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ABSTRACT 

Evidence-Based Policy is the movement according to which policy should be based on 
high-quality evidence for ‘what works’. A major problem in using evidence to inform 
policy is concerned with extrapolation, i.e. using evidence of policy effectiveness from 
a study population to learn something about the effects of a policy in a novel target 
population. This thesis provides a critical discussion of extrapolation in Evidence-Based 
Policy and aims to make general contributions to improving both the theory and practice 
of extrapolation. It proceeds in three parts. Part I provides a comprehensive analysis of 
extrapolation, including what different kinds of extrapolation there are, what makes 
some of them highly challenging, and what successful extrapolation is. Part II critically 
examines existing strategies for extrapolation proposed by philosophers, 
econometricians, and computer scientists. Emphasis is put on the empirical assumptions 
about similarities and differences between populations that these strategies involve, and 
it is argued that supporting these assumptions is often over-demanding. In particular, the 
knowledge about the target population required to underwrite an extrapolation is often 
so extensive that we can learn the effect of interest in the target based on this knowledge 
alone. This is problematic, as it can render the evidence from which one extrapolates 
irrelevant to an envisioned conclusion, thus undermining the success of an 
extrapolation. Detailed investigations are provided to highlight the conditions under 
which existing strategies fall prey to this problem. Building on this critical 
investigation, Part III makes several positive proposals for how to improve the theory 
and practice of extrapolation in EBP and evade the central problems that it faces. 
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CHAPTER 1 
 
 

Extrapolation in Evidence-Based Policy 
 
1.1 Introduction 
Evidence-Based Policy (EBP) is the movement according to which policy should be 

based on high-quality evidence for ‘what works’, i.e. evidence that persuasively speaks 

for the effectiveness of policy interventions in realizing1 their intended goals. Seeking to 

mirror the success of Evidence-Based Medicine (e.g. Sackett et al. 1996), this 

movement has gained significant traction over recent decades, with numerous evidence-

based initiatives and ‘What Works Centres’ being created in Australia, the United 

States, the UK, and other countries, to target a diverse range of policy issues, including 

education, economic growth, crime reduction, development, and others (see e.g. Cabinet 

Office 2013). 

 At the most general level, the motivation behind EBP seems uncontroversial. 

Consider the following statement by the UK Cabinet Office: “It is a fundamental 

principle of good public services that decisions are made on the basis of strong evidence 

and what we know works” (2013, i). So rather than grounding policy decisions in 

intuitions, hope, or speculation, the idea is to have high-quality empirical evidence 

directing our attempts to achieve given social and political ends. 

 When spelling out the details of this proposal, however, various highly contentious 

issues arise, including: what counts as evidence in the first place? What is ‘high-quality’ 

evidence? How do we best obtain it? How should this evidence be used in designing 

and implementing policies? 

 In recent years, EBP has been criticized on various fronts surrounding these issues. 

Several authors have raised methodological concerns about randomized controlled trials 

(RCTs), which EBP proponents consider the ‘gold standard’ for producing high-quality 

evidence (Heckman 1992; Worrall 2007; Cartwright 2007; 2010; Scriven 2008). Others 

worry about whether evidence can indeed play the role in political decision-making as 

envisioned by EBP proponents (Barnes and Parkhurst 2014; Parkhurst and Abeysinghe 

2016; Cairney 2016; 2018) and whether evidence production and use might involve 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 I will use Oxford spelling throughout this thesis. 
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unspoken value presuppositions (Khosrowi 2019; Reiss and Khosrowi 2019, ms.). 

Moreover, a particularly pressing criticism concerns the issue of extrapolation, i.e. 

using evidence concerning the effectiveness of a policy from a study population A to 

learn something about the effectiveness of that policy in a novel target population B. 

Here, Nancy Cartwright has levelled a sustained line of criticism arguing that evidence 

of policy effectiveness, by itself, is of limited use for decision-making, since it can only 

speak for the effectiveness of policies where they have been tested, i.e. in study 

populations (Cartwright 2009a; 2009b; 2011; 2012; Cartwright and Stegenga 2011; 

Cartwright and Hardie 2012; see also Angrist and Pischke 2010). Despite these 

criticisms, when it comes to making inferences about the effectiveness of policies in 

novel targets, EBP methodological guidelines have continued to leave unclear how such 

inferences can proceed successfully (see also Rodrik 2008, 20; Heckman and Vytlacil 

2007, 4801). 

 This is a substantive shortcoming, as one of the central hopes in EBP is that it is 

useful to build ‘libraries of evidence’2 (also called ‘intervention libraries’, 

‘clearinghouses’, ‘warehouses’, or ‘toolkits’), where high-quality evidence pertaining to 

the effectiveness of specific (kinds of) policy interventions is collated in evidence-

syntheses, and decision makers can go ‘shopping’ for policies that help address their 

needs (see also Duflo 2004). Building such libraries only seems useful, however, if we 

have a clear idea of how the evidence collated there can speak to our questions about 

novel target populations (Cartwright 2013a, 3). 

 Unfortunately, extrapolating from a given evidence-base is often difficult. It is rarely 

plausible, for instance, to use naïve extrapolation, which means to merely assume that 

whatever policy is effective in ! will also be effective in ! unless there are strong 

reasons to think otherwise (see Steel 2008 on simple induction; Reiss 2019; Fuller 2019 

in the context of medicine). Individuals can differ in their psychological characteristics 

and economic circumstances; populations can differ with respect to social norms and 

institutions; the interventions themselves can differ depending on how they are 

implemented and who implements them, etc. More generally, the concern is that there 

are various ways in which any two populations can and will differ in causally relevant 

features that have bearing on the quality and magnitude of policy effects (see e.g. Vivalt 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Many of the UK ‘What Works Centres’!aim to offer such libraries, modelled after similar advances 
made by the National Institute for Health and Care Excellence!(NICE).!
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2019). In light of likely differences between populations, naïve extrapolation would 

hence amount to little more than hoping that no such differences obtain. This seems 

undesirable at least insofar as it would undermine the emphasis on using high-quality 

evidence for establishing policy effects. High-quality evidence seems of little use if one 

does not know how to draw high-quality inferences, too. 

 We might wonder, then, how we can do better than naïve extrapolation. Here are two 

intuitions that seem helpful: First, it seems that some form of similarity between 

populations is often important, and sometimes perhaps even necessary, to allow an 

intervention to be similarly effective in a novel target as in a study population. So to 

infer whether an intervention will be similarly effective in a target as in a study 

population, we might need to determine whether such similarities obtain. Second, not 

all differences between populations present insurmountable obstacles to extrapolation; 

they only preclude naïve extrapolation. Even if populations differ importantly, we might 

still be able to anticipate how such differences bear on the effects to be extrapolated, 

and hence we might still be able to successfully predict policy effects in a target. Both 

of these ideas seem largely uncontroversial. Nevertheless, which similarities need to 

obtain and to what degrees, which differences can be accommodated and adjusted for, 

as well as how to acquire and use information pertaining to such similarities and 

differences, is far from obvious. 

 Given the challenging nature of the problem, it is perhaps no surprise that there are 

various proposals for strategies to help address it (Hotz et al. 2005; Crump et al. 2008; 

Steel 2008; 2010; Guala 2010; Cartwright 2012; 2013a; 2013b; Cartwright and Hardie 

2012; Bareinboim and Pearl 2012; 2016; Muller 2013; 2014; 2015; van Eersel et al. 

2019). These strategies try to achieve different things: some characterize sufficient 

conditions for when an effect will be the same in a target as in a study population 

(Cartwright 2013a; Cartwright and Hardie 2012); others propose methods for learning 

about similarities and differences between populations in order to decide whether 

effects will be qualitatively the same in the target as in a study (Steel 2008); and more 

ambitious strategies propose ways to adjust for relevant differences between 

populations, with the aim to permit prediction of quantitative effects in a target despite 

such differences (Hotz et al. 2005; Muller 2014; 2015; Bareinboim and Pearl 2012; 

2016). Against the background of these proposals, some authors have suggested that the 
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problem of extrapolation has been “solved” (Marcellesi 2015; Bareinboim and Pearl 

2016). 

 In this thesis, I will argue that this conclusion is too hasty and that none of the 

strategies on offer provides a compelling, general recipe for how we can extrapolate 

policy effects to novel settings. To this end, I will critically engage with these strategies, 

emphasising their advantages, challenging them on distinct disadvantages, and arguing 

that they exhibit a common shortcoming. In different ways, all existing strategies for 

extrapolation involve substantive assumptions about causally relevant similarities 

between populations. This is not a shortcoming per se, since some such assumptions are 

needed to permit any extrapolative inference more sophisticated than naïve 

extrapolation. However, supporting such assumptions, and thereby justifying the 

inferences enabled by them, often requires extensive causal knowledge of the target 

population. This is not only a concern about how demanding it can be to underwrite the 

assumptions required for extrapolation; it is a more serious problem, as it makes the 

strategies that involve these assumptions liable to fall prey to what I will call the 

extrapolator’s bind (a generalized version of LaFollette and Shanks’ 1996 and Steel’s 

2008 extrapolator’s circle). In a nutshell, the extrapolator’s bind requires that the 

supplementary information used to justify an extrapolation should not be so extensive 

that it allows us to learn the effect of interest on this basis alone, thereby rendering the 

experimental evidence to be extrapolated from redundant to our conclusion. This, I take 

it, is a substantial problem not only for strategies for extrapolation, but for EBP more 

generally, as it would undermine the promise that we can successfully learn about the 

effectiveness of policies in novel targets based on evidence collated in evidence 

libraries.3 

 Importantly, arguing that there are epistemic problems involved in underwriting the 

assumptions that strategies for extrapolation require is not intended to suggest that these 

strategies are somehow fundamentally inadequate. For the most part, I will grant that 

they successfully clarify the abstract conditions under which extrapolation can be 

successful in principle. However, they provide no concrete guidance concerning how 

one could overcome the substantial and non-trivial epistemic challenges of underwriting 

the assumptions that they involve, specifically with a view towards evading the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!See, however, Dekkers et al. (2010) and Banerjee and Duflo (2009) who take the extreme view that the 
only way to credibly establish that an effect will be the same in the target as in an experimental 
population is to repeat the study in the target.!
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extrapolator’s bind. While getting the abstract conditions right is, of course, an 

important achievement, it is, by itself, insufficient for overcoming any concrete 

problems of extrapolation. 

 Of course, it has long been recognized that compelling inference schemas are only 

part of what helps us reach extrapolative conclusions. For instance, one of Cartwright’s 

main aims, beyond making proposals for how to facilitate extrapolative inference at an 

abstract level, has been to raise awareness of just how difficult it can be to adequately 

support the assumptions required for such inference. More recently, Cartwright 

(forthcoming), and reinforcing proposals made in the realist evaluation literature 

(Pawson and Tilley 1997; 2001; Astbury and Leeuw 2010; Pawson 2013), has called for 

more efforts to develop and use theoretical resources that can be helpful for 

underwriting extrapolative inferences. Specifically, she emphasises the importance of 

so-called middle-range theories, which can be useful for clarifying whether the 

outcomes of interest in two populations are likely to be governed by similar causal 

mechanisms, as well as programme theories, which clarify how the policy interventions 

of interest are supposed to work and what contextual features are important for their 

effectiveness.  

 Yet, while such theoretical resources can be helpful for addressing some of the 

concerns to be developed here, it is also important to recognize that such resources are 

not always available, and that their usefulness is often (too) specific to a context.  

 Where abstract strategies remain too general, pointing to the importance of 

contextual resources relegates important epistemological issues to being settled by the 

concrete contextual details of specific cases. In doing so, appeals to theory neglect a 

host of finer-grained, but still relatively general, type-level features of problems of 

extrapolation and extrapolative inference that can bear importantly on the success of 

extrapolation. What is more, appeals to theory also do not say much about what role 

empirical strategies can play in underwriting extrapolation, even though these strategies 

can be highly useful in the absence of theory, in conjunction with it, and for building 

such theory in the first place. 

 What this suggests is that there is both a need as well as a place for a framework for 

extrapolation that operates at an intermediate level of analysis, i.e. between abstract 

strategies, which leave important epistemic challenges unaddressed, and concrete 

contextual resources, which, if and when available, can be helpful for facilitating 
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extrapolation, but, on their own, cannot provide general insights concerning how to 

tackle different kinds of extrapolation. As the arguments to be developed in this thesis 

will suggest, it is possible to build the basis for such a framework for extrapolation by 

saying more about important differences in the kinds of problems of extrapolation we 

might encounter; whether and how different strategies for extrapolation are able to 

address such problems, in principle and in practice; what kinds of assumptions they will 

(need to) make across different cases; how these assumptions might be underwritten by 

additional resources; and when doing so is unlikely to be successful. While, like 

existing strategies, the proposals to be developed here will not provide a general 

solution for problems of extrapolation, it is hoped that they can nevertheless help fill 

important blanks left open by existing proposals, and make significant contributions to 

connecting abstract strategies for extrapolation with its epistemic practice. 

 With these general aims in place, let me briefly outline the structure and contents of 

the subsequent chapters. 

 

1.2 Outline 

Chapter 2 provides a comprehensive discussion of problems of extrapolation and 

extrapolative inference. Here, I argue that extrapolation is a highly heterogeneous 

collection of problems and inferential activities. To this end, I distinguish between 

several dimensions along which problems of extrapolation can differ. This is followed 

by an overview of important differences in the epistemic aims pursued by extrapolative 

inference. Together, these analyses suggest that not only is extrapolation highly 

heterogeneous, but also that some problems of extrapolation are significantly more 

challenging than others, thus providing a useful background for evaluating existing 

extrapolation strategies with respect to what kinds of problems they can address, and 

what kinds of conclusions they can enable. 

 Chapter 3 takes a closer look at some of the basic assumptions that different 

strategies for extrapolation make. Here, I argue that they rest on a common core of 

assumptions that, taken together, ensure that it is in principle possible to predict the 

effects of an intervention in a novel target, despite important differences between 

populations. In addition, I provide a working analysis of what extrapolation is, at the 

most general level, and complement this analysis with important strictures on what 

counts as successful extrapolation. Here, building on Steel’s (2008) extrapolator’s 
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circle, I characterize a generalized version of this challenge, called the extrapolator’s 

bind. I argue that evading the extrapolator’s bind is an important part of what it means 

to achieve successful extrapolation. Together, these ingredients build the background 

for my subsequent efforts to evaluate existing strategies for extrapolation with respect to 

the assumptions they involve and whether supporting these assumptions can proceed in 

a way that enables successful extrapolation. 

 Chapter 4 is the first to take issue with concrete proposals for how to address 

problems of extrapolation. Here, I consider Cartwright’s argument-based strategy for 

extrapolation. Cartwright (2013a) proposes the Argument Theory of Evidence, according 

to which extrapolative conclusions should be arrived at by means of valid and sound 

arguments, where effectiveness evidence comes together with further assumptions 

about how study and target populations are related in order to licence an extrapolative 

conclusion. To illustrate the capabilities of the Argument Theory, Cartwright offers an 

exemplary effectiveness argument, which involves assumptions that licence conclusions 

about whether an intervention can be efficacious for at least some individuals in a target 

and whether causal effects are the same in experimental and target populations. I argue 

that supporting these assumptions is epistemically over-demanding and raises important 

concerns about the extrapolator’s bind. Following this, and looking beyond the 

effectiveness argument, I provide an updated assessment of how the contributions of 

Cartwright’s more general Argument Theory could be understood. 

 Chapter 5 considers Steel’s (2008) mechanism-based strategy for extrapolation. 

Steel’s approach is the only existing strategy to explicitly acknowledge the 

extrapolator’s bind (in the restricted form of the extrapolator’s circle), and is 

specifically designed to evade it. Despite this, I argue that Steel’s strategy encounters 

problems in evading the extrapolator’s bind in a wide range of contexts. Specifically, I 

offer a distinction between two kinds of extrapolation, attributive and predictive (the 

latter being typical in EBP), and argue that Steel’s strategy is unlikely to successfully 

overcome problems of predictive extrapolation and is hence unsuitable, by itself, to 

figure as a compelling strategy for extrapolation in EBP. 

 Chapter 6 focuses on interactive covariate-based strategies for extrapolation 

developed by econometricians (Hotz et al. 2005; Muller 2013, ms.; 2014; 2015). These 

strategies aim to accommodate and adjust for differences between populations in certain 

respects. However, in doing so, they involve substantive assumptions that populations 
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do not differ in other, more basic respects. I argue that supporting these assumptions 

raises important concerns about the extrapolator’s bind. I then consider whether Steel’s 

strategy could figure as a useful complement to evade this problem. I argue that it is 

unlikely to do so, however, at least in predictive extrapolation, and as long as one only 

uses quantitative observational evidence from a target to underwrite extrapolation. To 

remedy this, I suggest that other, previously neglected kinds of evidence may need to be 

considered by econometricians, including qualitative evidence. 

 Chapter 7 considers Bareinboim and Pearl’s (2012; 2016) graph-based strategy. 

They offer a causal graph-based framework and an accompanying formal calculus to 

decide whether causal effects can be extrapolated at all and, if so, to help derive 

formulae to compute the effect of interest in the target. I argue that this strategy 

involves wide-ranging assumptions about the similarity of populations and that 

supporting these assumptions raises concerns about the extrapolator’s bind. These 

problems are, again, aggravated by the distinction between attributive and predictive 

extrapolation, with the latter posing special problems that make graph-based strategies 

unsuitable for a wide range of extrapolations in EBP. 

 Integrating the insights developed in these chapters, Chapter 8 works towards 

building the basis for a more general framework for extrapolation. Here, I discuss how 

background knowledge, theory, and empirical resources can productively interact to 

underwrite extrapolation. Building on this, I propose a list of substantive, general 

desiderata for helping future extrapolation strategies evade some of the challenges 

characterized in this thesis. Finally, I make some recommendations for how a general 

framework for extrapolation might be usefully complemented by future research on the 

role of uncertainty in extrapolation, and offer some suggestions for how EBP 

institutions might incorporate some of the insights provided in this thesis into their 

methodological recommendations. 

 Chapter 9 provides a concluding summary of the main contributions made in this 

thesis. 

 With this overview of the structure of the project in place, let me briefly give some 

general commentary concerning the scope of the arguments to be developed, outline 

some general assumptions I will make, and explain some issues that are related to those 

that I will consider here, but that I will not touch upon in more detail. 
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1.3 Scope, Assumptions, and Related Issues 

First, as I will focus on issues of extrapolation primarily in the context of EBP, it is 

important to say more on what I take EBP to be. EBP can be understood in a narrower 

and wider sense. A narrow conception would say that EBP is concerned primarily with 

establishing policy effectiveness by means of RCTs (and meta-analyses thereof). This 

would follow traditional evidence-hierarchies developed in Evidence-Based Medicine 

and later adopted by EBP, where RCTs are the ‘gold standard’ method by which 

estimation of intervention effects should proceed (see e.g. Coe 2004; Goldacre 2013; 

Sanders and Halpern 2014). A wider conception, by contrast, would also allow other 

kinds of evidence, or really any evidence (i.e. understood in a thin sense as anything 

that can raise the probability of a hypothesis), to figure as a legitimate means for 

informing policy. 

 The partition of EBP that I will focus on sits somewhere in the middle between these 

conceptions. It is closely tied to cases where standard methods such as those 

recommended in EBP methodological guidelines and evidence-hierarchies are used, i.e. 

RCTs and meta-analyses. However, I will also depart from the narrow conception in 

that, there, EBP is often understood to focus mostly on issues of evidence-based 

policymaking in the developed world. My arguments will also extend, however, to the 

substantive empirical literature on (economic) development (see e.g. Duflo 2001; 

Miguel and Kremer 2004; Banerjee et al. 2007; Banerjee and Duflo 2011) and empirical 

microeconomics more generally (Angrist and Pischke 2010), sometimes called the 

treatment effects literature (Heckman 2005), where there is a similar emphasis on the 

importance of using experimental and quasi-experimental methods to investigate the 

effects of interventions (though not necessarily policy interventions; see Karlan et al. 

2009; Banerjee 2007; Glennerster and Kremer 2011).  

 Here, following methodological emphasis on the importance of study design by 

Campbell and Stanley (1963), Cook and Campbell (1979), Leamer (1983), and others, it 

is claimed that microeconometrics has gone through a credibility revolution (Angrist 

and Pischke 2010), enabled by more rigorous identification strategies for causal effects 

and structural parameters that improve importantly on standard multivariate regression 

analyses. These strategies include not only RCTs but also instrumental variables 

approaches (Angrist 1990; Angrist and Krueger 1991), matching approaches (see 

Imbens and Wooldridge 2009), regression-discontinuity approaches (Angrist and Lavy 
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1999), and differences-in-differences approaches (Donohue and Wolfers 2005). 

Although these methods are frequently ranked lower than RCTs in evidence hierarchies, 

my subsequent arguments will also extend to cases where these methods are used to 

establish the effects of policies, or interventions more generally. Importantly, 

irrespective of the method used to estimate policy effects, I will simply assume that this 

has been successful in the sense that the identification assumptions of this method were 

satisfied and that the estimated effect is an unbiased estimate of the true causal effect in 

question (for various concerns about identification assumptions of RCTs see Heckman 

1992; Worrall 2002; 2007; Cartwright 2010; Fuller 2018).  

 Concerning scope, it is important to note that the arguments developed here could 

also be taken to cover extrapolation in Evidence-Based Medicine, as well as in other 

fields, such as psychology, epidemiology, pharmacology, etc. In this sense, the 

treatment of EBP here could be understood as an extended case study for building 

arguments pertaining to extrapolation of causal effects more generally. While remaining 

open to this possibility, I will not make any commitments concerning the applicability 

of my arguments beyond EBP, recognizing that problems of extrapolation, aims, 

available empirical and theoretical resources, etc., might significantly differ in other 

areas, which could bear importantly on the cogency of the arguments to be developed 

here. 

 Second, I will not consider all strategies for extrapolation here, but only a selection 

that I take to capture the most important types of strategies. For instance, Robert 

Northcott has recently taken issue with problems of extrapolation. In the spirit of earlier 

work on the importance of predictive performance (e.g. Northcott 2017; 2019), he 

argues that prediction markets, in virtue of their incentive structures and ability to 

integrate information, could be helpful for ‘outsourcing’ extrapolative inference to 

market agents and thereby evading Steel’s extrapolator’s circle. Although providing a 

potentially elegant strategy for evading the extrapolator’s circle, I will not consider this 

proposal in more detail here, as my arguments focus on how extrapolative inference 

proceeds and how particular inferences are justified, which is abstracted away from 

when considering how market arrangements can facilitate accurate prediction. 

Similarly, I will also not engage in detail with recent work by Beach and Pedersen 

(2019) who, in the context of qualitative comparative analysis, propose a ‘snowballing-

outward’ strategy to help researchers assess the generalizability of causal claims in 
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political science. While I consider their proposals to be interesting, they seem more 

suitable for underwriting extrapolative inferences enabled by other strategies, rather 

than for characterizing how to make such inferences. I will also not engage with Guala’s 

(2010) analogical inference reconstruction of extrapolation, which focuses primarily on 

highly controlled social science experiments, nor with van Eersel et al.’s (2019) 

proposals to use latent-class regression methods, which are similar to econometricians’ 

proposals discussed in Chapter 6. Finally, I will not discuss Steel’s (2010) more recent 

attempt to integrate causal graph-based methods and comparative process tracing, as the 

arguments in Chapters 5 and 7 suggest that this approach will be vulnerable to similar 

problems as those discussed here. 

 Third, as RCTs will often play a central role in the kinds of extrapolation scenarios I 

am interested in, it seems useful to briefly reiterate the motivation behind using them, 

how they work, and what their (purported) virtues are (see Deaton and Cartwright 2017 

for an excellent overview). Learning whether a policy ‘works’ often means learning 

what its causal effects are. This is difficult, particularly in policy, as individuals’ 

outcomes, such as their welfare, educational achievements, health, wellbeing, etc., are 

often determined by a whole battery of influences beyond a policy of interest, often 

called confounding factors. So in learning ‘what works’, and in using that information 

for guiding subsequent policy action, it is important to isolate the policy effects we are 

interested in from the background noise induced by these confounding factors. This is a 

concern about bias. A biased measure of a policy effect is one that includes not only the 

effects of our policy, but also those induced by confounding factors. Obtaining unbiased 

estimates of policy effects is believed to be crucial for informing policy action, as we 

might otherwise misallocate resources based on mistaken conclusions about policy 

effectiveness. To help address such concerns, the typical aim in EBP is to use methods 

that allow us to construct credible counterfactuals, i.e. measurements of states that tell 

us something about the differences in an outcome of interest in the presence and 

absence of the policy of interest respectively, other things being equal. 

 This way of motivating the use of RCTs is common in EBP (see e.g. Duflo et al. 

2006; Zigler and Dominici 2014; Rossi et al. 2019, ch. 6) and largely follows the 

potential outcomes framework of Rubin (1974) and Holland (1986). Here, given an 

outcome of interest !, the effect of an intervention for individual !, called the individual 

treatment effect (ITE), is the difference between her potential outcome !!(1) given the 
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treatment and her potential outcome !!(0) in the absence of treatment, other things 

being equal. While it would be desirable to measure ITEs for each individual in order to 

determine the effects of a policy, it is typically assumed that only one of the two values 

of !! can be observed for the same individual, so ITEs are considered unobservable 

magnitudes (Holland 1986). RCTs offer a remedy for this by permitting the estimation 

of average treatment effects (ATEs) instead of ITEs. This is achieved through 

‘balancing’ the net effects of confounding factors by means of random assignment of 

subjects to experimental and control groups, and (if applicable) multiple blinding of 

trial participants, those administering treatment, and those recording and interpreting 

outcomes. Provided that randomization (and other precautions) are successful in that the 

net effects of confounders (including interactions among them, see e.g. Fuller 2018) are 

approximately balanced between treatment and control groups, and some further 

conditions pertaining to attrition are satisfied, an ideal RCT can help obtain, in 

expectation, an unbiased estimate of the ATE, defined as the expectation of the 

difference between the outcomes of treated and untreated units, indicated by !! 1  and 

!! 0  respectively:   

!"# = ![!! 1 − !! 0 ]. 

 RCTs typically rank highest in evidence-hierarchies because their identification 

assumptions are believed to be easy to meet and they require few substantive 

assumptions to begin with, both of which are helpful in keeping concerns about bias at 

bay. I will not engage in a more extensive discussion of the role of randomization in 

addressing such concerns. These can be found elsewhere (Bloom 2006; Duflo et al. 

2006; White 2013). Relatedly, I will also not engage in more detail with evidence-

hierarchies put forward in EBP beyond highlighting in some places (e.g. Chapter 8) that 

my arguments suggest that such hierarchies might need to be revised when considering 

the suitability of the supplementary evidence used to underwrite an extrapolation, with a 

view towards how different kinds of evidence can sometimes productively interact in 

doing so (cf. Clarke et al. 2014; see also Borgerson 2009 in the context of evidence-

based medicine). 

 Fourth, discussing issues surrounding extrapolation will invariably involve reference 

to concepts such as ‘cause’, ‘causal effect’, ‘causal relationship’, ‘causal mechanism’, 

‘intervention’, and their cognates. There is a rich philosophical literature targeting 

metaphysical and epistemological issues pertaining to each of these concepts (see e.g. 
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Machamer et al. 2000; Glennan 2002; Woodward 2002; 2003; Bechtel and Abrahamsen 

2005; Craver 2007 on mechanisms; Schaffer (2016) for an overview on the metaphysics 

of causation). I will not engage more deeply with attempts to explicate these concepts, 

nor will my arguments be strongly tied to any specific conception or account. That 

being said, since causal mechanisms will figure centrally in the arguments to be 

developed here, it seems useful to clarify that I will, for the most part, understand 

‘causal mechanisms’ along the lines of Illari and Williamson’s minimal characterization 

according to which “[a] mechanism for a phenomenon consists of entities and activities 

organized in such a way that they are responsible for the phenomenon” (2012, 120). 

Moreover, my elaborations of how causal mechanisms figure in producing the causal 

effects of policy interventions, and how learning about causal mechanisms can proceed, 

are broadly sympathetic to manipulability/interventionist accounts of causation such as 

Woodward’s (2002; 2003). According to these accounts, and speaking broadly and non-

reductively (see Craver 2007; Glennan 2009), causes are the kinds of things that yield 

effects (understood as changes or differences in some variable) when (potentially and 

discriminately) intervened on, and mechanisms are broadly understood as (potentially 

imperfect representations of) the causal arrangements (comprised by individual causal 

relationships between variables) that govern the production of these effects, or transmit 

them from an intervention variable onto an outcome. So no assumptions are made that 

the kinds of things I refer to by ‘causes’, ‘causal relationships’, and ‘causal 

mechanisms’ are in some metaphysically important sense fundamental or real. They 

might be, or they might not, but for the epistemic endeavour of extrapolating causal 

effects these issues do not seem to be of central importance. I will also not distinguish 

between causal mechanisms and causal processes (e.g. as per Salmon 1984; 1994; 

Dowe 1992), the latter of which could be understood as requiring some continuous 

activity among the entities that figure in them. I will merely think of these cases as 

subspecies of mechanisms, but gloss over any of the more intricate metaphysical and 

epistemological differences that one might be interested in if attempting to make a 

distinction. Finally, although I am sympathetic to arguments emphasising that reference 

to mechanisms can afford explanatory and predictive abilities in social science contexts, 

I will also not engage in more detail with the literature on the importance of mechanistic 

knowledge in social science (see e.g. Russo 2009; Hedström and Ylikoski 2010). 

 Finally, I will not take issue with the debate surrounding internal and external 

validity. These concepts, to my mind, have been largely confusing, and confused, 
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particularly in debates concerning apparent tensions between views asserting that 

internal validity is a prerequisite for external validity (see Hogarth 2005) and views 

asserting that there is a trade-off between the two (Campbell 1957; see also Guala 

2003). For the present purposes, I will not make any specific commitments concerning 

the distinction between the two, their mutual relationship, or how they relate to 

extrapolation. 

 With these general caveats in mind, let me proceed to the substantive discussion, 

starting with a general outline of how problems of extrapolation are constituted, and 

what different types of extrapolation there are. 
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CHAPTER 2 
 
 

What’s Extrapolation? 
 
2.1 Introduction 

To build a basis for my subsequent contributions, it is important to develop a 

comprehensive characterization of what extrapolation is, what makes extrapolation 

challenging, and what kinds of extrapolation there are. To develop this background I 

will proceed as follows: 

 In Section 2 I begin with a sketch of what I take extrapolation to be, at the most 

general level. This will be the starting point for developing a more comprehensive and 

precise view of extrapolation as a highly heterogeneous collection of inferential 

activities that, while amenable to a single, systematic analysis, can exhibit important 

differences.1 Building such a view is useful in three ways: 1) it allows us to distinguish 

existing strategies for extrapolation with respect to what kinds of problems of 

extrapolation they can, in principle, address (and criticize them accordingly for their 

limitations); 2) it helps articulate why some kinds of extrapolation are more difficult 

than others, and how there may be cases that are unlikely to be overcome by any 

strategy; 3) it helps pinpoint what exactly the criticisms to be developed in subsequent 

chapters latch onto. 

 To build this view, Section 3 elaborates why extrapolation is challenging. I approach 

this issue from two angles. One concerns the underlying reasons for why extrapolation 

is challenging, i.e. different kinds of causally relevant differences between populations. 

The other concerns the symptoms of such differences, i.e. heterogeneous causal effects 

that differ systematically between individuals and between populations. I will begin 

with the symptoms because it is the symptoms of heterogeneous causal effects that we 

face at the level of observable phenomena, i.e. the level at which effect estimation, 

prediction, and extrapolation proceed. After offering a brief overview of different ways 

in which these symptoms can manifest, I turn to elaborate on the various underlying 

reasons for why these symptoms can occur. In doing so, I begin from standard 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 cf. Steel (2010; 2013), who recognizes that different kinds of extrapolation should be distinguished 
concerning the type of causal claim to be extrapolated and that different kinds of extrapolation might 
require different conditions to proceed successfully. 
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approaches to explaining heterogeneous causal effects, which proceed in terms of so-

called moderating variables, i.e. variables that causally interact with a treatment to 

induce differences in causal effects between individuals and between populations. I then 

expand on several additional, but heretofore unrecognized, types of heterogeneity, 

which are induced by mediating variables, and some kinds of intervention and outcome 

variables, which I call constrained intervention and outcome variables. I argue that 

these variables, too, can induce heterogeneous effects, and that differences in the 

distribution of such variables can hence pose important obstacles to successful 

extrapolation.  

 Building on this, Section 4 offers a more comprehensive analysis of causally relevant 

differences between populations. Specifically, in addition to differences in causal 

effects induced by differences in variables, i.e. moderating, mediating, and constrained 

intervention and outcome variables, I expand on two additional levels at which causally 

relevant differences can obtain: 1) differences in functional form and parameters (causal 

and statistical) and 2) differences in the basic structure of causal mechanisms. 

 With this overview of causally relevant differences in place, Section 5 synthesizes a 

general analysis of problems of extrapolation as a highly heterogeneous set of 

inferential challenges. Extrapolation here is distinguished along several dimensions, 

including the types of underlying causally relevant differences that pose obstacles to 

extrapolation, the kinds of causal queries at issue, the envisioned kind and fidelity of the 

inferences to be drawn, etc. The main aim is to make clear that extrapolation comes in 

various kinds, some of which are significantly more challenging than others. This not 

only improves on standard unanalysed notions of extrapolation used in the literature, 

but also helps build a framework in which my subsequent critical assessment of extant 

strategies for extrapolation can proceed, e.g. clarifying which of these strategies are 

useful for addressing which kinds of problems, and which types of problems pose 

distinct, and, at times, insurmountable, challenges for these strategies respectively. 

 

2.2 What’s an Extrapolation? The Short Story  

To get us started, let me offer a basic and preliminary sketch of what I take 

extrapolation to be at the most general level. Surprisingly, there are few explicit 

attempts in the literature to characterize extrapolation. One exception is Daniel Steel 

(2008), who begins by offering some examples of what he considers to be instances of 
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problems of extrapolation: e.g. when we know that a particular substance is a 

carcinogen in rats and would like to know whether it is also in humans, or when we 

have evidence from an RCT that a particular social policy intervention is effective and 

want to know whether it will be similarly effective in other locations, or when scaled 

up. Against the background of these examples, Steel proposes the following broad 

characterization:  

“In each of these cases, one begins with some knowledge of a causal 

relationship in one population, and endeavours to reliably draw a 

conclusion concerning the relationship in a distinct population.” (2008, 3) 

 We have a reasonably clear understanding of what it means to possess knowledge of 

a causal relationship or causal effect in an experimental population. This is the case 

whenever we have identified a causal effect in an experimental population, the method 

used for identifying this effect is principally adequate to this purpose, and its conditions 

of applicability are satisfied beyond some reasonable degree of confidence, i.e. its main 

identification assumptions are justifiably believed to be met. 

 What is currently open is what it means to draw reliable conclusions about a causal 

relationship or effect in some target population, as well as what it means for the target 

population to be distinct from the experimental population. As I will argue more fully 

throughout this chapter, the precise nature of the relationship between experimental and 

target populations is an important issue when it comes to distinguishing different kinds 

of problems of extrapolation according to how challenging they are. 

 For now, it suffices to give a rough first-pass analysis of extrapolation. Extrapolation 

minimally involves 1) a causal effect, relationship, or claim to be extrapolated (from), 

2) a causal effect, relationship, or claim pertaining to a distinct population to be inferred 

as a result of the extrapolation, and 3) a basis for extrapolation which justifies an 

inference from 1) to 2); this is typically a conjunction of background theory (including a 

theory of causality and causal inference), empirical assumptions about the populations 

of interest, and supplementary knowledge and evidence that underwrite these 

assumptions. 

 I will not make more specific commitments as to whether I take extrapolation to be 

an inductive or deductive (or other) form of inference. While widely taken to be 

inductive, Cartwright’s (2012; 2013) proposals for how to address problems of 

extrapolation involve deductive arguments. For the moment, it is enough to note that the 
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mode of inference joining 1) and 3) to infer 2) is such that it aims to be either logically 

valid, or invalid but strongly compelling in yielding the extrapolative conclusion of 

interest. With this in mind, let me proceed to expand on the reasons for why 

extrapolation is challenging. 

 

2.3 Heterogeneous Treatment Effects 

The causal effects of one and the same intervention can, and will typically, differ 

between different individuals, and between different populations. This is why we need 

to worry about extrapolation in the first place. If causal effects were the same 

everywhere and for everyone, there would be no need to be concerned: what is effective 

in one place, time, or individual will be effective in any other, and to the same extent. 

 In virtually all areas targeted by EBP initiatives, however, causal effects are usually 

not the same across individuals, places, or times. For instance, in development 

economics, the effects of microfinance interventions may differ significantly between 

individuals as a function of whether they will pursue profitable or unprofitable business 

plans with the microfinance loans. This, in turn, may differ as a function of prior 

business ownership experience or education. Similarly, in educational policy, the effects 

of interventions such as supplementary teaching or class size reductions may differ 

significantly between settings. Students might be stigmatized for receiving 

supplementary teaching in one population, but not in another. Labour supply of 

qualified teachers may differ between populations, so increased demand for teachers 

will have different effects on average teacher quality in different populations, which in 

turn may bear importantly on student achievement outcomes. In economic policy, the 

effects of interventions such as universal basic income or minimum wage policies may 

differ significantly between populations as a function of differences in population-

specific features of the labour market, and social and institutional arrangements that 

bear on agents’ labour supply decisions in response to changes in incentives. More 

generally, the empirical literature gives us good reasons to believe that there will 

frequently be substantial differences in causal effects (both in magnitude and sign) of 

the same or similar interventions between populations (Vivalt 2019).  

 In the econometrics literature, causal effects that differ between individuals, times, or 

places are called heterogeneous treatment effects (HTEs). Formally, in accordance with 

the standard potential outcomes framework by Rubin (1974) and Holland (1986), HTEs 
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obtain among individuals ! and!!!whenever individual treatment effects (ITEs), i.e. 

differences between !’! and !’! respective potential outcomes in the presence and 

absence of treatment, differ. Let ! be the outcome of interest, ! the intervention 

variable, ! an idiosyncratic error that captures the effect of other variables on !, and 

!(∙) be a function that captures the causal relationship that obtains between ! and !. 

Let the outcomes equations for ! and ! be: 

!! = !!(!! ,!!) 

!! = !!(!! ,!!) 

 Let ! be a binary variable !" 0,1 , with ! = 0!denoting untreated and ! = 1 

denoting treated status respectively. Then, the ITEs of an intervention Δ! (Δ indicating 

that the value of ! is changed) for ! and ! respectively are just: 

!! != !!!(1)− !!(0) 

!! != !!!(1)− !!(0) 

Then, the causal effects of a given intervention Δ! are heterogeneous if and only if:  

!! ≠ !! 

 HTEs are often considered to be systematic in nature, that is, they are not considered 

to be random, inexplicable variations that cannot be accounted for by reference to some 

substantive causally relevant difference between ! and !. Rather, the standard view in 

the literature is that differences in ITEs between individuals, and more generally HTE 

between populations and settings, prevalently obtain as a result of underlying causally 

relevant differences. That is, if there are no genuine causally relevant differences 

between individuals who experience different effects in response to one and the same 

intervention, this residual variation would be due to the indeterministic nature of the 

mechanisms underlying the events of interest as well as measurement error – but there 

will not be any significant, but ultimately and in-principle inexplicable differences in 

causal effects experienced by homogeneous individuals.2 I will follow this convention 

for the remainder of the discussion, although I will add some important qualifications to 

it in Chapter 3. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 In contrast to the theoretical literature, methodological guidelines in EBP often take a different stance on 
HTE by treating it as a symptom of measurement error (see Khosrowi 2019 for an overview).  
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2.3.1 Levels of Heterogeneity 

HTEs can obtain at various levels. First, HTEs can obtain at the level of individuals. 

This kind of heterogeneity is difficult to observe since ITEs can often not be directly 

observed in principle, and at best approximated (Holland 1986). However, there are 

cases where, even without accurate estimation of ITEs, we have good reasons to believe 

that effects are heterogeneous. Take for instance a job-training programme, which aims 

to increase participants’ job market prospects by offering workshops that help improve 

their CV quality. Say we have two individuals, ! and !, where !’s pre-intervention CV 

quality is bad, and !’s CV quality is excellent. It seems plausible to think that the causal 

effect of the training programme will be smaller for ! than for !, since!!’s CV is already 

close to being perfect beyond improvement. 

 A second kind of HTE obtains at the site level. Here the idea is that characteristics of 

the particular place (or time, or both) where an intervention is implemented can induce 

differences in causal effects between sites. Suppose we are interested in the effects of an 

intervention that aims to increase student performance by offering free supplementary 

teaching to students to help them review material discussed in class. Suppose we have 

two school districts, ! and !, where students in !!are stigmatized by their peers for being 

in need of supplementary teaching, making them less confident in their abilities and 

decreasing their performance on tests, but students in ! are not stigmatized in this way. 

Here, the causal effects of the intervention may systematically differ at the site level: all 

students in ! experience stigmatization effects and no students in ! do, so these features 

only differ between!!!and ! but not within either population. More generally, site-level 

heterogeneity obtains in cases where environments have characteristics relevant to the 

effect of interest and these characteristics carry over to individuals in virtue of their 

being in a particular place, time, or setting. This can include social norms, institutional 

arrangements, sociodemographic features (when sites are homogeneous in this respect), 

and other kinds of ‘blanket features’ that generally, or predominantly, affect individuals 

in virtue of belonging to a particular population. 

 Finally, there is also implementer-level heterogeneity (see e.g. Muller 2015). Here, 

the idea is that the agents who implement the interventions of interest, e.g. local 

government officials, NGO workers, etc., can have specific causally relevant features 

that bear on the effects experienced by the agents to whom they administer the 

treatment. In the simplest case, populations !!and ! are identical in features relevant to 
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the causal effect of interest, and treatment in ! and ! is administered by agents ! and ! 
respectively. If ! and ! possess causally relevant features that differ, such as different 

levels of experience in implementing the intervention of interest, this can induce 

differences in the effects experienced by individuals who receive treatment from ! 
and!!!respectively. Implementer-level heterogeneity is important because even if 

populations are believed to be relevantly similar in individual and site-level 

characteristics, inadequately or differently-trained implementers can still induce 

significant differences between the effects expected in the target and those that will 

eventually obtain.3  

 In addition to these three levels, there may be yet other levels of description at which 

HTEs can obtain. These will be bracketed for the remainder of the discussion as the 

above levels are arguably the most important ones.  

 Let me proceed to elaborate in more detail on the underlying reasons for why HTEs 

obtain: causally relevant differences between individuals, settings, implementers, and so 

forth. Such differences can be realized in various ways. I begin with the key concept 

that is used in the extant literature to explain HTEs: moderating variables. I then 

proceed to identify three further, heretofore unrecognized sources of HTEs: mediating 

variables and constrained intervention and outcome variables.  

 

2.3.2 Moderating Variables 

Following Baron and Kenny (1986, 1174) moderating variables are qualitative or 

quantitative variables !" that can change the magnitude and/or sign of the marginal 

causal effect between a pair of variables ! and !. So different realizations of !" will 

induce, or at least coincide with (more on this shortly), different causal effects of a 

given intervention.  

 To give a simple example, let ! be individuals’ self-reported headache intensity, let 

!" 0,1  represent whether an individual takes Aspirin, and let !" be age. Let us 

suppose that, for some underlying physiological reason, the marginal causal effect of 

setting ! from ! = 0 to ! = 1 for individuals ! and!! differs as a result of differences in 

their age !". 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Note that, in principle, site- and implementer-level HTEs can be explained at the individual level, e.g. 
when we describe features of sites or implementers as features that are ‘imposed on’ individuals. 
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 Graphically, this situation is often represented by an arrow-on-arrow arrangement as 

in Figure 1 below (see Weinberg 2007; see Elwert 2013, 255 for arguments against this 

representation). Here, there is a causal arrow from !" that points onto the causal arrow 

from ! to !, to indicate that the causal relationship between ! and ! is co-determined 

by, and changed under intervention on, !". 

          

   Figure 1: Moderation 

There are various types of moderating variables that can be distinguished. For instance, 

moderators can be continuous, dichotomous, or categorical. Moreover, the way in which 

causal effects of ! on ! are co-determined by moderating variables can differ 

importantly as well. 

 First, an effect can be fully moderated, in which case all contributions of ! to ! are 

produced in interaction with the moderator and there is no separate, direct effect of ! on 

! that would remain unaffected by changes in !". This can be represented by: 

! = !(!,!",!)+ ! 

 Here, ! captures the effect of all variables on ! that do not interact with !, and !(⋅) 
is an interactive function of ! and !", such as ! !,!",! = ! ∗ ! ∗!". Here, !(⋅) 
cannot be additively separated into two functions ! ⋅  and ℎ(⋅) where either of these 

functions does not depend on !". In this case, !" and ! are equally privileged in 

bringing about or curtailing changes in !, e.g. when !" = 0, there is no marginal 

effect of ! on !. Likewise, if ! = 0 then changes in !" cannot effect changes in !. In 

these cases, it would be possible to say that what counts as the intervention variable and 

what counts as the moderating variable is a matter of our epistemic or pragmatic 

interests and not a substantive distinction between different types of causally relevant 

variables. 

 This is different in the case of partially moderated effects. Here, the moderator 

interacts with the treatment to produce an idiosyncratic contribution that depends on the 
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value of the moderator, but there is also a separate, unmoderated effect of the 

intervention variable on the outcome; i.e. a baseline effect of ! on ! that we get no 

matter the value of !". This can be represented by: 

! = !(!,!",!, !)+ ! 

 In contrast to fully moderated effects, here we allow that !(⋅) is additively separable 

into ! ⋅  and ℎ(⋅), and either ! ⋅  or ℎ(⋅) do not depend on !!, such as when: 

! = ! !,! + ℎ !,!", ! + ! 

 Here, !(⋅) does not depend on !", but ℎ(⋅) does. !(⋅) hence captures the 

unmoderated, baseline effect of ! on !, and ℎ ⋅  captures the moderated effect that is 

produced in interaction of ! and !". 

 In this case, the intervention variable is causally privileged over the moderating 

variable. While, in principle, a wide range of changes in ! may still be effected by an 

intervention on either !, or !!, or both, not all changes in !" will have effects on !. 

Unlike in the fully moderated case, this implies that we cannot represent the same 

situation with two different graphs by exchanging !" and !: 

    

   Figure 2: MO and X are not exchangeable between a) and b) 

 For partially moderated effects, these diagrams would be inequivalent, since in 

Figure 2a) interventions on ! can have an effect on ! even if !" = 0, but not the other 

way around, and in Figure 2b) the situation is reversed. For instance, if in Figure 2a) 

ℎ !,!",! = ! ∗ ! ∗!", then if ! = 0, changes in !" do not effect changes in !. 

This is in contrast, for instance, to Cartwright’s conception of causal support factors 

(Cartwright 2013), which seems closer to the fully interactive interpretation of 

moderating variables. I will discuss the relation between moderating variables and 

causal support factors in more detail in the appendix to Chapter 4. There, I will also 

discuss cases of non-linear moderation, i.e. where the marginal causal effect of ! on ! 

varies non-linearly over !", including cases where ! ⋅ is a stepwise function of !", 
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such as when !" has a threshold value ! below which Δ!/Δ! = 0, and above which 

Δ!/Δ! = !. 

 There are several additional variations on the above cases that have been discussed in 

the literature (see e.g. Kraemer et al. 2001; 2002; Marsh et al. 2013). These will not be 

discussed here, as the qualitative distinctions above are sufficient to make clear how the 

most important types of moderating variables can induce differences in causal effects 

between individuals, and between populations. 

 With these general points in place, let me turn to an important clarification. The 

concept of moderating variables seems innocuous at first, but there is an important 

distinction to be made between a causal and statistical interpretation of moderating 

variables. More specifically, the definition of moderating variables provided above, i.e. 

variables !" that induce differences in a causal effect between ! and !, is a causal 

notion of moderating variables: it makes clear that differences in !" causally induce 

differences in the effect of!!!on !. This also implies that there can be interventions on 

!" that will induce differences in the potential outcomes of individuals, and hence in 

the causal effects experienced by individuals with respect to one and the same 

intervention on !.  

 Yet, this definition alone does not yet help us identify moderating variables from 

data. For this, an alternative operationalization is needed. One candidate is to say that 

moderating variables are variables !", where the causal effect of !!on ! differs over 

different levels of !". This can be tested by modelling a statistical interaction between 

! and !", e.g. as ! = ! ∗ ! + ! ∗!" + ! ∗!! ∗ ! + !. Here, !" is a moderator if 

the interaction !" ∗ ! is significantly correlated with the outcome (and potentially also 

uncorrelated with !, see Baron and Kenny 1986). This would be a statistical notion of 

moderating variables. However, a variable !" satisfying this operationalization is 

neither necessary nor sufficient for it being a moderating variable in the causal sense. 

Figure 3 illustrates: 



 29 

 

Figure 3: MO is a causal moderator in a) but not in b)  

 In Figure 3a), !" is a genuine, causal moderating variable, represented by the arrow 

pointing from !" onto the path connecting ! and !. In Figure 3b), ! is a causal 

moderating variable, and !" is a child of !. Because !" and ! are correlated, and 

! is correlated with the magnitude of the causal effect of ! on !, !! will satisfy the 

statistical definition of moderating variables, but not the causal one.4  

 This distinction is important. While it is not essential to distinguish between causal 

and statistical moderators for investigating whether there is heterogeneity in effects 

across !", or for some cases of predicting differences in causal effects of ! on ! 

across !" in a novel target5, the causal/statistical distinction is crucially important for 

intervention. If one suspects that !" is a causal moderating variable of an !-!-effect, 

e.g. on the basis that higher levels of !" coincide with larger effects of ! on !, then 

this may give us reasons to believe that intervening on !" in addition to ! can help us 

achieve larger causal effects by creating favourable realizations of !" that are believed 

to further increase the effects of interest. Such attempts will generally remain 

unsuccessful, however, if the variable to be intervened on is not a genuine causal 

moderator, but merely a close correlate of some other variable ! that is a causal 

moderator, such as in 3 b).  

 These cases can, in principle, be disambiguated from observational data but only if 

! is known and can be conditioned on, which is not always the case and may be 

difficult if ! is a latent variable (such as a psychological characteristic) that cannot be 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Similarly, there can be cases where a variable !" downstream of ! will satisfy the statistical notion of 
moderating variables, as many variables that are (co-)determined by ! will correlate not only with ! but 
also with changes in ! induced by !, i.e. causal effects. These cases, of course, would not satisfy the 
causal notion of moderating variables, and for identification of moderating variables from statistical data, 
our statistical notion will consequently need to be refined to exclude these cases.   
5 Specifically, cases where !" and ! (or some relevant analogue) play the same causal role in both 
populations, and one has strong reasons to believe that this is so.  
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easily measured in the first place. Alternatively, an obvious test to help tell whether a 

variable !" is truly a moderator in the causal sense would be to manipulate !", or 

indeed both ! and !", in an experiment (see Imai et al. 2013).  

 This completes my overview of moderating variables. Let me expand on other types 

of variables that can induce HTEs: mediating and constrained outcome/intervention 

variables. 

 

2.3.3 Mediating Variables 

A second important class of variable that has the capacity to induce differences in 

causal effects between individuals, and between populations, is that of mediating 

variables. In contrast to moderating variables, which induce differences in causal effects 

by meddling with the relationship between!! and !, mediating variables are variables 

that sit, as it were, on the causal pathway(s) between ! and !. Figure 4 represents the 

simplest case, where there is one causal pathway connecting ! and !, and this pathway 

is mediated by !, so all variation in ! induced by changes in ! is transmitted through !, 

and manifests itself as variation in !. 

 

Figure 4: Mediation 

 At this stage, readers familiar with the literature on causal inference, extrapolation of 

causal effects, and related topics might wonder why mediating variables are discussed 

as candidates for inducing HTEs. Indeed, on standard treatments of mediating variables, 

this would be surprising. Mediating variables transmit causal effects, but they do not 

meddle with them. Consider the probabilistic dependence and independence 

characteristics of ! in Figure 4. ! is correlated with ! and !, and uncorrelated with ! 

conditional on !. And while ! is correlated with ! unconditionally, it is not correlated 

with differences in potential outcomes !(1)− !(0), i.e. causal effects. Specifically, 

higher pre-intervention values of Z will coincide with higher post-intervention values of 

! (assuming that ! and!! are positive). So ! is correlated with the levels of potential 

outcomes, and hence the levels at which differences in potential outcomes, qua causal 
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effects of interventions on !, are realized. But ! is uncorrelated with differences in 

potential outcomes, i.e. the magnitude of causal effects. This can be easily understood 

with basic differential calculus. Let  

! = ! ∗ !"

! = ! ∗ !"

then  

!! = !!! ∗ !! ∗ !! 

and Δ!/Δ!! = !! ∗ !, so causal effects, do not hinge on initial values of ! (or indeed 

!). 

 To give an intuitive example, if a job training programme is supposed to improve an 

individual’s job prospects by means of increasing the quality of her CV, then her pre-

intervention CV quality will determine whether her CV will improve from, say, 

moderate to good, or rather from good to very good, i.e. it will affect the levels at which 

treatment effects obtain. But the pre-intervention CV quality will not affect the 

magnitude of the effect on CV quality induced by the training programme, if we assume 

for the moment that the difference from moderate to good is evaluated the same as the 

difference from good to very good (I will say more on this shortly).  

 However, there are three important and related types of cases where, contra these 

intuitions, differences in mediating variables can induce differences in causal effects: 1) 

non-linearly associated mediators, 2) bounded mediators, and 3) dichotomous 

mediators.  

 First, non-linearly associated mediators are mediators that transmit variation from ! 

to ! in a non-linear fashion. Specifically, let us assume the simplistic causal model from 

Figure 4. Let the equations describing this model be: 

! = !(!,!)"

! = !(!!,!,!) 

where !(∙)!is the function capturing how ! bears on ! and !(!!,!,!) hinges on the 

pre-intervention value of ! = !!, such as when !(!!,!,!) =!!! + ! ∗ !. Now, if !(∙
)!is non-linear in !, such as when !(!,!) = ! ∗ !!!then the pre-intervention value of !, 

!!, will bear on the magnitude of the causal effect of interest. This is easy to see if we 

take the first derivative of ! with respect to !:!!!(!) = 2!". The marginal effect 
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induced by a given intervention on ! will depend on the initial value of!!, which in turn 

depends on the initial value of X.  

 As an intuitive example, consider the case of an educational intervention that aims to 

improve students’ ability to translate Latin texts to English by means of lessons that 

help increase the scope of their vocabulary. We can imagine that students with more 

extensive pre-intervention vocabulary may benefit more from the lessons, as the newly 

learned words complement their pre-existing vocabulary in ways that allow them to 

translate whole text passages without substantial difficulties. For students with low pre-

intervention vocabulary scope, the same increment of newly learned words may have 

smaller effects as complementarity with pre-existing vocabulary may not materialize for 

lack of such pre-existing vocabulary. 

 This can also work the other way around. The marginal effect of grammar tutorials to 

increase students’ understanding of Latin grammar in order to improve their translation 

performance may importantly depend on pre-intervention understanding of grammar. If 

the lessons are pitched at a relatively low level, then students with excellent pre-

intervention understanding of Latin grammar may not be able to reap substantial 

benefits given much of the lesson covers material that is redundant to their well-

developed pre-intervention understanding of Latin grammar. 

 More generally, non-linear functional form associations can be an important source 

of HTEs between individuals and between populations. In some cases this is obvious. 

For many educational interventions it is not surprising that interventions that are 

targeted to improve low- or high-ability students’ performance respectively will not be 

as effective if delivered to the other group. There are clearly other cases, however, 

where this is not as obvious. For instance, dose-response relationships are a central 

concern in epidemiological studies, and while there is a generally well-motivated 

suspicion that dose-response relationships might be non-linear, there are usually no 

obvious ways to determine even rough features of the functional form before extensive 

empirical investigation. Similarly, in many EBP settings it will not only often be 

difficult to estimate functional form associations from observational or experimental 

data, but there is also, perhaps unfortunately, often little concern for investigating such 

issues to begin with. So while non-linear functional form associations of mediators are 

clearly important for HTEs, and consequently for extrapolation, they remain 

understudied. 
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 A second, related case where mediating variables can induce HTEs concerns 

bounded mediating variables, i.e. variables that have a natural or otherwise induced 

upper or lower bound. For instance, consider again the job-training programme that is 

supposed to increase jobseekers’ CV quality. Here, it seems plausible to think that CV 

quality has both an upper and lower bound, beyond which changes to a CV will not 

matter for the assessment of its quality. Let us assume that two individuals ! and ! have 

good and excellent CVs respectively. Specifically, !’s CV is excellent beyond 

improvement; there is no feasible change to her CV that would induce changes in the 

assessment of its quality, or, indeed, !’s subsequent job prospects. If this is the case, 

then one and the same intervention will have different marginal effects on the outcome 

for ! and ! respectively, depending on their pre-intervention CV quality. This is 

essentially a special case of non-linear functional form association discussed before but 

merits separate discussion because the reasons for why certain variables are bounded 

can sometimes be more easily appreciated (and measured) than whether or not they are 

non-linearly associated with an outcome of interest.  

 Finally, the third case where mediating variables can induce HTEs concerns binary 

mediating variables. Let the intervention of interest be a GMAT6 training class and the 

outcome be long-term average earnings. Let us assume that earnings are importantly 

determined by whether agents attend ivy-league universities and that there is a sharp 

threshold GMAT score ! that agents need to surpass in order to attend ivy-league 

universities. The mediator of interest here is ivy-league university attendance, which is 

a range-property supervening on GMAT score. For simplicity, we assume that scoring 

above ! on their GMAT will make agents attend ivy league college (without defiers, i.e. 

so all agents above ! are guaranteed to attend ivy league college), and scoring below ! 

will preclude them from doing so (without defiers, i.e. no agent below ! will attend ivy 

league college). Let us assume that GMAT performance is determined by a latent 

variable called GMAT Skill. If pre-intervention GMAT Skill is beyond a level where 

individuals surpass ! with near certainty, then this means that a GMAT training class 

will not be effective in changing their propensity to get into ivy-league universities, and 

hence their subsequent earnings. Individuals are saturated with respect to GMAT Skill. 

Even though skill can still be improved in a way that would increase individuals’ test 

scores even further beyond !, such improvements do not bear on the subsequent 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Graduate Management Admission Test, an admission test used for governing entry into various study 
programmes. 
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outcomes of interest. Hence, similarly to the above cases, the case of binary mediators is 

one where individuals’ potential outcomes are a non-linear (in this case stepwise) 

function of the pre-intervention value of a mediating variable. So, under some 

conditions, pre-intervention values of binary mediators can induce important 

heterogeneity in causal effects between individuals, and consequently between 

populations.  

 Let me expand on two additional sources of HTEs at the level of variables, which are 

related to the cases discussed above.  

  

2.3.4 Constrained Intervention and Outcome Variables 

So far I have discussed the role of variables that sit on, as it were, or otherwise directly 

affect the causal pathways connecting treatment and outcome variables, i.e. moderating 

and mediating variables. Similar to these variables, both the outcome variables as well 

as the intervention variables themselves can also induce HTEs (see e.g. Keane 2010).  

 First, pre-intervention values of intervention variables can induce HTEs in the 

following way: Let ! be a binary variable with values !" !!, !′′  and !′′ > !!. Let !! 

be the pre-intervention value of the intervention variable !. Let the intervention of 

interest be such that it sets ! = !!! for all individuals. Then, for two individuals ! and!!, 
with !!,! = !! and !!,! = !!!, the intervention will change !!only for ! but not for !. 
Hence, if Δ!/Δ! ≠ !0 for !, causal effects experienced by ! and ! will be different. 

 Second, essentially the same applies when ! has a lower or upper bound and 

either!!!or ! exhibit !! at the lower (upper) bound !!"#$ (!!"), and the intervention sets 

! = !!"#$ (!!"), or near ! = !!"#$ (!!") for all individuals. 

 A third way in which pre-intervention values of ! matter for effect magnitudes is 

when an intervention adds some constant amount Δ! to !!, individuals differ in their 

pre-intervention value !!, and when the outcome is non-linear in ! (or non-linear in any 

mediator ! on the pathway between ! and !).  

 Similar concerns apply to outcome variables. When outcome variables are bounded, 

then causal effects experienced by individuals can differ with respect to their pre-

intervention values of the outcome !!. If individuals are already within a region ! 

smaller than Δ!/Δ! from the upper or lower bounds of !, then, other things being 
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equal, an intervention on ! that will move individuals closer towards either bound will 

have smaller effects for individuals within ! of !! than for individuals at or outside of 

!.7 

 For now, this overview is sufficient to make clear that, in different ways, causal 

effects can vary between individuals, and hence between populations, depending on the 

values that different kinds of variables associated with individuals assume, specifically 

moderating, mediating, intervention, and outcome variables. Even without further 

consideration of the likelihood of substantial differences between individuals in these 

respects, the sheer number of ways in which individuals may differ in causally relevant 

characteristics suggests that HTEs are likely to obtain.  

 

2.4 Species of Causally Relevant Similarities and Differences 

So far the discussion of causally relevant differences that can induce HTEs, and hence 

present obstacles to extrapolation, has focused on the role played by differences in the 

values of variables. However, this is not the only level at which causally relevant 

differences can obtain between individuals and between populations. Specifically, 

causally relevant differences at the level of variables only mark one of at least three 

different levels at which such differences can obtain. In addition to differing in the 

realizations of variables, individuals and populations may also differ at the level of the 

functional form of causal relationships and the parameters governing the causal effects 

between variables, as well as at the level of the basic structure of the causal 

mechanisms governing the outcomes of interest. Let me provide a brief overview of 

these three levels to establish a more comprehensive picture of the various ways that 

causally relevant differences can obtain between individuals and between populations. 

 

2.4.1 Variables 

The first level at which individuals and populations may exhibit causally relevant 

differences concerns the realizations/distributions of variables. The kinds of variables 

that can induce such differences at this level have been extensively discussed above.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!See e.g. Sundell et al. (2008) for a case from social psychology where the status quo before intervention 
is so good that treatment cannot improve much on it.!
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 So far I have mostly focused on differences in variables at the individual level. In 

extrapolation we typically care about differences in ATEs between populations, 

however. So a more general statement of the concern about differences in variables is 

that ATEs between populations can differ if the distribution of variables that can induce 

differences in causal effects differs between populations. 

 For instance, if the mean of a moderating variable !" differs between populations ! 

and !, then ATEs in ! and ! will often differ. Similarly, while the mean of !" might 

be the same in ! and !, its variance may differ, so the variance of ITEs in ! and ! may 

differ as well. Analogous differences can apply to other moments of distributions, too, 

such as kurtosis or skewness. Here, one and the same intervention with one and the 

same ATE in both populations may put more or less distributional mass on extreme 

values in one population than in another. In general, differences in distributions of 

variables that bear on the magnitude or sign of the effects of interest may not 

necessarily manifest themselves in differences in ATEs, but in ways that are less 

immediately obvious. This is important whenever extrapolation involves not only 

concerns for whether ATEs will be similar in the target as in an experimental population 

but involves more ambitious aims regarding welfare analysis, e.g. whether an 

intervention that satisfies certain distributive desiderata in an experimental population 

will also satisfy these desiderata in a distinct target.8 

 In addition to these basic concerns, there are also some more intricate concerns that 

can add significant complexity to the challenges posed by differences in variable 

distributions. Specifically, individuals, and populations, may frequently differ in more 

than one variable relevant for the causal effects of interest. This is important in multiple 

ways. For one, even minor differences in variables, if there are many such differences, 

can compound to significant differences in ATEs between populations if these 

differences have the same qualitative bearing on the effects of interest. Conversely, 

differences in causal effects induced by differences in variables can also attenuate each 

other or cancel each other out, so observing differences in variables known to induce 

HTEs does not licence the conclusion that ATEs will be different unless one is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 This is not to suggest that learning the distribution of ITEs in an experimental population is ever 
straightforward. Sophisticated subgroup-analyses can be helpful for this purpose, but they are subject to 
important methodological concerns (see Varadhan and Seeger 2013; Khosrowi 2019 for overviews). 
While still rare, it is hoped that such analyses will be more common in the future. To the extent that they 
will be, it is important to recognize that extrapolating conclusions about distributional features to novel 
targets poses additional challenges to extrapolation; these will not be discussed here. 



 37 

somewhat confident that there are no other differences that might attenuate or cancel out 

those of primary interest. Finally, it is important to note that moderating variables may 

also interact not just with the treatment itself but also with other moderating variables 

(see e.g. Fuller 2018). This adds further complexity to the assessment of how 

differences at the level of variables will bear on differences in causal effects between an 

experimental and target population. I will return to discuss some of these complexities 

in more detail in the appendix to Chapter 4 when exploring Cartwright’s conception of 

causal support factors. For now, let me expand on two additional levels at which 

causally relevant differences can obtain. 

 

2.4.2 Parameters and Functional Form 

The second level at which populations can differ in causally relevant respects concerns 

the structural parameters associated with the variables that figure in the causal 

mechanisms governing the effects of interest and the functional form association of 

these variables. !!can be causally relevant for ! in an experimental and target 

population, yet the particular way in which ! is relevant for !, i.e. the structural 

parameter capturing its effect on !, or the functional form of the structural equations 

best representing the causal relationships between ! and !, can differ between 

populations.9  

 In the simplest case the mechanism connecting ! and ! is one unmediated path from 

! to !, and the parameter ! governing the marginal effect of ! on !, or the functional 

form association between ! and !, differs between populations ! and !, so the causal 

effects of a given intervention on ! will differ between ! and !. 

 There are several variations on this simplistic setting. For instance, the way in which 

moderating variables affect causal relationships between ! and ! can differ between 

populations, too. For instance, for one and the same intervention, higher values of !" 

might induce larger effects in population !, but smaller effects in population !. Here, 

the sign of the parameter associated with !" differs between populations, but 

differences in magnitude can be similarly important in bringing about significant 

differences in causal effects between populations. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 I will not discuss issues of functional form differences in detail at this stage – these will be discussed in 
later chapters in the context of concrete extrapolation strategies that make assumptions about functional 
form similarities.  
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 Another important class of cases involving differences in parameters concerns the 

parameters associated with the pathways determining and originating from mediating 

variables between ! and !. This is important for instance in cases of partially mediated 

effects, e.g. when there is a causal pathway from ! to ! that is mediated by !, but there 

is also a second, unmediated causal pathway from ! to !. Figure 5 visualizes:  

 

Figure 5: Partial mediation 

 Here, the relation between the path parameters !, !, and ! determines what 

proportion of the !-!-effect is mediated by ! and what proportion is unmediated. 

