instabilities, whereas

for mergers this peak is at Lbol ≈ 1042ergs−1. Starbursts triggered by mergers do

also occur for galaxies of stellar mass M? > 1011M�, whereas starbursts triggered

by disc instabilities do not occur for galaxies of this mass.

In Figure 3.13, we show the dependence of AGN bolometric luminosity on the
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Figure 3.13: As in Figure 3.12 but showing the dependence of AGN bolometric

luminosity on the duration of the AGN episode, for starburst mode fuelled AGN

only.
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duration of the AGN episode. The distribution peaks at tAGN ≈ 107.5 yr and Lbol ≈

1042ergs−1, with objects with luminosities Lbol < 1044ergs−1 having a wide range of

durations of the AGN episodes. However, the brightest objects at Lbol ≈ 1048ergs−1

all have durations of tAGN ≈ 106 yr with an anti-correlation between duration of

the AGN episode and the AGN luminosity. This anti-correlation arises because in

general, shorter AGN epsiodes lead to higher AGN luminosities.

3.5 Evolution of the AGN luminosity function at

z < 6

We first discuss the evolution of the predicted AGN luminosity function, as it is the

simplest to predict, and then the AGN luminosity functions at different wavelengths,

which depend on bolometric and obscuration corrections.

3.5.1 Bolometric luminosity function

We present the predicted bolometric luminosity function compared to our observa-

tionally estimated bolometric luminosity function constructed from multiwavelength

data. This observationally estimated bolometric luminosity function is described in

Appendix A.3, and is compared to other observational estimates in Appendix A.3.

The model for SMBH evolution and AGN luminosity also involves some free

parameters additional to those in the galaxy formation model, as shown in Table

3.1. We have calibrated the values of fq and ηEdd, and found that the best-fitting

values are those adopted in Fanidakis et al. (2012). We show the effect of varying

these parameters in Figures A.9 and A.10. We also slightly adjust the values of

αADAF and αTD from 0.087 to 0.1. This is for simplicity and to keep the values in

line with MHD simulations (e.g. Penna et al., 2013). The value of δADAF has been

updated from Fanidakis et al. (2012) (cf. Section 3.3.1)

In Figure 3.14, the predictions (where the black line is the sum of the con-

tributions from all accretion modes) compare well to the observational bolometric

luminosity function across the range of redshifts and for the luminosities shown.
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Exceptions include the faint end at high redshift where the model overpredicts the

observations by 0.5 dex for Lbol < 1046ergs−1 for z > 4, and the faint end at low

redshift where the model underpredicts the observations for Lbol < 1045ergs−1 and

z < 0.5 by 0.5 dex. The underpredictions at the faint end at low redshift may be

because the ADAF radiative accretion efficiency is lower than the thin disc accretion

efficiency, leading to lower luminosities (see Figure A.13 for a prediction using only

a thin disc accretion efficiency for all values of ṁ). Alternatively, this discrepancy

might be resolved by assuming an accretion timescale with a dependence on accreted

gas mass or black hole mass. For a different model, Shirakata et al. (2018) obtain a

better fit to the hard X-ray luminosity function at low luminosity and low redshift

by doing this. In general, our model is a good match to these observations across a

broad range.

We also show in Figure 3.14 the separate contributions to the AGN luminos-

ity function from ADAFs (ṁ < ṁcrit,ADAF), thin discs (ṁcrit,ADAF < ṁ < ηEdd)

and super-Eddington objects (ṁ > ηEdd). At low redshift, ADAFs dominate the

faint end (Lbol < 1044ergs−1), thin discs dominate at intermediate luminosities

(1044ergs−1 < Lbol < 1046ergs−1) and super-Eddington objects dominate the bright

end (Lbol > 1046ergs−1). As we go to higher redshift, the ADAFs contribution to

the luminosity function decreases: for 0 < z < 2 the evolution is not that strong,

although the contribution from ADAFs at each luminosity decreases slightly as we

increase z in this range, whereas for z > 2, the evolution in the ADAF popula-

tion is pronounced, and the number of ADAFs drops off sharply with increasing

redshift. In contrast, the contribution from the thin disc population increases until

z ≈ 2, after which it remains approximately constant. At z < 2, there are not very

many super-Eddington objects and so they make a fairly small contribution to the

luminosity function but their contribution increases at z > 2. The distribution of

super-Eddington objects is bimodal, and for z < 4, the higher luminosity peak has

a higher number density, while for z > 4, the lower luminosity peak has a higher

number density. The bimodality is not due to the bimodality in the fuelling modes,

as all the super-Eddington objects are fuelled by starbursts triggered by disc insta-

bilities, but it seems to be caused by a bimodality in the bulge stellar mass. We
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Figure 3.14: The AGN bolometric luminosity function predicted by our model (black

line, with grey shading showing the Poisson errorbars) compared to our bolometric

luminosity function constructed from the observations. We show the observational

data indicating the wavelength of the data that was used to construct that particular

point (squares - hard X-ray, triangles - soft X-ray, circles - optical). We split the

total bolometric luminosity function by accretion mode into ADAFs (green), thin

discs (purple) and super-Eddington objects (grey)
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Figure 3.15: The AGN bolometric luminosity function as Figure 3.14, but split by

the fuelling mode: starbursts triggered by mergers (light blue), starbursts triggered

by disc instabilities (dark blue), hot halo mode (red).

plan to explore this issue in more detail in future work.

In Figure 3.15 we split the AGN luminosity function by contributions from the

hot halo mode, starbursts triggered by mergers and starbursts triggered by disc

instabilities. At low redshift (z < 2), the faint end is dominated by the hot halo

mode, whereas the bright end is dominated by starbursts triggered by disc insta-

bilities. Starbursts triggered by mergers make a small contribution to the AGN

bolometric luminosity function at low redshift. Starbursts triggered by disc insta-

bilities typically have higher values of Ṁ and so higher luminosities compared to

starbursts triggered by mergers, which is why they dominate the bright end.

The hot halo mode only operates in the most massive haloes, and so it only

begins to significantly contribute to the AGN luminosity function for z < 3. The

hot halo mode does not strongly evolve for 0 < z < 2. For z > 2, starbursts triggered

by disc instabilities dominate the AGN luminosity function, with starbursts from

mergers not significantly contributing. This implies that the inclusion of black hole

growth via disc instabilities is significant for reproducing AGN luminosity functions
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Figure 3.16: The effect of changing between chaotic (blue) and prolonged (red) mode

on the AGN bolometric luminosity function at z = 0.2, 2, 6.

at high redshift.

A key aspect of the success of the galform AGN model is the different chan-

nels of black hole growth, particularly the inclusion of disc instability triggered star-

bursts, that allow a good match to the AGN luminosity functions to be obtained.

Other semi-analytic models do not necessarily include disc instabilities, which may

explain why they do not reproduce AGN properties particularly well at high redshift

(e.g. Bonoli et al., 2009; Menci et al., 2013; Neistein & Netzer, 2014; Enoki et al.,

2014). The effect of disc instabilities on the AGN predictions at 0 < z < 6 is shown

in Figure A.11 and the effect on galaxy properties is shown in Lacey et al. (2016).

We show the effect on the AGN bolometric luminosity function of changing

between chaotic mode (our standard choice) and prolonged mode in Figure 3.16. In

the prolonged mode, SMBH spins are generally higher (see Figure 3.8), which results

in a higher radiative accretion efficiency leading to higher bolometric luminosities.12
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Figure 3.17: The rest-frame hard X-ray luminosity function predicted by the model

(black line) compared to observational studies from Ueda et al. (2003) (circles),

Ueda et al. (2014) (squares) and Aird et al. (2015) (triangles).
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3.5.2 Luminosity functions at different wavelengths

We use the SED template described in Section 3.3.2 and visible fractions described

in Section 3.3.3 to make predictions for the luminosity function in the rest-frame

hard X-ray, soft X-ray and 1500Å bands. In Figure 3.17 we compare our hard X-ray

predictions to observational data. The model is generally in good agreement with

the observational data, particularly in the range 1 < z < 3. For LHX < 1044ergs−1

at z < 0.5, the model underpredicts the observations by about 0.5 dex, and for

LHX < 1044ergs−1 at z > 3, the model overpredicts the observations by about 1 dex.

The former discrepancy corresponds to the model bolometric luminosity function

underpredicting the observations in the same redshift and luminosity regime, and

the latter also cooresponds to the bolometric luminosity function slightly overpre-

dicting the observational estimates in that regime, but may also be influenced by our

assumption that there is no obscuration for hard X-ray sources. This assumption

may be not valid for the high redshift Universe; more observations are needed to

constrain the obscuration effect on hard X-rays.

Our soft X-ray predictions are compared to observations in Figure 3.18. The

predicted luminosity function without taking into account obscuration is shown

alongside the model with the visible fractions of Hopkins et al. (2007), Hasinger

(2008), Aird et al. (2015) and our observationally determined LZMH model. The

luminosity functions with different visible fractions are very similar except for LSX <

1044ergs−1. The LZMH model fits best to the observations in the range 1 < z < 2.

At higher redshifts and lower luminosities the visible fraction in the Hasinger (2008)

model drops to zero, which causes the corresponding drop off in the luminosity

function for that obscuration model.

Our 1500Å predictions are shown in Figure 3.19 compared to observational es-

timates. These have been converted to 1500Å - the conversions made are detailed

in Appendix A.2. There is a strong dependence of the predictions on the assumed

obscuration model. Our predictions are a good fit to observations at z ≈ 2 if we

adopt the Hasinger (2008) visible fraction, whereas our observationally determined

12Note that the shape of the luminosity function changes little between the two models.
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Figure 3.18: The predicted rest-frame soft X-ray luminosity function compared to

observations. The dashed black line shows the prediction without accounting for

absorption effects, the solid black line is the prediction using the Hasinger (2008)

visible fraction, the dotted black line is using the Aird et al. (2015) visible fraction

and the blue line is using our observationally determined LZMH visible fraction. The

observations are Hasinger et al. (2005) (circles) and Aird et al. (2015) (triangles).
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Figure 3.19: The predicted rest-frame 1500Å luminosity function compared to ob-

servations which have been converted to 1500Å. The dashed black line is the pre-

diction without accounting for absorption effects, the solid black line is the pre-

diction with the Hasinger (2008) visible fraction, the dotted black line is with the

Aird et al. (2015) visible fraction and the blue line is with my observationally de-

termined LZMH visible fraction. The observations are from SDSS DR3 Richards

et al. (2006) (yellow triangles), 2SLAQ+SDSS Croom et al. (2009) (yellow circles),

CFHQS+SDSS Willott et al. (2010) (red squares), NDWFS+DLS Glikman et al.

(2011) (blue circles), the COSMOS field Ikeda et al. (2011) (red circles), Masters

et al. (2012) (purple squares), Subaru Kashikawa et al. (2015) (red triangles) and

SDSS Stripe 82 Jiang et al. (2016) (blue squares).
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Figure 3.20: The rest-frame soft X-ray luminosity function (left panel) and the rest-

frame 1500Å luminosity function (right panel), both at z = 6. We show predictions

without obscuration (dashed black), with the Aird et al. (2015) visible fraction

(dot-dash), with the ‘low z modified Hopkins’ (LZMH) visible fraction with the

standard model (black solid), with the ‘z = 6 modified Hopkins’ (Z6MH) visible

fraction (black dotted) and with the ‘low z modified Hopkins’ visible fraction with

the different parameters (blue solid). The observations for the soft X-ray band are

from Aird et al. (2015) (yellow triangles), and for 1500Å are from Willott et al.

(2010) (red squares), Kashikawa et al. (2015) (red triangles) and Jiang et al. (2016)

(blue squares).

LZMH model fits best for z ≈ 4. The reason for this difference is likely to be because

Hasinger (2008) fitted their obscuration model at lower redshift whereas we are try-

ing to fit for z = 0 − 6 with our LZMH visible fraction. Therefore, unsurprisingly,

the different visible fractions are likely to fit better in different redshift ranges.

We present the soft X-ray and optical luminosity functions at z = 6 in Fig-

ure 3.20. The predicted soft X-ray luminosity function exceeds the observations at

z = 6 as a result of the model bolometric luminosity function overpredicting the ob-

servations. For the optical luminosity function, while the model gives an acceptable

fit to observations of the optical luminosity function at z = 4, it overpredicts the

number of AGN compared to the observed luminosity function at z = 6. This is a
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result of the model not strongly evolving in the redshift interval z = 4 − 6, while

the observations indicate a stronger evolution in this redshift interval (Jiang et al.,

2016). These discrepancies could be due to a variety of reasons. We suggest two

possible explanations for this discrepancy and two corresponding variants on the

model which provide a better fit to the observations at z = 6.

First, the discrepancy could be due to the obscuration model. At z = 6 the

visible fraction is not constrained by any observations, and so in Figure 3.20 we

present predictions with a lower visible fraction at z = 6, which give a better fit to

the z = 6 optical luminosity function. We show predictions for the standard model

with two obscuration models: the LZMH visible fraction and the Z6MH visible

fraction (cf. Section 3.3.3). The Z6MH visible fraction needed to fit z = 6 is about

a quarter of the LZMH visible fraction at z < 6. Thus z > 6 QSOs could be much

more obscured than z < 6 QSOs.

Secondly, the discrepancy could be due to black hole accretion being less efficient

at high redshift. While the model for black hole accretion has been calibrated at low

redshift, the conditions for black hole accretion could be different at higher redshift.

We therefore present a model with parameters that have been modified compared to

the original calibration on observed data at low redshift. We change the parameter

fBH, which sets the fraction of mass accreted onto a black hole in a starburst event

and the parameter ηEdd, which controls the degree of super-Eddington luminosity

suppression. In the fiducial model, fBH = 0.005 and ηEdd = 4. fBH = 0.002 and

ηEdd = 16 give a better fit to the observations of the 1500Å luminosity function at

z = 6 in Figure 3.20. However, we note that ηEdd = 16 means that there is very little

super-Eddington luminosity suppression, whereas the ‘slim disc’ model for super-

Eddington sources predicts significant super-Eddington luminosity suppression. We

refer to this model as the ‘low accretion efficiency model’. In this model we use the

LZMH visible fraction.

Both of these alternative models are in better agreement with observations of

the 1500Å AGN luminosity function at z = 6 than our standard model, and so we

will use them in the next Chapter investigating AGNs observed in future surveys.
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3.5.3 Comparison with hydrodynamical simulations

An alternative theoretical approach for simulating galaxy formation is hydrodynam-

ical simulations. A few of these simulations have been used to make predictions for

the evolution of AGN luminosity functions through time. We give a brief comparison

to some of these here.

The bolometric luminosity function predicted by the model in Hirschmann et al.

(2014) over the redshift range 0 < z < 5 is shown in their Figure 8. When compared

to Hopkins et al. (2007), their model is a good fit to the observations at z = 0.1,

but overpredicts the observations at the faint end at z = 2, and underpredicts the

observations at z = 5. When comparing their results to the model presented here

(cf. Figure 3.14), our model agrees similarly well with the observations for z < 2,

and with better agreement to the observations for z > 2. For example, at z = 4,

at Lbol = 1046ergs−1 (around the knee of the luminosity function at this redshift),

our model agrees within 0.5 dex with the observed bolometric luminosity function,

whereas the model of Hirschmann et al. (2014) underpredicts the observed bolomet-

ric luminosity function by 1 dex at this redshift and luminosity. The hard X-ray

luminosity function predicted by EAGLE in Rosas-Guevara et al. (2016) is compared

to the observational estimate of Aird et al. (2015) over the redshift range 0 < z < 5

in their Figure 7. Their model fits well to the observations at z = 0, but by z = 1,

the slope of the luminosity function in their paper is steeper than the observations.

The model here is in similar agreement for z < 1, and in better agreement with the

observations for z > 1. For example, at z = 2, at log(LHX) = 1044ergs−1 (around

the knee of the luminosity function at this redshift), our model agrees within 0.5

dex with the observations, whereas the model of Rosas-Guevara et al. (2016) under-

predicts the observations by about 1 dex. Finally, Weinberger et al. (2018) compare

the bolometric luminosity function from IllustrisTNG to Hopkins et al. (2007) in

the redshift range 0 < z < 5. Their model underpredicts the observations at the

faint and bright end of the bolometric luminosity function and overpredicts the ob-

servations at intermediate luminosities at z = 0.5, and overpredicts the observations

at all luminosities at z = 3. Around the knee of the luminosity function at z = 3

(Lbol = 3 × 1046ergs−1), our model agrees within 0.5 dex with the observations,
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whereas the model of Weinberger et al. (2018) overpredicts the observations by 0.5

dex.

Overall, the AGN luminosity functions from the hydrodynamical simulations

do not agree as well to the observational estimates as this model. The reasons

for the differences in the AGN luminosity functions may be because the black hole

mass accretion rates are calculated differently - in these simulations the Bondi-Hoyle

approximation is used, as opposed to the calculation in Section 3.3.1 used in this

Chapter.

3.6 Conclusions

In this Chapter we have presented predictions for SMBH and AGN properties from

the model for z < 6, compared to a variety of observations. The model predictions

are consistent with both the observed black hole mass functions and SMBH mass

versus bulge mass correlations. We present the spin distribution of SMBHs in the

simulation, for the chaotic and prolonged modes of accretion, and their evolution for

0 < z < 6. The median SMBH spin in both the chaotic and prolonged modes evolves

very little. For the prolonged mode, the scatter in the SMBH spin distribution

decreases with increasing redshift. We also present examples of the evolution of

spin and mass for typical SMBHs, and find that for most masses the evolution is

similar, except at the highest masses, MBH > 108M�, where mergers cause the

SMBHs to be spun up to higher spin values.

We compare the AGN luminosity functions in the redshift range 0 < z < 6 to

a wide range of observations at different wavelengths. The model is in good agree-

ment with the observations. We split the luminosity functions by accretion mode

(ADAFs, thin discs, super-Eddington objects) and by fuelling mode (hot halo or

starbursts triggered by disk instabilities or mergers) to see the relative contribu-

tions. At low redshifts, z < 2, and low luminosities, Lbol < 1043ergs−1, the ADAF

contribution dominates but at higher luminosities and higher redshifts, the thin disc

and super-Eddington objects dominate the luminosity function. Hot halo mode fu-

elled accretion dominates at z < 3, and Lbol < 1044ergs−1, but at higher redshift and
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higher luminosity, starbursts triggered by disc instabilities dominate the luminosity

function.

We now extend this SMBH and AGN model within galform to make predic-

tions for z ≥ 7, for future surveys conducted by space-based telescopes, which we

present in the next Chapter.



Chapter 4

Predictions for JWST, EUCLID,

ATHENA and Lynx

4.1 Introduction

Recent advances in observational capabilities have allowed us to investigate AGNs

in the early Universe more thoroughly than ever before. At optical wavelengths, the

Sloan Digital Sky Survey (SDSS, York et al., 2000) initiated the hunt for quasars

out to redshift z ∼ 6 (Fan et al., 2001; Fan et al., 2003; Fan et al., 2004; Jiang

et al., 2009). Detections at z ∼ 6 of fainter quasars have been made by the Canada-

France High-z Quasar Survey (CFHQS, Willott et al., 2010), and a quasar has been

detected at z = 7.1 in the United Kingdom Infrared Deep Sky Survey (UKIDSS,

Lawrence et al., 2007) by Mortlock et al. (2011). Currently, the highest redshift

quasar known is at z = 7.64, as discovered at optical/near-infrared wavelengths by

mining three large area surveys (Bañados et al., 2018a), and the same object has also

been observed at X-ray wavelengths using Chandra (Bañados et al., 2018b). Recent

radio observations using the Giant Metrewave Radio Telescope have also been able

to detect AGNs at high redshift, such as a radio galaxy at z = 5.72 (Saxena et al.,

2018).

At z ∼ 6, AGNs have been discovered with estimated black hole masses over

a billion solar masses (e.g. Willott et al., 2010; De Rosa et al., 2011; Venemans

et al., 2013; Wu et al., 2015). How these SMBHs could grow to such large masses

91
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in such a short time is a puzzle. SMBHs grow from seed black holes, which could

form from remnants of a first generation of (Population III) stars, or from gas

clouds that form supermassive stars that eventually collapse to form a black hole, or

from dense star clusters that collapse via stellar dynamical processes (e.g. Volonteri,

2010). These seeds are expected to be of mass Mseed = 10 − 105M� depending

on the formation mechanism, with the remnants of Population III stars forming

light (∼ 10 − 100M�) seeds, gas cloud collapse forming heavy (∼ 104−5M�) seeds,

and star cluster collapse forming seeds of intermediate (∼ 103M�) mass (Volonteri,

2010). SMBHs can then grow either by accretion of gas or by merging with other

SMBHs. To form the observed high redshift SMBHs by gas accretion, these seeds

require sustained accretion near the Eddington rate for several hundred Myr, which

may be interrupted by feedback effects.

The next decade-and-a-half promise to be exciting for observing the high redshift

Universe. The launch of the James Webb Space Telescope (JWST) in 2021 will pave

the way for an increased understanding of the z > 7 Universe (e.g. Gardner et al.,

2006; Kalirai, 2018). JWST, with its 6.5m diameter mirror, will make observations

from the optical to mid-infrared (0.6 µm to 30 µm) to probe the earliest galaxies and

the stars contained within them. EUCLID, also due for launch in 2021, with a 1.2m

diameter mirror, is primarily a cosmology mission with the aim of constraining dark

energy, but the surveys it will conduct at optical and near-IR wavelengths (0.5-2

µm) will also be useful for detecting high-redshift quasars (Laureijs et al., 2011).

While JWST and EUCLID will probe similar wavelength ranges, the specifications

of the missions are different. The sensitivity of JWST is better, but EUCLID will

survey much larger areas of sky, which will lead to different samples of AGNs being

detected by these two missions, as they will sample AGNs with different luminosities

and space densities.

The Advanced Telescope for High-ENergy Astrophysics (ATHENA) (Nandra

et al., 2013), scheduled for launch in 2031, will observe the high-redshift Universe at

X-ray energies (0.5-10 keV). The Lynx X-ray observatory (The Lynx Team, 2018),

which has a proposed launch date in 2035, will also observe the distant Universe

at similar energies (0.2-10 keV). The science objectives of both missions include
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determining the nature of SMBH seeds and investigating the influence of SMBHs

on the formation of the first galaxies. The two missions have different capabilities:

ATHENA has a larger field of view and larger effective area (which leads to better

instrumental sensitivity) at 6 keV, but a worse angular resolution and lower effective

area at 1 keV, compared to Lynx. The improved angular resolution of Lynx results

in better sensitivity in practice, as sources that would be affected by source confusion

when observed by ATHENA would be unaffected if observed by Lynx. Therefore,

the two telescopes will detect different luminosity objects.

We are now entering an era in which the properties of SMBHs in the high redshift

Universe (z > 7) during the first billion years of its evolution can be robustly

probed. By comparing observations with simulations, we can test theoretical models

of galaxy formation, and by comparing to the high redshift Universe, we can test

these theoretical models in a regime that up to now is poorly constrained.

In this Chapter, we present predictions for the AGN population at z ≥ 7 for

comparison with observations from JWST, EUCLID, ATHENA, and Lynx. This

Chapter is structured as follows. In Section 4.2 we outline the slight modification to

the model used for this Chapter. In Section 4.3 we present predictions for black hole

properties, and in Section 4.4 we present predictions for AGN luminosity functions

for z ≥ 7. In Section 4.5 we present predictions for AGNs detectable by future

surveys using JWST, EUCLID, ATHENA and Lynx, and in Section 4.6 we give our

conclusions.

4.2 Method

In this Chapter, we are using the same SMBH and AGN model within galform

as in Chapter 3, except with one small modification to the bolometric luminosities

described below. We also use the three different variants of the model which are

introduced at the end of Section 3.5.2 and compared in Figure 3.20. These three

variants are (i) the fiducial model using the ‘low z modified Hopkins (LZMH) visible

fraction, (ii) the fiducial model using the ‘z = 6 modified Hopkins’ (Z6MH) visible

fraction, and (iii) the ‘low accretion efficiency model’, which uses the LZMH visible
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fraction.

In Chapter 3, we gave the equations for bolometric radiative AGN luminosities

in different accretion regimes: i) an Advection Dominated Accretion Flow (ADAF)

state accreting via a physically thick, optically thin disc (Narayan & Yi, 1994), ii) a

thin disc state accreting via a physically thin, optically thick disc (Shakura & Sun-

yaev, 1973), and iii) a super-Eddington state accreting via a slim disc (Abramowicz

et al., 1988). We use these same equations in this Chapter, except for a slightly

modified expression for the luminosity in the super-Eddington regime, where for

Eddington normalised mass accretion rates ṁ > ηEdd(0.1/ε(a)), the bolometric lu-

minosity is now given by:

Lbol = ηEdd

(
1 + ln

( ṁ

ηEdd

ε(a)

0.1

))
LEdd, (4.2.1)

where ε(a) is the spin-dependent radiative accretion efficiency for a thin accretion

disc, a is the dimensionless spin parameter, ηEdd is a free parameter, ṁ = Ṁ/ṀEdd is

the Eddington normalised mass accretion rate, and LEdd is the Eddington luminosity.