Differences in !, !, and ! can importantly change this proportion, and hence have 

significant bearing on differences in causal effects between populations.  

 This applies to somewhat more complex cases of moderated mediation and mediated 

moderation as well (see Muller et al. 2005):  

 

    

Figure 6 a) moderated mediation; b) mediated moderation 

 In moderated mediation (Figure 6a), either the path from ! to a mediator !, or the 

path from ! to the outcome!!!are moderated (or both). In mediated moderation (Figure 

6b), the effect of a moderator on another causal pathway is mediated by some variable 
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!. Both cases can potentially further aggravate differences in causal effects brought 

about by differences in parameters when !" differs between populations. 

 Another type of parameter worth mentioning is the meta-parameter, i.e. a parameter 

that captures the rate at which another variable or parameter can change. Such 

parameters may often be constant for individuals but may differ importantly between 

individuals. For example, behavioural nudge interventions often aim to intervene with 

agents’ behavioural response profiles with respect to a given institutional/incentive 

structure. In these cases, it often seems that the primary targets of interventions are not 

variables, such as household endowment, but instead structural parameters. For 

instance, a well-known nudge intervention called the Save More Tomorrow programme 

(Thaler and Benartzi 2004) aims to increase employees’ retirement savings 

contributions. This intervention aims at meddling with the ways that agents perceive the 

subjective value of present and future payments. Here, the idea is that because agents 

tend to discount the value of future rewards over present rewards, the scheme can 

increase agents’ savings for retirement by offering them a choice to commit to saving a 

share of future salary raises towards retirement rather than consumption in the period 

when the salary raises are received. This could be reconstructed as intervening on a 

structural parameter, i.e. the parameter that converts income in period ! into savings and 

consumption respectively, by having agents commit to choices that derive from the 

parameter value that applies to future rewards, rather than having them behave in 

accordance with their parameter for present rewards, and succumb to the temptation of 

consuming more at the time when the salary raises commence. So, the programme is 

supposed to work in a setting where the values of variables are fixed, i.e. income 

schedules, relative prices etc. are given, and intervenes with the parameters that figure 

in agents’ cognition when making decisions about diverting income into present and 

future consumption respectively. 

 This case suggests that some interventions are more appropriately conceptualized as 

interventions on parameters rather than variables. What is important about this is that 

the effectiveness of such interventions seems to hinge on the agent-specific malleability 

of these parameters, e.g. the extent to which, for a certain framing of a choice setting, 

agents are willing to commit to changes of parameters that will bear on their future 

savings contributions, i.e. the outcome variable that the intervention is supposed to help 

increase. This malleability, i.e. the meta-parameter governing the sensitivity of a 
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parameter to interventions, may importantly differ between agents, and the effectiveness 

of an intervention aiming to change such parameters may consequently differ 

importantly between individuals, and between populations.  

 In summary, as the cases outlined above make clear, it is not just differences in 

variables between individuals and populations that can induce differences in causal 

effects. In various ways, differences in parameters associated with paths that connect 

the treatment and outcome variables of interest, as well as the functional form of the 

relationships between variables, can induce such differences as well.  

 As is the case with differences in variables, it is important to keep in mind that 

learning about differences between populations in parameters/functional form does not 

imply that causal effects will be different, as these differences can be partly or fully 

mitigated by yet other differences. Similarly, learning about some similarities in 

parameters/functional form does not imply that causal effects will be the same or similar 

between populations, as there may be other, unknown differences that can still induce 

differences in effects between populations. 

 

2.4.3 Basic Structure of Mechanisms 

Finally, the third level at which causally relevant differences between populations can 

obtain concerns the basic structure of the causal mechanisms that govern the effects of 

interest. For instance, ! can be causally relevant for ! in ! but not in !, e.g. because 

there is no causal pathway connecting ! and ! in !, or the mechanism is disrupted in 

some subpopulation of individuals in !. 

 More generally, differences at this level concern qualitative features of causal 

mechanisms. Several kinds of differences are important here, including whether there is 

some causal relationship between a pair of variables ! and ! and what the direction of 

the causal arrow connecting these variables is. Differences in these dimensions can 

obtain between individuals, and between populations. Although some differences seem 

somewhat unlikely (e.g. reversals of arrows between two individuals), others seem to 

pose more realistic threats to successful extrapolation, such as when a social norm in A 

induces economic decision-makers to respond to the presence of a certain salient social 

feature Z, but the same is not true in B. Here Z is involved in the decision-making 

mechanisms in A but uninvolved in B. 
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 Similar to the considerations offered above, differences at the level of the basic 

structure of mechanisms do not imply differences in causal effects, and similarities do 

not imply similarities in causal effects between populations. If there is a mediated 

causal pathway ! → ! → ! in ! but one of the two relationships is severed in !, ! can 

still be causally relevant for ! if there is another causal pathway from ! to !. Similarly, 

if ! → ! → ! in both populations, then the efficacy of ! for ! can be curtailed if there 

is a counteracting pathway that has opposite causal relevance and can suppress changes 

in ! brought about by changes in !. 

 

2.4.4 Causally Relevant Differences Summarized 

The previous discussion offers a general framework for thinking about how problems of 

extrapolation are constituted, i.e. by causally relevant differences between individuals 

and populations at different levels of causal analysis: variables, parameters/functional 

form, and the basic structure of causal mechanisms. Differences can obtain at any or all 

of these levels, and to varying degrees, thus posing problems of different difficulty, for 

instance, because some differences at some levels (such as the basic structure of 

mechanisms, difficult to measure parameters, or latent variables) are epistemically less 

readily accessible than others. 

 What this analysis also makes clear is that some differences are more fundamental 

than others. Specifically, as I will discuss in more detail in subsequent chapters, some 

extant strategies for extrapolation explicitly attempt to account for causally relevant 

differences between populations. Yet, while these attempts can sometimes be 

successful, such strategies often consider only differences at the level of the 

distributions of variables, but not differences in parameters, functional form, and basic 

causal structure. It seems, however, that differences at these levels are more 

fundamental in the sense that unless one is confident that populations are similar at 

these levels, there is no point in trying to accommodate, and adjust for, differences at 

higher levels. For instance, if populations differ at the level of the basic structure of 

causal mechanisms, such as when there is some causal pathway from ! to ! in ! but 

not in !, then adjustment for differences at higher levels does not change or add to the 

conclusion that interventions on ! will have no effects on ! in !. The converse is not 

true: if there are differences in the distribution of a moderating variable !" 

between!!!and !, then our conclusions about causal effects in ! will still be responsive 
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to further information about similarities and differences in parameters and basic 

structure. 

 The framework outlined above is useful in several general ways: it allows us to 

distinguish different problems of extrapolation according to severity; it helps distinguish 

the epistemic challenges involved in learning about causally relevant differences and 

similarities between populations; and it is useful for assessing the scope of extant 

strategies for extrapolation in addressing different types of problems, including what 

assumptions they involve about similarities at each of the above levels.  

 Before this framework can be successfully put to use, however, some clarifications 

are in order: while variables and basic structural features (such as whether or not there is 

a causal relationship between two variables) seem like uncontroversial units of causal 

analysis, a critical reader may wonder about the nature of the parameters discussed here. 

More specifically, while it is reasonably clear what a variable is, and what it means for a 

causal relationship between ! and ! to be present, absent, have different directions, or 

to have a specific functional form, my analysis may raise the question of what, after all, 

parameters are and whether parameters constitute a genuine level of causal analysis. 

 These questions are important because it may seem that parameters are merely a 

convenient summary, obtained by measurement, that accounts for what happens to an 

outcome ! if we induce a marginal (e.g. one unit) change in a causal parent !. As such, 

a parameter would be nothing more than a measure of a marginal causal effect. 

Specifically, saying that the parameter on the path from ! to ! is such-and-such would 

not assert anything about whether there is a more fine-grained causal structure 

underlying these marginal causal effects, what this structure looks like, or whether the 

path between ! and !, as well as the parameter itself, is indeed a primitive unit of 

causal analysis. 

 This could be a challenge for the persuasiveness of my analysis, because it may seem 

that, in many cases, causally relevant differences that purportedly obtain at the level of 

parameters can in fact be attributed to, and explained in terms of, other differences at 

the level of variables or the basic structure of mechanisms.  

 For instance, let ! be a job-interview training programme, let ! be a latent mediating 

variable capturing applicants’ interview skills, and let ! be success in job interviews. At 

face value, the path from ! to ! may have different parameters in different individuals, 
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capturing how the change in skills from exposure to the training programme differs 

between them. However, it may seem that these differences are not brute differences, 

and may instead have a deeper explanation, in the sense that they are attributable to 

differences that obtain at the level of a more fine-grained causal structure underpinning 

the relation between ! and !; most likely the cognitive mechanisms governing how 

individuals convert various inputs obtained in training classes into domain-general 

interview skills.  

 To further clarify this concern, it might be useful to distinguish between two notions 

of parameters: causal and statistical. Causal parameters would be those that are 

genuinely causal in nature and could (at least in principle) be intervened on directly, 

whereas statistical parameters would be mere representations of factual and 

counterfactual features that an underlying causal structure regularly gives rise to. As an 

example of a causal parameter, we might consider the size of a water valve’s aperture, 

i.e. a parameter that corresponds closely to, or is identified with a physical quantity that 

is nomologically related to an outcome of interest, such as the flow of water, or the time 

it takes to fill a container placed under the valve’s opening. Such parameters, in many 

cases, can be straightforward targets of actual or hypothetical interventions that would 

change the factual and counterfactual quantities that constitute the effects of interest. 

 An example for a statistical parameter could be students’ learning speed, e.g. the 

marginal change in propositional knowledge held by a student with respect to a given 

exposure to training classes. This parameter seems better understood as convenient 

shorthand for lower-level features of the mechanism governing the production of 

individuals’ propositional knowledge. Intervention here seems more difficult, as 

learning speed is not easily directly manipulated by intervention on a single variable or 

entity with variable properties (such as the water valve). This does not mean that 

learning speed is somehow immune to interventions, just that it is more difficult to 

intervene on directly and that successful interventions on learning speed may need to 

target variables and causal structure at those lower levels that the parameter supposedly 

represents, e.g. we could call for students’ attention, allow them to exercise between 

tasks, set up disincentives for being inattentive, give them drugs to focus better, etc. 

While the effect of such interventions on the parameter in question will plausibly be 

transmitted or realized by lower-level causal arrangements that the parameter is 

supposed to represent, this does not mean that the parameter itself cannot be changed. 
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Rather, it just cannot be directly changed, since there is no single variable or entity with 

malleable properties to be directly intervened on (as in the water valve case). 

 While I think that there is an interesting difference between causal and statistical 

parameters, I do not think that the difference between the two matters importantly for 

most of the arguments developed in this thesis.  

 First, while it might be possible to re-describe differences at the level of statistical 

parameters in terms of differences at the level of variables and basic structure of the 

mechanisms governing the relations that the parameter is supposed to represent, this 

does not imply that thinking about differences in statistical parameters does not 

constitute a useful level of analysis. Thinking about causal mechanisms in social 

sciences will often proceed at levels of abstraction where putatively primitive causal 

relationships between variables can, in principle, be unpacked in terms of sub-

mechanisms that constitute, or otherwise give rise to, these relations (see Craver 2007, 7 

for similar points on neuroscience; see also Craver and Bechtel 2007). However, for 

many epistemic activities relevant to social scientists, higher levels of abstraction will 

often be adequate, or indeed more adequate than lower-level characterizations of 

mechanisms (e.g. in terms of neurophysiological mechanisms), to the epistemic aims 

involved in these activities (see also Little 1993).  

 Second, for related reasons, both the estimation of causal effects as well as their 

extrapolation usually proceed, often successfully, at higher levels of abstraction. Hence, 

it can still be useful to think of causally relevant differences at the level of parameters, 

even if, in some cases, parameters are not a genuine level of causal analysis and 

causally relevant differences at this level are ultimately attributable to lower-level 

differences. 

 Third, the concern about whether the levels of causal analysis outlined above are 

genuine also applies the other way around. For instance, one might argue that we can 

represent the presence or absence of causal relationships between ! and ! already at the 

second level, e.g. by setting the parameter for such relationships to zero. Again, while 

this is possible, I prefer to resist such moves to accommodate apparent differences at 

some level by expressing them in terms of differences at other levels. 

 In general, my aim is to keep two issues distinct. First, there are quantitative issues 

concerning the magnitudes (including signs) of marginal causal effects; these seem best 

represented at the level of parameters. Second, there are qualitative issues concerning 
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the presence, absence, direction, and functional form of causal relationships; these seem 

best represented at the level of the basic structure of the mechanisms.10  

 So while I acknowledge that there might be interesting discussions about the nature 

of the levels invoked in my analysis, I will not go deeper into this issue, in part because 

doing so would likely raise all kinds of trouble, including issues of constitutive causal 

relevance, reduction, downward causation, mental causation and other controversial 

subjects (see e.g. Craver 2007; Craver and Bechtel 2007). For the remainder of the 

discussion, I will hence assume, mostly for pragmatic reasons, that the levels of analysis 

outlined here constitute a fruitful basis that helps elucidate problems of extrapolation 

and ways to address them.  

 

2.5 Varieties of Extrapolation 

As the preceding analysis makes clear, causally relevant differences can obtain in 

several different ways, and to different degrees.11 This, by itself, already suggests that 

problems of extrapolation can vary significantly in severity. In what follows, I expand 

on this, as well as on several other important dimensions along which problems of 

extrapolation can differ. At the most general level, I will distinguish between ontic and 

epistemic dimensions of extrapolation. The ontic dimension concerns mind-independent 

or mind-invariant facts12 about the nature of the causal makeup of the populations of 

interest and how the populations are related. In contrast, the epistemic dimension 

concerns issues regarding our knowledge of these facts, our ability to learn such facts, 

and the epistemic aims of the inferences we wish to support by reference to such facts. 

Let me begin with the ontic dimension.  

 

2.5.1 The Kinds and Degrees of Causally Relevant Differences 

As elaborated above, experimental and target populations can differ in various ways, 

and at different levels of causal analysis. They may differ at only one of the levels or at 

all of them simultaneously, and these differences can obtain in stronger or milder ways. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 Departing from this organization, in Chapter 6 and 7 I will discuss issues of functional form and 
parameters together and target issues concerning the presence, absence, and direction of causal 
relationships separately. This is owed to how some strategies for extrapolation organize these issues.  
11 For a related discussion in computer science, see Subbaswamy et al. (2019). 
12 Of course, such facts (psychological ones) can be about minds, but they can still be intersubjectively 
accepted and hence mind-invariant. 
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To give an intuitive assessment of the scope of variation, consider what is possibly the 

mildest case where two populations ! and ! of equal size only differ in the distribution 

of one variable, say a moderating variable !", and the difference in the distributions of 

!" is minimal in that all individuals in ! and ! have the same values of !" = !", 

except for one individual ! in either population, who has a value of !"! = !"’ ≠ !", 

but where that value is reasonably close to !" = !". This would be a case of causally 

relevant differences that pose no important obstacle to any strategy for extrapolation. 

Indeed, if it were known that populations are related in this way, then even naïve 

extrapolation would presumably yield a reasonably accurate prediction of the causal 

effect of interest in the target.  

 At the other extreme, we can imagine cases where individuals differ at the lowest 

level of the basic structure of causal mechanisms in such a way that there is a causal 

pathway from ! to ! for all individuals in !, but there is no such pathway for some 

individuals in !, a different pathway, involving different moderating and mediating 

variables for yet other individuals in B, and so forth. So ! is causally relevant in !, not 

relevant for some in !, and relevant, but in potentially dramatically different ways, for 

yet other agents in B. ! and ! might additionally differ wildly at the levels of 

parameters, functional form, and distributions of variables. 

 As these considerations make clear, the kinds of causally relevant differences 

obtaining between populations can vary significantly in severity where, even before 

considering particular strategies for extrapolation, it seems clear that some of these 

differences are substantially more challenging than others.  

 Causally relevant differences are not the only facts about how populations are related 

that will bear on our ability to extrapolate successfully. 

 

2.5.2 Distinctness 

Another important dimension concerns the entities that populations are made up of and 

how these entities are spatiotemporally related. Recall the pre-analysis sketch of 

extrapolation offered at the beginning of this chapter: extrapolation is an inference 

starting from knowledge of a causal relationship in some population A to infer a causal 

conclusion about some distinct population B. As suggested, an important question 
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raised by this sketch is what exactly is meant by populations being distinct.13 In addition 

to exhibiting relationships of similarity and difference at various levels, there are also 

important relationships between A and B concerning who or what they are composed of.  

 Generally, although I have treated ! and ! as stand-ins for populations, ! and ! can 

denote various units of analysis, including whole populations, individuals, places, or all 

of these at different times. This gives rise to various sorts of relationships between the 

systems to be extrapolated from and to. 

 For instance, ! and ! can be two individuals, populations, or settings, or be of 

different kinds respectively, e.g. where ! is a population and ! is an individual (such as 

in evidence-based medical diagnosis). ! and ! can also be temporally distinct, where, 

for instance, ! and ! can refer to the same individuals at different points in time. ! and 

!, at the level of populations, may also overlap (even significantly). For instance, ! can 

be a proper and small subset of !, such as when pilot studies are used before an 

intervention is rolled out in a whole population, where the pilot study recruits 

(potentially representative) samples from a superpopulation !.14  

 To offer a sense of the spectrum that is being covered here, consider the mildest case, 

where ! and ! are populations that differ only in one individual !, where !! ∪ !!! = !!. 

At the other end of the spectrum there are populations that are completely distinct in any 

or all of the senses above, so ! ∩ ! = ∅ , where ! and ! might be temporally far 

apart, might be of different kinds, e.g. ! is a population, ! an individual (such as in 

individual-specific effectiveness prediction), etc. All of these features underpinning how 

experimental and target systems may be distinct from one another can sometimes 

covary strongly with different flavours and severities of causally relevant differences 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!One might also wonder whether it is important to explicate what I mean by ‘population’. I understand 
populations merely as collections of individuals situated in a specific context with causally relevant 
contextual features (e.g. of an environment, an institutional structure etc.) being 'attached to' individuals 
in virtue of their being situated in that context. I am open to more involved conceptions, e.g. where 
populations are, in part, defined by causal characteristics. However, for the purpose of targeting 
extrapolation in EBP it seems best to take a 'blank slate' view, where we start by identifying populations 
as just individuals being in a certain place/time, but without being able (before additional investigations, 
anyway) to say more on causally relevant characteristics at the group-level. 
14!Contra authors such as Shadish et al. (2002)!I do not find such cases to be particularly interesting as 
they are arguably not typical in EBP. Here, it is more common to use evidence from populations A that 
are not usefully understood to have been sampled/selected from the target B. Moreover, unlike some (e.g. 
Dias et al. 2012; Stuart et al. 2018), I also do not find it helpful to think about A and B being 
sampled/selected from some general superpopulation C, such as ‘school-aged children in Sub-Sahara 
Africa’. Doing so is often unhelpful because 1) C’s characteristics are rarely known, 2) it is usually 
unclear what sampling/selection process gave rise to the distributions of causally relevant characteristics 
in A and B, and 3) thinking about the differences between A and B as a result of sampling/selection does 
not add much beyond recognizing that individuals in A and B are different in important ways. 
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outlined above, so they can sometimes figure as an intuitive proxy for how likely it is 

that populations are relevantly causally similar or different (cf. Campbell 1986). It is 

still important, however, to keep these issues distinct, as ! and ! being less or more 

distinct does not always, nor perhaps typically, speak reliably for whether they are 

relevantly similar or different. 

 

2.5.3 The Nature of the Intervention  

Another important way in which problems of extrapolation can differ is with respect to 

the nature of the intervention at issue, and with respect to how the actual and envisioned 

interventions in ! and ! are related.  

 A first important layer of analysis concerns general differences in interventions, not 

between ! and !, but rather between interventions in general, even if they are the same 

in ! and !. Interventions can target single variables, multiple variables, parameters, or 

causal structure. They can be point interventions that set the value of a variable ! = ! 

at a certain point in time or interventions that aim to sustain ! = ! for prolonged 

periods, shielding it from changes induced by (variation in) its causal parents. 

 Interventions can also differ between ! and !, such as when the implementation 

quality of one and the same intervention (at some level of abstraction) relevantly differs 

between ! and !, e.g. implementers in ! are more skilled in setting !!within some 

region ! around ! = !!, but implementers in ! (for instance due to lack of training) 

might err more broadly around ! = !,!or even systematically on either side of ! = !, 

thus inducing further causally relevant differences in the causal effects of one and the 

same envisioned intervention in ! and ! respectively.  

 Interventions can also differ more radically, such as in cases where an intervention in 

!!targets a single variable !, but targets (knowingly or unknowingly) multiple variables 

when implemented in !. 

 Another important source of differences in interventions are so-called structure-

altering interventions (see e.g. Steel 2008, ch.8), where one and the same initial 

intervention on ! in ! and ! yields different downstream changes to the causal 

structure and parameters governing the effects in ! and ! respectively. This is 

essentially an extended version of the Lucas critique (Lucas 1976). The idea here is that 

interventions can sometimes meddle with features of the mechanisms connecting an 
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intervention and outcome variable (usually parameters). An extended version of this 

concern relevant for extrapolation is that such (unanticipated or unintended) changes to 

mechanisms effected by an intervention can also differ between populations, e.g. when 

an intervention ! is structure-altering in ! but not in !, or differently structure-altering 

in ! and !.  

 This completes the overview of important differences between problems of 

extrapolation at the ontic level, i.e. the level pertaining to mind-independent and 

invariant facts about the experimental and target populations and how they relate, as 

well as the interventions to be implemented in these populations. These facts have 

important bearing on our ability to successfully extrapolate causal effects in a principled 

way. For instance, if populations are radically different at the level of the basic structure 

of causal mechanisms, or if interventions differ radically between populations, then, 

short of unrealistic cases where we have full knowledge of the causal makeup of both 

populations and how they relate, successful extrapolation will be precluded. 

 

2.5.4 Epistemic Differences 

As already suggested, there is also a second, epistemic layer involved in extrapolation, 

which concerns our knowledge of facts of similarity and differences between 

populations, our ability to acquire such knowledge, the aims we use such knowledge 

for, etc. In what follows I expand on several epistemic dimensions in which problems of 

extrapolation can differ importantly with respect to the nature of the extrapolative 

inference to be drawn, i.e. the mode of inference, the type of conclusion envisioned, the 

knowledge and evidence used to obtain this conclusion, etc. Here, extrapolation can 

differ in the following ways. 

 First, our background causal knowledge can differ importantly between cases. For 

instance, the intervention of interest might be well understood, including the particular 

causal pathways through which it is supposed to induce the envisioned changes in the 

outcome of interest, or we might possess pre-existing causal knowledge about relevant 

(and likely) similarities in the mechanisms governing the effects of interest. We might 

also possess more abstract knowledge that increases our confidence in such similarities. 

For instance, there can be cases where we have good reasons to believe that individuals 

and populations are relevantly similar in virtue of being members of some general type, 

as for instance in biomedical research where mechanisms can sometimes be justifiably 
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assumed to be similar between individuals and populations in virtue of common 

ancestry and heritability of physiological features that jointly give rise to causal 

homogeneity among individuals at many important levels of causal analysis (see e.g. 

Ankeny and Leonelli 2011). On the other hand, there will also be cases where such 

background causal knowledge is not available, such as for novel interventions that are 

not well understood, with no explicit and suitably supported causal theory of the 

mechanisms governing the effects of interest being available, and only local evidence of 

causal efficacy, i.e. evidence that some variable ! is causally relevant for !, but no 

evidence that elucidates features of the underlying mechanism governing this relation. 

 A second, related epistemic dimension concerns the accessibility of knowledge 

regarding causally relevant differences and similarities. This is important particularly in 

cases where our background causal knowledge is insufficient to support the assumption 

that populations are relevantly causally similar. In such cases, it needs to be explicitly 

supported that populations are sufficiently similar in ways that matter importantly for 

the effects of interest, e.g. at the different levels of causal analysis outlined in Section 4. 

In Chapter 8, I will expand in more detail on empirical strategies to generate such 

knowledge, and important difficulties encountered in doing so. For now, it is enough to 

note that while learning the values and distributions of variables is comparably easy, it 

is substantially more difficult to identify which variables are moderating and mediating 

the effects of interest, and even more challenging to estimate parameters and identifying 

functional form associations of such variables as well as identify other, qualitative 

features of the basic structure of mechanisms. 

 Third, extrapolation can also differ significantly with respect to the type of causal 

query to be answered by an extrapolation. Here we can distinguish between various 

different types of queries, including: 

1) Will intervening on ! have some effect in ! if it does so in !? 

2) Will intervening on ! have a similar effect in ! as in !? 

3) Will the effect of an intervention on ! in ! be at least as large as in !? 

4) What is the magnitude of the causal effect of an intervention in ! if it is such-

and-such in !? 

5) What would an intervention !’ in ! need to look like to achieve the same effect 

in ! as ! in !? 
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6) What would an intervention !’ in ! need to look like to achieve some specific 

effect in !? 

7) What is the effect of a never-before-experienced intervention !’ in !, given the 

effect of some other, related intervention !!in !? 

8) What are the characteristics of a population ! where !!would have the same or 

similar effect as in !? 

 More generally, we can distinguish between queries concerning qualitative and 

quantitative effects, between queries concerning the achievement of a specific level of 

an outcome, or rather a specific change in an outcome (both in absolute and relative 

terms), whether the effect should obtain at a particular point in time or be sustained over 

longer periods, etc. Queries may also differ importantly concerning the envisioned 

fidelity of the inference to be drawn. They might ask for anything from a broad 

assessment of the qualitative effects in the target, the quantitative magnitude of the 

effect, to details of the distribution of causal effects in the target, and all of these with 

varying degrees of envisioned accuracy and precision. 

 Even without going into more detail at this stage, it seems clear that some of these 

queries will be considerably more difficult to answer than others, primarily because the 

assumptions required to answer them, and the evidence required to support such 

assumptions, will be more extensive as we move from the top to the bottom of the list. 

 A fourth dimension concerns differences in the mode of inference used to 

extrapolate. For instance, extrapolation can be inductive, where the level of support 

required for a conclusion might differ radically depending on the envisioned fidelity of 

the inference. It may also be deductive, where confidence in the extrapolative 

conclusion is supposed to be promoted not only by the inductive support for the 

premises involved, but also by the deductive rigour of the inference being used.  

 Extrapolative inference may also differ in its envisioned general type of conclusion, 

e.g. whether a dichotomous conclusion is aimed for (will the effect of ! in ! be such-

and-such or not), or whether the conclusion should be probabilistic in nature (e.g. the 

effect of ! in ! is more likely to be greater than Δ! than smaller, or the probability of 

the effect to be such-and-such is !, etc.). 

 Finally, extrapolation may differ importantly with respect to the assumptions 

necessary to licence the conclusion of interest with the envisioned confidence. Such 
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assumptions will typically concern the relationships that obtain between populations at 

the ontic level outlined above, e.g. whether populations are sufficiently similar at the 

level of the structure of mechanisms, as well as the functional form relationships, 

parameters, and variables relevant to the effects of interest.  

 Important differences here will also obtain with respect to the nature and amount of 

evidence used to underwrite these assumptions, and the degree of support it affords. 

Here, the type of evidence can be manifold. It may include observational, quasi-

experimental, and experimental evidence; it can be evidence from the experimental, 

target, or indeed yet other populations or settings; it might be qualitative or quantitative, 

obtained by different methods, including empirical, quasi-empirical or non-empirical 

methods such as computer simulations, etc.  

 These different dimensions, ontic and epistemic, make clear that extrapolation is a 

highly diverse set of epistemic activities: different problems of extrapolation can differ 

radically in the severity of the challenges that they pose and different types of 

extrapolative inference can differ importantly in what they aim to achieve. 

 Despite these differences, there nevertheless seems to be a level of analysis at which 

extrapolations of these different kinds are alike. In what follows, I propose a general 

analysis of extrapolation that will form the basis for the critical and constructive 

contributions to be developed in subsequent chapters. 

 

2.5.5 A (More) Comprehensive View of Extrapolation 

The insights provided above help us put together a more comprehensive view of 

extrapolation. Recall Steel’s characterization of extrapolation that I started from at the 

beginning of this chapter: 

“[…] one begins with some knowledge of a causal relationship in one 

population, and endeavors to reliably draw a conclusion concerning the 

relationship in a distinct population.” (2008, 3) 

 We can now unpack this further: at the most general level, extrapolation is an 

inference I, using evidence E obtained from system A, that aims to infer a conclusion C 

about a target system B, with the help of assumptions P, background knowledge K, and 

supplementary evidence S, pertaining to the relation R between A and B. 
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 So far, the discussion has centred on the evidence E to be extrapolated from, the 

nature of the systems A and B, including their relation R, as well as the mode of 

inference I, and the envisioned type of conclusion C. This has already made clear how 

problems of extrapolations can differ radically in the kinds of challenges that they pose 

under variations in these dimensions, as well as how the aims of an extrapolation may 

differ significantly between cases. For instance, at one end of the spectrum, we may find 

extrapolations that aim to predict the qualitative effects of an intervention from a 

population ! to a superpopulation !, where ! is a large subset of !, ! is sampled 

randomly from !, ! is believed to be causally homogenous (supported by background 

theory and evidence), the intervention in ! and the envisioned future intervention in ! 

are identical under a detailed description, and the envisioned fidelity of the inference is 

low (e.g. it aims to predict whether there will be a non-zero average effect in !). At the 

other end of the spectrum we may find extrapolations where ! and ! are disjoint sets of 

individuals in different locations and times, are further justifiably believed to differ 

substantially along several causally relevant dimensions, the mechanisms governing the 

effects of interest are justifiably believed to be malleable, and the aim is to predict a 

precise causal effect magnitude of an intervention !!!that is substantially different 

from!!!in !. Clearly, the background knowledge, assumptions and supplementary 

evidence required to licence the second kind of extrapolation will be significantly more 

extensive than in the first case, and there are good reasons to believe that this type of 

extrapolation is unlikely to be successful by any standard of success. 

 

2.6 Outlook 

The analysis provided above offers a useful background on what extrapolation is, the 

reasons why extrapolation is challenging, and the epistemic challenges involved in 

overcoming different types of problems of extrapolation that differ in the nature of the 

populations A and B, including their relation R, as well as the mode of inference I and 

the envisioned type of conclusion C. What the discussion has also yielded is that 

extrapolation is a highly heterogeneous collection of problems and inferential activities 

that, beyond conforming to a general template, can exhibit important differences that 

need to be taken into account when devising and evaluating strategies for extrapolation.  

 This discussion hence forms a useful basis for the following chapters, where I will 

turn to the general questions of how to achieve successful extrapolation, what 
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assumptions P are needed to do so, and what supplementary evidence S and background 

knowledge K is needed to support these assumptions. Chapter 3 will make the first 

steps here, by laying out the general assumptions that are shared by existing strategies 

for extrapolation, as well as characterizing strictures on what counts as successful 

extrapolation. 
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 CHAPTER 3 
 
 

Assumptions, Ideals, and Strictures 
 
3.1 Introduction 

As argued in Chapter 1, much of the promise of EBP initiatives hinges on our ability to 

successfully extrapolate to novel policy targets. Without this ability, the value and 

usefulness of effectiveness evidence would be significantly constrained as it would 

always only speak for the effectiveness of interventions where they have already been 

implemented. Clearly, for EBP to be successful we must be able to make some 

inferential leap from the available evidence to a conclusion about policy effects in novel 

targets that goes beyond what we already know. But this leap must also be justified, and 

the justification required for making it must not be overly demanding to come by. In the 

critical chapters to follow, I consider different strategies for extrapolation and argue that 

they fall prey to important problems when it comes to justifying the inferences that they 

enable. Some of these problems will be unique to each of the strategies on offer, but 

others are more general in nature.  

 In this chapter, I focus on the general problems. In doing so I begin, in Section 2, by 

spelling out what I consider to be important underlying assumptions that different 

strategies for extrapolation share; assumptions concerning how likely it is that 

populations are relevantly different and how causally relevant similarities and 

differences between populations bear on similarities and differences in causal effects. 

These assumptions have important bearing on several issues: 1) whether we should 

assume, by default, that populations are relevantly similar or different, 2) what effects 

we are justified to expect in the target when populations are relevantly similar, 3) what 

we can learn about likely differences in causal effects from investigating causally 

relevant similarities and differences between populations, and 4) whether we can still 

successfully predict causal effects in a target, despite causally relevant differences. I 

argue that the general assumptions made by existing strategies are largely compelling 

and allow us to sketch out a guiding ideal for extrapolation. This guiding ideal clarifies 

that, at least in principle, successful extrapolation is possible for a wide range of 

extrapolative queries and problems of extrapolation. 
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 While this should make us optimistic that extrapolation, in general, is not an 

insurmountable problem, in Section 3 I discuss some important strictures that 

compelling strategies for extrapolation must meet. Specifically, as we move from 

abstract general assumptions concerning the conditions under which extrapolation can, 

in principle, be achieved towards the practical challenges involved in overcoming 

concrete real-world problems of extrapolation, there are two important challenges that 

must be met. The first is that extrapolation strategies must not be overly epistemically 

demanding, i.e. they should not require supplementary evidence and knowledge that is 

impossible or otherwise extremely difficult (or costly) to obtain. The second challenge 

is that they must evade the extrapolator’s circle (Steel 2008): the information about the 

target system required for an extrapolation must not be so extensive that we can identify 

the causal effect of interest based on that information alone. 

 I argue that these two strictures give rise to an important tension: on the one hand, 

the guiding ideal to be outlined below suggests that, in principle, and with enough 

information, we can correctly predict any causal effect in the target for a large class of 

extrapolation problems. The two strictures, however, make clear that there are important 

limits to 1) whether this is feasible in practice, and 2) whether, even if it is feasible, 

extrapolation can still serve its main function of being ampliative, i.e. offering added 

epistemic value in the sense that it provides sufficiently reliable information about 

causal effects in the target that goes beyond what we must already know about the target 

in order to reach a conclusion. 

 The main result of this discussion will be a more refined analysis of extrapolation 

that includes strictures on when extrapolation is successful. This refined analysis will 

figure as a general benchmark that will help with critically evaluating existing strategies 

for extrapolation in subsequent chapters. 

 

3.2 No Extrapolation Without Assumptions 

Successful extrapolation involves learning about the relationship R between 

experimental and target population, i.e. causally relevant similarities and differences, 

and how this relationship bears on the causal effects to be expected in the target. In 

some form or another, this will require that we make assumptions, i.e. assumptions 

about the likely form of R that we will encounter in real-world problems of 

extrapolation, as well as assumptions about how R bears on similarities and differences 
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in causal effects between populations. This is the main epistemic target of extrapolation 

in EBP: inferring whether causal effects in the target will be similar to those in the 

experimental population, or, if they are not, predicting how the effect in the target will 

differ from that in the experimental population. 

 In line with the discussion in Chapter 2, it is clear that extrapolation can come in 

different forms, and involve different aims. It is no surprise, then, that existing 

strategies for extrapolation also differ in the kinds of extrapolations that they enable. 

Some strategies, such as Steel’s (2008), aim at specifying the conditions under which 

causal effects will have the same sign in the target as in the experimental population. 

Others, such as Cartwright’s (2013b), aim at spelling out a range of conditions, 

including those ensuring that there is some non-zero effect for some individuals in the 

target and those ensuring that effect magnitudes will be (approximately) the same in the 

target as in the experimental population. Finally, there are also strategies, such as those 

offered by Hotz et al. (2005), Muller (2014; 2015), and Bareinboim and Pearl (2012) 

that aim to predict causal effect magnitudes in the target, including under conditions 

where causally relevant differences obtain between populations.  

 Despite differences in the kinds of inferences enabled, these strategies rest on related 

assumptions about how differences in the causal makeup of populations bear on 

differences in causal effects. In what follows, I reconstruct some of these assumptions at 

a general level. This will help sketch out a guiding ideal for how successful 

extrapolation of different kinds can be achieved in principle. 

 

3.2.1 Populations Are More Likely to Be Different Than Similar 

The first assumption concerns the general issue of whether we should, by default, 

assume that populations are causally relevantly different or similar. As the previous 

discussion suggests, causally relevant similarities and differences between populations 

can obtain in various respects and to various degrees. Although there is a wide spectrum 

of ways in which and degrees to which populations can differ importantly, it is at least 

not obvious whether we should by default assume that populations are relevantly similar 

or rather different.  

 Existing strategies for extrapolation often remain silent on this important issue (but 

see Cartwright 2013a; Steel 2008). Nevertheless, it seems plausible to think that they 
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are motivated by a substantive belief that populations in real-world extrapolation 

settings are often likely to exhibit causally relevant differences, or at least that, in light 

of potentially significant risks of error, it is prudent to assume that they do. Hence, these 

strategies seem to suggest that our default assumption (i.e. the assumption made before 

any details about the experimental and target population, including any details about 

their relation R, are learnt) should be that populations are different, rather than similar 

and that this assumption should be entertained until we can offer compelling reasons to 

think otherwise, e.g. evidence of causally relevant similarities (cf. Cartwright 2013a, 

107; Steel 2008 Ch.5; Fuller 2019; but see Petticrew and Chalmers 2011; Guyatt et al. 

2008 for resistance in the context of evidence-based medicine). 

 There are several reasons to motivate this assumption. First, empirical evidence from 

prominent meta-analyses suggests that causal effects in social science settings, and in 

the fields targeted by EBP initiatives specifically, often differ significantly between 

individuals and between populations (see e.g. Vivalt 2019). While this evidence may be 

over- or underreporting actual heterogeneity1, it at least gives us a clear indication that 

substantial heterogeneity in causal effects obtains in the kinds of settings that have been 

addressed by EBP so far. The ubiquity and strength of effect heterogeneity also suggest 

that underlying causally relevant differences, e.g. at the different levels distinguished in 

Chapter 2, may be responsible for this observed heterogeneity in effects (rather than, 

say, random measurement error). 

 Second, there are several plausible reasons for why we find such heterogeneity, and 

hence reasons for why we may expect it in future instances as well. For instance, the 

causal mechanisms governing the phenomena and effects of interest in social science 

contexts tend to be less stable than in other fields (Little 1993; Dahabreh 2018), e.g. in 

contrast to Evidence-Based Medicine and epidemiology where physiological 

mechanisms are often justifiably believed to be stable over time and homogeneous 

within populations (see e.g. Cartwright 2009, 8; Steel 2004, 58). 

 Moreover, in social science settings causal mechanisms are also more likely to differ 

importantly between individuals, particularly in cases where agents’ psychological 

features and cognitive processes are involved in governing their behavioural response to 

interventions. For instance, students’ response to educational interventions such as new 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Say, for instance, because there is selection bias involved in what kinds of populations are studied in the 
first place.  
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curricula may differ substantially as a function of domain-general but individual-

specific features such as cognitive ability, or more specific features of their 

psychological makeup, which may bear importantly on their ability and willingness to 

convert new material into outputs relevant for assessment of learning. Similarly, 

economic agents’ response to policy interventions often differs substantially between 

individuals, as their behaviours are determined to a significant degree by features that 

are specific to individuals and can vary importantly between them, such as preferences, 

utility functions, budget constraints, etc. In light of this, it seems that there are at least 

some reasons to think that it is prudent to assume that individuals, as well as whole 

populations, are likely to exhibit causally relevant differences, unless we can offer 

reasons to think otherwise. 

 This might not seem compelling to everyone, however. One important concern that 

might be raised is that assuming by default that populations are relevantly different can 

pose unnecessary obstacles to using effectiveness evidence for informing policy. A 

pertinent way to frame this objection would be to point out that we might sometimes 

have strong and compelling intuitions that two populations will be sufficiently similar to 

licence extrapolation, where these intuitions could be grounded in overt similarities, 

such as individuals or populations being members of the same general type, e.g. 

students in private schools in the south of England, and that type-membership makes it 

seem likely that individuals will respond similarly to one and the same intervention (see 

e.g. van Eersel et al. 2019 for an approach that draws on type-level similarities). 

However, as the objection goes, despite strong intuitions that populations are 

sufficiently similar to licence some form of naïve extrapolation, it might often be 

extremely difficult to demonstrate (empirically or otherwise) that they are relevantly 

causally similar. Type-membership does not guarantee causal homogeneity, unless 

types are defined along the right causal features, which cannot always be assumed. In 

such cases, assuming by default that populations, despite being members of some 

common type, are relevantly different and putting the burden of proof on those who 

wish to suggest otherwise, may substantially complicate the use of effectiveness 

evidence in EBP to an extent where we might consider this assumption to be too costly 

to be warranted. 

 This is a serious objection. Proposing strictures on how to use effectiveness evidence 

to make inferences about new populations should not make the use of such evidence 
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overly burdensome, or, indeed, preclude the use of such evidence in most cases. Ideally, 

we would handle clear-cut cases (if they exist) differently, of course. We could, for 

instance, shift the burden of proof or lower our standards of evidence as to what reasons 

count as compelling enough to believe that populations are relevantly similar. For 

instance, if an intervention type ! has been learnt to be effective across many different 

settings !,!,!, !, despite these settings being overtly highly dissimilar, and the same 

intervention type is envisioned to be implemented in a novel context ! that is, as judged 

by the same overt features, highly similar to at least some of these settings, then we may 

have good inductive reasons to tip the balance in favour of believing, without further 

scrutiny of the causal makeup of these populations, that ! will be sufficiently similar to 

!,!,!, !, and hence that the effects of ! in ! will be similar to those in !,!,!, !. The 

reason here could be, for instance, that !’s effectiveness seems to be robust over (overt) 

differences in populations, so there are at least some reasons to believe that ! might be 

similarly effective in a target population that does not stray too far outside the spectrum 

of the features exhibited by !,!,!, !. 

 What is more, the non-epistemic consequences of error (i.e. inductive and epistemic 

risk, see Douglas 2009; Biddle 2013) can also differ importantly across extrapolation 

scenarios. Here, it seems plausible to think that in low-stakes scenarios, when the 

possible consequences of error are relatively mild, we may justifiably be more generous 

and allow ourselves to err on the side of mispredicting causal effects. This would be in 

contrast to being overly demanding when it comes to demonstrating that populations are 

sufficiently similar to licence extrapolation at all, potentially on pain of incurring 

substantial costs in terms of the foregone benefits that could have been achieved by 

successful intervention in the target. 

 While such contextual information can clearly make important differences to our 

assessment of what is required to licence an extrapolation, I maintain that the default 

assumption, before any contextual details are learned, should be that populations are 

different rather than similar. This is not as strong an assumption as it might initially 

seem. What is assumed here is just that it is more likely than not that causal effects will 

differ between settings, and potentially just mildly so. This, I think, is rather 

uncontroversial. Of course, differences might be minimal, but if we have strong reasons 

to believe that this is so, we may, on some occasions, use this as an overriding reason to 

shift the burden of proof. My point is merely that unless some such reasons can be 
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given, the default assumption should be that populations are different. If such reasons 

can be given, and giving them is easy, then all the better, because we have been 

appropriately cautious in considering the possibility that populations might be 

importantly dissimilar, and still did not need to do a lot of work in underwriting the 

assumption that they are not. 

 This seems superior to the alternative. If we are too permissive when allowing 

evidence to inform and justify policy action without supporting that populations are 

relevantly similar to licence extrapolation and subsequent intervention, then we run the 

risk of implementing interventions that will fail to be effective. It often seems prudent 

to be risk-averse, especially for large and costly interventions (including in terms of 

harms), such as universal basic income, minimum wage policies, and many 

development interventions, and when resources are limited, as they often are. 

 Moreover, it seems that being risk-averse when it comes to extrapolation is coherent 

with overt risk attitudes that motivate EBP approaches in the first place, i.e. rather than 

believing that an intervention will be effective in a target based on intuition, hope, 

armchair theorizing, or other controversial sources of justification, EBP methodology 

suggests that we need to have high-quality empirical evidence that the interventions of 

interest can be effective. It seems coherent with this practice to place more weight on 

the risk of implementing an intervention that will turn out to be ineffective or harmful in 

the target than on the risk of failing to implement an intervention that would have been 

effective. And there are further reasons to support this view. 

 First, it seems that there are generally more possibilities for two populations to differ 

in ways that diminish rather than increase the effectiveness of policy interventions.2 For 

instance, if a target population differs from an experimental population at the level of 

the basic structure of causal mechanisms, this seems more likely to curtail the 

effectiveness of the intervention in the target rather than enhance it, because differences 

at this level will often mean that a causal pathway that governs the effects of interest in 

the experimental population will be disrupted in the target (rather than, say, substituted 

by yet other causal pathways that allow the intervention to be effective still). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 It might seem that I am committing to an asymmetry here: anytime an intervention is effective in !, but 
less so in !, then we could just as well say that differences between ! and ! make the intervention more 
effective in !, rather than less effective in !. There is no asymmetry, however, when experimental 
populations are selected according to features that make it likely that interventions are effective there. 
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 Second, interventions are often tested in populations where there are at least some 

reasons to believe that they will be effective. But interventions are not necessarily 

deployed in such settings after their effectiveness has been demonstrated somewhere. 

This could be understood as a worry about selection bias: we prevalently select those 

populations into trials that exhibit features that are already (and perhaps more often than 

not correctly) believed to promote the effectiveness of the intervention in question.3 

Moreover, interventions that are candidates for extrapolation may also be biased 

towards those that have been tested in settings where they are more effective than they 

would be in others, due to the settings’ exhibiting features that are favourable to the 

effectiveness of the intervention. Target settings for deployment might not exhibit these 

features, however, as they might not be selected on the same criteria, and indeed might 

be selected on other criteria that correlate with unfavourable realizations of features 

relevant to the effect of interest, such as being selected because the outcome of interest 

is in great need of improvement. 

 Third, even if policymakers are careful to select target populations on grounds of 

relevant similarities, and such selection is in fact successful, some causally relevant 

differences are still bound to obtain because studies usually involve idealized versions 

of interventions. Trial conductors, sponsors, and implementers typically have some 

(imperfect) understanding of what will make an intervention more or less effective and 

they will often be strongly incentivized to make the intervention a success. The same 

incentives might not apply when interventions are implemented in distinct settings, nor 

should it be taken for granted that implementers there will have a similarly sophisticated 

understanding of how to best deliver the intervention, or be similarly skilled in doing so 

(see also Muller 2015). So, it seems more likely that interventions, as actually 

implemented in distinct targets, will exhibit features that bear unfavourably rather than 

favourably on their effects. 

 Hence, the assumption that causally relevant differences between populations are 

likely to obtain seems well supported, and strategies for extrapolation hence have an 

important function to perform: if it is almost always important to explicitly demonstrate 

that populations are sufficiently similar, or otherwise take into account their differences, 

then almost all real-world use of effectiveness evidence will require conscientious 

extrapolation efforts. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Further, issues surrounding publication bias would only aggravate this concern, see e.g. Ioannidis 
(2005). 
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 Let me proceed to discuss two further assumptions, which I take to be central to 

proposing strategies for overcoming problems of extrapolation. They concern details of 

the relation R that obtains between experimental and target populations, i.e. causally 

relevant similarities and differences at different levels and to different degrees, and how 

these details bear on differences and similarities in causal effects. 

 

3.2.2 Same Causes Imply Same Effects 

The first assumption is that any two individuals or populations who are identical with 

respect to all causally relevant features that bear on the effect of interest, and who 

experience the same intervention (at some arbitrarily fine-grained level of description), 

will experience, at least in expectation, the same causal effects.4 I say in expectation, 

because some variables involved in the mechanisms that govern the effects of interest 

might be random variables, where individual and aggregate causal effects can 

consequently differ over a range of values depending on how these variables are 

realized at the time when the effects of interest are produced. In expectation, however, 

causal effects should be randomly distributed around a mean with some variance that is 

induced by the random variables involved in their production. Hence, in expectation, 

and relevant distributional assumptions given, the expectation of the causal effect will 

be just the mean of that effect over repeated realizations. 

 This assumption is important because it ensures that if we learn that experimental 

and target populations do not differ in any causally relevant respects, and our search for 

such differences was, in fact, exhaustive, then we are justified to believe that the effect 

of interest in the target will be (approximately) the same as that in the experiment.  

 Importantly, this assumption does not imply that the more similar two populations 

are in causally relevant respects, the more similar the causal effects experienced by 

these populations will be (as, for instance, Hume ([1739] 1975) suggests). Such a 

‘convergence theorem’ would require a host of additional, and substantially stronger 

assumptions. The reasons for this are manifold, but one extreme example would be a 

case where the magnitude of a causal effect depends non-monotonically on the value of 

a moderating variable !", where the causal effect is a negative function of !" for 

values !" < !", but jumps to a large value at !" = !", so even minor differences in 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 See Frigg and Votsis (2011) on historical mentions of this assumption, including by Hume ([1739] 
1975). 
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!" imply significant differences in causal effects. Here, for a large region of !", the 

causal effect would depend negatively on !" and effects would be more dissimilar the 

more similar the populations are with respect to !". This is despite the fact that it 

would still hold true that causal effects would be identical if !" were identical between 

populations. 

 So believing that, if populations are not identical but highly similar beyond some 

arbitrary threshold of similarity, then the causal effect of interest is also likely to be 

similar, will require further assumptions, such as that minor differences between 

populations in, say, the distribution of some moderating variable, do not induce major 

differences in causal effects, or that causal effects are a monotonic function of 

moderating variables. Such assumptions might sometimes be justified, perhaps even 

often, but they should generally not be taken to hold as assumptions of convenience and 

without any support provided by empirical demonstration or sufficiently strong 

background theory and investigations of plausibility. 

 

3.2.3 Differences in Effects Imply Differences in Causes 

The second important assumption reinforces this relationship between differences in 

causally relevant features that figure in R and differences in causal effects. It says that 

any true, systematic, and significant difference in causal effects between individuals or 

between populations is brought about by some causally relevant difference in R, e.g. a 

difference at any of the three levels identified in Chapter 2.5 Again, this abstracts away 

from differences in causal effects that are induced by random variables (hence the 

emphasis on systematic), or measurement error (hence the emphasis on true). 

 This assumption is important because it makes clear that if 1) we learn that two 

populations are similar in potentially many putatively causally relevant respects, 2) we 

predict causal effects to be broadly the same on this basis, and 3), despite our best 

efforts, the causal effect in the target turns out to deviate substantially from our 

prediction, then there is an explanation for this deviation: We must have missed some 

causally relevant difference to which the observed difference in effects can be 

attributed. This makes clear that causal effects do not just differ randomly between 

populations, and hence secures the ideal that if we do everything right, and learn about 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 See e.g. Russell ([1927] 1992, 255) for a mention of this assumption.  
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all potentially causally relevant features, and these features turn out to be the same, then 

we are justified in believing that causal effects will be the same. 

 Importantly, these two assumptions do not imply the converse relation, i.e. that 

individuals who experience the same (or similar) causal effects will exhibit causally 

relevant similarities (or even be identical). One and the same causal effect can be 

multiply realized by various different underlying arrangements of causal structure, 

functional form, parameters, and variables. At best, homogeneous causal effects 

between many individuals and between many populations could be taken to suggest that 

causally relevant similarities might obtain at some or all of these levels, but the latter 

cannot be unambiguously inferred from the former. 

 

3.2.4 A Guiding Ideal 

The assumptions outlined above suggest two things: first, real-world problems of 

extrapolation are likely to involve important obstacles that need to be explicitly 

addressed (rather than assumed away). Second, these obstacles are not in principle 

insurmountable. Specifically, the second and third assumption together licence an 

important corollary: if same causes imply same effects, and differences in effects imply 

differences in causes, then, either we learn populations to be similar in all relevant 

respects, in which case we can extrapolate straightforwardly, or we learn populations to 

be different. In that case, any true, systematic difference in causal effects between 

individuals or between populations can, at least in principle, and at least up to some 

threshold of accuracy, still be predicted using knowledge about causally relevant 

similarities and differences and how they bear on similarities and differences in the 

effects to be extrapolated. 

 To be sure, successful prediction at some arbitrarily high level of accuracy will often 

be impossible, e.g. when outcomes are produced probabilistically. But at least in 

expectation, i.e. averaged over repeated attempts, accurate prediction within some 

margin of error should be possible when all causally relevant differences are known, 

and how they bear on differences in causal effects in the experimental and target 

populations is correctly accounted for, including how interactions among such 

differences bear on these effects (see e.g. Fuller 2018).  
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 We are now in a position to articulate an important guiding ideal for overcoming 

problems of extrapolation: if we knew all the causally relevant features that bear on a 

causal effect of interest, acquired all the information pertaining to how these features 

bear on that effect, and also learnt how these features are realized in the experimental 

and target populations, then we could successfully predict (within some margin of error) 

causal effects in the target population in a wide range of cases. 

 This is indeed the view that many proponents of existing strategies for extrapolation 

seem to take. Bracketing epistemic considerations about how to acquire and use 

information about causally relevant similarities and differences, they tell us that, in 

principle, extrapolation of different kinds can be successful, and they subsequently aim 

to spell out the abstract conditions under which this is the case. As Marcellesi puts it 

most confidently, having clarified the conditions under which extrapolation is feasible 

in principle means that “[…] the problem [of extrapolation] has been solved” (2015, 

1309). 

 This makes the importance of the assumptions underlying the guiding ideal clear: if 

they did not hold then there could be problems of extrapolation that are in principle 

impossible to overcome by considering information about causally relevant differences 

and similarities. Moreover, there could be heterogeneity in causal effects that could not 

be attributed to and explained in terms of differences at any of the three levels outlined 

in Chapter 2. If such heterogeneity would remain unexplained not just in practice, but 

also in principle (and sufficiently frequently), this would seem to pose a serious 

problem for attempts to offer strategies for extrapolation. Conversely, attempts to offer 

such strategies need to entertain these assumptions in some form. It is hence not 

surprising that the guiding ideal, including its assumptions, in some form or another, 

underpins many and even appears explicitly in some of the strategies for extrapolation 

to be discussed. 

 Having such a guiding ideal in place is surely helpful, as it can help us to orientate 

ourselves in the epistemically less-than-perfect world we inhabit, i.e. a world where we 

do not usually know what causally relevant features bear importantly on the effects of 

interest, or how these features are realized in the experimental and target populations. 

What the guiding ideal suggests, in the first instance, is that if we possess or acquire the 

right kind of knowledge about the experimental and target populations, and use this 
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knowledge in the right way, then we can overcome a large class of problems of 

extrapolation. 

 Despite this, there are also reasons to remain sceptical about the usefulness of this 

ideal. The concern is not that it is misleading. At least for now, I will not take issue with 

whether the conditions under which extrapolation can succeed outlined by existing 

strategies are adequate. Rather, my main concerns are epistemic ones: even if existing 

strategies for extrapolation get the conditions right under which we can, in principle, 

correctly predict causal effects in a target, this does not imply that they are helpful for 

successfully overcoming concrete real-world problems of extrapolation. There is still a 

significant epistemic problem to be solved. Let me elaborate this concern more fully. 

 

3.3 Two Strictures on Extrapolation  

Despite the positive outlook afforded by the guiding ideal, two further important 

challenges remain in the way of successfully overcoming problems of extrapolation. 

These challenges arise not from whether problems of extrapolation can be overcome in 

the abstract, but from how much supplementary evidence S and background knowledge 

K is needed to overcome them in practice. 

 To elucidate these challenges, it is useful to once again draw a distinction between 

ontic and epistemic levels of extrapolation, where the ontic level concerns the kinds of 

entities, their features, and relationships that are involved in producing the causal effects 

we are interested in, i.e. experimental and target populations, the individuals that 

constitute them, their features that are causally relevant for the effects of interest, and 

relationships of similarity and difference that obtain between such features. The 

epistemic level, on the other hand, concerns our knowledge of and ability to learn about 

these entities, features, and relationships. The ontic/epistemic distinction makes clear 

that there is an important difference between the relationship ! that is ‘out there’ and in 

fact holds between an experimental and target population; the assumptions ! about this 

relationship that are required for an extrapolative inference; and the part of ! that is (or 

can be) in fact supported by background causal knowledge ! and supplementary 

evidence !. Ideally, ! and ! will be jointly sufficient to validate our assumptions !. 

Clearly, the more ! and ! manage to support !, other things being equal, the closer we 

will come to successfully overcoming problems of extrapolation. At the same time, 
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however, the more extensive the conjunction of ! and ! must be to adequately justify 

the assumptions ! demanded by specific extrapolation strategies, the more empirically 

demanding such strategies will be, and potentially undesirably so. In the limit, ! would 

require us to assume all there is to assume about !, and to fully support !, ! and ! 

would need to encompass all there is to know about !. This would be over-demanding. 

Realizing this yields two general challenges.  

 

3.3.1 Overdemandingness 

The first challenge is straightforward: an attractive strategy for extrapolation should not 

be epistemically over-demanding. If this were the only type of strategy feasible, then so 

be it, but it would seem preferable to have a strategy whose demands are realistically 

satisfiable. For instance, if justified extrapolation would require us to learn the physical 

causal microstructures underpinning the social phenomena of interest, and issues of 

causally relevant similarity and difference would need to be settled at this level, 

including details on how a physical causal basis realizes the social-level events of 

interest, and how doing so involves and conforms to accepted physical laws, this would 

be over-demanding and undesirable.  

 More generally (and bracketing, for now, the role of !), overdemandingness 

concerns cases where supplementary evidence S is needed to support the assumptions P 

required for extrapolation, but acquiring this evidence would involve things that are 

extremely costly, difficult, or even impossible to learn, such as individual causal effects 

(which are typically considered in-principle unobservable magnitudes, cf. Rubin 1974; 

Holland 1986) or other causal features of the populations of interest that cannot 

(principally or realistically) be learnt from observational or experimental procedures. 

Moving away from such extreme cases, what counts as overly demanding may, of 

course, vary importantly from case to case, and there are no general strictures to be put 

in place at this stage. Nevertheless, when discussing extant strategies for extrapolation 

in the following chapters I will repeatedly emphasize important ways in which these 

strategies may be considered epistemically over-demanding, i.e. they require knowledge 

of causally relevant similarities and differences that is difficult to come by and, 

moreover, often demand confidence in having exhausted the relevant respects in which 

important differences between populations can obtain.  
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 This, by itself, would be a rather thin criticism, however, as one may object that (at 

least some of) the strategies for extrapolation I will consider were perhaps never 

intended to overcome concrete problems of extrapolation on their own or were not 

intended to enable all kinds of extrapolative inference. Spelling out the abstract 

conditions under which extrapolation can be successful and addressing concrete 

problems of extrapolation are clearly substantively related. But perhaps, as long as 

abstract strategies still have some general things to say on the latter, these are different 

enough aims to warrant offering distinct proposals addressing each of them. While there 

may still be a pressing need for complementary empirical strategies to help acquire the 

supplementary evidence S that is required for underwriting extrapolation, we should 

perhaps not expect both the general recipes as well as all the concrete details for how to 

do the messy work of justifying our inferences from a single, overarching strategy for 

extrapolation. What is more, as perhaps already suggested by my arguments in Chapter 

2, real-world problems of extrapolation might be too heterogeneous to permit a single, 

unified strategy that offers concrete enough guidance to help overcome a significant 

fraction of real-world extrapolation problems.  

 These points are well taken. What I will argue in the following chapters, however, is 

not only that existing strategies for extrapolation are epistemically over-demanding. My 

criticisms go deeper in the sense that even if there were off-the-shelf empirical 

strategies to obtain the supplementary evidence S required by existing strategies for 

extrapolation, acquiring this evidence faces a second important challenge. 

 

3.3.2 The Extrapolator’s Circle 

This second challenge, called the extrapolator’s circle, originally due to LaFollette and 

Shanks (1996), has more recently been brought to the fore by Steel (2008) and adds 

more concrete strictures on how epistemically demanding a strategy for extrapolation 

may be before it is overly demanding.  

 In a nutshell, the idea is as follows: if there are causally relevant differences between 

populations, which is likely in many social science and EBP scenarios, and we want to 

successfully extrapolate despite such differences, then we must somehow learn what 

differences there are and whether and how these differences bear on the effect of 

interest. As elaborated above, this will usually proceed against a background of a causal 

effect estimated in an experimental population as well as a conjunction of background 
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knowledge ! and supplementary evidence !. However, it is important to recognize that, 

irrespective of how challenging it is to obtain such resources, the conjunction of S and 

! needed for supporting specific assumptions P required by concrete strategies should 

not be so extensive that it allows us to answer the causal query of interest based on these 

resources alone. If this were the case, it would make our experimental evidence ! 

redundant to answering our causal query. 

 This is clearly undesirable. We might argue that it would turn the problem of 

extrapolation into an altogether different sort of inferential problem, e.g. reasoning from 

background knowledge and piecemeal evidence pertaining to the causal makeup of the 

target to the effects of some intervention there. Or we might stick with Steel and say 

that, while we are still in the business of extrapolating, the experimental result is 

rendered redundant to the extrapolative conclusion. Either way, falling prey to the 

extrapolator’s circle would undermine much of the promise that EBP holds, i.e. that 

causal effects learned in some population ! can be informative for predicting causal 

effects of the same or similar interventions in other populations !,!,!, etc. Principally, 

the prevailing hope in EBP is that we can build libraries of evidence pertaining to the 

causal effects of different interventions, where such libraries can help us, to varying 

degrees of accuracy, predict what will happen if we implement these or other, similar 

interventions in novel policy targets. If the only way to make use of such evidence were 

to learn so much about the target populations that the experimental evidence became 

redundant to answering our questions, then why bother building libraries in the first 

place?  

 This worry becomes more pressing still when considering that acquiring 

supplementary evidence ! about the target might sometimes involve implementing the 

intervention of interest there, rather than just learning something about the target from 

observational data, and that this can come at the risk of harming agents in the target 

(e.g. implementing an intervention that had positive effects in a study !, but induces 

significant harm in !). If intervention in the target were required, then effectiveness 

evidence would bring little epistemic value to the table beyond telling us about the 

effects of interventions where they have already been implemented, and perhaps giving 

us some hope that they might be effective in other places but falling short of supporting 

or even fully warranting that they will be. In such cases, the justificatory burden 

involved in implementing interventions in other places would be carried entirely by 
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supplementary evidence ! that is distinct and unrelated to the primary effectiveness 

evidence ! that we started from, and where ! can sometimes only be acquired by 

implementing the intervention of interest in the target. 

 Similar to Steel, then, I take the extrapolator’s circle to be a crucial challenge that 

any attractive strategy for extrapolation should be able to overcome, and preferably for 

a large class of cases. Not only should such strategies avoid being overly epistemically 

demanding concerning the conjunction of ! and ! required to justify extrapolation, but 

they should also steer clear of the extrapolator’s circle, and widely so. 

 At this point, one might ask why it is important to consider the extrapolator’s circle 

as a challenge for strategies for extrapolation. As suggested above, these strategies were 

perhaps not intended to provide complete recipes for extrapolation including for how to 

empirically support the assumptions that they involve. While the extrapolator’s circle 

would still be a problem to be considered when extrapolating, it would apply to 

empirical strategies involved in providing supplementary information that is pertinent to 

an extrapolation, but perhaps not to the general strategies that tell us, first and foremost, 

which assumptions are needed to enable an extrapolative inference.  

 Yet, while it is true that the extrapolator’s circle presents a challenge for empirical 

strategies concerned with providing support for assumptions involved in extrapolation, 

it also affects strategies for extrapolation if, by requiring certain kinds of assumptions 

that are in need of empirical support, they effectively demand evidence that is difficult 

to acquire without falling prey to the extrapolator’s circle. Put differently (and 

bracketing once more the role of !), demanding ! is at best undesirable and 

disappointing if it were extremely difficult or impossible to acquire ! without falling 

prey to the extrapolator’s circle, and at worst a significant shortcoming on the part of 

strategies for extrapolation if there are either alternative ways !’ to support the 

assumptions ! that they involve, but where these remained unacknowledged by 

proponents of the strategies, or if there were yet other kinds of assumptions !’ that 

could be licenced by yet other means !’’ and that would be suitable for reaching the 

same kinds of extrapolative conclusions. This is in contrast to Marcellesi (2015, 1315), 

who argues that the extrapolator’s circle is not relevant to abstract analyses of the 

conditions under which extrapolative inference can proceed successfully but only to 

empirical strategies used for supporting their assumptions. Unlike Marcellesi, I maintain 



 73 

that the extrapolator’s circle is relevant also to abstract analyses and general strategies 

for extrapolation that require such assumptions in the first place. 

 For the remainder of this thesis, I acknowledge the extrapolator’s circle as an 

important challenge for strategies for extrapolation. At the same time, I also want to 

make some further suggestions for how to improve our understanding of the underlying 

problem highlighted by the extrapolator’s circle, and generalize it beyond the specific 

construal offered by Steel. 

 

3.3.3 It’s a Bind, Not a Circle  

First, terminologically, the extrapolator’s circle could be criticized for failing to be a 

circle proper. What happens when it is triggered is often not that we must already know 

! to infer !, but rather that ! and ! jointly permit inferring !, thus making ! redundant 

to !. Hence, going forward, I will refer to this inferential challenge as the extrapolator’s 

bind.6 The bind generalizes beyond the circle. It can accommodate cases where ! must 

be known to infer !, or ! is trivially learned in the process, such as when we need to 

implement an intervention in the target to learn what its effects will be. But it is also 

more general, in that it captures cases where other resources, such as ! and !, displace 

! in inferring !. The bind also captures two nuances at once: it characterizes a problem, 

first and foremost. But once the importance of this problem is recognized, this also 

makes the bind normative: it is a binding stricture on what we may and may not do 

when aiming to extrapolate successfully. 

 Second, Steel seems to assume that the extrapolator’s circle is an all-or-nothing affair 

(Steel 2008, 78, 85, 86, 99). Both his own as well as LaFollette and Shanks’ original 

formulation (1996, 157) suggest that it is triggered whenever we know the answer to our 

extrapolative query based on evidence from the target alone, so the experimental result 

is not relevant to answering our causal query anymore. But surely, there can be gradual 

variations on this situation, i.e. cases where the experimental result is rendered almost 

redundant to our conclusion, but not entirely. 

 One way of thinking about this is in terms of the sensitivity of an extrapolative 

conclusion C (say the quantitative prediction of a causal effect in the target) with 

respect to changes in the experimental result E to be extrapolated from. Understood in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 I am indebted to Finola Finn who has suggested this term to me. 
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this way, we might say that the degree of relevance of an experimental result !, and 

hence the degree to which we manage to evade the extrapolator’s bind, would be 

proportional to the degree of sensitivity of the extrapolative conclusion with respect to 

changes in the experimental result. Other things being equal, the more sensitive C is 

with respect to changes in E, the more C hinges on, and is informed by E, and hence the 

more relevant E is to C. Lower levels of sensitivity, on the other hand, suggest that E 

plays a less important role and that C hinges relatively more on S and K. 

 There are two problems with this way of thinking about relevance, however. The 

first relates to what we might call the weight of evidence (see Peirce 1878; Keynes 

1921). Here, the idea is that E can be relevant to C in at least two different ways: it can 

change the content of our conclusion, say from C to C’, and it can provide more or less 

support for one and the same conclusion C. The first is captured by the idea of 

sensitivity above, i.e. the changes induced in a conclusion C as a response to changes in 

the evidence E. However, the weight for C that E affords needs to be considered, too. 

Here, changing E (or subtracting or adding it from our evidence base) can yield 

important changes to how confident we are in C, even though it does not change the 

content of C as such. This is the case, for instance, if we have yet other kinds of support 

S for the same conclusion C, and E may hence add to the weight of the evidence in 

favour of C, but does not change the content of C as such. In these cases, where E 

reinforces (perhaps significantly) what we would already believe to be the case from 

other sources, an account of relevance that only takes issue with changes in the content 

of C would say that adding or subtracting E from our evidence base is irrelevant to C, 

despite the fact that E could still potentially drastically change our confidence in C, and 

hence remain highly relevant to it. 

 This, of course, must be recognized by a richer account of the extrapolator’s bind 

that draws on evidential relevance. We might hence say that a second, complementary 

way of spelling out relevance is with respect to changes in the weight of evidence for an 

extrapolative conclusion C. If adding or subtracting E makes a larger difference to the 

weight in favour of C, then, other things being equal, the more relevant E is to C. 

Conversely, if E makes no difference to the weight of the evidence for C, other things 

being equal, then it is irrelevant. This could be the case for instance, if S and K already 

warrant C beyond some relevant saturation threshold of confidence !, so that E would 



 75 

not make a difference to whether we feel sufficiently confident in C one way or 

another.7 

 Of course, the way in which evidence, from a study population as well as from other 

sources, including particularly the target, bears on an extrapolative conclusion by means 

of changing its content and the weight in its favour is likely to be interactive. This 

means that there will likely be many cases where, by adding a token of evidence to our 

evidence base, we may not only change the content of the conclusion C (what it asserts 

about the target), or only the weight of the support in favour of C, but both at the same 

time. For instance, when ! contravenes the conclusion about the effect of interest in the 

target that would have been reached by considering only evidence S from the target but 

not the study, then this may plausibly change both the content of our conclusion (say, 

that an effect is positive rather than zero), e.g. from C to C’, as well as the weight in 

favour of this conclusion (there was previously no weight in favour of our modified 

conclusion C’). 

 For the present purposes, it is not particularly important to consider such interactions 

in more detail. What is more, while at least some of the above intuitions might also be 

considered to lend themselves to formalization in a Bayesian framework, my goals in 

this thesis are not importantly furthered by a formal treatment of evidential relevance, 

which is why I will not attempt such formalization here. For now, it is enough to note 

that in assessing the relevance of experimental evidence E for an extrapolative 

conclusion C we must consider both how E bears on the content of C as well as the 

weight in its favour. 

 A second potential problem for my suggestion to think about the extrapolator’s bind 

in terms of relevance as outlined above is that the very nature of the extrapolative 

conclusion of interest can itself play an important role in determining the relevance of 

the evidence obtained from an experiment in supporting the conclusion. For instance, if 

C is highly general in nature, or highly abstract, such as when we are only interested in 

answering whether an intervention on X is positively causally relevant for Y in the target 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!One might worry that there are important perspectival questions here about what evidence comes first: 
the experimental result !, or the supplementary evidence !. For instance, it could seem odd to say, e.g., 
that ! is irrelevant to !, because there is additional evidence ! invoked to infer ! but where S was 
produced after !, which would render ! irrelevant to !. I am not too concerned by this, as I am assuming 
that ! alone is insufficient by itself to infer ! with the desired level of confidence – this is what serious 
problems of extrapolation are all about. Hence, whether or not ! was available before or after !, and what 
role ! plays, is immaterial to assessing whether relying on ! to infer !, which could not be done from ! 
alone, would render ! largely irrelevant to ! in the senses outlined here.!!
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(but not, say, in the magnitude of the effect), then this may itself bear importantly on 

how relevant E is to C. For instance, the more general the type of conclusion we are 

interested in, the less relevant an experimental result will be to it in terms of potentially 

changing its content, other things being equal. Here, even major variations in the 

magnitude of a causal effect in a study population might induce rather small changes in 

the content of a qualitative conclusion, or perhaps no changes at all. This could seem 

counterintuitive, as the relevance (or rather irrelevance) of E to C would not seem to be 

driven by the fact that it is made redundant by other sources of support for C from the 

target. Indeed, even these other sources of support would seem to be rendered less 

relevant by this, too.  

 These implications are not problematic, however. They merely help us to recognize 

that context matters in determining how likely it is that we will fall prey to the 

extrapolator’s bind. Clearly, if C is more easily reached, say because it is more general 

and hence less demanding to support, then this will, other things being equal, make it 

more likely that we fall prey to the extrapolator’s bind. This is because even relatively 

incomplete knowledge about the target may be sufficient to reach C based on 

information about the target alone, unaided by E. Keeping the evidence E from an 

experiment constant, as well as the support S obtained from other sources, including the 

target, then changing the nature of C in such a way that it is easier to support will 

simply make it more likely that E is rendered redundant to reaching C by S. This hence 

preserves the way that S and E compete for relevance to C, and hence preserves the key 

problem that the extrapolator’s bind seeks to highlight. 

 Taking the above concerns into account, we can now formulate more precisely what 

it takes to evade the extrapolator’s bind. An attractive strategy for extrapolation should 

steer clear of the extrapolator’s bind as best as it can, i.e. by ensuring that the 

experimental result remains relevant, and potentially highly relevant, to the 

extrapolative conclusion of interest. Relevance, in turn, has two facets. One concerns 

the content of the conclusion, the other concerns the weight speaking in its favour, and 

both are important. Evading the extrapolator’s bind should hence strike some reasonable 

balance on both desiderata. Relevance for C’s content is important, but not if E puts 

little weight in favour of C. Similarly, weight is important, but not if E does not, or 

indeed could not, bear on the content of our conclusion at all, and we would have 

inferred C regardless, although perhaps with slightly less confidence. What mixture of 
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these two aspects of relevance is adequate for a specific extrapolation will of course, in 

large part, hinge on specifics about the case, so not much more can be said at this stage 

other than that both should be considered. 

 A second conceptual refinement I wish to add to the extrapolator’s bind relates to 

Steel’s assumption that the extrapolator’s circle is only triggered when information 

from the target is sufficient to answer the causal query of interest. However, it does not 

seem necessary that the information that renders ! redundant to ! comes from the 

target. It would be similarly disappointing if our causal query could be answered by 

only (or only by) considering evidence from populations other than the experimental 

population, which may or may not include the target and may even include information 

about the experimental population that is not supplied by the experiment itself. Here, 

too, ! would be rendered irrelevant to !, and a strategy for extrapolation demanding 

supplementary evidence from such sources would be as unsatisfactory as one that 

demanded such information to come only from the target.8 

 

3.3.4 What’s Successful Extrapolation? 

With the above refinements in place, let me add some general strictures to my working 

analysis of extrapolation. Recall that I have characterized extrapolation as an inference 

I, using evidence E obtained from an experimental population A to infer a conclusion C 

about a target population B, with the help of assumptions P pertaining to the relation R 

between A and B, as well as background knowledge K and supplementary evidence S 

that help support P. 

 We can now extend this analysis by spelling out conditions for what constitutes 

successful extrapolation. These conditions help put important strictures on the 

assumptions ! required by strategies for extrapolation, as well as the epistemic 

demands involved in producing supplementary evidence ! that they require for support. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8!In some such cases, we might also conclude that the experiment was simply poorly designed, e.g. when 
experimentalists could have used a more informative experimental design.!
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 Based on the above, an extrapolative inference ! aiming for a conclusion C, based on 

experimental evidence E, assumptions P, supplementary evidence S, and background 

knowledge K, is successful if the following conditions hold9: 

1) (INFORMATIVENESS) Some conclusion ! of the desired kind is inferred. 

2) (JUSTIFICATION) ! is adequately justified, i.e. our confidence in ! that is 

warranted by a combination of !, !, !, and ! exceeds some threshold !. 

3) (ACCURACY) ! is accurate, relative to some standard of accuracy !. 

4) (RELEVANCE) ! is inferred in such a way that !!remains relevant to !!beyond 

some threshold !. 

 The first condition helps ensure that ! speaks to what we want to know about the 

target and not to some other, potentially related question. As we will see, some 

strategies for extrapolation are limited in the kinds of conclusions that they can yield, so 

they will be successful or unsuccessful depending on whether their abilities to provide 

certain kinds of conclusions match with those we are interested in. 

 The second condition requires that ! is adequately justified. This is supposed to 

ensure that ! is not obtained by sheer luck or accident, but that it enjoys sufficient 

support, and is arrived at by means of a sound reasoning process. As the standards for 

what counts as adequate justification will plausibly differ from case to case (such as 

when the stakes involved in drawing a mistaken conclusion differ), a threshold ! can be 

used to capture both the gradual nature of justification as well as the idea that we may 

have sharp or fuzzy standards for what level of justification is needed to justify 

subsequent action (e.g. intervention in the target). 

 The third condition requires that what !!asserts about the target is accurate with 

respect to what is (or will be) the case there.10 This captures the idea that it is not 

enough to have a well-justified conclusion that speaks to queries of interest to us, but 

that ultimately turns out to be radically mistaken. Accuracy, here, will, of course, be 

context-dependent again. It could mean, for instance, that a causal effect predicted by 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9!One might wonder why there is no fifth condition pertaining to the validity of the inference schema 
used. This, of course, is an important ingredient of successful extrapolative inference. I will bracket it 
here from explicit consideration, however, as I will, for the most part, grant that the inference schemas 
supplied by the strategies that I will examine are either valid, or invalid but strongly compelling, if 
adequately justified.!
10 We might also be interested in the precision of the conclusion. I will assume that issues surrounding 
precision are captured by condition 1), however. 
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!!to be positive in the target indeed turns out to be positive, C correctly predicts the 

magnitude of a causal effect, C correctly instructs us to perform a co-intervention on a 

moderating variable to achieve a specific outcome distribution in the target, etc. So 

accuracy can come in different forms, and we may hence wish to spell out varying 

standards of accuracy ! relative to our purposes. Of course, it is also important to 

recognize that, unlike some other conditions, accuracy can often only be determined 

after the fact. This does not pose any special problems to more general assessments of 

whether strategies for extrapolation meet this desideratum, however, as, if they 

repeatedly and consistently fail to provide accurate conclusions, then this is still 

informative about how successful the application of these strategies might be in future 

instances. 

 Finally, the fourth condition captures the extrapolator’s bind. It maintains that 

successful extrapolation requires that ! remains relevant to ! beyond some threshold of 

relevance!!. ! is merely a conceptual placeholder, of course, and it might be difficult to 

operationalize relevance in such a way that measuring it and determining a meaningful 

threshold ! is practically feasible. Spelling out relevance in more detail would surely be 

interesting but is beyond the scope of the current project. The major conclusions to be 

developed in the following chapters remain largely untouched by lack of a more explicit 

treatment, however, and it seems enough to note that it seems plausible to think that 

some threshold of relevance that is above full-blown irrelevance of E to C seems 

desirable in many real-world extrapolations. RCTs, for instance, do not usually come 

cheap, and if our best available extrapolation strategies would standardly make E 

obtained from RCTs almost entirely irrelevant to C, then this would seem undesirable. 

 Considered together, then, successful extrapolation requires minimally that an 

extrapolative conclusion of the envisioned kind is reached; that the conclusion is 

justified to some sufficient degree; that it is accurate to some sufficient degree; and that 

the experimental evidence we are extrapolating from remains relevant to it to some 

sufficient degree. Moving beyond the necessary, and taking the gradual nature of 2)-4) 

into account, (highly) successful extrapolation requires a good mixture of these 

desirable attributes and if any of them fail to be realized, extrapolation will be 

unsuccessful. 

 Such failures may come in different degrees and in different forms. For instance, a 

failure of 1)-3) might be called a failure to extrapolate successfully, full stop 
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(potentially with different weights). A complete failure of 4), however, in the sense that 

E is almost or entirely irrelevant to C, may lead to an even stronger conclusion. We 

might say that not only does successful extrapolation fail, but, particularly when 1)-3) 

are indeed satisfied, there is a special kind of failure going on: one fails not only to 

extrapolate successfully, but one fails to extrapolate at all, since E does not relevantly 

figure in inferring C anymore. 

 One important point to note at this stage, which has remained implicit so far, is how 

the above analysis of successful extrapolation tells us something about how attractive a 

strategy for extrapolation is. So far, what seems to be provided by the analysis is first 

and foremost a clarification of what it means to successfully extrapolate in any concrete 

instance. So how does this touch upon the more general issue of what we want a 

strategy for extrapolation to provide us with? 

 The answer is that the analysis works ‘bottom-up’, and in a context-sensitive way. 

We start from single instances of extrapolation and then, based on how specific 

strategies for extrapolation handle specific instances of extrapolation, or types of 

extrapolation, proceed towards more general conclusions about the attractiveness of 

these strategies. This is advantageous as it seems likely that most serious candidate 

strategies for extrapolation will be able to achieve some instances of successful 

extrapolation (and perhaps consistently for certain kinds of extrapolation), but fail in 

other (kinds of) cases. So success is piecemeal, likely to be heterogeneous, and one 

failed instance of extrapolation does not make for an entirely failed strategy. But if the 

circumstances under which specific strategies for extrapolation are prone to failure are 

important, systematic, and general enough, then this can still licence relatively broad 

conclusions about their attractiveness. Importantly, we can also predict the success of 

an extrapolation, as well as of a strategy more generally, at least with respect to 

relevance. If a strategy for extrapolation, in virtue of the assumptions it makes and the 

support they require, routinely requires extensive support S and K that would clearly 

render E irrelevant to C, then, even before endeavouring to make an extrapolation, we 

can predict that it will fail to be successful. Finally, the fact that relevance is a part of 

success also yields a more general intuition: if it is foreseeable that a strategy is bound 

to yield unsuccessful extrapolations in virtually every instance (of a kind of 

extrapolation), we may conclude that it is entirely unsuccessful (for this kind of 

extrapolation). 
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 There are two additional features of the above analysis that deserve brief emphasis; 

they concern how its conditions are related. First, it seems plausible to think that 

accuracy and justification may interact in important ways. For instance, the higher the 

desired standard of accuracy !, other things being equal, the more justification will 

typically be required. Conversely, for lower standards of accuracy, e.g. when the stakes 

are low, we might be more lenient when it comes to justifying our inference. A second, 

more interesting type of interaction concerns the relation between accuracy and 

justification on the one hand and relevance on the other. Here, it seems that there is a 

trade-off between them. Increasing accuracy can and must often be achieved by adding 

supplementary resources to justify an inference, e.g. because the assumptions required 

to enable more sophisticated inferences, and more accurate conclusions, often require 

more extensive support. Yet, this will typically come at the price of sacrificing 

relevance, as when adding more and more supplementary resources, in particular 

resources that say something about the effects of interest in the target on their own, we 

run the risk of displacing the relevance of ! to !. Beyond suggesting that it might be 

interesting to explore such interactions in more detail, I will not expand in more detail 

on such relationships here, as this would not seem to importantly further the aims of this 

project. 

 In sum, the above strictures highlight the relation between extrapolation, successful 

extrapolation, and the extrapolator’s bind. Specifically, while extrapolation simpliciter 

only requires that evidence ! from an experiment is used to infer an extrapolative 

conclusion !, successful extrapolation, among other things, requires that ! remains 

relevant to !, so the extrapolator’s bind is now built into our analysis of successful 

extrapolation.  

 

3.4 Conclusions and Outlook  

The discussion offered in this chapter allows us to make important progress in the way 

of spelling out what general kinds of assumptions strategies for extrapolation will need 

to involve, as well as what kinds of desiderata they should meet to be attractive. They 

should, ideally, help us infer, on the basis of ! and a conjunction of background 

assumptions !, and background knowledge ! and supplementary evidence ! pertaining 

to !, an action-guiding, ampliative conclusion ! about the causal effects of interest, 

where ampliative means that the conclusion should go beyond what we already know 
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about the target by virtue of S and K. This might not seem like a tall order for now, but 

as I will argue throughout the following chapters, existing strategies for extrapolation 

are liable to fall well short of this desideratum in many cases. 

 In light of the discussion provided in this chapter, the vulnerability of these strategies 

to fall prey to the extrapolator’s bind should not be surprising. Extrapolation involves 

learning and accommodating information about causally relevant similarities and 

differences between experimental and target populations. But as the assumptions and 

guiding ideal outlined in this chapter make clear, in the limit, accurately predicting a 

causal effect in a target despite potential causally relevant differences between 

populations might require one to know about all relevant differences and similarities, as 

any unknown difference may hamper successful extrapolation. Yet, because some of 

these differences and similarities are at least extremely difficult to learn without falling 

prey to the extrapolator’s bind, extrapolation with certainty and/or maximal accuracy 

will not only remain an elusive ideal, but also undesirable, since it undermines success. 

 Moving from the ideal to the practically feasible, it is clear that any attractive and 

useful strategy for extrapolation must stop well short of these extensive requirements. It 

also suggests that any such strategy must tell us a rich story about the inferential leap 

that will necessarily persist between what we (must) learn for the purpose of successful 

extrapolation and what we are interested in inferring on the basis of what we have 

learnt. This is something that extant strategies have not been telling us much about: 

what are good ways of closing, as much as possible, the gap that will persist between 

what we are in a position to learn, at acceptable cost, and without falling prey to the 

extrapolator’s bind, and what we aim to infer. They provide (potentially adequate) 

accounts of the conditions under which successful prediction of causal effects in the 

target is possible in principle, as well as what assumptions are needed to help infer the 

conclusions of interest. But they do not tell us how to acquire information about the 

experimental and target population to support these assumptions, and in a way that 

helps us successfully extrapolate, i.e. extrapolate without falling prey to the 

extrapolator’s bind.  
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CHAPTER 4 
 
 

Argument-Based Extrapolation 
 
4.1 Introduction 

The previous chapters have laid the foundations for a critical assessment of different 

strategies for extrapolation. In this chapter, I begin to draw on these resources, focusing 

on Nancy Cartwright’s contributions to the literature on extrapolation in EBP, in 

particular her Argument Theory of Evidence (Cartwright 2013a).  

 Cartwright’s Argument Theory is a theory of evidential relevance and was developed 

against the background of her sustained line of criticism against naïve extrapolation 

from RCT results (Cartwright 2009; 2011; 2012; Cartwright et al. 2009; Cartwright and 

Stegenga 2011; Cartwright and Hardie 2012; Deaton and Cartwright 2017). Here, 

Cartwright argues that experimental evidence of the effectiveness of an intervention in 

!, on its own, is only ever evidence of and for itself (2013b). In order for an 

experimental result ! to speak to questions about the effects of an intervention in other 

populations, places, and times !, something beyond ! itself is needed, i.e. something 

that establishes the evidential relevance of ! to questions pertaining to !.!

 Cartwright’s Argument Theory tells us that in order to render evidence ! from ! 

relevant to questions about distinct targets !, we need valid and sound arguments. 

Framed in terms of the analysis provided in Chapter 3, these are arguments where ! as 

well as supplementary knowledge and evidence pertaining to the relation ! that holds 

between ! and ! figure as premises, and which are aimed at inferring a conclusion ! 

that answers our causal queries about a target. 

 Beyond Cartwright’s general emphasis that extrapolative inference should proceed in 

terms of valid and sound arguments, she also offers a concretization of this abstract 

proposal in terms of a specific effectiveness argument, which is used to illustrate what 

kinds of premises would be sufficient to infer a conclusion about the effectiveness of an 

intervention in a novel target. This construal provides more detail about the specific 

nature of the assumptions (read: premises) that might be involved in extrapolation and 

what kinds of additional evidence could help establish the relevance of RCT results to 

answering questions about novel targets. 
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 In what follows, I offer a critical discussion of these proposals. In Section 2, I 

provide a broad sketch of the Argument Theory and highlight what I consider to be 

several of its key virtues. I also expand on some of the commonalities and differences 

between the Argument Theory and other strategies for extrapolation to be discussed 

later. 

 Section 3 proceeds to offer some critical remarks. I begin with two concerns 

targeting the specific effectiveness argument provided by Cartwright. While it is best 

understood as a mere illustration of how the Argument Theory can work, it usefully 

exemplifies what problems we might encounter when extrapolating with the help of 

arguments. As I will argue later, these problems will also carry over to more 

sophisticated arguments, potentially informed by the resources provided by other 

strategies for extrapolation. My arguments should hence not be taken to suggest that the 

effectiveness argument is Cartwright’s final word on matters of extrapolation, nor that 

the persuasiveness of the Argument Theory stands and falls with that of the 

effectiveness argument. 

 Following my critical discussion of the effectiveness argument, the interested reader 

can turn to Appendix 1, where I take a short detour and focus attention on one of the 

main concepts that Cartwright invokes in specifying the effectiveness argument: causal 

support factors. I argue that, while useful and important, the concept of support factors 

is in need of some conceptual refinement, including distinctions between different kinds 

of support factors, and clarification concerning the relationship between support factors 

and other kinds of variables that can induce causally relevant differences discussed in 

Chapter 2. I provide an updated and comprehensive analysis of support factors to help 

clarify these issues.  

 In Section 4, I offer a more general discussion of the Argument Theory. I argue that 

while the specific effectiveness argument, understood as an illustration of the Argument 

Theory’s capabilities, is unlikely to provide a recipe for successful extrapolation, the 

Argument Theory still has important merits. It may not provide a working strategy for 

extrapolation from start to finish, but can be useful as a general framework in which to 

scrutinize extrapolative inference including existing and yet to be developed proposals 

for how to achieve such inference. It can hence figure as a useful background against 

which the critical examinations of other extrapolation strategies in subsequent chapters 

can proceed. 
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4.2 The Argument Theory 

As anticipated above, Cartwright’s Argument Theory is primarily what it says on the 

box: a theory of evidence, or evidential relevance. As such, it is intended to elucidate 

general questions pertaining to the issue of when, i.e. under what conditions, and how, 

i.e. in what particular ways, something can be evidence for something else. The 

presentation of this theory, however, proceeds in the more specific context of when and 

how experimental evidence of the causal effects of interventions in some study 

population is evidentially relevant for claims concerning the causal effects of these 

interventions in novel targets. Finally, beyond these general contributions, Cartwright’s 

exemplary effectiveness argument provides us with a concrete illustration of how a 

specific argument form may help us establish such claims. 

 At the most general level, Cartwright’s Argument Theory hence seems to provide us 

with three things at once: 1) a general theory of evidential relevance, 2) when applied to 

extrapolation specifically, a general framework for articulating and scrutinizing 

extrapolative inference, and 3), as exemplified by Cartwright’s effectiveness argument, 

a concrete strategy for extrapolation. As will become clear in Section 5, this latter 

understanding is somewhat contentious, as both Marcellesi (2015) and Cartwright (in 

personal communication) conceive of the Argument Theory only in the first two senses. 

I will not focus on the first sense here, as I am concerned with issues of extrapolation. 2) 

and 3) will hence be my primary focus. For the moment, let me proceed on the 

assumption that Cartwright’s Argument Theory pertains to issues of extrapolation in at 

least two ways: 

 First, according to the Argument Theory, justified extrapolation, i.e. the activity of 

using evidence of causal effects as evidence pertaining to causal conclusions about 

some distinct target, should be (or is at least helpfully) understood as proceeding in 

terms of valid and sound arguments, i.e. arguments that entail (some kinds of) 

conclusions about the causal effect of interest in the target. If an extrapolative inference 

is not cast in terms of such an argument, then either justification for the conclusion 

would remain implicit, which is taken to be undesirable, or no justification at all would 

be involved, meaning that extrapolation would be based on hope, and fail to be 

successful in at least one of the senses elaborated in Chapter 3. Likewise, If an 

extrapolative inference could not be cast in terms of an argument, then no 

valid/compelling inference can take place. Second, illustrating how such arguments 
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could proceed in practice, Cartwright provides her exemplary effectiveness argument. 

Let me expand on this argument in more detail. 

 

4.2.1 The Effectiveness Argument 

According to Cartwright (2013a, 14), the weakest construal of an effectiveness 

argument is as follows, where ! is the intervention variable, ! the outcome, and!!!and 

! denote the populations from which and to which experimental results are 

extrapolated: 

P1: ! can play a causal role in the principles that govern !’! production in !. 

P2: ! can play a causal role in the production of ! in ! if it does so in!!. 

P3: The support factors necessary for ! to make a positive contribution are 

present for at least some individuals in !. 

C: Therefore,!! can play a causal role in the production of ! in some individuals 

in B. 

 Here, P1 is established by means of a separate argument. This argument involves an 

experimental result, as well as additional premises that establish the validity of this 

result, e.g. premises that mirror the typical identification assumptions involved in RCTs, 

such as that randomization was successful; that there was no differential post-

randomization or post-treatment attrition between treatment and control groups; that 

there were no spillover effects; that blinding of participants, administrators, and 

evaluators succeeded, etc. If these (and other) assumptions are satisfied, it follows that a 

significant mean difference in the outcome ! between treated and untreated units 

establishes that ! can play a causal role in the production of ! in !. 

 This alone, of course, does not entail that ! can play a causal role in the production 

of ! in any place, time, or population other than !. This is Cartwright’s cautionary 

message. To establish any such conclusion about a distinct target !, additional premises 

are required, and evidential support for these premises is needed to justify the inference.  

 P2 and P3 are supposed to do the first part of this job. They specify sufficient 

conditions on the relation ! between two populations for an intervention on ! to be 

effective in the target. P2 is broadly concerned with the causal mechanisms that govern 

the production of the outcomes of interest in the two populations. It asserts that these 
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mechanisms need to be related in such a way that if ! is causally relevant for the 

production of ! in ! then it follows that ! is causally relevant for the production of ! in 

!. In essence, P2 minimally requires that the causal mechanisms governing the 

production of ! in ! and ! are identical in the sense that ! is causally relevant for ! in 

some way, i.e. there is some causal relationship or pathway between ! and ! in both 

populations, such that at least under some background conditions, intervening on ! can 

induce changes in !.  

 P3 specifies additional constraints on !. Specifically, while P2 only guarantees that 

intervening on ! can induce changes in ! in both populations, P3 is supposed to ensure 

that this is actually the case in the target, at least for some individuals. Specifically, P3 

requires that the so-called causal support factors necessary for an intervention on ! to 

actually induce changes in ! are realized for at least some individuals in !. This 

requires some elaboration. 

 There are two important and closely connected ingredients that figure centrally in 

Cartwright’s contributions to issues of extrapolation: the concept of causal support 

factors and the view of causes as INUS conditions. The latter is adopted from Mackie 

(1965) and amounts to the substantive view that causes rarely operate on their own to 

produce some outcome !. Instead, they are best understood as Insufficient but Non-

redundant parts of Unnecessary but Sufficient conditions for !. To produce some 

outcome !, causes typically operate in tandem. Together, conjunctions of causes form 

sufficient conditions for an outcome !, sometimes called (sufficient) causal complexes 

or causal pies1, where the constituent causes may interact or may need to be co-

instantiated in certain ways to jointly bring about !, but where none of the constituent 

parts is sufficient for ! by itself. Nor is any constituent part of a causal complex 

ultimately necessary for !, as long as there are alternative arrangements of factors in the 

same causal complex that would be sufficient to bring about !, or when there are 

alternative causal complexes constituted by yet other factors, which are jointly 

sufficient for ! as well. 

 Adopting this general view of causes as INUS conditions helps Cartwright 

emphasize that the kinds of causal variables we are typically interested in intervening 

with are not ‘pure’ causes that will have some effect on the outcomes of interest 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Causal pies are a metaphor frequently used in epidemiology (Cartwright and Stegenga 2011, 302).!
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irrespective of context. Rather, whether or not an intervention on ! brings about some 

outcome ! is always a matter of whether other INUS conditions that, together with !, 

are sufficient for !, are also present. These additional factors are what Cartwright calls 

support factors. 

 Importantly, support factors should not be understood to take the back seat in 

producing outcomes. What counts as a support factor and what counts as the causal 

variable that an intervention is supposed to manipulate will often be a matter of our 

particular epistemic or pragmatic interests. So, causes and causal support factors are not 

necessarily relatively more or less privileged candidates for intervention. They can often 

figure as equals in causal complexes, where only interest dictates what is the target 

variable of an intervention and what is a support factor necessary for, or conducive to 

this intervention making a suitable contribution to the production of an outcome. 

 With these clarifications in place, P3 in the effectiveness argument specifies how the 

causal support factors necessary for an intervention to yield its intended effect need to 

be instantiated in the target. They need to be instantiated in such a way that the 

intervention of interest makes some contribution to the outcome. Minimally, this 

requires that the requisite support factors are suitably realized for at least some 

individuals. If this is the case, then an intervention on ! can succeed in bringing about 

changes in ! for at least these individuals, and hence yield changes in the average of ! 

across the target population. 

 In sum, P2 and P3 specify conditions on the relation R between experimental and 

target populations that help ensure that an intervention that is effective in ! will also be 

effective in !. These conditions are somewhat milder than those required by other 

strategies (Hotz et al. 2005; Steel 2008; Bareinboim and Pearl 2012), but this potential 

advantage for Cartwright comes at the cost of weaker results. Let me expand on this and 

other, related concerns, starting with the scope of the effectiveness argument. 

 

4.3 Scope, Assumptions, and the Extrapolator’s Bind 

4.3.1 Scope 

My first concern is that the scope of the effectiveness argument is too narrow. In 

Chapter 2 I have distinguished different kinds of extrapolative queries, which can now 

help us map the scope of the effectiveness argument more precisely. 
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 The effectiveness argument is limited to addressing two kinds of extrapolative 

queries. The first are efficacy queries, i.e. queries asking whether an intervention makes 

any contribution at all for any individual in the target. This is guaranteed as long as P2 

is satisfied and the minimal conditions of satisfaction for P3 are met, i.e. at least some 

individuals in the target exhibit realizations of support factors sufficient for the 

intervention to make a contribution to the outcome for these individuals. So minimally, 

qualitative extrapolative queries of the form “will an intervention on ! make some 

contribution to ! in the target?” can be addressed by the effectiveness argument. 

 The effectiveness argument can also handle matching effectiveness queries, i.e. 

queries asking whether the effect of ! on ! in ! will be identical (or otherwise highly 

similar) to the effect measured in !. Affirming this question will require some 

modification of P3, so that P3 demands that the support factors necessary for the 

intervention to make a contribution to the outcome are distributed in such a way in the 

target that the intervention can make the same (or otherwise highly similar) contribution 

as in !. Standardly, this will require that the distribution of support factors in the target 

is the same as in the experimental population.2 If this is the case, it permits the 

conclusion that the ATE induced by the intervention will be the same (or otherwise 

highly similar) in ! as in !. 

 This is about as far as the effectiveness argument can take us with respect to 

addressing extrapolative queries of different kinds. And this is not very far, nor does it 

cover a wide range of important extrapolative queries, including particularly queries 

that ask “what is the effect in the target, given the effect in the experiment and given 

that there are causally relevant similarities and differences between populations?”. This 

is an important shortcoming, as I consider this type of query to be typical in EBP. The 

reason is that in many EBP scenarios experimental and target populations are likely to 

exhibit causally relevant differences, so there is little hope of getting lucky and 

encountering situations where all we need to do is clarify issues of similarity or identity 

in causal mechanisms and assess the suitability of support factor distributions in the 

target in either of the two ways permitted by the effectiveness argument. 

 However, as explained above, the effectiveness argument only covers extreme cases 

where support factors are either distributed in such a way that the intervention is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!Or, in cases where effects are linear in mediators and moderators, that the means of the distributions are 
the same.!
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effective for some agents in !, or in the same way as in !. Yet, the former may not 

yield conclusions that are sufficient for licencing policy action, as it may not be enough 

to infer that some agents will experience positive effects (while permitting, as 

Cartwright acknowledges, that other agents might be harmed by the intervention; see 

also Weinberger 2014). The latter is only useful in extremely rare cases as it is often 

plausible to assume, as argued in Chapter 3, that populations exhibit at least some 

causally relevant differences. An effectiveness argument that only addresses these two 

narrow classes of cases seems consequently too limited in scope to be useful for the 

general purpose of addressing problems of extrapolation routinely encountered in EBP. 

Here, successful extrapolation is often not merely a matter of providing support for 

similarities in mechanisms and suitable support factor distributions, but the aim will be 

to obtain a conclusion about causal effects in the target despite, and taking into account 

the effects of, causally relevant differences. As suggested in Chapter 3, these cases do 

not necessarily pose insurmountable problems, and a failure of the effectiveness 

argument to handle such cases should not be taken to suggest that one should refrain 

from extrapolating, but only that the effectiveness argument is not suitable for this 

purpose.  

 As I will explain in the chapters to follow, other strategies for extrapolation offer 

ways to answer such queries (e.g. those proposed by Bareinboim and Pearl 2012; Hotz 

et al. 2005). In essence, the idea underlying these approaches is that at least for some 

kinds of causally relevant differences between populations, in particular differences in 

the distributions of moderating variables that bear on effect magnitudes, the effect of 

interest in the target can still be correctly predicted as long as we can account for how 

such differences bear on differences in these effects. 

 The effectiveness argument, in contrast, lacks the resources to do this. While it 

specifies conditions on causal support factors (of which moderating variables might be 

considered an instance; more on this in Appendix 1) and how they need to be distributed 

in ! and !, it does not offer conclusions for cases where the distributions of support 

factors or other causally relevant features differ between populations and we wish to 

take such differences into account when inferring a conclusion about the magnitude of 

the effect in !. While there is some flexibility in Cartwright’s effectiveness argument 

pertaining to the exact specification of P3, this flexibility is constrained to two 

extremes, and there remains an important lack of guidance concerning how to handle 
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cases where populations differ in causally relevant respects, including in how support 

factors are distributed, and how to obtain quantitative predictions of causal effects in 

such cases. 

 Let me turn to a second concern, which takes issue with important ambiguities in the 

premises figuring in the effectiveness argument, as well as how empirically supporting 

these premises can raise concerns about the extrapolator’s bind. 

 

4.3.2 Causal Assumptions and the Extrapolator’s Bind 

Setting issues of scope aside, the effectiveness argument seems largely compelling. 

However, on closer inspection, its premises are ambiguous and in need of 

concretization. As I will argue, this concretization may involve yet stronger 

assumptions. This is a problem, as validating these assumptions may require extensive 

causal knowledge of the target. This raises the important concern that in using the 

effectiveness argument to address real-world problems of extrapolation, the knowledge 

about the target required for supporting its premises might be so extensive that 

obtaining it would allow us to answer the causal query of interest based on this 

knowledge alone, thus rendering the experimental result redundant to the conclusion of 

the argument. Let me revisit P2 and P3, in turn, to explain why they are ambiguous.  

 Recall that P2 asserts that ! can play a causal role in the production of ! in ! if it 

does so in !. How does the relation ! between ! and ! need to look like in order to 

satisfy this conditional? As suggested above, minimally, the causal mechanisms 

governing the production of ! in ! and ! must involve ! in such a way that, in 

principle, interventions on ! can induce changes in ! in both populations. 

 However, this condition can be satisfied in at least three different ways. First, the 

causal mechanisms might be identical in both populations3, in which case it would 

follow that whatever intervention can be effective in ! can also be effective in !. 

Second, the effects of ! on ! may be governed by different causal pathways in the two 

populations, each involving a different and non-overlapping set of moderating and 

mediating variables and support factors of the !-!-effect. Third, there can be 

intermediary cases where there is a partial overlap in what variables are involved in the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 i.e. at the level of abstraction relevant to the causal queries of interest, but not, of course in their 
microphysical underpinnings.  
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causal pathway(s) from ! to !, where some but not all of the moderating and mediating 

variables and support factors are identical between populations. 

 A similar ambiguity surrounds P3, which asserts that the support factors necessary 

for ! to make a positive contribution are present for at least some individuals in the 

target. Again, we can interpret P3 in at least three different ways: 

P3.1 The support factors necessary for ! to make a contribution to ! 

in the target are present for at least some individuals there.  

P3.2 The support factors necessary for ! to make a contribution to ! 

in the experimental population are present for at least some 

individuals in the target.  

P3.3 The support factors necessary for ! to make a contribution to ! 

in the experimental and target population are present for at least 

some individuals in the target.  

 In short, what is unclear is whether the support factors invoked in P3 are support 

factors for the effect of interest in the experiment, in the target, or in both.  

 These ambiguities are important because nothing in the effectiveness argument up to 

P3 ensures that the same support factors are involved in producing the effects of interest 

in both populations. For instance, due to cultural and institutional differences, the 

effects of a social policy might be positively moderated (or supported, in the 

terminology of support factors) by informal institutions such as trust in one population 

and by a strong legal system in another. This can pose a problem for the effectiveness 

argument, as P3.1 and P3.2 would leave open whether the support factors for the !-!-

effect are the same in the target as in the experiment.  

 The first construal only ensures that, whatever the support factors for the !-!-effect 

in the target are, they are realized for at least some individuals there. The second 

construal ensures that the support factors necessary for the !-!-effect in the experiment 

are realized in the target as well. This could be despite the fact that the support factors 

required for the !-!-effect in the target might not be the same as (or only partially 

overlapping with) those in the experiment. Sticking with the example, it might not be 

enough, for instance, that there are high levels of trust in a target population when the 

support factor relevant for the effects of interest there is whether there is a strong legal 

system. Only the third construal would evade this problem, as it assumes that the 
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support factors for the !-!-effect are indeed the same in both populations, and asserts 

that they are realized for at least some individuals in the target. 

 The two ambiguities outlined above are importantly related. If P2 is understood to 

assert that the causal mechanisms governing the effects of interest are exactly the same 

in both populations, then the ambiguity surrounding P3 does not matter. In virtue of 

identity in mechanisms, P2 would guarantee that the support factors will be the same in 

the experiment and in the target, and it is enough to learn that they are realized for some 

agents in the target to conclude that the intervention will be effective at least for these 

agents. 

 However, if the causal mechanisms are not identical between populations, but only 

partially so, or if they are entirely different, this conclusion no longer follows on all 

construals of P3.  

 P3.1 would still yield this conclusion; it just asserts that, whatever the mechanism 

governing the !-!-effect in the target, the support factors for the intervention in the 

target are realized for some individuals in the target, so the intervention will be 

effective for these individuals. P3.3 would not yield the conclusion, at least not unless 

we further assume that the support factors play the same qualitative roles in both 

populations, which puts further, heretofore implicit, constraints on how mechanisms 

must be related. P3.2, too, would not yield the conclusion. It would require the 

additional assumption that the support factors in both populations are indeed the same 

and that they are involved in producing the effects of interest in the same way in both 

populations. 

 The most plausible combinations of the above construals of P2 and P3 hence seem to 

be the following. First, P2 could be taken to say that mechanisms in both populations 

need to be identical, and any construal of P3 would be enough to yield the conclusion 

about the target. Alternatively, P2 could ensure only that ! is causally relevant for ! in 

both populations in some way. But then P3 would need to ensure that the support factors 

are either the same in both populations (P3.3) or, if they are not, that the support factors 

necessary for the intervention to be effective in the target are realized for some 

individuals there (P3.1). 

 Let me expand on how these alternatives can raise important concerns about the 

extrapolator’s bind. The general concern here will be that empirically supporting either 
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set of premises can require so much causal knowledge about the target that the 

conclusion to be reached by the effectiveness argument could also be reached based on 

information about the target alone.  

 Before we move from the ontic level of specifying constraints on the relation ! 

between populations to the epistemic level of empirically (or otherwise) supporting 

assumptions ! pertaining to !, some qualifications are needed to make more precise 

what, exactly, the assumptions ! demand. In accordance with the analysis developed in 

Chapter 2, we can distinguish between differences and similarities/identities between 

populations at three levels: 1) the basic structure of the causal mechanisms governing 

the outcomes of interest, i.e. the features that determine whether ! is causally relevant 

for !, 2) the functional form of causal relationships and the parameters that figure in 

these mechanisms and that capture how ! is causally relevant for ! (e.g. what is the 

marginal effect of a unit increase in ! on !), and finally 3) the distributions of variables 

that figure in the causal mechanisms, such as the distributions of support factors. With 

this in mind, let us take a look at the first case, where P2 asserts that populations are 

identical in causal mechanisms. 

 P2 only requires that populations are identical at the first two levels, but remains 

open to (some) differences at the third level. This is easy to see: the weakest construal 

of the effectiveness argument permits that the support factors necessary for an 

intervention to be effective are only realized for some individuals in the target, so it 

permits that the support factors are differently distributed. However, at least on the first 

reading of the effectiveness argument, for this to yield the conclusion that an 

intervention will be effective in the target, we still require that these support factors are 

also support factors of the effect in the target, not just in the experiment.  

 Moreover, the particular way in which these support factors are involved in the 

production of the effects of interest must be the same or similar. Specifically, if we are 

interested in quantitative conclusions, such as ensuring that an intervention will have 

such-and-such effect for at least some individuals in the target, we need to ensure that 

the causal mechanisms in both populations are identical up to the level of the 

parameters and functional form relationships involved in the causal pathways from ! to 

!, and especially those governing the interaction between support factors and the 

treatment variable. Likewise, if we are interested in qualitative conclusions, the same 

qualitative relationships must hold between support factors and treatment variables in 
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producing the outcome of interest. In both cases, this can only be guaranteed by placing 

yet further constraints on ! with respect to the parameters and functional form that 

govern the individual causal relationships constituting the mechanism that governs ! in 

both populations. They need to be qualitatively or quantitatively identical (or, in the 

latter case, at least highly similar). 

 All of these assumptions are demanding and supporting them can raise concerns 

about the extrapolator’s bind. To support P2, we will need to learn something about the 

mechanisms governing the outcomes of interest in both populations. As Cartwright 

recognizes, even learning the mechanism governing the !-!-effect in the experiment 

will often be difficult (see e.g. Cartwright 2013b, 100). Importantly, experimental data 

from RCTs themselves will not shed light on questions concerning the structure of 

causal mechanisms or the path-specific parameters and functional form involved in 

governing an effect, nor will they tell us anything about what support factors were 

involved in producing the effect, how they were distributed in the experiment, or how 

this distribution played a role in bringing about the observed effect. 

 How do we acquire the information that is required for elucidating these issues? In 

many realistic cases, where strong background theory speaking decisively to these 

issues is not available off-the-shelf, supplementary analyses need to be carried out. For 

instance, issues concerning the structure of causal mechanisms can be clarified by 

methods such as process tracing (Beach and Pedersen 2016), causal discovery from 

observational data (Spirtes et al. 2000), and qualitative comparative analysis (Beach 

and Pedersen 2019). With some understanding of the structure of causal mechanisms in 

place, econometric methods can be used to estimate parameters and functional form for 

path-specific effects. Finally, no particularly sophisticated method is needed to measure 

variable distributions, at least for observable variables, but measuring the right 

variables, i.e. support factors and causally relevant moderators and mediators, is of 

course crucial, and a great deal of understanding of the causal mechanisms governing 

the outcomes of interest will be needed to do so (cf. Cartwright 2013a, 15; see also 

Muller 2013, ms.; 2014; 2015). 

 Even if all of these steps were successful, however, in order to support the 

assumptions outlined above, we will often still need to compare what we have learned 

about the experimental population with what is the case in the target. In the language of 

the analysis provided in Chapter 2, we need to get a handle on the relation!! between 
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experimental and target populations, i.e. instances of similarities and differences in the 

causal features that matter for the production of the effects of interest. 

 This is where things will often get thorny in practice. Even relatively complete 

knowledge of the causal makeup of an experimental population will often only provide 

us with hypotheses about what similarities and differences between populations might 

be important, but will not, by itself, help settle issues about whether such similarities 

and differences obtain. For that, very often, a look at the causal makeup of the target 

will be required. The crucial challenge here will be to obtain such information without 

falling prey to the extrapolator’s bind. 

 To see just how difficult this can be, consider again P2, which requires that the 

intervention of interest on ! can, at least under some conditions, induce changes in !. 

Learning this can be easier and more difficult. In the best-case scenario, strong 

background theory or causal generalizations are available. Such generalizations would 

need to assert the causal relevance of ! for ! in a broad range of cases, and the target 

must be uncontroversially understood to be among those cases. Think for instance about 

generalizations such as “microfinance availability can help people out of poverty”, 

“distributing free bed nets can help decrease malaria infection”, or “reducing class sizes 

can increase student performance”. 

 If the scope of such generalizations is wide enough to cover the target, they can help 

us support that ! can be causally relevant for ! in the target without requiring a detailed 

look at its causal makeup. All we need to do is affirm that the target is among the cases 

covered by the generalization, e.g. because it is a member of some well-understood type 

of population, which ensures, or makes it otherwise highly likely, that the outcomes of 

interest there are governed by the same causal mechanisms as in the experimental 

population (see e.g. Beach and Pedersen 2019, Ch.4 for methodological suggestions for 

how causally similar populations may be identified by type-membership). 

 However, well-supported generalizations with well-defined extensions are rare in 

social sciences. What is more, the generalizations that are needed for supporting P2 

would also need to be significantly more precise than the toy generalizations suggested 

above. It may not be enough to learn that ! can be causally relevant for ! in the target 

in some way, as otherwise it may remain unclear whether its effects on ! are governed 

by the same pathways in the same way and including the same support factors, or 

whether there are unanticipated differences in these respects that may pose obstacles to 
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successful extrapolation (see e.g. Beach and Pedersen 2019, Ch.4 and 8 for comments 

on tensions between generality and precision in building causal generalizations). 

 What, then, should we do in more realistic cases where generalizations covering both 

populations are either not available, or not sufficiently informative? Information 

obtained from the target itself may be a good guide for supporting P2, but learning 

whether ! can be causally relevant for ! in the target from scratch can easily raise 

concerns about the extrapolator’s bind. This is most obvious in cases where the 

intervention of interest has not yet been experienced in the target. Here, the concern is 

that if we cannot observe the mechanism governing the effects of interest ‘in action’, it 

will be difficult to learn features of this mechanism that are needed to compare it to the 

mechanism in the experimental population.  

 How, for instance, could we provide an assessment of whether a job market training 

programme can be efficacious in increasing employment outcomes in a novel target by 

increasing applicants’ CV quality and interview skills, if there are neither observational 

data nor experience reports about the sorts of changes in applicants’ CV quality and 

interview skills that the intervention would seek to induce or the envisioned changes in 

the employment outcomes of interest. 

 We might get luckier in cases where the intervention variable of interest regularly 

experiences natural, endogenous changes in the target. In these cases, the same kinds of 

analyses that can be used to learn something about the causal mechanisms in the 

experimental population could also be used in the target in order to acquire information 

pertinent to answering our questions about causally relevant similarities and differences. 

If, say, a microfinance intervention seeks to increase welfare outcomes through 

increasing spending on durable goods, it might be easier to tell whether this intervention 

may in principle be effective by means of statistical and econometric analyses of natural 

(co)variation in spending on durable goods and the welfare outcomes of interest, as well 

as (co)variation in other suspected moderating and mediating variables and support 

factors. Such analyses could help us tell (although not conclusively) whether the effects 

of interest may be transmitted along the same pathways and affected by the same 

moderating and mediating variables and support factors. Similarly, process tracing and 

qualitative comparative analysis may also be helpful tools for this purpose (Schmitt and 

Beach 2015; Beach and Pedersen 2016; 2019; Beach 2017). 

 However, even if we get lucky enough to have large and informative datasets that 
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include relevant variation in the variables of interest, for the results of such analyses to 

be useful in supporting our assumptions we will always need to make the further 

substantive assumption that the causal features learnt by such analyses are invariant 

under the intervention of interest. Sticking with the example, naturally occurring 

differences in spending on durables may not have the same effects on welfare outcomes 

as differences that are induced by a microfinance programme. This is just a familiar 

concern about structure-altering interventions (cf. Steel 2008, ch.8; Lucas 1976), where 

we must assume, for instance, that the basic structure, functional form, and parameters 

of the mechanisms governing household welfare outcomes do not change with respect 

to how variation in spending on durables is induced. If, for instance, individuals would 

spend their money radically differently depending on whether it is obtained as a 

microloan or obtained through wage labour, then natural variation obtained from 

populations where individuals do not (yet) take out loans, but earn their endowment 

through labour, might be a poor guide for learning what will happen if they were to be 

exposed to microfinance products. 

 Importantly, trying to lay such concerns about structure-altering interventions aside 

will require an even deeper look into the causal makeup of the target, including 

specifically information pertaining to whether the intervention will be structure-altering 

or not, and if so how. Such information, almost by definition, will require that the 

intervention of interest be implemented in at least a sample from the target. This in turn, 

however, would clearly fall prey to the extrapolator’s bind as we might then trivially 

learn the effect of interest in the target. While we might still need to reason from a small 

sample of the target to a conclusion about the target population as a whole, this would 

turn our extrapolation problem into the potentially somewhat easier problem of 

generalizing from a sample to a larger super-population. In any case, it seems that the 

result obtained from the experimental population is rendered largely redundant to 

clarifying whether the intervention will be effective in the target. 

 Similar concerns apply to P3, i.e. issues of whether the support factors necessary for 

! to make a contribution to ! are in fact instantiated in the target. The general problems 

here should be clear by now. If P3 is understood as saying that the support factors 

necessary for!!!to make a contribution to ! in the experiment are realized in the target, 

this is not enough to infer a conclusion about the target, and we need to further assume 

that the same support factors are involved in the production of the effects of interest and 
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in the same way. This just triggers largely the same concerns about the extrapolator’s 

bind as discussed above. The same is true if P3 demands that the support factors 

necessary for ! to make a contribution to ! in the experimental and target population 

are realized in the target as well. Here, too, extensive causal knowledge spanning both 

populations may be needed. 

 What deserves separate discussion is the construal P3.1 according to which the 

support factors necessary for ! to make a contribution to ! in the target are realized 

there. This construal makes my concerns about the extrapolator’s bind even more vivid. 

Arguably, learning what support factors are required for ! to make a contribution to ! 

in the target requires causal knowledge pertaining to the target, and very often 

knowledge that needs to be obtained from the target. This is largely analogous to the 

above concerns. However, it seems that the construal P3.1 is special in the sense that 

validating it empirically would make the other premises of the effectiveness argument 

redundant to its conclusion in an even more straightforward way. The reason is that in 

affirming P3.1, we already presuppose that ! can make a contribution to ! in the target, 

so neither P1 nor P2 is needed to infer the conclusion of the effectiveness argument. If 

we learn which support factors are necessary for ! to make a contribution to ! in the 

target, and these factors are indeed present in the target for some individuals, as P3.1 

asserts, it follows that the intervention can be effective for these individuals from P3.1, 

and the knowledge used to support it, alone. 

 Again, while knowledge from the experimental population may still be relevant for 

inspiring hypotheses about what might be support factors of the effect of interest in the 

target, we still need to validate whether these candidates are in fact support factors, and 

this will require information pertaining to the target, and potentially pertaining to the 

target alone. So while the experimental evidence and other information from the 

experimental population may be relevant for the discovery of candidate premises about 

support factors in the target, they are not relevant for the justification of these premises. 

 This makes clear that in the absence of strong background theory or generalizations 

that are justifiably believed to cover both the experimental and the target population, 

and where validating the premises of the effectiveness argument mostly demands that 

we assert that the target is among the cases covered by the available generalizations, 

supporting the effectiveness argument’s premises is likely to fall prey to the 

extrapolator’s bind; at least unless some persuasive strategy is provided that helps evade 
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this problem.  

 So far, I have raised some critical concerns about the scope of the effectiveness 

argument, as well as the epistemic issue of validating its premises pertaining to 

identities in causal mechanisms (including issues of structure, functional form, and 

parameters) and how support factors are distributed in the target.  

 I will now turn to more constructive contributions. One involves a detour and 

concerns Cartwright’s concept of causal support factors, and how this concept extends 

importantly beyond the standard conceptions of moderating and mediating variables 

discussed in Chapter 2. In Appendix 1 to this chapter, I will engage in some conceptual 

gardening by proposing different ways of understanding support factors, as well as of 

conceptually integrating them with moderating and mediating variables. Readers who 

are in a hurry, however, may proceed to the next section straight away. There, I briefly 

anticipate some objections and proceed to a positive outlook on what the Argument 

Theory contributes to addressing problems of extrapolation in practice. 

 

4.4 What’s the Argument Theory after all? Objections, Replies, and a Way 

Forward 

The previous discussion suggests that the effectiveness argument is importantly limited 

in scope as well as difficult to support empirically without falling prey to the 

extrapolator’s bind. In this section, I anticipate two potential objections to these 

criticisms, which raise broader questions about what kinds of contributions Cartwright’s 

Argument Theory makes. 

 First, Marcellesi (2015), in a paper arguing that the problem of extrapolation (or 

‘external validity’) has been solved, anticipates the concerns about the extrapolator’s 

bind I have developed above and argues that Cartwright’s Argument Theory remains 

untouched by such concerns because it is not supposed to offer a method for how to 

extrapolate, but rather a general analysis of the abstract conditions under which 

successful extrapolation is feasible. Since the latter is not intended to offer concrete 

guidance for how to extrapolate, it remains unaffected by the extrapolator’s bind, as the 

bind only pertains to epistemic demands that in fact obtain when a specific method is 

adopted and used. So while concerns about the extrapolator’s bind might apply to the 
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effectiveness argument as discussed above, they would leave the Argument Theory 

largely untouched. 

 I have two replies to this objection. The first is that Marcellesi’s interpretation of 

Cartwright’s contributions is lacking in support. Many aspects of how Cartwright 

presents her contributions speak in favour of a more practice-oriented interpretation on 

which the Argument Theory, at least as concretised in the form of specific effectiveness 

arguments, is (among other things) intended to inform users of effectiveness evidence 

about how to extrapolate results to their intended domain of application.4 On this 

reading, the effectiveness argument is not merely an illustration of what the Argument 

Theory can tell us about extrapolation at the most abstract level, and one that may be 

easily sacrificed in light of the arguments developed here. 

 My second reply is that if Marcellesi’s interpretation were right, it would seem to 

trivialize the Argument Theory. Claiming that the problem of extrapolation has been 

‘solved’ by an abstract account that, when concretised, may provide us with 

effectiveness arguments whose premises are difficult to support without falling prey to 

the extrapolator’s bind, misses the point of what extrapolation is ultimately about: 

overcoming the real-world epistemic difficulties involved in extrapolation. Marcellesi’s 

interpretation of Cartwright’s account would undermine its contributions towards 

addressing real-world problems of extrapolation, and would leave us with a compelling 

but not practically useful contribution pertaining to extrapolative inference, i.e. that we 

cannot justifiably reach extrapolative conclusions about causal effects in a target unless 

we can validly infer such conclusions by means of some argument. 

 I maintain that the extrapolator’s bind remains a serious challenge for the Argument 

Theory. It does so as long as it is not further elaborated how the premises that support 

the conclusions of effectiveness arguments, whether in the form of the particular 

argument supplied by Cartwright, or indeed any other argument, can be established in a 

way that does not trigger concerns about the extrapolator’s bind. 

 The second objection I want to consider here is closely related to the first and argues 

that my characterization of what the Argument Theory aims to contribute is perhaps too 

limited and that my verdict about its limitations in scope is too hasty. Specifically, one 

may object to my concerns about scope that the specific effectiveness argument 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 This is in line, for instance, with how the effectiveness argument figures in Cartwright and Hardie’s 
(2012) Evidence-Based Policy: A Practical Guide to Doing it Better. 
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provided by Cartwright is merely the most minimal characterization of what an 

effectiveness argument could look like, and that there are other conceivable 

characterizations of such arguments that may be able to address the kinds of 

extrapolative queries that I worry cannot be adequately addressed by the exemplary 

effectiveness argument. On this characterization, the Argument Theory is open to other 

kinds of effectiveness arguments, too, including perhaps arguments that allow us to 

answer a broader range of causal queries. 

 I agree that other arguments, perhaps at some price to tractability, could be able to 

address more intricate causal queries, including those concerning cases where there are 

causally relevant differences between populations. At the same time, this understanding 

of the Argument Theory would still leave open just what form these more sophisticated 

arguments would take. My concern here is that while it may be feasible to develop other 

valid effectiveness arguments that characterize the conditions under which extrapolation 

can proceed successfully even in the presence of causally relevant differences between 

populations, these arguments may need to draw to a significant extent on substantive 

theory borrowed from elsewhere, e.g. causal graph or econometric theory that also 

underlies other strategies for extrapolation such as those by Bareinboim and Pearl 

(2013), Hotz et al. (2005), and Muller (2014; 2015). It seems that there are only so 

many ways in which one can characterize the conditions under which we can predict 

causal effects in a target despite causally relevant differences. Indeed, at least in some 

cases, the results provided by these strategies seem to converge already. 

 So if we were to construct effectiveness arguments that could help us extrapolate in 

the presence of causally relevant differences as well, my concern would be that these 

arguments are bound to invoke assumptions and underlying theories similar to those 

used by other strategies, in order to arrive at results similar to those that these other 

strategies already provide. The latter, arriving at the same or similar results, would, of 

course, be a virtue of our newly constructed, more sophisticated effectiveness 

arguments. The former, however, invoking similar assumptions and characterizing 

similar conditions on the relation R between populations under which extrapolation in 

such-and-such a way is feasible, raises an important concern. If we were to draw 

heavily on the substantive causal graph or econometric theory underpinning other 

strategies for extrapolation, it would seem that it is this theory, instead of the Argument 

Theory itself, that would be doing the important work of characterizing the conditions 
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under which, as well as the specific ways in which, extrapolation is feasible. While the 

Argument Theory would still add particular and characteristic emphasis on the 

importance of making the assumptions required for the application of such theories 

explicit, i.e. preferably in the form of valid and sound arguments, it is unclear what 

contribution the Argument Theory would make towards overcoming problems of 

extrapolation aside from adding such emphasis. 

 My proposal for reconciling the concerns outlined above is to suggest that the 

Argument Theory should be understood as aiming to provide an account of how to 

underwrite extrapolative inference, i.e. an account not of how to construct valid 

arguments but of how to render them sound, and of what challenges are involved in 

doing so. This is specifically in contrast to proposing a specific method for how to 

extrapolate, at which the exemplary effectiveness argument is unsuccessful, or 

conceiving of the Argument Theory as an abstract proposal that does not offer much 

towards overcoming real-world problems of extrapolation, as per Marcellesi. On my 

understanding, the Argument Theory would not aim to offer any specific method for 

extrapolation (e.g. in the form of a specific argument), but rather focus on the ways in 

which, given different methods, and given a variety of effectiveness arguments that can 

be constructed by drawing on such methods, one should go about supporting the 

assumptions that these arguments involve. 

 Some contributions towards offering such an account are already provided by the 

Argument Theory: First, it explicitly models the activity of providing support for the 

assumptions involved in effectiveness arguments as an inductive endeavour. This is 

important, as it seems plausible to think that the extrapolator’s bind can be best evaded 

if support for assumptions such as similarity of experimental and target populations is 

not understood as an all-or-nothing package deal, where ‘all’ is too demanding, and 

‘nothing’ is insufficient to get extrapolative inference off the ground. Instead, and 

specifically with a view towards evading the extrapolator’s bind, it seems plausible to 

think that supporting evidence that helps build a basis for extrapolation must be 

gathered and used in a cumulative and incremental fashion, where the support for each 

assumption comes in parts and each part can offer support to different degrees, and in 

different ways. In virtue of its emphasis that support for premises comes inductively, 

and in degrees, the Argument Theory already offers a useful starting point. 

 The Argument Theory, in its current form, also provides an important cautionary 
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message. Conscientious extrapolation requires that one arrives at the desired conclusion 

by way of valid inference, by making the assumptions and the evidence required to 

support them explicit and doing so preferably in the form of explicit, valid, and sound 

effectiveness arguments. This is not just important for cases where extrapolation can 

proceed successfully. Even if successful extrapolation is infeasible, the Argument 

Theory can help us recognize why, by emphasizing just how challenging conscientious 

and rigorous extrapolative inference can be. In doing so it can also help instil a sense of 

epistemic humility in producers and users of evidence that have not yet appreciated the 

intricacies involved in extrapolation. This cautionary message is similar to comments 

offered by Bareinboim and Pearl (2013) on their graph-based approach. They argue that 

one of the distinctive advantages of using graphical causal models is that it makes 

explicit what causal knowledge we require for extrapolation, and in the process of this, 

helps realize that we may often possess very little of such knowledge. This, too, is 

supposed to make us more sensitive to the limits of our ability to justify extrapolation. 

In a somewhat cynical twist, this may be just one of the very insights that these 

strategies are supposed to supply: extrapolation is a difficult endeavour, and in some 

cases it will remain insurmountably difficult. 

 An updated Argument Theory augmented by the discussion here can add more 

nuance to this cautionary message: even when extrapolation is feasible by means of 

adequately supported effectiveness arguments, successful extrapolation requires that the 

conclusion of interest be reached without falling prey to the extrapolator’s bind. The 

Argument Theory can alert us to the possibility that this is not always feasible, and tell 

us why this is so: because the information from the target used to support the premises 

of an effectiveness argument can render its premises redundant to its conclusion. 

 Finally, a third important contribution that the Argument Theory makes is 

conceptual. The concept of causal support factors provides an intuitively graspable way 

of thinking about potential obstacles to extrapolation. As suggested in Appendix 1, this 

concept may be further supplemented by a more comprehensive analysis. This analysis 

of support factors, and how they relate to concepts invoked in the broader literature 

(specifically moderators and mediators) can offer additional resources that so far remain 

unavailable on other approaches such as Bareinboim and Pearl’s (2013), Muller’s 

(2014; 2015) and Steel’s (2008) which 1) do not offer the ability to represent sufficient 

cause scenarios (or at least not without introducing further complications, e.g. on 
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Bareinboim and Pearl’s account), 2) focus predominantly on moderators (Hotz et al. 

2005; Muller 2014; 2015) or 3) simply bracket cases where these types of variables play 

an important role (Steel 2008). Of course, to be useful for overcoming concrete 

problems of extrapolation, we also need a guide for identifying support factors (further 

building, e.g., on the ideas developed in Cartwright and Hardie 2012), for learning 

about how they bear on effect magnitudes, and for using information about how they are 

realized in experimental and target populations respectively; all with a view towards 

evading the extrapolator’s bind. I will return to some suggestions pertaining to these 

issues in Chapter 8.  

 For now, it is enough to note that by drawing on the resources already provided by 

the Argument Theory, as well as perhaps complementing it in some respects suggested 

here, it can be useful in at least three important ways: 1) it can help scrutinize existing 

strategies for extrapolation with a view towards the assumptions they involve, 2) it can 

complement and unify their conceptual arsenal by providing a more comprehensive 

analysis of causal support factors, and 3) it can provide a general framework for 

thinking about how to justify extrapolation in a way that evades the extrapolator’s bind. 

 

4.5 Conclusions 

I have argued that Cartwright’s effectiveness argument, understood as an illustration of 

how the Argument Theory may be applied, is limited in scope. It can only address a 

highly restricted class of extrapolative queries and does not have the resources to 

address what I consider to be the most important class of queries, i.e. those pertaining to 

causal effects in the presence of causally relevant differences between populations. 

Moreover, even for the limited class of queries that the effectiveness argument can 

address, once its premises are concretised, it remains unclear whether these premises 

can be supported without falling prey to the extrapolator’s bind. Despite the 

effectiveness argument being perhaps best understood as a mere illustration of the 

Argument Theory, it was a useful exercise to consider how even relatively simplistic 

arguments can already raise important concerns about the extrapolator’s bind. More 

ambitious extrapolations, including extrapolations addressing the more important class 

of queries pertaining to causal effects in the presence of causally relevant differences, 

will require more complicated arguments drawing on substantive theory that can help us 

accommodate and adjust for causally relevant differences between populations. These, 
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in turn, will involve even stronger assumptions that amplify concerns about the 

extrapolator’s bind. 

 As I have argued, recognizing these limitations does not undermine the usefulness of 

the Argument Theory. The Argument Theory, by itself, may not provide theoretical 

resources and empirical strategies to construct and justify more sophisticated 

effectiveness arguments; these might need to be obtained from elsewhere. However, if 

and when available, the Argument Theory can be a useful tool for scrutinizing 

extrapolative inference that draws on these resources.  

 Following this positive outlook, the subsequent chapters can be broadly understood 

as an attempt to put the Argument Theory to use for critically evaluating other strategies 

for extrapolation. In line with my proposal for how we could understand the Argument 

Theory going forward, these critical investigations can be understood as an attempt to 

consider how the resources provided by other strategies might be used to construct more 

broadly useful and sophisticated effectiveness arguments. In the spirit of the Argument 

Theory, my main aim will be to make the assumptions that they involve explicit and to 

scrutinize these assumptions with a view towards whether and how they can be 

empirically supported without falling prey to the extrapolator’s bind. 
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APPENDIX 1 
 
What are Support Factors? 

In Section 3 I have discussed causal support factors as an important ingredient of 

Cartwright’s contributions towards clarifying the conditions under which some kinds of 

extrapolation are feasible, as well as highlighted their role in the effectiveness 

argument. I have also suggested that the effectiveness argument involves substantive 

assumptions not only about support factors, but also about moderating and mediating 

variables. As discussed in Chapter 2, moderating variables are frequently invoked when 

modelling situations where the causal effect of ! on ! depends on the value of another 

variable !. There, I have also emphasized that, although so far unrecognized, some 

kinds of mediating variables can play similar roles. Moderating and mediating variables 

are important for extrapolation because differences between populations in their 

distribution can pose obstacles to extrapolation, much like causal support factors as 

Cartwright discusses them. What remains unclear so far is how these different types of 

variables relate to each other. There are several questions to be clarified, including: are 

all moderating variables support factors? Are all support factors moderating variables? 

Are there different types of support factors, and if so, which? If there are different types, 

are all of them equally important for extrapolative inference? 

 In this appendix, I aim to make progress on these questions. I begin from an abstract 

conception of support factors and subsequently concretise it in order to focus attention 

on a number of important distinctions. This exercise in conceptual gardening will be 

useful for building a more comprehensive and detailed analysis of support factors and 

how they relate to moderating and mediating variables.  

 The abstract conception I begin with, and the one that Cartwright seems to endorse 

(see e.g. Cartwright and Stegenga 2011, 301), is the following: 

 ! is a support factor for the causal effect of ! on ! if there is a causal complex ! 

that is sufficient for the production of ! and ! and ! are INUS conditions in !. 