4.3 Black hole mass function and accretion rates

In Figure 4.1 we show the black hole mass function predicted by the model over

the range 6 < z < 15. Black holes build up in the model as a result of galaxies

forming in dark matter haloes, which build up hierarchically. In the model, for our

simulation volume of (800Mpc)3, some SMBHs of mass 108M� have already formed

by z = 9, but at z = 6 there are no SMBHs with masses above MBH = 3× 108M�.

This appears to be in conflict with observations of extremely massive SMBHs at

z = 6 (e.g. Willott et al., 2010; De Rosa et al., 2011; Venemans et al., 2013; Wu

et al., 2015), which find estimated masses up to ∼ (0.3− 1)× 1010M�. The lack of

these objects in this simulation may be because high-redshift surveys probe larger

volumes than the volume of the simulation box in this thesis (e.g. the total survey

volume for Bañados et al. (2018a) is of order 10 Gpc3 compared to the volume of 0.5

Gpc3 for this simulation), and so are able to detect rarer objects (e.g. Amarantidis

et al., 2019). There are also uncertainties in the observational black hole mass
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Figure 4.1: The black hole mass function in the fiducial model for z = 6 (pink

solid line), z = 7 (red solid line), z = 8 (yellow solid line), z = 9 (light blue solid

line), z = 10 (blue solid line), z = 12 (purple solid line), and z = 15 (black solid

line). We also show the black hole mass functions when the gas accretion rate is not

allowed to exceed the Eddington mass accretion rate for z = 7 (red dashed line) and

z = 10 (blue dashed line). We show the black hole mass function for a seed mass of

105h−1M�, for z = 7 (red dotted line) and at z = 10 (blue dotted line).
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estimates due to the use of observationally calibrated relations to determine black

hole masses from observed emission line widths and luminosities. These errors are

a mixture of random (these relations have an intrinsic scatter of a factor of about

3 (e.g. Vestergaard & Peterson, 2006)), and systematic (these relations are only

constrained for certain luminosity ranges in the local Universe).

We also show in Figure 4.1 the predicted black hole mass function for the case

in which gas accretion onto SMBHs in the model is not allowed to exceed the Ed-

dington mass accretion rate (i.e. Ṁ ≤ ṀEdd). In our standard model, SMBHs

are allowed to accrete mass at super-Eddington accretion rates, and it can be seen

that restricting SMBH accretion rates to the Eddington rate results in many fewer

high-redshift SMBHs. At z = 7, restricting SMBH accretion in this way causes the

number of SMBHs to decrease by about 1 dex at MBH = 106−7M�, and by about

1.5 dex at MBH = 105M� and 2.5 dex at MBH = 108M�. At z = 10, the effect

of restricting SMBH growth is even more significant, with the number density of

SMBHs decreasing by about 2 dex at MBH = 105−7M�. This shows the importance

of super-Eddington accretion in building up high-redshift SMBHs in our model.

We also show the black hole mass function at z = 7 and z = 10 when a seed

mass, Mseed = 105h−1M� is adopted, instead of Mseed = 10h−1M� as in the fiducial

model. At both of these redshifts, there are a large number of black holes around the

seed mass for this case, but at higher masses the black hole mass function converges

to the same value as in the fiducial model. This shows how the SMBH masses are

relatively unaffected by the choice of seed black hole mass for sufficiently high SMBH

mass provided that the gas accretion rate is not Eddington limited.

In Figure 4.2 we show the number of objects as a function of Eddington nor-

malised mass accretion rate (Ṁ/ṀEdd) predicted by the model at 7 ≤ z ≤ 15,

for SMBHs residing in galaxies with stellar masses above 109M� or 1010M�. At

each redshift, the distribution is bimodal, with peaks at Ṁ/ṀEdd ∼ 0.001, and

Ṁ/ṀEdd ∼ 1. The peak at Ṁ/ṀEdd ∼ 1 is produced by AGNs fuelled by star-

bursts triggered by disc instabilities. The value of Ṁ/ṀEdd at this peak increases

slightly with redshift, which is a result of galaxy bulges having a smaller dynamical

timescale at higher redshift, which results in shorter accretion timescales (cf. equa-
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Figure 4.2: The number density of objects as a function of Eddington normalised

mass accretion rate, Ṁ/ṀEdd, at z = 7 (red), z = 8 (yellow), z = 9 (light blue),

z = 10 (dark blue), z = 12 (purple), and z = 15 (black). Only SMBHs residing

in galaxies with stellar masses above M? = 109M� are shown in the upper panel,

whereas this stellar mass threshold is M? = 1010M� for the lower panel.
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tion (2.7.25)). Galaxies have lower masses at higher redshift, and so the mass of

gas transferred in each disc instability episode is typically smaller at higher redshift,

and SMBHs are smaller at higher redshift. The former decreases Ṁ/ṀEdd, while

the latter increases Ṁ/ṀEdd, and these effects almost cancel out.

The peak at Ṁ/ṀEdd ∼ 0.001 is produced by AGNs fuelled by hot halo accretion.

There is also a minor contribution from AGNs fuelled by starbursts triggered by

mergers with Ṁ/ṀEdd values in the range 0.1-1. The peak at Ṁ/ṀEdd ∼ 1 has

more objects when the stellar mass cut is 109M�, but the peak at Ṁ/ṀEdd ∼ 0.001

has more objects when the stellar mass cut is 1010M�. This is because AGNs fuelled

by starbursts triggered by disc instabilities reside in lower stellar mass galaxies

than AGNs fuelled by hot halo accretion. We allow SMBHs to accrete above the

Eddington mass accretion rate in our model, and in this figure we see that there are

objects that accrete at super-Eddington rates, but none above Ṁ/ṀEdd = 100.

4.4 Evolution of the AGN bolometric luminosity

function at z > 7

In the left panel of Figure 4.3, we show the evolution of the AGN bolometric lumi-

nosity function for the fiducial model for 7 ≤ z ≤ 15. As the redshift increases, both

the number of objects and the luminosities decrease. By z ≈ 12, there are almost

no objects brighter than Lbol ∼ 1046ergs−1 in our simulated volume of (800Mpc)3.

We have investigated the effects of halo mass resolution on our predictions. In

Figure B.1 we show the bolometric luminosity function for the standard model (with

a halo mass resolution of 2.12 × 109h−1M�) alongside the model with a halo mass

resolution of 1010h−1M�. This comparison shows that the turnover in the bolometric

luminosity function at low luminosity is due to halo mass resolution. The bolometric

luminosity functions are converged for Lbol > 1043ergs−1.

In Figure B.2, we explore the effect of varying the black hole seed mass on the

AGN bolometric luminosity function. We find that the AGN bolometric luminosity

function is not sensitive to the choice of seed black hole mass for values in the range

Mseed = (10− 105)h−1M� for Lbol > 1042ergs−1 at z = 7, and for Lbol > 1043ergs−1
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Figure 4.3: The predicted AGN bolometric luminosity function for the fiducial model

at high redshift. Left panel : The evolution of the bolometric luminosity function

for z = 7 (black), z = 8 (red), z = 9 (yellow), z = 10 (green), z = 12 (light blue),

z = 15 (purple). The turnover at low luminosity is due to the halo mass resolution.

Middle panel : The total AGN bolometric luminosity function at z = 9 (black) split

into ADAFs (green), thin discs (purple) and super-Eddington objects (grey). Right

panel : The total AGN bolometric luminosity function (black) at z = 9 split into

objects fuelled by the hot halo mode (red), by starbursts triggered by mergers (light

blue) and by starbursts triggered by disc instabilities (dark blue). Note that the

dark blue line is under the black line.



4.4. Evolution of the AGN bolometric luminosity function at z > 7 100

at z = 12. For luminosities below this, the seed mass does affect the predictions.

In the middle panel of Figure 4.3 we split the AGN luminosity function at z = 9

into the contributions from ADAFs, thin discs and super-Eddington objects. Chap-

ter 3 showed that at z = 0, the contribution from ADAFs dominates the predicted

AGN luminosity function at low luminosities (Lbol < 1044ergs−1), while the contri-

bution from thin discs dominates at intermediate luminosities (1044ergs−1 < Lbol <

1046ergs−1) and the contribution from super-Eddington objects dominates at high lu-

minosities (Lbol > 1046ergs−1). As redshift increases, the contribution from ADAFs

decreases, and the contribution from thin discs dominates at low luminosities, while

the contribution from super-Eddington objects continues to dominate at high lu-

minosities. This trend continues for z > 0, so that by z = 9, the contribution

from ADAFs is extremely small. At low luminosities (Lbol < 1045ergs−1), the thin

disc contribution just dominates over the contribution from super-Eddington ob-

jects, while at higher luminosities super-Eddington objects dominate. This implies

that most of the QSOs (with Lbol > 1045ergs−1) that will be detectable by surveys

conducted by future telescopes at z = 9 should be accreting above the Eddington

rate. This prediction is not straightforward to test, as determining Eddington ra-

tios requires estimations of black hole masses. Black hole masses can be estimated

from measurements of emission line widths, or black hole masses and mass accretion

rates can be determined by fitting theoretical SED models to multi-wavelength data

(e.g. Kubota & Done, 2018). The black hole masses estimated using either of these

methods will have some model dependencies.

In the right panel of Figure 4.3 we split the AGN luminosity function at z = 9 by

gas fuelling mode, into hot halo mode, and starbursts triggered by galaxy mergers

and disc instabilities. The dominant contributor at all luminosities at z = 9 is

starbursts triggered by disc instabilities, so we predict that future high-redshift

surveys will detect AGNs fuelled by this mechanism. This prediction contrasts with

some other theoretical models. Some hydrodynamical simulations predict that gas

may be driven into the centres of galaxies by high density cold streams for accretion

onto the SMBH (e.g. Khandai et al., 2012; Di Matteo et al., 2017), while some other

semi-analytical models simply assume that merger triggered starbursts dominate
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Figure 4.4: The number density of objects as a function of Eddington normalised

luminosity, L/LEdd, predicted by the model at z = 7 (red) and z = 10 (blue), for

SMBHs with mass MBH > 105M� (solid lines), and for SMBHs with mass 107M� <

MBH < 109M� (dotted lines).

SMBH growth at high-redshift (e.g. Ricarte & Natarajan, 2018).

In Figure 4.4, we present the number of objects as a function of L/LEdd pre-

dicted by the model for z = 7 and z = 10 for black holes with MBH > 105M�. The

distributions are flat for L/LEdd < 0.1, and peak at L/LEdd ∼ 1. The L/LEdd value

of the peak of the distribution slightly increases with redshift. There are no objects

with L/LEdd > 10 in our simulated volume at these redshifts, which is a result of

there being no objects with Ṁ/ṀEdd > 100 combined with our luminosity sup-

pression for super-Eddington sources (cf. equation (4.2.1)). The sharp dip around

L/LEdd = 0.01 arises from the thin disc to ADAF transition not being continuous

in luminosity.

We also show in Figure 4.4 the distribution of L/LEdd predicted by the model

for 107M� < MBH < 109M�, alongside the distribution for MBH > 105M�. At

z = 7, black holes in these two mass ranges have similar distributions of L/LEdd

values, while for z = 10, the number of black holes for 107M� < MBH < 109M�
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Figure 4.5: A scatter plot of AGN bolometric luminosity versus host halo mass for

AGNs at z = 7 (left panel) and z = 10 (right panel). The colour indicates the

number density of objects.

in our simulation is too small to draw any strong conclusion on the form of this

distribution.

In Figure 4.5, we present the AGN bolometric luminosity versus host halo mass

for objects in the model, colour-coded by the number density of objects. The objects

mostly follow a relation between bolometric luminosity and halo mass, although

there are some objects offset from this relation to higher halo masses at z = 7, but

not at z = 10. The objects on the main relation are fuelled by starbursts triggered

by disc instabilities, whereas the objects offset from the main relation at higher halo

masses are fuelled by hot halo mode accretion. The brightest AGNs are not hosted

by the most massive haloes at z = 7, but at z = 10 the brightest AGNs are hosted

by the most massive haloes.

4.5 Predictions for high redshift surveys with fu-

ture telescopes

We next employ our model to make predictions for the detection of AGNs at z ≥ 7

with the future telescopes described in the Introduction. We use luminosity func-
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tions predicted by the model in the different wavelength or energy bands of these

telescopes to predict the number of AGNs that should be detectable by surveys with

these telescopes. We also describe the typical properties of the SMBHs detectable

by the different telescopes. The survey parameters that we assume for JWST1,

EUCLID2, ATHENA3, and Lynx4 are summarised in Table 4.1.

The number of AGNs detectable in a survey depends on both the flux limit and

the survey area. The former affects the ability to detect low luminosity sources and

the latter affects the number density of objects down to which one can probe. In

practice, the emission from the host galaxy is likely to provide a more fundamental

AGN luminosity limit for these surveys, but for this analysis we only consider the

survey limitations.

From the predicted flux limits of the surveys, luminosity limits can be derived

using L = 4πd2
Lf for calculating broadband luminosities (ATHENA and Lynx) and

Lν = 4πd2
Lfν/(1 + z) for calculating a luminosity per unit frequency (EUCLID and

JWST). Here, f is the flux, fν is the flux per unit frequency and dL is the luminosity

distance to the source, L is the luminosity in the rest-frame band or wavelength

corresponding to the observed band or wavelength, and Lν is the luminosity per

unit frequency in the rest frame corresponding to the observed wavelength and

redshift. We use these expressions to calculate luminosity limits (vertical lines) in

Figures 4.6 to 4.11.

The luminosities shown in Figures 4.6 to 4.11 have been k-corrected to a fixed

band in the observer frame. Our template SED for this calculation is that of Marconi

et al. (2004), for which the ratio of X-ray to optical luminosity varies with bolomet-

ric luminosity. To calculate the luminosity in each band we input the bolometric

luminosity and the redshift and then integrate the SED over frequency multiplied by

the appropriate response function for the filter redshifted into the rest frame of the

source. There is a one-to-one relation between bolometric luminosity and luminosity

1https://jwst-docs.stsci.edu/display/JTI/NIRCam+Sensitivity
2https://www.euclid-ec.org/?page_id=2581
3https://www.cosmos.esa.int/documents/400752/507693/Athena_SciRd_iss1v5.pdf
4https://wwwastro.msfc.nasa.gov/lynx/docs/LynxInterimReport.pdf

https://jwst-docs.stsci.edu/display/JTI/NIRCam+Sensitivity
https://www.euclid-ec.org/?page_id=2581
https://www.cosmos.esa.int/documents/400752/507693/Athena_SciRd_iss1v5.pdf
https://wwwastro.msfc.nasa.gov/lynx/docs/LynxInterimReport.pdf
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in a particular band.

The number density limit for a survey can be calculated via the following method.

The number of objects per log flux per unit solid angle per unit redshift is given by:

d3N

d(logfν)dzdΩ
=

d2N

d(logLν)dV

d2V

dzdΩ
, (4.5.2)

where V is the comoving volume, d2N/d(logLν)dV is the luminosity function in

comoving units, and d2V/dzdΩ is the comoving volume per unit solid angle per

unit redshift. We define Φ(X) = d2N/d(logX)dV so the luminosity function can be

written as Φ(Lν). For there to be an average of at least one object detectable in the

survey per log flux per unit redshift, we therefore have the condition:

d2N

dlogLνdV
≥ 1

d2V
dzdΩ

∆Ω
, (4.5.3)

where ∆Ω is the solid angle of sky covered by the survey. This condition allows

us to construct the number density limits (horizontal lines) in Figures 4.6 to 4.11.

Note that this limit is almost independent of redshift over the range 7 ≤ z ≤ 15, as

also seen for the JWST predictions of Cowley et al. (2018) for galaxies. The flux

limits and survey areas adopted for the predictions for different telescopes are given

in Table 4.1. These limits then allow us to predict the number of objects detectable

by each survey, for the three different model variants, as given in Table B.1, and the

properties of these objects, for the fiducial model, as given in Tables B.2, and B.3.

In general, the flux limit determines the lower luminosity limit of objects that

can be detected, whereas the survey area determines the upper luminosity limit

of objects that can be detected. The different flux limits and survey areas of the

surveys conducted by the different telescopes therefore provide detections of different

populations of AGNs.

4.5.1 Optical/near-IR surveys with JWST and EUCLID

JWST, planned for launch in 2021, will observe at wavelengths of 0.6-29 µm. It

will have instruments for both imaging and spectroscopy, including the NIRCam for

optical to near-infrared imaging (0.7-5 µm) and MIRI for mid-infrared imaging (5-29
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Figure 4.6: Predictions for the AGN luminosity function in the observer frame JWST

NIRCam F070W (0.7µm) band. We show the luminosity function for the fiducial

model without obscuration (red dashed) with Poisson errors (orange shading), the

fiducial model with the ‘low z modified Hopkins’ (LZMH) visible fraction (magenta

solid), the fiducial model with the ‘z = 6 modified Hopkins’ (Z6MH) visible fraction

(red dotted), and the low accretion efficiency model which uses the ‘low z modified

Hopkins’ visible fraction (blue solid). The horizontal lines indicate the number

density limit resulting from a survey area of one field of view (dashed), and the

number density limit resulting from 1000 of these fields of view (dotted). The

vertical lines show the luminosity limit resulting from the flux limit. The assumed

flux limits and survey areas are given in Table 4.1. Detectable objects are above

and to the right of these lines. These luminosities can be converted into absolute

AB magnitudes via MAB = 51.59− 2.5 log(Lν/erg s−1Hz−1).
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Figure 4.7: As in Figure 4.6 but for the observer frame JWST NIRCam F200W

(2.0µm) band.
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µm). We present predictions for three different NIRCam bands. We do not make

predictions for MIRI, because our AGN model does not currently include emission

from the dust torus, which would be necessary for modelling AGN emission in the

mid-infrared. Figures 4.6 and 4.7 show predicted AGN luminosity functions in the

observer frame F070W (0.7µm) and F200W (2.0µm) bands respectively. We also

find that in the observer frame F444W (4.4µm) band, the predicted luminosity

functions are similar to the observer frame F200W band. We present predictions for

a survey composed of 1000 fields of view, each with a 104s integration time, giving

a total integration time of 107s in each band. Figures 4.6 and 4.7 show that the

effect of obscuration causes the predicted number of AGNs to be 0.04-0.2 of the

predicted number of objects if obscuration is not taken into account. The effect of

low accretion efficiency causes the predicted number of objects to be about 0.4 times

lower than in the fiducial model if we are assuming the LZMH obscuration model.

We predict that on average, < 1 AGN per unit z per field of view will be detectable

by JWST for a 104s integration, once we allow for obscuration.

We give the predicted number of objects for each survey in Table B.1. For JWST

we are assuming a survey of 1000 fields of view, each with a 104s integration time

per band. We predict that 20− 100 AGNs (depending on which of the three models

is used) will be observed at z = 7 in the F070W band, 90− 500 in the F200W band

and 60− 300 in the F444W band. We predict that more objects will be detectable

in the F200W band because the assumed flux limit for the F200W band is lower

than for the F070W and F444W bands, which translates into a lower limit for the

bolometric luminosity and higher number density. Predictions for the number of

objects detectable at z = 9, z = 10 and z = 12 are given in Table B.1.

From the flux limits in these bands, limits in bolometric luminosity can be cal-

culated. At z = 7, we predict that JWST will detect AGNs with bolometric lumi-

nosities in the range (3×1044−4×1046) ergs−1 (F070W), (6×1043−3×1046) ergs−1

(F200W), and (1 × 1044 − 4 × 1046) ergs−1 (F444W). For the assumed survey pa-

rameters, we predict that JWST will be able to detect AGNs out to z = 9 for all

the optical/near-IR bands, with F200W being more favourable for detecting z > 7

AGNs than F070W and F444W. For F200W, we predict that about 60-90 times
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Figure 4.8: Predictions for the AGN luminosity function in the observer frame

EUCLID VIS (550-900 nm) band. The dashed lines represent the sensitivity and

survey volume limits of the EUCLID Deep survey and the dotted lines represent the

sensitivity and survey volume limits of the EUCLID Wide survey.

fewer AGNs will be detectable at z = 10 than at z = 7. Considering even higher

redshift objects, for z > 10 we predict that detection with JWST will become more

difficult, as AGNs become extremely rare as well as very faint.

We explored whether a wide JWST survey composed of 1000 fields of view (as

in Table 4.1) or a deep survey composed of one field of view for an integration time

1000 times longer (10Ms) would detect more objects. We found that the deep survey

would detect more AGNs (300−2000) than the wide survey (90−500) in the F200W

band at z = 7, although in practice the number of AGNs detectable by the deep

survey would be reduced by contamination by light from their host galaxies.

EUCLID, due for launch in 2021, will use its visible and near-IR coverage (0.55-

2 µm) of galaxies to probe the nature of dark energy, but these same surveys will

also allow detections of high-redshift AGNs. EUCLID will conduct two surveys: a
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Figure 4.9: The same as Figure 4.8 but for the observer frame EUCLID H (1.5-2µm)

band.
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Wide Survey covering 15000 deg2 of sky and a Deep Survey covering 40 deg2 in

three fields. The mission lifetime of EUCLID will be 6.25 years. The surveys will

be conducted in four bands - one visible (VIS) and three near-IR (Y,J,H). We show

predictions for the EUCLID VIS (0.55-0.9µm) band and the H (1.5-2µm) band in

Figures 4.8 and 4.9 respectively. In these figures we show the sensitivity and survey

volume limits for both the Deep and Wide surveys. The two surveys are seen to be

quite complementary for detecting high redshift AGNs at different luminosities.

At z = 7, we predict that the EUCLID VIS band will detect AGNs with bolo-

metric luminosities Lbol = (1 × 1045 − 1.2 × 1047) ergs−1 for the Deep Survey, and

with Lbol = (6× 1045 − 2× 1047) ergs−1 for the Wide Survey. We therefore predict

that the two EUCLID surveys and surveys by JWST will sample different parts of

the AGN luminosity function.

At z = 7, we predict that a similar number of AGNs will be detectable in the

EUCLID near-IR band compared to the visible band. For the EUCLID Deep survey,

we predict that 90 − 400 AGNs will be detectable in the VIS band compared with

100− 600 in the H band (depending on the model). For the EUCLID Wide survey

at z = 7, we predict that (5− 20)× 103 AGNs will be detectable in the VIS band,

and (8 − 30) × 103 in the H band. At higher redshifts (e.g. z = 10), we predict

that the EUCLID H band will detect more AGNs than the VIS band. For AGNs

at z = 7, the peak of the observed SED is at 1µm, and so the luminosities in the

VIS and H bands are similar, and because the flux limits are also similar, a similar

number of AGNs should be detectable. At z = 10, the peak of the observed SED

is at 1.3µm, and so the luminosities in the H band are higher, as they are closer to

the peak of the AGN SED. Therefore, we predict that the H band will detect more

AGNs than the VIS band at z = 10. A similar effect is seen when comparing the

JWST F070W and F200W bands. It may be that such observations will reveal that

the AGN SED shape at high redshift is different to the Marconi et al. (2004) SED

used in this thesis.

According to our model, it will be impossible to detect very high redshift (z = 15)

objects with EUCLID, so such investigation may have to wait until surveys after

EUCLID. This is because despite the survey area being sufficiently large to probe
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down to the required number densities, the sensitivity of EUCLID is not sufficient

to detect these low luminosity AGNs.

The alternative models featuring a lower visible fraction or lower accretion effi-

ciency predict fewer AGNs than the fiducial model, so observations using EUCLID

and JWST may be able to differentiate between these models as well as constrain-

ing the form of the AGN SED and thus provide better understanding of the high

redshift AGN population.

4.5.2 X-ray surveys with ATHENA and Lynx

Due for launch in 2031, ATHENA will make observations at 0.5-10 keV using two

instruments: the X-ray Integral Field Unit (X-IFU) for high resolution spectroscopy

and the Wide Field Imager (WFI) with a large field of view for surveys (Nandra

et al., 2013). The Lynx X-ray observatory, with a proposed launch date of 2035,

will make observations at 0.2-10 keV. Due to the effects of source confusion, Lynx

will be able to probe down to lower luminosities than ATHENA as a result of its

much better angular resolution.

We have calculated the sensitivity limits due to source confusion for ATHENA

and Lynx. Source confusion occurs when multiple sources are separated by angles

less than the angular resolution of the telescope and so appear merged together in

images. To derive the confusion limits for ATHENA and Lynx, we use the commonly

used Condon (1974) ‘source density criterion’, to obtain the cumulative number

count per solid angle at the confusion limit (N(> fconf)), for a given effective beam

solid angle, Ωbeam, and number of beams per source Nbeam:

N(> fconf) = 1/NbeamΩbeam, (4.5.4)

where the effective beam solid angle is related to the full width half maximum

(FWHM) telescope beam width, θFWHM, by Ωbeam = πθ2
FWHM/(4(γ − 1) ln 2) for a

Gaussian beam profile, where γ is the slope of the power law relating differential

number count and flux, given by:
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Table 4.2: The values of γ used for calculating the confusion limits.