 This captures the key intuitions that 1) causes are best understood as INUS 

conditions, 2) interventions rarely work on their own, and 3) support factors play an 

important role in extrapolating from one population to another, which may exhibit 

different realizations/distributions of support factors. At the same time, this abstract 
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conception still glosses over various more fine-grained distinctions, which I elaborate 

below. 

 First, support factors can be understood as enabling conditions in a causal complex ! 

that is sufficient for !. Specifically, on this understanding a binary support factor 

!!!! 0; 1  needs to be instantiated (! = 1) for an intervention on ! to have any effect 

on !. This can be modelled as:  

! = !! ∗ ! ∗ !!!; !!"[0; 1] 

Here, the causal effect of X on Y will be zero at ! = 0 and ! otherwise. 

 Second, we can imagine cases where there are larger ensembles of support factors in 

the causal complex !. Consider an n-ensemble of binary support factors !!!!![0; 1] 
such as usually found in toy examples from epidemiology that characterize sufficient 

cause scenarios, i.e. cases where all components of a causal complex ! need to be 

jointly realized for an intervention on ! to be efficacious in inducing changes in !. We 

can characterize this by 

! = !! ∗ ! ∗min !!,!!,… ,!!  

So the effect of ! on ! will be zero if any!!! = 0, and ! otherwise. 

 Third, an important variation on these all-or-nothing construals is to understand 

support factors as a threshold INUS conditions for !. Here, we may have a continuous 

support factor !, where the effect of ! on ! will be zero at any level of ! below a 

threshold !, and ! otherwise. We can model this with the help of an auxiliary variable ! 

as:  

! = !! ∗ ! ∗ !!!; !! = 0, ! < !
1, ! ≥ ! 

 We can also think of further, arbitrary variations where only some, but not all, 

factors in a causal complex need to be realized (or realized above/below some threshold 

level) for an intervention on ! to be effective. Here, specific combinations of factors 

might be able to enable the effects of ! on ! in different ways, e.g. ! and ! might be 

sufficient for ! to be effective, but only ! in the absence of ! would also require !, !, 

!, and !. 

 These three ways to understand support factors cover the conception of support 

factors in the traditional sense of enabling conditions that help model sufficient cause 
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scenarios where ! is one among several distinct components of a causal complex ! for 

!, and where changes in ! do not effect changes in ! unless other components of the 

causal complex are realized in specific ways (e.g. realized at all, or realized above some 

threshold level).  

 A fourth important sense in which to understand support factors is to understand 

them as moderating variables in the traditional sense discussed in Chapter 2. Here the 

idea is that ! is a support factor in the sense that different levels of ! induce different 

magnitudes of the causal effect of ! on !, so that, for instance, higher values of ! can 

help one and the same intervention on ! make a larger contribution to ! than lower 

values of !. Importantly, this characterization would not conform to the abstract 

conception that I started from, where support factors are necessary for ! to make a 

contribution to !. This is because understanding support factors as moderating variables 

! means that they might not be necessary for ! to make a contribution to ! in any 

strict sense (for instance, there might be no interesting way in which ! can be ‘absent’, 

e.g. age). Still, ! may need to be realized at or above certain levels for ! to make a 

particular contribution to ! and can, in this sense, be an important prerequisite for an 

intervention to be effective in a particular way. This can be modelled in different ways. 

For instance, a fully interactive case can be modelled as: 

! = !! ∗ ! ∗ !! 

 Here, both ! and ! are moderators of each other’s effects on ! and hence on equal 

footing in producing changes in !. In this case, ! can still be necessary for ! to make a 

contribution to !, because any such contribution would be precluded at ! = 0. 

 This is also true for variations on this fully interactive form where a causal effect of 

! on ! varies non-linearly over !. Here, generally:  

! = !! ∗ ! ∗ !!(!) 

for some !(!) that is non-linear in !, such as when: 

! = !! ∗ !! ∗ !!! 

 Whether ! (or a specific value of !) is necessary for ! to make a contribution to ! 

changes in partially interactive cases. Here, there is a baseline effect of ! on ! that 

obtains no matter the level of ! and ! is co-determined by this baseline effect as well 

as an additional, !-specific contribution that is produced in interaction with !, such as 
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when 

! = !! ∗ (! + !!!!) 

 Here, it is important to recognize that ! is not necessary for ! to make a 

contribution to ! since there is a baseline marginal effect of ! on !, !, that will obtain 

no matter the value of !. Strictly speaking, this case would hence fail the abstract 

conception of support factors as INUS conditions espoused by Cartwright, which 

requires that ! is necessary for ! to make a contribution to !.1  

 It is unclear what proportion of real-world cases are best modelled in such a way, or 

whether it is more common to find fully interactive cases (including non-linear variants 

thereof). But to the extent that the above cases are not entirely unrealistic, it may be 

useful to extend our understanding of support factors and say that support factors are 

not always INUS conditions, but extend beyond these to include cases where a support 

factor is not necessary but still important for whether an intervention on ! yields 

(certain kinds of) changes in an outcome !. 

 This extended view would also help capture an important feature of fully interactive 

moderating variables. Above, I have considered fully interactive moderating variables 

as support factors in the enabling-conditions sense because they have the capacity to 

curtail an effect of ! on !, e.g. if ! = 0!in ! = !! ∗ ! ∗ !!. But ! is not only 

important in this sense, but also, and perhaps more significantly, in the sense that it has 

important bearing on the magnitude of an effect. Put differently, a good part of the 

importance of moderators for issues of extrapolation is constituted not by their regularly 

exercised ability to completely suppress causal effects of ! on !, but by importantly 

determining the magnitude of the effect of ! on !. To capture the importance of this 

ability, we may hence extend our conception of support factors to capture variables that 

exhibit this feature, including variables that only exhibit this feature, without being in 

any important or regularly exercised sense necessary for a causal effect. 

 So far, I have offered two broad conceptions of support factors: understanding them 

as enabling conditions, i.e. conditions that, in different ways, enable interventions on ! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Mackie’s (1965) formulation of the INUS concept states that an INUS condition is ! ‘nonredunant’ 
instead of ‘necessary’. The former simply means that ! and its contribution to a sufficient causal 
complex for ! cannot be trivially substituted by any other factor, except in cases where there are yet other 
sufficient conditions for ! that involve all the same conditions except ! and ! is replaced by some other 
condition !. This is covered, however, by the fact that both of these causal complexes themselves are 
unnecessary but sufficient for !. We may hence think of non-redundancy as necessity. Cartwright, too, 
seems to subscribe to this understanding (Cartwright and Stegenga 2011, 301). 
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to make a contribution to !; and understanding support factors as different varieties of 

moderators. Both conceptions have a crucial commonality, namely that support factors 

are at least relevant, and at most necessary, for whether ! can induce changes in !. 

 Highlighting this is useful for pointing out an important vagueness in the general 

terminology surrounding causes as INUS conditions. They are characterized as INUS 

conditions for something (e.g. contributions, as on Cartwright’s account). But what is 

that ‘something’, specifically? In the above cases, it pertains to changes in an outcome 

variable with respect to changes in an intervention variable. Support factors in both 

senses are support factors that interact (partially or fully) with the causal effect of ! on 

!; they can enable and suppress it dichotomously, and they can modify it gradually 

(including partially).2 

 However, there is a third sense in which we can understand support factors, namely 

as factors ! that help achieve specific levels of an outcome (rather than specific 

changes in such levels), but do not interact with !, so different realizations of ! do not 

induce different changes in ! induced by given changes in !. On this understanding, ! 

is simply an additively separable cause of !. Such a cause can be an INUS condition for 

a specific level of !, for instance, if there are levels of ! that cannot be achieved by any 

intervention on ! under all possible realizations of !.  

 To give an example, consider the effect of class size on student achievement (I will 

expand on this example in more detail shortly). Let us assume that the smaller a class, 

the more pronounced the effects of teaching on student achievement. Let us also assume 

that this effect is limited by the lower bound of ! where there is only one student in a 

class. Even at this lowest bound, where, let us assume, the effect of an additional hour 

of teaching on student achievement is most pronounced, the student’s educational 

outcomes might still be even further improved by additional interventions on other 

variables that contribute to her achievement level !, such as teacher quality, 

supplementary teaching, parental support, and others. Conversely, certain levels of!! 

might be infeasible if variables such as class size and teacher quality do not 

simultaneously assume certain ranges of values. 

 Importantly, however, despite two or more variables such as class size and teacher 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Cartwright and Stegenga (2011, 306) ask and seek to clarify the same question. They do so differently, 
however, by expanding on the distinction between support factors for dichotomous and multi-valued 
effects. I am interested in the distinction between support factors for levels of an outcome vs. effects on an 
outcome.  
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quality jointly contributing to the achievement of a particular level of an outcome, this 

does not mean that there is any interaction between them. So the marginal causal effects 

of class size on student achievement, i.e. the changes in ! with respect to changes in !, 

do not depend on the values of teacher quality !. This gives us a non-interactive 

conception of INUS conditions. On this understanding, different parts of causal 

complexes join together to produce certain levels of an outcome, and some of these 

levels may be unattainable for any intervention on some part of the causal complex (e.g. 

any intervention on !), unless other parts of the complex (e.g. !) assume suitable 

values as well. But over and above the necessity of certain kinds of joint contributions 

to achieve a specific level of an outcome, there is no interaction between the constituent 

INUS conditions of the causal complex ! for !, and the individual contributions (i.e. 

marginal effects) of these causes on the outcome do not depend on the values of other 

variables in the causal complex. The causal pie, as it were, is a mere sum of its 

ingredients, unlike on interactive conceptions, where the pie is more than that and 

cannot be neatly decomposed (when the rules of composition are unknown). 

 The distinction between interactive and non-interactive support factors can have 

important ramifications in practice. Cartwright invokes various test cases to illustrate 

the importance of support factors for purposes of extrapolation, specifically by 

illustrating what happens when these support factors fail to be in place in the target. A 

case repeatedly used by Cartwright is that of 'Project STAR’, an educational 

intervention implemented in Tennessee to identify the effect of reducing class size on 

student performance (Bohrnstedt and Stecher, 2002). In this example, an intervention 

that decreases class sizes is demonstrably effective in increasing student performance in 

a study population in Tennessee. Yet, when this intervention is implemented in another 

population in California, it fails to bring about an analogous change in levels of student 

performance. One of the reasons that are typically cited for this failure is that the causal 

effect of class size on student performance depends on background characteristics of the 

setting, such as teacher quality. Specifically, implementing the intervention on a large 

scale in California involved general equilibrium effects that curtailed the success of the 

intervention. Decreasing class sizes increased the number of classes, and given a fixed 

teacher supply schedule that is downward sloping in teacher quality, demanding more 

teachers led to decreasing average teacher quality for employed teachers. According to 

Cartwright, teacher quality is one of the support factors that need to be in place for the 

intervention on class sizes to make the envisioned contribution to improving student 
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performance outcomes. As average teacher quality decreased by expanding the total 

number of classes, the intervention was not effective in increasing student performance 

when implemented in California. 

 So on Cartwright’s account, teacher quality figures as an INUS support factor in at 

least one causal complex that is involved in the production of the outcome of interest. 

As Cartwright argues, and following the effectiveness argument, extrapolating from 

Tennessee to California can only be successful to the extent that 1) the treatment can 

play the same causal role in both populations and 2) that the support factors, such as 

teacher quality, are distributed similarly in both populations (e.g. the means of the 

distribution must be similar). Provided that we assume the first condition to hold, the 

failure of the intervention in California is then attributable to a failure in the similarity 

of the support factor distributions. Due to general equilibrium effects, post-intervention 

average teacher quality was not distributed in the right (read: similar) way in California 

to yield a similar effect of class-size reduction on student performance there. 

 It is important to recognize that understanding teacher quality as a support factor in 

the interactive or non-interactive sense can have different implications for how the 

effectiveness of the class size programme in California should be evaluated. To 

appreciate this, it is important to distinguish between different senses of effectiveness. 

One is in terms of outcomes: here, we ask whether a certain outcome of interest has 

been realized, say a specific level of student achievement. The other is in terms of 

contributions to an outcome. Here, we ask whether certain contributions have been 

made to an outcome, e.g. specific changes to student achievement. 

 If teacher quality were an interactive support factor, it would be correct to conclude 

that the intervention failed to be effective in the California setting in both senses of 

effectiveness. The general equilibrium effects on average teacher quality decreased 

teacher quality to such an extent that the marginal effects of the change in class size 

were zero. In terms of outcomes, too, the desired outcome has not been achieved and 

the intervention remains ineffective. 

 In the non-interactive case, this story changes. Here, there are two counteracting 

contributions to the outcome, both induced by the intervention. The first would be a 

positive contribution. For instance, at least some post-intervention classes would still 

plausibly end up with high-quality teachers. At least for these classes, it would seem 

reasonable to think that students benefited from smaller classes, and the intervention 
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was effective in the sense of making a positive contribution for students in these classes. 

However, there was also a second, negative contribution to the outcome. This negative 

contribution obtains as a result of the general equilibrium effects on teacher quality, 

which in turn makes a negative contribution to student achievement for those post-

intervention classes with lower than pre-intervention quality teachers. Taken together, 

these two counteracting contributions would yield a net effect of zero and hence would 

yield the conclusion that the intervention was ineffective in the outcomes sense. But that 

does not mean that the intervention was ineffective in the contribution sense. It was 

effective, but in an unfortunate way that failed to yield the envisioned level of the 

outcome. 

 It is important to recognize that by inspecting pre/post-intervention observable 

differences in student achievement, as it was performed in the key evaluation of the 

California class size intervention by Bohrnstedt and Stecher (2002), it is difficult to 

disambiguate between the interactive and non-interactive ways in which teacher quality 

could have figured in the mechanism governing student performance. But despite 

empirical challenges, the distinction remains an important one. For one, a non-

interactive understanding of teacher quality allows that the intervention had important 

distributive effects on student performance. Some students, those in post-intervention 

high-quality teacher classes, may have benefitted, while other students, those in post-

intervention low-quality teacher classes, may have been made worse off. The interactive 

case, by contrast, would simply suggest that the intervention did not induce any 

(differential) contributions to the outcome in any population. This is how the distinction 

is important for policy evaluation. 

 The distinction between interactive and non-interactive support factors also has 

important implications for prediction and intervention design. Here, it is important to 

recognize that the California class size example is a special one. General equilibrium 

effects that obtain when scaling up interventions are a real concern, but not all 

interventions of interest in EBP are scaled up in such a way as to raise such concerns. In 

cases where such concerns are plausibly believed to be irrelevant, the situation is 

entirely different. Here, there will often be a marked difference between identifying a 

variable as an interactive or non-interactive support factor. In the former case, the 

support factor, if unsuitably distributed in the target, may completely suppress the 

contribution of an intervention to the outcome. Not so in the non-interactive case. Here, 
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unhelpful distributions of support factors may bear importantly on where the effects of 

interest materialize (e.g. at lower levels of the outcome variable), but will not bear on 

whether these effects materialize, or indeed on the magnitude of these effects. 

 Likewise, co-interventions on interactive support factors (such as decreasing class 

sizes and simultaneously investing in teacher training programmes) can drastically 

increase effect sizes yielded by a given intervention, but not if they are performed on 

non-interactive support factors. Again, all they will do is change where the effects of ! 

on ! are materialized, but they will not change whether these effects obtain or indeed 

the magnitude of these effects. The causal pie remains a mere sum of its parts, and no 

disproportionately bigger pie may be expected if we meddle with the proportion of its 

ingredients. This suggests that the distinction between interactive and non-interactive 

support factors is an important one in many cases, both for evaluation as well as for 

informing prediction and optimal intervention design. 

Let me briefly expand on two further ways that I consider to be important additions to a 

more comprehensive conceptual arsenal of what kinds of variables and causal 

arrangements may be considered to fall under the umbrella heading of support factors.  

 One interesting variant of support factors is what I call a switching variable. By this, 

I mean variables ! that determine the relative marginal effects of changes in ! on ! 

transmitted along multiple pathways. Essentially, they can be thought of as moderators 

of moderators. To give an example, consider a case where there are two pathways 

between an intervention and an outcome, where one pathway is moderated by !! with 

parameter !! and the other is moderated by !! with parameter !!. Figure 1 illustrates: 

        

Figure 1: Two mediating paths, with path parameters determined by a switching variable 

 A switching variable ! (not encoded in the graph) is a variable that induces changes 
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in !!/!!. For instance, consider a microfinance programme intended to increase private 

investment in durable goods in households of the rural poor. Let ! be household 

endowment, the (indirect) intervention on ! is making microloans available, and the 

outcome of interest ! is the share of private investment in durable goods. Suppose 

further that the effect of ! on ! is mediated by two different variables: !! is the 

availability of affordable durable goods, e.g. energy-efficient cooking stoves, and !! is 

the availability of cheap perishable commodities. Let’s suppose that !! affects the 

marginal effects of ! on ! positively, and !! does so negatively. A switching variable 

! can be thought of as a variable that meddles with the relative salience or importance 

of !! and !!. At constant values of these variables, ! may meddle with the path-

specific parameters that they are involved in. For instance, a co-intervention on ! could 

be a public awareness campaign emphasizing the importance of investment in durables 

and how returns on such investments may help increase household wealth in the long-

term. ! can hence be an important interactive support factor for the effectiveness of an 

intervention as even at one and the same distribution of !! and !!, it is important that 

these moderators are involved in the right way in producing the effects of interest, and 

the right values of !! and !!, i.e. those needed for ! to make suitable contributions, may 

need to be achieved by co-interventions on !. 

 Second, in contrast to the static conceptions of support factors outlined above we can 

also think of support factors as dynamic support factors. Dynamic support factors are 

support factors that, over time, have the capacity to sustain an effect of ! on !, or, 

alternatively, to erode such an effect. Figure 2 offers an abstract example: 

 

Figure 2: Dynamic support factors 
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 Here, two variables, !! and!!! co-determine a mediator ! that mediates the path 

between ! and !. !! can gradually, and over time re-set the value of ! to some level !! 

(e.g. its pre-intervention level), thus undermining the persistence of the changes in ! 

induced by ! through !.  

 To give a concrete example, suppose that ! is smoking behaviour; ! is smokers’ 

awareness of the deleterious health consequences of smoking; an intervention on ! is a 

public awareness campaign to attract smokers’ explicit attention to these consequences; 

! is a black box mediator that encodes agents’ reasoning processes about the relative 

utilities of short-term gratification and long-term health consequences (which we 

assume is negatively relevant for smoking); and !! are the acute short-term cravings to 

smoke.  

 A public awareness campaign may be able to increase !, which induces changes in 

!, i.e. how relative utilities are perceived, computed, and used as a basis for making 

smoking-related decisions. !, in turn, induces changes in smoking behaviour !. Yet, !! 

may be a constant variable, that, over time, will re-set ! to its pre-intervention level !! 

in accordance with some function of !! and time. Thus, over time !! will re-set ! to 

its pre-intervention level and hence erode the persistency of the changes in smoking 

behaviour induced by the public awareness campaign. !! is hence negatively relevant 

for the effect of interest, as it has the capacity to undermine these effects gradually over 

time. We can now think of another variable, !!, say support by friends and family or an 

incentive scheme that rewards non-smoking, which plays the opposite role of !!. At the 

right levels it can cancel out the negative erosive effects of !!, and hence help sustain 

the effects of ! on ! induced through ! by keeping ! stable and resistant to the erosive 

changes induced by !!. !! can hence be understood as a negative dynamic support 

factor, and !! as a positive dynamic support factor. 

 There might be yet other interesting senses in which we can think about support 

factors. For answering the questions posed at the beginning of this section, the 

conceptions outlined above suffice. First, in answering what different kinds of support 

factors there are, they help clarify that support factors can come in many different 

forms: interactive and non-interactive, static and dynamic, gradual and dichotomous. 

They also highlight that support factors can be support factors for different things: for 

specific levels of an outcome, for specific contributions to some outcome, or for 

maintaining an existing contribution to an outcome. 
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 Second, clarifying the relation between support factors and moderating and 

mediating variables, it seems that moderating and mediating variables can be 

understood as one variant of support factors. So all moderating and mediating variables 

can be understood as support factors, but not all support factors are moderating or 

mediating variables. As suggested above, the comprehensive analysis of support factors 

developed here can both accommodate moderators and mediators, as well as extend 

beyond them significantly. 

 Third, not all support factors are important for (all kinds of) extrapolation. Non-

interactive support factors only matter for predicting outcome distributions, but not for 

predicting effect sizes since they do not interact with interventions. Moreover, support 

factors of any flavour that do not regularly exercise their ability to modify causal effects 

do not pose relevant obstacles to extrapolation and may be disregarded. On the other 

hand, it is important to note that particularly in fully interactive cases, support factors 

are important targets for co-interventions. Depending on the relative costs and benefits 

of intervening on certain variables (which may differ between populations if these 

variables are differently related to the outcome), thinking more broadly about support 

factors can be helpful in identifying important co-interventions that may be necessary 

for achieving certain outcome distributions or effect sizes, and may be useful for 

realizing these distributions of effects by means of entirely different interventions than 

those that were the initial object of our extrapolation efforts. 

 Building on Cartwright’s work, the more comprehensive analysis of support factors 

provided above makes important conceptual contributions to the literature on 

extrapolation by offering resources that remain unavailable on other accounts of 

extrapolation, specifically those to be discussed in the chapters to follow. These 

resources are not only useful at the level of abstract and theoretical results. One of the 

great advantages of thinking about support factors, at the most general level, and barring 

the details of more specific conceptions, is that it provides a graspable and intuitive way 

for policy analysts and policy makers to consider a diverse range of variables that may 

induce important obstacles to successful extrapolation. This is in contrast to the 

concepts of moderators and mediators, which are more technically involved and 

conceptually limited in the kinds of causal arrangements they can capture. 

 This more fully cultivated conceptual garden is not essential to the arguments 

developed in subsequent chapters, but nevertheless makes interesting contributions of 
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its own by facilitating the integration of central concepts figuring in characterizations of 

problems of extrapolation and in discussing strategies for extrapolation. 
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CHAPTER 5 
 
 

Mechanism-Based Extrapolation 
 
5.1 Introduction 

In this chapter, I consider Daniel Steel’s mechanism-based strategy for extrapolation 

(Steel 2008). Steel’s aim is to offer a strategy that can help us decide whether claims of 

qualitative causal relevance can be justifiably extrapolated from an experimental 

population to a target by using knowledge of similarities and differences in the 

mechanisms that govern the production of the outcomes of interest in both populations. 

 Steel begins by arguing that there are two crucial challenges that any persuasive 

strategy for extrapolation must evade. The first is that since causally relevant 

differences between experimental and target populations will almost invariably obtain, a 

persuasive strategy for extrapolation should tell us how extrapolation can proceed 

successfully despite such differences. Steel calls this the problem of difference (2008, 

85).  

 The second challenge, discussed at length in Chapter 3, is the extrapolator’s circle. 

The basic idea of mechanism-based approaches to extrapolation is to compare the 

mechanisms in the experimental and target populations with respect to whether they are 

sufficiently similar. However, while this idea is intuitively plausible, a persuasive 

strategy for extrapolation must at the very least avoid requiring full knowledge of the 

mechanisms that operate in the target, since obtaining such knowledge would threaten 

to render learning about the effect of interest in the target from the experiment 

redundant. So what Steel envisions for a useful strategy for extrapolation is that it can 

help decide whether an experimental result can be extrapolated given only partial 

information about the mechanisms in the target (2008, 87). I will continue to refer to 

this challenge as the extrapolator’s bind, as it is more general and accommodates 

Steel’s concerns about the circle. 

 Steel offers his mechanism-based strategy as a way to extrapolate claims of causal 

relevance that can evade both of the above challenges. More specifically, Steel argues 

for the following general procedure, called comparative process tracing (CPT): first, 

learn the mechanism in the experimental population by means of process tracing, a 
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method for causal model construction and evaluation that proceeds by comparing 

empirical consequences of a causal model against qualitative or quantitative data (see 

e.g. Schmitt and Beach 2015, Beach and Pedersen 2016). Second, compare the 

mechanisms in the experimental and target populations at stages where they are most 

likely to differ significantly (2008, 89). By “most likely to differ significantly”, Steel 

means those stages at which differences in mechanisms are most likely to present 

obstacles to extrapolation, such as in a causal chain ! → ! → ! → ! where the 

relationship between ! and ! might be disrupted in the target, or ! may be absent, 

although, if realized, would permit transmission of causal effects from ! to !.  

 This strategy, by itself, is of course not sufficient to evade the extrapolator’s bind, as 

learning the mechanisms in the experimental and target populations in order to compare 

them with respect to causally relevant similarities and differences might still require one 

to learn about the full mechanisms in both populations. 

 In order to avoid this problem, Steel argues that comparisons of similarity or 

difference of mechanisms are not necessary for every stage of the mechanisms at which 

differences could curtail the effectiveness of ! on ! in the target, but rather only at so-

called downstream bottleneck stages.  

 For instance, consider the following sketch of a mechanism borrowed from Steel’s 

running example, which focuses on extrapolating the carcinogenicity of a substance 

called Aflatoxin B1 (AFB1) from animals to humans (to be explained in more detail 

shortly). Here, the mechanism in animals is as follows, with ! being exposure to AFB1, 

and ! being the cancer outcome:  

! → ! → ! → ! → ! → ! → !"

 Suppose that the stages at which the mechanisms governing how animals and 

humans metabolize AFB1 are most likely to differ are ! and !. Then, if one is 

interested in extrapolating the effect of ! on !, it may be sufficient to compare the 

mechanisms at !, a descendant of ! and the nearest causal ancestor to !. If the 

mechanisms are similar or identical at this stage, in the sense that the effect of changes 

in ! is transmitted down to !, then extrapolation of claims of causal relevance can 

proceed successfully even in the absence of full knowledge about the mechanism in the 

target. In a nutshell, the reasoning is that, if the experimental and target populations are 

relevantly different at any stage upstream of ! and downstream of !, then variation 
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induced in ! will not transmit down to !. Conversely, if variation induced in ! does 

transmit down to !, either the mechanisms are similar at the intermediate stages 

between ! and !, or they are dissimilar but the dissimilarities are not relevant since they 

do not block the path from ! to !. According to Steel, this reasoning allows one to 

avoid learning about all intermediate stages of the !-!-mechanism, and hence evades 

the extrapolator’s bind. 

 In addition to the problem of difference and the extrapolator’s bind, there are two 

further challenges that Steel considers.  

 The first is causal dissonance. Consider the case where the effect of ! on ! is 

transmitted through two variables, ! and !, that mediate the effect on ! on two parallel 

causal pathways, such that ! is positively causally relevant for ! and !, ! is positively 

causally relevant for !, and ! is negatively causally relevant for !. To illustrate, 

consider the following diagram encoding the causal relationships between 

supplementary teaching ! and students’ performance on tests !: 

 

Figure 1: Two mediated paths from X to Y, one positive, one negative 

 Here, supplementary teaching ! increases students’ performance on tests ! by 

increasing unobserved ability !, which in turn is positively relevant for performance !. 

In addition, on a parallel mediated pathway, receiving supplementary teaching also 

leads to students being stigmatized by peers for being in need of such teaching, 

represented by !, which is negatively relevant for performance because stigmatization 

renders students less confident in their abilities.  

 Assume now that we wish to extrapolate the positive causal relevance of 

supplementary teaching from an experimental population in which the pathway 

involving stigmatization is absent, i.e. the arrow between ! and ! is severed, to a target 
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where this connection is present. Then, the negative causal relevance of stigmatization 

in the target is an obstacle to extrapolating the effect of interest.  

 This is important because remaining ignorant of the mediated effect through ! might 

lead to mistaken predictions. Moreover, absent knowledge about functional form 

relationships as well as the signs (and magnitudes) of the parameters associated with the 

arrows that connect ! and ! with !, and how these parameters are distributed among 

individuals in the target, we will be unable to decide whether ! is positively causally 

relevant for ! in the target.  

 Acknowledging this problem, Steel argues that the positive causal relevance of ! for 

! in the target can only be decided if the causal relationships ! → !, ! → !, ! → ! and 

! → ! in the target are positively consonant, that is, if the signs of the parameters 

associated with all edges on the pathways through ! and !!are positive. In the example 

above, this is not the case since ! → ! has a negative sign. So in this case, qualitative 

causal relevance cannot be decided unless we know the signs of the parameters for all 

causal relationships. More formally, according to Steel, successful extrapolation of 

positive causal relevance claims requires that there is no subpopulation Φ!  of the target 

population ! such that the relative frequency φ! of Φ! in ! is positive and ! is a 

negative causal factor for ! in Φ! (2008, 112). In other words, positive consonance 

requires that “[…] ! is not negatively relevant to ! for any combination of mechanisms 

found in the population” (2008, 112; emphasis added).  

 The second important obstacle for Steel’s CPT is that learning about similarities at 

downstream stages of mechanisms can only be useful if one is reasonably confident that 

the mechanism in the target is not bypassed around these stages. Recall the 

supplementary teaching example again and suppose that the mechanism learnt in the 

experimental population is ! → ! → !. In this case, even though we might be able to 

learn that the relationships ! → ! and ! → ! are instantiated in the target, it may still 

be possible that there is a parallel and unknown causal pathway from ! to ! through !, 

which has negative causal relevance for !. In such a case, depending on the signs of the 

parameters associated with the relationships ! → !, ! → !, ! → !, and ! → !, and 

how they are distributed in the target, it may be possible that the joint effect of ! on ! is 

positive in the experimental population but negative in the target.  
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 Steel argues that the success of his proposed strategy hinges on knowledge of 

whether the downstream stages at which mechanisms are compared are so-called 

bottlenecks, i.e. stages “[…] through which any influence upon the outcome must be 

transmitted” (2008, 90; emphasis added). The supplementary teaching example above is 

a case in which no such bottleneck exists, since there is no immediate causal parent of ! 

that is a descendant of all pathways connecting ! and ! such that comparisons of 

similarity at this stage could, under the favourable conditions of positive causal 

consonance, obviate the need to learn about the parallel pathways through ! and 

!!respectively. 

 Against the background of these two important caveats, Steel offers his extrapolation 

theorem, specifying when claims of positive causal relevance can be extrapolated. 

Steel’s theorem says that this is possible when 1) there is a nonempty subset of 

individuals from the target population !!of interest for which the mechanisms 

connecting ! and ! are not disrupted, 2) all mechanisms connecting ! and !!are 

positively consonant for all individuals in !, and 3) the mechanisms exhibit a 

downstream bottleneck stage (2008, 113). Under these conditions, learning that the 

mechanisms in both populations are similar at a downstream bottleneck stage allows 

one to infer that ! will be positively causally relevant for ! in the target. 

 With this result in place, let me proceed to a critical discussion of Steel’s strategy. In 

Section 2, I elaborate on several general concerns about the epistemic demands imposed 

by Steel’s strategy as well as its scope. In Section 3 I turn to a more important concern, 

which is that Steel’s strategy experiences difficulties in evading the extrapolator’s bind 

in cases routinely encountered in EBP. To this end, I develop a distinction between two 

kinds of extrapolation, attributive and predictive. The former is the kind that Steel’s 

strategy specifically targets and can help us to successfully overcome; the latter is 

common in EBP, and substantially more difficult to overcome using Steel’s strategy. 

Section 4 offers a detailed example to illustrate the distinctive difficulties involved in 

predictive extrapolation. Section 5 concludes.  
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5.2 General Concerns 

5.2.1 Epistemic Demands and Scope 

The first concern I want to discuss is that Steel’s strategy imposes highly demanding 

lower bounds on the knowledge required to decide whether experimental results can be 

extrapolated. Specifically, these demands concern 1) identifying the stages at which 

differences in mechanisms are most likely to pose obstacles to extrapolation and which 

of these stages are downstream stages of the mechanism, 2) determining whether 

mechanisms are consonant, and 3) determining whether downstream stages are not 

bypassed, i.e. whether they are bottlenecks. 

 First, in order to identify stages at which differences in mechanisms are most likely 

to present obstacles to extrapolation and which of these stages are downstream stages, 

one will typically need to have extensive understanding of the mechanisms in both 

populations. For instance, in Steel’s running example concerning the carcinogenicity of 

AFB1 (to be discussed more fully shortly), researchers had extensive experimental 

evidence concerning between-species differences in the carcinogenic effects induced by 

AFB1 exposure, as well as an understanding of how differences in the metabolic 

mechanisms present in different species accounted for these differences in effects. This 

rich background of experimental evidence and consequent understanding of mechanistic 

differences between species allowed researchers to determine the stages at which 

mechanisms are most likely to differ with respect to how AFB1 is metabolized. This 

provided a background against which Steel’s CPT could proceed effectively, as the 

available understanding of the mechanisms significantly constrained the range of stages 

at which mechanisms would need to be compared in order to support between-species 

extrapolation of claims of causal relevance. 

 While experimental evidence and subsequent understanding of mechanisms of this 

kind may be more frequently available in epidemiology, biochemistry, molecular 

biology, and life sciences more generally, it seems that this is less frequently the case in 

social science contexts where researchers often have little grasp of the details of the 

mechanisms that connect an intervention variable, such as household endowment, to 

outcomes, such as private investment, welfare levels, or health indicators for children in 

households of the rural poor. This is especially the case if important parts of these 

mechanisms involve agents’ decision-making and are hence governed by psychological 

processes. To be sure, it is not uncommon for social science researchers to have so-
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called programme theories, theories of change, or logic frames which describe details 

of how an envisioned intervention is supposed to be effective, including variables 

believed to be important for mediating their effects (see e.g. White 2009; Pawson and 

Tilley 1997; 2001; Pawson 2013; Davey et al. 2017). Yet, while there are arguably 

cases where such theories are well-supported and provide adequate representations of 

important mechanistic features, in many other cases such theories only characterize how 

envisioned interventions are hoped to be effective, but where these theories are based on 

potentially incomplete knowledge or indeed mistaken beliefs about the true underlying 

causal mechanisms that will ultimately govern the effectiveness of these interventions. 

 The second way in which Steel’s strategy is epistemically demanding concerns the 

requirement that mechanisms must be positively consonant for all individuals in both 

populations. This is both difficult to learn as well as unlikely to be the case in many 

social science contexts (Vivalt 2019). For instance, the effects of microfinance 

programmes are known to vary considerably between households, both quantitatively as 

well as qualitatively (Banerjee et al. 2017). In virtually all contexts where the welfare 

effects of policies are a concern, it is plausible to assume that individuals’ responses to 

interventions differ not only in magnitude but also in sign; in Steel’s terminology, the 

mechanisms are likely to be causally dissonant. This not only undermines the 

applicability of Steel’s extrapolation theorem, which hinges on the assumption of 

consonance, but also threatens the ability of Steel’s strategy to evade the extrapolators’ 

bind. More specifically, in order to determine whether mechanisms are consonant in the 

target, one may need to learn about all parts of the mechanisms that connect treatment 

and outcome. This makes it likely that the effects of interest may be identified on the 

basis of such knowledge alone, thus rendering evidence from the experimental 

population redundant to our conclusion. 

 The third concern about epistemic demands is that even if the condition of causal 

consonance were satisfied and could be supported without falling prey to the 

extrapolator’s bind, this alone may often not be enough to decide whether an 

experimental result can be extrapolated. In addition to being reasonably confident that 

mechanisms are similar at relevant downstream stages, we need to be confident that the 

downstream stages are not bypassed either. 

 For instance, cash transfers ! may increase household expenditures on goods ! that 

increase children’s nutritional health ! in an experimental population. Yet, while these 
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aspects of the mechanism may also be instantiated in a target population, obtaining 

evidence of such mechanistic similarity may not be enough for successfully 

extrapolating claims of causal relevance. For instance, in the target population, cash 

transfers might be causally relevant for other activities that adversely affect children’s 

health outcomes such as cigarette consumption, where these adverse effects may 

importantly depend on background conditions such as cigarette prices or social norms 

concerning smoking in the proximity of children. As these background conditions may 

conceivably vary between different settings, this means that the mediated and 

moderated effects may significantly differ between populations. This makes it possible 

that even though the target may share all the features of the mechanism in the 

experimental population, it may nevertheless exhibit other, extraneous causal 

relationships that bypass the downstream stages of interest and thereby, if unaccounted 

for, create obstacles to successful extrapolation.  

 In light of this, it is important to note that Steel’s strategy does not only put emphasis 

on exploiting the fact that upstream differences do not matter for extrapolation so long 

as mechanisms are similar at downstream bottlenecks, but crucially hinges on whether 

such bottlenecks exist at all and fails to offer the desired shortcut for extrapolating 

causal claims whenever this is not the case. 

 While Steel gives explicit consideration to these worries, by arguing that background 

theory and intuitive considerations of plausibility can help rule out alternative 

specifications of mechanisms in the target that could obstruct extrapolation, he does not 

discuss how extrapolation should proceed in cases where such information is 

unavailable, other than suggesting that naïve extrapolation may be used as a fall-back 

strategy in such cases (called simple induction by Steel; 2008, 96). Steel explicitly 

objects to this strategy in several other places, however, on the grounds that it is 

unreliable whenever there are reasons to suspect that mechanisms are likely to differ 

between populations (e.g. 2008, pp.80). 

 So, particularly in social science scenarios where sophisticated mechanistic 

background theory is often unavailable (such as in economics), the preconditions 

required for applying Steel’s strategy may simply not be satisfied. 

 This is in line with Steel’s acknowledgement that the difficulty in addressing 

problems of extrapolation in social science contexts often starts with lacking any 

knowledge of the mechanism in the experimental population apart from knowing that 
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there is some mechanism connecting intervention and outcome variables. This concern 

is particularly pressing in EBP where the predominant aim has been to focus on the 

effects of causes, rather than the causes of effects (see e.g. Heckman 1992), which 

means that there is traditionally little concern for learning about mechanisms. Yet, at the 

same time, and perhaps ironically, it seems that mechanisms are often of little concern 

because it is neither particularly controversial that variables such as household 

endowment are causally efficacious for outcomes such as children’s nutritional health in 

some way, nor are claims of causal relevance the primary epistemic target in EBP. 

Instead, social scientists, policy analysts, and evaluators working on problems of 

extrapolation are often interested in extrapolating quantitative causal effects. 

 This brings me to the second general concern with Steel’s strategy, which is that it 

focuses on a specific class of extrapolative queries, i.e. qualitative rather than 

quantitative ones. 

 

5.2.2 No Quantitative Extrapolation 

Steel’s strategy is intended to elucidate how learning about similarities and differences 

between populations can help decide whether an intervention is causally relevant for 

some outcome in a target population. This moves significantly beyond Cartwright’s 

effectiveness argument in that some causally relevant differences can be overcome by 

Steel’s strategy, whereas the effectiveness argument, at least on some interpretations, 

requires full-fledged identities in causal mechanisms. Yet, despite these advantages, 

Steel’s strategy still falls short of elucidating how differences and similarities between 

populations bear on differences in the magnitude of the causal effects of an intervention. 

It only tells us that similarities and identities are not required at all stages of causal 

mechanisms, and permits qualitative extrapolative conclusions in the presence of some 

causally relevant differences. To be sure, Steel’s strategy was never intended to 

facilitate extrapolation of quantitative causal claims, so it might seem odd to highlight 

that it cannot address such issues. Yet, since one of the main aims of the present project 

is to investigate the usefulness of different extrapolation strategies for extrapolations 

encountered in EBP specifically, this feature of Steel’s strategy is still important to 

mention, rather than criticize. 

 With this in mind, the concern here is similar to that offered concerning the 

effectiveness argument: the applicability of Steel’s strategy is restricted to a narrow 
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class of extrapolation problems. Even under favourable epistemic conditions, it is only 

sufficient to decide whether claims of qualitative causal relevance can be extrapolated. 

Yet, for many social science purposes, specifically those often pursued in EBP, this is 

insufficiently informative, since claims of positive causal relevance are not enough to 

decide whether an intervention in the target will be sufficiently effective; sufficiently 

cost-effective; more (cost-) effective than alternative interventions. Neither can claims 

of causal relevance help us decide, moreover, whether an intervention has desirable 

welfare consequences with regard to the distribution of treatment effects or how an 

intervention might need to be modified and tailored to the specific circumstances of the 

target for it to achieve some desirable effect. Hence, a large and important class of 

queries relevant in EBP remains unaddressed by Steel’s proposal.  

 This relates to a third general concern, which is that Steel’s strategy focuses on a 

specific class of mechanisms that does not seem to be the predominant kind of 

mechanism encountered in many social science contexts. 

 

5.2.3 Social Mechanisms  

Steel’s running example concerning the carcinogenicity of AFB1 in animals and 

humans involves a mechanism that proceeds from start to finish through a single path 

with multiple mediators. In social science settings, however, it is sometimes, and 

perhaps often, plausible to assume that outcomes of interest are co-determined by an 

intervention variable through multiple pathways that involve various mediating and 

moderating variables. This renders the application of Steel’s strategy more difficult. For 

instance, even the simplistic case of supplementary teaching outlined above does not 

seem amenable to be addressed by Steel’s strategy because there are no downstream 

bottleneck stages at which comparison of mechanisms could proceed. This is the case 

whenever there are multiple causal pathways connecting treatment and outcome and 

there is no immediate causal parent of the outcome that is a proper descendant of all 

pathways that connect treatment and outcome. In such cases, using CPT to decide 

whether causal claims can be extrapolated requires comparison of mechanisms at 

multiple stages, and at least one for each pathway connecting the intervention and 

outcome variables. This may be significantly more burdensome than meeting the 

relatively mild epistemic demands in Steel’s AFB1 example where there is only one 

downstream stage. 
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 A second general concern about mechanisms encountered in social science contexts 

such as development economics is that it is often unclear whether the mechanisms 

between an intervention variable, such as household endowment, and an outcome, such 

as a household welfare measure, are homogeneous between units in a population at any 

level of description more detailed than that ! is causally relevant for !. For instance, 

the economic decision problems that households in development contexts face with 

respect to consumption, investment, and savings behaviours, and consequently the 

mechanisms that connect variables such as household endowment and welfare 

indicators, are likely to involve highly heterogeneous disjuncts of variables that can 

vary between households in at least three ways: whether they are involved at all in the 

mechanisms; the ways in which they are involved; and in the levels at which these 

variables are realized before an intervention (see e.g. Garcia and Wantchekon 2010; 

Vivalt 2019). 

 For instance, two individuals i and j that face identical economic constraints and 

have identical information and preferences over outcomes may still engage in different 

economic behaviours depending on how economically sophisticated they are. While j, 

in virtue of prior education, may be able to calculate the expected utilities of different 

courses of action with reasonable accuracy and subsequently choose the action that is 

expected to maximize her subjective utility, i might be unable to do so with similar 

sophistication, and hence engage in different choice behaviours. This toy example 

suggests that specifically those parts of mechanisms that operate at the psychological 

level of choice behaviour may often be highly heterogeneous both within and between 

populations with no straightforward way to distinguish individuals with respect to their 

individual-specific mechanisms. 

 This poses a distinctive challenge for the applicability of Steel’s strategy. Steel’s 

strategy is premised on the assumption that mechanisms are consonant within both 

study and target populations. Yet, while this seems plausible in the epidemiological case 

that Steel discusses, and more broadly in biomedical and life sciences, it seems less so 

in social science contexts. Even if ! is causally relevant for ! in some way in every 

individual in a population, information on mechanisms for almost all individuals might 

be necessary in order to decide the sign of the aggregate effect. This may not only be 

difficult to obtain but may already be sufficient to learn an effect of interest. In short, 

the worry is that heterogeneity in mechanisms within and between populations may 
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raise the lower bound for mechanistic knowledge required for using CPT even higher 

than it already is, to the point where such knowledge might need to be obtained for a 

large number of individual-types that are distinguished by their type-specific 

mechanisms. 

 This relates to a third concern, which is that homogeneity in mechanisms is an 

important feature that helps CPT yield extrapolations that generalize over broad 

domains.  

 In Steel’s AFB1 case, it is plausible to assume that while there are often important 

between-species differences in mechanisms that matter for the carcinogenicity of AFB1, 

such differences rarely obtain within species. This allows researchers to extrapolate 

from relatively few animal experiments to a very broad target, i.e. humans in general. 

Yet, as suggested above, in social science contexts it is often not plausible to assume 

that experimental and target populations are internally homogeneous with respect to 

some causal query. This presents a problem for the generality of the conclusions that 

can be obtained from Steel’s strategy. Specifically, extrapolating successfully from one 

human population to another does not necessarily support extrapolation to any other 

human population beyond the target. Unlike in biomedical sciences, where such 

generalizations can often be supported by identifying further targets as members of the 

same biological type, e.g. rats, humans, etc., which can be supported by appeals to 

mechanistic homogeneity at the type-level, social science contexts often do not allow 

such additional inference in a straightforward way. This is because human populations 

frequently differ in their structural, institutional, social and psychological makeup, so 

type-level generalizations are often difficult. For additional inferences to yet other 

targets, a separate extrapolative inference might hence need to be entertained, which 

will require a separate set of comparisons of mechanisms with respect to similarities and 

differences.  

 So while the persuasiveness of Steel’s strategy as a method for extrapolating claims 

of causal relevance across the boundaries of species is supported by the fact that, for 

instance, metabolic mechanisms are often relevantly homogeneous within biological 

species, such support may not be present in other domains, where extrapolation hence 

not only becomes more tedious, but also becomes substantially limited in its reach. 

 Finally, the fourth concern about mechanisms in social science is that they are 

recognizably more difficult to observe than those encountered, for instance, in biology, 
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biochemistry, and epidemiology. In the spirit of the process tracing literature, by 

observed I mean, in the first instance, that one is able to observe distinctive or 

characteristic marks or symptoms of these mechanisms (see e.g. Salmon 1984 ch. 4; 

Beach 2017). For example, the presence of certain metabolites in the excretions of rats 

may strongly indicate that the metabolism of a certain compound proceeded in a 

specific, rather than some other way. To the extent that background theory is 

sufficiently strong to indicate that a suspected mechanism, and only that mechanism, 

tends to bring about certain kinds of observable consequences, then observing such 

consequences may provide a strong basis for abductive inference to the presence of the 

mechanism in question. 

 In addition, it may sometimes be possible to observe mechanisms more directly, such 

as in biochemistry where researchers can often study metabolic mechanisms in vitro. In 

Steel’s running example of AFB1 carcinogenicity, such relatively direct observations of 

mechanisms can be obtained from experiments at different levels, e.g. on whole-cell 

systems such as precision-cut liver slices; at the cellular level on hepatocyte cultures; 

and at the sub-cellular level on hepatic microsomes (see IARC 1993). Importantly, such 

studies can be performed both on tissue and cell samples from animal models as well as 

on human cell systems and cultures, thus allowing not only relatively immediate 

observation of mechanisms in the experimental population but also observations of 

aspects of relevant mechanisms obtained directly from in vitro samples of the target 

population. 

 It is clear that such observations make it significantly easier to compare mechanisms 

with respect to similarities at important stages compared to social science settings, 

where it is often unclear whether mechanisms can be observed in such straightforward 

ways even in the experimental population. While there are instances where this seems 

possible, e.g. when agents’ self-reports of how and why they (expect to) behave in 

response to a certain hypothetical intervention can figure a reliable guide to predicting 

their behaviours (I will say more on this later), there are of course many other cases 

where acquiring evidence with bearing on mechanistic features is not possible, or at 

least likely to be unreliable. 

 For instance, examining the mechanism by which students convert various kinds of 

teaching inputs into performance on standardized tests is a case where students’ self-

reports are unlikely to elucidate important features of the mechanism by which they 
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come to acquire and use knowledge for passing tests. In such cases, using CPT may not 

be applicable as obtaining detailed understanding of the mechanisms of interest may not 

be feasible even in an experimental population, let alone the target.1  

 The concerns outlined above do not, of course, provide a general reason to reject 

Steel’s strategy for extrapolation in social science, as the question of whether any given 

setting of inquiry will exhibit the features that give rise to them will depend much on 

the specific context, and many real-world cases may be substantially less troublesome 

than the worst-case scenarios outlined above. Yet, there is a second, and I believe more 

general, concern about Steel’s strategy, which is that it applies only to specific kinds of 

extrapolation, and experiences substantial difficulties in evading the extrapolator’s bind 

in other cases, which I consider to be prevalent in EBP. The next section will offer an 

overview of this concern, with a concrete and detailed example following in Section 4. 

 

5.3 Two Kinds of Extrapolation 

The problem of extrapolation that Steel considers in developing his strategy focuses on 

a specific kind of extrapolation, which I call attributive extrapolation. I argue that this is 

not the kind of extrapolation that is typically of interest in social science contexts, 

including in EBP. Specifically, I argue that the ability of Steel’s strategy to persuasively 

evade the extrapolator’s bind does not extend to this latter kind of predictive 

extrapolation and that the extrapolator’s bind hence remains a serious obstacle for it.  

 Before I proceed to my argument, let me expand in more detail on Steel’s running 

example concerning the carcinogenicity of AFB1 in animals and humans. I begin with a 

brief historical exposition that highlights important and distinctive characteristics of the 

conditions under which the extrapolation from animals to humans proceeded. Against 

this background, I then develop my distinction between attributive and predictive 

extrapolation, and flesh out my argument for why Steel’s strategy is not successful in 

evading the extrapolator’s bind in predictive extrapolation cases. 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!To appreciate these challenges, consider the extensive literature on so-called educational production 
functions, where economists and econometricians have long attempted to estimate reliable models of 
student learning for evaluative and predictive purposes (see e.g. Hanushek 1979 and Todd and Wolpin 
2003, cited in Muller 2013 ms.)!
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5.3.1 Aflatoxin B1 Revisited 

Aflatoxins, a class of spoilage mould metabolite, are now known as a contaminant of a 

variety of foods such as peanuts, grains, corn, as well as animal feeds (Wogan 1966). 

Over the course of roughly two decades of animal experiments, the carcinogenicity of 

Aflatoxins, including a particularly potent type called Aflatoxin B1 (AFB1), were 

established in a variety of animal species including rats, mice, hamsters, and others. 

These experiments also clarified that the carcinogenicity of AFB1 varied significantly 

between species (Wogan 1992; Gold et al. 1992), and supplementary in vivo and in 

vitro experiments helped attribute these differences to differences in metabolic 

mechanisms between species. The remarkable potency of Aflatoxins as carcinogenic 

and toxic agents spurred interest in the question of whether humans are similarly 

susceptible to these effects. 

 By the mid-1980s this question had enjoyed significant attention from 

epidemiologists who were successful in producing extensive observational evidence 

from case-control studies in human populations with high prevalence of liver cancer 

(hepatocellular carcinoma; henceforth HCC) that were suspected to have been exposed 

to AFB1, as well as evidence from prospective cohort studies in populations that were 

known to be exposed to AFB1 through diet (Wogan 1999). In these populations, high 

odds ratios for HCC and significant increases in relative risk of HCC were estimated for 

individuals that had been exposed to AFB1 (IARC 1993). However, causal attribution 

of HCC incidence to AFB1 exposure was complicated by the fact that the populations 

of interest also exhibited high background rates of Hepatitis B virus (HBV) infection, 

which was already known to be a potent cause of HCC in humans. This made it more 

difficult to unambiguously, and causally attribute HCC to AFB1 exposure. Hence, aside 

from more carefully designed observational studies that made attempts to disambiguate 

the covariance structure between HCC, HBV, and AFB1 exposure, one of the crucial 

steps in successfully causally attributing HCC to AFB1 exposure was to establish the 

existence of a causal mechanism that could underpin the observed associations. As the 

mechanism governing carcinogenicity of AFB1 in animals became gradually better 

understood through in vitro and in vivo experiments on parts of the hypothesized 

mechanism, this prompted researchers to investigate whether the same or similar 

mechanisms that governed the production of carcinogenic metabolites of AFB1 in 

animals were also present in humans. 
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 This proceeded by comparing the mechanistic evidence obtained from in vitro and in 

vivo studies on animals with evidence from in vitro studies on human liver slices, liver 

cell cultures, and individual liver cells. These studies established that AFB1 metabolism 

proceeded similarly in humans as in rats, as specific metabolites that were known to be 

the proximate cause of HCC in rats were also obtained from human liver samples 

exposed to AFB1. As in vivo studies on rats had determined that rats are highly 

susceptible to carcinogenic effects of AFB1, these similarities in metabolic mechanisms 

provided a strong basis for the conclusion that AFB1 exposure is also a potent cause of 

HCC in humans (Hengstler et al. 1999; but see Reiss 2010 who questions whether the 

extrapolation indeed evaded the extrapolator’s circle).  

 With this sketch in place, let me proceed to highlight what I consider to be important 

and distinctive features of Steel’s example. These features underlie my distinction 

between attributive and predictive extrapolation.  

 

5.3.2 Attributive and Predictive Extrapolation 

Extrapolating the causal relevance of AFB1 for HCC from animals to humans 

proceeded against a background where observational evidence of an association 

between AFB1 exposure and HCC prevalence spanning various human populations was 

already available. Here, both the suspected cause of interest, AFB1 exposure, as well as 

its suspected effect, HCC, were jointly realized and observed in at least some humans. 

Against the background of these observations, the inferential target of the animal-

human extrapolation was hence not to answer the question of whether AFB1 was a 

cause of HCC in humans simpliciter, but rather, in the first instance, whether it was a 

cause of observed HCC in humans that were known to have been exposed to AFB1. So, 

given that one had observed individuals who exhibit a particular outcome, HCC, the 

question was whether AFB1, rather than, e.g., HBV infection, or in addition to HBV 

infection, was a cause of this outcome. In more general terms, the extrapolative query of 

interest to researchers was whether ! is a cause of !, rather than or in addition to !, in 

population !, if it is so in !. Given that one observes the outcome of interest, and that 

one believes that the outcome is caused by something, the aim is hence to successfully 

attribute causal relevance for the outcome to the suspected cause of interest rather than 

others. I call this type of extrapolation attributive extrapolation. 
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 This activity is importantly different from the activity that researchers in social 

science contexts typically engage in, and specifically in EBP. Here, the question of 

interest is often whether ! will bring about changes in ! in a target population where 

neither the intervention on ! nor the requisite changes in !, qua potential causal effects 

of !, have yet been observed. In these circumstances, the question of interest is 

predictive rather than attributive: will intervening on ! cause future, yet unobserved, 

changes or realizations of ! in !, if it does so in !? 

 This distinction is related to a distinction made by Marcellesi (2015) between 

predictive and explanatory external validity inferences. Marcellesi’s distinction focuses 

primarily on differences in epistemic aims: predictive external validity inferences are 

concerned with predicting the effects of an intervention in a novel context, whereas 

explanatory external validity inferences focus on explaining the occurrence of an 

observed effect by reference to a specific cause. In contrast to Marcellesi, my distinction 

is concerned, however, not (or not predominantly) with the epistemic aims of the 

extrapolative inference, but rather, and more importantly, with the kinds of causal 

information that are available in each scenario. In attributive extrapolation the effects of 

interest have already obtained in the target and were (or could have been) observed 

there, whereas in predictive extrapolation the effects of interest have not yet been 

experienced in the target and hence have not been and could not have been observed 

there. 

 To illustrate this key difference in more detail, let me modify Steel’s example so that 

it matches the features that I consider distinctive of predictive extrapolative queries. An 

extrapolation concerned with predicting the causal relevance of AFB1 in humans would 

be one where we have never observed any human populations in which individuals were 

both exposed to AFB1 as well as exhibited HCC. This situation makes successful 

extrapolation using Steel’s strategy recognizably more difficult. Put simply, if one has 

never observed humans exposed to AFB1, then it is significantly more demanding to 

establish the causal relevance of AFB1 for HCC in humans, as it requires more 

extensive knowledge of the causal mechanism governing HCC production from start to 

finish. 

 In order to better understand why this is the case, let me offer a framework that helps 

illustrate the differences between these two kinds of extrapolation with respect to the 

eventual aims of the inference; the evidence from the target that is available; the extent 
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of mechanistic evidence required to support these extrapolations; and the difficulties 

involved in obtaining such evidence. Specifically, I argue that differences with regard to 

the latter can help elucidate why Steel’s CPT may be successful in evading the 

extrapolator’s bind in cases of attributive extrapolation, such as Steel’s AFB1 case, but 

not in cases of predictive extrapolation that are predominant in EBP. 

 

5.3.3 From Counterfactuals to Mechanisms and Back 

The framework I offer to help concretise the differences between attributive and 

predictive extrapolation is loosely based on the Neyman-Rubin potential outcomes 

framework for causal inference (Neyman et al. 1935; Rubin 1974; Holland 1986). It 

starts from the idea that important epistemological features of causal inference can be 

framed in terms of the process of constructing, observing, or mimicking appropriate 

counterfactuals that help determine whether a putative cause makes a difference for the 

outcome of interest and what the magnitude of this difference is. 

 Drawing on this framework, my aim is to show that attributive and predictive 

extrapolation are significantly different activities. Attributive extrapolation aims at 

reaching conclusions about which causes and mechanisms are responsible for a 

difference between two actual, observed states in the target. Predictive extrapolation, on 

the other hand, aims at inferring a future counterfactual state in the target. In short, one 

could say that attributive extrapolation is concerned with inferring the causes of 

suspected effects, whereas predictive extrapolation is concerned with inferring the 

future effects of interventions on suspected causes. 

 Let ! and !!be state descriptions of a population !, i.e. factual and counterfactual 

characterizations of the states of certain variables in !. ! and ! each comprise of 

measurements or predictions of a triple < !,!,! >, where ! is the suspected cause of 

interest (e.g. exposure to AFB1), ! is the outcome of interest (e.g. HCC), and ! is a 

vector of additional measured or unmeasured variables that include other causes of ! 

(e.g. HBV infection) as well as moderating and mediating variables that figure in the 

mechanism governing the production of ! by !. ! and ! are subscripts for state 

descriptions ! and ! that indicate the population to which the description applies, 

where ! indicates the population from which one wishes to extrapolate and ! indicates 

the target. 
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 ! and ! are supposed to figure as descriptions of actual and counterfactual states of 

affairs, either for one and the same individual or for one and the same population. Yet, 

the fundamental problem of causal inference is that ! and ! are never jointly observed 

for the same units (Holland, 1986). Hence, an important question for researchers is 

often whether a state description ! that describes an actual state for a set of individuals 

!!(say, individuals exposed to an intervention) is a valid counterfactual for another, 

disjoint set of individuals ! which are observed at their respective actual state ! (e.g. not 

exposed to an intervention), and vice versa. In standard causal inference settings, such 

as RCTs, randomization and additional methodological precautions are supposed to 

warrant using ! as a valid counterfactual for ! and vice versa. To the extent that such 

precautions are successful, differences between outcomes ! of ! and ! may be 

interpreted as measures of the average causal effects of the exogenously induced 

differences in ! between ! and ! (Rubin 1974). Figure 2 illustrates the standard RCT 

case:2 

 

                     

Figure 2: Constructed counterfactuals from an RCT on animals 

 Here, !! and !! represent control units and treated units respectively. Again, ! is 

observed in both groups, which is indicated by squares, and ! is exogenously controlled 

by the experimenter, which is indicated by !" ! = !  and !"(! = !!), and the 

diamond-shaped symbol for !. The vector ! of causes of ! other than ! and 

moderators and mediators of the hypothesized !→! effect are not observed, which is 

indicated by the circular dashed symbol. However, randomization of treatment ensures, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 The so-called do-operator !"(! = !) that figures in this diagram is borrowed from Pearl (1988). It is 
used as shorthand to indicate that an intervention is performed that sets!! to a specific value ! = !. 
Although Pearl’s causal inference framework importantly differs from the potential outcomes approach, 
the do-operator provides a convenient (and hopefully not exceedingly offensive) way to represent 
interventions here. 
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in expectation, that the net effects of ! on ! are the same for !! and !!, so !! and !! 

are still informative state descriptions for inferring causal effects over the full 

distribution of !. 

 The important thing to notice about this setting is that the aim of the inference is to 

answer the question: what is the counterfactual for !! with respect to a change in !? 

The purpose of the experiment is to ensure that !! is a valid counterfactual for !! by 

means of randomization and experimental control of !. The particular aspect of !! that 

is of interest is its value of !’. If !’ is eventually observed, then this permits 

computation of the average causal effect of changes in !!on changes in ! as the 

difference between the averages !!’− !!.  

 Let us suppose now that the above kind of experiment shows that AFB1 exposure 

(!) is positively causally relevant for HCC (!) in a variety of animal species. How does 

the extrapolation proceed from these results to conclusions about the carcinogenicity of 

AFB1 in humans? For clarifying this, it is important to make the causal query explicit 

that is supposed to be answered by the extrapolation. At face value, this causal query 

seems to be whether ! is causally relevant for ! in humans. 

 This would be the case, for instance, if we were to estimate that !!’− !! > 0 in an 

RCT on humans. Yet, since such experimental intervention would not only raise moral 

concerns but also fall prey to the extrapolator’s bind, the aim of the extrapolation is to 

obtain a conclusion about the carcinogenic efficacy of AFB1 in humans based on 

evidence about similarities and differences in mechanisms between rats and humans, as 

well as other kinds of supplementary evidence. 

 Here is where the distinctive features of Steel’s Aflatoxin case become most 

apparent: in Steel’s example researchers had access to observations on humans that 

allowed constructing state descriptions !! and !! that could figure as candidate 

counterfactuals for each other. Specifically, case-control and prospective cohort studies 

on human populations included observations of 1) individuals that were exposed and 

individuals that were not exposed to AFB1, 2) individuals that did and did not exhibit 

HCC, as well as 3) individuals that did and did not exhibit HBV. Thus, it was possible 

to construct two state descriptions !! and !!, for which the relevant outcome (HCC), 

the suspected cause of interest (AFB1), and at least some other known causes of the 

outcome (HBV) were observed in their different realizations. Figure 3 summarizes this 
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by representing that both !! and !! can be constructed from observational data. This is 

indicated by square symbols for ! and !, and the solid square/dashed circle symbol for 

!, suggesting that at least some elements of ! (HBV) are observed. Hence, !! and !! 

can figure as candidate counterfactuals for each other.  

               

Figure 3: Candidate counterfactuals from observational data on humans 

 Against the background of these state descriptions, and the additional assumption 

that the observed difference between !!′ and !! has some cause, it becomes clear that the 

aim of the extrapolation is not to answer the question of whether ! is causally relevant 

for the production of ! in humans simpliciter. Instead, the aim is to answer the question 

whether observed differences in AFB1 exposure, i.e. differences between !! and !!′, are 

in fact the causes of observed differences in HCC, i.e. !! and !!′, or whether rather some 

other difference in ! (e.g. HBV) is relevant for bringing about these observed 

differences. An attributive conclusion, then, would be to say that the observed 

differences in ! caused the observed differences in !.  

 On Steel’s account, the case for this conclusion can be strengthened by providing 

evidence that the same or similar mechanism that is known to govern the production of 

! by ! in rats is also instantiated in humans. According to Steel, CPT helps reach this 

conclusion by comparing animal and human populations with respect to stages at which 

differences in mechanisms for the production of ! are known to be likely. Comparison 

of these stages proceeds by investigating whether known observable consequences of 

the presence of the hypothesized mechanism in rats are also present in humans. This is 

what Steel refers to as investigating distinctive marks or symptoms of the hypothesized 

mechanisms (cf. Salmon 1984 ch.4; Beach 2017), i.e. marks and symptoms that are 

expected to obtain, ideally, if and only if a suspected mechanism is operating. 

According to Steel, evidence of the presence of such marks and symptoms strengthens 
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the attributive conclusion that differences in !, rather than differences in some other 

variable in ! (such as HBV), were indeed the cause of the observed differences in ! 

among the studied human populations. 

 

5.3.4 Predictive Extrapolation in Terms of Counterfactuals 

Let me expand on the distinctive features of predictive extrapolation. Suppose that we 

have RCT evidence from population ! indicating that supplying microcredit to agents 

in ! is efficacious in increasing household welfare indicators. Suppose that the 

hypothesized mechanism to explain this causal effect is that microcredit allows agents 

with inadequate access to capital markets to pursue entrepreneurial efforts, which in 

turn generate household income and wealth that are subsequently used for consumption 

(e.g. of more durable goods, healthier foods etc.), which increases several variables that 

figure in the welfare indicator of interest. 

 Against the background of this, our extrapolative query is whether the microcredit 

programme is also positively causally relevant in a target B. Again, at first glance, it 

might seem that the target of the extrapolation is the same general claim as above, i.e. 

whether ! is positively causally relevant for !. Yet, the circumstances under which 

such queries are answered in social science settings are often significantly different 

from those encountered in Steel’s example. Specifically, the most important difference 

will often be that the putative cause and effect of interest have not yet been experienced 

and observed in the target. 

 This difference is crucial. While it may be possible to measure both household 

endowment ! and welfare ! in the target before the intervention, as well as potentially 

suspected mediating variables of the envisioned effects, observing these baseline values 

will often not be informative for constructing counterfactuals. This is because observing 

naturally occurring levels of these variables is similar to only observing individuals that 

were not exposed to AFB1 in Steel’s example. While we can measure whether they 

were exposed to AFB1, these measurements will return the same value for all 

individuals, i.e. zero. This means that essential observations for constructing 

counterfactuals are missing, i.e. observations that include differences in the suspected 

cause of interest as well as suspected mediating variables.  



 145 

 Our microfinance case differs slightly. Here, our intervention variable !, household 

endowment, will naturally assume values other than zero. Crucially, however, natural 

variation in ! is not necessarily the same as variation in ! induced by an intervention. 

The importance of this becomes clear when considering attempts to establish 

correlations among variables to guide inference about the presence of suspected causal 

relationships. Observing that high levels of household endowment are co-instantiated 

with high levels of welfare does not reliably indicate that increasing endowment would 

increase welfare – standard concerns about common causes are pertinent here, as are 

concerns about structure-altering interventions. Just because endowment and welfare 

naturally covary, this does not guarantee that an intervention on endowment will change 

welfare, since that very intervention might disrupt or otherwise meddle with the relevant 

structural relationships, might induce unanticipated counteracting effects, and so forth. 

 Similar concerns about limited informativeness apply to the putative mediators and 

ultimate effects of the suspected cause, e.g. changes in entrepreneurial activity, 

household consumption, and ultimately in welfare. In predictive extrapolation cases, I 

assume that the intervention of interest has not yet been implemented in the target and 

that its effects have not been experienced there yet. This means that the kind of 

variation in ! that is a candidate for being causally attributed to variation in ! induced 

by our intervention has not been observed. While one may measure household welfare 

levels from survey data, this does not permit straightforward construction of a 

counterfactual, since what one observes is only natural variation in ! that is known to 

not have been caused by our envisioned intervention on !, for lack of it having been 

implemented. This makes the construction of a counterfactual !! significantly more 

difficult. Figure 4 encodes this graphically by representing !!, !! ’, and!!! ’ as 

unobserved (or at least difficult to observe), which is indicated by dashed symbols. The 

dashed diamond symbol for !! ’ and the !"(! = !’) arrow indicate that the 

counterfactual of interest is one where ! would have been set by an intervention to 

! = !’.3 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Strictly speaking, we might say that in Steel’s example no intervention on ! has taken place in the past 
either, since it was not experimentally controlled exposure, but rather agents’ natural behaviours that led 
some to be exposed to AFB1 and left others unexposed. This is noted, and the use of the do-operator here 
can be understood in a more relaxed way, as merely indicating that there are observations available on 
agents who have been exposed to AFB1, although perhaps not by an investigator-induced intervention. 
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Figure 4: QB cannot be construed for lack of observations Xj’, Yj’, and Kj’ 

 Figure 4 helps highlight the crucial differences between attributive and predictive 

extrapolation. The aim in the microfinance case is not to attribute the differences 

between !! ’ and !! to differences in!!! ’ and !!, rather than differences in some other 

variable in !. Instead, the aim is to predict the counterfactual !! if ! were to be set to 

! = !! ’ by an intervention. In other words, the question is: what is the counterfactual 

!!, specifically with respect to !! ’, if ! were to be set to ! = !! ’. Obtaining such a 

prediction of !! ’!helps to answer various causal queries. For instance, if !! ’ is greater 

than !!, we may conclude that an intervention that sets ! to ! = !! ’ will be positively 

causally relevant for ! on average. Moreover, computing the difference between !! ’ and 

!! yields the magnitude of the causal effect of the intervention on !. 

 This makes clear that there are differences between predictive and attributive 

extrapolation both in the causal claim to be extrapolated as well as in the evidence that 

is available to help extrapolate that claim. As the differences in the aims of the 

extrapolation are now clear, let me expand in more detail on the differences in the 

evidence available to facilitate attributive and predictive extrapolation. 

 Attributive extrapolation uses experimental evidence from a study population, 

observational evidence from the target, and evidence of similarities in mechanisms to 

infer that a specific cause, rather than some other cause, has causally contributed to 

bringing about certain characteristics of the observations in the target. 

 Predictive extrapolation, on the other hand, aims at predicting counterfactuals based 

on experimental evidence from the study population, observational evidence about the 

pre-intervention states of the target, and evidence of similarities in mechanisms. Its aim 

is hence to infer what effect will obtain in the target, if its suspected cause were 

intervened on in such-and-such way. 
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 These differences have important ramifications for whether it is possible to evade the 

extrapolator’s bind. In the case of attributive extrapolation, Steel demonstrates 

persuasively that it is possible to establish a strong case for extrapolating the attributive 

claim of causal relevance by means of evidence about similarities in mechanisms. But 

there is more evidence involved in this extrapolation than just evidence of similarities 

and differences in mechanisms. More specifically, the evidence involved in supporting 

the conclusion that AFB1 is causally relevant for the production of HCC in humans 

consists of at least the following ingredients: 

 

1. Evidence from RCTs on animals that AFB1 is causally relevant for the 

production of HCC in some species 

2. Evidence from in vivo and in vitro animal experiments characterizing the 

mechanism that governs the production of differences in HCC from differences 

in AFB1 exposure in some species 

3. Evidence from animal experiments suggesting that there is between-species 

variation in both the quality as well as the magnitude of the effect 

4. Evidence indicating that the between-species differences in carcinogenic 

efficacy in animals are related to differences at certain stages of metabolic 

mechanisms  

5. Observational evidence on AFB1 exposure and HCC prevalence in human 

populations, such that the evidence covers all combinations of states that these 

variables can assume 

6. Observational evidence concerning ! and !’, specifically concerning the 

prevalence of known alternative causes of HCC other than AFB1 in human 

populations (e.g. HBV infection) 

7. Evidence of similarities and differences in mechanisms, i.e. observations of the 

presence or absence of characteristic marks and symptoms of the hypothesized 

mechanisms in humans, specifically concerning stages at which mechanisms 

are likely to exhibit between-species differences  
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 The aim of Steel’s account is to highlight the importance of 7), i.e. the evidence 

afforded by CPT. However, it is important to recognize that while CPT evidence makes 

an important difference to the overall strength of the extrapolation, it does so only in 

conjunction with the additional evidence that is available.  

 My main concern here is that in predictive extrapolation, analogues of 2)-6) are often 

not available. In these cases, it seems unlikely that CPT evidence would be similarly 

effective in providing a strong case for an extrapolative conclusion. What is more, 

without relatively complete knowledge of the mechanism in the experimental 

population already being available, it is doubtful whether CPT evidence is feasibly 

producible at all, since in order to compare mechanisms in study and target populations, 

one needs to know at least some characteristics of the mechanism in the study 

population, i.e. one needs to have evidence corresponding to 2)-4) in the above list. As I 

have argued in Section 2, such evidence is often not available in social science settings. 

 CPT evidence hence cannot do the same job as in Steel’s example if little additional 

evidence is available to complement it, or the evidence that is needed for the 

comparative goals of process tracing to be realizable in the first place is absent.  

 This seems to suggest that even if CPT is feasible at all in cases where some or many 

of the above kinds of evidence are missing, the evidence of similarities in mechanisms 

may need to be significantly more extensive to reach the same level of support for 

extrapolating claims of causal relevance. 

 Finally, there is the issue of scope that I have emphasized above. Not only do typical 

social science and EBP cases of extrapolation differ significantly with respect to the 

availability of crucial kinds of evidence that are required for CPT, but also, the very 

aims of extrapolation are often different as well. Whenever the observational evidence 

from the target does not include observations where the suspected causes and their 

putative effects are realized, then the extrapolation is concerned with an altogether 

different kind of question: namely, to predict characteristics of the counterfactual that 

would be realized if the intervention were to be implemented in the target. As I have 

suggested, but not yet fully argued, such predictive extrapolation seems to be a 

significantly more epistemically burdensome activity than the attributive case that Steel 

considers. To help explain these epistemic challenges in more detail, let me construct a 

more detailed example. 
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5.4 CPT in Action: Predicting the Effectiveness of HIV Prevention Interventions 

To build my example, I will draw broadly on some empirical literature regarding the 

effectiveness of HIV prevention interventions (e.g. Owczarzak et al. 2018; Sagherian et 

al. 2016; Covey et al. 2016), but will abstract away from concrete interventions and 

studies to focus my example on those aspects important for illustrating the general 

points I wish to make here. 

 Suppose we have a broad evidence base consisting of several RCTs in different 

populations, indicating that a specific sexual-behaviour change programme is highly 

effective in decreasing participants’ risk of acquiring HIV. Let us assume that the 

intervention consists of reproductive health counselling sessions seeking to increase 

agents’ understanding of HIV transmission and sexual assertiveness, as well as the 

distribution of free male condoms. Suppose further that the intervention has largely 

been tested in populations that, while heterogeneous in potentially important socio-

demographic characteristics, have so far not included type-B individuals (where type-B 

may stand for any relevant subpopulation). Let us also assume that, for some reason, it 

is plausible to suspect that type-B individuals are both a highly vulnerable 

subpopulation (facing a high baseline probability of HIV infection) and may respond 

differently to the intervention of interest, e.g. the social contexts in which sexual 

behaviours of type-B individuals proceed might differ importantly from those inhabited 

by individuals represented in the studies conducted so far. Let us assume that our 

extrapolative query is whether the intervention of interest will be similarly effective in a 

population consisting of type-B individuals as in the populations studied so far. In 

accordance with my understanding of predictive extrapolation I will assume that the 

intervention of current interest has not yet been experienced by individuals in this 

target. 

 In addition to this outline of the intervention and populations studied, I will also need 

to make some assumptions concerning the intervention and outcome variables at issue 

and potential mediators of the effects of interest. At the most general level, let me 

assume that the sexual-behaviour change programme is represented by a binary 

exposure variable ! ∈ 0,1 , i.e. whether an individual has participated (! = 1) in the 

programme or not (! = 0) (or has intended to participate, as in standard intention to 

treat designs, see e.g. Owzcarzak et al. 2018, 919). The outcome ! will be HIV 

infection status. This is notably different from typical outcomes measured in evaluations 
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of real-world sexual-behaviour interventions. Here, clinical endpoints such as HIV 

infection are usually not the main outcome of interest, but the focus is rather on 

plausible mediators, such as self-reported condom use, and aspects of sexual 

communication behaviours, such as sexual assertiveness (to be explained shortly). For 

the present theoretical arguments, however, it will be better to focus on the clinical 

endpoint, given my concerns about mechanism-based extrapolation using CPT focus on 

whether we can assert that suspected mediating variables of the effects of interest are 

involved in the right way in producing the outcome in the target (or preventing it, as in 

the case of HIV infection). 

 With this in mind, let me assume that, at the most general level of abstraction, the 

causal mechanism underlying the effect of interest is !! → !! → !!, where ! is a ‘box of 

moderators and mediators’, i.e. a set of variables !!,!!,!!…!!  that, sequentially, or 

in parallel, mediate and moderate the effects of interest. We can think of ! as 

comprising of all (or a broad range of) factors that are relevant to determining agents’ 

sexual behaviours and ultimately (in conjunction with yet other background variables) 

their HIV outcomes !. The envisioned effects of the behavioural intervention of interest 

would then supposedly be mediated and moderated by at least some variables in !. Let 

me offer some more detail on the supposed mechanism governing these effects, starting 

with a diagram of the mechanism: 

 

  

Figure 5: The suspected mechanism governing HIV infection prevention 

 Here, the intervention on ! is supposed to achieve its ultimate aim of reducing the 

rate of HIV infection ! by inducing effects along three parallel pathways. First, it is 

supposed to increase agents’ understanding of HIV transmission !!. Second, it should 

increase condom availability !!, by distributing free male condoms. Third, it should 

increase agents’ sexual assertiveness !!, by which I mean agents’ ability to promote the 
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enforcement of their desired use of condoms.4 There are two additional mediators, !! 

and !!, which are added for plausibility. First, !! is agents’ intent to use condoms. 

Increasing agents’ understanding of HIV infection mechanisms and how condoms 

figure in these (!!) is supposed to help agents form suitable intentions to use condoms. 

Second, !! is condom use, which is influenced by !! (through !!), !!, and !!.  

 Favourably for Steel’s strategy, condom use acts as a downstream bottleneck 

mediator of the effects of ! on !. For instance, and assuming interaction between the 

effects transmitted through !!!!, irrespective of whether agents are highly informed 

about HIV transmission, if their sexual assertiveness is low, or their partners do not 

want to use condoms, then understanding of HIV transmission and availability of 

condoms may fail to translate into condom use.5 Likewise, intent to use condoms and 

high levels of sexual assertiveness alone may not be enough to translate into condom 

use if condoms are unavailable. Conversely, with condom use being a bottleneck, the 

diagram assumes that neither condom availability, nor intent to use condoms, nor sexual 

assertiveness can have effects on HIV infection other than through condom use.6 

 With this sketch of the mechanism in place, let me explain how CPT can experience 

difficulties in handling predictive extrapolation in this case. Recall that, to clarify 

whether the intervention of interest will be similarly effective in a novel target 

consisting of type-B individuals, we need to ensure that the causal mechanisms 

connecting the intervention and outcome variables are sufficiently similar between the 

experimental and target populations. For this, our main aim will be to ascertain that 

distinctive marks or symptoms of important parts of the mechanisms believed to govern 

the effects of interest in the experimental populations are also instantiated in the target. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Two important things must be noted here: first, sexual assertiveness is not a success term, but rather an 
attitude. It can obtain even if attempts to enforce one’s own desires about e.g. condom use are not always 
successful. Moreover, the characterization of sexual assertiveness used here is but one among potentially 
many others, including the ability to communicate one’s desires to have sex, the ability to refuse 
unwanted sex, and the ability to communicate about sexual history and risk (see e.g. Loshek and Terrell 
2015). I focus on one aspect merely for reasons of simplicity and not out of ignorance of, or disregard for, 
other important aspects of sexual assertiveness and their role in condom use negotiation. 
5 Specifically, !!!! can be understood both as mediators of the effects of ! on ! as well as moderators of 
each other’s effects. This would be the case, for instance, if !! were determined in accordance with 
!! = !! ∗ !! ∗ !!, which means that no change in !! can obtain unless !!!! all take on values other than 
zero. 
6!This is an assumption of convenience, of course, since both understanding of HIV transmission and 
sexual assertiveness may still be highly effective in reducing agents’ probability of HIV infection simply 
by inducing agents to refuse having unprotected sex, hence bypassing the downstream bottleneck. This is 
bracketed here only to ensure the applicability of Steel’s CPT. !
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 What could these marks or symptoms be in our example? Importantly, unlike in 

Steel’s AFB1 example, we will be concerned here with the arrows to and from variables 

rather than the presence or absence of variables (or specific values of variables). In 

Steel’s AFB1 example, and in many biomedical examples more generally, it is often the 

presence or absence of a variable, or a close concomitant of a variable, say e.g. DNA 

adducts (Steel 2008, 91), that is of interest for determining whether mechanisms are 

sufficiently similar. This is especially so when these variables are typically absent 

without the suspected mechanism being operational and their presence (or their 

assuming a particular value) in turn indicates the suspected mechanism being at work. 

In many social science settings, by contrast, variables such as household income, 

features of economic choice behaviours, health indicators, educational performance, etc. 

often exhibit natural variation, i.e. they naturally take on values other than zero 

irrespective of the details of the causal mechanisms in which they are involved. To stick 

with our example, condom use is a variable that will often take on values other than 

zero in a population ! irrespective of whether the suspected mechanism from ! is also 

at work there. Condoms can be used by people for a variety of reasons, even if the 

mechanism by which the intervention is supposed to be effective is not present or is 

unhelpfully disrupted. So, condom use as such is not a distinctive mark or symptom of 

the suspected mechanism being operational. It is hence not the presence or absence of 

such variables that is important to look at, but rather the presence or absence of causal 

relationships between them. In the language of mechanisms and diagrammatic 

representations of them, we are interested in the presence or absence of causal arrows, 

and distinctive marks or symptoms of their presence, absence, and quality. 

 Following Steel’s strategy, let us now have a closer look at the downstream 

bottleneck !! to help clarify how questions about mechanistic similarity and difference 

could be answered. What can we say about the arrows into and out of !! in the target 

population? The arrow !! → ! is plausibly believed to be invariant between 

populations. For the sake of argument, we may assume that if condoms were to be used, 

they would be used properly, so we can lay aside concerns about the nature of this 

arrow and potential differences in the causal effects of !! on !. 

 Importantly, however, even if it is uncontroversial to assume the presence of the 

!! → ! arrow, or even if this were supported by observational evidence from the target 

or other, similar populations, this alone does not licence further inferences about 
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upstream similarities in mechanisms, which is how Steel proposes to evade the 

extrapolator’s bind. Unlike in Steel’s AFB1 example, where individuals have already 

been exposed to AFB1, our predictive extrapolation scenario assumes that target agents 

have not yet experienced the intervention of interest. So even if some agents in the 

target have been using condoms before, it will not be because they have been exposed 

to our intervention. Hence, the mere fact that some target agents are already using 

condoms is no indication of whether the mechanism from the experimental population 

is also instantiated in the target, and hence whether agents in the target, including 

specifically those who have not yet been using condoms, would be successfully induced 

to use condoms by our intervention. This inferential shortcut is not available in 

predictive extrapolation. I will say more on this important issue later. For now, let me 

proceed to discuss how we may clarify whether other causal relationships believed to be 

important for the effects of interest are suitably instantiated in the target. 

 What about the arrows from !!, !!, and !! into !!? This is where things will get 

more difficult for CPT. Let me start with the !! → !! arrow. Our aim here will be to 

find distinctive marks of the efficacy of increasing condom availability for increasing 

condom use. In fortunate cases, where condoms have been available in the target in the 

past, and at least some individuals in the target have been using condoms, we may use 

observational data to support that the !! → !! arrow is in place. Things will be more 

difficult if condoms are so far mostly or entirely unavailable or unaffordable in the 

target, particularly in non-clinical outlets and at locations and times relevantly close to 

sex. If condoms are unaffordable or unavailable in the target, then it will be difficult to 

learn from observation alone whether, if condoms were to be made available, they 

would actually be used. For instance, the !! → !! path might be disrupted in the target 

because agents hold religious or superstitious beliefs that induce them to reject using 

available condoms. This may be the case even for agents with sophisticated 

understanding of HIV transmission. Clearly, when condoms are not available nor used 

by agents, observations of condom availability (none) and use (none) are not 

elucidating, since potential disruptions of the suspected !! → !! path, e.g. due to 

religious and superstitious beliefs, can only manifest themselves in observational data if 

condoms were already widely available. While we may sometimes be able to rule out 

specific concerns about such disruptions by drawing on (local) background knowledge 

about the target population, this may not always be enough to increase our confidence in 

the presence of the !! → !! arrow beyond some desired threshold. What is missing is 
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that we can see relevant parts of the suspected mechanism ‘in action’. As suggested, in 

our case this could comprise, for instance, of observations of individuals who already 

have access to condoms and actually use condoms. Yet, without condoms being 

available in the target so far, our beliefs in the presence of the suspected arrow !! → !! 

will need to be supported by means other than observations of target agents’ behaviours.  

 What could these alternatives be? We might consider asking agents whether they 

would use condoms if they were freely available. Yet, while this can sometimes be 

helpful, especially if agents are already familiar with condoms, it might be a poor guide 

to predicting condom use if agents have no previous experience in using condoms (as is 

plausible, for instance, in some development settings). Crucially, what may be required 

here to learn whether agents would use condoms, if they were available, is to introduce 

them to condoms, including their functional relation to the prevention of sexual risks 

such as HIV infection. Hence, while interviewing target agents about their predicted 

condom use behaviours can be informative for predicting the effects of interest in the 

target, one might worry that doing so effectively, i.e. in a way that promises to reliably 

extract the required information, may require exposing agents to the very intervention 

whose effectiveness we are interested in predicting, thus gradually undermining the 

success of our extrapolative inference. 

 More pressing concerns arise when considering the second causal pathway, mediated 

by !! → !! and !! → !!, which is hoped to govern the envisioned increase of agents’ 

understanding of HIV transmission and subsequent increases in their intent to use 

condoms. How can we clarify whether these relationships are suitably instantiated in the 

target? As suggested above, we might be lucky to encounter favourable conditions 

where natural variation in agents’ understanding of HIV transmission already exists, so 

at least some agents exhibit levels of understanding similar to those sought to be 

induced by the intervention. In such cases, we might want to look for whether those 

agents who are, for extraneous and pre-existing reasons, better informed about HIV 

transmission are also more likely to (intend to) use condoms. This information could be 

elicited through interviews and questionnaires, for instance. If we were to find, say, that 

individuals who are better informed than others with respect to HIV transmission report 

significantly higher willingness to use condoms, this could strengthen the basis for the 

assumption that mechanisms are relevantly similar at !! → !! in at least some agents in 

the target. This might also give us reasons to believe that if our intervention were 
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successful in increasing understanding of HIV transmission for those agents without 

previous understanding thereof, then this would yield similar differences in intended 

condom use as those promised by the observed differences obtained through 

questionnaires. Analogously, regarding !! → !!, we might want to look for whether 

agents who express higher willingness to use condoms also report higher condom use, 

which could increase our confidence that the !! → !!!relationship is also suitably 

instantiated in the target.  

 However, there may also be less favourable cases where there is little in the way of 

previous understanding of HIV transmission or intent to use condoms on the part of 

target agents, e.g. for lack of previous awareness of HIV, previous experience in using 

condoms, or understanding of their functioning in relation to HIV infection. Observing 

agents’ behaviours in such cases will be a poor guide to telling whether mechanisms are 

sufficiently similar, since there are no agents with suitable levels of HIV transmission 

understanding and intent to use condoms that could serve as exemplars for predicting 

whether other agents would intend and behave similarly if their understanding of HIV 

transmission were to be intervened on. Without such an understanding already in place, 

and without observing any of the associated differences in intent and behaviour 

ultimately hoped for, we will need, again, to support our beliefs in mechanistic 

similarity at these stages by means other than observation.  

 Interviewing target agents might be unhelpful here, too. Asking agents, for instance, 

whether they believe that their intent to use condoms would increase if they were to be 

better informed about HIV transmission might not be illuminating if agents lack the 

very understanding of HIV transmission and condom functioning that the intervention is 

supposed to promote. Similarly, regarding !! → !!, asking agents whether they think 

that their hypothetically increased intent to use condoms would translate into actual use 

of condoms might be uninformative for largely the same reasons. Without already 

intending to use condoms (which is part of what the intervention is supposed to 

achieve), it will be difficult for agents to reliably predict whether they would be able to 

enforce such hypothetically formed intent in interaction with their sexual partners. This 

makes clear that neither observational evidence, nor more intimate forms of 

information, such as from interviews and self-reports, can be expected to figure as 

reliable guides for telling whether mechanisms are sufficiently similar between 

populations when agents lack prior experience with the sorts of changes that the 
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intervention is supposed to bring about. Again, the crucial concern here is that learning 

information that would be needed for supporting our extrapolation might require 

exposing agents to the very changes that our envisioned intervention is supposed to 

induce. Once again, doing so could be highly informative, but would also threaten to 

fall prey to the extrapolator’s bind. 

 Similar concerns arise when considering !! → !!. Here, our aim is to tell whether 

hypothetical increases in agents’ sexual assertiveness would yield subsequent increases 

in agents’ condom use. Again, favourable circumstances might arise where observations 

and local knowledge about pre-intervention sexual assertiveness can help support 

assumptions about this relationship. For instance, conditional on condoms being 

available in the target in the past and other things being equal (e.g. agents’ intent to use 

condoms) we may find that agents with higher sexual assertiveness (self-reported or 

otherwise measured) are significantly more likely to use condoms. This would be 

helpful for increasing our confidence in the !! → !! relationship being present in the 

target.  

 Less favourable cases will again make this more difficult, however. Consider cases 

where target agents generally have low pre-intervention levels of sexual assertiveness, 

so low indeed that agents do not differ much in this respect from one another. Here, it 

would be difficult to tell whether higher levels of assertiveness sought to be induced by 

the intervention would translate into condom use, as there might be unanticipated ways 

in which the !! → !! relationship could be disrupted in the target. Again, observing 

agents’ sexual assertiveness and condom use will be a poor guide to telling whether 

increases in assertiveness would yield increases in condom use if both variables are 

realized at very low levels. Without elements of the intervention of interest already 

experienced by agents, we cannot observe parts of the suspected mechanism ‘in action’ 

to help us clarify issues of mechanistic similarity and difference.  

 Again, one alternative could be to interview target agents. Yet, for largely the same 

reasons as outlined above, this is unlikely to be helpful. If sexual assertiveness is poorly 

expressed in target agents, and indeed perhaps the very idea of being sexually assertive 

is unfamiliar to them, asking agents whether they would be more likely to use condoms 

if they were more sexually assertive is unlikely to provide useful information that bears 

on questions of mechanistic similarity and difference. This is no surprise. It is difficult 

for people to anticipate their behavioural response to things that they are mostly or 
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entirely unfamiliar with. Even if agents grasp the concept of sexual assertiveness, their 

effective ability to enforce condom use may nevertheless face unanticipated obstacles at 

the time of sex, e.g. when interacting with partners who are themselves highly assertive, 

have disproportionate relationship power, or, perhaps due to insufficient understanding 

of HIV transmission on their part, will successfully insist on not using condoms. 

Outside of previous familiarity with the kinds of changes sought to be induced by our 

intervention, it seems that, once again, we might need to introduce (parts of) the very 

intervention whose effectiveness we want to predict in order to tell whether mechanisms 

are sufficiently similar to licence extrapolation. And once again, this threatens the 

success of our extrapolation. 

 With these specific concerns in place, let me take some steps backwards from the 

concrete details of the example to highlight several general insights about the challenges 

involved in using CPT for predictive extrapolation.  

 Before all else, it is important to note that predictive extrapolation is not an in-

principle insurmountable obstacle for CPT. As suggested above, there will be more 

favourable cases where, despite some additional epistemic burden placed on us, 

predictive extrapolation can nevertheless be achieved with the help of CPT, e.g. when 

good observational data from the target are available to indicate important features of 

the suspected mechanisms being present there, or where there is stronger overlap 

between experimental and target populations, or where background theory strongly 

motivates belief in essential mechanistic similarities, etc. However, there will also 

arguably be many other cases in which the distinctive features of predictive 

extrapolation will make successful uses of CPT extremely difficult or entirely 

infeasible. 

 One of the great promises of CPT, especially with a view towards evading the 

extrapolator’s bind, is that it offers us an inferential shortcut. When comparing 

mechanisms and trying to avoid learning the full mechanism in both populations, 

Steel’s suggestion is to focus on comparisons at downstream bottleneck stages !. The 

shortcut provided by this is that as long as changes in ! transmit down to the bottleneck 

!, either mechanisms are similar upstream of ! or upstream differences do not matter. 

In many predictive extrapolation settings, however, this shortcut does not work. 

Observing, say, that agents with higher self-reported intent to use condoms are indeed 

more likely to use condoms does not reliably indicate that (hypothetical) increases in 
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HIV transmission understanding would translate into increased willingness to use 

condoms. In predictive extrapolation, distinctive marks or symptoms of individual 

relationships comprising a suspected mechanism are often not reliable indicators of the 

presence (or absence) of yet other relationships further upstream, or indeed an entire 

mechanism, unless these relationships or the whole mechanism were already (and 

distinctively) involved in producing the marks or symptoms at issue. This is precisely 

what makes predictive extrapolation so challenging for CPT. If whatever mechanism 

that will ultimately govern the effects of interest in a target setting has so far remained 

‘dormant’ (e.g. due to lack of previous changes in relevant variables), then neither 

observations, nor agents’ reports on details of such mechanisms, will usually be a 

reliable guide for answering questions about mechanistic similarity and difference. 

Here, we cannot infer upstream similarity or the irrelevance of upstream differences 

from downstream similarity, so Steel’s shortcut fails. The information required by CPT, 

and that is available in attributive extrapolation, is afforded by the mechanism in the 

target being ‘awake’ and observed ‘in action’. If this is not the case, other information is 

needed, i.e. information with bearing on how the mechanism would operate if it were to 

be intervened on, e.g. information obtained from interviews, local knowledge, 

background theory, and so forth. As suggested above, not all predictive extrapolation 

cases will be void of such information, and many might be more favourable, e.g. when 

at least parts of the targets’ mechanisms have been in some relevant sense ‘active’ and 

allow both observation and other methods of eliciting information with bearing on 

issues of mechanistic similarity and difference to function properly.  

 Real-world cases, of course, can sit anywhere on this spectrum, and while I do not 

wish to take a stance on their distribution with respect to how challenging they are, it 

seems useful to briefly summarize several dimensions relevant to a general assessment 

of whether substantial difficulties are likely to be looming in predictive extrapolation. 

 First, little or no variation in intervention and suspected mediating variables of the 

mechanisms of interest will mean that observational data will be of little use in 

clarifying issues of mechanistic similarity and difference. Idle causes, we might say, 

make for idle inferences. This is because variation is often needed to tell, for instance, if 

there are distinctive correlations that would be expected to obtain if a certain causal 

relationship were present in the target. Without variation, there is no co-variation and 

hence no informative correlation, so other kinds of information will be needed to 
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underwrite our inferences. This point about the importance of covariance information 

will be more fully elaborated in the next chapter. 

 Second, interview- and questionnaire-based evidence concerning agents’ predictions 

of their own behaviours under hypothetical interventions may sometimes be highly 

informative, but the reliability of such information is often questionable, particularly in 

cases where the interventions of interest have so far not been experienced by agents. 

 Third, in some cases, other, past interventions or exogenous changes in the target can 

be a useful guide towards addressing questions of mechanistic similarity and difference 

at higher levels of abstraction. If, say, other interventions seeking to inform or educate 

agents have been highly effective in the target in the past, this may increase our 

confidence that at least the educational aspects of our HIV prevention intervention 

might be similarly effective. This, of course, will need to involve thicker inferences, 

including the assumption that, say, past agriculture- and present sexual health-related 

information campaigns are similarly well-received by agents. More generally, 

inferences from the effectiveness of other, past interventions to those of current interest 

will need to involve assumptions about crucial similarities between them, and while not 

in-principle infeasible, supporting such assumptions can be extremely difficult, and, at 

times, require knowledge of parts of the very causal features that we need to support 

assumptions about. Generalizing from one intervention to another will often require a 

detailed understanding of how the interventions work, including identifying relevant 

parts of the mechanisms by which their effects are supposed to be transmitted as being 

relevantly similar, or alternatively (and glossing over mechanistic details) identifying 

the interventions as members of a common type and justifying a generalization across 

the type. 

 Fourth, there is a persistent and well-known concern about structure-altering 

interventions (see e.g. Steel 2008, 157-60), which is also pertinent to predictive 

extrapolation. Specifically, while fortunate cases with ample pre-existing variation in 

suspected mediating variables make it easier to clarify issues of mechanistic similarity 

and difference, there is nevertheless an important limitation to the use of such 

information, as we need to further assume that the envisioned intervention will yield 

similar effects as those induced by pre-existing variation in variables. To stick with the 

example, it is unclear whether naturally occurring differences in HIV transmission 

understanding have the same effects on intent to use condoms as the differences in HIV 
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transmission understanding that are envisioned to be induced by our intervention. For 

instance, agents who exhibit, for reasons unrelated to our intervention, highly developed 

previous understanding of HIV transmission might have ‘self-selected’ into becoming 

more knowledgeable about HIV as a function of some other important characteristic 

that is also relevant to shaping their sexual behaviours. Concerned that naturally 

acquired understanding of HIV transmission and the understanding facilitated by our 

envisioned intervention might be different in shaping agents’ behaviours, we hence 

need to further assume that the effects of our envisioned intervention would manifest in 

the same ways in the target as the effects of naturally occurring differences in suspected 

mediating variables observed there. Such assumptions can be difficult to support. 

 Fifth, local knowledge from other, believed-to-be-similar populations can be 

extremely helpful. Yet, as is the case with using information about the effects of similar 

interventions in the target in the past, a substantive additional inference is required for 

establishing the relevance of such information to questions about the target. Such 

inference is possible, but also, again, requires further support, including, for instance, a 

strong inductive basis that licences inference to the target on the grounds of it being a 

member of some generalizable population-type with respect to mechanistic details. 

 Finally, background theory, too, might be extremely helpful for underwriting 

predictive extrapolation. Some causal relationships are relatively easy to generalize, e.g. 

that individuals’ health outcomes are adversely affected by lethal doses of neurotoxins; 

more mundanely, that condoms are highly effective at preventing STI infection when 

used properly; or, more concretely, that condoms need to be available not just in 

general, but at times and locations relevantly close to sex. But background theory, like 

all other candidate sources of support, is not always available, nor does it always offer 

satisfactorily high levels of support for the assumptions needed. As with supporting 

inference where causal information is imputed from other populations or other 

interventions, background theory will need to be strong enough to reliably identify the 

target population as a member of a certain population type, which then licences 

imputing causal information from elsewhere to support assumptions about the suspected 

mechanisms of interest. 

 Predictive extrapolation, then, poses distinct challenges for Steel’s CPT, particularly 

with a view towards its ability to evade the extrapolator’s bind. If the causal 

mechanisms of interest in the target have so far remained ‘dormant’ and, for lack of 
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manifestation, their characteristics are difficult to identify from available observations 

or by means of interview- and questionnaire-based methods, other sources of support 

are required for CPT, including inference from other populations or past interventions; 

background theory; or any combination of these. As suggested, even if such resources 

are available, they will often provide weaker support and require more involved 

inferences, making it more likely that adequately justified predictive extrapolation will 

require additional first-hand causal information from the target that threatens to make 

the experimental results from which we wish to extrapolate less relevant to our 

envisioned conclusions. 

 

5.5 Conclusions 

I have argued that the scope of Steel’s mechanism-based strategy for extrapolation is 

constrained to a specific class of problems of extrapolation. As Steel recognizes (2008, 

ch.8 – but not for the reasons provided here), this severely limits its usefulness for 

social science purposes.  

 First, the applicability of Steel’s strategy is limited to cases where one has 

knowledge 1) of the stages at which differences between mechanisms are most likely to 

pose obstacles to extrapolation; 2) of which of these stages are downstream stages; 3) 

that mechanisms are consonant for all individuals in both populations; and 4) that 

downstream stages of mechanisms are bottlenecks. I have argued that these epistemic 

demands constitute a high lower bound on the mechanistic knowledge required for 

extrapolation. 

 In addition, and following some of Steel’s concerns, I have argued that mechanisms 

encountered in social science often exhibit features that make it difficult to use CPT. 

There, mechanisms are often more complicated than the single-path mediated 

mechanism in Steel’s examples; they might exhibit considerable heterogeneity between 

individuals; and they are often significantly more difficult to observe, directly and 

indirectly, thus limiting the extent to which mechanisms can be compared at all. 

 Adding to these general concerns, I have argued that the ability of Steel’s strategy to 

evade the extrapolator’s bind varies significantly between two kinds of extrapolation, 

attributive and predictive, which exhibit two important differences. The first concerns 

the aims of the extrapolation, i.e. to attribute observed effects to their suspected causes, 
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or rather to predict the future effects of (an intervention on) a suspected cause. The 

second, more important difference concerns the evidence typically available in these 

settings, i.e. evidence that comprises observations where both the suspected cause as 

well as its putative effects are realized in attributive extrapolation versus evidence 

where the suspected cause and the mechanisms governing its effects have so far 

remained ‘dormant’ in the target in predictive extrapolation. I have argued that 

predictive extrapolation imposes more severe epistemic demands on CPT as crucial 

information from the target remains unavailable if the target’s mechanism has not been 

observed ‘in action’. Here, one may often need to consider alternative kinds of support 

for crucial causal assumptions, such as background theory, information from past 

interventions, or from yet other populations. If these sources of support are unavailable, 

or are insufficiently strong to underwrite our assumptions, one may need to intervene on 

the suspected cause of interest in the target, thus falling prey to the extrapolator’s bind.  

 In the next two chapters, I will argue that Steel’s CPT is not alone in experiencing 

difficulties in handling predictive extrapolation. I will develop analogous arguments 

concerning strategies for extrapolation proposed in econometrics and computer science 

that seek to licence quantitative predictions of how causally relevant differences 

between populations will bear on differences in the magnitude of causal effects in a 

novel target. Perhaps unsurprisingly, this type of extrapolation is significantly more 

demanding than licencing merely qualitative conclusions, and the concerns developed 

here present even more pressing obstacles to such ambitions. 
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CHAPTER 61 
 
 

Interactive Covariate-Based Extrapolation 
 
6.1 Introduction 

Interactive covariate-based approaches have been proposed in the econometrics 

literature to help overcome problems of extrapolation (Hotz et al. 2005; Crump et al. 

2008; Muller 2013 ms.; 2014; 2015). In a nutshell, these approaches aim to permit 

predictions of quantitative causal effects in a target, despite causally relevant 

differences. This proceeds by adjusting for differences in the distributions of interactive 

covariates, i.e. variables, such as moderating and mediating variables identified in 

Chapter 2, that can induce differences in causal effects between individuals and 

between populations. In virtue of being able to adjust for such differences, the approach 

extends significantly beyond the capabilities of other approaches, including using 

simpler construals of effectiveness arguments to tell whether causal effects will be the 

same in a target and using Steel’s CPT, which can tell us when qualitative effects will 

be the same despite some causally relevant differences. 

 In what follows, I offer a critical discussion of the interactive covariate-based 

approach proposed by Hotz et al. (2005).2 In Section 2, I offer a brief overview of how 

the approach works, including the assumptions it requires. In Section 3, following 

Muller (2014; 2015), I discuss existing concerns about the epistemic demands 

involved in underwriting these assumptions. In Section 4, I proceed to argue that 

underwriting these assumptions also raises important concerns about the extrapolator’s 

bind. Section 5 considers whether Steel’s (2008) CPT can figure as a supplementary 

strategy to evade these concerns. While CPT can play such a role in principle, it faces 

distinctive challenges in predictive extrapolation cases and when using the quantitative 

observational evidence that is preferred by econometricians. In Section 6 I argue that, 

to remedy this, econometricians need to consider other kinds of evidence, particularly 

qualitative evidence. This hence offers a novel argument for evidential pluralism and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Parts of this chapter have been published in Khosrowi (2019). 
2 Some of the concerns developed here also apply to a recent contribution by van Eersel et al. (2019). 
This contribution, although interesting, will not be discussed here in more detail.  



 166 

integration of different kinds of evidence in econometrics, EBP, and social science 

extrapolation more generally. 

 

6.2 Interactive Covariate-Based Extrapolation 

Interactive covariate-based strategies for extrapolation offered in the non-structural3 

econometrics literature (Hotz et al. 2005; Crump et al. 2008; Muller 2014; 2015) 

acknowledge that there are often likely to be important causally relevant differences 

between experimental and target populations. To overcome these obstacles, they 

propose a way in which we can still successfully extrapolate by taking such differences 

into account. In doing so, they focus on differences in the distributions of interactive 

covariates, i.e. variables ! that can induce differences in causal effects between 

individuals and between populations, i.e. different kinds of moderating and mediating 

variables as discussed in Chapter 2.  

 To be sure, when following the outline of the strategy proposed by Hotz et al. (2005), 

it often seems that they are concerned with adjustment of causal effects by differences 

in mere covariates of the effect, i.e. variables that covary with different magnitudes of a 

causal effect. Yet, as suggested in Chapter 2, all kinds of things can covary with causal 

effects, including variables that have no capacity to induce differences in these effects. 

Descendants !!of the outcome ! are a good example, as they covary with causal effects 

but do not induce differences in effect magnitudes as they are downstream of the 

outcome. Similarly, when a moderator of an !-!-effect is a common cause of a variable 

! and the outcome ! (or some mediator), ! will also appear as a covariate of the !-!-

effect, but will otherwise have no bearing on the magnitude of that effect. While, if the 

relationships between ! and the mechanisms governing the effects on ! are invariant 

between populations (which requires corresponding assumptions), adjusting causal 

effects by distributions of ! can still permit accurate predictions, it will be crucial to 

single out causally relevant variables. This is particularly important if the aim is, for 

instance, to achieve a specific effect magnitude in the target. Doing so may often 

require co-interventions on moderators or mediators, so focusing on causally irrelevant 

variables would be detrimental here. In light of this, rather than focusing on mere 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Non-structural (micro-) econometrics, specifically the so-called treatment-effects literature, is 
concerned with estimating causal effects from experimental and quasi-experimental data. For detailed 
examinations of the differences between, and history of, structural and non-structural, reduced-form 
approaches see Boumans (2005); for a critical discussion see Keane (2010).  
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covariates, I take the aim of interactive covariate-based extrapolation to be to adjust for 

differences in causally relevant variables, specifically moderators and certain types of 

mediators. To capture this, and following existing emphasis on causal, rather than 

statistical interaction (e.g. Cartwright 1979; Muller 2013 ms.), I call these variables 

interactive covariates, i.e. variables that causally interact with the effects of an 

intervention and have causal bearing on the magnitude of these effects. 

 With this proviso in mind, the strategy of adjusting for differences in the 

distributions of interactive covariates between populations proposed by Hotz et al. 

(2005) proceeds in two steps. First, identify a causal effect in an experimental 

population as a conditional average treatment effect (!"#$, see Muller 2014; 2015; 

see also Athey and Imbens 2016), i.e. an average treatment effect that is estimated 

conditionally upon the experimental populations’ distribution of interactive covariates. 

This is supposed to capture how the average treatment effect in the experimental 

population hinges on that population’s specific distribution of interactive covariates. 

Second, reweight the !"#$ according to the observed distribution of interactive 

covariates in the target. 

 To give a stylized example, suppose that there is experimental evidence from an 

RCT that providing free textbooks to students in schools increases student performance 

on standardized tests. Let ! be the number of textbooks that students have at their 

disposal and let ! be the outcome of interest, i.e. performance on tests. Suppose now 

that it is known that the causal pathway connecting the intervention variable ! to the 

outcome ! is fully moderated by visual acuity!! of individuals. Specifically, if students 

have extremely low visual acuity, they are unable to read the textbooks, and the effect 

of ! on ! is completely suppressed. Suppose further that the distribution of ! in the 

experimental population exhibits a high mean; students have 20/20 vision. Now, if one 

is interested in extrapolating the effect of distributing free textbooks to some target 

population, one will need to take into account the distribution of ! in that population, 

since the effect may be suspected to vary over levels of !on the grounds that it does so 

in the experimental population. If, for instance, the mean of!! is significantly lower in 

the target, then the effect of intervening on !!intuitively expected in the target is likely 

lower as well. To tell us how exactly the effect in the target will differ, interactive 

covariate-based extrapolation proceeds by estimating the CATE of distributing 

textbooks in the experimental population, i.e. treatment effects that are estimated 



 168 

conditionally on the distribution of !. When extrapolating, the prediction for the target 

is then computed by reweighting the experimental estimate across the observed 

distribution of ! in the target population. The approach offered by Hotz et al. (2005) 

hence aims to permit quantitative extrapolation of causal effects in the presence of 

causally relevant differences by using suitably identified !"#$% from an experiment 

and quantitative observational data on the distributions of interactive covariates in the 

target. 

 Let me expand in more detail on the assumptions required for this strategy to proceed 

successfully. I adopt the notation of Hotz et al. (2005) and Muller (2014; 2015) that 

follows the standard Neyman-Rubin potential outcomes framework notation (Neyman 

et al. 1935; Rubin 1974).  

 Specifically, let !! !!! 0,1  denote the location of an individual !, where !! = 0 

indicates membership in the experimental population, and !! = 1 in the target. Let 

!! !!! 0,1  be a treatment indicator, with !! = 0 indicating no treatment and !! = 1 

indicating treatment respectively. Correspondingly, each individual has two potential 

outcomes, one without treatment !! 0 , and one with treatment !! 1 . Moreover, for 

each unit there is a vector of interactive covariates !!. 

 The outcome for each individual is determined by: 

!! ≡ !!! !! = !! ∗ !! 1 + 1− !! ∗ !!!(0) 

 And the ATE for the experimental population is 

!"#!!! = ![!! 1 − !!(0) !! = 0] 

 In order to compute the ATE in the target population by adjusting for differences in 

the covariate vector !!, three assumptions are required.  

 The first is that units’ potential outcomes are probabilistically independent of 

treatment status (or assignment, in intention-to-treat cases), which is satisfied in ideal 

RCTs that achieve successful randomization, blinding of all participants, administrators 

of treatment, and evaluators, as well as absence of differential attrition between treated 

and untreated units as a function of interactive covariates. Formally, this is expressed as 

follows (Hotz et al. 2005, 246): 

!! ⊥ (!! 0 ,!!(1) !! = 0) 
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 The second assumption, unconfounded location, is that all differences between 

locations !! = 0 and !! = 1 that are relevant for individuals’ potential outcomes are 

differences in !! (Hotz et al. 2005, 247; this mirrors one of the basic assumptions 

sketched out in Chapter 3; see also Angrist and Fernandez-Val 2013 for a similar 

assumption; see Stuart et al. 2018, 3 for a general discussion). In other words, while 

potential outcomes may vary between locations, they may not vary due to idiosyncratic 

features of the location that are not (or could not be) captured by some interactive 

covariate set !!.
4 Conversely, this means that by conditioning on !! , units’ potential 

outcomes must be probabilistically independent of their location. Formally,  

!! ⊥ (!! 0 ,!! 1 !!) 

 Finally, the third assumption is overlapping support (Hotz et al. 2005, 247; see also 

Muller 2015, 5 who coined the term). It requires that there is overlap in the distributions 

of the interactive covariates that enter !!, so that for all values !! = ! that the 

interactive covariates in the experimental population assume, there is a non-zero 

probability that an individual in the target population will exhibit this value. Formally, 

for all ! ∈! and for some ! > 0 

! < Pr !! = 1 !! = ! < 1− ! 

 Minimally, this assumption implies that there are no macro-characteristics of the 

setting !! !!! 0,1  that causally interact with the treatment, that are different between 

populations, but homogenous within either population. For instance, consider again the 

stylized example concerning the effect of distributing free textbooks ! on student 

performance!! as moderated by visual acuity !. If ! only assumed one value ! = ! 

for all individuals in !! = 0, e.g. all students have 20/20 vision, then it is not feasible to 

estimate informative CATEs over this distribution in a way that would permit prediction 

of causal effects for any target population with a distribution other than ! = !. In 

other words, it is not possible to predict how different levels of visual acuity will 

modify the ATE obtained in the study population, if variation in the outcomes that is 

attributable to differences in!! has never been observed in the experimental population. 

In short, in cases where overlapping support of the interactive covariate distributions 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!This largely mirrors a standard idea that has been put forward in the literature on probabilistic 
causation, where for each failure of a cause to increase the probability of its effect (here understood as the 
outcome !), there must be a reason to explain this failure (see e.g. Cartwright 1979, 427), i.e. a reason 
that cites arrangements of causally relevant background circumstances as the culprit for suppressing the 
otherwise expected differences in probabilities of the effect.!
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fails, reweighting !!!!!!! by the distribution of these variables in the target to obtain 

a prediction of !"#$!!! is infeasible. I will discuss this assumption and some 

interesting consequences for experimental design in more detail in Chapter 8. 

 Jointly5, the above assumptions permit identification of the causal effect in the target 

population as the expectation of the causal effect in the experimental population taken 

over the distribution of the interactive covariates in the target (see Hotz et al. 2005, 247 

for the proof of this extrapolation theorem): 

!"#!!! = ! !! 1 − !! 0 !!! = 1  

= !! ! !! ! = 1,!! = 0,!! − ! !! ! = 0,!! = 0,!! ! !! = 1  

 This result allows performing quantitative extrapolation of causal effects, given 

suitably identified CATEs from an experimental population and observational data on 

the distributions of interactive covariates from both populations.  

 Interactive covariate-based extrapolation is hence similar in scope and capability to 

Bareinboim and Pearl’s (2013) proposals (to be discussed in Chapter 7), which are 

intended to handle cases of extrapolation where experimental intervention in the target 

is not feasible, but observational data on moderating and mediating variables as well as 

confounders are available. In essence, the crucial commonality of these approaches is 

that both aim at expressing the expectation of a causal effect in the target in 

‘intervention-free terms’ with respect to the target, i.e. as a function of the causal effect 

in the experimental population and the observed distribution of interactive covariates in 

the experimental and target population respectively. This is an important feature that is 

helpful for evading the extrapolator’s bind. In short, while meeting the challenge posed 

by the extrapolator’s bind does not preclude all experimental interventions in the target 

(nor all observations), any intervention conducted in the target to facilitate extrapolation 

may not be such that it allows learning the effect to be extrapolated. So at the very least, 

interventions on the eventual treatment variable in the target are precluded by the 

extrapolator’s bind. Since the general setting that both Bareinboim and Pearl’s approach 

and interactive covariate-based strategies assume is one in which no intervention is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 To be sure, the three assumptions outlined here, though central, are not the only assumptions required 
for covariate-based extrapolation to proceed successfully. Other, auxiliary assumptions are needed as 
well. For instance, it is necessary that the stable unit treatment value assumption (SUTVA, cf. Rubin 
1980) holds, which means that units’ potential outcomes are probabilistically independent of each other. 
However, while such assumptions are somewhat contentious, they are not the focus of the criticisms that I 
discuss below, which is why I bracket them here. 
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performed in the target, this intuitively seems to help evade the extrapolator’s bind. 

With this in mind, let me turn to examine the epistemic requirements involved in 

interactive covariate-based extrapolation following the exposition by Muller (2014; 

2015), before I turn to offer some criticisms that call into question whether interactive 

covariate-based extrapolation can truly evade the extrapolator’s bind.  

 

6.3 Epistemic Requirements 

For interactive covariate-based extrapolation to be feasible, several epistemic 

requirements need to be met. Following the comprehensive exposition offered by 

Muller (2014), interactive covariate-based extrapolation imposes at least three important 

epistemic requirements.  

 The first is that all interactive covariates that are involved in producing an effect 

must be known6, observable, and observed in both populations (Muller 2014, 41; 2015, 

5). This requirement poses several distinct epistemic challenges for interactive 

covariate-based extrapolation.  

 For instance, as anticipated above, some variables that are detectable as 

(unconditional) covariates of the treatment effect will covary with the effect not because 

they are moderators or mediators of that effect (adjustment for which might be 

necessary for obtaining a correct expectation of the causal effect in the target) but, for 

instance, because they are correlated with such moderators or mediators, e.g. when they 

have a common causal parent with a moderator or are themselves a common effect of a 

moderator and the outcome. Conversely, not all moderating and mediating variables are 

discernible covariates of the treatment effect. For instance, two moderators whose 

interactive effects cancel each other out on average will not be detectable as covariates 

of the treatment effect unless a suitable conditioning set is chosen (e.g. conditioning on 

a specific value of one moderator to recognize that the other indeed covaries with the 

effect of interest). 

 In addition, not all interactive covariates are observable. This poses significant 

obstacles to interactive covariate-based extrapolation, particularly in settings where 

relevant moderators and mediators are latent characteristics of individuals (such as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 It is unclear what exactly this requirement amounts to, but it seems that proponents of interactive 
covariate-based strategies assume that it is sufficient to know that these variables are causally relevant in 
some way, although not necessarily in which way. 
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psychological features, e.g. agents’ skill levels or features governing their susceptibility 

to behavioural biases) that are not easily captured by observable proxy variables without 

strong assumptions on their relation to proxies. 

 Finally, parameters that govern (or capture) how interactive covariates ! bear on the 

effect magnitudes of interest, such as ! in the structural equation ! = ! ∗! ∗ ! + !, do 

not always lend themselves to unbiased estimation unless there is exogenous variation 

in the respective variables ! whose influence they govern (see Imai et al. 2013). They 

are also difficult to compare across populations unless such exogenous variation can be 

exploited in both populations, which is an important point that I will discuss in more 

detail later. 

 The second important requirement for interactive covariate-based extrapolation to 

proceed successfully is that measurements of interactive covariates must be comparable 

across populations (Muller 2014, 41; 2015, 5). This requirement seeks to rule out 

several conceptually distinct types of cases where one and the same interactive 

covariate measurement may not be comparable between individuals for the purpose of 

reweighting causal effects. Muller (2014) focuses on cases where an interactive 

covariate is measured in different ways across populations or between individuals, such 

as when different individuals self-report variables in systematically different ways that 

are probabilistically dependent on location (see e.g. Fumagalli 2013 for an overview of 

such concerns in the context of measuring economic agents’ well-being). This echoes 

standard concerns about consistent operationalization of measurement concepts and 

constructs (see e.g. Reiss 2008), in requiring that measurement protocols should be the 

same and that measurement concepts and constructs should have the same empirical 

referents across contexts.  

 Finally, the third important requirement for interactive covariate-based extrapolation 

is that the size of the experimental population must be large enough relative to the size 

of the covariate vector ! to allow researchers to obtain not only unbiased but also 

precise estimates of the !"#$ (Muller 2014, 41). If this condition fails, the standard 

errors on the estimates of interest for reweighting purposes may be too large to permit 

even qualitatively unambiguous prediction of causal effects in the target. While it is 

difficult to offer general rules on what combinations of sample size, dimensionality of 

the covariate vector !, and the variance of the covariates in ! allow sufficiently 

precise parameter estimates, since this hinges on specific features of the estimation 
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problem of interest, it is possible to perform generic power analyses to investigate the 

implications of different arrangements of these factors for precision and statistical 

power. 

 With this overview of the principled aims, strategies, identification assumptions, and 

epistemic requirements involved in interactive covariate-based extrapolation in place, 

let me proceed to discuss a more basic, and I believe more important, concern about the 

assumptions that the approach involves. 

 

6.4 Hopes, Assumptions, and the Extrapolator’s Bind 

A second, more fundamental set of concerns, takes issue with yet other, heretofore 

unspoken assumptions required for interactive covariate-based strategies to be 

successfully applied. To explain these concerns, let me invoke the distinction between 

different levels at which causally relevant differences between populations can obtain 

provided in Chapter 2: populations can differ in 1) the distributions of variables 

(including interactive covariates), 2) the functional form and parameters involved in the 

structural equations that best represent how causal effects are transmitted and outcomes 

are determined, and 3) in the basic structure of causal mechanisms, e.g. whether or not a 

variable ! is involved in the mechanism that governs the production of ! at all. In a 

nutshell, my concern here will be that while it is an important achievement of 

interactive covariate-based approaches to help accommodate and adjust for differences 

at the first level, i.e. differences in interactive covariate distributions, accounting for 

these differences can only be successful if there are no relevant differences between 

populations at other levels (this is suggested, but not elaborated in Deaton and 

Cartwright 2016, 39; see also Horton 2000 and Rothwell 2005 for similar points about 

extrapolation in evidence-based medicine). 

 To illustrate with a familiar example, supplementary teaching S might be positively 

relevant for the effect of schooling ! on student performance ! in an experimental 

population; it helps students review material discussed in class. However, it might be 

negatively relevant in a target where students are stigmatized by their peers for being in 

need of supplementary teaching, making them less confident in their abilities and 
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decreasing their performance on tests.7 Clearly, adjusting for differences in the 

distribution of S between populations is only useful if we are confident that populations 

do not differ at any of the lower levels, specifically not with respect to whether and how 

S is involved in producing the effect of interest.8 Moreover, merely assuming that 

populations are similar at lower levels would amount to extrapolation based on hope. 

Populations frequently differ in their structural makeup, e.g. because institutions, 

norms, individuals’ psychological characteristics, and other features differ between 

them. So we need to support empirically (or otherwise) the claim that populations are 

sufficiently similar to warrant extrapolation. That is not only difficult, but even if 

feasible, can raise important concerns about the extrapolator’s bind. 

 Let me start at the most basic level to illustrate. To support the assumption that 

experimental and target populations are similar with respect to the basic structure of 

causal mechanisms we need to learn something about the mechanisms in both 

populations. Say, for instance, the mechanism in the experimental population is 

understood to be ! → ! → !. Then, in order to ensure that the mechanism in the target 

is similar, we might need to learn whether all causal relationships comprising this 

mechanism are present there as well, i.e. we need to learn that ! → ! and that ! → !. 

But learning this in a straightforward fashion by means of observations or interventions 

in the target can make the information obtained from the experimental population 

redundant to answering whether ! is causally relevant for ! in the target. 

 Similar concerns apply when learning about similarities in parameters associated 

with variables that figure in the mechanisms as well as the functional form association 

of these variables. While we might, given suitable study designs, be able to learn how a 

variable ! induces differences in a causal effect in an experimental population, this 

only gives us half the information we need. To see this, let us generously assume that 

we are fortunate enough to know the structural equations best representing how 

individuals’ outcomes in the experimental population are determined. Let ! be the 

outcome, ! the treatment variable, ! the parameter that captures the baseline causal 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 One might argue that rather than the parameter associated with W being positive in A but negative in B, 
what happens here is rather that W is associated with the outcome in B via an additional causal pathway 
that is mediated by stigmatization, which is negatively relevant for performance. I am open to alternative 
characterizations, as not much hinges on this. The point is merely that we need to ensure that there are no 
differences in whether (causal structure) and how (parameters/functional form) W is involved in 
producing Y. Otherwise, adjusting for differences in the value/distribution of W will not help us predict 
the correct causal quantity in B.  
8 Others seem to ignore this as well, e.g. Crump et al. (2008), Stuart et al. (2018). 
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effect of !, ! an interactive covariate of the !-!-effect, ! the parameter that captures 

the interactive effect of ! and ! on !, and ! an idiosyncratic error capturing the effects 

of other variables on !. For ease of illustration, let the outcome equations for 

individuals in population ! and ! be of an additively separable form:9 

     !! ⇐ ! + ! ∗ !! + !! ∗!! ∗ !! + !!  

  !! ⇐ ! + ! ∗ !! + !! ∗!! ∗ !! + !! 

 It is easy to see that the marginal effect on ! induced by a given change in ! depends 

on !, !, and !, since ∆!/∆! = ! + ! ∗!. Now, even if ! is the same between 

populations, adjusting for differences in ! can only be successful if !! = !!, i.e. if the 

way in which ! induces differences in the effect is the same in both populations. So 

even if we are fortunate enough to have learned !!, we still need to learn !! in order to 

validate that !! = !! (or is otherwise sufficiently similar). Likewise, concerning 

functional form, and granting that !! = !!, we need to ensure that the way in which ! 

is functionally associated with the other variables figuring in the structural equations is 

the same in both populations. 

 Just like validating that mechanisms are similar between populations, establishing 

that they are similar in population-level parameters and functional form is generally 

difficult. For one, observational data for estimating !! might not be available. Even if 

they are, unbiased estimation of !! requires substantive assumptions, e.g. that there are 

no common causes of ! and differences in treatment effects that could induce 

significant, but ultimately spurious interactions between ! and !. To avoid such 

assumptions, !! can be identified by performing so-called factorial experiments, i.e. 

experiments where both ! and ! are exogenously varied (see e.g. Imai et al. 2013; 

Pearl 2014). However, doing so may not only be difficult – think of variables such as 

age that cannot be meaningfully intervened on – but also, factorial experiments in the 

target will often involve intervention on ! and hence trivially fall prey to the 

extrapolator’s bind as we can learn the causal effect of interest by doing so (unless, of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 The equations simply encode the causal assumptions elaborated here and represent that Y is causally 
determined in accordance with the equations. Indices are suppressed for simplicity, which means that we 
assume individuals within A and B respectively to be perfectly alike. Importantly, the particular functional 
form used here, where the term involving W is additively separable, is only assumed for ease of 
illustration. The problem highlighted persists in the more general case where ! ⇐ !(!,!,!, !). As long 
as !(∙) involves some causal interaction between X and W, where the marginal effect of W is not 
separable from X, we need to ensure that the functional form of !(∙) and the value of ! are the same 
between populations. 
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course, we look the other way – a possibility which I do not consider a genuine solution 

for evading the extrapolator’s bind). 

 Proponents of interactive covariate-based extrapolation may object at this point that 

causally relevant differences at the levels of parameters, functional form, and basic 

structure of mechanisms pose no special problem to their approach and can be handled 

if there are observable proxy variables that correlate with these differences, as we can 

simply adjust for differences in the distributions of such proxy variables. For instance, 

even though the signs or values of important causal parameters may often be difficult to 

observe (or estimate) in practice, this does not mean that there could not be more readily 

observable features that covary with differences in parameters and functional form, and 

that offer themselves as targets for reweighting. To use a standard example from life 

sciences, the causal effects of medical interventions frequently differ by age or sex, but 

age or sex are often not doing the causal work of inducing differences in effects. 

Instead, finer-grained physiological details with which age and sex are correlated are 

responsible for inducing the observed differences. Yet, higher-level variables such as 

age and sex can still be used for interactive covariate-based adjustment if there is a 

reliable enough relation between those underlying details that do the causal work and 

the observed variables by which the adjustment proceeds. 

 Likewise, there could be close concomitants of differences in the basic causal 

structure of mechanisms. For instance, the presence or absence of a general social norm 

in a population, parts of which may be involved in the transmission and/or modification 

of causal effects, may be relatively straightforward to observe. This is despite the fact 

that the concrete details of what causal features related to (and co-instantiated with) the 

presence or absence of this norm are involved in transmitting or modifying the effects 

of interest may remain entirely unknown to us. Hence, in different ways, we might still 

be able to use interactive covariate-based extrapolation to adjust for causally relevant 

differences at the levels of parameters, functional form, and basic causal structure, if 

there are observable variables that reliably correlate with these more basic and less 

accessible causal features.  

 There are three reasons to be sceptical about this possibility, however. First, it is 

generally unclear whether differences in parameters, functional form, and the basic 

structure of causal mechanisms frequently have readily observable correlates that are 

amenable to this solution. Put simply, agents and populations may sometimes, but do 
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not always, wear mechanism-types, functional forms, or parameter values on their 

sleeves (cf. Weinberger 2014 who uses the same expression to flag this concern; see 

Little 1993 for related concerns; see Strevens 2007 for a more optimistic view).  

 Second, features of causal mechanisms (and differences in such features) that are 

important for extrapolation often do not readily manifest themselves in ways other than 

in agents’ behavioural response to the specific intervention of interest – think, for 

instance, about agents’ latent psychological characteristics such as those relevant in the 

HIV-prevention example from the previous chapter. Here, particularly in virtue of the 

fact that agents have not yet experienced an intervention of interest, including any 

associated changes in mediating variables, it is unlikely that distinctive higher-level 

features of agents or whole populations will be reliably indicative of what mechanism-

type will be at work in the population. So while there could be proxy variables that 

correlate with important parameters and features of mechanisms, measurements of such 

variables would often only be useful after the intervention of interest was already 

experienced by agents, potentially raising concerns about the extrapolator’s bind. 

 Third, even if many causally relevant differences in parameters, functional form, and 

the basic structure of mechanisms had readily observable proxies to permit interactive 

covariate-based reweighting, measuring and accommodating differences in such 

variables would still require extensive causal knowledge about both populations, 

including details concerning how the proxy variables of interest are associated with the 

underlying differences in parameters, functional form, and basic causal structure and 

whether this association is the same in both populations. The latter is especially likely to 

be difficult to support in practice. This suggests that the concerns developed here are not 

easily remedied by appealing to the principled possibility of adjusting for differences in 

proxy variables, at least not without making substantive assumptions and raising yet 

further concerns about the extrapolator’s bind. 

 The upshot is this: interactive covariate-based extrapolation presently proceeds on 

the assumptions that experimental and target populations are relevantly similar at the 

level of the basic structure of causal mechanisms as well as the parameters and 

functional form associations of the interactive covariates by which adjustment proceeds. 

Supporting these assumptions, however, will not only often be difficult, but can also 

raise important concerns about the extrapolator’s bind. 
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 This suggests the need for a supplementary strategy to underwrite interactive 

covariate-based extrapolation, one that steers clear of the extrapolator’s bind. One 

candidate for this could be Steel’s CPT. Let me consider whether supplementing 

interactive covariate-based strategies with CPT could help evade some of the problems 

sketched out above. 

 

6.5 Can Steel’s CPT Save Interactive Covariate-Based Extrapolation? 

At least under some conditions, Steel’s CPT can help us extrapolate causal relevance 

claims, e.g. whether ! is causally relevant for ! in ! if it is causally relevant in !, while 

evading the extrapolator’s bind. In virtue of this, it could be useful for underwriting 

interactive covariate-based extrapolation as it seems to offer a way to evade the 

extrapolator’s bind, at least when it comes to supporting that experimental and target 

populations are similar at the level of the basic structure of causal mechanisms. In what 

follows, however, I offer reasons to think that CPT will not be useful for this purpose in 

the kinds of cases that econometricians and EBP researchers typically encounter, 

especially given their preference for using quantitative observational evidence from the 

target to facilitate extrapolation. To help explain why, I will draw again on the 

distinction between attributive and predictive extrapolation developed in the previous 

chapter. 

 As I have argued there, the kind of extrapolation Steel discusses in developing his 

strategy is special. This attributive extrapolation aims to attribute an observed effect 

causally to its suspected causes. The kind of extrapolation typically encountered in EBP 

and econometrics is, however, importantly different. This predictive extrapolation aims 

to predict the future effects of (interventions on) suspected causes and proceeds under 

conditions where neither the intervention of interest nor its suspected effects have yet 

been observed or experienced in the target.  

 In what follows, I argue that despite the promises of CPT, problems of predictive 

extrapolation are unlikely to be overcome by supporting interactive covariate-based 

strategies using CPT without falling prey to the extrapolator’s bind, at least not without 

substantial changes to what evidence is considered relevant in supporting extrapolation.  

 As I have argued, the important difference between attributive and predictive 

extrapolation concerns the evidence that is available to support extrapolation. In 
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discussing the attributive extrapolation of the effects of AFB1 from animals to humans, 

Steel’s aim is to highlight the importance of process tracing evidence, i.e. observations 

of the presence or absence of distinctive marks of a hypothesized mechanism. Yet, 

Steel’s case also proceeded against the background of several other kinds of 

supplementary evidence that established a basis for comparing mechanisms, including 

evidence that 1) helped to characterize the mechanism of interest in animals, 2) 

indicated between-species variation in the effect of interest that could present obstacles 

to extrapolation from animals to humans, and 3) clarified between-species differences in 

mechanisms that induced these between-species differences in effects. 

 As I have argued, and as Steel recognizes, an immediate problem in many social 

science contexts is that such evidence is difficult to produce (2008, Ch. 8). Even if such 

evidence could be readily obtained from experimental populations, to compare 

mechanisms we still need some evidence characterizing the mechanism in the target. 

This is crucial. In contrast to the AFB1 example where experiments on components of 

the putative mechanism in the target could be performed (e.g. on human cell cultures), 

in many contexts of interest in EBP and econometrics similar means for observing 

mechanisms in the target are unavailable (Steel 2008, 166). Instead, the most salient 

way in which EBP researchers and econometricians could compare mechanisms in line 

with standard methodological tenets and evidential preferences in these fields is by 

using quantitative observational data from the target. Such data could help determine 

whether distinctive marks of the suspected mechanism, e.g. in the form of distinctive 

covariance and probabilistic dependence/independence signatures between variables, 

are realized there.10  

 In Steel’s example, such evidence is supplied by observational studies on humans. 

These studies offered covariance information suggesting that relative risk of HCC is 

significantly higher in humans that have been exposed to AFB1 and that this association 

remains stable even when conditioning on HBV infection (IARC 1993).  

 Such evidence is not available in predictive extrapolation cases. The crucial 

difference here is that when neither the intervention of interest nor its suspected effects 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 This seems coherent with how extrapolation is supposed to proceed according to Hotz et al. (2005). On 
their approach, the evidence from the target used to facilitate extrapolation is quantitative observational 
evidence concerning the distributions of interactive covariates. Exemplary applications such as Dehejia et 
al. (2015) and Gechter (2016) suggest that econometricians would also be inclined to rely on quantitative 
observational data from the target to underwrite extrapolation. 
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have yet been observed and experienced in the target, quantitative observational 

evidence cannot speak to questions about mechanistic similarity and difference. 

 An example helps illustrate this. Suppose we learn that distributing free insecticide-

treated bed nets helps decrease malaria infection rates in population !. Suppose further 

that bed nets must be properly installed to curtail malaria infection, and that whether 

nets are properly installed can differ significantly between populations, e.g. agents in 

some populations might use them as fishing nets instead (McLean et al. 2014). Let me 

represent this by the simplistic mechanism ! → ! → !, where !, the number of 

properly installed nets, is a mediating variable on the path from distributed nets ! to 

malaria infection ! (where ! is negatively relevant for !). 