Telescope Soft X-ray Hard X-ray

ATHENA 1.5 1.32

Lynx 2.22 2.29

d2N

dfdΩ
∝ f−γ. (4.5.5)

We use Nbeam = 30. Having calculated the cumulative number count at the

confusion limit from equation (4.5.4), we can obtain the flux at the confusion limit

by using a model that relates the cumulative number counts to the flux. For this,

we use the Lehmer et al. (2012) empirical model, which is a fit to the number counts

measured using Chandra assuming a double power law fit for the AGN contribution,

and single power law fits for the galaxy and stellar contributions. For the Lynx

sensitivities, we are extrapolating the Lehmer et al. (2012) model to 100-1000 times

lower fluxes than observed by Chandra. For ATHENA, θFWHM = 5 arcsec, whereas

for Lynx, θFWHM = 0.5 arcsec. The γ values that we use are slopes of the differential

number counts from Lehmer et al. (2012) at the estimated confusion limits, and are

given in Table 4.2. The fluxes calculated by this procedure are given in Table 4.1.

In Figure 4.10, we show predictions for these two telescopes in the soft X-ray

(0.5-2 keV) band. Note that the turnover in the luminosity function seen at low

luminosities is due to the halo mass resolution of the dark matter simulation (see

Section 4.4). As the luminosity limit for Lynx for z ≤ 10 is below the luminosity

of this turnover, the predictions at low luminosities for z ≤ 10 should be viewed

as lower limits on the number densities. This figure also shows how Lynx will be

transformational in the study of low luminosity AGNs, and will provide unique con-

straints and tests of our understanding of black hole physics and galaxy formation.

This is a result of increased angular resolution of Lynx compared to ATHENA.

We do not include obscuration for these soft X-ray predictions because at the

redshifts we are considering, the corresponding band in the galaxy rest frame lies at

hard X-ray energies - a band for which we are assuming no obscuration. We show

the fiducial model alongside the low accretion efficiency model (fBH = 0.002 and
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Figure 4.10: Predictions for AGN luminosity functions in the observer frame soft

X-ray band. Shown are the fiducial model (red solid line), the low accretion effi-

ciency model (blue dotted line), and the fiducial model with seed black hole mass

105h−1M� (black dashed line). We also show the ATHENA (dashed) and Lynx

(dotted) luminosity and number density limits (vertical and horizontal lines) for a

single field of view and integration down to the estimated confusion limit, as in

Table 4.1.
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Figure 4.11: As for Figure 4.10, but for the observer frame hard X-ray band.
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ηEdd = 16) and also a model in which the black holes have a seed mass Mseed =

105h−1M� (compared to the default value Mseed = 10h−1M�).

It can be seen how changing the seed black hole mass affects the soft X-ray

luminosity function very little at 7 ≤ z ≤ 9, and only by a small amount for

LSX < 1042ergs−1 at 10 < z < 15. This analysis suggests that even high sensitivity

telescopes such as Lynx will struggle to differentiate between different seed masses

at 7 ≤ z ≤ 9 for our model assumptions, but measurements of the number densities

of AGNs at low luminosities and very high redshifts (LSX < 1042ergs−1 and 10 <

z < 15), may be able to exclude models of SMBH seeding that involve high seed

masses, although we predict that there will not be a substantial difference in the

number densities between these two models.

In Figure 4.11 we show the predictions for ATHENA and Lynx in the hard X-ray

(2-10 keV) band. For our template SED, an AGN emits more energy at hard than at

soft X-ray energies, but the minimum luminosity of an object that can be detected

is much higher for the hard X-ray band than for the soft X-ray band for ATHENA,

while it is only slightly higher for Lynx. This has the effect that for ATHENA,

we predict more AGNs will be detectable in the soft X-ray band compared to the

hard X-ray band, whereas for Lynx, we predict that slightly more AGNs will be

detectable in the hard X-ray band compared to the soft X-ray band.

For ATHENA, at z = 7 we predict that 30−80 AGNs will be detectable per field

of view in the soft X-ray band, and 5 − 20 for the hard X-ray band (cf. Table B.1

for the number of objects predicted to be detectable by each survey). At z = 10, we

predict that 0−2 AGNs will be detectable in the soft X-ray band, and no objects in

the hard X-ray band. For Lynx, at z = 7, we predict that about 800 AGNs per field

of view will be detectable in the soft X-ray band, and about 800− 900 in the hard

X-ray band. At z = 10, we predict that about 200 AGNs will be detectable per field

of view for both the soft and hard X-ray bands. The low accretion efficiency model

predicts fewer AGNs than the fiducial model across all luminosities and redshifts.

According to our model, Lynx is the only telescope out of the four studied here that

will be able to detect AGNs out to z = 12, with the possibility of detections at

z = 15, depending on the model variant.
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Figure 4.12: The predicted SMBH masses as a function of redshift for AGNs de-

tectable by the surveys with the different telescopes for the fiducial model. Symbols

and errorbars show the median and 0-100 percentiles of the distribution of SMBH

masses at z = 7, 8, 9, 10, 12. Left panel: JWST F070W (blue squares), JWST F200W

(red circles), and JWST F444W (black squares). Middle panel: EUCLID VIS and

H for the Deep survey (blue triangles and red circles), and for the Wide survey

(black squares and green pentagons). The maximum SMBH masses for EUCLID

Wide are shown as upward pointing arrows because they are lower limits on the

maximum SMBH masses that are detectable. Right panel: ATHENA soft and hard

X-ray (blue squares and red circles), and Lynx soft and hard X-ray (black squares

and green pentagons). In all panels, points for different surveys have been slightly

offset in redshift for clarity.

However, we note that while we predict Lynx will detect more objects than

ATHENA, this may be a result of the longer integration time of the proposed Lynx

survey (15Ms) compared to the proposed ATHENA survey (450ks). If we assume a

15Ms ATHENA survey, we predict that in the soft X-ray band 1000 − 3000 AGNs

would be detected, compared to 800 by Lynx in that integration time (although

this is a lower limit caused by the halo mass resolution). The different surveys by

Lynx and ATHENA as ‘deep’ and ‘wide’ surveys respectively can provide different

populations of detectable AGNs.
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Figure 4.13: The Eddington normalised mass accretion rates as a function of redshift

for the AGNs detectable by the surveys with the different telescopes. The lines are

as in Figure 4.12.

Figure 4.14: The host galaxy stellar masses as a function of redshift for the AGNs

detectable by the surveys with the different telescopes. The lines are as in Figure

4.12.

Figure 4.15: The host halo masses as a function of redshift for the AGNs detectable

by the surveys with the different telescopes. The lines are as in Figure 4.12.
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4.5.3 Properties of detectable AGNs and SMBHs in high-

redshift surveys

We show the predictions for SMBH masses, Eddington normalised mass accretion

rates, host galaxy stellar masses, and host halo masses for the AGNs detectable by

each survey for redshifts 7 ≤ z ≤ 15 in Figures 4.12, 4.13, 4.14, and 4.15 respec-

tively. We constructed these plots by generating the number density distributions

for each property for AGNs above the luminosity limit for the survey at that red-

shift, and then selecting the part of the distribution with number density above the

survey limit, in the same way as we did for luminosity functions in the preceding

sections. We then calculated the median, minimum, and maximum values of these

distributions, which are plotted in the figures. We also list the median values of

these quantities for z = 7 and z = 10 in Tables B.2 and B.3. The maximum SMBH

masses, Eddington normalised mass accretion rates, galaxy masses, and host halo

masses for the EUCLID Wide survey are shown as upward pointing arrows because

they are lower limits on the maximum values that EUCLID Wide would detect. This

is because the effective survey volume of EUCLID Wide at these redshifts is larger

than the volume of the simulation box, and so there may be massive, rare black

holes that the survey would detect, but which are not sampled by our simulation

volume.

First we compare the optical/near-IR surveys. Compared to EUCLID Deep, we

predict that JWST will probe SMBHs with masses about four times lower, in galaxies

with stellar masses about three times lower, and in haloes with masses about two

times lower, having Eddington normalised accretion rates about 1.4 times lower.

We predict that the two different EUCLID surveys will detect slightly different

populations of AGNs, with EUCLID Wide detecting SMBHs with masses about

three times higher, in galaxies with stellar masses about two times higher, and

in haloes with masses about 1.3 times higher, having Eddington normalised mass

accretion rates about two times higher, compared to EUCLID Deep.

Now comparing the X-ray surveys, the properties of objects predicted to be de-

tectable in the two ATHENA bands are similar to those predicted to be detectable
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by EUCLID Deep, but the ATHENA soft X-ray band is predicted to detect SMBHs

with masses about two times lower, in galaxies of stellar mass about two times

lower, in host haloes about 1.3 times lower, and having Eddington normalised mass

accretion rates about 1.3 times lower, compared to EUCLID Deep. Compared to

ATHENA, we predict that Lynx will detect SMBHs with masses about 200 times

lower, with galaxy stellar masses about 50 times lower, and in haloes of mass about

10 times lower, with Eddington normalised mass accretion rates about 2 times lower.

For each survey, the AGNs detectable at z = 10 have somewhat lower black hole

masses, lower host galaxy stellar masses, lower host halo masses, and higher Ed-

dington normalised accretion rates than at z = 7.

Comparing all the distributions of the objects detectable by these surveys at

z = 7, we predict that the objects detectable by the Lynx hard X-ray band will

have the lowest median black hole mass, stellar mass, halo mass, and Eddington

normalised mass accretion rate. On the other hand, we predict that the obects

detectable by the VIS band for the EUCLID Wide survey will have the highest

median black hole mass, stellar mass, halo mass, and Eddington normalised mass

accretion rate.

We predict that Lynx will detect SMBHs that are substantially smaller than in

the other surveys, and SMBH host galaxies that are substantially smaller than in

the other surveys. Also, Lynx is the only survey that will be able to detect AGNs at

z = 7 in the ADAF accretion state (ṁ < 0.01). The much lower black hole, galaxy,

and halo masses probed by Lynx compared to the other telescopes are a result of it

being able to detect AGN at much lower bolometric luminosities.

While Lynx is predicted here to detect AGNs with smaller black hole masses

than the other surveys based on the survey parameters in Table 4.1, we explored

whether AGNs with similarly low mass black holes could be detectable by a similarly

long integration time with JWST. We considered a 15Ms integration time survey

in the JWST F200W band, for a single field of view (compared to our standard

assumption of a 10ks integration time in each of 1000 fields of view), assuming

the survey is signal-to-noise limited. We predict that for this long integration time

survey, JWST could detect objects at z = 7 down to an AGN bolometric luminosity
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of Lbol = 2.8×1042ergs−1, compared to Lbol = 3.8×1041ergs−1 for the Lynx soft X-ray

band. The smallest black holes at z = 7 that are detectable by this long integration

time JWST survey are of mass MBH = 4700M�, compared to MBH = 560M� for the

Lynx soft X-ray band. JWST is therefore in principle as sensitive as Lynx to low

luminosity, low SMBH mass AGNs at high redshift. However, this does not account

for the 40 times smaller field of view of JWST compared to Lynx, which greatly

reduces the survey volume, nor the greater difficulty of separating the light of the

AGN from that of the host galaxy in optical/near-IR compared to X-rays.

The largest detectable SMBH is also different for each of these surveys. Surveys

with larger survey areas can probe down to lower number densities, and so generally

can detect higher mass SMBHs. However, because the black hole mass function

decreases fairly steeply at the high mass end, increasing the survey area only slightly

increases the mass of the largest SMBH detectable. For halo masses, a larger survey

area does not necessarily correspond to detecting larger haloes from the AGNs they

contain, because the largest haloes can host lower luminosity objects (see Figure

4.5). Therefore the maximum halo mass is also affected by the sensitivity limit, as

seen for ATHENA and Lynx in the right panel of Figure 4.15. A similar argument

can be applied for stellar masses as seen in Figure 4.14.

We also explored the effect of halo mass resolution in our simulation on the prop-

erties of objects detectable by these surveys (see Section 4.4). We find that if we

degrade the halo mass resolution, as long as the objects have bolometric luminosities

above the value at which the luminosity functions converge (i.e. Lbol > 1043ergs−1),

the properties of the black holes are the same. The predictions of black hole prop-

erties for surveys by JWST, EUCLID and ATHENA are insensitive to this effect,

but for Lynx the values given should be regarded as upper limits.

4.6 Conclusions

Recent advances in observational capabilities have opened up studies of the high-

redshift Universe, but many uncertainties regarding the early stages of galaxy for-

mation and evolution remain. The origin of supermassive black holes (SMBHs) and
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their role in the early Universe still remains a mystery. Fortunately the next decade-

and-a-half offers us exciting new opportunities to probe the high redshift Universe,

especially given the plans for powerful new space-based telescopes such as JWST

and EUCLID at optical/near-IR wavelengths, and ATHENA and Lynx at X-ray

energies. These will offer us a multiwavelength view of the distant Universe and

allow us to characterise physical processes in galaxy formation. The role of SMBHs

and their growth in the distant Universe will be probed with much greater accuracy

than ever before.

We present model predictions for the AGN bolometric luminosity function for

7 ≤ z ≤ 15, finding that it evolves to lower luminosities and lower number densities

at higher redshift as a result of hierarchical structure formation. When we split the

bolometric luminosity function at these redshifts by accretion disc mode and gas

fuelling mode, we find that the dominant accretion disc modes are thin discs at low

luminosities (Lbol < 1045ergs−1), and super-Eddington objects at higher luminosi-

ties, and the dominant gas fuelling mode at all luminosities is starbursts triggered

by disc instabilities. The model allows SMBHs to grow at mass accretion rates

above the Eddington rate, so when we limit the SMBH gas accretion rate to the

Eddington rate, the number of SMBHs at high redshift is significantly reduced. We

also explore the effect of varying the SMBH seed mass on the bolometric luminosity

function. We find that when we use a much larger seed black hole mass (105h−1M�

compared to 10h−1M� in the fiducial model), the luminosity functions are relatively

unaffected, except for Lbol < 1043ergs−1 for z > 10.

We then present predictions for JWST, EUCLID, ATHENA, and Lynx, using

sensitivities and survey areas for possible surveys with these telescopes. For example,

we assume a 1.5×107s exposure for Lynx over a survey area of 360 arcmin2 (1 field of

view), whereas we assume a thousand 104s exposures for JWST over a total survey

area of 9680 arcmin2 (1000 fields of view). We find that the different surveys will

probe down to different AGN bolometric luminosities and number densities, and

hence sample different parts of the AGN population.

We also present predictions for two variants to the fiducial model that provide

a better fit to the rest-frame UV and rest-frame soft X-ray luminosity functions of
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AGNs at z = 6. In these models we vary either the amount of AGN obscuration

or the SMBH accretion efficiency (defined here as the fraction of gas accreted onto

the SMBH in a starburst). The resulting luminosity functions have lower number

densities by factors of about 4 and 2 respectively. AGN obscuration and SMBH

accretion efficiency are both uncertainties for the AGN population at high redshift.

Comparing these predictions to observations should allow us to better both of these

aspects at high redshift.

The properties of the SMBHs and AGNs detectable depend on the survey and

wavelength. For our fiducial model, we predict that the AGNs detectable at z = 7

will have median black hole masses that vary from 8 × 104M� to 5 × 107M�, and

median Eddington normalised mass accretion rates that vary from 1 − 3. These

AGNs are predicted to reside in host galaxies with median stellar masses that vary

from 4× 107M� to 4× 109M�, and in haloes with median masses from 4× 1010M�

to 3 × 1011M�. At z = 10, the AGNs detectable are predicted to have black hole

masses that vary between 2 × 104M� to 4 × 107M�, with Eddington normalised

mass accretion rates that vary from 1 − 8. The host galaxies of these AGNs are

predicted to have masses that vary from 8 × 106M� to 1 × 109M�, in haloes with

masses that very from 2 × 1010M� to 2 × 1011M�. The different telescopes will

therefore provide different but complementary views on the z > 6 AGN population.

For the survey parameters assumed here, Lynx is predicted to detect SMBHs with

the lowest masses, in the lowest mass host galaxies and lowest mass host haloes, and

so will provide the best opportunity to probe the nature of SMBH seeds. However,

a similarly long integration (15Ms) in a single field of view with JWST could in

principle detect similarly faint AGN at high redshift.

These future telescopes should therefore be able to detect SMBHs at very high

redshift having masses ∼ 104 − 105M� that are comparable to those of the high-

est mass seed SMBHs that are envisaged in current scenarios, and put improved

constraints on the physical mechanisms by which these seed SMBHs form.

In the last two Chapters we have made predictions from the model for AGN

luminosities from near-IR to X-ray wavelengths. In the next Chapter, we make

predictions for jet powers and radio luminosities. These quantities are calculated
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using the SMBH spins, masses and mass accretion rates from the model.



Chapter 5

Jet powers and core radio emission

5.1 Introduction

Understanding the cosmic evolution of extragalactic radio sources has been of in-

terest to the astrophysical community since the 1960s. Early work showed that

the most luminous radio sources exhibited stronger cosmological evolution than the

less luminous sources (Longair, 1966), but the lack of radio source redshifts in that

work constituted a major uncertainty. Subsequent work showed that the comoving

number density of powerful radio sources at z ∼ 2 is ∼ 1000 higher than for the

local Universe, with a strong decrease in the number density from z = 2 to z = 4

(e.g. Peacock, 1985; Dunlop & Peacock, 1990), which was referred to as the high

redshift ‘cut-off’. Other works disputed this cut-off, with Jarvis & Rawlings (2000),

Jarvis et al. (2001), and Willott et al. (2001) suggesting a more gradual evolution in

the number density of high-redshift sources. In a more detailed analysis, Wall et al.

(2005) confirmed the decrease in the number density of flat-spectrum radio sources

for z ≥ 3. More recent studies have also investigated the less powerful sources,

which seem to show only a modest increase in number density of a factor ∼ 2 from

z = 0 to z = 0.5 (e.g. Sadler et al., 2007; Donoso et al., 2009), and also find that

there is a decrease in number density for z > 0.7 (e.g. Rigby et al., 2011).

In this Chapter, we explore the evolution of jet powers and radio luminosi-

ties predicted by the model we are using here. While various previous theoretical

studies have investigated the evolution of radio luminosities, using different mod-

125
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Table 5.1: The values for the free parameters of the radio emission model used in

this Chapter. AADAF and ATD are the normalisations of the radio luminosity for

ADAFs and thin disc, and have been calibrated to the radio luminosity function at

z = 0.

Parameter Adopted here

AADAF 2× 10−5

ATD 0.8

elling techniques such as physical models of galaxy formation (e.g. Fanidakis et al.,

2011; Hirschmann et al., 2014), or empirical galaxy evolution models (e.g. Kaiser &

Alexander, 1999; Saxena et al., 2017), very few models base their radio luminosi-

ties on a self-consistent model for SMBH growth and spin evolution embedded in a

physical model of galaxy formation.

The outline of this Chapter is as follows. In Section 5.2 we describe the model

used. In Section 5.3 we present the predicted evolution of the jet powers and in

Section 5.4 we present the predicted radio luminosity function evolution. In Section

5.5 we present our conclusions.

5.2 Model

5.2.1 Jet powers and radio luminosities

In this Chapter, we are using the same model as in the previous Chapters. The

mechanisms by which SMBH mass builds up and the method by which mass accre-

tion rates are calculated is given in Section 2.7, and the method by which SMBH

spin evolution is calculated is given in Section 3.2. We calculate jet powers from

black hole accretion discs following the model in Meier (2002), in which the jet

power is sourced from the rotational energy of the black hole, as in the Blandford

& Znajek (1977) (BZ) model for jet production. In the BZ model, the jet power, Q,

also depends on the strength of the poloidal magnetic field, Bp:

Q ∝ B2
pM

2
BH a2. (5.2.1)
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The poloidal magnetic field in the accretion disc is then related to the azimuthal

magnetic field strength, Bφ, via Bp ≈ (H/R)Bφ, where H/R is the ratio of disc half-

thickness to the disc radius. For geometrically thick ADAFs, H/R ∼ 1, whereas for

(geometrically) thin discs, H/R is given by the thin disc equations. In our model, the

SMBH is in the ADAF regime for ṁ < 0.01, and is in the thin disc regime for ṁ >

0.01. The poloidal magnetic field can then be related to accretion disc quantities

by assuming the magnetic field pressure is limited by the maximum pressure of the

accretion disc (Moderski & Sikora, 1996). This assumption of equipartition is likely

to provide an upper limit on Bφ. The jet powers are then given by the expressions

in Meier (2002):

QADAF = 2× 1045ergs−1

(
MBH

109M�

)(
ṁ

0.01

)
a2, (5.2.2)

QTD = 2.5× 1043ergs−1

(
MBH

109M�

)1.1(
ṁ

0.01

)1.2

a2, (5.2.3)

where a is the black hole spin parameter. The coefficient for the thin disc case is

lower than for the ADAF case as a result of the smaller values of H/R for thin discs,

which reduce the poloidal magnetic field compared to the azimuthal magnetic field.

In this model, we calculate core radio luminosities, and assume that the total

radio emission is dominated by the core emission. To calculate the core radio lumi-

nosity, LνR, at a particular frequency, we use the scaling model of Heinz & Sunyaev

(2003), which relates the radio luminosity of core-dominated sources to the black

hole mass and mass accretion rate, using scaling relations based on physical argu-

ments. It gives LνR ∝ (MBHṁ)1.42 for ADAFs, and LνR ∝M1.42
BH , for thin discs1. By

combining these relations with those for the jet powers, we obtain expressions for

the radio luminosities2:

νRLνR,ADAF = AADAFQADAF

(
MBH

109M�

)0.42(
ṁ

0.01

)0.42

, (5.2.4)

1Following Fanidakis et al. (2011), we assume that LνR depends on spin via LνR ∝ a2
2Note that equations (5.2.4) and (5.2.5) are different to Fanidakis et al. (2011) equations (44)

and (45)
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νRLνR,TD = ATD QTD

(
MBH

109M�

)0.32(
ṁ

0.01

)−1.2

, (5.2.5)

where νR is the rest-frame frequency, and AADAF and ATD are free parameters of

the Heinz & Sunyaev (2003) model, as their scaling relations do not provide values

for these A parameters. We allow AADAF and ATD to vary independently, compared

to Fanidakis et al. (2011) which required AADAF/ATD = 100.

We choose the values of AADAF and ATD to give the best agreement with the ob-

served AGN radio luminosity function at z = 0, as we show in Figure 5.7 in Section

5.4. The values adopted for this study are given in Table 5.1. Following Fanidakis

et al. (2011), and using equations (5.2.4) and (5.2.5), this results in a power law

SED for the radio emission, LνR ∝ ν−α, with α = 13. This radio emission model

in galform has been used in Izquierdo-Villalba et al. (2018) to study predictions

for the environments of radio galaxies, and in Amarantidis et al. (2019) in a com-

parison of AGN luminosity functions from different theoretical models. The model

for jet powers has also been used in Ceraj et al. (2018), who compared it to their

observational estimate of the evolution of the jet power density.

As stated above, we are assuming that the total radio emission is the same as the

core emission, an assumption that is likely to be valid for lower radio luminosities,

where most sources are core-dominated, but less valid for higher radio luminosities,

where most sources are not core-dominated.

5.2.2 AGN heating and jet efficiency

In the hot halo mode of SMBH accretion, where AGN feedback is operational, the

efficiency of SMBH heating of the halo gas is set to a constant value εheat = 0.02 as

in equation (2.7.26). This is the efficiency of AGN feedback in the galaxy formation

model, which we will refer to as the AGN heating efficiency. We also calculate

jet powers from the SMBH spin, mass, and accretion rate in equations (5.2.2) and

(5.2.3), from which an alternative efficiency, εjet = Q/(Ṁc2), can be calculated,

3We note that this is different to the α = 0 value assumed for equations (5.2.4) and (5.2.5), as

in Fanidakis et al. (2011)
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Figure 5.1: The product of the jet power and the comoving number density of

objects at each jet power QΦ(Q) = Qdn/d logQ, as a function of jet power, Q, for

z = 0, 3, 6. We show the total (black line), the contribution from the starburst mode

(light blue line), from the hot halo mode (grey line), the contribution from thin discs

(blue line), and the contribution from ADAFs (red line).

which we will refer to as the AGN jet efficiency. If all of the energy in AGN jets

were deposited in hot halo gas, one would expect εheat = εjet. In order to avoid

modifying the underlying galaxy formation model, this condition was not imposed

on εheat. However, we do explore in Section 5.3 whether the assumed AGN heating

efficiency is similar to the average predicted AGN jet efficiency.

5.3 Evolution of jet power density

5.3.1 Predictions from the model

We first investigate the predicted evolution of the jet powers. In Figure 5.1, we show

the product of the jet power and the comoving number density of objects at each

jet power, QΦ(Q), where Φ(Q) = dn/d logQ, for z = 0, 3, 6. This is shown split by

accretion state into the contributions from thin discs and ADAFs, and separately

by fuelling mode into contributions from starburst triggered accretion and hot halo

accretion. This distribution shows us which jet powers and which contributions

dominate the jet power density, as the integral of QΦ(Q) with respect to logQ is
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the jet power density. Note that our predictions for jet powers are independent of

the model for radio emission.