 How can we make sure that this mechanism is sufficiently similar between an 

experimental population ! and a novel target ! where bed nets have not yet been 

distributed? Quantitative observational evidence that could help indicate that the 

mechanism in ! is similar to that in ! would be that ! is higher conditional on ! than 

unconditionally, indicating that distributed nets are properly installed, and that ! is 

lower conditional on ! than unconditionally, suggesting that properly installed nets in 

fact reduce malaria infection.11 

 The crucial problem is that such information cannot be usefully obtained from the 

target if no bed nets have ever been distributed there. If that is the case then ! and ! 

exhibit no variation, since ! = 0 and ! = 0 for all individuals, and ! will only assume 

its natural value that is induced through relevant malaria infection pathways.12 This 

means that ! conditional on ! and ! unconditionally will be equal, and that ! 

conditional on !, and ! unconditionally will be equal as well. So if no bed nets have 

ever been distributed in the target, there will be no (co-)variation in the outcomes of 

interest or the intermediate stages of the mechanism that could help us tell whether 

mechanisms are sufficiently similar.  

 More generally, in cases where the intervention of interest has not yet been 

experienced and observed in the target, quantitative observational data on variables that 

figure in the suspected mechanism are not informative about mechanistic similarities 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 This is called pattern evidence on Beach and Pedersen’s (2016) typology of process tracing evidence.  
12 In the macroeconometrics literature, this is known as the problem of non-excitation (cf. Salmon and 
Wallis 1982; Engle et al. 1983). 
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and differences between populations.13 This means that if, as econometricians and EBP 

researchers do, we primarily consider quantitative observational data from the target as 

relevant for underwriting extrapolation, we cannot tell whether the target exhibits 

characteristic signatures of the suspected mechanism being operational. As Steel 

anticipates, “[…] the operation of a program can be examined only where it is 

implemented […]” (2008, 166). So while this problem can be remedied by intervening 

on ! in the target, doing so would trivially fall prey to the extrapolator’s bind. 

 To be sure, as anticipated in Chapter 5, one could argue that quantitative 

observational evidence from the target can still have indirect bearing on questions of 

mechanistic similarity and difference if there have been similar, and well-understood 

interventions (or exogenous changes) in the target in the past.14 This seems possible, but 

would also seem to require substantive assumptions concerning how such past 

interventions (or exogenous changes) relate to those of current interest, e.g. whether 

their effects are governed by the same mechanisms and in the same way, as well as 

whether the intervention of current interest is structure-altering or not. Such 

assumptions are similarly difficult to support as, and not recognizably weaker than, 

those at issue here. 

 The concerns outlined above are not surprising. Quantitative observational data only 

have bearing on questions concerning features of causal mechanisms if there is 

sufficient variation in at least some of the putatively causally relevant variables. More 

generally, we might say that quantitative observational evidence can only be 

informative about the causal mechanisms governing observable phenomena if these 

mechanisms have been ‘active’, and consequently had the opportunity to ‘write’, as it 

were, distinctive marks, symptoms, signatures etc. into the data that we can obtain. 

Without such opportunity, when mechanisms have remained ‘dormant’ so far, 

quantitative observational evidence from the target remains a poor guide to clarifying 

issues of mechanistic similarity and difference. 

 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!Interestingly, econometricians recognize important differences between cases where the effects of 
interest have not yet been experienced in a population and those where they have been (e.g. Heckman 
2005; Imbens and Wooldridge 2009; Athey and Imbens 2017; Braithwaite and Walker 2018). However, 
they do not seem to recognize the importance of this distinction for extrapolation. 
14 Steel anticipates this general intuition when discussing concerns surrounding structure-altering 
interventions (2008, 157-60). 
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6.6 Predictive Extrapolation: Where Next? 

The previous discussion suggests three things. First, interactive covariate-based 

strategies for extrapolation involve wide-ranging but ultimately unsubstantiated 

assumptions that populations are sufficiently similar at the level of parameters, 

functional form, and basic structural-mechanistic features relevant to the effects of 

interest. Second, supporting these assumptions raises concerns about the extrapolator’s 

bind. Third, even Steel’s CPT is not immune to these concerns: at least in predictive 

extrapolation cases, quantitative observational data from the target are of little help in 

clarifying issues of mechanistic similarity and difference. So even if econometricians 

and EBP researchers were to use CPT to underwrite extrapolation, they could not rely 

on quantitative observational data from the target for this purpose. 

 This is not to suggest that interactive covariate-based strategies are fundamentally 

flawed. It is practically difficult, but perhaps not insurmountably so, to support that 

populations are relevantly similar at the level of parameters, functional form, and 

mechanisms. Similarly, as emphasized in Chapter 5, my aim is not to suggest that CPT 

is an inadequate strategy for extrapolation in general. I consider CPT to be a promising 

strategy; but my concern is that predictive extrapolation poses distinct challenges for 

CPT, specifically that quantitative observational data from the target are not useful for 

CPT in such cases. So if preferences for such evidence are maintained, it seems that 

interactive covariate-based extrapolation cannot be underwritten by CPT, and if applied 

at all, would need to proceed on hope that populations are sufficiently similar rather 

than evidence that this is so. 

 As this seems highly unsatisfactory, I now want to consider some suggestions for 

what might be done about this. Since the primary aims of this chapter are critical in 

nature, I will not attempt to develop an alternative strategy for underwriting 

extrapolation here. However, it seems useful to consider at least some tentative ways to 

respond to the challenges put forward, specifically proposals offered in the EBP-related 

literature that is not married to preferences for quantitative data. 

 There is a rich literature on supporting process tracing, including for purposes of 

extrapolation, by qualitative evidence, e.g. sociological, anthropological, and 

ethnographic evidence obtained from sources such as interview studies, participatory 

observation, and expert judgment (see e.g. Blatter and Blume 2008; Kay and Baker 

2015; Schmitt and Beach 2015; Fairfield and Charman 2017 for a Bayesian approach to 
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integrating different kinds of qualitative evidence). Econometricians and EBP 

researchers have so far been reluctant to consider such evidence (see Kern et al. 2016). 

However, the arguments developed here suggest that this reluctance is misguided and 

that producing, using, and integrating other kinds of evidence, including qualitative 

evidence, may be useful, and in some cases perhaps even necessary, for underwriting 

extrapolation beyond the level of mere hope that crucial assumptions are satisfied. 

 Let me draw on the bed net example again to illustrate how this could proceed. For 

instance, analogously to in-vitro studies on human cell cultures that helped pin down 

specific features of parts of the suspected mechanism in humans in Steel’s AFB1 

example, it might be possible to investigate whether the insecticidal effects of the bed 

nets to be distributed in the target do in fact obtain on mosquitos sampled from the 

target, at least qualitatively. So for some parts of the suspected mechanisms in the 

target, it may be relatively straightforward to isolate and study parts of it (or well-

understood analogues of it), without 1) having to rely on quantitative observational data 

from the target (such as observing that infection rates are lower conditionally on 

properly installed nets than unconditionally) or 2) introducing bed nets in the target and 

triggering the extrapolator’s bind.15  

 For other causal relationships, this may be more challenging. For instance, it seems 

that investigating whether agents in the target will properly install bed nets can again 

raise concerns about the extrapolator’s bind, e.g. when we introduce bed nets 

provisionally in (at least part of) the target. Proponents of qualitative approaches to EBP 

might suggest that this could be avoided by considering sources of evidence such as 

participatory observation, agents’ self-reports, or expert judgment. For instance, they 

might point out that agents can sometimes reliably report on counterfactual states of 

affairs that have bearing on questions of mechanistic similarity and difference, e.g. 

when these counterfactual states are importantly determined by agents’ own decision-

making (see e.g. Kay and Baker 2015; Fairfield and Charman 2017 for such 

suggestions). If, for instance, agents do in fact have alternative uses for bed nets, such as 

using them as fishing nets, then it seems that they could, under some conditions, 

reliably report that, if they were given free bed nets, they would not use them as bed 

nets but rather as fishing nets. Similarly, agents might also be able to report on 

counterfactual states of affairs that hinge on other agents’ decision making, or on 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 I thank an anonymous referee of the Journal of Economic Methodology for suggesting this example. 
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existing social norms, where agents, as well as experts with local knowledge of the 

target, might be able to anticipate, at least qualitatively, how these norms may interact 

with the intervention of interest (see Cartwright and Hardie 2012 for related 

suggestions).16 

 Of course, considering qualitative evidence also raises a host of new challenges. 

Agents might be overconfident about their propensity to adhere to implementation 

protocols; they may experience substantial difficulties in anticipating the effects of 

some interventions, such as predicting the effect of deworming on student achievement; 

they may be incentivized to strategically misreport their expected future behaviours; and 

so on. 

 More generally, agents’ self-reports are often plausibly suspected to be unreliable, 

and various important precautions need to be undertaken to support the reliability of 

such evidence, e.g. triangulating qualitative conclusions by considering multiple sources 

and using different elicitation methods; having agents report on others’ behaviours 

instead of their own; ensuring that agents are not improperly incentivized to 

strategically misreport; etc (see Schmitt and Beach 2015 for practical examples 

concerning the importance of such precautions).  

 What is more, it is not to be expected that qualitative evidence of the kind outlined 

above will be sufficiently informative by itself to tell us how much exactly, for instance, 

a particular effect will be amplified or diminished by local causal features of the target. 

However, it is important to recognize that this does not preclude quantitative predictions 

of causal effects in the target. If qualitative evidence increases our confidence that 

crucial features of causal mechanisms are qualitatively similar between populations, e.g. 

that a moderating variable ! is likely to interact with an intervention in the same 

qualitative way in both populations, this can offer important support (although perhaps 

not full-fledged warrant) for the assumptions that are necessary for interactive 

covariate-based extrapolation to proceed. If this is successful, interactive covariate-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 This is not dramatically different from what Steel’s CPT recommends. The arguments presented here 
add an important nuance, however, which is that in predictive extrapolation, for lack of observational 
evidence indicating that there is some causal pathway from the intervention variable to the outcome of 
interest, CPT may need to be supported with more evidence that has bearing on questions of mechanistic 
similarity. When available evidence from the target is insufficient to clarify these questions, this may, 
again, make it likely that we fall prey to the extrapolator’s bind. At least in these cases, the 
attributive/predictive extrapolation distinction has an important ramification for CPT: it can only evade 
the extrapolator’s bind in a constrained class of cases. 
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based strategies may justifiably be used to obtain quantitative predictions of causal 

effects, just as envisioned by their proponents. 

 So qualitative evidence is not a silver bullet to address the shortcomings of 

interactive covariate-based strategies. However, when quantitative data from the target 

are unlikely to help clarify whether populations are sufficiently similar to licence 

extrapolation at all, considering qualitative evidence with bearing on these issues, 

despite its potential shortcomings and the additional methodological burden placed on 

us, may still be recognizably superior to proceeding on mere hope that populations are 

sufficiently similar. 

 Most importantly, considering (certain forms of) qualitative evidence promises to 

help us evade the extrapolator’s bind. Here, the intervention is not introduced in the 

target in fact, but only hypothetically, in the minds of agents who may possess relevant 

expertise to report on features of causal mechanisms and processes that they are part of, 

and that have important bearing on the effects of interest. This would steer clear of the 

extrapolator’s bind because while agents’ self-reports may help us rule out important 

causally relevant differences between populations, the quantitative causal effects of 

interest could probably not be reliably inferred by asking them any number of questions. 

So qualitative evidence can be useful for clarifying issues of similarity and difference 

between populations, but is not a sufficient means to predict quantitative causal effects 

in the target. 

 So what is the main suggestion for how interactive covariate-based extrapolation in 

EBP should proceed in light of the arguments provided here? I will expand in more 

detail on positive proposals in Chapter 8. For now, it seems clear that predictive 

extrapolation (which is predominant in EBP) poses distinct challenges for interactive 

covariate-based strategies (as well as for CPT). While there is no obvious remedy, it 

seems that considering qualitative evidence with bearing on questions of similarity and 

difference between populations is an option that should be explored in more detail, as 

such evidence might be able to give us at least some purchase on whether the 

assumptions required for interactive covariate-based extrapolation are satisfied.  

 In light of this, it seems reasonable to suggest that the ability of qualitative evidence 

to speak to these issues should be investigated further, and that the production and use 

of such evidence should be encouraged in widely circulated methodological guidelines 

such as those issued by the Campbell Collaboration, What Works Clearinghouse, 
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CONSORT, GRADE, J-PAL, and others. In addition, more attempts should be made to 

develop strategies for integrating quantitative and qualitative evidence, including in 

domain-general theories (sometimes called programme theories, theories of change, or 

logic frames) that aim to offer comprehensive accounts of how the interventions of 

interest achieve their intended effects, and under what conditions they might fail to do 

so (see e.g. Davey at al. 2017 for similar suggestions).17 EBP institutions such as J-

PAL, 3ie, and others already make attempts along these lines (White 2009). These are 

only early steps, however, and a persuasive, general methodology for underwriting 

extrapolation by means of integrating qualitative and quantitative evidence is still 

missing. 

 As the arguments provided here suggest, there is much promise in developing such a 

methodology. It seems that there can be cases where qualitative and quantitative 

evidence, when considered in tandem, can help us extrapolate causal effects in a way 

that is superior to doing so based on either type of evidence alone. Qualitative evidence 

by itself can at best clarify issues of qualitative causal relevance. Quantitative evidence 

by itself, on the other hand, can help us make extrapolative predictions of causal effect 

magnitudes in the target, but these predictions are only credible if crucial assumptions 

about similarities between populations are adequately supported. At least in predictive 

extrapolation, it is clear that this role cannot be played by further quantitative 

observational evidence from the target. But as the arguments provided here suggest, 

qualitative and quantitative evidence can play complementary roles: one helps clarify 

whether populations are similar at the level of basic causal structure (and potentially 

structural parameters), the other helps investigate causal effect magnitudes of 

interventions implemented in one setting and with adjusting for differences in the 

distributions of variables that can modify these effects. Considered together, both types 

of evidence can hence underwrite extrapolative conclusions that would not be accessible 

from either type of evidence alone.  

 Providing the details of a method for integrating qualitative and quantitative 

evidence is beyond the scope of this thesis, but I hope that the arguments presented here 

will reinforce similar suggestions made by other philosophers (e.g. Cartwright 2013; 

Cartwright and Hardie 2012; Grüne-Yanoff 2016) by providing reasons to think that 

extrapolation may not only be greatly facilitated by considering qualitative evidence 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 see Clarke et al. 2013; 2014 for similar suggestions concerning evidence-based medicine. 
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pertaining to the causal mechanisms governing the effects to be extrapolated, but that a 

wide range of real-world extrapolations may be exceedingly difficult to underwrite 

without doing so. This, I hope, will help motivate further contributions that encourage 

econometricians and EBP researchers to add previously neglected kinds of evidence to 

their arsenals in the pursuit of underwriting extrapolation by more than hope alone. 
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CHAPTER 7 
 
 

Graph-Based Extrapolation 
 
7.1 Introduction 

In this chapter, I critically discuss approaches to extrapolation developed in the 

computer science literature by Elias Bareinboim and Judea Pearl (Pearl and Bareinboim 

2011; 2014; Bareinboim and Pearl 2012; 2013; 2014; 2016; Pearl 2014; 2015). These 

contributions build on and unify methods developed in causal graph theory and 

structural causal modelling that have been used for a variety of purposes, including 

most prominently the identification of causal relationships and causal effects from 

observational data (e.g. Spirtes et al. 2000; Tian and Pearl 2003; Shpitser and Pearl 

2006; Huang and Valtorta 2006). My focus here is on uses of these methods for 

purposes of extrapolation. This graph-based approach, as I will call it from now, 

involves graphical causal models, called directed acyclic graphs (DAGs), that encode 

qualitative causal assumptions and are accompanied by corresponding structural causal 

models (SCMs), as well as a formal calculus by which expressions that identify causal 

quantities in a target population can be derived. 

 The approach offered by Bareinboim and Pearl (henceforth B&P) has several distinct 

advantages over other extrapolation strategies. First, in addition to permitting 

extrapolative inference from experimental data, it also does so from observational data, 

provided that these data permit unbiased identification of the effect to be extrapolated. 

 Second, the graph-based approach can address a wide range of causal queries, 

including quantitative causal queries about outcome distributions and effect magnitudes 

in cases where experimental and target populations differ in known causally relevant 

respects. In virtue of this, its capabilities accommodate and extend (potentially 

significantly) beyond those of other approaches discussed in previous chapters.  

 Third, the graph-based approach offers both an expressive graphical and formal 

framework to represent problems of extrapolation as well as a powerful formal 

machinery to help overcome them. The former helps encode causal background 

knowledge and makes such knowledge, as well as the absence of such knowledge, 

explicit. This promotes the transparency and tractability of extrapolative inference, as, 
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unlike on other approaches where important causal assumptions often remain implicit, 

the graph-based approach permits ‘reading off’ substantive causal assumptions from the 

graphical causal models themselves. Moreover, the formal calculus and algorithms 

developed by B&P help decide whether causal effects can be extrapolated at all, and if 

so, yield so-called transport formulae, i.e. expressions by which the target causal 

quantity of interest can, in principle, be estimated. Notably, for a broad class of 

problems, the calculus offered by B&P has been proven to be complete (B&P 2012), 

meaning that whenever a causal query can be answered, and the required background 

conditions are satisfied, then answers to causal queries follow deductively from 

background knowledge, assumptions, observations, and the rules of the calculus 

underlying the approach. This deductive rigour is taken to be desirable as many 

commentators note that there is often too little rigour involved when issues of 

extrapolation are discussed and addressed (see e.g. Cartwright 2013, 16; Pearl 2014).  

 Fourth, the graph-based approach can proceed from experimental or quasi-

experimental observational data from a study population and observational data from a 

target. In virtue of not requiring experimental data from the target it hence seems to be a 

promising candidate for evading the extrapolator’s bind. What is more, several transport 

formulae derived by B&P suggest that their approach can substantially reduce 

measurement cost in both populations, e.g. by requiring only few quantities to be 

measured in the target, thus intuitively decreasing the likelihood of falling prey to the 

extrapolator’s bind. This suggests that the graph-based approach may enable genuinely 

ampliative conclusions that extend potentially significantly beyond the supplementary 

knowledge and evidence required to infer them.  

 The above achievements lead B&P to conclude that the problem of extrapolation has 

been solved by their approach (B&P 2016, 7352). In this chapter, I provide reasons to 

resist this conclusion. I do so by arguing that the graph-based approach encounters 

important problems related to representing causally relevant differences of various 

kinds as well as empirically supporting unspoken causal assumptions required for its 

successful application. These problems have, so far, remained unmentioned by critics of 

the graph-based approach and unaddressed by its proponents, but are significant enough 

to make it likely that the approach will fail to achieve successful extrapolation in a wide 

range of real-world extrapolation scenarios. 
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 The chapter is organized as follows: Section 2 provides an in-depth overview of the 

graph-based approach as a basis for my subsequent criticisms. In Section 3 I take issue 

with important limitations of causal graphs in representing causally relevant differences 

between populations. While some of these limitations might be overcome, doing so 

comes at the expense of rendering many extrapolation problems insurmountably 

difficult to handle. In Section 4 I discuss what causal assumptions are required to 

licence graph-based extrapolation in several pertinent examples used by B&P and how 

supporting these assumptions raises important epistemic concerns. First, for several 

related reasons, they can render the approach epistemically over-demanding (see also 

Steel 2013, 197). Second, much like the strategies discussed in previous chapters, these 

epistemic demands also raise important concerns about the extrapolator’s bind. Building 

on my criticisms developed in previous chapters, I discuss how the distinction between 

attributive and predictive extrapolation further aggravates these concerns. I conclude 

that, without any explicit discussion of these challenges, the graph-based approach 

obscures, rather than clarifies, important epistemic obstacles to successful extrapolation. 

 Let me begin with an overview of the basic ingredients of the approach, which will 

help articulate the criticisms to be developed later. 

 

7.2 Causal Graphs: The Basics 

The graph-based approach has four main elements: 1) Directed acyclic graphs (DAGs) 

graphically encode the structural causal models and qualitative causal assumptions 

pertaining to the populations involved in an extrapolation. 2) Do-calculus is the formal 

calculus by which derivation of expressions used to estimate target causal quantities 

proceeds. 3) D-separation is a graphical criterion that helps ‘read off’ probabilistic 

independence features from graphs and identify causal effects by ‘shielding’ them from 

causally relevant differences. 4) Selection diagrams are an extension of DAGs that help 

encode knowledge and assumptions about causally relevant similarities and differences 

between populations and, together with the rules of do-calculus, form the basis for 

deriving expressions that help compute the target causal quantities to be inferred by an 

extrapolation. Let me provide an overview of these elements, following the expositions 

offered by Scheines (1997), Greenland and Brumback (2002), Pearl (2009), Steel 

(2010), and Elwert (2013). 
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7.2.1 Directed Acyclic Graphs and Structural Causal Models 

At the heart of the graph-based approach are two ingredients: causal graphs and 

accompanying structural causal models. Causal graphs encode qualitative causal 

knowledge and assumptions pertaining to (the structure of) causal relationships that 

obtain among a set of variables. Structural causal models capture and concretise these 

relationships formally: they capture the causal relationships stipulated by a causal graph 

by specifying which variables figure as arguments in determining the values of other 

variables, and, in parametric cases, provide additional details about the functional form 

of the causal relationships between variables, properties of distributions, and parameter 

values. These latter, parametric details extend beyond the information encoded by the 

graph itself and are not required for the construction of a causal graph. 

 The causal graphs used in the graph-based approach are called directed acyclic 

graphs (DAGs). DAGs consist of a set of nodes that represent variables, and a set of 

edges that represent relationships between the variables. An edge between ! and ! is 

directed when it points from one variable to another with an arrowhead, such as in 

! → !. The direction of the arrow indicates the direction of the causal relationship that 

is assumed (or suspected) to hold between the two variables. If there is an arrow 

between two variables, such as in ! → !, this means that there is a direct causal effect 

of ! on !. The absence of an arrow between two variables implies the substantive 

assumption (or claim) that there is no causal effect of either variable on the other. An 

edge (or arc) between two variables ! and ! is bi-directed when it has two arrowheads. 

This indicates that there is a (potentially unmeasured) common cause (or set of such 

causes) of ! and ! that induces a probabilistic dependence between ! and ! and that is 

not explicitly modelled in the graph, or captured by the structural causal model. 

 Relationships between variables are described with kinship terminology. If there is a 

directed edge ! → !, then ! is a parent of !, and ! is a child of !. If ! can be reached, 

directly or indirectly, from ! by following an uninterrupted sequence of directed edges, 

such as in ! → ! → !, then ! is a descendant of !. An uninterrupted sequence of 

directed edges connecting ! and ! is called a path. The arrows along a path may point 

in any direction. A causal path, which is often defined relative to an intervention 

variable ! and an outcome ! (see e.g. Elwert 2013, 12), is a path where all arrows point 

away from ! to !. A graph consisting of nodes and edges is directed when every edge 
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has an arrow at (at least) one end. A graph is acyclic when it does not contain any path 

that starts and ends with the same node, such as ! → ! → ! → !. 

 DAGs are assumed to be complete in the sense that it is assumed that a DAG 

captures everything that matters for a causal effect, causal mechanism, or process of 

interest. Specifically, causal DAGs are assumed to include all common measured and 

unmeasured causes of any pair of variables included in the DAG. They are not assumed 

to be complete, however, in the sense of including (explicitly) all exogenous causes of 

the variables that figure in the graph. Variables that are not explicitly represented in the 

DAG, but that bear on the values of variables in the graph, are captured by error 

variables such as !! in the graph!!! → ! → ! (Scheines 1997, 189). 

 DAGs are non-parametric, abstract objects and while they encode qualitative causal 

assumptions, such as whether there is a causal relationship between a pair of variables 

or not, they make no assumptions or claims about the distribution of variables (e.g. 

normal, Poisson, etc.), the functional form association between variables (e.g. linear, 

nonlinear), or the magnitude of (marginal) causal effects of variables on other variables, 

i.e. parameters (Elwert 2013, 12). For this, an accompanying structural causal model 

(SCM) is needed.  

 A structural causal model ! consists of four elements (sets will be denoted in bold 

face): 1) a set of exogenous variables ! representing factors outside of the model that 

affect variables and relationships inside the model, 2) a set of endogenous variables ! 

that are dependent on some subset of the exogenous variables in !, 3) a set of functions 

! that represent the causal relationships by which values are assigned to the endogenous 

variables !, and 4) a joint probability distribution !(!)!over !.  

With these four elements in place, a causal model ! specifies that the values of the 

variables in ! are set in accordance with the functions ! and values of exogenous 

variables !, where the probability distribution !(!)!over ! induces a probability 

distribution !(!)!over ! according to the functions !. 

 There are two general types of models that can accompany a DAG: parametric and 

non-parametric. Non-parametric models specify a set of functions governing the 

production of the variables in ! but do not expand on the functional form details 

(including parameter values) or the nature of the joint distribution !(!)!(aside from 

implying a set of probabilistic independencies that obtain among the members of !).  
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 For instance, a non-parametric model involving !!(!,!,!) and !!(!! ,!! ,!!) could 

look as follows: 

! = !!(!,!!)"

! = !!(!,!!)"

! = !!(!!)"

 This would correspond to no more than the simple graph ! → ! → ! (errors 

omitted). 

 Parametric models, on the other hand, offer more details on the functional form 

association of variables, as well as parameters figuring in the functions ! in !. Here, 

for instance, a model could look as follows: 

! = !"! + !! 

! = log ! + !!"!+ !!! 

 ! = !!"

 With a model ! specified, a graph ! is a causal graph of ! if it captures all and only 

the relationships among the variables in ! and ! that are encoded in the functions !. 

(B&P 2016, 7346). This relation may be a one-to-one correspondence in the case of a 

fully specified parametric model, or a looser connection in the case of a partially 

specified, semi-parametric or non-parametric model. Here, there typically exists a set ! 

of models that are compatible with one and the same graph !,!i.e. models that preserve 

the same qualitative relationships stipulated by the graph, and all (and perhaps only) the 

probabilistic independence features implied by it, but may differ (potentially radically) 

in their parametric details. 

 DAGs and their accompanying SCMs can represent interventions by means of the 

so-called do-operator (Pearl 1988). The do-operator is supposed to capture an ideal 

intervention on a variable ! that sets ! to a specific value ! = !, thus eliminating the 

equations from ! that describe how ! is otherwise set, and leaving all other equations 

and hence the values of all other variables in ! and ! untouched, except those that are 

effects of !. The do-operator has graphical and formal expressions. Formally, an 

intervention that sets ! = !!is written as !"(!), where !"(!) changes or replaces the 

function governing the value of ! from ! = !!(!",!!) (where !" is the subset of ! 

that denotes the parents of !) to ! = !. Graphically, the do-operator removes all arrows 
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pointing into !, including double-headed arrows, from a graph !, which yields the !-

manipulated graph !!. 

 

7.2.2 D-separation 

So far, I have focused on the relationship between causal graphs and their 

corresponding structural causal models. However, as both graphs and their 

accompanying models are supposed to help us learn about causal phenomena, there 

must be some connection to these phenomena over and above the causal assumptions 

that go into building graphs and models. Specifically, the connection between graphs, 

models, and data needs to be clarified.  

 When aiming to answer questions about the world, graphs and models must face data 

first in order to help us tell whether they offer an adequate representation of the causal 

phenomena of interest. This typically proceeds by examining which (class) of causal 

graphs/models would be consistent with some observed data. Such questions are 

decided by investigating whether graphs and their accompanying models imply, and are 

hence compatible with, observed probabilistic independencies in the data as well as any 

antecedent information about causal relationships that is available. 

 On B&P’s account, the connection between graphs and data is established by the 

graphical concept of d-separation. D-separation is derived from/identical to the Causal 

Markov Condition1, a condition that establishes a connection between probabilistic 

dependence/independence and causality (Pearl 1988; 2009). In the context of causal 

graphs, d-separation is useful because it allows one to ‘read off’ all the probabilistic 

independence features entailed by the Causal Markov Condition for a given DAG.  

 D-separation is defined as follows (Pearl 1988): A path between two variables ! and 

! is said to be d-separated (or blocked) if: 

1) The path contains a non-collider that has been conditioned on. For instance, in 

the causal paths ! → ! → ! and ! ← ! → !, ! is a non-collider that blocks 

(stops the flow of information along) the path from ! to ! when conditioned on. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The Causal Markov Condition (CMC) states that for any two variables ! and ! in a variable set !, 
conditional on its parents, ! is independent of all variables ! in ! except its descendants (Hausman and 
Woodward 1999, 523). 
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2) The path contains a collider that has not been conditioned on, e.g. when 

! → ! ← ! and neither ! nor any of !’s descendants has been conditioned on. 

A set !!is said to d-separate ! from ! just in case ! blocks every path from a node in ! 

to a node in ! (Pearl 2009, 17). 

 For instance, in the causal chains ! → ! → ! and ! ← ! → !, ! and ! are 

probabilistically dependent, but if we condition on ! they become independent. 

Conversely, if ! → ! ← ! then ! and ! are independent unconditionally, but if we 

condition on !, they become dependent.  

 A theorem proved by Verma and Pearl (1988; see also Pearl 2009, 18) shows that if 

two (sets) of variables ! and ! are d-separated by conditioning on a (potentially empty) 

set of variables !, then ! is independent of ! conditional on !, or ! ⫫ ! !. This has 

important probabilistic implications (Pearl 2009, 18): If ! and ! are d-separated by ! in 

a DAG !, then ! is independent of ! conditional on ! in every probability distribution 

compatible with !. This means that the conditional independence implications derived 

from a graph ! can be used to tell whether the graph is compatible with an observed 

probability distribution !(!). D-separation is then used to list the set of all conditional 

independencies that the graph implies. If all of these independencies are realized in the 

data, then the graph is compatible with the observed distribution. If not, then the graph 

may need to be changed. This establishes a connection between the causal assumptions 

encoded in a graph (specifically in the form of missing arrows that indicate probabilistic 

independence) and observed data.2 

 

7.2.3 Do-calculus 

Do-calculus (Pearl 1995) is a set of syntactic rules by which expressions involving 

causal queries and causal quantities, such as !(! !" ! ), and observations such as 

probability distributions !(!) can be transformed into and expressed in terms of each 

other. The rules of do-calculus are outlined in Pearl (2009) and B&P (2014) and will not 

be repeated here. For the present purposes, it suffices to note that such rules exist and 

that they are the main formal instruments by which extrapolation on B&P’s approach 

proceeds.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 This assumes, of course, that the non-trivial task of inferring probability distributions from observed 
finite frequencies has somehow been achieved. 
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 Specifically, do-calculus is used to derive so-called transport formulae for the post-

intervention distributions of outcomes in a target population !∗(! !" ! ), i.e. the 

conditional probability of ! given an intervention !" !  in the target (indicated by the 

star superscript). Here, the aim is to determine whether, using the rules of do-calculus, it 

is possible to express the target causal quantity !∗(! !" ! ) in terms of a right-hand 

side expression that does not contain a do-operator applied to a variable measured in the 

target. This is important because one of the main aims in successful extrapolation is to 

avoid interventions in the target, which could raise concerns about the extrapolator’s 

bind and obviate the need to extrapolate causal effects from an experimental population 

in the first place. If a transport formula for a causal effect contains no expressions 

concerning the target to which a do-operator is applied, then no interventions in and 

only observational data from the target are needed to identify the effect of interest in the 

target. 

 Let me proceed to discuss the main graphical instrument that the graph-based 

approach employs for addressing problems of extrapolation. 

 

7.2.4 Selection Diagrams 

An extension of DAGs, called selection diagrams, are a graphical instrument used to 

represent causally relevant differences between populations (or ‘disparities’ as B&P call 

them) and enable the graph-based approach to identify causal effects in a target despite 

such differences. This proceeds by adding so-called selection nodes to variables where 

causally relevant differences are suspected to obtain between populations.  

 Building a selection diagram begins by assuming that an experimental population Π 

and a target population Π∗ share a causal graph !′, which constitutes an ‘overlapping’ 

of the causal diagrams ! and !∗ of both populations (B&P 2016, 7351; footnote). Two 

models ! and !∗!underlying this shared causal graph !′ then induce a selection 

diagram ! if: 

1) Every edge in !′ is also an edge in !. 

2) ! contains an extra edge !! → !! whenever there might exist a discrepancy in an 

underlying function !! ≠ !!∗or background factors !(!!) ≠ !∗(!!) between ! 

and !∗. 
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 Selection diagrams are hence DAGs that are augmented with a set ! of selection 

variables, i.e. variables indicating that there are exogenous causally relevant differences 

in the mechanisms that assign values to the endogenous variables in !. According to 

B&P, an !-variable connected by a directed edge to an endogenous variable ! indicates 

differences in the ‘mechanisms’ that assign values to !. Conversely, the absence of a 

selection node pointing to a variable ! implies that the mechanism responsible for 

assigning values to ! is the same in both populations.  

 ! will hence assume different values to represent differences in these mechanisms, 

and switching between populations is represented by conditioning on different values of 

!-variables. For instance, if the target quantity of interest is the interventional 

distribution of ! given an intervention on ! in the target, i.e. ! = !∗(! !!"(!)), then 

this is just equal to the interventional distribution of ! in the experiment conditional on 

the target’s value of !, i.e. ! = !∗. Formally, !∗ ! !!" ! = !!(! !!" ! , !∗). 

 By encoding causally relevant differences between populations in selection 

diagrams, the graph-based approach involves the substantive assumption, outlined in 

Chapter 3, that differences in causal effects between populations can, in principle, be 

attributed to, explained in terms of, and predicted by accounting for causally relevant 

differences between populations; these differences are what !-variables capture. If 

accounted for in the right way, conditioning on !-variables as well as d-separating !-

variables from the outcome by conditioning on other (sets of) variables, allows us to 

correctly predict causal effects in a target despite causally relevant differences. This is 

hence similar to the unconfounded location assumption involved in interactive 

covariate-based strategies (Chapter 6), where it is assumed that units’ potential 

outcomes are probabilistically independent of population membership (or location) 

conditional on a vector ! of interactive covariates that are believed to induce (or at 

least reliably correlate with) differences in causal effects between populations (see Pearl 

2015 for a discussion of differences between the graph-based and interactive covariate-

based approaches). 
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7.2.5 Transportability 

B&P cover issues of extrapolation under the general heading of transportability (B&P 

2014, 7350). Generally, transportability is understood as a licence to transport causal 

relations from one population to another.  

 More specifically, a causal relation ! is transportable from Π to Π∗ if it can be 

identified given some combination of experimental data and observational data from the 

target (B&P 2014, 588). B&P offer three theorems to clarify how it can be decided 

whether a relation !, such as ! = !∗(! !" ! , !, !), is transportable. 

 The first theorem aims at clarifying the general conditions under which ! is 

transportable. ! is transportable if it can be reduced, using do-calculus, to an expression 

in which the set of selection variables ! that capture causally relevant differences 

between populations only appears as a conditioning variable in terms that do not contain 

do-operators (B&P 2014, 588). This ensures that the information required from the 

target (i.e. the terms that are conditioned on ! = !∗) can be observational, so no 

interventions in the target are needed to answer the query of interest, thus satisfying an 

important desideratum for successful extrapolation. 

 The second theorem says that strata-specific causal effects, such as !∗(! !" ! , !), 
are transportable if ! d-separates ! from ! in the !-manipulated version of !, !! ,!i.e. 

the selection diagram in which, due to the intervention !"(!), all arrows pointing to ! 

have been removed. Formally, this is represented by the following constraint: 

(! ⫫ ! !,!)!! 

 Whenever there exists a set ! that satisfies this constraint, ! is called s-admissible 

(B&P 2014, 589). !-admissibility therefore helps identify conditioning sets that render 

the outcome independent of selection variables ! and hence independent of differences 

in selection variables between populations, thus facilitating the identification of effects 

that are transportable despite causally relevant differences between populations. 

 More generally, d-separation and s-admissibility help us identify conditioning sets 

that can be used to ‘shield’ the causal effects of interest from causally relevant 

differences between populations in the form of selection variables. If and when feasible, 

d-separation will help us establish a conditioning ‘blanket’ around the effect we are 

interested in, such that causally relevant differences that lie outside of this blanket do 

not make a difference to the effect of interest one way or another. In virtue of this, 
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transport formulae involving expressions licenced by the d-separation or s-admissibility 

property can substantially reduce measurement cost; not all causally relevant 

differences are relevant obstacles to extrapolation and need to be accounted for. 

 Finally, B&P’s third theorem generalizes transportability to broader classes of cases, 

including cases where an !-!-effect is mediated by a variable ! and where the way in 

which ! mediates the !-!-effect is different between populations, indicated by a 

selection node pointing into ! (e.g. Figure 4c in B&P 2014, 587), as well as more 

complicated cases where the !-!-effect is mediated by yet other variables ! on the 

path from ! to ! (e.g. Figure 6a in B&P 2014, 591).  

 B&P invoke two subgoals to help handle such cases: The first subgoal is trivial 

transportability. According to B&P “[…] a causal relation!! is said to be trivially 

transportable from Π to Π∗, if !(Π∗) is identifiable from (G∗, P∗)” (B&P 2014, 589). 

They further remark that “[t]his criterion amounts to an ordinary test of identifiability of 

causal relations using graphs […]. It permits us to estimate !(Π∗) directly from 

observational studies on Π∗, unaided by causal information from Π” (B&P 2014, 589). 

This is the case, for instance, when the selection diagram ! is as follows:  

! → ! ← ! 

 Since this graph is assumed to be complete, implying that the !-!-effect is 

unconfounded, then the !-!-relationship !∗(! !" ! ) can be identified from 

observational data from Π∗, i.e.!!∗ ! !" ! = !∗(! !).  

 So saying that a causal relationship or effect is trivially transportable amounts to no 

more than saying that it can be straightforwardly identified from observational data 

from the target. In this sense, transportability falls outside the scope of successful 

extrapolation as discussed in Chapter 3, where (significant) changes in the evidence E 

obtained from an experimental population would make at least some difference to our 

extrapolative conclusion !. This is not the case when ! is obtained only on the basis of 

data from the target. Hence, determining that a causal relation is trivially transportable 

is not a form of successful extrapolation. It only amounts to identification of causal 

effects from observational data in the target. However, trivial transportability can still 

be useful for successful extrapolation when the final transport formula derived does not 

only contain trivially transportable effects, and information from the interventional 
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distribution from a study population still figures relevantly in the final transport formula 

in a way that satisfies the constraints on relevance outlined in Chapter 3. 

 The second transportability subgoal invoked by B&P is called direct transportability: 

“A causal relation ! is said to be directly transportable from Π to Π∗, if ! Π∗ = !(Π)” 

(B&P 2014, 589). This means that the causal relation of interest is the same in both 

populations, and no adjustment is needed to infer the target quantity. According to 

B&P, a condition for the direct transportability of a relation ! = !∗(! !" ! , !), i.e. the 

!-specific effect of ! on !, is as follows:  

(! ⫫ ! !, !)!! 

 ! is directly transportable when, in the !-manipulated version of !, !!, ! blocks all 

paths from ! to ! once we condition on !. Put simply, conditioning on ! and ! allows 

rendering ! independent of the differences induced by !, so these differences do not 

matter for our prediction of the !-specific effect of ! on ! in the target. This effect is 

(assumed to be) the same in both populations, so learning it in the experimental 

population allows transporting it to the target. 

 By itself, direct transportability is a form of successful extrapolation, albeit not a 

very impressive one. It applies just in case causally relevant differences between 

populations do not matter for the causal effect to be extrapolated (at least after 

conditioning on an s-admissible set !), and the causal effect is indeed known to be (or 

justifiably assumed to be) the same between both populations. Nevertheless, at face 

value, some form of successful extrapolation seems to be achieved here, at least as long 

as the knowledge about the target required to decide whether an effect is directly 

transportable is not too extensive. I will discuss this important issue later. 

 With these two subgoals in place, B&P’s strategy is to show that more involved 

cases of extrapolation, where, say, !-!-effects are not immediately directly 

transportable, can nevertheless be successfully addressed. This proceeds by an iterative 

divide-and-conquer procedure, where one decomposes an extrapolation problem into 

smaller sub-problems, demonstrates that these sub-problems can be solved by trivial or 

direct transportability, and then uses these results to establish the transportability of the 

relation of ultimate interest. So at least in some more involved cases where the effect of 

interest is not immediately transportable, but where the transportability of this causal 

effect depends on that of others, an iterative procedure can still be used to decide the 
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transportability of the effect of ultimate interest. 

 B&P’s third theorem expresses this as follows (B&P 2014, 590): The average causal 

effect !∗(! !" ! ) is directly transportable if either of the following conditions holds: 

1) !∗(! !" !  is trivially transportable. 

2) There exists a set of covariates ! (possibly affected by !) that is !-admissible, 

and for which !∗(! !" ! ) is (directly) transportable. 

3) There exists a set of covariates ! that satisfies (! ⫫ ! !)!!(!)
!and for which 

!∗(! !" ! ) is (directly) transportable. 

 Condition 1) can be ignored as establishing trivial transportability of an !-!-effect 

does not constitute successful extrapolation. Conditions 2) and 3) are more interesting. 

A combination of these conditions can be used to iteratively decide the transportability 

of primary relations of interest, e.g. !∗(! !" ! ), in more complicated cases. Here, for 

instance, we might need to first decide the trivial or direct transportability of another 

relation, such as !∗(! !" ! ) or !∗(! !! ! ), and, based on these results, we may find 

!∗ ! !" !  to be transportable, either directly, or with adjustment for observational 

distributions of other variables !, ! that bear on the !-!-effect (B&P 2014, 590-91; 

Examples 8 and 9). To the extent that our derived transport formula in such cases still 

uses information from the experimental population in the sense outlined in Chapter 3, 

this seems to evade the extrapolator’s bind. 

 This completes the overview of B&P’s extrapolation theorems. According to B&P, 

these theorems show that “[…] despite glaring differences between […] two 

populations, it might still be possible to infer causal effects at the target population by 

borrowing experimental knowledge from the source populations” (B&P 2016, 7350; 

emphasis added). At face value, this satisfies at least some of the desiderata highlighted 

in Chapter 3: experimental knowledge from a source population is used to infer a causal 

conclusion about a distinct target, despite some causally relevant differences between 

the populations.  

 With this overview in place, let me turn to my criticisms of B&P’s extrapolation 

strategy, which call into question whether their approach indeed manages to achieve 

successful extrapolation in a broad range of cases. 

 Graph-based approaches have been criticised on various fronts. For instance, Aalen 
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et al. (2016) argue that DAGs cannot adequately capture data produced by time-

continuous causal processes. Others suggest that DAGs cannot adequately represent 

effect modification by moderating variables (Weinberg 2007, but see Elwert 2013, 255), 

nor reversals in the direction of causal arrows (see Hausman et al. 2014). Moreover, 

Deaton and Cartwright (2018), argue that DAGs 1) cannot capture simultaneous 

causality (as is common in economic analyses of equilibration), 2) involve substantive 

assumptions for extrapolation that are as extensive as those that RCTs are supposed to 

help us avoid, and 3) require extensive knowledge not just of differences between 

populations but similarities as well. 

 In what follows I develop two further criticisms: first, the graph-based approach is 

limited in what causally relevant differences it can capture, and hence in the range of 

causal queries it allows us to address. Second, it rests on unspoken assumptions about 

causally relevant similarities, and empirically supporting these assumptions is likely to 

fall prey to the extrapolator’s bind. Let me expand on these concerns in turn. 

 

7.3 Limitations of Selection Diagrams 

The first concern is with limitations of the graph-based approach. Specifically, while it 

is clear how selection diagrams can represent differences in the distributions of 

endogenous variables, it is not clear whether they can also represent other causally 

relevant differences between populations. I will argue that the approach is indeed 

limited in some of these respects, and while some of these limitations are not principled 

in nature, no attempts have been made so far to discuss them or to develop ways to 

overcome them. Doing so is important, however, to delineate more clearly what the 

graph-based approach is useful for and when its limitations preclude successful 

application, suggesting that other strategies are needed to address the cases in question.  

 The general question to be addressed in this section is just what kinds of causally 

relevant differences between populations the graph-based approach can represent and 

potentially help overcome. To structure this, and recalling the different kinds of causally 

relevant differences delineated in Chapter 2, we may ask whether selection diagrams 

can represent causally relevant differences in 1) variable distributions, 2) functional 

form associations between variables and parameters, and 3) the basic structure of causal 

mechanisms, or indeed any combination of the above. 
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 The answer to the first question seems clear: selection variables ! “[…] represent 

exogenous conditions that determine the values of the variables to which they point.” 

(P&B 2011, 160) Following this, differences in selection variables represent differences 

in the exogenous features of causal mechanisms that determine the values of the 

variables into which the selection variables point. Importantly, however, we do not need 

to know what exogenous differences bring about these differences in variable 

distributions; we only need to know that such differences are induced for some reason. 

While this makes clear that selection diagrams can capture differences in the values and 

distributions of variables, it remains unclear whether they can also capture differences 

in structural parameters, functional form association, or indeed in the basic structure of 

causal mechanisms. 

 B&P remain vague on these important issues. In some places, it seems that selection 

nodes ! pointing into variables ! in ! are only supposed to indicate that populations are 

selection biased with respect to the distribution of !. Indeed, the terminology of 

‘selection’ suggests that selection variables are supposed to capture selection 

mechanisms that induce different distributions of variables in different populations (see 

for instance B&P 2016, 7345) as a result of underlying differences in individuals’ 

propensity to self-select (or be selected) into the respective population, i.e. differences 

in selection mechanisms. 

 In yet other places B&P seem to suggest that, particularly in virtue of the non-

parametric nature of DAGs, all causally relevant differences can be captured by 

selection diagrams, potentially including differences in causal structure, functional form 

associations, and parameters. According to B&P, their approach allows „[...] 

extrapolating experimental findings across domains […] that differ both in their 

distributions and in their inherent causal characteristics” (B&P 2016, 7350, emphasis 

added). Similarly, they claim that selection variables “S may represent all factors by 

which populations may differ or that may ‘threaten’ the transport of conclusions 

between populations” (P&B 2014, 587, emphasis added). There is one way in which 

this is true, but another in which it is less clear whether selection diagrams can capture 

such differences. Let me expand. 

 It seems true that selection diagrams can capture all kinds of causally relevant 

differences between populations, in the sense that all differences in the details of the 

exogenous mechanisms by which variables ! in ! are assigned their values are captured 
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by differences in the distributions of these variables !.3 As the story goes, the 

underlying reasons for these differences do not matter – they may be differences in the 

distributions of exogenous variables or in the basic structure of the (exogenous) 

mechanisms, functional form of structural equations, or structural parameters involved 

in assigning values to !. All that matters is that there are differences in the distributions 

!(!) assigned by such mechanisms to variables ! in !. So with respect to exogenous 

causally relevant differences, those that obtain outside of the model and induce 

differences in !(!) inside the model, the graph-based approach seems to be able to 

capture all kinds of causally relevant differences. 

 This still leaves unclear, however, whether and how selection diagrams can capture 

endogenous causally relevant differences, i.e. differences in the structure of the causal 

graphs ! and !∗ that underlie a selection diagram, and differences in the functional 

form association and parameters that figure in the structural equations ! relating the 

variables in ! and !. Let me turn to these two issues now. 

 

7.3.1 Differences in Basic Causal Structure 

One intuitive place to look for more details on these issues is to consider again how 

selection diagrams are supposed to be constructed. Recall that, according to B&P, this 

proceeds as follows (2016, 7351):  

 Two models ! and !∗!underlying a shared causal graph !′ induce a selection 

diagram ! if: 

1) Every edge in !′ is also an edge in !. 

2) ! contains an extra edge !! → !! whenever there might exist a discrepancy in an 

underlying function !! ≠ !!∗or background factors !(!!) ≠ !∗(!!) between ! 

and !∗. 

 However, this definition of selection diagrams still leaves unclear how the respective 

graphs ! and !∗ of the experimental and target populations that underlie the shared 

causal graph !’ need to relate to one another. B&P speak of populations “sharing” a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 This brackets cases where substantively different mechanisms nevertheless assign the same values to !, 
potentially over broad variations in !(!). Yet, further differences in exogenous mechanisms may still 
induce relevant differences in causal effects of interest outside of such stability conditions and may hence 
matter for extrapolation even if they are not captured by differences in selection variables.  
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causal diagram (B&P 2014, 588) and of the shared causal diagram !′ underlying the 

selection diagram ! being the result of an “overlapping” of the causal diagrams ! and 

!∗ of the two populations (B&P 2016, 7351, footnote).  

 But there are different ways in which a shared causal diagram may be constructed. 

For instance, !′ could consist only of edges that are identical between ! and !∗ (an 

intersection, if you will), including perhaps the constraint that edges must have the same 

direction in order to count as shared. Or it could constitute the union of all edges in ! 

and !∗, including edges that are only part of ! but not !∗, and vice versa (this 

possibility seems to be favoured by Mooij et al. [2018, 13] as well as Huitfeldt et al. 

[2016, 7]).  

 However, this important issue of how shared graphs !′ underlying selection 

diagrams are constructed is left unmentioned in B&P’s papers with the exception of a 

footnote, where they suggest that “[i]n extreme cases in which the two domains differ in 

causal directionality [reference suppressed], acyclicity cannot be maintained. This 

complication as well as one created when ! is a edge-super set of !∗ require a more 

elaborated graphical representation and lie beyond the scope of this paper” (B&P 2014, 

587; footnote 18). 

 This suggests that cases where the direction of the edges between a pair of variables 

differs in ! and !∗ cannot be handled by the selection diagram approach (at least not 

without undisclosed changes to the approach). Moreover, at face value, this may suggest 

that cases where there are additional edges in ! that are not in !∗ (or vice versa), cannot 

be represented by selection diagrams either. Selection diagrams seem limited, then, in 

that they cannot represent endogenous causally relevant differences in the structure of 

the mechanisms governing the outcomes of interest.  

 This is contravened in other places, however, adding further confusion to the issue. 

For instance, in an earlier paper, B&P comment that selection diagrams “[…] can also 

represent structural differences between […] two domains.” (P&B 2011, 249; emphasis 

added) For instance, when there is an arrow from ! to ! in Π but not in Π∗, they suggest 

that a selection node ! should be added to ! to ‘disable’ the arrow in Π∗ when ! =
!∗!and enable it in Π, when ! = !. Based on this suggestion, they claim that their “[…] 

analysis will apply therefore to all factors by which domains may differ or that may 

‘threaten’ the transport of conclusions between domains, studies, populations, locations 

or environments” (P&B 2011, 249; emphasis added). This suggests, at least, that 
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selection diagrams may be able to capture some differences in the basic structure of 

causal mechanisms concerning the presence or absence of arrows that are contained in 

either population. 

 It is unclear, however, whether this extends to cases other than the most simplistic. 

How, for instance, can we represent cases where an !-!-effect is mediated by different 

variables in two populations, say e.g. because the effects of a social policy intervention 

on ! on an outcome ! are governed by formal institutions ! in one population and 

informal social norms ! in another? We can model such a situation with two different 

mediated paths ! → ! → ! in Π and ! →! → ! in Π∗, where ! and ! may stand for 

some relevant mediating aspects of the formal institution and the informal social norm 

respectively. Here, the issue is once again unclear, as there are no mentions of such 

cases in any of B&P’s papers on transportability. One way to handle such cases could 

be to add a total of three selection nodes to the selection diagram: a selection node ! 

into!!, just as in the simpler case above, and two further selection nodes!!’ and !’’ into ! 

and ! respectively. Figure 1 illustrates how the graphs ! and !’ could be combined 

into a selection diagram !: 

            

Figure 1: Graphs G and G’ combined into a selection diagram D 
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 However, it is unclear whether this would successfully represent the case. For 

instance, it seems that the selection node ! pointing into ! would need to 

simultaneously disable the path ! → !, enable the path ! → ! in Π, and do the 

opposite in Π∗. ! would hence need to meddle with the arguments that figure in the 

structural equations for ! in!Π and Π∗ respectively, e.g. by deleting ! from !! in Π and 

! from !! in Π∗.  

 More involved cases can easily be envisioned, and it remains unclear whether 

selection diagrams could represent them. At the very least, it seems that such operations 

(where selection nodes add or delete arguments such as ! and ! from the structural 

equations determining ! in different locations) would be at odds with yet other 

statements of B&P on how selection diagrams capture properties of two populations 

simultaneously. They state, for instance, that “[t]his is possible if we assume that the 

structural equations share the same set of arguments, though the functional forms of the 

equations may vary arbitrarily” (B&P 2013, 112). Moreover, it seems that in order to 

approximate the requirement that the structural equations determining ! share the same 

arguments, one would at the very least need to meddle with the functional form of !! 

and make some auxiliary parametric assumptions, such as saying that 

! = !! !, !,!! = 0 ∗ ! + !(!,!!) to indicate that although ! is an argument in the 

equation determining ! in Π, ! is invariant to changes in !, other things being equal. 

While this would contravene the causal knowledge encoded in the graph ! representing 

Π, where there is no arrow ! → !, and ! is not an argument in !!, it would be the 

closest approximation to representing the absence of an arrow ! → ! in Π. It is unclear 

whether this is how B&P envision such cases to be handled, or indeed whether doing so 

would yield yet other problems.  

 At this point, it would seem desirable to explore in more detail the implications of 

how different ways of representing this case and other, similar cases by constructing 

different selection diagrams would bear on the transport formulae that could be derived 

using do-calculus. Here, it would seem interesting to explore whether any of the 

inferences so licenced would be misleading, as well as whether there are other ways of 

reaching correct conclusions in these cases without employing the graph-based 

approach. Due to the substantial ambiguities left by B&P’s remarks about selection 

diagram construction, such formal explorations are beyond the scope of this chapter, 

and will need to be pursued in future work. 
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 Aside from several important vaguenesses, then, the informal considerations above at 

least suggest that even relatively simple arrangements of causally relevant differences 

between populations at the level of the basic structure of causal mechanisms might pose 

problems for the construction of selection diagrams, although some simplistic cases 

might still be captured. At the very least, it seems clear that more extensive commentary 

and more fully developed theory is needed to support anyone interested in building and 

using such diagrams for purposes of real-world extrapolation. 

 At worst, the above concerns suggest that selection diagrams might be ill-equipped 

to handle a variety of ways in which populations may differ at the level of the basic 

structure of causal mechanisms. This could be an important limitation of the approach, 

however, when considering that such cases might be commonly instantiated when 

extrapolating across cultural and institutional boundaries, where similar effects might be 

mediated by different variables that play similar functional roles. In such cases, the 

addition of selection nodes to a DAG will generally make it less likely that causal 

effects can be transported. Indeed, even the relatively simple case of two mediating 

paths differing between populations discussed above, may already undermine 

transportability. Whenever there are different pathways governing an !-!-effect, this 

will need to be represented with a selection node pointing into the outcome variable. 

This, in turn, may often trigger variants of the so-called s-bow arc case, illustrated in 

Figure 2 below. 

 

Figure 2: The s-bow arc structure 

 This is a case where a selection node ! points into the outcome variable !, and the 

path from ! (or any other parent of !) is confounded by a bi-directed arc. It marks the 

simplest possible case where a causal effect is non-transportable (B&P 2012, 701), and 

non-transportability will extend to all cases where the s-bow arc structure obtains as a 

subgraph. So whenever there is a causally relevant difference in how ! is determined, 

and there is a confounding arc between ! and its closest ancestor on the !-!-path, this 
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means that transportability is precluded. Since part of this graph structure is constituted 

by a selection variable pointing into !, and this will need to be the case in any selection 

diagram where an effect is mediated or moderated by different variables in both 

populations, this makes the occurrence of the s-bow arc structure likely in such cases. 

All that is needed here to trigger the s-bow arc structure is an additional confounding 

arc, which in real-world cases, especially in social science contexts where selection 

effects are ubiquitous, is often likely to obtain.  

 Importantly, however, the insight that transportability is likely to fail in the above 

scenario does not imply that successful extrapolation is precluded. Some kinds of 

informal extrapolation might still be feasible. For instance, when the mediating 

variables involved in these cases play functionally similar or identical causal roles in 

both populations, and this is supported by background theory and understanding of the 

mediating variables at issue, this can still justifiably increase our confidence in the 

similarity of causal effects between populations, and serve as a basis for some informal 

forms of successful extrapolation (although potentially restricted to answering 

qualitative queries). So despite the concern that transportability may frequently fail in 

such cases, successful extrapolation is by no means precluded. 

 In light of this, and the above arguments concerning the difficulties of representing 

such differences in selection diagrams, it seems that B&P should aim to make further 

progress on the issue of which causally relevant differences can be represented and 

how. Without this clarification, even relatively simple problems would seem to 

substantially constrain the ability of their strategy to help us achieve successful real-

world extrapolation.  

 

7.3.2 Differences in Functional Form and Parameters 

Let me turn to the second question, which is whether selection diagrams can represent 

differences in functional form and parameters. The concerns here will be somewhat 

different to the above: although B&P do not comment at all on whether selection 

diagrams can capture endogenous differences in functional form association between 

variables or in structural parameters, it seems that selection diagrams can represent 

these cases, but it is also clear that the graph-based approach is unlikely to enable any 

inferences in cases where such differences obtain. 
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 Causally relevant differences in functional form association between variables can 

obtain in various ways. It is easy to offer an example where such differences are 

important because they yield differences in post-intervention outcome distributions, 

which the graph-based strategy might then fail to recognize. 

 To provide a simple example of differences in functional form associations, assume 

two populations Π and Π∗ with models ! and !∗. Let the non-parametric version of ! 

and !∗ be: 

! = !!(!, !,!!)!"

! = !!(!!)"

! = !!(!! , !) 

 Now let the true parametric form of !! differ between ! and !∗ as follows: 

! = ! + ! + !! 

!∗ = ! ∗ ! + !! 

 So ! is an additively separable cause of ! in Π!and a fully interactive moderating 

variable in Π∗. It is clear that even at one and the same pre-intervention distribution of 

!, the outcome distributions !(!) and !∗(!) will differ (except in cases where 

! ∗ ! = ! + !). In this case, computing the outcome distribution of interest according to 

B&P’s transport formula ! = !∗(! !!"(!))= !(! !!" ! , !)!∗(!)!  will not recover 

the correct outcome distribution in the target (except, again, in cases where ! ∗ ! = ! +
!). 

 Similarly, when structural parameters differ between populations, we might face a 

situation such as the following. Let the true parametric form of !! differ between ! and 

!∗ as follows: 

! = !!"! + !!"! + !! 

!∗ = !!"! + !!"! + !! 

 where 

!!" ≠ !!" ≠ !!" ≠ !!" 
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 Again, even at one and the same pre-intervention distribution of ! and !, the 

outcome distributions !(!) and !∗(!) will differ and computing the outcome 

distribution of interest according to B&P’s transport formula, 

! = !∗(! !!"(!))= !(! !!" ! , !)!∗(!)! , 

will not recover the correct outcome distribution in the target. 

 Although B&P do not discuss such cases, it seems that causally relevant differences 

in functional form and parameters can be represented in the same way in a selection 

diagram. In both cases, a selection node needs to be added to ! (or any other variable 

whose structural equation is the object of such differences) in order to capture such 

differences. 

 However, while it is important to recognize that selection diagrams can capture such 

differences, it is an entirely different issue of whether the graph-based approach can 

enable any inferences in cases where they obtain.  

 Causally relevant differences in functional form association and especially in 

parameters are likely in many real-world problems of extrapolation. Think, for instance, 

about the ubiquitous and significant real-world variation in agents’ response to 

evidence-based development policy interventions, as documented in meta-analyses such 

as Vivalt’s (2019). The insight that each such difference may require the addition of 

selection variables to a selection diagram creates important practical challenges for the 

graph-based account. As B&P recognize, in the limit, when selection nodes need to be 

added to all variables in a selection diagram, transportability is entirely precluded. Even 

significantly milder cases, such as occurrences of the s-bow arc structure, preclude 

transportability already. How, then, can we avoid this? The answer is simple: we can 

only avoid this problem in cases where few causally relevant differences exist in a 

selection diagram. At the same time, this means that our efforts to extrapolate will be 

burdened with making a potentially large number of substantive assumptions. Whenever 

there is no selection node pointing into a variable, this expresses the substantive 

assumption that populations are identical at all three levels discussed here, i.e. there are 

no differences in the basic structure of the causal mechanisms, functional form 

association and parameters, or variable distributions. Clearly, these cannot be 

assumptions of convenience, but must be supported. In the second line of criticism that I 

will now turn to, I focus on these assumptions and argue that underwriting these 
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assumptions is likely to raise concerns about the extrapolator’s bind, even in cases 

where there are few causally relevant differences to begin with. 

 

7.4 Causal Assumptions and the Extrapolator’s Bind 

So far, I have raised concerns about limitations of the graph-based approach with 

respect to encoding certain kinds of causally relevant differences. Even if such 

limitations did not obtain, however, and even in those cases where they do not apply, 

there remain further important obstacles to successfully using the graph-based strategy 

for extrapolation. These are of an epistemic nature and concern the issue of what is 

required to underwrite graph-based extrapolation.  

 The main question to be addressed in this section is: how can we support the crucial 

assumptions about similarity and difference between populations involved in 

constructing selection diagrams? I will argue that several important epistemic 

challenges in underwriting such assumptions have been unhelpfully glossed over by 

B&P, but need to be addressed in order to assess whether the graph-based strategy is a 

promising candidate for overcoming real-world problems of extrapolation. As I will 

argue, the graph-based approach encounters important problems: the knowledge about 

the target required to underwrite assumptions about similarity and difference between 

populations is likely, once again, to be so extensive as to trigger concerns about the 

extrapolator’s bind. 

 At this point, one might wonder whether this line of criticism is misguided from the 

beginning. One may ask, for instance, whether supplying the details of empirical 

strategies to underwrite the assumptions required by the graph-based approach should 

even be part of this approach, or whether this would be too much to ask. B&P might 

insist that their approach does not aim to provide a manual for extrapolation from start 

to finish. For instance, they might argue that their approach does not aim to clarify how 

the estimation of the quantities demanded by transport formulae to compute causal 

effects should proceed; this would be left to statistical approaches that can complement 

their graph-based strategy, if and when available. What is more, other approaches, too, 

require extensive causal and probabilistic information from both populations to licence 
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extrapolation.4 B&P might also point out that even without providing further details on 

these issues, the graph-based approach nevertheless provides results that are interesting 

and practically relevant. On this narrative, their approach contributes to overcoming 

problems of extrapolation by offering general algorithms to derive transport formulae, 

and in doing so, abstracts away (and perhaps needs to abstract away) from a variety of 

substantial and non-trivial empirical challenges, such as measuring probability 

distributions and other quantities needed to compute causal effects with the help of 

transport formulae. 

 This is not an uncontroversial stance, as it may seem unclear whether and how the 

graph-based approach substantially contributes to addressing real-world problems of 

extrapolation if it were to face insurmountable obstacles at the estimation stage that 

would preclude us from ever obtaining informative answers to our extrapolative queries. 

B&P might reply, however, that it is not a shortcoming of the approach, but indeed a 

virtue that, at least on reflection, helps bring such issues to the fore. Even so, our 

conclusions about the real-world capabilities of the approach should then perhaps be 

phrased somewhat more cautiously, at least adding that researchers may expect 

substantial downstream complications when engaging in graph-based extrapolation. 

 I will not take further issue with this debate.5 The concerns I develop here are 

different, and focus on what seems to me a more basic desideratum for successful uses 

of the graph-based strategy: validating the empirical causal assumptions that it requires. 

This, I maintain, is an issue that cannot be abstracted away from as easily as, for 

instance, the finite-sample statistical complications involved in measurement and 

estimation of probability distributions and parametric details. Moreover, this concern is 

epistemically prior to such issues, in that it obtains before any selection diagram 

capturing any real-world problem of extrapolation can be constructed.  

 My concern is the following: if we cannot adequately support the empirical 

assumptions needed to construct selection diagrams, then how could the graph-based 

approach be useful for real-world extrapolation? Without adequate support, very little 

can be hoped to be learnt from using the graph-based approach, as one might think, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 While it is true that other approaches can be similarly epistemically demanding, B&P’s approach does 
seem to involve a thicker layer of statistical inference to function than, for instance, interactive covariate-
based extrapolation, which can proceed from frequency data alone (e.g. on covariate distributions), and 
mechanism-based extrapolation following Steel, which makes few quantitative assumptions to begin 
with.  
5 Interested readers may follow the discussions on Andrew Gelman’s blog between several statisticians 
and both Elias Bareinboim and Judea Pearl: https://statmodeling.stat.columbia.edu/2015/12/05/28262/ 
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following Cartwright, that an extrapolation is only ever as strong as its weakest link 

(Cartwright, 2013, 16).6 If the derivation of transport formulae hinges on substantive 

assumptions about similarities between populations that are difficult to substantiate 

beyond the level of mere assumptions, then this would fall radically short of reasonable 

demands for how extrapolation should be justified and we might as well extrapolate 

based on hope alone, without the substantial complications involved in drawing graphs 

that cannot be empirically supported and deriving transport formulae that may lack any 

empirical bite. Put differently, and putting a spin on Cartwright’s famous dictum “no 

causes in, no causes out” (Cartwright, 1989), we might say “no justified causal 

assumptions in, no justified causal conclusions out”. It is clear that successful graph-

based extrapolation requires justification for the underlying assumptions that are 

necessary to perform it. If there is no such justification, then any conclusion obtained 

from this method will also lack justification, and hence not be useful for addressing 

real-world problems of extrapolation involving actual stakes, e.g. when policy action 

could be taken based on potentially radically mistaken conclusions about the 

effectiveness of a policy in novel contexts. 

 So for the graph-based strategy to be a promising candidate for addressing real-world 

problems of extrapolation, we need some ideas about how to support the substantive 

assumptions that it involves. My demand here is not, of course, that these ideas need to 

be provided by B&P. However, providing some supplementary account of how to 

support such assumptions must be possible, and in a way that does not raise concerns 

about the extrapolator’s bind. In what follows, I argue that providing such an account 

will be extremely difficult, and that these difficulties call the applicability and 

usefulness of the graph-based strategy into question. While this does not touch upon the 

validity of the results that can be derived by using it, or the generality of these results 

underwritten by the completeness of do-calculus, my arguments suggest that the graph-

based strategy, by itself, is ill-equipped to handle a wide variety of real-world 

extrapolation problems. As a result, B&P’s claim that the problem of extrapolation has 

been solved by their strategy (B&P 2016, 7352) is unwarranted. This claim unhelpfully 

glosses over basic epistemic problems that need to be addressed first, i.e. before any 

selection diagram can be constructed and any practically relevant licences to transport 

causal effects can be established. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 To be sure, I do not wish to endorse this view here, as there are cases where it seems less plausible. I 
expand on this issue in Chapter 8. 
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 To show what assumptions the graph-based approach involves and how validating 

them raises concerns about the extrapolator’s bind, let me revisit two examples 

repeatedly used by B&P to illustrate the capabilities of their approach. 