The ADAF and hot halo mode contributions evolve similarly because the Ed-

dington normalised mass accretion rate for objects in the hot halo mode is generally

below 0.01 (cf. equation (2.4.20)). On the other hand, the thin disc and starburst

mode contributions evolve similarly because the Eddington normalised mass accre-

tion rate is generally above 0.01 for starburst mode accretion. This is because the

mass accretion rate is typically higher for starburst mode accretion, and because

the starburst mode typically occurs for smaller black holes in smaller haloes. At

z = 0, for Q . 1032W, the dominant contribution to QΦ(Q) is from the starburst

and thin disc contributions, whereas for Q & 1033W, the dominant contribution is

from the hot halo and ADAF contributions. At z = 3, for Q . 1034W, the starburst

and thin disc contributions dominate, whereas at Q ∼ 1036W, the contributions to

QΦ(Q) from the starburst and hot halo modes contribute approximately equally. At

z = 6, the dominant contribution to QΦ(Q) at all jet powers is from the starburst

and thin disc contributions. These predictions for the different contributions to the

jet power distribution could be tested observationally, and so provide a simple test

of the model.

The jet power density discussed below is dominated by objects in the peak of

the QΦ(Q) distribution. The dominant contribution to the jet power density comes

from sources with Q ∼ 1036W, independent of redshift over the range 0 < z < 6.

Also, the peak in QΦ(Q) occurs at roughly the same jet power for both starburst

and hot halo modes, again roughly independent of redshift. This appears to be

fortuitous, given the very different typical jet efficiencies for the starburst and hot

halo modes as discussed below.

In the top panel of Figure 5.2 we show the evolution of the jet power density,

ρ(Q), where ρ(Q) is given by the total jet power summed over all galaxies divided

by the total comoving volume. We also split the jet power density evolution into

contributions from thin discs and ADAFs, and separately into contributions from

starburst triggered accretion and hot halo accretion. When comparing the fuelling

modes, the hot halo mode contribution dominates the jet power density for z <
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Figure 5.2: The evolution of the model with redshift. In each panel the model pre-

diction (black line), is split into the contribution from starburst triggered accretion

(light blue line), the contribution from hot-halo accretion (grey line), the contribu-

tion from thin discs (TDs, dark blue line) and the contribution from ADAFs (red

line). Top panel: the predicted evolution of the jet power density with redshift. The

solid grey line is underneath the red line. Middle panel: the evolution of the SMBH

mass accretion rate density with redshift. Bottom panel: the evolution of the mass

accretion rate weighted average mean square SMBH spin with redshift.
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3, whereas the starburst mode contribution dominates for z > 3. The hot halo

contribution peaks at z ∼ 1, whereas the starburst contribution peaks at z ∼ 4.

When comparing the accretion disc states, the ADAF contribution dominates for

z < 3, and the thin disc contribution dominates for z > 3.

In the middle panel of Figure 5.2, we show the evolution of the SMBH mass

accretion rate density (the total mass accretion rate summed over all galaxies divided

by the total comoving volume) with redshift. The total mass accretion rate density

increases with redshift for 0 < z < 3, has a peak around z = 3−4, and then decreases

for z > 4. The mass accretion rate density is dominated by the contributions

from AGNs fuelled by the starburst mode and accreting via the thin disc accretion

state, except for z < 0.5 where the mass accretion rate density is dominated by the

contribtions from AGNs fuelled by the hot halo mode and accreting via the ADAF

accretion state.

In the bottom panel of Figure 5.2, we show the mass accretion rate weighted

average mean square SMBH spin, 〈a2〉, calculated as the sum of the product of mass

accretion rate and spin squared of the black holes, divided by the sum of the mass

accretion rates (i.e. 〈a2〉 = ρ(Ṁa2)/ρ(Ṁ)). When considering all SMBHs together,

〈a2〉 decreases with redshift in the interval 0 < z < 2, from about 0.15 to 0.1, before

increasing for z > 2 to about 0.18 at z = 6. For z < 4, the hot halo and ADAF

contributions have higher values of 〈a2〉 compared to the starburst and thin disc

contributions. This is because for the AGNs fuelled by the starburst mode, the

objects with the highest mass accretion rates have a low spin (around a = 0.2 at

z = 0), whereas for the hot halo mode, the objects with the highest mass accretion

rates have slightly higher spins (a = 0.2−0.4 at z = 0). For z > 4, 〈a2〉 is greater for

the starburst mode and thin disc contributions because the highest mass accretion

rate SMBHs in the starburst mode have higher spins (a = 0.2 − 0.5 at z = 6),

compared to the hot halo mode (where a = 0.2 − 0.4 at z = 6). The method by

which these SMBH spin distributions are calculated is given in Chapter 3.

By comparing Figure 5.2 to the expressions for the jet power in equations (5.2.2)

and (5.2.3), we see that the dominance of the hot halo contribution to the jet power

density at z < 3 is mainly due to the 80 times larger normalisation coefficient for
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Figure 5.3: The predicted evolution of the jet power density split into different bins

in halo mass: 9 < log(Mhalo/M�) < 11 (light blue), 11 < log(Mhalo/M�) < 13 (dark

blue), 13 < log(Mhalo/M�) < 14 (red), 14 < log(Mhalo/M�) < 15 (black).

ADAFs compared to thin discs. The relative evolution of the jet power densities

from the starburst and hot halo modes is therefore driven mainly by the differences

in mass accretion rates and in the normalisations of the jet power relations (see

equations (5.2.2) and (5.2.3)), with variations in the spin playing only a minor role.

In Figure 5.3, we present the jet power density split into the contribution from

different halo masses. For z < 1, the jet power density is dominated by AGNs in

haloes of mass 13 < log(Mhalo/M�) < 14 (i.e. large galaxy groups and clusters),

whereas for z > 1, the jet power density is dominated by AGNs in haloes of mass

11 < log(Mhalo/M�) < 13 (i.e. individual galaxies and smaller groups).

In Figure 5.4, we show the evolution of the mean AGN jet efficiency, ε̄jet (cf.

Section 5.2.2), which is calculated as the ratio of the jet power density to the mass

accretion rate density. The mean AGN jet efficiency is higher for the hot halo mode

than for the starburst mode at all redshifts: this is mainly because the normalisation

coefficient of the jet power for ADAFs is higher than for thin discs by a factor of 80

(see equations (5.2.2) and (5.2.3)), but this difference is slightly reduced by starburst
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Figure 5.4: The predicted evolution of the AGN jet efficiency, ε̄jet = ρ(Q)/ρ(Ṁ)c2

with redshift for the hot halo mode (red), for the starburst mode (blue), and for

both modes combined (black). We also show the assumed constant AGN heating

efficiency of the galaxy formation model, εheat = 0.02 (grey line).
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mode AGNs having slightly higher spins, accreting at higher mass accretion rates,

and having lower mass SMBHs. The jet efficiency of the two modes combined is

similar to the hot halo mode jet efficiency for z < 1, and similar to that of the

starburst mode for z > 3.

The mean AGN jet efficiency in either hot halo or starburst mode considered

separately only varies moderately with redshift. In the hot halo mode, which is

where AGN feedback is assumed to be active in the model, at lower redshift (z < 2)

the AGN jet efficiency is ε̄jet ≈ 0.03 whereas at higher redshift (z > 2) it is ε̄jet ≈ 0.01,

with an average over the history of the universe of 0.024. This time averaged value

of the AGN jet efficiency is only 20% larger than the assumed constant value of the

AGN heating efficiency, εheat = 0.02. The fact that the mean AGN jet efficiency for

the hot halo mode only varies modestly with time suggests that the assumption that

the AGN heating efficiency is constant through time is a reasonable approximation.

5.3.2 Comparison of jet power density to observational es-

timates

We now present the jet power density evolution of the model compared to the ob-

servational estimate of Ceraj et al. (2018). They obtain their estimate by measuring

the evolution of the radio luminosity function at 1.4GHz, converting the 1.4GHz

radio luminosities to jet powers using the Willott et al. (1999) relation, and then

integrating over the subsequent jet power distribution. Ceraj et al. (2018) present

their results both as data points in redshift bins, based on fitting an analytical lu-

minosity function to data at that redshift, and also as a smooth function of redshift,

obtained from an analytical pure luminosity evolution (PLE) model fit to their radio

data.

The Willott et al. (1999) relation for jet power is derived using minimum energy

arguments to estimate the minimum energy stored in the lobes given the observed

synchrotron luminosity and combining with an estimate of the source age based on

a dynamical model for the lobe expansion. This relation is expressed in terms of

1.4GHz luminosity in Heckman & Best (2014), and is given by:
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Q = 4× 1035W

(
LνR,1.4GHz

1025WHz−1

)6/7

(fW)3/2, (5.3.6)

where fW is a factor that accounts for uncertainties in the knowledge of the physics

of radio sources (primarily the composition of the radio emitting plasma and the

low energy cutoff of the electron energy distribution). Willott et al. (1999) estimate

fW to lie in the range fW = 1 − 20. Observational studies based on cavities in

X-ray emitting hot gas around galaxies calculate the jet power from cavity volumes,

cavity pressures, and an estimate of the lifetime of the cavity based on the buoyancy

timescale (Rafferty et al., 2006; B̂ırzan et al., 2008; Cavagnolo et al., 2010). Heckman

& Best (2014) compiled these observational estimates of the jet power versus radio

luminosity to find that they are consistent with the Willott et al. relation, with

fW = 15. Using a different method based on estimating lobe expansion velocities

using spectral ageing, Daly et al. (2012) also find radio luminosities and jet powers

consistent with the Willott et al. relation, for a value of fW = 4. Other studies argue

that other variables need to be considered in this relation, such as lobe size (because

of radiative losses by the electron populations) (e.g. Shabala & Godfrey, 2013), the

environment of sources (e.g. Hardcastle, 2018), and Fanaroff-Riley morphology (e.g.

Turner & Shabala, 2015).

In Figure 5.5, we compare our predicted jet power density to the observational

estimate of Ceraj et al. (2018). Comparing to their observational estimate using

a value of fW = 15, our model is above their estimate by a factor of about 2 for

2 < z < 4, and by a factor of about 4 for z < 2. Comparing to their observational

estimate using a value of fW = 20, our model is above their estimate by a factor

of about 1.5 for 2 < z < 4, and by a factor of about 2.5 for z < 2. The jet power

density in the model generally evolves a similar way to the observations, with both

the model and observations showing an increase in jet power density with redshift for

z . 1, and a decrease for z & 1. However, the increase of the jet power density with

redshift for z . 1 is slightly less steep in the model compared to the observations,

and the model evolution is also slightly less steep compared to the observations for

z & 3.

While the model appears to be in some modest tension with the observations,
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Figure 5.5: The predicted evolution with redshift of the jet power density in the

model compared to the observational estimate from Ceraj et al. (2018). The model

prediction (solid black line), is compared to the observational estimate from Ceraj

et al. (2018) for fW = 15, in redshift bins (red circles), and also using their pure

luminosity evolution fit to the data (dashed red line). We also show the estimates

for the jet power density evolution from Ceraj et al. (2018) for fW = 1 (dot-dashed

red line) and fW = 20 (dotted red line). We only compare to the observational fit

for z > 4, as at higher redshifts the fit is not well constrained by the data.



5.3. Evolution of jet power density 138

Figure 5.6: The predicted evolution of the jet power density from thin discs in the

model (blue solid line) compared to the evolution of the jet power of ‘HLAGN’

from Ceraj et al. (2018) (the dashed blue line is the pure luminosity evolution fit

to the data, and the blue points are the data in redshift bins). We only show the

observational fit for z > 4.

there are several uncertainties in the observations to consider. First, there is uncer-

tainty in the mean value of fW, which is estimated to take values in the range 1−20

(Willott et al., 1999), and given that jet power depends on fW as Q ∝ f 1.5
W , there

are then significant uncertainties in the calculated Q values. Secondly, rather than

each radio source having the same fW value equal to the mean, it is likely that the

radio source population has a distribution of fW values around the mean, resulting

in an increase in the derived jet power density due to the non-linear dependence of

Q on fW. Overall, given the uncertainties, the model is reasonably consistent with

the observations.

In Figure 5.6, we compare the predicted jet power density for AGNs accreting

via a thin disc accretion state to the jet power density of ‘moderate-to-high radiative

luminosity AGN’ (HLAGN) estimated from the observations by Ceraj et al. (2018).
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In the observations, HLAGN are selected using a combination of (i) a threshold

X-ray luminosity, (ii) mid-infrared colour-colour selection and (iii) template fitting

to the spectral energy distributions (see Ceraj et al., 2018). While HLAGN in the

observations do not exactly correspond to thin discs in the model, one would expect

radio sources accreting via a thin disc accretion state to have relatively high radiative

luminosities, and so this is an approximate comparison. We find that while the model

underpredicts the observations for z < 3 and overpredicts the observations for z > 3,

it reproduces the behaviour that the number density of these objects should increase

with redshift for 0 < z < 2. A more thorough application of these selections for

HLAGN to the model in the future may give closer agreement with the observations.

Similar comparisons to Figures 5.5 and 5.6 were done in Ceraj et al. (2018), based

on a slightly earlier version of the model.

5.4 Evolution of the radio luminosity function of

AGN

We now show our model predictions for the radio luminosity function of AGN at

z = 0 compared to observational estimates, before analysing the evolution of the

radio luminosity function in the model compared to observations. In the left panel

of Figure 5.7 we present the radio luminosity function at z = 0 compared to ob-

servational estimates. The values of AADAF and ATD were varied freely to give the

agreement seen between the predictions and the observations at z = 0 in Figure

5.7, with the adopted values being given in Table 3.1. The model is able to match

the observations very well, although there are some tensions between the different

observational data, that we now describe.

First, at Lν ∼ 1025WHz−1, the Smolčić et al. (2009) and Smolčić et al. (2017)

number densities are about 10 times higher than the Rigby et al. (2011) and Best

et al. (2014) number densities. As discussed in Section 6.1.1 of Padovani et al.

(2015), this discrepancy may be a result of the sample selection. Rigby et al. (2011)
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Figure 5.7: Left panel: the predicted 1.4GHz luminosity function of AGN at

z = 0 compared to observational estimates from VLA-COSMOS (Smolčić et al.,

2009) (light blue squares), CENSORS (Rigby et al., 2011) (red triangles), the

Subaru/XMM-Newton Deep Field radio source sample (Simpson et al., 2012) (yel-

low squares), another VLA survey (McAlpine et al., 2013) (blue triangles), a sample

from combining eight different surveys (Best et al., 2014) (yellow circles), the Ex-

tended CDF South VLA sample (Padovani et al., 2015) (crosses) and COSMOS

3GHz data (Smolčić et al., 2017) (black circles). The line is the galform pre-

diction, with the shaded region representing the Poisson errorbars. Middle panel:

the predicted radio luminosity function at z = 0 (black solid line) split into contri-

butions from the hot halo mode (red dashed line), starbursts triggered by mergers

(light blue solid line), and starbursts triggered by disc instabilities (dark blue dot-

ted line). Right panel: the the predicted radio luminosity function at z = 0 (black

solid line) split into the contributions from haloes of mass 9 < log(Mhalo/M�) < 11

(grey), 11 < log(Mhalo/M�) < 13 (green) and 13 < log(Mhalo/M�) < 15 (purple).
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and Best et al. (2014) select a sample of steep-spectrum sources (α > 0.5)4, in a

variety of surveys with smaller areas and smaller flux density limits, whereas Smolčić

et al. (2009) and Smolčić et al. (2017) select their sample with only a flux density

limit. This difference could also be caused by sample variance caused by large scale

structure, with the volumes at z ∼ 0 probed by the surveys in Smolčić et al. (2009)

and Smolčić et al. (2017) being relatively small. The quoted observational errors at

this luminosity are fairly large, with the errors for Smolčić et al. (2009), Best et al.

(2014), and Smolčić et al. (2017) being about 0.5 dex. Our predictions follow Rigby

et al. (2011) and Best et al. (2014) in this regime and to higher luminosities.

Secondly, for Lν < 1023WHz−1, there is variation in the observational estimates

spanning a range of about 1 dex, which may also be for the same reason as for Lν ∼

1025WHz−1. Our model follows the data from McAlpine et al. (2013) and Smolčić

et al. (2017) most closely. These two regimes may warrant further observational

studies to constrain the radio luminosity function at these luminosities.

In the middle panel of Figure 5.7 we present the predicted radio luminosity

function for AGN at z = 0 split by fuelling mode into contributions from the hot

halo mode and from starbursts triggered by mergers and disc instabilities. The

contribution from the hot halo mode is dominant for Lν < 1024WHz−1, while for

1024WHz−1 < Lν < 1026WHz−1 the dominant contribution is from starbursts trig-

gered by disc instabilties, and for Lν > 1026WHz−1 the dominant contribution is

from starbursts triggered by galaxy mergers.

In the right panel of Figure 5.7 we show the predicted radio luminosity function at

z = 0 for AGN split into contributions from AGNs in different mass haloes. We find

that for 1023WHz−1 < Lν < 1026.5WHz−1, the contribution from haloes of mass 11 <

log(Mhalo/M�) < 13 (individual galaxies and smaller groups) dominates, whereas

for Lν < 1023WHz−1, and Lν > 1026.5WHz−1 the contribution from AGNs in haloes

of mass 13 < log(Mhalo/M�) < 15 (large galaxy groups and clusters) dominates.

The z = 0 radio luminosity function at intermediate luminosities (1023WHz−1 <

Lν < 1026.5WHz−1) is therefore predicted to probe AGNs in different mass haloes

4This is for an assumed radio spectrum Sν ∝ ν−α
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Figure 5.8: The evolution of the predicted rest-frame 1.4GHz luminosity function

of AGNs compared to observational estimates. The symbols for the observations,

and the linestyles for the different fuelling modes of the model are the same as for

Figure 5.7.

to the jet power density at z = 0, which is dominated by AGNs in haloes of mass

13 < log(Mhalo/M�) < 15.

In Figure 5.8 we present the predicted evolution of the AGN radio luminosity

function for 0 < z < 6 compared to observational estimates. The model predic-

tion fits well to the observations at z = 0 as previously discussed, but evolves

differently compared to the observations. At z = 1, for Lν > 1026WHz−1 and for

Lν < 1024WHz−1, the model prediction is still in good agreement with the ob-

servations. However, the model overpredicts the number of objects around Lν ∼

1025WHz−1 by about 0.5 dex. As we look to redshifts z > 3, a trend emerges

where the model overpredicts the luminosity function for low luminosities, under-

predicts the luminosity function for high luminosities, but predicts a similar number

density to the observations for intermediate luminosities. For example, at z = 4,

the model overpredicts the number density for Lν < 1025WHz−1, underpredicts
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the number density for Lν > 1026WHz−1, and agrees with the observations for

1025WHz−1 < Lν < 1026WHz−1. This luminosity at which the model agrees with

the observations decreases slightly with increasing redshift. The observations also

have some uncertainties, for example at Lν ∼ 1025WHz−1 at z = 4, the Padovani

et al. (2015) errors are about 1.3 dex, while the observed number densities from

Simpson et al. (2012) and Padovani et al. (2015) are different by 1 dex.

In Figure 5.8 we also show the evolution of the contributions to the luminosity

function from hot halo mode accretion and starbursts triggered by mergers and disc

instabilities. At z = 1, similarly to z = 0, the hot halo mode contribution dominates

the luminosity function for low luminosities (Lν < 1024WHz−1), the contribution

from starbursts triggered by disc instabilities dominates for intermediate luminosities

(1024WHz−1 < Lν < 1025WHz−1), and the contribution from starbursts triggered

by mergers dominates for high luminosities (1025WHz−1 < Lν < 1027WHz−1). The

hot halo mode contribution also dominates at the very highest luminosities (Lν >

1027WHz−1), unlike at z = 0, although this is the result of only a few objects. At

z = 3, the contribution from starbursts triggered by disc instabilties dominates at

low luminosities (Lν < 1025WHz−1) and the hot halo mode contribution dominates

at higher luminosities (Lν > 1025WHz−1). This behaviour continues out to z = 6.

In the radio luminosity functions presented in Figures 5.7 and 5.8, we used the

values of AADAF and ATD from Table 5.1 to calculate radio luminosities which are

most appropriate for core-dominated sources. We then assumed that the radio lumi-

nosity is dominated by the core emission for these comparisons. We now consider the

effect on our results if we compare to a radio luminosity function of core-dominated

sources.

To do this, we recalibrate the values of AADAF and ATD to give good agreement

with the core-dominated radio luminosity function of Yuan et al. (2018) at z = 0,

finding that this requires AADAF = 3 × 10−6 and ATD = 0.2. These recalibrated A

values are both lower than the values for the fiducial model, and AADAF has been

reduced by slightly more than ATD. This reduction in the A values accounts for how

the core-dominated luminosity function has a slightly lower number density at low

luminosities (about 0.5 dex at Lν ∼ 1022WHz−1), and a reasonably lower number
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Figure 5.9: The evolution of the recalibrated (AADAF = 3 × 10−6 and ATD = 0.2)

rest-frame 1.4GHz AGN luminosity function for core-dominated sources (black line

with shading for errorbars) compared to the observational estimate of Yuan et al.

(2018) (black points).
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density at high luminosities (about 1 dex at Lν ∼ 1026WHz−1).

In Figure 5.9, we present the evolution of this recalibrated model compared to

the observational data from Yuan et al. (2018)5. The model is in good agreement

with the observations at all luminosities at z = 0.5, and for Lν < 1022WHz−1 at

z = 1, but overpredicts the observations for z = 2 and z = 3. This occurs because

the model number density is roughly constant with redshift for 1 < z < 3, whereas

the number density of the observations decreases over that redshift interval.

This overprediction of the recalibrated model for z > 2 may be caused by the

double power-law form of the luminosity function of Yuan et al. (2018) not being a

good fit to the actual luminosity function. Alternatively this may be because the

simple model we are using for the core-dominated emission is not sufficiently detailed

to capture the physical reason for the decrease in the number of core-dominated radio

sources. By using a more detailed model for radio lobe growth, and investigating

the core-dominated sources within that model, better agreement might be able to

be obtained.

5.5 Conclusions

Observational estimates of the evolution of the radio luminosity function have greatly

improved in recent years, and insights into the evolution of radio jets can be ob-

tained by investigating the evolution of jet powers which can be determined from

the radio luminosities. Understanding the evolution of radio AGN is important for

understanding galaxy evolution, given the role they are believed to play in shutting

off star formation via AGN feedback. In Chapter, we present predictions for the

evolution of jet powers and radio luminosities from the model.

First, we predict the evolution of the jet powers. We present the distribution

of jet powers (we show the product of jet power and comoving number density) of

objects at z = 0, 3, 6, finding that the hot halo mode and ADAF accretion state

contributions dominate for higher jet powers (Q & 1033) at lower redshift (z = 0),

5The observations from Yuan et al. (2018) have been corrected to 1.4GHz using a spectral index

α = 0
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contribute approximately equally to the starburst mode and thin disc accretion

state at Q ∼ 1036W at z = 3, but do not dominate the jet power distribution at

the highest redshifts (z = 6). The starburst mode and thin disc accretion state

contributions dominate at low jet powers and low redshift, and at all jet powers at

higher redshifts. The peak of this distribution dominates the jet power density. We

find that the peak of this distribution is at Q ∼ 1036W, independent of redshift for

0 < z < 6. The distribution for the starburst and hot halo contributions also peaks

at this jet power.

We then explore the predicted evolution of the jet power density. The jet power

density is dominated by the contribution from haloes of mass 13 < log(Mhalo/M�) <

14 for z < 1, and by the contribution from haloes of mass 11 < log(Mhalo/M�) < 13

for z > 1. The mean AGN jet efficiency, which is the ratio of the jet power density

to the mass accretion rate density, for the hot halo mode only varies modestly with

time, suggesting that the assumption in the galaxy formation model that AGN

heating efficiency is constant through time is reasonable. We then compare the jet

power density evolution to the observational estimate of Ceraj et al. (2018) based

on the measured radio luminosity function. The model prediction is slightly higher

than the observational estimate, but reproduces the general shape of the jet power

density evolution. The model evolves somewhat less steeply than the observations

at low and high redshifts. Given the uncertainties in observationally estimating jet

powers from radio luminosities, this tension may not be significant.

We then present the predicted radio luminosity function, where the two free

parameters of the model relating radio luminosity to jet power are calibrated to

the observed AGN radio luminosity function at z = 0. The model is able to give

very good agreement with the observational estimates. We split the radio lumi-

nosity function at z = 0 into contributions from different gas fuelling modes, find-

ing that the contribution from the hot halo mode dominates at low luminosities

(Lν < 1024WHz−1), the contribution from starbursts triggered by disc instabilities

dominates at intermediate luminosities (1024WHz−1 < Lν < 1026WHz−1), and the

contribution from starbursts triggered by mergers dominates at high luminosities

(Lν > 1026WHz−1). We also find that the radio luminosity function at z = 0 at
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intermediate luminosities (1023WHz−1 < Lν < 1026.5WHz−1) is dominated by the

contribution from AGNs in haloes of mass 11 < log(Mhalo/M�) < 13, whereas at

Lν < 1023WHz−1 and Lν > 1026.5WHz−1, the radio luminosity function is dominated

by AGNs in haloes of mass 13 < log(Mhalo/M�) < 15.

We present predictions for the evolution of the radio luminosity function in the

redshift range 0 < z < 6. The predictions evolve similarly to the observations, al-

though at higher redshift the model luminosity function is steeper than that implied

by observations. At the highest redshifts (z > 3) we find that the radio luminosity

function is dominated by the contribution from starbursts triggered by disc insta-

bilities for Lν < 1025WHz−1 and by the contribution from the hot halo mode for

Lν > 1025WHz−1.

Finally, we present a recalibration of the model where we calibrate the two free

parameters of the radio model to the core-dominated radio luminosity function of

Yuan et al. (2018) at z = 0. We find that the model fits adequately out to z = 1,

but overpredicts the observations for z > 2.

While the model generally provides a good fit to the observational data, and

incorporates some key physics by calculating jet powers and radio luminosities using

a prescription based on SMBH mass, accretion rate and spin, the model could be

improved. The scaling model relating the radio luminosity to the jet power here was

developed for core-dominated radio emission, however, in real radio AGNs there is

also radio emission from extended lobe structures, which are particularly important

at lower frequencies. In the next Chapter, we explore predictions for the evolution

of extended radio lobes using an analytic model for the evolution of the dynamics

of radio lobes and the radio emission.



Chapter 6

Extended radio emission

6.1 Introduction

Radio surveys have detected extended radio sources originating from Active Galactic

Nuclei (AGNs) with a wide variety of sizes, luminosities and morphologies through-

out the Universe, with some of these sources having sizes up to several Mpc (e.g.

Muxlow & Garrington, 1991). Understanding these radio sources helps us to un-

derstand why there are such a large variety of radio sources observed. The energy

required for these radio sources to propagate into their surrounding environment is

provided by a jet, thought to originate from an accretion disc around a supermassive

black hole (SMBH).

Our theoretical understanding of the evolution of extended radio sources has

advanced greatly in recent years. Early works such as Blandford & Rees (1974) and

Scheuer (1974) formulated models in which a collimated jet from the SMBH supplies

energy to a ‘hotspot’, and where a ‘cocoon’ is inflated around the jet by the material

flowing out of the hotspot. Following the work of Falle (1991), a great advance in

the analytic models was made by Kaiser & Alexander (1997), where a model was

presented in which the lobe grows self-similarly, i.e. the size of the lobe grows as a

power law with time while the ratio of the length to the width of the lobe remains

constant with time. A treatment of synchrotron emission and energy loss processes

of the electron populations was then added in Kaiser et al. (1997) to make predictions

for radio sources as their radio luminosities and sizes evolve. Many other related

148
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analytic models for FRIIs have been developed (e.g. Blundell et al., 1999; Alexander,

2002; Manolakou & Kirk, 2002; Kaiser & Cotter, 2002; Kaiser & Best, 2007; Nath,

2010; Mocz et al., 2011; Hardcastle, 2018), and although they are less analytically

tractable, analytical FRI models have also been developed (e.g. Wang et al., 2009;

Luo & Sadler, 2010). For the models stated here, the FRII models assume that

the jets are overpressured compared to their external medium, and hence cause a

shock to form, whereas the FRI models assume that the radio source is in pressure

balance with its environment. Some of the models suggest possible causes for the

FRI/FRII transition, such as FRIs forming as a turbulent layer develops between the

jet and lobe in FRIIs (Wang et al., 2011) or that FRIIs transition to FRIs when the

velocity at the surface of the FRII cocoon becomes equal to the sound speed of the

external medium (Turner & Shabala, 2015). Some observations have suggested that

the two Fanaroff-Riley types are fundamentally different, with FRIs being composed

of an energetically dominant proton population not present in FRIIs (Croston et al.,

2018).

Alongside the analytic models, insights have also been gained from numerical

simulations of jets, such as possible mechanisms for the FRI/FRII dichotomy (e.g.

Krause et al., 2012; Ehlert et al., 2018), the role of environment in determining radio

source properties (e.g. Hardcastle & Krause, 2013; Yates et al., 2018), and the role

jets play in heating clusters (e.g. Weinberger et al., 2017). Some models also present

radio emission predictions within the context of a galaxy formation model, either

using an empirical model (e.g. Saxena et al., 2017), or using galaxy environments

from a semi-analytic model of galaxy formation (e.g. Turner & Shabala, 2015), or by

using SMBH and galaxy properties from a semi-analytic model of galaxy formation

(e.g. Fanidakis et al., 2011; Raouf et al., 2017).

In this Chapter, we make predictions for extended radio sources in AGNs at

z = 0 from the galaxy formation model galform we are using in this thesis. The

combination of a self-consistent SMBH spin evolution model and a detailed model

for the evolution of extended radio sources has not been presented before, and we

compare the model in detail to observed radio luminosity functions at different

frequencies, radio lobe sizes, and FRI/FRII fractions for the first time. In this
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Chapter, we compare to recent LOFAR Two-metre Sky Survey (LoTSS) data, and

this model will be able to be compared to radio data from future surveys such as

those with ASKAP or SKA.

This Chapter is structured as follows. In Section 6.2 we describe the model used.

In Section 6.3 we show some examples of radio lobes in the model. In Section 6.4

we present the results from the model at z = 0. In Section 6.5 we present the effect

on the results of varying different free parameters of the extended radio emission

model. In Section 6.6 we give our conclusions.

6.2 The model

6.2.1 Jet powers and hot gas environment

We use the expressions for the jet power, Q, in Section 5.2.1, which are dependent

on SMBH mass, mass accretion rate and spin. The hot halo gas profile into which

the radio lobes grow is that of the galform model, which is given by:

ρ(r) =
ρ0r

2
c

(r2 + r2
c )
, (6.2.1)

where ρ0 is the normalisation on the density, which is calculated from the hot gas

mass as calculated in galform, Mhot, via:

ρ0 =
Mhot

4πr3
c ((

rvir
rc

)− tan−1( rvir
rc

))
. (6.2.2)

In these expressions, rc = 0.1rvir, and rvir is the virial radius of the halo, as

defined in equation (2.1.1).

6.2.2 The dynamics of lobe evolution

The analytic model of radio lobe evolution of Turner & Shabala (2015) brings to-

gether two different theoretical models for FRII and FRI sources respectively. The

first of these is the theoretical model for FRIIs of Kaiser & Alexander (1997). In

that model, a jet emerges from the region around the AGN with a constant open-

ing angle. A reconfinement shock is assumed to form, which causes the jet to be



6.2. The model 151

collimated, keeping a constant radius as it propagates outwards. The propagation

of the jet at a speed above the sound speed of the external medium causes a bow

shock to form. The jet interacts with the shocked material at the ‘hotspot’, from

which material backflows to form a ‘cocoon’ around the jet. The cocoon is formed of

relativistic plasma from the hotspot. This material then emits via synchrotron emis-

sion, so it is seen at radio wavelengths as a radio lobe. The cocoon is overpressured

relative to the external medium, and the lobe grows as an ellipsoid in a self-similar

way, with a constant axial ratio, A, which is the ratio of the semi-major axis of the

ellipsoid to the semi-minor axis of the ellipsoid. In the second model, from Luo &

Sadler (2010) which is for FRI sources, there is no bow shock, no hotspot, and the

lobe is in pressure equilibrium with its external environment. This assumed pressure

equilibrium means that in this regime, the lobe is not necessarily an ellipsoid.

The Turner & Shabala (2015) model makes several improvements over earlier

models, by (i) combining FRII and FRI sources in a unified way, (ii) adopting

a non-power law density profile, and (iii) including the effect of Rayleigh-Taylor

instabilities. In the Turner & Shabala (2015) model, the radio lobe is divided into

‘angular elements’, which are the part of the lobe between θ and θ + dθ, where θ is

the angle to the major axis of the lobe, as shown in the schematic of the radio lobe

in Figure C.1. The evolution of the radius, velocity and pressure of each angular

element are calculated separately. Each angular element of the lobe starts out as

a ‘supersonic’ element, and the radio lobe is an ellipsoid, with a constant axial

ratio when the expansion is highly supersonic and the slope of the density profile

is the same for all angular elements. The model assumes that the bow shock is

close to the cocoon (to keep the model analytically tractable). Once the velocity

normal to the surface of the cocoon is equal to the sound speed of the external

environment (the external medium has adiabatic index Γx), this angular element

transitions into a ‘subsonic’ element, and the element follows the FRI evolution

model described in Luo & Sadler (2010). Once one of the angular elements becomes

subsonic, the lobe is no longer forced to be ellipsoidal in shape. Following Turner

& Shabala (2015), when an angular element is subsonic, it becomes susceptible to

Rayleigh-Taylor instabilities, which reduce the radio luminosity. This is because
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as the cocoon becomes entrained by the surrounding medium, the energies of the

synchrotron emitting electrons become collisionally reduced to the ambient energy

level of the denser, surrounding environment, and therefore their radio emission is

reduced. In the model, it is assumed that there is no radio emission from the parts

of the cocoon where Rayleigh-Taylor mixing is occurring, which eventually causes

the radio luminosity to fall to zero. The growth of Rayleigh-Taylor instabilities are

quantified by the parameter, κRT . The equations for the lobe evolution are given in

Appendix C.1.

Once the evolution of the radius, velocity, and pressure, has been calculated

for each angular element, the total pressure is calculated as the volume weighted

average of the pressures of all the angular elements. The total pressure and volume

are then used to calculate the radio emission of the lobe. In this lobe expansion

model, radiative loss processes are treated after the lobe size and pressure have

been calculated, which is an assumption often used in theoretical models of radio

lobe evolution (e.g. Kaiser & Alexander, 1997; Hardcastle, 2018).

6.2.3 The evolution of lobe synchrotron emission

The presence of highly relativistic electrons in a magnetic field causes the electrons

to emit radiation by synchrotron emission. Following Turner & Shabala (2015), we

adopt the prescription of Kaiser et al. (1997) for the radio emission. In this model,

the magnetic field is assumed to be completely tangled, so an average over electrons

moving at all pitch angles is taken, and electrons are assumed to emit only at their

critical frequency. This yields an expression for the luminosity (cf. equation 2 of

Kaiser et al., 1997):

Lν =
4

3
σT cuB

γ3

ν
n(γ)V, (6.2.3)

where σT is the Thomson cross-section, uB is the magnetic energy density, γ is the

Lorentz factor of the electron population, ν is the observed frequency, n(γ)dγ is the

number density of electrons with Lorentz factors between γ and γ+dγ, and V is the

volume of the lobe. n(γ) and uB are assumed to be constant throughout the lobe.
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A population of electrons is injected into the cocoon at an injection time, ti,

with number density n(γi, ti) = n0(ti)γ
−s
i dγi, where γi is the Lorentz factor of the

injected electrons and n0(ti) is the normalisation of this distribution, as calculated in

Appendix C.2. This injected electron energy distribution is assumed to have low and

high energy cutoffs at γi,min and γi,max respectively. This electron population evolves,

as the electrons lose kinetic energy. The electrons lose energy by adiabatic losses

(due to adiabatic expansion of the lobe), synchrotron losses (due to the synchrotron

emission), and inverse-Compton losses (electrons scattering off CMB photons). The

cocoon is assumed to be composed of three ‘fluids’: a relativistic electron fluid with

energy density ue, a magnetic field fluid with energy density uB, and a thermal

fluid of non-radiating particles with energy density uT . The adiabatic index of the

magnetic fluid is ΓB. We define the ratios kt = uT/ue and qB = uB/(ue+uT ), which

are free parameters of the model. Following the derivation in Kaiser et al. (1997)

which we give in Appendix C.2, we obtain the expression for the luminosity per unit

frequency for both lobes of a radio source:

Lν(t) =

∫ t

0

4σT cqB
3ν(qB + 1)

Qn0(ti)A
2(1−Γc)/Γc

× γi(t, ti)2−sγ(ti)
( V (t)

V (ti)

)(−ΓB−1/3)

dti,

(6.2.4)

where A is the axial ratio, and Γc is the adiabatic index of the cocoon.

6.2.4 The duty cycle of the jets

The duration of the radio lobe events is important for determining the observed

radio properties. For each object, we calculate a jet power from equation (5.2.2) or

(5.2.3) based on its SMBH mass, mass accretion rate and spin. For the two different

types of AGN gas fuelling from Section 2.7, we calculate the durations of the AGN

events differently.

First, for the starburst mode, we assume that the starburst occurs over a timescale,

tacc = fqtbulge where tbulge is the dynamical timescale of the bulge and fq = 10 is

a free parameter. Secondly, for the hot halo mode, in which the SMBH is steadily

accreting from the hot gas in the halo, we assume that the SMBH releases a jet
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in a series of epsiodes. For simplicity, we assume that the switching on or off of

a radio source is a random process, with the duration of each ‘on’ and ‘off’ phase

for a particular radio source, ton and toff , being randomly selected from exponential

distributions with average values of t̄on and t̄off respectively. t̄on and t̄off/t̄on are free

parameters of the model.

In the hot halo mode, which is when AGN feedback is active, the SMBH mass

accretion rate, Ṁhh,average, is calculated as the heating rate that heats the halo gas

sufficiently to balance radiative cooling in the halo for an assumed constant heating

efficiency. If the jet has ‘off’ phases then the mass accretion rate during the ‘on’

phase needs to be higher to balance cooling in the halo on average. We therefore

set the accretion rate during the off phase to zero, and increase the mass accretion

rate in the hot halo mode during the on phases, Ṁhh,on, by:

Ṁhh,on = (1 + t̄off/t̄on)Ṁhh,average, (6.2.5)

when the AGN jet is on. We emphasise that this duty cycle model is chosen for

simplicity, and may require modification in the future.

6.2.5 Remnant phase

Once the AGN switches off, the jets stop supplying energy to the radio lobes, so

electrons stop being injected into the lobe, and so the radio source fades. In this

fading period, the pressure and volume of the lobe still evolve, and the electrons

injected before the jet switched off can still emit synchrotron radiation. Therefore,

in the model, once the jet is switched off, the pressure and volume of the lobe are

assumed to evolve adiabatically. In equation (6.2.4), Q = 0 for all injection times

greater than the time at which the source is switched off.

6.2.6 Radio lobes outside the halo

In galform, gas falling into haloes is shock-heated to the virial temperature. Out-

side of the haloes, the gas is not in hydrostatic equilibrium, and so within this picture

a radio lobe outside of the halo would cease to be pressure confined and hence ra-
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dially expand, meaning that the electrons will quickly stop emitting synchrotron

radiation. In the model this is implemented by setting the luminosity to zero for

any lobe that grows longer than the virial radius of the halo. This only has a small

effect on the predictions, as most lobes are shorter than the halo virial radius.

6.2.7 Calibrating the radio model

We list the free parameters of the extended radio emission model in Table 6.1. For

the three parameters shown in the upper part of Table 6.1 (ΓB, Γc, Γx), we adopt

the values used in Turner & Shabala (2015). For the three parameters shown in the

middle section of Table 6.1 (γi,max, κRT , and qB), we explored the effect of varying

the parameters on the model predictions shown in Section 6.4. We found that

varying these parameters only negligibly affects the model predictions. Hence we

use values from other studies and do not show the effect of varying these parameters

in Section 6.5. The value of γi,max = 1010 is similar to that of Turner & Shabala

(2015) (which uses infinity, as obtained from private communication1), the value

of κRT = 0.05 follows Turner & Shabala (2015), and the value of qB = 0.4 follows

Hardcastle (2018). For the six free parameters shown in the lower section of Table 6.1

(A, γi,min, kt, s, t̄on and t̄off/t̄on), we explored their effect on the model predictions

finding that they affect the model predictions reasonably. We show the effect of

varying these parameters on the model predictions in Section 6.5. We calibrated

these parameters on these observations. The calibration was done by-eye, using

plots similar to that shown in Section 6.5. We give the observations that are most

important in determining each parameter value in the right column of Table 6.1.

6.3 Example properties of radio lobes in the model

Before comparing predicted properties of the entire population of radio lobes with

observations, we show some examples of radio lobe properties and evolution pro-

1Note that the dependence of luminosity on γi,max in equation (C.2.25) is fairly weak for large

values, and so for large values of γi,max, the predictions are relatively insensitive to the value

adopted.
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Table 6.2: The halo masses, hot gas masses and jet powers of the example radio

sources. The evolution of size of the source represented by the light blue line is

shown in Figure 6.1 and all the sources are shown in Figures 6.2 and 6.3.

Colour of line Halo mass Hot gas mass Jet power

(M�) (M�) (W)

Red 1.44× 1012 2.07× 1011 1.56× 1034

Light blue 4.93× 1012 7.59× 1011 1.02× 1036

Dark blue 1.39× 1014 2.01× 1013 1.91× 1037

Black 8.67× 1013 1.24× 1013 7.92× 1037

Figure 6.1: An example of the evolution of the shape of a radio source in the model

at z = 0 with time. We show the projection of the source into the plane containing

the major and minor axis. This source is the light blue line in Figures 6.2 and 6.3,

with its halo mass, hot gas mass and jet power given in Table 6.2.

duced by the model. These examples were chosen to a span a range of luminosities.

The halo masses, hot gas masses and jet powers of these radio sources are given in

Table 6.2.

In Figure 6.1, we show the evolution of the shape of the lobe for one of the radio

sources in the model, by showing the lobe projected onto a plane containing the

major and minor axes. When this lobe has an age of 10Myr, it is an FRII source

with all the angular elements of the lobe evolving into an external medium with

the same slope, and so it has an assumed axial ratio A = 2. As this lobe ages,

the major axis of the lobe expands into the region of the hot gas profile where the

density decreases with radius (ρ ∝ r−2), compared to the rest of the lobe which is in

a region of the hot gas profile where the density is constant with radius. The major
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Figure 6.2: Examples of the evolution of radio sources from the model in 1.4GHz

radio luminosity and size from the model at z = 0. The halo masses, hot gas masses

and jet powers are given in Table 6.2.

axis of the lobe therefore propagates faster through the hot gas environment than

the minor axis, and so the axial ratio of the lobe increases. This is a feature of the

Turner & Shabala (2015) model, and is discussed in Section 5.1.1 of Turner et al.

(2018b), where this evolution in axial ratio is compared to the axial ratio evolution

from the numerical simulations of Hardcastle & Krause (2013).

Observational studies of extended radio sources often focus on the position of

radio sources in a plot of radio power versus lobe size (often referred to as the P-

D diagram), and analytic models of lobe evolution have been used to predict the

evolution of sources through the P-D diagram (e.g. Kaiser et al., 1997), assuming a

typical set of galaxy and radio lobe parameters in the model. In Figure 6.2 we show

examples of the evolution through the L-D diagram (radio luminosity and radio

power are related by Lν = 4πPν) for four radio sources from the simulation. The

four radio sources show the same general evolution, with each source increasing in

luminosity with increasing size, until the luminosity begins to decrease with size.

However, two of the sources (those shown by the light blue line and the black line)
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are FRIIs for the full course of their evolution, their increase in luminosity for

smaller sizes is caused by the flat density profile they are evolving through, and

their decrease in luminosity at larger sizes is caused by the sources growing to a

size where the density decreases with radius. The other two sources (shown by the

red and dark blue lines) behave similarly to the other two when the lobes are fairly

small, but then transition to FRI sources and so their luminosity increases briefly,

before it decreases quickly due to Rayleigh-Taylor instabilities. The luminosity of a

source increases when it transitions to an FRI due to changes in the evolution of its

pressure and volume (see Appendix C.3 for the dependence of lobe luminosity on

pressure and volume for the case of no radiative losses). When the source is an FRII

in a constant density environment, its pressure is decreasing with radius, but its

volume is increasing, and overall its luminosity gradually increases with size. When

the source transitions to an FRI, it is assumed to be in pressure balance with its

environment and its volume is still increasing, and so its luminosity increases more

steeply with radius.

In Figure 6.3, we show examples of radio spectra of radio sources from the

simulation. In general, the spectra of radio sources evolve such that when the radio

source is young, the luminosity is a power law with frequency, Lν ∝ ν(1−s)/2, whereas

when the radio source is older, the luminosity shows a cutoff at high frequencies, as

a result of higher energy electrons being more susceptible to radiative losses.

In Figure 6.4, we show the radio SEDs of radio sources generated by the simula-

tion for different bins in luminosity. We show radio sources for 20 < log(L1.4GHz/WHz−1)

< 22, 22 < log(L1.4GHz/WHz−1) < 24 and 24 < log(L1.4GHz/WHz−1) < 26. We find

that the different luminosity bins have similar spectral shapes. At lower frequen-

cies (178MHz < ν < 1.4GHz) the spectra have a median spectral slope α = 0.612,

whereas for higher frequencies (1.4GHz < ν < 20GHz), the spectra have a median

spectral slope of α = 0.89. At these higher frequencies, there is more of a variations

in the spectral slopes than at lower frequencies, with some sources having the same

spectral slope at all frequencies, and some sources having zero luminosity at higher

2This is for an assumed spectrum, Sν ∝ ν−α
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Figure 6.3: Examples of the spectra of radio sources from the model at z = 0. We

show the radio luminosity at each frequency versus frequency. The objects and line

colours are the same as in Figure 6.2. The halo masses, hot gas masses and jet

powers of these objects are given in Table 6.2.
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Figure 6.4: The average SEDs of the radio sources generated in the model for

different bins in luminosity. We show the median and 10-90 percentiles of the SEDs

of sources with luminosities 20 < log(L1.4GHz/WHz−1) < 22 (red solid line and

red dotted lines), 22 < log(L1.4GHz/WHz−1) < 24 (blue solid line and blue dotted

lines) and 24 < log(L1.4GHz/WHz−1) < 26 (black solid line and grey shading). The

luminosities of objects in each luminosity bin have been rescaled to the luminosity

at 1.4GHz at the middle of the bin in logspace.
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frequencies.

6.4 Comparison to observations

We now show the predictions for the population of radio lobes generated by the

fiducial model compared to a variety of observations at z = 0: radio luminosity

functions, radio luminosities versus jet powers, radio luminosities split by stellar

mass, Fanaroff-Riley fractions versus luminosity, and lobe sizes.

6.4.1 Radio Luminosity Functions

In Figure 6.5 we present the 1.4GHz radio luminosity function at z = 0 compared

to observational estimates. The fiducial model is in very good agreement with

the observations at all luminosities. We also show the contributions to the radio

luminosity function from the different SMBH fuelling modes. The radio luminosity

function is dominated by the contribution from objects fuelled by hot halo mode

accretion. There is a small contribution from starbursts triggered by mergers for

Lν < 1026WHz−1, and an even smaller contribution from starbursts triggered by

disc instabilities for Lν < 1024WHz−1. In the model, hot halo mode accretion

occurs when AGN feedback is active, so in the model the AGN only have significant

radio luminosities when AGN feedback is active. The radio luminosity function is

dominated by radio lobes of intermediate sizes (10kpc < D < 100kpc).

In Figure 6.6 we present the radio luminosity functions at 325 MHz and 20 GHz

compared to observational estimates. We converted the observed luminosities in

Sabater et al. (2019) from 150MHz to 325MHz assuming a radio spectrum with

electron energy spectral index α = 0.7. When calibrating the free parameters of

the extended radio emission model, it was found that a value of the slope of the

injected electron energy distribution of s = 2.1 provides best consistency between

the different frequencies. This value of s gives a value of α = 0.55 at injection.

The model is in slightly less good agreement at both of these frequencies than

at 1.4GHz. At 325MHz, the model is in good agreement with observations of the

luminosity function, except at Lν ∼ 1026WHz−1, where the model overpredicts the
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Figure 6.5: The 1.4GHz luminosity function at z = 0. The black line shows the

prediction from our fiducial model, with the shading representing the Poisson errors,

resulting from the finite number of objects in the simulation box. We show the

contributions from the different SMBH fuelling modes: hot halo mode (red line -

underneath the black line), starbursts triggered by mergers (light blue solid line),

and starbursts triggered by disc instabilities (blue dotted line). Note that the red

line is underneath the black line. The symbols represent observational estimates

from Smolčić et al. (2009), Rigby et al. (2011), Simpson et al. (2012), McAlpine

et al. (2013), Best et al. (2014), Padovani et al. (2015), and Smolčić et al. (2017).
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Figure 6.6: Left panel: the predicted radio luminosity function at 325MHz (black

line) compare to observational estimates from Prescott et al. (2016) (red circles)

and Sabater et al. (2019) (green squares). The latter has been converted to 325MHz

from 150MHz assuming a spectral index α = 0.7. Right panel:, the predicted radio

luminosity function at 20GHz (black line) compared to observational estimates from

Sadler et al. (2014) (blue circles).

observations by about 0.5 dex. At 20GHz, the model underpredicts the observations,

although the number density predicted by the model at Lν ∼ 1024WHz−1 is similar

to that observed. The observations may be an overestimate of the 20GHz luminosity

function as a result of Doppler beaming.

Alongside the Fanaroff-Riley classification of radio sources, observed radio sources

can also be classified into High/Low Excitation Radio Galaxies (HERGs and LERGs).