 

7.4.1 Selection Diagrams and the Extrapolator’s Bind 

As outlined above, the main aim in graph-based extrapolation is to identify a causal 

effect in a target using 1) a selection diagram ! that represents causally relevant 

differences between experimental and target populations, and 2) using do-calculus to 

determine whether the causal quantity of interest in the target can be expressed in terms 

of experimental data from a study population and observational data from the target. To 

evade the extrapolator’s bind, the aim is to show that the target quantity can be 

expressed in terms of expressions about the target that do not contain a do-operator.7 If 

this is successful, it seems that the extrapolator’s bind is indeed evaded, as no 

intervention in the target is needed to reach a conclusion about the causal quantity of 

interest. 

 Let me revisit a simple example used by B&P and elaborate on the underlying 

assumptions involved, how these assumptions might be supported empirically, and how 

doing so raises concerns about the extrapolator’s bind. In several of their papers, B&P 

offer the example of a causal effect of ! on ! that is estimated in an experiment in LA, 

and the causal query of interest concerns the effect of ! on !, i.e. !∗(! !!"(!)), in a 

distinct target population in NYC. As before, call these populations Π and Π* 

respectively. The selection diagram ! representing the two populations is as follows: 

                            

Figure 3: selection diagram reproduced after B&P (2016, 7350; fig. 5a)) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 This is necessary but not sufficient to fully evade the extrapolator’s bind (at least in cases where the do-
operator at issue would be applied to ! in the target). We might still be in possession of observational 
rather than interventional data, which may nevertheless permit identification of the effects of interest 
from these data alone.   
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 As usual, ! is the intervention variable and ! the outcome. ! denotes individuals’ 

age and is a common cause of ! and !. In addition, there are two confounding arcs 

between ! and ! and between ! and ! respectively, indicating that there are further, 

unmeasured common causes of these pairs of variables. Finally, the !-node pointing 

into ! denotes the existence of a selection variable !, which induces differences in the 

distribution of age ! between Π and Π*. 

 The extrapolation proceeds as follows: The query to be answered is 

! = !(! !" ! , ! = !∗). So we are interested in the post-intervention distribution of ! 

given !"(!)!and given that the selection variable !!assumes the value representing the 

target, namely !∗. Since the difference in ! marks the only difference between 

populations, this is equal to the target’s post-intervention distribution !∗(! !"(!)), i.e. 

the quantity that we want to learn. The aim is now to derive a transport formula that 

combines experimental data from Π and observational data from Π*, i.e. !(! !"(!)) 
and !∗(!,!, !) respectively, to obtain an interventional distribution!!∗(! !"(!)) in Π*. 

I will not expand on the details of the derivation here, which can be found in B&P 

(2014). For the present purposes it suffices to note that by using the rules of do-calculus 

the quantity of interest ! = !∗(! !"(!))!can be rewritten as follows (B&P 2014, 585):  

!∗(! !"(!)) = !(! !" ! , !)
!

!∗(!) 

 In plain English, the post-intervention distribution of ! in the target is equal to the 

sum over all ! of the product of the !-specific interventional distribution of ! in the 

experimental population and the observed distribution of ! in the target.  

 So what happens here is merely a traditional re-weighting of causal effects 

(understood in B&P’s sense as outcome distributions). Similar to interactive covariate-

based extrapolation discussed in Chapter 6, the effects are estimated conditionally upon 

a variable ! known to influence these effects (i.e. distributions), before reweighting 

these effects (i.e. distributions) by conditioning on the observed distribution of ! in the 

target. 

 The extrapolation discussed by B&P involves several substantive assumptions. Some 

of these are encoded in the selection diagram, while others remain implicit. Specifically, 

it is assumed that (in no specific order): 

1) The joint probability distributions !(!,!, !) and !∗(!,!, !) are measured in 
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both populations (where !(!,!, !) is often an interventional distribution called 

!(!,!, !)). For most real-world problems of extrapolation, this assumes that 

these distributions have somehow been inferred from finite frequency data. 

2) For any variable ! that modifies the causal effect of interest, the !-specific 

causal effects of ! on ! have been measured in the experimental population 

over all values of !. 

3) Sufficient knowledge and data about Π and Π∗!are available to permit 

construction of the two models ! and !’, the two DAGs ! and !∗, the shared 

causal graph !’, and the selection diagram ! that is induced on !’. 

4) The two models ! and !’, and the two DAGs ! and !∗ underlying the selection 

diagram !, are consistent with the measured joint distributions ! !,!, !  and 

!∗(!,!, !) respectively. 

5) ! and !∗ are complete, i.e. there are no unmeasured common causes of any 

variable in ! that are not encoded in the graphs. 

6) The two populations only differ in their age distribution ! ! !or, as B&P put it, 

in the underlying mechanisms that determine the age distribution, such as 

differences in a selection mechanism by which agents at different age levels are 

differentially drawn to Π and Π∗. This implies that all functions in ! and 

structural parameters figuring in those functions that bear on the causal effect of 

interest are the same in both populations, including that !-specific effects of ! 

on !!are invariant between populations. 

 These are strong assumptions. To name just a few standard concerns: 1) is highly 

controversial among econometricians and statisticians dealing with real-world cases that 

pose the non-trivial problem of inferring probability distributions from finite frequency 

data.8 2) is highly controversial, too, as even large-sample RCTs do not 

straightforwardly permit inference of strata-specific causal effects. To obtain unbiased 

estimates of such effects, multiple trials, potentially along many finely partitioned 

strata, might need to be conducted. This concern is multiplied by the number of 

potential moderating and non-linearly mediating variables involved in governing a 

causal effect of interest, and is even further aggravated if such variables interact with 

one another. 5), too, poses a formidable epistemic challenge that is not recognizably 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 For an overview, consider the discussion at https://statmodeling.stat.columbia.edu/2015/12/05/28262/ 
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easier to overcome than the challenges raised by standard unconfoundedness and 

ignorability assumptions involved in statistical estimation of causal effects from 

observational data (see Deaton and Cartwright 2018). 

 In what follows, I do not take further issue with these concerns. I will focus instead 

on assumptions 3) and 6). These assumptions raise issues that are epistemically prior to 

the challenges posed by 1), 2), and 5), and are indeed prior to the construction of any 

selection diagram, which is needed before B&P’s strategy can be applied to any real-

world problem of extrapolation. 

 Assumptions 3) and 6) can be discussed in one fell swoop. The only causally 

relevant difference between populations permitted, and explicitly encoded in the 

selection diagram, is in the distribution of age !. Conversely, this entails that the two 

populations must be identical at the levels of causal structure, functional form 

association, and structural parameters.9 Let me discuss these assumptions in turn. 

 First, even if we assume that the graph ! for the experimental population is correctly 

specified, to construct the above selection diagram we must still ascertain that !∗ does 

not differ from ! at the structural level. To do so, we must learn something about !∗ 
from information pertaining to the target. B&P suggest that !∗ can be learnt by means 

of causal discovery methods (B&P 2012, 700, footnote 7; for details on causal 

discovery methods see Spirtes et al. 2000; Pearl and Verma 2001; see Hyttinen et al. 

2015 for an attempt to integrate causal discovery and do-calculus-based identification 

methods; see Mooji et al. 2018 for a similar proposal). However, particularly in 

predictive extrapolation scenarios considered in Chapters 5 and 6, it seems unlikely that 

this can be successful. When the intervention of interest has not yet been experienced in 

the target, and important parts of the mechanisms of interest have remained ‘dormant’, 

there will often be insufficient variation in variables of interest in the target setting, and 

observational data from the target will hence not contain suitable probabilistic 

independence information required for orienting the edges of a graph by causal 

discovery methods. So without suitable variation, particularly in the intervention 

variable and mediating variables on the pathway from the intervention variable to the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9!To be sure, some differences are still permitted, but only if they apply to nodes that can be screened off 
from the effect of interest by some s-admissible conditioning set. However, this should not be understood 
as a licence to be sloppy about potential causally relevant differences that might turn out to be irrelevant. 
In the pursuit of transparency and rigour, it still seems preferable to settle issues of (potential) causally 
relevant differences first, and then demonstrate that they are immaterial to an extrapolation.!
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outcome, causal discovery methods cannot learn causal graphs in the target as a basis 

for comparing them with the study population graph.  

 Similarly, in cases where the intervention of interest has been experienced in the 

target in the past, or some closely related and well understood exogenous changes in the 

variables on the path from intervention to outcome variable have taken place, there are 

still reasons to think that this could raise concerns about the extrapolator’s bind. A 

definitive proof for this concern lies beyond the scope of this chapter, but the key idea is 

simple. It seems that, especially for complicated graphs, observational data from the 

target that would be sufficient to learn the target graph !∗ as a basis for building a 

selection diagram ! would already be extensive and informative enough to allow 

straightforward identification of the effect of interest in the target (see Hyttinen et al. 

2015 for related concerns). 

 This means that, if extrapolation is to be supported at all, information with bearing 

on questions of similarity and difference in basic causal structure must be imputed from 

elsewhere. As discussed in the previous chapter, this will often mean that we have to 

consult sources of evidence that are typically deemed less reliable than quantitative 

observational data. This can have important ramifications for what degree of empirical 

support graph-based extrapolation can enjoy. With quantitative data we can, under 

somewhat milder assumptions, trust that the mechanisms of interest have faithfully 

written important identifying information into the data that we can obtain, e.g. in the 

form of distinctive probabilistic independence signatures.10 With other sources, this 

might not be the case, and significantly stronger assumptions might be necessary. For 

instance, we can often not readily trust agents’ reports about what causes what, and in 

what way, as there might not be any sufficiently reliable connection between such 

testimony and relevant features of the causal mechanism of interest. This concern is 

aggravated when it is plausible to suspect that individuals reporting on such issues have 

never experienced the mechanism in question being operational, which is particularly 

acute in many areas of EBP where novel interventions are considered for deployment in 

a target. 

 An easy way out of this problem would be to intervene in the target to learn crucial 

parts of the mechanism there but this, of course, threatens to fall prey to the 

extrapolator’s bind. So B&P’s suggestion (2012, 700; footnote 7) to use causal 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 At least when mechanisms have been appropriately ‚active’. 



 222 

discovery methods for learning the target graph underlying a selection diagram (or the 

study population graph, for that matter) is likely to be either unsuccessful or trigger the 

extrapolator’s bind. 

 My second concern is that the selection diagram used by B&P implies that 

populations must be identical at the level of functional form of the structural equations 

and the parameters figuring in these equations. This may seem surprising at first, as the 

graph-based approach is decidedly non-parametric, i.e. results derived with its help 

should hold irrespective of the parametric details about functional form and parameters 

involved in the (potentially unknown) structural equations that best represent how the 

outcomes of interest are produced. So the non-parametric nature of the graph-based 

strategy may suggest that questions about identity in functional form and parameters do 

not matter; they concern parametric details, and any results derived by using the graph-

based strategy should remain untouched by arbitrary variations in such details. 

 However, it is important to specify more clearly what exactly the non-parametric 

nature of the approach entails for the assumptions that must be made about experimental 

and target populations. It is true that using graph-based extrapolation theorems does not 

require full-fledged knowledge of all parametric details of both populations. We do not 

need to know, nor explicitly model, the functional form of the causal relationships that 

hold between any two variables, nor do we need to assume or estimate structural 

parameters or make distributional assumptions, in order to derive transport formulae. A 

wide range of such formulae will be valid non-parametrically, i.e. irrespective of the 

particular parametric details that govern the outcomes of interest in the two populations. 

This is an important advantage of the graph-based strategy, since it is potentially 

considerably less epistemically demanding than other, statistical approaches, which may 

require full-fledged parametric specifications of outcome models (Pearl 2015).  

 However, while it is true that transport formulae are valid non-parametrically, this 

does not mean that no parametric commitments whatsoever are required. For many 

interesting problems of extrapolation, in particular those involving moderating variables 

! of an !-!-effect or non-linear mediating variables such as those discussed in Chapter 

2, we must assume that !-specific effects are invariant between populations. This is also 

true in B&P’s simple example. While we can remain non-committal on the exact 

functional form of the functions F involved in ! or !∗, and the exact values of the 

structural parameters involved in these functions, we need to entertain some parametric 
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assumptions (which currently remain unspoken). These do not pertain to either model ! 

or !∗ in isolation, but they apply to the relation between these models.11 Assuming that 

!-specific effects are invariant between Π and Π∗!will typically mean that we must 

assume that the functional form of structural equations involving ! and the values of 

structural parameters figuring in these functions pertaining to ! are identical between 

populations, whatever they might ultimately turn out to be.12 If this were not the case, 

extrapolative conclusions sanctioned by the approach could be radically off the mark. 

 To illustrate, assume two populations Π and Π∗!with models ! and !∗. Let the non-

parametric version of ! and !∗ be: 

! = !!(!, !,!!)!"

! = !!(!!)"

! = !!(!! , !)"

 Two populations can be identical at this level, but differ at the level of parametric 

details, e.g. when the form of the functions F involved in ! or !∗ or structural 

parameters figuring in these functions differ between them. For instance, !! may differ 

between ! and !∗ as follows: 

! = !!"# ∗ ! ∗ ! + !! 

!∗ = !!"# ∗ ! ∗ ! + !! 

 where 

!!"# ≠ !!"# 

 In such a case, !-specific effects would not be identical, as the structural parameters 

!!"# and !!"# relevant to governing the !-!-effect differ. So even if !, !, and !! are 

identical, marginal effects of !"(!)!on ! will differ between populations. Wrongly 

assuming identity between !!"# and !!"#, in turn, would likely bias our predictions of 

!∗(! !!(!)). For instance, !!"# could be positive and !!"# negative, so adjusting 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 This is, essentially, a representation of the relation R that obtains between experimental and target 
populations.  
12 I say ‘typically’ because it is in principle possible that differences in functional form do not induce 
differences in causal effects for some region of two functions. For instance, two non-monotonic functions 
may differ along some range of their arguments but are identical along another range that is more 
typically encountered in practice. Moreover, we might also envision cases where differences in 
parameters between populations cancel each other out. I do not consider such fortuitous arrangements to 
be practically relevant.  
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!∗(! !"(!)) for the difference in the distribution of ! induced by ! (note that ! 

depends on ! in the structural model) would likely lead to upwards-biased predictions 

(for a positive change in ! induced by !"(!)). 

 More generally, whenever structural parameters or other parametric details differ 

between populations, this requires the addition of selection variables at those nodes into 

which the arrows point whose underlying parametric details differ. The absence of such 

nodes, in turn, indicates the substantive, but unspoken, assumption that populations are 

parametrically identical, although they may still vary arbitrarily as long as they are 

parametrically identical. All edges in a selection diagram without a selection node into 

the child express this assumption. This is especially important for outcome nodes ! into 

which two edges ! and ! point. Without further parametric assumptions, ! and ! may 

always interact, e.g. because ! is a moderator of the !-!-effect or vice versa. In all 

such cases, the particular form of interaction may vary arbitrarily, but it must be 

identical between the two populations if there is no selection variable into !. 

 How, then, can such assumptions about parametric identity be empirically 

supported? The easiest way, of course, is to estimate functional form relationships and 

parameters in both populations and compare them. This, however, is likely to raise 

concerns about the extrapolator’s bind. 

 Those cases where causal effects are transportable at all will need to involve at least 

some nodes that are free from selection variables, and will hence involve arrows that 

require assumptions about parametric identity, most importantly those on directed paths 

from an intervention to an outcome variable. For these relations, we would either need 

to estimate functional form and structural parameters from observational data or obtain 

them from experimental data.13 Both strategies raise concerns about the extrapolator’s 

bind. Let me return to the selection diagram of B&P’s example to concretise: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 I am assuming realistic settings where the functional form of data generating processes is not 
unambiguously handed to us by background theory but must, at least in part, be learnt and disambiguated 
from data, such as when multiple specifications (e.g. linear, quadratic, cubic, etc.) are tested for fit and the 
best fitting specification is chosen as a basis for further investigations. 
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Figure 3: Selection diagram reproduced after B&P (2016, 7350; fig. 5a)) 

 This diagram encodes the assumptions that Π and Π∗!are parametrically identical in 

the ! → !, ! → !, and ! → ! arrows. Since we are extrapolating from an experiment 

on Π in which !"(!) was performed, we can ignore the ! → ! arrow, since this arrow 

(and the corresponding dashed arc) will be deleted in both populations in the mutilated 

graph !! where ! is intervened on: 

    

Figure 4: Mutilated graph G! 

 This still leaves us with two arrows, however:!! → ! and ! → !. The!! → ! effect 

in Π is known. B&P’s transport formula for this example makes use of direct 

transportability. Recall that a causal relation!R is said to be directly transportable from Π 

to Π∗ if !(Π∗) = !(Π). The relation at issue here is ! = !!(! !" ! , !), i.e. the z-

specific causal effect of ! on !. So we are asserting that this conditional causal effect is 

the same in both populations. However, in B&P’s extrapolation this is only true by 

stipulation. Even though the transport formula makes it seem as if the direct 

transportability of !(! !" ! , !) is the result of the extrapolation, it is just identical to 

one of the assumptions underlying the selection diagram !, where it was assumed, by 

stipulating the absence of further selection nodes, that age-specific effects are the same. 

So not much is learned by direct transportability over and above what is already 

assumed when the selection diagram is construed. The crucial question however, which 

is bracketed in B&P’s discussion, is how we can support such assumptions. 
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 One way to support that the !-conditional ! → ! effect is parametrically identical in 

the target is to identify and measure it in the target as well. The same is true for ! → !. 

If this is possible from observational data from Π∗, this falls prey to the extrapolator’s 

bind, because the !-conditional ! → ! effect together with the distribution of ! already 

answers our query about the target. The same, of course, is true if we were to learn the 

!-conditional ! → ! effect in the target by intervening on ! (and potentially !) in Π∗. 
In either case, there would be no need to extrapolate from!Π, as the information 

acquired from the target is sufficient to answer our causal query. 

 So, if the parametric identity assumptions involved in this extrapolation are supposed 

to be supported by means of observational or experimental data from the target, no 

ampliative inference takes place. The knowledge about the target required for 

constructing the selection diagram and supporting the assumptions it encodes already 

contains the answer to our query and extrapolation subsequently fails, even though a 

transport formula that seems to help evade the extrapolator’s bind has been successfully 

derived. 

 The important thing to recognize, then, is that whether or not the extrapolator’s bind 

is evaded by B&P’s approach cannot be decided only on grounds of what measurements 

from the target are required by a transport formula. The construction of the selection 

diagram, too, must be considered when assessing whether the epistemic demands 

involved in using graphs to extrapolate raise concerns about the extrapolator’s bind. 

 This also makes clear again that, to evade the extrapolator’s bind, we may need to 

consider sources of support for the required assumptions other than data from the target. 

For instance, strong background theory attesting that populations are invariant in 

features pertinent to the effects of interest, or other, well-established licencing facts 

about causal invariance that cover both populations, could help us provide such support. 

The important feature that these sources of support have in common is that they 

increase our confidence about parametric identities between populations without 

requiring a detailed look at the causal or probabilistic makeup of the target and 

establishing these identities manually, as it were. While they will perhaps not be strong 

enough to fully warrant assumptions about parametric identity, they may nevertheless 

provide enough support to think that the risks of error in extrapolation are adequately 

addressed, and that our extrapolation is supported by more than hope alone. 
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 At the same time, this is where things will often get difficult in practice. Strong 

enough background theory and licencing facts are often unavailable in social science 

settings (in contrast to epidemiology, for instance), and we are soon back to square one 

where it remains unclear whether the rigour and transparency purportedly offered by the 

graph-based approach are of any help when we experience difficulties in underwriting 

the assumptions that it involves. Again, proponents of the graph-based approach might 

be quick to respond that it is a virtue, not a shortcoming, of their strategy that it informs 

us about just how challenging extrapolation can be and what knowledge and how much 

support is required for it to be successful and sufficiently credible. Indeed, it seems true 

that B&P’s approach makes important progress here as it helps us pinpoint more 

precisely what assumptions are in need of support, and what assumptions we may need 

to bet on if support is hard to come by. In B&P’s words:  

Our analysis is based on the assumption that the learner is in possession 
of sufficient knowledge to determine, at least qualitatively, where two 
domains may differ. In practice, such knowledge may only be partially 
available and, as is the case in every mathematical exercise, the benefit 
of the analysis lies primarily in understanding what knowledge is 
needed for the task to succeed and how sensitive conclusions are to 
knowledge that we do not possess (P&B 2011, 253). 

 But this is precisely the point of contention. While similar remarks are made in 

several of their papers (although this is by far the most explicit example), for the most 

part B&P gloss over epistemic obstacles that are substantial enough to render unclear 

whether their approach can provide us with an epistemically and practically feasible 

strategy for addressing any real-world problems of extrapolation, and whether it can 

outperform other, perhaps more informal, modes of extrapolative reasoning once real 

epistemic constraints are taken into consideration. This is aggravated by the arguments 

provided above, as they suggest that not only is graph-based extrapolation epistemically 

demanding in general, but also, even if we could obtain the necessary “knowledge that 

we do not [yet] possess”, this may often render the very act of extrapolation from a 

study population redundant to our purposes. 

 There is hence a substantial gap between B&P’s suggestions that the problem of 

extrapolation has been solved by their approach (B&P 2016, 7352), if and when 

transport formulae can be derived, and realizing that even in cases where a transport 

formula can be derived, a large number of real-world problems of extrapolation cannot 
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be successfully addressed by their approach since it falls prey to the extrapolator’s bind 

and a supplementary strategy to help evade this problem remains unavailable. 

 

7.4.2 Transport Formulae and the Extrapolator’s Bind 

Let me turn to a second, more involved example used by B&P which helps illustrate 

how concerns about the extrapolator’s bind are further aggravated by the distinction 

between attributive and predictive extrapolation developed in Chapter 5.  

 In several papers, B&P offer a more complicated example which is supposed to 

illustrate how their third, more general extrapolation theorem works, i.e. the divide and 

conquer-type strategy. Here, we begin from a more involved selection diagram, where 

the relation of interest is not immediately transportable. This problem is then divided 

into sub-problems of finding transport formulae for relations other than that of ultimate 

interest. If such formulae exist, they can be combined to yield a transport formula for 

the effect of ultimate interest. The selection diagram used by B&P is as follows: 

 
Figure 5: More complicated selection diagram after B&P (2013, 110; fig.2) 

 As usual, the aim in this example is to answer ! = !∗(! !!"(!)). There are two 

causally relevant differences that present potential obstacles to successful extrapolation, 

! pointing into ! and !’ pointing into !. 

 The derivation of a transport formula for !∗(! !!"(!)) in this case is somewhat 

more involved, and requires application of B&P’s third extrapolation theorem (B&P 
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2014, 590). The final transport formula reached after iterated application of this theorem 

is as follows (see P&B 2011, 254 for the derivation): 

!(! !" ! , !)
!

!∗(! !)
!

!(! !" ! , !)
!

!∗(!) 

 Intuitively, this transport formula seems to evade the extrapolator’s bind. As B&P 

remark, “[t]he main power of this formula is to guide the learning agent in deciding 

what measurements need be taken in each domain. It asserts, for example, that variables 

! and ! need not be measured, that the !-specific causal effects need not be learned in 

the experiment and only the conditional probabilities !∗(! !) and !∗(!) need be 

learned in the target domain.” (P&B  2011, 252)  

 Just like the previous case, this case raises potential problems with supporting 

structural and parametric identity assumptions implied by the selection diagram. Such 

problems are raised, for instance, by the requirement that !-specific effects of ! on ! 

and the !-specific effects of ! on ! are invariant between populations, since otherwise, 

reweighting by !∗(!) would not recover the correct quantity. I will bracket such 

concerns here, however, and instead focus on issues surrounding the quantities that the 

transport formula instructs us to estimate in the target, i.e. !∗(! !) and !∗ ! . 

 My concern is that measuring these quantities in a way that is informative for the 

extrapolation can, again, raise concerns about the extrapolator’s bind. This is best 

illustrated by considering a concrete causal narrative for the selection diagram. As B&P 

do not offer a concretisation of their diagram in terms of a real-world extrapolation, I 

will impute a narrative onto the diagram to make my concerns more vivid.  

 Drawing on the bed net example used in Chapter 6, let us assume that Figure 5 is a 

graph representing the suspected causal mechanism governing the effectiveness of an 

intervention seeking to decrease malaria infection in a population. Due to the slightly 

more complex structure of the graph, I will assume that the intervention of interest on ! 

is a composite intervention consisting of distributing insecticide-treated bed nets and 

antimalarial drugs. There are two directed paths from ! to !. I will assume that the 

unmediated arrow directly from ! to ! governs the effects of antimalarial drugs and that 

the second, mediated path from ! to ! governs the effect of bed nets. The latter path is 

mediated by !, which I understand as properly installed bednets, and !, which I 

understand as mosquitos in the proximity of an agent. I will assume that ! is positively 
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relevant for !, i.e. distributing nets contributes to properly installed nets, and that ! is 

negatively relevant for !, as properly installed nets hinder mosquitos from biting 

humans. !, in turn, is positively relevant for !, malaria infection. Further, I will 

understand ! as the level of education an agent has, ! as their understanding of malaria 

transmission mechanisms, and ! as agents’ wealth. 

 Let me explain the arrows obtaining between these variables, starting with directed 

arrows and moving on to bi-directed arcs. The arrow between ! and ! indicates that 

education plays a role in agents’ decisions to obtain bed nets. The arrow from ! to ! 

indicates that education also plays a role in determining agents’ wealth position. The 

arrow from ! to ! indicates that wealth plays a role, perhaps a moderating one, in 

agents’ propensity to properly install bed nets. For instance, higher wealth could mean 

that agents have weaker incentives to use bed nets for alternative purposes, such as for 

fishing. !, i.e. agents’ understanding of malaria transmission mechanisms, is a common 

cause of ! and !. Here, the path from ! to ! could capture that agents with more 

sophisticated understanding of malaria transmission mechanisms have a higher 

propensity to acquire bed nets. Relatedly, such understanding may also bear on their 

general ability to avoid exposure to mosquitos, thus decreasing their probability of 

infection !.  

 For completeness, let me expand the narrative to capture the four remaining bi-

directed confounding arcs. The arc between ! and ! could, for instance, obtain because 

the wealth level of agents’ parents influences both agents’ education level and their 

wealth, e.g. through support and inheritance. The second arc between ! and ! may 

capture the effect of parents’ education level on their children’s education level, as well 

as on children’s propensity to obtain bed nets (for instance because more educated 

parents tend to perform better at teaching their children about the effectiveness of bed 

nets). Third, the arc between bed nets ! and properly installed nets ! may obtain 

because there is a common cause, agents’ understanding of how bed nets work, that 

both increases their propensity to obtain nets as well as their propensity to properly 

install them once obtained. Finally, the confounding arc between ! and ! may indicate 

agents’ mosquito detection abilities. This ability may both increase their awareness of 

mosquito-induced health threats at a given level of exposure and hence increase their 

propensity to obtain nets, as well as decrease their propensity for infection, e.g. by 

inducing them to proactively kill mosquitos. 



 231 

 In this causal narrative, the selection nodes ! and !’ indicate that populations differ 

in the distribution of education and the distribution of mosquitos in the proximity of 

agents. For instance, agents in the target may be less well educated and live in a setting 

with naturally higher background concentration of mosquitos, thus increasing the 

prevalence of mosquitos in agents’ proximity. 

 Both differences can be relevant obstacles to extrapolation. Nets may be effective in 

dealing with a certain amount of mosquitos, but since malaria infection is an all-or-

nothing affair, a substantially higher background rate of mosquitos may make it 

disproportionally more likely that otherwise inconsequential faults of nets, such as 

imperfect installation or holes created through frequent use, become relevant threats to 

infection. Similarly, significant differences in education, wealth, and their associated 

effects on agents’ propensity to properly install bed nets may significantly modify the 

effect of nets on malaria infection outcomes. 

 With this in mind, let us have a closer look at the quantities that B&P’s transport 

formula instructs us to estimate in the target, i.e. !∗(! !) and !∗ ! . The latter, !∗ ! , 

will not pose problems. It is plausible to assume that wealth exhibits variation between 

agents and has some well-behaved distribution induced by background 

factors.!!∗(! !), however, is more problematic. Recall that ! is mosquitos in the 

proximity of agents. We may assume that this quantity can be readily measured in some 

way, and there is no obstacle to this as !, like !, will likely assume some well-behaved 

distribution induced by background factors that contribute to the presence of mosquitos. 

However, the transport formula demands that ! be measured conditionally on !, and 

this is where the problems begin. Recall that in predictive extrapolation cases, which are 

common in EBP applications, we assume that the intervention of interest has not yet 

been experienced in the target. In our example, this means that there are no bed nets in 

Π∗. So ! will have a distribution with mean and variance zero, and hence !∗ ! ! =
!∗(!). This means that we are taking a measurement in a population where there are no 

installed bed nets (because there have never been any bednets to install) and hence, for 

lack of being installed, bed nets are ineffective at decreasing the number of mosquitos in 

the proximity of agents. This is, hopefully, different for the interventional distribution in 

Π∗, where !!∗ ! ! ≠ !∗ ! ! = !∗(!), so at least some nets would be effective at 

preventing mosquitos from being in the proximity of agents if they were installed. But 

this interventional distribution can of course not be used, since it requires, by definition, 
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an intervention on ! in the target, which would trivially fall prey to the extrapolator’s 

bind. So we are stuck with an observational measure !∗ ! !  that is supposed to 

capture how effective installed bed nets are at decreasing ! in the target, but we are 

measuring it in a population where there have never been any bed nets. This provides a, 

hopefully, wrong answer to our extrapolative query by telling us that the nets are 

entirely ineffective (although the co-intervention of antimalarial drugs may still be 

effective). With this measure figuring in our transport formula, the final quantity 

computed will hence, hopefully wrongly, indicate that the effect of distributing nets in 

the target will be zero, as the pre-post intervention distributions of ! in the target will 

only differ by the effect induced by antimalarial drugs. 

 There is a sense in which this still gives us a correct answer to an extrapolative 

query, but it is an answer that applies to the wrong target population. We are 

extrapolating to a target where installed nets are known to be ineffective at decreasing 

!, indicated by!!∗ ! ! . What is wrong about this extrapolation, however, is that it 

does not apply to the target we are interested in because it misses essential information 

about how effective bed nets would be in the target of actual interest, if there were any 

bed nets there. This information is needed, in the form of an informative observational 

measure of !∗ ! ! , to compute the correct post-intervention distribution of the 

outcome. But achieving this is precluded in predictive extrapolation for lack of relevant 

information in the data from the target, i.e. information pertaining to how effective 

installed bed nets are at decreasing !. 

 Of course, we could impute !∗ ! !  from the experimental population’s 

distribution!! ! !  or !! ! !  as a good approximation. But then we would fail to 

account for the differences induced in ! by upstream differences in ! created by the 

selection node !’. This would hence, at least in part, amount to naïve extrapolation that 

glosses over at least some known causally relevant differences between populations, 

and would come on pain of potentially significant epistemic and practical costs as our 

predictions of the effects of !"(!) in the target are again likely to be off the mark. 

 Let me briefly draw some interim conclusions from this section before I move on to 

some more general remarks on outlook.  

 The above discussion makes two things clear. First, it is difficult to support 

assumptions about identity in parameters, functional form, and basic causal structure 

from observational or experimental data without falling prey to the extrapolator’s bind. 
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This puts a spin on B&P’s remarks that when “the target domain does not share any 

mechanism with its counterpart [...] the only way to achieve transportability is to 

identify R [the causal relation of interest] from scratch in the target population” (B&P 

2014, 588). The above arguments suggest, however, that the very activity of asserting 

whether populations share mechanisms in the first place may itself require or trivially 

permit learning the causal relation or effect of interest from scratch in the target.  

 Moreover, even if such assumptions were somehow independently supported in a 

way that does not require measurement and comparison of parametric features in both 

populations, predictive extrapolation nevertheless poses distinct obstacles for graph-

based extrapolation. When the intervention of interest has not yet been experienced in 

the target, the quantities that transport formulae require to be estimated in the target may 

lead to mistaken conclusions about the target quantity, or, to estimate them ‘correctly’ 

we may need to introduce the intervention of interest in the target, implying once again 

that we fall prey to the extrapolator’s bind. 

 These concerns will, of course, not apply to all extrapolation scenarios. But it seems 

that the conditions that give rise to them are relatively common. All that is needed are 

some, potentially mild, differences between populations, and a case where the 

intervention has so far not been experienced in the target. That being said, it is 

important to recognize that the liability of B&P’s approach to fall prey to the 

extrapolator’s bind is likely to be context-dependent: pertinent data from and knowledge 

about the target are sometimes available, sometimes not; sometimes costly, sometimes 

cheap to obtain; and obtaining them will sometimes fall prey to the extrapolator’s bind, 

but will not at other times. This suggests that more research is needed on the conditions 

under which the graph-based approach can provide genuinely ampliative, and hence 

successful extrapolation. This is beyond the scope of the current chapter, but the 

arguments provided here can serve as a fruitful basis for such investigations by making 

clear that predictive extrapolation, which is common in EBP applications, might often 

not allow graph-based extrapolation to be successful. 

 

7.5 Conclusions 

The graph-based approach to extrapolation is promising: it seems to help make causal 

assumptions explicit; offers a powerful analytic machinery to help answer a wide range 

of causal queries about a target from a combination of experimental and observational 
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data; helps substantially reduce measurement costs in both populations; and provides all 

of this while promising to help achieve successful extrapolation that both manages to 

overcome causally relevant differences between populations and evade the 

extrapolator’s bind. These virtues make it seem like a silver bullet, and, indeed, B&P 

seem to think along these lines when they suggest that the challenges that the problem 

of extrapolation has “[…] been given a complete formal characterization and can thus 

be considered ‘solved’” (B&P 2016, 7352).  

 In this chapter, I have provided two criticisms that cast doubt on this conclusion. The 

first is that the graph-based approach is importantly limited in the kinds of causally 

relevant differences between populations it can represent. Selection diagrams can 

capture some causally relevant differences between populations, but not all, and some 

can only be captured on pain of introducing too many selection variables, and thereby 

likely precluding transportability. At the same time, it is important to recognize that 

transportability is not the last word on whether extrapolation is feasible – it is not 

necessary for successful extrapolation. The presence of endogenous causally relevant 

differences that cannot be plausibly represented by selection diagrams does not imply 

that extrapolation fails, but only that B&P’s approach is not helpful for extrapolation in 

these cases as it will not allow deriving transport formulae. As I have suggested, some 

cases where this happens may still be handled successfully without the graph-based 

approach, however. 

 The second line of criticism I offered argues that the graph-based approach involves 

various substantive, but unspoken, assumptions about causally relevant similarities 

between populations. Any sophisticated strategy for extrapolation, of course, needs to 

make some such assumptions, and potentially many. But there are different ways of 

doing so. Petersen and van der Laan (2014), for instance, distinguish between 

knowledge-based and convenience-based assumptions in DAGs. Currently, it seems that 

B&P treat many of the assumptions required by their approach as convenience-based. 

At worst, they are simply assumed to hold true. At best, unhelpful suggestions to use 

causal discovery methods are made (B&P 2012, 700, footnote 7). As I have argued, 

however, causal discovery methods are unlikely to provide support for the causal 

assumptions needed for graph-based extrapolation. This begins with simple concerns 

about extensive data requirements and ends with more principled concerns specific to 

predictive extrapolation, where probabilistic information that is pertinent to settling 
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issues of similarity and difference in causal structure is simply not available or, if 

available, uninformative. Others have, at least in part, recognized these problems as 

well. Consider Hyttinen et al., who remark that: 

[…] significant parts of the causal literature regard the problem of 
identifying the causal effect given the causal structure as entirely 
separate from the problem of discovering the causal structure in the first 
place. For example, the entire literature on algorithms applying the do-
calculus assumes — generally without further discussion — that the 
causal graph is known [references suppressed]. In the general model 
space that the do-calculus allows for, the causal structure can hardly 
ever be uniquely determined from the passive observational distribution 
or even from the experimental distributions that Bareinboim and Pearl 
(2012) consider. Still, the algorithms rely on being able to check 
complicated features of the causal structure. (2015, 399) 

 It is clear that justified extrapolation requires causal assumptions be knowledge-

based, not convenience-based. Even B&P recognize this need when they assert that: 

“[i]f knowledge about commonalities and disparities is not available, transport across 

domains cannot, of course, be justified” (2016, 7351; footnote). However, an account of 

how to obtain causal knowledge to justify the assumptions required by graph-based 

extrapolation cannot be a mere afterthought, or just hoped to be delivered by some 

supplemental approach. The question of how to turn assumptions from mere 

assumptions into adequately supported ones is far from trivial, but needs to be 

addressed before the graph-based approach can be claimed to be able to solve any real-

world problem of extrapolation.  

 Yet, so far, B&P remain silent on how to achieve this, and specifically about how to 

do so without falling prey to the extrapolator’s bind. It is true that, at face value, 

transport formulae seem to substantially reduce measurement costs, by highlighting that 

not all causally relevant differences matter for successful extrapolation and the 

quantities to be measured in both populations can substantially differ from, and be less 

costly to obtain than, what one might intuitively suspect. However, as I have argued, the 

epistemic requirements of justified graph-based extrapolation do not end with the 

quantities demanded by a transport formula. They also include support for the structural 

and parametric assumptions that are needed for the construction of selection diagrams in 

the first place. So, in many cases, the apparent measurement cost advantages of the 

graph-based approach may be entirely eclipsed by the extensive empirical demands 

involved in supporting its assumptions. As I have argued, these measurements may not 
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only extend significantly beyond what a transport formula demands, but may also 

threaten to undermine successful extrapolation by instructing us to measure 

uninformative quantities, or making our extrapolations redundant by falling prey to the 

extrapolator’s bind.  

 The conclusion to be drawn from this chapter is simple: It is not helpful to leave the 

processes by which we come to construct selection diagrams and estimate the quantities 

demanded by transport formulae shrouded in mystery, nor assume that they have 

somehow been completed. The crucial question for the graph-based strategy is this: is it 

possible to construct selection diagrams and measure informative quantities from the 

target demanded by transport formulae without falling prey to the extrapolator’s bind? 

My answer is: at least not always, and possibly rarely. This puts important constraints 

on the applicability and general success of the graph-based extrapolation strategy, and 

on which kinds of efforts may or may not be undertaken in constructing selection 

diagrams and using transport formulae to compute causal effects. 

 The arguments developed here suggest that there remains a significant theoretical 

and methodological gap between transportability and successful extrapolation. 

Transportability seems neither sufficient nor necessary for successful extrapolation. The 

project of formally deriving licences to transport causal effects does not, and cannot 

clarify how to achieve adequately supported extrapolation, and hence extrapolation that 

promises to be successful. Licences, as in licences to draw action-guiding and 

informative conclusions about real-world targets, are not provided by formal results 

only. They require support, too, which, jointly with a transparent framework and clever 

algorithms telling us which assumptions are in need of support, can help us achieve 

adequately justified extrapolation. On its own, however, the graph-based approach falls 

well short of this aim. These issues are currently unhelpfully glossed over by B&P, and 

relegated to footnotes, but, as I have argued, need to be addressed explicitly. 

 In Chapter 8 I will attempt to make some constructive proposals for how at least 

some of the challenges discussed so far might be addressed, and how graph-based 

extrapolation might still be useful, alongside other approaches, and supplemented by 

theoretical and empirical resources to provide the causal knowledge it requires to 

function. These proposals will leave the conclusions reached in this chapter largely 

untouched, but nevertheless provide some reasons to think that the graph-based 

approach can, under some conditions, usefully complement our efforts to go beyond 
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mere transportability and achieve successful extrapolation, albeit playing a less 

significant role than perhaps hoped by its proponents. 
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CHAPTER 8 

 
 
Extrapolation – Where Next? 
 
8.1 Introduction 

Some authors have suggested that the problem of extrapolation has been ‘solved’ (B&P 

2016, 7352; Marcellesi 2015, 1309), at least in the abstract. As discussed in Chapter 4, 

to underwrite this assessment, Marcellesi invokes the distinction between abstract 

analyses of the conditions under which extrapolation can be successful and concrete 

methods for extrapolation. But while it seems right to say that abstract analyses 

successfully clarify the general conditions under which causal effects can be 

extrapolated in principle, this achievement, by itself, does not imply that successful 

extrapolation is possible in any real-world context. According to my characterization of 

successful extrapolation offered in Chapter 3, real-world extrapolation is a problem that 

cannot be solved in the abstract alone, since it irreducibly involves overcoming the 

epistemic obstacles encountered in supporting whatever assumptions are required by 

any strategy for extrapolation, all while managing to steer clear of the extrapolator’s 

bind. As I have argued throughout the preceding chapters, doing so is often not only 

difficult when empirical demands are extensive, but extrapolation can become a pyrrhic 

endeavour, where all too easily too much is asked in terms of what causal knowledge 

about the target we need to possess and we might sometimes be better off by not 

extrapolating at all, but attempting a different kind of inference to learn what we are 

interested in. In a nutshell, while offering abstract strategies for extrapolation is feasible, 

and sometimes straightforward, successfully extrapolating is often hard, and sometimes 

practically infeasible, even if abstract strategies (and some of their proponents) would 

like to suggest otherwise. 

 This is broadly coherent with more recently espoused views by Cartwright 

(forthcoming), which suggest that, to be successful, real-world extrapolation will often 

need to draw on so-called middle-range theory of the specific phenomena of interest 

and programme theories of the specific interventions of interest. On this view, one 

might also think that attempts to ‘manualize’ guidelines for evidence use and 

extrapolation are unhelpful, partly because too much of what is required to support an 
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extrapolation is tied to concrete extrapolation contexts, e.g. to particular local facts 

about populations and specific theories pertaining to the causal mechanisms that operate 

there, which together help us clarify issues of causally relevant similarities and 

differences. Yet, while I agree with Cartwright that contextual information and theory 

are important, it also seems possible to say at least some more general things about how 

to facilitate successful extrapolation, including on what roles theory can play and what 

to do when it remains unavailable and difficult to produce from scratch. 

 In this chapter, I aim to offer some suggestions to help us make progress on 

important practical epistemic problems that, so far, remain unaddressed by general and 

abstract strategies. I will aim to do so at an intermediate level, which is more specific 

than abstract strategies, but also more general than appeals to the importance of 

(potentially local) theory, which might not always be available. Perhaps unsurprisingly, 

the result of this discussion will not be a full-fledged alternative abstract strategy for 

extrapolation, nor a bottom-up empirical strategy that promises to evade the 

extrapolator’s bind, but rather a series of suggestions for how to tackle some of the 

problems I have discussed so far. 

 Section 2 discusses different theoretical and empirical resources that could help 

underwrite extrapolative inference, and how they can interact in doing so. Section 3 

formulates several substantive desiderata for attractive (future) strategies for 

extrapolation. Here, I also comment on two general issues that this thesis has neglected 

so far. First, I make some suggestions for how reasoning about uncertainty and 

confidence in extrapolation could be improved by drawing on two existing frameworks 

developed in the philosophical literature. Second, I expand on several general 

suggestions for how EBP institutions could improve their methodological guidelines, 

specifically taking into account how diverse kinds of evidence might work together in 

supporting an extrapolation, as well as how different strategies for extrapolation 

perform under various conditions. Section 4 summarizes how this chapter complements 

the contributions made in previous chapters. 

 

8.2 The Extrapolator’s Bind Revisited: Theory and Empirical Methods 

The extrapolator’s bind makes clear that successful extrapolation is not achieved by 

merely elaborating the abstract conditions under which a causal effect can be correctly 

predicted in the target in principle, or blindly following the epistemic demands imposed 
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by such conditions and supporting them by any available or feasibly producible 

background knowledge and supplementary evidence. The bind places further constraints 

on the success of extrapolative inference by demanding that the experimental result 

does not become (almost) irrelevant to our conclusion. If a significant part of an 

extrapolative inference is driven by a host of substantive assumptions, and the 

credibility of the conclusion hinges mostly on whether supplementary evidence and 

background knowledge for these assumptions can carry the required justificatory 

burden, then extrapolation becomes less and less successful the more one tries to justify 

it. 

 With this general insight in place, we can phrase the demands implied by the 

extrapolator’s bind in a positive way. Successful extrapolation should be ampliative 

with respect to the supplementary evidence and background knowledge it requires. The 

extrapolative conclusion must extend beyond, preferably significantly, what could be 

inferred based on this supplementary material alone. This desideratum ensures that the 

experimental result remains relevant to our conclusion and that a key requirement for 

successful extrapolation is indeed satisfied. 

 How can this be achieved in practice? As outlined in Chapter 3, there are two 

distinct elements involved in supporting the empirical assumptions P required by 

strategies for extrapolation: supplementary empirical evidence S and background 

knowledge K. It is important to note that the distinction between these is not always 

precise, as K can include both theoretical and empirical resources, and ranging from 

general in scope to highly specific, including pertinent local facts about, say, a 

particular feature of a causal mechanisms believed to govern an outcome of interest. 

Nevertheless, a useful distinction could be to say that background knowledge K 

prevalently encompasses existing resources, theoretical or empirical, which are 

pertinent to clarifying the validity of the assumptions required (by a strategy) for 

extrapolation; whereas supplementary empirical evidence S is typically not yet readily 

available before an extrapolation, and will need to be produced (including from pre-

existing data) in the context of a specific extrapolation. 

 S and K can importantly interact, such as when background theory suggests a broad 

scaffolding covering both populations (e.g. by specifying important parts of a causal 

mechanism that is believed to be shared between them) and additional empirical 

evidence can fill in some remaining blanks (e.g. by clarifying the values of parameters 
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or the functional form of specific causal relationships). Yet, while the two will often be 

importantly intertwined in practice, it is still useful to keep them distinct, as, at least in 

principle, they can fully substitute one another. An extrapolation that proceeds in the 

absence of any prior theoretical or empirical resources will need to be supported by 

empirical evidence yet to be produced. Likewise, a rich theoretical background, such as 

strong theory asserting that experimental and target populations are sufficiently causally 

similar, full stop, may sometimes allow validating crucial extrapolation assumptions 

without acquiring much or any additional empirical evidence. Going forward, it hence 

seems useful to discuss these resources separately: we can place important constraints 

on what role background knowledge K can play and when it needs to be complemented 

by supplementary evidence. Likewise, recognizing that extrapolation will often need to 

rely on supplementary evidence S raises special questions about what evidence to 

produce, how to produce it, and what this implies for how effectiveness studies should 

be conducted. Let me address these issues in turn. 

 

8.2.1 Background Knowledge and Theory 

K so far has been largely a placeholder for a variety of theoretical and empirical 

resources1 that might be helpful in supporting extrapolation. These include, but are not 

limited to, ‘high theory’ or general causal principles, ‘middle-range theory’, local 

licencing facts, and their interplay. ‘High theory’ or general causal principles, for 

instance, could be such things as the ‘law of demand’, where economists often (and 

often plausibly) assume that demand for a good decreases in its price (other things being 

equal), and that this holds generally across contexts. Middle-range theory, by contrast, 

is typically characterized as a type of (causal) theory that is more local in range and 

attempts to unify and explain a relatively small and specific range of phenomena (see 

Merton 1968[1949]), such as the consumption and saving behaviours of households of 

the rural poor; how a specific social norm governs the behaviours of individuals and 

when it does not (see e.g. Bicchieri et al. 2014); how and when economic agents are 

susceptible to ‘loss aversion’ (Kahneman and Tversky 1979; Gill et al. 2012; Gal et al. 

2018), etc. Finally, local licencing facts are relatively immediately observable features 

of individuals or populations that can reliably indicate the presence or absence of certain 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!It might also draw on practical resources, such as experience in implementing a certain kind of 
intervention and observing its effectiveness under different conditions. 
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causal features. For instance, in the spirit of process tracing, and following similar 

suggestions by Strevens (2007), there can be cases where overt observable features of 

individuals, units, or objects, such as the sociodemographic characteristics of a person, 

the species-membership of an animal, or the colour of a fruit, can afford important 

explanatory and predictive purchase on their behaviours. This works whenever the 

features are either closely and robustly correlated or are themselves causally produced, 

and preferably uniquely so, by a specific causal mechanism. If this is the case, then the 

presence of the feature of interest can be used as an inferential shortcut to help clarify 

issues of mechanistic similarity or difference. Such local facts can be helpful for 

extrapolation not just on their own but also in concert with theory, e.g. when they can be 

plugged into, as it were, available middle-range theory to make inferences about 

broader causal characteristics of a target. Here, rather than having to draw on ‘thick’ 

causal knowledge, i.e. knowledge specifically produced to clarify whether, say, ! plays 

a role in producing an !-!-effect, we can draw on ‘thin’ causal knowledge: a licencing 

fact!!!is observed and background theory simply tells us that ! plays a role in an !-!-

effect whenever ! is the case. 

 As an example, consider a case invoked by Cartwright and Hardie (2012) to illustrate 

some of the pitfalls to be expected in extrapolation. The case concerns an intervention 

(TINP) aimed at improving nutritional health in children. The intervention was first 

successfully tested in the Tamil Nadu province of India and later unsuccessfully 

exported to a novel context in Bangladesh (BINP). The reason invoked for the failure in 

Bangladesh was, in part, that, unlike in India, mothers in Bangladesh were often not in 

charge of procuring food and administering it to children. Rather, mothers-in-law often 

assumed this role. While the intervention in Bangladesh was still effective in increasing 

mothers’ understanding of what promotes children’s nutritional health, the different 

causal roles played by mothers in Bangladesh precluded the intervention from being 

effective there, as the knowledge and resources provided by the programme could not 

adequately translate into meaningful effects on children’s nutritional health (White 

2009). 

 Drawing on this and other, related cases, Cartwright and Hardie (2012) suggest that 

extrapolation can be greatly facilitated by two strategies, called horizontal and vertical 

search. These strategies are intimately tied to Cartwright’s effectiveness argument, 

which demands that the causal principles governing the production of the outcome of 
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interest involve the intervention variable in both populations, as well as that the support 

factors necessary for the intervention to make a contribution to the outcome are 

distributed in the right way in the target. Horizontal search then means looking ‘left and 

right’ of the intervention variable to see what the necessary support factors are and 

whether they are instantiated in the target. Vertical search means investigating whether 

one has chosen the right level of abstraction to formulate the causal principle believed 

to govern the production of the outcome to then tell whether the intervention variable 

does indeed play the same causal role in both populations.  

 In the Tamil Nadu/Bangladesh case, the suggestion would be that vertical search 

could have helped formulate an adequately specified middle-range theory, which, 

complemented by local facts about both populations, might have allowed decision-

makers to predict the failure of the intervention in Bangladesh or could have helped 

ensure its effectiveness by providing reasons to modify the intervention so as to target 

relevant agents, i.e. mothers-in-law instead of mothers. Specifically, a simplistic 

candidate for a middle-range theory here could say that distributing supplementary 

foods and nutritional health counselling to ‘those who are in charge of distributing food 

to children’ can be effective in increasing children’s nutritional health, possibly 

conditional on a host of further background conditions. Together with local facts about 

which individuals in each population play the relevant social roles posited by the theory, 

the middle-range theory would have permitted successful prediction of causal effects, as 

well as perhaps successful intervention in Bangladesh. 

 Various further, and more detailed, examples for how middle-range theory, in 

interplay with local facts and previous expertise in implementing interventions, can 

greatly facilitate prediction and intervention can be found in the realist evaluation 

literature (e.g. Pawson and Tilley 1997; 2001; Astbury and Leeuw 2010; Pawson 2013). 

Here, there has traditionally been extensive emphasis on the role of theory, and, 

accordingly, effectiveness evaluation is supposed to begin with an explicit theory of 

how an intervention is envisioned to be effective (often called a ‘programme theory’, 

‘theory of change’, or ‘logic model’), proceeds to implementing the intervention, and 

ends with making suitable revisions to the theory, if needed, in light of the experiences 

made. This process, over time, is supposed to facilitate the development and refinement 

of middle-range theories of the phenomena targeted by policy interventions. 
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 I agree with realist evaluators and Cartwright on the importance of theoretical 

resources for extrapolation. I also support their calls for incentivizing the production of 

middle-range theory, as well as for explicit and judicious theorizing, e.g. piecing 

available theories and local facts together, refining existing theory, and developing new 

theory tailored to specific use-cases. 

 Yet, while such calls are important, it is also crucial to think carefully about what we 

should do in cases where suitable theory is unavailable and difficult to produce. One 

concern to motivate this is to consider that developing middle-range theory often 

requires establishing empirically what the success of interventions eventually hinges on. 

So, very often, trial and error will be needed before the required theory becomes 

available. What is more, the timescales involved in how social mechanisms undergo 

structural change, as well as in trends determining what kinds of interventions are being 

studied in EBP, will put a natural upper bound on how developed middle-range theory 

can get. A sophisticated middle-range theory might take years to develop, and by the 

time it is available, fashions in EBP pertaining to what interventions are studied might 

have changed, and so might institutional and social backgrounds that importantly bear 

on agents’ response to interventions. Promoting the development and use of middle-

range theory is important, but hoping that this alone can help improve the practice of 

extrapolation seems too optimistic. What is equally needed are rough-and-ready 

empirical strategies that can be applied right here, right now, and that do not depend on 

the existence of theory that might be unavailable, and even if feasibly producible, might 

not be ready in time to advance our extrapolation efforts. 

 In what follows, I will highlight some empirical strategies which, based on the 

arguments developed in previous chapters, might be promising candidates for 

substantiating extrapolation assumptions in the absence of theory, while also providing 

resources to build such theory, and complementing it with important empirical 

information whenever available. 

 

8.2.2 Empirical Strategies 

How can we empirically learn about causally relevant similarities and differences 

between populations in a way that is practically feasible, efficient, and does not raise 

concerns about the extrapolator’s bind? And how can we use such information to 

support crucial assumptions about causally relevant similarities?  
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 In Chapter 2, I distinguished between different levels at which similarities and 

differences can obtain, i.e. variable distributions, structural parameters and functional 

form, and basic causal structure. It would seem interesting to organize the discussion of 

empirical methods around these levels. Unfortunately, this is difficult as empirical 

methods are faced with considerable ambiguities when investigating whether a 

difference in effects can be attributed to differences in some suspected cause. The 

problem here is that observing a difference in effects and associating it with a particular 

variable does not always tell us what the nature of the causally relevant difference with 

respect to that variable is, i.e. whether it is a difference in the distribution of the variable 

that matters, in whether and how this variable is involved in a causal mechanism, or 

whether it merely correlates with other such differences. Hence, with some exceptions, 

the methods to be highlighted here can rarely uniquely attribute causally relevant 

differences and similarities to one of the three levels identified in Chapter 2, and 

substantial uncertainty about what exactly is learned will often remain. With this caveat 

in mind, let me proceed to elaborate on some methods for detecting causally relevant 

differences, which can help inform us about where similarities might be important for 

underwriting extrapolation, as well as help support assumptions about such similarities. 

 The first step in clarifying whether populations are relevantly causally similar is to 

learn what things, beside the intervention itself, are involved in the production of an 

effect in the first place. Specifically, we need to identify relevant moderating and 

mediating variables, as well as support factors (Chapter 4, Appendix 1), that have the 

capacity to modify causal effects between populations (for terminological efficiency, I 

will simply call these variables modifying variables from now on). Identifying such 

variables helps clarify which variables might need to be involved in the same or similar 

ways in the causal mechanisms governing the outcomes of interest in both populations, 

i.e. with respect to functional form, structural parameters, and basic causal structure. As 

anticipated above, background theory can play important roles in suggesting which 

variables to look at. Yet, in the absence of theory, other means will be needed for 

discovery. Principally, there is a whole range of candidates here, including regression-

based analyses performed on large-n observational datasets, collating data from multiple 

study populations (Allcott 2015; Dehejia et al. 2015), subgroup-analyses, factorial 

experiments, machine-learning-based approaches, qualitative comparative analysis (see 

e.g. Beach and Pedersen 2013; 2016; 2019), etc. Performing such investigations will 

usually not immediately yield a comprehensive understanding of all variables involved 
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in the production of an effect, but it is important to recognize that such an 

understanding, if it is ever to be developed, will not be achieved in one fell swoop, but 

in a piecemeal fashion. Let me expand on some specific methods in turn. 

 First, subgroup analyses can be useful for identifying significant differences in 

causal effects between subgroups of a population. These analyses typically proceed by 

splitting (post-intervention) the experimental population into subgroups according to 

observed characteristics, such as age, sex, and other potentially relevant features, and 

then estimating ATEs conditional on these subgroup characteristics. This can be a first, 

tentative step in learning what could be important modifying variables among the full 

gamut of candidates. It is tentative because it is well understood that subgroup analyses 

should be interpreted with caution, as they are liable to raise several methodological 

concerns. First, there are concerns about bias, e.g. where we might wrongly attribute 

causal significance to a variable that is merely correlated with a modifying variable, or 

the true causal significance of a modifying variable is masked by counteracting effects. 

Further, there are concerns about insufficient statistical power, where truly significant 

subgroup differences can remain undetected due to insufficient sample sizes. Finally, if 

subgroup analyses are conducted along a large range of candidate variables there are 

acute concerns about multiple hypothesis testing, which increases the likelihood of 

spuriously significant results. These concerns are acknowledged by many 

methodologists (see Varadhan and Seeger 2013; Fink et al. 2014) and it is often 

recommended that even highly significant subgroup differences should be taken only as 

reasons to form and pursue hypotheses about potentially important modifying variables, 

but not as sufficient by themselves for warranting definitive conclusions about what 

variables causally induce the estimated subgroup differences. Even so, subgroup 

analyses can be an easy and cheap-to-implement method to acquire information for 

subsequent investigations, as they can be performed on baseline data that can often be 

straightforwardly collected when conducting an RCT. 

 Another method, which that can evade several of the concerns leveled against 

subgroup analyses, is provided by factorial experiments (see Imai et al. 2011; 2013; see 

also Pearl 2011; 2014). In contrast to RCTs, factorial experiments test several 

interventions at once. For instance, if it is suspected that a variable !" 0; 1  causally 

interacts with a treatment variable !" 0; 1 , factorial experiments allow us to estimate a 

parameter capturing this interaction in an unbiased way by randomly splitting the 
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experimental population into four groups and then assigning the following four 

treatment regimes to them: [! = 1,! = 1]; [! = 1,! = 0]; [X= 0,! = 1]; and 

[! = 0,! = 0]. To the extent that assignment to groups and other methodological 

precautions successfully establish exogeneity of ! and !, this allows unbiased 

estimation of several parameters at once, including the difference in the ATEs of ! on ! 

conditional on ! = 1 and ! = 0 respectively, and provides an unbiased assessment of 

how differences in ! causally induce differences in the magnitude of the X-Y-effect. 

Relatedly, factorial experiments can also aid in identifying mediating variables. For 

instance, Weinberger (2019) suggests that causal mediation analyses are helpful for 

separately identifying mediated and unmediated effects (also called direct and indirect 

effects; see e.g. Imai et al. 2011; 2013; see also Pearl 2011; 2014). Such analyses can be 

helpful for shedding light on what variables mediate the effects of interest in both 

populations, and whether important mediating pathways present in an experimental 

population might be disrupted in the target (determined by observational rather than 

experimental mediation analyses). 

 Of course, factorial experiments (as well as mediation analyses) are not without 

methodological problems either. First, they are clearly limited in scope. For one, there 

are features that cannot be easily manipulated by an investigator; think of psychological 

characteristics. These features present obstacles to unbiased identification of interaction 

effects, as inability to exogenously assign values to variables poses threats to the main 

identification assumption needed by the approach. Second, much like subgroup 

analyses, factorial trials may require significant expansions of sample size to ensure 

estimation of effects with the same precision as in a simple RCT that only measures the 

ATE of an intervention on ! (Montgomery et al. 2003; Brittain and Wittes 1989). This 

suggests that factorial experiments are limited to settings where large populations are 

relatively easy to recruit and where there are only few important modifying variables to 

begin with. This puts constraints on the usefulness of factorial trials, as specifically the 

latter requirement is burdensome and highly restrictive. Here, it seems that without 

background knowledge that helps narrow down the list of candidate variables to 

investigate, one would need the very information that the factorial trial is supposed to 

produce prior to designing it. Yet, at least in some cases, it seems that atheoretical 

guidance for variable selection can be provided by subgroup analyses, suggesting that 

these analyses may be used fruitfully together with factorial trials, where the first can 

supply specific hypotheses and thereby constrain the menu of variables to look at, and 
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the second is used to further pursue such hypotheses in a way that is less prone to 

concerns about bias, causal misattribution, etc. 

 A further approach for identifying modifying variables comes from the machine 

learning literature, where algorithms such as CHAID have been proposed for the 

purpose of automated detection of interaction effects (Kass 1980). More recent 

proposals to use machine-learning methods can be found in the econometrics literature, 

where authors such as Athey and Imbens (2016; 2017) and Wager and Athey (2018) 

have proposed methods based on classification and regression tree (CART) algorithms. 

These algorithms use a brute-force approach to identify significant differences in 

CATEs in a (large-n) observational training sample, and then validate the learnt model 

by predicting outcomes of units from another sample partition that has not been used for 

model construction. According to Athey and Imbens (2016), this method can help 

identify modifying variables while evading several of the concerns about statistical 

power and multiple hypothesis testing that affect subgroup analyses. Like subgroup 

analyses, this method can be used on past trial data, at least to the extent that 

measurements of candidate variables have been obtained. At the same time, like with 

subgroup analyses, it is important to keep in mind that the interactions identified by 

machine learning approaches are statistical interactions, rather than causal ones. As 

such, they might often leave unclear whether one has identified a true modifying 

variable of an effect or rather a variable that is merely closely correlated with a true 

modifying variable. 

 Finally, there are also a range of qualitative methods and resources that might be 

useful for detecting potentially important modifying variables and other significant 

causal features that an extrapolation might need to consider. At least some of these 

resources could be useful even in the absence of strong background theory, including 

performing detailed case studies (see e.g. Crasnow 2011); considering expert 

knowledge; using anthropological and sociological methods such as interview-based 

methods and participatory observation emphasized in Chapters 5 and 6; and using 

qualitative comparative analysis (see e.g. Beach and Pedersen 2019). I will not expand 

on these methods in more detail here, as this might require a more extensive discussion 

of how they can proceed effectively in the absence of guiding theory. For now, it is 

enough to note that it might be promising to explore how such methods could 

complement the quantitative methods mentioned here.  
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 The methods outlined above suggest that there are at least some promising bottom-up 

strategies that, even in the absence of strong background theory, might help generate 

evidence about modifying variables that could be useful for extrapolation. Of course, 

none of these methods provides a definitive, standalone solution for identifying 

modifying variables. Moreover, and perhaps more importantly, at least none of the 

quantitative methods is applicable if data on potential modifying variables are not 

available from both populations. This is already an acute concern at the stage of 

considering data availability from the experimental population, as in many cases 

effectiveness studies do not involve deliberate and extensive collection of data on 

potentially relevant modifying variables beyond a few generic baseline measurements. 

This suggests that widely circulated methodological guidelines specifying criteria for 

good evidence (e.g. as supplied by the What Works Clearinghouse, JPAL, the Campbell 

Collaboration, and others) should perhaps be extended to specifically encourage 

researchers involved in primary effectiveness studies to produce more extensive 

datasets that can be used for supplementary analyses. Any study where such data are not 

collected would seem to be a missed opportunity.  

 At the same time, it is important to keep in mind that even if such advice were 

widely followed, it will often only mean that suitable data are available from an 

experimental population, but not that corresponding data will also be available from the 

target. In line with the arguments developed in Chapters 6 and 7, data from the target 

are needed as well, however, to tell, for instance, whether a modifying variable in a 

study population also modifies the effects of interest in the target, and in the same way. 

At least in cases where mechanisms in the target are not ‘dormant’, and strong 

background knowledge and theory are unavailable, observational data from the target 

on potential modifying variables could be important for clarifying issues of causally 

relevant similarity and difference. But to play this role, such data must also be available. 

 Finally, it is important to stress again that what the methods outlined above have in 

common is that they have trouble disambiguating different forms of causally relevant 

differences, i.e. at the levels of variable distributions, parameters and functional form, 

and basic causal structure. The latter kinds of differences are particularly important, as it 

seems that differences at this level are more fundamental than others. Adjusting for 

differences in the distribution of a moderating variable is only useful if no differences at 

the level of basic causal structure obtain. Conversely, however, learning that two 
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populations differ importantly at this basic level would obviate the need to try and 

accommodate any differences at other levels. In light of this, it seems important to 

consider whether further empirical investigations can help clarify issues of similarity at 

this basic level first, i.e. before any such attempts at higher levels are made. Let me 

outline a tentative proposal for an empirical strategy that could help achieve this. 

 

8.2.3 Comparing Causal Structures 

Causal discovery methods (Spirtes et al. 2000; see also Eberhardt 2007; 2017 for an 

overview; see Chickering 2002 for an alternative approach), briefly discussed in 

Chapter 7, are methods that help us learn causal models from observational data by 

testing which potential causal models are consistent with the probabilistic 

independencies realized in the data. In a nutshell, this proceeds by drawing on the 

Causal Minimality, Causal Markov, and Faithfulness conditions, which are used to list 

all (Causal Markov) and only (Faithfulness) those probabilistic independence 

constraints implied by a causal graph. This list can then be compared with the 

probabilistic independence features exhibited by a dataset to disambiguate different 

possible models and constrain model selection to a smaller class of remaining models, 

called Markov equivalence class. 

 While these methods are largely used for discovering causal structures from data, my 

suggestion here is that they might also be useful for comparing causal structures 

between populations. Roughly, the idea is to use datasets from both populations to infer 

two sets of Markov equivalent models ! and !∗ (boldface indicates sets), one for each 

population, and then compare these model sets. If we were to find, say, that there is a 

significant overlap between ! and !∗, this could provide support for the assumption 

that two populations are relevantly similar at the level of basic causal structure. 

 A broadly related proposal, though not aimed at extrapolation, has recently been 

made by Eva et al. (forthcoming), who propose a series of metrics to express the 

similarity between two causal graphs. One of these metrics concerns evidential 

similarity, i.e. similarities in the probabilistic independence implications derived from 

two graphs ! and !∗. Eva et al. proceed to develop this and other proposals in some 

detail, which I will not expand on here. For the present purposes it is enough to note 

that, based on the idea of evidential similarity, we might develop an additional 
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instrument that could help us learn, potentially in an atheoretic way, whether two 

populations might be similar at the level of basic causal structure. Let me expand. 