This classification is based on optical emission line strength, with HERGs having

stronger emission lines. HERGs are believed to correspond to AGN accreting via

a physically thin, optically thick, thin disc accretion state (Shakura & Sunyaev,

1973), whereas LERGs are believed to correspond to the AGN accreting via a phys-

ically thick, optically thin Advection Dominated Accretion Flow (ADAF - Yuan &

Narayan, 2014). In Figure 6.7 we present the predictions of the model split into the

contribution from thin discs and ADAFs compared to observational estimates of the

radio luminosity function from Best et al. (2014) and Pracy et al. (2016) split into

the contribution from HERGs and LERGs.
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Figure 6.7: The 1.4GHz radio luminosity function at z = 0 predicted by the model

split into the contribution from thin discs (blue line) and ADAFs (red line) compared

to observational estimates from Best et al. (2014) (circles) and Pracy et al. (2016)

(squares) split into contributions from HERGs (blue) and LERGs (red).
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Both the model and the observations predict that the radio luminosity function

is dominated by the contribution from ADAFs/LERGs. The contribution from

ADAFs in this model is in very good agreement with the contribution from LERGs

in the observational estimates. However, the number of thin discs in the model

underpredicts the number of HERGs in the observations. While there is tension

between the estimated contributions from HERGs between Best et al. (2014) and

Pracy et al. (2016) at the low luminosity end, the model undepredicts both of these.

In Chapter 5, a 1.4GHz radio luminosity function from this galform model was

presented. In that model, the jet powers were calculated in the same way as here, but

the radio luminosities were calculated from the jet powers using a scaling relation,

rather than using the radio luminosity calculation here. That model also fits well

to the radio luminosity function at z = 0, but the fuelling modes that dominate the

radio luminosity function are different. In that model, for Lν < 1024WHz−1, the hot

halo mode dominates the radio luminosity function, whereas for Lν > 1024WHz−1,

the starburst mode dominates. This is different to the radio luminosity function

from the model presented here, where the hot halo mode contribution dominates for

all luminosities.

In this mode, the hot halo mode contribution may dominate because we calculate

the durations of the radio sources differently for the two different modes. If the

starburst mode sources were assumed to have longer durations, this could increase

their luminosities, and so the split by fuelling mode would be more similar to that

seen in Figure 5.7.

6.4.2 Relation of radio luminosities to jet powers

In Figure 6.8 we present the radio luminosity versus jet power relation, compared

to observational estimates based on cavities in X-ray emitting hot gas from Rafferty

et al. (2006), B̂ırzan et al. (2008), and Cavagnolo et al. (2010) as compiled in Heck-

man & Best (2014). This observational sample is a sample of cavities from local

giant elliptical galaxies and clusters with X-ray emission detected by Chandra. In

the observations, the main uncertainty is in the jet power determination. The jet

power is calculated by combining the cavity volume, pressure (assuming that the
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Figure 6.8: The relation between 1.4GHz radio luminosity and jet power. The

solid line shows the median radio luminosity at a given jet power predicted by the

model, with the shading representing the 10-90 percentiles of the distribution of

radio luminosities for that bin in jet power. The median radio luminosity versus jet

power for only FRIs (dotted line) in the model and for only FRIIs (dashed line) in

the model are also shown. The model is compared to observational estimates from

Rafferty et al. (2006), B̂ırzan et al. (2008), and Cavagnolo et al. (2010) as compiled

by Heckman & Best (2014) (grey circles).



6.4. Comparison to observations 168

cavity is in pressure equilibrium with its surroundings), and the duration of the jet.

The latter is difficult to determine, and so the buoyancy age, i.e. the age of the

source assuming the cavity is a buoyant bubble rising at the terminal velocity, is

used for the duration of the jet. The model predicts a relation consistent with the

observations. FRIs are predicted to have higher radio luminosities at a given jet

power than FRIIs, as also seen in Turner & Shabala (2015).

6.4.3 Radio luminosities and galaxy stellar masses

In Figure 6.9, we present the fraction of galaxies hosting an AGN above a given

radio luminosity for different ranges of stellar mass (which we will refer to as the

radio fraction), compared to observational estimates from Best et al. (2005a) and

Sabater et al. (2019). Both of these studies use SDSS for galaxy properties but

cross-compare with different radio surveys, either FIRST and NVSS in Best et al.

(2005a), and LOFAR Two-metre Sky Survey (LoTSS) data in Sabater et al. (2019).

The model is in good agreement for Lν > 1023WHz−1 and M? = 1011−11.5M�,

but at other luminosities and stellar masses, it does not match the observations

well. For Lν > 1023WHz−1, the model overpredicts the radio fraction for stellar

masses, M? > 1011.5M�, and M? < 1011M�. For Lν < 1023WHz−1, the predicted

radio fraction at a given stellar mass flattens off for all the stellar mass bins. This

is a different behaviour to the observations from Sabater et al. (2019), which show

a power law increase in the radio fraction for decreasing luminosities, with radio

fractions approaching unity at low luminosities for the high stellar masses.

This difference in behaviour may be caused by the observations, as the faint radio

emission may not be from AGNs, but rather from star formation. Turning to the

model, when we vary some of the free parameters from Table 6.1 (see Figure 6.17),

we find that the model can be made to predict a radio fraction close to unity at

low luminosities, but the flattening of the radio fraction happens for all parameter

choices. We suggest three other potential changes that could be made to the model

to avoid this flattening of the radio fraction. First, when a radio source is on, it has

a fixed Ṁ value (and hence Q value), as opposed to a value randomly selected from a

probability distribution. If we were to assume a distribution of Ṁ values, this would
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Figure 6.9: The fraction of galaxies hosting an AGN with a 1.4GHz radio luminos-

ity above a given value for different bins in stellar mass (lines), compared to the

observational data from Best et al. (2005a) (triangles) and Sabater et al. (2019)

(circles).



6.4. Comparison to observations 170

produce more low luminosity sources which may stop the radio fraction flattening off.

Secondly, the ‘on’ and ‘off’ times are drawn from an exponential distribution, which

produces fewer short duration sources. By varying the distributions from which ‘on’

and ‘off’ times are generated (and perhaps allowing the ‘on’ and ‘off’ distributions

to be different), better agreement with the observations might be able to be be

obtained. Thirdly, our duty cycle model is independent of galaxy properties, the

‘on’ and ‘off’ times may depend on galaxy stellar mass or SMBH mass (e.g. Shabala

et al., 2008).

6.4.4 Fanaroff-Riley fractions

While the physical reason for the dichotomy between the two Fanaroff-Riley types

of sources is uncertain, we can test the model for FRI and FRII sources proposed

by Turner & Shabala (2015) by comparing our predictions to observations. In this

model, radio sources expand supersonically initially, but when the velocity of the

surface of the cocoon becomes equal to the sound speed of the environment, that

angular element of the source becomes subsonic. When a radio source has at least

some supersonic angular elements, we classify it as an FRII, whereas when all the

angular elements are subsonic, we classify it as an FRI. The velocity of the surface

of the major axis is the highest of all the angular elements, and so this condition is

equivalent to saying that if the major axis of the lobe is supersonic, the lobe is an

FRII.

In Figure 6.10, we present the fraction of FRI and FRII sources in the model

versus radio luminosity, compared to observational estimates from Gendre et al.

(2013). The model shows a different trend to the observations. In the observations,

the fraction of objects that are FRIIs increases with luminosity, from about 0.1 at

Lν ∼ 1024WHz−1 to about 0.9 at Lν ∼ 1026WHz−1. This fraction stays roughly

constant for luminosities above this. In the model however, the fraction of FRIIs

gradually decreases from 0.6 at Lν ∼ 1023WHz−1 to 0.4 at Lν ∼ 1025WHz−1, and

then strongly decreases to about 0.2 at Lν ∼ 1026WHz−1.

In the model, most of the radio sources at high radio luminosities are FRIs.

This may be because sources increase in luminosity when they become FRIs (see
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Figure 6.10: The fraction of radio sources of different Fanaroff & Riley (1974) mor-

phological types versus 1.4GHz radio luminosity. Shown are the predicted fractions

of FRI sources (red line), FRII sources (blue line). We also show the fraction of FRI

sources with more than half of their luminosity reduced by Rayleigh-Taylor instabil-

ities (RT sources - dashed black line). This is compared to observational estimates

from Gendre et al. (2013) showing the fraction of FRI sources (red circles) and FRII

sources (blue circles).
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the luminosity evolution of the sources represented by the red and dark blue lines

in Figure 6.2). FRIs have a higher luminosity at a given jet power, as seen in

Figure 6.8. As discussed in Section 6.3, this increase in luminosity for FRI sources

is a result of these sources reaching pressure equilibrium with their environments,

and so it may be that the assumption that FRIs are in pressure balance with their

environments is not correct, and allowing FRIs to be underpressured with respect

to their external environment may provide better agreement. The discrepancy in

Figure 6.10 may also be because the mechanism by which sources transition from

FRIIs to FRIs is not correct, instead it may be the case that FRIs and FRIIs have

different particle contents (e.g. Croston et al., 2018), and so should be modelled

using different kt values. Another reason for the discrepancy in Figure 6.10 may

be the assumption of treating radiative losses after modelling the lobe expansion.

If we were to treat radiative losses self-consistently within the lobe expansion, this

may affect the luminosities of FRIs and FRIIs differently, and bring the model into

better agreement here.

6.4.5 Radio lobe sizes

For our analysis, given that the galaxy formation model generates a population

of galaxies and a population of radio lobes, we want to compare the predicted

distribution of radio luminosities and sizes of the radio sources to observations. To do

this, we need to take into account selection effects in the radio surveys. Observations

of extended radio sources are limited by their surface brightness detection limit,

where large but faint lobes can have surface brightness limits below the detection

threshold of the radio survey.

We compare with observed size distributions for radio galaxies in the nearby

Universe, using both the 3CRR survey3 (Laing et al., 1983), and much more recent

LOFAR Two-metre Sky Survey (LoTSS) data (Hardcastle et al., 2019). We compare

to sources in the redshift range 0 < z < 0.5, which is a redshift range chosen so

that the cosmological evolution should not be too large. We compare the model

3The 3CRR data was retrieved from https://3crr.extragalactic.info

https://3crr.extragalactic.info
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to these surveys in ranges of radio luminosity and lobe sizes from the bivariate

number density of objects, Φ(Lν , D) = d2n/d(logLν)d(logD). To calculate the

bivariate number density of objects in the logLν , logD plane, we use the ‘Vmax

method’ (Schmidt, 1968), where we calculate the maximum volume over which the

source could be observed, given the survey selection. For each object, we calculate

the minimum redshift at which it could be observed zmin and the maximum redshift

at which it could be observed, zmax. From these, the volume over which a source

could be observed, Vmax, can be calculated.

For each source in the 3CRR survey, zmin is determined by the maximum angular

size at which the object could be detected (10 arcmin) and zmax is determined by

the flux limit of the survey (10.9 Jy). For each source in LoTSS, zmin is determined

by the maximum size of objects that can be detected (using the detection condition

shown in Figure 8 of Hardcastle et al. (2019) at that luminosity), and zmax is the

minimum of zmax due to the size zmax,D and zmax due to the luminosity zmax,L. zmax,D

is determined by the angular size below which that source would become unresolved

(10 arcsec), and zmax,L is determined by the minimum luminosity of objects that can

be detected (using the detection condition shown in Figure 8 of Hardcastle et al.

(2019) at that lobe size). For each cell, the bivariate number densities of objects are

calculated using:

n =
N∑
i=1

1

Vi,max

, (6.4.6)

where N is the number of objects in that cell in logLν and logD. We show the

number density of objects for 3CRR in the left panel of Figure 6.11, and for the

LoTSS data in the left panel of Figure 6.13. If there are objects in this cell then the

error on the number density is calculated using:

σ =

(
N∑
i=1

1

V 2
i,max

)1/2

. (6.4.7)

If there is not an object in a cell, then we calculate a 2σ upper limit for this cell.

We assume that the number of objects in each cell follows a Poisson distribution

with mean 〈N〉. The probability of there being r objects in this cell is therefore:
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Figure 6.11: Radio luminosity versus lobe size for sources at 0 < z < 0.5 in the 3CRR

survey. Left panel: The bivariate number density, Φ(Lν , D), of objects detected in

the 3CRR survey calculated using the Vmax method, as indicated by the colour scale

at the right of the panel. Middle panel: 2σ errors (if the cell has an object) or 2σ

upper limits (if the cell does not have an object) on the number density of objects.

Right panel: the ratio of the number densities and errors, where the luminosity and

size range that we use for comparison with our model are shown as black dotted

lines.

Pr = exp(−〈N〉)〈N〉
r

r!
. (6.4.8)

To calculate the 2σ upper limit, we calculate the largest value of 〈N〉 for which

the probability of finding no objects is greater than 0.05. Therefore we can derive

an expression for 〈N〉:

P (r = 0) ≥ 0.05,

exp(−〈N〉) ≥ 0.05,

〈N〉 ≤ ln 20.

(6.4.9)

The 2σ upper limit of the number density is then given by:

n2σ,limit =
〈N〉
Vmax

=
ln 20

Vmax

. (6.4.10)
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Figure 6.12: Comparing the bivariate number density Φ(Lν , D) =

d2n/d(logLν)d(logD) in the model to the 3CRR survey in the luminosity

and size range shown in Figure 6.11. The central plot shows the model predictions

for the 2D distribution (grey). The plots above and to the right show the distri-

butions of radio luminosity and size for the luminosity and size range considered.

The model (black line), with associated 1σ errors (grey shading), is compared to

the 3CRR survey (red line), with its associated errors (red dashed line). The lower

limit of the errors for the 3CRR survey is below the range in number densities

shown.
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Figure 6.13: As for Figure 6.11 but for the LOFAR Two-metre Sky Survey (LoTSS)

data. Note that the luminosity and size range used for comparison with the model

are different for LoTSS and 3CRR.

Figure 6.14: The comparison of LoTSS data (red) to the model (black) in the

luminosity and size range shown in Figure 6.13.



6.4. Comparison to observations 177

We show these errors for the 3CRR and LoTSS data in the middle panels of

Figures 6.11 and 6.13. We then select a rectangular region in the logLν , logD

plane where the signal-to-noise, n/σ, is around 1.5 and above for the 3CRR data

and around 3 and above for the LoTSS data. For the 3CRR data this results in

selecting objects with radio luminosities 25 < log(Lν/WHz−1) < 28.5, and sizes

1 log(D/kpc) < 3, and for the LoTSS data this results in selecting objects with

22.5 < log(Lν/WHz−1) < 26, and sizes 1.5 < log(D/kpc) < 3. These regions are

shown for the 3CRR and LoTSS data in the right panels of Figures 6.11 and 6.13

respectively.

The comparison between the model and this selection of the 3CRR survey is

shown in Figure 6.12. The lobe sizes predicted by the model are on average a factor

of two smaller than the lobe sizes in the 3CRR survey. In the right panel of Figure

6.12 the luminosity function predicted by the model in the given luminosity and size

range is above the luminosity function we calculate from 3CRR. This is because we

chose our model parameters to fit a range of observational estimates of the radio

luminosity function at different frequencies and the 3CRR luminosity function falls

below these other measurements.

We compare the model to the LoTSS data in Figure 6.14. We find that the

predicted number of objects at each size are in better agreement with the LoTSS

data than when the model is compared to 3CRR. However, the model predicts fewer

large (D > 200kpc) sources than are seen in the LoTSS data. In the model, it is

difficult to produce large radio sources, because there are several processes by which

the luminosity of large lobes can decrease to zero. First, at large lobe sizes, inverse-

Compton losses to the electrons energy become significant, and strongly reduce

the lobe luminosity. Secondly, the density of the environment the large sources

are in falls off with radius steeply, which causes the lobe to have a lower pressure

causing the electrons to radiate with a lower luminosity. Thirdly, in the model, we

assume once the radio lobes grow outside the halo, the lobe dissipates. When we

modified the model so that radio lobes do not lose energy through radiative losses,

evolve through a hot gas environment with no dependence of density on radius,

and can grow outside of haloes, we still found that the large sources that are seen
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Figure 6.15: The 1.4GHz radio luminosity function at z = 0, showing the effect of

varying free parameters of the extended radio emission model.

in the LoTSS data are not produced. One way to produce large lobes may be to

have objects in the model with higher values of Ṁ , which would cause lobes with

higher energies to be produced. If the values of Ṁ were selected randomly from a

probability distribution rather than with a fixed value, the model may produce the

small number of large sources required.

6.5 Dependence of the predictions on free param-

eters of the radio model

In this Section, we explore varying the parameters of the extended radio emission

model, which are given in Table 6.1. We will discuss the effect of the six parameters

that most strongly affect the model predictions. We show the radio luminosity

function at z = 0 in Figure 6.15, the radio luminosity versus jet power relation in

Figure 6.16, the fraction of galaxies hosting an AGN above a given radio luminosity

split by stellar mass in Figure 6.17, the fraction of FRII sources versus luminosity

in Figure 6.18, and the size distribution of the radio sources in Figure 6.19.
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Figure 6.16: The relation between 1.4GHz radio luminosity and jet power at z = 0,

showing the effect of varying free parameters of the extended radio emission model.

6.5.1 Initial Axial Ratio

First, we explore the effect of varying the initial axial ratio, A, of radio lobes in the

simulation, where the axial ratio is the ratio of the semi-major axis of the lobe to

the semi-minor axis of the lobe. In observational studies, the axial ratio of radio

lobes is relatively straightforward to determine. These studies find that radio lobes

have a variety of axial ratios, with an average axial ratio around A ≈ 4, but with

scatter, suggesting an allowed range of A = 2 − 6 (e.g. Leahy & Williams, 1984;

Leahy et al., 1989; Kharb et al., 2008; Mullin et al., 2008). In our fiducial model,

A = 2.

Equation (6.2.3) for the radio luminosity can be recast into an expression solely

dependent on pressure and volume, as shown in Appendix C.3. Using equation

(C.3.31), the lobe luminosity depends more strongly on the pressure than the volume,

Lν ∝ p(s+5)/4V (if radiative losses are neglected). For the value of s = 2.1 we adopt in

our fiducial model, Lν ∝ p1.78V . When the assumed axial ratio increases, the model

predicts that the total pressure of the lobes is slightly larger, but the total volume

decreases, so overall, the luminosity decreases. This means that the luminosities of

the lobes in the simulation are lower for A = 6 by about a factor of 2.5, compared

to the fiducial model, as seen in the radio luminosity function in Figure 6.15. As

the axial ratio does not affect the jet powers, increasing A causes the lobes in the
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Figure 6.17: The fraction of galaxies hosting an AGN above a given 1.4GHz radio lu-

minosity, in different stellar mass bins, showing the effect of varying free parameters

of the extended radio emission model.
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Figure 6.18: The fraction of sources that are FRIIs as a function of 1.4GHz ra-

dio luminosity, showing the effect of varying free parameters of the extended radio

emission model.

Figure 6.19: The size distribution of radio lobes predicted by the model compared

to the LoTSS data (in the same range in Lν and D as Figure 6.14), showing the

effect of varying free parameters of the extended radio emission model.
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model to have a lower radio luminosity at a given jet power, as seen in Figure 6.16.

Similarly, as the stellar masses of galaxies are not affected by the axial ratios of

lobes, when we increase A, the radio fraction decreases as seen in Figure 6.17, due

to the luminosities decreasing.

Increasing A increases the number of FRII sources at all luminosities as seen in

Figure 6.18. This is because when a lobe has a higher axial ratio, the lobe velocity

on the major axis remains above the sound speed of the external medium for a longer

time, and so it transitions to an FRI later in its evolution. Therefore, in the model,

when A is increased, nearly all sources are FRIIs at the luminosities considered.

Increasing A increases the sizes of radio lobes in the simulation, but it decreases the

luminosities of the lobes. This means that as seen in Figure 6.19, fewer small lobes

would be observed in the LoTSS data but a similar number of larger lobes would be

observed.

6.5.2 Low energy cutoff of the electron energy distribution

The low-energy cutoff of the injected electron energy distribution, γi,min, can be

inferred observationally in two ways. The first is from a reduction in radio luminosity

at low frequencies, with studies of radio hotspots implying values of several hundred

(e.g. Carilli et al., 1991; Godfrey et al., 2009). Secondly, γi,min can be inferred from

studies at X-ray energies investigating inverse-Compton scattered CMB photons

(e.g. Tavecchio et al., 2000) with studies inferring values of about 10. Given this

variety of possible values, we set the allowed range of γi,min to be 20-500. In our

fiducial model, γi,min = 100.

We explore the effect of changing γi,min to 500 on the model predictions. The

luminosity increases only modestly, by a factor of 1.3. This is because the luminosity

only weakly depends on γi,min for the fiducial value of the spectral index of the

injected electron energy distribution, s = 2.1. The luminosity increases for a higher

value of γi,min because the electron population then has a higher average energy, and

so the lobe has a higher luminosity. This effect on the radio luminosities is seen in

Figures 6.15, 6.16, and 6.17. As increasing γi,min only affects the luminosities, the

sizes of the lobes and the FRI/FRII morphologies of the sources are not affected
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by this change, and so the predictions are only slightly different from the fiducial

model in Figures 6.18 and 6.19, as a result of the luminosities being slightly higher.

6.5.3 Fraction of energy density in thermal particles

Radio lobes contain relativistic electrons, which we see because of their synchrotron

emission, but radio lobes are also likely to contain other particles such as protons and

heavier ions, which contribute negligible synchrotron luminosity, but still contribute

to the lobe pressure and energy. From radio and X-ray observations, the magnetic

field strength and electron energy density can be calculated, which constrains the

particle content. This is accounted for in the model via the parameter kt, which is

the ratio of the energy densities of the thermal particles to the energy density of the

relativistic electrons at injection. A value of zero represents a lobe with no energy

density in thermal particles. Observations suggest there is not an energetically

dominant proton population (e.g. Croston et al., 2005; Hardcastle et al., 2016; Ineson

et al., 2017), although there is some uncertainty. We therefore permit kt values in

the range 0-10 (cf. Figure 12 of Turner et al., 2018b). In our fiducial model, kt = 10.

When a value of kt = 0 is adopted, the energy density of the electrons is higher,

and so the lobe has a higher luminosity. As the dependence of the lobe luminosity

on kt is 1/(kt + 1), when the value of kt is changed to 0, the luminosities increase

by a factor of 11.

This increase in luminosities is seen in the radio luminosity function in Figure

6.15, and correspondingly increases the luminosities in the radio luminosity versus jet

power relation in Figure 6.16 as well as increasing the radio fraction in Figure 6.17.

Changing the energy density of the thermal particles does not affect the FRI/FRII

morphology of sources, and does not affect their sizes, but this model variant does

show differences in Figures 6.18 and 6.19 due to the increased luminosities.

6.5.4 Slope of the injected electron energy distribution

The electrons are injected into the lobe with a power law distribution in energy, with

slope, s, as in Section 6.2.3. s relates to the spectral index (where Lν ∝ ν−α) via
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α = (s−1)/2, assuming no radiative losses to the electron population. Observations

of radio sources, which will have been affected to some degree by radiative losses,

favour a mean value of α = 0.7, but values in the range α = 0.5 − 1 are permitted

(e.g. Smolčić et al., 2017). We therefore allow s to vary in the range s = 2 − 3. In

our fiducial model, s = 2.1.

When a lobe has a higher value of s, more low energy electrons are injected into

the lobe and so the average energy of the electrons is lower. This results in the lobe

having a lower luminosity across all frequencies. A higher value of s also affects

differently the luminosities at different frequencies, strongly reducing the luminosity

at 20GHz, but only slightly reducing the luminosity at 325MHz.

When we increase the value of s in the model to 3, the luminosities decrease

by a factor 3 at 1.4GHz, which reduces the number density of objects in the radio

luminosity function in Figure 6.15. The radio luminosities at a given jet power are

reduced as seen in Figure 6.16, and the radio fraction at a given stellar mass is re-

duced as seen in Figure 6.17. The FRI/FRII morphologies of sources are unchanged,

but the FRII fractions are different in Figure 6.18 due to the changed luminosities.

The size distribution of objects in Figure 6.19 is only negligibly changed, as the lumi-

nosities in that figure are at 178MHz, which is negligibly affected by this parameter

change.

6.5.5 Mean ‘on’ phase duration

Observational estimates of the duration of the active phase, ton, of radio sources vary.

Using measurements of curvature in the radio spectrum, Alexander & Leahy (1987)

and Harwood et al. (2017) estimate ton values for their sample of radio sources

of a few 107 years. From the required energy injection rates to quench cooling,

McNamara et al. (2005) estimate ton of the order 108 years, and by comparing

observed sources to a theoretical model, Hardcastle et al. (2019) constrains the

active phase of some sources to be at least several 108 years. We therefore allow the

mean ‘on’ phase duration of sources in the model, t̄on, to vary in the range 106−109

years. In our fiducial model, t̄on = 5× 108yr.