 Assume a set of measured variables ! and two measured probability distributions 

over !, !(!) and !∗(!), for the experimental and target population respectively. Based 

on this, we can list two sets ! and !∗ of probabilistic independence features that are 

exhibited by the data from each population. We can then use the identification 

conditions put forward by Spirtes et al. (2000) (or alternative conditions) to learn two 

sets of Markov equivalent causal models ! and !∗. Rather than directly comparing ! 

and !∗, the benefit of taking the detour through causal models is that the models can be 

inspected visually in a relatively straightforward fashion, which allows investigators to 

disambiguate them beyond what is afforded by the data, e.g. with the help of existing 

pre-theoretical intuition as well as, if available, background knowledge and theory. This 

can be helpful to further narrow down the sets ! and !∗ before any comparisons are 

made. 

 With ! and !∗ in place, we can then perform comparisons between them. For 

instance, we can express the overlap ! between ! and !∗ as the proportion of their 

overlapping and non-overlapping parts. Formally, 

!(!, !∗) = ! ∩!∗ ( ! ∪!∗ − ! ∩!∗ ). 

 If ! is larger, other things being equal, this might make us more confident that the 

two populations are similar at the level of causal structure.  

 What is more, similarity inferences do not always need to be undertaken concerning 

the full graphs contained in ! and !∗. We may additionally perform comparisons at 

the level of subgraphs included in the graphs in ! and !∗. Despite substantial 

uncertainties at the level of ! and !∗, we might learn, for instance, that all graphs in ! 

and !∗ share a certain subset of features. For instance, if all graphs in ! and !∗ 

exhibit a directed arrow ! →!, this can significantly increase our confidence that the 

mechanisms in both populations share this causal feature. Comparisons of the overall 

similarity of ! and !∗could then proceed in a bottom-up fashion, where our 

confidence in the similarity of overall causal structure can be expressed in terms of 

aggregating our confidence in the similarity of partial causal structures. Here, parts of 

the potentially shared overall graph structure can enjoy more confidence, with certainty 

of similarity and dissimilarity being the upper limit, and various degrees of uncertainty 
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could be expressed, including graphically, in a ‘similarity-confidence map’ over a union 

of the graph skeletons from ! and !∗. 

 Of course, in practice, substantial uncertainty will often remain, especially when ! 

and !∗ have large cardinality. This is because any of the Markov equivalent models in 

! and !∗ could be the true model for the respective population. Even when ! and !∗ 

contain exactly the same models this would still be far from guaranteeing that 

populations are identical with respect to their mechanisms. It would merely make it 

possible that they are. Of course, as ! and !∗ become (significantly) smaller, 

potentially aided by ruling out models with the help of background knowledge and 

theory, we might approach cases where it becomes at least somewhat likely that 

populations are similar or identical. Further, equipped with ! and !∗, additional 

investigations can be performed, including collecting larger datasets, particularly time-

series data, or performing additional interventions that can help disambiguate further 

(potentially decisively) between the remaining models (see Tong and Koller 2001; 

Murphy 2001; Eberhardt 2012; Hyttinen et al. 2013). All of this, of course, will need to 

proceed with a view towards evading the extrapolator’s bind.2 

 It is important to note that, like the methods outlined earlier, the applicability of the 

method suggested here will greatly depend on the availability of large observational 

datasets, including perhaps time-series data, as well as, for intervention-based 

disambiguation efforts, the ability to intervene in both populations.  

 What is more, as elaborated in Chapters 5, 6 and 7, observation-based approaches to 

causal discovery will require that the mechanisms in both populations can be observed 

‘in action’. ‘Dormant’ mechanisms cannot write characteristic signatures of their 

features, including probabilistic independencies, into data that we might wish to use. 

 Despite the uncertainties that will often remain in practice, the method for causal 

structure comparison suggested here could play an important role to support basic 

assumptions involved in real-world extrapolation. Positively, if ! and !∗ enjoy 

significant overlap, and there is a set of subgraphs shared by all graphs in ! and !∗ (or 

an important subset), then this can increase our confidence in the similarity of 

populations at the level of causal structure and, in the limit, provide strong support for 

the similarity or identity of partial causal structures. Negatively, if two populations 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 See e.g. Kocaoglu et al. (2017) for a method that allows formulating cost-constraints on potential 
interventions which could help automated search for optimal interventions avoid the extrapolator’s bind.!
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share few, if any, graphs and subgraphs, this can also be highly informative, since it will 

often obviate the need to address further questions about similarity and difference at 

other levels of parameters, functional form, and variable distributions. If suitable data 

are available (or can be acquired at reasonable cost), it hence seems that causal 

discovery-based analyses can be an important first test to apply before further efforts to 

underwrite extrapolative inference are made. The details on the method suggested here, 

including test-cases, will of course need to be developed more fully before this proposal 

can be taken seriously. For now, the sketch provided here should merely be taken as a 

suggestion for a potentially interesting avenue for future research. 

 

8.2.4 Putting the Pieces Together: Interactions Between Theory and Evidence 

With the role of different theoretical and empirical resources for underwriting 

extrapolation clarified, it is important to say something about how we can use these 

resources most effectively, specifically with a view towards evading the extrapolator’s 

bind. 

 Empirical methods for learning about heterogeneous causal effects and attributing 

heterogeneity to variables are an important resource. They have the principled ability to 

tell us what happens, causally, in the specific experimental and target populations of 

interest. Such methods hence promise that we do not always have to rely entirely on 

theory that might often be imperfectly informative about such matters and that will 

often leave considerable uncertainty as to whether a novel target is indeed covered by 

the theory. At the same time, various methodological concerns outlined above suggest 

that without prior theoretical guidance as to what variables to consider, on-the-spot 

empirical attempts to investigate issues of similarity and difference are highly limited. 

Concerns about data availability and the extrapolator’s bind only add to these 

limitations. It hence seems unlikely that the methods sketched out above can 

individually, or in any combination, regularly provide sufficient support for 

extrapolation efforts from start to finish by themselves. 

 Good theory can undoubtedly be an important resource for underwriting 

extrapolation, too, but is not always available, and for it to become available it needs to 

be developed, potentially with the aid of some of the empirical methods outlined above. 

What is more, even highly developed middle-range theory will often not be able to get 

us all the way to an envisioned extrapolative conclusion. For instance, it might be able 



 255 

to tell us that microcredit availability can increase consumption of durable goods by 

allowing agents to make lumpy investments and start small businesses, and that prior 

entrepreneurial experience can positively moderate this relationship. But it will, by 

itself, typically be unable to tell us, for instance, whether the marginal effect of 

microcredit availability will be quantitatively similar in a novel population as in those 

studied so far. So while theory, on its own, can be helpful for addressing some 

extrapolative queries (e.g. qualitative ones), it will often fall short of providing the 

support needed for more sophisticated extrapolation attempts, e.g. those involving 

quantitative queries. 

 Likewise, theory will also often be unable to tell us whether a specific causal 

relationship is suitably instantiated in a target, or rather severed. It might be able to tell 

us what happens if this relationship is or is not instantiated, such as when informing us 

that an intervention providing nutritional counselling and supplemental foods cannot be 

effective if it does not target ‘those in charge of distributing food to children’. However, 

theory will often not be able to clarify on its own whether a certain relationship is or is 

not instantiated in a target, e.g. whether specific agents in the target satisfy the 

description of ‘those being in charge of distributing food to children’, so some empirical 

knowledge from the target will still be needed. 

 Hence, in many cases, theory and empirical methods will need to work together in 

underwriting extrapolation. What is more, it also seems that different kinds of empirical 

evidence, e.g. qualitative and quantitative, may fruitfully cooperate in cases where 

neither would be sufficient by itself to infer the envisioned conclusion. As suggested in 

Chapter 6, putting different ingredients together in the right ways can be successful in 

some cases, such as when an intervention-specific middle-range theory of how agents 

interact with bed nets can tell us that distributing nets to agents who experience strong 

incentives to use them for fishing is unlikely to help reduce malaria infection. Whether 

agents in a particular population do have such incentives may then be identified ‘from a 

distance’, such as when it is clear from observation that agents in a specific region 

largely depend on fishing for food and income, or from ‘up close’ when inquiring with 

agents what they would do if they were given bed nets. 

 Yet, there will also be cases where such productive interaction of background theory 

and supplementary empirical evidence is severely inhibited by basic features of the 

problems of extrapolation being targeted. Specifically, the distinction between 
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attributive and predictive extrapolation introduced in Chapter 5 suggests that some 

problems of extrapolation are significantly more difficult to overcome than others. Let 

me briefly revisit, reflect more generally on, and slightly refine this distinction in order 

to extract some general recommendations for how it can help identify problematic cases 

of extrapolation. 

 

8.2.5 When Mechanisms Sleep: Attributive and Predictive Extrapolation Revisited 

In Chapter 5, I have argued that beyond the different kinds of problems of extrapolation 

and extrapolative inference outlined in Chapter 2, there is a further, orthogonal 

distinction between two general kinds of extrapolation, i.e. attributive and predictive. I 

have also clarified that the importance of this distinction lies in the kind of evidence 

typically available for supporting extrapolation in each setting and how informative this 

evidence can be on issues of causally relevant similarity and difference. Specifically, 

while attributive extrapolation allows us to observe the effects of interest and the 

mechanisms governing these effects ‘in action’ in the target, predictive extrapolation 

often does not permit this. This has important ramifications. If a mechanism cannot be 

observed ‘in action’, and has so far remained largely ‘dormant’, this makes it unlikely 

that we can reliably identify features of the causal mechanisms at issue. 

 Here, I want to offer some further refinements on this distinction. Specifically, so far, 

my discussion has treated the distinction as a dichotomy. This was sufficient for the 

arguments developed earlier. However, a broader outlook that is informative for guiding 

real-world extrapolation efforts should be refined to recognize that the distinction is one 

of degree and not of kind.  

 As the discussion in Chapter 5 and 6 suggests, there are cases of predictive 

extrapolation where some information on causal mechanisms can still be obtained from 

observational and other methods. In Chapter 6 I have argued that despite an 

intervention’s effects not having been experienced and observed in the target so far, it 

might still be possible to observe the effects of related past interventions, or other past 

exogenous changes in the variables that figure in the mechanisms that are believed to 

govern the effects of interest. At least sometimes, such observations can give us some 

purchase on questions regarding features of relevant causal mechanisms in the target. 

However, the extent to which this is informative is a matter of degree.  
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 Specifically, when using quantitative observational data pertaining to past 

interventions or exogenous changes in the target, we need to assume that the 

intervention of present interest is not structure-altering and, further, that the past 

intervention or exogenous change is sufficiently similar to the intervention of current 

interest, particularly that their effects are mediated by the same pathways and in the 

same ways. These assumptions will arguably be stronger in some cases than others (not 

all interventions are plausibly structure-altering), and supporting them can sometimes be 

easier than at other times. For instance, learning that a past public health awareness 

campaign has increased agents’ understanding of health issue ! can increase our 

confidence that related, similar aspects of our current efforts to decrease HIV infection 

rates might be similarly effective. By contrast, learning that agents have refrained from 

increasing their investments in durable goods after a lump-sum unconditional cash 

transfer in the past would not seem to justifiably increase our confidence that they will 

also refrain from doing so in response to microfinance products becoming available, 

even if both effects would plausibly transmit through largely the same pathways, 

including household income/endowment and other variables related to agents’ decision-

making pertaining to consumption and saving. What this suggests is that the extent to 

which quantitative observational evidence about past interventions or exogenous 

changes is available, and is indeed informative on our questions about causal 

mechanisms in the target, can be understood as a matter of degree. 

 Similarly, if one considers qualitative evidence produced by methods such as 

interviews and participatory observation, this can be less or more informative for 

answering questions about features of the causal mechanisms in the target depending on 

the extent to which agents have already experienced similar changes in the variables 

believed to be involved in governing the effects of interest, as well as other features that 

matter for the reliability of their self-reports and inferences based on observing their 

behaviours. Again, this suggests that the extent to which qualitative methods can inform 

us about causal mechanisms in the target is a matter of degree. 

 Moreover, at the level of mechanisms, we can say that besides the two extremes of 

‘dormant’ mechanisms, whose important constituent parts have not, so far, expressed 

their causal powers in ways that allow observation to be informative about their 

characteristics, and ‘live’ or ‘awake’ mechanisms, there can be in-between states where, 

say, parts of a mechanism have been ‘dormant’, while others have, perhaps regularly, 
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been sufficiently ‘active’ to allow both quantitative and qualitative observational 

methods to get a handle on their details. 

 Finally, it is also important to recognize that ‘dormant’ mechanisms can not only 

constrain the usefulness of supplementary empirical evidence from the target, but can 

also hamper the usefulness of theory. If mechanisms in a target have so far remained 

‘dormant’, this can make it more difficult to tell whether a background theory indeed 

applies to a specific target. For us to be confident that a theory applies to a novel 

context, we need to have criteria for applicability in place that allow us to determine 

from relatively straightforward observation whether a certain mechanism is instantiated 

in a population, and hence whether our theory will apply there. Yet, when such labelling 

features, as we might call them, are causally produced by a mechanism (as per Strevens 

2007) this suggests that ‘dormant’ mechanisms might make such features invisible to 

us. Pace Strevens, agents are often not like lemons, so we cannot rely too much on the 

idea that labelling features can be observed ‘from a distance’. Moreover, even if 

labelling features do reliably manifest when mechanisms are ‘dormant’, building 

sufficiently sophisticated theory that recognizes such features will often require an 

extensive history of successful and unsuccessful applications over a broad variety of 

settings, as well as suitable refinements being made to the theory itself and its (learned) 

conditions of applicability. So before strong background theory can help us achieve 

successful extrapolation, plenty of unsuccessful extrapolation will often need to take 

place, both in the form of inaccurate extrapolation that (potentially) helps us revise our 

theories, as well as in the form of extrapolation that falls prey to the extrapolator’s bind 

(i.e. learning the effect of interest in the target to see if the target is indeed covered by 

our theory), before the conditions of applicability are suitably refined to allow more 

successful forms of extrapolation in future instances. 

 Going forward, and with a view to practice, it hence seems reasonable to suggest that 

analysts and users of evidence involved in extrapolation should think about the degree 

to which the mechanisms in the target have so far been ‘awake’, and would, ideally, 

permit quantitative and qualitative observational methods to help with settling issues of 

causally relevant similarity and difference. Intuitively, the more ‘awake’ a mechanism 

can be believed to be in the target, the more likely it is that pertinent evidence that bears 

on issues of mechanistic similarity and difference can be obtained. As the HIV 

prevention example from Chapter 6 suggests, a good proxy for how ‘awake’ a 
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mechanism is, is to think about whether agents have prior experience with, and 

understanding of, the sorts of changes that an intervention is supposed to induce.  

 At the most general level, then, the attributive/predictive spectrum can provide us 

with an interesting atheoretical instrument that can 1) help us tell how likely it is that 

suitable information about causal mechanisms can be obtained from a target and 2) 

inform our confidence about whether available theory is likely to reliably speak to 

issues of causally relevant similarity and difference. Most importantly, predictive and 

attributive extrapolation (and gradual variants) can be distinguished before 

endeavouring to make an inference, and can hence allow us to anticipate whether 

specific instances of extrapolation might be considerably more difficult to handle than 

one would hope. The distinction can hence help analysts form more realistic 

expectations as to what is feasible in a concrete context, as well as allocate their efforts 

towards those strategies for learning about similarity and difference that seem most 

promising for the case at hand, or, in the limit, suggest that an altogether different 

approach is needed to learn what they are interested in. 

 

8.2.6 Experimental Design, Sampling, and Overlapping Support 

As the discussion of ‘dormant’ mechanisms suggests, it is important to observe 

mechanisms ‘in action’ in order to be able to infer something about their features. This 

is not only important when thinking about how to learn something about a target; it is 

important for experimental design as well. This is best appreciated in cases where 

heterogeneity in mechanisms manifests not only at the level of populations, but at the 

level of individuals, e.g. where ! is causally relevant for ! in one way for individual ! 
and in a different way for individual !, such as when a microfinance product increases 

household welfare by helping some agents make lumpy household investments (e.g. 

buying an energy-efficient cooking stove) and others (those with suitable opportunities 

and abilities) to start a small business. As argued in Chapter 2, such individual-level 

heterogeneity can apply both within and across domains and can hence be an important 

obstacle to successful extrapolation. In cases where such heterogeneity obtains, the 

likelihood of successful extrapolation can be greatly increased by ensuring that relevant 

variation in mechanisms is already represented in the experimental population, e.g. that 

a study of microfinance effects includes both individuals who would be likely to use 

microfinance loans to make lumpy household investments and those who would use 
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them to start a business. Here, deliberate sampling of individuals (cf. Cook and 

Campbell 1979, 75; Shadish et al. 2002) with both mechanism-types helps capture 

relevant mechanistic heterogeneity already in a trial population, thus allowing us to 

observe both mechanisms ‘in action’ there, and hence making it easier to make 

inferences about novel populations where either of these mechanisms are prevalent or 

where they are distributed in different proportions than in the experiment. 

 Let me expand on some ideas on experimental design and sampling, by first briefly 

reiterating some standard intuitions, before refining them with the help of the theoretical 

resources afforded by interactive covariate-based approaches.  

 A standard intuition, discussed briefly in Chapters 2 and 3, and occasionally 

mentioned but not further elaborated in some EBP methodological guidelines, is that the 

more similar an experimental population is to a target, the more reliable extrapolative 

inference will be (see e.g. Campbell 1986). Call this the similarity thesis. In terms of 

designing experiments, this thesis is sometimes taken to suggest that trial populations 

should be recruited in such a way that they are maximally similar to eventual target 

populations (assuming, of course, that one already knows what these targets are). For 

instance, when one suspects potentially important subgroup differences in a causal 

effect between women and men, and a target population consists of both women and 

men, one should try to recruit both into a trial. Similarly, if one suspects that 

implementers in a trial are significantly more skilled in implementing an intervention 

than those in a potential target, then one should make the trial more representative of 

actual implementation practice by involving implementers that are similarly skilled to 

those one believes would be involved in implementing the intervention when rolled out 

to novel settings. 

 Here, I want to draw on the overlapping support assumption involved in the 

interactive covariate-based approach by Hotz et al. (2005, 247; see also Muller 2015, 5, 

who coined the term) to refine these intuitions. In short, this assumption says that for 

any value of an interactive covariate ! that is suspected to modify the effects of 

interest, there needs to be a non-zero probability for individuals in the experimental 

population to exhibit this value. As suggested in Chapter 6, at least in principle, this can 

be extended to cases where ! is not a moderating or mediating variable that modifies 

an effect, but a proxy variable that, for instance, captures different mechanism-types 

prevalent in a population. Together with further assumptions outlined in Chapter 6, this 
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allows that even if experimental and target populations do not exhibit the same or 

similar distributions of !, we can still reweight CATEs to obtain a correct expectation 

of the effect of interest in the target. 

 The overlapping support assumption has important consequences for experimental 

design: it is not necessary to make trial populations as similar as possible to eventual 

targets. All that is required is that there is overlap in the causal features exhibited by 

both populations. 

 What is more, contra the similarity thesis, making experimental populations as 

similar to targets as possible is not only unnecessary, but can also be counterproductive. 

In many cases, making a trial population more similar to an envisioned target might 

involve not only permitting more variation in modifying variables, structural 

parameters, and basic structural features of mechanisms, but also in variables that 

merely co-determine the outcome, without interacting with the intervention of interest. 

This can make inference messy, as admitting such variation will generally induce more 

variance in outcome variables, which, other things being equal, makes it more difficult 

to detect causal effects, including CATEs. The overlapping support assumption can thus 

provide important guidance for experimental design: it tells us that what is important is 

not to make the experimental population as similar as possible to a target, which is 

especially difficult if potential targets are unknown at the time of design, but to sample 

widely enough to include causal features that might otherwise remain idiosyncratic to 

potential target populations. Conversely, if the latter fails, then this makes extrapolation 

significantly more difficult, as it is not guided by data that include these causal features 

as part of mechanisms that are rendered ‘active’ by an intervention. 

 Ensuring that there is overlapping support in the distributions of features that can 

modify a causal effect is not only helpful for interactive covariate-based strategies for 

extrapolation, but for other strategies as well. In favourable cases, where background 

knowledge and theory is available to guide our sampling efforts, following the 

desideratum of achieving overlapping support can also help with applying other 

strategies for extrapolation. At the same time, it is important to recognize that 

overlapping support by itself is neither easy to achieve if one does not know what to 

sample for, nor does it, by itself, strongly facilitate successful extrapolation – it should 

merely be viewed as one further measure that can be undertaken, if applicable, to make 

it more likely that successful extrapolation can be achieved.  



 262 

 With these suggestions pertaining to the roles and limitations of supplementary 

resources S and K in place, let me proceed to discuss some more general desiderata that 

can help facilitate successful extrapolation. 

 

8.3 Desiderata for Extrapolation 

In previous chapters I have discussed, at length, how existing strategies fail the 

desiderata for successful extrapolation outlined in Chapter 3, i.e. extrapolation that 

ensures that 1) an extrapolative conclusion is relevantly informed by an experimental 

result, 2) the conclusion is adequately justified, 3) it is accurate (and precise), and 4) it 

answers our query. Going forward, it seems that we can now formulate some additional 

desiderata for what a future strategy for extrapolation should, ideally, be able to do, 

either as a standalone strategy or as accommodated in a more general framework for 

extrapolation. 

 1) It should not have high epistemic entry barriers. The discussion of B&P’s graph-

based approach in Chapter 7 usefully illustrated the importance of this desideratum. On 

B&P’s approach the correct graph structure for both populations needs to be known 

before extrapolation can even proceed to considering what causally relevant differences 

can be adjusted for or ‘conditioned away’. Such knowledge is needed to construct a 

shared causal graph !’ on the basis of which a selection diagram ! can then be 

constructed to capture causally relevant differences. Surely, confidence in the 

assumption that two populations indeed share a causal diagram !’ can come in degrees. 

However, it seems that from the perspective of licencing inferences this assumption is 

an all-or-nothing package deal. Either it is true, in which case one can proceed to 

encode causally relevant differences in a selection diagram ! and derive transport 

formulae, or it is not, in which case extrapolation terminates. But the approach does not 

seem to permit (or aim to do so) interesting ways in which it could be partly true, and 

inference could still proceed successfully. So while, at the epistemic level of 

underwriting extrapolation, it might be possible to further subdivide the general 

assumption of populations sharing a causal diagram !’ into smaller, more manageable 

component assumptions pertaining to similarities involving specific variables and 

relationships (e.g. by requiring identity in some subgraphs or individual causal 

relationships), the construction of a selection diagram as per B&P’s account still 

eventually requires a full overlap of the graphs ! and !∗, meaning that 
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similarities/identities on the level of individual causal relationships or subgraphs are 

only useful if they indeed add up to full overlap of ! and !∗. Yet, as I have argued, 

especially in predictive extrapolation, it will often be exceedingly difficult to validate 

assumptions about similarity/identity at the level of basic causal structure, particularly 

when pertaining to causal relationships that constitute the main causal pathways 

between intervention and outcome variables, which are arguably the most important 

parts of a graph for purposes of extrapolation. By contrast, Cartwright’s effectiveness 

argument and Steel’s mechanism-based approach, although at the cost of limited 

inferences, come with substantially milder assumptions. 

 In light of this, it seems reasonable to think that a strategy for extrapolation should be 

flexible concerning what inferences it permits and responsive to what causal knowledge 

is available. It would start with milder assumptions, which constitute epistemically 

more manageable entry barriers, and permit an appropriately limited set of inferences, 

before proceeding to permit more ambitious inferences whenever more knowledge is or 

becomes available. This way, successful extrapolation is not tied to high entry barriers, 

which might induce a cautious analyst to give up before trying to satisfy the extensive 

demands imposed by, say, the requirement to learn the correct causal graphs for two 

populations. 

 2) An attractive strategy for extrapolation should facilitate incremental and 

cumulative learning about causally relevant similarities and differences. This 

desideratum is intimately related to the concern about ‘package-deal’ assumptions. 

Incremental and cumulative learning means that the process of supporting substantive 

extrapolation assumptions should be such that each increment of supplementary 

evidence S and background knowledge K can bear individually on the validity of 

component assumptions, i.e. assumptions pertaining to similarities and differences in 

specific respects, such as individual variables and causal relationships. Here, both S and 

K should be able to change our confidence in a specific component assumption (e.g. 

pertaining to a specific causal relationship) and confidence in more encompassing, 

general assumptions (say about similarities between mechanisms more generally) 

should be a function of the confidence in their components. Moreover, each token of S 

and K should also be informative for our ultimate extrapolative conclusion C, i.e. it 

should be able to change either the substantive content of our conclusion, the accuracy 

or the precision of our conclusion, or our confidence in that conclusion, by adding to the 
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evidential weight in its favour. Conversely, it should not be the case that we have to 

acquire a vast collection of S and K before we can obtain any prediction and express 

how confident we are in it. 

 3) An attractive strategy should also be pluralistic concerning the kinds of 

supplementary evidence and background knowledge it accepts for underwriting 

extrapolation. For one, if desired, it should accept all relevant evidence that is available 

(see e.g. the principle of total evidence in Carnap 1947; Good 1967). Following the 

arguments provided in previous chapters as well as in Section 2, it seems desirable that 

different kinds of supplementary evidence and background knowledge can be integrated 

to bear on an all-things-considered assessment of how likely a specific component 

assumption is to be satisfied. This is particularly relevant in light of concerns levelled 

about interactive covariate-based approaches, and extrapolation in econometrics more 

generally, which, as argued in Chapter 6, seems to prioritize quantitative observational 

evidence. There, I have argued that predictive extrapolation problems will often require 

considering other kinds of evidence, including, importantly, qualitative evidence of 

various kinds. More specific suggestions for frameworks to integrate diverse kinds of 

evidence will be made shortly. 

 4) Building on the arguments characterizing extrapolation as highly heterogeneous 

outlined in Chapter 2, an attractive strategy for extrapolation should be context-

sensitive, i.e. it should permit various kinds of features of concrete extrapolation 

contexts to inform how extrapolation can and should proceed. As suggested above, this 

includes important differences in the envisioned kind of extrapolative conclusion, e.g. 

qualitative, quantitative, and others outlined in Chapter 2. Such differences should 

inform what kinds of assumptions are needed, and what supplementary evidence S and 

background knowledge K are required to support them. But it also extends to important 

differences in the resources available for underwriting an extrapolation, including those 

induced by time constraints, limited availability of theoretical and empirical support, as 

well as limited computational and analytic capabilities on the part of extrapolators. 

Here, analysts should be guided to select the goals that are realistically achievable, 

given their constraints, and presented with concrete pathways to extrapolation that are 

suitable for reaching these goals. Moreover, an attractive strategy for extrapolation 

should also be responsive to the desired fidelity of the inference, which in turn hinges, 

among other things, on the real-world non-epistemic risks involved in extrapolation, 
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e.g. wrongly accepting a prediction that turns out to be inaccurate, failing to accept a 

prediction that would have been accurate, and so forth. What is more, it also seems 

plausible to think that what, exactly, it means to fall prey to or avoid the extrapolator’s 

bind can be a context-sensitive matter (e.g. depending on the generality of the 

conclusion), so this, too, should be acknowledged. Finally, whenever appropriate, an 

attractive strategy should also recognize important contextual information about the 

envisioned or plausible target(s) of extrapolation(s) from studies yet to be conducted 

and make suitable recommendations for how to design studies in a way that facilitates 

successful extrapolation, e.g. by guiding experimenters in producing suitable 

supplementary empirical evidence in accordance with the suggestions made in Section 

2. 

 5) An attractive extrapolation strategy should also be able to tell us, as explicitly as 

possible, what assumptions about causally relevant similarity and difference are 

required. This desideratum is met to different degrees by the strategies examined in 

previous chapters, but all of them involve at least some unspoken assumptions as well. 

B&P’s graph-based approach seems to come closest to satisfying this desideratum as its 

explicit graph-based representation allows analysts, once suitably trained in using the 

approach, to ‘read off’ the majority of substantive causal assumptions from graphs. Yet, 

as I have argued, even B&P’s approach involves unspoken assumptions, such as when 

the way in which modifying variables bear on causal effect magnitudes needs to be 

parametrically identical between populations, as well as substantive ambiguities about 

what, exactly, needs to be assumed to construct a selection diagram. There is hence 

room for improvement on the part of all strategies examined so far, and the present 

work aims to contribute to making clearer what assumptions they require and how 

demanding they are. It would also seem helpful to recognize these demands more 

broadly, including in widely circulated methodological guidelines for using 

effectiveness evidence. I will say more on this shortly. 

 6) It should also be able to tell us, if desired, how causally relevant differences 

between populations bear on differences in the quality or magnitudes of causal effects to 

be extrapolated. Here, interactive covariate-based strategies and B&P’s graph-based 

approach have a clear advantage, but the preceding discussion has also suggested that 

further clarification is needed as to which kinds of causally relevant differences exactly 
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can be handled and where extrapolative inference starts to break down as the difference 

become unmanageable. 

 7) An attractive strategy should tell us as early as possible whether (the desired kind 

of) extrapolation is feasible or not. This desideratum is important particularly as more 

involved extrapolations can require the collection of large amounts of supplementary 

evidence to support the assumptions involved. In the interest of allocating limited 

resources efficiently, it seems desirable to structure the acquisition of such evidence so 

as to prioritize information that can potentially be decisive as to whether extrapolation 

can proceed at all. For instance, as argued earlier, it seems that causally relevant 

similarities and differences at the level of causal structure are more fundamental than 

those potentially obtaining at other levels. For instance, if the mechanism in the 

experimental population is ! → ! →! → ! and the relationship ! →!!is disrupted in 

the target, then learning whether a suspected moderating variable of the ! → !!effect is 

distributed in the same way in the target does not add anything to our conclusion that 

interventions on ! will not have effects on !. B&P’s graph-based strategy makes some 

progress towards satisfying this desideratum by offering a complete algorithm for 

deciding transportability. What their approach is missing, however, is an epistemic layer 

that tells us, even if an effect is principally transportable under some assumptions, 

which assumptions should be validated first in order to learn as efficiently as possible 

whether to terminate extrapolation for lack of justification or to proceed instead. 

 8) An attractive strategy should allow us to express uncertainty about individual 

component assumptions as well as determine the strength of support/confidence that an 

extrapolative conclusion enjoys. Specifically, it is reasonable to think that in real-world 

cases we will rarely be able to establish the validity of substantive assumptions with 

certainty. Even if possible, it would be undesirable as such certainty could often only be 

achieved on pain of falling prey to the extrapolator’s bind. It hence seems important that 

analysts are able to express how much confidence they have in each substantive 

extrapolation assumption, and conversely, how much uncertainty remains in whether 

they are satisfied. As suggested above, this could be greatly facilitated by trying, as 

much as possible, to break extrapolation assumptions down into smaller, more 

manageable components, e.g. assumptions pertaining to individual causal relationships, 

where each such component assumption is a unit of analysis in telling us what is in need 
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of support, how to acquire such support, and in expressing how much support is 

available. I will say more about approaches that could help accomplish this shortly.  

 9) Finally, an attractive strategy should be able to tell us which assumptions are most 

important, and which are less problematic to entertain as mere assumptions. This is 

essentially a call for the ability to perform sensitivity analyses. It seems clear that some 

assumptions are more important than others, e.g. those pertaining to similarities in the 

main causal pathways along which an effect is transmitted might be more important 

than those pertaining to a moderating variable that plays a subordinate role in inducing 

differences in effect magnitudes. In order to help us tell which assumptions are more 

important, it seems desirable that extrapolation strategies, or at least a more general 

framework accommodating such strategies, allow us to perform rudimentary sensitivity 

analyses, i.e. systematic explorations of how our ability to extrapolate at all, as well as 

the substantive content of our extrapolative conclusions and our confidence in them, 

change with respect to changes in the validity of and support for specific component 

assumptions.3 This allows us not only to tell which assumptions are most in need of 

support, but also which assumptions might be entertained as mere assumptions, e.g. 

when certain conclusions (and our confidence in them) are robust over changes in the 

validity of (and confidence in) these assumptions. Finally, performing such analyses can 

also help with achieving 7), i.e. terminating extrapolative inference as soon as possible 

when not feasible, in that it can guide us 1) in prioritizing empirical efforts to learn 

about causally relevant differences and similarities in those features that are most 

important, most in need of support, and least costly to learn about, and 2) to focus on 

acquiring and producing evidence that has the most significant bearing on the content of 

our conclusions, their accuracy and precision, and the weight in their favour. 

 With these desiderata in place, let me expand on two broader themes that I have not 

touched upon so far. The first concerns issues of how to quantify uncertainty and 

express confidence in an extrapolative conclusion. The second concerns how EBP 

institutions, in particular those issuing methodological recommendations for evidence 

production and use, might respond to the arguments developed here, and how they 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 See e.g. Rosenbaum (1995) who considers sensitivity analyses as a means to explore whether effect 
estimates are robust under changes in the validity of identification assumptions. See also Manski (1990; 
2008) for a related approach.  
!
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might make important general contributions to improving the practice of extrapolation 

in EBP. 

 

8.3.1 Uncertainty and Confidence  

As the discussion in previous chapters suggested, substantive assumptions about 

causally relevant similarities are required by all strategies for extrapolation, but will 

often be difficult to support in practice. This not only raises concerns about the 

demandingness of strategies for extrapolation, but also suggests that significant 

uncertainty will often remain as to whether crucial assumptions are indeed satisfied. 

Yet, the fact that support for specific extrapolation strategies can vary greatly, both in 

the kind of support offered and in the strength of support afforded, is currently not 

captured by existing strategies. They tell us, sometimes more and sometimes less 

explicitly, which assumptions we need to bet on, but they do not tell us how to (best) 

support these assumptions, express the uncertainty surrounding them, or how confident, 

given some degree of support for specific assumptions, we can be in an extrapolative 

conclusion (see Reiss 2015 for related concerns). This is not a shortcoming of these 

strategies per se, but it suggests that additional layers of analysis pertaining to the 

uncertainties that invariably remain in extrapolation are needed to meet the epistemic 

and practical needs of analysts, practitioners, and policy-makers, who, in the face of real 

stakes, will often need to know not only what can be expected, but also how confident 

they can be in these expectations. 

 My suggestion here is that two additional layers of analysis are needed. The first 

concerns how confident we can be in the validity of specific extrapolation assumptions, 

given some support in the form of supplementary evidence S and background 

knowledge K. The second concerns how the confidence in specific extrapolation 

assumptions compounds and propagates onto the confidence we are entitled to have in 

an extrapolative conclusion. 

 There is a substantial body of existing work to consider when thinking about these 

issues. Broad fields of study, including those concerning philosophers’ darlings of 

Bayesian and error statistical approaches (see e.g. Bovens and Hartmann 2003; Mayo 

and Spanos 2011 for overviews), have been concerned with developing theory that can, 

among other things, help quantify and express uncertainty in scientific and everyday 

inference. This chapter is not the place for extensive reviews of such efforts, nor to 
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comment on their relative merits. Instead, I will only gesture towards some ideas that 

could be useful for addressing the needs identified above. 

 Let me begin with some suggestions for how to facilitate assessments of the support 

for specific extrapolation assumptions. In the context of pharmacology, Landes et al. 

(2018) offer a Bayesian framework for amalgamating different kinds of evidence to 

assess causal hypotheses about drug efficacy and harms. They aim to follow previous 

suggestions to consider broader varieties of evidence for this purpose (rather than, say, 

only RCTs), which is similar to the calls for considering broader varieties of evidence I 

have made in Chapter 6, while offering more concrete suggestions as to how diverse 

and possibly inconsistent bodies of evidence can be integrated in order to speak to 

specific causal hypotheses. 

 The framework used to achieve this is based on Boven’s and Hartmann’s (2003) 

Bayesian-network approach to modelling scientific inference. Here, evidential 

relationships between hypotheses, their observable consequences, observational reports 

about whether these consequences obtain, and information about the reliability and 

relevance of the reports are encoded in a directed graph !. To express how 

observational reports of observable consequences bear on the probability of specific 

hypotheses, investigators impute conditional probability tables that specify the 

conditional probabilities of nodes over the states that their parents can assume. 

Following this, a prior probability ! over the variables, constrained by the conditional 

independencies encoded in the graph, is selected by an investigator. Then, as novel 

observational reports become available, a posterior probability for the hypothesis of 

interest can be computed4 according to the rules of Bayesian inference (Landes et al. 

2018, 25). 

 In the context of extrapolation, this framework could be useful for integrating diverse 

kinds of evidence (e.g. qualitative and quantitative), beliefs about their respective 

bearing on hypotheses concerning causally relevant similarities and differences, 

including assessments of their reliability and relevance, to form general assessments of 

the probability of such similarities and differences obtaining.5 This could help express, 

on the level of specific component assumptions, how likely it is that specific similarities 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Analysts can make use of commercial software packages such as Netica for this purpose. 
5 Of course, as e.g. Reiss (2015) would caution, the framework proposed by Landes et al. remains 
unhelpful unless we know how the concrete material facts pertinent to an extrapolation context bear on 
the assumptions, i.e. how to construct the conditional probability tables required by Bayesian networks. 
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and differences are realized, and hence be useful for assessing, in a fine-grained way, 

what our available resources in the form of S and K say about specific instances of 

similarity and difference. This could be an important first step towards helping analysts 

navigate the unavoidable uncertainties involved in extrapolation. 

 However, importantly, while the approach developed by Landes et al. (2018) seems 

helpful for amalgamating different kinds of evidence and support for specific 

extrapolation assumptions and computing probabilities for whether these assumptions 

are satisfied, it does not, by itself, allow us to make assessments of the weight of 

evidence in favour of a specific assumption (see Peirce 1878; Keynes 1921; Good 

1985). Put simply, it is one thing to have a probabilistic belief pertaining to a 

hypothesis, and another to have an idea of how strongly supported this belief is by the 

evidence involved in obtaining it. The latter is often thought to be a question of the 

quantity and quality of evidence in favour of a hypothesis, as well as its diversity or 

consistency (cf. Weed 2005). Assessments of evidence weight are important as analysts 

will typically not only be interested in first-order probabilities pertaining to whether 

crucial extrapolation assumptions are satisfied, but also in making second-order 

judgments about the confidence in these assessments and whether this confidence is 

sufficiently high to licence action.6 This suggests that, while the evidence amalgamation 

framework proposed by Landes et al. is an important first step in the pursuit of 

investigating issues of uncertainty in extrapolation, the approach needs to be further 

complemented by strategies that help express considerations about the weight of 

evidence in favour of specific extrapolation assumptions. 

 My second suggestion here is that it seems important to provide analysts with the 

means to investigate how support for specific assumptions bears on support in favour of 

the extrapolative conclusion C reached by an inference that draws on these assumptions. 

Here, it seems unlikely that Bayesian approaches will be helpful, as the important 

questions do not concern how probabilistic information propagates through a network 

of nodes, governed by stipulated evidential relationships and updating rules. Rather, to 

be able to tell how the confidence in specific extrapolation assumptions compounds and 

propagates onto the confidence we are entitled to have in an extrapolative conclusion, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 This is not a new idea, of course. For instance, the IPCC (United Nations Intergovernmental Panel on 
Climate Change) has included in their Assessment Reports not only the primary estimates of pooled 
climate simulation results on e.g. quantities like predicted average surface temperature of the earth’s 
climate system, but also communicated second-order confidence in these results. Predictions are 
accompanied by second-order assessments of the confidence in these predictions (see Wüthrich 2016). 
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we need to consider how different assumptions work together in warranting a 

conclusion. The relationships between these assumptions are not (merely) evidential. 

Rather, they will in large parts be governed by underlying theory pertaining to what 

assumptions are necessary to make specific kinds of inferences and how these 

assumptions interact, e.g. whether they need to be jointly satisfied in specific ways, are 

logically, causally, or probabilistically related, etc. Moreover, to assess how uncertainty 

concerning specific causal features of populations propagates onto uncertainty in an 

extrapolative conclusion, substantive causal models might be needed (e.g. along the 

lines of causal DAGs used by B&P). Such models can encode, among other things, how 

different causal features interact in producing a causal effect. In virtue of encoding such 

information, these models cannot only be used for deriving single predictions of causal 

effects in the target, but also for systematically studying how predictions would differ 

under variations in the causal model, e.g. in variable values/distributions, functional 

form and structural parameters, and basic causal structure.7 This, together with some 

information pertaining to the evidential relationships between different kinds of support 

and specific assumptions, could then help us systematically study how the confidence in 

specific assumptions compounds and propagates onto an extrapolative conclusion. 

 Such investigations could be further supported by a framework recently developed 

by Roussos et al. (2019, ms.). Their aim is to address issues of decision-making under 

ambiguity in the context of using ensembles of climate models to predict rare climate 

events. In such contexts, analysts are often faced with substantive model uncertainty, 

i.e. uncertainty concerning the representational accuracy of models that might differ in 

parameterizations or indeed in deeper, structural features pertaining to how they 

represent the earth’s climate system (see e.g. Parker 2013). In the context of 

extrapolation, similar uncertainties will often plague the analyst. Here, they are not 

about model uncertainty, i.e. whether specific models accurately represent their targets, 

but rather about assumption uncertainty, i.e. whether we are justified in assuming that 

suitable relationships of similarity at different levels and in specific respects obtain 

between two populations, as well as feature uncertainty, i.e. whether a population 

indeed exhibits certain causally relevant features. These different kinds of uncertainty 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 This is similar to proposals from the literature on computational model validation, where, among other 
things, simulations on (ensembles of) computational physics models are used to quantify the uncertainty 
involved in making predictions of the behaviours of real-world engineering systems (see Roy and 
Oberkampf 2011). Similar to the present case, such simulations typically involve substantial uncertainty 
as to whether the computational models are accurately parameterized or adequately represent their targets 
at more fundamental, structural levels. 
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encountered in the context of extrapolation seem similar enough to those encountered in 

using model ensembles to think that Roussos et al.’s framework could potentially be 

usefully applied to issues of extrapolation as well.  

 The framework that Roussos et al. employ is a modified version of the confidence 

approach (see Hill 2013; Bradley 2017), which explicitly models how the weight of a 

body of evidence, as well as context-specific features (such as the stakes involved in a 

decision-making context, the desired certainty of an analyst/decision-maker, and their 

attitudes towards uncertainty), bear on the confidence that one is entitled to have in a 

model prediction (or, in our case, an extrapolative conclusion), i.e. a second-order 

assessment of how strongly a first-order prediction is supported by the evidence in its 

favour. Roussos et al. use the idea of nested intervals, i.e. predictions of varying 

precision (typically imprecise probability estimates) of the quantities of interest derived 

under slightly different conditions (e.g. from only a part of a model ensemble). Their 

approach allows analysts to gauge how much confidence differently precise probability 

intervals each enjoy given how many predictions from a model ensemble underwrite 

them. A highly precise prediction interval, for instance, will typically only be supported 

by a narrower range of models, so the weight in favour of these precise intervals, and 

the confidence they might enjoy, will be lower.  

 Applied to extrapolation, using this framework could proceed by deriving a series of 

(imprecise) predictions starting from the case where all extrapolation assumptions are 

assumed to be satisfied, and departing systematically from this ideal to cases where the 

support for specific component assumptions dwindles. In essence, this would amount to 

a sensitivity analysis that investigates how changes in the support for specific 

component assumptions can induce changes in the support for a conclusion. The idea of 

nested intervals could be useful here, too, as it might allow analysts to tell how 

confident they can be in each of a series of nested prediction intervals for the quantities 

of interest. Conversely, if the confidence afforded for a specific interval (say, one that 

would be sufficiently precise to be action-guiding) is insufficient, this would help 

analysts recognize that additional support for crucial assumptions might be needed. An 

attractive feature of the confidence approach in this regard is that it explicitly models 

decision-makers’ uncertainty attitudes and the non-epistemic stakes involved in a 

decision-making context. In doing so, it moves us closer to practice as it can help study 

how differences in the support for specific assumptions bear on whether the confidence 
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in an extrapolative conclusion would be sufficiently high, as judged by a decision-

maker. Taking such features into account is not only useful in the ways sketched out 

above, but also because it may allow analysts to terminate an extrapolation early on if it 

becomes clear that difficult-to-justify assumptions are too important for a specific 

conclusion. 

 In sum, the approach used by Roussos et al. can offer an important improvement to 

existing views, which say little on these issues. Cartwright’s Argument Theory is an 

exception here, but it too offers little detail given it only suggests that an extrapolation 

is only ever as strong as the weakest link (see Cartwright and Stegenga 2011), i.e. as 

strong as the assumption that is least well supported. While this is helpful for making 

analysts more cautious about extrapolation, it does not seem correct in all cases. For 

instance, if the question is whether the mechanism ! → ! → ! is instantiated in the 

target, then learning that ! → ! is instantiated there, but being entirely uncertain as to 

whether ! → ! is also instantiated there, does not mean that one should have no 

confidence whatsoever that ! → ! → ! is instantiated. The weakest-link thesis seems 

inadequate on the level of specific extrapolation assumptions. It seems more plausible 

when assumptions are aggregated, their interrelations are already accounted for at more 

abstract levels, and inference can be cast in terms of effectiveness arguments and their 

premises. Here, it would seem more plausible to think that premises pertaining to 

orthogonal issues can sometimes be thought of as working together in the way that 

Cartwright suggests, e.g. when we separate issues of whether mechanisms are 

sufficiently similar from whether causal support factors are distributed in the right way. 

Yet, at the level of specific component assumptions pertaining to individual variables 

and causal relationships, it seems that more complicated interactions will need to be 

taken into account. It hence seems that more work pertaining to the dynamics of 

uncertainty and confidence in extrapolation is needed to allow analysts to make finer-

grained assessments of how well their extrapolations are supported. 

 Taking some steps backwards from these specific suggestions, it seems that, at least 

in principle, approaches used for modelling evidence amalgamation for specific 

extrapolation assumptions, forming second-order assessments of confidence in these 

assumptions, and investigating the dynamics of evidence weight propagation can be 

linked up in a neat way. In such an integrated framework, support for an extrapolation 

propagates ‘upwards’ from background knowledge K and supplementary evidence S of 
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various sorts onto specific assumptions P pertaining to causally relevant similarities 

between populations, and then propagates ‘forwards’ from these assumptions onto the 

extrapolative conclusion C, mediated by various contextual features, such as uncertainty 

attitudes, the nature of the real-world stakes involved in an extrapolation, etc. As 

suggested, such an overarching framework could also be useful for answering a range of 

further questions, including: Which extrapolation assumptions are the most important 

ones? Which additional supplementary evidence and background knowledge should we 

obtain to yield the highest increase in confidence in our extrapolative conclusion? We 

might also be able to further specify details about the relative costs of obtaining such 

evidence, as well as encode, at the level of specific kinds and tokens of evidence, 

whether obtaining them would raise concerns about the extrapolator’s bind (e.g. by 

setting costs arbitrarily high). 

 To be sure, the suggestions made here are, of course, no more than that, and plenty of 

additional work is needed to tell whether there are indeed ways of adding these levels of 

analysis to primary extrapolative inference in order to provide important second-order 

information about uncertainty and confidence, without thereby overburdening the 

analyst (e.g. asking them to write down conditional probability tables for a Bayesian 

network, or to contemplate how different extrapolation assumptions interact). The need 

to say more on these issues, however, is uncontroversial, and, I believe, will play an 

important part in moving the academic debate surrounding extrapolation closer to 

addressing the practical needs and constraints arising in the context of real-world 

extrapolations. 

 

8.3.2 Institutional Desiderata: Making Recommendations and Testing Strategies 

Here, I briefly want to make two suggestions concerning the widely circulated 

methodological recommendations made by key EBP institutions, such as 3ie, JPAL, the 

What Works Clearinghouse, the Campbell Collaboration, GRADE, Consort, and others. 

So far, the methodological recommendations made by these institutions for how to 

produce, amalgamate, and use effectiveness evidence for purposes of informing policy 

often remain silent on issues of extrapolation. When they do comment on extrapolation, 

the advice often takes the form of encouraging authors of effectiveness studies to 

comment on the suspected applicability of their results and alerting evidence users to 

the need to ensure that experimental and target populations are appropriately similar. 
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But little effort is made to propose systematic approaches to extrapolation, mention 

those examined here, or make more specific recommendations for what kinds of 

problems users of evidence need to be aware of.8 

 This is not surprising, as at least some of these institutions are primarily concerned 

with issuing guidelines for what constitutes high-quality effectiveness evidence and 

proposing hierarchies to distinguish evidence with respect to how reliable it is in 

informing us about the effectiveness of interventions where they were studied. This is 

an important first step, but, in the spirit of existing criticisms and the arguments 

developed here, it is equally important to recognize that these measures fall radically 

short of addressing the concrete needs experienced by decision-makers who wish to 

apply effectiveness evidence potentially far outside of the domains where it has been 

obtained. Here, it is easy to confuse high-quality evidence of causal effects somewhere 

with high-quality evidence that speaks strongly to questions about the target of interest 

(cf. Cartwright 2013; Cartwright and Hardie 2012, ix.). There is clearly room for 

improvement, therefore, in how issues of extrapolation are currently handled by 

institutions that issue methodological guidelines.  

 One obvious, but rather thin, suggestion is to call for more explicit commentary on 

problems of extrapolation, including what different kinds of problems there are and how 

these are constituted; how study design can facilitate extrapolation; what methods are 

available to perform extrapolation, what assumptions they involve, and what resources 

might be needed to support them. 

 Another, more substantive suggestion takes issue with criteria for what makes 

evidence ‘high quality’, i.e. evidence-hierarchies. In light of the arguments developed 

here and elsewhere (e.g. Khosrowi 2019; Reiss and Khosrowi 2019, ms.), it seems 

important to distinguish between the quality of evidence in establishing causal effects of 

interventions in a study and the applicability of evidence to novel settings (including the 

quality or reliability of different kinds of supplementary resources needed to underwrite 

extrapolation to these settings). As argued in Chapter 6, for instance, it seems that 

different kinds of evidence, such as quantitative and qualitative, can sometimes 

productively interact in underwriting extrapolation in ways that would not be possible 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 JPAL is a notable exception here, as it recently advertised postdoctoral research positions, including on 
extrapolation, where research might include “[…] simulating and comparing extrapolation methods, or 
pooling data for meta-analyses across different RCTs with similar interventions and outcomes”; see 
https://www.povertyactionlab.org/careers/postdoctoral-associate-j-pal-global-102760. !
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with either type of evidence alone. Hence, it would seem desirable to investigate in 

more detail how such productive interactions come about, how they can be facilitated, 

and how certain combinations of evidence might be especially suitable for underwriting 

extrapolative inference. Moreover, it would also seem helpful if methodological 

guidelines for evidence production were complemented by attempts to provide use-

centric grading schemes for what types of supplementary resources are helpful for 

underwriting extrapolation; how the quality or adequacy of bodies of evidence, rather 

than individual tokens, might be assessed; and how quality can differ over various 

dimensions, such as the type of problem targeted, the type of conclusion envisioned, the 

desired fidelity of the inference, etc. 

 The second suggestion I want to make here relates to an important limitation of the 

present project: as a largely theoretical and critical endeavour, it cannot assess the real-

world capabilities of different strategies for extrapolation beyond what can be argued 

from the discomfort of an office chair. While it seems clearly important to improve our 

theoretical understanding of strategies for extrapolation in order to help us determine 

when they are sensibly applicable, it is also clear that this can only go so far, and that 

facilitating a comprehensive understanding of which strategies work for what kinds of 

problems will, in part, need to involve trying them out in their envisioned domain of 

application. Hence, it seems reasonable to suggest that, adding to the calls for 

developing and using middle-range theory pertaining to specific interventions, we also 

need complementary efforts to systematically study and form general conclusions about 

the conditions of applicability of different extrapolation strategies. Here, we may wish 

to address various general questions, including: how much causal information is needed 

to facilitate different kinds of extrapolation and how much is typically available in 

different settings? What kinds of causally relevant differences tend to upset specific 

extrapolation strategies most? How fast do different combinations of empirical learning 

methods and extrapolation strategies converge on the true value of a causal effect in a 

target? 

 These questions can be addressed in different ways. One strategy is empirical and 

simply proceeds by conscientious and systematic efforts to document the success of 

using different extrapolation strategies under varying conditions. Another approach is to 

study the performance of extrapolation strategies virtually, in simulation studies. Here, 

much like in econometrics and many other disciplines involved with causal and 
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statistical inference, Monte Carlo simulation studies can be used to generate datasets for 

hypothetical experimental and target populations from mechanisms that the investigator 

specifies themselves. Since the ground-truth about features of these mechanisms, and 

hence about their similarities and differences, is known, this makes it easier to assess 

the performance of different strategies in handling different kinds of causally relevant 

differences between the populations so specified, as well as the ability of at least some 

empirical methods to adequately recover features of these mechanisms (such as the 

ability of machine-learning-based approaches to detect and attribute heterogeneous 

causal effects, or the ability of causal discovery methods to correctly identify causal 

structures from data).  

 Some efforts to study the performance of extrapolation strategies and supplementary 

empirical methods have already been undertaken. For instance, a large part of the 

discussion in Hotz et al. (2005) consists of reports on empirical tests of their proposed 

strategy. Similarly, the performance of machine-learning approaches is also routinely 

gauged in simulation studies. 

 Here, I want to call not only for proponents of specific extrapolation strategies to 

invest more heavily in demonstrating the effectiveness of their proposed methods, but 

for broader efforts to be made on the part of major EBP institutions to guide analysts by 

offering more details on available extrapolation strategies, to study their applicability 

and performance, and to widely disseminate the results of such analyses so that 

practitioners can use these resources to inform their extrapolation efforts. 

 

8.4 Positive Proposals Summarized 

In sum, the proposals made in this chapter make clear that it is possible to add 

interesting insights pertaining to how we might underwrite extrapolative inference, and 

in a way that is more general than pointing to the importance and usefulness of concrete 

contextual resources. This helps build a basis for a future, more general framework for 

extrapolation, i.e. one that, among other things, provides thick layers of analysis that 

can connect abstract strategies for extrapolation with the concrete epistemic challenges 

encountered in real-world settings. To this end, I have highlighted a variety of empirical 

methods that 1) can be used in the absence of theory to learn about causal features that 

might be important to consider, 2) can be helpful in conjunction with theory by 

supplying information that theory alone cannot deliver, and 3) help us build such theory 
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if it is so far unavailable. Moreover, I have proposed several desiderata that one might 

consider in further developing existing strategies for extrapolation. While they aim to 

improve the responsiveness of general strategies to the concrete features of particular 

extrapolations, the desiderata themselves are general in spirit. Finally, I have made 

some suggestions for how a general framework for extrapolation might be enriched by 

additional efforts to explore issues surrounding uncertainty and confidence in 

extrapolation. These, too, are issues that can be explored at a general level, while at the 

same time linking abstract strategies for extrapolation with the concrete details of 

specific extrapolation contexts, particularly with a view towards meeting important 

epistemic needs experienced by extrapolators. 

 The arguments and analyses provided in previous chapters have begun to build the 

basis for a general framework for extrapolation that can make recommendations for 1) 

how analysts and decision-makers can identify different kinds of problems of 

extrapolation and how they can tell, before any further efforts are undertaken, how 

challenging these problems are likely to be; 2) what general extrapolation strategies 

might be useful for addressing these problems; 3) what assumptions will need to be 

made to enable extrapolative inference of the desired kind; 4) what additional resources 

might be needed to support these assumptions; and 5) what kinds of problems of 

extrapolation are unlikely to be overcome by drawing on such resources, at least 

without raising concerns about the extrapolator’s bind. 

 The present chapter complements these contributions by further clarifying: 6) how to 

make use of existing resources for underwriting extrapolative inference; 7) when one 

might need to acquire additional evidence; 8) what methods are available for doing so; 

9) what frameworks should be considered when integrating different sources of support; 

and 10) how to think about and express the uncertainties that will remain in most kinds 

of extrapolation. In virtue of providing details on these important issues, the present 

chapter has made some further contributions to systematizing the theory and practice of 

extrapolation in EBP. 
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CHAPTER 9 

 
 
Final Conclusions 
 

This thesis has taken issue with problems of extrapolation as routinely encountered in 

EBP. My main aim was to critically evaluate the extent to which existing strategies for 

extrapolation can persuasively address real-world extrapolation problems. To this end, 

Chapters 2 and 3 have developed the necessary theoretical background. Chapters 4, 5, 

6, and 7 have focused on specific strategies for extrapolation, what assumptions they 

involve, and how they are vulnerable to the extrapolator’s bind. Finally, Chapter 8 

provided a positive outlook concerning how to address the challenges identified in 

earlier chapters. Let me briefly revisit each chapter to emphasise the distinctive 

contributions made there. 

 Chapter 2 provided an extensive discussion of problems of extrapolation. Here, I 

presented a detailed and novel analysis arguing that problems of extrapolation, as well 

as extrapolative inference, are highly heterogeneous and can differ along a variety of 

important dimensions. This helped clarify that some problems of extrapolation are 

considerably more challenging than others, and provided a useful general background 

for further investigating what kinds of problems of extrapolation can realistically be 

overcome by specific strategies. 

 Chapter 3 laid out some basic assumptions involved in extrapolation, irrespective of 

the particular strategy adopted. This helped recognize that strategies for extrapolation 

share a common core of assumptions, which can motivate the guiding ideal that 

extrapolation can, in principle, be successful. In addition, I provided a working analysis 

of what extrapolation is, at the most general level, and took issue with Steel’s 

extrapolator’s circle. Building on Steel’s work, I offered some conceptual refinements, 

making clear that the extrapolator’s circle is better understood as a special case of a 

wider challenge which I called the extrapolator’s bind. The extrapolator’s bind, in turn, 

was further fleshed out as a gradual affair, reflecting the idea that whether the relevance 

of an experimental result is displaced by supplementary evidence and background 

knowledge is not a dichotomy but a matter of degree. Against this background, I 

proposed a novel analysis of successful extrapolation, which integrates the 

extrapolator’s bind. According to this analysis, successful extrapolation is a function not 
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just of whether our extrapolative conclusions answer to the question at hand, of whether 

the answers are accurate, precise, and well-justified, but also of whether the 

experimental result remains relevant to our conclusion. Framed as an imprecise 

desideratum (further informed by contextual details), successful extrapolation requires 

that we steer clear of the extrapolator’s bind as much as possible and ensure that our 

inference remains ampliative with respect to the additional resources we draw upon. 

 Chapter 4 was the first chapter to take a closer look at proposals for how to 

extrapolate, focusing on Cartwright’s Argument Theory of Evidence. Here, I argued that 

the Argument Theory is a useful framework for thinking about extrapolation in general, 

as well as for casting different forms of extrapolative inference in explicit form and 

thereby promoting their critical appraisal. I then took issue with the effectiveness 

argument. While it is best understood as a mere illustration of how the Argument 

Theory is supposed to work, it is also useful for demonstrating how even a simplistic 

extrapolative inference can involve surprisingly strong assumptions that raise important 

concerns about the extrapolator’s bind. Moving away from these particulars, I argued 

that the Argument Theory, beyond its concrete illustration in the form of the 

effectiveness argument, does not provide further details on alternative, more 

sophisticated extrapolation arguments. These details, I have suggested, might need to be 

borrowed from other strategies for extrapolation. I have argued that this is not a 

shortcoming, however, as the Argument Theory can nevertheless figure as an important 

framework to facilitate not only (some) concrete instances of extrapolation, but also, 

and more importantly, critical assessment of other strategies for extrapolation, by 

helping make their assumptions explicit and enabling the scrutiny of these assumptions. 

The remainder of the thesis has largely followed the Argument Theory in this spirit and 

ambition. 

 Chapter 5 focused on Steel’s mechanism-based strategy for extrapolation, which 

employs comparative process tracing to help extrapolate claims of causal relevance. 

Here, I flagged some basic concerns about the applicability of CPT to social science 

extrapolation. Moving towards more fundamental concerns, and building on Steel’s 

detailed investigations, I proposed a distinction between attributive and predictive 
extrapolation, where the latter is common in EBP settings. Drawing on this distinction, I 

argued that CPT exhibits important limitations in predictive extrapolation settings 

where the causal mechanisms of interest are ‘dormant’ in the target, as this can severely 

complicate the acquisition of evidence that bears on issues of causally relevant 
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similarity and difference. So while Steel’s CPT-based strategy provides an effective 

inferential shortcut for facilitating attributive extrapolation, at least some kinds of 

predictive extrapolation pose severe obstacles to it. This, together with important 

limitations in scope, suggested that Steel’s strategy, at least on its own, is unlikely to 

permit successful extrapolation in a wide range of cases in EBP. 

 Chapter 6 examined interactive covariate-based strategies proposed by 

econometricians. Here, I argued that, while promising to address a wide range of 

extrapolative queries, including those of central interest to EBP, these strategies involve 

substantive but unspoken assumptions about causally relevant similarities at the level of 

parameters, functional form, and basic causal structure. Entertaining these assumptions 

as mere assumptions would be undesirable, as assuming such similarities is often 

unwarranted. However, supporting these assumptions is by no means straightforward 

either and raises important concerns about the extrapolator’s bind. As a potential 

remedy, I considered whether Steel’s CPT can usefully complement interactive 

covariate-based extrapolation, at least by clarifying issues of similarity in basic causal 

structure. In contrast to the concerns about ‘dormant’ mechanisms raised in Chapter 5, 

here I sketched out conditions under which the problems surrounding ‘dormant’ 

mechanisms in predictive extrapolation might still be overcome. The main conclusion 

was that, at least in some cases, it seems that integrating different kinds of strategies for 

extrapolation, as well as different kinds of evidence, i.e. qualitative and quantitative, can 

offer important ampliative leverage, i.e. it allows us to reach conclusions that would be 

inaccessible from either type of method or evidence alone. This suggests that at least 

some kinds of predictive extrapolation in EBP could be strongly facilitated by revising 

standards of what supplementary evidence and other sources of justification are 

relevant. 

 Chapter 7 focused on the graph-based extrapolation approach offered by 

Bareinboim and Pearl. Although the graph-based approach has many important virtues, 

including the ability to graphically encode causal knowledge and assumptions, permit 

non-parametric inference, encode different kinds of causally relevant differences, and 

provide an effective algorithm to decide the transportability of causal effects, there are 

also important shortcomings. I focused on three problems in particular: 1) it remains 

unclear how selection diagrams can encode several important types of causally relevant 

differences, potentially limiting the scope of the graph-based approach. 2) Selection 

diagrams involve substantive parametric identity assumptions that are difficult to 
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support empirically, raising concerns about the extrapolator’s bind, especially in 

predictive extrapolation. 3) Transport formulae, including those derived in B&P’s 

examples, can sometimes demand observational quantities from the target that are not 

meaningfully measurable in predictive extrapolation cases where the mechanisms are 

‘dormant’. This discussion further supported the idea that ‘dormant’ mechanisms are an 

important concern, and that the extrapolator’s bind remains a serious problem even for 

approaches that promise to evade it by only requiring observational evidence from the 

target. 

 Drawing on these contributions, the present work can be understood as an attempt to 

complement existing abstract extrapolation strategies by building a basis for a more 

general and practice-oriented framework for extrapolation, i.e. one that recognizes and 

takes issue with important features of the wider problem space encountered in real-

world extrapolations, in particular the epistemic needs arising there and the challenges 

involved in meeting these needs. My contributions towards building such a framework 

span from providing a general analysis of problems of extrapolation and extrapolative 

inference, to formulating a guiding ideal and important normative strictures on 

successful extrapolation; highlighting specific classes of extrapolation that are 

especially problematic; making suggestions for how these might be overcome by 

integrating different methods and kinds of evidence; and identifying broad classes of 

problems that are unlikely to be overcome. 

 Chapter 8 added to these contributions by making several more concrete suggestions 

for how extrapolation might be underwritten by different theoretical and empirical 

resources, as well as how these resources can productively interact. In addition, I 

formulated a substantial list of general desiderata for more attractive, future strategies 

for extrapolation, and general frameworks that might accommodate such strategies. 

Finally, I identified two further areas where additional research is needed in building a 

general framework for extrapolation, aiming to improve both our theory of 

extrapolation as well as its practice. The first pertains to issues concerning uncertainty 

and confidence. Here, I made suggestions for how we might think about expressing our 

confidence in specific assumptions, how our confidence in specific assumptions 

propagates onto the confidence we are entitled to have in a conclusion, and what 

existing frameworks we might draw upon to achieve this. Second, I have called for EBP 

institutions to amend existing evidence-ranking schemes so as to accommodate the role 

of supplementary evidence needed for extrapolation and important interactions between 
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different kinds of evidence. Moreover, I have argued that additional efforts to 

investigate and document the performance of existing extrapolation strategies in concert 

with different supplementary resources might be undertaken to help extrapolators put 

available resources to (better) use. 

 In summary, the present work suggests that the attractiveness and real-world 

applicability of existing strategies for extrapolation is limited. Strategies that only get 

things right in the abstract are of little use for practice, and leaving the substantial 

epistemic problems encountered in extrapolation unaddressed just means that abstract 

strategies can only tell us when extrapolation is possible in principle. From the point of 

view of practice, this is unsatisfactory, as it falls short of providing a recipe for 

successful extrapolation and undermines the main promise of EBP: that evidence 

libraries are informative for predicting the effectiveness of interventions in novel 

settings. The strategies examined here involve substantive assumptions about causally 

relevant similarities, often going well beyond those explicitly discussed, and none of 

them, by itself, provides a compelling recipe for how to evade the extrapolator’s bind. 

This is hardly surprising. Extrapolation, we might say, is like induction. The very nature 

of the problem suggests that asking for a definitive solution is elusive. Real-world 

extrapolative inference is piecemeal and many of the things required to support it will 

be tied to the concrete contexts of specific extrapolations.  

 Yet, as I have argued, some general things can be said, too, e.g. that ensuring the 

relevance of an experimental result is a key normative requirement for successful 

extrapolation; predictive extrapolation poses distinct challenges; ‘dormant’ mechanisms 

are particularly problematic; and integrating different kinds of methods and evidence 

can be important. Building on these insights, it seems possible to further develop a 

useful, more general framework to facilitate extrapolation. As the present work 

suggests, such a framework could make important contributions to structure the 

epistemic activities taking place in extrapolation at an intermediate level, i.e. between 

abstract strategies and the concrete resources available in each setting. Complementing 

both, this could help close the substantial gap between abstract strategies for 

extrapolation and its concrete epistemic practice, and help EBP live up to its ambitions 

of informing policymaking by drawing on high-quality evidence and, in the future, 

high-quality inferences, too. 

 

 