When t̄on is decreased, the lobes have less time to grow, and so are shorter. In the
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model, radio lobes start out as FRIIs, then transition to FRIs, and then are shredded

by Rayleigh-Taylor instabilities, causing the lobe luminosity to fall to zero. When we

decrease t̄on to 107yr, there are more FRIIs at every luminosity, the same number

of high luminosity (Lν > 1023WHz−1) FRIs, and there are more low luminosity

(Lν < 1023WHz−1) FRIs. The reason for the larger number of low luminosity FRIs

is that they have not yet been shredded by Rayleigh-Taylor instabilities, whereas the

high luminosity FRIs are less susceptible to Rayleigh-Taylor instabilities. Overall,

the effect on the radio lumonsity function is that there are about 10 times more low

luminosity sources, but only a factor of 4 more high-luminosity sources, as seen in

the radio luminosity function in Figure 6.15. The increase in the number of low-

luminosity sources then causes the median of the radio luminosity versus jet power

relation to decrease, as seen in Figure 6.16. At higher luminosities, the relation is

relatively unchanged.

The fraction of galaxies at a given stellar mass that host radio sources increases

as a result of the number of objects increasing, as seen in Figure 6.17. The FRII

fraction is increased in Figure 6.18, as a result of lobes in the model initially being

FRIIs. When investigating the sizes of sources that would be detected in the LoTSS

data, the increased number of sources and the decrease in sizes of sources causes

the behaviour seen in Figure 6.19, where more small lobes, and fewer large lobes are

predicted.

6.5.6 Ratio of ‘off’ phase duration to ‘on’ phase duration

The local radio loud fraction of a few percent (Best et al., 2005a; Sabater et al., 2019)

suggests that radio sources spend an order of magnitude more time in a quiescent

phase compared to their active phase. On the other hand, certain objects in which

radio sources are observed inside of older radio lobes (double-double radio galaxies)

suggest a quiescent phase duration that is an order of magnitude less than the active

phase duration (e.g. Konar et al., 2013). The ratio of the durations of the active and

quiescent phases, may vary between sources, and may depend on galaxy properties

such as stellar mass (e.g. Shabala et al., 2008). We allow the ratio of the mean ‘off’

phase to the mean ‘on’ phase, t̄off/t̄on, to vary in the range 0-10. In our fiducial
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model, t̄off/t̄on = 2.

When we increase t̄off/t̄on, to 5, this results in the model having fewer active

sources. However, because we increase the mass accretion rate for each object when

we increase t̄off/t̄on (cf. equation (6.2.5)), and hence increase the jet power, the radio

sources that are active have higher luminosities. This has the effect on the radio

luminosity function, seen in Figure 6.15, that there are about a factor of 2 fewer

sources at lower luminosities, but a similar number of sources at higher luminosities

compared to the fiducial model. Increasing t̄off/t̄on reduces the number of active

sources, but once a source is active, it has the same luminosity at a given jet power

as in the fiducial model, as seen in Figure 6.16. The radio sources have higher jet

powers when t̄off/t̄on is increased. The radio fraction behaves similarly to the radio

luminosity function, with about a factor of 2 fewer objects at low luminosities, and

a similar number of objects at higher luminosities, as seen in Figure 6.17.

When t̄off/t̄on is increased, the increased jet powers lead to lobes expanding at

higher velocities and so they remain as FRIIs for longer, so the FRII fraction is

higher, as seen in Figure 6.18. The sizes and luminosities of radio lobes are both

larger when t̄off/t̄on is larger, but because there are fewer objects, the predicted

distribution of radio lobe sizes in Figure 6.19 shows fewer objects at all sizes for this

variant of the model compared to the fiducial model.

6.6 Conclusions

Large radio lobes with sizes up to several Mpc are observed throughout the Universe

with a variety of sizes and morphologies. The energy required to create these radio

lobes comes from the jets produced by supermassive black holes in the centres of

galaxies.

We present predictions for the properties of radio AGN from the galform semi-

analytic model of galaxy formation. The jet powers are calculated from a Blandford-

Znajek type model, and we use the analytic model of radio lobe evolution of Turner

& Shabala (2015). In this model, radio sources start out as Fanaroff-Riley type II

(FRII) sources, which then transition to Fanaroff-Riley type I (FRI) sources when
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the expansion velocity of the surface normal the cocoon becomes equal to the sound

speed of the external medium. These sources then become susceptible to Rayleigh-

Taylor instabilities, which eventually shred the lobes.

We present the predictions from this model at z = 0. We compare to observa-

tional estimates of the radio luminosity function at 325MHz, 1.4GHz, and 20GHz,

finding that the model is in very good agreement with the observations at 1.4GHz,

but in less good agreement at 325MHz, and not in good agreement at 20GHz. The

model may give better agreement with the observed 20GHz luminosity function if

Doppler beaming is taken into account. We also split the radio luminosity function

by accretion mode into the contribution from thin disc objects and ADAFs to com-

pare to observational estimates of the contribution to the radio luminosity function

from HERGs and LERGs. We find that the model is in good agreement with the

observed contribution from LERGs, but appears to underpredict the contribution

from HERGs. The model agrees that most radio galaxies should be ADAFs/LERGs.

The model also agrees well with observational estimates of the radio luminosity

versus jet power relation. When comparing the model to the fraction of galaxies

hosting an AGN above a given luminosity, split by stellar mass, it generally agrees

for higher luminosities (Lν > 1024WHz−1), but is in tension with the observations

for lower (Lν < 1024WHz−1) luminosities.

We also present predictions for the fractions of FRIs and FRIIs versus radio

luminosity. The observations show an increase in FRII fraction with luminosity

while the model shows a slight decrease in FRII fraction with luminosity. We also

compare the model to observations of radio lobe sizes, comparing only to sources

with sizes and luminosities for which surveys provide reliable estimates for number

densities. When comparing the model to the 3CRR survey, the radio lobes in the

model are on average two times larger than the 3CRR survey, but when comparing

to more recent LOFAR Two-metre Sky Survey (LoTSS) data, the lobe sizes from the

model agree better with the observations, except at the largest sizes (D > 200kpc),

where the model predicts too few sources.

We also explore the effect of varying different free parameters of the extended

radio emission model, showing how each parameter affects the different observables.



6.6. Conclusions 188

The luminosities of radio sources in the model are most strongly affected by the

initial axial ratio of lobes, A, the ratio of the energy density of the thermal particles

to the energy density of the electrons, kt, and the slope of the injected electron energy

distribution, s, where for modest changes of these parameters, the luminosities are

affected relatively strongly. The fraction of FRII sources is most strongly affected by

the value of A - for an increase in A by a factor of 3, causes virtually all sources to

have an FRII morphology. The sizes of sources that would be detected by LOFAR

are also most strongly affected by A.

Overall, we find that the model is generally in reasonable agreement with ob-

servations of radio AGN at z = 0, except for the fraction of galaxies with a radio

AGNs at low luminosity, the fractions of FRI/FRII sources, and the number of the

largest sources. In future work we plan to address some of these discrepancies. First,

we could draw the value of Ṁ from a probability distribution rather than having a

fixed value as we adopt here. This would produce a greater variety of luminosities of

sources, and may address the lack of low luminosity sources and the lack of large size

detectable sources. Secondly, we could explore changing the probability distribution

from which the ‘on’ and ‘off’ times of the sources are calculated which may produce

more short duration, low luminosity sources. We could adopt different probability

distributions for the ‘on’ and ‘off’ times. Thirdly, the duration of the ‘on’ and ‘off’

times is currently independent of galaxy properties, in future we plan to explore a

dependence of the duty cycle on stellar or black hole mass.

Finally, we would also like to explore the effect of changing the mechanism by

which sources transition from FRIIs to FRIs, to explore if such a change to the

model can give better agreement with observations. It may be that FRIs can become

underpressured with respect to their external environments, unlike here where they

are assumed to be in pressure balance, or it may be that FRIs and FRIIs have

different particle contents.

The future comparison of this model to upcoming radio surveys such as those

with MeerKAT, ASKAP and SKA may also give greater insights into the nature of

the radio AGN population and AGN feedback.



Chapter 7

Overall Conclusions and Future

Work

I now summarise the work presented in this thesis, and provide suggestions for future

investigation.

Understanding the evolution of AGNs as they evolve across cosmological time

has been of interest ever since they were discovered to reside outside of our own

galaxy. Observational studies have been conducted across a range of wavelengths

to explore the evolution of the AGN luminosity function, and theoretical models

have sought to probe the physical mechanisms behind this evolution. AGNs are also

believed to be important for understanding galaxy evolution via AGN feedback,

which is thought to play an important role in the formation of the most massive

galaxies. In this thesis, I have presented predictions for the evolution of SMBH and

AGN properties from an existing theoretical model of galaxy formation, galform.

In Chapter 2, I describe how the different physical processes relevant for galaxy

formation are modelled in galform, and the particular galform model that I use.

I have used the Lacey et al. (2016) galform model as recalibrated by Baugh et al.

(2019). The Lacey et al. (2016) model matches a wide variety of galaxy properties

across a range of wavelengths and redshifts, and Baugh et al. (2019) introduces a

recalibration of this model for a high resolution dark matter N-body simulation that

uses the Planck cosmology. In the model, SMBHs grow by either (i) accretion of

gas during starbursts, which are triggered by either galaxy mergers or galaxy disc

189
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instabilities, (ii) accretion of gas from the hot gas atmospheres of massive haloes, or

(iii) merging with other SMBHs.

In Chapter 3, I presented my new implementation of the spin evolution model

used within galform. In this model the SMBH spin evolves either by accretion of

gas, or when merging with another SMBH. The model tracks the evolution of the

angular momentum of the SMBH and the angular momentum of the accretion disc

as gas is accreted. In this Chapter I presented SMBH and AGN properties from the

model for 0 ≤ z ≤ 6. I compared the SMBH masses to observational estimates of the

black hole mass function, the active black hole mass function, and SMBH mass versus

galaxy/bulge stellar masses. I then showed the predicted SMBH spin distributions

and their evolution, and the evolution of mass and spin of some typical objects

from the simulation. I then compared the predicted AGN luminosity functions in

optical to X-ray bands to observed AGN luminosity functions. Overall, I found that

the model is in good agreement with the observations. This model involves some

free parameters, which are either adopted from other studies, or calibrated on the

AGN luminosity functions presented in this Chapter. These parameters relate to

the lifetimes of AGN epsiodes and the suppression of luminosity for super-Eddington

mass accretion rates.

When splitting the AGN bolometric luminosity function by accretion disc state,

I found that the contribution from objects accreting in an advection-dominated ac-

cretion flow state is dominant for Lbol < 1043ergs−1 and z < 2, while at higher

luminosities and higher redshifts, the dominant contributor is from objects in a

thin disc or super-Eddington accretion state. When splitting the AGN bolometric

luminosity function by SMBH fuelling mode, I found that it is dominated by the con-

tribution from quiescent hot halo accretion at low luminosities (Lbol < 1044ergs−1)

and low redshifts (z < 3), but at higher luminosities and redshifts, the dominant

contribution is from SMBHs fuelled by starbursts triggered by galaxy disc instabili-

ties. Given the important role that disc instabilities are predicted to have in fuelling

the high redshift AGN luminosity function, a more detailed investigation into the

conditions under which disc instabilities occur would test the validity of this claim.

A more accurate disc instability condition could be derived using high resolution



Chapter 7. Overall Conclusions and Future Work 191

hydrodynamical simulations of isolated unstable galaxy discs (including physical

processes such as gas cooling and feedback), and would improve the accuracy of the

high redshift AGN luminosity function predictions.

In Chapter 4, I used this model to make predictions for z ≥ 7, for surveys

conducted by future telescopes. I presented predictions for surveys by JWST and

EUCLID at optical and near-IR wavelengths, and for surveys by ATHENA and

JWST at X-ray energies. I found that the different surveys will detect different

samples of AGNs, as a result of the different wavelengths, flux limits, and sky areas

for the different surveys, which result in different limits in bolometric luminosity

and number density. When investigating the properties of objects predicted to be

detected by these surveys, I predicted that Lynx will detect the smallest black holes,

in the smallest mass host galaxies and haloes, accreting at the lowest Eddington

normalised accretion rates. This is because of the improved angular resolution of

Lynx compared to ATHENA, which improves the sensitivity limit due to the reduced

source confusion, and hence lowers the luminosities of objects that can be detected. I

predicted that the SMBH seed mass does not strongly affect the luminosity functions,

although Lynx may be able to differentiate between some seeding models. For

these predictions, each halo is seeded with a black hole of identical mass, but in

future work one could explore introducing a more physical seeding mechanism, where

SMBH seeds are produced from collapsing gas clouds or the remnants of the first

(Population III) stars. Overall, comparing these predictions to results from these

surveys will provide tests of these theoretical models in the early Universe.

In Chapter 5, I presented predictions for the evolution of jet powers and radio

luminosities for 0 ≤ z ≤ 6. The jet powers are calculated from the spin, mass,

and mass accretion rate of the SMBHs, based on a Blandford-Znajek type model,

and the radio luminosities are calculated from the jet powers using a published

scaling relation. This radio emission model involves two free parameters, which

we calibrate to the 1.4GHz radio luminosity function for AGN at z = 0. These

radio luminosities are most appropriate for core-dominated sources. The jet powers

predicted by the model were found to be dominated by the contribution from objects

fuelled by starbursts and objects accreting via a thin disc state for jet powers Q <
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1032W at z = 0, and at all jet powers by z = 6. The total jet power density

is dominated by objects with jet powers Q ∼ 1036W for 0 < z < 6, and this is

also the case for both the starburst and hot halo contributions. I then compared

the evolution of the jet power density from the model to observational estimates,

finding that while the model overpredicts the observations, there are observational

uncertainties such that the tension between the model and the observations may

not be significant. I then compared the predicted evolution of the radio luminosity

function at 1.4 GHz to observations, finding that the model is in good agreement with

the observations. I find that the radio luminosity function at z = 0 is dominated by

SMBHs fuelled by hot halo accretion for Lν < 1024WHz−1, by starbursts triggered

by galaxy disc instabilities for 1024WHz−1 < Lν < 1026WHz−1, and by starbursts

triggered by galaxy mergers for Lν > 1026WHz−1. At higher redshifts (z > 3) the

radio luminosity function is dominated by stabursts triggered by disc instabilities

for Lν < 1026WHz−1, and by quiescent hot halo accretion for Lν > 1026WHz−1.

In Chapter 6, I presented predictions for the evolution of extended radio sources

using an analytic radio lobe evolution model within the galform model. In this

analytic model, radio lobes start out as Fanaroff-Riley type II sources, and then tran-

sition into Fanaroff-Riley type I sources once they reach pressure balance with their

environments. The Fanaroff-Riley type I sources are then susceptible to Rayleigh-

Taylor instabilities, which eventually shred the lobes. I used the SMBH mass, mass

accretion rate and spin dependent jet powers from Chapter 5, and a simple model

for the jet duty cycle, separate for hot halo mode and starburst mode sources. This

model predicts the luminosities at different frequencies, sizes, and Fanaroff-Riley

types of the radio source population. I find that the model is in good agreement

with a range of observations at z = 0, but the model (i) predicts too few low lumi-

nosity radio AGNs in high stellar mass galaxies, (ii) predicts a flat relation between

the fraction of Fanaroff-Riley type II sources with luminosity, unlike the observations

and (iii) predicts too few large (D > 200kpc) sources when compared to recent LO-

FAR Two-metre Sky Survey (LoTSS) data. The first and third of these shortcomings

may be resolved by selecting SMBH mass accretion rate values from a probability

distribution. This could create a greater variety in the energies of sources, to provide
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low luminosity sources in high stellar mass galaxies, and to provide large lobes that

would be detected in the LoTSS data. The second shortcoming could be resolved

by modifying the mechanism by which sources transition from Fanaroff-Riley type

IIs to Fanaroff-Riley type Is.

Alongside some of the possibilities for future work mentioned above, several other

investigations could be conducted. First, the model presented here could be used to

predict the spin of SMBHs detected by future gravitational wave detectors such as

eLISA. By making predictions for both the chaotic and prolonged accretion modes,

one could investigate whether eLISA would be able to distinguish between these two

different accretion scenarios (e.g. Amaro-Seoane et al., 2013). One could also use

predictions for eLISA to relate the actual merger rate of SMBHs to the merger rate

detectable by eLISA.

Secondly, the SMBH spin predictions have been presented for either prolonged

or chaotic modes, whereas some works use a mixture of the two (e.g. Bustamante

& Springel, 2019), where SMBH spin can either evolve via the chaotic mode or

the prolonged mode depending on the angular momentum. One could implement a

similar scheme into the spin evolution model here.

Thirdly, the relation of AGN to environment in the model could be investigated.

galform has previously been compared to observations of the clustering of X-ray

AGN to constain SMBH fuelling in Fanidakis et al. (2013b), and similar insights

could be obtained at optical or radio wavelengths, using the models presented here.

Fourthly, while we have explored SMBH mass versus bulge stellar mass and

galaxy stellar mass here, the relation of SMBH and AGN properties to other galaxy

properties such as galaxy morphology and gas fraction could be investigated and

compared to observational results.

Fifthly, some of this work investigating radio emission from galaxies from a semi-

analytic model could also be applied to cosmological hydrodynamical simulations.

The radio lobe evolution model used in Chapter 6 could be used as a subgrid model

in such a galaxy formation simulation, and this may provide extra insights into the

role of radio sources in galaxy evolution.

Finally, some more fundamental changes could be made to the galaxy formation
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model. In galform, the AGN feedback prescription is only radio mode AGN

feedback, it would be interesting to introduce a prescription for quasar mode AGN

feedback into the model. This could improve the AGN predictions, particularly at

higher redshifts where quasar mode AGN feedback is believed to play an important

role. Exploring the impact of quasar mode feedback on galaxy properties could

allow for a better understanding of the role of AGNs in galaxy formation.



Appendix A

z < 6 SMBH and AGN properties

A.1 Effects of varying SMBH seed mass

In Figure A.1 we show the effect of varying the SMBH seed mass on the black hole

mass function at z = 0. We show plots for SMBH seed masses of 10h−1M� (the

default value), 103h−1M� and 105h−1M�. Generally the black hole mass function

reaches a converged value at about 100 times the black hole seed mass. We also

plot as vertical lines MBH = Mseed, MBH = 2×Mseed and MBH = 3×Mseed. It can

be seen that the spikes in the black hole mass function occur at these values due to

SMBH seeds merging with other SMBH seeds.

This convergence in properties at around 100 times the seed mass can also be

seen in Figure A.2, where the median of the SMBH mass versus bulge mass relation

for seeds of mass 105h−1M� only converges with that for the other seed masses for

SMBH masses above around 107M�.

A.2 Calculating broad-band optical magnitudes

for AGN

We define the filter-averaged luminosity per unit frequency for a filter R in the

observer frame at redshift z as:

195



A.2. Calculating broad-band optical magnitudes for AGN 196

Figure A.1: The black hole mass function at z = 0 for seed masses of 10h−1M�

(black), 103h−1M� (red) and 105h−1M� (blue).

Figure A.2: The predicted SMBH mass versus bulge mass relation at z = 0 for

seed masses of 10h−1M� (black), 103h−1M� (red) and 105h−1M� (blue) compared

to McConnell & Ma (2013).
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< Lν >
(z)
R =

∫
Lν((1 + z)νo)R(νo)dνo∫

R(νo)dνo
, (A.2.1)

where Lν(ν) is the luminosity per unit frequency in the rest frame, R(νo) is the

response function of the filter at observed frequency νo. The absolute magnitude in

the AB system in the observer frame band defined by the filter R for redshift z, is

then defined as:

M
(z)
AB,R = −2.5log10

(< Lν >
(z)
R

Lνo

)
, (A.2.2)

where Lνo = 4π(10pc2)× fνo with fνo = 3631Jy, the flux corresponding to an appar-

ent AB magnitude of 0, and Lνo the corresponding luminosity per unit frequency

for an absolute AB magnitude of 0. We remind readers that monochromatic AB

(Absolute Bolometric) apparent magnitudes are defined using the following relation

(Oke & Gunn, 1983):

mAB(ν) = −2.5log10

( fν
fνo

)
, (A.2.3)

where fν is the observed flux of the source, which is related to the luminosity per

unit frequency in the rest-frame of the object as:

fν(νo) =
(1 + z)Lν((1 + z)νo)

4πd2
L

. (A.2.4)

The apparent and observer frame absolute magnitudes for a filter R are then related

by

mAB(ν) = −2.5log10

(< Lν >
(z)
R

Lνo

)
− 2.5log10(1 + z)

+5log10(dL/10pc).

(A.2.5)

We then use the following formulae to convert the observational data from the

different wavelengths given to rest-frame wavelength 1500Å. Note that we are only

comparing continuum luminosities in this study, which is consistent with the Marconi

et al. (2004) template used throughout this paper. The data presented in the studies

that we use have the contribution from the emission lines removed and so this is an
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appropriate comparison. The results presented in Richards et al. (2006) are given

in the K-corrected SDSS i band at z = 2, which we write as M ′
i(z = 2). This is

given by M ′
i(z = 2) = Mi(z = 2) − 2.5log(1 + z), where we define Mi(z = 2) as

the absolute magnitude at the rest-frame wavelength corresponding to the observed

i-band at z = 2, as in equations (A.2.2) and (A.2.5). To convert from Mi(z = 2) to

1500Å, we follow Richards et al. (2006) by using Lν ∝ ναν but using a spectral index

value of αν = −0.44 from Marconi et al. (2004) instead of αν = −0.5 in Richards

et al. (2006). First we convert from M ′
i(z = 2) to Mi(z = 0) using equations (A.2.1)

and (A.2.2):

Mi(z = 0) = M ′
i(z = 2) + 2.5(1 + αν)log(1 + 2)

= M ′
i(z = 2) + 0.668,

(A.2.6)

where Mi(z = 0) is the absolute magnitude at the central wavelength of the rest-

frame i-band (7471Å) corresponding to equation (A.2.2) for z = 0. Then we relate

Mi(z = 0) to the absolute magnitude at rest-frame 1500Å, M1500, to give the con-

version to M ′
i(z = 2):

M1500 = Mi(z = 0) + 2.5αν log10

(1500Å

7471Å

)
,

= Mi(z = 0) + 0.767,

= M ′
i(z = 2) + 1.435.

(A.2.7)

where in the last line we used equation (A.2.6). Jiang et al. (2009); Willott et al.

(2010); Ikeda et al. (2011); Masters et al. (2012); Kashikawa et al. (2015) report

observed absolute continuum magnitudes, M1450, corresponding to rest frame 1450Å.

These absolute magnitudes are defined without the extra redshift factor included in

the Richards et al. (2006) definition. These absolute magnitudes at 1450Å, M1450,

can be converted to 1500Å using:

M1500 = M1450 + 2.5αν log10

(1500Å

1450Å

)
,

= M1450 − 0.016.

(A.2.8)
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Finally Croom et al. (2009) report observations in the SDSS g-band (4670Å) K-

corrected to z = 2, so we use the correction in their paper:

M ′
g(z = 2) = M ′

i(z = 2) + 2.5αν log
(4670Å

7471Å

)
, (A.2.9)

and combine it with the above relation to give:

M1500 = M ′
g(z = 2) + 1.211. (A.2.10)

A.3 Visible and obscured fractions for AGN

The AGN visible fractions (the fraction of sources at a particular luminosity and

redshift that are unobscured) derived in this paper have been estimated by con-

structing an observational bolometric luminosity function from observed luminosity

functions at X-ray and optical wavelengths. These luminosities were converted to

bolometric using the Marconi et al. (2004) AGN SED, and then the observed num-

ber densities were converted to total number densities using visible fractions of a

functional form similar to Hopkins et al. (2007) dependent only on Lbol (cf. equation

(3.3.38)). We assumed that there is no obscuration for hard X-ray wavelengths. The

coefficients in the expressions for the visible fractions were then selected (cf. equa-

tions (3.3.41), (3.3.42) and (3.3.43)) so as to minimise the scatter in the estimated

bolometric luminosity function.

To construct a bolometric luminosity function from multiple sets of observations

in different wavebands, different authors use different template SEDs. Some authors

include reprocessed radiation from dust (its inclusion causes an ‘IR bump’ in the

SED) whereas some do not. Including reprocessed radiation gives observed bolo-

metric luminosities, whereas not including the IR bump gives intrinsic bolometric

luminosities. The intrinsic bolometric luminosities are isotropic, while the observed

bolometric luminosities are not isotropic because the obscuring torus is not isotropic.

The observed bolometric luminosity functions of Hopkins et al. (2007) are given in

terms of observed rather than intrinsic bolometric luminosities, so when we compare

with these, we multiply the luminosities of Hopkins et al. (2007) by a factor 7.9/11.8
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Figure A.3: Comparing the visible fractions for rest-frame 1500Å for different ob-

scuration models. Shown are Hopkins et al. (2007) (black), Hasinger (2008) (light

blue), Aird et al. (2015) (red), the LZMH model (dark blue) and the Z6MH model

(purple). The solid lines for the observational visible fractions indicate the ranges

where there is observational data, while the dotted lines indicate ranges where a

functional form has been extrapolated.
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Figure A.4: The same as the previous plot, but for rest-frame soft X-rays.



A.3. Visible and obscured fractions for AGN 202

Figure A.5: The bolometric luminosity function derived in this work (blue) by using

the Marconi et al. (2004) bolometric corrections, and by varying the coefficients of

the visible fractions to obtain a bolometric luminosity function with the smallest

scatter between points derived from data at different wavelengths, compared to the

Hopkins et al. (2007) bolometric luminosity function (red). The Hopkins et al.

(2007) bolometric luminosities have been multiplied by 7.9/11.8 to account for the

different SED template used (see text).



A.3. Visible and obscured fractions for AGN 203

Figure A.6: Comparing the effect of using different obscuration models on the con-

structed bolometric luminosity functions. The left panels are obtained using the

obscuration model presented in Section 3.3.3, while the right panels use the obscu-

ration model of Hopkins et al. (2007). The upper panels are for z = 0.2 and the

lower panels are for z = 2.
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(cf. Marconi et al., 2004) to account for this effect.

We show a comparison of the different obscuration models at 1500Å in Figure

A.3 and at soft X-ray energies in Figure A.4. The values from different studies are

not all on a single curve, and so there is clearly still some uncertainty in the visible

fraction.

Our bolometric luminosity function is shown compared to the bolometric lumi-

nosity functions estimated in Hopkins et al. (2007) in Figure A.5, and the two are in

agreement. The bolometric luminosity function derived in this work is also similar

to that determined by Shankar et al. (2009).

Our observationally estimated visible fractions are redshift independent by con-

struction. We have explored whether a better fit could be obtained by including a

redshift dependence. To obtain a better fit, the visible fraction needs to increase

and then decrease with redshift (cf. the redshift dependence derived by Aird et al.,

2015), but even with a functional form to allow this, the scatter in the bolometric

luminosity function was only slightly less than for redshift independent versions of

the visible fraction.

To quantify the effect of using the new visible fraction derived in this paper,

we compare the bolometric luminosity function derived using the Hopkins et al.

(2007) visible fraction, to the bolometric luminosity function derived using the visible

fraction presented in this paper, in Figure A.6. The new visible fraction does improve

the constructed bolometric luminosity function, this reduction in scatter can be seen

particularly at Lbol ∼ 1044ergs−1 at z = 0.2 and at Lbol ∼ 1048ergs−1 at z = 2.

A.4 The effect of the time averaging method

In this appendix, we show the effect of varying ∆twindow on the AGN luminosity

function, as introduced in Section 3.3.4, and compare the luminosity function ob-

tained using the time averaging method in Section 3.3.4 to a luminosity function

constructed using the snapshot luminosities. In Figure A.7, the predicted luminosity

function with a value of ∆twindow = tH/10 (the standard model), is compared to the

predicted luminosity function with a value of ∆twindow = tH/50. The two are very
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Figure A.7: Exploring the effect on the AGN bolometric luminosity function of

varying ∆twindow, shown are ∆twindow = tH/10 (black) and ∆twindow = tH/50 (red).

Figure A.8: Exploring the effect on the AGN bolometric luminosity function of

varying ∆twindow, shown are ∆twindow = tH/10 (black) and using the snapshot lumi-

nosities (red).
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Figure A.9: Exploring the effect on the AGN bolometric luminosity function of

varying the parameter fq. Shown are fq = 5 (blue), fq = 10 (purple, the fiducial

model) and fq = 20 (red). The shading shows the Poisson errors of the distribution.

similar, except at low luminosities at high redshift, where there is a slight difference.

The similarity shows that the value of ∆twindow adopted does not strongly affect the

luminosity function. In Figure A.8, the predicted luminosity function with a value

of ∆twindow = tH/10 is compared to the luminosity function where only the snapshot

luminosities are used to construct the luminosity function. It can be seen how the

time averaging method allows predictions for much lower number densities than for

the snapshot case. These two cases are very similar in the luminosity range where

they overlap, showing that the time averaging method does not change the predicted

luminosity function significantly.
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Figure A.10: Exploring the effect of varying ηEdd. Shown are ηEdd = 1 (blue),

ηEdd = 4 (purple, the fiducial model) and ηEdd = 16 (red).

A.5 Exploring the effect of varying parameters

We show the effect on the bolometric luminosity function of varying some of the free

parameters for SMBH and AGN used in the model; in Figure A.9, we show the effect

of varying the parameter fq (cf. equation (2.7.25)). fq affects the value of Ṁ and

therefore the AGN luminosities. One expects a higher value of fq to lead to lower

values of Ṁ and therefore a steeper luminosity function at the bright end, as we see

in Figure A.9. At the faint end, a lower value of fq results in a poorer fit to the

observations at low redshift (z = 0.2, 0.5, 1) but is a better fit to the observations

at high redshift (z = 2, 4, 6). At the bright end, a higher value of fq seems to give a

better fit to the observations at low redshift but gives a worse fit to the observations

at high redshift (e.g. around Lbol ∼ 1048ergs−1 at z = 4). With these considerations

in mind, we decide to keep the Fanidakis et al. (2012) value of fq = 10 for our

predictions in this paper.



A.5. Exploring the effect of varying parameters 208

Figure A.11: Exploring the effect of switching off disc instabilities. Shown are the

fiducial model (solid) and the model with disc instabilities switched off (dashed).

We show the effect of varying the parameter ηEdd (cf. equation (3.3.29)) in Figure

A.10. ηEdd controls the suppression of the luminosity for super-Eddington accretion

rates, where a low value of ηEdd corresponds to stronger luminosity suppression

than a high value of ηEdd. This parameter only affects the very bright end of the

luminosity function, as we would expect. This parameter also has more of an effect

at high redshift, where there are more super-Eddington sources. A value of ηEdd = 1

gives a slightly better fit to the bright end observations at z = 6 but ηEdd = 16 gives

a better fit to bright end observations at z = 2 and z = 4. Therefore we once again

opt to keep the Fanidakis et al. (2012) value of ηEdd = 4 for our predictions in this

paper.

We show the effect of switching off disc instabilities in Figure A.11. We show

the fiducial model alongside a model in which all discs are stable and so no disc

instability starbursts occur. Disc instabilities dominate the AGN luminosity function

at z > 2, and so this is the regime where we expect turning off disc instabilities to
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Figure A.12: Exploring the effect of turning off the SMBH spinup evolution: the

model with chaotic mode accretion spinup and merger spinup (red) and the model

with no accretion nor merger spinup with a thin disc accretion efficiency, εTD = 0.1

(blue).

have the most effect. For Lbol < 1046ergs−1, at z > 2 switching off disc instabilities

results in fewer starbursts and so there are fewer objects at these luminosities. For

Lbol > 1046ergs−1, at z > 2 the two models are similar - this is because if we switch

off disc instabilities, galaxy mergers trigger the starbursts that would have otherwise

happened due to disc instabilities. At z < 2, switching off disc instabilities makes

the luminosity function less steep.

We show the effect of switching off the accretion and merger spinup in Figure

A.12. The radiative accretion efficiency given to the black holes is ε = 0.1. The

luminosity functions for the two models are generally similar, although the fiducial

model has a slightly lower number density at high luminosities.

We show the effect of changing the assumptions for accretion efficiency, ε, in

Figure A.13. We compare the fiducial model to a model in which the accretion effi-
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Figure A.13: Exploring the effect of changing the accretion efficiency ε: the model

with ε = εTD as the accretion efficiency for all ṁ regimes (black dashed) and the

fiducial model (black solid).
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ciency is the thin disc accretion efficiency for all values of the specific mass accretion

rate, ṁ. Interestingly, this result provides a slightly better fit to the bolometric lu-

minosity function, particularly for z < 0.5 and Lbol < 1045ergs−1, where the fiducial

model underpredicts the number density. This is the regime where ADAFs dominate

the luminosity function, and so this test suggests that a better fit to the observed

AGN luminosity function might be obtained if the radiative accretion efficiency for

ADAFs is higher than the values assumed in our standard model.



Appendix B

High redshift AGN bolometric

luminosity functions and the

properties of objects detected

B.1 Effect of halo mass resolution

In Figure B.1 we show the predicted bolometric luminosity function at z = 7 and

z = 12 for the fiducial model, which has a halo mass resolution of 2.12× 109h−1M�,

and for a halo mass resolution of 1010h−1M�. The figure demonstrates that the

turnover seen in the luminosity function at Lbol ∼ 1043ergs−1 is due to the dark

matter simulation only resolving haloes above a certain mass. The two bolometric

luminosity functions are converged for Lbol & 1043ergs−1 (depending somewhat on

redshift), while the poorer halo mass resolution leads to fewer objects for Lbol <

1043ergs−1.

B.2 The effect of the SMBH seed mass

In Figure B.2 we show the AGN bolometric luminosity function at z = 7 and

z = 12 for three different seed masses (10h−1M�, 103h−1M�, and 105h−1M�). The

luminosity functions for the three different seed masses are consistent with each

other within statistical errors for Lbol > 1042 ergs−1 at z = 7, and consistent with
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Figure B.1: The bolometric luminosity function at z = 7 (solid lines), and z = 12

(dotted lines) for the halo mass resolution of 2.12 × 109h−1M� as for the standard

model (black lines) and for a halo mass resolution of 1010h−1M� (blue lines).

Figure B.2: The bolometric luminosity function at z = 7 (solid lines), and z = 12

(dashed lines) for seed masses of 10h−1M� (black), 103h−1M� (red) and 105h−1M�

(blue). Note that the black lines are underneath the red lines.
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Table B.1: Predictions for the number of AGNs expected to be detectable at different

redshifts by the different telescopes, using the sensitivity limits and survey areas

given in Table 4.1. The ranges of values correspond to the three different variants

of the model: the fiducial model, which uses the LZMH obscuration fraction, the

fiducial model using the Z6MH obscuration fraction, and the low accretion efficiency

model.

Instrument Filter z = 7 z = 9 z = 10 z = 12

JWST F070W 20-100 0-2 0 0

F200W 90-500 5-30 1-8 0

F444W 60-300 3-20 0-4 0

EUCLID Deep VIS 90-400 2-10 0-1 0

H 100-600 5-20 1-5 0

EUCLID Wide VIS 5000-20000 100-400 20-70 0

H 8000-30000 300-1000 70-300 1-4

ATHENA WFI Soft X-ray 30-80 1-4 0-2 0-1

Hard X-ray 5-20 0 0 0

Lynx Soft X-ray 800 200-300 200 100-200

Hard X-ray 800-900 200-300 200 100-200

each other for Lbol > 1043 ergs−1 at z = 10.

B.3 Number of detectable objects

In Table B.1 we show the number of objects detectable by each survey at z = 7,

z = 9, z = 10, and z = 12, with sensitivities and survey areas as in Table 4.1.

B.4 Properties of detectable objects

In Tables B.2 and B.3 we show the median SMBH masses, Eddington normalised

accretion rates, host galaxy stellar masses and host halo masses of AGNs detectable

by the future surveys at z = 7 and z = 10. The assumed sensitivities and survey
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Table B.2: The median SMBH masses, Eddington normalised mass accretion rates,

host galaxy stellar masses, and host halo masses of the AGNs predicted to be de-

tectable by JWST, EUCLID, ATHENA, and Lynx at z = 7 for our fiducial model,

for the survey parameters given in Table 4.1.

Instrument Filter MSMBH(M�) ṁ = Ṁ/ṀEdd M?(M�) Mhalo(M�)

JWST F070W 7.2× 106 0.8 1.4× 109 1.9× 1011

F200W 2.0× 106 0.7 5.2× 108 1.1× 1011

F444W 3.0× 106 0.7 7.1× 108 1.3× 1011

EUCLID VIS 1.8× 107 1.1 2.6× 109 2.6× 1011

Deep H 1.4× 107 1.0 2.2× 109 2.4× 1011

EUCLID VIS 4.6× 107 2.5 4.4× 109 3.4× 1011

Wide H 4.0× 107 2.0 4.1× 109 3.3× 1011

ATHENA Soft X-ray 8.0× 106 0.8 1.5× 109 1.9× 1011

WFI Hard X-ray 2.4× 107 1.3 3.2× 109 2.9× 1011

Lynx Soft X-ray 8.9× 104 0.6 4.1× 107 3.7× 1010

Hard X-ray 8.2× 104 0.6 3.9× 107 3.6× 1010

areas are given in Table 4.1.
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Table B.3: The same as Table B.2, but at z = 10. We predict that the ATHENA

hard X-ray band will not be able to detect any AGNs at z = 10.

Instrument Filter MSMBH(M�) ṁ = Ṁ/ṀEdd M?(M�) Mhalo(M�)

JWST F070W 6.9× 106 2.6 8.3× 108 1.4× 1011

F200W 1.8× 106 1.2 3.2× 108 8.6× 1010

F444W 2.6× 106 1.4 4.2× 108 1.1× 1011

EUCLID VIS 1.4× 107 4.2 1.1× 109 1.6× 1011

Deep H 1.1× 107 3.2 1.0× 109 1.5× 1011

EUCLID VIS 3.6× 107 8.2 1.4× 109 1.6× 1011

Wide H 2.2× 107 7.5 1.4× 109 1.6× 1011

ATHENA Soft X-ray 6.0× 106 2.1 7.3× 108 1.3× 1011

WFI Hard X-ray - - - -

Lynx Soft X-ray 2.4× 104 1.1 9.8× 106 1.8× 1010

Hard X-ray 2.1× 104 1.1 8.4× 106 1.7× 1010



Appendix C

Modelling the evolution of lobe

dynamics and luminsosity

C.1 Lobe Dynamics

In this Appendix, we present the model for the lobe dynamics from Turner & Sha-

bala (2015). In the model, the jet from the SMBH causes a bow shock to form in

the external medium, and the jet interacts with the shocked material at the hotspot.

Relativistic plasma backflows from the hotspot to inflate a cocoon which, via syn-

chrotron emission, is then visible at radio frequencies as a radio lobe. Radio lobes

start out as constant pressure ellipsoids with axial ratio, A, and radius, R, for each

angular element, as seen in Figure C.1. The angle between each angular element

and the major axis of the lobe is θ. Each angular element is then assumed to evolve

adiabatically (for both the supersonic and subsonic regimes). For the supersonic

case this is:

ṗ∆V + Γcp∆V̇ = (Γc − 1)Q∆λ, (C.1.1)

where Γc is the adiabatic index of the cocoon, p is the pressure at the surface of the

cocoon, ∆V is the volume of the angular element, Q is the jet power, and ∆λ is

the fraction of the jet power injected into that angular element. In the supersonic

case, the pressure at the bow shock can be evaluated using the Rankine-Hugoniot

jump conditions, and it is assumed that the surface of the cocoon is close to the bow
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Figure C.1: A schematic of the structure of supersonic radio sources in the model.

The subsonic radio sources are the same but there is no bow shock because the lobe

is in pressure equilibrium with the external medium, and the lobe is not necessarily

an ellipsoidal shape.

shock (this assumption keeps the model analytically tractable). The pressure of the

cocoon for both the supersonic and subsonic cases is then given by:

p =


2ΓxM2

b−(Γx−1)

Γx+1
px, for Mb > 1

px, for Mb < 1,

(C.1.2)

where px is the pressure of the external medium. The density profile of the external

medium is divided into 100 segments, each with dependence on radius, ρ(R) = kR−β.

The pressure in the external medium is calculated from the density assuming a

constant temperature Tvir (i.e. ξ = 0 in the notation of Turner & Shabala (2015)). Γx

is the adiabatic index of the external medium, and Mb is the ratio of the component

of the velocity of the surface of the cocoon normal to its surface, v⊥, to the sound

speed of the external medium, cx. v⊥ is related to Ṙ by v⊥ = (ζ/η)Ṙ, where ζ(θ)

is defined as the ratio of the component of the velocity normal to the surface to

the expansion rate along the semi-major axis, and η(θ) is the ratio of the radius

of the angular element to the radius of the lobe along the semi-major axis. These
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geometrical factors are computed assuming that the cocoon is an ellipsoid with

axis ratio A (even though the actual cocoon shape may depart from this during its

evolution). ζ(θ) and η(θ) are then given by:

ζ(θ) =
v⊥(θ)

v⊥(θ = 0)
=

√
A2 sin2 θ + cos2 θ

A4 sin2 θ + cos2 θ
, (C.1.3)

and

η(θ) =
R(θ)

R(θ = 0)
=

1√
A2 sin2 θ + cos2 θ

. (C.1.4)

The sound speed of the external medium is given by:

cx =

√
ΓxkBTvir

µmp

=

√
Γx
2
Vvir, (C.1.5)

where kB is the Boltzmann constant, µ = 0.6 is the mean molecular weight, and

Tvir = µmpV
2

vir/2kB, with Vvir = (GM/rvir)
1/2. The volume of each angular element

of the cocoon is given in terms of its radial length, R, by:

∆V (θ) =
2πR3(θ)

3
sin θ∆θ. (C.1.6)

We can then obtain expressions for the evolution of R for each angular element.

For the supersonic case, using equation (C.1.2), the time derivative of the pressure

is:

ṗ =
2k
(
ζ/η
)2

Γx + 1

(
R−β2ṘR̈− βR−β−1ṘṘ2

)
+

Γx − 1

2(Γx + 1)
kV 2

virβR
−β−1Ṙ,

(C.1.7)

where β is treated as being constant. The time derivative of the volume from

equation (C.1.6) is:

∆V̇ = 2πR2Ṙ sin θ∆θ. (C.1.8)

Equations (C.1.2), (C.1.6), (C.1.7), and (C.1.8) can then be inserted into equa-

tion (C.1.1) to obtain:
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R̈ =
3(Γx + 1)(Γc − 1)QRβ−3∆λ

8πṘ(ζ/η)2k sin θ∆θ
+

(β − 3Γc)Ṙ
2

2R

+
(Γx − 1)(3Γc − β)Vvir2

8R(ζ/η)2
.

(C.1.9)

The value of ∆λ(θ) used for each angular element is the jet power required to

maintain a constant axial ratio A when Mb >> 1 and β is fixed. It is given by:

∆λ(θ) =
8πk sin θ∆θ

3(Γx + 1)(ΓC − 1)Q

[
(3ΓC − β)R2−βṘ3

+ 2R3−βṘR̈

]
θ=0

× η3−βζ2.

(C.1.10)

We keep the same ∆λ(θ), even when the lobe is no longer highly supersonic and

β is no longer constant (in which case we use the β value of the major axis). For

the subsonic case, a similar differential equation can be written using the solution

in Luo & Sadler (2010), where the radius evolves via:

R̈ =
(β − 2)Ṙ2

R
. (C.1.11)

To solve these differential equations, we divide the density profile into 100 seg-

ments, each with constant β. We use a fourth-order Runge-Kutta integration

method to solve these differential equations, using the R and Ṙ values from the

previous segment at the initial conditions for the next one.

When an angular element is in the subsonic regime, it becomes susceptible to

Rayleigh-Taylor instabilities at the interface between the cocoon and the external

medium. Following Turner & Shabala (2015), the thickness of the Rayleigh-Taylor

mixing layer, h(t, θ), can be calculated using the expression from Cook et al. (2004):

dh

dt
= 2

√
κRT (ρx − ρcoc)geffh

(ρx + ρcoc)
, (C.1.12)

where κRT is the Rayleigh-Taylor growth parameter, and ρx and ρcoc are the

densities of the external medium and cocoon respectively. We assume that ρcoc <<

ρx (the cocoon is composed of relativistic particles and so could be in pressure
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balance with the external medium but have a lower density), so (ρx − ρcoc)/(ρx +

ρcoc) is set to 1, as in Turner & Shabala (2015). geff is the effective gravitational

acceleration. This is calculated as the sum of the gravitational potential of the

galaxy, ggrav = c2
xβ/ΓxR, calculated from the equation for hydrostatic equilibrium,

and the acceleration of the cocoon, gc = −R̈. By integrating equation (C.1.12),

using the condition that the mixing layer has zero thickness at the time at which

the lobe becomes subsonic, we obtain:

h(t, θ) = κRT

(∫ t

tsub

√
−R̈ + c2

x

β

ΓxR
dt

)2

, (C.1.13)

where tsub is the time at which the angular element becomes subsonic. The radio

luminosity from the mixing layer is assumed to be reduced to zero. The luminosity

of the angular element is assumed to be reduced by a factor corresponding to the

reduced emitting volume, for which the radius is assumed to be reduced from R to

R − h/2, and therefore the luminosity of the cocoon is multiplied by the following

factor when part of it is in the subsonic phase:

fvis =

∑N
i=1(R− h(t, θi)/2)3 sin θi∆θ∑N

i=1 R
3 sin θi∆θ

, (C.1.14)

where θi is each angular element, and N is the number of angular elements.

C.2 Radio Luminosity

The following derivation for the radio luminosity is based on the derivation given in

Turner et al. (2018a), which is based on the derivation given in Kaiser et al. (1997).

A population of electrons is injected into the cocoon at an injection time ti, with

number density n(γi, ti) = n0γ
−s
i dγi, where γi is the Lorentz factor of the electrons

at injection, and s is the slope of the injected electron distribution. The cocoon is

assumed to be composed of three ‘fluids’: a relativistic electron fluid with energy

density ue, a magnetic field fluid with energy density uB, and a thermal fluid of

non-radiating particles with energy density uT . The pressure of the cocoon, pc is

therefore:
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pc = (Γc − 1)(ue + uB + uT ). (C.2.15)

We define the ratios kt = uT/ue and qB = uB/(ue + uT ) so that the energy

density of the electrons is given by:

ue =
pc

(Γc − 1)(kt + 1)(qB + 1)
, (C.2.16)

and the energy density of the magnetic field is given by,

uB =
qBpc

(Γc − 1)(qB + 1)
. (C.2.17)

The electrons are assumed to only emit synchrotron radiation at their critical

frequency, ν = γ2νL, where γ is the Lorentz factor of the observed electrons, and νL

is the Larmor frequency, which is given by:

νL =
eB

2πme

. (C.2.18)

Therefore γ is given by:

γ =

√
ν

νL
=

√
2πmeν

eB
, (C.2.19)

where ν is the observed frequency, me is the electron mass, e is the electron charge,

and B =
√

2µ0uB(ti) is the magnetic field. The Lorentz factor of the electrons

evolves by:

dγ

dt
=

apγ

3Γct
− 4σT

3mec
γ2(uB + uC), (C.2.20)

where the first term on the right-hand side represents adiabatic expansion losses,

and the second term is the combination of synchrotron losses and inverse-Compton

losses (the latter being from scattering with the CMB). uC = 4×10−14(1+z)4Jm−3

is the energy density of the CMB, and ap gives the dependence of the cocoon pressure

on time, pc(ti) ∝ t
ap
i , where ap relates to β by ap = (4 + β)/(β − 5). ap is evaluated

from the pressure profile of the lobe at each injection time ti. This expression can

be integrated to give a relation between γi and the Lorentz factor of the observed

electrons:
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γi =
γt
ap/3Γc
i

tap/3Γc − a2(t, ti)γ
, (C.2.21)

where a2(t, ti) is given by:

a2(t, ti) =
4σT
3mec

(uB(ti)

a3

t
−apΓB/Γc
i (ta3 − ta3i ) +

uC
a4

(ta4 − ta4i )
)
. (C.2.22)

In this expression, a3 is given by:

a3 = 1 +
ap
Γc

(ΓB + 1/3), (C.2.23)

a4 is given by

a4 = 1 +
ap
3Γc

, (C.2.24)

and n0(ti) is given by:

n0(ti) =
ue(ti)

mec2

(γ2−s
i,min − γ2−s

i,max

s− 2
−
γ1−s
i,min − γ1−s

i,max

s− 1

)−1

. (C.2.25)

To calculate the luminosity of the lobe, we follow a clearer form of the derivation

in Kaiser et al. (1997) equation (13). We consider a bubble at the hotspot with

volume, δVi, internal energy δUi, and pressure ph. The internal energy of the bubble

is given by:

δUi =
phδVi
Γc − 1

. (C.2.26)

We then allow this bubble to expand adiabatically into the cocoon over a time

δti, to a pressure pc. For adiabatic expansion, pV Γc is a constant and therefore

V ∝ p−1/Γc . The volume of the bubble, δVf after a time δti is therefore given by:

δVf = δVi

(
ph
pc

)1/Γc

, (C.2.27)

and then by combining equation (C.2.27) with (C.2.26), this gives:

δVf = (Γc − 1)
δUi
pc

(
ph
pc

)(1−Γc)/Γc

. (C.2.28)
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By then assuming the internal energy is given by δUi = Qδti, this gives:

δVf =
(Γc − 1)Qδti

pc

(
ph
pc

)(1−Γc)/Γc

. (C.2.29)

We then integrate over the different volumes of the electron populations by iden-

tifying δVf in equation (C.2.29) with V in equation (6.2.3), which gives equation

(6.2.4).

C.3 Lobe luminosity as a function of pressure and

volume

In this Appendix, we recast equation (6.2.3) in terms of pressure and volume. We

first give an expression for Lν showing only the dependence on quantities related to

the pressure and volume:

Lν ∝ uBγ
3n(γ)V. (C.3.30)

Equation (C.2.17) gives us the dependence of uB on the pressure, p: uB ∝ p, and

from equation (C.2.19), γ ∝ u
−1/4
B ∝ p−1/4. If we assume (for simplicity) to neglect

the effect of radiative losses, then γi = γ, and so n(γ) ∝ n0γ
−s. Using equation

(C.2.25), n0 ∝ ue ∝ p. Therefore, under this approximation, the luminosity depends

on the pressure and volume via:

Lν ∝ p
s+5
4 V. (C.3.31)
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